1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779         // DIArgLists should only appear inline in a function, as they may
780         // contain LocalAsMetadata arguments which require a function context.
781       } else if (Lex.getKind() == lltok::MetadataVar &&
782                  Lex.getStrVal() == "DIArgList") {
783         return tokError("found DIArgList outside of function");
784       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
785                  parseMDNodeID(N)) {
786         return true;
787       }
788       NMD->addOperand(N);
789     } while (EatIfPresent(lltok::comma));
790 
791   return parseToken(lltok::rbrace, "expected end of metadata node");
792 }
793 
794 /// parseStandaloneMetadata:
795 ///   !42 = !{...}
796 bool LLParser::parseStandaloneMetadata() {
797   assert(Lex.getKind() == lltok::exclaim);
798   Lex.Lex();
799   unsigned MetadataID = 0;
800 
801   MDNode *Init;
802   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
803     return true;
804 
805   // Detect common error, from old metadata syntax.
806   if (Lex.getKind() == lltok::Type)
807     return tokError("unexpected type in metadata definition");
808 
809   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
810   if (Lex.getKind() == lltok::MetadataVar) {
811     if (parseSpecializedMDNode(Init, IsDistinct))
812       return true;
813   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
814              parseMDTuple(Init, IsDistinct))
815     return true;
816 
817   // See if this was forward referenced, if so, handle it.
818   auto FI = ForwardRefMDNodes.find(MetadataID);
819   if (FI != ForwardRefMDNodes.end()) {
820     FI->second.first->replaceAllUsesWith(Init);
821     ForwardRefMDNodes.erase(FI);
822 
823     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
824   } else {
825     if (NumberedMetadata.count(MetadataID))
826       return tokError("Metadata id is already used");
827     NumberedMetadata[MetadataID].reset(Init);
828   }
829 
830   return false;
831 }
832 
833 // Skips a single module summary entry.
834 bool LLParser::skipModuleSummaryEntry() {
835   // Each module summary entry consists of a tag for the entry
836   // type, followed by a colon, then the fields which may be surrounded by
837   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
838   // support is in place we will look for the tokens corresponding to the
839   // expected tags.
840   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
841       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
842       Lex.getKind() != lltok::kw_blockcount)
843     return tokError(
844         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
845         "start of summary entry");
846   if (Lex.getKind() == lltok::kw_flags)
847     return parseSummaryIndexFlags();
848   if (Lex.getKind() == lltok::kw_blockcount)
849     return parseBlockCount();
850   Lex.Lex();
851   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
852       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
853     return true;
854   // Now walk through the parenthesized entry, until the number of open
855   // parentheses goes back down to 0 (the first '(' was parsed above).
856   unsigned NumOpenParen = 1;
857   do {
858     switch (Lex.getKind()) {
859     case lltok::lparen:
860       NumOpenParen++;
861       break;
862     case lltok::rparen:
863       NumOpenParen--;
864       break;
865     case lltok::Eof:
866       return tokError("found end of file while parsing summary entry");
867     default:
868       // Skip everything in between parentheses.
869       break;
870     }
871     Lex.Lex();
872   } while (NumOpenParen > 0);
873   return false;
874 }
875 
876 /// SummaryEntry
877 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
878 bool LLParser::parseSummaryEntry() {
879   assert(Lex.getKind() == lltok::SummaryID);
880   unsigned SummaryID = Lex.getUIntVal();
881 
882   // For summary entries, colons should be treated as distinct tokens,
883   // not an indication of the end of a label token.
884   Lex.setIgnoreColonInIdentifiers(true);
885 
886   Lex.Lex();
887   if (parseToken(lltok::equal, "expected '=' here"))
888     return true;
889 
890   // If we don't have an index object, skip the summary entry.
891   if (!Index)
892     return skipModuleSummaryEntry();
893 
894   bool result = false;
895   switch (Lex.getKind()) {
896   case lltok::kw_gv:
897     result = parseGVEntry(SummaryID);
898     break;
899   case lltok::kw_module:
900     result = parseModuleEntry(SummaryID);
901     break;
902   case lltok::kw_typeid:
903     result = parseTypeIdEntry(SummaryID);
904     break;
905   case lltok::kw_typeidCompatibleVTable:
906     result = parseTypeIdCompatibleVtableEntry(SummaryID);
907     break;
908   case lltok::kw_flags:
909     result = parseSummaryIndexFlags();
910     break;
911   case lltok::kw_blockcount:
912     result = parseBlockCount();
913     break;
914   default:
915     result = error(Lex.getLoc(), "unexpected summary kind");
916     break;
917   }
918   Lex.setIgnoreColonInIdentifiers(false);
919   return result;
920 }
921 
922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
923   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
924          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
925 }
926 
927 // If there was an explicit dso_local, update GV. In the absence of an explicit
928 // dso_local we keep the default value.
929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
930   if (DSOLocal)
931     GV.setDSOLocal(true);
932 }
933 
934 /// parseIndirectSymbol:
935 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
936 ///                     OptionalVisibility OptionalDLLStorageClass
937 ///                     OptionalThreadLocal OptionalUnnamedAddr
938 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
939 ///
940 /// IndirectSymbol
941 ///   ::= TypeAndValue
942 ///
943 /// IndirectSymbolAttr
944 ///   ::= ',' 'partition' StringConstant
945 ///
946 /// Everything through OptionalUnnamedAddr has already been parsed.
947 ///
948 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
949                                    unsigned L, unsigned Visibility,
950                                    unsigned DLLStorageClass, bool DSOLocal,
951                                    GlobalVariable::ThreadLocalMode TLM,
952                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
953   bool IsAlias;
954   if (Lex.getKind() == lltok::kw_alias)
955     IsAlias = true;
956   else if (Lex.getKind() == lltok::kw_ifunc)
957     IsAlias = false;
958   else
959     llvm_unreachable("Not an alias or ifunc!");
960   Lex.Lex();
961 
962   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
963 
964   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
965     return error(NameLoc, "invalid linkage type for alias");
966 
967   if (!isValidVisibilityForLinkage(Visibility, L))
968     return error(NameLoc,
969                  "symbol with local linkage must have default visibility");
970 
971   Type *Ty;
972   LocTy ExplicitTypeLoc = Lex.getLoc();
973   if (parseType(Ty) ||
974       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
975     return true;
976 
977   Constant *Aliasee;
978   LocTy AliaseeLoc = Lex.getLoc();
979   if (Lex.getKind() != lltok::kw_bitcast &&
980       Lex.getKind() != lltok::kw_getelementptr &&
981       Lex.getKind() != lltok::kw_addrspacecast &&
982       Lex.getKind() != lltok::kw_inttoptr) {
983     if (parseGlobalTypeAndValue(Aliasee))
984       return true;
985   } else {
986     // The bitcast dest type is not present, it is implied by the dest type.
987     ValID ID;
988     if (parseValID(ID))
989       return true;
990     if (ID.Kind != ValID::t_Constant)
991       return error(AliaseeLoc, "invalid aliasee");
992     Aliasee = ID.ConstantVal;
993   }
994 
995   Type *AliaseeType = Aliasee->getType();
996   auto *PTy = dyn_cast<PointerType>(AliaseeType);
997   if (!PTy)
998     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
999   unsigned AddrSpace = PTy->getAddressSpace();
1000 
1001   if (IsAlias && Ty != PTy->getElementType())
1002     return error(ExplicitTypeLoc,
1003                  "explicit pointee type doesn't match operand's pointee type");
1004 
1005   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1006     return error(ExplicitTypeLoc,
1007                  "explicit pointee type should be a function type");
1008 
1009   GlobalValue *GVal = nullptr;
1010 
1011   // See if the alias was forward referenced, if so, prepare to replace the
1012   // forward reference.
1013   if (!Name.empty()) {
1014     GVal = M->getNamedValue(Name);
1015     if (GVal) {
1016       if (!ForwardRefVals.erase(Name))
1017         return error(NameLoc, "redefinition of global '@" + Name + "'");
1018     }
1019   } else {
1020     auto I = ForwardRefValIDs.find(NumberedVals.size());
1021     if (I != ForwardRefValIDs.end()) {
1022       GVal = I->second.first;
1023       ForwardRefValIDs.erase(I);
1024     }
1025   }
1026 
1027   // Okay, create the alias but do not insert it into the module yet.
1028   std::unique_ptr<GlobalIndirectSymbol> GA;
1029   if (IsAlias)
1030     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1031                                  (GlobalValue::LinkageTypes)Linkage, Name,
1032                                  Aliasee, /*Parent*/ nullptr));
1033   else
1034     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1035                                  (GlobalValue::LinkageTypes)Linkage, Name,
1036                                  Aliasee, /*Parent*/ nullptr));
1037   GA->setThreadLocalMode(TLM);
1038   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1039   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1040   GA->setUnnamedAddr(UnnamedAddr);
1041   maybeSetDSOLocal(DSOLocal, *GA);
1042 
1043   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1044   // Now parse them if there are any.
1045   while (Lex.getKind() == lltok::comma) {
1046     Lex.Lex();
1047 
1048     if (Lex.getKind() == lltok::kw_partition) {
1049       Lex.Lex();
1050       GA->setPartition(Lex.getStrVal());
1051       if (parseToken(lltok::StringConstant, "expected partition string"))
1052         return true;
1053     } else {
1054       return tokError("unknown alias or ifunc property!");
1055     }
1056   }
1057 
1058   if (Name.empty())
1059     NumberedVals.push_back(GA.get());
1060 
1061   if (GVal) {
1062     // Verify that types agree.
1063     if (GVal->getType() != GA->getType())
1064       return error(
1065           ExplicitTypeLoc,
1066           "forward reference and definition of alias have different types");
1067 
1068     // If they agree, just RAUW the old value with the alias and remove the
1069     // forward ref info.
1070     GVal->replaceAllUsesWith(GA.get());
1071     GVal->eraseFromParent();
1072   }
1073 
1074   // Insert into the module, we know its name won't collide now.
1075   if (IsAlias)
1076     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1077   else
1078     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1079   assert(GA->getName() == Name && "Should not be a name conflict!");
1080 
1081   // The module owns this now
1082   GA.release();
1083 
1084   return false;
1085 }
1086 
1087 /// parseGlobal
1088 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1089 ///       OptionalVisibility OptionalDLLStorageClass
1090 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1091 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1092 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1093 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1094 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1095 ///       Const OptionalAttrs
1096 ///
1097 /// Everything up to and including OptionalUnnamedAddr has been parsed
1098 /// already.
1099 ///
1100 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1101                            unsigned Linkage, bool HasLinkage,
1102                            unsigned Visibility, unsigned DLLStorageClass,
1103                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1104                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1105   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1106     return error(NameLoc,
1107                  "symbol with local linkage must have default visibility");
1108 
1109   unsigned AddrSpace;
1110   bool IsConstant, IsExternallyInitialized;
1111   LocTy IsExternallyInitializedLoc;
1112   LocTy TyLoc;
1113 
1114   Type *Ty = nullptr;
1115   if (parseOptionalAddrSpace(AddrSpace) ||
1116       parseOptionalToken(lltok::kw_externally_initialized,
1117                          IsExternallyInitialized,
1118                          &IsExternallyInitializedLoc) ||
1119       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1120     return true;
1121 
1122   // If the linkage is specified and is external, then no initializer is
1123   // present.
1124   Constant *Init = nullptr;
1125   if (!HasLinkage ||
1126       !GlobalValue::isValidDeclarationLinkage(
1127           (GlobalValue::LinkageTypes)Linkage)) {
1128     if (parseGlobalValue(Ty, Init))
1129       return true;
1130   }
1131 
1132   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1133     return error(TyLoc, "invalid type for global variable");
1134 
1135   GlobalValue *GVal = nullptr;
1136 
1137   // See if the global was forward referenced, if so, use the global.
1138   if (!Name.empty()) {
1139     GVal = M->getNamedValue(Name);
1140     if (GVal) {
1141       if (!ForwardRefVals.erase(Name))
1142         return error(NameLoc, "redefinition of global '@" + Name + "'");
1143     }
1144   } else {
1145     auto I = ForwardRefValIDs.find(NumberedVals.size());
1146     if (I != ForwardRefValIDs.end()) {
1147       GVal = I->second.first;
1148       ForwardRefValIDs.erase(I);
1149     }
1150   }
1151 
1152   GlobalVariable *GV;
1153   if (!GVal) {
1154     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1155                             Name, nullptr, GlobalVariable::NotThreadLocal,
1156                             AddrSpace);
1157   } else {
1158     if (GVal->getValueType() != Ty)
1159       return error(
1160           TyLoc,
1161           "forward reference and definition of global have different types");
1162 
1163     GV = cast<GlobalVariable>(GVal);
1164 
1165     // Move the forward-reference to the correct spot in the module.
1166     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1167   }
1168 
1169   if (Name.empty())
1170     NumberedVals.push_back(GV);
1171 
1172   // Set the parsed properties on the global.
1173   if (Init)
1174     GV->setInitializer(Init);
1175   GV->setConstant(IsConstant);
1176   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1177   maybeSetDSOLocal(DSOLocal, *GV);
1178   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1179   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1180   GV->setExternallyInitialized(IsExternallyInitialized);
1181   GV->setThreadLocalMode(TLM);
1182   GV->setUnnamedAddr(UnnamedAddr);
1183 
1184   // parse attributes on the global.
1185   while (Lex.getKind() == lltok::comma) {
1186     Lex.Lex();
1187 
1188     if (Lex.getKind() == lltok::kw_section) {
1189       Lex.Lex();
1190       GV->setSection(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected global section string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_partition) {
1194       Lex.Lex();
1195       GV->setPartition(Lex.getStrVal());
1196       if (parseToken(lltok::StringConstant, "expected partition string"))
1197         return true;
1198     } else if (Lex.getKind() == lltok::kw_align) {
1199       MaybeAlign Alignment;
1200       if (parseOptionalAlignment(Alignment))
1201         return true;
1202       GV->setAlignment(Alignment);
1203     } else if (Lex.getKind() == lltok::MetadataVar) {
1204       if (parseGlobalObjectMetadataAttachment(*GV))
1205         return true;
1206     } else {
1207       Comdat *C;
1208       if (parseOptionalComdat(Name, C))
1209         return true;
1210       if (C)
1211         GV->setComdat(C);
1212       else
1213         return tokError("unknown global variable property!");
1214     }
1215   }
1216 
1217   AttrBuilder Attrs;
1218   LocTy BuiltinLoc;
1219   std::vector<unsigned> FwdRefAttrGrps;
1220   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1221     return true;
1222   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1223     GV->setAttributes(AttributeSet::get(Context, Attrs));
1224     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1225   }
1226 
1227   return false;
1228 }
1229 
1230 /// parseUnnamedAttrGrp
1231 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1232 bool LLParser::parseUnnamedAttrGrp() {
1233   assert(Lex.getKind() == lltok::kw_attributes);
1234   LocTy AttrGrpLoc = Lex.getLoc();
1235   Lex.Lex();
1236 
1237   if (Lex.getKind() != lltok::AttrGrpID)
1238     return tokError("expected attribute group id");
1239 
1240   unsigned VarID = Lex.getUIntVal();
1241   std::vector<unsigned> unused;
1242   LocTy BuiltinLoc;
1243   Lex.Lex();
1244 
1245   if (parseToken(lltok::equal, "expected '=' here") ||
1246       parseToken(lltok::lbrace, "expected '{' here") ||
1247       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1248                                  BuiltinLoc) ||
1249       parseToken(lltok::rbrace, "expected end of attribute group"))
1250     return true;
1251 
1252   if (!NumberedAttrBuilders[VarID].hasAttributes())
1253     return error(AttrGrpLoc, "attribute group has no attributes");
1254 
1255   return false;
1256 }
1257 
1258 /// parseFnAttributeValuePairs
1259 ///   ::= <attr> | <attr> '=' <value>
1260 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1261                                           std::vector<unsigned> &FwdRefAttrGrps,
1262                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1263   bool HaveError = false;
1264 
1265   B.clear();
1266 
1267   while (true) {
1268     lltok::Kind Token = Lex.getKind();
1269     if (Token == lltok::kw_builtin)
1270       BuiltinLoc = Lex.getLoc();
1271     switch (Token) {
1272     default:
1273       if (!inAttrGrp) return HaveError;
1274       return error(Lex.getLoc(), "unterminated attribute group");
1275     case lltok::rbrace:
1276       // Finished.
1277       return false;
1278 
1279     case lltok::AttrGrpID: {
1280       // Allow a function to reference an attribute group:
1281       //
1282       //   define void @foo() #1 { ... }
1283       if (inAttrGrp)
1284         HaveError |= error(
1285             Lex.getLoc(),
1286             "cannot have an attribute group reference in an attribute group");
1287 
1288       unsigned AttrGrpNum = Lex.getUIntVal();
1289       if (inAttrGrp) break;
1290 
1291       // Save the reference to the attribute group. We'll fill it in later.
1292       FwdRefAttrGrps.push_back(AttrGrpNum);
1293       break;
1294     }
1295     // Target-dependent attributes:
1296     case lltok::StringConstant: {
1297       if (parseStringAttribute(B))
1298         return true;
1299       continue;
1300     }
1301 
1302     // Target-independent attributes:
1303     case lltok::kw_align: {
1304       // As a hack, we allow function alignment to be initially parsed as an
1305       // attribute on a function declaration/definition or added to an attribute
1306       // group and later moved to the alignment field.
1307       MaybeAlign Alignment;
1308       if (inAttrGrp) {
1309         Lex.Lex();
1310         uint32_t Value = 0;
1311         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1312           return true;
1313         Alignment = Align(Value);
1314       } else {
1315         if (parseOptionalAlignment(Alignment))
1316           return true;
1317       }
1318       B.addAlignmentAttr(Alignment);
1319       continue;
1320     }
1321     case lltok::kw_alignstack: {
1322       unsigned Alignment;
1323       if (inAttrGrp) {
1324         Lex.Lex();
1325         if (parseToken(lltok::equal, "expected '=' here") ||
1326             parseUInt32(Alignment))
1327           return true;
1328       } else {
1329         if (parseOptionalStackAlignment(Alignment))
1330           return true;
1331       }
1332       B.addStackAlignmentAttr(Alignment);
1333       continue;
1334     }
1335     case lltok::kw_allocsize: {
1336       unsigned ElemSizeArg;
1337       Optional<unsigned> NumElemsArg;
1338       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1339       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1340         return true;
1341       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1342       continue;
1343     }
1344     case lltok::kw_vscale_range: {
1345       unsigned MinValue, MaxValue;
1346       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1347       if (parseVScaleRangeArguments(MinValue, MaxValue))
1348         return true;
1349       B.addVScaleRangeAttr(MinValue, MaxValue);
1350       continue;
1351     }
1352     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1353     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1354     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1355     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1356     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1357     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1358     case lltok::kw_inaccessiblememonly:
1359       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1360     case lltok::kw_inaccessiblemem_or_argmemonly:
1361       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1362     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1363     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1364     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1365     case lltok::kw_mustprogress:
1366       B.addAttribute(Attribute::MustProgress);
1367       break;
1368     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1369     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1370     case lltok::kw_nocallback:
1371       B.addAttribute(Attribute::NoCallback);
1372       break;
1373     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1374     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1375     case lltok::kw_noimplicitfloat:
1376       B.addAttribute(Attribute::NoImplicitFloat); break;
1377     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1378     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1379     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1380     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1381     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1382     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1383     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1384     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1385     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1386     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1387     case lltok::kw_null_pointer_is_valid:
1388       B.addAttribute(Attribute::NullPointerIsValid); break;
1389     case lltok::kw_optforfuzzing:
1390       B.addAttribute(Attribute::OptForFuzzing); break;
1391     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1392     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1393     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1394     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1395     case lltok::kw_returns_twice:
1396       B.addAttribute(Attribute::ReturnsTwice); break;
1397     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1398     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1399     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1400     case lltok::kw_sspstrong:
1401       B.addAttribute(Attribute::StackProtectStrong); break;
1402     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1403     case lltok::kw_shadowcallstack:
1404       B.addAttribute(Attribute::ShadowCallStack); break;
1405     case lltok::kw_sanitize_address:
1406       B.addAttribute(Attribute::SanitizeAddress); break;
1407     case lltok::kw_sanitize_hwaddress:
1408       B.addAttribute(Attribute::SanitizeHWAddress); break;
1409     case lltok::kw_sanitize_memtag:
1410       B.addAttribute(Attribute::SanitizeMemTag); break;
1411     case lltok::kw_sanitize_thread:
1412       B.addAttribute(Attribute::SanitizeThread); break;
1413     case lltok::kw_sanitize_memory:
1414       B.addAttribute(Attribute::SanitizeMemory); break;
1415     case lltok::kw_speculative_load_hardening:
1416       B.addAttribute(Attribute::SpeculativeLoadHardening);
1417       break;
1418     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1419     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1420     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1421     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1422     case lltok::kw_preallocated: {
1423       Type *Ty;
1424       if (parsePreallocated(Ty))
1425         return true;
1426       B.addPreallocatedAttr(Ty);
1427       break;
1428     }
1429 
1430     // error handling.
1431     case lltok::kw_inreg:
1432     case lltok::kw_signext:
1433     case lltok::kw_zeroext:
1434       HaveError |=
1435           error(Lex.getLoc(), "invalid use of attribute on a function");
1436       break;
1437     case lltok::kw_byval:
1438     case lltok::kw_dereferenceable:
1439     case lltok::kw_dereferenceable_or_null:
1440     case lltok::kw_inalloca:
1441     case lltok::kw_nest:
1442     case lltok::kw_noalias:
1443     case lltok::kw_noundef:
1444     case lltok::kw_nocapture:
1445     case lltok::kw_nonnull:
1446     case lltok::kw_returned:
1447     case lltok::kw_sret:
1448     case lltok::kw_swifterror:
1449     case lltok::kw_swiftself:
1450     case lltok::kw_immarg:
1451     case lltok::kw_byref:
1452       HaveError |=
1453           error(Lex.getLoc(),
1454                 "invalid use of parameter-only attribute on a function");
1455       break;
1456     }
1457 
1458     // parsePreallocated() consumes token
1459     if (Token != lltok::kw_preallocated)
1460       Lex.Lex();
1461   }
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // GlobalValue Reference/Resolution Routines.
1466 //===----------------------------------------------------------------------===//
1467 
1468 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1469                                               const std::string &Name) {
1470   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1471     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1472                             PTy->getAddressSpace(), Name, M);
1473   else
1474     return new GlobalVariable(*M, PTy->getElementType(), false,
1475                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1476                               nullptr, GlobalVariable::NotThreadLocal,
1477                               PTy->getAddressSpace());
1478 }
1479 
1480 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1481                                         Value *Val, bool IsCall) {
1482   if (Val->getType() == Ty)
1483     return Val;
1484   // For calls we also accept variables in the program address space.
1485   Type *SuggestedTy = Ty;
1486   if (IsCall && isa<PointerType>(Ty)) {
1487     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1488         M->getDataLayout().getProgramAddressSpace());
1489     SuggestedTy = TyInProgAS;
1490     if (Val->getType() == TyInProgAS)
1491       return Val;
1492   }
1493   if (Ty->isLabelTy())
1494     error(Loc, "'" + Name + "' is not a basic block");
1495   else
1496     error(Loc, "'" + Name + "' defined with type '" +
1497                    getTypeString(Val->getType()) + "' but expected '" +
1498                    getTypeString(SuggestedTy) + "'");
1499   return nullptr;
1500 }
1501 
1502 /// getGlobalVal - Get a value with the specified name or ID, creating a
1503 /// forward reference record if needed.  This can return null if the value
1504 /// exists but does not have the right type.
1505 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1506                                     LocTy Loc, bool IsCall) {
1507   PointerType *PTy = dyn_cast<PointerType>(Ty);
1508   if (!PTy) {
1509     error(Loc, "global variable reference must have pointer type");
1510     return nullptr;
1511   }
1512 
1513   // Look this name up in the normal function symbol table.
1514   GlobalValue *Val =
1515     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1516 
1517   // If this is a forward reference for the value, see if we already created a
1518   // forward ref record.
1519   if (!Val) {
1520     auto I = ForwardRefVals.find(Name);
1521     if (I != ForwardRefVals.end())
1522       Val = I->second.first;
1523   }
1524 
1525   // If we have the value in the symbol table or fwd-ref table, return it.
1526   if (Val)
1527     return cast_or_null<GlobalValue>(
1528         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1529 
1530   // Otherwise, create a new forward reference for this value and remember it.
1531   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1532   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1533   return FwdVal;
1534 }
1535 
1536 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1537                                     bool IsCall) {
1538   PointerType *PTy = dyn_cast<PointerType>(Ty);
1539   if (!PTy) {
1540     error(Loc, "global variable reference must have pointer type");
1541     return nullptr;
1542   }
1543 
1544   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1545 
1546   // If this is a forward reference for the value, see if we already created a
1547   // forward ref record.
1548   if (!Val) {
1549     auto I = ForwardRefValIDs.find(ID);
1550     if (I != ForwardRefValIDs.end())
1551       Val = I->second.first;
1552   }
1553 
1554   // If we have the value in the symbol table or fwd-ref table, return it.
1555   if (Val)
1556     return cast_or_null<GlobalValue>(
1557         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1558 
1559   // Otherwise, create a new forward reference for this value and remember it.
1560   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1561   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1562   return FwdVal;
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 // Comdat Reference/Resolution Routines.
