1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/IR/AutoUpgrade.h" 20 #include "llvm/IR/CallingConv.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/ValueSymbolTable.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Dwarf.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/SaveAndRestore.h" 37 #include "llvm/Support/raw_ostream.h" 38 using namespace llvm; 39 40 static std::string getTypeString(Type *T) { 41 std::string Result; 42 raw_string_ostream Tmp(Result); 43 Tmp << *T; 44 return Tmp.str(); 45 } 46 47 /// Run: module ::= toplevelentity* 48 bool LLParser::Run() { 49 // Prime the lexer. 50 Lex.Lex(); 51 52 if (Context.shouldDiscardValueNames()) 53 return Error( 54 Lex.getLoc(), 55 "Can't read textual IR with a Context that discards named Values"); 56 57 return ParseTopLevelEntities() || 58 ValidateEndOfModule(); 59 } 60 61 bool LLParser::parseStandaloneConstantValue(Constant *&C, 62 const SlotMapping *Slots) { 63 restoreParsingState(Slots); 64 Lex.Lex(); 65 66 Type *Ty = nullptr; 67 if (ParseType(Ty) || parseConstantValue(Ty, C)) 68 return true; 69 if (Lex.getKind() != lltok::Eof) 70 return Error(Lex.getLoc(), "expected end of string"); 71 return false; 72 } 73 74 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 75 const SlotMapping *Slots) { 76 restoreParsingState(Slots); 77 Lex.Lex(); 78 79 Read = 0; 80 SMLoc Start = Lex.getLoc(); 81 Ty = nullptr; 82 if (ParseType(Ty)) 83 return true; 84 SMLoc End = Lex.getLoc(); 85 Read = End.getPointer() - Start.getPointer(); 86 87 return false; 88 } 89 90 void LLParser::restoreParsingState(const SlotMapping *Slots) { 91 if (!Slots) 92 return; 93 NumberedVals = Slots->GlobalValues; 94 NumberedMetadata = Slots->MetadataNodes; 95 for (const auto &I : Slots->NamedTypes) 96 NamedTypes.insert( 97 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 98 for (const auto &I : Slots->Types) 99 NumberedTypes.insert( 100 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 101 } 102 103 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 104 /// module. 105 bool LLParser::ValidateEndOfModule() { 106 // Handle any function attribute group forward references. 107 for (std::map<Value*, std::vector<unsigned> >::iterator 108 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 109 I != E; ++I) { 110 Value *V = I->first; 111 std::vector<unsigned> &Vec = I->second; 112 AttrBuilder B; 113 114 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 115 VI != VE; ++VI) 116 B.merge(NumberedAttrBuilders[*VI]); 117 118 if (Function *Fn = dyn_cast<Function>(V)) { 119 AttributeSet AS = Fn->getAttributes(); 120 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 121 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 122 AS.getFnAttributes()); 123 124 FnAttrs.merge(B); 125 126 // If the alignment was parsed as an attribute, move to the alignment 127 // field. 128 if (FnAttrs.hasAlignmentAttr()) { 129 Fn->setAlignment(FnAttrs.getAlignment()); 130 FnAttrs.removeAttribute(Attribute::Alignment); 131 } 132 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 Fn->setAttributes(AS); 138 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 139 AttributeSet AS = CI->getAttributes(); 140 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 141 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 142 AS.getFnAttributes()); 143 FnAttrs.merge(B); 144 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 145 AttributeSet::get(Context, 146 AttributeSet::FunctionIndex, 147 FnAttrs)); 148 CI->setAttributes(AS); 149 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 150 AttributeSet AS = II->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 152 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 153 AS.getFnAttributes()); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 156 AttributeSet::get(Context, 157 AttributeSet::FunctionIndex, 158 FnAttrs)); 159 II->setAttributes(AS); 160 } else { 161 llvm_unreachable("invalid object with forward attribute group reference"); 162 } 163 } 164 165 // If there are entries in ForwardRefBlockAddresses at this point, the 166 // function was never defined. 167 if (!ForwardRefBlockAddresses.empty()) 168 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 169 "expected function name in blockaddress"); 170 171 for (const auto &NT : NumberedTypes) 172 if (NT.second.second.isValid()) 173 return Error(NT.second.second, 174 "use of undefined type '%" + Twine(NT.first) + "'"); 175 176 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 177 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 178 if (I->second.second.isValid()) 179 return Error(I->second.second, 180 "use of undefined type named '" + I->getKey() + "'"); 181 182 if (!ForwardRefComdats.empty()) 183 return Error(ForwardRefComdats.begin()->second, 184 "use of undefined comdat '$" + 185 ForwardRefComdats.begin()->first + "'"); 186 187 if (!ForwardRefVals.empty()) 188 return Error(ForwardRefVals.begin()->second.second, 189 "use of undefined value '@" + ForwardRefVals.begin()->first + 190 "'"); 191 192 if (!ForwardRefValIDs.empty()) 193 return Error(ForwardRefValIDs.begin()->second.second, 194 "use of undefined value '@" + 195 Twine(ForwardRefValIDs.begin()->first) + "'"); 196 197 if (!ForwardRefMDNodes.empty()) 198 return Error(ForwardRefMDNodes.begin()->second.second, 199 "use of undefined metadata '!" + 200 Twine(ForwardRefMDNodes.begin()->first) + "'"); 201 202 // Resolve metadata cycles. 203 for (auto &N : NumberedMetadata) { 204 if (N.second && !N.second->isResolved()) 205 N.second->resolveCycles(); 206 } 207 208 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 209 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 210 211 // Look for intrinsic functions and CallInst that need to be upgraded 212 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 213 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 214 215 // Some types could be renamed during loading if several modules are 216 // loaded in the same LLVMContext (LTO scenario). In this case we should 217 // remangle intrinsics names as well. 218 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 219 Function *F = &*FI++; 220 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 221 F->replaceAllUsesWith(Remangled.getValue()); 222 F->eraseFromParent(); 223 } 224 } 225 226 UpgradeDebugInfo(*M); 227 228 UpgradeModuleFlags(*M); 229 230 if (!Slots) 231 return false; 232 // Initialize the slot mapping. 233 // Because by this point we've parsed and validated everything, we can "steal" 234 // the mapping from LLParser as it doesn't need it anymore. 235 Slots->GlobalValues = std::move(NumberedVals); 236 Slots->MetadataNodes = std::move(NumberedMetadata); 237 for (const auto &I : NamedTypes) 238 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 239 for (const auto &I : NumberedTypes) 240 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 241 242 return false; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Top-Level Entities 247 //===----------------------------------------------------------------------===// 248 249 bool LLParser::ParseTopLevelEntities() { 250 while (1) { 251 switch (Lex.getKind()) { 252 default: return TokError("expected top-level entity"); 253 case lltok::Eof: return false; 254 case lltok::kw_declare: if (ParseDeclare()) return true; break; 255 case lltok::kw_define: if (ParseDefine()) return true; break; 256 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 257 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 258 case lltok::kw_source_filename: 259 if (ParseSourceFileName()) 260 return true; 261 break; 262 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 263 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 264 case lltok::LocalVar: if (ParseNamedType()) return true; break; 265 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 266 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 267 case lltok::ComdatVar: if (parseComdat()) return true; break; 268 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 269 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 270 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 271 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 272 case lltok::kw_uselistorder_bb: 273 if (ParseUseListOrderBB()) return true; break; 274 } 275 } 276 } 277 278 279 /// toplevelentity 280 /// ::= 'module' 'asm' STRINGCONSTANT 281 bool LLParser::ParseModuleAsm() { 282 assert(Lex.getKind() == lltok::kw_module); 283 Lex.Lex(); 284 285 std::string AsmStr; 286 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 287 ParseStringConstant(AsmStr)) return true; 288 289 M->appendModuleInlineAsm(AsmStr); 290 return false; 291 } 292 293 /// toplevelentity 294 /// ::= 'target' 'triple' '=' STRINGCONSTANT 295 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 296 bool LLParser::ParseTargetDefinition() { 297 assert(Lex.getKind() == lltok::kw_target); 298 std::string Str; 299 switch (Lex.Lex()) { 300 default: return TokError("unknown target property"); 301 case lltok::kw_triple: 302 Lex.Lex(); 303 if (ParseToken(lltok::equal, "expected '=' after target triple") || 304 ParseStringConstant(Str)) 305 return true; 306 M->setTargetTriple(Str); 307 return false; 308 case lltok::kw_datalayout: 309 Lex.Lex(); 310 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 311 ParseStringConstant(Str)) 312 return true; 313 M->setDataLayout(Str); 314 return false; 315 } 316 } 317 318 /// toplevelentity 319 /// ::= 'source_filename' '=' STRINGCONSTANT 320 bool LLParser::ParseSourceFileName() { 321 assert(Lex.getKind() == lltok::kw_source_filename); 322 std::string Str; 323 Lex.Lex(); 324 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 325 ParseStringConstant(Str)) 326 return true; 327 M->setSourceFileName(Str); 328 return false; 329 } 330 331 /// toplevelentity 332 /// ::= 'deplibs' '=' '[' ']' 333 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 334 /// FIXME: Remove in 4.0. Currently parse, but ignore. 335 bool LLParser::ParseDepLibs() { 336 assert(Lex.getKind() == lltok::kw_deplibs); 337 Lex.Lex(); 338 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 339 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 340 return true; 341 342 if (EatIfPresent(lltok::rsquare)) 343 return false; 344 345 do { 346 std::string Str; 347 if (ParseStringConstant(Str)) return true; 348 } while (EatIfPresent(lltok::comma)); 349 350 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 351 } 352 353 /// ParseUnnamedType: 354 /// ::= LocalVarID '=' 'type' type 355 bool LLParser::ParseUnnamedType() { 356 LocTy TypeLoc = Lex.getLoc(); 357 unsigned TypeID = Lex.getUIntVal(); 358 Lex.Lex(); // eat LocalVarID; 359 360 if (ParseToken(lltok::equal, "expected '=' after name") || 361 ParseToken(lltok::kw_type, "expected 'type' after '='")) 362 return true; 363 364 Type *Result = nullptr; 365 if (ParseStructDefinition(TypeLoc, "", 366 NumberedTypes[TypeID], Result)) return true; 367 368 if (!isa<StructType>(Result)) { 369 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 370 if (Entry.first) 371 return Error(TypeLoc, "non-struct types may not be recursive"); 372 Entry.first = Result; 373 Entry.second = SMLoc(); 374 } 375 376 return false; 377 } 378 379 380 /// toplevelentity 381 /// ::= LocalVar '=' 'type' type 382 bool LLParser::ParseNamedType() { 383 std::string Name = Lex.getStrVal(); 384 LocTy NameLoc = Lex.getLoc(); 385 Lex.Lex(); // eat LocalVar. 386 387 if (ParseToken(lltok::equal, "expected '=' after name") || 388 ParseToken(lltok::kw_type, "expected 'type' after name")) 389 return true; 390 391 Type *Result = nullptr; 392 if (ParseStructDefinition(NameLoc, Name, 393 NamedTypes[Name], Result)) return true; 394 395 if (!isa<StructType>(Result)) { 396 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 397 if (Entry.first) 398 return Error(NameLoc, "non-struct types may not be recursive"); 399 Entry.first = Result; 400 Entry.second = SMLoc(); 401 } 402 403 return false; 404 } 405 406 407 /// toplevelentity 408 /// ::= 'declare' FunctionHeader 409 bool LLParser::ParseDeclare() { 410 assert(Lex.getKind() == lltok::kw_declare); 411 Lex.Lex(); 412 413 std::vector<std::pair<unsigned, MDNode *>> MDs; 414 while (Lex.getKind() == lltok::MetadataVar) { 415 unsigned MDK; 416 MDNode *N; 417 if (ParseMetadataAttachment(MDK, N)) 418 return true; 419 MDs.push_back({MDK, N}); 420 } 421 422 Function *F; 423 if (ParseFunctionHeader(F, false)) 424 return true; 425 for (auto &MD : MDs) 426 F->addMetadata(MD.first, *MD.second); 427 return false; 428 } 429 430 /// toplevelentity 431 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 432 bool LLParser::ParseDefine() { 433 assert(Lex.getKind() == lltok::kw_define); 434 Lex.Lex(); 435 436 Function *F; 437 return ParseFunctionHeader(F, true) || 438 ParseOptionalFunctionMetadata(*F) || 439 ParseFunctionBody(*F); 440 } 441 442 /// ParseGlobalType 443 /// ::= 'constant' 444 /// ::= 'global' 445 bool LLParser::ParseGlobalType(bool &IsConstant) { 446 if (Lex.getKind() == lltok::kw_constant) 447 IsConstant = true; 448 else if (Lex.getKind() == lltok::kw_global) 449 IsConstant = false; 450 else { 451 IsConstant = false; 452 return TokError("expected 'global' or 'constant'"); 453 } 454 Lex.Lex(); 455 return false; 456 } 457 458 bool LLParser::ParseOptionalUnnamedAddr( 459 GlobalVariable::UnnamedAddr &UnnamedAddr) { 460 if (EatIfPresent(lltok::kw_unnamed_addr)) 461 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 462 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 463 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 464 else 465 UnnamedAddr = GlobalValue::UnnamedAddr::None; 466 return false; 467 } 468 469 /// ParseUnnamedGlobal: 470 /// OptionalVisibility (ALIAS | IFUNC) ... 471 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 472 /// ... -> global variable 473 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 474 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 475 /// ... -> global variable 476 bool LLParser::ParseUnnamedGlobal() { 477 unsigned VarID = NumberedVals.size(); 478 std::string Name; 479 LocTy NameLoc = Lex.getLoc(); 480 481 // Handle the GlobalID form. 482 if (Lex.getKind() == lltok::GlobalID) { 483 if (Lex.getUIntVal() != VarID) 484 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 485 Twine(VarID) + "'"); 486 Lex.Lex(); // eat GlobalID; 487 488 if (ParseToken(lltok::equal, "expected '=' after name")) 489 return true; 490 } 491 492 bool HasLinkage; 493 unsigned Linkage, Visibility, DLLStorageClass; 494 GlobalVariable::ThreadLocalMode TLM; 495 GlobalVariable::UnnamedAddr UnnamedAddr; 496 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 497 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 498 return true; 499 500 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 501 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 502 DLLStorageClass, TLM, UnnamedAddr); 503 504 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 505 DLLStorageClass, TLM, UnnamedAddr); 506 } 507 508 /// ParseNamedGlobal: 509 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 510 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 511 /// ... -> global variable 512 bool LLParser::ParseNamedGlobal() { 513 assert(Lex.getKind() == lltok::GlobalVar); 514 LocTy NameLoc = Lex.getLoc(); 515 std::string Name = Lex.getStrVal(); 516 Lex.Lex(); 517 518 bool HasLinkage; 519 unsigned Linkage, Visibility, DLLStorageClass; 520 GlobalVariable::ThreadLocalMode TLM; 521 GlobalVariable::UnnamedAddr UnnamedAddr; 522 if (ParseToken(lltok::equal, "expected '=' in global variable") || 523 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 524 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 525 return true; 526 527 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 528 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 529 DLLStorageClass, TLM, UnnamedAddr); 530 531 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 532 DLLStorageClass, TLM, UnnamedAddr); 533 } 534 535 bool LLParser::parseComdat() { 536 assert(Lex.getKind() == lltok::ComdatVar); 537 std::string Name = Lex.getStrVal(); 538 LocTy NameLoc = Lex.getLoc(); 539 Lex.Lex(); 540 541 if (ParseToken(lltok::equal, "expected '=' here")) 542 return true; 543 544 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 545 return TokError("expected comdat type"); 546 547 Comdat::SelectionKind SK; 548 switch (Lex.getKind()) { 549 default: 550 return TokError("unknown selection kind"); 551 case lltok::kw_any: 552 SK = Comdat::Any; 553 break; 554 case lltok::kw_exactmatch: 555 SK = Comdat::ExactMatch; 556 break; 557 case lltok::kw_largest: 558 SK = Comdat::Largest; 559 break; 560 case lltok::kw_noduplicates: 561 SK = Comdat::NoDuplicates; 562 break; 563 case lltok::kw_samesize: 564 SK = Comdat::SameSize; 565 break; 566 } 567 Lex.Lex(); 568 569 // See if the comdat was forward referenced, if so, use the comdat. 570 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 571 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 572 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 573 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 574 575 Comdat *C; 576 if (I != ComdatSymTab.end()) 577 C = &I->second; 578 else 579 C = M->getOrInsertComdat(Name); 580 C->setSelectionKind(SK); 581 582 return false; 583 } 584 585 // MDString: 586 // ::= '!' STRINGCONSTANT 587 bool LLParser::ParseMDString(MDString *&Result) { 588 std::string Str; 589 if (ParseStringConstant(Str)) return true; 590 Result = MDString::get(Context, Str); 591 return false; 592 } 593 594 // MDNode: 595 // ::= '!' MDNodeNumber 596 bool LLParser::ParseMDNodeID(MDNode *&Result) { 597 // !{ ..., !42, ... } 598 LocTy IDLoc = Lex.getLoc(); 599 unsigned MID = 0; 600 if (ParseUInt32(MID)) 601 return true; 602 603 // If not a forward reference, just return it now. 604 if (NumberedMetadata.count(MID)) { 605 Result = NumberedMetadata[MID]; 606 return false; 607 } 608 609 // Otherwise, create MDNode forward reference. 610 auto &FwdRef = ForwardRefMDNodes[MID]; 611 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 612 613 Result = FwdRef.first.get(); 614 NumberedMetadata[MID].reset(Result); 615 return false; 616 } 617 618 /// ParseNamedMetadata: 619 /// !foo = !{ !1, !2 } 620 bool LLParser::ParseNamedMetadata() { 621 assert(Lex.getKind() == lltok::MetadataVar); 622 std::string Name = Lex.getStrVal(); 623 Lex.Lex(); 624 625 if (ParseToken(lltok::equal, "expected '=' here") || 626 ParseToken(lltok::exclaim, "Expected '!' here") || 627 ParseToken(lltok::lbrace, "Expected '{' here")) 628 return true; 629 630 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 631 if (Lex.getKind() != lltok::rbrace) 632 do { 633 if (ParseToken(lltok::exclaim, "Expected '!' here")) 634 return true; 635 636 MDNode *N = nullptr; 637 if (ParseMDNodeID(N)) return true; 638 NMD->addOperand(N); 639 } while (EatIfPresent(lltok::comma)); 640 641 return ParseToken(lltok::rbrace, "expected end of metadata node"); 642 } 643 644 /// ParseStandaloneMetadata: 645 /// !42 = !{...} 646 bool LLParser::ParseStandaloneMetadata() { 647 assert(Lex.getKind() == lltok::exclaim); 648 Lex.Lex(); 649 unsigned MetadataID = 0; 650 651 MDNode *Init; 652 if (ParseUInt32(MetadataID) || 653 ParseToken(lltok::equal, "expected '=' here")) 654 return true; 655 656 // Detect common error, from old metadata syntax. 657 if (Lex.getKind() == lltok::Type) 658 return TokError("unexpected type in metadata definition"); 659 660 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 661 if (Lex.getKind() == lltok::MetadataVar) { 662 if (ParseSpecializedMDNode(Init, IsDistinct)) 663 return true; 664 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 665 ParseMDTuple(Init, IsDistinct)) 666 return true; 667 668 // See if this was forward referenced, if so, handle it. 669 auto FI = ForwardRefMDNodes.find(MetadataID); 670 if (FI != ForwardRefMDNodes.end()) { 671 FI->second.first->replaceAllUsesWith(Init); 672 ForwardRefMDNodes.erase(FI); 673 674 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 675 } else { 676 if (NumberedMetadata.count(MetadataID)) 677 return TokError("Metadata id is already used"); 678 NumberedMetadata[MetadataID].reset(Init); 679 } 680 681 return false; 682 } 683 684 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 685 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 686 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 687 } 688 689 /// parseIndirectSymbol: 690 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 691 /// OptionalDLLStorageClass OptionalThreadLocal 692 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 693 /// 694 /// IndirectSymbol 695 /// ::= TypeAndValue 696 /// 697 /// Everything through OptionalUnnamedAddr has already been parsed. 698 /// 699 bool LLParser::parseIndirectSymbol( 700 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 701 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 702 GlobalVariable::UnnamedAddr UnnamedAddr) { 703 bool IsAlias; 704 if (Lex.getKind() == lltok::kw_alias) 705 IsAlias = true; 706 else if (Lex.getKind() == lltok::kw_ifunc) 707 IsAlias = false; 708 else 709 llvm_unreachable("Not an alias or ifunc!"); 710 Lex.Lex(); 711 712 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 713 714 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 715 return Error(NameLoc, "invalid linkage type for alias"); 716 717 if (!isValidVisibilityForLinkage(Visibility, L)) 718 return Error(NameLoc, 719 "symbol with local linkage must have default visibility"); 720 721 Type *Ty; 722 LocTy ExplicitTypeLoc = Lex.getLoc(); 723 if (ParseType(Ty) || 724 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 725 return true; 726 727 Constant *Aliasee; 728 LocTy AliaseeLoc = Lex.getLoc(); 729 if (Lex.getKind() != lltok::kw_bitcast && 730 Lex.getKind() != lltok::kw_getelementptr && 731 Lex.getKind() != lltok::kw_addrspacecast && 732 Lex.getKind() != lltok::kw_inttoptr) { 733 if (ParseGlobalTypeAndValue(Aliasee)) 734 return true; 735 } else { 736 // The bitcast dest type is not present, it is implied by the dest type. 737 ValID ID; 738 if (ParseValID(ID)) 739 return true; 740 if (ID.Kind != ValID::t_Constant) 741 return Error(AliaseeLoc, "invalid aliasee"); 742 Aliasee = ID.ConstantVal; 743 } 744 745 Type *AliaseeType = Aliasee->getType(); 746 auto *PTy = dyn_cast<PointerType>(AliaseeType); 747 if (!PTy) 748 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 749 unsigned AddrSpace = PTy->getAddressSpace(); 750 751 if (IsAlias && Ty != PTy->getElementType()) 752 return Error( 753 ExplicitTypeLoc, 754 "explicit pointee type doesn't match operand's pointee type"); 755 756 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 757 return Error( 758 ExplicitTypeLoc, 759 "explicit pointee type should be a function type"); 760 761 GlobalValue *GVal = nullptr; 762 763 // See if the alias was forward referenced, if so, prepare to replace the 764 // forward reference. 765 if (!Name.empty()) { 766 GVal = M->getNamedValue(Name); 767 if (GVal) { 768 if (!ForwardRefVals.erase(Name)) 769 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 770 } 771 } else { 772 auto I = ForwardRefValIDs.find(NumberedVals.size()); 773 if (I != ForwardRefValIDs.end()) { 774 GVal = I->second.first; 775 ForwardRefValIDs.erase(I); 776 } 777 } 778 779 // Okay, create the alias but do not insert it into the module yet. 780 std::unique_ptr<GlobalIndirectSymbol> GA; 781 if (IsAlias) 782 GA.reset(GlobalAlias::create(Ty, AddrSpace, 783 (GlobalValue::LinkageTypes)Linkage, Name, 784 Aliasee, /*Parent*/ nullptr)); 785 else 786 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 787 (GlobalValue::LinkageTypes)Linkage, Name, 788 Aliasee, /*Parent*/ nullptr)); 789 GA->setThreadLocalMode(TLM); 790 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 791 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 792 GA->setUnnamedAddr(UnnamedAddr); 793 794 if (Name.empty()) 795 NumberedVals.push_back(GA.get()); 796 797 if (GVal) { 798 // Verify that types agree. 799 if (GVal->getType() != GA->getType()) 800 return Error( 801 ExplicitTypeLoc, 802 "forward reference and definition of alias have different types"); 803 804 // If they agree, just RAUW the old value with the alias and remove the 805 // forward ref info. 806 GVal->replaceAllUsesWith(GA.get()); 807 GVal->eraseFromParent(); 808 } 809 810 // Insert into the module, we know its name won't collide now. 811 if (IsAlias) 812 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 813 else 814 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 815 assert(GA->getName() == Name && "Should not be a name conflict!"); 816 817 // The module owns this now 818 GA.release(); 819 820 return false; 821 } 822 823 /// ParseGlobal 824 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 825 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 826 /// OptionalExternallyInitialized GlobalType Type Const 827 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 828 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 829 /// OptionalExternallyInitialized GlobalType Type Const 830 /// 831 /// Everything up to and including OptionalUnnamedAddr has been parsed 832 /// already. 833 /// 834 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 835 unsigned Linkage, bool HasLinkage, 836 unsigned Visibility, unsigned DLLStorageClass, 837 GlobalVariable::ThreadLocalMode TLM, 838 GlobalVariable::UnnamedAddr UnnamedAddr) { 839 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 840 return Error(NameLoc, 841 "symbol with local linkage must have default visibility"); 842 843 unsigned AddrSpace; 844 bool IsConstant, IsExternallyInitialized; 845 LocTy IsExternallyInitializedLoc; 846 LocTy TyLoc; 847 848 Type *Ty = nullptr; 849 if (ParseOptionalAddrSpace(AddrSpace) || 850 ParseOptionalToken(lltok::kw_externally_initialized, 851 IsExternallyInitialized, 852 &IsExternallyInitializedLoc) || 853 ParseGlobalType(IsConstant) || 854 ParseType(Ty, TyLoc)) 855 return true; 856 857 // If the linkage is specified and is external, then no initializer is 858 // present. 859 Constant *Init = nullptr; 860 if (!HasLinkage || 861 !GlobalValue::isValidDeclarationLinkage( 862 (GlobalValue::LinkageTypes)Linkage)) { 863 if (ParseGlobalValue(Ty, Init)) 864 return true; 865 } 866 867 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 868 return Error(TyLoc, "invalid type for global variable"); 869 870 GlobalValue *GVal = nullptr; 871 872 // See if the global was forward referenced, if so, use the global. 