1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttributes()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttributes()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::kw_deplibs: 361 if (parseDepLibs()) 362 return true; 363 break; 364 case lltok::LocalVarID: 365 if (parseUnnamedType()) 366 return true; 367 break; 368 case lltok::LocalVar: 369 if (parseNamedType()) 370 return true; 371 break; 372 case lltok::GlobalID: 373 if (parseUnnamedGlobal()) 374 return true; 375 break; 376 case lltok::GlobalVar: 377 if (parseNamedGlobal()) 378 return true; 379 break; 380 case lltok::ComdatVar: if (parseComdat()) return true; break; 381 case lltok::exclaim: 382 if (parseStandaloneMetadata()) 383 return true; 384 break; 385 case lltok::SummaryID: 386 if (parseSummaryEntry()) 387 return true; 388 break; 389 case lltok::MetadataVar: 390 if (parseNamedMetadata()) 391 return true; 392 break; 393 case lltok::kw_attributes: 394 if (parseUnnamedAttrGrp()) 395 return true; 396 break; 397 case lltok::kw_uselistorder: 398 if (parseUseListOrder()) 399 return true; 400 break; 401 case lltok::kw_uselistorder_bb: 402 if (parseUseListOrderBB()) 403 return true; 404 break; 405 } 406 } 407 } 408 409 /// toplevelentity 410 /// ::= 'module' 'asm' STRINGCONSTANT 411 bool LLParser::parseModuleAsm() { 412 assert(Lex.getKind() == lltok::kw_module); 413 Lex.Lex(); 414 415 std::string AsmStr; 416 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 417 parseStringConstant(AsmStr)) 418 return true; 419 420 M->appendModuleInlineAsm(AsmStr); 421 return false; 422 } 423 424 /// toplevelentity 425 /// ::= 'target' 'triple' '=' STRINGCONSTANT 426 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 427 bool LLParser::parseTargetDefinition() { 428 assert(Lex.getKind() == lltok::kw_target); 429 std::string Str; 430 switch (Lex.Lex()) { 431 default: 432 return tokError("unknown target property"); 433 case lltok::kw_triple: 434 Lex.Lex(); 435 if (parseToken(lltok::equal, "expected '=' after target triple") || 436 parseStringConstant(Str)) 437 return true; 438 M->setTargetTriple(Str); 439 return false; 440 case lltok::kw_datalayout: 441 Lex.Lex(); 442 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 443 parseStringConstant(Str)) 444 return true; 445 M->setDataLayout(Str); 446 return false; 447 } 448 } 449 450 /// toplevelentity 451 /// ::= 'source_filename' '=' STRINGCONSTANT 452 bool LLParser::parseSourceFileName() { 453 assert(Lex.getKind() == lltok::kw_source_filename); 454 Lex.Lex(); 455 if (parseToken(lltok::equal, "expected '=' after source_filename") || 456 parseStringConstant(SourceFileName)) 457 return true; 458 if (M) 459 M->setSourceFileName(SourceFileName); 460 return false; 461 } 462 463 /// toplevelentity 464 /// ::= 'deplibs' '=' '[' ']' 465 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 466 /// FIXME: Remove in 4.0. Currently parse, but ignore. 467 bool LLParser::parseDepLibs() { 468 assert(Lex.getKind() == lltok::kw_deplibs); 469 Lex.Lex(); 470 if (parseToken(lltok::equal, "expected '=' after deplibs") || 471 parseToken(lltok::lsquare, "expected '=' after deplibs")) 472 return true; 473 474 if (EatIfPresent(lltok::rsquare)) 475 return false; 476 477 do { 478 std::string Str; 479 if (parseStringConstant(Str)) 480 return true; 481 } while (EatIfPresent(lltok::comma)); 482 483 return parseToken(lltok::rsquare, "expected ']' at end of list"); 484 } 485 486 /// parseUnnamedType: 487 /// ::= LocalVarID '=' 'type' type 488 bool LLParser::parseUnnamedType() { 489 LocTy TypeLoc = Lex.getLoc(); 490 unsigned TypeID = Lex.getUIntVal(); 491 Lex.Lex(); // eat LocalVarID; 492 493 if (parseToken(lltok::equal, "expected '=' after name") || 494 parseToken(lltok::kw_type, "expected 'type' after '='")) 495 return true; 496 497 Type *Result = nullptr; 498 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 499 return true; 500 501 if (!isa<StructType>(Result)) { 502 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 503 if (Entry.first) 504 return error(TypeLoc, "non-struct types may not be recursive"); 505 Entry.first = Result; 506 Entry.second = SMLoc(); 507 } 508 509 return false; 510 } 511 512 /// toplevelentity 513 /// ::= LocalVar '=' 'type' type 514 bool LLParser::parseNamedType() { 515 std::string Name = Lex.getStrVal(); 516 LocTy NameLoc = Lex.getLoc(); 517 Lex.Lex(); // eat LocalVar. 518 519 if (parseToken(lltok::equal, "expected '=' after name") || 520 parseToken(lltok::kw_type, "expected 'type' after name")) 521 return true; 522 523 Type *Result = nullptr; 524 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 525 return true; 526 527 if (!isa<StructType>(Result)) { 528 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 529 if (Entry.first) 530 return error(NameLoc, "non-struct types may not be recursive"); 531 Entry.first = Result; 532 Entry.second = SMLoc(); 533 } 534 535 return false; 536 } 537 538 /// toplevelentity 539 /// ::= 'declare' FunctionHeader 540 bool LLParser::parseDeclare() { 541 assert(Lex.getKind() == lltok::kw_declare); 542 Lex.Lex(); 543 544 std::vector<std::pair<unsigned, MDNode *>> MDs; 545 while (Lex.getKind() == lltok::MetadataVar) { 546 unsigned MDK; 547 MDNode *N; 548 if (parseMetadataAttachment(MDK, N)) 549 return true; 550 MDs.push_back({MDK, N}); 551 } 552 553 Function *F; 554 if (parseFunctionHeader(F, false)) 555 return true; 556 for (auto &MD : MDs) 557 F->addMetadata(MD.first, *MD.second); 558 return false; 559 } 560 561 /// toplevelentity 562 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 563 bool LLParser::parseDefine() { 564 assert(Lex.getKind() == lltok::kw_define); 565 Lex.Lex(); 566 567 Function *F; 568 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 569 parseFunctionBody(*F); 570 } 571 572 /// parseGlobalType 573 /// ::= 'constant' 574 /// ::= 'global' 575 bool LLParser::parseGlobalType(bool &IsConstant) { 576 if (Lex.getKind() == lltok::kw_constant) 577 IsConstant = true; 578 else if (Lex.getKind() == lltok::kw_global) 579 IsConstant = false; 580 else { 581 IsConstant = false; 582 return tokError("expected 'global' or 'constant'"); 583 } 584 Lex.Lex(); 585 return false; 586 } 587 588 bool LLParser::parseOptionalUnnamedAddr( 589 GlobalVariable::UnnamedAddr &UnnamedAddr) { 590 if (EatIfPresent(lltok::kw_unnamed_addr)) 591 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 592 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 593 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 594 else 595 UnnamedAddr = GlobalValue::UnnamedAddr::None; 596 return false; 597 } 598 599 /// parseUnnamedGlobal: 600 /// OptionalVisibility (ALIAS | IFUNC) ... 601 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 602 /// OptionalDLLStorageClass 603 /// ... -> global variable 604 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 605 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 606 /// OptionalVisibility 607 /// OptionalDLLStorageClass 608 /// ... -> global variable 609 bool LLParser::parseUnnamedGlobal() { 610 unsigned VarID = NumberedVals.size(); 611 std::string Name; 612 LocTy NameLoc = Lex.getLoc(); 613 614 // Handle the GlobalID form. 615 if (Lex.getKind() == lltok::GlobalID) { 616 if (Lex.getUIntVal() != VarID) 617 return error(Lex.getLoc(), 618 "variable expected to be numbered '%" + Twine(VarID) + "'"); 619 Lex.Lex(); // eat GlobalID; 620 621 if (parseToken(lltok::equal, "expected '=' after name")) 622 return true; 623 } 624 625 bool HasLinkage; 626 unsigned Linkage, Visibility, DLLStorageClass; 627 bool DSOLocal; 628 GlobalVariable::ThreadLocalMode TLM; 629 GlobalVariable::UnnamedAddr UnnamedAddr; 630 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 631 DSOLocal) || 632 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 633 return true; 634 635 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 636 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 637 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 638 639 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 } 642 643 /// parseNamedGlobal: 644 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 645 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 646 /// OptionalVisibility OptionalDLLStorageClass 647 /// ... -> global variable 648 bool LLParser::parseNamedGlobal() { 649 assert(Lex.getKind() == lltok::GlobalVar); 650 LocTy NameLoc = Lex.getLoc(); 651 std::string Name = Lex.getStrVal(); 652 Lex.Lex(); 653 654 bool HasLinkage; 655 unsigned Linkage, Visibility, DLLStorageClass; 656 bool DSOLocal; 657 GlobalVariable::ThreadLocalMode TLM; 658 GlobalVariable::UnnamedAddr UnnamedAddr; 659 if (parseToken(lltok::equal, "expected '=' in global variable") || 660 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 661 DSOLocal) || 662 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 663 return true; 664 665 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 666 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 667 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 668 669 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 670 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 671 } 672 673 bool LLParser::parseComdat() { 674 assert(Lex.getKind() == lltok::ComdatVar); 675 std::string Name = Lex.getStrVal(); 676 LocTy NameLoc = Lex.getLoc(); 677 Lex.Lex(); 678 679 if (parseToken(lltok::equal, "expected '=' here")) 680 return true; 681 682 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 683 return tokError("expected comdat type"); 684 685 Comdat::SelectionKind SK; 686 switch (Lex.getKind()) { 687 default: 688 return tokError("unknown selection kind"); 689 case lltok::kw_any: 690 SK = Comdat::Any; 691 break; 692 case lltok::kw_exactmatch: 693 SK = Comdat::ExactMatch; 694 break; 695 case lltok::kw_largest: 696 SK = Comdat::Largest; 697 break; 698 case lltok::kw_noduplicates: 699 SK = Comdat::NoDuplicates; 700 break; 701 case lltok::kw_samesize: 702 SK = Comdat::SameSize; 703 break; 704 } 705 Lex.Lex(); 706 707 // See if the comdat was forward referenced, if so, use the comdat. 708 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 709 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 710 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 711 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 712 713 Comdat *C; 714 if (I != ComdatSymTab.end()) 715 C = &I->second; 716 else 717 C = M->getOrInsertComdat(Name); 718 C->setSelectionKind(SK); 719 720 return false; 721 } 722 723 // MDString: 724 // ::= '!' STRINGCONSTANT 725 bool LLParser::parseMDString(MDString *&Result) { 726 std::string Str; 727 if (parseStringConstant(Str)) 728 return true; 729 Result = MDString::get(Context, Str); 730 return false; 731 } 732 733 // MDNode: 734 // ::= '!' MDNodeNumber 735 bool LLParser::parseMDNodeID(MDNode *&Result) { 736 // !{ ..., !42, ... } 737 LocTy IDLoc = Lex.getLoc(); 738 unsigned MID = 0; 739 if (parseUInt32(MID)) 740 return true; 741 742 // If not a forward reference, just return it now. 743 if (NumberedMetadata.count(MID)) { 744 Result = NumberedMetadata[MID]; 745 return false; 746 } 747 748 // Otherwise, create MDNode forward reference. 749 auto &FwdRef = ForwardRefMDNodes[MID]; 750 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 751 752 Result = FwdRef.first.get(); 753 NumberedMetadata[MID].reset(Result); 754 return false; 755 } 756 757 /// parseNamedMetadata: 758 /// !foo = !{ !1, !2 } 759 bool LLParser::parseNamedMetadata() { 760 assert(Lex.getKind() == lltok::MetadataVar); 761 std::string Name = Lex.getStrVal(); 762 Lex.Lex(); 763 764 if (parseToken(lltok::equal, "expected '=' here") || 765 parseToken(lltok::exclaim, "Expected '!' here") || 766 parseToken(lltok::lbrace, "Expected '{' here")) 767 return true; 768 769 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 770 if (Lex.getKind() != lltok::rbrace) 771 do { 772 MDNode *N = nullptr; 773 // parse DIExpressions inline as a special case. They are still MDNodes, 774 // so they can still appear in named metadata. Remove this logic if they 775 // become plain Metadata. 776 if (Lex.getKind() == lltok::MetadataVar && 777 Lex.getStrVal() == "DIExpression") { 778 if (parseDIExpression(N, /*IsDistinct=*/false)) 779 return true; 780 // DIArgLists should only appear inline in a function, as they may 781 // contain LocalAsMetadata arguments which require a function context. 782 } else if (Lex.getKind() == lltok::MetadataVar && 783 Lex.getStrVal() == "DIArgList") { 784 return tokError("found DIArgList outside of function"); 785 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 786 parseMDNodeID(N)) { 787 return true; 788 } 789 NMD->addOperand(N); 790 } while (EatIfPresent(lltok::comma)); 791 792 return parseToken(lltok::rbrace, "expected end of metadata node"); 793 } 794 795 /// parseStandaloneMetadata: 796 /// !42 = !{...} 797 bool LLParser::parseStandaloneMetadata() { 798 assert(Lex.getKind() == lltok::exclaim); 799 Lex.Lex(); 800 unsigned MetadataID = 0; 801 802 MDNode *Init; 803 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 804 return true; 805 806 // Detect common error, from old metadata syntax. 807 if (Lex.getKind() == lltok::Type) 808 return tokError("unexpected type in metadata definition"); 809 810 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 811 if (Lex.getKind() == lltok::MetadataVar) { 812 if (parseSpecializedMDNode(Init, IsDistinct)) 813 return true; 814 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 815 parseMDTuple(Init, IsDistinct)) 816 return true; 817 818 // See if this was forward referenced, if so, handle it. 819 auto FI = ForwardRefMDNodes.find(MetadataID); 820 if (FI != ForwardRefMDNodes.end()) { 821 FI->second.first->replaceAllUsesWith(Init); 822 ForwardRefMDNodes.erase(FI); 823 824 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 825 } else { 826 if (NumberedMetadata.count(MetadataID)) 827 return tokError("Metadata id is already used"); 828 NumberedMetadata[MetadataID].reset(Init); 829 } 830 831 return false; 832 } 833 834 // Skips a single module summary entry. 835 bool LLParser::skipModuleSummaryEntry() { 836 // Each module summary entry consists of a tag for the entry 837 // type, followed by a colon, then the fields which may be surrounded by 838 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 839 // support is in place we will look for the tokens corresponding to the 840 // expected tags. 841 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 842 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 843 Lex.getKind() != lltok::kw_blockcount) 844 return tokError( 845 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 846 "start of summary entry"); 847 if (Lex.getKind() == lltok::kw_flags) 848 return parseSummaryIndexFlags(); 849 if (Lex.getKind() == lltok::kw_blockcount) 850 return parseBlockCount(); 851 Lex.Lex(); 852 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 853 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 854 return true; 855 // Now walk through the parenthesized entry, until the number of open 856 // parentheses goes back down to 0 (the first '(' was parsed above). 857 unsigned NumOpenParen = 1; 858 do { 859 switch (Lex.getKind()) { 860 case lltok::lparen: 861 NumOpenParen++; 862 break; 863 case lltok::rparen: 864 NumOpenParen--; 865 break; 866 case lltok::Eof: 867 return tokError("found end of file while parsing summary entry"); 868 default: 869 // Skip everything in between parentheses. 870 break; 871 } 872 Lex.Lex(); 873 } while (NumOpenParen > 0); 874 return false; 875 } 876 877 /// SummaryEntry 878 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 879 bool LLParser::parseSummaryEntry() { 880 assert(Lex.getKind() == lltok::SummaryID); 881 unsigned SummaryID = Lex.getUIntVal(); 882 883 // For summary entries, colons should be treated as distinct tokens, 884 // not an indication of the end of a label token. 885 Lex.setIgnoreColonInIdentifiers(true); 886 887 Lex.Lex(); 888 if (parseToken(lltok::equal, "expected '=' here")) 889 return true; 890 891 // If we don't have an index object, skip the summary entry. 892 if (!Index) 893 return skipModuleSummaryEntry(); 894 895 bool result = false; 896 switch (Lex.getKind()) { 897 case lltok::kw_gv: 898 result = parseGVEntry(SummaryID); 899 break; 900 case lltok::kw_module: 901 result = parseModuleEntry(SummaryID); 902 break; 903 case lltok::kw_typeid: 904 result = parseTypeIdEntry(SummaryID); 905 break; 906 case lltok::kw_typeidCompatibleVTable: 907 result = parseTypeIdCompatibleVtableEntry(SummaryID); 908 break; 909 case lltok::kw_flags: 910 result = parseSummaryIndexFlags(); 911 break; 912 case lltok::kw_blockcount: 913 result = parseBlockCount(); 914 break; 915 default: 916 result = error(Lex.getLoc(), "unexpected summary kind"); 917 break; 918 } 919 Lex.setIgnoreColonInIdentifiers(false); 920 return result; 921 } 922 923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 924 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 925 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 926 } 927 928 // If there was an explicit dso_local, update GV. In the absence of an explicit 929 // dso_local we keep the default value. 930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 931 if (DSOLocal) 932 GV.setDSOLocal(true); 933 } 934 935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 936 Type *Ty2) { 937 std::string ErrString; 938 raw_string_ostream ErrOS(ErrString); 939 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 940 return ErrOS.str(); 941 } 942 943 /// parseIndirectSymbol: 944 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 945 /// OptionalVisibility OptionalDLLStorageClass 946 /// OptionalThreadLocal OptionalUnnamedAddr 947 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 948 /// 949 /// IndirectSymbol 950 /// ::= TypeAndValue 951 /// 952 /// IndirectSymbolAttr 953 /// ::= ',' 'partition' StringConstant 954 /// 955 /// Everything through OptionalUnnamedAddr has already been parsed. 956 /// 957 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 958 unsigned L, unsigned Visibility, 959 unsigned DLLStorageClass, bool DSOLocal, 960 GlobalVariable::ThreadLocalMode TLM, 961 GlobalVariable::UnnamedAddr UnnamedAddr) { 962 bool IsAlias; 963 if (Lex.getKind() == lltok::kw_alias) 964 IsAlias = true; 965 else if (Lex.getKind() == lltok::kw_ifunc) 966 IsAlias = false; 967 else 968 llvm_unreachable("Not an alias or ifunc!"); 969 Lex.Lex(); 970 971 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 972 973 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 974 return error(NameLoc, "invalid linkage type for alias"); 975 976 if (!isValidVisibilityForLinkage(Visibility, L)) 977 return error(NameLoc, 978 "symbol with local linkage must have default visibility"); 979 980 Type *Ty; 981 LocTy ExplicitTypeLoc = Lex.getLoc(); 982 if (parseType(Ty) || 983 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 984 return true; 985 986 Constant *Aliasee; 987 LocTy AliaseeLoc = Lex.getLoc(); 988 if (Lex.getKind() != lltok::kw_bitcast && 989 Lex.getKind() != lltok::kw_getelementptr && 990 Lex.getKind() != lltok::kw_addrspacecast && 991 Lex.getKind() != lltok::kw_inttoptr) { 992 if (parseGlobalTypeAndValue(Aliasee)) 993 return true; 994 } else { 995 // The bitcast dest type is not present, it is implied by the dest type. 996 ValID ID; 997 if (parseValID(ID)) 998 return true; 999 if (ID.Kind != ValID::t_Constant) 1000 return error(AliaseeLoc, "invalid aliasee"); 1001 Aliasee = ID.ConstantVal; 1002 } 1003 1004 Type *AliaseeType = Aliasee->getType(); 1005 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1006 if (!PTy) 1007 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1008 unsigned AddrSpace = PTy->getAddressSpace(); 1009 1010 if (IsAlias && Ty != PTy->getElementType()) { 1011 return error( 1012 ExplicitTypeLoc, 1013 typeComparisonErrorMessage( 1014 "explicit pointee type doesn't match operand's pointee type", Ty, 1015 PTy->getElementType())); 1016 } 1017 1018 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 1019 return error(ExplicitTypeLoc, 1020 "explicit pointee type should be a function type"); 1021 } 1022 1023 GlobalValue *GVal = nullptr; 1024 1025 // See if the alias was forward referenced, if so, prepare to replace the 1026 // forward reference. 1027 if (!Name.empty()) { 1028 GVal = M->getNamedValue(Name); 1029 if (GVal) { 1030 if (!ForwardRefVals.erase(Name)) 1031 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1032 } 1033 } else { 1034 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1035 if (I != ForwardRefValIDs.end()) { 1036 GVal = I->second.first; 1037 ForwardRefValIDs.erase(I); 1038 } 1039 } 1040 1041 // Okay, create the alias but do not insert it into the module yet. 1042 std::unique_ptr<GlobalIndirectSymbol> GA; 1043 if (IsAlias) 1044 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1045 (GlobalValue::LinkageTypes)Linkage, Name, 1046 Aliasee, /*Parent*/ nullptr)); 1047 else 1048 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1049 (GlobalValue::LinkageTypes)Linkage, Name, 1050 Aliasee, /*Parent*/ nullptr)); 1051 GA->setThreadLocalMode(TLM); 1052 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1053 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1054 GA->setUnnamedAddr(UnnamedAddr); 1055 maybeSetDSOLocal(DSOLocal, *GA); 1056 1057 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1058 // Now parse them if there are any. 1059 while (Lex.getKind() == lltok::comma) { 1060 Lex.Lex(); 1061 1062 if (Lex.getKind() == lltok::kw_partition) { 1063 Lex.Lex(); 1064 GA->setPartition(Lex.getStrVal()); 1065 if (parseToken(lltok::StringConstant, "expected partition string")) 1066 return true; 1067 } else { 1068 return tokError("unknown alias or ifunc property!"); 1069 } 1070 } 1071 1072 if (Name.empty()) 1073 NumberedVals.push_back(GA.get()); 1074 1075 if (GVal) { 1076 // Verify that types agree. 1077 if (GVal->getType() != GA->getType()) 1078 return error( 1079 ExplicitTypeLoc, 1080 "forward reference and definition of alias have different types"); 1081 1082 // If they agree, just RAUW the old value with the alias and remove the 1083 // forward ref info. 1084 GVal->replaceAllUsesWith(GA.get()); 1085 GVal->eraseFromParent(); 1086 } 1087 1088 // Insert into the module, we know its name won't collide now. 1089 if (IsAlias) 1090 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1091 else 1092 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1093 assert(GA->getName() == Name && "Should not be a name conflict!"); 1094 1095 // The module owns this now 1096 GA.release(); 1097 1098 return false; 1099 } 1100 1101 /// parseGlobal 1102 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1103 /// OptionalVisibility OptionalDLLStorageClass 1104 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1105 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1106 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1107 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1108 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1109 /// Const OptionalAttrs 1110 /// 1111 /// Everything up to and including OptionalUnnamedAddr has been parsed 1112 /// already. 1113 /// 1114 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1115 unsigned Linkage, bool HasLinkage, 1116 unsigned Visibility, unsigned DLLStorageClass, 1117 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1118 GlobalVariable::UnnamedAddr UnnamedAddr) { 1119 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1120 return error(NameLoc, 1121 "symbol with local linkage must have default visibility"); 1122 1123 unsigned AddrSpace; 1124 bool IsConstant, IsExternallyInitialized; 1125 LocTy IsExternallyInitializedLoc; 1126 LocTy TyLoc; 1127 1128 Type *Ty = nullptr; 1129 if (parseOptionalAddrSpace(AddrSpace) || 1130 parseOptionalToken(lltok::kw_externally_initialized, 1131 IsExternallyInitialized, 1132 &IsExternallyInitializedLoc) || 1133 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1134 return true; 1135 1136 // If the linkage is specified and is external, then no initializer is 1137 // present. 1138 Constant *Init = nullptr; 1139 if (!HasLinkage || 1140 !GlobalValue::isValidDeclarationLinkage( 1141 (GlobalValue::LinkageTypes)Linkage)) { 1142 if (parseGlobalValue(Ty, Init)) 1143 return true; 1144 } 1145 1146 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1147 return error(TyLoc, "invalid type for global variable"); 1148 1149 GlobalValue *GVal = nullptr; 1150 1151 // See if the global was forward referenced, if so, use the global. 1152 if (!Name.empty()) { 1153 GVal = M->getNamedValue(Name); 1154 if (GVal) { 1155 if (!ForwardRefVals.erase(Name)) 1156 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1157 } 1158 } else { 1159 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1160 if (I != ForwardRefValIDs.end()) { 1161 GVal = I->second.first; 1162 ForwardRefValIDs.erase(I); 1163 } 1164 } 1165 1166 GlobalVariable *GV; 1167 if (!GVal) { 1168 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1169 Name, nullptr, GlobalVariable::NotThreadLocal, 1170 AddrSpace); 1171 } else { 1172 if (GVal->getValueType() != Ty) 1173 return error( 1174 TyLoc, 1175 "forward reference and definition of global have different types"); 1176 1177 GV = cast<GlobalVariable>(GVal); 1178 1179 // Move the forward-reference to the correct spot in the module. 1180 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1181 } 1182 1183 if (Name.empty()) 1184 NumberedVals.push_back(GV); 1185 1186 // Set the parsed properties on the global. 1187 if (Init) 1188 GV->setInitializer(Init); 1189 GV->setConstant(IsConstant); 1190 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1191 maybeSetDSOLocal(DSOLocal, *GV); 1192 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1193 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1194 GV->setExternallyInitialized(IsExternallyInitialized); 1195 GV->setThreadLocalMode(TLM); 1196 GV->setUnnamedAddr(UnnamedAddr); 1197 1198 // parse attributes on the global. 1199 while (Lex.getKind() == lltok::comma) { 1200 Lex.Lex(); 1201 1202 if (Lex.getKind() == lltok::kw_section) { 1203 Lex.Lex(); 1204 GV->setSection(Lex.getStrVal()); 1205 if (parseToken(lltok::StringConstant, "expected global section string")) 1206 return true; 1207 } else if (Lex.getKind() == lltok::kw_partition) { 1208 Lex.Lex(); 1209 GV->setPartition(Lex.getStrVal()); 1210 if (parseToken(lltok::StringConstant, "expected partition string")) 1211 return true; 1212 } else if (Lex.getKind() == lltok::kw_align) { 1213 MaybeAlign Alignment; 1214 if (parseOptionalAlignment(Alignment)) 1215 return true; 1216 GV->setAlignment(Alignment); 1217 } else if (Lex.getKind() == lltok::MetadataVar) { 1218 if (parseGlobalObjectMetadataAttachment(*GV)) 1219 return true; 1220 } else { 1221 Comdat *C; 1222 if (parseOptionalComdat(Name, C)) 1223 return true; 1224 if (C) 1225 GV->setComdat(C); 1226 else 1227 return tokError("unknown global variable property!"); 1228 } 1229 } 1230 1231 AttrBuilder Attrs; 1232 LocTy BuiltinLoc; 1233 std::vector<unsigned> FwdRefAttrGrps; 1234 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1235 return true; 1236 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1237 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1238 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1239 } 1240 1241 return false; 1242 } 1243 1244 /// parseUnnamedAttrGrp 1245 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1246 bool LLParser::parseUnnamedAttrGrp() { 1247 assert(Lex.getKind() == lltok::kw_attributes); 1248 LocTy AttrGrpLoc = Lex.getLoc(); 1249 Lex.Lex(); 1250 1251 if (Lex.getKind() != lltok::AttrGrpID) 1252 return tokError("expected attribute group id"); 1253 1254 unsigned VarID = Lex.getUIntVal(); 1255 std::vector<unsigned> unused; 1256 LocTy BuiltinLoc; 1257 Lex.Lex(); 1258 1259 if (parseToken(lltok::equal, "expected '=' here") || 1260 parseToken(lltok::lbrace, "expected '{' here") || 1261 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1262 BuiltinLoc) || 1263 parseToken(lltok::rbrace, "expected end of attribute group")) 1264 return true; 1265 1266 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1267 return error(AttrGrpLoc, "attribute group has no attributes"); 1268 1269 return false; 1270 } 1271 1272 /// parseFnAttributeValuePairs 1273 /// ::= <attr> | <attr> '=' <value> 1274 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1275 std::vector<unsigned> &FwdRefAttrGrps, 1276 bool inAttrGrp, LocTy &BuiltinLoc) { 1277 bool HaveError = false; 1278 1279 B.clear(); 1280 1281 while (true) { 1282 lltok::Kind Token = Lex.getKind(); 1283 if (Token == lltok::kw_builtin) 1284 BuiltinLoc = Lex.getLoc(); 1285 switch (Token) { 1286 default: 1287 if (!inAttrGrp) return HaveError; 1288 return error(Lex.getLoc(), "unterminated attribute group"); 1289 case lltok::rbrace: 1290 // Finished. 1291 return false; 1292 1293 case lltok::AttrGrpID: { 1294 // Allow a function to reference an attribute group: 1295 // 1296 // define void @foo() #1 { ... } 1297 if (inAttrGrp) 1298 HaveError |= error( 1299 Lex.getLoc(), 1300 "cannot have an attribute group reference in an attribute group"); 1301 1302 unsigned AttrGrpNum = Lex.getUIntVal(); 1303 if (inAttrGrp) break; 1304 1305 // Save the reference to the attribute group. We'll fill it in later. 1306 FwdRefAttrGrps.push_back(AttrGrpNum); 1307 break; 1308 } 1309 // Target-dependent attributes: 1310 case lltok::StringConstant: { 1311 if (parseStringAttribute(B)) 1312 return true; 1313 continue; 1314 } 1315 1316 // Target-independent attributes: 1317 case lltok::kw_align: { 1318 // As a hack, we allow function alignment to be initially parsed as an 1319 // attribute on a function declaration/definition or added to an attribute 1320 // group and later moved to the alignment field. 1321 MaybeAlign Alignment; 1322 if (inAttrGrp) { 1323 Lex.Lex(); 1324 uint32_t Value = 0; 1325 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1326 return true; 1327 Alignment = Align(Value); 1328 } else { 1329 if (parseOptionalAlignment(Alignment)) 1330 return true; 1331 } 1332 B.addAlignmentAttr(Alignment); 1333 continue; 1334 } 1335 case lltok::kw_alignstack: { 1336 unsigned Alignment; 1337 if (inAttrGrp) { 1338 Lex.Lex(); 1339 if (parseToken(lltok::equal, "expected '=' here") || 1340 parseUInt32(Alignment)) 1341 return true; 1342 } else { 1343 if (parseOptionalStackAlignment(Alignment)) 1344 return true; 1345 } 1346 B.addStackAlignmentAttr(Alignment); 1347 continue; 1348 } 1349 case lltok::kw_allocsize: { 1350 unsigned ElemSizeArg; 1351 Optional<unsigned> NumElemsArg; 1352 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1353 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1354 return true; 1355 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1356 continue; 1357 } 1358 case lltok::kw_vscale_range: { 1359 unsigned MinValue, MaxValue; 1360 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1361 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1362 return true; 1363 B.addVScaleRangeAttr(MinValue, MaxValue); 1364 continue; 1365 } 1366 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1367 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1368 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1369 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1370 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1371 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1372 case lltok::kw_inaccessiblememonly: 1373 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1374 case lltok::kw_inaccessiblemem_or_argmemonly: 1375 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1376 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1377 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1378 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1379 case lltok::kw_mustprogress: 1380 B.addAttribute(Attribute::MustProgress); 1381 break; 1382 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1383 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1384 case lltok::kw_nocallback: 1385 B.addAttribute(Attribute::NoCallback); 1386 break; 1387 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1388 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1389 case lltok::kw_noimplicitfloat: 1390 B.addAttribute(Attribute::NoImplicitFloat); break; 1391 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1392 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1393 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1394 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1395 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1396 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1397 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1398 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1399 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1400 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1401 case lltok::kw_null_pointer_is_valid: 1402 B.addAttribute(Attribute::NullPointerIsValid); break; 1403 case lltok::kw_optforfuzzing: 1404 B.addAttribute(Attribute::OptForFuzzing); break; 1405 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1406 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1407 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1408 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1409 case lltok::kw_returns_twice: 1410 B.addAttribute(Attribute::ReturnsTwice); break; 1411 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1412 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1413 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1414 case lltok::kw_sspstrong: 1415 B.addAttribute(Attribute::StackProtectStrong); break; 1416 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1417 case lltok::kw_shadowcallstack: 1418 B.addAttribute(Attribute::ShadowCallStack); break; 1419 case lltok::kw_sanitize_address: 1420 B.addAttribute(Attribute::SanitizeAddress); break; 1421 case lltok::kw_sanitize_hwaddress: 1422 B.addAttribute(Attribute::SanitizeHWAddress); break; 1423 case lltok::kw_sanitize_memtag: 1424 B.addAttribute(Attribute::SanitizeMemTag); break; 1425 case lltok::kw_sanitize_thread: 1426 B.addAttribute(Attribute::SanitizeThread); break; 1427 case lltok::kw_sanitize_memory: 1428 B.addAttribute(Attribute::SanitizeMemory); break; 1429 case lltok::kw_speculative_load_hardening: 1430 B.addAttribute(Attribute::SpeculativeLoadHardening); 1431 break; 1432 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1433 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1434 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1435 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1436 case lltok::kw_preallocated: { 1437 Type *Ty; 1438 if (parsePreallocated(Ty)) 1439 return true; 1440 B.addPreallocatedAttr(Ty); 1441 break; 1442 } 1443 1444 // error handling. 1445 case lltok::kw_inreg: 1446 case lltok::kw_signext: 1447 case lltok::kw_zeroext: 1448 HaveError |= 1449 error(Lex.getLoc(), "invalid use of attribute on a function"); 1450 break; 1451 case lltok::kw_byval: 1452 case lltok::kw_dereferenceable: 1453 case lltok::kw_dereferenceable_or_null: 1454 case lltok::kw_inalloca: 1455 case lltok::kw_nest: 1456 case lltok::kw_noalias: 1457 case lltok::kw_noundef: 1458 case lltok::kw_nocapture: 1459 case lltok::kw_nonnull: 1460 case lltok::kw_returned: 1461 case lltok::kw_sret: 1462 case lltok::kw_swifterror: 1463 case lltok::kw_swiftself: 1464 case lltok::kw_swiftasync: 1465 case lltok::kw_immarg: 1466 case lltok::kw_byref: 1467 HaveError |= 1468 error(Lex.getLoc(), 1469 "invalid use of parameter-only attribute on a function"); 1470 break; 1471 } 1472 1473 // parsePreallocated() consumes token 1474 if (Token != lltok::kw_preallocated) 1475 Lex.Lex(); 1476 } 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // GlobalValue Reference/Resolution Routines. 1481 //===----------------------------------------------------------------------===// 1482 1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1484 const std::string &Name) { 1485 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1486 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1487 PTy->getAddressSpace(), Name, M); 1488 else 1489 return new GlobalVariable(*M, PTy->getElementType(), false, 1490 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1491 nullptr, GlobalVariable::NotThreadLocal, 1492 PTy->getAddressSpace()); 1493 } 1494 1495 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1496 Value *Val, bool IsCall) { 1497 if (Val->getType() == Ty) 1498 return Val; 1499 // For calls we also accept variables in the program address space. 1500 Type *SuggestedTy = Ty; 1501 if (IsCall && isa<PointerType>(Ty)) { 1502 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1503 M->getDataLayout().getProgramAddressSpace()); 1504 SuggestedTy = TyInProgAS; 1505 if (Val->getType() == TyInProgAS) 1506 return Val; 1507 } 1508 if (Ty->isLabelTy()) 1509 error(Loc, "'" + Name + "' is not a basic block"); 1510 else 1511 error(Loc, "'" + Name + "' defined with type '" + 1512 getTypeString(Val->getType()) + "' but expected '" + 1513 getTypeString(SuggestedTy) + "'"); 1514 return nullptr; 1515 } 1516 1517 /// getGlobalVal - Get a value with the specified name or ID, creating a 1518 /// forward reference record if needed. This can return null if the value 1519 /// exists but does not have the right type. 1520 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1521 LocTy Loc, bool IsCall) { 1522 PointerType *PTy = dyn_cast<PointerType>(Ty); 1523 if (!PTy) { 1524 error(Loc, "global variable reference must have pointer type"); 1525 return nullptr; 1526 } 1527 1528 // Look this name up in the normal function symbol table. 1529 GlobalValue *Val = 1530 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1531 1532 // If this is a forward reference for the value, see if we already created a 1533 // forward ref record. 