1567 //===----------------------------------------------------------------------===//
1568 
1569 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1570   // Look this name up in the comdat symbol table.
1571   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1572   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1573   if (I != ComdatSymTab.end())
1574     return &I->second;
1575 
1576   // Otherwise, create a new forward reference for this value and remember it.
1577   Comdat *C = M->getOrInsertComdat(Name);
1578   ForwardRefComdats[Name] = Loc;
1579   return C;
1580 }
1581 
1582 //===----------------------------------------------------------------------===//
1583 // Helper Routines.
1584 //===----------------------------------------------------------------------===//
1585 
1586 /// parseToken - If the current token has the specified kind, eat it and return
1587 /// success.  Otherwise, emit the specified error and return failure.
1588 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1589   if (Lex.getKind() != T)
1590     return tokError(ErrMsg);
1591   Lex.Lex();
1592   return false;
1593 }
1594 
1595 /// parseStringConstant
1596 ///   ::= StringConstant
1597 bool LLParser::parseStringConstant(std::string &Result) {
1598   if (Lex.getKind() != lltok::StringConstant)
1599     return tokError("expected string constant");
1600   Result = Lex.getStrVal();
1601   Lex.Lex();
1602   return false;
1603 }
1604 
1605 /// parseUInt32
1606 ///   ::= uint32
1607 bool LLParser::parseUInt32(uint32_t &Val) {
1608   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1609     return tokError("expected integer");
1610   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1611   if (Val64 != unsigned(Val64))
1612     return tokError("expected 32-bit integer (too large)");
1613   Val = Val64;
1614   Lex.Lex();
1615   return false;
1616 }
1617 
1618 /// parseUInt64
1619 ///   ::= uint64
1620 bool LLParser::parseUInt64(uint64_t &Val) {
1621   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1622     return tokError("expected integer");
1623   Val = Lex.getAPSIntVal().getLimitedValue();
1624   Lex.Lex();
1625   return false;
1626 }
1627 
1628 /// parseTLSModel
1629 ///   := 'localdynamic'
1630 ///   := 'initialexec'
1631 ///   := 'localexec'
1632 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1633   switch (Lex.getKind()) {
1634     default:
1635       return tokError("expected localdynamic, initialexec or localexec");
1636     case lltok::kw_localdynamic:
1637       TLM = GlobalVariable::LocalDynamicTLSModel;
1638       break;
1639     case lltok::kw_initialexec:
1640       TLM = GlobalVariable::InitialExecTLSModel;
1641       break;
1642     case lltok::kw_localexec:
1643       TLM = GlobalVariable::LocalExecTLSModel;
1644       break;
1645   }
1646 
1647   Lex.Lex();
1648   return false;
1649 }
1650 
1651 /// parseOptionalThreadLocal
1652 ///   := /*empty*/
1653 ///   := 'thread_local'
1654 ///   := 'thread_local' '(' tlsmodel ')'
1655 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1656   TLM = GlobalVariable::NotThreadLocal;
1657   if (!EatIfPresent(lltok::kw_thread_local))
1658     return false;
1659 
1660   TLM = GlobalVariable::GeneralDynamicTLSModel;
1661   if (Lex.getKind() == lltok::lparen) {
1662     Lex.Lex();
1663     return parseTLSModel(TLM) ||
1664            parseToken(lltok::rparen, "expected ')' after thread local model");
1665   }
1666   return false;
1667 }
1668 
1669 /// parseOptionalAddrSpace
1670 ///   := /*empty*/
1671 ///   := 'addrspace' '(' uint32 ')'
1672 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1673   AddrSpace = DefaultAS;
1674   if (!EatIfPresent(lltok::kw_addrspace))
1675     return false;
1676   return parseToken(lltok::lparen, "expected '(' in address space") ||
1677          parseUInt32(AddrSpace) ||
1678          parseToken(lltok::rparen, "expected ')' in address space");
1679 }
1680 
1681 /// parseStringAttribute
1682 ///   := StringConstant
1683 ///   := StringConstant '=' StringConstant
1684 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1685   std::string Attr = Lex.getStrVal();
1686   Lex.Lex();
1687   std::string Val;
1688   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1689     return true;
1690   B.addAttribute(Attr, Val);
1691   return false;
1692 }
1693 
1694 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1695 /// attributes.
1696 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1697   bool HaveError = false;
1698 
1699   B.clear();
1700 
1701   while (true) {
1702     lltok::Kind Token = Lex.getKind();
1703     switch (Token) {
1704     default:  // End of attributes.
1705       return HaveError;
1706     case lltok::StringConstant: {
1707       if (parseStringAttribute(B))
1708         return true;
1709       continue;
1710     }
1711     case lltok::kw_align: {
1712       MaybeAlign Alignment;
1713       if (parseOptionalAlignment(Alignment, true))
1714         return true;
1715       B.addAlignmentAttr(Alignment);
1716       continue;
1717     }
1718     case lltok::kw_alignstack: {
1719       unsigned Alignment;
1720       if (parseOptionalStackAlignment(Alignment))
1721         return true;
1722       B.addStackAlignmentAttr(Alignment);
1723       continue;
1724     }
1725     case lltok::kw_byval: {
1726       Type *Ty;
1727       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1728         return true;
1729       B.addByValAttr(Ty);
1730       continue;
1731     }
1732     case lltok::kw_sret: {
1733       Type *Ty;
1734       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1735         return true;
1736       B.addStructRetAttr(Ty);
1737       continue;
1738     }
1739     case lltok::kw_preallocated: {
1740       Type *Ty;
1741       if (parsePreallocated(Ty))
1742         return true;
1743       B.addPreallocatedAttr(Ty);
1744       continue;
1745     }
1746     case lltok::kw_inalloca: {
1747       Type *Ty;
1748       if (parseInalloca(Ty))
1749         return true;
1750       B.addInAllocaAttr(Ty);
1751       continue;
1752     }
1753     case lltok::kw_dereferenceable: {
1754       uint64_t Bytes;
1755       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1756         return true;
1757       B.addDereferenceableAttr(Bytes);
1758       continue;
1759     }
1760     case lltok::kw_dereferenceable_or_null: {
1761       uint64_t Bytes;
1762       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1763         return true;
1764       B.addDereferenceableOrNullAttr(Bytes);
1765       continue;
1766     }
1767     case lltok::kw_byref: {
1768       Type *Ty;
1769       if (parseByRef(Ty))
1770         return true;
1771       B.addByRefAttr(Ty);
1772       continue;
1773     }
1774     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1775     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1776     case lltok::kw_noundef:
1777       B.addAttribute(Attribute::NoUndef);
1778       break;
1779     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1780     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1781     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1782     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1783     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1784     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1785     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1786     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1787     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1788     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1789     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1790     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1791     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1792 
1793     case lltok::kw_alwaysinline:
1794     case lltok::kw_argmemonly:
1795     case lltok::kw_builtin:
1796     case lltok::kw_inlinehint:
1797     case lltok::kw_jumptable:
1798     case lltok::kw_minsize:
1799     case lltok::kw_mustprogress:
1800     case lltok::kw_naked:
1801     case lltok::kw_nobuiltin:
1802     case lltok::kw_noduplicate:
1803     case lltok::kw_noimplicitfloat:
1804     case lltok::kw_noinline:
1805     case lltok::kw_nonlazybind:
1806     case lltok::kw_nomerge:
1807     case lltok::kw_noprofile:
1808     case lltok::kw_noredzone:
1809     case lltok::kw_noreturn:
1810     case lltok::kw_nocf_check:
1811     case lltok::kw_nounwind:
1812     case lltok::kw_optforfuzzing:
1813     case lltok::kw_optnone:
1814     case lltok::kw_optsize:
1815     case lltok::kw_returns_twice:
1816     case lltok::kw_sanitize_address:
1817     case lltok::kw_sanitize_hwaddress:
1818     case lltok::kw_sanitize_memtag:
1819     case lltok::kw_sanitize_memory:
1820     case lltok::kw_sanitize_thread:
1821     case lltok::kw_speculative_load_hardening:
1822     case lltok::kw_ssp:
1823     case lltok::kw_sspreq:
1824     case lltok::kw_sspstrong:
1825     case lltok::kw_safestack:
1826     case lltok::kw_shadowcallstack:
1827     case lltok::kw_strictfp:
1828     case lltok::kw_uwtable:
1829     case lltok::kw_vscale_range:
1830       HaveError |=
1831           error(Lex.getLoc(), "invalid use of function-only attribute");
1832       break;
1833     }
1834 
1835     Lex.Lex();
1836   }
1837 }
1838 
1839 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1840 /// attributes.
1841 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1842   bool HaveError = false;
1843 
1844   B.clear();
1845 
1846   while (true) {
1847     lltok::Kind Token = Lex.getKind();
1848     switch (Token) {
1849     default:  // End of attributes.
1850       return HaveError;
1851     case lltok::StringConstant: {
1852       if (parseStringAttribute(B))
1853         return true;
1854       continue;
1855     }
1856     case lltok::kw_dereferenceable: {
1857       uint64_t Bytes;
1858       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1859         return true;
1860       B.addDereferenceableAttr(Bytes);
1861       continue;
1862     }
1863     case lltok::kw_dereferenceable_or_null: {
1864       uint64_t Bytes;
1865       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1866         return true;
1867       B.addDereferenceableOrNullAttr(Bytes);
1868       continue;
1869     }
1870     case lltok::kw_align: {
1871       MaybeAlign Alignment;
1872       if (parseOptionalAlignment(Alignment))
1873         return true;
1874       B.addAlignmentAttr(Alignment);
1875       continue;
1876     }
1877     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1878     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1879     case lltok::kw_noundef:
1880       B.addAttribute(Attribute::NoUndef);
1881       break;
1882     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1883     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1884     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1885 
1886     // error handling.
1887     case lltok::kw_byval:
1888     case lltok::kw_inalloca:
1889     case lltok::kw_nest:
1890     case lltok::kw_nocapture:
1891     case lltok::kw_returned:
1892     case lltok::kw_sret:
1893     case lltok::kw_swifterror:
1894     case lltok::kw_swiftself:
1895     case lltok::kw_immarg:
1896     case lltok::kw_byref:
1897       HaveError |=
1898           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1899       break;
1900 
1901     case lltok::kw_alignstack:
1902     case lltok::kw_alwaysinline:
1903     case lltok::kw_argmemonly:
1904     case lltok::kw_builtin:
1905     case lltok::kw_cold:
1906     case lltok::kw_inlinehint:
1907     case lltok::kw_jumptable:
1908     case lltok::kw_minsize:
1909     case lltok::kw_mustprogress:
1910     case lltok::kw_naked:
1911     case lltok::kw_nobuiltin:
1912     case lltok::kw_noduplicate:
1913     case lltok::kw_noimplicitfloat:
1914     case lltok::kw_noinline:
1915     case lltok::kw_nonlazybind:
1916     case lltok::kw_nomerge:
1917     case lltok::kw_noprofile:
1918     case lltok::kw_noredzone:
1919     case lltok::kw_noreturn:
1920     case lltok::kw_nocf_check:
1921     case lltok::kw_nounwind:
1922     case lltok::kw_optforfuzzing:
1923     case lltok::kw_optnone:
1924     case lltok::kw_optsize:
1925     case lltok::kw_returns_twice:
1926     case lltok::kw_sanitize_address:
1927     case lltok::kw_sanitize_hwaddress:
1928     case lltok::kw_sanitize_memtag:
1929     case lltok::kw_sanitize_memory:
1930     case lltok::kw_sanitize_thread:
1931     case lltok::kw_speculative_load_hardening:
1932     case lltok::kw_ssp:
1933     case lltok::kw_sspreq:
1934     case lltok::kw_sspstrong:
1935     case lltok::kw_safestack:
1936     case lltok::kw_shadowcallstack:
1937     case lltok::kw_strictfp:
1938     case lltok::kw_uwtable:
1939     case lltok::kw_vscale_range:
1940       HaveError |=
1941           error(Lex.getLoc(), "invalid use of function-only attribute");
1942       break;
1943     case lltok::kw_readnone:
1944     case lltok::kw_readonly:
1945       HaveError |=
1946           error(Lex.getLoc(), "invalid use of attribute on return type");
1947       break;
1948     case lltok::kw_preallocated:
1949       HaveError |=
1950           error(Lex.getLoc(),
1951                 "invalid use of parameter-only/call site-only attribute");
1952       break;
1953     }
1954 
1955     Lex.Lex();
1956   }
1957 }
1958 
1959 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1960   HasLinkage = true;
1961   switch (Kind) {
1962   default:
1963     HasLinkage = false;
1964     return GlobalValue::ExternalLinkage;
1965   case lltok::kw_private:
1966     return GlobalValue::PrivateLinkage;
1967   case lltok::kw_internal:
1968     return GlobalValue::InternalLinkage;
1969   case lltok::kw_weak:
1970     return GlobalValue::WeakAnyLinkage;
1971   case lltok::kw_weak_odr:
1972     return GlobalValue::WeakODRLinkage;
1973   case lltok::kw_linkonce:
1974     return GlobalValue::LinkOnceAnyLinkage;
1975   case lltok::kw_linkonce_odr:
1976     return GlobalValue::LinkOnceODRLinkage;
1977   case lltok::kw_available_externally:
1978     return GlobalValue::AvailableExternallyLinkage;
1979   case lltok::kw_appending:
1980     return GlobalValue::AppendingLinkage;
1981   case lltok::kw_common:
1982     return GlobalValue::CommonLinkage;
1983   case lltok::kw_extern_weak:
1984     return GlobalValue::ExternalWeakLinkage;
1985   case lltok::kw_external:
1986     return GlobalValue::ExternalLinkage;
1987   }
1988 }
1989 
1990 /// parseOptionalLinkage
1991 ///   ::= /*empty*/
1992 ///   ::= 'private'
1993 ///   ::= 'internal'
1994 ///   ::= 'weak'
1995 ///   ::= 'weak_odr'
1996 ///   ::= 'linkonce'
1997 ///   ::= 'linkonce_odr'
1998 ///   ::= 'available_externally'
1999 ///   ::= 'appending'
2000 ///   ::= 'common'
2001 ///   ::= 'extern_weak'
2002 ///   ::= 'external'
2003 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2004                                     unsigned &Visibility,
2005                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2006   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2007   if (HasLinkage)
2008     Lex.Lex();
2009   parseOptionalDSOLocal(DSOLocal);
2010   parseOptionalVisibility(Visibility);
2011   parseOptionalDLLStorageClass(DLLStorageClass);
2012 
2013   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2014     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2015   }
2016 
2017   return false;
2018 }
2019 
2020 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2021   switch (Lex.getKind()) {
2022   default:
2023     DSOLocal = false;
2024     break;
2025   case lltok::kw_dso_local:
2026     DSOLocal = true;
2027     Lex.Lex();
2028     break;
2029   case lltok::kw_dso_preemptable:
2030     DSOLocal = false;
2031     Lex.Lex();
2032     break;
2033   }
2034 }
2035 
2036 /// parseOptionalVisibility
2037 ///   ::= /*empty*/
2038 ///   ::= 'default'
2039 ///   ::= 'hidden'
2040 ///   ::= 'protected'
2041 ///
2042 void LLParser::parseOptionalVisibility(unsigned &Res) {
2043   switch (Lex.getKind()) {
2044   default:
2045     Res = GlobalValue::DefaultVisibility;
2046     return;
2047   case lltok::kw_default:
2048     Res = GlobalValue::DefaultVisibility;
2049     break;
2050   case lltok::kw_hidden:
2051     Res = GlobalValue::HiddenVisibility;
2052     break;
2053   case lltok::kw_protected:
2054     Res = GlobalValue::ProtectedVisibility;
2055     break;
2056   }
2057   Lex.Lex();
2058 }
2059 
2060 /// parseOptionalDLLStorageClass
2061 ///   ::= /*empty*/
2062 ///   ::= 'dllimport'
2063 ///   ::= 'dllexport'
2064 ///
2065 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2066   switch (Lex.getKind()) {
2067   default:
2068     Res = GlobalValue::DefaultStorageClass;
2069     return;
2070   case lltok::kw_dllimport:
2071     Res = GlobalValue::DLLImportStorageClass;
2072     break;
2073   case lltok::kw_dllexport:
2074     Res = GlobalValue::DLLExportStorageClass;
2075     break;
2076   }
2077   Lex.Lex();
2078 }
2079 
2080 /// parseOptionalCallingConv
2081 ///   ::= /*empty*/
2082 ///   ::= 'ccc'
2083 ///   ::= 'fastcc'
2084 ///   ::= 'intel_ocl_bicc'
2085 ///   ::= 'coldcc'
2086 ///   ::= 'cfguard_checkcc'
2087 ///   ::= 'x86_stdcallcc'
2088 ///   ::= 'x86_fastcallcc'
2089 ///   ::= 'x86_thiscallcc'
2090 ///   ::= 'x86_vectorcallcc'
2091 ///   ::= 'arm_apcscc'
2092 ///   ::= 'arm_aapcscc'
2093 ///   ::= 'arm_aapcs_vfpcc'
2094 ///   ::= 'aarch64_vector_pcs'
2095 ///   ::= 'aarch64_sve_vector_pcs'
2096 ///   ::= 'msp430_intrcc'
2097 ///   ::= 'avr_intrcc'
2098 ///   ::= 'avr_signalcc'
2099 ///   ::= 'ptx_kernel'
2100 ///   ::= 'ptx_device'
2101 ///   ::= 'spir_func'
2102 ///   ::= 'spir_kernel'
2103 ///   ::= 'x86_64_sysvcc'
2104 ///   ::= 'win64cc'
2105 ///   ::= 'webkit_jscc'
2106 ///   ::= 'anyregcc'
2107 ///   ::= 'preserve_mostcc'
2108 ///   ::= 'preserve_allcc'
2109 ///   ::= 'ghccc'
2110 ///   ::= 'swiftcc'
2111 ///   ::= 'x86_intrcc'
2112 ///   ::= 'hhvmcc'
2113 ///   ::= 'hhvm_ccc'
2114 ///   ::= 'cxx_fast_tlscc'
2115 ///   ::= 'amdgpu_vs'
2116 ///   ::= 'amdgpu_ls'
2117 ///   ::= 'amdgpu_hs'
2118 ///   ::= 'amdgpu_es'
2119 ///   ::= 'amdgpu_gs'
2120 ///   ::= 'amdgpu_ps'
2121 ///   ::= 'amdgpu_cs'
2122 ///   ::= 'amdgpu_kernel'
2123 ///   ::= 'tailcc'
2124 ///   ::= 'cc' UINT
2125 ///
2126 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2127   switch (Lex.getKind()) {
2128   default:                       CC = CallingConv::C; return false;
2129   case lltok::kw_ccc:            CC = CallingConv::C; break;
2130   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2131   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2132   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2133   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2134   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2135   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2136   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2137   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2138   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2139   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2140   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2141   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2142   case lltok::kw_aarch64_sve_vector_pcs:
2143     CC = CallingConv::AArch64_SVE_VectorCall;
2144     break;
2145   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2146   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2147   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2148   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2149   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2150   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2151   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2152   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2153   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2154   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2155   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2156   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2157   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2158   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2159   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2160   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2161   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2162   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2163   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2164   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2165   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2166   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2167   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2168   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2169   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2170   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2171   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2172   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2173   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2174   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2175   case lltok::kw_cc: {
2176       Lex.Lex();
2177       return parseUInt32(CC);
2178     }
2179   }
2180 
2181   Lex.Lex();
2182   return false;
2183 }
2184 
2185 /// parseMetadataAttachment
2186 ///   ::= !dbg !42
2187 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2188   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2189 
2190   std::string Name = Lex.getStrVal();
2191   Kind = M->getMDKindID(Name);
2192   Lex.Lex();
2193 
2194   return parseMDNode(MD);
2195 }
2196 
2197 /// parseInstructionMetadata
2198 ///   ::= !dbg !42 (',' !dbg !57)*
2199 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2200   do {
2201     if (Lex.getKind() != lltok::MetadataVar)
2202       return tokError("expected metadata after comma");
2203 
2204     unsigned MDK;
2205     MDNode *N;
2206     if (parseMetadataAttachment(MDK, N))
2207       return true;
2208 
2209     Inst.setMetadata(MDK, N);
2210     if (MDK == LLVMContext::MD_tbaa)
2211       InstsWithTBAATag.push_back(&Inst);
2212 
2213     // If this is the end of the list, we're done.
2214   } while (EatIfPresent(lltok::comma));
2215   return false;
2216 }
2217 
2218 /// parseGlobalObjectMetadataAttachment
2219 ///   ::= !dbg !57
2220 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2221   unsigned MDK;
2222   MDNode *N;
2223   if (parseMetadataAttachment(MDK, N))
2224     return true;
2225 
2226   GO.addMetadata(MDK, *N);
2227   return false;
2228 }
2229 
2230 /// parseOptionalFunctionMetadata
2231 ///   ::= (!dbg !57)*
2232 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2233   while (Lex.getKind() == lltok::MetadataVar)
2234     if (parseGlobalObjectMetadataAttachment(F))
2235       return true;
2236   return false;
2237 }
2238 
2239 /// parseOptionalAlignment
2240 ///   ::= /* empty */
2241 ///   ::= 'align' 4
2242 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2243   Alignment = None;
2244   if (!EatIfPresent(lltok::kw_align))
2245     return false;
2246   LocTy AlignLoc = Lex.getLoc();
2247   uint32_t Value = 0;
2248 
2249   LocTy ParenLoc = Lex.getLoc();
2250   bool HaveParens = false;
2251   if (AllowParens) {
2252     if (EatIfPresent(lltok::lparen))
2253       HaveParens = true;
2254   }
2255 
2256   if (parseUInt32(Value))
2257     return true;
2258 
2259   if (HaveParens && !EatIfPresent(lltok::rparen))
2260     return error(ParenLoc, "expected ')'");
2261 
2262   if (!isPowerOf2_32(Value))
2263     return error(AlignLoc, "alignment is not a power of two");
2264   if (Value > Value::MaximumAlignment)
2265     return error(AlignLoc, "huge alignments are not supported yet");
2266   Alignment = Align(Value);
2267   return false;
2268 }
2269 
2270 /// parseOptionalDerefAttrBytes
2271 ///   ::= /* empty */
2272 ///   ::= AttrKind '(' 4 ')'
2273 ///
2274 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2275 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2276                                            uint64_t &Bytes) {
2277   assert((AttrKind == lltok::kw_dereferenceable ||
2278           AttrKind == lltok::kw_dereferenceable_or_null) &&
2279          "contract!");
2280 
2281   Bytes = 0;
2282   if (!EatIfPresent(AttrKind))
2283     return false;
2284   LocTy ParenLoc = Lex.getLoc();
2285   if (!EatIfPresent(lltok::lparen))
2286     return error(ParenLoc, "expected '('");
2287   LocTy DerefLoc = Lex.getLoc();
2288   if (parseUInt64(Bytes))
2289     return true;
2290   ParenLoc = Lex.getLoc();
2291   if (!EatIfPresent(lltok::rparen))
2292     return error(ParenLoc, "expected ')'");
2293   if (!Bytes)
2294     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2295   return false;
2296 }
2297 
2298 /// parseOptionalCommaAlign
2299 ///   ::=
2300 ///   ::= ',' align 4
2301 ///
2302 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2303 /// end.
2304 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2305                                        bool &AteExtraComma) {
2306   AteExtraComma = false;
2307   while (EatIfPresent(lltok::comma)) {
2308     // Metadata at the end is an early exit.
2309     if (Lex.getKind() == lltok::MetadataVar) {
2310       AteExtraComma = true;
2311       return false;
2312     }
2313 
2314     if (Lex.getKind() != lltok::kw_align)
2315       return error(Lex.getLoc(), "expected metadata or 'align'");
2316 
2317     if (parseOptionalAlignment(Alignment))
2318       return true;
2319   }
2320 
2321   return false;
2322 }
2323 
2324 /// parseOptionalCommaAddrSpace
2325 ///   ::=
2326 ///   ::= ',' addrspace(1)
2327 ///
2328 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2329 /// end.
2330 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2331                                            bool &AteExtraComma) {
2332   AteExtraComma = false;
2333   while (EatIfPresent(lltok::comma)) {
2334     // Metadata at the end is an early exit.
2335     if (Lex.getKind() == lltok::MetadataVar) {
2336       AteExtraComma = true;
2337       return false;
2338     }
2339 
2340     Loc = Lex.getLoc();
2341     if (Lex.getKind() != lltok::kw_addrspace)
2342       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2343 
2344     if (parseOptionalAddrSpace(AddrSpace))
2345       return true;
2346   }
2347 
2348   return false;
2349 }
2350 
2351 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2352                                        Optional<unsigned> &HowManyArg) {
2353   Lex.Lex();
2354 
2355   auto StartParen = Lex.getLoc();
2356   if (!EatIfPresent(lltok::lparen))
2357     return error(StartParen, "expected '('");
2358 
2359   if (parseUInt32(BaseSizeArg))
2360     return true;
2361 
2362   if (EatIfPresent(lltok::comma)) {
2363     auto HowManyAt = Lex.getLoc();
2364     unsigned HowMany;
2365     if (parseUInt32(HowMany))
2366       return true;
2367     if (HowMany == BaseSizeArg)
2368       return error(HowManyAt,
2369                    "'allocsize' indices can't refer to the same parameter");
2370     HowManyArg = HowMany;
2371   } else
2372     HowManyArg = None;
2373 
2374   auto EndParen = Lex.getLoc();
2375   if (!EatIfPresent(lltok::rparen))
2376     return error(EndParen, "expected ')'");
2377   return false;
2378 }
2379 
2380 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2381                                          unsigned &MaxValue) {
2382   Lex.Lex();
2383 
2384   auto StartParen = Lex.getLoc();
2385   if (!EatIfPresent(lltok::lparen))
2386     return error(StartParen, "expected '('");
2387 
2388   if (parseUInt32(MinValue))
2389     return true;
2390 
2391   if (EatIfPresent(lltok::comma)) {
2392     if (parseUInt32(MaxValue))
2393       return true;
2394   } else
2395     MaxValue = MinValue;
2396 
2397   auto EndParen = Lex.getLoc();
2398   if (!EatIfPresent(lltok::rparen))
2399     return error(EndParen, "expected ')'");
2400   return false;
2401 }
2402 
2403 /// parseScopeAndOrdering
2404 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2405 ///   else: ::=
2406 ///
2407 /// This sets Scope and Ordering to the parsed values.