873 if (!Name.empty()) { 874 GVal = M->getNamedValue(Name); 875 if (GVal) { 876 if (!ForwardRefVals.erase(Name)) 877 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 878 } 879 } else { 880 auto I = ForwardRefValIDs.find(NumberedVals.size()); 881 if (I != ForwardRefValIDs.end()) { 882 GVal = I->second.first; 883 ForwardRefValIDs.erase(I); 884 } 885 } 886 887 GlobalVariable *GV; 888 if (!GVal) { 889 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 890 Name, nullptr, GlobalVariable::NotThreadLocal, 891 AddrSpace); 892 } else { 893 if (GVal->getValueType() != Ty) 894 return Error(TyLoc, 895 "forward reference and definition of global have different types"); 896 897 GV = cast<GlobalVariable>(GVal); 898 899 // Move the forward-reference to the correct spot in the module. 900 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 901 } 902 903 if (Name.empty()) 904 NumberedVals.push_back(GV); 905 906 // Set the parsed properties on the global. 907 if (Init) 908 GV->setInitializer(Init); 909 GV->setConstant(IsConstant); 910 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 911 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 912 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 913 GV->setExternallyInitialized(IsExternallyInitialized); 914 GV->setThreadLocalMode(TLM); 915 GV->setUnnamedAddr(UnnamedAddr); 916 917 // Parse attributes on the global. 918 while (Lex.getKind() == lltok::comma) { 919 Lex.Lex(); 920 921 if (Lex.getKind() == lltok::kw_section) { 922 Lex.Lex(); 923 GV->setSection(Lex.getStrVal()); 924 if (ParseToken(lltok::StringConstant, "expected global section string")) 925 return true; 926 } else if (Lex.getKind() == lltok::kw_align) { 927 unsigned Alignment; 928 if (ParseOptionalAlignment(Alignment)) return true; 929 GV->setAlignment(Alignment); 930 } else if (Lex.getKind() == lltok::MetadataVar) { 931 if (ParseGlobalObjectMetadataAttachment(*GV)) 932 return true; 933 } else { 934 Comdat *C; 935 if (parseOptionalComdat(Name, C)) 936 return true; 937 if (C) 938 GV->setComdat(C); 939 else 940 return TokError("unknown global variable property!"); 941 } 942 } 943 944 return false; 945 } 946 947 /// ParseUnnamedAttrGrp 948 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 949 bool LLParser::ParseUnnamedAttrGrp() { 950 assert(Lex.getKind() == lltok::kw_attributes); 951 LocTy AttrGrpLoc = Lex.getLoc(); 952 Lex.Lex(); 953 954 if (Lex.getKind() != lltok::AttrGrpID) 955 return TokError("expected attribute group id"); 956 957 unsigned VarID = Lex.getUIntVal(); 958 std::vector<unsigned> unused; 959 LocTy BuiltinLoc; 960 Lex.Lex(); 961 962 if (ParseToken(lltok::equal, "expected '=' here") || 963 ParseToken(lltok::lbrace, "expected '{' here") || 964 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 965 BuiltinLoc) || 966 ParseToken(lltok::rbrace, "expected end of attribute group")) 967 return true; 968 969 if (!NumberedAttrBuilders[VarID].hasAttributes()) 970 return Error(AttrGrpLoc, "attribute group has no attributes"); 971 972 return false; 973 } 974 975 /// ParseFnAttributeValuePairs 976 /// ::= <attr> | <attr> '=' <value> 977 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 978 std::vector<unsigned> &FwdRefAttrGrps, 979 bool inAttrGrp, LocTy &BuiltinLoc) { 980 bool HaveError = false; 981 982 B.clear(); 983 984 while (true) { 985 lltok::Kind Token = Lex.getKind(); 986 if (Token == lltok::kw_builtin) 987 BuiltinLoc = Lex.getLoc(); 988 switch (Token) { 989 default: 990 if (!inAttrGrp) return HaveError; 991 return Error(Lex.getLoc(), "unterminated attribute group"); 992 case lltok::rbrace: 993 // Finished. 994 return false; 995 996 case lltok::AttrGrpID: { 997 // Allow a function to reference an attribute group: 998 // 999 // define void @foo() #1 { ... } 1000 if (inAttrGrp) 1001 HaveError |= 1002 Error(Lex.getLoc(), 1003 "cannot have an attribute group reference in an attribute group"); 1004 1005 unsigned AttrGrpNum = Lex.getUIntVal(); 1006 if (inAttrGrp) break; 1007 1008 // Save the reference to the attribute group. We'll fill it in later. 1009 FwdRefAttrGrps.push_back(AttrGrpNum); 1010 break; 1011 } 1012 // Target-dependent attributes: 1013 case lltok::StringConstant: { 1014 if (ParseStringAttribute(B)) 1015 return true; 1016 continue; 1017 } 1018 1019 // Target-independent attributes: 1020 case lltok::kw_align: { 1021 // As a hack, we allow function alignment to be initially parsed as an 1022 // attribute on a function declaration/definition or added to an attribute 1023 // group and later moved to the alignment field. 1024 unsigned Alignment; 1025 if (inAttrGrp) { 1026 Lex.Lex(); 1027 if (ParseToken(lltok::equal, "expected '=' here") || 1028 ParseUInt32(Alignment)) 1029 return true; 1030 } else { 1031 if (ParseOptionalAlignment(Alignment)) 1032 return true; 1033 } 1034 B.addAlignmentAttr(Alignment); 1035 continue; 1036 } 1037 case lltok::kw_alignstack: { 1038 unsigned Alignment; 1039 if (inAttrGrp) { 1040 Lex.Lex(); 1041 if (ParseToken(lltok::equal, "expected '=' here") || 1042 ParseUInt32(Alignment)) 1043 return true; 1044 } else { 1045 if (ParseOptionalStackAlignment(Alignment)) 1046 return true; 1047 } 1048 B.addStackAlignmentAttr(Alignment); 1049 continue; 1050 } 1051 case lltok::kw_allocsize: { 1052 unsigned ElemSizeArg; 1053 Optional<unsigned> NumElemsArg; 1054 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1055 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1056 return true; 1057 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1058 continue; 1059 } 1060 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1061 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1062 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1063 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1064 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1065 case lltok::kw_inaccessiblememonly: 1066 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1067 case lltok::kw_inaccessiblemem_or_argmemonly: 1068 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1069 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1070 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1071 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1072 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1073 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1074 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1075 case lltok::kw_noimplicitfloat: 1076 B.addAttribute(Attribute::NoImplicitFloat); break; 1077 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1078 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1079 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1080 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1081 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1082 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1083 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1084 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1085 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1086 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1087 case lltok::kw_returns_twice: 1088 B.addAttribute(Attribute::ReturnsTwice); break; 1089 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1090 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1091 case lltok::kw_sspstrong: 1092 B.addAttribute(Attribute::StackProtectStrong); break; 1093 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1094 case lltok::kw_sanitize_address: 1095 B.addAttribute(Attribute::SanitizeAddress); break; 1096 case lltok::kw_sanitize_thread: 1097 B.addAttribute(Attribute::SanitizeThread); break; 1098 case lltok::kw_sanitize_memory: 1099 B.addAttribute(Attribute::SanitizeMemory); break; 1100 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1101 1102 // Error handling. 1103 case lltok::kw_inreg: 1104 case lltok::kw_signext: 1105 case lltok::kw_zeroext: 1106 HaveError |= 1107 Error(Lex.getLoc(), 1108 "invalid use of attribute on a function"); 1109 break; 1110 case lltok::kw_byval: 1111 case lltok::kw_dereferenceable: 1112 case lltok::kw_dereferenceable_or_null: 1113 case lltok::kw_inalloca: 1114 case lltok::kw_nest: 1115 case lltok::kw_noalias: 1116 case lltok::kw_nocapture: 1117 case lltok::kw_nonnull: 1118 case lltok::kw_returned: 1119 case lltok::kw_sret: 1120 case lltok::kw_swifterror: 1121 case lltok::kw_swiftself: 1122 HaveError |= 1123 Error(Lex.getLoc(), 1124 "invalid use of parameter-only attribute on a function"); 1125 break; 1126 } 1127 1128 Lex.Lex(); 1129 } 1130 } 1131 1132 //===----------------------------------------------------------------------===// 1133 // GlobalValue Reference/Resolution Routines. 1134 //===----------------------------------------------------------------------===// 1135 1136 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1137 const std::string &Name) { 1138 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1139 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1140 else 1141 return new GlobalVariable(*M, PTy->getElementType(), false, 1142 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1143 nullptr, GlobalVariable::NotThreadLocal, 1144 PTy->getAddressSpace()); 1145 } 1146 1147 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1148 /// forward reference record if needed. This can return null if the value 1149 /// exists but does not have the right type. 1150 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1151 LocTy Loc) { 1152 PointerType *PTy = dyn_cast<PointerType>(Ty); 1153 if (!PTy) { 1154 Error(Loc, "global variable reference must have pointer type"); 1155 return nullptr; 1156 } 1157 1158 // Look this name up in the normal function symbol table. 1159 GlobalValue *Val = 1160 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1161 1162 // If this is a forward reference for the value, see if we already created a 1163 // forward ref record. 1164 if (!Val) { 1165 auto I = ForwardRefVals.find(Name); 1166 if (I != ForwardRefVals.end()) 1167 Val = I->second.first; 1168 } 1169 1170 // If we have the value in the symbol table or fwd-ref table, return it. 1171 if (Val) { 1172 if (Val->getType() == Ty) return Val; 1173 Error(Loc, "'@" + Name + "' defined with type '" + 1174 getTypeString(Val->getType()) + "'"); 1175 return nullptr; 1176 } 1177 1178 // Otherwise, create a new forward reference for this value and remember it. 1179 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1180 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1181 return FwdVal; 1182 } 1183 1184 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1185 PointerType *PTy = dyn_cast<PointerType>(Ty); 1186 if (!PTy) { 1187 Error(Loc, "global variable reference must have pointer type"); 1188 return nullptr; 1189 } 1190 1191 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1192 1193 // If this is a forward reference for the value, see if we already created a 1194 // forward ref record. 1195 if (!Val) { 1196 auto I = ForwardRefValIDs.find(ID); 1197 if (I != ForwardRefValIDs.end()) 1198 Val = I->second.first; 1199 } 1200 1201 // If we have the value in the symbol table or fwd-ref table, return it. 1202 if (Val) { 1203 if (Val->getType() == Ty) return Val; 1204 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1205 getTypeString(Val->getType()) + "'"); 1206 return nullptr; 1207 } 1208 1209 // Otherwise, create a new forward reference for this value and remember it. 1210 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1211 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1212 return FwdVal; 1213 } 1214 1215 1216 //===----------------------------------------------------------------------===// 1217 // Comdat Reference/Resolution Routines. 1218 //===----------------------------------------------------------------------===// 1219 1220 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1221 // Look this name up in the comdat symbol table. 1222 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1223 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1224 if (I != ComdatSymTab.end()) 1225 return &I->second; 1226 1227 // Otherwise, create a new forward reference for this value and remember it. 1228 Comdat *C = M->getOrInsertComdat(Name); 1229 ForwardRefComdats[Name] = Loc; 1230 return C; 1231 } 1232 1233 1234 //===----------------------------------------------------------------------===// 1235 // Helper Routines. 1236 //===----------------------------------------------------------------------===// 1237 1238 /// ParseToken - If the current token has the specified kind, eat it and return 1239 /// success. Otherwise, emit the specified error and return failure. 1240 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1241 if (Lex.getKind() != T) 1242 return TokError(ErrMsg); 1243 Lex.Lex(); 1244 return false; 1245 } 1246 1247 /// ParseStringConstant 1248 /// ::= StringConstant 1249 bool LLParser::ParseStringConstant(std::string &Result) { 1250 if (Lex.getKind() != lltok::StringConstant) 1251 return TokError("expected string constant"); 1252 Result = Lex.getStrVal(); 1253 Lex.Lex(); 1254 return false; 1255 } 1256 1257 /// ParseUInt32 1258 /// ::= uint32 1259 bool LLParser::ParseUInt32(unsigned &Val) { 1260 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1261 return TokError("expected integer"); 1262 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1263 if (Val64 != unsigned(Val64)) 1264 return TokError("expected 32-bit integer (too large)"); 1265 Val = Val64; 1266 Lex.Lex(); 1267 return false; 1268 } 1269 1270 /// ParseUInt64 1271 /// ::= uint64 1272 bool LLParser::ParseUInt64(uint64_t &Val) { 1273 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1274 return TokError("expected integer"); 1275 Val = Lex.getAPSIntVal().getLimitedValue(); 1276 Lex.Lex(); 1277 return false; 1278 } 1279 1280 /// ParseTLSModel 1281 /// := 'localdynamic' 1282 /// := 'initialexec' 1283 /// := 'localexec' 1284 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1285 switch (Lex.getKind()) { 1286 default: 1287 return TokError("expected localdynamic, initialexec or localexec"); 1288 case lltok::kw_localdynamic: 1289 TLM = GlobalVariable::LocalDynamicTLSModel; 1290 break; 1291 case lltok::kw_initialexec: 1292 TLM = GlobalVariable::InitialExecTLSModel; 1293 break; 1294 case lltok::kw_localexec: 1295 TLM = GlobalVariable::LocalExecTLSModel; 1296 break; 1297 } 1298 1299 Lex.Lex(); 1300 return false; 1301 } 1302 1303 /// ParseOptionalThreadLocal 1304 /// := /*empty*/ 1305 /// := 'thread_local' 1306 /// := 'thread_local' '(' tlsmodel ')' 1307 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1308 TLM = GlobalVariable::NotThreadLocal; 1309 if (!EatIfPresent(lltok::kw_thread_local)) 1310 return false; 1311 1312 TLM = GlobalVariable::GeneralDynamicTLSModel; 1313 if (Lex.getKind() == lltok::lparen) { 1314 Lex.Lex(); 1315 return ParseTLSModel(TLM) || 1316 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1317 } 1318 return false; 1319 } 1320 1321 /// ParseOptionalAddrSpace 1322 /// := /*empty*/ 1323 /// := 'addrspace' '(' uint32 ')' 1324 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1325 AddrSpace = 0; 1326 if (!EatIfPresent(lltok::kw_addrspace)) 1327 return false; 1328 return ParseToken(lltok::lparen, "expected '(' in address space") || 1329 ParseUInt32(AddrSpace) || 1330 ParseToken(lltok::rparen, "expected ')' in address space"); 1331 } 1332 1333 /// ParseStringAttribute 1334 /// := StringConstant 1335 /// := StringConstant '=' StringConstant 1336 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1337 std::string Attr = Lex.getStrVal(); 1338 Lex.Lex(); 1339 std::string Val; 1340 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1341 return true; 1342 B.addAttribute(Attr, Val); 1343 return false; 1344 } 1345 1346 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1347 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1348 bool HaveError = false; 1349 1350 B.clear(); 1351 1352 while (1) { 1353 lltok::Kind Token = Lex.getKind(); 1354 switch (Token) { 1355 default: // End of attributes. 1356 return HaveError; 1357 case lltok::StringConstant: { 1358 if (ParseStringAttribute(B)) 1359 return true; 1360 continue; 1361 } 1362 case lltok::kw_align: { 1363 unsigned Alignment; 1364 if (ParseOptionalAlignment(Alignment)) 1365 return true; 1366 B.addAlignmentAttr(Alignment); 1367 continue; 1368 } 1369 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1370 case lltok::kw_dereferenceable: { 1371 uint64_t Bytes; 1372 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1373 return true; 1374 B.addDereferenceableAttr(Bytes); 1375 continue; 1376 } 1377 case lltok::kw_dereferenceable_or_null: { 1378 uint64_t Bytes; 1379 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1380 return true; 1381 B.addDereferenceableOrNullAttr(Bytes); 1382 continue; 1383 } 1384 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1385 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1386 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1387 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1388 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1389 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1390 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1391 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1392 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1393 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1394 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1395 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1396 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1397 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1398 1399 case lltok::kw_alignstack: 1400 case lltok::kw_alwaysinline: 1401 case lltok::kw_argmemonly: 1402 case lltok::kw_builtin: 1403 case lltok::kw_inlinehint: 1404 case lltok::kw_jumptable: 1405 case lltok::kw_minsize: 1406 case lltok::kw_naked: 1407 case lltok::kw_nobuiltin: 1408 case lltok::kw_noduplicate: 1409 case lltok::kw_noimplicitfloat: 1410 case lltok::kw_noinline: 1411 case lltok::kw_nonlazybind: 1412 case lltok::kw_noredzone: 1413 case lltok::kw_noreturn: 1414 case lltok::kw_nounwind: 1415 case lltok::kw_optnone: 1416 case lltok::kw_optsize: 1417 case lltok::kw_returns_twice: 1418 case lltok::kw_sanitize_address: 1419 case lltok::kw_sanitize_memory: 1420 case lltok::kw_sanitize_thread: 1421 case lltok::kw_ssp: 1422 case lltok::kw_sspreq: 1423 case lltok::kw_sspstrong: 1424 case lltok::kw_safestack: 1425 case lltok::kw_uwtable: 1426 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1427 break; 1428 } 1429 1430 Lex.Lex(); 1431 } 1432 } 1433 1434 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1435 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1436 bool HaveError = false; 1437 1438 B.clear(); 1439 1440 while (1) { 1441 lltok::Kind Token = Lex.getKind(); 1442 switch (Token) { 1443 default: // End of attributes. 1444 return HaveError; 1445 case lltok::StringConstant: { 1446 if (ParseStringAttribute(B)) 1447 return true; 1448 continue; 1449 } 1450 case lltok::kw_dereferenceable: { 1451 uint64_t Bytes; 1452 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1453 return true; 1454 B.addDereferenceableAttr(Bytes); 1455 continue; 1456 } 1457 case lltok::kw_dereferenceable_or_null: { 1458 uint64_t Bytes; 1459 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1460 return true; 1461 B.addDereferenceableOrNullAttr(Bytes); 1462 continue; 1463 } 1464 case lltok::kw_align: { 1465 unsigned Alignment; 1466 if (ParseOptionalAlignment(Alignment)) 1467 return true; 1468 B.addAlignmentAttr(Alignment); 1469 continue; 1470 } 1471 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1472 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1473 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1474 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1475 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1476 1477 // Error handling. 1478 case lltok::kw_byval: 1479 case lltok::kw_inalloca: 1480 case lltok::kw_nest: 1481 case lltok::kw_nocapture: 1482 case lltok::kw_returned: 1483 case lltok::kw_sret: 1484 case lltok::kw_swifterror: 1485 case lltok::kw_swiftself: 1486 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1487 break; 1488 1489 case lltok::kw_alignstack: 1490 case lltok::kw_alwaysinline: 1491 case lltok::kw_argmemonly: 1492 case lltok::kw_builtin: 1493 case lltok::kw_cold: 1494 case lltok::kw_inlinehint: 1495 case lltok::kw_jumptable: 1496 case lltok::kw_minsize: 1497 case lltok::kw_naked: 1498 case lltok::kw_nobuiltin: 1499 case lltok::kw_noduplicate: 1500 case lltok::kw_noimplicitfloat: 1501 case lltok::kw_noinline: 1502 case lltok::kw_nonlazybind: 1503 case lltok::kw_noredzone: 1504 case lltok::kw_noreturn: 1505 case lltok::kw_nounwind: 1506 case lltok::kw_optnone: 1507 case lltok::kw_optsize: 1508 case lltok::kw_returns_twice: 1509 case lltok::kw_sanitize_address: 1510 case lltok::kw_sanitize_memory: 1511 case lltok::kw_sanitize_thread: 1512 case lltok::kw_ssp: 1513 case lltok::kw_sspreq: 1514 case lltok::kw_sspstrong: 1515 case lltok::kw_safestack: 1516 case lltok::kw_uwtable: 1517 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1518 break; 1519 1520 case lltok::kw_readnone: 1521 case lltok::kw_readonly: 1522 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1523 } 1524 1525 Lex.Lex(); 1526 } 1527 } 1528 1529 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1530 HasLinkage = true; 1531 switch (Kind) { 1532 default: 1533 HasLinkage = false; 1534 return GlobalValue::ExternalLinkage; 1535 case lltok::kw_private: 1536 return GlobalValue::PrivateLinkage; 1537 case lltok::kw_internal: 1538 return GlobalValue::InternalLinkage; 1539 case lltok::kw_weak: 1540 return GlobalValue::WeakAnyLinkage; 1541 case lltok::kw_weak_odr: 1542 return GlobalValue::WeakODRLinkage; 1543 case lltok::kw_linkonce: 1544 return GlobalValue::LinkOnceAnyLinkage; 1545 case lltok::kw_linkonce_odr: 1546 return GlobalValue::LinkOnceODRLinkage; 1547 case lltok::kw_available_externally: 1548 return GlobalValue::AvailableExternallyLinkage; 1549 case lltok::kw_appending: 1550 return GlobalValue::AppendingLinkage; 1551 case lltok::kw_common: 1552 return GlobalValue::CommonLinkage; 1553 case lltok::kw_extern_weak: 1554 return GlobalValue::ExternalWeakLinkage; 1555 case lltok::kw_external: 1556 return GlobalValue::ExternalLinkage; 1557 } 1558 } 1559 1560 /// ParseOptionalLinkage 1561 /// ::= /*empty*/ 1562 /// ::= 'private' 1563 /// ::= 'internal' 1564 /// ::= 'weak' 1565 /// ::= 'weak_odr' 1566 /// ::= 'linkonce' 1567 /// ::= 'linkonce_odr' 1568 /// ::= 'available_externally' 1569 /// ::= 'appending' 1570 /// ::= 'common' 1571 /// ::= 'extern_weak' 1572 /// ::= 'external' 1573 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1574 unsigned &Visibility, 1575 unsigned &DLLStorageClass) { 1576 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1577 if (HasLinkage) 1578 Lex.Lex(); 1579 ParseOptionalVisibility(Visibility); 1580 ParseOptionalDLLStorageClass(DLLStorageClass); 1581 return false; 1582 } 1583 1584 /// ParseOptionalVisibility 1585 /// ::= /*empty*/ 1586 /// ::= 'default' 1587 /// ::= 'hidden' 1588 /// ::= 'protected' 1589 /// 1590 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1591 switch (Lex.getKind()) { 1592 default: 1593 Res = GlobalValue::DefaultVisibility; 1594 return; 1595 case lltok::kw_default: 1596 Res = GlobalValue::DefaultVisibility; 1597 break; 1598 case lltok::kw_hidden: 1599 Res = GlobalValue::HiddenVisibility; 1600 break; 1601 case lltok::kw_protected: 1602 Res = GlobalValue::ProtectedVisibility; 1603 break; 1604 } 1605 Lex.Lex(); 1606 } 1607 1608 /// ParseOptionalDLLStorageClass 1609 /// ::= /*empty*/ 1610 /// ::= 'dllimport' 1611 /// ::= 'dllexport' 1612 /// 1613 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1614 switch (Lex.getKind()) { 1615 default: 1616 Res = GlobalValue::DefaultStorageClass; 1617 return; 1618 case lltok::kw_dllimport: 1619 Res = GlobalValue::DLLImportStorageClass; 1620 break; 1621 case lltok::kw_dllexport: 1622 Res = GlobalValue::DLLExportStorageClass; 1623 break; 1624 } 1625 Lex.Lex(); 1626 } 1627 1628 /// ParseOptionalCallingConv 1629 /// ::= /*empty*/ 1630 /// ::= 'ccc' 1631 /// ::= 'fastcc' 1632 /// ::= 'intel_ocl_bicc' 1633 /// ::= 'coldcc' 1634 /// ::= 'x86_stdcallcc' 1635 /// ::= 'x86_fastcallcc' 1636 /// ::= 'x86_thiscallcc' 1637 /// ::= 'x86_vectorcallcc' 1638 /// ::= 'arm_apcscc' 1639 /// ::= 'arm_aapcscc' 1640 /// ::= 'arm_aapcs_vfpcc' 1641 /// ::= 'msp430_intrcc' 1642 /// ::= 'avr_intrcc' 1643 /// ::= 'avr_signalcc' 1644 /// ::= 'ptx_kernel' 1645 /// ::= 'ptx_device' 1646 /// ::= 'spir_func' 1647 /// ::= 'spir_kernel' 1648 /// ::= 'x86_64_sysvcc' 1649 /// ::= 'x86_64_win64cc' 1650 /// ::= 'webkit_jscc' 1651 /// ::= 'anyregcc' 1652 /// ::= 'preserve_mostcc' 1653 /// ::= 'preserve_allcc' 1654 /// ::= 'ghccc' 1655 /// ::= 'swiftcc' 1656 /// ::= 'x86_intrcc' 1657 /// ::= 'hhvmcc' 1658 /// ::= 'hhvm_ccc' 1659 /// ::= 'cxx_fast_tlscc' 1660 /// ::= 'amdgpu_vs' 1661 /// ::= 'amdgpu_tcs' 1662 /// ::= 'amdgpu_tes' 1663 /// ::= 'amdgpu_gs' 1664 /// ::= 'amdgpu_ps' 1665 /// ::= 'amdgpu_cs' 1666 /// ::= 'amdgpu_kernel' 1667 /// ::= 'cc' UINT 1668 /// 1669 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1670 switch (Lex.getKind()) { 1671 default: CC = CallingConv::C; return false; 1672 case lltok::kw_ccc: CC = CallingConv::C; break; 1673 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1674 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1675 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1676 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1677 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1678 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1679 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1680 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1681 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1682 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1683 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1684 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1685 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1686 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1687 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1688 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1689 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1690 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1691 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1692 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1693 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1694 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1695 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1696 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1697 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1698 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1699 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1700 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1701 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1702 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1703 