1534 if (!Val) { 1535 auto I = ForwardRefVals.find(Name); 1536 if (I != ForwardRefVals.end()) 1537 Val = I->second.first; 1538 } 1539 1540 // If we have the value in the symbol table or fwd-ref table, return it. 1541 if (Val) 1542 return cast_or_null<GlobalValue>( 1543 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1544 1545 // Otherwise, create a new forward reference for this value and remember it. 1546 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1547 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1548 return FwdVal; 1549 } 1550 1551 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1552 bool IsCall) { 1553 PointerType *PTy = dyn_cast<PointerType>(Ty); 1554 if (!PTy) { 1555 error(Loc, "global variable reference must have pointer type"); 1556 return nullptr; 1557 } 1558 1559 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1560 1561 // If this is a forward reference for the value, see if we already created a 1562 // forward ref record. 1563 if (!Val) { 1564 auto I = ForwardRefValIDs.find(ID); 1565 if (I != ForwardRefValIDs.end()) 1566 Val = I->second.first; 1567 } 1568 1569 // If we have the value in the symbol table or fwd-ref table, return it. 1570 if (Val) 1571 return cast_or_null<GlobalValue>( 1572 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1573 1574 // Otherwise, create a new forward reference for this value and remember it. 1575 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1576 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1577 return FwdVal; 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Comdat Reference/Resolution Routines. 1582 //===----------------------------------------------------------------------===// 1583 1584 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1585 // Look this name up in the comdat symbol table. 1586 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1587 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1588 if (I != ComdatSymTab.end()) 1589 return &I->second; 1590 1591 // Otherwise, create a new forward reference for this value and remember it. 1592 Comdat *C = M->getOrInsertComdat(Name); 1593 ForwardRefComdats[Name] = Loc; 1594 return C; 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // Helper Routines. 1599 //===----------------------------------------------------------------------===// 1600 1601 /// parseToken - If the current token has the specified kind, eat it and return 1602 /// success. Otherwise, emit the specified error and return failure. 1603 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1604 if (Lex.getKind() != T) 1605 return tokError(ErrMsg); 1606 Lex.Lex(); 1607 return false; 1608 } 1609 1610 /// parseStringConstant 1611 /// ::= StringConstant 1612 bool LLParser::parseStringConstant(std::string &Result) { 1613 if (Lex.getKind() != lltok::StringConstant) 1614 return tokError("expected string constant"); 1615 Result = Lex.getStrVal(); 1616 Lex.Lex(); 1617 return false; 1618 } 1619 1620 /// parseUInt32 1621 /// ::= uint32 1622 bool LLParser::parseUInt32(uint32_t &Val) { 1623 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1624 return tokError("expected integer"); 1625 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1626 if (Val64 != unsigned(Val64)) 1627 return tokError("expected 32-bit integer (too large)"); 1628 Val = Val64; 1629 Lex.Lex(); 1630 return false; 1631 } 1632 1633 /// parseUInt64 1634 /// ::= uint64 1635 bool LLParser::parseUInt64(uint64_t &Val) { 1636 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1637 return tokError("expected integer"); 1638 Val = Lex.getAPSIntVal().getLimitedValue(); 1639 Lex.Lex(); 1640 return false; 1641 } 1642 1643 /// parseTLSModel 1644 /// := 'localdynamic' 1645 /// := 'initialexec' 1646 /// := 'localexec' 1647 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1648 switch (Lex.getKind()) { 1649 default: 1650 return tokError("expected localdynamic, initialexec or localexec"); 1651 case lltok::kw_localdynamic: 1652 TLM = GlobalVariable::LocalDynamicTLSModel; 1653 break; 1654 case lltok::kw_initialexec: 1655 TLM = GlobalVariable::InitialExecTLSModel; 1656 break; 1657 case lltok::kw_localexec: 1658 TLM = GlobalVariable::LocalExecTLSModel; 1659 break; 1660 } 1661 1662 Lex.Lex(); 1663 return false; 1664 } 1665 1666 /// parseOptionalThreadLocal 1667 /// := /*empty*/ 1668 /// := 'thread_local' 1669 /// := 'thread_local' '(' tlsmodel ')' 1670 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1671 TLM = GlobalVariable::NotThreadLocal; 1672 if (!EatIfPresent(lltok::kw_thread_local)) 1673 return false; 1674 1675 TLM = GlobalVariable::GeneralDynamicTLSModel; 1676 if (Lex.getKind() == lltok::lparen) { 1677 Lex.Lex(); 1678 return parseTLSModel(TLM) || 1679 parseToken(lltok::rparen, "expected ')' after thread local model"); 1680 } 1681 return false; 1682 } 1683 1684 /// parseOptionalAddrSpace 1685 /// := /*empty*/ 1686 /// := 'addrspace' '(' uint32 ')' 1687 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1688 AddrSpace = DefaultAS; 1689 if (!EatIfPresent(lltok::kw_addrspace)) 1690 return false; 1691 return parseToken(lltok::lparen, "expected '(' in address space") || 1692 parseUInt32(AddrSpace) || 1693 parseToken(lltok::rparen, "expected ')' in address space"); 1694 } 1695 1696 /// parseStringAttribute 1697 /// := StringConstant 1698 /// := StringConstant '=' StringConstant 1699 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1700 std::string Attr = Lex.getStrVal(); 1701 Lex.Lex(); 1702 std::string Val; 1703 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1704 return true; 1705 B.addAttribute(Attr, Val); 1706 return false; 1707 } 1708 1709 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1710 /// attributes. 1711 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1712 bool HaveError = false; 1713 1714 B.clear(); 1715 1716 while (true) { 1717 lltok::Kind Token = Lex.getKind(); 1718 switch (Token) { 1719 default: // End of attributes. 1720 return HaveError; 1721 case lltok::StringConstant: { 1722 if (parseStringAttribute(B)) 1723 return true; 1724 continue; 1725 } 1726 case lltok::kw_align: { 1727 MaybeAlign Alignment; 1728 if (parseOptionalAlignment(Alignment, true)) 1729 return true; 1730 B.addAlignmentAttr(Alignment); 1731 continue; 1732 } 1733 case lltok::kw_alignstack: { 1734 unsigned Alignment; 1735 if (parseOptionalStackAlignment(Alignment)) 1736 return true; 1737 B.addStackAlignmentAttr(Alignment); 1738 continue; 1739 } 1740 case lltok::kw_byval: { 1741 Type *Ty; 1742 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1743 return true; 1744 B.addByValAttr(Ty); 1745 continue; 1746 } 1747 case lltok::kw_sret: { 1748 Type *Ty; 1749 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1750 return true; 1751 B.addStructRetAttr(Ty); 1752 continue; 1753 } 1754 case lltok::kw_preallocated: { 1755 Type *Ty; 1756 if (parsePreallocated(Ty)) 1757 return true; 1758 B.addPreallocatedAttr(Ty); 1759 continue; 1760 } 1761 case lltok::kw_inalloca: { 1762 Type *Ty; 1763 if (parseInalloca(Ty)) 1764 return true; 1765 B.addInAllocaAttr(Ty); 1766 continue; 1767 } 1768 case lltok::kw_dereferenceable: { 1769 uint64_t Bytes; 1770 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1771 return true; 1772 B.addDereferenceableAttr(Bytes); 1773 continue; 1774 } 1775 case lltok::kw_dereferenceable_or_null: { 1776 uint64_t Bytes; 1777 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1778 return true; 1779 B.addDereferenceableOrNullAttr(Bytes); 1780 continue; 1781 } 1782 case lltok::kw_byref: { 1783 Type *Ty; 1784 if (parseByRef(Ty)) 1785 return true; 1786 B.addByRefAttr(Ty); 1787 continue; 1788 } 1789 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1790 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1791 case lltok::kw_noundef: 1792 B.addAttribute(Attribute::NoUndef); 1793 break; 1794 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1795 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1796 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1797 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1798 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1799 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1800 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1801 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1802 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1803 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1804 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1805 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1806 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1807 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1808 1809 case lltok::kw_alwaysinline: 1810 case lltok::kw_argmemonly: 1811 case lltok::kw_builtin: 1812 case lltok::kw_inlinehint: 1813 case lltok::kw_jumptable: 1814 case lltok::kw_minsize: 1815 case lltok::kw_mustprogress: 1816 case lltok::kw_naked: 1817 case lltok::kw_nobuiltin: 1818 case lltok::kw_noduplicate: 1819 case lltok::kw_noimplicitfloat: 1820 case lltok::kw_noinline: 1821 case lltok::kw_nonlazybind: 1822 case lltok::kw_nomerge: 1823 case lltok::kw_noprofile: 1824 case lltok::kw_noredzone: 1825 case lltok::kw_noreturn: 1826 case lltok::kw_nocf_check: 1827 case lltok::kw_nounwind: 1828 case lltok::kw_optforfuzzing: 1829 case lltok::kw_optnone: 1830 case lltok::kw_optsize: 1831 case lltok::kw_returns_twice: 1832 case lltok::kw_sanitize_address: 1833 case lltok::kw_sanitize_hwaddress: 1834 case lltok::kw_sanitize_memtag: 1835 case lltok::kw_sanitize_memory: 1836 case lltok::kw_sanitize_thread: 1837 case lltok::kw_speculative_load_hardening: 1838 case lltok::kw_ssp: 1839 case lltok::kw_sspreq: 1840 case lltok::kw_sspstrong: 1841 case lltok::kw_safestack: 1842 case lltok::kw_shadowcallstack: 1843 case lltok::kw_strictfp: 1844 case lltok::kw_uwtable: 1845 case lltok::kw_vscale_range: 1846 HaveError |= 1847 error(Lex.getLoc(), "invalid use of function-only attribute"); 1848 break; 1849 } 1850 1851 Lex.Lex(); 1852 } 1853 } 1854 1855 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1856 /// attributes. 1857 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1858 bool HaveError = false; 1859 1860 B.clear(); 1861 1862 while (true) { 1863 lltok::Kind Token = Lex.getKind(); 1864 switch (Token) { 1865 default: // End of attributes. 1866 return HaveError; 1867 case lltok::StringConstant: { 1868 if (parseStringAttribute(B)) 1869 return true; 1870 continue; 1871 } 1872 case lltok::kw_dereferenceable: { 1873 uint64_t Bytes; 1874 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1875 return true; 1876 B.addDereferenceableAttr(Bytes); 1877 continue; 1878 } 1879 case lltok::kw_dereferenceable_or_null: { 1880 uint64_t Bytes; 1881 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1882 return true; 1883 B.addDereferenceableOrNullAttr(Bytes); 1884 continue; 1885 } 1886 case lltok::kw_align: { 1887 MaybeAlign Alignment; 1888 if (parseOptionalAlignment(Alignment)) 1889 return true; 1890 B.addAlignmentAttr(Alignment); 1891 continue; 1892 } 1893 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1894 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1895 case lltok::kw_noundef: 1896 B.addAttribute(Attribute::NoUndef); 1897 break; 1898 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1899 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1900 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1901 1902 // error handling. 1903 case lltok::kw_byval: 1904 case lltok::kw_inalloca: 1905 case lltok::kw_nest: 1906 case lltok::kw_nocapture: 1907 case lltok::kw_returned: 1908 case lltok::kw_sret: 1909 case lltok::kw_swifterror: 1910 case lltok::kw_swiftself: 1911 case lltok::kw_swiftasync: 1912 case lltok::kw_immarg: 1913 case lltok::kw_byref: 1914 HaveError |= 1915 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1916 break; 1917 1918 case lltok::kw_alignstack: 1919 case lltok::kw_alwaysinline: 1920 case lltok::kw_argmemonly: 1921 case lltok::kw_builtin: 1922 case lltok::kw_cold: 1923 case lltok::kw_inlinehint: 1924 case lltok::kw_jumptable: 1925 case lltok::kw_minsize: 1926 case lltok::kw_mustprogress: 1927 case lltok::kw_naked: 1928 case lltok::kw_nobuiltin: 1929 case lltok::kw_noduplicate: 1930 case lltok::kw_noimplicitfloat: 1931 case lltok::kw_noinline: 1932 case lltok::kw_nonlazybind: 1933 case lltok::kw_nomerge: 1934 case lltok::kw_noprofile: 1935 case lltok::kw_noredzone: 1936 case lltok::kw_noreturn: 1937 case lltok::kw_nocf_check: 1938 case lltok::kw_nounwind: 1939 case lltok::kw_optforfuzzing: 1940 case lltok::kw_optnone: 1941 case lltok::kw_optsize: 1942 case lltok::kw_returns_twice: 1943 case lltok::kw_sanitize_address: 1944 case lltok::kw_sanitize_hwaddress: 1945 case lltok::kw_sanitize_memtag: 1946 case lltok::kw_sanitize_memory: 1947 case lltok::kw_sanitize_thread: 1948 case lltok::kw_speculative_load_hardening: 1949 case lltok::kw_ssp: 1950 case lltok::kw_sspreq: 1951 case lltok::kw_sspstrong: 1952 case lltok::kw_safestack: 1953 case lltok::kw_shadowcallstack: 1954 case lltok::kw_strictfp: 1955 case lltok::kw_uwtable: 1956 case lltok::kw_vscale_range: 1957 HaveError |= 1958 error(Lex.getLoc(), "invalid use of function-only attribute"); 1959 break; 1960 case lltok::kw_readnone: 1961 case lltok::kw_readonly: 1962 HaveError |= 1963 error(Lex.getLoc(), "invalid use of attribute on return type"); 1964 break; 1965 case lltok::kw_preallocated: 1966 HaveError |= 1967 error(Lex.getLoc(), 1968 "invalid use of parameter-only/call site-only attribute"); 1969 break; 1970 } 1971 1972 Lex.Lex(); 1973 } 1974 } 1975 1976 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1977 HasLinkage = true; 1978 switch (Kind) { 1979 default: 1980 HasLinkage = false; 1981 return GlobalValue::ExternalLinkage; 1982 case lltok::kw_private: 1983 return GlobalValue::PrivateLinkage; 1984 case lltok::kw_internal: 1985 return GlobalValue::InternalLinkage; 1986 case lltok::kw_weak: 1987 return GlobalValue::WeakAnyLinkage; 1988 case lltok::kw_weak_odr: 1989 return GlobalValue::WeakODRLinkage; 1990 case lltok::kw_linkonce: 1991 return GlobalValue::LinkOnceAnyLinkage; 1992 case lltok::kw_linkonce_odr: 1993 return GlobalValue::LinkOnceODRLinkage; 1994 case lltok::kw_available_externally: 1995 return GlobalValue::AvailableExternallyLinkage; 1996 case lltok::kw_appending: 1997 return GlobalValue::AppendingLinkage; 1998 case lltok::kw_common: 1999 return GlobalValue::CommonLinkage; 2000 case lltok::kw_extern_weak: 2001 return GlobalValue::ExternalWeakLinkage; 2002 case lltok::kw_external: 2003 return GlobalValue::ExternalLinkage; 2004 } 2005 } 2006 2007 /// parseOptionalLinkage 2008 /// ::= /*empty*/ 2009 /// ::= 'private' 2010 /// ::= 'internal' 2011 /// ::= 'weak' 2012 /// ::= 'weak_odr' 2013 /// ::= 'linkonce' 2014 /// ::= 'linkonce_odr' 2015 /// ::= 'available_externally' 2016 /// ::= 'appending' 2017 /// ::= 'common' 2018 /// ::= 'extern_weak' 2019 /// ::= 'external' 2020 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2021 unsigned &Visibility, 2022 unsigned &DLLStorageClass, bool &DSOLocal) { 2023 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2024 if (HasLinkage) 2025 Lex.Lex(); 2026 parseOptionalDSOLocal(DSOLocal); 2027 parseOptionalVisibility(Visibility); 2028 parseOptionalDLLStorageClass(DLLStorageClass); 2029 2030 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2031 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2032 } 2033 2034 return false; 2035 } 2036 2037 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2038 switch (Lex.getKind()) { 2039 default: 2040 DSOLocal = false; 2041 break; 2042 case lltok::kw_dso_local: 2043 DSOLocal = true; 2044 Lex.Lex(); 2045 break; 2046 case lltok::kw_dso_preemptable: 2047 DSOLocal = false; 2048 Lex.Lex(); 2049 break; 2050 } 2051 } 2052 2053 /// parseOptionalVisibility 2054 /// ::= /*empty*/ 2055 /// ::= 'default' 2056 /// ::= 'hidden' 2057 /// ::= 'protected' 2058 /// 2059 void LLParser::parseOptionalVisibility(unsigned &Res) { 2060 switch (Lex.getKind()) { 2061 default: 2062 Res = GlobalValue::DefaultVisibility; 2063 return; 2064 case lltok::kw_default: 2065 Res = GlobalValue::DefaultVisibility; 2066 break; 2067 case lltok::kw_hidden: 2068 Res = GlobalValue::HiddenVisibility; 2069 break; 2070 case lltok::kw_protected: 2071 Res = GlobalValue::ProtectedVisibility; 2072 break; 2073 } 2074 Lex.Lex(); 2075 } 2076 2077 /// parseOptionalDLLStorageClass 2078 /// ::= /*empty*/ 2079 /// ::= 'dllimport' 2080 /// ::= 'dllexport' 2081 /// 2082 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2083 switch (Lex.getKind()) { 2084 default: 2085 Res = GlobalValue::DefaultStorageClass; 2086 return; 2087 case lltok::kw_dllimport: 2088 Res = GlobalValue::DLLImportStorageClass; 2089 break; 2090 case lltok::kw_dllexport: 2091 Res = GlobalValue::DLLExportStorageClass; 2092 break; 2093 } 2094 Lex.Lex(); 2095 } 2096 2097 /// parseOptionalCallingConv 2098 /// ::= /*empty*/ 2099 /// ::= 'ccc' 2100 /// ::= 'fastcc' 2101 /// ::= 'intel_ocl_bicc' 2102 /// ::= 'coldcc' 2103 /// ::= 'cfguard_checkcc' 2104 /// ::= 'x86_stdcallcc' 2105 /// ::= 'x86_fastcallcc' 2106 /// ::= 'x86_thiscallcc' 2107 /// ::= 'x86_vectorcallcc' 2108 /// ::= 'arm_apcscc' 2109 /// ::= 'arm_aapcscc' 2110 /// ::= 'arm_aapcs_vfpcc' 2111 /// ::= 'aarch64_vector_pcs' 2112 /// ::= 'aarch64_sve_vector_pcs' 2113 /// ::= 'msp430_intrcc' 2114 /// ::= 'avr_intrcc' 2115 /// ::= 'avr_signalcc' 2116 /// ::= 'ptx_kernel' 2117 /// ::= 'ptx_device' 2118 /// ::= 'spir_func' 2119 /// ::= 'spir_kernel' 2120 /// ::= 'x86_64_sysvcc' 2121 /// ::= 'win64cc' 2122 /// ::= 'webkit_jscc' 2123 /// ::= 'anyregcc' 2124 /// ::= 'preserve_mostcc' 2125 /// ::= 'preserve_allcc' 2126 /// ::= 'ghccc' 2127 /// ::= 'swiftcc' 2128 /// ::= 'swifttailcc' 2129 /// ::= 'x86_intrcc' 2130 /// ::= 'hhvmcc' 2131 /// ::= 'hhvm_ccc' 2132 /// ::= 'cxx_fast_tlscc' 2133 /// ::= 'amdgpu_vs' 2134 /// ::= 'amdgpu_ls' 2135 /// ::= 'amdgpu_hs' 2136 /// ::= 'amdgpu_es' 2137 /// ::= 'amdgpu_gs' 2138 /// ::= 'amdgpu_ps' 2139 /// ::= 'amdgpu_cs' 2140 /// ::= 'amdgpu_kernel' 2141 /// ::= 'tailcc' 2142 /// ::= 'cc' UINT 2143 /// 2144 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2145 switch (Lex.getKind()) { 2146 default: CC = CallingConv::C; return false; 2147 case lltok::kw_ccc: CC = CallingConv::C; break; 2148 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2149 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2150 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2151 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2152 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2153 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2154 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2155 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2156 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2157 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2158 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2159 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2160 case lltok::kw_aarch64_sve_vector_pcs: 2161 CC = CallingConv::AArch64_SVE_VectorCall; 2162 break; 2163 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2164 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2165 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2166 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2167 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2168 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2169 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2170 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2171 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2172 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2173 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2174 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2175 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2176 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2177 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2178 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2179 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2180 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2181 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2182 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2183 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2184 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2185 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2186 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2187 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2188 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2189 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2190 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2191 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2192 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2193 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2194 case lltok::kw_cc: { 2195 Lex.Lex(); 2196 return parseUInt32(CC); 2197 } 2198 } 2199 2200 Lex.Lex(); 2201 return false; 2202 } 2203 2204 /// parseMetadataAttachment 2205 /// ::= !dbg !42 2206 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2207 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2208 2209 std::string Name = Lex.getStrVal(); 2210 Kind = M->getMDKindID(Name); 2211 Lex.Lex(); 2212 2213 return parseMDNode(MD); 2214 } 2215 2216 /// parseInstructionMetadata 2217 /// ::= !dbg !42 (',' !dbg !57)* 2218 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2219 do { 2220 if (Lex.getKind() != lltok::MetadataVar) 2221 return tokError("expected metadata after comma"); 2222 2223 unsigned MDK; 2224 MDNode *N; 2225 if (parseMetadataAttachment(MDK, N)) 2226 return true; 2227 2228 Inst.setMetadata(MDK, N); 2229 if (MDK == LLVMContext::MD_tbaa) 2230 InstsWithTBAATag.push_back(&Inst); 2231 2232 // If this is the end of the list, we're done. 2233 } while (EatIfPresent(lltok::comma)); 2234 return false; 2235 } 2236 2237 /// parseGlobalObjectMetadataAttachment 2238 /// ::= !dbg !57 2239 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2240 unsigned MDK; 2241 MDNode *N; 2242 if (parseMetadataAttachment(MDK, N)) 2243 return true; 2244 2245 GO.addMetadata(MDK, *N); 2246 return false; 2247 } 2248 2249 /// parseOptionalFunctionMetadata 2250 /// ::= (!dbg !57)* 2251 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2252 while (Lex.getKind() == lltok::MetadataVar) 2253 if (parseGlobalObjectMetadataAttachment(F)) 2254 return true; 2255 return false; 2256 } 2257 2258 /// parseOptionalAlignment 2259 /// ::= /* empty */ 2260 /// ::= 'align' 4 2261 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2262 Alignment = None; 2263 if (!EatIfPresent(lltok::kw_align)) 2264 return false; 2265 LocTy AlignLoc = Lex.getLoc(); 2266 uint32_t Value = 0; 2267 2268 LocTy ParenLoc = Lex.getLoc(); 2269 bool HaveParens = false; 2270 if (AllowParens) { 2271 if (EatIfPresent(lltok::lparen)) 2272 HaveParens = true; 2273 } 2274 2275 if (parseUInt32(Value)) 2276 return true; 2277 2278 if (HaveParens && !EatIfPresent(lltok::rparen)) 2279 return error(ParenLoc, "expected ')'"); 2280 2281 if (!isPowerOf2_32(Value)) 2282 return error(AlignLoc, "alignment is not a power of two"); 2283 if (Value > Value::MaximumAlignment) 2284 return error(AlignLoc, "huge alignments are not supported yet"); 2285 Alignment = Align(Value); 2286 return false; 2287 } 2288 2289 /// parseOptionalDerefAttrBytes 2290 /// ::= /* empty */ 2291 /// ::= AttrKind '(' 4 ')' 2292 /// 2293 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2294 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2295 uint64_t &Bytes) { 2296 assert((AttrKind == lltok::kw_dereferenceable || 2297 AttrKind == lltok::kw_dereferenceable_or_null) && 2298 "contract!"); 2299 2300 Bytes = 0; 2301 if (!EatIfPresent(AttrKind)) 2302 return false; 2303 LocTy ParenLoc = Lex.getLoc(); 2304 if (!EatIfPresent(lltok::lparen)) 2305 return error(ParenLoc, "expected '('"); 2306 LocTy DerefLoc = Lex.getLoc(); 2307 if (parseUInt64(Bytes)) 2308 return true; 2309 ParenLoc = Lex.getLoc(); 2310 if (!EatIfPresent(lltok::rparen)) 2311 return error(ParenLoc, "expected ')'"); 2312 if (!Bytes) 2313 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2314 return false; 2315 } 2316 2317 /// parseOptionalCommaAlign 2318 /// ::= 2319 /// ::= ',' align 4 2320 /// 2321 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2322 /// end. 2323 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2324 bool &AteExtraComma) { 2325 AteExtraComma = false; 2326 while (EatIfPresent(lltok::comma)) { 2327 // Metadata at the end is an early exit. 2328 if (Lex.getKind() == lltok::MetadataVar) { 2329 AteExtraComma = true; 2330 return false; 2331 } 2332 2333 if (Lex.getKind() != lltok::kw_align) 2334 return error(Lex.getLoc(), "expected metadata or 'align'"); 2335 2336 if (parseOptionalAlignment(Alignment)) 2337 return true; 2338 } 2339 2340 return false; 2341 } 2342 2343 /// parseOptionalCommaAddrSpace 2344 /// ::= 2345 /// ::= ',' addrspace(1) 2346 /// 2347 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2348 /// end. 2349 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2350 bool &AteExtraComma) { 2351 AteExtraComma = false; 2352 while (EatIfPresent(lltok::comma)) { 2353 // Metadata at the end is an early exit. 2354 if (Lex.getKind() == lltok::MetadataVar) { 2355 AteExtraComma = true; 2356 return false; 2357 } 2358 2359 Loc = Lex.getLoc(); 2360 if (Lex.getKind() != lltok::kw_addrspace) 2361 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2362 2363 if (parseOptionalAddrSpace(AddrSpace)) 2364 return true; 2365 } 2366 2367 return false; 2368 } 2369 2370 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2371 Optional<unsigned> &HowManyArg) { 2372 Lex.Lex(); 2373 2374 auto StartParen = Lex.getLoc(); 2375 if (!EatIfPresent(lltok::lparen)) 2376 return error(StartParen, "expected '('"); 2377 2378 if (parseUInt32(BaseSizeArg)) 2379 return true; 2380 2381 if (EatIfPresent(lltok::comma)) { 2382 auto HowManyAt = Lex.getLoc(); 2383 unsigned HowMany; 2384 if (parseUInt32(HowMany)) 2385 return true; 2386 if (HowMany == BaseSizeArg) 2387 return error(HowManyAt, 2388 "'allocsize' indices can't refer to the same parameter"); 2389 HowManyArg = HowMany; 2390 } else 2391 HowManyArg = None; 2392 2393 auto EndParen = Lex.getLoc(); 2394 if (!EatIfPresent(lltok::rparen)) 2395 return error(EndParen, "expected ')'"); 2396 return false; 2397 } 2398 2399 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2400 unsigned &MaxValue) { 2401 Lex.Lex(); 2402 2403 auto StartParen = Lex.getLoc(); 2404 if (!EatIfPresent(lltok::lparen)) 2405 return error(StartParen, "expected '('"); 2406 2407 if (parseUInt32(MinValue)) 2408 return true; 2409 2410 if (EatIfPresent(lltok::comma)) { 2411 if (parseUInt32(MaxValue)) 2412 return true; 2413 } else 2414 MaxValue = MinValue; 2415 2416 auto EndParen = Lex.getLoc(); 2417 if (!EatIfPresent(lltok::rparen)) 2418 return error(EndParen, "expected ')'"); 2419 return false; 2420 } 2421 2422 /// parseScopeAndOrdering 2423 /// if isAtomic: ::= SyncScope? AtomicOrdering 2424 /// else: ::= 2425 /// 2426 /// This sets Scope and Ordering to the parsed values. 2427 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2428 AtomicOrdering &Ordering) { 2429 if (!IsAtomic) 2430 return false; 2431 2432 return parseScope(SSID) || parseOrdering(Ordering); 2433 } 2434 2435 /// parseScope 2436 /// ::= syncscope("singlethread" | "<target scope>")? 2437 /// 2438 /// This sets synchronization scope ID to the ID of the parsed value. 2439 bool LLParser::parseScope(SyncScope::ID &SSID) { 2440 SSID = SyncScope::System; 2441 if (EatIfPresent(lltok::kw_syncscope)) { 2442 auto StartParenAt = Lex.getLoc(); 2443 if (!EatIfPresent(lltok::lparen)) 2444 return error(StartParenAt, "Expected '(' in syncscope"); 2445 2446 std::string SSN; 2447 auto SSNAt = Lex.getLoc(); 2448 if (parseStringConstant(SSN)) 2449 return error(SSNAt, "Expected synchronization scope name"); 2450 2451 auto EndParenAt = Lex.getLoc(); 2452 if (!EatIfPresent(lltok::rparen)) 2453 return error(EndParenAt, "Expected ')' in syncscope"); 2454 2455 SSID = Context.getOrInsertSyncScopeID(SSN); 2456 } 2457 2458 return false; 2459 } 2460 2461 /// parseOrdering 2462 /// ::= AtomicOrdering 2463 /// 2464 /// This sets Ordering to the parsed value. 2465 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2466 switch (Lex.getKind()) { 2467 default: 2468 return tokError("Expected ordering on atomic instruction"); 2469 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2470 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2471 // Not specified yet: 2472 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2473 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2474 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2475 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2476 case lltok::kw_seq_cst: 2477 Ordering = AtomicOrdering::SequentiallyConsistent; 2478 break; 2479 } 2480 Lex.Lex(); 2481 return false; 2482 } 2483 2484 /// parseOptionalStackAlignment 2485 /// ::= /* empty */ 2486 /// ::= 'alignstack' '(' 4 ')' 2487 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2488 Alignment = 0; 2489 if (!EatIfPresent(lltok::kw_alignstack)) 2490 return false; 2491 LocTy ParenLoc = Lex.getLoc(); 2492 if (!EatIfPresent(lltok::lparen)) 2493 return error(ParenLoc, "expected '('"); 2494 LocTy AlignLoc = Lex.getLoc(); 2495 if (parseUInt32(Alignment)) 2496 return true; 2497 ParenLoc = Lex.getLoc(); 2498 if (!EatIfPresent(lltok::rparen)) 2499 return error(ParenLoc, "expected ')'"); 2500 if (!isPowerOf2_32(Alignment)) 2501 return error(AlignLoc, "stack alignment is not a power of two"); 2502 return false; 2503 } 2504 2505 /// parseIndexList - This parses the index list for an insert/extractvalue 2506 /// instruction. This sets AteExtraComma in the case where we eat an extra 2507 /// comma at the end of the line and find that it is followed by metadata. 2508 /// Clients that don't allow metadata can call the version of this function that 2509 /// only takes one argument. 2510 /// 2511 /// parseIndexList 2512 /// ::= (',' uint32)+ 2513 /// 2514 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2515 bool &AteExtraComma) { 2516 AteExtraComma = false; 2517 2518 if (Lex.getKind() != lltok::comma) 2519 return tokError("expected ',' as start of index list"); 2520 2521 while (EatIfPresent(lltok::comma)) { 2522 if (Lex.getKind() == lltok::MetadataVar) { 2523 if (Indices.empty()) 2524 return tokError("expected index"); 2525 AteExtraComma = true; 2526 return false; 2527 } 2528 unsigned Idx = 0; 2529 if (parseUInt32(Idx)) 2530 return true; 2531 Indices.push_back(Idx); 2532 } 2533 2534 return false; 2535 } 2536 2537 //===----------------------------------------------------------------------===// 2538 // Type Parsing. 2539 //===----------------------------------------------------------------------===// 2540 2541 /// parseType - parse a type. 2542 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2543 SMLoc TypeLoc = Lex.getLoc(); 2544 switch (Lex.getKind()) { 2545 default: 2546 return tokError(Msg); 2547 case lltok::Type: 2548 // Type ::= 'float' | 'void' (etc) 2549 Result = Lex.getTyVal(); 2550 Lex.Lex(); 2551 break; 2552 case lltok::lbrace: 2553 // Type ::= StructType 2554 if (parseAnonStructType(Result, false)) 2555 return true; 2556 break; 2557 case lltok::lsquare: 2558 // Type ::= '[' ... ']' 2559 Lex.Lex(); // eat the lsquare. 2560 if (parseArrayVectorType(Result, false)) 2561 return true; 2562 break; 2563 case lltok::less: // Either vector or packed struct. 2564 // Type ::= '<' ... '>' 2565 Lex.Lex(); 2566 if (Lex.getKind() == lltok::lbrace) { 2567 if (parseAnonStructType(Result, true) || 2568 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2569 return true; 2570 } else if (parseArrayVectorType(Result, true)) 2571 return true; 2572 break; 2573 case lltok::LocalVar: { 2574 // Type ::= %foo 2575 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2576 2577 // If the type hasn't been defined yet, create a forward definition and 2578 // remember where that forward def'n was seen (in case it never is defined). 2579 if (!Entry.first) { 2580 Entry.first = StructType::create(Context, Lex.getStrVal()); 2581 Entry.second = Lex.getLoc(); 2582 } 2583 Result = Entry.first; 2584 Lex.Lex(); 2585 break; 2586 } 2587 2588 case lltok::LocalVarID: { 2589 // Type ::= %4 2590 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2591 2592 // If the type hasn't been defined yet, create a forward definition and 2593 // remember where that forward def'n was seen (in case it never is defined). 2594 if (!Entry.first) { 2595 Entry.first = StructType::create(Context); 2596 Entry.second = Lex.getLoc(); 2597 } 2598 Result = Entry.first; 2599 Lex.Lex(); 2600 break; 2601 } 2602 } 2603 2604 if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) { 2605 unsigned AddrSpace; 2606 if (parseOptionalAddrSpace(AddrSpace)) 2607 return true; 2608 Result = PointerType::get(getContext(), AddrSpace); 2609 } 2610 2611 // parse the type suffixes. 2612 while (true) { 2613 switch (Lex.getKind()) { 2614 // End of type. 2615 default: 2616 if (!AllowVoid && Result->isVoidTy()) 2617 return error(TypeLoc, "void type only allowed for function results"); 2618 return false; 2619 2620 // Type ::= Type '*' 2621 case lltok::star: 2622 if (Result->isLabelTy()) 2623 return tokError("basic block pointers are invalid"); 2624 if (Result->isVoidTy()) 2625 return tokError("pointers to void are invalid - use i8* instead"); 2626 if (!PointerType::isValidElementType(Result)) 2627 return tokError("pointer to this type is invalid"); 2628 Result = PointerType::getUnqual(Result); 2629 Lex.Lex(); 2630 break; 2631 2632 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2633 case lltok::kw_addrspace: { 2634 if (Result->isLabelTy()) 2635 return tokError("basic block pointers are invalid"); 2636 if (Result->isVoidTy()) 2637 return tokError("pointers to void are invalid; use i8* instead"); 2638 if (!PointerType::isValidElementType(Result)) 2639 return tokError("pointer to this type is invalid"); 2640 unsigned AddrSpace; 2641 if (parseOptionalAddrSpace(AddrSpace) || 2642 parseToken(lltok::star, "expected '*' in address space")) 2643 return true; 2644 2645 Result = PointerType::get(Result, AddrSpace); 2646 break; 2647 } 2648 2649 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2650 case lltok::lparen: 2651 if (parseFunctionType(Result)) 2652 return true; 2653 break; 2654 } 2655 } 2656 } 2657 2658 /// parseParameterList 2659 /// ::= '(' ')' 2660 /// ::= '(' Arg (',' Arg)* ')' 2661 /// Arg 2662 /// ::= Type OptionalAttributes Value OptionalAttributes 2663 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2664 PerFunctionState &PFS, bool IsMustTailCall, 2665 bool InVarArgsFunc) { 2666 if (parseToken(lltok::lparen, "expected '(' in call")) 2667 return true; 2668 2669 while (Lex.getKind() != lltok::rparen) { 2670 // If this isn't the first argument, we need a comma. 2671 if (!ArgList.empty() && 2672 parseToken(lltok::comma, "expected ',' in argument list")) 2673 return true; 2674 2675 // parse an ellipsis if this is a musttail call in a variadic function. 2676 if (Lex.getKind() == lltok::dotdotdot) { 2677 const char *Msg = "unexpected ellipsis in argument list for "; 2678 if (!IsMustTailCall) 2679 return tokError(Twine(Msg) + "non-musttail call"); 2680 if (!InVarArgsFunc) 2681 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2682 Lex.Lex(); // Lex the '...', it is purely for readability. 2683 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2684 } 2685 2686 // parse the argument. 2687 LocTy ArgLoc; 2688 Type *ArgTy = nullptr; 2689 AttrBuilder ArgAttrs; 2690 Value *V; 2691 if (parseType(ArgTy, ArgLoc)) 2692 return true; 2693 2694 if (ArgTy->isMetadataTy()) { 2695 if (parseMetadataAsValue(V, PFS)) 2696 return true; 2697 } else { 2698 // Otherwise, handle normal operands. 2699 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2700 return true; 2701 } 2702 ArgList.push_back(ParamInfo( 2703 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2704 } 2705 2706 if (IsMustTailCall && InVarArgsFunc) 2707 return tokError("expected '...' at end of argument list for musttail call " 2708 "in varargs function"); 2709 2710 Lex.Lex(); // Lex the ')'. 2711 return false; 2712 } 2713 2714 /// parseRequiredTypeAttr 2715 /// ::= attrname(<ty>) 2716 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2717 Result = nullptr; 2718 if (!EatIfPresent(AttrName)) 2719 return true; 2720 if (!EatIfPresent(lltok::lparen)) 2721 return error(Lex.getLoc(), "expected '('"); 2722 if (parseType(Result)) 2723 return true; 2724 if (!EatIfPresent(lltok::rparen)) 2725 return error(Lex.getLoc(), "expected ')'"); 2726 return false; 2727 } 2728 2729 /// parsePreallocated 2730 /// ::= preallocated(<ty>) 2731 bool LLParser::parsePreallocated(Type *&Result) { 2732 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2733 } 2734 2735 /// parseInalloca 2736 /// ::= inalloca(<ty>) 2737 bool LLParser::parseInalloca(Type *&Result) { 2738 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2739 } 2740 2741 /// parseByRef 2742 /// ::= byref(<type>) 2743 bool LLParser::parseByRef(Type *&Result) { 2744 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2745 } 2746 2747 /// parseOptionalOperandBundles 2748 /// ::= /*empty*/ 2749 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2750 /// 2751 /// OperandBundle 2752 /// ::= bundle-tag '(' ')' 2753 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2754 /// 2755 /// bundle-tag ::= String Constant 2756 bool LLParser::parseOptionalOperandBundles( 2757 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2758 LocTy BeginLoc = Lex.getLoc(); 2759 if (!EatIfPresent(lltok::lsquare)) 2760 return false; 2761 2762 while (Lex.getKind() != lltok::rsquare) { 2763 // If this isn't the first operand bundle, we need a comma. 2764 if (!BundleList.empty() && 2765 parseToken(lltok::comma, "expected ',' in input list")) 2766 return true; 2767 2768 std::string Tag; 2769 if (parseStringConstant(Tag)) 2770 return true; 2771 2772 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2773 return true; 2774 2775 std::vector<Value *> Inputs; 2776 while (Lex.getKind() != lltok::rparen) { 2777 // If this isn't the first input, we need a comma. 