2408 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2409                                      AtomicOrdering &Ordering) {
2410   if (!IsAtomic)
2411     return false;
2412 
2413   return parseScope(SSID) || parseOrdering(Ordering);
2414 }
2415 
2416 /// parseScope
2417 ///   ::= syncscope("singlethread" | "<target scope>")?
2418 ///
2419 /// This sets synchronization scope ID to the ID of the parsed value.
2420 bool LLParser::parseScope(SyncScope::ID &SSID) {
2421   SSID = SyncScope::System;
2422   if (EatIfPresent(lltok::kw_syncscope)) {
2423     auto StartParenAt = Lex.getLoc();
2424     if (!EatIfPresent(lltok::lparen))
2425       return error(StartParenAt, "Expected '(' in syncscope");
2426 
2427     std::string SSN;
2428     auto SSNAt = Lex.getLoc();
2429     if (parseStringConstant(SSN))
2430       return error(SSNAt, "Expected synchronization scope name");
2431 
2432     auto EndParenAt = Lex.getLoc();
2433     if (!EatIfPresent(lltok::rparen))
2434       return error(EndParenAt, "Expected ')' in syncscope");
2435 
2436     SSID = Context.getOrInsertSyncScopeID(SSN);
2437   }
2438 
2439   return false;
2440 }
2441 
2442 /// parseOrdering
2443 ///   ::= AtomicOrdering
2444 ///
2445 /// This sets Ordering to the parsed value.
2446 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2447   switch (Lex.getKind()) {
2448   default:
2449     return tokError("Expected ordering on atomic instruction");
2450   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2451   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2452   // Not specified yet:
2453   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2454   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2455   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2456   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2457   case lltok::kw_seq_cst:
2458     Ordering = AtomicOrdering::SequentiallyConsistent;
2459     break;
2460   }
2461   Lex.Lex();
2462   return false;
2463 }
2464 
2465 /// parseOptionalStackAlignment
2466 ///   ::= /* empty */
2467 ///   ::= 'alignstack' '(' 4 ')'
2468 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2469   Alignment = 0;
2470   if (!EatIfPresent(lltok::kw_alignstack))
2471     return false;
2472   LocTy ParenLoc = Lex.getLoc();
2473   if (!EatIfPresent(lltok::lparen))
2474     return error(ParenLoc, "expected '('");
2475   LocTy AlignLoc = Lex.getLoc();
2476   if (parseUInt32(Alignment))
2477     return true;
2478   ParenLoc = Lex.getLoc();
2479   if (!EatIfPresent(lltok::rparen))
2480     return error(ParenLoc, "expected ')'");
2481   if (!isPowerOf2_32(Alignment))
2482     return error(AlignLoc, "stack alignment is not a power of two");
2483   return false;
2484 }
2485 
2486 /// parseIndexList - This parses the index list for an insert/extractvalue
2487 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2488 /// comma at the end of the line and find that it is followed by metadata.
2489 /// Clients that don't allow metadata can call the version of this function that
2490 /// only takes one argument.
2491 ///
2492 /// parseIndexList
2493 ///    ::=  (',' uint32)+
2494 ///
2495 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2496                               bool &AteExtraComma) {
2497   AteExtraComma = false;
2498 
2499   if (Lex.getKind() != lltok::comma)
2500     return tokError("expected ',' as start of index list");
2501 
2502   while (EatIfPresent(lltok::comma)) {
2503     if (Lex.getKind() == lltok::MetadataVar) {
2504       if (Indices.empty())
2505         return tokError("expected index");
2506       AteExtraComma = true;
2507       return false;
2508     }
2509     unsigned Idx = 0;
2510     if (parseUInt32(Idx))
2511       return true;
2512     Indices.push_back(Idx);
2513   }
2514 
2515   return false;
2516 }
2517 
2518 //===----------------------------------------------------------------------===//
2519 // Type Parsing.
2520 //===----------------------------------------------------------------------===//
2521 
2522 /// parseType - parse a type.
2523 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2524   SMLoc TypeLoc = Lex.getLoc();
2525   switch (Lex.getKind()) {
2526   default:
2527     return tokError(Msg);
2528   case lltok::Type:
2529     // Type ::= 'float' | 'void' (etc)
2530     Result = Lex.getTyVal();
2531     Lex.Lex();
2532     break;
2533   case lltok::lbrace:
2534     // Type ::= StructType
2535     if (parseAnonStructType(Result, false))
2536       return true;
2537     break;
2538   case lltok::lsquare:
2539     // Type ::= '[' ... ']'
2540     Lex.Lex(); // eat the lsquare.
2541     if (parseArrayVectorType(Result, false))
2542       return true;
2543     break;
2544   case lltok::less: // Either vector or packed struct.
2545     // Type ::= '<' ... '>'
2546     Lex.Lex();
2547     if (Lex.getKind() == lltok::lbrace) {
2548       if (parseAnonStructType(Result, true) ||
2549           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2550         return true;
2551     } else if (parseArrayVectorType(Result, true))
2552       return true;
2553     break;
2554   case lltok::LocalVar: {
2555     // Type ::= %foo
2556     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2557 
2558     // If the type hasn't been defined yet, create a forward definition and
2559     // remember where that forward def'n was seen (in case it never is defined).
2560     if (!Entry.first) {
2561       Entry.first = StructType::create(Context, Lex.getStrVal());
2562       Entry.second = Lex.getLoc();
2563     }
2564     Result = Entry.first;
2565     Lex.Lex();
2566     break;
2567   }
2568 
2569   case lltok::LocalVarID: {
2570     // Type ::= %4
2571     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2572 
2573     // If the type hasn't been defined yet, create a forward definition and
2574     // remember where that forward def'n was seen (in case it never is defined).
2575     if (!Entry.first) {
2576       Entry.first = StructType::create(Context);
2577       Entry.second = Lex.getLoc();
2578     }
2579     Result = Entry.first;
2580     Lex.Lex();
2581     break;
2582   }
2583   }
2584 
2585   // parse the type suffixes.
2586   while (true) {
2587     switch (Lex.getKind()) {
2588     // End of type.
2589     default:
2590       if (!AllowVoid && Result->isVoidTy())
2591         return error(TypeLoc, "void type only allowed for function results");
2592       return false;
2593 
2594     // Type ::= Type '*'
2595     case lltok::star:
2596       if (Result->isLabelTy())
2597         return tokError("basic block pointers are invalid");
2598       if (Result->isVoidTy())
2599         return tokError("pointers to void are invalid - use i8* instead");
2600       if (!PointerType::isValidElementType(Result))
2601         return tokError("pointer to this type is invalid");
2602       Result = PointerType::getUnqual(Result);
2603       Lex.Lex();
2604       break;
2605 
2606     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2607     case lltok::kw_addrspace: {
2608       if (Result->isLabelTy())
2609         return tokError("basic block pointers are invalid");
2610       if (Result->isVoidTy())
2611         return tokError("pointers to void are invalid; use i8* instead");
2612       if (!PointerType::isValidElementType(Result))
2613         return tokError("pointer to this type is invalid");
2614       unsigned AddrSpace;
2615       if (parseOptionalAddrSpace(AddrSpace) ||
2616           parseToken(lltok::star, "expected '*' in address space"))
2617         return true;
2618 
2619       Result = PointerType::get(Result, AddrSpace);
2620       break;
2621     }
2622 
2623     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2624     case lltok::lparen:
2625       if (parseFunctionType(Result))
2626         return true;
2627       break;
2628     }
2629   }
2630 }
2631 
2632 /// parseParameterList
2633 ///    ::= '(' ')'
2634 ///    ::= '(' Arg (',' Arg)* ')'
2635 ///  Arg
2636 ///    ::= Type OptionalAttributes Value OptionalAttributes
2637 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2638                                   PerFunctionState &PFS, bool IsMustTailCall,
2639                                   bool InVarArgsFunc) {
2640   if (parseToken(lltok::lparen, "expected '(' in call"))
2641     return true;
2642 
2643   while (Lex.getKind() != lltok::rparen) {
2644     // If this isn't the first argument, we need a comma.
2645     if (!ArgList.empty() &&
2646         parseToken(lltok::comma, "expected ',' in argument list"))
2647       return true;
2648 
2649     // parse an ellipsis if this is a musttail call in a variadic function.
2650     if (Lex.getKind() == lltok::dotdotdot) {
2651       const char *Msg = "unexpected ellipsis in argument list for ";
2652       if (!IsMustTailCall)
2653         return tokError(Twine(Msg) + "non-musttail call");
2654       if (!InVarArgsFunc)
2655         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2656       Lex.Lex();  // Lex the '...', it is purely for readability.
2657       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2658     }
2659 
2660     // parse the argument.
2661     LocTy ArgLoc;
2662     Type *ArgTy = nullptr;
2663     AttrBuilder ArgAttrs;
2664     Value *V;
2665     if (parseType(ArgTy, ArgLoc))
2666       return true;
2667 
2668     if (ArgTy->isMetadataTy()) {
2669       if (parseMetadataAsValue(V, PFS))
2670         return true;
2671     } else {
2672       // Otherwise, handle normal operands.
2673       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2674         return true;
2675     }
2676     ArgList.push_back(ParamInfo(
2677         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2678   }
2679 
2680   if (IsMustTailCall && InVarArgsFunc)
2681     return tokError("expected '...' at end of argument list for musttail call "
2682                     "in varargs function");
2683 
2684   Lex.Lex();  // Lex the ')'.
2685   return false;
2686 }
2687 
2688 /// parseRequiredTypeAttr
2689 ///   ::= attrname(<ty>)
2690 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2691   Result = nullptr;
2692   if (!EatIfPresent(AttrName))
2693     return true;
2694   if (!EatIfPresent(lltok::lparen))
2695     return error(Lex.getLoc(), "expected '('");
2696   if (parseType(Result))
2697     return true;
2698   if (!EatIfPresent(lltok::rparen))
2699     return error(Lex.getLoc(), "expected ')'");
2700   return false;
2701 }
2702 
2703 /// parsePreallocated
2704 ///   ::= preallocated(<ty>)
2705 bool LLParser::parsePreallocated(Type *&Result) {
2706   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2707 }
2708 
2709 /// parseInalloca
2710 ///   ::= inalloca(<ty>)
2711 bool LLParser::parseInalloca(Type *&Result) {
2712   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2713 }
2714 
2715 /// parseByRef
2716 ///   ::= byref(<type>)
2717 bool LLParser::parseByRef(Type *&Result) {
2718   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2719 }
2720 
2721 /// parseOptionalOperandBundles
2722 ///    ::= /*empty*/
2723 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2724 ///
2725 /// OperandBundle
2726 ///    ::= bundle-tag '(' ')'
2727 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2728 ///
2729 /// bundle-tag ::= String Constant
2730 bool LLParser::parseOptionalOperandBundles(
2731     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2732   LocTy BeginLoc = Lex.getLoc();
2733   if (!EatIfPresent(lltok::lsquare))
2734     return false;
2735 
2736   while (Lex.getKind() != lltok::rsquare) {
2737     // If this isn't the first operand bundle, we need a comma.
2738     if (!BundleList.empty() &&
2739         parseToken(lltok::comma, "expected ',' in input list"))
2740       return true;
2741 
2742     std::string Tag;
2743     if (parseStringConstant(Tag))
2744       return true;
2745 
2746     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2747       return true;
2748 
2749     std::vector<Value *> Inputs;
2750     while (Lex.getKind() != lltok::rparen) {
2751       // If this isn't the first input, we need a comma.
2752       if (!Inputs.empty() &&
2753           parseToken(lltok::comma, "expected ',' in input list"))
2754         return true;
2755 
2756       Type *Ty = nullptr;
2757       Value *Input = nullptr;
2758       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2759         return true;
2760       Inputs.push_back(Input);
2761     }
2762 
2763     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2764 
2765     Lex.Lex(); // Lex the ')'.
2766   }
2767 
2768   if (BundleList.empty())
2769     return error(BeginLoc, "operand bundle set must not be empty");
2770 
2771   Lex.Lex(); // Lex the ']'.
2772   return false;
2773 }
2774 
2775 /// parseArgumentList - parse the argument list for a function type or function
2776 /// prototype.
2777 ///   ::= '(' ArgTypeListI ')'
2778 /// ArgTypeListI
2779 ///   ::= /*empty*/
2780 ///   ::= '...'
2781 ///   ::= ArgTypeList ',' '...'
2782 ///   ::= ArgType (',' ArgType)*
2783 ///
2784 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2785                                  bool &IsVarArg) {
2786   unsigned CurValID = 0;
2787   IsVarArg = false;
2788   assert(Lex.getKind() == lltok::lparen);
2789   Lex.Lex(); // eat the (.
2790 
2791   if (Lex.getKind() == lltok::rparen) {
2792     // empty
2793   } else if (Lex.getKind() == lltok::dotdotdot) {
2794     IsVarArg = true;
2795     Lex.Lex();
2796   } else {
2797     LocTy TypeLoc = Lex.getLoc();
2798     Type *ArgTy = nullptr;
2799     AttrBuilder Attrs;
2800     std::string Name;
2801 
2802     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2803       return true;
2804 
2805     if (ArgTy->isVoidTy())
2806       return error(TypeLoc, "argument can not have void type");
2807 
2808     if (Lex.getKind() == lltok::LocalVar) {
2809       Name = Lex.getStrVal();
2810       Lex.Lex();
2811     } else if (Lex.getKind() == lltok::LocalVarID) {
2812       if (Lex.getUIntVal() != CurValID)
2813         return error(TypeLoc, "argument expected to be numbered '%" +
2814                                   Twine(CurValID) + "'");
2815       ++CurValID;
2816       Lex.Lex();
2817     }
2818 
2819     if (!FunctionType::isValidArgumentType(ArgTy))
2820       return error(TypeLoc, "invalid type for function argument");
2821 
2822     ArgList.emplace_back(TypeLoc, ArgTy,
2823                          AttributeSet::get(ArgTy->getContext(), Attrs),
2824                          std::move(Name));
2825 
2826     while (EatIfPresent(lltok::comma)) {
2827       // Handle ... at end of arg list.
2828       if (EatIfPresent(lltok::dotdotdot)) {
2829         IsVarArg = true;
2830         break;
2831       }
2832 
2833       // Otherwise must be an argument type.
2834       TypeLoc = Lex.getLoc();
2835       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2836         return true;
2837 
2838       if (ArgTy->isVoidTy())
2839         return error(TypeLoc, "argument can not have void type");
2840 
2841       if (Lex.getKind() == lltok::LocalVar) {
2842         Name = Lex.getStrVal();
2843         Lex.Lex();
2844       } else {
2845         if (Lex.getKind() == lltok::LocalVarID) {
2846           if (Lex.getUIntVal() != CurValID)
2847             return error(TypeLoc, "argument expected to be numbered '%" +
2848                                       Twine(CurValID) + "'");
2849           Lex.Lex();
2850         }
2851         ++CurValID;
2852         Name = "";
2853       }
2854 
2855       if (!ArgTy->isFirstClassType())
2856         return error(TypeLoc, "invalid type for function argument");
2857 
2858       ArgList.emplace_back(TypeLoc, ArgTy,
2859                            AttributeSet::get(ArgTy->getContext(), Attrs),
2860                            std::move(Name));
2861     }
2862   }
2863 
2864   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2865 }
2866 
2867 /// parseFunctionType
2868 ///  ::= Type ArgumentList OptionalAttrs
2869 bool LLParser::parseFunctionType(Type *&Result) {
2870   assert(Lex.getKind() == lltok::lparen);
2871 
2872   if (!FunctionType::isValidReturnType(Result))
2873     return tokError("invalid function return type");
2874 
2875   SmallVector<ArgInfo, 8> ArgList;
2876   bool IsVarArg;
2877   if (parseArgumentList(ArgList, IsVarArg))
2878     return true;
2879 
2880   // Reject names on the arguments lists.
2881   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2882     if (!ArgList[i].Name.empty())
2883       return error(ArgList[i].Loc, "argument name invalid in function type");
2884     if (ArgList[i].Attrs.hasAttributes())
2885       return error(ArgList[i].Loc,
2886                    "argument attributes invalid in function type");
2887   }
2888 
2889   SmallVector<Type*, 16> ArgListTy;
2890   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2891     ArgListTy.push_back(ArgList[i].Ty);
2892 
2893   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2894   return false;
2895 }
2896 
2897 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2898 /// other structs.
2899 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2900   SmallVector<Type*, 8> Elts;
2901   if (parseStructBody(Elts))
2902     return true;
2903 
2904   Result = StructType::get(Context, Elts, Packed);
2905   return false;
2906 }
2907 
2908 /// parseStructDefinition - parse a struct in a 'type' definition.
2909 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2910                                      std::pair<Type *, LocTy> &Entry,
2911                                      Type *&ResultTy) {
2912   // If the type was already defined, diagnose the redefinition.
2913   if (Entry.first && !Entry.second.isValid())
2914     return error(TypeLoc, "redefinition of type");
2915 
2916   // If we have opaque, just return without filling in the definition for the
2917   // struct.  This counts as a definition as far as the .ll file goes.
2918   if (EatIfPresent(lltok::kw_opaque)) {
2919     // This type is being defined, so clear the location to indicate this.
2920     Entry.second = SMLoc();
2921 
2922     // If this type number has never been uttered, create it.
2923     if (!Entry.first)
2924       Entry.first = StructType::create(Context, Name);
2925     ResultTy = Entry.first;
2926     return false;
2927   }
2928 
2929   // If the type starts with '<', then it is either a packed struct or a vector.
2930   bool isPacked = EatIfPresent(lltok::less);
2931 
2932   // If we don't have a struct, then we have a random type alias, which we
2933   // accept for compatibility with old files.  These types are not allowed to be
2934   // forward referenced and not allowed to be recursive.
2935   if (Lex.getKind() != lltok::lbrace) {
2936     if (Entry.first)
2937       return error(TypeLoc, "forward references to non-struct type");
2938 
2939     ResultTy = nullptr;
2940     if (isPacked)
2941       return parseArrayVectorType(ResultTy, true);
2942     return parseType(ResultTy);
2943   }
2944 
2945   // This type is being defined, so clear the location to indicate this.
2946   Entry.second = SMLoc();
2947 
2948   // If this type number has never been uttered, create it.
2949   if (!Entry.first)
2950     Entry.first = StructType::create(Context, Name);
2951 
2952   StructType *STy = cast<StructType>(Entry.first);
2953 
2954   SmallVector<Type*, 8> Body;
2955   if (parseStructBody(Body) ||
2956       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2957     return true;
2958 
2959   STy->setBody(Body, isPacked);
2960   ResultTy = STy;
2961   return false;
2962 }
2963 
2964 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2965 ///   StructType
2966 ///     ::= '{' '}'
2967 ///     ::= '{' Type (',' Type)* '}'
2968 ///     ::= '<' '{' '}' '>'
2969 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2970 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2971   assert(Lex.getKind() == lltok::lbrace);
2972   Lex.Lex(); // Consume the '{'
2973 
2974   // Handle the empty struct.
2975   if (EatIfPresent(lltok::rbrace))
2976     return false;
2977 
2978   LocTy EltTyLoc = Lex.getLoc();
2979   Type *Ty = nullptr;
2980   if (parseType(Ty))
2981     return true;
2982   Body.push_back(Ty);
2983 
2984   if (!StructType::isValidElementType(Ty))
2985     return error(EltTyLoc, "invalid element type for struct");
2986 
2987   while (EatIfPresent(lltok::comma)) {
2988     EltTyLoc = Lex.getLoc();
2989     if (parseType(Ty))
2990       return true;
2991 
2992     if (!StructType::isValidElementType(Ty))
2993       return error(EltTyLoc, "invalid element type for struct");
2994 
2995     Body.push_back(Ty);
2996   }
2997 
2998   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2999 }
3000 
3001 /// parseArrayVectorType - parse an array or vector type, assuming the first
3002 /// token has already been consumed.
3003 ///   Type
3004 ///     ::= '[' APSINTVAL 'x' Types ']'
3005 ///     ::= '<' APSINTVAL 'x' Types '>'
3006 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3007 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3008   bool Scalable = false;
3009 
3010   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3011     Lex.Lex(); // consume the 'vscale'
3012     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3013       return true;
3014 
3015     Scalable = true;
3016   }
3017 
3018   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3019       Lex.getAPSIntVal().getBitWidth() > 64)
3020     return tokError("expected number in address space");
3021 
3022   LocTy SizeLoc = Lex.getLoc();
3023   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3024   Lex.Lex();
3025 
3026   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3027     return true;
3028 
3029   LocTy TypeLoc = Lex.getLoc();
3030   Type *EltTy = nullptr;
3031   if (parseType(EltTy))
3032     return true;
3033 
3034   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3035                  "expected end of sequential type"))
3036     return true;
3037 
3038   if (IsVector) {
3039     if (Size == 0)
3040       return error(SizeLoc, "zero element vector is illegal");
3041     if ((unsigned)Size != Size)
3042       return error(SizeLoc, "size too large for vector");
3043     if (!VectorType::isValidElementType(EltTy))
3044       return error(TypeLoc, "invalid vector element type");
3045     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3046   } else {
3047     if (!ArrayType::isValidElementType(EltTy))
3048       return error(TypeLoc, "invalid array element type");
3049     Result = ArrayType::get(EltTy, Size);
3050   }
3051   return false;
3052 }
3053 
3054 //===----------------------------------------------------------------------===//
3055 // Function Semantic Analysis.
3056 //===----------------------------------------------------------------------===//
3057 
3058 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3059                                              int functionNumber)
3060   : P(p), F(f), FunctionNumber(functionNumber) {
3061 
3062   // Insert unnamed arguments into the NumberedVals list.
3063   for (Argument &A : F.args())
3064     if (!A.hasName())
3065       NumberedVals.push_back(&A);
3066 }
3067 
3068 LLParser::PerFunctionState::~PerFunctionState() {
3069   // If there were any forward referenced non-basicblock values, delete them.
3070 
3071   for (const auto &P : ForwardRefVals) {
3072     if (isa<BasicBlock>(P.second.first))
3073       continue;
3074     P.second.first->replaceAllUsesWith(
3075         UndefValue::get(P.second.first->getType()));
3076     P.second.first->deleteValue();
3077   }
3078 
3079   for (const auto &P : ForwardRefValIDs) {
3080     if (isa<BasicBlock>(P.second.first))
3081       continue;
3082     P.second.first->replaceAllUsesWith(
3083         UndefValue::get(P.second.first->getType()));
3084     P.second.first->deleteValue();
3085   }
3086 }
3087 
3088 bool LLParser::PerFunctionState::finishFunction() {
3089   if (!ForwardRefVals.empty())
3090     return P.error(ForwardRefVals.begin()->second.second,
3091                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3092                        "'");
3093   if (!ForwardRefValIDs.empty())
3094     return P.error(ForwardRefValIDs.begin()->second.second,
3095                    "use of undefined value '%" +
3096                        Twine(ForwardRefValIDs.begin()->first) + "'");
3097   return false;
3098 }
3099 
3100 /// getVal - Get a value with the specified name or ID, creating a
3101 /// forward reference record if needed.  This can return null if the value
3102 /// exists but does not have the right type.
3103 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3104                                           LocTy Loc, bool IsCall) {
3105   // Look this name up in the normal function symbol table.
3106   Value *Val = F.getValueSymbolTable()->lookup(Name);
3107 
3108   // If this is a forward reference for the value, see if we already created a
3109   // forward ref record.
3110   if (!Val) {
3111     auto I = ForwardRefVals.find(Name);
3112     if (I != ForwardRefVals.end())
3113       Val = I->second.first;
3114   }
3115 
3116   // If we have the value in the symbol table or fwd-ref table, return it.
3117   if (Val)
3118     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3119 
3120   // Don't make placeholders with invalid type.
3121   if (!Ty->isFirstClassType()) {
3122     P.error(Loc, "invalid use of a non-first-class type");
3123     return nullptr;
3124   }
3125 
3126   // Otherwise, create a new forward reference for this value and remember it.
3127   Value *FwdVal;
3128   if (Ty->isLabelTy()) {
3129     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3130   } else {
3131     FwdVal = new Argument(Ty, Name);
3132   }
3133 
3134   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3135   return FwdVal;
3136 }
3137 
3138 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3139                                           bool IsCall) {
3140   // Look this name up in the normal function symbol table.
3141   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3142 
3143   // If this is a forward reference for the value, see if we already created a
3144   // forward ref record.