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1704 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1705 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1706 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1707 case lltok::kw_cc: { 1708 Lex.Lex(); 1709 return ParseUInt32(CC); 1710 } 1711 } 1712 1713 Lex.Lex(); 1714 return false; 1715 } 1716 1717 /// ParseMetadataAttachment 1718 /// ::= !dbg !42 1719 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1720 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1721 1722 std::string Name = Lex.getStrVal(); 1723 Kind = M->getMDKindID(Name); 1724 Lex.Lex(); 1725 1726 return ParseMDNode(MD); 1727 } 1728 1729 /// ParseInstructionMetadata 1730 /// ::= !dbg !42 (',' !dbg !57)* 1731 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1732 do { 1733 if (Lex.getKind() != lltok::MetadataVar) 1734 return TokError("expected metadata after comma"); 1735 1736 unsigned MDK; 1737 MDNode *N; 1738 if (ParseMetadataAttachment(MDK, N)) 1739 return true; 1740 1741 Inst.setMetadata(MDK, N); 1742 if (MDK == LLVMContext::MD_tbaa) 1743 InstsWithTBAATag.push_back(&Inst); 1744 1745 // If this is the end of the list, we're done. 1746 } while (EatIfPresent(lltok::comma)); 1747 return false; 1748 } 1749 1750 /// ParseGlobalObjectMetadataAttachment 1751 /// ::= !dbg !57 1752 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1753 unsigned MDK; 1754 MDNode *N; 1755 if (ParseMetadataAttachment(MDK, N)) 1756 return true; 1757 1758 GO.addMetadata(MDK, *N); 1759 return false; 1760 } 1761 1762 /// ParseOptionalFunctionMetadata 1763 /// ::= (!dbg !57)* 1764 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1765 while (Lex.getKind() == lltok::MetadataVar) 1766 if (ParseGlobalObjectMetadataAttachment(F)) 1767 return true; 1768 return false; 1769 } 1770 1771 /// ParseOptionalAlignment 1772 /// ::= /* empty */ 1773 /// ::= 'align' 4 1774 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1775 Alignment = 0; 1776 if (!EatIfPresent(lltok::kw_align)) 1777 return false; 1778 LocTy AlignLoc = Lex.getLoc(); 1779 if (ParseUInt32(Alignment)) return true; 1780 if (!isPowerOf2_32(Alignment)) 1781 return Error(AlignLoc, "alignment is not a power of two"); 1782 if (Alignment > Value::MaximumAlignment) 1783 return Error(AlignLoc, "huge alignments are not supported yet"); 1784 return false; 1785 } 1786 1787 /// ParseOptionalDerefAttrBytes 1788 /// ::= /* empty */ 1789 /// ::= AttrKind '(' 4 ')' 1790 /// 1791 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1792 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1793 uint64_t &Bytes) { 1794 assert((AttrKind == lltok::kw_dereferenceable || 1795 AttrKind == lltok::kw_dereferenceable_or_null) && 1796 "contract!"); 1797 1798 Bytes = 0; 1799 if (!EatIfPresent(AttrKind)) 1800 return false; 1801 LocTy ParenLoc = Lex.getLoc(); 1802 if (!EatIfPresent(lltok::lparen)) 1803 return Error(ParenLoc, "expected '('"); 1804 LocTy DerefLoc = Lex.getLoc(); 1805 if (ParseUInt64(Bytes)) return true; 1806 ParenLoc = Lex.getLoc(); 1807 if (!EatIfPresent(lltok::rparen)) 1808 return Error(ParenLoc, "expected ')'"); 1809 if (!Bytes) 1810 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1811 return false; 1812 } 1813 1814 /// ParseOptionalCommaAlign 1815 /// ::= 1816 /// ::= ',' align 4 1817 /// 1818 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1819 /// end. 1820 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1821 bool &AteExtraComma) { 1822 AteExtraComma = false; 1823 while (EatIfPresent(lltok::comma)) { 1824 // Metadata at the end is an early exit. 1825 if (Lex.getKind() == lltok::MetadataVar) { 1826 AteExtraComma = true; 1827 return false; 1828 } 1829 1830 if (Lex.getKind() != lltok::kw_align) 1831 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1832 1833 if (ParseOptionalAlignment(Alignment)) return true; 1834 } 1835 1836 return false; 1837 } 1838 1839 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1840 Optional<unsigned> &HowManyArg) { 1841 Lex.Lex(); 1842 1843 auto StartParen = Lex.getLoc(); 1844 if (!EatIfPresent(lltok::lparen)) 1845 return Error(StartParen, "expected '('"); 1846 1847 if (ParseUInt32(BaseSizeArg)) 1848 return true; 1849 1850 if (EatIfPresent(lltok::comma)) { 1851 auto HowManyAt = Lex.getLoc(); 1852 unsigned HowMany; 1853 if (ParseUInt32(HowMany)) 1854 return true; 1855 if (HowMany == BaseSizeArg) 1856 return Error(HowManyAt, 1857 "'allocsize' indices can't refer to the same parameter"); 1858 HowManyArg = HowMany; 1859 } else 1860 HowManyArg = None; 1861 1862 auto EndParen = Lex.getLoc(); 1863 if (!EatIfPresent(lltok::rparen)) 1864 return Error(EndParen, "expected ')'"); 1865 return false; 1866 } 1867 1868 /// ParseScopeAndOrdering 1869 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1870 /// else: ::= 1871 /// 1872 /// This sets Scope and Ordering to the parsed values. 1873 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1874 AtomicOrdering &Ordering) { 1875 if (!isAtomic) 1876 return false; 1877 1878 Scope = CrossThread; 1879 if (EatIfPresent(lltok::kw_singlethread)) 1880 Scope = SingleThread; 1881 1882 return ParseOrdering(Ordering); 1883 } 1884 1885 /// ParseOrdering 1886 /// ::= AtomicOrdering 1887 /// 1888 /// This sets Ordering to the parsed value. 1889 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1890 switch (Lex.getKind()) { 1891 default: return TokError("Expected ordering on atomic instruction"); 1892 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1893 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1894 // Not specified yet: 1895 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1896 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1897 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1898 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1899 case lltok::kw_seq_cst: 1900 Ordering = AtomicOrdering::SequentiallyConsistent; 1901 break; 1902 } 1903 Lex.Lex(); 1904 return false; 1905 } 1906 1907 /// ParseOptionalStackAlignment 1908 /// ::= /* empty */ 1909 /// ::= 'alignstack' '(' 4 ')' 1910 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1911 Alignment = 0; 1912 if (!EatIfPresent(lltok::kw_alignstack)) 1913 return false; 1914 LocTy ParenLoc = Lex.getLoc(); 1915 if (!EatIfPresent(lltok::lparen)) 1916 return Error(ParenLoc, "expected '('"); 1917 LocTy AlignLoc = Lex.getLoc(); 1918 if (ParseUInt32(Alignment)) return true; 1919 ParenLoc = Lex.getLoc(); 1920 if (!EatIfPresent(lltok::rparen)) 1921 return Error(ParenLoc, "expected ')'"); 1922 if (!isPowerOf2_32(Alignment)) 1923 return Error(AlignLoc, "stack alignment is not a power of two"); 1924 return false; 1925 } 1926 1927 /// ParseIndexList - This parses the index list for an insert/extractvalue 1928 /// instruction. This sets AteExtraComma in the case where we eat an extra 1929 /// comma at the end of the line and find that it is followed by metadata. 1930 /// Clients that don't allow metadata can call the version of this function that 1931 /// only takes one argument. 1932 /// 1933 /// ParseIndexList 1934 /// ::= (',' uint32)+ 1935 /// 1936 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1937 bool &AteExtraComma) { 1938 AteExtraComma = false; 1939 1940 if (Lex.getKind() != lltok::comma) 1941 return TokError("expected ',' as start of index list"); 1942 1943 while (EatIfPresent(lltok::comma)) { 1944 if (Lex.getKind() == lltok::MetadataVar) { 1945 if (Indices.empty()) return TokError("expected index"); 1946 AteExtraComma = true; 1947 return false; 1948 } 1949 unsigned Idx = 0; 1950 if (ParseUInt32(Idx)) return true; 1951 Indices.push_back(Idx); 1952 } 1953 1954 return false; 1955 } 1956 1957 //===----------------------------------------------------------------------===// 1958 // Type Parsing. 1959 //===----------------------------------------------------------------------===// 1960 1961 /// ParseType - Parse a type. 1962 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1963 SMLoc TypeLoc = Lex.getLoc(); 1964 switch (Lex.getKind()) { 1965 default: 1966 return TokError(Msg); 1967 case lltok::Type: 1968 // Type ::= 'float' | 'void' (etc) 1969 Result = Lex.getTyVal(); 1970 Lex.Lex(); 1971 break; 1972 case lltok::lbrace: 1973 // Type ::= StructType 1974 if (ParseAnonStructType(Result, false)) 1975 return true; 1976 break; 1977 case lltok::lsquare: 1978 // Type ::= '[' ... ']' 1979 Lex.Lex(); // eat the lsquare. 1980 if (ParseArrayVectorType(Result, false)) 1981 return true; 1982 break; 1983 case lltok::less: // Either vector or packed struct. 1984 // Type ::= '<' ... '>' 1985 Lex.Lex(); 1986 if (Lex.getKind() == lltok::lbrace) { 1987 if (ParseAnonStructType(Result, true) || 1988 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1989 return true; 1990 } else if (ParseArrayVectorType(Result, true)) 1991 return true; 1992 break; 1993 case lltok::LocalVar: { 1994 // Type ::= %foo 1995 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1996 1997 // If the type hasn't been defined yet, create a forward definition and 1998 // remember where that forward def'n was seen (in case it never is defined). 1999 if (!Entry.first) { 2000 Entry.first = StructType::create(Context, Lex.getStrVal()); 2001 Entry.second = Lex.getLoc(); 2002 } 2003 Result = Entry.first; 2004 Lex.Lex(); 2005 break; 2006 } 2007 2008 case lltok::LocalVarID: { 2009 // Type ::= %4 2010 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2011 2012 // If the type hasn't been defined yet, create a forward definition and 2013 // remember where that forward def'n was seen (in case it never is defined). 2014 if (!Entry.first) { 2015 Entry.first = StructType::create(Context); 2016 Entry.second = Lex.getLoc(); 2017 } 2018 Result = Entry.first; 2019 Lex.Lex(); 2020 break; 2021 } 2022 } 2023 2024 // Parse the type suffixes. 2025 while (1) { 2026 switch (Lex.getKind()) { 2027 // End of type. 2028 default: 2029 if (!AllowVoid && Result->isVoidTy()) 2030 return Error(TypeLoc, "void type only allowed for function results"); 2031 return false; 2032 2033 // Type ::= Type '*' 2034 case lltok::star: 2035 if (Result->isLabelTy()) 2036 return TokError("basic block pointers are invalid"); 2037 if (Result->isVoidTy()) 2038 return TokError("pointers to void are invalid - use i8* instead"); 2039 if (!PointerType::isValidElementType(Result)) 2040 return TokError("pointer to this type is invalid"); 2041 Result = PointerType::getUnqual(Result); 2042 Lex.Lex(); 2043 break; 2044 2045 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2046 case lltok::kw_addrspace: { 2047 if (Result->isLabelTy()) 2048 return TokError("basic block pointers are invalid"); 2049 if (Result->isVoidTy()) 2050 return TokError("pointers to void are invalid; use i8* instead"); 2051 if (!PointerType::isValidElementType(Result)) 2052 return TokError("pointer to this type is invalid"); 2053 unsigned AddrSpace; 2054 if (ParseOptionalAddrSpace(AddrSpace) || 2055 ParseToken(lltok::star, "expected '*' in address space")) 2056 return true; 2057 2058 Result = PointerType::get(Result, AddrSpace); 2059 break; 2060 } 2061 2062 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2063 case lltok::lparen: 2064 if (ParseFunctionType(Result)) 2065 return true; 2066 break; 2067 } 2068 } 2069 } 2070 2071 /// ParseParameterList 2072 /// ::= '(' ')' 2073 /// ::= '(' Arg (',' Arg)* ')' 2074 /// Arg 2075 /// ::= Type OptionalAttributes Value OptionalAttributes 2076 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2077 PerFunctionState &PFS, bool IsMustTailCall, 2078 bool InVarArgsFunc) { 2079 if (ParseToken(lltok::lparen, "expected '(' in call")) 2080 return true; 2081 2082 unsigned AttrIndex = 1; 2083 while (Lex.getKind() != lltok::rparen) { 2084 // If this isn't the first argument, we need a comma. 2085 if (!ArgList.empty() && 2086 ParseToken(lltok::comma, "expected ',' in argument list")) 2087 return true; 2088 2089 // Parse an ellipsis if this is a musttail call in a variadic function. 2090 if (Lex.getKind() == lltok::dotdotdot) { 2091 const char *Msg = "unexpected ellipsis in argument list for "; 2092 if (!IsMustTailCall) 2093 return TokError(Twine(Msg) + "non-musttail call"); 2094 if (!InVarArgsFunc) 2095 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2096 Lex.Lex(); // Lex the '...', it is purely for readability. 2097 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2098 } 2099 2100 // Parse the argument. 2101 LocTy ArgLoc; 2102 Type *ArgTy = nullptr; 2103 AttrBuilder ArgAttrs; 2104 Value *V; 2105 if (ParseType(ArgTy, ArgLoc)) 2106 return true; 2107 2108 if (ArgTy->isMetadataTy()) { 2109 if (ParseMetadataAsValue(V, PFS)) 2110 return true; 2111 } else { 2112 // Otherwise, handle normal operands. 2113 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2114 return true; 2115 } 2116 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2117 AttrIndex++, 2118 ArgAttrs))); 2119 } 2120 2121 if (IsMustTailCall && InVarArgsFunc) 2122 return TokError("expected '...' at end of argument list for musttail call " 2123 "in varargs function"); 2124 2125 Lex.Lex(); // Lex the ')'. 2126 return false; 2127 } 2128 2129 /// ParseOptionalOperandBundles 2130 /// ::= /*empty*/ 2131 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2132 /// 2133 /// OperandBundle 2134 /// ::= bundle-tag '(' ')' 2135 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2136 /// 2137 /// bundle-tag ::= String Constant 2138 bool LLParser::ParseOptionalOperandBundles( 2139 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2140 LocTy BeginLoc = Lex.getLoc(); 2141 if (!EatIfPresent(lltok::lsquare)) 2142 return false; 2143 2144 while (Lex.getKind() != lltok::rsquare) { 2145 // If this isn't the first operand bundle, we need a comma. 2146 if (!BundleList.empty() && 2147 ParseToken(lltok::comma, "expected ',' in input list")) 2148 return true; 2149 2150 std::string Tag; 2151 if (ParseStringConstant(Tag)) 2152 return true; 2153 2154 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2155 return true; 2156 2157 std::vector<Value *> Inputs; 2158 while (Lex.getKind() != lltok::rparen) { 2159 // If this isn't the first input, we need a comma. 2160 if (!Inputs.empty() && 2161 ParseToken(lltok::comma, "expected ',' in input list")) 2162 return true; 2163 2164 Type *Ty = nullptr; 2165 Value *Input = nullptr; 2166 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2167 return true; 2168 Inputs.push_back(Input); 2169 } 2170 2171 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2172 2173 Lex.Lex(); // Lex the ')'. 2174 } 2175 2176 if (BundleList.empty()) 2177 return Error(BeginLoc, "operand bundle set must not be empty"); 2178 2179 Lex.Lex(); // Lex the ']'. 2180 return false; 2181 } 2182 2183 /// ParseArgumentList - Parse the argument list for a function type or function 2184 /// prototype. 2185 /// ::= '(' ArgTypeListI ')' 2186 /// ArgTypeListI 2187 /// ::= /*empty*/ 2188 /// ::= '...' 2189 /// ::= ArgTypeList ',' '...' 2190 /// ::= ArgType (',' ArgType)* 2191 /// 2192 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2193 bool &isVarArg){ 2194 isVarArg = false; 2195 assert(Lex.getKind() == lltok::lparen); 2196 Lex.Lex(); // eat the (. 2197 2198 if (Lex.getKind() == lltok::rparen) { 2199 // empty 2200 } else if (Lex.getKind() == lltok::dotdotdot) { 2201 isVarArg = true; 2202 Lex.Lex(); 2203 } else { 2204 LocTy TypeLoc = Lex.getLoc(); 2205 Type *ArgTy = nullptr; 2206 AttrBuilder Attrs; 2207 std::string Name; 2208 2209 if (ParseType(ArgTy) || 2210 ParseOptionalParamAttrs(Attrs)) return true; 2211 2212 if (ArgTy->isVoidTy()) 2213 return Error(TypeLoc, "argument can not have void type"); 2214 2215 if (Lex.getKind() == lltok::LocalVar) { 2216 Name = Lex.getStrVal(); 2217 Lex.Lex(); 2218 } 2219 2220 if (!FunctionType::isValidArgumentType(ArgTy)) 2221 return Error(TypeLoc, "invalid type for function argument"); 2222 2223 unsigned AttrIndex = 1; 2224 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2225 AttrIndex++, Attrs), 2226 std::move(Name)); 2227 2228 while (EatIfPresent(lltok::comma)) { 2229 // Handle ... at end of arg list. 2230 if (EatIfPresent(lltok::dotdotdot)) { 2231 isVarArg = true; 2232 break; 2233 } 2234 2235 // Otherwise must be an argument type. 2236 TypeLoc = Lex.getLoc(); 2237 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2238 2239 if (ArgTy->isVoidTy()) 2240 return Error(TypeLoc, "argument can not have void type"); 2241 2242 if (Lex.getKind() == lltok::LocalVar) { 2243 Name = Lex.getStrVal(); 2244 Lex.Lex(); 2245 } else { 2246 Name = ""; 2247 } 2248 2249 if (!ArgTy->isFirstClassType()) 2250 return Error(TypeLoc, "invalid type for function argument"); 2251 2252 ArgList.emplace_back( 2253 TypeLoc, ArgTy, 2254 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2255 std::move(Name)); 2256 } 2257 } 2258 2259 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2260 } 2261 2262 /// ParseFunctionType 2263 /// ::= Type ArgumentList OptionalAttrs 2264 bool LLParser::ParseFunctionType(Type *&Result) { 2265 assert(Lex.getKind() == lltok::lparen); 2266 2267 if (!FunctionType::isValidReturnType(Result)) 2268 return TokError("invalid function return type"); 2269 2270 SmallVector<ArgInfo, 8> ArgList; 2271 bool isVarArg; 2272 if (ParseArgumentList(ArgList, isVarArg)) 2273 return true; 2274 2275 // Reject names on the arguments lists. 2276 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2277 if (!ArgList[i].Name.empty()) 2278 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2279 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2280 return Error(ArgList[i].Loc, 2281 "argument attributes invalid in function type"); 2282 } 2283 2284 SmallVector<Type*, 16> ArgListTy; 2285 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2286 ArgListTy.push_back(ArgList[i].Ty); 2287 2288 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2289 return false; 2290 } 2291 2292 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2293 /// other structs. 2294 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2295 SmallVector<Type*, 8> Elts; 2296 if (ParseStructBody(Elts)) return true; 2297 2298 Result = StructType::get(Context, Elts, Packed); 2299 return false; 2300 } 2301 2302 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2303 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2304 std::pair<Type*, LocTy> &Entry, 2305 Type *&ResultTy) { 2306 // If the type was already defined, diagnose the redefinition. 2307 if (Entry.first && !Entry.second.isValid()) 2308 return Error(TypeLoc, "redefinition of type"); 2309 2310 // If we have opaque, just return without filling in the definition for the 2311 // struct. This counts as a definition as far as the .ll file goes. 2312 if (EatIfPresent(lltok::kw_opaque)) { 2313 // This type is being defined, so clear the location to indicate this. 2314 Entry.second = SMLoc(); 2315 2316 // If this type number has never been uttered, create it. 2317 if (!Entry.first) 2318 Entry.first = StructType::create(Context, Name); 2319 ResultTy = Entry.first; 2320 return false; 2321 } 2322 2323 // If the type starts with '<', then it is either a packed struct or a vector. 2324 bool isPacked = EatIfPresent(lltok::less); 2325 2326 // If we don't have a struct, then we have a random type alias, which we 2327 // accept for compatibility with old files. These types are not allowed to be 2328 // forward referenced and not allowed to be recursive. 2329 if (Lex.getKind() != lltok::lbrace) { 2330 if (Entry.first) 2331 return Error(TypeLoc, "forward references to non-struct type"); 2332 2333 ResultTy = nullptr; 2334 if (isPacked) 2335 return ParseArrayVectorType(ResultTy, true); 2336 return ParseType(ResultTy); 2337 } 2338 2339 // This type is being defined, so clear the location to indicate this. 2340 Entry.second = SMLoc(); 2341 2342 // If this type number has never been uttered, create it. 2343 if (!Entry.first) 2344 Entry.first = StructType::create(Context, Name); 2345 2346 StructType *STy = cast<StructType>(Entry.first); 2347 2348 SmallVector<Type*, 8> Body; 2349 if (ParseStructBody(Body) || 2350 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2351 return true; 2352 2353 STy->setBody(Body, isPacked); 2354 ResultTy = STy; 2355 return false; 2356 } 2357 2358 2359 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2360 /// StructType 2361 /// ::= '{' '}' 2362 /// ::= '{' Type (',' Type)* '}' 2363 /// ::= '<' '{' '}' '>' 2364 /// ::= '<' '{' Type (',' Type)* '}' '>' 2365 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2366 assert(Lex.getKind() == lltok::lbrace); 2367 Lex.Lex(); // Consume the '{' 2368 2369 // Handle the empty struct. 2370 if (EatIfPresent(lltok::rbrace)) 2371 return false; 2372 2373 LocTy EltTyLoc = Lex.getLoc(); 2374 Type *Ty = nullptr; 2375 if (ParseType(Ty)) return true; 2376 Body.push_back(Ty); 2377 2378 if (!StructType::isValidElementType(Ty)) 2379 return Error(EltTyLoc, "invalid element type for struct"); 2380 2381 while (EatIfPresent(lltok::comma)) { 2382 EltTyLoc = Lex.getLoc(); 2383 if (ParseType(Ty)) return true; 2384 2385 if (!StructType::isValidElementType(Ty)) 2386 return Error(EltTyLoc, "invalid element type for struct"); 2387 2388 Body.push_back(Ty); 2389 } 2390 2391 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2392 } 2393 2394 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2395 /// token has already been consumed. 2396 /// Type 2397 /// ::= '[' APSINTVAL 'x' Types ']' 2398 /// ::= '<' APSINTVAL 'x' Types '>' 2399 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2400 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2401 Lex.getAPSIntVal().getBitWidth() > 64) 2402 return TokError("expected number in address space"); 2403 2404 LocTy SizeLoc = Lex.getLoc(); 2405 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2406 Lex.Lex(); 2407 2408 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2409 return true; 2410 2411 LocTy TypeLoc = Lex.getLoc(); 2412 Type *EltTy = nullptr; 2413 if (ParseType(EltTy)) return true; 2414 2415 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2416 "expected end of sequential type")) 2417 return true; 2418 2419 if (isVector) { 2420 if (Size == 0) 2421 return Error(SizeLoc, "zero element vector is illegal"); 2422 if ((unsigned)Size != Size) 2423 return Error(SizeLoc, "size too large for vector"); 2424 if (!VectorType::isValidElementType(EltTy)) 2425 return Error(TypeLoc, "invalid vector element type"); 2426 Result = VectorType::get(EltTy, unsigned(Size)); 2427 } else { 2428 if (!ArrayType::isValidElementType(EltTy)) 2429 return Error(TypeLoc, "invalid array element type"); 2430 Result = ArrayType::get(EltTy, Size); 2431 } 2432 return false; 2433 } 2434 2435 //===----------------------------------------------------------------------===// 2436 // Function Semantic Analysis. 2437 //===----------------------------------------------------------------------===// 2438 2439 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2440 int functionNumber) 2441 : P(p), F(f), FunctionNumber(functionNumber) { 2442 2443 // Insert unnamed arguments into the NumberedVals list. 2444 for (Argument &A : F.args()) 2445 if (!A.hasName()) 2446 NumberedVals.push_back(&A); 2447 } 2448 2449 LLParser::PerFunctionState::~PerFunctionState() { 2450 // If there were any forward referenced non-basicblock values, delete them. 2451 2452 for (const auto &P : ForwardRefVals) { 2453 if (isa<BasicBlock>(P.second.first)) 2454 continue; 2455 P.second.first->replaceAllUsesWith( 2456 UndefValue::get(P.second.first->getType())); 2457 delete P.second.first; 2458 } 2459 2460 for (const auto &P : ForwardRefValIDs) { 2461 if (isa<BasicBlock>(P.second.first)) 2462 continue; 2463 P.second.first->replaceAllUsesWith( 2464 UndefValue::get(P.second.first->getType())); 2465 delete P.second.first; 2466 } 2467 } 2468 2469 bool LLParser::PerFunctionState::FinishFunction() { 2470 if (!ForwardRefVals.empty()) 2471 return P.Error(ForwardRefVals.begin()->second.second, 2472 "use of undefined value '%" + ForwardRefVals.begin()->first + 2473 "'"); 2474 if (!ForwardRefValIDs.empty()) 2475 return P.Error(ForwardRefValIDs.begin()->second.second, 2476 "use of undefined value '%" + 2477 Twine(ForwardRefValIDs.begin()->first) + "'"); 2478 return false; 2479 } 2480 2481 2482 /// GetVal - Get a value with the specified name or ID, creating a 2483 /// forward reference record if needed. This can return null if the value 2484 /// exists but does not have the right type. 2485 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2486 LocTy Loc) { 2487 // Look this name up in the normal function symbol table. 2488 Value *Val = F.getValueSymbolTable().lookup(Name); 2489 2490 // If this is a forward reference for the value, see if we already created a 2491 // forward ref record. 2492 if (!Val) { 2493 auto I = ForwardRefVals.find(Name); 2494 if (I != ForwardRefVals.end()) 2495 Val = I->second.first; 2496 } 2497 2498 // If we have the value in the symbol table or fwd-ref table, return it. 2499 if (Val) { 2500 if (Val->getType() == Ty) return Val; 2501 if (Ty->isLabelTy()) 2502 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2503 else 2504 P.Error(Loc, "'%" + Name + "' defined with type '" + 2505 getTypeString(Val->getType()) + "'"); 2506 return nullptr; 2507 } 2508 2509 // Don't make placeholders with invalid type. 2510 if (!Ty->isFirstClassType()) { 2511 P.Error(Loc, "invalid use of a non-first-class type"); 2512 return nullptr; 2513 } 2514 2515 // Otherwise, create a new forward reference for this value and remember it. 2516 Value *FwdVal; 2517 if (Ty->isLabelTy()) { 2518 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2519 } else { 2520 FwdVal = new Argument(Ty, Name); 2521 } 2522 2523 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2524 return FwdVal; 2525 } 2526 2527 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2528 // Look this name up in the normal function symbol table. 2529 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2530 2531 // If this is a forward reference for the value, see if we already created a 2532 // forward ref record. 2533 if (!Val) { 2534 auto I = ForwardRefValIDs.find(ID); 2535 if (I != ForwardRefValIDs.end()) 2536 Val = I->second.first; 2537 } 2538 2539 // If we have the value in the symbol table or fwd-ref table, return it. 2540 if (Val) { 2541 if (Val->getType() == Ty) return Val; 2542 if (Ty->isLabelTy()) 2543 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2544 else 2545 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2546 getTypeString(Val->getType()) + "'"); 2547 return nullptr; 2548 } 2549 2550 if (!Ty->isFirstClassType()) { 2551 P.Error(Loc, "invalid use of a non-first-class type"); 2552 return nullptr; 2553 } 2554 2555 // Otherwise, create a new forward reference for this value and remember it. 2556 Value *FwdVal; 2557 if (Ty->isLabelTy()) { 2558 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2559 } else { 2560 FwdVal = new Argument(Ty); 2561 } 2562 2563 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2564 return FwdVal; 2565 } 2566 2567 /// SetInstName - After an instruction is parsed and inserted into its 2568 /// basic block, this installs its name. 2569 bool LLParser::PerFunctionState::SetInstName(int NameID, 2570 const std::string &NameStr, 2571 LocTy NameLoc, Instruction *Inst) { 2572 // If this instruction has void type, it cannot have a name or ID specified. 