2778 if (!Inputs.empty() && 2779 parseToken(lltok::comma, "expected ',' in input list")) 2780 return true; 2781 2782 Type *Ty = nullptr; 2783 Value *Input = nullptr; 2784 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2785 return true; 2786 Inputs.push_back(Input); 2787 } 2788 2789 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2790 2791 Lex.Lex(); // Lex the ')'. 2792 } 2793 2794 if (BundleList.empty()) 2795 return error(BeginLoc, "operand bundle set must not be empty"); 2796 2797 Lex.Lex(); // Lex the ']'. 2798 return false; 2799 } 2800 2801 /// parseArgumentList - parse the argument list for a function type or function 2802 /// prototype. 2803 /// ::= '(' ArgTypeListI ')' 2804 /// ArgTypeListI 2805 /// ::= /*empty*/ 2806 /// ::= '...' 2807 /// ::= ArgTypeList ',' '...' 2808 /// ::= ArgType (',' ArgType)* 2809 /// 2810 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2811 bool &IsVarArg) { 2812 unsigned CurValID = 0; 2813 IsVarArg = false; 2814 assert(Lex.getKind() == lltok::lparen); 2815 Lex.Lex(); // eat the (. 2816 2817 if (Lex.getKind() == lltok::rparen) { 2818 // empty 2819 } else if (Lex.getKind() == lltok::dotdotdot) { 2820 IsVarArg = true; 2821 Lex.Lex(); 2822 } else { 2823 LocTy TypeLoc = Lex.getLoc(); 2824 Type *ArgTy = nullptr; 2825 AttrBuilder Attrs; 2826 std::string Name; 2827 2828 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2829 return true; 2830 2831 if (ArgTy->isVoidTy()) 2832 return error(TypeLoc, "argument can not have void type"); 2833 2834 if (Lex.getKind() == lltok::LocalVar) { 2835 Name = Lex.getStrVal(); 2836 Lex.Lex(); 2837 } else if (Lex.getKind() == lltok::LocalVarID) { 2838 if (Lex.getUIntVal() != CurValID) 2839 return error(TypeLoc, "argument expected to be numbered '%" + 2840 Twine(CurValID) + "'"); 2841 ++CurValID; 2842 Lex.Lex(); 2843 } 2844 2845 if (!FunctionType::isValidArgumentType(ArgTy)) 2846 return error(TypeLoc, "invalid type for function argument"); 2847 2848 ArgList.emplace_back(TypeLoc, ArgTy, 2849 AttributeSet::get(ArgTy->getContext(), Attrs), 2850 std::move(Name)); 2851 2852 while (EatIfPresent(lltok::comma)) { 2853 // Handle ... at end of arg list. 2854 if (EatIfPresent(lltok::dotdotdot)) { 2855 IsVarArg = true; 2856 break; 2857 } 2858 2859 // Otherwise must be an argument type. 2860 TypeLoc = Lex.getLoc(); 2861 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2862 return true; 2863 2864 if (ArgTy->isVoidTy()) 2865 return error(TypeLoc, "argument can not have void type"); 2866 2867 if (Lex.getKind() == lltok::LocalVar) { 2868 Name = Lex.getStrVal(); 2869 Lex.Lex(); 2870 } else { 2871 if (Lex.getKind() == lltok::LocalVarID) { 2872 if (Lex.getUIntVal() != CurValID) 2873 return error(TypeLoc, "argument expected to be numbered '%" + 2874 Twine(CurValID) + "'"); 2875 Lex.Lex(); 2876 } 2877 ++CurValID; 2878 Name = ""; 2879 } 2880 2881 if (!ArgTy->isFirstClassType()) 2882 return error(TypeLoc, "invalid type for function argument"); 2883 2884 ArgList.emplace_back(TypeLoc, ArgTy, 2885 AttributeSet::get(ArgTy->getContext(), Attrs), 2886 std::move(Name)); 2887 } 2888 } 2889 2890 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2891 } 2892 2893 /// parseFunctionType 2894 /// ::= Type ArgumentList OptionalAttrs 2895 bool LLParser::parseFunctionType(Type *&Result) { 2896 assert(Lex.getKind() == lltok::lparen); 2897 2898 if (!FunctionType::isValidReturnType(Result)) 2899 return tokError("invalid function return type"); 2900 2901 SmallVector<ArgInfo, 8> ArgList; 2902 bool IsVarArg; 2903 if (parseArgumentList(ArgList, IsVarArg)) 2904 return true; 2905 2906 // Reject names on the arguments lists. 2907 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2908 if (!ArgList[i].Name.empty()) 2909 return error(ArgList[i].Loc, "argument name invalid in function type"); 2910 if (ArgList[i].Attrs.hasAttributes()) 2911 return error(ArgList[i].Loc, 2912 "argument attributes invalid in function type"); 2913 } 2914 2915 SmallVector<Type*, 16> ArgListTy; 2916 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2917 ArgListTy.push_back(ArgList[i].Ty); 2918 2919 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2920 return false; 2921 } 2922 2923 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2924 /// other structs. 2925 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2926 SmallVector<Type*, 8> Elts; 2927 if (parseStructBody(Elts)) 2928 return true; 2929 2930 Result = StructType::get(Context, Elts, Packed); 2931 return false; 2932 } 2933 2934 /// parseStructDefinition - parse a struct in a 'type' definition. 2935 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2936 std::pair<Type *, LocTy> &Entry, 2937 Type *&ResultTy) { 2938 // If the type was already defined, diagnose the redefinition. 2939 if (Entry.first && !Entry.second.isValid()) 2940 return error(TypeLoc, "redefinition of type"); 2941 2942 // If we have opaque, just return without filling in the definition for the 2943 // struct. This counts as a definition as far as the .ll file goes. 2944 if (EatIfPresent(lltok::kw_opaque)) { 2945 // This type is being defined, so clear the location to indicate this. 2946 Entry.second = SMLoc(); 2947 2948 // If this type number has never been uttered, create it. 2949 if (!Entry.first) 2950 Entry.first = StructType::create(Context, Name); 2951 ResultTy = Entry.first; 2952 return false; 2953 } 2954 2955 // If the type starts with '<', then it is either a packed struct or a vector. 2956 bool isPacked = EatIfPresent(lltok::less); 2957 2958 // If we don't have a struct, then we have a random type alias, which we 2959 // accept for compatibility with old files. These types are not allowed to be 2960 // forward referenced and not allowed to be recursive. 2961 if (Lex.getKind() != lltok::lbrace) { 2962 if (Entry.first) 2963 return error(TypeLoc, "forward references to non-struct type"); 2964 2965 ResultTy = nullptr; 2966 if (isPacked) 2967 return parseArrayVectorType(ResultTy, true); 2968 return parseType(ResultTy); 2969 } 2970 2971 // This type is being defined, so clear the location to indicate this. 2972 Entry.second = SMLoc(); 2973 2974 // If this type number has never been uttered, create it. 2975 if (!Entry.first) 2976 Entry.first = StructType::create(Context, Name); 2977 2978 StructType *STy = cast<StructType>(Entry.first); 2979 2980 SmallVector<Type*, 8> Body; 2981 if (parseStructBody(Body) || 2982 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2983 return true; 2984 2985 STy->setBody(Body, isPacked); 2986 ResultTy = STy; 2987 return false; 2988 } 2989 2990 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2991 /// StructType 2992 /// ::= '{' '}' 2993 /// ::= '{' Type (',' Type)* '}' 2994 /// ::= '<' '{' '}' '>' 2995 /// ::= '<' '{' Type (',' Type)* '}' '>' 2996 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2997 assert(Lex.getKind() == lltok::lbrace); 2998 Lex.Lex(); // Consume the '{' 2999 3000 // Handle the empty struct. 3001 if (EatIfPresent(lltok::rbrace)) 3002 return false; 3003 3004 LocTy EltTyLoc = Lex.getLoc(); 3005 Type *Ty = nullptr; 3006 if (parseType(Ty)) 3007 return true; 3008 Body.push_back(Ty); 3009 3010 if (!StructType::isValidElementType(Ty)) 3011 return error(EltTyLoc, "invalid element type for struct"); 3012 3013 while (EatIfPresent(lltok::comma)) { 3014 EltTyLoc = Lex.getLoc(); 3015 if (parseType(Ty)) 3016 return true; 3017 3018 if (!StructType::isValidElementType(Ty)) 3019 return error(EltTyLoc, "invalid element type for struct"); 3020 3021 Body.push_back(Ty); 3022 } 3023 3024 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3025 } 3026 3027 /// parseArrayVectorType - parse an array or vector type, assuming the first 3028 /// token has already been consumed. 3029 /// Type 3030 /// ::= '[' APSINTVAL 'x' Types ']' 3031 /// ::= '<' APSINTVAL 'x' Types '>' 3032 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3033 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3034 bool Scalable = false; 3035 3036 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3037 Lex.Lex(); // consume the 'vscale' 3038 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3039 return true; 3040 3041 Scalable = true; 3042 } 3043 3044 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3045 Lex.getAPSIntVal().getBitWidth() > 64) 3046 return tokError("expected number in address space"); 3047 3048 LocTy SizeLoc = Lex.getLoc(); 3049 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3050 Lex.Lex(); 3051 3052 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3053 return true; 3054 3055 LocTy TypeLoc = Lex.getLoc(); 3056 Type *EltTy = nullptr; 3057 if (parseType(EltTy)) 3058 return true; 3059 3060 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3061 "expected end of sequential type")) 3062 return true; 3063 3064 if (IsVector) { 3065 if (Size == 0) 3066 return error(SizeLoc, "zero element vector is illegal"); 3067 if ((unsigned)Size != Size) 3068 return error(SizeLoc, "size too large for vector"); 3069 if (!VectorType::isValidElementType(EltTy)) 3070 return error(TypeLoc, "invalid vector element type"); 3071 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3072 } else { 3073 if (!ArrayType::isValidElementType(EltTy)) 3074 return error(TypeLoc, "invalid array element type"); 3075 Result = ArrayType::get(EltTy, Size); 3076 } 3077 return false; 3078 } 3079 3080 //===----------------------------------------------------------------------===// 3081 // Function Semantic Analysis. 3082 //===----------------------------------------------------------------------===// 3083 3084 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3085 int functionNumber) 3086 : P(p), F(f), FunctionNumber(functionNumber) { 3087 3088 // Insert unnamed arguments into the NumberedVals list. 3089 for (Argument &A : F.args()) 3090 if (!A.hasName()) 3091 NumberedVals.push_back(&A); 3092 } 3093 3094 LLParser::PerFunctionState::~PerFunctionState() { 3095 // If there were any forward referenced non-basicblock values, delete them. 3096 3097 for (const auto &P : ForwardRefVals) { 3098 if (isa<BasicBlock>(P.second.first)) 3099 continue; 3100 P.second.first->replaceAllUsesWith( 3101 UndefValue::get(P.second.first->getType())); 3102 P.second.first->deleteValue(); 3103 } 3104 3105 for (const auto &P : ForwardRefValIDs) { 3106 if (isa<BasicBlock>(P.second.first)) 3107 continue; 3108 P.second.first->replaceAllUsesWith( 3109 UndefValue::get(P.second.first->getType())); 3110 P.second.first->deleteValue(); 3111 } 3112 } 3113 3114 bool LLParser::PerFunctionState::finishFunction() { 3115 if (!ForwardRefVals.empty()) 3116 return P.error(ForwardRefVals.begin()->second.second, 3117 "use of undefined value '%" + ForwardRefVals.begin()->first + 3118 "'"); 3119 if (!ForwardRefValIDs.empty()) 3120 return P.error(ForwardRefValIDs.begin()->second.second, 3121 "use of undefined value '%" + 3122 Twine(ForwardRefValIDs.begin()->first) + "'"); 3123 return false; 3124 } 3125 3126 /// getVal - Get a value with the specified name or ID, creating a 3127 /// forward reference record if needed. This can return null if the value 3128 /// exists but does not have the right type. 3129 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3130 LocTy Loc, bool IsCall) { 3131 // Look this name up in the normal function symbol table. 3132 Value *Val = F.getValueSymbolTable()->lookup(Name); 3133 3134 // If this is a forward reference for the value, see if we already created a 3135 // forward ref record. 3136 if (!Val) { 3137 auto I = ForwardRefVals.find(Name); 3138 if (I != ForwardRefVals.end()) 3139 Val = I->second.first; 3140 } 3141 3142 // If we have the value in the symbol table or fwd-ref table, return it. 3143 if (Val) 3144 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3145 3146 // Don't make placeholders with invalid type. 3147 if (!Ty->isFirstClassType()) { 3148 P.error(Loc, "invalid use of a non-first-class type"); 3149 return nullptr; 3150 } 3151 3152 // Otherwise, create a new forward reference for this value and remember it. 3153 Value *FwdVal; 3154 if (Ty->isLabelTy()) { 3155 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3156 } else { 3157 FwdVal = new Argument(Ty, Name); 3158 } 3159 3160 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3161 return FwdVal; 3162 } 3163 3164 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3165 bool IsCall) { 3166 // Look this name up in the normal function symbol table. 3167 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3168 3169 // If this is a forward reference for the value, see if we already created a 3170 // forward ref record. 3171 if (!Val) { 3172 auto I = ForwardRefValIDs.find(ID); 3173 if (I != ForwardRefValIDs.end()) 3174 Val = I->second.first; 3175 } 3176 3177 // If we have the value in the symbol table or fwd-ref table, return it. 3178 if (Val) 3179 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3180 3181 if (!Ty->isFirstClassType()) { 3182 P.error(Loc, "invalid use of a non-first-class type"); 3183 return nullptr; 3184 } 3185 3186 // Otherwise, create a new forward reference for this value and remember it. 3187 Value *FwdVal; 3188 if (Ty->isLabelTy()) { 3189 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3190 } else { 3191 FwdVal = new Argument(Ty); 3192 } 3193 3194 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3195 return FwdVal; 3196 } 3197 3198 /// setInstName - After an instruction is parsed and inserted into its 3199 /// basic block, this installs its name. 3200 bool LLParser::PerFunctionState::setInstName(int NameID, 3201 const std::string &NameStr, 3202 LocTy NameLoc, Instruction *Inst) { 3203 // If this instruction has void type, it cannot have a name or ID specified. 3204 if (Inst->getType()->isVoidTy()) { 3205 if (NameID != -1 || !NameStr.empty()) 3206 return P.error(NameLoc, "instructions returning void cannot have a name"); 3207 return false; 3208 } 3209 3210 // If this was a numbered instruction, verify that the instruction is the 3211 // expected value and resolve any forward references. 3212 if (NameStr.empty()) { 3213 // If neither a name nor an ID was specified, just use the next ID. 3214 if (NameID == -1) 3215 NameID = NumberedVals.size(); 3216 3217 if (unsigned(NameID) != NumberedVals.size()) 3218 return P.error(NameLoc, "instruction expected to be numbered '%" + 3219 Twine(NumberedVals.size()) + "'"); 3220 3221 auto FI = ForwardRefValIDs.find(NameID); 3222 if (FI != ForwardRefValIDs.end()) { 3223 Value *Sentinel = FI->second.first; 3224 if (Sentinel->getType() != Inst->getType()) 3225 return P.error(NameLoc, "instruction forward referenced with type '" + 3226 getTypeString(FI->second.first->getType()) + 3227 "'"); 3228 3229 Sentinel->replaceAllUsesWith(Inst); 3230 Sentinel->deleteValue(); 3231 ForwardRefValIDs.erase(FI); 3232 } 3233 3234 NumberedVals.push_back(Inst); 3235 return false; 3236 } 3237 3238 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3239 auto FI = ForwardRefVals.find(NameStr); 3240 if (FI != ForwardRefVals.end()) { 3241 Value *Sentinel = FI->second.first; 3242 if (Sentinel->getType() != Inst->getType()) 3243 return P.error(NameLoc, "instruction forward referenced with type '" + 3244 getTypeString(FI->second.first->getType()) + 3245 "'"); 3246 3247 Sentinel->replaceAllUsesWith(Inst); 3248 Sentinel->deleteValue(); 3249 ForwardRefVals.erase(FI); 3250 } 3251 3252 // Set the name on the instruction. 3253 Inst->setName(NameStr); 3254 3255 if (Inst->getName() != NameStr) 3256 return P.error(NameLoc, "multiple definition of local value named '" + 3257 NameStr + "'"); 3258 return false; 3259 } 3260 3261 /// getBB - Get a basic block with the specified name or ID, creating a 3262 /// forward reference record if needed. 3263 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3264 LocTy Loc) { 3265 return dyn_cast_or_null<BasicBlock>( 3266 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3267 } 3268 3269 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3270 return dyn_cast_or_null<BasicBlock>( 3271 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3272 } 3273 3274 /// defineBB - Define the specified basic block, which is either named or 3275 /// unnamed. If there is an error, this returns null otherwise it returns 3276 /// the block being defined. 3277 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3278 int NameID, LocTy Loc) { 3279 BasicBlock *BB; 3280 if (Name.empty()) { 3281 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3282 P.error(Loc, "label expected to be numbered '" + 3283 Twine(NumberedVals.size()) + "'"); 3284 return nullptr; 3285 } 3286 BB = getBB(NumberedVals.size(), Loc); 3287 if (!BB) { 3288 P.error(Loc, "unable to create block numbered '" + 3289 Twine(NumberedVals.size()) + "'"); 3290 return nullptr; 3291 } 3292 } else { 3293 BB = getBB(Name, Loc); 3294 if (!BB) { 3295 P.error(Loc, "unable to create block named '" + Name + "'"); 3296 return nullptr; 3297 } 3298 } 3299 3300 // Move the block to the end of the function. Forward ref'd blocks are 3301 // inserted wherever they happen to be referenced. 3302 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3303 3304 // Remove the block from forward ref sets. 3305 if (Name.empty()) { 3306 ForwardRefValIDs.erase(NumberedVals.size()); 3307 NumberedVals.push_back(BB); 3308 } else { 3309 // BB forward references are already in the function symbol table. 3310 ForwardRefVals.erase(Name); 3311 } 3312 3313 return BB; 3314 } 3315 3316 //===----------------------------------------------------------------------===// 3317 // Constants. 3318 //===----------------------------------------------------------------------===// 3319 3320 /// parseValID - parse an abstract value that doesn't necessarily have a 3321 /// type implied. For example, if we parse "4" we don't know what integer type 3322 /// it has. The value will later be combined with its type and checked for 3323 /// sanity. PFS is used to convert function-local operands of metadata (since 3324 /// metadata operands are not just parsed here but also converted to values). 3325 /// PFS can be null when we are not parsing metadata values inside a function. 3326 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3327 ID.Loc = Lex.getLoc(); 3328 switch (Lex.getKind()) { 3329 default: 3330 return tokError("expected value token"); 3331 case lltok::GlobalID: // @42 3332 ID.UIntVal = Lex.getUIntVal(); 3333 ID.Kind = ValID::t_GlobalID; 3334 break; 3335 case lltok::GlobalVar: // @foo 3336 ID.StrVal = Lex.getStrVal(); 3337 ID.Kind = ValID::t_GlobalName; 3338 break; 3339 case lltok::LocalVarID: // %42 3340 ID.UIntVal = Lex.getUIntVal(); 3341 ID.Kind = ValID::t_LocalID; 3342 break; 3343 case lltok::LocalVar: // %foo 3344 ID.StrVal = Lex.getStrVal(); 3345 ID.Kind = ValID::t_LocalName; 3346 break; 3347 case lltok::APSInt: 3348 ID.APSIntVal = Lex.getAPSIntVal(); 3349 ID.Kind = ValID::t_APSInt; 3350 break; 3351 case lltok::APFloat: 3352 ID.APFloatVal = Lex.getAPFloatVal(); 3353 ID.Kind = ValID::t_APFloat; 3354 break; 3355 case lltok::kw_true: 3356 ID.ConstantVal = ConstantInt::getTrue(Context); 3357 ID.Kind = ValID::t_Constant; 3358 break; 3359 case lltok::kw_false: 3360 ID.ConstantVal = ConstantInt::getFalse(Context); 3361 ID.Kind = ValID::t_Constant; 3362 break; 3363 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3364 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3365 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3366 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3367 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3368 3369 case lltok::lbrace: { 3370 // ValID ::= '{' ConstVector '}' 3371 Lex.Lex(); 3372 SmallVector<Constant*, 16> Elts; 3373 if (parseGlobalValueVector(Elts) || 3374 parseToken(lltok::rbrace, "expected end of struct constant")) 3375 return true; 3376 3377 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3378 ID.UIntVal = Elts.size(); 3379 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3380 Elts.size() * sizeof(Elts[0])); 3381 ID.Kind = ValID::t_ConstantStruct; 3382 return false; 3383 } 3384 case lltok::less: { 3385 // ValID ::= '<' ConstVector '>' --> Vector. 3386 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3387 Lex.Lex(); 3388 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3389 3390 SmallVector<Constant*, 16> Elts; 3391 LocTy FirstEltLoc = Lex.getLoc(); 3392 if (parseGlobalValueVector(Elts) || 3393 (isPackedStruct && 3394 parseToken(lltok::rbrace, "expected end of packed struct")) || 3395 parseToken(lltok::greater, "expected end of constant")) 3396 return true; 3397 3398 if (isPackedStruct) { 3399 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3400 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3401 Elts.size() * sizeof(Elts[0])); 3402 ID.UIntVal = Elts.size(); 3403 ID.Kind = ValID::t_PackedConstantStruct; 3404 return false; 3405 } 3406 3407 if (Elts.empty()) 3408 return error(ID.Loc, "constant vector must not be empty"); 3409 3410 if (!Elts[0]->getType()->isIntegerTy() && 3411 !Elts[0]->getType()->isFloatingPointTy() && 3412 !Elts[0]->getType()->isPointerTy()) 3413 return error( 3414 FirstEltLoc, 3415 "vector elements must have integer, pointer or floating point type"); 3416 3417 // Verify that all the vector elements have the same type. 3418 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3419 if (Elts[i]->getType() != Elts[0]->getType()) 3420 return error(FirstEltLoc, "vector element #" + Twine(i) + 3421 " is not of type '" + 3422 getTypeString(Elts[0]->getType())); 3423 3424 ID.ConstantVal = ConstantVector::get(Elts); 3425 ID.Kind = ValID::t_Constant; 3426 return false; 3427 } 3428 case lltok::lsquare: { // Array Constant 3429 Lex.Lex(); 3430 SmallVector<Constant*, 16> Elts; 3431 LocTy FirstEltLoc = Lex.getLoc(); 3432 if (parseGlobalValueVector(Elts) || 3433 parseToken(lltok::rsquare, "expected end of array constant")) 3434 return true; 3435 3436 // Handle empty element. 3437 if (Elts.empty()) { 3438 // Use undef instead of an array because it's inconvenient to determine 3439 // the element type at this point, there being no elements to examine. 3440 ID.Kind = ValID::t_EmptyArray; 3441 return false; 3442 } 3443 3444 if (!Elts[0]->getType()->isFirstClassType()) 3445 return error(FirstEltLoc, "invalid array element type: " + 3446 getTypeString(Elts[0]->getType())); 3447 3448 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3449 3450 // Verify all elements are correct type! 3451 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3452 if (Elts[i]->getType() != Elts[0]->getType()) 3453 return error(FirstEltLoc, "array element #" + Twine(i) + 3454 " is not of type '" + 3455 getTypeString(Elts[0]->getType())); 3456 } 3457 3458 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3459 ID.Kind = ValID::t_Constant; 3460 return false; 3461 } 3462 case lltok::kw_c: // c "foo" 3463 Lex.Lex(); 3464 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3465 false); 3466 if (parseToken(lltok::StringConstant, "expected string")) 3467 return true; 3468 ID.Kind = ValID::t_Constant; 3469 return false; 3470 3471 case lltok::kw_asm: { 3472 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3473 // STRINGCONSTANT 3474 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3475 Lex.Lex(); 3476 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3477 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3478 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3479 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3480 parseStringConstant(ID.StrVal) || 3481 parseToken(lltok::comma, "expected comma in inline asm expression") || 3482 parseToken(lltok::StringConstant, "expected constraint string")) 3483 return true; 3484 ID.StrVal2 = Lex.getStrVal(); 3485 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3486 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3487 ID.Kind = ValID::t_InlineAsm; 3488 return false; 3489 } 3490 3491 case lltok::kw_blockaddress: { 3492 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3493 Lex.Lex(); 3494 3495 ValID Fn, Label; 3496 3497 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3498 parseValID(Fn) || 3499 parseToken(lltok::comma, 3500 "expected comma in block address expression") || 3501 parseValID(Label) || 3502 parseToken(lltok::rparen, "expected ')' in block address expression")) 3503 return true; 3504 3505 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3506 return error(Fn.Loc, "expected function name in blockaddress"); 3507 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3508 return error(Label.Loc, "expected basic block name in blockaddress"); 3509 3510 // Try to find the function (but skip it if it's forward-referenced). 3511 GlobalValue *GV = nullptr; 3512 if (Fn.Kind == ValID::t_GlobalID) { 3513 if (Fn.UIntVal < NumberedVals.size()) 3514 GV = NumberedVals[Fn.UIntVal]; 3515 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3516 GV = M->getNamedValue(Fn.StrVal); 3517 } 3518 Function *F = nullptr; 3519 if (GV) { 3520 // Confirm that it's actually a function with a definition. 3521 if (!isa<Function>(GV)) 3522 return error(Fn.Loc, "expected function name in blockaddress"); 3523 F = cast<Function>(GV); 3524 if (F->isDeclaration()) 3525 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3526 } 3527 3528 if (!F) { 3529 // Make a global variable as a placeholder for this reference. 3530 GlobalValue *&FwdRef = 3531 ForwardRefBlockAddresses.insert(std::make_pair( 3532 std::move(Fn), 3533 std::map<ValID, GlobalValue *>())) 3534 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3535 .first->second; 3536 if (!FwdRef) 3537 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3538 GlobalValue::InternalLinkage, nullptr, ""); 3539 ID.ConstantVal = FwdRef; 3540 ID.Kind = ValID::t_Constant; 3541 return false; 3542 } 3543 3544 // We found the function; now find the basic block. Don't use PFS, since we 3545 // might be inside a constant expression. 3546 BasicBlock *BB; 3547 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3548 if (Label.Kind == ValID::t_LocalID) 3549 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3550 else 3551 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3552 if (!BB) 3553 return error(Label.Loc, "referenced value is not a basic block"); 3554 } else { 3555 if (Label.Kind == ValID::t_LocalID) 3556 return error(Label.Loc, "cannot take address of numeric label after " 3557 "the function is defined"); 3558 BB = dyn_cast_or_null<BasicBlock>( 3559 F->getValueSymbolTable()->lookup(Label.StrVal)); 3560 if (!BB) 3561 return error(Label.Loc, "referenced value is not a basic block"); 3562 } 3563 3564 ID.ConstantVal = BlockAddress::get(F, BB); 3565 ID.Kind = ValID::t_Constant; 3566 return false; 3567 } 3568 3569 case lltok::kw_dso_local_equivalent: { 3570 // ValID ::= 'dso_local_equivalent' @foo 3571 Lex.Lex(); 3572 3573 ValID Fn; 3574 3575 if (parseValID(Fn)) 3576 return true; 3577 3578 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3579 return error(Fn.Loc, 3580 "expected global value name in dso_local_equivalent"); 3581 3582 // Try to find the function (but skip it if it's forward-referenced). 3583 GlobalValue *GV = nullptr; 3584 if (Fn.Kind == ValID::t_GlobalID) { 3585 if (Fn.UIntVal < NumberedVals.size()) 3586 GV = NumberedVals[Fn.UIntVal]; 3587 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3588 GV = M->getNamedValue(Fn.StrVal); 3589 } 3590 3591 assert(GV && "Could not find a corresponding global variable"); 3592 3593 if (!GV->getValueType()->isFunctionTy()) 3594 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3595 "in dso_local_equivalent"); 3596 3597 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3598 ID.Kind = ValID::t_Constant; 3599 return false; 3600 } 3601 3602 case lltok::kw_trunc: 3603 case lltok::kw_zext: 3604 case lltok::kw_sext: 3605 case lltok::kw_fptrunc: 3606 case lltok::kw_fpext: 3607 case lltok::kw_bitcast: 3608 case lltok::kw_addrspacecast: 3609 case lltok::kw_uitofp: 3610 case lltok::kw_sitofp: 3611 case lltok::kw_fptoui: 3612 case lltok::kw_fptosi: 3613 case lltok::kw_inttoptr: 3614 case lltok::kw_ptrtoint: { 3615 unsigned Opc = Lex.getUIntVal(); 3616 Type *DestTy = nullptr; 3617 Constant *SrcVal; 3618 Lex.Lex(); 3619 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3620 parseGlobalTypeAndValue(SrcVal) || 3621 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3622 parseType(DestTy) || 3623 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3624 return true; 3625 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3626 return error(ID.Loc, "invalid cast opcode for cast from '" + 3627 getTypeString(SrcVal->getType()) + "' to '" + 3628 getTypeString(DestTy) + "'"); 3629 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3630 SrcVal, DestTy); 3631 ID.Kind = ValID::t_Constant; 3632 return false; 3633 } 3634 case lltok::kw_extractvalue: { 3635 Lex.Lex(); 3636 Constant *Val; 3637 SmallVector<unsigned, 4> Indices; 3638 if (parseToken(lltok::lparen, 3639 "expected '(' in extractvalue constantexpr") || 3640 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3641 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3642 return true; 3643 3644 if (!Val->getType()->isAggregateType()) 3645 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3646 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3647 return error(ID.Loc, "invalid indices for extractvalue"); 3648 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3649 ID.Kind = ValID::t_Constant; 3650 return false; 3651 } 3652 case lltok::kw_insertvalue: { 3653 Lex.Lex(); 3654 Constant *Val0, *Val1; 3655 SmallVector<unsigned, 4> Indices; 3656 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3657 parseGlobalTypeAndValue(Val0) || 3658 parseToken(lltok::comma, 3659 "expected comma in insertvalue constantexpr") || 3660 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3661 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3662 return true; 3663 if (!Val0->getType()->isAggregateType()) 3664 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3665 Type *IndexedType = 3666 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3667 if (!IndexedType) 3668 return error(ID.Loc, "invalid indices for insertvalue"); 3669 if (IndexedType != Val1->getType()) 3670 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3671 getTypeString(Val1->getType()) + 3672 "' instead of '" + getTypeString(IndexedType) + 3673 "'"); 3674 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3675 ID.Kind = ValID::t_Constant; 3676 return false; 3677 } 3678 case lltok::kw_icmp: 3679 case lltok::kw_fcmp: { 3680 unsigned PredVal, Opc = Lex.getUIntVal(); 3681 Constant *Val0, *Val1; 3682 Lex.Lex(); 3683 if (parseCmpPredicate(PredVal, Opc) || 3684 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3685 parseGlobalTypeAndValue(Val0) || 3686 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3687 parseGlobalTypeAndValue(Val1) || 3688 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3689 return true; 3690 3691 if (Val0->getType() != Val1->getType()) 3692 return error(ID.Loc, "compare operands must have the same type"); 3693 3694 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3695 3696 if (Opc == Instruction::FCmp) { 3697 if (!Val0->getType()->isFPOrFPVectorTy()) 3698 return error(ID.Loc, "fcmp requires floating point operands"); 3699 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3700 } else { 3701 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3702 if (!Val0->getType()->isIntOrIntVectorTy() && 3703 !Val0->getType()->isPtrOrPtrVectorTy()) 3704 return error(ID.Loc, "icmp requires pointer or integer operands"); 3705 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3706 } 3707 ID.Kind = ValID::t_Constant; 3708 return false; 3709 } 3710 3711 // Unary Operators. 3712 case lltok::kw_fneg: { 3713 unsigned Opc = Lex.getUIntVal(); 3714 Constant *Val; 3715 Lex.Lex(); 3716 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3717 parseGlobalTypeAndValue(Val) || 3718 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3719 return true; 3720 3721 // Check that the type is valid for the operator. 3722 switch (Opc) { 3723 case Instruction::FNeg: 3724 if (!Val->getType()->isFPOrFPVectorTy()) 3725 return error(ID.Loc, "constexpr requires fp operands"); 3726 break; 3727 default: llvm_unreachable("Unknown unary operator!"); 3728 } 3729 unsigned Flags = 0; 3730 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3731 ID.ConstantVal = C; 3732 ID.Kind = ValID::t_Constant; 3733 return false; 3734 } 3735 // Binary Operators. 3736 case lltok::kw_add: 3737 case lltok::kw_fadd: 3738 case lltok::kw_sub: 3739 case lltok::kw_fsub: 3740 case lltok::kw_mul: 3741 case lltok::kw_fmul: 3742 case lltok::kw_udiv: 3743 case lltok::kw_sdiv: 3744 case lltok::kw_fdiv: 3745 case lltok::kw_urem: 3746 case lltok::kw_srem: 3747 case lltok::kw_frem: 3748 case lltok::kw_shl: 3749 case lltok::kw_lshr: 3750 case lltok::kw_ashr: { 3751 bool NUW = false; 3752 bool NSW = false; 3753 bool Exact = false; 3754 unsigned Opc = Lex.getUIntVal(); 3755 Constant *Val0, *Val1; 3756 Lex.Lex(); 3757 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3758 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3759 if (EatIfPresent(lltok::kw_nuw)) 3760 NUW = true; 3761 if (EatIfPresent(lltok::kw_nsw)) { 3762 NSW = true; 3763 if (EatIfPresent(lltok::kw_nuw)) 3764 NUW = true; 3765 } 3766 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3767 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3768 if (EatIfPresent(lltok::kw_exact)) 3769 Exact = true; 3770 } 3771 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3772 parseGlobalTypeAndValue(Val0) || 3773 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3774 parseGlobalTypeAndValue(Val1) || 3775 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3776 return true; 3777 if (Val0->getType() != Val1->getType()) 3778 return error(ID.Loc, "operands of constexpr must have same type"); 3779 // Check that the type is valid for the operator. 3780 switch (Opc) { 3781 case Instruction::Add: 3782 case Instruction::Sub: 3783 case Instruction::Mul: 3784 case Instruction::UDiv: 3785 case Instruction::SDiv: 3786 case Instruction::URem: 3787 case Instruction::SRem: 3788 case Instruction::Shl: 3789 case Instruction::AShr: 3790 case Instruction::LShr: 3791 if (!Val0->getType()->isIntOrIntVectorTy()) 3792 return error(ID.Loc, "constexpr requires integer operands"); 3793 break; 3794 case Instruction::FAdd: 3795 case Instruction::FSub: 3796 case Instruction::FMul: 3797 case Instruction::FDiv: 3798 case Instruction::FRem: 3799 if (!Val0->getType()->isFPOrFPVectorTy()) 3800 return error(ID.Loc, "constexpr requires fp operands"); 3801 break; 3802 default: llvm_unreachable("Unknown binary operator!"); 3803 } 3804 unsigned Flags = 0; 3805 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3806 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3807 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3808 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3809 ID.ConstantVal = C; 3810 ID.Kind = ValID::t_Constant; 3811 return false; 3812 } 3813 3814 // Logical Operations 3815 case lltok::kw_and: 3816 case lltok::kw_or: 3817 case lltok::kw_xor: { 3818 unsigned Opc = Lex.getUIntVal(); 3819 Constant *Val0, *Val1; 3820 Lex.Lex(); 3821 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3822 parseGlobalTypeAndValue(Val0) || 3823 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3824 parseGlobalTypeAndValue(Val1) || 3825 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3826 return true; 3827 if (Val0->getType() != Val1->getType()) 3828 return error(ID.Loc, "operands of constexpr must have same type"); 3829 if (!Val0->getType()->isIntOrIntVectorTy()) 3830 return error(ID.Loc, 3831 "constexpr requires integer or integer vector operands"); 3832 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3833 ID.Kind = ValID::t_Constant; 3834 return false; 3835 } 3836 3837 case lltok::kw_getelementptr: 3838 case lltok::kw_shufflevector: 3839 case lltok::kw_insertelement: 3840 case lltok::kw_extractelement: 3841 case lltok::kw_select: { 3842 unsigned Opc = Lex.getUIntVal(); 3843 SmallVector<Constant*, 16> Elts; 3844 bool InBounds = false; 3845 Type *Ty; 3846 Lex.Lex(); 3847 3848 if (Opc == Instruction::GetElementPtr) 3849 InBounds = EatIfPresent(lltok::kw_inbounds); 3850 3851 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3852 return true; 3853 3854 LocTy ExplicitTypeLoc = Lex.getLoc(); 3855 if (Opc == Instruction::GetElementPtr) { 3856 if (parseType(Ty) || 3857 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3858 return true; 3859 } 3860 3861 Optional<unsigned> InRangeOp; 3862 if (parseGlobalValueVector( 3863 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3864 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3865 return true; 3866 3867 if (Opc == Instruction::GetElementPtr) { 3868 if (Elts.size() == 0 || 3869 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3870 return error(ID.Loc, "base of getelementptr must be a pointer"); 3871 3872 Type *BaseType = Elts[0]->getType(); 3873 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3874 if (Ty != BasePointerType->getElementType()) { 3875 return error( 3876 ExplicitTypeLoc, 3877 typeComparisonErrorMessage( 3878 "explicit pointee type doesn't match operand's pointee type", 3879 Ty, BasePointerType->getElementType())); 3880 } 3881 3882 unsigned GEPWidth = 3883 BaseType->isVectorTy() 3884 ? cast<FixedVectorType>(BaseType)->getNumElements() 3885 : 0; 3886 3887 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3888 for (Constant *Val : Indices) { 3889 Type *ValTy = Val->getType(); 3890 if (!ValTy->isIntOrIntVectorTy()) 3891 return error(ID.Loc, "getelementptr index must be an integer"); 3892 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3893 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3894 if (GEPWidth && (ValNumEl != GEPWidth)) 3895 return error( 3896 ID.Loc, 3897 "getelementptr vector index has a wrong number of elements"); 3898 // GEPWidth may have been unknown because the base is a scalar, 3899 // but it is known now. 3900 GEPWidth = ValNumEl; 3901 } 3902 } 3903 3904 SmallPtrSet<Type*, 4> Visited; 3905 if (!Indices.empty() && !Ty->isSized(&Visited)) 3906 return error(ID.Loc, "base element of getelementptr must be sized"); 3907 3908 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3909 return error(ID.Loc, "invalid getelementptr indices"); 3910 3911 if (InRangeOp) { 3912 if (*InRangeOp == 0) 3913 return error(ID.Loc, 3914 "inrange keyword may not appear on pointer operand"); 3915 --*InRangeOp; 3916 } 3917 3918 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3919 InBounds, InRangeOp); 3920 } else if (Opc == Instruction::Select) { 3921 if (Elts.size() != 3) 3922 return error(ID.Loc, "expected three operands to select"); 3923 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3924 Elts[2])) 3925 return error(ID.Loc, Reason); 3926 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3927 } else if (Opc == Instruction::ShuffleVector) { 3928 if (Elts.size() != 3) 3929 return error(ID.Loc, "expected three operands to shufflevector"); 3930 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3931 return error(ID.Loc, "invalid operands to shufflevector"); 3932 SmallVector<int, 16> Mask; 3933 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3934 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3935 } else if (Opc == Instruction::ExtractElement) { 3936 if (Elts.size() != 2) 3937 return error(ID.Loc, "expected two operands to extractelement"); 3938 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3939 return error(ID.Loc, "invalid extractelement operands"); 3940 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3941 } else { 3942 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3943 if (Elts.size() != 3) 3944 return error(ID.Loc, "expected three operands to insertelement"); 3945 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3946 return error(ID.Loc, "invalid insertelement operands"); 3947 ID.ConstantVal = 3948 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3949 } 3950 3951 ID.Kind = ValID::t_Constant; 3952 return false; 3953 } 3954 } 3955 3956 Lex.Lex(); 3957 return false; 3958 } 3959 3960 /// parseGlobalValue - parse a global value with the specified type. 3961 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3962 C = nullptr; 3963 ValID ID; 3964 Value *V = nullptr; 3965 bool Parsed = parseValID(ID) || 3966 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3967 if (V && !