3145   if (!Val) {
3146     auto I = ForwardRefValIDs.find(ID);
3147     if (I != ForwardRefValIDs.end())
3148       Val = I->second.first;
3149   }
3150 
3151   // If we have the value in the symbol table or fwd-ref table, return it.
3152   if (Val)
3153     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3154 
3155   if (!Ty->isFirstClassType()) {
3156     P.error(Loc, "invalid use of a non-first-class type");
3157     return nullptr;
3158   }
3159 
3160   // Otherwise, create a new forward reference for this value and remember it.
3161   Value *FwdVal;
3162   if (Ty->isLabelTy()) {
3163     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3164   } else {
3165     FwdVal = new Argument(Ty);
3166   }
3167 
3168   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3169   return FwdVal;
3170 }
3171 
3172 /// setInstName - After an instruction is parsed and inserted into its
3173 /// basic block, this installs its name.
3174 bool LLParser::PerFunctionState::setInstName(int NameID,
3175                                              const std::string &NameStr,
3176                                              LocTy NameLoc, Instruction *Inst) {
3177   // If this instruction has void type, it cannot have a name or ID specified.
3178   if (Inst->getType()->isVoidTy()) {
3179     if (NameID != -1 || !NameStr.empty())
3180       return P.error(NameLoc, "instructions returning void cannot have a name");
3181     return false;
3182   }
3183 
3184   // If this was a numbered instruction, verify that the instruction is the
3185   // expected value and resolve any forward references.
3186   if (NameStr.empty()) {
3187     // If neither a name nor an ID was specified, just use the next ID.
3188     if (NameID == -1)
3189       NameID = NumberedVals.size();
3190 
3191     if (unsigned(NameID) != NumberedVals.size())
3192       return P.error(NameLoc, "instruction expected to be numbered '%" +
3193                                   Twine(NumberedVals.size()) + "'");
3194 
3195     auto FI = ForwardRefValIDs.find(NameID);
3196     if (FI != ForwardRefValIDs.end()) {
3197       Value *Sentinel = FI->second.first;
3198       if (Sentinel->getType() != Inst->getType())
3199         return P.error(NameLoc, "instruction forward referenced with type '" +
3200                                     getTypeString(FI->second.first->getType()) +
3201                                     "'");
3202 
3203       Sentinel->replaceAllUsesWith(Inst);
3204       Sentinel->deleteValue();
3205       ForwardRefValIDs.erase(FI);
3206     }
3207 
3208     NumberedVals.push_back(Inst);
3209     return false;
3210   }
3211 
3212   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3213   auto FI = ForwardRefVals.find(NameStr);
3214   if (FI != ForwardRefVals.end()) {
3215     Value *Sentinel = FI->second.first;
3216     if (Sentinel->getType() != Inst->getType())
3217       return P.error(NameLoc, "instruction forward referenced with type '" +
3218                                   getTypeString(FI->second.first->getType()) +
3219                                   "'");
3220 
3221     Sentinel->replaceAllUsesWith(Inst);
3222     Sentinel->deleteValue();
3223     ForwardRefVals.erase(FI);
3224   }
3225 
3226   // Set the name on the instruction.
3227   Inst->setName(NameStr);
3228 
3229   if (Inst->getName() != NameStr)
3230     return P.error(NameLoc, "multiple definition of local value named '" +
3231                                 NameStr + "'");
3232   return false;
3233 }
3234 
3235 /// getBB - Get a basic block with the specified name or ID, creating a
3236 /// forward reference record if needed.
3237 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3238                                               LocTy Loc) {
3239   return dyn_cast_or_null<BasicBlock>(
3240       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3241 }
3242 
3243 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3244   return dyn_cast_or_null<BasicBlock>(
3245       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3246 }
3247 
3248 /// defineBB - Define the specified basic block, which is either named or
3249 /// unnamed.  If there is an error, this returns null otherwise it returns
3250 /// the block being defined.
3251 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3252                                                  int NameID, LocTy Loc) {
3253   BasicBlock *BB;
3254   if (Name.empty()) {
3255     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3256       P.error(Loc, "label expected to be numbered '" +
3257                        Twine(NumberedVals.size()) + "'");
3258       return nullptr;
3259     }
3260     BB = getBB(NumberedVals.size(), Loc);
3261     if (!BB) {
3262       P.error(Loc, "unable to create block numbered '" +
3263                        Twine(NumberedVals.size()) + "'");
3264       return nullptr;
3265     }
3266   } else {
3267     BB = getBB(Name, Loc);
3268     if (!BB) {
3269       P.error(Loc, "unable to create block named '" + Name + "'");
3270       return nullptr;
3271     }
3272   }
3273 
3274   // Move the block to the end of the function.  Forward ref'd blocks are
3275   // inserted wherever they happen to be referenced.
3276   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3277 
3278   // Remove the block from forward ref sets.
3279   if (Name.empty()) {
3280     ForwardRefValIDs.erase(NumberedVals.size());
3281     NumberedVals.push_back(BB);
3282   } else {
3283     // BB forward references are already in the function symbol table.
3284     ForwardRefVals.erase(Name);
3285   }
3286 
3287   return BB;
3288 }
3289 
3290 //===----------------------------------------------------------------------===//
3291 // Constants.
3292 //===----------------------------------------------------------------------===//
3293 
3294 /// parseValID - parse an abstract value that doesn't necessarily have a
3295 /// type implied.  For example, if we parse "4" we don't know what integer type
3296 /// it has.  The value will later be combined with its type and checked for
3297 /// sanity.  PFS is used to convert function-local operands of metadata (since
3298 /// metadata operands are not just parsed here but also converted to values).
3299 /// PFS can be null when we are not parsing metadata values inside a function.
3300 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3301   ID.Loc = Lex.getLoc();
3302   switch (Lex.getKind()) {
3303   default:
3304     return tokError("expected value token");
3305   case lltok::GlobalID:  // @42
3306     ID.UIntVal = Lex.getUIntVal();
3307     ID.Kind = ValID::t_GlobalID;
3308     break;
3309   case lltok::GlobalVar:  // @foo
3310     ID.StrVal = Lex.getStrVal();
3311     ID.Kind = ValID::t_GlobalName;
3312     break;
3313   case lltok::LocalVarID:  // %42
3314     ID.UIntVal = Lex.getUIntVal();
3315     ID.Kind = ValID::t_LocalID;
3316     break;
3317   case lltok::LocalVar:  // %foo
3318     ID.StrVal = Lex.getStrVal();
3319     ID.Kind = ValID::t_LocalName;
3320     break;
3321   case lltok::APSInt:
3322     ID.APSIntVal = Lex.getAPSIntVal();
3323     ID.Kind = ValID::t_APSInt;
3324     break;
3325   case lltok::APFloat:
3326     ID.APFloatVal = Lex.getAPFloatVal();
3327     ID.Kind = ValID::t_APFloat;
3328     break;
3329   case lltok::kw_true:
3330     ID.ConstantVal = ConstantInt::getTrue(Context);
3331     ID.Kind = ValID::t_Constant;
3332     break;
3333   case lltok::kw_false:
3334     ID.ConstantVal = ConstantInt::getFalse(Context);
3335     ID.Kind = ValID::t_Constant;
3336     break;
3337   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3338   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3339   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3340   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3341   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3342 
3343   case lltok::lbrace: {
3344     // ValID ::= '{' ConstVector '}'
3345     Lex.Lex();
3346     SmallVector<Constant*, 16> Elts;
3347     if (parseGlobalValueVector(Elts) ||
3348         parseToken(lltok::rbrace, "expected end of struct constant"))
3349       return true;
3350 
3351     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3352     ID.UIntVal = Elts.size();
3353     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3354            Elts.size() * sizeof(Elts[0]));
3355     ID.Kind = ValID::t_ConstantStruct;
3356     return false;
3357   }
3358   case lltok::less: {
3359     // ValID ::= '<' ConstVector '>'         --> Vector.
3360     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3361     Lex.Lex();
3362     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3363 
3364     SmallVector<Constant*, 16> Elts;
3365     LocTy FirstEltLoc = Lex.getLoc();
3366     if (parseGlobalValueVector(Elts) ||
3367         (isPackedStruct &&
3368          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3369         parseToken(lltok::greater, "expected end of constant"))
3370       return true;
3371 
3372     if (isPackedStruct) {
3373       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3374       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3375              Elts.size() * sizeof(Elts[0]));
3376       ID.UIntVal = Elts.size();
3377       ID.Kind = ValID::t_PackedConstantStruct;
3378       return false;
3379     }
3380 
3381     if (Elts.empty())
3382       return error(ID.Loc, "constant vector must not be empty");
3383 
3384     if (!Elts[0]->getType()->isIntegerTy() &&
3385         !Elts[0]->getType()->isFloatingPointTy() &&
3386         !Elts[0]->getType()->isPointerTy())
3387       return error(
3388           FirstEltLoc,
3389           "vector elements must have integer, pointer or floating point type");
3390 
3391     // Verify that all the vector elements have the same type.
3392     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3393       if (Elts[i]->getType() != Elts[0]->getType())
3394         return error(FirstEltLoc, "vector element #" + Twine(i) +
3395                                       " is not of type '" +
3396                                       getTypeString(Elts[0]->getType()));
3397 
3398     ID.ConstantVal = ConstantVector::get(Elts);
3399     ID.Kind = ValID::t_Constant;
3400     return false;
3401   }
3402   case lltok::lsquare: {   // Array Constant
3403     Lex.Lex();
3404     SmallVector<Constant*, 16> Elts;
3405     LocTy FirstEltLoc = Lex.getLoc();
3406     if (parseGlobalValueVector(Elts) ||
3407         parseToken(lltok::rsquare, "expected end of array constant"))
3408       return true;
3409 
3410     // Handle empty element.
3411     if (Elts.empty()) {
3412       // Use undef instead of an array because it's inconvenient to determine
3413       // the element type at this point, there being no elements to examine.
3414       ID.Kind = ValID::t_EmptyArray;
3415       return false;
3416     }
3417 
3418     if (!Elts[0]->getType()->isFirstClassType())
3419       return error(FirstEltLoc, "invalid array element type: " +
3420                                     getTypeString(Elts[0]->getType()));
3421 
3422     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3423 
3424     // Verify all elements are correct type!
3425     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3426       if (Elts[i]->getType() != Elts[0]->getType())
3427         return error(FirstEltLoc, "array element #" + Twine(i) +
3428                                       " is not of type '" +
3429                                       getTypeString(Elts[0]->getType()));
3430     }
3431 
3432     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3433     ID.Kind = ValID::t_Constant;
3434     return false;
3435   }
3436   case lltok::kw_c:  // c "foo"
3437     Lex.Lex();
3438     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3439                                                   false);
3440     if (parseToken(lltok::StringConstant, "expected string"))
3441       return true;
3442     ID.Kind = ValID::t_Constant;
3443     return false;
3444 
3445   case lltok::kw_asm: {
3446     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3447     //             STRINGCONSTANT
3448     bool HasSideEffect, AlignStack, AsmDialect;
3449     Lex.Lex();
3450     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3451         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3452         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3453         parseStringConstant(ID.StrVal) ||
3454         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3455         parseToken(lltok::StringConstant, "expected constraint string"))
3456       return true;
3457     ID.StrVal2 = Lex.getStrVal();
3458     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3459       (unsigned(AsmDialect)<<2);
3460     ID.Kind = ValID::t_InlineAsm;
3461     return false;
3462   }
3463 
3464   case lltok::kw_blockaddress: {
3465     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3466     Lex.Lex();
3467 
3468     ValID Fn, Label;
3469 
3470     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3471         parseValID(Fn) ||
3472         parseToken(lltok::comma,
3473                    "expected comma in block address expression") ||
3474         parseValID(Label) ||
3475         parseToken(lltok::rparen, "expected ')' in block address expression"))
3476       return true;
3477 
3478     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3479       return error(Fn.Loc, "expected function name in blockaddress");
3480     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3481       return error(Label.Loc, "expected basic block name in blockaddress");
3482 
3483     // Try to find the function (but skip it if it's forward-referenced).
3484     GlobalValue *GV = nullptr;
3485     if (Fn.Kind == ValID::t_GlobalID) {
3486       if (Fn.UIntVal < NumberedVals.size())
3487         GV = NumberedVals[Fn.UIntVal];
3488     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3489       GV = M->getNamedValue(Fn.StrVal);
3490     }
3491     Function *F = nullptr;
3492     if (GV) {
3493       // Confirm that it's actually a function with a definition.
3494       if (!isa<Function>(GV))
3495         return error(Fn.Loc, "expected function name in blockaddress");
3496       F = cast<Function>(GV);
3497       if (F->isDeclaration())
3498         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3499     }
3500 
3501     if (!F) {
3502       // Make a global variable as a placeholder for this reference.
3503       GlobalValue *&FwdRef =
3504           ForwardRefBlockAddresses.insert(std::make_pair(
3505                                               std::move(Fn),
3506                                               std::map<ValID, GlobalValue *>()))
3507               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3508               .first->second;
3509       if (!FwdRef)
3510         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3511                                     GlobalValue::InternalLinkage, nullptr, "");
3512       ID.ConstantVal = FwdRef;
3513       ID.Kind = ValID::t_Constant;
3514       return false;
3515     }
3516 
3517     // We found the function; now find the basic block.  Don't use PFS, since we
3518     // might be inside a constant expression.
3519     BasicBlock *BB;
3520     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3521       if (Label.Kind == ValID::t_LocalID)
3522         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3523       else
3524         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3525       if (!BB)
3526         return error(Label.Loc, "referenced value is not a basic block");
3527     } else {
3528       if (Label.Kind == ValID::t_LocalID)
3529         return error(Label.Loc, "cannot take address of numeric label after "
3530                                 "the function is defined");
3531       BB = dyn_cast_or_null<BasicBlock>(
3532           F->getValueSymbolTable()->lookup(Label.StrVal));
3533       if (!BB)
3534         return error(Label.Loc, "referenced value is not a basic block");
3535     }
3536 
3537     ID.ConstantVal = BlockAddress::get(F, BB);
3538     ID.Kind = ValID::t_Constant;
3539     return false;
3540   }
3541 
3542   case lltok::kw_dso_local_equivalent: {
3543     // ValID ::= 'dso_local_equivalent' @foo
3544     Lex.Lex();
3545 
3546     ValID Fn;
3547 
3548     if (parseValID(Fn))
3549       return true;
3550 
3551     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3552       return error(Fn.Loc,
3553                    "expected global value name in dso_local_equivalent");
3554 
3555     // Try to find the function (but skip it if it's forward-referenced).
3556     GlobalValue *GV = nullptr;
3557     if (Fn.Kind == ValID::t_GlobalID) {
3558       if (Fn.UIntVal < NumberedVals.size())
3559         GV = NumberedVals[Fn.UIntVal];
3560     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3561       GV = M->getNamedValue(Fn.StrVal);
3562     }
3563 
3564     assert(GV && "Could not find a corresponding global variable");
3565 
3566     if (!GV->getValueType()->isFunctionTy())
3567       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3568                            "in dso_local_equivalent");
3569 
3570     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3571     ID.Kind = ValID::t_Constant;
3572     return false;
3573   }
3574 
3575   case lltok::kw_trunc:
3576   case lltok::kw_zext:
3577   case lltok::kw_sext:
3578   case lltok::kw_fptrunc:
3579   case lltok::kw_fpext:
3580   case lltok::kw_bitcast:
3581   case lltok::kw_addrspacecast:
3582   case lltok::kw_uitofp:
3583   case lltok::kw_sitofp:
3584   case lltok::kw_fptoui:
3585   case lltok::kw_fptosi:
3586   case lltok::kw_inttoptr:
3587   case lltok::kw_ptrtoint: {
3588     unsigned Opc = Lex.getUIntVal();
3589     Type *DestTy = nullptr;
3590     Constant *SrcVal;
3591     Lex.Lex();
3592     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3593         parseGlobalTypeAndValue(SrcVal) ||
3594         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3595         parseType(DestTy) ||
3596         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3597       return true;
3598     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3599       return error(ID.Loc, "invalid cast opcode for cast from '" +
3600                                getTypeString(SrcVal->getType()) + "' to '" +
3601                                getTypeString(DestTy) + "'");
3602     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3603                                                  SrcVal, DestTy);
3604     ID.Kind = ValID::t_Constant;
3605     return false;
3606   }
3607   case lltok::kw_extractvalue: {
3608     Lex.Lex();
3609     Constant *Val;
3610     SmallVector<unsigned, 4> Indices;
3611     if (parseToken(lltok::lparen,
3612                    "expected '(' in extractvalue constantexpr") ||
3613         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3614         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3615       return true;
3616 
3617     if (!Val->getType()->isAggregateType())
3618       return error(ID.Loc, "extractvalue operand must be aggregate type");
3619     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3620       return error(ID.Loc, "invalid indices for extractvalue");
3621     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3622     ID.Kind = ValID::t_Constant;
3623     return false;
3624   }
3625   case lltok::kw_insertvalue: {
3626     Lex.Lex();
3627     Constant *Val0, *Val1;
3628     SmallVector<unsigned, 4> Indices;
3629     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3630         parseGlobalTypeAndValue(Val0) ||
3631         parseToken(lltok::comma,
3632                    "expected comma in insertvalue constantexpr") ||
3633         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3634         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3635       return true;
3636     if (!Val0->getType()->isAggregateType())
3637       return error(ID.Loc, "insertvalue operand must be aggregate type");
3638     Type *IndexedType =
3639         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3640     if (!IndexedType)
3641       return error(ID.Loc, "invalid indices for insertvalue");
3642     if (IndexedType != Val1->getType())
3643       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3644                                getTypeString(Val1->getType()) +
3645                                "' instead of '" + getTypeString(IndexedType) +
3646                                "'");
3647     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3648     ID.Kind = ValID::t_Constant;
3649     return false;
3650   }
3651   case lltok::kw_icmp:
3652   case lltok::kw_fcmp: {
3653     unsigned PredVal, Opc = Lex.getUIntVal();
3654     Constant *Val0, *Val1;
3655     Lex.Lex();
3656     if (parseCmpPredicate(PredVal, Opc) ||
3657         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3658         parseGlobalTypeAndValue(Val0) ||
3659         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3660         parseGlobalTypeAndValue(Val1) ||
3661         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3662       return true;
3663 
3664     if (Val0->getType() != Val1->getType())
3665       return error(ID.Loc, "compare operands must have the same type");
3666 
3667     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3668 
3669     if (Opc == Instruction::FCmp) {
3670       if (!Val0->getType()->isFPOrFPVectorTy())
3671         return error(ID.Loc, "fcmp requires floating point operands");
3672       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3673     } else {
3674       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3675       if (!Val0->getType()->isIntOrIntVectorTy() &&
3676           !Val0->getType()->isPtrOrPtrVectorTy())
3677         return error(ID.Loc, "icmp requires pointer or integer operands");
3678       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3679     }
3680     ID.Kind = ValID::t_Constant;
3681     return false;
3682   }
3683 
3684   // Unary Operators.
3685   case lltok::kw_fneg: {
3686     unsigned Opc = Lex.getUIntVal();
3687     Constant *Val;
3688     Lex.Lex();
3689     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3690         parseGlobalTypeAndValue(Val) ||
3691         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3692       return true;
3693 
3694     // Check that the type is valid for the operator.
3695     switch (Opc) {
3696     case Instruction::FNeg:
3697       if (!Val->getType()->isFPOrFPVectorTy())
3698         return error(ID.Loc, "constexpr requires fp operands");
3699       break;
3700     default: llvm_unreachable("Unknown unary operator!");
3701     }
3702     unsigned Flags = 0;
3703     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3704     ID.ConstantVal = C;
3705     ID.Kind = ValID::t_Constant;
3706     return false;
3707   }
3708   // Binary Operators.
3709   case lltok::kw_add:
3710   case lltok::kw_fadd:
3711   case lltok::kw_sub:
3712   case lltok::kw_fsub:
3713   case lltok::kw_mul:
3714   case lltok::kw_fmul:
3715   case lltok::kw_udiv:
3716   case lltok::kw_sdiv:
3717   case lltok::kw_fdiv:
3718   case lltok::kw_urem:
3719   case lltok::kw_srem:
3720   case lltok::kw_frem:
3721   case lltok::kw_shl:
3722   case lltok::kw_lshr:
3723   case lltok::kw_ashr: {
3724     bool NUW = false;
3725     bool NSW = false;
3726     bool Exact = false;
3727     unsigned Opc = Lex.getUIntVal();
3728     Constant *Val0, *Val1;
3729     Lex.Lex();
3730     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3731         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3732       if (EatIfPresent(lltok::kw_nuw))
3733         NUW = true;
3734       if (EatIfPresent(lltok::kw_nsw)) {
3735         NSW = true;
3736         if (EatIfPresent(lltok::kw_nuw))
3737           NUW = true;
3738       }
3739     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3740                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3741       if (EatIfPresent(lltok::kw_exact))
3742         Exact = true;
3743     }
3744     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3745         parseGlobalTypeAndValue(Val0) ||
3746         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3747         parseGlobalTypeAndValue(Val1) ||
3748         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3749       return true;
3750     if (Val0->getType() != Val1->getType())
3751       return error(ID.Loc, "operands of constexpr must have same type");
3752     // Check that the type is valid for the operator.
3753     switch (Opc) {
3754     case Instruction::Add:
3755     case Instruction::Sub:
3756     case Instruction::Mul:
3757     case Instruction::UDiv:
3758     case Instruction::SDiv:
3759     case Instruction::URem:
3760     case Instruction::SRem:
3761     case Instruction::Shl:
3762     case Instruction::AShr:
3763     case Instruction::LShr:
3764       if (!Val0->getType()->isIntOrIntVectorTy())
3765         return error(ID.Loc, "constexpr requires integer operands");
3766       break;
3767     case Instruction::FAdd:
3768     case Instruction::FSub:
3769     case Instruction::FMul:
3770     case Instruction::FDiv:
3771     case Instruction::FRem:
3772       if (!Val0->getType()->isFPOrFPVectorTy())
3773         return error(ID.Loc, "constexpr requires fp operands");
3774       break;
3775     default: llvm_unreachable("Unknown binary operator!");
3776     }
3777     unsigned Flags = 0;
3778     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3779     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3780     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3781     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3782     ID.ConstantVal = C;
3783     ID.Kind = ValID::t_Constant;
3784     return false;
3785   }
3786 
3787   // Logical Operations
3788   case lltok::kw_and:
3789   case lltok::kw_or:
3790   case lltok::kw_xor: {
3791     unsigned Opc = Lex.getUIntVal();
3792     Constant *Val0, *Val1;
3793     Lex.Lex();
3794     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3795         parseGlobalTypeAndValue(Val0) ||
3796         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3797         parseGlobalTypeAndValue(Val1) ||
3798         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3799       return true;
3800     if (Val0->getType() != Val1->getType())
3801       return error(ID.Loc, "operands of constexpr must have same type");
3802     if (!Val0->getType()->isIntOrIntVectorTy())
3803       return error(ID.Loc,
3804                    "constexpr requires integer or integer vector operands");
3805     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3806     ID.Kind = ValID::t_Constant;
3807     return false;
3808   }
3809 
3810   case lltok::kw_getelementptr:
3811   case lltok::kw_shufflevector:
3812   case lltok::kw_insertelement:
3813   case lltok::kw_extractelement:
3814   case lltok::kw_select: {
3815     unsigned Opc = Lex.getUIntVal();
3816     SmallVector<Constant*, 16> Elts;
3817     bool InBounds = false;
3818     Type *Ty;
3819     Lex.Lex();
3820 
3821     if (Opc == Instruction::GetElementPtr)
3822       InBounds = EatIfPresent(lltok::kw_inbounds);
3823 
3824     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3825       return true;
3826 
3827     LocTy ExplicitTypeLoc = Lex.getLoc();
3828     if (Opc == Instruction::GetElementPtr) {
3829       if (parseType(Ty) ||
3830           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3831         return true;
3832     }
3833 
3834     Optional<unsigned> InRangeOp;
3835     if (parseGlobalValueVector(
3836             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3837         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3838       return true;
3839 
3840     if (Opc == Instruction::GetElementPtr) {
3841       if (Elts.size() == 0 ||
3842           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3843         return error(ID.Loc, "base of getelementptr must be a pointer");
3844 
3845       Type *BaseType = Elts[0]->getType();
3846       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3847       if (Ty != BasePointerType->getElementType())
3848         return error(
3849             ExplicitTypeLoc,
3850             "explicit pointee type doesn't match operand's pointee type");
3851 
3852       unsigned GEPWidth =
3853           BaseType->isVectorTy()
3854               ? cast<FixedVectorType>(BaseType)->getNumElements()
3855               : 0;
3856 
3857       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3858       for (Constant *Val : Indices) {
3859         Type *ValTy = Val->getType();
3860         if (!ValTy->isIntOrIntVectorTy())
3861           return error(ID.Loc, "getelementptr index must be an integer");
3862         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3863           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3864           if (GEPWidth && (ValNumEl != GEPWidth))
3865             return error(
3866                 ID.Loc,
3867                 "getelementptr vector index has a wrong number of elements");
3868           // GEPWidth may have been unknown because the base is a scalar,
3869           // but it is known now.