2573 if (Inst->getType()->isVoidTy()) { 2574 if (NameID != -1 || !NameStr.empty()) 2575 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2576 return false; 2577 } 2578 2579 // If this was a numbered instruction, verify that the instruction is the 2580 // expected value and resolve any forward references. 2581 if (NameStr.empty()) { 2582 // If neither a name nor an ID was specified, just use the next ID. 2583 if (NameID == -1) 2584 NameID = NumberedVals.size(); 2585 2586 if (unsigned(NameID) != NumberedVals.size()) 2587 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2588 Twine(NumberedVals.size()) + "'"); 2589 2590 auto FI = ForwardRefValIDs.find(NameID); 2591 if (FI != ForwardRefValIDs.end()) { 2592 Value *Sentinel = FI->second.first; 2593 if (Sentinel->getType() != Inst->getType()) 2594 return P.Error(NameLoc, "instruction forward referenced with type '" + 2595 getTypeString(FI->second.first->getType()) + "'"); 2596 2597 Sentinel->replaceAllUsesWith(Inst); 2598 delete Sentinel; 2599 ForwardRefValIDs.erase(FI); 2600 } 2601 2602 NumberedVals.push_back(Inst); 2603 return false; 2604 } 2605 2606 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2607 auto FI = ForwardRefVals.find(NameStr); 2608 if (FI != ForwardRefVals.end()) { 2609 Value *Sentinel = FI->second.first; 2610 if (Sentinel->getType() != Inst->getType()) 2611 return P.Error(NameLoc, "instruction forward referenced with type '" + 2612 getTypeString(FI->second.first->getType()) + "'"); 2613 2614 Sentinel->replaceAllUsesWith(Inst); 2615 delete Sentinel; 2616 ForwardRefVals.erase(FI); 2617 } 2618 2619 // Set the name on the instruction. 2620 Inst->setName(NameStr); 2621 2622 if (Inst->getName() != NameStr) 2623 return P.Error(NameLoc, "multiple definition of local value named '" + 2624 NameStr + "'"); 2625 return false; 2626 } 2627 2628 /// GetBB - Get a basic block with the specified name or ID, creating a 2629 /// forward reference record if needed. 2630 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2631 LocTy Loc) { 2632 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2633 Type::getLabelTy(F.getContext()), Loc)); 2634 } 2635 2636 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2637 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2638 Type::getLabelTy(F.getContext()), Loc)); 2639 } 2640 2641 /// DefineBB - Define the specified basic block, which is either named or 2642 /// unnamed. If there is an error, this returns null otherwise it returns 2643 /// the block being defined. 2644 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2645 LocTy Loc) { 2646 BasicBlock *BB; 2647 if (Name.empty()) 2648 BB = GetBB(NumberedVals.size(), Loc); 2649 else 2650 BB = GetBB(Name, Loc); 2651 if (!BB) return nullptr; // Already diagnosed error. 2652 2653 // Move the block to the end of the function. Forward ref'd blocks are 2654 // inserted wherever they happen to be referenced. 2655 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2656 2657 // Remove the block from forward ref sets. 2658 if (Name.empty()) { 2659 ForwardRefValIDs.erase(NumberedVals.size()); 2660 NumberedVals.push_back(BB); 2661 } else { 2662 // BB forward references are already in the function symbol table. 2663 ForwardRefVals.erase(Name); 2664 } 2665 2666 return BB; 2667 } 2668 2669 //===----------------------------------------------------------------------===// 2670 // Constants. 2671 //===----------------------------------------------------------------------===// 2672 2673 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2674 /// type implied. For example, if we parse "4" we don't know what integer type 2675 /// it has. The value will later be combined with its type and checked for 2676 /// sanity. PFS is used to convert function-local operands of metadata (since 2677 /// metadata operands are not just parsed here but also converted to values). 2678 /// PFS can be null when we are not parsing metadata values inside a function. 2679 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2680 ID.Loc = Lex.getLoc(); 2681 switch (Lex.getKind()) { 2682 default: return TokError("expected value token"); 2683 case lltok::GlobalID: // @42 2684 ID.UIntVal = Lex.getUIntVal(); 2685 ID.Kind = ValID::t_GlobalID; 2686 break; 2687 case lltok::GlobalVar: // @foo 2688 ID.StrVal = Lex.getStrVal(); 2689 ID.Kind = ValID::t_GlobalName; 2690 break; 2691 case lltok::LocalVarID: // %42 2692 ID.UIntVal = Lex.getUIntVal(); 2693 ID.Kind = ValID::t_LocalID; 2694 break; 2695 case lltok::LocalVar: // %foo 2696 ID.StrVal = Lex.getStrVal(); 2697 ID.Kind = ValID::t_LocalName; 2698 break; 2699 case lltok::APSInt: 2700 ID.APSIntVal = Lex.getAPSIntVal(); 2701 ID.Kind = ValID::t_APSInt; 2702 break; 2703 case lltok::APFloat: 2704 ID.APFloatVal = Lex.getAPFloatVal(); 2705 ID.Kind = ValID::t_APFloat; 2706 break; 2707 case lltok::kw_true: 2708 ID.ConstantVal = ConstantInt::getTrue(Context); 2709 ID.Kind = ValID::t_Constant; 2710 break; 2711 case lltok::kw_false: 2712 ID.ConstantVal = ConstantInt::getFalse(Context); 2713 ID.Kind = ValID::t_Constant; 2714 break; 2715 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2716 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2717 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2718 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2719 2720 case lltok::lbrace: { 2721 // ValID ::= '{' ConstVector '}' 2722 Lex.Lex(); 2723 SmallVector<Constant*, 16> Elts; 2724 if (ParseGlobalValueVector(Elts) || 2725 ParseToken(lltok::rbrace, "expected end of struct constant")) 2726 return true; 2727 2728 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2729 ID.UIntVal = Elts.size(); 2730 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2731 Elts.size() * sizeof(Elts[0])); 2732 ID.Kind = ValID::t_ConstantStruct; 2733 return false; 2734 } 2735 case lltok::less: { 2736 // ValID ::= '<' ConstVector '>' --> Vector. 2737 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2738 Lex.Lex(); 2739 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2740 2741 SmallVector<Constant*, 16> Elts; 2742 LocTy FirstEltLoc = Lex.getLoc(); 2743 if (ParseGlobalValueVector(Elts) || 2744 (isPackedStruct && 2745 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2746 ParseToken(lltok::greater, "expected end of constant")) 2747 return true; 2748 2749 if (isPackedStruct) { 2750 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2751 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2752 Elts.size() * sizeof(Elts[0])); 2753 ID.UIntVal = Elts.size(); 2754 ID.Kind = ValID::t_PackedConstantStruct; 2755 return false; 2756 } 2757 2758 if (Elts.empty()) 2759 return Error(ID.Loc, "constant vector must not be empty"); 2760 2761 if (!Elts[0]->getType()->isIntegerTy() && 2762 !Elts[0]->getType()->isFloatingPointTy() && 2763 !Elts[0]->getType()->isPointerTy()) 2764 return Error(FirstEltLoc, 2765 "vector elements must have integer, pointer or floating point type"); 2766 2767 // Verify that all the vector elements have the same type. 2768 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2769 if (Elts[i]->getType() != Elts[0]->getType()) 2770 return Error(FirstEltLoc, 2771 "vector element #" + Twine(i) + 2772 " is not of type '" + getTypeString(Elts[0]->getType())); 2773 2774 ID.ConstantVal = ConstantVector::get(Elts); 2775 ID.Kind = ValID::t_Constant; 2776 return false; 2777 } 2778 case lltok::lsquare: { // Array Constant 2779 Lex.Lex(); 2780 SmallVector<Constant*, 16> Elts; 2781 LocTy FirstEltLoc = Lex.getLoc(); 2782 if (ParseGlobalValueVector(Elts) || 2783 ParseToken(lltok::rsquare, "expected end of array constant")) 2784 return true; 2785 2786 // Handle empty element. 2787 if (Elts.empty()) { 2788 // Use undef instead of an array because it's inconvenient to determine 2789 // the element type at this point, there being no elements to examine. 2790 ID.Kind = ValID::t_EmptyArray; 2791 return false; 2792 } 2793 2794 if (!Elts[0]->getType()->isFirstClassType()) 2795 return Error(FirstEltLoc, "invalid array element type: " + 2796 getTypeString(Elts[0]->getType())); 2797 2798 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2799 2800 // Verify all elements are correct type! 2801 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2802 if (Elts[i]->getType() != Elts[0]->getType()) 2803 return Error(FirstEltLoc, 2804 "array element #" + Twine(i) + 2805 " is not of type '" + getTypeString(Elts[0]->getType())); 2806 } 2807 2808 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2809 ID.Kind = ValID::t_Constant; 2810 return false; 2811 } 2812 case lltok::kw_c: // c "foo" 2813 Lex.Lex(); 2814 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2815 false); 2816 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2817 ID.Kind = ValID::t_Constant; 2818 return false; 2819 2820 case lltok::kw_asm: { 2821 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2822 // STRINGCONSTANT 2823 bool HasSideEffect, AlignStack, AsmDialect; 2824 Lex.Lex(); 2825 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2826 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2827 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2828 ParseStringConstant(ID.StrVal) || 2829 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2830 ParseToken(lltok::StringConstant, "expected constraint string")) 2831 return true; 2832 ID.StrVal2 = Lex.getStrVal(); 2833 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2834 (unsigned(AsmDialect)<<2); 2835 ID.Kind = ValID::t_InlineAsm; 2836 return false; 2837 } 2838 2839 case lltok::kw_blockaddress: { 2840 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2841 Lex.Lex(); 2842 2843 ValID Fn, Label; 2844 2845 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2846 ParseValID(Fn) || 2847 ParseToken(lltok::comma, "expected comma in block address expression")|| 2848 ParseValID(Label) || 2849 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2850 return true; 2851 2852 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2853 return Error(Fn.Loc, "expected function name in blockaddress"); 2854 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2855 return Error(Label.Loc, "expected basic block name in blockaddress"); 2856 2857 // Try to find the function (but skip it if it's forward-referenced). 2858 GlobalValue *GV = nullptr; 2859 if (Fn.Kind == ValID::t_GlobalID) { 2860 if (Fn.UIntVal < NumberedVals.size()) 2861 GV = NumberedVals[Fn.UIntVal]; 2862 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2863 GV = M->getNamedValue(Fn.StrVal); 2864 } 2865 Function *F = nullptr; 2866 if (GV) { 2867 // Confirm that it's actually a function with a definition. 2868 if (!isa<Function>(GV)) 2869 return Error(Fn.Loc, "expected function name in blockaddress"); 2870 F = cast<Function>(GV); 2871 if (F->isDeclaration()) 2872 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2873 } 2874 2875 if (!F) { 2876 // Make a global variable as a placeholder for this reference. 2877 GlobalValue *&FwdRef = 2878 ForwardRefBlockAddresses.insert(std::make_pair( 2879 std::move(Fn), 2880 std::map<ValID, GlobalValue *>())) 2881 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2882 .first->second; 2883 if (!FwdRef) 2884 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2885 GlobalValue::InternalLinkage, nullptr, ""); 2886 ID.ConstantVal = FwdRef; 2887 ID.Kind = ValID::t_Constant; 2888 return false; 2889 } 2890 2891 // We found the function; now find the basic block. Don't use PFS, since we 2892 // might be inside a constant expression. 2893 BasicBlock *BB; 2894 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2895 if (Label.Kind == ValID::t_LocalID) 2896 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2897 else 2898 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2899 if (!BB) 2900 return Error(Label.Loc, "referenced value is not a basic block"); 2901 } else { 2902 if (Label.Kind == ValID::t_LocalID) 2903 return Error(Label.Loc, "cannot take address of numeric label after " 2904 "the function is defined"); 2905 BB = dyn_cast_or_null<BasicBlock>( 2906 F->getValueSymbolTable().lookup(Label.StrVal)); 2907 if (!BB) 2908 return Error(Label.Loc, "referenced value is not a basic block"); 2909 } 2910 2911 ID.ConstantVal = BlockAddress::get(F, BB); 2912 ID.Kind = ValID::t_Constant; 2913 return false; 2914 } 2915 2916 case lltok::kw_trunc: 2917 case lltok::kw_zext: 2918 case lltok::kw_sext: 2919 case lltok::kw_fptrunc: 2920 case lltok::kw_fpext: 2921 case lltok::kw_bitcast: 2922 case lltok::kw_addrspacecast: 2923 case lltok::kw_uitofp: 2924 case lltok::kw_sitofp: 2925 case lltok::kw_fptoui: 2926 case lltok::kw_fptosi: 2927 case lltok::kw_inttoptr: 2928 case lltok::kw_ptrtoint: { 2929 unsigned Opc = Lex.getUIntVal(); 2930 Type *DestTy = nullptr; 2931 Constant *SrcVal; 2932 Lex.Lex(); 2933 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2934 ParseGlobalTypeAndValue(SrcVal) || 2935 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2936 ParseType(DestTy) || 2937 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2938 return true; 2939 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2940 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2941 getTypeString(SrcVal->getType()) + "' to '" + 2942 getTypeString(DestTy) + "'"); 2943 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2944 SrcVal, DestTy); 2945 ID.Kind = ValID::t_Constant; 2946 return false; 2947 } 2948 case lltok::kw_extractvalue: { 2949 Lex.Lex(); 2950 Constant *Val; 2951 SmallVector<unsigned, 4> Indices; 2952 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2953 ParseGlobalTypeAndValue(Val) || 2954 ParseIndexList(Indices) || 2955 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2956 return true; 2957 2958 if (!Val->getType()->isAggregateType()) 2959 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2960 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2961 return Error(ID.Loc, "invalid indices for extractvalue"); 2962 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2963 ID.Kind = ValID::t_Constant; 2964 return false; 2965 } 2966 case lltok::kw_insertvalue: { 2967 Lex.Lex(); 2968 Constant *Val0, *Val1; 2969 SmallVector<unsigned, 4> Indices; 2970 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2971 ParseGlobalTypeAndValue(Val0) || 2972 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2973 ParseGlobalTypeAndValue(Val1) || 2974 ParseIndexList(Indices) || 2975 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2976 return true; 2977 if (!Val0->getType()->isAggregateType()) 2978 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2979 Type *IndexedType = 2980 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2981 if (!IndexedType) 2982 return Error(ID.Loc, "invalid indices for insertvalue"); 2983 if (IndexedType != Val1->getType()) 2984 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2985 getTypeString(Val1->getType()) + 2986 "' instead of '" + getTypeString(IndexedType) + 2987 "'"); 2988 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2989 ID.Kind = ValID::t_Constant; 2990 return false; 2991 } 2992 case lltok::kw_icmp: 2993 case lltok::kw_fcmp: { 2994 unsigned PredVal, Opc = Lex.getUIntVal(); 2995 Constant *Val0, *Val1; 2996 Lex.Lex(); 2997 if (ParseCmpPredicate(PredVal, Opc) || 2998 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2999 ParseGlobalTypeAndValue(Val0) || 3000 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3001 ParseGlobalTypeAndValue(Val1) || 3002 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3003 return true; 3004 3005 if (Val0->getType() != Val1->getType()) 3006 return Error(ID.Loc, "compare operands must have the same type"); 3007 3008 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3009 3010 if (Opc == Instruction::FCmp) { 3011 if (!Val0->getType()->isFPOrFPVectorTy()) 3012 return Error(ID.Loc, "fcmp requires floating point operands"); 3013 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3014 } else { 3015 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3016 if (!Val0->getType()->isIntOrIntVectorTy() && 3017 !Val0->getType()->getScalarType()->isPointerTy()) 3018 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3019 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3020 } 3021 ID.Kind = ValID::t_Constant; 3022 return false; 3023 } 3024 3025 // Binary Operators. 3026 case lltok::kw_add: 3027 case lltok::kw_fadd: 3028 case lltok::kw_sub: 3029 case lltok::kw_fsub: 3030 case lltok::kw_mul: 3031 case lltok::kw_fmul: 3032 case lltok::kw_udiv: 3033 case lltok::kw_sdiv: 3034 case lltok::kw_fdiv: 3035 case lltok::kw_urem: 3036 case lltok::kw_srem: 3037 case lltok::kw_frem: 3038 case lltok::kw_shl: 3039 case lltok::kw_lshr: 3040 case lltok::kw_ashr: { 3041 bool NUW = false; 3042 bool NSW = false; 3043 bool Exact = false; 3044 unsigned Opc = Lex.getUIntVal(); 3045 Constant *Val0, *Val1; 3046 Lex.Lex(); 3047 LocTy ModifierLoc = Lex.getLoc(); 3048 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3049 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3050 if (EatIfPresent(lltok::kw_nuw)) 3051 NUW = true; 3052 if (EatIfPresent(lltok::kw_nsw)) { 3053 NSW = true; 3054 if (EatIfPresent(lltok::kw_nuw)) 3055 NUW = true; 3056 } 3057 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3058 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3059 if (EatIfPresent(lltok::kw_exact)) 3060 Exact = true; 3061 } 3062 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3063 ParseGlobalTypeAndValue(Val0) || 3064 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3065 ParseGlobalTypeAndValue(Val1) || 3066 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3067 return true; 3068 if (Val0->getType() != Val1->getType()) 3069 return Error(ID.Loc, "operands of constexpr must have same type"); 3070 if (!Val0->getType()->isIntOrIntVectorTy()) { 3071 if (NUW) 3072 return Error(ModifierLoc, "nuw only applies to integer operations"); 3073 if (NSW) 3074 return Error(ModifierLoc, "nsw only applies to integer operations"); 3075 } 3076 // Check that the type is valid for the operator. 3077 switch (Opc) { 3078 case Instruction::Add: 3079 case Instruction::Sub: 3080 case Instruction::Mul: 3081 case Instruction::UDiv: 3082 case Instruction::SDiv: 3083 case Instruction::URem: 3084 case Instruction::SRem: 3085 case Instruction::Shl: 3086 case Instruction::AShr: 3087 case Instruction::LShr: 3088 if (!Val0->getType()->isIntOrIntVectorTy()) 3089 return Error(ID.Loc, "constexpr requires integer operands"); 3090 break; 3091 case Instruction::FAdd: 3092 case Instruction::FSub: 3093 case Instruction::FMul: 3094 case Instruction::FDiv: 3095 case Instruction::FRem: 3096 if (!Val0->getType()->isFPOrFPVectorTy()) 3097 return Error(ID.Loc, "constexpr requires fp operands"); 3098 break; 3099 default: llvm_unreachable("Unknown binary operator!"); 3100 } 3101 unsigned Flags = 0; 3102 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3103 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3104 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3105 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3106 ID.ConstantVal = C; 3107 ID.Kind = ValID::t_Constant; 3108 return false; 3109 } 3110 3111 // Logical Operations 3112 case lltok::kw_and: 3113 case lltok::kw_or: 3114 case lltok::kw_xor: { 3115 unsigned Opc = Lex.getUIntVal(); 3116 Constant *Val0, *Val1; 3117 Lex.Lex(); 3118 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3119 ParseGlobalTypeAndValue(Val0) || 3120 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3121 ParseGlobalTypeAndValue(Val1) || 3122 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3123 return true; 3124 if (Val0->getType() != Val1->getType()) 3125 return Error(ID.Loc, "operands of constexpr must have same type"); 3126 if (!Val0->getType()->isIntOrIntVectorTy()) 3127 return Error(ID.Loc, 3128 "constexpr requires integer or integer vector operands"); 3129 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 3134 case lltok::kw_getelementptr: 3135 case lltok::kw_shufflevector: 3136 case lltok::kw_insertelement: 3137 case lltok::kw_extractelement: 3138 case lltok::kw_select: { 3139 unsigned Opc = Lex.getUIntVal(); 3140 SmallVector<Constant*, 16> Elts; 3141 bool InBounds = false; 3142 Type *Ty; 3143 Lex.Lex(); 3144 3145 if (Opc == Instruction::GetElementPtr) 3146 InBounds = EatIfPresent(lltok::kw_inbounds); 3147 3148 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3149 return true; 3150 3151 LocTy ExplicitTypeLoc = Lex.getLoc(); 3152 if (Opc == Instruction::GetElementPtr) { 3153 if (ParseType(Ty) || 3154 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3155 return true; 3156 } 3157 3158 if (ParseGlobalValueVector(Elts) || 3159 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3160 return true; 3161 3162 if (Opc == Instruction::GetElementPtr) { 3163 if (Elts.size() == 0 || 3164 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3165 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3166 3167 Type *BaseType = Elts[0]->getType(); 3168 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3169 if (Ty != BasePointerType->getElementType()) 3170 return Error( 3171 ExplicitTypeLoc, 3172 "explicit pointee type doesn't match operand's pointee type"); 3173 3174 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3175 for (Constant *Val : Indices) { 3176 Type *ValTy = Val->getType(); 3177 if (!ValTy->getScalarType()->isIntegerTy()) 3178 return Error(ID.Loc, "getelementptr index must be an integer"); 3179 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3180 return Error(ID.Loc, "getelementptr index type missmatch"); 3181 if (ValTy->isVectorTy()) { 3182 unsigned ValNumEl = ValTy->getVectorNumElements(); 3183 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3184 if (ValNumEl != PtrNumEl) 3185 return Error( 3186 ID.Loc, 3187 "getelementptr vector index has a wrong number of elements"); 3188 } 3189 } 3190 3191 SmallPtrSet<Type*, 4> Visited; 3192 if (!Indices.empty() && !Ty->isSized(&Visited)) 3193 return Error(ID.Loc, "base element of getelementptr must be sized"); 3194 3195 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3196 return Error(ID.Loc, "invalid getelementptr indices"); 3197 ID.ConstantVal = 3198 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3199 } else if (Opc == Instruction::Select) { 3200 if (Elts.size() != 3) 3201 return Error(ID.Loc, "expected three operands to select"); 3202 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3203 Elts[2])) 3204 return Error(ID.Loc, Reason); 3205 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3206 } else if (Opc == Instruction::ShuffleVector) { 3207 if (Elts.size() != 3) 3208 return Error(ID.Loc, "expected three operands to shufflevector"); 3209 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3210 return Error(ID.Loc, "invalid operands to shufflevector"); 3211 ID.ConstantVal = 3212 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3213 } else if (Opc == Instruction::ExtractElement) { 3214 if (Elts.size() != 2) 3215 return Error(ID.Loc, "expected two operands to extractelement"); 3216 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3217 return Error(ID.Loc, "invalid extractelement operands"); 3218 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3219 } else { 3220 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3221 if (Elts.size() != 3) 3222 return Error(ID.Loc, "expected three operands to insertelement"); 3223 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3224 return Error(ID.Loc, "invalid insertelement operands"); 3225 ID.ConstantVal = 3226 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3227 } 3228 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 } 3233 3234 Lex.Lex(); 3235 return false; 3236 } 3237 3238 /// ParseGlobalValue - Parse a global value with the specified type. 3239 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3240 C = nullptr; 3241 ValID ID; 3242 Value *V = nullptr; 3243 bool Parsed = ParseValID(ID) || 3244 ConvertValIDToValue(Ty, ID, V, nullptr); 3245 if (V && !(C = dyn_cast<Constant>(V))) 3246 return Error(ID.Loc, "global values must be constants"); 3247 return Parsed; 3248 } 3249 3250 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3251 Type *Ty = nullptr; 3252 return ParseType(Ty) || 3253 ParseGlobalValue(Ty, V); 3254 } 3255 3256 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3257 C = nullptr; 3258 3259 LocTy KwLoc = Lex.getLoc(); 3260 if (!EatIfPresent(lltok::kw_comdat)) 3261 return false; 3262 3263 if (EatIfPresent(lltok::lparen)) { 3264 if (Lex.getKind() != lltok::ComdatVar) 3265 return TokError("expected comdat variable"); 3266 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3267 Lex.Lex(); 3268 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3269 return true; 3270 } else { 3271 if (GlobalName.empty()) 3272 return TokError("comdat cannot be unnamed"); 3273 C = getComdat(GlobalName, KwLoc); 3274 } 3275 3276 return false; 3277 } 3278 3279 /// ParseGlobalValueVector 3280 /// ::= /*empty*/ 3281 /// ::= TypeAndValue (',' TypeAndValue)* 3282 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3283 // Empty list. 3284 if (Lex.getKind() == lltok::rbrace || 3285 Lex.getKind() == lltok::rsquare || 3286 Lex.getKind() == lltok::greater || 3287 Lex.getKind() == lltok::rparen) 3288 return false; 3289 3290 Constant *C; 3291 if (ParseGlobalTypeAndValue(C)) return true; 3292 Elts.push_back(C); 3293 3294 while (EatIfPresent(lltok::comma)) { 3295 if (ParseGlobalTypeAndValue(C)) return true; 3296 Elts.push_back(C); 3297 } 3298 3299 return false; 3300 } 3301 3302 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3303 SmallVector<Metadata *, 16> Elts; 3304 if (ParseMDNodeVector(Elts)) 3305 return true; 3306 3307 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3308 return false; 3309 } 3310 3311 /// MDNode: 3312 /// ::= !{ ... } 3313 /// ::= !7 3314 /// ::= !DILocation(...) 3315 bool LLParser::ParseMDNode(MDNode *&N) { 3316 if (Lex.getKind() == lltok::MetadataVar) 3317 return ParseSpecializedMDNode(N); 3318 3319 return ParseToken(lltok::exclaim, "expected '!' here") || 3320 ParseMDNodeTail(N); 3321 } 3322 3323 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3324 // !