(C = dyn_cast<Constant>(V))) 3968 return error(ID.Loc, "global values must be constants"); 3969 return Parsed; 3970 } 3971 3972 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3973 Type *Ty = nullptr; 3974 return parseType(Ty) || parseGlobalValue(Ty, V); 3975 } 3976 3977 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3978 C = nullptr; 3979 3980 LocTy KwLoc = Lex.getLoc(); 3981 if (!EatIfPresent(lltok::kw_comdat)) 3982 return false; 3983 3984 if (EatIfPresent(lltok::lparen)) { 3985 if (Lex.getKind() != lltok::ComdatVar) 3986 return tokError("expected comdat variable"); 3987 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3988 Lex.Lex(); 3989 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3990 return true; 3991 } else { 3992 if (GlobalName.empty()) 3993 return tokError("comdat cannot be unnamed"); 3994 C = getComdat(std::string(GlobalName), KwLoc); 3995 } 3996 3997 return false; 3998 } 3999 4000 /// parseGlobalValueVector 4001 /// ::= /*empty*/ 4002 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4003 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4004 Optional<unsigned> *InRangeOp) { 4005 // Empty list. 4006 if (Lex.getKind() == lltok::rbrace || 4007 Lex.getKind() == lltok::rsquare || 4008 Lex.getKind() == lltok::greater || 4009 Lex.getKind() == lltok::rparen) 4010 return false; 4011 4012 do { 4013 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4014 *InRangeOp = Elts.size(); 4015 4016 Constant *C; 4017 if (parseGlobalTypeAndValue(C)) 4018 return true; 4019 Elts.push_back(C); 4020 } while (EatIfPresent(lltok::comma)); 4021 4022 return false; 4023 } 4024 4025 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4026 SmallVector<Metadata *, 16> Elts; 4027 if (parseMDNodeVector(Elts)) 4028 return true; 4029 4030 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4031 return false; 4032 } 4033 4034 /// MDNode: 4035 /// ::= !{ ... } 4036 /// ::= !7 4037 /// ::= !DILocation(...) 4038 bool LLParser::parseMDNode(MDNode *&N) { 4039 if (Lex.getKind() == lltok::MetadataVar) 4040 return parseSpecializedMDNode(N); 4041 4042 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4043 } 4044 4045 bool LLParser::parseMDNodeTail(MDNode *&N) { 4046 // !{ ... } 4047 if (Lex.getKind() == lltok::lbrace) 4048 return parseMDTuple(N); 4049 4050 // !42 4051 return parseMDNodeID(N); 4052 } 4053 4054 namespace { 4055 4056 /// Structure to represent an optional metadata field. 4057 template <class FieldTy> struct MDFieldImpl { 4058 typedef MDFieldImpl ImplTy; 4059 FieldTy Val; 4060 bool Seen; 4061 4062 void assign(FieldTy Val) { 4063 Seen = true; 4064 this->Val = std::move(Val); 4065 } 4066 4067 explicit MDFieldImpl(FieldTy Default) 4068 : Val(std::move(Default)), Seen(false) {} 4069 }; 4070 4071 /// Structure to represent an optional metadata field that 4072 /// can be of either type (A or B) and encapsulates the 4073 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4074 /// to reimplement the specifics for representing each Field. 4075 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4076 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4077 FieldTypeA A; 4078 FieldTypeB B; 4079 bool Seen; 4080 4081 enum { 4082 IsInvalid = 0, 4083 IsTypeA = 1, 4084 IsTypeB = 2 4085 } WhatIs; 4086 4087 void assign(FieldTypeA A) { 4088 Seen = true; 4089 this->A = std::move(A); 4090 WhatIs = IsTypeA; 4091 } 4092 4093 void assign(FieldTypeB B) { 4094 Seen = true; 4095 this->B = std::move(B); 4096 WhatIs = IsTypeB; 4097 } 4098 4099 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4100 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4101 WhatIs(IsInvalid) {} 4102 }; 4103 4104 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4105 uint64_t Max; 4106 4107 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4108 : ImplTy(Default), Max(Max) {} 4109 }; 4110 4111 struct LineField : public MDUnsignedField { 4112 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4113 }; 4114 4115 struct ColumnField : public MDUnsignedField { 4116 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4117 }; 4118 4119 struct DwarfTagField : public MDUnsignedField { 4120 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4121 DwarfTagField(dwarf::Tag DefaultTag) 4122 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4123 }; 4124 4125 struct DwarfMacinfoTypeField : public MDUnsignedField { 4126 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4127 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4128 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4129 }; 4130 4131 struct DwarfAttEncodingField : public MDUnsignedField { 4132 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4133 }; 4134 4135 struct DwarfVirtualityField : public MDUnsignedField { 4136 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4137 }; 4138 4139 struct DwarfLangField : public MDUnsignedField { 4140 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4141 }; 4142 4143 struct DwarfCCField : public MDUnsignedField { 4144 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4145 }; 4146 4147 struct EmissionKindField : public MDUnsignedField { 4148 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4149 }; 4150 4151 struct NameTableKindField : public MDUnsignedField { 4152 NameTableKindField() 4153 : MDUnsignedField( 4154 0, (unsigned) 4155 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4156 }; 4157 4158 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4159 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4160 }; 4161 4162 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4163 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4164 }; 4165 4166 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4167 MDAPSIntField() : ImplTy(APSInt()) {} 4168 }; 4169 4170 struct MDSignedField : public MDFieldImpl<int64_t> { 4171 int64_t Min; 4172 int64_t Max; 4173 4174 MDSignedField(int64_t Default = 0) 4175 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4176 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4177 : ImplTy(Default), Min(Min), Max(Max) {} 4178 }; 4179 4180 struct MDBoolField : public MDFieldImpl<bool> { 4181 MDBoolField(bool Default = false) : ImplTy(Default) {} 4182 }; 4183 4184 struct MDField : public MDFieldImpl<Metadata *> { 4185 bool AllowNull; 4186 4187 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4188 }; 4189 4190 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4191 MDConstant() : ImplTy(nullptr) {} 4192 }; 4193 4194 struct MDStringField : public MDFieldImpl<MDString *> { 4195 bool AllowEmpty; 4196 MDStringField(bool AllowEmpty = true) 4197 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4198 }; 4199 4200 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4201 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4202 }; 4203 4204 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4205 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4206 }; 4207 4208 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4209 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4210 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4211 4212 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4213 bool AllowNull = true) 4214 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4215 4216 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4217 bool isMDField() const { return WhatIs == IsTypeB; } 4218 int64_t getMDSignedValue() const { 4219 assert(isMDSignedField() && "Wrong field type"); 4220 return A.Val; 4221 } 4222 Metadata *getMDFieldValue() const { 4223 assert(isMDField() && "Wrong field type"); 4224 return B.Val; 4225 } 4226 }; 4227 4228 struct MDSignedOrUnsignedField 4229 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4230 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4231 4232 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4233 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4234 int64_t getMDSignedValue() const { 4235 assert(isMDSignedField() && "Wrong field type"); 4236 return A.Val; 4237 } 4238 uint64_t getMDUnsignedValue() const { 4239 assert(isMDUnsignedField() && "Wrong field type"); 4240 return B.Val; 4241 } 4242 }; 4243 4244 } // end anonymous namespace 4245 4246 namespace llvm { 4247 4248 template <> 4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4250 if (Lex.getKind() != lltok::APSInt) 4251 return tokError("expected integer"); 4252 4253 Result.assign(Lex.getAPSIntVal()); 4254 Lex.Lex(); 4255 return false; 4256 } 4257 4258 template <> 4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4260 MDUnsignedField &Result) { 4261 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4262 return tokError("expected unsigned integer"); 4263 4264 auto &U = Lex.getAPSIntVal(); 4265 if (U.ugt(Result.Max)) 4266 return tokError("value for '" + Name + "' too large, limit is " + 4267 Twine(Result.Max)); 4268 Result.assign(U.getZExtValue()); 4269 assert(Result.Val <= Result.Max && "Expected value in range"); 4270 Lex.Lex(); 4271 return false; 4272 } 4273 4274 template <> 4275 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4276 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4277 } 4278 template <> 4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4280 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4281 } 4282 4283 template <> 4284 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4285 if (Lex.getKind() == lltok::APSInt) 4286 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4287 4288 if (Lex.getKind() != lltok::DwarfTag) 4289 return tokError("expected DWARF tag"); 4290 4291 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4292 if (Tag == dwarf::DW_TAG_invalid) 4293 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4294 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4295 4296 Result.assign(Tag); 4297 Lex.Lex(); 4298 return false; 4299 } 4300 4301 template <> 4302 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4303 DwarfMacinfoTypeField &Result) { 4304 if (Lex.getKind() == lltok::APSInt) 4305 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4306 4307 if (Lex.getKind() != lltok::DwarfMacinfo) 4308 return tokError("expected DWARF macinfo type"); 4309 4310 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4311 if (Macinfo == dwarf::DW_MACINFO_invalid) 4312 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4313 Lex.getStrVal() + "'"); 4314 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4315 4316 Result.assign(Macinfo); 4317 Lex.Lex(); 4318 return false; 4319 } 4320 4321 template <> 4322 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4323 DwarfVirtualityField &Result) { 4324 if (Lex.getKind() == lltok::APSInt) 4325 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4326 4327 if (Lex.getKind() != lltok::DwarfVirtuality) 4328 return tokError("expected DWARF virtuality code"); 4329 4330 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4331 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4332 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4333 Lex.getStrVal() + "'"); 4334 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4335 Result.assign(Virtuality); 4336 Lex.Lex(); 4337 return false; 4338 } 4339 4340 template <> 4341 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4342 if (Lex.getKind() == lltok::APSInt) 4343 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4344 4345 if (Lex.getKind() != lltok::DwarfLang) 4346 return tokError("expected DWARF language"); 4347 4348 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4349 if (!Lang) 4350 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4351 "'"); 4352 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4353 Result.assign(Lang); 4354 Lex.Lex(); 4355 return false; 4356 } 4357 4358 template <> 4359 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4360 if (Lex.getKind() == lltok::APSInt) 4361 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4362 4363 if (Lex.getKind() != lltok::DwarfCC) 4364 return tokError("expected DWARF calling convention"); 4365 4366 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4367 if (!CC) 4368 return tokError("invalid DWARF calling convention" + Twine(" '") + 4369 Lex.getStrVal() + "'"); 4370 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4371 Result.assign(CC); 4372 Lex.Lex(); 4373 return false; 4374 } 4375 4376 template <> 4377 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4378 EmissionKindField &Result) { 4379 if (Lex.getKind() == lltok::APSInt) 4380 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4381 4382 if (Lex.getKind() != lltok::EmissionKind) 4383 return tokError("expected emission kind"); 4384 4385 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4386 if (!Kind) 4387 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4388 "'"); 4389 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4390 Result.assign(*Kind); 4391 Lex.Lex(); 4392 return false; 4393 } 4394 4395 template <> 4396 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4397 NameTableKindField &Result) { 4398 if (Lex.getKind() == lltok::APSInt) 4399 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4400 4401 if (Lex.getKind() != lltok::NameTableKind) 4402 return tokError("expected nameTable kind"); 4403 4404 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4405 if (!Kind) 4406 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4407 "'"); 4408 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4409 Result.assign((unsigned)*Kind); 4410 Lex.Lex(); 4411 return false; 4412 } 4413 4414 template <> 4415 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4416 DwarfAttEncodingField &Result) { 4417 if (Lex.getKind() == lltok::APSInt) 4418 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4419 4420 if (Lex.getKind() != lltok::DwarfAttEncoding) 4421 return tokError("expected DWARF type attribute encoding"); 4422 4423 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4424 if (!Encoding) 4425 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4426 Lex.getStrVal() + "'"); 4427 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4428 Result.assign(Encoding); 4429 Lex.Lex(); 4430 return false; 4431 } 4432 4433 /// DIFlagField 4434 /// ::= uint32 4435 /// ::= DIFlagVector 4436 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4437 template <> 4438 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4439 4440 // parser for a single flag. 4441 auto parseFlag = [&](DINode::DIFlags &Val) { 4442 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4443 uint32_t TempVal = static_cast<uint32_t>(Val); 4444 bool Res = parseUInt32(TempVal); 4445 Val = static_cast<DINode::DIFlags>(TempVal); 4446 return Res; 4447 } 4448 4449 if (Lex.getKind() != lltok::DIFlag) 4450 return tokError("expected debug info flag"); 4451 4452 Val = DINode::getFlag(Lex.getStrVal()); 4453 if (!Val) 4454 return tokError(Twine("invalid debug info flag flag '") + 4455 Lex.getStrVal() + "'"); 4456 Lex.Lex(); 4457 return false; 4458 }; 4459 4460 // parse the flags and combine them together. 4461 DINode::DIFlags Combined = DINode::FlagZero; 4462 do { 4463 DINode::DIFlags Val; 4464 if (parseFlag(Val)) 4465 return true; 4466 Combined |= Val; 4467 } while (EatIfPresent(lltok::bar)); 4468 4469 Result.assign(Combined); 4470 return false; 4471 } 4472 4473 /// DISPFlagField 4474 /// ::= uint32 4475 /// ::= DISPFlagVector 4476 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4477 template <> 4478 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4479 4480 // parser for a single flag. 4481 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4482 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4483 uint32_t TempVal = static_cast<uint32_t>(Val); 4484 bool Res = parseUInt32(TempVal); 4485 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4486 return Res; 4487 } 4488 4489 if (Lex.getKind() != lltok::DISPFlag) 4490 return tokError("expected debug info flag"); 4491 4492 Val = DISubprogram::getFlag(Lex.getStrVal()); 4493 if (!Val) 4494 return tokError(Twine("invalid subprogram debug info flag '") + 4495 Lex.getStrVal() + "'"); 4496 Lex.Lex(); 4497 return false; 4498 }; 4499 4500 // parse the flags and combine them together. 4501 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4502 do { 4503 DISubprogram::DISPFlags Val; 4504 if (parseFlag(Val)) 4505 return true; 4506 Combined |= Val; 4507 } while (EatIfPresent(lltok::bar)); 4508 4509 Result.assign(Combined); 4510 return false; 4511 } 4512 4513 template <> 4514 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4515 if (Lex.getKind() != lltok::APSInt) 4516 return tokError("expected signed integer"); 4517 4518 auto &S = Lex.getAPSIntVal(); 4519 if (S < Result.Min) 4520 return tokError("value for '" + Name + "' too small, limit is " + 4521 Twine(Result.Min)); 4522 if (S > Result.Max) 4523 return tokError("value for '" + Name + "' too large, limit is " + 4524 Twine(Result.Max)); 4525 Result.assign(S.getExtValue()); 4526 assert(Result.Val >= Result.Min && "Expected value in range"); 4527 assert(Result.Val <= Result.Max && "Expected value in range"); 4528 Lex.Lex(); 4529 return false; 4530 } 4531 4532 template <> 4533 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4534 switch (Lex.getKind()) { 4535 default: 4536 return tokError("expected 'true' or 'false'"); 4537 case lltok::kw_true: 4538 Result.assign(true); 4539 break; 4540 case lltok::kw_false: 4541 Result.assign(false); 4542 break; 4543 } 4544 Lex.Lex(); 4545 return false; 4546 } 4547 4548 template <> 4549 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4550 if (Lex.getKind() == lltok::kw_null) { 4551 if (!Result.AllowNull) 4552 return tokError("'" + Name + "' cannot be null"); 4553 Lex.Lex(); 4554 Result.assign(nullptr); 4555 return false; 4556 } 4557 4558 Metadata *MD; 4559 if (parseMetadata(MD, nullptr)) 4560 return true; 4561 4562 Result.assign(MD); 4563 return false; 4564 } 4565 4566 template <> 4567 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4568 MDSignedOrMDField &Result) { 4569 // Try to parse a signed int. 4570 if (Lex.getKind() == lltok::APSInt) { 4571 MDSignedField Res = Result.A; 4572 if (!parseMDField(Loc, Name, Res)) { 4573 Result.assign(Res); 4574 return false; 4575 } 4576 return true; 4577 } 4578 4579 // Otherwise, try to parse as an MDField. 4580 MDField Res = Result.B; 4581 if (!parseMDField(Loc, Name, Res)) { 4582 Result.assign(Res); 4583 return false; 4584 } 4585 4586 return true; 4587 } 4588 4589 template <> 4590 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4591 LocTy ValueLoc = Lex.getLoc(); 4592 std::string S; 4593 if (parseStringConstant(S)) 4594 return true; 4595 4596 if (!Result.AllowEmpty && S.empty()) 4597 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4598 4599 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4600 return false; 4601 } 4602 4603 template <> 4604 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4605 SmallVector<Metadata *, 4> MDs; 4606 if (parseMDNodeVector(MDs)) 4607 return true; 4608 4609 Result.assign(std::move(MDs)); 4610 return false; 4611 } 4612 4613 template <> 4614 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4615 ChecksumKindField &Result) { 4616 Optional<DIFile::ChecksumKind> CSKind = 4617 DIFile::getChecksumKind(Lex.getStrVal()); 4618 4619 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4620 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4621 "'"); 4622 4623 Result.assign(*CSKind); 4624 Lex.Lex(); 4625 return false; 4626 } 4627 4628 } // end namespace llvm 4629 4630 template <class ParserTy> 4631 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4632 do { 4633 if (Lex.getKind() != lltok::LabelStr) 4634 return tokError("expected field label here"); 4635 4636 if (ParseField()) 4637 return true; 4638 } while (EatIfPresent(lltok::comma)); 4639 4640 return false; 4641 } 4642 4643 template <class ParserTy> 4644 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4645 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4646 Lex.Lex(); 4647 4648 if (parseToken(lltok::lparen, "expected '(' here")) 4649 return true; 4650 if (Lex.getKind() != lltok::rparen) 4651 if (parseMDFieldsImplBody(ParseField)) 4652 return true; 4653 4654 ClosingLoc = Lex.getLoc(); 4655 return parseToken(lltok::rparen, "expected ')' here"); 4656 } 4657 4658 template <class FieldTy> 4659 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4660 if (Result.Seen) 4661 return tokError("field '" + Name + "' cannot be specified more than once"); 4662 4663 LocTy Loc = Lex.getLoc(); 4664 Lex.Lex(); 4665 return parseMDField(Loc, Name, Result); 4666 } 4667 4668 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4669 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4670 4671 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4672 if (Lex.getStrVal() == #CLASS) \ 4673 return parse##CLASS(N, IsDistinct); 4674 #include "llvm/IR/Metadata.def" 4675 4676 return tokError("expected metadata type"); 4677 } 4678 4679 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4680 #define NOP_FIELD(NAME, TYPE, INIT) 4681 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4682 if (!NAME.Seen) \ 4683 return error(ClosingLoc, "missing required field '" #NAME "'"); 4684 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4685 if (Lex.getStrVal() == #NAME) \ 4686 return parseMDField(#NAME, NAME); 4687 #define PARSE_MD_FIELDS() \ 4688 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4689 do { \ 4690 LocTy ClosingLoc; \ 4691 if (parseMDFieldsImpl( \ 4692 [&]() -> bool { \ 4693 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4694 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4695 "'"); \ 4696 }, \ 4697 ClosingLoc)) \ 4698 return true; \ 4699 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4700 } while (false) 4701 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4702 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4703 4704 /// parseDILocationFields: 4705 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4706 /// isImplicitCode: true) 4707 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4708 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4709 OPTIONAL(line, LineField, ); \ 4710 OPTIONAL(column, ColumnField, ); \ 4711 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4712 OPTIONAL(inlinedAt, MDField, ); \ 4713 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4714 PARSE_MD_FIELDS(); 4715 #undef VISIT_MD_FIELDS 4716 4717 Result = 4718 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4719 inlinedAt.Val, isImplicitCode.Val)); 4720 return false; 4721 } 4722 4723 /// parseGenericDINode: 4724 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4725 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4727 REQUIRED(tag, DwarfTagField, ); \ 4728 OPTIONAL(header, MDStringField, ); \ 4729 OPTIONAL(operands, MDFieldList, ); 4730 PARSE_MD_FIELDS(); 4731 #undef VISIT_MD_FIELDS 4732 4733 Result = GET_OR_DISTINCT(GenericDINode, 4734 (Context, tag.Val, header.Val, operands.Val)); 4735 return false; 4736 } 4737 4738 /// parseDISubrange: 4739 /// ::= !DISubrange(count: 30, lowerBound: 2) 4740 /// ::= !DISubrange(count: !node, lowerBound: 2) 4741 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4742 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4743 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4744 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4745 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4746 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4747 OPTIONAL(stride, MDSignedOrMDField, ); 4748 PARSE_MD_FIELDS(); 4749 #undef VISIT_MD_FIELDS 4750 4751 Metadata *Count = nullptr; 4752 Metadata *LowerBound = nullptr; 4753 Metadata *UpperBound = nullptr; 4754 Metadata *Stride = nullptr; 4755 4756 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4757 if (Bound.isMDSignedField()) 4758 return ConstantAsMetadata::get(ConstantInt::getSigned( 4759 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4760 if (Bound.isMDField()) 4761 return Bound.getMDFieldValue(); 4762 return nullptr; 4763 }; 4764 4765 Count = convToMetadata(count); 4766 LowerBound = convToMetadata(lowerBound); 4767 UpperBound = convToMetadata(upperBound); 4768 Stride = convToMetadata(stride); 4769 4770 Result = GET_OR_DISTINCT(DISubrange, 4771 (Context, Count, LowerBound, UpperBound, Stride)); 4772 4773 return false; 4774 } 4775 4776 /// parseDIGenericSubrange: 4777 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4778 /// !node3) 4779 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4781 OPTIONAL(count, MDSignedOrMDField, ); \ 4782 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4783 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4784 OPTIONAL(stride, MDSignedOrMDField, ); 4785 PARSE_MD_FIELDS(); 4786 #undef VISIT_MD_FIELDS 4787 4788 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4789 if (Bound.isMDSignedField()) 4790 return DIExpression::get( 4791 Context, {dwarf::DW_OP_consts, 4792 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4793 if (Bound.isMDField()) 4794 return Bound.getMDFieldValue(); 4795 return nullptr; 4796 }; 4797 4798 Metadata *Count = ConvToMetadata(count); 4799 Metadata *LowerBound = ConvToMetadata(lowerBound); 4800 Metadata *UpperBound = ConvToMetadata(upperBound); 4801 Metadata *Stride = ConvToMetadata(stride); 4802 4803 Result = GET_OR_DISTINCT(DIGenericSubrange, 4804 (Context, Count, LowerBound, UpperBound, Stride)); 4805 4806 return false; 4807 } 4808 4809 /// parseDIEnumerator: 4810 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4811 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4813 REQUIRED(name, MDStringField, ); \ 4814 REQUIRED(value, MDAPSIntField, ); \ 4815 OPTIONAL(isUnsigned, MDBoolField, (false)); 4816 PARSE_MD_FIELDS(); 4817 #undef VISIT_MD_FIELDS 4818 4819 if (isUnsigned.Val && value.Val.isNegative()) 4820 return tokError("unsigned enumerator with negative value"); 4821 4822 APSInt Value(value.Val); 4823 // Add a leading zero so that unsigned values with the msb set are not 4824 // mistaken for negative values when used for signed enumerators. 4825 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4826 Value = Value.zext(Value.getBitWidth() + 1); 4827 4828 Result = 4829 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4830 4831 return false; 4832 } 4833 4834 /// parseDIBasicType: 4835 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4836 /// encoding: DW_ATE_encoding, flags: 0) 4837 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4839 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4840 OPTIONAL(name, MDStringField, ); \ 4841 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4842 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4843 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4844 OPTIONAL(flags, DIFlagField, ); 4845 PARSE_MD_FIELDS(); 4846 #undef VISIT_MD_FIELDS 4847 4848 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4849 align.Val, encoding.Val, flags.Val)); 4850 return false; 4851 } 4852 4853 /// parseDIStringType: 4854 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4855 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4856 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4857 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4858 OPTIONAL(name, MDStringField, ); \ 4859 OPTIONAL(stringLength, MDField, ); \ 4860 OPTIONAL(stringLengthExpression, MDField, ); \ 4861 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4862 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4863 OPTIONAL(encoding, DwarfAttEncodingField, ); 4864 PARSE_MD_FIELDS(); 4865 #undef VISIT_MD_FIELDS 4866 4867 Result = GET_OR_DISTINCT(DIStringType, 4868 (Context, tag.Val, name.Val, stringLength.Val, 4869 stringLengthExpression.Val, size.Val, align.Val, 4870 encoding.Val)); 4871 return false; 4872 } 4873 4874 /// parseDIDerivedType: 4875 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4876 /// line: 7, scope: !1, baseType: !2, size: 32, 4877 /// align: 32, offset: 0, flags: 0, extraData: !3, 4878 /// dwarfAddressSpace: 3) 4879 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4881 REQUIRED(tag, DwarfTagField, ); \ 4882 OPTIONAL(name, MDStringField, ); \ 4883 OPTIONAL(file, MDField, ); \ 4884 OPTIONAL(line, LineField, ); \ 4885 OPTIONAL(scope, MDField, ); \ 4886 REQUIRED(baseType, MDField, ); \ 4887 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4888 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4889 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4890 OPTIONAL(flags, DIFlagField, ); \ 4891 OPTIONAL(extraData, MDField, ); \ 4892 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4893 PARSE_MD_FIELDS(); 4894 #undef VISIT_MD_FIELDS 4895 4896 Optional<unsigned> DWARFAddressSpace; 4897 if (dwarfAddressSpace.Val != UINT32_MAX) 4898 DWARFAddressSpace = dwarfAddressSpace.Val; 4899 4900 Result = GET_OR_DISTINCT(DIDerivedType, 4901 (Context, tag.Val, name.Val, file.Val, line.Val, 4902 scope.Val, baseType.Val, size.Val, align.Val, 4903 offset.Val, DWARFAddressSpace, flags.Val, 4904 extraData.Val)); 4905 return false; 4906 } 4907 4908 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4910 REQUIRED(tag, DwarfTagField, ); \ 4911 OPTIONAL(name, MDStringField, ); \ 4912 OPTIONAL(file, MDField, ); \ 4913 OPTIONAL(line, LineField, ); \ 4914 OPTIONAL(scope, MDField, ); \ 4915 OPTIONAL(baseType, MDField, ); \ 4916 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4917 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4918 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4919 OPTIONAL(flags, DIFlagField, ); \ 4920 OPTIONAL(elements, MDField, ); \ 4921 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4922 OPTIONAL(vtableHolder, MDField, ); \ 4923 OPTIONAL(templateParams, MDField, ); \ 4924 OPTIONAL(identifier, MDStringField, ); \ 4925 OPTIONAL(discriminator, MDField, ); \ 4926 OPTIONAL(dataLocation, MDField, ); \ 4927 OPTIONAL(associated, MDField, ); \ 4928 OPTIONAL(allocated, MDField, ); \ 4929 OPTIONAL(rank, MDSignedOrMDField, ); 4930 PARSE_MD_FIELDS(); 4931 #undef VISIT_MD_FIELDS 4932 4933 Metadata *Rank = nullptr; 4934 if (rank.isMDSignedField()) 4935 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4936 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4937 else if (rank.isMDField()) 4938 Rank = rank.getMDFieldValue(); 4939 4940 // If this has an identifier try to build an ODR type. 4941 if (identifier.Val) 4942 if (auto *CT = DICompositeType::buildODRType( 4943 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4944 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4945 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4946 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4947 Rank)) { 4948 Result = CT; 4949 return false; 4950 } 4951 4952 // Create a new node, and save it in the context if it belongs in the type 4953 // map. 4954 Result = GET_OR_DISTINCT( 4955 DICompositeType, 4956 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4957 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4958 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4959 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4960 Rank)); 4961 return false; 4962 } 4963 4964 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4966 OPTIONAL(flags, DIFlagField, ); \ 4967 OPTIONAL(cc, DwarfCCField, ); \ 4968 REQUIRED(types, MDField, ); 4969 PARSE_MD_FIELDS(); 4970 #undef VISIT_MD_FIELDS 4971 4972 Result = GET_OR_DISTINCT(DISubroutineType, 4973 (Context, flags.Val, cc.Val, types.Val)); 4974 return false; 4975 } 4976 4977 /// parseDIFileType: 4978 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4979 /// checksumkind: CSK_MD5, 4980 /// checksum: "000102030405060708090a0b0c0d0e0f", 4981 /// source: "source file contents") 4982 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4983 // The default constructed value for checksumkind is required, but will never 4984 // be used, as the parser checks if the field was actually Seen before using 4985 // the Val. 4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4987 REQUIRED(filename, MDStringField, ); \ 4988 REQUIRED(directory, MDStringField, ); \ 4989 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4990 OPTIONAL(checksum, MDStringField, ); \ 4991 OPTIONAL(source, MDStringField, ); 4992 PARSE_MD_FIELDS(); 4993 #undef VISIT_MD_FIELDS 4994 4995 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4996 if (checksumkind.Seen && checksum.Seen) 4997 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4998 else if (checksumkind.Seen || checksum.Seen) 4999 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5000 5001 Optional<MDString *> OptSource; 5002 if (source.Seen) 5003 OptSource = source.Val; 5004 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 5005 OptChecksum, OptSource)); 5006 return false; 5007 } 5008 5009 /// parseDICompileUnit: 5010 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5011 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5012 /// splitDebugFilename: "abc.debug", 5013 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5014 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5015 /// sysroot: "/", sdk: "MacOSX.sdk") 5016 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5017 if (!IsDistinct) 5018 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5019 5020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5021 REQUIRED(language, DwarfLangField, ); \ 5022 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5023 OPTIONAL(producer, MDStringField, ); \ 5024 OPTIONAL(isOptimized, MDBoolField, ); \ 5025 OPTIONAL(flags, MDStringField, ); \ 5026 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5027 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5028 OPTIONAL(emissionKind, EmissionKindField, ); \ 5029 OPTIONAL(enums, MDField, ); \ 5030 OPTIONAL(retainedTypes, MDField, ); \ 5031 OPTIONAL(globals, MDField, ); \ 5032 OPTIONAL(imports, MDField, ); \ 5033 OPTIONAL(macros, MDField, ); \ 5034 OPTIONAL(dwoId, MDUnsignedField, ); \ 5035 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5036 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5037 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5038 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5039 OPTIONAL(sysroot, MDStringField, ); \ 5040 OPTIONAL(sdk, MDStringField, ); 5041 PARSE_MD_FIELDS(); 5042 #undef VISIT_MD_FIELDS 5043 5044 Result = DICompileUnit::getDistinct( 5045 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5046 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5047 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5048 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5049 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5050 return false; 5051 } 5052 5053 /// parseDISubprogram: 5054 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5055 /// file: !1, line: 7, type: !2, isLocal: false, 5056 /// isDefinition: true, scopeLine: 8, containingType: !3, 5057 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5058 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5059 /// spFlags: 10, isOptimized: false, templateParams: !4, 5060 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5061 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5062 auto Loc = Lex.getLoc(); 5063 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5064 OPTIONAL(scope, MDField, ); \ 5065 OPTIONAL(name, MDStringField, ); \ 5066 OPTIONAL(linkageName, MDStringField, ); \ 5067 OPTIONAL(file, MDField, ); \ 5068 OPTIONAL(line, LineField, ); \ 5069 OPTIONAL(type, MDField, ); \ 5070 OPTIONAL(isLocal, MDBoolField, ); \ 5071 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5072 OPTIONAL(scopeLine, LineField, ); \ 5073 OPTIONAL(containingType, MDField, ); \ 5074 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5075 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5076 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5077 OPTIONAL(flags, DIFlagField, ); \ 5078 OPTIONAL(spFlags, DISPFlagField, ); \ 5079 OPTIONAL(isOptimized, MDBoolField, ); \ 5080 OPTIONAL(unit, MDField, ); \ 5081 OPTIONAL(templateParams, MDField, ); \ 5082 OPTIONAL(declaration, MDField, ); \ 5083 OPTIONAL(retainedNodes, MDField, ); \ 5084 OPTIONAL(thrownTypes, MDField, ); 5085 PARSE_MD_FIELDS(); 5086 #undef VISIT_MD_FIELDS 5087 5088 // An explicit spFlags field takes precedence over individual fields in 5089 // older IR versions. 