3870           GEPWidth = ValNumEl;
3871         }
3872       }
3873 
3874       SmallPtrSet<Type*, 4> Visited;
3875       if (!Indices.empty() && !Ty->isSized(&Visited))
3876         return error(ID.Loc, "base element of getelementptr must be sized");
3877 
3878       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3879         return error(ID.Loc, "invalid getelementptr indices");
3880 
3881       if (InRangeOp) {
3882         if (*InRangeOp == 0)
3883           return error(ID.Loc,
3884                        "inrange keyword may not appear on pointer operand");
3885         --*InRangeOp;
3886       }
3887 
3888       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3889                                                       InBounds, InRangeOp);
3890     } else if (Opc == Instruction::Select) {
3891       if (Elts.size() != 3)
3892         return error(ID.Loc, "expected three operands to select");
3893       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3894                                                               Elts[2]))
3895         return error(ID.Loc, Reason);
3896       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3897     } else if (Opc == Instruction::ShuffleVector) {
3898       if (Elts.size() != 3)
3899         return error(ID.Loc, "expected three operands to shufflevector");
3900       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3901         return error(ID.Loc, "invalid operands to shufflevector");
3902       SmallVector<int, 16> Mask;
3903       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3904       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3905     } else if (Opc == Instruction::ExtractElement) {
3906       if (Elts.size() != 2)
3907         return error(ID.Loc, "expected two operands to extractelement");
3908       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3909         return error(ID.Loc, "invalid extractelement operands");
3910       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3911     } else {
3912       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3913       if (Elts.size() != 3)
3914         return error(ID.Loc, "expected three operands to insertelement");
3915       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3916         return error(ID.Loc, "invalid insertelement operands");
3917       ID.ConstantVal =
3918                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3919     }
3920 
3921     ID.Kind = ValID::t_Constant;
3922     return false;
3923   }
3924   }
3925 
3926   Lex.Lex();
3927   return false;
3928 }
3929 
3930 /// parseGlobalValue - parse a global value with the specified type.
3931 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3932   C = nullptr;
3933   ValID ID;
3934   Value *V = nullptr;
3935   bool Parsed = parseValID(ID) ||
3936                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3937   if (V && !(C = dyn_cast<Constant>(V)))
3938     return error(ID.Loc, "global values must be constants");
3939   return Parsed;
3940 }
3941 
3942 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3943   Type *Ty = nullptr;
3944   return parseType(Ty) || parseGlobalValue(Ty, V);
3945 }
3946 
3947 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3948   C = nullptr;
3949 
3950   LocTy KwLoc = Lex.getLoc();
3951   if (!EatIfPresent(lltok::kw_comdat))
3952     return false;
3953 
3954   if (EatIfPresent(lltok::lparen)) {
3955     if (Lex.getKind() != lltok::ComdatVar)
3956       return tokError("expected comdat variable");
3957     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3958     Lex.Lex();
3959     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3960       return true;
3961   } else {
3962     if (GlobalName.empty())
3963       return tokError("comdat cannot be unnamed");
3964     C = getComdat(std::string(GlobalName), KwLoc);
3965   }
3966 
3967   return false;
3968 }
3969 
3970 /// parseGlobalValueVector
3971 ///   ::= /*empty*/
3972 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3973 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3974                                       Optional<unsigned> *InRangeOp) {
3975   // Empty list.
3976   if (Lex.getKind() == lltok::rbrace ||
3977       Lex.getKind() == lltok::rsquare ||
3978       Lex.getKind() == lltok::greater ||
3979       Lex.getKind() == lltok::rparen)
3980     return false;
3981 
3982   do {
3983     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3984       *InRangeOp = Elts.size();
3985 
3986     Constant *C;
3987     if (parseGlobalTypeAndValue(C))
3988       return true;
3989     Elts.push_back(C);
3990   } while (EatIfPresent(lltok::comma));
3991 
3992   return false;
3993 }
3994 
3995 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3996   SmallVector<Metadata *, 16> Elts;
3997   if (parseMDNodeVector(Elts))
3998     return true;
3999 
4000   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4001   return false;
4002 }
4003 
4004 /// MDNode:
4005 ///  ::= !{ ... }
4006 ///  ::= !7
4007 ///  ::= !DILocation(...)
4008 bool LLParser::parseMDNode(MDNode *&N) {
4009   if (Lex.getKind() == lltok::MetadataVar)
4010     return parseSpecializedMDNode(N);
4011 
4012   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4013 }
4014 
4015 bool LLParser::parseMDNodeTail(MDNode *&N) {
4016   // !{ ... }
4017   if (Lex.getKind() == lltok::lbrace)
4018     return parseMDTuple(N);
4019 
4020   // !42
4021   return parseMDNodeID(N);
4022 }
4023 
4024 namespace {
4025 
4026 /// Structure to represent an optional metadata field.
4027 template <class FieldTy> struct MDFieldImpl {
4028   typedef MDFieldImpl ImplTy;
4029   FieldTy Val;
4030   bool Seen;
4031 
4032   void assign(FieldTy Val) {
4033     Seen = true;
4034     this->Val = std::move(Val);
4035   }
4036 
4037   explicit MDFieldImpl(FieldTy Default)
4038       : Val(std::move(Default)), Seen(false) {}
4039 };
4040 
4041 /// Structure to represent an optional metadata field that
4042 /// can be of either type (A or B) and encapsulates the
4043 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4044 /// to reimplement the specifics for representing each Field.
4045 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4046   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4047   FieldTypeA A;
4048   FieldTypeB B;
4049   bool Seen;
4050 
4051   enum {
4052     IsInvalid = 0,
4053     IsTypeA = 1,
4054     IsTypeB = 2
4055   } WhatIs;
4056 
4057   void assign(FieldTypeA A) {
4058     Seen = true;
4059     this->A = std::move(A);
4060     WhatIs = IsTypeA;
4061   }
4062 
4063   void assign(FieldTypeB B) {
4064     Seen = true;
4065     this->B = std::move(B);
4066     WhatIs = IsTypeB;
4067   }
4068 
4069   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4070       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4071         WhatIs(IsInvalid) {}
4072 };
4073 
4074 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4075   uint64_t Max;
4076 
4077   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4078       : ImplTy(Default), Max(Max) {}
4079 };
4080 
4081 struct LineField : public MDUnsignedField {
4082   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4083 };
4084 
4085 struct ColumnField : public MDUnsignedField {
4086   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4087 };
4088 
4089 struct DwarfTagField : public MDUnsignedField {
4090   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4091   DwarfTagField(dwarf::Tag DefaultTag)
4092       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4093 };
4094 
4095 struct DwarfMacinfoTypeField : public MDUnsignedField {
4096   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4097   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4098     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4099 };
4100 
4101 struct DwarfAttEncodingField : public MDUnsignedField {
4102   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4103 };
4104 
4105 struct DwarfVirtualityField : public MDUnsignedField {
4106   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4107 };
4108 
4109 struct DwarfLangField : public MDUnsignedField {
4110   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4111 };
4112 
4113 struct DwarfCCField : public MDUnsignedField {
4114   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4115 };
4116 
4117 struct EmissionKindField : public MDUnsignedField {
4118   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4119 };
4120 
4121 struct NameTableKindField : public MDUnsignedField {
4122   NameTableKindField()
4123       : MDUnsignedField(
4124             0, (unsigned)
4125                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4126 };
4127 
4128 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4129   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4130 };
4131 
4132 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4133   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4134 };
4135 
4136 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4137   MDAPSIntField() : ImplTy(APSInt()) {}
4138 };
4139 
4140 struct MDSignedField : public MDFieldImpl<int64_t> {
4141   int64_t Min;
4142   int64_t Max;
4143 
4144   MDSignedField(int64_t Default = 0)
4145       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4146   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4147       : ImplTy(Default), Min(Min), Max(Max) {}
4148 };
4149 
4150 struct MDBoolField : public MDFieldImpl<bool> {
4151   MDBoolField(bool Default = false) : ImplTy(Default) {}
4152 };
4153 
4154 struct MDField : public MDFieldImpl<Metadata *> {
4155   bool AllowNull;
4156 
4157   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4158 };
4159 
4160 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4161   MDConstant() : ImplTy(nullptr) {}
4162 };
4163 
4164 struct MDStringField : public MDFieldImpl<MDString *> {
4165   bool AllowEmpty;
4166   MDStringField(bool AllowEmpty = true)
4167       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4168 };
4169 
4170 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4171   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4172 };
4173 
4174 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4175   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4176 };
4177 
4178 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4179   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4180       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4181 
4182   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4183                     bool AllowNull = true)
4184       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4185 
4186   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4187   bool isMDField() const { return WhatIs == IsTypeB; }
4188   int64_t getMDSignedValue() const {
4189     assert(isMDSignedField() && "Wrong field type");
4190     return A.Val;
4191   }
4192   Metadata *getMDFieldValue() const {
4193     assert(isMDField() && "Wrong field type");
4194     return B.Val;
4195   }
4196 };
4197 
4198 struct MDSignedOrUnsignedField
4199     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4200   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4201 
4202   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4203   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4204   int64_t getMDSignedValue() const {
4205     assert(isMDSignedField() && "Wrong field type");
4206     return A.Val;
4207   }
4208   uint64_t getMDUnsignedValue() const {
4209     assert(isMDUnsignedField() && "Wrong field type");
4210     return B.Val;
4211   }
4212 };
4213 
4214 } // end anonymous namespace
4215 
4216 namespace llvm {
4217 
4218 template <>
4219 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4220   if (Lex.getKind() != lltok::APSInt)
4221     return tokError("expected integer");
4222 
4223   Result.assign(Lex.getAPSIntVal());
4224   Lex.Lex();
4225   return false;
4226 }
4227 
4228 template <>
4229 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4230                             MDUnsignedField &Result) {
4231   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4232     return tokError("expected unsigned integer");
4233 
4234   auto &U = Lex.getAPSIntVal();
4235   if (U.ugt(Result.Max))
4236     return tokError("value for '" + Name + "' too large, limit is " +
4237                     Twine(Result.Max));
4238   Result.assign(U.getZExtValue());
4239   assert(Result.Val <= Result.Max && "Expected value in range");
4240   Lex.Lex();
4241   return false;
4242 }
4243 
4244 template <>
4245 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4246   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4247 }
4248 template <>
4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4250   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4251 }
4252 
4253 template <>
4254 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4255   if (Lex.getKind() == lltok::APSInt)
4256     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4257 
4258   if (Lex.getKind() != lltok::DwarfTag)
4259     return tokError("expected DWARF tag");
4260 
4261   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4262   if (Tag == dwarf::DW_TAG_invalid)
4263     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4264   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4265 
4266   Result.assign(Tag);
4267   Lex.Lex();
4268   return false;
4269 }
4270 
4271 template <>
4272 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4273                             DwarfMacinfoTypeField &Result) {
4274   if (Lex.getKind() == lltok::APSInt)
4275     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4276 
4277   if (Lex.getKind() != lltok::DwarfMacinfo)
4278     return tokError("expected DWARF macinfo type");
4279 
4280   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4281   if (Macinfo == dwarf::DW_MACINFO_invalid)
4282     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4283                     Lex.getStrVal() + "'");
4284   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4285 
4286   Result.assign(Macinfo);
4287   Lex.Lex();
4288   return false;
4289 }
4290 
4291 template <>
4292 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4293                             DwarfVirtualityField &Result) {
4294   if (Lex.getKind() == lltok::APSInt)
4295     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4296 
4297   if (Lex.getKind() != lltok::DwarfVirtuality)
4298     return tokError("expected DWARF virtuality code");
4299 
4300   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4301   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4302     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4303                     Lex.getStrVal() + "'");
4304   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4305   Result.assign(Virtuality);
4306   Lex.Lex();
4307   return false;
4308 }
4309 
4310 template <>
4311 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4312   if (Lex.getKind() == lltok::APSInt)
4313     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4314 
4315   if (Lex.getKind() != lltok::DwarfLang)
4316     return tokError("expected DWARF language");
4317 
4318   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4319   if (!Lang)
4320     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4321                     "'");
4322   assert(Lang <= Result.Max && "Expected valid DWARF language");
4323   Result.assign(Lang);
4324   Lex.Lex();
4325   return false;
4326 }
4327 
4328 template <>
4329 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4330   if (Lex.getKind() == lltok::APSInt)
4331     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4332 
4333   if (Lex.getKind() != lltok::DwarfCC)
4334     return tokError("expected DWARF calling convention");
4335 
4336   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4337   if (!CC)
4338     return tokError("invalid DWARF calling convention" + Twine(" '") +
4339                     Lex.getStrVal() + "'");
4340   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4341   Result.assign(CC);
4342   Lex.Lex();
4343   return false;
4344 }
4345 
4346 template <>
4347 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4348                             EmissionKindField &Result) {
4349   if (Lex.getKind() == lltok::APSInt)
4350     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4351 
4352   if (Lex.getKind() != lltok::EmissionKind)
4353     return tokError("expected emission kind");
4354 
4355   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4356   if (!Kind)
4357     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4358                     "'");
4359   assert(*Kind <= Result.Max && "Expected valid emission kind");
4360   Result.assign(*Kind);
4361   Lex.Lex();
4362   return false;
4363 }
4364 
4365 template <>
4366 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4367                             NameTableKindField &Result) {
4368   if (Lex.getKind() == lltok::APSInt)
4369     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4370 
4371   if (Lex.getKind() != lltok::NameTableKind)
4372     return tokError("expected nameTable kind");
4373 
4374   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4375   if (!Kind)
4376     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4377                     "'");
4378   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4379   Result.assign((unsigned)*Kind);
4380   Lex.Lex();
4381   return false;
4382 }
4383 
4384 template <>
4385 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4386                             DwarfAttEncodingField &Result) {
4387   if (Lex.getKind() == lltok::APSInt)
4388     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4389 
4390   if (Lex.getKind() != lltok::DwarfAttEncoding)
4391     return tokError("expected DWARF type attribute encoding");
4392 
4393   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4394   if (!Encoding)
4395     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4396                     Lex.getStrVal() + "'");
4397   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4398   Result.assign(Encoding);
4399   Lex.Lex();
4400   return false;
4401 }
4402 
4403 /// DIFlagField
4404 ///  ::= uint32
4405 ///  ::= DIFlagVector
4406 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4407 template <>
4408 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4409 
4410   // parser for a single flag.
4411   auto parseFlag = [&](DINode::DIFlags &Val) {
4412     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4413       uint32_t TempVal = static_cast<uint32_t>(Val);
4414       bool Res = parseUInt32(TempVal);
4415       Val = static_cast<DINode::DIFlags>(TempVal);
4416       return Res;
4417     }
4418 
4419     if (Lex.getKind() != lltok::DIFlag)
4420       return tokError("expected debug info flag");
4421 
4422     Val = DINode::getFlag(Lex.getStrVal());
4423     if (!Val)
4424       return tokError(Twine("invalid debug info flag flag '") +
4425                       Lex.getStrVal() + "'");
4426     Lex.Lex();
4427     return false;
4428   };
4429 
4430   // parse the flags and combine them together.
4431   DINode::DIFlags Combined = DINode::FlagZero;
4432   do {
4433     DINode::DIFlags Val;
4434     if (parseFlag(Val))
4435       return true;
4436     Combined |= Val;
4437   } while (EatIfPresent(lltok::bar));
4438 
4439   Result.assign(Combined);
4440   return false;
4441 }
4442 
4443 /// DISPFlagField
4444 ///  ::= uint32
4445 ///  ::= DISPFlagVector
4446 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4447 template <>
4448 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4449 
4450   // parser for a single flag.
4451   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4452     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4453       uint32_t TempVal = static_cast<uint32_t>(Val);
4454       bool Res = parseUInt32(TempVal);
4455       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4456       return Res;
4457     }
4458 
4459     if (Lex.getKind() != lltok::DISPFlag)
4460       return tokError("expected debug info flag");
4461 
4462     Val = DISubprogram::getFlag(Lex.getStrVal());
4463     if (!Val)
4464       return tokError(Twine("invalid subprogram debug info flag '") +
4465                       Lex.getStrVal() + "'");
4466     Lex.Lex();
4467     return false;
4468   };
4469 
4470   // parse the flags and combine them together.
4471   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4472   do {
4473     DISubprogram::DISPFlags Val;
4474     if (parseFlag(Val))
4475       return true;
4476     Combined |= Val;
4477   } while (EatIfPresent(lltok::bar));
4478 
4479   Result.assign(Combined);
4480   return false;
4481 }
4482 
4483 template <>
4484 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4485   if (Lex.getKind() != lltok::APSInt)
4486     return tokError("expected signed integer");
4487 
4488   auto &S = Lex.getAPSIntVal();
4489   if (S < Result.Min)
4490     return tokError("value for '" + Name + "' too small, limit is " +
4491                     Twine(Result.Min));
4492   if (S > Result.Max)
4493     return tokError("value for '" + Name + "' too large, limit is " +
4494                     Twine(Result.Max));
4495   Result.assign(S.getExtValue());
4496   assert(Result.Val >= Result.Min && "Expected value in range");
4497   assert(Result.Val <= Result.Max && "Expected value in range");
4498   Lex.Lex();
4499   return false;
4500 }
4501 
4502 template <>
4503 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4504   switch (Lex.getKind()) {
4505   default:
4506     return tokError("expected 'true' or 'false'");
4507   case lltok::kw_true:
4508     Result.assign(true);
4509     break;
4510   case lltok::kw_false:
4511     Result.assign(false);
4512     break;
4513   }
4514   Lex.Lex();
4515   return false;
4516 }
4517 
4518 template <>
4519 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4520   if (Lex.getKind() == lltok::kw_null) {
4521     if (!Result.AllowNull)
4522       return tokError("'" + Name + "' cannot be null");
4523     Lex.Lex();
4524     Result.assign(nullptr);
4525     return false;
4526   }
4527 
4528   Metadata *MD;
4529   if (parseMetadata(MD, nullptr))
4530     return true;
4531 
4532   Result.assign(MD);
4533   return false;
4534 }
4535 
4536 template <>
4537 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4538                             MDSignedOrMDField &Result) {
4539   // Try to parse a signed int.
4540   if (Lex.getKind() == lltok::APSInt) {
4541     MDSignedField Res = Result.A;
4542     if (!parseMDField(Loc, Name, Res)) {
4543       Result.assign(Res);
4544       return false;
4545     }
4546     return true;
4547   }
4548 
4549   // Otherwise, try to parse as an MDField.
4550   MDField Res = Result.B;
4551   if (!parseMDField(Loc, Name, Res)) {
4552     Result.assign(Res);
4553     return false;
4554   }
4555 
4556   return true;
4557 }
4558 
4559 template <>
4560 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4561   LocTy ValueLoc = Lex.getLoc();
4562   std::string S;
4563   if (parseStringConstant(S))
4564     return true;
4565 
4566   if (!Result.AllowEmpty && S.empty())
4567     return error(ValueLoc, "'" + Name + "' cannot be empty");
4568 
4569   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4570   return false;
4571 }
4572 
4573 template <>
4574 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4575   SmallVector<Metadata *, 4> MDs;
4576   if (parseMDNodeVector(MDs))
4577     return true;
4578 
4579   Result.assign(std::move(MDs));
4580   return false;
4581 }
4582 
4583 template <>
4584 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4585                             ChecksumKindField &Result) {
4586   Optional<DIFile::ChecksumKind> CSKind =
4587       DIFile::getChecksumKind(Lex.getStrVal());
4588 
4589   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4590     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4591                     "'");
4592 
4593   Result.assign(*CSKind);
4594   Lex.Lex();
4595   return false;
4596 }
4597 
4598 } // end namespace llvm
4599 
4600 template <class ParserTy>
4601 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4602   do {
4603     if (Lex.getKind() != lltok::LabelStr)
4604       return tokError("expected field label here");
4605 
4606     if (ParseField())
4607       return true;
4608   } while (EatIfPresent(lltok::comma));
4609 
4610   return false;
4611 }
4612 
4613 template <class ParserTy>
4614 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4615   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4616   Lex.Lex();
4617 
4618   if (parseToken(lltok::lparen, "expected '(' here"))
4619     return true;
4620   if (Lex.getKind() != lltok::rparen)
4621     if (parseMDFieldsImplBody(ParseField))
4622       return true;
4623 
4624   ClosingLoc = Lex.getLoc();
4625   return parseToken(lltok::rparen, "expected ')' here");
4626 }
4627 
4628 template <class FieldTy>
4629 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4630   if (Result.Seen)
4631     return tokError("field '" + Name + "' cannot be specified more than once");
4632 
4633   LocTy Loc = Lex.getLoc();
4634   Lex.Lex();
4635   return parseMDField(Loc, Name, Result);
4636 }
4637 
4638 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4639   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4640 
4641 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4642   if (Lex.getStrVal() == #CLASS)                                               \
4643     return parse##CLASS(N, IsDistinct);
4644 #include "llvm/IR/Metadata.def"
4645 
4646   return tokError("expected metadata type");
4647 }
4648 
4649 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4650 #define NOP_FIELD(NAME, TYPE, INIT)
4651 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4652   if (!NAME.Seen)                                                              \
4653     return error(ClosingLoc, "missing required field '" #NAME "'");
4654 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4655   if (Lex.getStrVal() == #NAME)                                                \
4656     return parseMDField(#NAME, NAME);
4657 #define PARSE_MD_FIELDS()                                                      \
4658   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4659   do {                                                                         \
4660     LocTy ClosingLoc;                                                          \
4661     if (parseMDFieldsImpl(                                                     \
4662             [&]() -> bool {                                                    \
4663               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4664               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4665                               "'");                                            \
4666             },                                                                 \
4667             ClosingLoc))                                                       \
4668       return true;                                                             \
4669     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4670   } while (false)
4671 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4672   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4673 
4674 /// parseDILocationFields:
4675 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4676 ///   isImplicitCode: true)
4677 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4679   OPTIONAL(line, LineField, );                                                 \
4680   OPTIONAL(column, ColumnField, );                                             \
4681   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4682   OPTIONAL(inlinedAt, MDField, );                                              \
4683   OPTIONAL(isImplicitCode, MDBoolField, (false));
4684   PARSE_MD_FIELDS();
4685 #undef VISIT_MD_FIELDS
4686 
4687   Result =
4688       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4689                                    inlinedAt.Val, isImplicitCode.Val));
4690   return false;
4691 }
4692 
4693 /// parseGenericDINode:
4694 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4695 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4697   REQUIRED(tag, DwarfTagField, );                                              \
4698   OPTIONAL(header, MDStringField, );                                           \
4699   OPTIONAL(operands, MDFieldList, );
4700   PARSE_MD_FIELDS();
4701 #undef VISIT_MD_FIELDS
4702 
4703   Result = GET_OR_DISTINCT(GenericDINode,
4704                            (Context, tag.Val, header.Val, operands.Val));
4705   return false;
4706 }
4707 
4708 /// parseDISubrange:
4709 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4710 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4711 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4712 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4713 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4714   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4715   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4716   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4717   OPTIONAL(stride, MDSignedOrMDField, );
4718   PARSE_MD_FIELDS();
4719 #undef VISIT_MD_FIELDS
4720 
4721   Metadata *Count = nullptr;
4722   Metadata *LowerBound = nullptr;
4723   Metadata *UpperBound = nullptr;
4724   Metadata *Stride = nullptr;
4725 
4726   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4727     if (Bound.isMDSignedField())
4728       return ConstantAsMetadata::get(ConstantInt::getSigned(
4729           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4730     if (Bound.isMDField())
4731       return Bound.getMDFieldValue();
4732     return nullptr;
4733   };
4734 
4735   Count = convToMetadata(count);
4736   LowerBound = convToMetadata(lowerBound);
4737   UpperBound = convToMetadata(upperBound);
4738   Stride = convToMetadata(stride);
4739 
4740   Result = GET_OR_DISTINCT(DISubrange,
4741                            (Context, Count, LowerBound, UpperBound, Stride));
4742 
4743   return false;
4744 }
4745 
4746 /// parseDIGenericSubrange:
4747 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4748 ///   !node3)
4749 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4751   OPTIONAL(count, MDSignedOrMDField, );                                        \
4752   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4753   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4754   OPTIONAL(stride, MDSignedOrMDField, );
4755   PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4757 
4758   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4759     if (Bound.isMDSignedField())
4760       return DIExpression::get(
4761           Context, {dwarf::DW_OP_consts,
4762                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4763     if (Bound.isMDField())
4764       return Bound.getMDFieldValue();
4765     return nullptr;
4766   };
4767 
4768   Metadata *Count = ConvToMetadata(count);
4769   Metadata *LowerBound = ConvToMetadata(lowerBound);
4770   Metadata *UpperBound = ConvToMetadata(upperBound);
4771   Metadata *Stride = ConvToMetadata(stride);
4772 
4773   Result = GET_OR_DISTINCT(DIGenericSubrange,
4774                            (Context, Count, LowerBound, UpperBound, Stride));
4775 
4776   return false;
4777 }
4778 
4779 /// parseDIEnumerator:
4780 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4781 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4783   REQUIRED(name, MDStringField, );                                             \
4784   REQUIRED(value, MDAPSIntField, );                                            \
4785   OPTIONAL(isUnsigned, MDBoolField, (false));
4786   PARSE_MD_FIELDS();
4787 #undef VISIT_MD_FIELDS
4788 
4789   if (isUnsigned.Val && value.Val.isNegative())
4790     return tokError("unsigned enumerator with negative value");
4791 
4792   APSInt Value(value.Val);
4793   // Add a leading zero so that unsigned values with the msb set are not
4794   // mistaken for negative values when used for signed enumerators.