{ ... } 3325 if (Lex.getKind() == lltok::lbrace) 3326 return ParseMDTuple(N); 3327 3328 // !42 3329 return ParseMDNodeID(N); 3330 } 3331 3332 namespace { 3333 3334 /// Structure to represent an optional metadata field. 3335 template <class FieldTy> struct MDFieldImpl { 3336 typedef MDFieldImpl ImplTy; 3337 FieldTy Val; 3338 bool Seen; 3339 3340 void assign(FieldTy Val) { 3341 Seen = true; 3342 this->Val = std::move(Val); 3343 } 3344 3345 explicit MDFieldImpl(FieldTy Default) 3346 : Val(std::move(Default)), Seen(false) {} 3347 }; 3348 3349 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3350 uint64_t Max; 3351 3352 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3353 : ImplTy(Default), Max(Max) {} 3354 }; 3355 struct LineField : public MDUnsignedField { 3356 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3357 }; 3358 struct ColumnField : public MDUnsignedField { 3359 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3360 }; 3361 struct DwarfTagField : public MDUnsignedField { 3362 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3363 DwarfTagField(dwarf::Tag DefaultTag) 3364 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3365 }; 3366 struct DwarfMacinfoTypeField : public MDUnsignedField { 3367 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3368 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3369 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3370 }; 3371 struct DwarfAttEncodingField : public MDUnsignedField { 3372 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3373 }; 3374 struct DwarfVirtualityField : public MDUnsignedField { 3375 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3376 }; 3377 struct DwarfLangField : public MDUnsignedField { 3378 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3379 }; 3380 struct DwarfCCField : public MDUnsignedField { 3381 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3382 }; 3383 struct EmissionKindField : public MDUnsignedField { 3384 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3385 }; 3386 3387 struct DIFlagField : public MDUnsignedField { 3388 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3389 }; 3390 3391 struct MDSignedField : public MDFieldImpl<int64_t> { 3392 int64_t Min; 3393 int64_t Max; 3394 3395 MDSignedField(int64_t Default = 0) 3396 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3397 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3398 : ImplTy(Default), Min(Min), Max(Max) {} 3399 }; 3400 3401 struct MDBoolField : public MDFieldImpl<bool> { 3402 MDBoolField(bool Default = false) : ImplTy(Default) {} 3403 }; 3404 struct MDField : public MDFieldImpl<Metadata *> { 3405 bool AllowNull; 3406 3407 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3408 }; 3409 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3410 MDConstant() : ImplTy(nullptr) {} 3411 }; 3412 struct MDStringField : public MDFieldImpl<MDString *> { 3413 bool AllowEmpty; 3414 MDStringField(bool AllowEmpty = true) 3415 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3416 }; 3417 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3418 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3419 }; 3420 3421 } // end namespace 3422 3423 namespace llvm { 3424 3425 template <> 3426 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3427 MDUnsignedField &Result) { 3428 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3429 return TokError("expected unsigned integer"); 3430 3431 auto &U = Lex.getAPSIntVal(); 3432 if (U.ugt(Result.Max)) 3433 return TokError("value for '" + Name + "' too large, limit is " + 3434 Twine(Result.Max)); 3435 Result.assign(U.getZExtValue()); 3436 assert(Result.Val <= Result.Max && "Expected value in range"); 3437 Lex.Lex(); 3438 return false; 3439 } 3440 3441 template <> 3442 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3443 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3444 } 3445 template <> 3446 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3447 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3448 } 3449 3450 template <> 3451 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3452 if (Lex.getKind() == lltok::APSInt) 3453 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3454 3455 if (Lex.getKind() != lltok::DwarfTag) 3456 return TokError("expected DWARF tag"); 3457 3458 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3459 if (Tag == dwarf::DW_TAG_invalid) 3460 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3461 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3462 3463 Result.assign(Tag); 3464 Lex.Lex(); 3465 return false; 3466 } 3467 3468 template <> 3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3470 DwarfMacinfoTypeField &Result) { 3471 if (Lex.getKind() == lltok::APSInt) 3472 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3473 3474 if (Lex.getKind() != lltok::DwarfMacinfo) 3475 return TokError("expected DWARF macinfo type"); 3476 3477 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3478 if (Macinfo == dwarf::DW_MACINFO_invalid) 3479 return TokError( 3480 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3481 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3482 3483 Result.assign(Macinfo); 3484 Lex.Lex(); 3485 return false; 3486 } 3487 3488 template <> 3489 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3490 DwarfVirtualityField &Result) { 3491 if (Lex.getKind() == lltok::APSInt) 3492 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3493 3494 if (Lex.getKind() != lltok::DwarfVirtuality) 3495 return TokError("expected DWARF virtuality code"); 3496 3497 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3498 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3499 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3500 Lex.getStrVal() + "'"); 3501 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3502 Result.assign(Virtuality); 3503 Lex.Lex(); 3504 return false; 3505 } 3506 3507 template <> 3508 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3509 if (Lex.getKind() == lltok::APSInt) 3510 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3511 3512 if (Lex.getKind() != lltok::DwarfLang) 3513 return TokError("expected DWARF language"); 3514 3515 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3516 if (!Lang) 3517 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3518 "'"); 3519 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3520 Result.assign(Lang); 3521 Lex.Lex(); 3522 return false; 3523 } 3524 3525 template <> 3526 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3527 if (Lex.getKind() == lltok::APSInt) 3528 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3529 3530 if (Lex.getKind() != lltok::DwarfCC) 3531 return TokError("expected DWARF calling convention"); 3532 3533 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3534 if (!CC) 3535 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3536 "'"); 3537 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3538 Result.assign(CC); 3539 Lex.Lex(); 3540 return false; 3541 } 3542 3543 template <> 3544 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3545 if (Lex.getKind() == lltok::APSInt) 3546 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3547 3548 if (Lex.getKind() != lltok::EmissionKind) 3549 return TokError("expected emission kind"); 3550 3551 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3552 if (!Kind) 3553 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3554 "'"); 3555 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3556 Result.assign(*Kind); 3557 Lex.Lex(); 3558 return false; 3559 } 3560 3561 template <> 3562 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3563 DwarfAttEncodingField &Result) { 3564 if (Lex.getKind() == lltok::APSInt) 3565 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3566 3567 if (Lex.getKind() != lltok::DwarfAttEncoding) 3568 return TokError("expected DWARF type attribute encoding"); 3569 3570 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3571 if (!Encoding) 3572 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3573 Lex.getStrVal() + "'"); 3574 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3575 Result.assign(Encoding); 3576 Lex.Lex(); 3577 return false; 3578 } 3579 3580 /// DIFlagField 3581 /// ::= uint32 3582 /// ::= DIFlagVector 3583 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3584 template <> 3585 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3586 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3587 3588 // Parser for a single flag. 3589 auto parseFlag = [&](unsigned &Val) { 3590 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3591 return ParseUInt32(Val); 3592 3593 if (Lex.getKind() != lltok::DIFlag) 3594 return TokError("expected debug info flag"); 3595 3596 Val = DINode::getFlag(Lex.getStrVal()); 3597 if (!Val) 3598 return TokError(Twine("invalid debug info flag flag '") + 3599 Lex.getStrVal() + "'"); 3600 Lex.Lex(); 3601 return false; 3602 }; 3603 3604 // Parse the flags and combine them together. 3605 unsigned Combined = 0; 3606 do { 3607 unsigned Val; 3608 if (parseFlag(Val)) 3609 return true; 3610 Combined |= Val; 3611 } while (EatIfPresent(lltok::bar)); 3612 3613 Result.assign(Combined); 3614 return false; 3615 } 3616 3617 template <> 3618 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3619 MDSignedField &Result) { 3620 if (Lex.getKind() != lltok::APSInt) 3621 return TokError("expected signed integer"); 3622 3623 auto &S = Lex.getAPSIntVal(); 3624 if (S < Result.Min) 3625 return TokError("value for '" + Name + "' too small, limit is " + 3626 Twine(Result.Min)); 3627 if (S > Result.Max) 3628 return TokError("value for '" + Name + "' too large, limit is " + 3629 Twine(Result.Max)); 3630 Result.assign(S.getExtValue()); 3631 assert(Result.Val >= Result.Min && "Expected value in range"); 3632 assert(Result.Val <= Result.Max && "Expected value in range"); 3633 Lex.Lex(); 3634 return false; 3635 } 3636 3637 template <> 3638 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3639 switch (Lex.getKind()) { 3640 default: 3641 return TokError("expected 'true' or 'false'"); 3642 case lltok::kw_true: 3643 Result.assign(true); 3644 break; 3645 case lltok::kw_false: 3646 Result.assign(false); 3647 break; 3648 } 3649 Lex.Lex(); 3650 return false; 3651 } 3652 3653 template <> 3654 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3655 if (Lex.getKind() == lltok::kw_null) { 3656 if (!Result.AllowNull) 3657 return TokError("'" + Name + "' cannot be null"); 3658 Lex.Lex(); 3659 Result.assign(nullptr); 3660 return false; 3661 } 3662 3663 Metadata *MD; 3664 if (ParseMetadata(MD, nullptr)) 3665 return true; 3666 3667 Result.assign(MD); 3668 return false; 3669 } 3670 3671 template <> 3672 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3673 Metadata *MD; 3674 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3675 return true; 3676 3677 Result.assign(cast<ConstantAsMetadata>(MD)); 3678 return false; 3679 } 3680 3681 template <> 3682 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3683 LocTy ValueLoc = Lex.getLoc(); 3684 std::string S; 3685 if (ParseStringConstant(S)) 3686 return true; 3687 3688 if (!Result.AllowEmpty && S.empty()) 3689 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3690 3691 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3692 return false; 3693 } 3694 3695 template <> 3696 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3697 SmallVector<Metadata *, 4> MDs; 3698 if (ParseMDNodeVector(MDs)) 3699 return true; 3700 3701 Result.assign(std::move(MDs)); 3702 return false; 3703 } 3704 3705 } // end namespace llvm 3706 3707 template <class ParserTy> 3708 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3709 do { 3710 if (Lex.getKind() != lltok::LabelStr) 3711 return TokError("expected field label here"); 3712 3713 if (parseField()) 3714 return true; 3715 } while (EatIfPresent(lltok::comma)); 3716 3717 return false; 3718 } 3719 3720 template <class ParserTy> 3721 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3722 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3723 Lex.Lex(); 3724 3725 if (ParseToken(lltok::lparen, "expected '(' here")) 3726 return true; 3727 if (Lex.getKind() != lltok::rparen) 3728 if (ParseMDFieldsImplBody(parseField)) 3729 return true; 3730 3731 ClosingLoc = Lex.getLoc(); 3732 return ParseToken(lltok::rparen, "expected ')' here"); 3733 } 3734 3735 template <class FieldTy> 3736 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3737 if (Result.Seen) 3738 return TokError("field '" + Name + "' cannot be specified more than once"); 3739 3740 LocTy Loc = Lex.getLoc(); 3741 Lex.Lex(); 3742 return ParseMDField(Loc, Name, Result); 3743 } 3744 3745 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3746 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3747 3748 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3749 if (Lex.getStrVal() == #CLASS) \ 3750 return Parse##CLASS(N, IsDistinct); 3751 #include "llvm/IR/Metadata.def" 3752 3753 return TokError("expected metadata type"); 3754 } 3755 3756 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3757 #define NOP_FIELD(NAME, TYPE, INIT) 3758 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3759 if (!NAME.Seen) \ 3760 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3761 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3762 if (Lex.getStrVal() == #NAME) \ 3763 return ParseMDField(#NAME, NAME); 3764 #define PARSE_MD_FIELDS() \ 3765 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3766 do { \ 3767 LocTy ClosingLoc; \ 3768 if (ParseMDFieldsImpl([&]() -> bool { \ 3769 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3770 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3771 }, ClosingLoc)) \ 3772 return true; \ 3773 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3774 } while (false) 3775 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3776 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3777 3778 /// ParseDILocationFields: 3779 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3780 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3782 OPTIONAL(line, LineField, ); \ 3783 OPTIONAL(column, ColumnField, ); \ 3784 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3785 OPTIONAL(inlinedAt, MDField, ); 3786 PARSE_MD_FIELDS(); 3787 #undef VISIT_MD_FIELDS 3788 3789 Result = GET_OR_DISTINCT( 3790 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3791 return false; 3792 } 3793 3794 /// ParseGenericDINode: 3795 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3796 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3797 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3798 REQUIRED(tag, DwarfTagField, ); \ 3799 OPTIONAL(header, MDStringField, ); \ 3800 OPTIONAL(operands, MDFieldList, ); 3801 PARSE_MD_FIELDS(); 3802 #undef VISIT_MD_FIELDS 3803 3804 Result = GET_OR_DISTINCT(GenericDINode, 3805 (Context, tag.Val, header.Val, operands.Val)); 3806 return false; 3807 } 3808 3809 /// ParseDISubrange: 3810 /// ::= !DISubrange(count: 30, lowerBound: 2) 3811 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3813 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3814 OPTIONAL(lowerBound, MDSignedField, ); 3815 PARSE_MD_FIELDS(); 3816 #undef VISIT_MD_FIELDS 3817 3818 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3819 return false; 3820 } 3821 3822 /// ParseDIEnumerator: 3823 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3824 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3826 REQUIRED(name, MDStringField, ); \ 3827 REQUIRED(value, MDSignedField, ); 3828 PARSE_MD_FIELDS(); 3829 #undef VISIT_MD_FIELDS 3830 3831 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3832 return false; 3833 } 3834 3835 /// ParseDIBasicType: 3836 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3837 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3839 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3840 OPTIONAL(name, MDStringField, ); \ 3841 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3842 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3843 OPTIONAL(encoding, DwarfAttEncodingField, ); 3844 PARSE_MD_FIELDS(); 3845 #undef VISIT_MD_FIELDS 3846 3847 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3848 align.Val, encoding.Val)); 3849 return false; 3850 } 3851 3852 /// ParseDIDerivedType: 3853 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3854 /// line: 7, scope: !1, baseType: !2, size: 32, 3855 /// align: 32, offset: 0, flags: 0, extraData: !3) 3856 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3857 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3858 REQUIRED(tag, DwarfTagField, ); \ 3859 OPTIONAL(name, MDStringField, ); \ 3860 OPTIONAL(file, MDField, ); \ 3861 OPTIONAL(line, LineField, ); \ 3862 OPTIONAL(scope, MDField, ); \ 3863 REQUIRED(baseType, MDField, ); \ 3864 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3865 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3866 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3867 OPTIONAL(flags, DIFlagField, ); \ 3868 OPTIONAL(extraData, MDField, ); 3869 PARSE_MD_FIELDS(); 3870 #undef VISIT_MD_FIELDS 3871 3872 Result = GET_OR_DISTINCT(DIDerivedType, 3873 (Context, tag.Val, name.Val, file.Val, line.Val, 3874 scope.Val, baseType.Val, size.Val, align.Val, 3875 offset.Val, flags.Val, extraData.Val)); 3876 return false; 3877 } 3878 3879 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3881 REQUIRED(tag, DwarfTagField, ); \ 3882 OPTIONAL(name, MDStringField, ); \ 3883 OPTIONAL(file, MDField, ); \ 3884 OPTIONAL(line, LineField, ); \ 3885 OPTIONAL(scope, MDField, ); \ 3886 OPTIONAL(baseType, MDField, ); \ 3887 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3888 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3889 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3890 OPTIONAL(flags, DIFlagField, ); \ 3891 OPTIONAL(elements, MDField, ); \ 3892 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3893 OPTIONAL(vtableHolder, MDField, ); \ 3894 OPTIONAL(templateParams, MDField, ); \ 3895 OPTIONAL(identifier, MDStringField, ); 3896 PARSE_MD_FIELDS(); 3897 #undef VISIT_MD_FIELDS 3898 3899 // If this has an identifier try to build an ODR type. 3900 if (identifier.Val) 3901 if (auto *CT = DICompositeType::buildODRType( 3902 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3903 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3904 elements.Val, runtimeLang.Val, vtableHolder.Val, 3905 templateParams.Val)) { 3906 Result = CT; 3907 return false; 3908 } 3909 3910 // Create a new node, and save it in the context if it belongs in the type 3911 // map. 3912 Result = GET_OR_DISTINCT( 3913 DICompositeType, 3914 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3915 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3916 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3917 return false; 3918 } 3919 3920 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3922 OPTIONAL(flags, DIFlagField, ); \ 3923 OPTIONAL(cc, DwarfCCField, ); \ 3924 REQUIRED(types, MDField, ); 3925 PARSE_MD_FIELDS(); 3926 #undef VISIT_MD_FIELDS 3927 3928 Result = GET_OR_DISTINCT(DISubroutineType, 3929 (Context, flags.Val, cc.Val, types.Val)); 3930 return false; 3931 } 3932 3933 /// ParseDIFileType: 3934 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3935 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3937 REQUIRED(filename, MDStringField, ); \ 3938 REQUIRED(directory, MDStringField, ); 3939 PARSE_MD_FIELDS(); 3940 #undef VISIT_MD_FIELDS 3941 3942 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3943 return false; 3944 } 3945 3946 /// ParseDICompileUnit: 3947 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3948 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3949 /// splitDebugFilename: "abc.debug", 3950 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3951 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3952 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3953 if (!IsDistinct) 3954 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3955 3956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3957 REQUIRED(language, DwarfLangField, ); \ 3958 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3959 OPTIONAL(producer, MDStringField, ); \ 3960 OPTIONAL(isOptimized, MDBoolField, ); \ 3961 OPTIONAL(flags, MDStringField, ); \ 3962 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3963 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3964 OPTIONAL(emissionKind, EmissionKindField, ); \ 3965 OPTIONAL(enums, MDField, ); \ 3966 OPTIONAL(retainedTypes, MDField, ); \ 3967 OPTIONAL(globals, MDField, ); \ 3968 OPTIONAL(imports, MDField, ); \ 3969 OPTIONAL(macros, MDField, ); \ 3970 OPTIONAL(dwoId, MDUnsignedField, ); 3971 PARSE_MD_FIELDS(); 3972 #undef VISIT_MD_FIELDS 3973 3974 Result = DICompileUnit::getDistinct( 3975 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3976 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3977 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val); 3978 return false; 3979 } 3980 3981 /// ParseDISubprogram: 3982 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3983 /// file: !1, line: 7, type: !2, isLocal: false, 3984 /// isDefinition: true, scopeLine: 8, containingType: !3, 3985 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3986 /// virtualIndex: 10, flags: 11, 3987 /// isOptimized: false, templateParams: !4, declaration: !5, 3988 /// variables: !6) 3989 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3990 auto Loc = Lex.getLoc(); 3991 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3992 OPTIONAL(scope, MDField, ); \ 3993 OPTIONAL(name, MDStringField, ); \ 3994 OPTIONAL(linkageName, MDStringField, ); \ 3995 OPTIONAL(file, MDField, ); \ 3996 OPTIONAL(line, LineField, ); \ 3997 OPTIONAL(type, MDField, ); \ 3998 OPTIONAL(isLocal, MDBoolField, ); \ 3999 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4000 OPTIONAL(scopeLine, LineField, ); \ 4001 OPTIONAL(containingType, MDField, ); \ 4002 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4003 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4004 OPTIONAL(flags, DIFlagField, ); \ 4005 OPTIONAL(isOptimized, MDBoolField, ); \ 4006 OPTIONAL(unit, MDField, ); \ 4007 OPTIONAL(templateParams, MDField, ); \ 4008 OPTIONAL(declaration, MDField, ); \ 4009 OPTIONAL(variables, MDField, ); 4010 PARSE_MD_FIELDS(); 4011 #undef VISIT_MD_FIELDS 4012 4013 if (isDefinition.Val && !IsDistinct) 4014 return Lex.Error( 4015 Loc, 4016 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4017 4018 Result = GET_OR_DISTINCT( 4019 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4020 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4021 scopeLine.Val, containingType.Val, virtuality.Val, 4022 virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val, 4023 templateParams.Val, declaration.Val, variables.Val)); 4024 return false; 4025 } 4026 4027 /// ParseDILexicalBlock: 4028 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4029 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4031 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4032 OPTIONAL(file, MDField, ); \ 4033 OPTIONAL(line, LineField, ); \ 4034 OPTIONAL(column, ColumnField, ); 4035 PARSE_MD_FIELDS(); 4036 #undef VISIT_MD_FIELDS 4037 4038 Result = GET_OR_DISTINCT( 4039 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4040 return false; 4041 } 4042 4043 /// ParseDILexicalBlockFile: 4044 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4045 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4047 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4048 OPTIONAL(file, MDField, ); \ 4049 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4050 PARSE_MD_FIELDS(); 4051 #undef VISIT_MD_FIELDS 4052 4053 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4054 (Context, scope.Val, file.Val, discriminator.Val)); 4055 return false; 4056 } 4057 4058 /// ParseDINamespace: 4059 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4060 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4062 REQUIRED(scope, MDField, ); \ 4063 OPTIONAL(file, MDField, ); \ 4064 OPTIONAL(name, MDStringField, ); \ 4065 OPTIONAL(line, LineField, ); 4066 PARSE_MD_FIELDS(); 4067 #undef VISIT_MD_FIELDS 4068 4069 Result = GET_OR_DISTINCT(DINamespace, 4070 (Context, scope.Val, file.Val, name.Val, line.Val)); 4071 return false; 4072 } 4073 4074 /// ParseDIMacro: 4075 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4076 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4077 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4078 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4079 REQUIRED(line, LineField, ); \ 4080 REQUIRED(name, MDStringField, ); \ 4081 OPTIONAL(value, MDStringField, ); 4082 PARSE_MD_FIELDS(); 4083 #undef VISIT_MD_FIELDS 4084 4085 Result = GET_OR_DISTINCT(DIMacro, 4086 (Context, type.Val, line.Val, name.Val, value.Val)); 4087 return false; 4088 } 4089 4090 /// ParseDIMacroFile: 4091 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4092 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4094 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4095 REQUIRED(line, LineField, ); \ 4096 REQUIRED(file, MDField, ); \ 4097 OPTIONAL(nodes, MDField, ); 4098 PARSE_MD_FIELDS(); 4099 #undef VISIT_MD_FIELDS 4100 4101 Result = GET_OR_DISTINCT(DIMacroFile, 4102 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4103 return false; 4104 } 4105 4106 4107 /// ParseDIModule: 4108 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4109 /// includePath: "/usr/include", isysroot: "/") 4110 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4111 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4112 REQUIRED(scope, MDField, ); \ 4113 REQUIRED(name, MDStringField, ); \ 4114 OPTIONAL(configMacros, MDStringField, ); \ 4115 OPTIONAL(includePath, MDStringField, ); \ 4116 OPTIONAL(isysroot, MDStringField, ); 4117 PARSE_MD_FIELDS(); 4118 #undef VISIT_MD_FIELDS 4119 4120 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4121 configMacros.Val, includePath.Val, isysroot.Val)); 4122 return false; 4123 } 4124 4125 /// ParseDITemplateTypeParameter: 4126 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4127 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4128 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4129 OPTIONAL(name, MDStringField, ); \ 4130 REQUIRED(type, MDField, ); 4131 PARSE_MD_FIELDS(); 4132 #undef VISIT_MD_FIELDS 4133 4134 Result = 4135 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4136 return false; 4137 } 4138 4139 /// ParseDITemplateValueParameter: 4140 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4141 /// name: "V", type: !1, value: i32 7) 4142 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4144 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4145 OPTIONAL(name, MDStringField, ); \ 4146 