5090 DISubprogram::DISPFlags SPFlags = 5091 spFlags.Seen ? spFlags.Val 5092 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5093 isOptimized.Val, virtuality.Val); 5094 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5095 return Lex.Error( 5096 Loc, 5097 "missing 'distinct', required for !DISubprogram that is a Definition"); 5098 Result = GET_OR_DISTINCT( 5099 DISubprogram, 5100 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5101 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5102 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5103 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5104 return false; 5105 } 5106 5107 /// parseDILexicalBlock: 5108 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5109 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5110 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5111 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5112 OPTIONAL(file, MDField, ); \ 5113 OPTIONAL(line, LineField, ); \ 5114 OPTIONAL(column, ColumnField, ); 5115 PARSE_MD_FIELDS(); 5116 #undef VISIT_MD_FIELDS 5117 5118 Result = GET_OR_DISTINCT( 5119 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5120 return false; 5121 } 5122 5123 /// parseDILexicalBlockFile: 5124 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5125 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5126 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5127 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5128 OPTIONAL(file, MDField, ); \ 5129 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5130 PARSE_MD_FIELDS(); 5131 #undef VISIT_MD_FIELDS 5132 5133 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5134 (Context, scope.Val, file.Val, discriminator.Val)); 5135 return false; 5136 } 5137 5138 /// parseDICommonBlock: 5139 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5140 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5142 REQUIRED(scope, MDField, ); \ 5143 OPTIONAL(declaration, MDField, ); \ 5144 OPTIONAL(name, MDStringField, ); \ 5145 OPTIONAL(file, MDField, ); \ 5146 OPTIONAL(line, LineField, ); 5147 PARSE_MD_FIELDS(); 5148 #undef VISIT_MD_FIELDS 5149 5150 Result = GET_OR_DISTINCT(DICommonBlock, 5151 (Context, scope.Val, declaration.Val, name.Val, 5152 file.Val, line.Val)); 5153 return false; 5154 } 5155 5156 /// parseDINamespace: 5157 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5158 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5159 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5160 REQUIRED(scope, MDField, ); \ 5161 OPTIONAL(name, MDStringField, ); \ 5162 OPTIONAL(exportSymbols, MDBoolField, ); 5163 PARSE_MD_FIELDS(); 5164 #undef VISIT_MD_FIELDS 5165 5166 Result = GET_OR_DISTINCT(DINamespace, 5167 (Context, scope.Val, name.Val, exportSymbols.Val)); 5168 return false; 5169 } 5170 5171 /// parseDIMacro: 5172 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5173 /// "SomeValue") 5174 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5175 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5176 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5177 OPTIONAL(line, LineField, ); \ 5178 REQUIRED(name, MDStringField, ); \ 5179 OPTIONAL(value, MDStringField, ); 5180 PARSE_MD_FIELDS(); 5181 #undef VISIT_MD_FIELDS 5182 5183 Result = GET_OR_DISTINCT(DIMacro, 5184 (Context, type.Val, line.Val, name.Val, value.Val)); 5185 return false; 5186 } 5187 5188 /// parseDIMacroFile: 5189 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5190 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5191 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5192 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5193 OPTIONAL(line, LineField, ); \ 5194 REQUIRED(file, MDField, ); \ 5195 OPTIONAL(nodes, MDField, ); 5196 PARSE_MD_FIELDS(); 5197 #undef VISIT_MD_FIELDS 5198 5199 Result = GET_OR_DISTINCT(DIMacroFile, 5200 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5201 return false; 5202 } 5203 5204 /// parseDIModule: 5205 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5206 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5207 /// file: !1, line: 4, isDecl: false) 5208 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5209 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5210 REQUIRED(scope, MDField, ); \ 5211 REQUIRED(name, MDStringField, ); \ 5212 OPTIONAL(configMacros, MDStringField, ); \ 5213 OPTIONAL(includePath, MDStringField, ); \ 5214 OPTIONAL(apinotes, MDStringField, ); \ 5215 OPTIONAL(file, MDField, ); \ 5216 OPTIONAL(line, LineField, ); \ 5217 OPTIONAL(isDecl, MDBoolField, ); 5218 PARSE_MD_FIELDS(); 5219 #undef VISIT_MD_FIELDS 5220 5221 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5222 configMacros.Val, includePath.Val, 5223 apinotes.Val, line.Val, isDecl.Val)); 5224 return false; 5225 } 5226 5227 /// parseDITemplateTypeParameter: 5228 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5229 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5231 OPTIONAL(name, MDStringField, ); \ 5232 REQUIRED(type, MDField, ); \ 5233 OPTIONAL(defaulted, MDBoolField, ); 5234 PARSE_MD_FIELDS(); 5235 #undef VISIT_MD_FIELDS 5236 5237 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5238 (Context, name.Val, type.Val, defaulted.Val)); 5239 return false; 5240 } 5241 5242 /// parseDITemplateValueParameter: 5243 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5244 /// name: "V", type: !1, defaulted: false, 5245 /// value: i32 7) 5246 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5247 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5248 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5249 OPTIONAL(name, MDStringField, ); \ 5250 OPTIONAL(type, MDField, ); \ 5251 OPTIONAL(defaulted, MDBoolField, ); \ 5252 REQUIRED(value, MDField, ); 5253 5254 PARSE_MD_FIELDS(); 5255 #undef VISIT_MD_FIELDS 5256 5257 Result = GET_OR_DISTINCT( 5258 DITemplateValueParameter, 5259 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5260 return false; 5261 } 5262 5263 /// parseDIGlobalVariable: 5264 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5265 /// file: !1, line: 7, type: !2, isLocal: false, 5266 /// isDefinition: true, templateParams: !3, 5267 /// declaration: !4, align: 8) 5268 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5270 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5271 OPTIONAL(scope, MDField, ); \ 5272 OPTIONAL(linkageName, MDStringField, ); \ 5273 OPTIONAL(file, MDField, ); \ 5274 OPTIONAL(line, LineField, ); \ 5275 OPTIONAL(type, MDField, ); \ 5276 OPTIONAL(isLocal, MDBoolField, ); \ 5277 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5278 OPTIONAL(templateParams, MDField, ); \ 5279 OPTIONAL(declaration, MDField, ); \ 5280 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5281 PARSE_MD_FIELDS(); 5282 #undef VISIT_MD_FIELDS 5283 5284 Result = 5285 GET_OR_DISTINCT(DIGlobalVariable, 5286 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5287 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5288 declaration.Val, templateParams.Val, align.Val)); 5289 return false; 5290 } 5291 5292 /// parseDILocalVariable: 5293 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5294 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5295 /// align: 8) 5296 /// ::= !DILocalVariable(scope: !0, name: "foo", 5297 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5298 /// align: 8) 5299 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5300 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5301 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5302 OPTIONAL(name, MDStringField, ); \ 5303 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5304 OPTIONAL(file, MDField, ); \ 5305 OPTIONAL(line, LineField, ); \ 5306 OPTIONAL(type, MDField, ); \ 5307 OPTIONAL(flags, DIFlagField, ); \ 5308 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5309 PARSE_MD_FIELDS(); 5310 #undef VISIT_MD_FIELDS 5311 5312 Result = GET_OR_DISTINCT(DILocalVariable, 5313 (Context, scope.Val, name.Val, file.Val, line.Val, 5314 type.Val, arg.Val, flags.Val, align.Val)); 5315 return false; 5316 } 5317 5318 /// parseDILabel: 5319 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5320 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5321 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5322 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5323 REQUIRED(name, MDStringField, ); \ 5324 REQUIRED(file, MDField, ); \ 5325 REQUIRED(line, LineField, ); 5326 PARSE_MD_FIELDS(); 5327 #undef VISIT_MD_FIELDS 5328 5329 Result = GET_OR_DISTINCT(DILabel, 5330 (Context, scope.Val, name.Val, file.Val, line.Val)); 5331 return false; 5332 } 5333 5334 /// parseDIExpression: 5335 /// ::= !DIExpression(0, 7, -1) 5336 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5337 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5338 Lex.Lex(); 5339 5340 if (parseToken(lltok::lparen, "expected '(' here")) 5341 return true; 5342 5343 SmallVector<uint64_t, 8> Elements; 5344 if (Lex.getKind() != lltok::rparen) 5345 do { 5346 if (Lex.getKind() == lltok::DwarfOp) { 5347 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5348 Lex.Lex(); 5349 Elements.push_back(Op); 5350 continue; 5351 } 5352 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5353 } 5354 5355 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5356 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5357 Lex.Lex(); 5358 Elements.push_back(Op); 5359 continue; 5360 } 5361 return tokError(Twine("invalid DWARF attribute encoding '") + 5362 Lex.getStrVal() + "'"); 5363 } 5364 5365 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5366 return tokError("expected unsigned integer"); 5367 5368 auto &U = Lex.getAPSIntVal(); 5369 if (U.ugt(UINT64_MAX)) 5370 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5371 Elements.push_back(U.getZExtValue()); 5372 Lex.Lex(); 5373 } while (EatIfPresent(lltok::comma)); 5374 5375 if (parseToken(lltok::rparen, "expected ')' here")) 5376 return true; 5377 5378 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5379 return false; 5380 } 5381 5382 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5383 return parseDIArgList(Result, IsDistinct, nullptr); 5384 } 5385 /// ParseDIArgList: 5386 /// ::= !DIArgList(i32 7, i64 %0) 5387 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5388 PerFunctionState *PFS) { 5389 assert(PFS && "Expected valid function state"); 5390 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5391 Lex.Lex(); 5392 5393 if (parseToken(lltok::lparen, "expected '(' here")) 5394 return true; 5395 5396 SmallVector<ValueAsMetadata *, 4> Args; 5397 if (Lex.getKind() != lltok::rparen) 5398 do { 5399 Metadata *MD; 5400 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5401 return true; 5402 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5403 } while (EatIfPresent(lltok::comma)); 5404 5405 if (parseToken(lltok::rparen, "expected ')' here")) 5406 return true; 5407 5408 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5409 return false; 5410 } 5411 5412 /// parseDIGlobalVariableExpression: 5413 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5414 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5415 bool IsDistinct) { 5416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5417 REQUIRED(var, MDField, ); \ 5418 REQUIRED(expr, MDField, ); 5419 PARSE_MD_FIELDS(); 5420 #undef VISIT_MD_FIELDS 5421 5422 Result = 5423 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5424 return false; 5425 } 5426 5427 /// parseDIObjCProperty: 5428 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5429 /// getter: "getFoo", attributes: 7, type: !2) 5430 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5431 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5432 OPTIONAL(name, MDStringField, ); \ 5433 OPTIONAL(file, MDField, ); \ 5434 OPTIONAL(line, LineField, ); \ 5435 OPTIONAL(setter, MDStringField, ); \ 5436 OPTIONAL(getter, MDStringField, ); \ 5437 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5438 OPTIONAL(type, MDField, ); 5439 PARSE_MD_FIELDS(); 5440 #undef VISIT_MD_FIELDS 5441 5442 Result = GET_OR_DISTINCT(DIObjCProperty, 5443 (Context, name.Val, file.Val, line.Val, setter.Val, 5444 getter.Val, attributes.Val, type.Val)); 5445 return false; 5446 } 5447 5448 /// parseDIImportedEntity: 5449 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5450 /// line: 7, name: "foo") 5451 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5452 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5453 REQUIRED(tag, DwarfTagField, ); \ 5454 REQUIRED(scope, MDField, ); \ 5455 OPTIONAL(entity, MDField, ); \ 5456 OPTIONAL(file, MDField, ); \ 5457 OPTIONAL(line, LineField, ); \ 5458 OPTIONAL(name, MDStringField, ); 5459 PARSE_MD_FIELDS(); 5460 #undef VISIT_MD_FIELDS 5461 5462 Result = GET_OR_DISTINCT( 5463 DIImportedEntity, 5464 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5465 return false; 5466 } 5467 5468 #undef PARSE_MD_FIELD 5469 #undef NOP_FIELD 5470 #undef REQUIRE_FIELD 5471 #undef DECLARE_FIELD 5472 5473 /// parseMetadataAsValue 5474 /// ::= metadata i32 %local 5475 /// ::= metadata i32 @global 5476 /// ::= metadata i32 7 5477 /// ::= metadata !0 5478 /// ::= metadata !{...} 5479 /// ::= metadata !"string" 5480 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5481 // Note: the type 'metadata' has already been parsed. 5482 Metadata *MD; 5483 if (parseMetadata(MD, &PFS)) 5484 return true; 5485 5486 V = MetadataAsValue::get(Context, MD); 5487 return false; 5488 } 5489 5490 /// parseValueAsMetadata 5491 /// ::= i32 %local 5492 /// ::= i32 @global 5493 /// ::= i32 7 5494 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5495 PerFunctionState *PFS) { 5496 Type *Ty; 5497 LocTy Loc; 5498 if (parseType(Ty, TypeMsg, Loc)) 5499 return true; 5500 if (Ty->isMetadataTy()) 5501 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5502 5503 Value *V; 5504 if (parseValue(Ty, V, PFS)) 5505 return true; 5506 5507 MD = ValueAsMetadata::get(V); 5508 return false; 5509 } 5510 5511 /// parseMetadata 5512 /// ::= i32 %local 5513 /// ::= i32 @global 5514 /// ::= i32 7 5515 /// ::= !42 5516 /// ::= !{...} 5517 /// ::= !"string" 5518 /// ::= !DILocation(...) 5519 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5520 if (Lex.getKind() == lltok::MetadataVar) { 5521 MDNode *N; 5522 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5523 // so parsing this requires a Function State. 5524 if (Lex.getStrVal() == "DIArgList") { 5525 if (parseDIArgList(N, false, PFS)) 5526 return true; 5527 } else if (parseSpecializedMDNode(N)) { 5528 return true; 5529 } 5530 MD = N; 5531 return false; 5532 } 5533 5534 // ValueAsMetadata: 5535 // <type> <value> 5536 if (Lex.getKind() != lltok::exclaim) 5537 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5538 5539 // '!'. 5540 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5541 Lex.Lex(); 5542 5543 // MDString: 5544 // ::= '!' STRINGCONSTANT 5545 if (Lex.getKind() == lltok::StringConstant) { 5546 MDString *S; 5547 if (parseMDString(S)) 5548 return true; 5549 MD = S; 5550 return false; 5551 } 5552 5553 // MDNode: 5554 // !{ ... } 5555 // !7 5556 MDNode *N; 5557 if (parseMDNodeTail(N)) 5558 return true; 5559 MD = N; 5560 return false; 5561 } 5562 5563 //===----------------------------------------------------------------------===// 5564 // Function Parsing. 5565 //===----------------------------------------------------------------------===// 5566 5567 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5568 PerFunctionState *PFS, bool IsCall) { 5569 if (Ty->isFunctionTy()) 5570 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5571 5572 switch (ID.Kind) { 5573 case ValID::t_LocalID: 5574 if (!PFS) 5575 return error(ID.Loc, "invalid use of function-local name"); 5576 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5577 return V == nullptr; 5578 case ValID::t_LocalName: 5579 if (!PFS) 5580 return error(ID.Loc, "invalid use of function-local name"); 5581 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5582 return V == nullptr; 5583 case ValID::t_InlineAsm: { 5584 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5585 return error(ID.Loc, "invalid type for inline asm constraint string"); 5586 V = InlineAsm::get( 5587 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5588 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5589 return false; 5590 } 5591 case ValID::t_GlobalName: 5592 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5593 return V == nullptr; 5594 case ValID::t_GlobalID: 5595 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5596 return V == nullptr; 5597 case ValID::t_APSInt: 5598 if (!Ty->isIntegerTy()) 5599 return error(ID.Loc, "integer constant must have integer type"); 5600 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5601 V = ConstantInt::get(Context, ID.APSIntVal); 5602 return false; 5603 case ValID::t_APFloat: 5604 if (!Ty->isFloatingPointTy() || 5605 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5606 return error(ID.Loc, "floating point constant invalid for type"); 5607 5608 // The lexer has no type info, so builds all half, bfloat, float, and double 5609 // FP constants as double. Fix this here. Long double does not need this. 5610 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5611 // Check for signaling before potentially converting and losing that info. 5612 bool IsSNAN = ID.APFloatVal.isSignaling(); 5613 bool Ignored; 5614 if (Ty->isHalfTy()) 5615 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5616 &Ignored); 5617 else if (Ty->isBFloatTy()) 5618 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5619 &Ignored); 5620 else if (Ty->isFloatTy()) 5621 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5622 &Ignored); 5623 if (IsSNAN) { 5624 // The convert call above may quiet an SNaN, so manufacture another 5625 // SNaN. The bitcast works because the payload (significand) parameter 5626 // is truncated to fit. 5627 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5628 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5629 ID.APFloatVal.isNegative(), &Payload); 5630 } 5631 } 5632 V = ConstantFP::get(Context, ID.APFloatVal); 5633 5634 if (V->getType() != Ty) 5635 return error(ID.Loc, "floating point constant does not have type '" + 5636 getTypeString(Ty) + "'"); 5637 5638 return false; 5639 case ValID::t_Null: 5640 if (!Ty->isPointerTy()) 5641 return error(ID.Loc, "null must be a pointer type"); 5642 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5643 return false; 5644 case ValID::t_Undef: 5645 // FIXME: LabelTy should not be a first-class type. 5646 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5647 return error(ID.Loc, "invalid type for undef constant"); 5648 V = UndefValue::get(Ty); 5649 return false; 5650 case ValID::t_EmptyArray: 5651 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5652 return error(ID.Loc, "invalid empty array initializer"); 5653 V = UndefValue::get(Ty); 5654 return false; 5655 case ValID::t_Zero: 5656 // FIXME: LabelTy should not be a first-class type. 5657 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5658 return error(ID.Loc, "invalid type for null constant"); 5659 V = Constant::getNullValue(Ty); 5660 return false; 5661 case ValID::t_None: 5662 if (!Ty->isTokenTy()) 5663 return error(ID.Loc, "invalid type for none constant"); 5664 V = Constant::getNullValue(Ty); 5665 return false; 5666 case ValID::t_Poison: 5667 // FIXME: LabelTy should not be a first-class type. 5668 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5669 return error(ID.Loc, "invalid type for poison constant"); 5670 V = PoisonValue::get(Ty); 5671 return false; 5672 case ValID::t_Constant: 5673 if (ID.ConstantVal->getType() != Ty) 5674 return error(ID.Loc, "constant expression type mismatch"); 5675 V = ID.ConstantVal; 5676 return false; 5677 case ValID::t_ConstantStruct: 5678 case ValID::t_PackedConstantStruct: 5679 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5680 if (ST->getNumElements() != ID.UIntVal) 5681 return error(ID.Loc, 5682 "initializer with struct type has wrong # elements"); 5683 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5684 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5685 5686 // Verify that the elements are compatible with the structtype. 5687 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5688 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5689 return error( 5690 ID.Loc, 5691 "element " + Twine(i) + 5692 " of struct initializer doesn't match struct element type"); 5693 5694 V = ConstantStruct::get( 5695 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5696 } else 5697 return error(ID.Loc, "constant expression type mismatch"); 5698 return false; 5699 } 5700 llvm_unreachable("Invalid ValID"); 5701 } 5702 5703 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5704 C = nullptr; 5705 ValID ID; 5706 auto Loc = Lex.getLoc(); 5707 if (parseValID(ID, /*PFS=*/nullptr)) 5708 return true; 5709 switch (ID.Kind) { 5710 case ValID::t_APSInt: 5711 case ValID::t_APFloat: 5712 case ValID::t_Undef: 5713 case ValID::t_Constant: 5714 case ValID::t_ConstantStruct: 5715 case ValID::t_PackedConstantStruct: { 5716 Value *V; 5717 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5718 return true; 5719 assert(isa<Constant>(V) && "Expected a constant value"); 5720 C = cast<Constant>(V); 5721 return false; 5722 } 5723 case ValID::t_Null: 5724 C = Constant::getNullValue(Ty); 5725 return false; 5726 default: 5727 return error(Loc, "expected a constant value"); 5728 } 5729 } 5730 5731 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5732 V = nullptr; 5733 ValID ID; 5734 return parseValID(ID, PFS) || 5735 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5736 } 5737 5738 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5739 Type *Ty = nullptr; 5740 return parseType(Ty) || parseValue(Ty, V, PFS); 5741 } 5742 5743 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5744 PerFunctionState &PFS) { 5745 Value *V; 5746 Loc = Lex.getLoc(); 5747 if (parseTypeAndValue(V, PFS)) 5748 return true; 5749 if (!isa<BasicBlock>(V)) 5750 return error(Loc, "expected a basic block"); 5751 BB = cast<BasicBlock>(V); 5752 return false; 5753 } 5754 5755 /// FunctionHeader 5756 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5757 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5758 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5759 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5760 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5761 // parse the linkage. 5762 LocTy LinkageLoc = Lex.getLoc(); 5763 unsigned Linkage; 5764 unsigned Visibility; 5765 unsigned DLLStorageClass; 5766 bool DSOLocal; 5767 AttrBuilder RetAttrs; 5768 unsigned CC; 5769 bool HasLinkage; 5770 Type *RetType = nullptr; 5771 LocTy RetTypeLoc = Lex.getLoc(); 5772 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5773 DSOLocal) || 5774 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5775 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5776 return true; 5777 5778 // Verify that the linkage is ok. 5779 switch ((GlobalValue::LinkageTypes)Linkage) { 5780 case GlobalValue::ExternalLinkage: 5781 break; // always ok. 5782 case GlobalValue::ExternalWeakLinkage: 5783 if (IsDefine) 5784 return error(LinkageLoc, "invalid linkage for function definition"); 5785 break; 5786 case GlobalValue::PrivateLinkage: 5787 case GlobalValue::InternalLinkage: 5788 case GlobalValue::AvailableExternallyLinkage: 5789 case GlobalValue::LinkOnceAnyLinkage: 5790 case GlobalValue::LinkOnceODRLinkage: 5791 case GlobalValue::WeakAnyLinkage: 5792 case GlobalValue::WeakODRLinkage: 5793 if (!IsDefine) 5794 return error(LinkageLoc, "invalid linkage for function declaration"); 5795 break; 5796 case GlobalValue::AppendingLinkage: 5797 case GlobalValue::CommonLinkage: 5798 return error(LinkageLoc, "invalid function linkage type"); 5799 } 5800 5801 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5802 return error(LinkageLoc, 5803 "symbol with local linkage must have default visibility"); 5804 5805 if (!FunctionType::isValidReturnType(RetType)) 5806 return error(RetTypeLoc, "invalid function return type"); 5807 5808 LocTy NameLoc = Lex.getLoc(); 5809 5810 std::string FunctionName; 5811 if (Lex.getKind() == lltok::GlobalVar) { 5812 FunctionName = Lex.getStrVal(); 5813 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5814 unsigned NameID = Lex.getUIntVal(); 5815 5816 if (NameID != NumberedVals.size()) 5817 return tokError("function expected to be numbered '%" + 5818 Twine(NumberedVals.size()) + "'"); 5819 } else { 5820 return tokError("expected function name"); 5821 } 5822 5823 Lex.Lex(); 5824 5825 if (Lex.getKind() != lltok::lparen) 5826 return tokError("expected '(' in function argument list"); 5827 5828 SmallVector<ArgInfo, 8> ArgList; 5829 bool IsVarArg; 5830 AttrBuilder FuncAttrs; 5831 std::vector<unsigned> FwdRefAttrGrps; 5832 LocTy BuiltinLoc; 5833 std::string Section; 5834 std::string Partition; 5835 MaybeAlign Alignment; 5836 std::string GC; 5837 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5838 unsigned AddrSpace = 0; 5839 Constant *Prefix = nullptr; 5840 Constant *Prologue = nullptr; 5841 Constant *PersonalityFn = nullptr; 5842 Comdat *C; 5843 5844 if (parseArgumentList(ArgList, IsVarArg) || 5845 parseOptionalUnnamedAddr(UnnamedAddr) || 5846 parseOptionalProgramAddrSpace(AddrSpace) || 5847 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5848 BuiltinLoc) || 5849 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5850 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5851 parseOptionalComdat(FunctionName, C) || 5852 parseOptionalAlignment(Alignment) || 5853 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5854 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5855 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5856 (EatIfPresent(lltok::kw_personality) && 5857 parseGlobalTypeAndValue(PersonalityFn))) 5858 return true; 5859 5860 if (FuncAttrs.contains(Attribute::Builtin)) 5861 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5862 5863 // If the alignment was parsed as an attribute, move to the alignment field. 5864 if (FuncAttrs.hasAlignmentAttr()) { 5865 Alignment = FuncAttrs.getAlignment(); 5866 FuncAttrs.removeAttribute(Attribute::Alignment); 5867 } 5868 5869 // Okay, if we got here, the function is syntactically valid. Convert types 5870 // and do semantic checks. 5871 std::vector<Type*> ParamTypeList; 5872 SmallVector<AttributeSet, 8> Attrs; 5873 5874 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5875 ParamTypeList.push_back(ArgList[i].Ty); 5876 Attrs.push_back(ArgList[i].Attrs); 5877 } 5878 5879 AttributeList PAL = 5880 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5881 AttributeSet::get(Context, RetAttrs), Attrs); 5882 5883 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5884 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5885 5886 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5887 PointerType *PFT = PointerType::get(FT, AddrSpace); 5888 5889 Fn = nullptr; 5890 if (!FunctionName.empty()) { 5891 // If this was a definition of a forward reference, remove the definition 5892 // from the forward reference table and fill in the forward ref. 5893 auto FRVI = ForwardRefVals.find(FunctionName); 5894 if (FRVI != ForwardRefVals.end()) { 5895 Fn = M->getFunction(FunctionName); 5896 if (!Fn) 5897 return error(FRVI->second.second, "invalid forward reference to " 5898 "function as global value!"); 5899 if (Fn->getType() != PFT) 5900 return error(FRVI->second.second, 5901 "invalid forward reference to " 5902 "function '" + 5903 FunctionName + 5904 "' with wrong type: " 5905 "expected '" + 5906 getTypeString(PFT) + "' but was '" + 5907 getTypeString(Fn->getType()) + "'"); 5908 ForwardRefVals.erase(FRVI); 5909 } else if ((Fn = M->getFunction(FunctionName))) { 5910 // Reject redefinitions. 5911 return error(NameLoc, 5912 "invalid redefinition of function '" + FunctionName + "'"); 5913 } else if (M->getNamedValue(FunctionName)) { 5914 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5915 } 5916 5917 } else { 5918 // If this is a definition of a forward referenced function, make sure the 5919 // types agree. 5920 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5921 if (I != ForwardRefValIDs.end()) { 5922 Fn = cast<Function>(I->second.first); 5923 if (Fn->getType() != PFT) 5924 return error(NameLoc, "type of definition and forward reference of '@" + 5925 Twine(NumberedVals.size()) + 5926 "' disagree: " 5927 "expected '" + 5928 getTypeString(PFT) + "' but was '" + 5929 getTypeString(Fn->getType()) + "'"); 5930 ForwardRefValIDs.erase(I); 5931 } 5932 } 5933 5934 if (!Fn) 5935 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5936 FunctionName, M); 5937 else // Move the forward-reference to the correct spot in the module. 5938 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5939 5940 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5941 5942 if (FunctionName.empty()) 5943 NumberedVals.push_back(Fn); 5944 5945 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5946 maybeSetDSOLocal(DSOLocal, *Fn); 5947 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5948 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5949 Fn->setCallingConv(CC); 5950 Fn->setAttributes(PAL); 5951 Fn->setUnnamedAddr(UnnamedAddr); 5952 Fn->setAlignment(MaybeAlign(Alignment)); 5953 Fn->setSection(Section); 5954 Fn->setPartition(Partition); 5955 Fn->setComdat(C); 5956 Fn->setPersonalityFn(PersonalityFn); 5957 if (!GC.empty()) Fn->setGC(GC); 5958 Fn->setPrefixData(Prefix); 5959 Fn->setPrologueData(Prologue); 5960 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5961 5962 // Add all of the arguments we parsed to the function. 5963 Function::arg_iterator ArgIt = Fn->arg_begin(); 5964 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5965 // If the argument has a name, insert it into the argument symbol table. 5966 if (ArgList[i].Name.empty()) continue; 5967 5968 // Set the name, if it conflicted, it will be auto-renamed. 5969 ArgIt->setName(ArgList[i].Name); 5970 5971 if (ArgIt->getName() != ArgList[i].Name) 5972 return error(ArgList[i].Loc, 5973 "redefinition of argument '%" + ArgList[i].Name + "'"); 5974 } 5975 5976 if (IsDefine) 5977 return false; 5978 5979 // Check the declaration has no block address forward references. 5980 ValID ID; 5981 if (FunctionName.empty()) { 5982 ID.Kind = ValID::t_GlobalID; 5983 ID.UIntVal = NumberedVals.size() - 1; 5984 } else { 5985 ID.Kind = ValID::t_GlobalName; 5986 ID.StrVal = FunctionName; 5987 } 5988 auto Blocks = ForwardRefBlockAddresses.find(ID); 5989 if (Blocks != ForwardRefBlockAddresses.end()) 5990 return error(Blocks->first.Loc, 5991 "cannot take blockaddress inside a declaration"); 5992 return false; 5993 } 5994 5995 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5996 ValID ID; 5997 if (FunctionNumber == -1) { 5998 ID.Kind = ValID::t_GlobalName; 5999 ID.StrVal = std::string(F.getName()); 6000 } else { 6001 ID.Kind = ValID::t_GlobalID; 6002 ID.UIntVal = FunctionNumber; 6003 } 6004 6005 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6006 if (Blocks == P.ForwardRefBlockAddresses.end()) 6007 return false; 6008 6009 for (const auto &I : Blocks->second) { 6010 const ValID &BBID = I.first; 6011 GlobalValue *GV = I.second; 6012 6013 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6014 "Expected local id or name"); 6015 BasicBlock *BB; 6016 if (BBID.Kind == ValID::t_LocalName) 6017 BB = getBB(BBID.StrVal, BBID.Loc); 6018 else 6019 BB = getBB(BBID.UIntVal, BBID.Loc); 6020 if (!BB) 6021 return P.error(BBID.Loc, "referenced value is not a basic block"); 6022 6023 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6024 GV->eraseFromParent(); 6025 } 6026 6027 P.ForwardRefBlockAddresses.erase(Blocks); 6028 return false; 6029 } 6030 6031 /// parseFunctionBody 6032 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6033 bool LLParser::parseFunctionBody(Function &Fn) { 6034 if (Lex.getKind() != lltok::lbrace) 6035 return tokError("expected '{' in function body"); 6036 Lex.Lex(); // eat the {. 6037 6038 int FunctionNumber = -1; 6039 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6040 6041 PerFunctionState PFS(*this, Fn, FunctionNumber); 6042 6043 // Resolve block addresses and allow basic blocks to be forward-declared 6044 // within this function. 6045 if (PFS.resolveForwardRefBlockAddresses()) 6046 return true; 6047 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6048 6049 // We need at least one basic block. 6050 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6051 return tokError("function body requires at least one basic block"); 6052 6053 while (Lex.getKind() != lltok::rbrace && 6054 Lex.getKind() != lltok::kw_uselistorder) 6055 if (parseBasicBlock(PFS)) 6056 return true; 6057 6058 while (Lex.getKind() != lltok::rbrace) 6059 if (parseUseListOrder(&PFS)) 6060 return true; 6061 6062 // Eat the }. 6063 Lex.Lex(); 6064 6065 // Verify function is ok. 6066 return PFS.finishFunction(); 6067 } 6068 6069 /// parseBasicBlock 6070 /// ::= (LabelStr|LabelID)? Instruction* 6071 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6072 // If this basic block starts out with a name, remember it. 6073 std::string Name; 6074 int NameID = -1; 6075 LocTy NameLoc = Lex.getLoc(); 6076 if (Lex.getKind() == lltok::LabelStr) { 6077 Name = Lex.getStrVal(); 6078 Lex.Lex(); 6079 } else if (Lex.getKind() == lltok::LabelID) { 6080 NameID = Lex.getUIntVal(); 6081 Lex.Lex(); 6082 } 6083 6084 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6085 if (!BB) 6086 return true; 6087 6088 std::string NameStr; 6089 6090 // parse the instructions in this block until we get a terminator. 6091 Instruction *Inst; 6092 do { 6093 // This instruction may have three possibilities for a name: a) none 6094 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6095 LocTy NameLoc = Lex.getLoc(); 6096 int NameID = -1; 6097 NameStr = ""; 6098 6099 if (Lex.getKind() == lltok::LocalVarID) { 6100 NameID = Lex.getUIntVal(); 6101 Lex.Lex(); 6102 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6103 return true; 6104 } else if (Lex.getKind() == lltok::LocalVar) { 6105 NameStr = Lex.getStrVal(); 6106 Lex.Lex(); 6107 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6108 return true; 6109 } 6110 6111 switch (parseInstruction(Inst, BB, PFS)) { 6112 default: 6113 llvm_unreachable("Unknown parseInstruction result!"); 6114 case InstError: return true; 6115 case InstNormal: 6116 BB->getInstList().push_back(Inst); 6117 6118 // With a normal result, we check to see if the instruction is followed by 6119 // a comma and metadata. 6120 if (EatIfPresent(lltok::comma)) 6121 if (parseInstructionMetadata(*Inst)) 6122 return true; 6123 break; 6124 case InstExtraComma: 6125 BB->getInstList().push_back(Inst); 6126 6127 // If the instruction parser ate an extra comma at the end of it, it 6128 // *must* be followed by metadata. 6129 if (parseInstructionMetadata(*Inst)) 6130 return true; 6131 break; 6132 } 6133 6134 // Set the name on the instruction. 6135 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6136 return true; 6137 } while (!Inst->isTerminator()); 6138 6139 return false; 6140 } 6141 6142 //===----------------------------------------------------------------------===// 6143 // Instruction Parsing. 6144 //===----------------------------------------------------------------------===// 6145 6146 /// parseInstruction - parse one of the many different instructions. 6147 /// 6148 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6149 PerFunctionState &PFS) { 6150 lltok::Kind Token = Lex.getKind(); 6151 if (Token == lltok::Eof) 6152 return tokError("found end of file when expecting more instructions"); 6153 LocTy Loc = Lex.getLoc(); 6154 unsigned KeywordVal = Lex.getUIntVal(); 6155 Lex.Lex(); // Eat the keyword. 6156 6157 switch (Token) { 6158 default: 6159 return error(Loc, "expected instruction opcode"); 6160 // Terminator Instructions. 6161 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6162 case lltok::kw_ret: 6163 return parseRet(Inst, BB, PFS); 6164 case lltok::kw_br: 6165 return parseBr(Inst, PFS); 6166 case lltok::kw_switch: 6167 return parseSwitch(Inst, PFS); 6168 case lltok::kw_indirectbr: 6169 return parseIndirectBr(Inst, PFS); 6170 case lltok::kw_invoke: 6171 return parseInvoke(Inst, PFS); 6172 case lltok::kw_resume: 6173 return parseResume(Inst, PFS); 6174 case lltok::kw_cleanupret: 6175 return parseCleanupRet(Inst, PFS); 6176 case lltok::kw_catchret: 6177 return parseCatchRet(Inst, PFS); 6178 case lltok::kw_catchswitch: 6179 return parseCatchSwitch(Inst, PFS); 6180 case lltok::kw_catchpad: 6181 return parseCatchPad(Inst, PFS); 6182 case lltok::kw_cleanuppad: 6183 return parseCleanupPad(Inst, PFS); 6184 case lltok::kw_callbr: 6185 return parseCallBr(Inst, PFS); 6186 // Unary Operators. 6187 case lltok::kw_fneg: { 6188 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6189 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6190 if (Res != 0) 6191 return Res; 6192 if (FMF.any()) 6193 Inst->setFastMathFlags(FMF); 6194 return false; 6195 } 6196 // Binary Operators. 