4795   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4796     Value = Value.zext(Value.getBitWidth() + 1);
4797 
4798   Result =
4799       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4800 
4801   return false;
4802 }
4803 
4804 /// parseDIBasicType:
4805 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4806 ///                    encoding: DW_ATE_encoding, flags: 0)
4807 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4808 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4809   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4810   OPTIONAL(name, MDStringField, );                                             \
4811   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4812   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4813   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4814   OPTIONAL(flags, DIFlagField, );
4815   PARSE_MD_FIELDS();
4816 #undef VISIT_MD_FIELDS
4817 
4818   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4819                                          align.Val, encoding.Val, flags.Val));
4820   return false;
4821 }
4822 
4823 /// parseDIStringType:
4824 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4825 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4826 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4827   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4828   OPTIONAL(name, MDStringField, );                                             \
4829   OPTIONAL(stringLength, MDField, );                                           \
4830   OPTIONAL(stringLengthExpression, MDField, );                                 \
4831   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4832   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4833   OPTIONAL(encoding, DwarfAttEncodingField, );
4834   PARSE_MD_FIELDS();
4835 #undef VISIT_MD_FIELDS
4836 
4837   Result = GET_OR_DISTINCT(DIStringType,
4838                            (Context, tag.Val, name.Val, stringLength.Val,
4839                             stringLengthExpression.Val, size.Val, align.Val,
4840                             encoding.Val));
4841   return false;
4842 }
4843 
4844 /// parseDIDerivedType:
4845 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4846 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4847 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4848 ///                      dwarfAddressSpace: 3)
4849 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4851   REQUIRED(tag, DwarfTagField, );                                              \
4852   OPTIONAL(name, MDStringField, );                                             \
4853   OPTIONAL(file, MDField, );                                                   \
4854   OPTIONAL(line, LineField, );                                                 \
4855   OPTIONAL(scope, MDField, );                                                  \
4856   REQUIRED(baseType, MDField, );                                               \
4857   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4858   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4859   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4860   OPTIONAL(flags, DIFlagField, );                                              \
4861   OPTIONAL(extraData, MDField, );                                              \
4862   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4863   PARSE_MD_FIELDS();
4864 #undef VISIT_MD_FIELDS
4865 
4866   Optional<unsigned> DWARFAddressSpace;
4867   if (dwarfAddressSpace.Val != UINT32_MAX)
4868     DWARFAddressSpace = dwarfAddressSpace.Val;
4869 
4870   Result = GET_OR_DISTINCT(DIDerivedType,
4871                            (Context, tag.Val, name.Val, file.Val, line.Val,
4872                             scope.Val, baseType.Val, size.Val, align.Val,
4873                             offset.Val, DWARFAddressSpace, flags.Val,
4874                             extraData.Val));
4875   return false;
4876 }
4877 
4878 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4880   REQUIRED(tag, DwarfTagField, );                                              \
4881   OPTIONAL(name, MDStringField, );                                             \
4882   OPTIONAL(file, MDField, );                                                   \
4883   OPTIONAL(line, LineField, );                                                 \
4884   OPTIONAL(scope, MDField, );                                                  \
4885   OPTIONAL(baseType, MDField, );                                               \
4886   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4887   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4888   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4889   OPTIONAL(flags, DIFlagField, );                                              \
4890   OPTIONAL(elements, MDField, );                                               \
4891   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4892   OPTIONAL(vtableHolder, MDField, );                                           \
4893   OPTIONAL(templateParams, MDField, );                                         \
4894   OPTIONAL(identifier, MDStringField, );                                       \
4895   OPTIONAL(discriminator, MDField, );                                          \
4896   OPTIONAL(dataLocation, MDField, );                                           \
4897   OPTIONAL(associated, MDField, );                                             \
4898   OPTIONAL(allocated, MDField, );                                              \
4899   OPTIONAL(rank, MDSignedOrMDField, );
4900   PARSE_MD_FIELDS();
4901 #undef VISIT_MD_FIELDS
4902 
4903   Metadata *Rank = nullptr;
4904   if (rank.isMDSignedField())
4905     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4906         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4907   else if (rank.isMDField())
4908     Rank = rank.getMDFieldValue();
4909 
4910   // If this has an identifier try to build an ODR type.
4911   if (identifier.Val)
4912     if (auto *CT = DICompositeType::buildODRType(
4913             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4914             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4915             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4916             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4917             Rank)) {
4918       Result = CT;
4919       return false;
4920     }
4921 
4922   // Create a new node, and save it in the context if it belongs in the type
4923   // map.
4924   Result = GET_OR_DISTINCT(
4925       DICompositeType,
4926       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4927        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4928        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4929        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4930        Rank));
4931   return false;
4932 }
4933 
4934 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4935 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4936   OPTIONAL(flags, DIFlagField, );                                              \
4937   OPTIONAL(cc, DwarfCCField, );                                                \
4938   REQUIRED(types, MDField, );
4939   PARSE_MD_FIELDS();
4940 #undef VISIT_MD_FIELDS
4941 
4942   Result = GET_OR_DISTINCT(DISubroutineType,
4943                            (Context, flags.Val, cc.Val, types.Val));
4944   return false;
4945 }
4946 
4947 /// parseDIFileType:
4948 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4949 ///                   checksumkind: CSK_MD5,
4950 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4951 ///                   source: "source file contents")
4952 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4953   // The default constructed value for checksumkind is required, but will never
4954   // be used, as the parser checks if the field was actually Seen before using
4955   // the Val.
4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4957   REQUIRED(filename, MDStringField, );                                         \
4958   REQUIRED(directory, MDStringField, );                                        \
4959   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4960   OPTIONAL(checksum, MDStringField, );                                         \
4961   OPTIONAL(source, MDStringField, );
4962   PARSE_MD_FIELDS();
4963 #undef VISIT_MD_FIELDS
4964 
4965   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4966   if (checksumkind.Seen && checksum.Seen)
4967     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4968   else if (checksumkind.Seen || checksum.Seen)
4969     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4970 
4971   Optional<MDString *> OptSource;
4972   if (source.Seen)
4973     OptSource = source.Val;
4974   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4975                                     OptChecksum, OptSource));
4976   return false;
4977 }
4978 
4979 /// parseDICompileUnit:
4980 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4981 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4982 ///                      splitDebugFilename: "abc.debug",
4983 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4984 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4985 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4986 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4987   if (!IsDistinct)
4988     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4989 
4990 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4991   REQUIRED(language, DwarfLangField, );                                        \
4992   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4993   OPTIONAL(producer, MDStringField, );                                         \
4994   OPTIONAL(isOptimized, MDBoolField, );                                        \
4995   OPTIONAL(flags, MDStringField, );                                            \
4996   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4997   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4998   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4999   OPTIONAL(enums, MDField, );                                                  \
5000   OPTIONAL(retainedTypes, MDField, );                                          \
5001   OPTIONAL(globals, MDField, );                                                \
5002   OPTIONAL(imports, MDField, );                                                \
5003   OPTIONAL(macros, MDField, );                                                 \
5004   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5005   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5006   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5007   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5008   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5009   OPTIONAL(sysroot, MDStringField, );                                          \
5010   OPTIONAL(sdk, MDStringField, );
5011   PARSE_MD_FIELDS();
5012 #undef VISIT_MD_FIELDS
5013 
5014   Result = DICompileUnit::getDistinct(
5015       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5016       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5017       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5018       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5019       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5020   return false;
5021 }
5022 
5023 /// parseDISubprogram:
5024 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5025 ///                     file: !1, line: 7, type: !2, isLocal: false,
5026 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5027 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5028 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5029 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5030 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5031 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5032   auto Loc = Lex.getLoc();
5033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5034   OPTIONAL(scope, MDField, );                                                  \
5035   OPTIONAL(name, MDStringField, );                                             \
5036   OPTIONAL(linkageName, MDStringField, );                                      \
5037   OPTIONAL(file, MDField, );                                                   \
5038   OPTIONAL(line, LineField, );                                                 \
5039   OPTIONAL(type, MDField, );                                                   \
5040   OPTIONAL(isLocal, MDBoolField, );                                            \
5041   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5042   OPTIONAL(scopeLine, LineField, );                                            \
5043   OPTIONAL(containingType, MDField, );                                         \
5044   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5045   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5046   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5047   OPTIONAL(flags, DIFlagField, );                                              \
5048   OPTIONAL(spFlags, DISPFlagField, );                                          \
5049   OPTIONAL(isOptimized, MDBoolField, );                                        \
5050   OPTIONAL(unit, MDField, );                                                   \
5051   OPTIONAL(templateParams, MDField, );                                         \
5052   OPTIONAL(declaration, MDField, );                                            \
5053   OPTIONAL(retainedNodes, MDField, );                                          \
5054   OPTIONAL(thrownTypes, MDField, );
5055   PARSE_MD_FIELDS();
5056 #undef VISIT_MD_FIELDS
5057 
5058   // An explicit spFlags field takes precedence over individual fields in
5059   // older IR versions.
5060   DISubprogram::DISPFlags SPFlags =
5061       spFlags.Seen ? spFlags.Val
5062                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5063                                              isOptimized.Val, virtuality.Val);
5064   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5065     return Lex.Error(
5066         Loc,
5067         "missing 'distinct', required for !DISubprogram that is a Definition");
5068   Result = GET_OR_DISTINCT(
5069       DISubprogram,
5070       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5071        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5072        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5073        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5074   return false;
5075 }
5076 
5077 /// parseDILexicalBlock:
5078 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5079 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5080 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5081   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5082   OPTIONAL(file, MDField, );                                                   \
5083   OPTIONAL(line, LineField, );                                                 \
5084   OPTIONAL(column, ColumnField, );
5085   PARSE_MD_FIELDS();
5086 #undef VISIT_MD_FIELDS
5087 
5088   Result = GET_OR_DISTINCT(
5089       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5090   return false;
5091 }
5092 
5093 /// parseDILexicalBlockFile:
5094 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5095 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5096 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5097   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5098   OPTIONAL(file, MDField, );                                                   \
5099   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5100   PARSE_MD_FIELDS();
5101 #undef VISIT_MD_FIELDS
5102 
5103   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5104                            (Context, scope.Val, file.Val, discriminator.Val));
5105   return false;
5106 }
5107 
5108 /// parseDICommonBlock:
5109 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5110 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5111 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5112   REQUIRED(scope, MDField, );                                                  \
5113   OPTIONAL(declaration, MDField, );                                            \
5114   OPTIONAL(name, MDStringField, );                                             \
5115   OPTIONAL(file, MDField, );                                                   \
5116   OPTIONAL(line, LineField, );
5117   PARSE_MD_FIELDS();
5118 #undef VISIT_MD_FIELDS
5119 
5120   Result = GET_OR_DISTINCT(DICommonBlock,
5121                            (Context, scope.Val, declaration.Val, name.Val,
5122                             file.Val, line.Val));
5123   return false;
5124 }
5125 
5126 /// parseDINamespace:
5127 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5128 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5129 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5130   REQUIRED(scope, MDField, );                                                  \
5131   OPTIONAL(name, MDStringField, );                                             \
5132   OPTIONAL(exportSymbols, MDBoolField, );
5133   PARSE_MD_FIELDS();
5134 #undef VISIT_MD_FIELDS
5135 
5136   Result = GET_OR_DISTINCT(DINamespace,
5137                            (Context, scope.Val, name.Val, exportSymbols.Val));
5138   return false;
5139 }
5140 
5141 /// parseDIMacro:
5142 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5143 ///   "SomeValue")
5144 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5145 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5146   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5147   OPTIONAL(line, LineField, );                                                 \
5148   REQUIRED(name, MDStringField, );                                             \
5149   OPTIONAL(value, MDStringField, );
5150   PARSE_MD_FIELDS();
5151 #undef VISIT_MD_FIELDS
5152 
5153   Result = GET_OR_DISTINCT(DIMacro,
5154                            (Context, type.Val, line.Val, name.Val, value.Val));
5155   return false;
5156 }
5157 
5158 /// parseDIMacroFile:
5159 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5160 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5162   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5163   OPTIONAL(line, LineField, );                                                 \
5164   REQUIRED(file, MDField, );                                                   \
5165   OPTIONAL(nodes, MDField, );
5166   PARSE_MD_FIELDS();
5167 #undef VISIT_MD_FIELDS
5168 
5169   Result = GET_OR_DISTINCT(DIMacroFile,
5170                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5171   return false;
5172 }
5173 
5174 /// parseDIModule:
5175 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5176 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5177 ///   file: !1, line: 4, isDecl: false)
5178 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5179 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5180   REQUIRED(scope, MDField, );                                                  \
5181   REQUIRED(name, MDStringField, );                                             \
5182   OPTIONAL(configMacros, MDStringField, );                                     \
5183   OPTIONAL(includePath, MDStringField, );                                      \
5184   OPTIONAL(apinotes, MDStringField, );                                         \
5185   OPTIONAL(file, MDField, );                                                   \
5186   OPTIONAL(line, LineField, );                                                 \
5187   OPTIONAL(isDecl, MDBoolField, );
5188   PARSE_MD_FIELDS();
5189 #undef VISIT_MD_FIELDS
5190 
5191   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5192                                       configMacros.Val, includePath.Val,
5193                                       apinotes.Val, line.Val, isDecl.Val));
5194   return false;
5195 }
5196 
5197 /// parseDITemplateTypeParameter:
5198 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5199 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5200 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5201   OPTIONAL(name, MDStringField, );                                             \
5202   REQUIRED(type, MDField, );                                                   \
5203   OPTIONAL(defaulted, MDBoolField, );
5204   PARSE_MD_FIELDS();
5205 #undef VISIT_MD_FIELDS
5206 
5207   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5208                            (Context, name.Val, type.Val, defaulted.Val));
5209   return false;
5210 }
5211 
5212 /// parseDITemplateValueParameter:
5213 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5214 ///                                 name: "V", type: !1, defaulted: false,
5215 ///                                 value: i32 7)
5216 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5218   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5219   OPTIONAL(name, MDStringField, );                                             \
5220   OPTIONAL(type, MDField, );                                                   \
5221   OPTIONAL(defaulted, MDBoolField, );                                          \
5222   REQUIRED(value, MDField, );
5223 
5224   PARSE_MD_FIELDS();
5225 #undef VISIT_MD_FIELDS
5226 
5227   Result = GET_OR_DISTINCT(
5228       DITemplateValueParameter,
5229       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5230   return false;
5231 }
5232 
5233 /// parseDIGlobalVariable:
5234 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5235 ///                         file: !1, line: 7, type: !2, isLocal: false,
5236 ///                         isDefinition: true, templateParams: !3,
5237 ///                         declaration: !4, align: 8)
5238 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5239 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5240   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5241   OPTIONAL(scope, MDField, );                                                  \
5242   OPTIONAL(linkageName, MDStringField, );                                      \
5243   OPTIONAL(file, MDField, );                                                   \
5244   OPTIONAL(line, LineField, );                                                 \
5245   OPTIONAL(type, MDField, );                                                   \
5246   OPTIONAL(isLocal, MDBoolField, );                                            \
5247   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5248   OPTIONAL(templateParams, MDField, );                                         \
5249   OPTIONAL(declaration, MDField, );                                            \
5250   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5251   PARSE_MD_FIELDS();
5252 #undef VISIT_MD_FIELDS
5253 
5254   Result =
5255       GET_OR_DISTINCT(DIGlobalVariable,
5256                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5257                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5258                        declaration.Val, templateParams.Val, align.Val));
5259   return false;
5260 }
5261 
5262 /// parseDILocalVariable:
5263 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5264 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5265 ///                        align: 8)
5266 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5267 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5268 ///                        align: 8)
5269 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5270 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5271   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5272   OPTIONAL(name, MDStringField, );                                             \
5273   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5274   OPTIONAL(file, MDField, );                                                   \
5275   OPTIONAL(line, LineField, );                                                 \
5276   OPTIONAL(type, MDField, );                                                   \
5277   OPTIONAL(flags, DIFlagField, );                                              \
5278   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5279   PARSE_MD_FIELDS();
5280 #undef VISIT_MD_FIELDS
5281 
5282   Result = GET_OR_DISTINCT(DILocalVariable,
5283                            (Context, scope.Val, name.Val, file.Val, line.Val,
5284                             type.Val, arg.Val, flags.Val, align.Val));
5285   return false;
5286 }
5287 
5288 /// parseDILabel:
5289 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5290 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5291 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5292   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5293   REQUIRED(name, MDStringField, );                                             \
5294   REQUIRED(file, MDField, );                                                   \
5295   REQUIRED(line, LineField, );
5296   PARSE_MD_FIELDS();
5297 #undef VISIT_MD_FIELDS
5298 
5299   Result = GET_OR_DISTINCT(DILabel,
5300                            (Context, scope.Val, name.Val, file.Val, line.Val));
5301   return false;
5302 }
5303 
5304 /// parseDIExpression:
5305 ///   ::= !DIExpression(0, 7, -1)
5306 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5307   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5308   Lex.Lex();
5309 
5310   if (parseToken(lltok::lparen, "expected '(' here"))
5311     return true;
5312 
5313   SmallVector<uint64_t, 8> Elements;
5314   if (Lex.getKind() != lltok::rparen)
5315     do {
5316       if (Lex.getKind() == lltok::DwarfOp) {
5317         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5318           Lex.Lex();
5319           Elements.push_back(Op);
5320           continue;
5321         }
5322         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5323       }
5324 
5325       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5326         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5327           Lex.Lex();
5328           Elements.push_back(Op);
5329           continue;
5330         }
5331         return tokError(Twine("invalid DWARF attribute encoding '") +
5332                         Lex.getStrVal() + "'");
5333       }
5334 
5335       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5336         return tokError("expected unsigned integer");
5337 
5338       auto &U = Lex.getAPSIntVal();
5339       if (U.ugt(UINT64_MAX))
5340         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5341       Elements.push_back(U.getZExtValue());
5342       Lex.Lex();
5343     } while (EatIfPresent(lltok::comma));
5344 
5345   if (parseToken(lltok::rparen, "expected ')' here"))
5346     return true;
5347 
5348   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5349   return false;
5350 }
5351 
5352 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5353   return parseDIArgList(Result, IsDistinct, nullptr);
5354 }
5355 /// ParseDIArgList:
5356 ///   ::= !DIArgList(i32 7, i64 %0)
5357 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5358                               PerFunctionState *PFS) {
5359   assert(PFS && "Expected valid function state");
5360   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5361   Lex.Lex();
5362 
5363   if (parseToken(lltok::lparen, "expected '(' here"))
5364     return true;
5365 
5366   SmallVector<ValueAsMetadata *, 4> Args;
5367   if (Lex.getKind() != lltok::rparen)
5368     do {
5369       Metadata *MD;
5370       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5371         return true;
5372       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5373     } while (EatIfPresent(lltok::comma));
5374 
5375   if (parseToken(lltok::rparen, "expected ')' here"))
5376     return true;
5377 
5378   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5379   return false;
5380 }
5381 
5382 /// parseDIGlobalVariableExpression:
5383 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5384 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5385                                                bool IsDistinct) {
5386 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5387   REQUIRED(var, MDField, );                                                    \
5388   REQUIRED(expr, MDField, );
5389   PARSE_MD_FIELDS();
5390 #undef VISIT_MD_FIELDS
5391 
5392   Result =
5393       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5394   return false;
5395 }
5396 
5397 /// parseDIObjCProperty:
5398 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5399 ///                       getter: "getFoo", attributes: 7, type: !2)
5400 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5402   OPTIONAL(name, MDStringField, );                                             \
5403   OPTIONAL(file, MDField, );                                                   \
5404   OPTIONAL(line, LineField, );                                                 \
5405   OPTIONAL(setter, MDStringField, );                                           \
5406   OPTIONAL(getter, MDStringField, );                                           \
5407   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5408   OPTIONAL(type, MDField, );
5409   PARSE_MD_FIELDS();
5410 #undef VISIT_MD_FIELDS
5411 
5412   Result = GET_OR_DISTINCT(DIObjCProperty,
5413                            (Context, name.Val, file.Val, line.Val, setter.Val,
5414                             getter.Val, attributes.Val, type.Val));
5415   return false;
5416 }
5417 
5418 /// parseDIImportedEntity:
5419 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5420 ///                         line: 7, name: "foo")
5421 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5422 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5423   REQUIRED(tag, DwarfTagField, );                                              \
5424   REQUIRED(scope, MDField, );                                                  \
5425   OPTIONAL(entity, MDField, );                                                 \
5426   OPTIONAL(file, MDField, );                                                   \
5427   OPTIONAL(line, LineField, );                                                 \
5428   OPTIONAL(name, MDStringField, );
5429   PARSE_MD_FIELDS();
5430 #undef VISIT_MD_FIELDS
5431 
5432   Result = GET_OR_DISTINCT(
5433       DIImportedEntity,
5434       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5435   return false;
5436 }
5437 
5438 #undef PARSE_MD_FIELD
5439 #undef NOP_FIELD
5440 #undef REQUIRE_FIELD
5441 #undef DECLARE_FIELD
5442 
5443 /// parseMetadataAsValue
5444 ///  ::= metadata i32 %local
5445 ///  ::= metadata i32 @global
5446 ///  ::= metadata i32 7
5447 ///  ::= metadata !0
5448 ///  ::= metadata !{...}
5449 ///  ::= metadata !"string"
5450 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5451   // Note: the type 'metadata' has already been parsed.
5452   Metadata *MD;
5453   if (parseMetadata(MD, &PFS))
5454     return true;
5455 
5456   V = MetadataAsValue::get(Context, MD);
5457   return false;
5458 }
5459 
5460 /// parseValueAsMetadata
5461 ///  ::= i32 %local
5462 ///  ::= i32 @global
5463 ///  ::= i32 7
5464 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5465                                     PerFunctionState *PFS) {
5466   Type *Ty;
5467   LocTy Loc;
5468   if (parseType(Ty, TypeMsg, Loc))
5469     return true;
5470   if (Ty->isMetadataTy())
5471     return error(Loc, "invalid metadata-value-metadata roundtrip");
5472 
5473   Value *V;
5474   if (parseValue(Ty, V, PFS))
5475     return true;
5476 
5477   MD = ValueAsMetadata::get(V);
5478   return false;
5479 }
5480 
5481 /// parseMetadata
5482 ///  ::= i32 %local
5483 ///  ::= i32 @global
5484 ///  ::= i32 7
5485 ///  ::= !42
5486 ///  ::= !{...}
5487 ///  ::= !"string"
5488 ///  ::= !DILocation(...)
5489 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5490   if (Lex.getKind() == lltok::MetadataVar) {
5491     MDNode *N;
5492     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5493     // so parsing this requires a Function State.
5494     if (Lex.getStrVal() == "DIArgList") {
5495       if (parseDIArgList(N, false, PFS))
5496         return true;
5497     } else if (parseSpecializedMDNode(N)) {
5498       return true;
5499     }
5500     MD = N;
5501     return false;
5502   }
5503 
5504   // ValueAsMetadata:
5505   // <type> <value>
5506   if (Lex.getKind() != lltok::exclaim)
5507     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5508 
5509   // '!'.
5510   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5511   Lex.Lex();
5512 
5513   // MDString:
5514   //   ::= '!' STRINGCONSTANT
5515   if (Lex.getKind() == lltok::StringConstant) {
5516     MDString *S;
5517     if (parseMDString(S))
5518       return true;
5519     MD = S;
5520     return false;
5521   }
5522 
5523   // MDNode:
5524   // !{ ... }
5525   // !7
5526   MDNode *N;
5527   if (parseMDNodeTail(N))
5528     return true;
5529   MD = N;
5530   return false;
5531 }
5532 
5533 //===----------------------------------------------------------------------===//
5534 // Function Parsing.
5535 //===----------------------------------------------------------------------===//
5536 
5537 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5538                                    PerFunctionState *PFS, bool IsCall) {
5539   if (Ty->isFunctionTy())
5540     return error(ID.Loc, "functions are not values, refer to them as pointers");
5541 
5542   switch (ID.Kind) {
5543   case ValID::t_LocalID:
5544     if (!PFS)
5545       return error(ID.Loc, "invalid use of function-local name");
5546     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5547     return V == nullptr;
5548   case ValID::t_LocalName:
5549     if (!PFS)
5550       return error(ID.Loc, "invalid use of function-local name");
5551     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5552     return V == nullptr;
5553   case ValID::t_InlineAsm: {
5554     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5555       return error(ID.Loc, "invalid type for inline asm constraint string");
5556     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5557                        (ID.UIntVal >> 1) & 1,
5558                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5559     return false;
5560   }
5561   case ValID::t_GlobalName:
5562     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5563     return V == nullptr;
5564   case ValID::t_GlobalID:
5565     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5566     return V == nullptr;
5567   case ValID::t_APSInt:
5568     if (!Ty->isIntegerTy())
5569       return error(ID.Loc, "integer constant must have integer type");
5570     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5571     V = ConstantInt::get(Context, ID.APSIntVal);
5572     return false;
5573   case ValID::t_APFloat:
5574     if (!Ty->isFloatingPointTy() ||
5575         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5576       return error(ID.Loc, "floating point constant invalid for type");
5577 
5578     // The lexer has no type info, so builds all half, bfloat, float, and double
5579     // FP constants as double.  Fix this here.  Long double does not need this.
5580     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5581       // Check for signaling before potentially converting and losing that info.