OPTIONAL(type, MDField, ); \ 4147 REQUIRED(value, MDField, ); 4148 PARSE_MD_FIELDS(); 4149 #undef VISIT_MD_FIELDS 4150 4151 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4152 (Context, tag.Val, name.Val, type.Val, value.Val)); 4153 return false; 4154 } 4155 4156 /// ParseDIGlobalVariable: 4157 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4158 /// file: !1, line: 7, type: !2, isLocal: false, 4159 /// isDefinition: true, variable: i32* @foo, 4160 /// declaration: !3) 4161 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4162 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4163 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4164 OPTIONAL(scope, MDField, ); \ 4165 OPTIONAL(linkageName, MDStringField, ); \ 4166 OPTIONAL(file, MDField, ); \ 4167 OPTIONAL(line, LineField, ); \ 4168 OPTIONAL(type, MDField, ); \ 4169 OPTIONAL(isLocal, MDBoolField, ); \ 4170 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4171 OPTIONAL(variable, MDConstant, ); \ 4172 OPTIONAL(declaration, MDField, ); 4173 PARSE_MD_FIELDS(); 4174 #undef VISIT_MD_FIELDS 4175 4176 Result = GET_OR_DISTINCT(DIGlobalVariable, 4177 (Context, scope.Val, name.Val, linkageName.Val, 4178 file.Val, line.Val, type.Val, isLocal.Val, 4179 isDefinition.Val, variable.Val, declaration.Val)); 4180 return false; 4181 } 4182 4183 /// ParseDILocalVariable: 4184 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4185 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4186 /// ::= !DILocalVariable(scope: !0, name: "foo", 4187 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4188 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4190 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4191 OPTIONAL(name, MDStringField, ); \ 4192 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4193 OPTIONAL(file, MDField, ); \ 4194 OPTIONAL(line, LineField, ); \ 4195 OPTIONAL(type, MDField, ); \ 4196 OPTIONAL(flags, DIFlagField, ); 4197 PARSE_MD_FIELDS(); 4198 #undef VISIT_MD_FIELDS 4199 4200 Result = GET_OR_DISTINCT(DILocalVariable, 4201 (Context, scope.Val, name.Val, file.Val, line.Val, 4202 type.Val, arg.Val, flags.Val)); 4203 return false; 4204 } 4205 4206 /// ParseDIExpression: 4207 /// ::= !DIExpression(0, 7, -1) 4208 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4209 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4210 Lex.Lex(); 4211 4212 if (ParseToken(lltok::lparen, "expected '(' here")) 4213 return true; 4214 4215 SmallVector<uint64_t, 8> Elements; 4216 if (Lex.getKind() != lltok::rparen) 4217 do { 4218 if (Lex.getKind() == lltok::DwarfOp) { 4219 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4220 Lex.Lex(); 4221 Elements.push_back(Op); 4222 continue; 4223 } 4224 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4225 } 4226 4227 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4228 return TokError("expected unsigned integer"); 4229 4230 auto &U = Lex.getAPSIntVal(); 4231 if (U.ugt(UINT64_MAX)) 4232 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4233 Elements.push_back(U.getZExtValue()); 4234 Lex.Lex(); 4235 } while (EatIfPresent(lltok::comma)); 4236 4237 if (ParseToken(lltok::rparen, "expected ')' here")) 4238 return true; 4239 4240 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4241 return false; 4242 } 4243 4244 /// ParseDIObjCProperty: 4245 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4246 /// getter: "getFoo", attributes: 7, type: !2) 4247 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4248 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4249 OPTIONAL(name, MDStringField, ); \ 4250 OPTIONAL(file, MDField, ); \ 4251 OPTIONAL(line, LineField, ); \ 4252 OPTIONAL(setter, MDStringField, ); \ 4253 OPTIONAL(getter, MDStringField, ); \ 4254 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4255 OPTIONAL(type, MDField, ); 4256 PARSE_MD_FIELDS(); 4257 #undef VISIT_MD_FIELDS 4258 4259 Result = GET_OR_DISTINCT(DIObjCProperty, 4260 (Context, name.Val, file.Val, line.Val, setter.Val, 4261 getter.Val, attributes.Val, type.Val)); 4262 return false; 4263 } 4264 4265 /// ParseDIImportedEntity: 4266 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4267 /// line: 7, name: "foo") 4268 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4270 REQUIRED(tag, DwarfTagField, ); \ 4271 REQUIRED(scope, MDField, ); \ 4272 OPTIONAL(entity, MDField, ); \ 4273 OPTIONAL(line, LineField, ); \ 4274 OPTIONAL(name, MDStringField, ); 4275 PARSE_MD_FIELDS(); 4276 #undef VISIT_MD_FIELDS 4277 4278 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4279 entity.Val, line.Val, name.Val)); 4280 return false; 4281 } 4282 4283 #undef PARSE_MD_FIELD 4284 #undef NOP_FIELD 4285 #undef REQUIRE_FIELD 4286 #undef DECLARE_FIELD 4287 4288 /// ParseMetadataAsValue 4289 /// ::= metadata i32 %local 4290 /// ::= metadata i32 @global 4291 /// ::= metadata i32 7 4292 /// ::= metadata !0 4293 /// ::= metadata !{...} 4294 /// ::= metadata !"string" 4295 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4296 // Note: the type 'metadata' has already been parsed. 4297 Metadata *MD; 4298 if (ParseMetadata(MD, &PFS)) 4299 return true; 4300 4301 V = MetadataAsValue::get(Context, MD); 4302 return false; 4303 } 4304 4305 /// ParseValueAsMetadata 4306 /// ::= i32 %local 4307 /// ::= i32 @global 4308 /// ::= i32 7 4309 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4310 PerFunctionState *PFS) { 4311 Type *Ty; 4312 LocTy Loc; 4313 if (ParseType(Ty, TypeMsg, Loc)) 4314 return true; 4315 if (Ty->isMetadataTy()) 4316 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4317 4318 Value *V; 4319 if (ParseValue(Ty, V, PFS)) 4320 return true; 4321 4322 MD = ValueAsMetadata::get(V); 4323 return false; 4324 } 4325 4326 /// ParseMetadata 4327 /// ::= i32 %local 4328 /// ::= i32 @global 4329 /// ::= i32 7 4330 /// ::= !42 4331 /// ::= !{...} 4332 /// ::= !"string" 4333 /// ::= !DILocation(...) 4334 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4335 if (Lex.getKind() == lltok::MetadataVar) { 4336 MDNode *N; 4337 if (ParseSpecializedMDNode(N)) 4338 return true; 4339 MD = N; 4340 return false; 4341 } 4342 4343 // ValueAsMetadata: 4344 // <type> <value> 4345 if (Lex.getKind() != lltok::exclaim) 4346 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4347 4348 // '!'. 4349 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4350 Lex.Lex(); 4351 4352 // MDString: 4353 // ::= '!' STRINGCONSTANT 4354 if (Lex.getKind() == lltok::StringConstant) { 4355 MDString *S; 4356 if (ParseMDString(S)) 4357 return true; 4358 MD = S; 4359 return false; 4360 } 4361 4362 // MDNode: 4363 // !{ ... } 4364 // !7 4365 MDNode *N; 4366 if (ParseMDNodeTail(N)) 4367 return true; 4368 MD = N; 4369 return false; 4370 } 4371 4372 4373 //===----------------------------------------------------------------------===// 4374 // Function Parsing. 4375 //===----------------------------------------------------------------------===// 4376 4377 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4378 PerFunctionState *PFS) { 4379 if (Ty->isFunctionTy()) 4380 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4381 4382 switch (ID.Kind) { 4383 case ValID::t_LocalID: 4384 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4385 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4386 return V == nullptr; 4387 case ValID::t_LocalName: 4388 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4389 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4390 return V == nullptr; 4391 case ValID::t_InlineAsm: { 4392 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4393 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4394 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4395 (ID.UIntVal >> 1) & 1, 4396 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4397 return false; 4398 } 4399 case ValID::t_GlobalName: 4400 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4401 return V == nullptr; 4402 case ValID::t_GlobalID: 4403 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4404 return V == nullptr; 4405 case ValID::t_APSInt: 4406 if (!Ty->isIntegerTy()) 4407 return Error(ID.Loc, "integer constant must have integer type"); 4408 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4409 V = ConstantInt::get(Context, ID.APSIntVal); 4410 return false; 4411 case ValID::t_APFloat: 4412 if (!Ty->isFloatingPointTy() || 4413 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4414 return Error(ID.Loc, "floating point constant invalid for type"); 4415 4416 // The lexer has no type info, so builds all half, float, and double FP 4417 // constants as double. Fix this here. Long double does not need this. 4418 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4419 bool Ignored; 4420 if (Ty->isHalfTy()) 4421 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4422 &Ignored); 4423 else if (Ty->isFloatTy()) 4424 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4425 &Ignored); 4426 } 4427 V = ConstantFP::get(Context, ID.APFloatVal); 4428 4429 if (V->getType() != Ty) 4430 return Error(ID.Loc, "floating point constant does not have type '" + 4431 getTypeString(Ty) + "'"); 4432 4433 return false; 4434 case ValID::t_Null: 4435 if (!Ty->isPointerTy()) 4436 return Error(ID.Loc, "null must be a pointer type"); 4437 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4438 return false; 4439 case ValID::t_Undef: 4440 // FIXME: LabelTy should not be a first-class type. 4441 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4442 return Error(ID.Loc, "invalid type for undef constant"); 4443 V = UndefValue::get(Ty); 4444 return false; 4445 case ValID::t_EmptyArray: 4446 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4447 return Error(ID.Loc, "invalid empty array initializer"); 4448 V = UndefValue::get(Ty); 4449 return false; 4450 case ValID::t_Zero: 4451 // FIXME: LabelTy should not be a first-class type. 4452 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4453 return Error(ID.Loc, "invalid type for null constant"); 4454 V = Constant::getNullValue(Ty); 4455 return false; 4456 case ValID::t_None: 4457 if (!Ty->isTokenTy()) 4458 return Error(ID.Loc, "invalid type for none constant"); 4459 V = Constant::getNullValue(Ty); 4460 return false; 4461 case ValID::t_Constant: 4462 if (ID.ConstantVal->getType() != Ty) 4463 return Error(ID.Loc, "constant expression type mismatch"); 4464 4465 V = ID.ConstantVal; 4466 return false; 4467 case ValID::t_ConstantStruct: 4468 case ValID::t_PackedConstantStruct: 4469 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4470 if (ST->getNumElements() != ID.UIntVal) 4471 return Error(ID.Loc, 4472 "initializer with struct type has wrong # elements"); 4473 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4474 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4475 4476 // Verify that the elements are compatible with the structtype. 4477 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4478 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4479 return Error(ID.Loc, "element " + Twine(i) + 4480 " of struct initializer doesn't match struct element type"); 4481 4482 V = ConstantStruct::get( 4483 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4484 } else 4485 return Error(ID.Loc, "constant expression type mismatch"); 4486 return false; 4487 } 4488 llvm_unreachable("Invalid ValID"); 4489 } 4490 4491 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4492 C = nullptr; 4493 ValID ID; 4494 auto Loc = Lex.getLoc(); 4495 if (ParseValID(ID, /*PFS=*/nullptr)) 4496 return true; 4497 switch (ID.Kind) { 4498 case ValID::t_APSInt: 4499 case ValID::t_APFloat: 4500 case ValID::t_Undef: 4501 case ValID::t_Constant: 4502 case ValID::t_ConstantStruct: 4503 case ValID::t_PackedConstantStruct: { 4504 Value *V; 4505 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4506 return true; 4507 assert(isa<Constant>(V) && "Expected a constant value"); 4508 C = cast<Constant>(V); 4509 return false; 4510 } 4511 default: 4512 return Error(Loc, "expected a constant value"); 4513 } 4514 } 4515 4516 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4517 V = nullptr; 4518 ValID ID; 4519 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4520 } 4521 4522 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4523 Type *Ty = nullptr; 4524 return ParseType(Ty) || 4525 ParseValue(Ty, V, PFS); 4526 } 4527 4528 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4529 PerFunctionState &PFS) { 4530 Value *V; 4531 Loc = Lex.getLoc(); 4532 if (ParseTypeAndValue(V, PFS)) return true; 4533 if (!isa<BasicBlock>(V)) 4534 return Error(Loc, "expected a basic block"); 4535 BB = cast<BasicBlock>(V); 4536 return false; 4537 } 4538 4539 4540 /// FunctionHeader 4541 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4542 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4543 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4544 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4545 // Parse the linkage. 4546 LocTy LinkageLoc = Lex.getLoc(); 4547 unsigned Linkage; 4548 4549 unsigned Visibility; 4550 unsigned DLLStorageClass; 4551 AttrBuilder RetAttrs; 4552 unsigned CC; 4553 bool HasLinkage; 4554 Type *RetType = nullptr; 4555 LocTy RetTypeLoc = Lex.getLoc(); 4556 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4557 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4558 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4559 return true; 4560 4561 // Verify that the linkage is ok. 4562 switch ((GlobalValue::LinkageTypes)Linkage) { 4563 case GlobalValue::ExternalLinkage: 4564 break; // always ok. 4565 case GlobalValue::ExternalWeakLinkage: 4566 if (isDefine) 4567 return Error(LinkageLoc, "invalid linkage for function definition"); 4568 break; 4569 case GlobalValue::PrivateLinkage: 4570 case GlobalValue::InternalLinkage: 4571 case GlobalValue::AvailableExternallyLinkage: 4572 case GlobalValue::LinkOnceAnyLinkage: 4573 case GlobalValue::LinkOnceODRLinkage: 4574 case GlobalValue::WeakAnyLinkage: 4575 case GlobalValue::WeakODRLinkage: 4576 if (!isDefine) 4577 return Error(LinkageLoc, "invalid linkage for function declaration"); 4578 break; 4579 case GlobalValue::AppendingLinkage: 4580 case GlobalValue::CommonLinkage: 4581 return Error(LinkageLoc, "invalid function linkage type"); 4582 } 4583 4584 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4585 return Error(LinkageLoc, 4586 "symbol with local linkage must have default visibility"); 4587 4588 if (!FunctionType::isValidReturnType(RetType)) 4589 return Error(RetTypeLoc, "invalid function return type"); 4590 4591 LocTy NameLoc = Lex.getLoc(); 4592 4593 std::string FunctionName; 4594 if (Lex.getKind() == lltok::GlobalVar) { 4595 FunctionName = Lex.getStrVal(); 4596 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4597 unsigned NameID = Lex.getUIntVal(); 4598 4599 if (NameID != NumberedVals.size()) 4600 return TokError("function expected to be numbered '%" + 4601 Twine(NumberedVals.size()) + "'"); 4602 } else { 4603 return TokError("expected function name"); 4604 } 4605 4606 Lex.Lex(); 4607 4608 if (Lex.getKind() != lltok::lparen) 4609 return TokError("expected '(' in function argument list"); 4610 4611 SmallVector<ArgInfo, 8> ArgList; 4612 bool isVarArg; 4613 AttrBuilder FuncAttrs; 4614 std::vector<unsigned> FwdRefAttrGrps; 4615 LocTy BuiltinLoc; 4616 std::string Section; 4617 unsigned Alignment; 4618 std::string GC; 4619 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4620 LocTy UnnamedAddrLoc; 4621 Constant *Prefix = nullptr; 4622 Constant *Prologue = nullptr; 4623 Constant *PersonalityFn = nullptr; 4624 Comdat *C; 4625 4626 if (ParseArgumentList(ArgList, isVarArg) || 4627 ParseOptionalUnnamedAddr(UnnamedAddr) || 4628 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4629 BuiltinLoc) || 4630 (EatIfPresent(lltok::kw_section) && 4631 ParseStringConstant(Section)) || 4632 parseOptionalComdat(FunctionName, C) || 4633 ParseOptionalAlignment(Alignment) || 4634 (EatIfPresent(lltok::kw_gc) && 4635 ParseStringConstant(GC)) || 4636 (EatIfPresent(lltok::kw_prefix) && 4637 ParseGlobalTypeAndValue(Prefix)) || 4638 (EatIfPresent(lltok::kw_prologue) && 4639 ParseGlobalTypeAndValue(Prologue)) || 4640 (EatIfPresent(lltok::kw_personality) && 4641 ParseGlobalTypeAndValue(PersonalityFn))) 4642 return true; 4643 4644 if (FuncAttrs.contains(Attribute::Builtin)) 4645 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4646 4647 // If the alignment was parsed as an attribute, move to the alignment field. 4648 if (FuncAttrs.hasAlignmentAttr()) { 4649 Alignment = FuncAttrs.getAlignment(); 4650 FuncAttrs.removeAttribute(Attribute::Alignment); 4651 } 4652 4653 // Okay, if we got here, the function is syntactically valid. Convert types 4654 // and do semantic checks. 4655 std::vector<Type*> ParamTypeList; 4656 SmallVector<AttributeSet, 8> Attrs; 4657 4658 if (RetAttrs.hasAttributes()) 4659 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4660 AttributeSet::ReturnIndex, 4661 RetAttrs)); 4662 4663 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4664 ParamTypeList.push_back(ArgList[i].Ty); 4665 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4666 AttrBuilder B(ArgList[i].Attrs, i + 1); 4667 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4668 } 4669 } 4670 4671 if (FuncAttrs.hasAttributes()) 4672 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4673 AttributeSet::FunctionIndex, 4674 FuncAttrs)); 4675 4676 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4677 4678 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4679 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4680 4681 FunctionType *FT = 4682 FunctionType::get(RetType, ParamTypeList, isVarArg); 4683 PointerType *PFT = PointerType::getUnqual(FT); 4684 4685 Fn = nullptr; 4686 if (!FunctionName.empty()) { 4687 // If this was a definition of a forward reference, remove the definition 4688 // from the forward reference table and fill in the forward ref. 4689 auto FRVI = ForwardRefVals.find(FunctionName); 4690 if (FRVI != ForwardRefVals.end()) { 4691 Fn = M->getFunction(FunctionName); 4692 if (!Fn) 4693 return Error(FRVI->second.second, "invalid forward reference to " 4694 "function as global value!"); 4695 if (Fn->getType() != PFT) 4696 return Error(FRVI->second.second, "invalid forward reference to " 4697 "function '" + FunctionName + "' with wrong type!"); 4698 4699 ForwardRefVals.erase(FRVI); 4700 } else if ((Fn = M->getFunction(FunctionName))) { 4701 // Reject redefinitions. 4702 return Error(NameLoc, "invalid redefinition of function '" + 4703 FunctionName + "'"); 4704 } else if (M->getNamedValue(FunctionName)) { 4705 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4706 } 4707 4708 } else { 4709 // If this is a definition of a forward referenced function, make sure the 4710 // types agree. 4711 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4712 if (I != ForwardRefValIDs.end()) { 4713 Fn = cast<Function>(I->second.first); 4714 if (Fn->getType() != PFT) 4715 return Error(NameLoc, "type of definition and forward reference of '@" + 4716 Twine(NumberedVals.size()) + "' disagree"); 4717 ForwardRefValIDs.erase(I); 4718 } 4719 } 4720 4721 if (!Fn) 4722 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4723 else // Move the forward-reference to the correct spot in the module. 4724 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4725 4726 if (FunctionName.empty()) 4727 NumberedVals.push_back(Fn); 4728 4729 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4730 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4731 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4732 Fn->setCallingConv(CC); 4733 Fn->setAttributes(PAL); 4734 Fn->setUnnamedAddr(UnnamedAddr); 4735 Fn->setAlignment(Alignment); 4736 Fn->setSection(Section); 4737 Fn->setComdat(C); 4738 Fn->setPersonalityFn(PersonalityFn); 4739 if (!GC.empty()) Fn->setGC(GC); 4740 Fn->setPrefixData(Prefix); 4741 Fn->setPrologueData(Prologue); 4742 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4743 4744 // Add all of the arguments we parsed to the function. 4745 Function::arg_iterator ArgIt = Fn->arg_begin(); 4746 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4747 // If the argument has a name, insert it into the argument symbol table. 4748 if (ArgList[i].Name.empty()) continue; 4749 4750 // Set the name, if it conflicted, it will be auto-renamed. 4751 ArgIt->setName(ArgList[i].Name); 4752 4753 if (ArgIt->getName() != ArgList[i].Name) 4754 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4755 ArgList[i].Name + "'"); 4756 } 4757 4758 if (isDefine) 4759 return false; 4760 4761 // Check the declaration has no block address forward references. 4762 ValID ID; 4763 if (FunctionName.empty()) { 4764 ID.Kind = ValID::t_GlobalID; 4765 ID.UIntVal = NumberedVals.size() - 1; 4766 } else { 4767 ID.Kind = ValID::t_GlobalName; 4768 ID.StrVal = FunctionName; 4769 } 4770 auto Blocks = ForwardRefBlockAddresses.find(ID); 4771 if (Blocks != ForwardRefBlockAddresses.end()) 4772 return Error(Blocks->first.Loc, 4773 "cannot take blockaddress inside a declaration"); 4774 return false; 4775 } 4776 4777 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4778 ValID ID; 4779 if (FunctionNumber == -1) { 4780 ID.Kind = ValID::t_GlobalName; 4781 ID.StrVal = F.getName(); 4782 } else { 4783 ID.Kind = ValID::t_GlobalID; 4784 ID.UIntVal = FunctionNumber; 4785 } 4786 4787 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4788 if (Blocks == P.ForwardRefBlockAddresses.end()) 4789 return false; 4790 4791 for (const auto &I : Blocks->second) { 4792 const ValID &BBID = I.first; 4793 GlobalValue *GV = I.second; 4794 4795 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4796 "Expected local id or name"); 4797 BasicBlock *BB; 4798 if (BBID.Kind == ValID::t_LocalName) 4799 BB = GetBB(BBID.StrVal, BBID.Loc); 4800 else 4801 BB = GetBB(BBID.UIntVal, BBID.Loc); 4802 if (!BB) 4803 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4804 4805 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4806 GV->eraseFromParent(); 4807 } 4808 4809 P.ForwardRefBlockAddresses.erase(Blocks); 4810 return false; 4811 } 4812 4813 /// ParseFunctionBody 4814 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4815 bool LLParser::ParseFunctionBody(Function &Fn) { 4816 if (Lex.getKind() != lltok::lbrace) 4817 return TokError("expected '{' in function body"); 4818 Lex.Lex(); // eat the {. 4819 4820 int FunctionNumber = -1; 4821 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4822 4823 PerFunctionState PFS(*this, Fn, FunctionNumber); 4824 4825 // Resolve block addresses and allow basic blocks to be forward-declared 4826 // within this function. 4827 if (PFS.resolveForwardRefBlockAddresses()) 4828 return true; 4829 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4830 4831 // We need at least one basic block. 4832 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4833 return TokError("function body requires at least one basic block"); 4834 4835 while (Lex.getKind() != lltok::rbrace && 4836 Lex.getKind() != lltok::kw_uselistorder) 4837 if (ParseBasicBlock(PFS)) return true; 4838 4839 while (Lex.getKind() != lltok::rbrace) 4840 if (ParseUseListOrder(&PFS)) 4841 return true; 4842 4843 // Eat the }. 4844 Lex.Lex(); 4845 4846 // Verify function is ok. 4847 return PFS.FinishFunction(); 4848 } 4849 4850 /// ParseBasicBlock 4851 /// ::= LabelStr? Instruction* 4852 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4853 // If this basic block starts out with a name, remember it. 4854 std::string Name; 4855 LocTy NameLoc = Lex.getLoc(); 4856 if (Lex.getKind() == lltok::LabelStr) { 4857 Name = Lex.getStrVal(); 4858 Lex.Lex(); 4859 } 4860 4861 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4862 if (!BB) 4863 return Error(NameLoc, 4864 "unable to create block named '" + Name + "'"); 4865 4866 std::string NameStr; 4867 4868 // Parse the instructions in this block until we get a terminator. 4869 Instruction *Inst; 4870 do { 4871 // This instruction may have three possibilities for a name: a) none 4872 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4873 LocTy NameLoc = Lex.getLoc(); 4874 int NameID = -1; 4875 NameStr = ""; 4876 4877 if (Lex.getKind() == lltok::LocalVarID) { 4878 NameID = Lex.getUIntVal(); 4879 Lex.Lex(); 4880 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4881 return true; 4882 } else if (Lex.getKind() == lltok::LocalVar) { 4883 NameStr = Lex.getStrVal(); 4884 Lex.Lex(); 4885 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4886 return true; 4887 } 4888 4889 switch (ParseInstruction(Inst, BB, PFS)) { 4890 default: llvm_unreachable("Unknown ParseInstruction result!"); 4891 case InstError: return true; 4892 case InstNormal: 4893 BB->getInstList().push_back(Inst); 4894 4895 // With a normal result, we check to see if the instruction is followed by 4896 // a comma and metadata. 4897 if (EatIfPresent(lltok::comma)) 4898 if (ParseInstructionMetadata(*Inst)) 4899 return true; 4900 break; 4901 case InstExtraComma: 4902 BB->getInstList().push_back(Inst); 4903 4904 // If the instruction parser ate an extra comma at the end of it, it 4905 // *must* be followed by metadata. 4906 if (ParseInstructionMetadata(*Inst)) 4907 return true; 4908 break; 4909 } 4910 4911 // Set the name on the instruction. 4912 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4913 } while (!isa<TerminatorInst>(Inst)); 4914 4915 return false; 4916 } 4917 4918 //===----------------------------------------------------------------------===// 4919 // Instruction Parsing. 4920 //===----------------------------------------------------------------------===// 4921 4922 /// ParseInstruction - Parse one of the many different instructions. 4923 /// 4924 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4925 PerFunctionState &PFS) { 4926 lltok::Kind Token = Lex.getKind(); 4927 if (Token == lltok::Eof) 4928 return TokError("found end of file when expecting more instructions"); 4929 LocTy Loc = Lex.getLoc(); 4930 unsigned KeywordVal = Lex.getUIntVal(); 4931 Lex.Lex(); // Eat the keyword. 4932 4933 switch (Token) { 4934 default: return Error(Loc, "expected instruction opcode"); 4935 // Terminator Instructions. 4936 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4937 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4938 case lltok::kw_br: return ParseBr(Inst, PFS); 4939 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4940 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4941 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4942 case lltok::kw_resume: return ParseResume(Inst, PFS); 4943 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4944 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4945 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4946 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4947 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4948 // Binary Operators. 