6197 case lltok::kw_add: 6198 case lltok::kw_sub: 6199 case lltok::kw_mul: 6200 case lltok::kw_shl: { 6201 bool NUW = EatIfPresent(lltok::kw_nuw); 6202 bool NSW = EatIfPresent(lltok::kw_nsw); 6203 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6204 6205 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6206 return true; 6207 6208 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6209 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6210 return false; 6211 } 6212 case lltok::kw_fadd: 6213 case lltok::kw_fsub: 6214 case lltok::kw_fmul: 6215 case lltok::kw_fdiv: 6216 case lltok::kw_frem: { 6217 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6218 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6219 if (Res != 0) 6220 return Res; 6221 if (FMF.any()) 6222 Inst->setFastMathFlags(FMF); 6223 return 0; 6224 } 6225 6226 case lltok::kw_sdiv: 6227 case lltok::kw_udiv: 6228 case lltok::kw_lshr: 6229 case lltok::kw_ashr: { 6230 bool Exact = EatIfPresent(lltok::kw_exact); 6231 6232 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6233 return true; 6234 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6235 return false; 6236 } 6237 6238 case lltok::kw_urem: 6239 case lltok::kw_srem: 6240 return parseArithmetic(Inst, PFS, KeywordVal, 6241 /*IsFP*/ false); 6242 case lltok::kw_and: 6243 case lltok::kw_or: 6244 case lltok::kw_xor: 6245 return parseLogical(Inst, PFS, KeywordVal); 6246 case lltok::kw_icmp: 6247 return parseCompare(Inst, PFS, KeywordVal); 6248 case lltok::kw_fcmp: { 6249 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6250 int Res = parseCompare(Inst, PFS, KeywordVal); 6251 if (Res != 0) 6252 return Res; 6253 if (FMF.any()) 6254 Inst->setFastMathFlags(FMF); 6255 return 0; 6256 } 6257 6258 // Casts. 6259 case lltok::kw_trunc: 6260 case lltok::kw_zext: 6261 case lltok::kw_sext: 6262 case lltok::kw_fptrunc: 6263 case lltok::kw_fpext: 6264 case lltok::kw_bitcast: 6265 case lltok::kw_addrspacecast: 6266 case lltok::kw_uitofp: 6267 case lltok::kw_sitofp: 6268 case lltok::kw_fptoui: 6269 case lltok::kw_fptosi: 6270 case lltok::kw_inttoptr: 6271 case lltok::kw_ptrtoint: 6272 return parseCast(Inst, PFS, KeywordVal); 6273 // Other. 6274 case lltok::kw_select: { 6275 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6276 int Res = parseSelect(Inst, PFS); 6277 if (Res != 0) 6278 return Res; 6279 if (FMF.any()) { 6280 if (!isa<FPMathOperator>(Inst)) 6281 return error(Loc, "fast-math-flags specified for select without " 6282 "floating-point scalar or vector return type"); 6283 Inst->setFastMathFlags(FMF); 6284 } 6285 return 0; 6286 } 6287 case lltok::kw_va_arg: 6288 return parseVAArg(Inst, PFS); 6289 case lltok::kw_extractelement: 6290 return parseExtractElement(Inst, PFS); 6291 case lltok::kw_insertelement: 6292 return parseInsertElement(Inst, PFS); 6293 case lltok::kw_shufflevector: 6294 return parseShuffleVector(Inst, PFS); 6295 case lltok::kw_phi: { 6296 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6297 int Res = parsePHI(Inst, PFS); 6298 if (Res != 0) 6299 return Res; 6300 if (FMF.any()) { 6301 if (!isa<FPMathOperator>(Inst)) 6302 return error(Loc, "fast-math-flags specified for phi without " 6303 "floating-point scalar or vector return type"); 6304 Inst->setFastMathFlags(FMF); 6305 } 6306 return 0; 6307 } 6308 case lltok::kw_landingpad: 6309 return parseLandingPad(Inst, PFS); 6310 case lltok::kw_freeze: 6311 return parseFreeze(Inst, PFS); 6312 // Call. 6313 case lltok::kw_call: 6314 return parseCall(Inst, PFS, CallInst::TCK_None); 6315 case lltok::kw_tail: 6316 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6317 case lltok::kw_musttail: 6318 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6319 case lltok::kw_notail: 6320 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6321 // Memory. 6322 case lltok::kw_alloca: 6323 return parseAlloc(Inst, PFS); 6324 case lltok::kw_load: 6325 return parseLoad(Inst, PFS); 6326 case lltok::kw_store: 6327 return parseStore(Inst, PFS); 6328 case lltok::kw_cmpxchg: 6329 return parseCmpXchg(Inst, PFS); 6330 case lltok::kw_atomicrmw: 6331 return parseAtomicRMW(Inst, PFS); 6332 case lltok::kw_fence: 6333 return parseFence(Inst, PFS); 6334 case lltok::kw_getelementptr: 6335 return parseGetElementPtr(Inst, PFS); 6336 case lltok::kw_extractvalue: 6337 return parseExtractValue(Inst, PFS); 6338 case lltok::kw_insertvalue: 6339 return parseInsertValue(Inst, PFS); 6340 } 6341 } 6342 6343 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6344 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6345 if (Opc == Instruction::FCmp) { 6346 switch (Lex.getKind()) { 6347 default: 6348 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6349 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6350 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6351 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6352 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6353 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6354 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6355 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6356 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6357 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6358 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6359 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6360 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6361 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6362 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6363 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6364 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6365 } 6366 } else { 6367 switch (Lex.getKind()) { 6368 default: 6369 return tokError("expected icmp predicate (e.g. 'eq')"); 6370 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6371 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6372 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6373 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6374 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6375 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6376 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6377 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6378 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6379 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6380 } 6381 } 6382 Lex.Lex(); 6383 return false; 6384 } 6385 6386 //===----------------------------------------------------------------------===// 6387 // Terminator Instructions. 6388 //===----------------------------------------------------------------------===// 6389 6390 /// parseRet - parse a return instruction. 6391 /// ::= 'ret' void (',' !dbg, !1)* 6392 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6393 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6394 PerFunctionState &PFS) { 6395 SMLoc TypeLoc = Lex.getLoc(); 6396 Type *Ty = nullptr; 6397 if (parseType(Ty, true /*void allowed*/)) 6398 return true; 6399 6400 Type *ResType = PFS.getFunction().getReturnType(); 6401 6402 if (Ty->isVoidTy()) { 6403 if (!ResType->isVoidTy()) 6404 return error(TypeLoc, "value doesn't match function result type '" + 6405 getTypeString(ResType) + "'"); 6406 6407 Inst = ReturnInst::Create(Context); 6408 return false; 6409 } 6410 6411 Value *RV; 6412 if (parseValue(Ty, RV, PFS)) 6413 return true; 6414 6415 if (ResType != RV->getType()) 6416 return error(TypeLoc, "value doesn't match function result type '" + 6417 getTypeString(ResType) + "'"); 6418 6419 Inst = ReturnInst::Create(Context, RV); 6420 return false; 6421 } 6422 6423 /// parseBr 6424 /// ::= 'br' TypeAndValue 6425 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6426 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6427 LocTy Loc, Loc2; 6428 Value *Op0; 6429 BasicBlock *Op1, *Op2; 6430 if (parseTypeAndValue(Op0, Loc, PFS)) 6431 return true; 6432 6433 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6434 Inst = BranchInst::Create(BB); 6435 return false; 6436 } 6437 6438 if (Op0->getType() != Type::getInt1Ty(Context)) 6439 return error(Loc, "branch condition must have 'i1' type"); 6440 6441 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6442 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6443 parseToken(lltok::comma, "expected ',' after true destination") || 6444 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6445 return true; 6446 6447 Inst = BranchInst::Create(Op1, Op2, Op0); 6448 return false; 6449 } 6450 6451 /// parseSwitch 6452 /// Instruction 6453 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6454 /// JumpTable 6455 /// ::= (TypeAndValue ',' TypeAndValue)* 6456 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6457 LocTy CondLoc, BBLoc; 6458 Value *Cond; 6459 BasicBlock *DefaultBB; 6460 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6461 parseToken(lltok::comma, "expected ',' after switch condition") || 6462 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6463 parseToken(lltok::lsquare, "expected '[' with switch table")) 6464 return true; 6465 6466 if (!Cond->getType()->isIntegerTy()) 6467 return error(CondLoc, "switch condition must have integer type"); 6468 6469 // parse the jump table pairs. 6470 SmallPtrSet<Value*, 32> SeenCases; 6471 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6472 while (Lex.getKind() != lltok::rsquare) { 6473 Value *Constant; 6474 BasicBlock *DestBB; 6475 6476 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6477 parseToken(lltok::comma, "expected ',' after case value") || 6478 parseTypeAndBasicBlock(DestBB, PFS)) 6479 return true; 6480 6481 if (!SeenCases.insert(Constant).second) 6482 return error(CondLoc, "duplicate case value in switch"); 6483 if (!isa<ConstantInt>(Constant)) 6484 return error(CondLoc, "case value is not a constant integer"); 6485 6486 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6487 } 6488 6489 Lex.Lex(); // Eat the ']'. 6490 6491 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6492 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6493 SI->addCase(Table[i].first, Table[i].second); 6494 Inst = SI; 6495 return false; 6496 } 6497 6498 /// parseIndirectBr 6499 /// Instruction 6500 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6501 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6502 LocTy AddrLoc; 6503 Value *Address; 6504 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6505 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6506 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6507 return true; 6508 6509 if (!Address->getType()->isPointerTy()) 6510 return error(AddrLoc, "indirectbr address must have pointer type"); 6511 6512 // parse the destination list. 6513 SmallVector<BasicBlock*, 16> DestList; 6514 6515 if (Lex.getKind() != lltok::rsquare) { 6516 BasicBlock *DestBB; 6517 if (parseTypeAndBasicBlock(DestBB, PFS)) 6518 return true; 6519 DestList.push_back(DestBB); 6520 6521 while (EatIfPresent(lltok::comma)) { 6522 if (parseTypeAndBasicBlock(DestBB, PFS)) 6523 return true; 6524 DestList.push_back(DestBB); 6525 } 6526 } 6527 6528 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6529 return true; 6530 6531 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6532 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6533 IBI->addDestination(DestList[i]); 6534 Inst = IBI; 6535 return false; 6536 } 6537 6538 /// parseInvoke 6539 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6540 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6541 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6542 LocTy CallLoc = Lex.getLoc(); 6543 AttrBuilder RetAttrs, FnAttrs; 6544 std::vector<unsigned> FwdRefAttrGrps; 6545 LocTy NoBuiltinLoc; 6546 unsigned CC; 6547 unsigned InvokeAddrSpace; 6548 Type *RetType = nullptr; 6549 LocTy RetTypeLoc; 6550 ValID CalleeID; 6551 SmallVector<ParamInfo, 16> ArgList; 6552 SmallVector<OperandBundleDef, 2> BundleList; 6553 6554 BasicBlock *NormalBB, *UnwindBB; 6555 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6556 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6557 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6558 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6559 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6560 NoBuiltinLoc) || 6561 parseOptionalOperandBundles(BundleList, PFS) || 6562 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6563 parseTypeAndBasicBlock(NormalBB, PFS) || 6564 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6565 parseTypeAndBasicBlock(UnwindBB, PFS)) 6566 return true; 6567 6568 // If RetType is a non-function pointer type, then this is the short syntax 6569 // for the call, which means that RetType is just the return type. Infer the 6570 // rest of the function argument types from the arguments that are present. 6571 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6572 if (!Ty) { 6573 // Pull out the types of all of the arguments... 6574 std::vector<Type*> ParamTypes; 6575 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6576 ParamTypes.push_back(ArgList[i].V->getType()); 6577 6578 if (!FunctionType::isValidReturnType(RetType)) 6579 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6580 6581 Ty = FunctionType::get(RetType, ParamTypes, false); 6582 } 6583 6584 CalleeID.FTy = Ty; 6585 6586 // Look up the callee. 6587 Value *Callee; 6588 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6589 Callee, &PFS, /*IsCall=*/true)) 6590 return true; 6591 6592 // Set up the Attribute for the function. 6593 SmallVector<Value *, 8> Args; 6594 SmallVector<AttributeSet, 8> ArgAttrs; 6595 6596 // Loop through FunctionType's arguments and ensure they are specified 6597 // correctly. Also, gather any parameter attributes. 6598 FunctionType::param_iterator I = Ty->param_begin(); 6599 FunctionType::param_iterator E = Ty->param_end(); 6600 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6601 Type *ExpectedTy = nullptr; 6602 if (I != E) { 6603 ExpectedTy = *I++; 6604 } else if (!Ty->isVarArg()) { 6605 return error(ArgList[i].Loc, "too many arguments specified"); 6606 } 6607 6608 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6609 return error(ArgList[i].Loc, "argument is not of expected type '" + 6610 getTypeString(ExpectedTy) + "'"); 6611 Args.push_back(ArgList[i].V); 6612 ArgAttrs.push_back(ArgList[i].Attrs); 6613 } 6614 6615 if (I != E) 6616 return error(CallLoc, "not enough parameters specified for call"); 6617 6618 if (FnAttrs.hasAlignmentAttr()) 6619 return error(CallLoc, "invoke instructions may not have an alignment"); 6620 6621 // Finish off the Attribute and check them 6622 AttributeList PAL = 6623 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6624 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6625 6626 InvokeInst *II = 6627 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6628 II->setCallingConv(CC); 6629 II->setAttributes(PAL); 6630 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6631 Inst = II; 6632 return false; 6633 } 6634 6635 /// parseResume 6636 /// ::= 'resume' TypeAndValue 6637 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6638 Value *Exn; LocTy ExnLoc; 6639 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6640 return true; 6641 6642 ResumeInst *RI = ResumeInst::Create(Exn); 6643 Inst = RI; 6644 return false; 6645 } 6646 6647 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6648 PerFunctionState &PFS) { 6649 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6650 return true; 6651 6652 while (Lex.getKind() != lltok::rsquare) { 6653 // If this isn't the first argument, we need a comma. 6654 if (!Args.empty() && 6655 parseToken(lltok::comma, "expected ',' in argument list")) 6656 return true; 6657 6658 // parse the argument. 6659 LocTy ArgLoc; 6660 Type *ArgTy = nullptr; 6661 if (parseType(ArgTy, ArgLoc)) 6662 return true; 6663 6664 Value *V; 6665 if (ArgTy->isMetadataTy()) { 6666 if (parseMetadataAsValue(V, PFS)) 6667 return true; 6668 } else { 6669 if (parseValue(ArgTy, V, PFS)) 6670 return true; 6671 } 6672 Args.push_back(V); 6673 } 6674 6675 Lex.Lex(); // Lex the ']'. 6676 return false; 6677 } 6678 6679 /// parseCleanupRet 6680 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6681 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6682 Value *CleanupPad = nullptr; 6683 6684 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6685 return true; 6686 6687 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6688 return true; 6689 6690 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6691 return true; 6692 6693 BasicBlock *UnwindBB = nullptr; 6694 if (Lex.getKind() == lltok::kw_to) { 6695 Lex.Lex(); 6696 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6697 return true; 6698 } else { 6699 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6700 return true; 6701 } 6702 } 6703 6704 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6705 return false; 6706 } 6707 6708 /// parseCatchRet 6709 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6710 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6711 Value *CatchPad = nullptr; 6712 6713 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6714 return true; 6715 6716 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6717 return true; 6718 6719 BasicBlock *BB; 6720 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6721 parseTypeAndBasicBlock(BB, PFS)) 6722 return true; 6723 6724 Inst = CatchReturnInst::Create(CatchPad, BB); 6725 return false; 6726 } 6727 6728 /// parseCatchSwitch 6729 /// ::= 'catchswitch' within Parent 6730 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6731 Value *ParentPad; 6732 6733 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6734 return true; 6735 6736 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6737 Lex.getKind() != lltok::LocalVarID) 6738 return tokError("expected scope value for catchswitch"); 6739 6740 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6741 return true; 6742 6743 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6744 return true; 6745 6746 SmallVector<BasicBlock *, 32> Table; 6747 do { 6748 BasicBlock *DestBB; 6749 if (parseTypeAndBasicBlock(DestBB, PFS)) 6750 return true; 6751 Table.push_back(DestBB); 6752 } while (EatIfPresent(lltok::comma)); 6753 6754 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6755 return true; 6756 6757 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6758 return true; 6759 6760 BasicBlock *UnwindBB = nullptr; 6761 if (EatIfPresent(lltok::kw_to)) { 6762 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6763 return true; 6764 } else { 6765 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6766 return true; 6767 } 6768 6769 auto *CatchSwitch = 6770 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6771 for (BasicBlock *DestBB : Table) 6772 CatchSwitch->addHandler(DestBB); 6773 Inst = CatchSwitch; 6774 return false; 6775 } 6776 6777 /// parseCatchPad 6778 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6779 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6780 Value *CatchSwitch = nullptr; 6781 6782 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6783 return true; 6784 6785 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6786 return tokError("expected scope value for catchpad"); 6787 6788 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6789 return true; 6790 6791 SmallVector<Value *, 8> Args; 6792 if (parseExceptionArgs(Args, PFS)) 6793 return true; 6794 6795 Inst = CatchPadInst::Create(CatchSwitch, Args); 6796 return false; 6797 } 6798 6799 /// parseCleanupPad 6800 /// ::= 'cleanuppad' within Parent ParamList 6801 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6802 Value *ParentPad = nullptr; 6803 6804 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6805 return true; 6806 6807 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6808 Lex.getKind() != lltok::LocalVarID) 6809 return tokError("expected scope value for cleanuppad"); 6810 6811 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6812 return true; 6813 6814 SmallVector<Value *, 8> Args; 6815 if (parseExceptionArgs(Args, PFS)) 6816 return true; 6817 6818 Inst = CleanupPadInst::Create(ParentPad, Args); 6819 return false; 6820 } 6821 6822 //===----------------------------------------------------------------------===// 6823 // Unary Operators. 6824 //===----------------------------------------------------------------------===// 6825 6826 /// parseUnaryOp 6827 /// ::= UnaryOp TypeAndValue ',' Value 6828 /// 6829 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6830 /// operand is allowed. 6831 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6832 unsigned Opc, bool IsFP) { 6833 LocTy Loc; Value *LHS; 6834 if (parseTypeAndValue(LHS, Loc, PFS)) 6835 return true; 6836 6837 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6838 : LHS->getType()->isIntOrIntVectorTy(); 6839 6840 if (!Valid) 6841 return error(Loc, "invalid operand type for instruction"); 6842 6843 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6844 return false; 6845 } 6846 6847 /// parseCallBr 6848 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6849 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6850 /// '[' LabelList ']' 6851 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6852 LocTy CallLoc = Lex.getLoc(); 6853 AttrBuilder RetAttrs, FnAttrs; 6854 std::vector<unsigned> FwdRefAttrGrps; 6855 LocTy NoBuiltinLoc; 6856 unsigned CC; 6857 Type *RetType = nullptr; 6858 LocTy RetTypeLoc; 6859 ValID CalleeID; 6860 SmallVector<ParamInfo, 16> ArgList; 6861 SmallVector<OperandBundleDef, 2> BundleList; 6862 6863 BasicBlock *DefaultDest; 6864 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6865 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6866 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6867 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6868 NoBuiltinLoc) || 6869 parseOptionalOperandBundles(BundleList, PFS) || 6870 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6871 parseTypeAndBasicBlock(DefaultDest, PFS) || 6872 parseToken(lltok::lsquare, "expected '[' in callbr")) 6873 return true; 6874 6875 // parse the destination list. 6876 SmallVector<BasicBlock *, 16> IndirectDests; 6877 6878 if (Lex.getKind() != lltok::rsquare) { 6879 BasicBlock *DestBB; 6880 if (parseTypeAndBasicBlock(DestBB, PFS)) 6881 return true; 6882 IndirectDests.push_back(DestBB); 6883 6884 while (EatIfPresent(lltok::comma)) { 6885 if (parseTypeAndBasicBlock(DestBB, PFS)) 6886 return true; 6887 IndirectDests.push_back(DestBB); 6888 } 6889 } 6890 6891 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6892 return true; 6893 6894 // If RetType is a non-function pointer type, then this is the short syntax 6895 // for the call, which means that RetType is just the return type. Infer the 6896 // rest of the function argument types from the arguments that are present. 6897 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6898 if (!Ty) { 6899 // Pull out the types of all of the arguments... 6900 std::vector<Type *> ParamTypes; 6901 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6902 ParamTypes.push_back(ArgList[i].V->getType()); 6903 6904 if (!FunctionType::isValidReturnType(RetType)) 6905 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6906 6907 Ty = FunctionType::get(RetType, ParamTypes, false); 6908 } 6909 6910 CalleeID.FTy = Ty; 6911 6912 // Look up the callee. 6913 Value *Callee; 6914 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6915 /*IsCall=*/true)) 6916 return true; 6917 6918 // Set up the Attribute for the function. 6919 SmallVector<Value *, 8> Args; 6920 SmallVector<AttributeSet, 8> ArgAttrs; 6921 6922 // Loop through FunctionType's arguments and ensure they are specified 6923 // correctly. Also, gather any parameter attributes. 6924 FunctionType::param_iterator I = Ty->param_begin(); 6925 FunctionType::param_iterator E = Ty->param_end(); 6926 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6927 Type *ExpectedTy = nullptr; 6928 if (I != E) { 6929 ExpectedTy = *I++; 6930 } else if (!Ty->isVarArg()) { 6931 return error(ArgList[i].Loc, "too many arguments specified"); 6932 } 6933 6934 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6935 return error(ArgList[i].Loc, "argument is not of expected type '" + 6936 getTypeString(ExpectedTy) + "'"); 6937 Args.push_back(ArgList[i].V); 6938 ArgAttrs.push_back(ArgList[i].Attrs); 6939 } 6940 6941 if (I != E) 6942 return error(CallLoc, "not enough parameters specified for call"); 6943 6944 if (FnAttrs.hasAlignmentAttr()) 6945 return error(CallLoc, "callbr instructions may not have an alignment"); 6946 6947 // Finish off the Attribute and check them 6948 AttributeList PAL = 6949 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6950 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6951 6952 CallBrInst *CBI = 6953 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6954 BundleList); 6955 CBI->setCallingConv(CC); 6956 CBI->setAttributes(PAL); 6957 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6958 Inst = CBI; 6959 return false; 6960 } 6961 6962 //===----------------------------------------------------------------------===// 6963 // Binary Operators. 6964 //===----------------------------------------------------------------------===// 6965 6966 /// parseArithmetic 6967 /// ::= ArithmeticOps TypeAndValue ',' Value 6968 /// 6969 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6970 /// operand is allowed. 6971 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6972 unsigned Opc, bool IsFP) { 6973 LocTy Loc; Value *LHS, *RHS; 6974 if (parseTypeAndValue(LHS, Loc, PFS) || 6975 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6976 parseValue(LHS->getType(), RHS, PFS)) 6977 return true; 6978 6979 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6980 : LHS->getType()->isIntOrIntVectorTy(); 6981 6982 if (!Valid) 6983 return error(Loc, "invalid operand type for instruction"); 6984 6985 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6986 return false; 6987 } 6988 6989 /// parseLogical 6990 /// ::= ArithmeticOps TypeAndValue ',' Value { 6991 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6992 unsigned Opc) { 6993 LocTy Loc; Value *LHS, *RHS; 6994 if (parseTypeAndValue(LHS, Loc, PFS) || 6995 parseToken(lltok::comma, "expected ',' in logical operation") || 6996 parseValue(LHS->getType(), RHS, PFS)) 6997 return true; 6998 6999 if (!LHS->getType()->isIntOrIntVectorTy()) 7000 return error(Loc, 7001 "instruction requires integer or integer vector operands"); 7002 7003 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7004 return false; 7005 } 7006 7007 /// parseCompare 7008 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7009 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7010 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7011 unsigned Opc) { 7012 // parse the integer/fp comparison predicate. 7013 LocTy Loc; 7014 unsigned Pred; 7015 Value *LHS, *RHS; 7016 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7017 parseToken(lltok::comma, "expected ',' after compare value") || 7018 parseValue(LHS->getType(), RHS, PFS)) 7019 return true; 7020 7021 if (Opc == Instruction::FCmp) { 7022 if (!LHS->getType()->isFPOrFPVectorTy()) 7023 return error(Loc, "fcmp requires floating point operands"); 7024 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7025 } else { 7026 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7027 if (!LHS->getType()->isIntOrIntVectorTy() && 7028 !LHS->getType()->isPtrOrPtrVectorTy()) 7029 return error(Loc, "icmp requires integer operands"); 7030 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7031 } 7032 return false; 7033 } 7034 7035 //===----------------------------------------------------------------------===// 7036 // Other Instructions. 7037 //===----------------------------------------------------------------------===// 7038 7039 /// parseCast 7040 /// ::= CastOpc TypeAndValue 'to' Type 7041 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7042 unsigned Opc) { 7043 LocTy Loc; 7044 Value *Op; 7045 Type *DestTy = nullptr; 7046 if (parseTypeAndValue(Op, Loc, PFS) || 7047 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7048 parseType(DestTy)) 7049 return true; 7050 7051 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7052 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7053 return error(Loc, "invalid cast opcode for cast from '" + 7054 getTypeString(Op->getType()) + "' to '" + 7055 getTypeString(DestTy) + "'"); 7056 } 7057 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7058 return false; 7059 } 7060 7061 /// parseSelect 7062 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7063 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7064 LocTy Loc; 7065 Value *Op0, *Op1, *Op2; 7066 if (parseTypeAndValue(Op0, Loc, PFS) || 7067 parseToken(lltok::comma, "expected ',' after select condition") || 7068 parseTypeAndValue(Op1, PFS) || 7069 parseToken(lltok::comma, "expected ',' after select value") || 7070 parseTypeAndValue(Op2, PFS)) 7071 return true; 7072 7073 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7074 return error(Loc, Reason); 7075 7076 Inst = SelectInst::Create(Op0, Op1, Op2); 7077 return false; 7078 } 7079 7080 /// parseVAArg 7081 /// ::= 'va_arg' TypeAndValue ',' Type 7082 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7083 Value *Op; 7084 Type *EltTy = nullptr; 7085 LocTy TypeLoc; 7086 if (parseTypeAndValue(Op, PFS) || 7087 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7088 parseType(EltTy, TypeLoc)) 7089 return true; 7090 7091 if (!EltTy->isFirstClassType()) 7092 return error(TypeLoc, "va_arg requires operand with first class type"); 7093 7094 Inst = new VAArgInst(Op, EltTy); 7095 return false; 7096 } 7097 7098 /// parseExtractElement 7099 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7100 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7101 LocTy Loc; 7102 Value *Op0, *Op1; 7103 if (parseTypeAndValue(Op0, Loc, PFS) || 7104 parseToken(lltok::comma, "expected ',' after extract value") || 7105 parseTypeAndValue(Op1, PFS)) 7106 return true; 7107 7108 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7109 return error(Loc, "invalid extractelement operands"); 7110 7111 Inst = ExtractElementInst::Create(Op0, Op1); 7112 return false; 7113 } 7114 7115 /// parseInsertElement 7116 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7117 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7118 LocTy Loc; 7119 Value *Op0, *Op1, *Op2; 7120 if (parseTypeAndValue(Op0, Loc, PFS) || 7121 parseToken(lltok::comma, "expected ',' after insertelement value") || 7122 parseTypeAndValue(Op1, PFS) || 7123 parseToken(lltok::comma, "expected ',' after insertelement value") || 7124 parseTypeAndValue(Op2, PFS)) 7125 return true; 7126 7127 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7128 return error(Loc, "invalid insertelement operands"); 7129 7130 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7131 return false; 7132 } 7133 7134 /// parseShuffleVector 7135 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7136 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7137 LocTy Loc; 7138 Value *Op0, *Op1, *Op2; 7139 if (parseTypeAndValue(Op0, Loc, PFS) || 7140 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7141 parseTypeAndValue(Op1, PFS) || 7142 parseToken(lltok::comma, "expected ',' after shuffle value") || 7143 parseTypeAndValue(Op2, PFS)) 7144 return true; 7145 7146 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7147 return error(Loc, "invalid shufflevector operands"); 7148 7149 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7150 return false; 7151 } 7152 7153 /// parsePHI 7154 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7155 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7156 Type *Ty = nullptr; LocTy TypeLoc; 7157 Value *Op0, *Op1; 7158 7159 if (parseType(Ty, TypeLoc) || 7160 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7161 parseValue(Ty, Op0, PFS) || 7162 parseToken(lltok::comma, "expected ',' after insertelement value") || 7163 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7164 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7165 return true; 7166 7167 bool AteExtraComma = false; 7168 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7169 7170 while (true) { 7171 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7172 7173 if (!EatIfPresent(lltok::comma)) 7174 break; 7175 7176 if (Lex.getKind() == lltok::MetadataVar) { 7177 AteExtraComma = true; 7178 break; 7179 } 7180 7181 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7182 parseValue(Ty, Op0, PFS) || 7183 parseToken(lltok::comma, "expected ',' after insertelement value") || 7184 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7185 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7186 return true; 7187 } 7188 7189 if (!Ty->isFirstClassType()) 7190 return error(TypeLoc, "phi node must have first class type"); 7191 7192 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7193 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7194 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7195 Inst = PN; 7196 return AteExtraComma ? InstExtraComma : InstNormal; 7197 } 7198 7199 /// parseLandingPad 7200 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7201 /// Clause 7202 /// ::= 'catch' TypeAndValue 7203 /// ::= 'filter' 7204 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7205 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7206 Type *Ty = nullptr; LocTy TyLoc; 7207 7208 if (parseType(Ty, TyLoc)) 7209 return true; 7210 7211 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7212 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7213 7214 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7215 LandingPadInst::ClauseType CT; 7216 if (EatIfPresent(lltok::kw_catch)) 7217 CT = LandingPadInst::Catch; 7218 else if (EatIfPresent(lltok::kw_filter)) 7219 CT = LandingPadInst::Filter; 7220 else 7221 return tokError("expected 'catch' or 'filter' clause type"); 7222 7223 Value *V; 7224 LocTy VLoc; 7225 if (parseTypeAndValue(V, VLoc, PFS)) 7226 return true; 7227 7228 // A 'catch' type expects a non-array constant. A filter clause expects an 7229 // array constant. 7230 if (CT == LandingPadInst::Catch) { 7231 if (isa<ArrayType>(V->getType())) 7232 error(VLoc, "'catch' clause has an invalid type"); 7233 } else { 7234 if (!isa<ArrayType>(V->getType())) 7235 error(VLoc, "'filter' clause has an invalid type"); 7236 } 7237 7238 Constant *CV = dyn_cast<Constant>(V); 7239 if (!CV) 7240 return error(VLoc, "clause argument must be a constant"); 7241 LP->addClause(CV); 7242 } 7243 7244 Inst = LP.release(); 7245 return false; 7246 } 7247 7248 /// parseFreeze 7249 /// ::= 'freeze' Type Value 7250 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7251 LocTy Loc; 7252 Value *Op; 7253 if (parseTypeAndValue(Op, Loc, PFS)) 7254 return true; 7255 7256 Inst = new FreezeInst(Op); 7257 return false; 7258 } 7259 7260 /// parseCall 7261 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7262 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7263 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7264 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7265 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7266 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7267 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7268 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7269 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7270 CallInst::TailCallKind TCK) { 7271 AttrBuilder RetAttrs, FnAttrs; 7272 std::vector<unsigned> FwdRefAttrGrps; 7273 LocTy BuiltinLoc; 7274 unsigned CallAddrSpace; 7275 unsigned CC; 7276 Type *RetType = nullptr; 7277 LocTy RetTypeLoc; 7278 ValID CalleeID; 7279 SmallVector<ParamInfo, 16> ArgList; 7280 SmallVector<OperandBundleDef, 2> BundleList; 7281 LocTy CallLoc = Lex.getLoc(); 7282 7283 if (TCK != CallInst::TCK_None && 7284 parseToken(lltok::kw_call, 7285 "expected 'tail call', 'musttail call', or 'notail call'")) 7286 return true; 7287 7288 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7289 7290 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7291 parseOptionalProgramAddrSpace(CallAddrSpace) || 7292 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7293 parseValID(CalleeID) || 7294 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7295 PFS.getFunction().isVarArg()) || 7296 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7297 parseOptionalOperandBundles(BundleList, PFS)) 7298 return true; 7299 7300 // If RetType is a non-function pointer type, then this is the short syntax 7301 // for the call, which means that RetType is just the return type. Infer the 7302 // rest of the function argument types from the arguments that are present. 7303 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7304 if (!Ty) { 7305 // Pull out the types of all of the arguments... 7306 std::vector<Type*> ParamTypes; 7307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7308 ParamTypes.push_back(ArgList[i].V->getType()); 7309 7310 if (!FunctionType::isValidReturnType(RetType)) 7311 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7312 7313 Ty = FunctionType::get(RetType, ParamTypes, false); 7314 } 7315 7316 CalleeID.FTy = Ty; 7317 7318 // Look up the callee. 7319 Value *Callee; 7320 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7321 &PFS, /*IsCall=*/true)) 7322 return true; 7323 7324 // Set up the Attribute for the function. 7325 SmallVector<AttributeSet, 8> Attrs; 7326 7327 SmallVector<Value*, 8> Args; 7328 7329 // Loop through FunctionType's arguments and ensure they are specified 7330 // correctly. Also, gather any parameter attributes. 7331 FunctionType::param_iterator I = Ty->param_begin(); 7332 FunctionType::param_iterator E = Ty->param_end(); 7333 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7334 Type *ExpectedTy = nullptr; 7335 if (I != E) { 7336 ExpectedTy = *I++; 7337 } else if (!Ty->isVarArg()) { 7338 return error(ArgList[i].Loc, "too many arguments specified"); 7339 } 7340 7341 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7342 return error(ArgList[i].Loc, "argument is not of expected type '" + 7343 getTypeString(ExpectedTy) + "'"); 7344 Args.push_back(ArgList[i].V); 7345 Attrs.push_back(ArgList[i].Attrs); 7346 } 7347 7348 if (I != E) 7349 return error(CallLoc, "not enough parameters specified for call"); 7350 7351 if (FnAttrs.hasAlignmentAttr()) 7352 return error(CallLoc, "call instructions may not have an alignment"); 7353 7354 // Finish off the Attribute and check them 7355 AttributeList PAL = 7356 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7357 AttributeSet::get(Context, RetAttrs), Attrs); 7358 7359 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7360 CI->setTailCallKind(TCK); 7361 CI->setCallingConv(CC); 7362 if (FMF.any()) { 7363 if (!isa<FPMathOperator>(CI)) { 7364 CI->deleteValue(); 7365 return error(CallLoc, "fast-math-flags specified for call without " 7366 "floating-point scalar or vector return type"); 7367 } 7368 CI->setFastMathFlags(FMF); 7369 } 7370 CI->setAttributes(PAL); 7371 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7372 Inst = CI; 7373 return false; 7374 } 7375 7376 //===----------------------------------------------------------------------===// 7377 // Memory Instructions. 