5582       bool IsSNAN = ID.APFloatVal.isSignaling();
5583       bool Ignored;
5584       if (Ty->isHalfTy())
5585         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5586                               &Ignored);
5587       else if (Ty->isBFloatTy())
5588         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5589                               &Ignored);
5590       else if (Ty->isFloatTy())
5591         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5592                               &Ignored);
5593       if (IsSNAN) {
5594         // The convert call above may quiet an SNaN, so manufacture another
5595         // SNaN. The bitcast works because the payload (significand) parameter
5596         // is truncated to fit.
5597         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5598         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5599                                          ID.APFloatVal.isNegative(), &Payload);
5600       }
5601     }
5602     V = ConstantFP::get(Context, ID.APFloatVal);
5603 
5604     if (V->getType() != Ty)
5605       return error(ID.Loc, "floating point constant does not have type '" +
5606                                getTypeString(Ty) + "'");
5607 
5608     return false;
5609   case ValID::t_Null:
5610     if (!Ty->isPointerTy())
5611       return error(ID.Loc, "null must be a pointer type");
5612     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5613     return false;
5614   case ValID::t_Undef:
5615     // FIXME: LabelTy should not be a first-class type.
5616     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5617       return error(ID.Loc, "invalid type for undef constant");
5618     V = UndefValue::get(Ty);
5619     return false;
5620   case ValID::t_EmptyArray:
5621     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5622       return error(ID.Loc, "invalid empty array initializer");
5623     V = UndefValue::get(Ty);
5624     return false;
5625   case ValID::t_Zero:
5626     // FIXME: LabelTy should not be a first-class type.
5627     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5628       return error(ID.Loc, "invalid type for null constant");
5629     V = Constant::getNullValue(Ty);
5630     return false;
5631   case ValID::t_None:
5632     if (!Ty->isTokenTy())
5633       return error(ID.Loc, "invalid type for none constant");
5634     V = Constant::getNullValue(Ty);
5635     return false;
5636   case ValID::t_Poison:
5637     // FIXME: LabelTy should not be a first-class type.
5638     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5639       return error(ID.Loc, "invalid type for poison constant");
5640     V = PoisonValue::get(Ty);
5641     return false;
5642   case ValID::t_Constant:
5643     if (ID.ConstantVal->getType() != Ty)
5644       return error(ID.Loc, "constant expression type mismatch");
5645     V = ID.ConstantVal;
5646     return false;
5647   case ValID::t_ConstantStruct:
5648   case ValID::t_PackedConstantStruct:
5649     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5650       if (ST->getNumElements() != ID.UIntVal)
5651         return error(ID.Loc,
5652                      "initializer with struct type has wrong # elements");
5653       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5654         return error(ID.Loc, "packed'ness of initializer and type don't match");
5655 
5656       // Verify that the elements are compatible with the structtype.
5657       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5658         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5659           return error(
5660               ID.Loc,
5661               "element " + Twine(i) +
5662                   " of struct initializer doesn't match struct element type");
5663 
5664       V = ConstantStruct::get(
5665           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5666     } else
5667       return error(ID.Loc, "constant expression type mismatch");
5668     return false;
5669   }
5670   llvm_unreachable("Invalid ValID");
5671 }
5672 
5673 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5674   C = nullptr;
5675   ValID ID;
5676   auto Loc = Lex.getLoc();
5677   if (parseValID(ID, /*PFS=*/nullptr))
5678     return true;
5679   switch (ID.Kind) {
5680   case ValID::t_APSInt:
5681   case ValID::t_APFloat:
5682   case ValID::t_Undef:
5683   case ValID::t_Constant:
5684   case ValID::t_ConstantStruct:
5685   case ValID::t_PackedConstantStruct: {
5686     Value *V;
5687     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5688       return true;
5689     assert(isa<Constant>(V) && "Expected a constant value");
5690     C = cast<Constant>(V);
5691     return false;
5692   }
5693   case ValID::t_Null:
5694     C = Constant::getNullValue(Ty);
5695     return false;
5696   default:
5697     return error(Loc, "expected a constant value");
5698   }
5699 }
5700 
5701 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5702   V = nullptr;
5703   ValID ID;
5704   return parseValID(ID, PFS) ||
5705          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5706 }
5707 
5708 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5709   Type *Ty = nullptr;
5710   return parseType(Ty) || parseValue(Ty, V, PFS);
5711 }
5712 
5713 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5714                                       PerFunctionState &PFS) {
5715   Value *V;
5716   Loc = Lex.getLoc();
5717   if (parseTypeAndValue(V, PFS))
5718     return true;
5719   if (!isa<BasicBlock>(V))
5720     return error(Loc, "expected a basic block");
5721   BB = cast<BasicBlock>(V);
5722   return false;
5723 }
5724 
5725 /// FunctionHeader
5726 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5727 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5728 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5729 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5730 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5731   // parse the linkage.
5732   LocTy LinkageLoc = Lex.getLoc();
5733   unsigned Linkage;
5734   unsigned Visibility;
5735   unsigned DLLStorageClass;
5736   bool DSOLocal;
5737   AttrBuilder RetAttrs;
5738   unsigned CC;
5739   bool HasLinkage;
5740   Type *RetType = nullptr;
5741   LocTy RetTypeLoc = Lex.getLoc();
5742   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5743                            DSOLocal) ||
5744       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5745       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5746     return true;
5747 
5748   // Verify that the linkage is ok.
5749   switch ((GlobalValue::LinkageTypes)Linkage) {
5750   case GlobalValue::ExternalLinkage:
5751     break; // always ok.
5752   case GlobalValue::ExternalWeakLinkage:
5753     if (IsDefine)
5754       return error(LinkageLoc, "invalid linkage for function definition");
5755     break;
5756   case GlobalValue::PrivateLinkage:
5757   case GlobalValue::InternalLinkage:
5758   case GlobalValue::AvailableExternallyLinkage:
5759   case GlobalValue::LinkOnceAnyLinkage:
5760   case GlobalValue::LinkOnceODRLinkage:
5761   case GlobalValue::WeakAnyLinkage:
5762   case GlobalValue::WeakODRLinkage:
5763     if (!IsDefine)
5764       return error(LinkageLoc, "invalid linkage for function declaration");
5765     break;
5766   case GlobalValue::AppendingLinkage:
5767   case GlobalValue::CommonLinkage:
5768     return error(LinkageLoc, "invalid function linkage type");
5769   }
5770 
5771   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5772     return error(LinkageLoc,
5773                  "symbol with local linkage must have default visibility");
5774 
5775   if (!FunctionType::isValidReturnType(RetType))
5776     return error(RetTypeLoc, "invalid function return type");
5777 
5778   LocTy NameLoc = Lex.getLoc();
5779 
5780   std::string FunctionName;
5781   if (Lex.getKind() == lltok::GlobalVar) {
5782     FunctionName = Lex.getStrVal();
5783   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5784     unsigned NameID = Lex.getUIntVal();
5785 
5786     if (NameID != NumberedVals.size())
5787       return tokError("function expected to be numbered '%" +
5788                       Twine(NumberedVals.size()) + "'");
5789   } else {
5790     return tokError("expected function name");
5791   }
5792 
5793   Lex.Lex();
5794 
5795   if (Lex.getKind() != lltok::lparen)
5796     return tokError("expected '(' in function argument list");
5797 
5798   SmallVector<ArgInfo, 8> ArgList;
5799   bool IsVarArg;
5800   AttrBuilder FuncAttrs;
5801   std::vector<unsigned> FwdRefAttrGrps;
5802   LocTy BuiltinLoc;
5803   std::string Section;
5804   std::string Partition;
5805   MaybeAlign Alignment;
5806   std::string GC;
5807   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5808   unsigned AddrSpace = 0;
5809   Constant *Prefix = nullptr;
5810   Constant *Prologue = nullptr;
5811   Constant *PersonalityFn = nullptr;
5812   Comdat *C;
5813 
5814   if (parseArgumentList(ArgList, IsVarArg) ||
5815       parseOptionalUnnamedAddr(UnnamedAddr) ||
5816       parseOptionalProgramAddrSpace(AddrSpace) ||
5817       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5818                                  BuiltinLoc) ||
5819       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5820       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5821       parseOptionalComdat(FunctionName, C) ||
5822       parseOptionalAlignment(Alignment) ||
5823       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5824       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5825       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5826       (EatIfPresent(lltok::kw_personality) &&
5827        parseGlobalTypeAndValue(PersonalityFn)))
5828     return true;
5829 
5830   if (FuncAttrs.contains(Attribute::Builtin))
5831     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5832 
5833   // If the alignment was parsed as an attribute, move to the alignment field.
5834   if (FuncAttrs.hasAlignmentAttr()) {
5835     Alignment = FuncAttrs.getAlignment();
5836     FuncAttrs.removeAttribute(Attribute::Alignment);
5837   }
5838 
5839   // Okay, if we got here, the function is syntactically valid.  Convert types
5840   // and do semantic checks.
5841   std::vector<Type*> ParamTypeList;
5842   SmallVector<AttributeSet, 8> Attrs;
5843 
5844   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5845     ParamTypeList.push_back(ArgList[i].Ty);
5846     Attrs.push_back(ArgList[i].Attrs);
5847   }
5848 
5849   AttributeList PAL =
5850       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5851                          AttributeSet::get(Context, RetAttrs), Attrs);
5852 
5853   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5854     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5855 
5856   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5857   PointerType *PFT = PointerType::get(FT, AddrSpace);
5858 
5859   Fn = nullptr;
5860   if (!FunctionName.empty()) {
5861     // If this was a definition of a forward reference, remove the definition
5862     // from the forward reference table and fill in the forward ref.
5863     auto FRVI = ForwardRefVals.find(FunctionName);
5864     if (FRVI != ForwardRefVals.end()) {
5865       Fn = M->getFunction(FunctionName);
5866       if (!Fn)
5867         return error(FRVI->second.second, "invalid forward reference to "
5868                                           "function as global value!");
5869       if (Fn->getType() != PFT)
5870         return error(FRVI->second.second,
5871                      "invalid forward reference to "
5872                      "function '" +
5873                          FunctionName +
5874                          "' with wrong type: "
5875                          "expected '" +
5876                          getTypeString(PFT) + "' but was '" +
5877                          getTypeString(Fn->getType()) + "'");
5878       ForwardRefVals.erase(FRVI);
5879     } else if ((Fn = M->getFunction(FunctionName))) {
5880       // Reject redefinitions.
5881       return error(NameLoc,
5882                    "invalid redefinition of function '" + FunctionName + "'");
5883     } else if (M->getNamedValue(FunctionName)) {
5884       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5885     }
5886 
5887   } else {
5888     // If this is a definition of a forward referenced function, make sure the
5889     // types agree.
5890     auto I = ForwardRefValIDs.find(NumberedVals.size());
5891     if (I != ForwardRefValIDs.end()) {
5892       Fn = cast<Function>(I->second.first);
5893       if (Fn->getType() != PFT)
5894         return error(NameLoc, "type of definition and forward reference of '@" +
5895                                   Twine(NumberedVals.size()) +
5896                                   "' disagree: "
5897                                   "expected '" +
5898                                   getTypeString(PFT) + "' but was '" +
5899                                   getTypeString(Fn->getType()) + "'");
5900       ForwardRefValIDs.erase(I);
5901     }
5902   }
5903 
5904   if (!Fn)
5905     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5906                           FunctionName, M);
5907   else // Move the forward-reference to the correct spot in the module.
5908     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5909 
5910   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5911 
5912   if (FunctionName.empty())
5913     NumberedVals.push_back(Fn);
5914 
5915   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5916   maybeSetDSOLocal(DSOLocal, *Fn);
5917   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5918   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5919   Fn->setCallingConv(CC);
5920   Fn->setAttributes(PAL);
5921   Fn->setUnnamedAddr(UnnamedAddr);
5922   Fn->setAlignment(MaybeAlign(Alignment));
5923   Fn->setSection(Section);
5924   Fn->setPartition(Partition);
5925   Fn->setComdat(C);
5926   Fn->setPersonalityFn(PersonalityFn);
5927   if (!GC.empty()) Fn->setGC(GC);
5928   Fn->setPrefixData(Prefix);
5929   Fn->setPrologueData(Prologue);
5930   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5931 
5932   // Add all of the arguments we parsed to the function.
5933   Function::arg_iterator ArgIt = Fn->arg_begin();
5934   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5935     // If the argument has a name, insert it into the argument symbol table.
5936     if (ArgList[i].Name.empty()) continue;
5937 
5938     // Set the name, if it conflicted, it will be auto-renamed.
5939     ArgIt->setName(ArgList[i].Name);
5940 
5941     if (ArgIt->getName() != ArgList[i].Name)
5942       return error(ArgList[i].Loc,
5943                    "redefinition of argument '%" + ArgList[i].Name + "'");
5944   }
5945 
5946   if (IsDefine)
5947     return false;
5948 
5949   // Check the declaration has no block address forward references.
5950   ValID ID;
5951   if (FunctionName.empty()) {
5952     ID.Kind = ValID::t_GlobalID;
5953     ID.UIntVal = NumberedVals.size() - 1;
5954   } else {
5955     ID.Kind = ValID::t_GlobalName;
5956     ID.StrVal = FunctionName;
5957   }
5958   auto Blocks = ForwardRefBlockAddresses.find(ID);
5959   if (Blocks != ForwardRefBlockAddresses.end())
5960     return error(Blocks->first.Loc,
5961                  "cannot take blockaddress inside a declaration");
5962   return false;
5963 }
5964 
5965 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5966   ValID ID;
5967   if (FunctionNumber == -1) {
5968     ID.Kind = ValID::t_GlobalName;
5969     ID.StrVal = std::string(F.getName());
5970   } else {
5971     ID.Kind = ValID::t_GlobalID;
5972     ID.UIntVal = FunctionNumber;
5973   }
5974 
5975   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5976   if (Blocks == P.ForwardRefBlockAddresses.end())
5977     return false;
5978 
5979   for (const auto &I : Blocks->second) {
5980     const ValID &BBID = I.first;
5981     GlobalValue *GV = I.second;
5982 
5983     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5984            "Expected local id or name");
5985     BasicBlock *BB;
5986     if (BBID.Kind == ValID::t_LocalName)
5987       BB = getBB(BBID.StrVal, BBID.Loc);
5988     else
5989       BB = getBB(BBID.UIntVal, BBID.Loc);
5990     if (!BB)
5991       return P.error(BBID.Loc, "referenced value is not a basic block");
5992 
5993     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5994     GV->eraseFromParent();
5995   }
5996 
5997   P.ForwardRefBlockAddresses.erase(Blocks);
5998   return false;
5999 }
6000 
6001 /// parseFunctionBody
6002 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6003 bool LLParser::parseFunctionBody(Function &Fn) {
6004   if (Lex.getKind() != lltok::lbrace)
6005     return tokError("expected '{' in function body");
6006   Lex.Lex();  // eat the {.
6007 
6008   int FunctionNumber = -1;
6009   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6010 
6011   PerFunctionState PFS(*this, Fn, FunctionNumber);
6012 
6013   // Resolve block addresses and allow basic blocks to be forward-declared
6014   // within this function.
6015   if (PFS.resolveForwardRefBlockAddresses())
6016     return true;
6017   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6018 
6019   // We need at least one basic block.
6020   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6021     return tokError("function body requires at least one basic block");
6022 
6023   while (Lex.getKind() != lltok::rbrace &&
6024          Lex.getKind() != lltok::kw_uselistorder)
6025     if (parseBasicBlock(PFS))
6026       return true;
6027 
6028   while (Lex.getKind() != lltok::rbrace)
6029     if (parseUseListOrder(&PFS))
6030       return true;
6031 
6032   // Eat the }.
6033   Lex.Lex();
6034 
6035   // Verify function is ok.
6036   return PFS.finishFunction();
6037 }
6038 
6039 /// parseBasicBlock
6040 ///   ::= (LabelStr|LabelID)? Instruction*
6041 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6042   // If this basic block starts out with a name, remember it.
6043   std::string Name;
6044   int NameID = -1;
6045   LocTy NameLoc = Lex.getLoc();
6046   if (Lex.getKind() == lltok::LabelStr) {
6047     Name = Lex.getStrVal();
6048     Lex.Lex();
6049   } else if (Lex.getKind() == lltok::LabelID) {
6050     NameID = Lex.getUIntVal();
6051     Lex.Lex();
6052   }
6053 
6054   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6055   if (!BB)
6056     return true;
6057 
6058   std::string NameStr;
6059 
6060   // parse the instructions in this block until we get a terminator.
6061   Instruction *Inst;
6062   do {
6063     // This instruction may have three possibilities for a name: a) none
6064     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6065     LocTy NameLoc = Lex.getLoc();
6066     int NameID = -1;
6067     NameStr = "";
6068 
6069     if (Lex.getKind() == lltok::LocalVarID) {
6070       NameID = Lex.getUIntVal();
6071       Lex.Lex();
6072       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6073         return true;
6074     } else if (Lex.getKind() == lltok::LocalVar) {
6075       NameStr = Lex.getStrVal();
6076       Lex.Lex();
6077       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6078         return true;
6079     }
6080 
6081     switch (parseInstruction(Inst, BB, PFS)) {
6082     default:
6083       llvm_unreachable("Unknown parseInstruction result!");
6084     case InstError: return true;
6085     case InstNormal:
6086       BB->getInstList().push_back(Inst);
6087 
6088       // With a normal result, we check to see if the instruction is followed by
6089       // a comma and metadata.
6090       if (EatIfPresent(lltok::comma))
6091         if (parseInstructionMetadata(*Inst))
6092           return true;
6093       break;
6094     case InstExtraComma:
6095       BB->getInstList().push_back(Inst);
6096 
6097       // If the instruction parser ate an extra comma at the end of it, it
6098       // *must* be followed by metadata.
6099       if (parseInstructionMetadata(*Inst))
6100         return true;
6101       break;
6102     }
6103 
6104     // Set the name on the instruction.
6105     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6106       return true;
6107   } while (!Inst->isTerminator());
6108 
6109   return false;
6110 }
6111 
6112 //===----------------------------------------------------------------------===//
6113 // Instruction Parsing.
6114 //===----------------------------------------------------------------------===//
6115 
6116 /// parseInstruction - parse one of the many different instructions.
6117 ///
6118 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6119                                PerFunctionState &PFS) {
6120   lltok::Kind Token = Lex.getKind();
6121   if (Token == lltok::Eof)
6122     return tokError("found end of file when expecting more instructions");
6123   LocTy Loc = Lex.getLoc();
6124   unsigned KeywordVal = Lex.getUIntVal();
6125   Lex.Lex();  // Eat the keyword.
6126 
6127   switch (Token) {
6128   default:
6129     return error(Loc, "expected instruction opcode");
6130   // Terminator Instructions.
6131   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6132   case lltok::kw_ret:
6133     return parseRet(Inst, BB, PFS);
6134   case lltok::kw_br:
6135     return parseBr(Inst, PFS);
6136   case lltok::kw_switch:
6137     return parseSwitch(Inst, PFS);
6138   case lltok::kw_indirectbr:
6139     return parseIndirectBr(Inst, PFS);
6140   case lltok::kw_invoke:
6141     return parseInvoke(Inst, PFS);
6142   case lltok::kw_resume:
6143     return parseResume(Inst, PFS);
6144   case lltok::kw_cleanupret:
6145     return parseCleanupRet(Inst, PFS);
6146   case lltok::kw_catchret:
6147     return parseCatchRet(Inst, PFS);
6148   case lltok::kw_catchswitch:
6149     return parseCatchSwitch(Inst, PFS);
6150   case lltok::kw_catchpad:
6151     return parseCatchPad(Inst, PFS);
6152   case lltok::kw_cleanuppad:
6153     return parseCleanupPad(Inst, PFS);
6154   case lltok::kw_callbr:
6155     return parseCallBr(Inst, PFS);
6156   // Unary Operators.
6157   case lltok::kw_fneg: {
6158     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6159     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6160     if (Res != 0)
6161       return Res;
6162     if (FMF.any())
6163       Inst->setFastMathFlags(FMF);
6164     return false;
6165   }
6166   // Binary Operators.
6167   case lltok::kw_add:
6168   case lltok::kw_sub:
6169   case lltok::kw_mul:
6170   case lltok::kw_shl: {
6171     bool NUW = EatIfPresent(lltok::kw_nuw);
6172     bool NSW = EatIfPresent(lltok::kw_nsw);
6173     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6174 
6175     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6176       return true;
6177 
6178     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6179     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6180     return false;
6181   }
6182   case lltok::kw_fadd:
6183   case lltok::kw_fsub:
6184   case lltok::kw_fmul:
6185   case lltok::kw_fdiv:
6186   case lltok::kw_frem: {
6187     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6188     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6189     if (Res != 0)
6190       return Res;
6191     if (FMF.any())
6192       Inst->setFastMathFlags(FMF);
6193     return 0;
6194   }
6195 
6196   case lltok::kw_sdiv:
6197   case lltok::kw_udiv:
6198   case lltok::kw_lshr:
6199   case lltok::kw_ashr: {
6200     bool Exact = EatIfPresent(lltok::kw_exact);
6201 
6202     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6203       return true;
6204     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6205     return false;
6206   }
6207 
6208   case lltok::kw_urem:
6209   case lltok::kw_srem:
6210     return parseArithmetic(Inst, PFS, KeywordVal,
6211                            /*IsFP*/ false);
6212   case lltok::kw_and:
6213   case lltok::kw_or:
6214   case lltok::kw_xor:
6215     return parseLogical(Inst, PFS, KeywordVal);
6216   case lltok::kw_icmp:
6217     return parseCompare(Inst, PFS, KeywordVal);
6218   case lltok::kw_fcmp: {
6219     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6220     int Res = parseCompare(Inst, PFS, KeywordVal);
6221     if (Res != 0)
6222       return Res;
6223     if (FMF.any())
6224       Inst->setFastMathFlags(FMF);
6225     return 0;
6226   }
6227 
6228   // Casts.
6229   case lltok::kw_trunc:
6230   case lltok::kw_zext:
6231   case lltok::kw_sext:
6232   case lltok::kw_fptrunc:
6233   case lltok::kw_fpext:
6234   case lltok::kw_bitcast:
6235   case lltok::kw_addrspacecast:
6236   case lltok::kw_uitofp:
6237   case lltok::kw_sitofp:
6238   case lltok::kw_fptoui:
6239   case lltok::kw_fptosi:
6240   case lltok::kw_inttoptr:
6241   case lltok::kw_ptrtoint:
6242     return parseCast(Inst, PFS, KeywordVal);
6243   // Other.
6244   case lltok::kw_select: {
6245     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6246     int Res = parseSelect(Inst, PFS);
6247     if (Res != 0)
6248       return Res;
6249     if (FMF.any()) {
6250       if (!isa<FPMathOperator>(Inst))
6251         return error(Loc, "fast-math-flags specified for select without "
6252                           "floating-point scalar or vector return type");
6253       Inst->setFastMathFlags(FMF);
6254     }
6255     return 0;
6256   }
6257   case lltok::kw_va_arg:
6258     return parseVAArg(Inst, PFS);
6259   case lltok::kw_extractelement:
6260     return parseExtractElement(Inst, PFS);
6261   case lltok::kw_insertelement:
6262     return parseInsertElement(Inst, PFS);
6263   case lltok::kw_shufflevector:
6264     return parseShuffleVector(Inst, PFS);
6265   case lltok::kw_phi: {
6266     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6267     int Res = parsePHI(Inst, PFS);
6268     if (Res != 0)
6269       return Res;
6270     if (FMF.any()) {
6271       if (!isa<FPMathOperator>(Inst))
6272         return error(Loc, "fast-math-flags specified for phi without "
6273                           "floating-point scalar or vector return type");
6274       Inst->setFastMathFlags(FMF);
6275     }
6276     return 0;
6277   }
6278   case lltok::kw_landingpad:
6279     return parseLandingPad(Inst, PFS);
6280   case lltok::kw_freeze:
6281     return parseFreeze(Inst, PFS);
6282   // Call.
6283   case lltok::kw_call:
6284     return parseCall(Inst, PFS, CallInst::TCK_None);
6285   case lltok::kw_tail:
6286     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6287   case lltok::kw_musttail:
6288     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6289   case lltok::kw_notail:
6290     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6291   // Memory.
6292   case lltok::kw_alloca:
6293     return parseAlloc(Inst, PFS);
6294   case lltok::kw_load:
6295     return parseLoad(Inst, PFS);
6296   case lltok::kw_store:
6297     return parseStore(Inst, PFS);
6298   case lltok::kw_cmpxchg:
6299     return parseCmpXchg(Inst, PFS);
6300   case lltok::kw_atomicrmw:
6301     return parseAtomicRMW(Inst, PFS);
6302   case lltok::kw_fence:
6303     return parseFence(Inst, PFS);
6304   case lltok::kw_getelementptr:
6305     return parseGetElementPtr(Inst, PFS);
6306   case lltok::kw_extractvalue:
6307     return parseExtractValue(Inst, PFS);
6308   case lltok::kw_insertvalue:
6309     return parseInsertValue(Inst, PFS);
6310   }
6311 }
6312 
6313 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6314 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6315   if (Opc == Instruction::FCmp) {
6316     switch (Lex.getKind()) {
6317     default:
6318       return tokError("expected fcmp predicate (e.g. 'oeq')");
6319     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6320     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6321     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6322     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6323     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6324     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6325     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6326     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6327     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6328     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6329     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6330     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6331     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6332     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6333     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6334     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6335     }
6336   } else {
6337     switch (Lex.getKind()) {
6338     default:
6339       return tokError("expected icmp predicate (e.g. 'eq')");
6340     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6341     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6342     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6343     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6344     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6345     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6346     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6347     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6348     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6349     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6350     }
6351   }
6352   Lex.Lex();
6353   return false;
6354 }
6355 
6356 //===----------------------------------------------------------------------===//
6357 // Terminator Instructions.