4949 case lltok::kw_add: 4950 case lltok::kw_sub: 4951 case lltok::kw_mul: 4952 case lltok::kw_shl: { 4953 bool NUW = EatIfPresent(lltok::kw_nuw); 4954 bool NSW = EatIfPresent(lltok::kw_nsw); 4955 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4956 4957 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4958 4959 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4960 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4961 return false; 4962 } 4963 case lltok::kw_fadd: 4964 case lltok::kw_fsub: 4965 case lltok::kw_fmul: 4966 case lltok::kw_fdiv: 4967 case lltok::kw_frem: { 4968 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4969 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4970 if (Res != 0) 4971 return Res; 4972 if (FMF.any()) 4973 Inst->setFastMathFlags(FMF); 4974 return 0; 4975 } 4976 4977 case lltok::kw_sdiv: 4978 case lltok::kw_udiv: 4979 case lltok::kw_lshr: 4980 case lltok::kw_ashr: { 4981 bool Exact = EatIfPresent(lltok::kw_exact); 4982 4983 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4984 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4985 return false; 4986 } 4987 4988 case lltok::kw_urem: 4989 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4990 case lltok::kw_and: 4991 case lltok::kw_or: 4992 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4993 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4994 case lltok::kw_fcmp: { 4995 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4996 int Res = ParseCompare(Inst, PFS, KeywordVal); 4997 if (Res != 0) 4998 return Res; 4999 if (FMF.any()) 5000 Inst->setFastMathFlags(FMF); 5001 return 0; 5002 } 5003 5004 // Casts. 5005 case lltok::kw_trunc: 5006 case lltok::kw_zext: 5007 case lltok::kw_sext: 5008 case lltok::kw_fptrunc: 5009 case lltok::kw_fpext: 5010 case lltok::kw_bitcast: 5011 case lltok::kw_addrspacecast: 5012 case lltok::kw_uitofp: 5013 case lltok::kw_sitofp: 5014 case lltok::kw_fptoui: 5015 case lltok::kw_fptosi: 5016 case lltok::kw_inttoptr: 5017 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5018 // Other. 5019 case lltok::kw_select: return ParseSelect(Inst, PFS); 5020 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5021 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5022 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5023 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5024 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5025 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5026 // Call. 5027 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5028 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5029 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5030 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5031 // Memory. 5032 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5033 case lltok::kw_load: return ParseLoad(Inst, PFS); 5034 case lltok::kw_store: return ParseStore(Inst, PFS); 5035 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5036 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5037 case lltok::kw_fence: return ParseFence(Inst, PFS); 5038 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5039 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5040 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5041 } 5042 } 5043 5044 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5045 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5046 if (Opc == Instruction::FCmp) { 5047 switch (Lex.getKind()) { 5048 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5049 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5050 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5051 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5052 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5053 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5054 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5055 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5056 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5057 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5058 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5059 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5060 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5061 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5062 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5063 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5064 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5065 } 5066 } else { 5067 switch (Lex.getKind()) { 5068 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5069 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5070 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5071 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5072 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5073 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5074 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5075 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5076 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5077 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5078 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5079 } 5080 } 5081 Lex.Lex(); 5082 return false; 5083 } 5084 5085 //===----------------------------------------------------------------------===// 5086 // Terminator Instructions. 5087 //===----------------------------------------------------------------------===// 5088 5089 /// ParseRet - Parse a return instruction. 5090 /// ::= 'ret' void (',' !dbg, !1)* 5091 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5092 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5093 PerFunctionState &PFS) { 5094 SMLoc TypeLoc = Lex.getLoc(); 5095 Type *Ty = nullptr; 5096 if (ParseType(Ty, true /*void allowed*/)) return true; 5097 5098 Type *ResType = PFS.getFunction().getReturnType(); 5099 5100 if (Ty->isVoidTy()) { 5101 if (!ResType->isVoidTy()) 5102 return Error(TypeLoc, "value doesn't match function result type '" + 5103 getTypeString(ResType) + "'"); 5104 5105 Inst = ReturnInst::Create(Context); 5106 return false; 5107 } 5108 5109 Value *RV; 5110 if (ParseValue(Ty, RV, PFS)) return true; 5111 5112 if (ResType != RV->getType()) 5113 return Error(TypeLoc, "value doesn't match function result type '" + 5114 getTypeString(ResType) + "'"); 5115 5116 Inst = ReturnInst::Create(Context, RV); 5117 return false; 5118 } 5119 5120 5121 /// ParseBr 5122 /// ::= 'br' TypeAndValue 5123 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5124 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5125 LocTy Loc, Loc2; 5126 Value *Op0; 5127 BasicBlock *Op1, *Op2; 5128 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5129 5130 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5131 Inst = BranchInst::Create(BB); 5132 return false; 5133 } 5134 5135 if (Op0->getType() != Type::getInt1Ty(Context)) 5136 return Error(Loc, "branch condition must have 'i1' type"); 5137 5138 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5139 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5140 ParseToken(lltok::comma, "expected ',' after true destination") || 5141 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5142 return true; 5143 5144 Inst = BranchInst::Create(Op1, Op2, Op0); 5145 return false; 5146 } 5147 5148 /// ParseSwitch 5149 /// Instruction 5150 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5151 /// JumpTable 5152 /// ::= (TypeAndValue ',' TypeAndValue)* 5153 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5154 LocTy CondLoc, BBLoc; 5155 Value *Cond; 5156 BasicBlock *DefaultBB; 5157 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5158 ParseToken(lltok::comma, "expected ',' after switch condition") || 5159 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5160 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5161 return true; 5162 5163 if (!Cond->getType()->isIntegerTy()) 5164 return Error(CondLoc, "switch condition must have integer type"); 5165 5166 // Parse the jump table pairs. 5167 SmallPtrSet<Value*, 32> SeenCases; 5168 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5169 while (Lex.getKind() != lltok::rsquare) { 5170 Value *Constant; 5171 BasicBlock *DestBB; 5172 5173 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5174 ParseToken(lltok::comma, "expected ',' after case value") || 5175 ParseTypeAndBasicBlock(DestBB, PFS)) 5176 return true; 5177 5178 if (!SeenCases.insert(Constant).second) 5179 return Error(CondLoc, "duplicate case value in switch"); 5180 if (!isa<ConstantInt>(Constant)) 5181 return Error(CondLoc, "case value is not a constant integer"); 5182 5183 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5184 } 5185 5186 Lex.Lex(); // Eat the ']'. 5187 5188 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5189 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5190 SI->addCase(Table[i].first, Table[i].second); 5191 Inst = SI; 5192 return false; 5193 } 5194 5195 /// ParseIndirectBr 5196 /// Instruction 5197 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5198 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5199 LocTy AddrLoc; 5200 Value *Address; 5201 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5202 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5203 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5204 return true; 5205 5206 if (!Address->getType()->isPointerTy()) 5207 return Error(AddrLoc, "indirectbr address must have pointer type"); 5208 5209 // Parse the destination list. 5210 SmallVector<BasicBlock*, 16> DestList; 5211 5212 if (Lex.getKind() != lltok::rsquare) { 5213 BasicBlock *DestBB; 5214 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5215 return true; 5216 DestList.push_back(DestBB); 5217 5218 while (EatIfPresent(lltok::comma)) { 5219 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5220 return true; 5221 DestList.push_back(DestBB); 5222 } 5223 } 5224 5225 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5226 return true; 5227 5228 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5229 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5230 IBI->addDestination(DestList[i]); 5231 Inst = IBI; 5232 return false; 5233 } 5234 5235 5236 /// ParseInvoke 5237 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5238 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5239 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5240 LocTy CallLoc = Lex.getLoc(); 5241 AttrBuilder RetAttrs, FnAttrs; 5242 std::vector<unsigned> FwdRefAttrGrps; 5243 LocTy NoBuiltinLoc; 5244 unsigned CC; 5245 Type *RetType = nullptr; 5246 LocTy RetTypeLoc; 5247 ValID CalleeID; 5248 SmallVector<ParamInfo, 16> ArgList; 5249 SmallVector<OperandBundleDef, 2> BundleList; 5250 5251 BasicBlock *NormalBB, *UnwindBB; 5252 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5253 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5254 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5255 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5256 NoBuiltinLoc) || 5257 ParseOptionalOperandBundles(BundleList, PFS) || 5258 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5259 ParseTypeAndBasicBlock(NormalBB, PFS) || 5260 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5261 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5262 return true; 5263 5264 // If RetType is a non-function pointer type, then this is the short syntax 5265 // for the call, which means that RetType is just the return type. Infer the 5266 // rest of the function argument types from the arguments that are present. 5267 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5268 if (!Ty) { 5269 // Pull out the types of all of the arguments... 5270 std::vector<Type*> ParamTypes; 5271 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5272 ParamTypes.push_back(ArgList[i].V->getType()); 5273 5274 if (!FunctionType::isValidReturnType(RetType)) 5275 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5276 5277 Ty = FunctionType::get(RetType, ParamTypes, false); 5278 } 5279 5280 CalleeID.FTy = Ty; 5281 5282 // Look up the callee. 5283 Value *Callee; 5284 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5285 return true; 5286 5287 // Set up the Attribute for the function. 5288 SmallVector<AttributeSet, 8> Attrs; 5289 if (RetAttrs.hasAttributes()) 5290 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5291 AttributeSet::ReturnIndex, 5292 RetAttrs)); 5293 5294 SmallVector<Value*, 8> Args; 5295 5296 // Loop through FunctionType's arguments and ensure they are specified 5297 // correctly. Also, gather any parameter attributes. 5298 FunctionType::param_iterator I = Ty->param_begin(); 5299 FunctionType::param_iterator E = Ty->param_end(); 5300 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5301 Type *ExpectedTy = nullptr; 5302 if (I != E) { 5303 ExpectedTy = *I++; 5304 } else if (!Ty->isVarArg()) { 5305 return Error(ArgList[i].Loc, "too many arguments specified"); 5306 } 5307 5308 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5309 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5310 getTypeString(ExpectedTy) + "'"); 5311 Args.push_back(ArgList[i].V); 5312 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5313 AttrBuilder B(ArgList[i].Attrs, i + 1); 5314 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5315 } 5316 } 5317 5318 if (I != E) 5319 return Error(CallLoc, "not enough parameters specified for call"); 5320 5321 if (FnAttrs.hasAttributes()) { 5322 if (FnAttrs.hasAlignmentAttr()) 5323 return Error(CallLoc, "invoke instructions may not have an alignment"); 5324 5325 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5326 AttributeSet::FunctionIndex, 5327 FnAttrs)); 5328 } 5329 5330 // Finish off the Attribute and check them 5331 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5332 5333 InvokeInst *II = 5334 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5335 II->setCallingConv(CC); 5336 II->setAttributes(PAL); 5337 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5338 Inst = II; 5339 return false; 5340 } 5341 5342 /// ParseResume 5343 /// ::= 'resume' TypeAndValue 5344 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5345 Value *Exn; LocTy ExnLoc; 5346 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5347 return true; 5348 5349 ResumeInst *RI = ResumeInst::Create(Exn); 5350 Inst = RI; 5351 return false; 5352 } 5353 5354 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5355 PerFunctionState &PFS) { 5356 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5357 return true; 5358 5359 while (Lex.getKind() != lltok::rsquare) { 5360 // If this isn't the first argument, we need a comma. 5361 if (!Args.empty() && 5362 ParseToken(lltok::comma, "expected ',' in argument list")) 5363 return true; 5364 5365 // Parse the argument. 5366 LocTy ArgLoc; 5367 Type *ArgTy = nullptr; 5368 if (ParseType(ArgTy, ArgLoc)) 5369 return true; 5370 5371 Value *V; 5372 if (ArgTy->isMetadataTy()) { 5373 if (ParseMetadataAsValue(V, PFS)) 5374 return true; 5375 } else { 5376 if (ParseValue(ArgTy, V, PFS)) 5377 return true; 5378 } 5379 Args.push_back(V); 5380 } 5381 5382 Lex.Lex(); // Lex the ']'. 5383 return false; 5384 } 5385 5386 /// ParseCleanupRet 5387 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5388 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5389 Value *CleanupPad = nullptr; 5390 5391 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5392 return true; 5393 5394 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5395 return true; 5396 5397 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5398 return true; 5399 5400 BasicBlock *UnwindBB = nullptr; 5401 if (Lex.getKind() == lltok::kw_to) { 5402 Lex.Lex(); 5403 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5404 return true; 5405 } else { 5406 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5407 return true; 5408 } 5409 } 5410 5411 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5412 return false; 5413 } 5414 5415 /// ParseCatchRet 5416 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5417 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5418 Value *CatchPad = nullptr; 5419 5420 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5421 return true; 5422 5423 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5424 return true; 5425 5426 BasicBlock *BB; 5427 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5428 ParseTypeAndBasicBlock(BB, PFS)) 5429 return true; 5430 5431 Inst = CatchReturnInst::Create(CatchPad, BB); 5432 return false; 5433 } 5434 5435 /// ParseCatchSwitch 5436 /// ::= 'catchswitch' within Parent 5437 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5438 Value *ParentPad; 5439 LocTy BBLoc; 5440 5441 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5442 return true; 5443 5444 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5445 Lex.getKind() != lltok::LocalVarID) 5446 return TokError("expected scope value for catchswitch"); 5447 5448 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5449 return true; 5450 5451 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5452 return true; 5453 5454 SmallVector<BasicBlock *, 32> Table; 5455 do { 5456 BasicBlock *DestBB; 5457 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5458 return true; 5459 Table.push_back(DestBB); 5460 } while (EatIfPresent(lltok::comma)); 5461 5462 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5463 return true; 5464 5465 if (ParseToken(lltok::kw_unwind, 5466 "expected 'unwind' after catchswitch scope")) 5467 return true; 5468 5469 BasicBlock *UnwindBB = nullptr; 5470 if (EatIfPresent(lltok::kw_to)) { 5471 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5472 return true; 5473 } else { 5474 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5475 return true; 5476 } 5477 5478 auto *CatchSwitch = 5479 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5480 for (BasicBlock *DestBB : Table) 5481 CatchSwitch->addHandler(DestBB); 5482 Inst = CatchSwitch; 5483 return false; 5484 } 5485 5486 /// ParseCatchPad 5487 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5488 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5489 Value *CatchSwitch = nullptr; 5490 5491 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5492 return true; 5493 5494 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5495 return TokError("expected scope value for catchpad"); 5496 5497 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5498 return true; 5499 5500 SmallVector<Value *, 8> Args; 5501 if (ParseExceptionArgs(Args, PFS)) 5502 return true; 5503 5504 Inst = CatchPadInst::Create(CatchSwitch, Args); 5505 return false; 5506 } 5507 5508 /// ParseCleanupPad 5509 /// ::= 'cleanuppad' within Parent ParamList 5510 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5511 Value *ParentPad = nullptr; 5512 5513 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5514 return true; 5515 5516 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5517 Lex.getKind() != lltok::LocalVarID) 5518 return TokError("expected scope value for cleanuppad"); 5519 5520 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5521 return true; 5522 5523 SmallVector<Value *, 8> Args; 5524 if (ParseExceptionArgs(Args, PFS)) 5525 return true; 5526 5527 Inst = CleanupPadInst::Create(ParentPad, Args); 5528 return false; 5529 } 5530 5531 //===----------------------------------------------------------------------===// 5532 // Binary Operators. 5533 //===----------------------------------------------------------------------===// 5534 5535 /// ParseArithmetic 5536 /// ::= ArithmeticOps TypeAndValue ',' Value 5537 /// 5538 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5539 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5540 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5541 unsigned Opc, unsigned OperandType) { 5542 LocTy Loc; Value *LHS, *RHS; 5543 if (ParseTypeAndValue(LHS, Loc, PFS) || 5544 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5545 ParseValue(LHS->getType(), RHS, PFS)) 5546 return true; 5547 5548 bool Valid; 5549 switch (OperandType) { 5550 default: llvm_unreachable("Unknown operand type!"); 5551 case 0: // int or FP. 5552 Valid = LHS->getType()->isIntOrIntVectorTy() || 5553 LHS->getType()->isFPOrFPVectorTy(); 5554 break; 5555 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5556 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5557 } 5558 5559 if (!Valid) 5560 return Error(Loc, "invalid operand type for instruction"); 5561 5562 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5563 return false; 5564 } 5565 5566 /// ParseLogical 5567 /// ::= ArithmeticOps TypeAndValue ',' Value { 5568 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5569 unsigned Opc) { 5570 LocTy Loc; Value *LHS, *RHS; 5571 if (ParseTypeAndValue(LHS, Loc, PFS) || 5572 ParseToken(lltok::comma, "expected ',' in logical operation") || 5573 ParseValue(LHS->getType(), RHS, PFS)) 5574 return true; 5575 5576 if (!LHS->getType()->isIntOrIntVectorTy()) 5577 return Error(Loc,"instruction requires integer or integer vector operands"); 5578 5579 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5580 return false; 5581 } 5582 5583 5584 /// ParseCompare 5585 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5586 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5587 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5588 unsigned Opc) { 5589 // Parse the integer/fp comparison predicate. 5590 LocTy Loc; 5591 unsigned Pred; 5592 Value *LHS, *RHS; 5593 if (ParseCmpPredicate(Pred, Opc) || 5594 ParseTypeAndValue(LHS, Loc, PFS) || 5595 ParseToken(lltok::comma, "expected ',' after compare value") || 5596 ParseValue(LHS->getType(), RHS, PFS)) 5597 return true; 5598 5599 if (Opc == Instruction::FCmp) { 5600 if (!LHS->getType()->isFPOrFPVectorTy()) 5601 return Error(Loc, "fcmp requires floating point operands"); 5602 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5603 } else { 5604 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5605 if (!LHS->getType()->isIntOrIntVectorTy() && 5606 !LHS->getType()->getScalarType()->isPointerTy()) 5607 return Error(Loc, "icmp requires integer operands"); 5608 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5609 } 5610 return false; 5611 } 5612 5613 //===----------------------------------------------------------------------===// 5614 // Other Instructions. 5615 //===----------------------------------------------------------------------===// 5616 5617 5618 /// ParseCast 5619 /// ::= CastOpc TypeAndValue 'to' Type 5620 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5621 unsigned Opc) { 5622 LocTy Loc; 5623 Value *Op; 5624 Type *DestTy = nullptr; 5625 if (ParseTypeAndValue(Op, Loc, PFS) || 5626 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5627 ParseType(DestTy)) 5628 return true; 5629 5630 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5631 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5632 return Error(Loc, "invalid cast opcode for cast from '" + 5633 getTypeString(Op->getType()) + "' to '" + 5634 getTypeString(DestTy) + "'"); 5635 } 5636 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5637 return false; 5638 } 5639 5640 /// ParseSelect 5641 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5642 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5643 LocTy Loc; 5644 Value *Op0, *Op1, *Op2; 5645 if (ParseTypeAndValue(Op0, Loc, PFS) || 5646 ParseToken(lltok::comma, "expected ',' after select condition") || 5647 ParseTypeAndValue(Op1, PFS) || 5648 ParseToken(lltok::comma, "expected ',' after select value") || 5649 ParseTypeAndValue(Op2, PFS)) 5650 return true; 5651 5652 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5653 return Error(Loc, Reason); 5654 5655 Inst = SelectInst::Create(Op0, Op1, Op2); 5656 return false; 5657 } 5658 5659 /// ParseVA_Arg 5660 /// ::= 'va_arg' TypeAndValue ',' Type 5661 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5662 Value *Op; 5663 Type *EltTy = nullptr; 5664 LocTy TypeLoc; 5665 if (ParseTypeAndValue(Op, PFS) || 5666 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5667 ParseType(EltTy, TypeLoc)) 5668 return true; 5669 5670 if (!EltTy->isFirstClassType()) 5671 return Error(TypeLoc, "va_arg requires operand with first class type"); 5672 5673 Inst = new VAArgInst(Op, EltTy); 5674 return false; 5675 } 5676 5677 /// ParseExtractElement 5678 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5679 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5680 LocTy Loc; 5681 Value *Op0, *Op1; 5682 if (ParseTypeAndValue(Op0, Loc, PFS) || 5683 ParseToken(lltok::comma, "expected ',' after extract value") || 5684 ParseTypeAndValue(Op1, PFS)) 5685 return true; 5686 5687 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5688 return Error(Loc, "invalid extractelement operands"); 5689 5690 Inst = ExtractElementInst::Create(Op0, Op1); 5691 return false; 5692 } 5693 5694 /// ParseInsertElement 5695 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5696 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5697 LocTy Loc; 5698 Value *Op0, *Op1, *Op2; 5699 if (ParseTypeAndValue(Op0, Loc, PFS) || 5700 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5701 ParseTypeAndValue(Op1, PFS) || 5702 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5703 ParseTypeAndValue(Op2, PFS)) 5704 return true; 5705 5706 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5707 return Error(Loc, "invalid insertelement operands"); 5708 5709 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5710 return false; 5711 } 5712 5713 /// ParseShuffleVector 5714 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5715 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5716 LocTy Loc; 5717 Value *Op0, *Op1, *Op2; 5718 if (ParseTypeAndValue(Op0, Loc, PFS) || 5719 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5720 ParseTypeAndValue(Op1, PFS) || 5721 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5722 ParseTypeAndValue(Op2, PFS)) 5723 return true; 5724 5725 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5726 return Error(Loc, "invalid shufflevector operands"); 5727 5728 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5729 return false; 5730 } 5731 5732 /// ParsePHI 5733 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5734 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5735 Type *Ty = nullptr; LocTy TypeLoc; 5736 Value *Op0, *Op1; 5737 5738 if (ParseType(Ty, TypeLoc) || 5739 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5740 ParseValue(Ty, Op0, PFS) || 5741 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5742 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5743 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5744 return true; 5745 5746 bool AteExtraComma = false; 5747 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5748 while (1) { 5749 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5750 5751 if (!EatIfPresent(lltok::comma)) 5752 break; 5753 5754 if (Lex.getKind() == lltok::MetadataVar) { 5755 AteExtraComma = true; 5756 break; 5757 } 5758 5759 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5760 ParseValue(Ty, Op0, PFS) || 5761 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5762 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5763 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5764 return true; 5765 } 5766 5767 if (!Ty->isFirstClassType()) 5768 return Error(TypeLoc, "phi node must have first class type"); 5769 5770 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5771 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5772 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5773 Inst = PN; 5774 return AteExtraComma ? InstExtraComma : InstNormal; 5775 } 5776 5777 /// ParseLandingPad 5778 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5779 /// Clause 5780 /// ::= 'catch' TypeAndValue 5781 /// ::= 'filter' 5782 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5783 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5784 Type *Ty = nullptr; LocTy TyLoc; 5785 5786 if (ParseType(Ty, TyLoc)) 5787 return true; 5788 5789 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5790 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5791 5792 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5793 LandingPadInst::ClauseType CT; 5794 if (EatIfPresent(lltok::kw_catch)) 5795 CT = LandingPadInst::Catch; 5796 else if (EatIfPresent(lltok::kw_filter)) 5797 CT = LandingPadInst::Filter; 5798 else 5799 return TokError("expected 'catch' or 'filter' clause type"); 5800 5801 Value *V; 5802 LocTy VLoc; 5803 if (ParseTypeAndValue(V, VLoc, PFS)) 5804 return true; 5805 5806 // A 'catch' type expects a non-array constant. A filter clause expects an 5807 // array constant. 