7378 //===----------------------------------------------------------------------===// 7379 7380 /// parseAlloc 7381 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7382 /// (',' 'align' i32)? (',', 'addrspace(n))? 7383 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7384 Value *Size = nullptr; 7385 LocTy SizeLoc, TyLoc, ASLoc; 7386 MaybeAlign Alignment; 7387 unsigned AddrSpace = 0; 7388 Type *Ty = nullptr; 7389 7390 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7391 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7392 7393 if (parseType(Ty, TyLoc)) 7394 return true; 7395 7396 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7397 return error(TyLoc, "invalid type for alloca"); 7398 7399 bool AteExtraComma = false; 7400 if (EatIfPresent(lltok::comma)) { 7401 if (Lex.getKind() == lltok::kw_align) { 7402 if (parseOptionalAlignment(Alignment)) 7403 return true; 7404 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7405 return true; 7406 } else if (Lex.getKind() == lltok::kw_addrspace) { 7407 ASLoc = Lex.getLoc(); 7408 if (parseOptionalAddrSpace(AddrSpace)) 7409 return true; 7410 } else if (Lex.getKind() == lltok::MetadataVar) { 7411 AteExtraComma = true; 7412 } else { 7413 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7414 return true; 7415 if (EatIfPresent(lltok::comma)) { 7416 if (Lex.getKind() == lltok::kw_align) { 7417 if (parseOptionalAlignment(Alignment)) 7418 return true; 7419 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7420 return true; 7421 } else if (Lex.getKind() == lltok::kw_addrspace) { 7422 ASLoc = Lex.getLoc(); 7423 if (parseOptionalAddrSpace(AddrSpace)) 7424 return true; 7425 } else if (Lex.getKind() == lltok::MetadataVar) { 7426 AteExtraComma = true; 7427 } 7428 } 7429 } 7430 } 7431 7432 if (Size && !Size->getType()->isIntegerTy()) 7433 return error(SizeLoc, "element count must have integer type"); 7434 7435 SmallPtrSet<Type *, 4> Visited; 7436 if (!Alignment && !Ty->isSized(&Visited)) 7437 return error(TyLoc, "Cannot allocate unsized type"); 7438 if (!Alignment) 7439 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7440 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7441 AI->setUsedWithInAlloca(IsInAlloca); 7442 AI->setSwiftError(IsSwiftError); 7443 Inst = AI; 7444 return AteExtraComma ? InstExtraComma : InstNormal; 7445 } 7446 7447 /// parseLoad 7448 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7449 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7450 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7451 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7452 Value *Val; LocTy Loc; 7453 MaybeAlign Alignment; 7454 bool AteExtraComma = false; 7455 bool isAtomic = false; 7456 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7457 SyncScope::ID SSID = SyncScope::System; 7458 7459 if (Lex.getKind() == lltok::kw_atomic) { 7460 isAtomic = true; 7461 Lex.Lex(); 7462 } 7463 7464 bool isVolatile = false; 7465 if (Lex.getKind() == lltok::kw_volatile) { 7466 isVolatile = true; 7467 Lex.Lex(); 7468 } 7469 7470 Type *Ty; 7471 LocTy ExplicitTypeLoc = Lex.getLoc(); 7472 if (parseType(Ty) || 7473 parseToken(lltok::comma, "expected comma after load's type") || 7474 parseTypeAndValue(Val, Loc, PFS) || 7475 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7476 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7477 return true; 7478 7479 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7480 return error(Loc, "load operand must be a pointer to a first class type"); 7481 if (isAtomic && !Alignment) 7482 return error(Loc, "atomic load must have explicit non-zero alignment"); 7483 if (Ordering == AtomicOrdering::Release || 7484 Ordering == AtomicOrdering::AcquireRelease) 7485 return error(Loc, "atomic load cannot use Release ordering"); 7486 7487 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7488 return error( 7489 ExplicitTypeLoc, 7490 typeComparisonErrorMessage( 7491 "explicit pointee type doesn't match operand's pointee type", Ty, 7492 cast<PointerType>(Val->getType())->getElementType())); 7493 } 7494 SmallPtrSet<Type *, 4> Visited; 7495 if (!Alignment && !Ty->isSized(&Visited)) 7496 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7497 if (!Alignment) 7498 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7499 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7500 return AteExtraComma ? InstExtraComma : InstNormal; 7501 } 7502 7503 /// parseStore 7504 7505 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7506 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7507 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7508 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7509 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7510 MaybeAlign Alignment; 7511 bool AteExtraComma = false; 7512 bool isAtomic = false; 7513 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7514 SyncScope::ID SSID = SyncScope::System; 7515 7516 if (Lex.getKind() == lltok::kw_atomic) { 7517 isAtomic = true; 7518 Lex.Lex(); 7519 } 7520 7521 bool isVolatile = false; 7522 if (Lex.getKind() == lltok::kw_volatile) { 7523 isVolatile = true; 7524 Lex.Lex(); 7525 } 7526 7527 if (parseTypeAndValue(Val, Loc, PFS) || 7528 parseToken(lltok::comma, "expected ',' after store operand") || 7529 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7530 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7531 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7532 return true; 7533 7534 if (!Ptr->getType()->isPointerTy()) 7535 return error(PtrLoc, "store operand must be a pointer"); 7536 if (!Val->getType()->isFirstClassType()) 7537 return error(Loc, "store operand must be a first class value"); 7538 if (!cast<PointerType>(Ptr->getType()) 7539 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7540 return error(Loc, "stored value and pointer type do not match"); 7541 if (isAtomic && !Alignment) 7542 return error(Loc, "atomic store must have explicit non-zero alignment"); 7543 if (Ordering == AtomicOrdering::Acquire || 7544 Ordering == AtomicOrdering::AcquireRelease) 7545 return error(Loc, "atomic store cannot use Acquire ordering"); 7546 SmallPtrSet<Type *, 4> Visited; 7547 if (!Alignment && !Val->getType()->isSized(&Visited)) 7548 return error(Loc, "storing unsized types is not allowed"); 7549 if (!Alignment) 7550 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7551 7552 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7553 return AteExtraComma ? InstExtraComma : InstNormal; 7554 } 7555 7556 /// parseCmpXchg 7557 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7558 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7559 /// 'Align'? 7560 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7561 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7562 bool AteExtraComma = false; 7563 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7564 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7565 SyncScope::ID SSID = SyncScope::System; 7566 bool isVolatile = false; 7567 bool isWeak = false; 7568 MaybeAlign Alignment; 7569 7570 if (EatIfPresent(lltok::kw_weak)) 7571 isWeak = true; 7572 7573 if (EatIfPresent(lltok::kw_volatile)) 7574 isVolatile = true; 7575 7576 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7577 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7578 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7579 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7580 parseTypeAndValue(New, NewLoc, PFS) || 7581 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7582 parseOrdering(FailureOrdering) || 7583 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7584 return true; 7585 7586 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7587 return tokError("invalid cmpxchg success ordering"); 7588 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7589 return tokError("invalid cmpxchg failure ordering"); 7590 if (!Ptr->getType()->isPointerTy()) 7591 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7592 if (!cast<PointerType>(Ptr->getType()) 7593 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7594 return error(CmpLoc, "compare value and pointer type do not match"); 7595 if (!cast<PointerType>(Ptr->getType()) 7596 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7597 return error(NewLoc, "new value and pointer type do not match"); 7598 if (Cmp->getType() != New->getType()) 7599 return error(NewLoc, "compare value and new value type do not match"); 7600 if (!New->getType()->isFirstClassType()) 7601 return error(NewLoc, "cmpxchg operand must be a first class value"); 7602 7603 const Align DefaultAlignment( 7604 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7605 Cmp->getType())); 7606 7607 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7608 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7609 FailureOrdering, SSID); 7610 CXI->setVolatile(isVolatile); 7611 CXI->setWeak(isWeak); 7612 7613 Inst = CXI; 7614 return AteExtraComma ? InstExtraComma : InstNormal; 7615 } 7616 7617 /// parseAtomicRMW 7618 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7619 /// 'singlethread'? AtomicOrdering 7620 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7621 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7622 bool AteExtraComma = false; 7623 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7624 SyncScope::ID SSID = SyncScope::System; 7625 bool isVolatile = false; 7626 bool IsFP = false; 7627 AtomicRMWInst::BinOp Operation; 7628 MaybeAlign Alignment; 7629 7630 if (EatIfPresent(lltok::kw_volatile)) 7631 isVolatile = true; 7632 7633 switch (Lex.getKind()) { 7634 default: 7635 return tokError("expected binary operation in atomicrmw"); 7636 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7637 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7638 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7639 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7640 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7641 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7642 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7643 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7644 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7645 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7646 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7647 case lltok::kw_fadd: 7648 Operation = AtomicRMWInst::FAdd; 7649 IsFP = true; 7650 break; 7651 case lltok::kw_fsub: 7652 Operation = AtomicRMWInst::FSub; 7653 IsFP = true; 7654 break; 7655 } 7656 Lex.Lex(); // Eat the operation. 7657 7658 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7659 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7660 parseTypeAndValue(Val, ValLoc, PFS) || 7661 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7662 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7663 return true; 7664 7665 if (Ordering == AtomicOrdering::Unordered) 7666 return tokError("atomicrmw cannot be unordered"); 7667 if (!Ptr->getType()->isPointerTy()) 7668 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7669 if (!cast<PointerType>(Ptr->getType()) 7670 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7671 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7672 7673 if (Operation == AtomicRMWInst::Xchg) { 7674 if (!Val->getType()->isIntegerTy() && 7675 !Val->getType()->isFloatingPointTy()) { 7676 return error(ValLoc, 7677 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7678 " operand must be an integer or floating point type"); 7679 } 7680 } else if (IsFP) { 7681 if (!Val->getType()->isFloatingPointTy()) { 7682 return error(ValLoc, "atomicrmw " + 7683 AtomicRMWInst::getOperationName(Operation) + 7684 " operand must be a floating point type"); 7685 } 7686 } else { 7687 if (!Val->getType()->isIntegerTy()) { 7688 return error(ValLoc, "atomicrmw " + 7689 AtomicRMWInst::getOperationName(Operation) + 7690 " operand must be an integer"); 7691 } 7692 } 7693 7694 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7695 if (Size < 8 || (Size & (Size - 1))) 7696 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7697 " integer"); 7698 const Align DefaultAlignment( 7699 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7700 Val->getType())); 7701 AtomicRMWInst *RMWI = 7702 new AtomicRMWInst(Operation, Ptr, Val, 7703 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7704 RMWI->setVolatile(isVolatile); 7705 Inst = RMWI; 7706 return AteExtraComma ? InstExtraComma : InstNormal; 7707 } 7708 7709 /// parseFence 7710 /// ::= 'fence' 'singlethread'? AtomicOrdering 7711 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7712 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7713 SyncScope::ID SSID = SyncScope::System; 7714 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7715 return true; 7716 7717 if (Ordering == AtomicOrdering::Unordered) 7718 return tokError("fence cannot be unordered"); 7719 if (Ordering == AtomicOrdering::Monotonic) 7720 return tokError("fence cannot be monotonic"); 7721 7722 Inst = new FenceInst(Context, Ordering, SSID); 7723 return InstNormal; 7724 } 7725 7726 /// parseGetElementPtr 7727 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7728 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7729 Value *Ptr = nullptr; 7730 Value *Val = nullptr; 7731 LocTy Loc, EltLoc; 7732 7733 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7734 7735 Type *Ty = nullptr; 7736 LocTy ExplicitTypeLoc = Lex.getLoc(); 7737 if (parseType(Ty) || 7738 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7739 parseTypeAndValue(Ptr, Loc, PFS)) 7740 return true; 7741 7742 Type *BaseType = Ptr->getType(); 7743 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7744 if (!BasePointerType) 7745 return error(Loc, "base of getelementptr must be a pointer"); 7746 7747 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7748 return error( 7749 ExplicitTypeLoc, 7750 typeComparisonErrorMessage( 7751 "explicit pointee type doesn't match operand's pointee type", Ty, 7752 BasePointerType->getElementType())); 7753 } 7754 7755 SmallVector<Value*, 16> Indices; 7756 bool AteExtraComma = false; 7757 // GEP returns a vector of pointers if at least one of parameters is a vector. 7758 // All vector parameters should have the same vector width. 7759 ElementCount GEPWidth = BaseType->isVectorTy() 7760 ? cast<VectorType>(BaseType)->getElementCount() 7761 : ElementCount::getFixed(0); 7762 7763 while (EatIfPresent(lltok::comma)) { 7764 if (Lex.getKind() == lltok::MetadataVar) { 7765 AteExtraComma = true; 7766 break; 7767 } 7768 if (parseTypeAndValue(Val, EltLoc, PFS)) 7769 return true; 7770 if (!Val->getType()->isIntOrIntVectorTy()) 7771 return error(EltLoc, "getelementptr index must be an integer"); 7772 7773 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7774 ElementCount ValNumEl = ValVTy->getElementCount(); 7775 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7776 return error( 7777 EltLoc, 7778 "getelementptr vector index has a wrong number of elements"); 7779 GEPWidth = ValNumEl; 7780 } 7781 Indices.push_back(Val); 7782 } 7783 7784 SmallPtrSet<Type*, 4> Visited; 7785 if (!Indices.empty() && !Ty->isSized(&Visited)) 7786 return error(Loc, "base element of getelementptr must be sized"); 7787 7788 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7789 return error(Loc, "invalid getelementptr indices"); 7790 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7791 if (InBounds) 7792 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7793 return AteExtraComma ? InstExtraComma : InstNormal; 7794 } 7795 7796 /// parseExtractValue 7797 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7798 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7799 Value *Val; LocTy Loc; 7800 SmallVector<unsigned, 4> Indices; 7801 bool AteExtraComma; 7802 if (parseTypeAndValue(Val, Loc, PFS) || 7803 parseIndexList(Indices, AteExtraComma)) 7804 return true; 7805 7806 if (!Val->getType()->isAggregateType()) 7807 return error(Loc, "extractvalue operand must be aggregate type"); 7808 7809 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7810 return error(Loc, "invalid indices for extractvalue"); 7811 Inst = ExtractValueInst::Create(Val, Indices); 7812 return AteExtraComma ? InstExtraComma : InstNormal; 7813 } 7814 7815 /// parseInsertValue 7816 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7817 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7818 Value *Val0, *Val1; LocTy Loc0, Loc1; 7819 SmallVector<unsigned, 4> Indices; 7820 bool AteExtraComma; 7821 if (parseTypeAndValue(Val0, Loc0, PFS) || 7822 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7823 parseTypeAndValue(Val1, Loc1, PFS) || 7824 parseIndexList(Indices, AteExtraComma)) 7825 return true; 7826 7827 if (!Val0->getType()->isAggregateType()) 7828 return error(Loc0, "insertvalue operand must be aggregate type"); 7829 7830 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7831 if (!IndexedType) 7832 return error(Loc0, "invalid indices for insertvalue"); 7833 if (IndexedType != Val1->getType()) 7834 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7835 getTypeString(Val1->getType()) + "' instead of '" + 7836 getTypeString(IndexedType) + "'"); 7837 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7838 return AteExtraComma ? InstExtraComma : InstNormal; 7839 } 7840 7841 //===----------------------------------------------------------------------===// 7842 // Embedded metadata. 7843 //===----------------------------------------------------------------------===// 7844 7845 /// parseMDNodeVector 7846 /// ::= { Element (',' Element)* } 7847 /// Element 7848 /// ::= 'null' | TypeAndValue 7849 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7850 if (parseToken(lltok::lbrace, "expected '{' here")) 7851 return true; 7852 7853 // Check for an empty list. 7854 if (EatIfPresent(lltok::rbrace)) 7855 return false; 7856 7857 do { 7858 // Null is a special case since it is typeless. 7859 if (EatIfPresent(lltok::kw_null)) { 7860 Elts.push_back(nullptr); 7861 continue; 7862 } 7863 7864 Metadata *MD; 7865 if (parseMetadata(MD, nullptr)) 7866 return true; 7867 Elts.push_back(MD); 7868 } while (EatIfPresent(lltok::comma)); 7869 7870 return parseToken(lltok::rbrace, "expected end of metadata node"); 7871 } 7872 7873 //===----------------------------------------------------------------------===// 7874 // Use-list order directives. 7875 //===----------------------------------------------------------------------===// 7876 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7877 SMLoc Loc) { 7878 if (V->use_empty()) 7879 return error(Loc, "value has no uses"); 7880 7881 unsigned NumUses = 0; 7882 SmallDenseMap<const Use *, unsigned, 16> Order; 7883 for (const Use &U : V->uses()) { 7884 if (++NumUses > Indexes.size()) 7885 break; 7886 Order[&U] = Indexes[NumUses - 1]; 7887 } 7888 if (NumUses < 2) 7889 return error(Loc, "value only has one use"); 7890 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7891 return error(Loc, 7892 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7893 7894 V->sortUseList([&](const Use &L, const Use &R) { 7895 return Order.lookup(&L) < Order.lookup(&R); 7896 }); 7897 return false; 7898 } 7899 7900 /// parseUseListOrderIndexes 7901 /// ::= '{' uint32 (',' uint32)+ '}' 7902 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7903 SMLoc Loc = Lex.getLoc(); 7904 if (parseToken(lltok::lbrace, "expected '{' here")) 7905 return true; 7906 if (Lex.getKind() == lltok::rbrace) 7907 return Lex.Error("expected non-empty list of uselistorder indexes"); 7908 7909 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7910 // indexes should be distinct numbers in the range [0, size-1], and should 7911 // not be in order. 7912 unsigned Offset = 0; 7913 unsigned Max = 0; 7914 bool IsOrdered = true; 7915 assert(Indexes.empty() && "Expected empty order vector"); 7916 do { 7917 unsigned Index; 7918 if (parseUInt32(Index)) 7919 return true; 7920 7921 // Update consistency checks. 7922 Offset += Index - Indexes.size(); 7923 Max = std::max(Max, Index); 7924 IsOrdered &= Index == Indexes.size(); 7925 7926 Indexes.push_back(Index); 7927 } while (EatIfPresent(lltok::comma)); 7928 7929 if (parseToken(lltok::rbrace, "expected '}' here")) 7930 return true; 7931 7932 if (Indexes.size() < 2) 7933 return error(Loc, "expected >= 2 uselistorder indexes"); 7934 if (Offset != 0 || Max >= Indexes.size()) 7935 return error(Loc, 7936 "expected distinct uselistorder indexes in range [0, size)"); 7937 if (IsOrdered) 7938 return error(Loc, "expected uselistorder indexes to change the order"); 7939 7940 return false; 7941 } 7942 7943 /// parseUseListOrder 7944 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7945 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7946 SMLoc Loc = Lex.getLoc(); 7947 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7948 return true; 7949 7950 Value *V; 7951 SmallVector<unsigned, 16> Indexes; 7952 if (parseTypeAndValue(V, PFS) || 7953 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7954 parseUseListOrderIndexes(Indexes)) 7955 return true; 7956 7957 return sortUseListOrder(V, Indexes, Loc); 7958 } 7959 7960 /// parseUseListOrderBB 7961 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7962 bool LLParser::parseUseListOrderBB() { 7963 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7964 SMLoc Loc = Lex.getLoc(); 7965 Lex.Lex(); 7966 7967 ValID Fn, Label; 7968 SmallVector<unsigned, 16> Indexes; 7969 if (parseValID(Fn) || 7970 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7971 parseValID(Label) || 7972 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7973 parseUseListOrderIndexes(Indexes)) 7974 return true; 7975 7976 // Check the function. 7977 GlobalValue *GV; 7978 if (Fn.Kind == ValID::t_GlobalName) 7979 GV = M->getNamedValue(Fn.StrVal); 7980 else if (Fn.Kind == ValID::t_GlobalID) 7981 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7982 else 7983 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7984 if (!GV) 7985 return error(Fn.Loc, 7986 "invalid function forward reference in uselistorder_bb"); 7987 auto *F = dyn_cast<Function>(GV); 7988 if (!F) 7989 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7990 if (F->isDeclaration()) 7991 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7992 7993 // Check the basic block. 7994 if (Label.Kind == ValID::t_LocalID) 7995 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7996 if (Label.Kind != ValID::t_LocalName) 7997 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7998 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7999 if (!V) 8000 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8001 if (!isa<BasicBlock>(V)) 8002 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8003 8004 return sortUseListOrder(V, Indexes, Loc); 8005 } 8006 8007 /// ModuleEntry 8008 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8009 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8010 bool LLParser::parseModuleEntry(unsigned ID) { 8011 assert(Lex.getKind() == lltok::kw_module); 8012 Lex.Lex(); 8013 8014 std::string Path; 8015 if (parseToken(lltok::colon, "expected ':' here") || 8016 parseToken(lltok::lparen, "expected '(' here") || 8017 parseToken(lltok::kw_path, "expected 'path' here") || 8018 parseToken(lltok::colon, "expected ':' here") || 8019 parseStringConstant(Path) || 8020 parseToken(lltok::comma, "expected ',' here") || 8021 parseToken(lltok::kw_hash, "expected 'hash' here") || 8022 parseToken(lltok::colon, "expected ':' here") || 8023 parseToken(lltok::lparen, "expected '(' here")) 8024 return true; 8025 8026 ModuleHash Hash; 8027 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8028 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8029 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8030 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8031 parseUInt32(Hash[4])) 8032 return true; 8033 8034 if (parseToken(lltok::rparen, "expected ')' here") || 8035 parseToken(lltok::rparen, "expected ')' here")) 8036 return true; 8037 8038 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8039 ModuleIdMap[ID] = ModuleEntry->first(); 8040 8041 return false; 8042 } 8043 8044 /// TypeIdEntry 8045 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8046 bool LLParser::parseTypeIdEntry(unsigned ID) { 8047 assert(Lex.getKind() == lltok::kw_typeid); 8048 Lex.Lex(); 8049 8050 std::string Name; 8051 if (parseToken(lltok::colon, "expected ':' here") || 8052 parseToken(lltok::lparen, "expected '(' here") || 8053 parseToken(lltok::kw_name, "expected 'name' here") || 8054 parseToken(lltok::colon, "expected ':' here") || 8055 parseStringConstant(Name)) 8056 return true; 8057 8058 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8059 if (parseToken(lltok::comma, "expected ',' here") || 8060 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8061 return true; 8062 8063 // Check if this ID was forward referenced, and if so, update the 8064 // corresponding GUIDs. 8065 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8066 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8067 for (auto TIDRef : FwdRefTIDs->second) { 8068 assert(!*TIDRef.first && 8069 "Forward referenced type id GUID expected to be 0"); 8070 *TIDRef.first = GlobalValue::getGUID(Name); 8071 } 8072 ForwardRefTypeIds.erase(FwdRefTIDs); 8073 } 8074 8075 return false; 8076 } 8077 8078 /// TypeIdSummary 8079 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8080 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8081 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8082 parseToken(lltok::colon, "expected ':' here") || 8083 parseToken(lltok::lparen, "expected '(' here") || 8084 parseTypeTestResolution(TIS.TTRes)) 8085 return true; 8086 8087 if (EatIfPresent(lltok::comma)) { 8088 // Expect optional wpdResolutions field 8089 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8090 return true; 8091 } 8092 8093 if (parseToken(lltok::rparen, "expected ')' here")) 8094 return true; 8095 8096 return false; 8097 } 8098 8099 static ValueInfo EmptyVI = 8100 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8101 8102 /// TypeIdCompatibleVtableEntry 8103 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8104 /// TypeIdCompatibleVtableInfo 8105 /// ')' 8106 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8107 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8108 Lex.Lex(); 8109 8110 std::string Name; 8111 if (parseToken(lltok::colon, "expected ':' here") || 8112 parseToken(lltok::lparen, "expected '(' here") || 8113 parseToken(lltok::kw_name, "expected 'name' here") || 8114 parseToken(lltok::colon, "expected ':' here") || 8115 parseStringConstant(Name)) 8116 return true; 8117 8118 TypeIdCompatibleVtableInfo &TI = 8119 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8120 if (parseToken(lltok::comma, "expected ',' here") || 8121 parseToken(lltok::kw_summary, "expected 'summary' here") || 8122 parseToken(lltok::colon, "expected ':' here") || 8123 parseToken(lltok::lparen, "expected '(' here")) 8124 return true; 8125 8126 IdToIndexMapType IdToIndexMap; 8127 // parse each call edge 8128 do { 8129 uint64_t Offset; 8130 if (parseToken(lltok::lparen, "expected '(' here") || 8131 parseToken(lltok::kw_offset, "expected 'offset' here") || 8132 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8133 parseToken(lltok::comma, "expected ',' here")) 8134 return true; 8135 8136 LocTy Loc = Lex.getLoc(); 8137 unsigned GVId; 8138 ValueInfo VI; 8139 if (parseGVReference(VI, GVId)) 8140 return true; 8141 8142 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8143 // forward reference. We will save the location of the ValueInfo needing an 8144 // update, but can only do so once the std::vector is finalized. 8145 if (VI == EmptyVI) 8146 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8147 TI.push_back({Offset, VI}); 8148 8149 if (parseToken(lltok::rparen, "expected ')' in call")) 8150 return true; 8151 } while (EatIfPresent(lltok::comma)); 8152 8153 // Now that the TI vector is finalized, it is safe to save the locations 8154 // of any forward GV references that need updating later. 8155 for (auto I : IdToIndexMap) { 8156 auto &Infos = ForwardRefValueInfos[I.first]; 8157 for (auto P : I.second) { 8158 assert(TI[P.first].VTableVI == EmptyVI && 8159 "Forward referenced ValueInfo expected to be empty"); 8160 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8161 } 8162 } 8163 8164 if (parseToken(lltok::rparen, "expected ')' here") || 8165 parseToken(lltok::rparen, "expected ')' here")) 8166 return true; 8167 8168 // Check if this ID was forward referenced, and if so, update the 8169 // corresponding GUIDs. 8170 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8171 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8172 for (auto TIDRef : FwdRefTIDs->second) { 8173 assert(!*TIDRef.first && 8174 "Forward referenced type id GUID expected to be 0"); 8175 *TIDRef.first = GlobalValue::getGUID(Name); 8176 } 8177 ForwardRefTypeIds.erase(FwdRefTIDs); 8178 } 8179 8180 return false; 8181 } 8182 8183 /// TypeTestResolution 8184 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8185 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8186 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8187 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8188 /// [',' 'inlinesBits' ':' UInt64]? ')' 8189 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8190 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8191 parseToken(lltok::colon, "expected ':' here") || 8192 parseToken(lltok::lparen, "expected '(' here") || 8193 parseToken(lltok::kw_kind, "expected 'kind' here") || 8194 parseToken(lltok::colon, "expected ':' here")) 8195 return true; 8196 8197 switch (Lex.getKind()) { 8198 case lltok::kw_unknown: 8199 TTRes.TheKind = TypeTestResolution::Unknown; 8200 break; 8201 case lltok::kw_unsat: 8202 TTRes.TheKind = TypeTestResolution::Unsat; 8203 break; 8204 case lltok::kw_byteArray: 8205 TTRes.TheKind = TypeTestResolution::ByteArray; 8206 break; 8207 case lltok::kw_inline: 8208 TTRes.TheKind = TypeTestResolution::Inline; 8209 break; 8210 case lltok::kw_single: 8211 TTRes.TheKind = TypeTestResolution::Single; 8212 break; 8213 case lltok::kw_allOnes: 8214 TTRes.TheKind = TypeTestResolution::AllOnes; 8215 break; 8216 default: 8217 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8218 } 8219 Lex.Lex(); 8220 8221 if (parseToken(lltok::comma, "expected ',' here") || 8222 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8223 parseToken(lltok::colon, "expected ':' here") || 8224 parseUInt32(TTRes.SizeM1BitWidth)) 8225 return true; 8226 8227 // parse optional fields 8228 while (EatIfPresent(lltok::comma)) { 8229 switch (Lex.getKind()) { 8230 case lltok::kw_alignLog2: 8231 Lex.Lex(); 8232 if (parseToken(lltok::colon, "expected ':'") || 8233 parseUInt64(TTRes.AlignLog2)) 8234 return true; 8235 break; 8236 case lltok::kw_sizeM1: 8237 Lex.Lex(); 8238 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8239 return true; 8240 break; 8241 case lltok::kw_bitMask: { 8242 unsigned Val; 8243 Lex.Lex(); 8244 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8245 return true; 8246 assert(Val <= 0xff); 8247 TTRes.BitMask = (uint8_t)Val; 8248 break; 8249 } 8250 case lltok::kw_inlineBits: 8251 Lex.Lex(); 8252 if (parseToken(lltok::colon, "expected ':'") || 8253 parseUInt64(TTRes.InlineBits)) 8254 return true; 8255 break; 8256 default: 8257 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8258 } 8259 } 8260 8261 if (parseToken(lltok::rparen, "expected ')' here")) 8262 return true; 8263 8264 return false; 8265 } 8266 8267 /// OptionalWpdResolutions 8268 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8269 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8270 bool LLParser::parseOptionalWpdResolutions( 8271 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8272 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8273 parseToken(lltok::colon, "expected ':' here") || 8274 parseToken(lltok::lparen, "expected '(' here")) 8275 return true; 8276 8277 do { 8278 uint64_t Offset; 8279 WholeProgramDevirtResolution WPDRes; 8280 if (parseToken(lltok::lparen, "expected '(' here") || 8281 parseToken(lltok::kw_offset, "expected 'offset' here") || 8282 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8283 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8284 parseToken(lltok::rparen, "expected ')' here")) 8285 return true; 8286 WPDResMap[Offset] = WPDRes; 8287 } while (EatIfPresent(lltok::comma)); 8288 8289 if (parseToken(lltok::rparen, "expected ')' here")) 8290 return true; 8291 8292 return false; 8293 } 8294 8295 /// WpdRes 8296 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8297 /// [',' OptionalResByArg]? ')' 8298 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8299 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8300 /// [',' OptionalResByArg]? ')' 8301 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8302 /// [',' OptionalResByArg]? ')' 8303 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8304 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8305 parseToken(lltok::colon, "expected ':' here") || 8306 parseToken(lltok::lparen, "expected '(' here") || 8307 parseToken(lltok::kw_kind, "expected 'kind' here") || 8308 parseToken(lltok::colon, "expected ':' here")) 8309 return true; 8310 8311 switch (Lex.getKind()) { 8312 case lltok::kw_indir: 8313 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8314 break; 8315 case lltok::kw_singleImpl: 8316 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8317 break; 8318 case lltok::kw_branchFunnel: 8319 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8320 break; 8321 default: 8322 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8323 } 8324 Lex.Lex(); 8325 8326 // parse optional fields 8327 while (EatIfPresent(lltok::comma)) { 8328 switch (Lex.getKind()) { 8329 case lltok::kw_singleImplName: 8330 Lex.Lex(); 8331 if (parseToken(lltok::colon, "expected ':' here") || 8332 parseStringConstant(WPDRes.SingleImplName)) 8333 return true; 8334 break; 8335 case lltok::kw_resByArg: 8336 if (parseOptionalResByArg(WPDRes.ResByArg)) 8337 return true; 8338 break; 8339 default: 8340 return error(Lex.getLoc(), 8341 "expected optional WholeProgramDevirtResolution field"); 8342 } 8343 } 8344 8345 if (parseToken(lltok::rparen, "expected ')' here")) 8346 return true; 8347 8348 return false; 8349 } 8350 8351 /// OptionalResByArg 8352 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8353 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8354 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8355 /// 'virtualConstProp' ) 8356 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8357 /// [',' 'bit' ':' UInt32]? ')' 8358 bool LLParser::parseOptionalResByArg( 8359 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8360 &ResByArg) { 8361 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8362 parseToken(lltok::colon, "expected ':' here") || 8363 parseToken(lltok::lparen, "expected '(' here")) 8364 return true; 8365 8366 do { 8367 std::vector<uint64_t> Args; 8368 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8369 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8370 parseToken(lltok::colon, "expected ':' here") || 8371 parseToken(lltok::lparen, "expected '(' here") || 8372 parseToken(lltok::kw_kind, "expected 'kind' here") || 8373 parseToken(lltok::colon, "expected ':' here")) 8374 return true; 8375 8376 WholeProgramDevirtResolution::ByArg ByArg; 8377 switch (Lex.getKind()) { 8378 case lltok::kw_indir: 8379 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8380 break; 8381 case lltok::kw_uniformRetVal: 8382 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8383 break; 8384 case lltok::kw_uniqueRetVal: 8385 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8386 break; 8387 case lltok::kw_virtualConstProp: 8388 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8389 break; 8390 default: 8391 return error(Lex.getLoc(), 8392 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8393 } 8394 Lex.Lex(); 8395 8396 // parse optional fields 8397 while (EatIfPresent(lltok::comma)) { 8398 switch (Lex.getKind()) { 8399 case lltok::kw_info: 8400 Lex.Lex(); 8401 if (parseToken(lltok::colon, "expected ':' here") || 8402 parseUInt64(ByArg.Info)) 8403 return true; 8404 break; 8405 case lltok::kw_byte: 8406 Lex.Lex(); 8407 if (parseToken(lltok::colon, "expected ':' here") || 8408 parseUInt32(ByArg.Byte)) 8409 return true; 8410 break; 8411 case lltok::kw_bit: 8412 Lex.Lex(); 8413 if (parseToken(lltok::colon, "expected ':' here") || 8414 parseUInt32(ByArg.Bit)) 8415 return true; 8416 break; 8417 default: 8418 return error(Lex.getLoc(), 8419 "expected optional whole program devirt field"); 8420 } 8421 } 8422 8423 if (parseToken(lltok::rparen, "expected ')' here")) 8424 return true; 8425 8426 ResByArg[Args] = ByArg; 8427 } while (EatIfPresent(lltok::comma)); 8428 8429 if (parseToken(lltok::rparen, "expected ')' here")) 8430 return true; 8431 8432 return false; 8433 } 8434 8435 /// OptionalResByArg 8436 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8437 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8438 if (parseToken(lltok::kw_args, "expected 'args' here") || 8439 parseToken(lltok::colon, "expected ':' here") || 8440 parseToken(lltok::lparen, "expected '(' here")) 8441 return true; 8442 8443 do { 8444 uint64_t Val; 8445 if (parseUInt64(Val)) 8446 return true; 8447 Args.push_back(Val); 8448 } while (EatIfPresent(lltok::comma)); 8449 8450 if (parseToken(lltok::rparen, "expected ')' here")) 8451 return true; 8452 8453 return false; 8454 } 8455 8456 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8457 8458 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8459 bool ReadOnly = Fwd->isReadOnly(); 8460 bool WriteOnly = Fwd->isWriteOnly(); 8461 assert(!