5808 if (CT == LandingPadInst::Catch) { 5809 if (isa<ArrayType>(V->getType())) 5810 Error(VLoc, "'catch' clause has an invalid type"); 5811 } else { 5812 if (!isa<ArrayType>(V->getType())) 5813 Error(VLoc, "'filter' clause has an invalid type"); 5814 } 5815 5816 Constant *CV = dyn_cast<Constant>(V); 5817 if (!CV) 5818 return Error(VLoc, "clause argument must be a constant"); 5819 LP->addClause(CV); 5820 } 5821 5822 Inst = LP.release(); 5823 return false; 5824 } 5825 5826 /// ParseCall 5827 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5828 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5829 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5830 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5831 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5832 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5833 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5834 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5835 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5836 CallInst::TailCallKind TCK) { 5837 AttrBuilder RetAttrs, FnAttrs; 5838 std::vector<unsigned> FwdRefAttrGrps; 5839 LocTy BuiltinLoc; 5840 unsigned CC; 5841 Type *RetType = nullptr; 5842 LocTy RetTypeLoc; 5843 ValID CalleeID; 5844 SmallVector<ParamInfo, 16> ArgList; 5845 SmallVector<OperandBundleDef, 2> BundleList; 5846 LocTy CallLoc = Lex.getLoc(); 5847 5848 if (TCK != CallInst::TCK_None && 5849 ParseToken(lltok::kw_call, 5850 "expected 'tail call', 'musttail call', or 'notail call'")) 5851 return true; 5852 5853 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5854 5855 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5856 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5857 ParseValID(CalleeID) || 5858 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5859 PFS.getFunction().isVarArg()) || 5860 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5861 ParseOptionalOperandBundles(BundleList, PFS)) 5862 return true; 5863 5864 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5865 return Error(CallLoc, "fast-math-flags specified for call without " 5866 "floating-point scalar or vector return type"); 5867 5868 // If RetType is a non-function pointer type, then this is the short syntax 5869 // for the call, which means that RetType is just the return type. Infer the 5870 // rest of the function argument types from the arguments that are present. 5871 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5872 if (!Ty) { 5873 // Pull out the types of all of the arguments... 5874 std::vector<Type*> ParamTypes; 5875 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5876 ParamTypes.push_back(ArgList[i].V->getType()); 5877 5878 if (!FunctionType::isValidReturnType(RetType)) 5879 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5880 5881 Ty = FunctionType::get(RetType, ParamTypes, false); 5882 } 5883 5884 CalleeID.FTy = Ty; 5885 5886 // Look up the callee. 5887 Value *Callee; 5888 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5889 return true; 5890 5891 // Set up the Attribute for the function. 5892 SmallVector<AttributeSet, 8> Attrs; 5893 if (RetAttrs.hasAttributes()) 5894 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5895 AttributeSet::ReturnIndex, 5896 RetAttrs)); 5897 5898 SmallVector<Value*, 8> Args; 5899 5900 // Loop through FunctionType's arguments and ensure they are specified 5901 // correctly. Also, gather any parameter attributes. 5902 FunctionType::param_iterator I = Ty->param_begin(); 5903 FunctionType::param_iterator E = Ty->param_end(); 5904 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5905 Type *ExpectedTy = nullptr; 5906 if (I != E) { 5907 ExpectedTy = *I++; 5908 } else if (!Ty->isVarArg()) { 5909 return Error(ArgList[i].Loc, "too many arguments specified"); 5910 } 5911 5912 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5913 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5914 getTypeString(ExpectedTy) + "'"); 5915 Args.push_back(ArgList[i].V); 5916 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5917 AttrBuilder B(ArgList[i].Attrs, i + 1); 5918 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5919 } 5920 } 5921 5922 if (I != E) 5923 return Error(CallLoc, "not enough parameters specified for call"); 5924 5925 if (FnAttrs.hasAttributes()) { 5926 if (FnAttrs.hasAlignmentAttr()) 5927 return Error(CallLoc, "call instructions may not have an alignment"); 5928 5929 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5930 AttributeSet::FunctionIndex, 5931 FnAttrs)); 5932 } 5933 5934 // Finish off the Attribute and check them 5935 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5936 5937 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5938 CI->setTailCallKind(TCK); 5939 CI->setCallingConv(CC); 5940 if (FMF.any()) 5941 CI->setFastMathFlags(FMF); 5942 CI->setAttributes(PAL); 5943 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5944 Inst = CI; 5945 return false; 5946 } 5947 5948 //===----------------------------------------------------------------------===// 5949 // Memory Instructions. 5950 //===----------------------------------------------------------------------===// 5951 5952 /// ParseAlloc 5953 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5954 /// (',' 'align' i32)? 5955 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5956 Value *Size = nullptr; 5957 LocTy SizeLoc, TyLoc; 5958 unsigned Alignment = 0; 5959 Type *Ty = nullptr; 5960 5961 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5962 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5963 5964 if (ParseType(Ty, TyLoc)) return true; 5965 5966 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5967 return Error(TyLoc, "invalid type for alloca"); 5968 5969 bool AteExtraComma = false; 5970 if (EatIfPresent(lltok::comma)) { 5971 if (Lex.getKind() == lltok::kw_align) { 5972 if (ParseOptionalAlignment(Alignment)) return true; 5973 } else if (Lex.getKind() == lltok::MetadataVar) { 5974 AteExtraComma = true; 5975 } else { 5976 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5977 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5978 return true; 5979 } 5980 } 5981 5982 if (Size && !Size->getType()->isIntegerTy()) 5983 return Error(SizeLoc, "element count must have integer type"); 5984 5985 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5986 AI->setUsedWithInAlloca(IsInAlloca); 5987 AI->setSwiftError(IsSwiftError); 5988 Inst = AI; 5989 return AteExtraComma ? InstExtraComma : InstNormal; 5990 } 5991 5992 /// ParseLoad 5993 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5994 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5995 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5996 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5997 Value *Val; LocTy Loc; 5998 unsigned Alignment = 0; 5999 bool AteExtraComma = false; 6000 bool isAtomic = false; 6001 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6002 SynchronizationScope Scope = CrossThread; 6003 6004 if (Lex.getKind() == lltok::kw_atomic) { 6005 isAtomic = true; 6006 Lex.Lex(); 6007 } 6008 6009 bool isVolatile = false; 6010 if (Lex.getKind() == lltok::kw_volatile) { 6011 isVolatile = true; 6012 Lex.Lex(); 6013 } 6014 6015 Type *Ty; 6016 LocTy ExplicitTypeLoc = Lex.getLoc(); 6017 if (ParseType(Ty) || 6018 ParseToken(lltok::comma, "expected comma after load's type") || 6019 ParseTypeAndValue(Val, Loc, PFS) || 6020 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6021 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6022 return true; 6023 6024 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6025 return Error(Loc, "load operand must be a pointer to a first class type"); 6026 if (isAtomic && !Alignment) 6027 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6028 if (Ordering == AtomicOrdering::Release || 6029 Ordering == AtomicOrdering::AcquireRelease) 6030 return Error(Loc, "atomic load cannot use Release ordering"); 6031 6032 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6033 return Error(ExplicitTypeLoc, 6034 "explicit pointee type doesn't match operand's pointee type"); 6035 6036 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6037 return AteExtraComma ? InstExtraComma : InstNormal; 6038 } 6039 6040 /// ParseStore 6041 6042 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6043 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6044 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6045 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6046 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6047 unsigned Alignment = 0; 6048 bool AteExtraComma = false; 6049 bool isAtomic = false; 6050 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6051 SynchronizationScope Scope = CrossThread; 6052 6053 if (Lex.getKind() == lltok::kw_atomic) { 6054 isAtomic = true; 6055 Lex.Lex(); 6056 } 6057 6058 bool isVolatile = false; 6059 if (Lex.getKind() == lltok::kw_volatile) { 6060 isVolatile = true; 6061 Lex.Lex(); 6062 } 6063 6064 if (ParseTypeAndValue(Val, Loc, PFS) || 6065 ParseToken(lltok::comma, "expected ',' after store operand") || 6066 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6067 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6068 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6069 return true; 6070 6071 if (!Ptr->getType()->isPointerTy()) 6072 return Error(PtrLoc, "store operand must be a pointer"); 6073 if (!Val->getType()->isFirstClassType()) 6074 return Error(Loc, "store operand must be a first class value"); 6075 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6076 return Error(Loc, "stored value and pointer type do not match"); 6077 if (isAtomic && !Alignment) 6078 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6079 if (Ordering == AtomicOrdering::Acquire || 6080 Ordering == AtomicOrdering::AcquireRelease) 6081 return Error(Loc, "atomic store cannot use Acquire ordering"); 6082 6083 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6084 return AteExtraComma ? InstExtraComma : InstNormal; 6085 } 6086 6087 /// ParseCmpXchg 6088 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6089 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6090 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6091 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6092 bool AteExtraComma = false; 6093 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6094 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6095 SynchronizationScope Scope = CrossThread; 6096 bool isVolatile = false; 6097 bool isWeak = false; 6098 6099 if (EatIfPresent(lltok::kw_weak)) 6100 isWeak = true; 6101 6102 if (EatIfPresent(lltok::kw_volatile)) 6103 isVolatile = true; 6104 6105 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6106 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6107 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6108 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6109 ParseTypeAndValue(New, NewLoc, PFS) || 6110 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6111 ParseOrdering(FailureOrdering)) 6112 return true; 6113 6114 if (SuccessOrdering == AtomicOrdering::Unordered || 6115 FailureOrdering == AtomicOrdering::Unordered) 6116 return TokError("cmpxchg cannot be unordered"); 6117 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6118 return TokError("cmpxchg failure argument shall be no stronger than the " 6119 "success argument"); 6120 if (FailureOrdering == AtomicOrdering::Release || 6121 FailureOrdering == AtomicOrdering::AcquireRelease) 6122 return TokError( 6123 "cmpxchg failure ordering cannot include release semantics"); 6124 if (!Ptr->getType()->isPointerTy()) 6125 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6126 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6127 return Error(CmpLoc, "compare value and pointer type do not match"); 6128 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6129 return Error(NewLoc, "new value and pointer type do not match"); 6130 if (!New->getType()->isFirstClassType()) 6131 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6132 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6133 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6134 CXI->setVolatile(isVolatile); 6135 CXI->setWeak(isWeak); 6136 Inst = CXI; 6137 return AteExtraComma ? InstExtraComma : InstNormal; 6138 } 6139 6140 /// ParseAtomicRMW 6141 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6142 /// 'singlethread'? AtomicOrdering 6143 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6144 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6145 bool AteExtraComma = false; 6146 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6147 SynchronizationScope Scope = CrossThread; 6148 bool isVolatile = false; 6149 AtomicRMWInst::BinOp Operation; 6150 6151 if (EatIfPresent(lltok::kw_volatile)) 6152 isVolatile = true; 6153 6154 switch (Lex.getKind()) { 6155 default: return TokError("expected binary operation in atomicrmw"); 6156 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6157 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6158 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6159 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6160 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6161 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6162 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6163 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6164 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6165 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6166 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6167 } 6168 Lex.Lex(); // Eat the operation. 6169 6170 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6171 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6172 ParseTypeAndValue(Val, ValLoc, PFS) || 6173 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6174 return true; 6175 6176 if (Ordering == AtomicOrdering::Unordered) 6177 return TokError("atomicrmw cannot be unordered"); 6178 if (!Ptr->getType()->isPointerTy()) 6179 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6180 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6181 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6182 if (!Val->getType()->isIntegerTy()) 6183 return Error(ValLoc, "atomicrmw operand must be an integer"); 6184 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6185 if (Size < 8 || (Size & (Size - 1))) 6186 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6187 " integer"); 6188 6189 AtomicRMWInst *RMWI = 6190 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6191 RMWI->setVolatile(isVolatile); 6192 Inst = RMWI; 6193 return AteExtraComma ? InstExtraComma : InstNormal; 6194 } 6195 6196 /// ParseFence 6197 /// ::= 'fence' 'singlethread'? AtomicOrdering 6198 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6199 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6200 SynchronizationScope Scope = CrossThread; 6201 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6202 return true; 6203 6204 if (Ordering == AtomicOrdering::Unordered) 6205 return TokError("fence cannot be unordered"); 6206 if (Ordering == AtomicOrdering::Monotonic) 6207 return TokError("fence cannot be monotonic"); 6208 6209 Inst = new FenceInst(Context, Ordering, Scope); 6210 return InstNormal; 6211 } 6212 6213 /// ParseGetElementPtr 6214 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6215 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6216 Value *Ptr = nullptr; 6217 Value *Val = nullptr; 6218 LocTy Loc, EltLoc; 6219 6220 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6221 6222 Type *Ty = nullptr; 6223 LocTy ExplicitTypeLoc = Lex.getLoc(); 6224 if (ParseType(Ty) || 6225 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6226 ParseTypeAndValue(Ptr, Loc, PFS)) 6227 return true; 6228 6229 Type *BaseType = Ptr->getType(); 6230 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6231 if (!BasePointerType) 6232 return Error(Loc, "base of getelementptr must be a pointer"); 6233 6234 if (Ty != BasePointerType->getElementType()) 6235 return Error(ExplicitTypeLoc, 6236 "explicit pointee type doesn't match operand's pointee type"); 6237 6238 SmallVector<Value*, 16> Indices; 6239 bool AteExtraComma = false; 6240 // GEP returns a vector of pointers if at least one of parameters is a vector. 6241 // All vector parameters should have the same vector width. 6242 unsigned GEPWidth = BaseType->isVectorTy() ? 6243 BaseType->getVectorNumElements() : 0; 6244 6245 while (EatIfPresent(lltok::comma)) { 6246 if (Lex.getKind() == lltok::MetadataVar) { 6247 AteExtraComma = true; 6248 break; 6249 } 6250 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6251 if (!Val->getType()->getScalarType()->isIntegerTy()) 6252 return Error(EltLoc, "getelementptr index must be an integer"); 6253 6254 if (Val->getType()->isVectorTy()) { 6255 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6256 if (GEPWidth && GEPWidth != ValNumEl) 6257 return Error(EltLoc, 6258 "getelementptr vector index has a wrong number of elements"); 6259 GEPWidth = ValNumEl; 6260 } 6261 Indices.push_back(Val); 6262 } 6263 6264 SmallPtrSet<Type*, 4> Visited; 6265 if (!Indices.empty() && !Ty->isSized(&Visited)) 6266 return Error(Loc, "base element of getelementptr must be sized"); 6267 6268 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6269 return Error(Loc, "invalid getelementptr indices"); 6270 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6271 if (InBounds) 6272 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6273 return AteExtraComma ? InstExtraComma : InstNormal; 6274 } 6275 6276 /// ParseExtractValue 6277 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6278 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6279 Value *Val; LocTy Loc; 6280 SmallVector<unsigned, 4> Indices; 6281 bool AteExtraComma; 6282 if (ParseTypeAndValue(Val, Loc, PFS) || 6283 ParseIndexList(Indices, AteExtraComma)) 6284 return true; 6285 6286 if (!Val->getType()->isAggregateType()) 6287 return Error(Loc, "extractvalue operand must be aggregate type"); 6288 6289 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6290 return Error(Loc, "invalid indices for extractvalue"); 6291 Inst = ExtractValueInst::Create(Val, Indices); 6292 return AteExtraComma ? InstExtraComma : InstNormal; 6293 } 6294 6295 /// ParseInsertValue 6296 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6297 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6298 Value *Val0, *Val1; LocTy Loc0, Loc1; 6299 SmallVector<unsigned, 4> Indices; 6300 bool AteExtraComma; 6301 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6302 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6303 ParseTypeAndValue(Val1, Loc1, PFS) || 6304 ParseIndexList(Indices, AteExtraComma)) 6305 return true; 6306 6307 if (!Val0->getType()->isAggregateType()) 6308 return Error(Loc0, "insertvalue operand must be aggregate type"); 6309 6310 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6311 if (!IndexedType) 6312 return Error(Loc0, "invalid indices for insertvalue"); 6313 if (IndexedType != Val1->getType()) 6314 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6315 getTypeString(Val1->getType()) + "' instead of '" + 6316 getTypeString(IndexedType) + "'"); 6317 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6318 return AteExtraComma ? InstExtraComma : InstNormal; 6319 } 6320 6321 //===----------------------------------------------------------------------===// 6322 // Embedded metadata. 6323 //===----------------------------------------------------------------------===// 6324 6325 /// ParseMDNodeVector 6326 /// ::= { Element (',' Element)* } 6327 /// Element 6328 /// ::= 'null' | TypeAndValue 6329 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6330 if (ParseToken(lltok::lbrace, "expected '{' here")) 6331 return true; 6332 6333 // Check for an empty list. 6334 if (EatIfPresent(lltok::rbrace)) 6335 return false; 6336 6337 do { 6338 // Null is a special case since it is typeless. 6339 if (EatIfPresent(lltok::kw_null)) { 6340 Elts.push_back(nullptr); 6341 continue; 6342 } 6343 6344 Metadata *MD; 6345 if (ParseMetadata(MD, nullptr)) 6346 return true; 6347 Elts.push_back(MD); 6348 } while (EatIfPresent(lltok::comma)); 6349 6350 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6351 } 6352 6353 //===----------------------------------------------------------------------===// 6354 // Use-list order directives. 6355 //===----------------------------------------------------------------------===// 6356 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6357 SMLoc Loc) { 6358 if (V->use_empty()) 6359 return Error(Loc, "value has no uses"); 6360 6361 unsigned NumUses = 0; 6362 SmallDenseMap<const Use *, unsigned, 16> Order; 6363 for (const Use &U : V->uses()) { 6364 if (++NumUses > Indexes.size()) 6365 break; 6366 Order[&U] = Indexes[NumUses - 1]; 6367 } 6368 if (NumUses < 2) 6369 return Error(Loc, "value only has one use"); 6370 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6371 return Error(Loc, "wrong number of indexes, expected " + 6372 Twine(std::distance(V->use_begin(), V->use_end()))); 6373 6374 V->sortUseList([&](const Use &L, const Use &R) { 6375 return Order.lookup(&L) < Order.lookup(&R); 6376 }); 6377 return false; 6378 } 6379 6380 /// ParseUseListOrderIndexes 6381 /// ::= '{' uint32 (',' uint32)+ '}' 6382 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6383 SMLoc Loc = Lex.getLoc(); 6384 if (ParseToken(lltok::lbrace, "expected '{' here")) 6385 return true; 6386 if (Lex.getKind() == lltok::rbrace) 6387 return Lex.Error("expected non-empty list of uselistorder indexes"); 6388 6389 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6390 // indexes should be distinct numbers in the range [0, size-1], and should 6391 // not be in order. 6392 unsigned Offset = 0; 6393 unsigned Max = 0; 6394 bool IsOrdered = true; 6395 assert(Indexes.empty() && "Expected empty order vector"); 6396 do { 6397 unsigned Index; 6398 if (ParseUInt32(Index)) 6399 return true; 6400 6401 // Update consistency checks. 6402 Offset += Index - Indexes.size(); 6403 Max = std::max(Max, Index); 6404 IsOrdered &= Index == Indexes.size(); 6405 6406 Indexes.push_back(Index); 6407 } while (EatIfPresent(lltok::comma)); 6408 6409 if (ParseToken(lltok::rbrace, "expected '}' here")) 6410 return true; 6411 6412 if (Indexes.size() < 2) 6413 return Error(Loc, "expected >= 2 uselistorder indexes"); 6414 if (Offset != 0 || Max >= Indexes.size()) 6415 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6416 if (IsOrdered) 6417 return Error(Loc, "expected uselistorder indexes to change the order"); 6418 6419 return false; 6420 } 6421 6422 /// ParseUseListOrder 6423 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6424 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6425 SMLoc Loc = Lex.getLoc(); 6426 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6427 return true; 6428 6429 Value *V; 6430 SmallVector<unsigned, 16> Indexes; 6431 if (ParseTypeAndValue(V, PFS) || 6432 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6433 ParseUseListOrderIndexes(Indexes)) 6434 return true; 6435 6436 return sortUseListOrder(V, Indexes, Loc); 6437 } 6438 6439 /// ParseUseListOrderBB 6440 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6441 bool LLParser::ParseUseListOrderBB() { 6442 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6443 SMLoc Loc = Lex.getLoc(); 6444 Lex.Lex(); 6445 6446 ValID Fn, Label; 6447 SmallVector<unsigned, 16> Indexes; 6448 if (ParseValID(Fn) || 6449 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6450 ParseValID(Label) || 6451 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6452 ParseUseListOrderIndexes(Indexes)) 6453 return true; 6454 6455 // Check the function. 6456 GlobalValue *GV; 6457 if (Fn.Kind == ValID::t_GlobalName) 6458 GV = M->getNamedValue(Fn.StrVal); 6459 else if (Fn.Kind == ValID::t_GlobalID) 6460 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6461 else 6462 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6463 if (!GV) 6464 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6465 auto *F = dyn_cast<Function>(GV); 6466 if (!F) 6467 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6468 if (F->isDeclaration()) 6469 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6470 6471 // Check the basic block. 6472 if (Label.Kind == ValID::t_LocalID) 6473 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6474 if (Label.Kind != ValID::t_LocalName) 6475 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6476 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6477 if (!V) 6478 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6479 if (!isa<BasicBlock>(V)) 6480 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6481 6482 return sortUseListOrder(V, Indexes, Loc); 6483 } 6484