(ReadOnly && WriteOnly)); 8462 *Fwd = Resolved; 8463 if (ReadOnly) 8464 Fwd->setReadOnly(); 8465 if (WriteOnly) 8466 Fwd->setWriteOnly(); 8467 } 8468 8469 /// Stores the given Name/GUID and associated summary into the Index. 8470 /// Also updates any forward references to the associated entry ID. 8471 void LLParser::addGlobalValueToIndex( 8472 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8473 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8474 // First create the ValueInfo utilizing the Name or GUID. 8475 ValueInfo VI; 8476 if (GUID != 0) { 8477 assert(Name.empty()); 8478 VI = Index->getOrInsertValueInfo(GUID); 8479 } else { 8480 assert(!Name.empty()); 8481 if (M) { 8482 auto *GV = M->getNamedValue(Name); 8483 assert(GV); 8484 VI = Index->getOrInsertValueInfo(GV); 8485 } else { 8486 assert( 8487 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8488 "Need a source_filename to compute GUID for local"); 8489 GUID = GlobalValue::getGUID( 8490 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8491 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8492 } 8493 } 8494 8495 // Resolve forward references from calls/refs 8496 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8497 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8498 for (auto VIRef : FwdRefVIs->second) { 8499 assert(VIRef.first->getRef() == FwdVIRef && 8500 "Forward referenced ValueInfo expected to be empty"); 8501 resolveFwdRef(VIRef.first, VI); 8502 } 8503 ForwardRefValueInfos.erase(FwdRefVIs); 8504 } 8505 8506 // Resolve forward references from aliases 8507 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8508 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8509 for (auto AliaseeRef : FwdRefAliasees->second) { 8510 assert(!AliaseeRef.first->hasAliasee() && 8511 "Forward referencing alias already has aliasee"); 8512 assert(Summary && "Aliasee must be a definition"); 8513 AliaseeRef.first->setAliasee(VI, Summary.get()); 8514 } 8515 ForwardRefAliasees.erase(FwdRefAliasees); 8516 } 8517 8518 // Add the summary if one was provided. 8519 if (Summary) 8520 Index->addGlobalValueSummary(VI, std::move(Summary)); 8521 8522 // Save the associated ValueInfo for use in later references by ID. 8523 if (ID == NumberedValueInfos.size()) 8524 NumberedValueInfos.push_back(VI); 8525 else { 8526 // Handle non-continuous numbers (to make test simplification easier). 8527 if (ID > NumberedValueInfos.size()) 8528 NumberedValueInfos.resize(ID + 1); 8529 NumberedValueInfos[ID] = VI; 8530 } 8531 } 8532 8533 /// parseSummaryIndexFlags 8534 /// ::= 'flags' ':' UInt64 8535 bool LLParser::parseSummaryIndexFlags() { 8536 assert(Lex.getKind() == lltok::kw_flags); 8537 Lex.Lex(); 8538 8539 if (parseToken(lltok::colon, "expected ':' here")) 8540 return true; 8541 uint64_t Flags; 8542 if (parseUInt64(Flags)) 8543 return true; 8544 if (Index) 8545 Index->setFlags(Flags); 8546 return false; 8547 } 8548 8549 /// parseBlockCount 8550 /// ::= 'blockcount' ':' UInt64 8551 bool LLParser::parseBlockCount() { 8552 assert(Lex.getKind() == lltok::kw_blockcount); 8553 Lex.Lex(); 8554 8555 if (parseToken(lltok::colon, "expected ':' here")) 8556 return true; 8557 uint64_t BlockCount; 8558 if (parseUInt64(BlockCount)) 8559 return true; 8560 if (Index) 8561 Index->setBlockCount(BlockCount); 8562 return false; 8563 } 8564 8565 /// parseGVEntry 8566 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8567 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8568 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8569 bool LLParser::parseGVEntry(unsigned ID) { 8570 assert(Lex.getKind() == lltok::kw_gv); 8571 Lex.Lex(); 8572 8573 if (parseToken(lltok::colon, "expected ':' here") || 8574 parseToken(lltok::lparen, "expected '(' here")) 8575 return true; 8576 8577 std::string Name; 8578 GlobalValue::GUID GUID = 0; 8579 switch (Lex.getKind()) { 8580 case lltok::kw_name: 8581 Lex.Lex(); 8582 if (parseToken(lltok::colon, "expected ':' here") || 8583 parseStringConstant(Name)) 8584 return true; 8585 // Can't create GUID/ValueInfo until we have the linkage. 8586 break; 8587 case lltok::kw_guid: 8588 Lex.Lex(); 8589 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8590 return true; 8591 break; 8592 default: 8593 return error(Lex.getLoc(), "expected name or guid tag"); 8594 } 8595 8596 if (!EatIfPresent(lltok::comma)) { 8597 // No summaries. Wrap up. 8598 if (parseToken(lltok::rparen, "expected ')' here")) 8599 return true; 8600 // This was created for a call to an external or indirect target. 8601 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8602 // created for indirect calls with VP. A Name with no GUID came from 8603 // an external definition. We pass ExternalLinkage since that is only 8604 // used when the GUID must be computed from Name, and in that case 8605 // the symbol must have external linkage. 8606 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8607 nullptr); 8608 return false; 8609 } 8610 8611 // Have a list of summaries 8612 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8613 parseToken(lltok::colon, "expected ':' here") || 8614 parseToken(lltok::lparen, "expected '(' here")) 8615 return true; 8616 do { 8617 switch (Lex.getKind()) { 8618 case lltok::kw_function: 8619 if (parseFunctionSummary(Name, GUID, ID)) 8620 return true; 8621 break; 8622 case lltok::kw_variable: 8623 if (parseVariableSummary(Name, GUID, ID)) 8624 return true; 8625 break; 8626 case lltok::kw_alias: 8627 if (parseAliasSummary(Name, GUID, ID)) 8628 return true; 8629 break; 8630 default: 8631 return error(Lex.getLoc(), "expected summary type"); 8632 } 8633 } while (EatIfPresent(lltok::comma)); 8634 8635 if (parseToken(lltok::rparen, "expected ')' here") || 8636 parseToken(lltok::rparen, "expected ')' here")) 8637 return true; 8638 8639 return false; 8640 } 8641 8642 /// FunctionSummary 8643 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8644 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8645 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8646 /// [',' OptionalRefs]? ')' 8647 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8648 unsigned ID) { 8649 assert(Lex.getKind() == lltok::kw_function); 8650 Lex.Lex(); 8651 8652 StringRef ModulePath; 8653 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8654 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8655 /*NotEligibleToImport=*/false, 8656 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8657 unsigned InstCount; 8658 std::vector<FunctionSummary::EdgeTy> Calls; 8659 FunctionSummary::TypeIdInfo TypeIdInfo; 8660 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8661 std::vector<ValueInfo> Refs; 8662 // Default is all-zeros (conservative values). 8663 FunctionSummary::FFlags FFlags = {}; 8664 if (parseToken(lltok::colon, "expected ':' here") || 8665 parseToken(lltok::lparen, "expected '(' here") || 8666 parseModuleReference(ModulePath) || 8667 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8668 parseToken(lltok::comma, "expected ',' here") || 8669 parseToken(lltok::kw_insts, "expected 'insts' here") || 8670 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8671 return true; 8672 8673 // parse optional fields 8674 while (EatIfPresent(lltok::comma)) { 8675 switch (Lex.getKind()) { 8676 case lltok::kw_funcFlags: 8677 if (parseOptionalFFlags(FFlags)) 8678 return true; 8679 break; 8680 case lltok::kw_calls: 8681 if (parseOptionalCalls(Calls)) 8682 return true; 8683 break; 8684 case lltok::kw_typeIdInfo: 8685 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8686 return true; 8687 break; 8688 case lltok::kw_refs: 8689 if (parseOptionalRefs(Refs)) 8690 return true; 8691 break; 8692 case lltok::kw_params: 8693 if (parseOptionalParamAccesses(ParamAccesses)) 8694 return true; 8695 break; 8696 default: 8697 return error(Lex.getLoc(), "expected optional function summary field"); 8698 } 8699 } 8700 8701 if (parseToken(lltok::rparen, "expected ')' here")) 8702 return true; 8703 8704 auto FS = std::make_unique<FunctionSummary>( 8705 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8706 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8707 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8708 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8709 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8710 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8711 std::move(ParamAccesses)); 8712 8713 FS->setModulePath(ModulePath); 8714 8715 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8716 ID, std::move(FS)); 8717 8718 return false; 8719 } 8720 8721 /// VariableSummary 8722 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8723 /// [',' OptionalRefs]? ')' 8724 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8725 unsigned ID) { 8726 assert(Lex.getKind() == lltok::kw_variable); 8727 Lex.Lex(); 8728 8729 StringRef ModulePath; 8730 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8731 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8732 /*NotEligibleToImport=*/false, 8733 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8734 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8735 /* WriteOnly */ false, 8736 /* Constant */ false, 8737 GlobalObject::VCallVisibilityPublic); 8738 std::vector<ValueInfo> Refs; 8739 VTableFuncList VTableFuncs; 8740 if (parseToken(lltok::colon, "expected ':' here") || 8741 parseToken(lltok::lparen, "expected '(' here") || 8742 parseModuleReference(ModulePath) || 8743 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8744 parseToken(lltok::comma, "expected ',' here") || 8745 parseGVarFlags(GVarFlags)) 8746 return true; 8747 8748 // parse optional fields 8749 while (EatIfPresent(lltok::comma)) { 8750 switch (Lex.getKind()) { 8751 case lltok::kw_vTableFuncs: 8752 if (parseOptionalVTableFuncs(VTableFuncs)) 8753 return true; 8754 break; 8755 case lltok::kw_refs: 8756 if (parseOptionalRefs(Refs)) 8757 return true; 8758 break; 8759 default: 8760 return error(Lex.getLoc(), "expected optional variable summary field"); 8761 } 8762 } 8763 8764 if (parseToken(lltok::rparen, "expected ')' here")) 8765 return true; 8766 8767 auto GS = 8768 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8769 8770 GS->setModulePath(ModulePath); 8771 GS->setVTableFuncs(std::move(VTableFuncs)); 8772 8773 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8774 ID, std::move(GS)); 8775 8776 return false; 8777 } 8778 8779 /// AliasSummary 8780 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8781 /// 'aliasee' ':' GVReference ')' 8782 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8783 unsigned ID) { 8784 assert(Lex.getKind() == lltok::kw_alias); 8785 LocTy Loc = Lex.getLoc(); 8786 Lex.Lex(); 8787 8788 StringRef ModulePath; 8789 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8790 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8791 /*NotEligibleToImport=*/false, 8792 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8793 if (parseToken(lltok::colon, "expected ':' here") || 8794 parseToken(lltok::lparen, "expected '(' here") || 8795 parseModuleReference(ModulePath) || 8796 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8797 parseToken(lltok::comma, "expected ',' here") || 8798 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8799 parseToken(lltok::colon, "expected ':' here")) 8800 return true; 8801 8802 ValueInfo AliaseeVI; 8803 unsigned GVId; 8804 if (parseGVReference(AliaseeVI, GVId)) 8805 return true; 8806 8807 if (parseToken(lltok::rparen, "expected ')' here")) 8808 return true; 8809 8810 auto AS = std::make_unique<AliasSummary>(GVFlags); 8811 8812 AS->setModulePath(ModulePath); 8813 8814 // Record forward reference if the aliasee is not parsed yet. 8815 if (AliaseeVI.getRef() == FwdVIRef) { 8816 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8817 } else { 8818 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8819 assert(Summary && "Aliasee must be a definition"); 8820 AS->setAliasee(AliaseeVI, Summary); 8821 } 8822 8823 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8824 ID, std::move(AS)); 8825 8826 return false; 8827 } 8828 8829 /// Flag 8830 /// ::= [0|1] 8831 bool LLParser::parseFlag(unsigned &Val) { 8832 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8833 return tokError("expected integer"); 8834 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8835 Lex.Lex(); 8836 return false; 8837 } 8838 8839 /// OptionalFFlags 8840 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8841 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8842 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8843 /// [',' 'noInline' ':' Flag]? ')' 8844 /// [',' 'alwaysInline' ':' Flag]? ')' 8845 8846 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8847 assert(Lex.getKind() == lltok::kw_funcFlags); 8848 Lex.Lex(); 8849 8850 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8851 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8852 return true; 8853 8854 do { 8855 unsigned Val = 0; 8856 switch (Lex.getKind()) { 8857 case lltok::kw_readNone: 8858 Lex.Lex(); 8859 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8860 return true; 8861 FFlags.ReadNone = Val; 8862 break; 8863 case lltok::kw_readOnly: 8864 Lex.Lex(); 8865 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8866 return true; 8867 FFlags.ReadOnly = Val; 8868 break; 8869 case lltok::kw_noRecurse: 8870 Lex.Lex(); 8871 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8872 return true; 8873 FFlags.NoRecurse = Val; 8874 break; 8875 case lltok::kw_returnDoesNotAlias: 8876 Lex.Lex(); 8877 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8878 return true; 8879 FFlags.ReturnDoesNotAlias = Val; 8880 break; 8881 case lltok::kw_noInline: 8882 Lex.Lex(); 8883 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8884 return true; 8885 FFlags.NoInline = Val; 8886 break; 8887 case lltok::kw_alwaysInline: 8888 Lex.Lex(); 8889 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8890 return true; 8891 FFlags.AlwaysInline = Val; 8892 break; 8893 default: 8894 return error(Lex.getLoc(), "expected function flag type"); 8895 } 8896 } while (EatIfPresent(lltok::comma)); 8897 8898 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8899 return true; 8900 8901 return false; 8902 } 8903 8904 /// OptionalCalls 8905 /// := 'calls' ':' '(' Call [',' Call]* ')' 8906 /// Call ::= '(' 'callee' ':' GVReference 8907 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8908 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8909 assert(Lex.getKind() == lltok::kw_calls); 8910 Lex.Lex(); 8911 8912 if (parseToken(lltok::colon, "expected ':' in calls") | 8913 parseToken(lltok::lparen, "expected '(' in calls")) 8914 return true; 8915 8916 IdToIndexMapType IdToIndexMap; 8917 // parse each call edge 8918 do { 8919 ValueInfo VI; 8920 if (parseToken(lltok::lparen, "expected '(' in call") || 8921 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8922 parseToken(lltok::colon, "expected ':'")) 8923 return true; 8924 8925 LocTy Loc = Lex.getLoc(); 8926 unsigned GVId; 8927 if (parseGVReference(VI, GVId)) 8928 return true; 8929 8930 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8931 unsigned RelBF = 0; 8932 if (EatIfPresent(lltok::comma)) { 8933 // Expect either hotness or relbf 8934 if (EatIfPresent(lltok::kw_hotness)) { 8935 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8936 return true; 8937 } else { 8938 if (parseToken(lltok::kw_relbf, "expected relbf") || 8939 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8940 return true; 8941 } 8942 } 8943 // Keep track of the Call array index needing a forward reference. 8944 // We will save the location of the ValueInfo needing an update, but 8945 // can only do so once the std::vector is finalized. 8946 if (VI.getRef() == FwdVIRef) 8947 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8948 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8949 8950 if (parseToken(lltok::rparen, "expected ')' in call")) 8951 return true; 8952 } while (EatIfPresent(lltok::comma)); 8953 8954 // Now that the Calls vector is finalized, it is safe to save the locations 8955 // of any forward GV references that need updating later. 8956 for (auto I : IdToIndexMap) { 8957 auto &Infos = ForwardRefValueInfos[I.first]; 8958 for (auto P : I.second) { 8959 assert(Calls[P.first].first.getRef() == FwdVIRef && 8960 "Forward referenced ValueInfo expected to be empty"); 8961 Infos.emplace_back(&Calls[P.first].first, P.second); 8962 } 8963 } 8964 8965 if (parseToken(lltok::rparen, "expected ')' in calls")) 8966 return true; 8967 8968 return false; 8969 } 8970 8971 /// Hotness 8972 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8973 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8974 switch (Lex.getKind()) { 8975 case lltok::kw_unknown: 8976 Hotness = CalleeInfo::HotnessType::Unknown; 8977 break; 8978 case lltok::kw_cold: 8979 Hotness = CalleeInfo::HotnessType::Cold; 8980 break; 8981 case lltok::kw_none: 8982 Hotness = CalleeInfo::HotnessType::None; 8983 break; 8984 case lltok::kw_hot: 8985 Hotness = CalleeInfo::HotnessType::Hot; 8986 break; 8987 case lltok::kw_critical: 8988 Hotness = CalleeInfo::HotnessType::Critical; 8989 break; 8990 default: 8991 return error(Lex.getLoc(), "invalid call edge hotness"); 8992 } 8993 Lex.Lex(); 8994 return false; 8995 } 8996 8997 /// OptionalVTableFuncs 8998 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8999 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9000 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9001 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9002 Lex.Lex(); 9003 9004 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 9005 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9006 return true; 9007 9008 IdToIndexMapType IdToIndexMap; 9009 // parse each virtual function pair 9010 do { 9011 ValueInfo VI; 9012 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9013 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9014 parseToken(lltok::colon, "expected ':'")) 9015 return true; 9016 9017 LocTy Loc = Lex.getLoc(); 9018 unsigned GVId; 9019 if (parseGVReference(VI, GVId)) 9020 return true; 9021 9022 uint64_t Offset; 9023 if (parseToken(lltok::comma, "expected comma") || 9024 parseToken(lltok::kw_offset, "expected offset") || 9025 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9026 return true; 9027 9028 // Keep track of the VTableFuncs array index needing a forward reference. 9029 // We will save the location of the ValueInfo needing an update, but 9030 // can only do so once the std::vector is finalized. 9031 if (VI == EmptyVI) 9032 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9033 VTableFuncs.push_back({VI, Offset}); 9034 9035 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9036 return true; 9037 } while (EatIfPresent(lltok::comma)); 9038 9039 // Now that the VTableFuncs vector is finalized, it is safe to save the 9040 // locations of any forward GV references that need updating later. 9041 for (auto I : IdToIndexMap) { 9042 auto &Infos = ForwardRefValueInfos[I.first]; 9043 for (auto P : I.second) { 9044 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9045 "Forward referenced ValueInfo expected to be empty"); 9046 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9047 } 9048 } 9049 9050 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9051 return true; 9052 9053 return false; 9054 } 9055 9056 /// ParamNo := 'param' ':' UInt64 9057 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9058 if (parseToken(lltok::kw_param, "expected 'param' here") || 9059 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9060 return true; 9061 return false; 9062 } 9063 9064 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9065 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9066 APSInt Lower; 9067 APSInt Upper; 9068 auto ParseAPSInt = [&](APSInt &Val) { 9069 if (Lex.getKind() != lltok::APSInt) 9070 return tokError("expected integer"); 9071 Val = Lex.getAPSIntVal(); 9072 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9073 Val.setIsSigned(true); 9074 Lex.Lex(); 9075 return false; 9076 }; 9077 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9078 parseToken(lltok::colon, "expected ':' here") || 9079 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9080 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9081 parseToken(lltok::rsquare, "expected ']' here")) 9082 return true; 9083 9084 ++Upper; 9085 Range = 9086 (Lower == Upper && !Lower.isMaxValue()) 9087 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9088 : ConstantRange(Lower, Upper); 9089 9090 return false; 9091 } 9092 9093 /// ParamAccessCall 9094 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9095 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9096 IdLocListType &IdLocList) { 9097 if (parseToken(lltok::lparen, "expected '(' here") || 9098 parseToken(lltok::kw_callee, "expected 'callee' here") || 9099 parseToken(lltok::colon, "expected ':' here")) 9100 return true; 9101 9102 unsigned GVId; 9103 ValueInfo VI; 9104 LocTy Loc = Lex.getLoc(); 9105 if (parseGVReference(VI, GVId)) 9106 return true; 9107 9108 Call.Callee = VI; 9109 IdLocList.emplace_back(GVId, Loc); 9110 9111 if (parseToken(lltok::comma, "expected ',' here") || 9112 parseParamNo(Call.ParamNo) || 9113 parseToken(lltok::comma, "expected ',' here") || 9114 parseParamAccessOffset(Call.Offsets)) 9115 return true; 9116 9117 if (parseToken(lltok::rparen, "expected ')' here")) 9118 return true; 9119 9120 return false; 9121 } 9122 9123 /// ParamAccess 9124 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9125 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9126 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9127 IdLocListType &IdLocList) { 9128 if (parseToken(lltok::lparen, "expected '(' here") || 9129 parseParamNo(Param.ParamNo) || 9130 parseToken(lltok::comma, "expected ',' here") || 9131 parseParamAccessOffset(Param.Use)) 9132 return true; 9133 9134 if (EatIfPresent(lltok::comma)) { 9135 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9136 parseToken(lltok::colon, "expected ':' here") || 9137 parseToken(lltok::lparen, "expected '(' here")) 9138 return true; 9139 do { 9140 FunctionSummary::ParamAccess::Call Call; 9141 if (parseParamAccessCall(Call, IdLocList)) 9142 return true; 9143 Param.Calls.push_back(Call); 9144 } while (EatIfPresent(lltok::comma)); 9145 9146 if (parseToken(lltok::rparen, "expected ')' here")) 9147 return true; 9148 } 9149 9150 if (parseToken(lltok::rparen, "expected ')' here")) 9151 return true; 9152 9153 return false; 9154 } 9155 9156 /// OptionalParamAccesses 9157 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9158 bool LLParser::parseOptionalParamAccesses( 9159 std::vector<FunctionSummary::ParamAccess> &Params) { 9160 assert(Lex.getKind() == lltok::kw_params); 9161 Lex.Lex(); 9162 9163 if (parseToken(lltok::colon, "expected ':' here") || 9164 parseToken(lltok::lparen, "expected '(' here")) 9165 return true; 9166 9167 IdLocListType VContexts; 9168 size_t CallsNum = 0; 9169 do { 9170 FunctionSummary::ParamAccess ParamAccess; 9171 if (parseParamAccess(ParamAccess, VContexts)) 9172 return true; 9173 CallsNum += ParamAccess.Calls.size(); 9174 assert(VContexts.size() == CallsNum); 9175 Params.emplace_back(std::move(ParamAccess)); 9176 } while (EatIfPresent(lltok::comma)); 9177 9178 if (parseToken(lltok::rparen, "expected ')' here")) 9179 return true; 9180 9181 // Now that the Params is finalized, it is safe to save the locations 9182 // of any forward GV references that need updating later. 9183 IdLocListType::const_iterator ItContext = VContexts.begin(); 9184 for (auto &PA : Params) { 9185 for (auto &C : PA.Calls) { 9186 if (C.Callee.getRef() == FwdVIRef) 9187 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9188 ItContext->second); 9189 ++ItContext; 9190 } 9191 } 9192 assert(ItContext == VContexts.end()); 9193 9194 return false; 9195 } 9196 9197 /// OptionalRefs 9198 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9199 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9200 assert(Lex.getKind() == lltok::kw_refs); 9201 Lex.Lex(); 9202 9203 if (parseToken(lltok::colon, "expected ':' in refs") || 9204 parseToken(lltok::lparen, "expected '(' in refs")) 9205 return true; 9206 9207 struct ValueContext { 9208 ValueInfo VI; 9209 unsigned GVId; 9210 LocTy Loc; 9211 }; 9212 std::vector<ValueContext> VContexts; 9213 // parse each ref edge 9214 do { 9215 ValueContext VC; 9216 VC.Loc = Lex.getLoc(); 9217 if (parseGVReference(VC.VI, VC.GVId)) 9218 return true; 9219 VContexts.push_back(VC); 9220 } while (EatIfPresent(lltok::comma)); 9221 9222 // Sort value contexts so that ones with writeonly 9223 // and readonly ValueInfo are at the end of VContexts vector. 9224 // See FunctionSummary::specialRefCounts() 9225 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9226 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9227 }); 9228 9229 IdToIndexMapType IdToIndexMap; 9230 for (auto &VC : VContexts) { 9231 // Keep track of the Refs array index needing a forward reference. 9232 // We will save the location of the ValueInfo needing an update, but 9233 // can only do so once the std::vector is finalized. 9234 if (VC.VI.getRef() == FwdVIRef) 9235 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9236 Refs.push_back(VC.VI); 9237 } 9238 9239 // Now that the Refs vector is finalized, it is safe to save the locations 9240 // of any forward GV references that need updating later. 9241 for (auto I : IdToIndexMap) { 9242 auto &Infos = ForwardRefValueInfos[I.first]; 9243 for (auto P : I.second) { 9244 assert(Refs[P.first].getRef() == FwdVIRef && 9245 "Forward referenced ValueInfo expected to be empty"); 9246 Infos.emplace_back(&Refs[P.first], P.second); 9247 } 9248 } 9249 9250 if (parseToken(lltok::rparen, "expected ')' in refs")) 9251 return true; 9252 9253 return false; 9254 } 9255 9256 /// OptionalTypeIdInfo 9257 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9258 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9259 /// [',' TypeCheckedLoadConstVCalls]? ')' 9260 bool LLParser::parseOptionalTypeIdInfo( 9261 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9262 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9263 Lex.Lex(); 9264 9265 if (parseToken(lltok::colon, "expected ':' here") || 9266 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9267 return true; 9268 9269 do { 9270 switch (Lex.getKind()) { 9271 case lltok::kw_typeTests: 9272 if (parseTypeTests(TypeIdInfo.TypeTests)) 9273 return true; 9274 break; 9275 case lltok::kw_typeTestAssumeVCalls: 9276 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9277 TypeIdInfo.TypeTestAssumeVCalls)) 9278 return true; 9279 break; 9280 case lltok::kw_typeCheckedLoadVCalls: 9281 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9282 TypeIdInfo.TypeCheckedLoadVCalls)) 9283 return true; 9284 break; 9285 case lltok::kw_typeTestAssumeConstVCalls: 9286 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9287 TypeIdInfo.TypeTestAssumeConstVCalls)) 9288 return true; 9289 break; 9290 case lltok::kw_typeCheckedLoadConstVCalls: 9291 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9292 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9293 return true; 9294 break; 9295 default: 9296 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9297 } 9298 } while (EatIfPresent(lltok::comma)); 9299 9300 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9301 return true; 9302 9303 return false; 9304 } 9305 9306 /// TypeTests 9307 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9308 /// [',' (SummaryID | UInt64)]* ')' 9309 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9310 assert(Lex.getKind() == lltok::kw_typeTests); 9311 Lex.Lex(); 9312 9313 if (parseToken(lltok::colon, "expected ':' here") || 9314 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9315 return true; 9316 9317 IdToIndexMapType IdToIndexMap; 9318 do { 9319 GlobalValue::GUID GUID = 0; 9320 if (Lex.getKind() == lltok::SummaryID) { 9321 unsigned ID = Lex.getUIntVal(); 9322 LocTy Loc = Lex.getLoc(); 9323 // Keep track of the TypeTests array index needing a forward reference. 9324 // We will save the location of the GUID needing an update, but 9325 // can only do so once the std::vector is finalized. 9326 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9327 Lex.Lex(); 9328 } else if (parseUInt64(GUID)) 9329 return true; 9330 TypeTests.push_back(GUID); 9331 } while (EatIfPresent(lltok::comma)); 9332 9333 // Now that the TypeTests vector is finalized, it is safe to save the 9334 // locations of any forward GV references that need updating later. 9335 for (auto I : IdToIndexMap) { 9336 auto &Ids = ForwardRefTypeIds[I.first]; 9337 for (auto P : I.second) { 9338 assert(TypeTests[P.first] == 0 && 9339 "Forward referenced type id GUID expected to be 0"); 9340 Ids.emplace_back(&TypeTests[P.first], P.second); 9341 } 9342 } 9343 9344 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9345 return true; 9346 9347 return false; 9348 } 9349 9350 /// VFuncIdList 9351 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9352 bool LLParser::parseVFuncIdList( 9353 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9354 assert(Lex.getKind() == Kind); 9355 Lex.Lex(); 9356 9357 if (parseToken(lltok::colon, "expected ':' here") || 9358 parseToken(lltok::lparen, "expected '(' here")) 9359 return true; 9360 9361 IdToIndexMapType IdToIndexMap; 9362 do { 9363 FunctionSummary::VFuncId VFuncId; 9364 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9365 return true; 9366 VFuncIdList.push_back(VFuncId); 9367 } while (EatIfPresent(lltok::comma)); 9368 9369 if (parseToken(lltok::rparen, "expected ')' here")) 9370 return true; 9371 9372 // Now that the VFuncIdList vector is finalized, it is safe to save the 9373 // locations of any forward GV references that need updating later. 9374 for (auto I : IdToIndexMap) { 9375 auto &Ids = ForwardRefTypeIds[I.first]; 9376 for (auto P : I.second) { 9377 assert(VFuncIdList[P.first].GUID == 0 && 9378 "Forward referenced type id GUID expected to be 0"); 9379 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9380 } 9381 } 9382 9383 return false; 9384 } 9385 9386 /// ConstVCallList 9387 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9388 bool LLParser::parseConstVCallList( 9389 lltok::Kind Kind, 9390 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9391 assert(Lex.getKind() == Kind); 9392 Lex.Lex(); 9393 9394 if (parseToken(lltok::colon, "expected ':' here") || 9395 parseToken(lltok::lparen, "expected '(' here")) 9396 return true; 9397 9398 IdToIndexMapType IdToIndexMap; 9399 do { 9400 FunctionSummary::ConstVCall ConstVCall; 9401 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9402 return true; 9403 ConstVCallList.push_back(ConstVCall); 9404 } while (EatIfPresent(lltok::comma)); 9405 9406 if (parseToken(lltok::rparen, "expected ')' here")) 9407 return true; 9408 9409 // Now that the ConstVCallList vector is finalized, it is safe to save the 9410 // locations of any forward GV references that need updating later. 9411 for (auto I : IdToIndexMap) { 9412 auto &Ids = ForwardRefTypeIds[I.first]; 9413 for (auto P : I.second) { 9414 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9415 "Forward referenced type id GUID expected to be 0"); 9416 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9417 } 9418 } 9419 9420 return false; 9421 } 9422 9423 /// ConstVCall 9424 /// ::= '(' VFuncId ',' Args ')' 9425 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9426 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9427 if (parseToken(lltok::lparen, "expected '(' here") || 9428 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9429 return true; 9430 9431 if (EatIfPresent(lltok::comma)) 9432 if (parseArgs(ConstVCall.Args)) 9433 return true; 9434 9435 if (parseToken(lltok::rparen, "expected ')' here")) 9436 return true; 9437 9438 return false; 9439 } 9440 9441 /// VFuncId 9442 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9443 /// 'offset' ':' UInt64 ')' 9444 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9445 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9446 assert(Lex.getKind() == lltok::kw_vFuncId); 9447 Lex.Lex(); 9448 9449 if (parseToken(lltok::colon, "expected ':' here") || 9450 parseToken(lltok::lparen, "expected '(' here")) 9451 return true; 9452 9453 if (Lex.getKind() == lltok::SummaryID) { 9454 VFuncId.GUID = 0; 9455 unsigned ID = Lex.getUIntVal(); 9456 LocTy Loc = Lex.getLoc(); 9457 // Keep track of the array index needing a forward reference. 9458 // We will save the location of the GUID needing an update, but 9459 // can only do so once the caller's std::vector is finalized. 9460 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9461 Lex.Lex(); 9462 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9463 parseToken(lltok::colon, "expected ':' here") || 9464 parseUInt64(VFuncId.GUID)) 9465 return true; 9466 9467 if (parseToken(lltok::comma, "expected ',' here") || 9468 parseToken(lltok::kw_offset, "expected 'offset' here") || 9469 parseToken(lltok::colon, "expected ':' here") || 9470 parseUInt64(VFuncId.Offset) || 9471 parseToken(lltok::rparen, "expected ')' here")) 9472 return true; 9473 9474 return false; 9475 } 9476 9477 /// GVFlags 9478 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9479 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9480 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9481 /// 'canAutoHide' ':' Flag ',' ')' 9482 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9483 assert(Lex.getKind() == lltok::kw_flags); 9484 Lex.Lex(); 9485 9486 if (parseToken(lltok::colon, "expected ':' here") || 9487 parseToken(lltok::lparen, "expected '(' here")) 9488 return true; 9489 9490 do { 9491 unsigned Flag = 0; 9492 switch (Lex.getKind()) { 9493 case lltok::kw_linkage: 9494 Lex.Lex(); 9495 if (parseToken(lltok::colon, "expected ':'")) 9496 return true; 9497 bool HasLinkage; 9498 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9499 assert(HasLinkage && "Linkage not optional in summary entry"); 9500 Lex.Lex(); 9501 break; 9502 case lltok::kw_visibility: 9503 Lex.Lex(); 9504 if (parseToken(lltok::colon, "expected ':'")) 9505 return true; 9506 parseOptionalVisibility(Flag); 9507 GVFlags.Visibility = Flag; 9508 break; 9509 case lltok::kw_notEligibleToImport: 9510 Lex.Lex(); 9511 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9512 return true; 9513 GVFlags.NotEligibleToImport = Flag; 9514 break; 9515 case lltok::kw_live: 9516 Lex.Lex(); 9517 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9518 return true; 9519 GVFlags.Live = Flag; 9520 break; 9521 case lltok::kw_dsoLocal: 9522 Lex.Lex(); 9523 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9524 return true; 9525 GVFlags.DSOLocal = Flag; 9526 break; 9527 case lltok::kw_canAutoHide: 9528 Lex.Lex(); 9529 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9530 return true; 9531 GVFlags.CanAutoHide = Flag; 9532 break; 9533 default: 9534 return error(Lex.getLoc(), "expected gv flag type"); 9535 } 9536 } while (EatIfPresent(lltok::comma)); 9537 9538 if (parseToken(lltok::rparen, "expected ')' here")) 9539 return true; 9540 9541 return false; 9542 } 9543 9544 /// GVarFlags 9545 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9546 /// ',' 'writeonly' ':' Flag 9547 /// ',' 'constant' ':' Flag ')' 9548 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9549 assert(Lex.getKind() == lltok::kw_varFlags); 9550 Lex.Lex(); 9551 9552 if (parseToken(lltok::colon, "expected ':' here") || 9553 parseToken(lltok::lparen, "expected '(' here")) 9554 return true; 9555 9556 auto ParseRest = [this](unsigned int &Val) { 9557 Lex.Lex(); 9558 if (parseToken(lltok::colon, "expected ':'")) 9559 return true; 9560 return parseFlag(Val); 9561 }; 9562 9563 do { 9564 unsigned Flag = 0; 9565 switch (Lex.getKind()) { 9566 case lltok::kw_readonly: 9567 if (ParseRest(Flag)) 9568 return true; 9569 GVarFlags.MaybeReadOnly = Flag; 9570 break; 9571 case lltok::kw_writeonly: 9572 if (ParseRest(Flag)) 9573 return true; 9574 GVarFlags.MaybeWriteOnly = Flag; 9575 break; 9576 case lltok::kw_constant: 9577 if (ParseRest(Flag)) 9578 return true; 9579 GVarFlags.Constant = Flag; 9580 break; 9581 case lltok::kw_vcall_visibility: 9582 if (ParseRest(Flag)) 9583 return true; 9584 GVarFlags.VCallVisibility = Flag; 9585 break; 9586 default: 9587 return error(Lex.getLoc(), "expected gvar flag type"); 9588 } 9589 } while (EatIfPresent(lltok::comma)); 9590 return parseToken(lltok::rparen, "expected ')' here"); 9591 } 9592 9593 /// ModuleReference 9594 /// ::= 'module' ':' UInt 9595 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9596 // parse module id. 9597 if (parseToken(lltok::kw_module, "expected 'module' here") || 9598 parseToken(lltok::colon, "expected ':' here") || 9599 parseToken(lltok::SummaryID, "expected module ID")) 9600 return true; 9601 9602 unsigned ModuleID = Lex.getUIntVal(); 9603 auto I = ModuleIdMap.find(ModuleID); 9604 // We should have already parsed all module IDs 9605 assert(I != ModuleIdMap.end()); 9606 ModulePath = I->second; 9607 return false; 9608 } 9609 9610 /// GVReference 9611 /// ::= SummaryID 9612 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9613 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9614 if (!ReadOnly) 9615 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9616 if (parseToken(lltok::SummaryID, "expected GV ID")) 9617 return true; 9618 9619 GVId = Lex.getUIntVal(); 9620 // Check if we already have a VI for this GV 9621 if (GVId < NumberedValueInfos.size()) { 9622 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9623 VI = NumberedValueInfos[GVId]; 9624 } else 9625 // We will create a forward reference to the stored location. 9626 VI = ValueInfo(false, FwdVIRef); 9627 9628 if (ReadOnly) 9629 VI.setReadOnly(); 9630 if (WriteOnly) 9631 VI.setWriteOnly(); 9632 return false; 9633 } 9634