6358 //===----------------------------------------------------------------------===//
6359 
6360 /// parseRet - parse a return instruction.
6361 ///   ::= 'ret' void (',' !dbg, !1)*
6362 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6363 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6364                         PerFunctionState &PFS) {
6365   SMLoc TypeLoc = Lex.getLoc();
6366   Type *Ty = nullptr;
6367   if (parseType(Ty, true /*void allowed*/))
6368     return true;
6369 
6370   Type *ResType = PFS.getFunction().getReturnType();
6371 
6372   if (Ty->isVoidTy()) {
6373     if (!ResType->isVoidTy())
6374       return error(TypeLoc, "value doesn't match function result type '" +
6375                                 getTypeString(ResType) + "'");
6376 
6377     Inst = ReturnInst::Create(Context);
6378     return false;
6379   }
6380 
6381   Value *RV;
6382   if (parseValue(Ty, RV, PFS))
6383     return true;
6384 
6385   if (ResType != RV->getType())
6386     return error(TypeLoc, "value doesn't match function result type '" +
6387                               getTypeString(ResType) + "'");
6388 
6389   Inst = ReturnInst::Create(Context, RV);
6390   return false;
6391 }
6392 
6393 /// parseBr
6394 ///   ::= 'br' TypeAndValue
6395 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6396 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6397   LocTy Loc, Loc2;
6398   Value *Op0;
6399   BasicBlock *Op1, *Op2;
6400   if (parseTypeAndValue(Op0, Loc, PFS))
6401     return true;
6402 
6403   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6404     Inst = BranchInst::Create(BB);
6405     return false;
6406   }
6407 
6408   if (Op0->getType() != Type::getInt1Ty(Context))
6409     return error(Loc, "branch condition must have 'i1' type");
6410 
6411   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6412       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6413       parseToken(lltok::comma, "expected ',' after true destination") ||
6414       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6415     return true;
6416 
6417   Inst = BranchInst::Create(Op1, Op2, Op0);
6418   return false;
6419 }
6420 
6421 /// parseSwitch
6422 ///  Instruction
6423 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6424 ///  JumpTable
6425 ///    ::= (TypeAndValue ',' TypeAndValue)*
6426 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6427   LocTy CondLoc, BBLoc;
6428   Value *Cond;
6429   BasicBlock *DefaultBB;
6430   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6431       parseToken(lltok::comma, "expected ',' after switch condition") ||
6432       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6433       parseToken(lltok::lsquare, "expected '[' with switch table"))
6434     return true;
6435 
6436   if (!Cond->getType()->isIntegerTy())
6437     return error(CondLoc, "switch condition must have integer type");
6438 
6439   // parse the jump table pairs.
6440   SmallPtrSet<Value*, 32> SeenCases;
6441   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6442   while (Lex.getKind() != lltok::rsquare) {
6443     Value *Constant;
6444     BasicBlock *DestBB;
6445 
6446     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6447         parseToken(lltok::comma, "expected ',' after case value") ||
6448         parseTypeAndBasicBlock(DestBB, PFS))
6449       return true;
6450 
6451     if (!SeenCases.insert(Constant).second)
6452       return error(CondLoc, "duplicate case value in switch");
6453     if (!isa<ConstantInt>(Constant))
6454       return error(CondLoc, "case value is not a constant integer");
6455 
6456     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6457   }
6458 
6459   Lex.Lex();  // Eat the ']'.
6460 
6461   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6462   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6463     SI->addCase(Table[i].first, Table[i].second);
6464   Inst = SI;
6465   return false;
6466 }
6467 
6468 /// parseIndirectBr
6469 ///  Instruction
6470 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6471 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6472   LocTy AddrLoc;
6473   Value *Address;
6474   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6475       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6476       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6477     return true;
6478 
6479   if (!Address->getType()->isPointerTy())
6480     return error(AddrLoc, "indirectbr address must have pointer type");
6481 
6482   // parse the destination list.
6483   SmallVector<BasicBlock*, 16> DestList;
6484 
6485   if (Lex.getKind() != lltok::rsquare) {
6486     BasicBlock *DestBB;
6487     if (parseTypeAndBasicBlock(DestBB, PFS))
6488       return true;
6489     DestList.push_back(DestBB);
6490 
6491     while (EatIfPresent(lltok::comma)) {
6492       if (parseTypeAndBasicBlock(DestBB, PFS))
6493         return true;
6494       DestList.push_back(DestBB);
6495     }
6496   }
6497 
6498   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6499     return true;
6500 
6501   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6502   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6503     IBI->addDestination(DestList[i]);
6504   Inst = IBI;
6505   return false;
6506 }
6507 
6508 /// parseInvoke
6509 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6510 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6511 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6512   LocTy CallLoc = Lex.getLoc();
6513   AttrBuilder RetAttrs, FnAttrs;
6514   std::vector<unsigned> FwdRefAttrGrps;
6515   LocTy NoBuiltinLoc;
6516   unsigned CC;
6517   unsigned InvokeAddrSpace;
6518   Type *RetType = nullptr;
6519   LocTy RetTypeLoc;
6520   ValID CalleeID;
6521   SmallVector<ParamInfo, 16> ArgList;
6522   SmallVector<OperandBundleDef, 2> BundleList;
6523 
6524   BasicBlock *NormalBB, *UnwindBB;
6525   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6526       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6527       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6528       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6529       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6530                                  NoBuiltinLoc) ||
6531       parseOptionalOperandBundles(BundleList, PFS) ||
6532       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6533       parseTypeAndBasicBlock(NormalBB, PFS) ||
6534       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6535       parseTypeAndBasicBlock(UnwindBB, PFS))
6536     return true;
6537 
6538   // If RetType is a non-function pointer type, then this is the short syntax
6539   // for the call, which means that RetType is just the return type.  Infer the
6540   // rest of the function argument types from the arguments that are present.
6541   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6542   if (!Ty) {
6543     // Pull out the types of all of the arguments...
6544     std::vector<Type*> ParamTypes;
6545     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6546       ParamTypes.push_back(ArgList[i].V->getType());
6547 
6548     if (!FunctionType::isValidReturnType(RetType))
6549       return error(RetTypeLoc, "Invalid result type for LLVM function");
6550 
6551     Ty = FunctionType::get(RetType, ParamTypes, false);
6552   }
6553 
6554   CalleeID.FTy = Ty;
6555 
6556   // Look up the callee.
6557   Value *Callee;
6558   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6559                           Callee, &PFS, /*IsCall=*/true))
6560     return true;
6561 
6562   // Set up the Attribute for the function.
6563   SmallVector<Value *, 8> Args;
6564   SmallVector<AttributeSet, 8> ArgAttrs;
6565 
6566   // Loop through FunctionType's arguments and ensure they are specified
6567   // correctly.  Also, gather any parameter attributes.
6568   FunctionType::param_iterator I = Ty->param_begin();
6569   FunctionType::param_iterator E = Ty->param_end();
6570   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6571     Type *ExpectedTy = nullptr;
6572     if (I != E) {
6573       ExpectedTy = *I++;
6574     } else if (!Ty->isVarArg()) {
6575       return error(ArgList[i].Loc, "too many arguments specified");
6576     }
6577 
6578     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6579       return error(ArgList[i].Loc, "argument is not of expected type '" +
6580                                        getTypeString(ExpectedTy) + "'");
6581     Args.push_back(ArgList[i].V);
6582     ArgAttrs.push_back(ArgList[i].Attrs);
6583   }
6584 
6585   if (I != E)
6586     return error(CallLoc, "not enough parameters specified for call");
6587 
6588   if (FnAttrs.hasAlignmentAttr())
6589     return error(CallLoc, "invoke instructions may not have an alignment");
6590 
6591   // Finish off the Attribute and check them
6592   AttributeList PAL =
6593       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6594                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6595 
6596   InvokeInst *II =
6597       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6598   II->setCallingConv(CC);
6599   II->setAttributes(PAL);
6600   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6601   Inst = II;
6602   return false;
6603 }
6604 
6605 /// parseResume
6606 ///   ::= 'resume' TypeAndValue
6607 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6608   Value *Exn; LocTy ExnLoc;
6609   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6610     return true;
6611 
6612   ResumeInst *RI = ResumeInst::Create(Exn);
6613   Inst = RI;
6614   return false;
6615 }
6616 
6617 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6618                                   PerFunctionState &PFS) {
6619   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6620     return true;
6621 
6622   while (Lex.getKind() != lltok::rsquare) {
6623     // If this isn't the first argument, we need a comma.
6624     if (!Args.empty() &&
6625         parseToken(lltok::comma, "expected ',' in argument list"))
6626       return true;
6627 
6628     // parse the argument.
6629     LocTy ArgLoc;
6630     Type *ArgTy = nullptr;
6631     if (parseType(ArgTy, ArgLoc))
6632       return true;
6633 
6634     Value *V;
6635     if (ArgTy->isMetadataTy()) {
6636       if (parseMetadataAsValue(V, PFS))
6637         return true;
6638     } else {
6639       if (parseValue(ArgTy, V, PFS))
6640         return true;
6641     }
6642     Args.push_back(V);
6643   }
6644 
6645   Lex.Lex();  // Lex the ']'.
6646   return false;
6647 }
6648 
6649 /// parseCleanupRet
6650 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6651 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6652   Value *CleanupPad = nullptr;
6653 
6654   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6655     return true;
6656 
6657   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6658     return true;
6659 
6660   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6661     return true;
6662 
6663   BasicBlock *UnwindBB = nullptr;
6664   if (Lex.getKind() == lltok::kw_to) {
6665     Lex.Lex();
6666     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6667       return true;
6668   } else {
6669     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6670       return true;
6671     }
6672   }
6673 
6674   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6675   return false;
6676 }
6677 
6678 /// parseCatchRet
6679 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6680 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6681   Value *CatchPad = nullptr;
6682 
6683   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6684     return true;
6685 
6686   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6687     return true;
6688 
6689   BasicBlock *BB;
6690   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6691       parseTypeAndBasicBlock(BB, PFS))
6692     return true;
6693 
6694   Inst = CatchReturnInst::Create(CatchPad, BB);
6695   return false;
6696 }
6697 
6698 /// parseCatchSwitch
6699 ///   ::= 'catchswitch' within Parent
6700 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6701   Value *ParentPad;
6702 
6703   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6704     return true;
6705 
6706   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6707       Lex.getKind() != lltok::LocalVarID)
6708     return tokError("expected scope value for catchswitch");
6709 
6710   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6711     return true;
6712 
6713   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6714     return true;
6715 
6716   SmallVector<BasicBlock *, 32> Table;
6717   do {
6718     BasicBlock *DestBB;
6719     if (parseTypeAndBasicBlock(DestBB, PFS))
6720       return true;
6721     Table.push_back(DestBB);
6722   } while (EatIfPresent(lltok::comma));
6723 
6724   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6725     return true;
6726 
6727   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6728     return true;
6729 
6730   BasicBlock *UnwindBB = nullptr;
6731   if (EatIfPresent(lltok::kw_to)) {
6732     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6733       return true;
6734   } else {
6735     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6736       return true;
6737   }
6738 
6739   auto *CatchSwitch =
6740       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6741   for (BasicBlock *DestBB : Table)
6742     CatchSwitch->addHandler(DestBB);
6743   Inst = CatchSwitch;
6744   return false;
6745 }
6746 
6747 /// parseCatchPad
6748 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6749 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6750   Value *CatchSwitch = nullptr;
6751 
6752   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6753     return true;
6754 
6755   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6756     return tokError("expected scope value for catchpad");
6757 
6758   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6759     return true;
6760 
6761   SmallVector<Value *, 8> Args;
6762   if (parseExceptionArgs(Args, PFS))
6763     return true;
6764 
6765   Inst = CatchPadInst::Create(CatchSwitch, Args);
6766   return false;
6767 }
6768 
6769 /// parseCleanupPad
6770 ///   ::= 'cleanuppad' within Parent ParamList
6771 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6772   Value *ParentPad = nullptr;
6773 
6774   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6775     return true;
6776 
6777   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6778       Lex.getKind() != lltok::LocalVarID)
6779     return tokError("expected scope value for cleanuppad");
6780 
6781   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6782     return true;
6783 
6784   SmallVector<Value *, 8> Args;
6785   if (parseExceptionArgs(Args, PFS))
6786     return true;
6787 
6788   Inst = CleanupPadInst::Create(ParentPad, Args);
6789   return false;
6790 }
6791 
6792 //===----------------------------------------------------------------------===//
6793 // Unary Operators.
6794 //===----------------------------------------------------------------------===//
6795 
6796 /// parseUnaryOp
6797 ///  ::= UnaryOp TypeAndValue ',' Value
6798 ///
6799 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6800 /// operand is allowed.
6801 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6802                             unsigned Opc, bool IsFP) {
6803   LocTy Loc; Value *LHS;
6804   if (parseTypeAndValue(LHS, Loc, PFS))
6805     return true;
6806 
6807   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6808                     : LHS->getType()->isIntOrIntVectorTy();
6809 
6810   if (!Valid)
6811     return error(Loc, "invalid operand type for instruction");
6812 
6813   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6814   return false;
6815 }
6816 
6817 /// parseCallBr
6818 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6819 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6820 ///       '[' LabelList ']'
6821 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6822   LocTy CallLoc = Lex.getLoc();
6823   AttrBuilder RetAttrs, FnAttrs;
6824   std::vector<unsigned> FwdRefAttrGrps;
6825   LocTy NoBuiltinLoc;
6826   unsigned CC;
6827   Type *RetType = nullptr;
6828   LocTy RetTypeLoc;
6829   ValID CalleeID;
6830   SmallVector<ParamInfo, 16> ArgList;
6831   SmallVector<OperandBundleDef, 2> BundleList;
6832 
6833   BasicBlock *DefaultDest;
6834   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6835       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6836       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6837       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6838                                  NoBuiltinLoc) ||
6839       parseOptionalOperandBundles(BundleList, PFS) ||
6840       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6841       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6842       parseToken(lltok::lsquare, "expected '[' in callbr"))
6843     return true;
6844 
6845   // parse the destination list.
6846   SmallVector<BasicBlock *, 16> IndirectDests;
6847 
6848   if (Lex.getKind() != lltok::rsquare) {
6849     BasicBlock *DestBB;
6850     if (parseTypeAndBasicBlock(DestBB, PFS))
6851       return true;
6852     IndirectDests.push_back(DestBB);
6853 
6854     while (EatIfPresent(lltok::comma)) {
6855       if (parseTypeAndBasicBlock(DestBB, PFS))
6856         return true;
6857       IndirectDests.push_back(DestBB);
6858     }
6859   }
6860 
6861   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6862     return true;
6863 
6864   // If RetType is a non-function pointer type, then this is the short syntax
6865   // for the call, which means that RetType is just the return type.  Infer the
6866   // rest of the function argument types from the arguments that are present.
6867   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6868   if (!Ty) {
6869     // Pull out the types of all of the arguments...
6870     std::vector<Type *> ParamTypes;
6871     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6872       ParamTypes.push_back(ArgList[i].V->getType());
6873 
6874     if (!FunctionType::isValidReturnType(RetType))
6875       return error(RetTypeLoc, "Invalid result type for LLVM function");
6876 
6877     Ty = FunctionType::get(RetType, ParamTypes, false);
6878   }
6879 
6880   CalleeID.FTy = Ty;
6881 
6882   // Look up the callee.
6883   Value *Callee;
6884   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6885                           /*IsCall=*/true))
6886     return true;
6887 
6888   // Set up the Attribute for the function.
6889   SmallVector<Value *, 8> Args;
6890   SmallVector<AttributeSet, 8> ArgAttrs;
6891 
6892   // Loop through FunctionType's arguments and ensure they are specified
6893   // correctly.  Also, gather any parameter attributes.
6894   FunctionType::param_iterator I = Ty->param_begin();
6895   FunctionType::param_iterator E = Ty->param_end();
6896   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6897     Type *ExpectedTy = nullptr;
6898     if (I != E) {
6899       ExpectedTy = *I++;
6900     } else if (!Ty->isVarArg()) {
6901       return error(ArgList[i].Loc, "too many arguments specified");
6902     }
6903 
6904     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6905       return error(ArgList[i].Loc, "argument is not of expected type '" +
6906                                        getTypeString(ExpectedTy) + "'");
6907     Args.push_back(ArgList[i].V);
6908     ArgAttrs.push_back(ArgList[i].Attrs);
6909   }
6910 
6911   if (I != E)
6912     return error(CallLoc, "not enough parameters specified for call");
6913 
6914   if (FnAttrs.hasAlignmentAttr())
6915     return error(CallLoc, "callbr instructions may not have an alignment");
6916 
6917   // Finish off the Attribute and check them
6918   AttributeList PAL =
6919       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6920                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6921 
6922   CallBrInst *CBI =
6923       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6924                          BundleList);
6925   CBI->setCallingConv(CC);
6926   CBI->setAttributes(PAL);
6927   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6928   Inst = CBI;
6929   return false;
6930 }
6931 
6932 //===----------------------------------------------------------------------===//
6933 // Binary Operators.
6934 //===----------------------------------------------------------------------===//
6935 
6936 /// parseArithmetic
6937 ///  ::= ArithmeticOps TypeAndValue ',' Value
6938 ///
6939 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6940 /// operand is allowed.
6941 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6942                                unsigned Opc, bool IsFP) {
6943   LocTy Loc; Value *LHS, *RHS;
6944   if (parseTypeAndValue(LHS, Loc, PFS) ||
6945       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6946       parseValue(LHS->getType(), RHS, PFS))
6947     return true;
6948 
6949   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6950                     : LHS->getType()->isIntOrIntVectorTy();
6951 
6952   if (!Valid)
6953     return error(Loc, "invalid operand type for instruction");
6954 
6955   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6956   return false;
6957 }
6958 
6959 /// parseLogical
6960 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6961 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6962                             unsigned Opc) {
6963   LocTy Loc; Value *LHS, *RHS;
6964   if (parseTypeAndValue(LHS, Loc, PFS) ||
6965       parseToken(lltok::comma, "expected ',' in logical operation") ||
6966       parseValue(LHS->getType(), RHS, PFS))
6967     return true;
6968 
6969   if (!LHS->getType()->isIntOrIntVectorTy())
6970     return error(Loc,
6971                  "instruction requires integer or integer vector operands");
6972 
6973   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6974   return false;
6975 }
6976 
6977 /// parseCompare
6978 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6979 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6980 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6981                             unsigned Opc) {
6982   // parse the integer/fp comparison predicate.
6983   LocTy Loc;
6984   unsigned Pred;
6985   Value *LHS, *RHS;
6986   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6987       parseToken(lltok::comma, "expected ',' after compare value") ||
6988       parseValue(LHS->getType(), RHS, PFS))
6989     return true;
6990 
6991   if (Opc == Instruction::FCmp) {
6992     if (!LHS->getType()->isFPOrFPVectorTy())
6993       return error(Loc, "fcmp requires floating point operands");
6994     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6995   } else {
6996     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6997     if (!LHS->getType()->isIntOrIntVectorTy() &&
6998         !LHS->getType()->isPtrOrPtrVectorTy())
6999       return error(Loc, "icmp requires integer operands");
7000     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7001   }
7002   return false;
7003 }
7004 
7005 //===----------------------------------------------------------------------===//
7006 // Other Instructions.
7007 //===----------------------------------------------------------------------===//
7008 
7009 /// parseCast
7010 ///   ::= CastOpc TypeAndValue 'to' Type
7011 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7012                          unsigned Opc) {
7013   LocTy Loc;
7014   Value *Op;
7015   Type *DestTy = nullptr;
7016   if (parseTypeAndValue(Op, Loc, PFS) ||
7017       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7018       parseType(DestTy))
7019     return true;
7020 
7021   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7022     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7023     return error(Loc, "invalid cast opcode for cast from '" +
7024                           getTypeString(Op->getType()) + "' to '" +
7025                           getTypeString(DestTy) + "'");
7026   }
7027   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7028   return false;
7029 }
7030 
7031 /// parseSelect
7032 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7033 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7034   LocTy Loc;
7035   Value *Op0, *Op1, *Op2;
7036   if (parseTypeAndValue(Op0, Loc, PFS) ||
7037       parseToken(lltok::comma, "expected ',' after select condition") ||
7038       parseTypeAndValue(Op1, PFS) ||
7039       parseToken(lltok::comma, "expected ',' after select value") ||
7040       parseTypeAndValue(Op2, PFS))
7041     return true;
7042 
7043   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7044     return error(Loc, Reason);
7045 
7046   Inst = SelectInst::Create(Op0, Op1, Op2);
7047   return false;
7048 }
7049 
7050 /// parseVAArg
7051 ///   ::= 'va_arg' TypeAndValue ',' Type
7052 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7053   Value *Op;
7054   Type *EltTy = nullptr;
7055   LocTy TypeLoc;
7056   if (parseTypeAndValue(Op, PFS) ||
7057       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7058       parseType(EltTy, TypeLoc))
7059     return true;
7060 
7061   if (!EltTy->isFirstClassType())
7062     return error(TypeLoc, "va_arg requires operand with first class type");
7063 
7064   Inst = new VAArgInst(Op, EltTy);
7065   return false;
7066 }
7067 
7068 /// parseExtractElement
7069 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7070 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7071   LocTy Loc;
7072   Value *Op0, *Op1;
7073   if (parseTypeAndValue(Op0, Loc, PFS) ||
7074       parseToken(lltok::comma, "expected ',' after extract value") ||
7075       parseTypeAndValue(Op1, PFS))
7076     return true;
7077 
7078   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7079     return error(Loc, "invalid extractelement operands");
7080 
7081   Inst = ExtractElementInst::Create(Op0, Op1);
7082   return false;
7083 }
7084 
7085 /// parseInsertElement
7086 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7087 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7088   LocTy Loc;
7089   Value *Op0, *Op1, *Op2;
7090   if (parseTypeAndValue(Op0, Loc, PFS) ||
7091       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7092       parseTypeAndValue(Op1, PFS) ||
7093       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7094       parseTypeAndValue(Op2, PFS))
7095     return true;
7096 
7097   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7098     return error(Loc, "invalid insertelement operands");
7099 
7100   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7101   return false;
7102 }
7103 
7104 /// parseShuffleVector
7105 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7106 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7107   LocTy Loc;
7108   Value *Op0, *Op1, *Op2;
7109   if (parseTypeAndValue(Op0, Loc, PFS) ||
7110       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7111       parseTypeAndValue(Op1, PFS) ||
7112       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7113       parseTypeAndValue(Op2, PFS))
7114     return true;
7115 
7116   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7117     return error(Loc, "invalid shufflevector operands");
7118 
7119   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7120   return false;
7121 }
7122 
7123 /// parsePHI
7124 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7125 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7126   Type *Ty = nullptr;  LocTy TypeLoc;
7127   Value *Op0, *Op1;
7128 
7129   if (parseType(Ty, TypeLoc) ||
7130       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7131       parseValue(Ty, Op0, PFS) ||
7132       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7133       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7134       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7135     return true;
7136 
7137   bool AteExtraComma = false;
7138   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7139 
7140   while (true) {
7141     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7142 
7143     if (!EatIfPresent(lltok::comma))
7144       break;
7145 
7146     if (Lex.getKind() == lltok::MetadataVar) {
7147       AteExtraComma = true;
7148       break;
7149     }
7150 
7151     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7152         parseValue(Ty, Op0, PFS) ||
7153         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7154         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7155         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7156       return true;
7157   }
7158 
7159   if (!Ty->isFirstClassType())
7160     return error(TypeLoc, "phi node must have first class type");
7161 
7162   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7163   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7164     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7165   Inst = PN;
7166   return AteExtraComma ? InstExtraComma : InstNormal;
7167 }
7168 
7169 /// parseLandingPad
7170 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7171 /// Clause
7172 ///   ::= 'catch' TypeAndValue
7173 ///   ::= 'filter'
7174 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7175 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7176   Type *Ty = nullptr; LocTy TyLoc;
7177 
7178   if (parseType(Ty, TyLoc))
7179     return true;
7180 
7181   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7182   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7183 
7184   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7185     LandingPadInst::ClauseType CT;
7186     if (EatIfPresent(lltok::kw_catch))
7187       CT = LandingPadInst::Catch;
7188     else if (EatIfPresent(lltok::kw_filter))
7189       CT = LandingPadInst::Filter;
7190     else
7191       return tokError("expected 'catch' or 'filter' clause type");
7192 
7193     Value *V;
7194     LocTy VLoc;
7195     if (parseTypeAndValue(V, VLoc, PFS))
7196       return true;
7197 
7198     // A 'catch' type expects a non-array constant. A filter clause expects an
7199     // array constant.
7200     if (CT == LandingPadInst::Catch) {
7201       if (isa<ArrayType>(V->getType()))
7202         error(VLoc, "'catch' clause has an invalid type");
7203     } else {
7204       if (!isa<ArrayType>(V->getType()))
7205         error(VLoc, "'filter' clause has an invalid type");
7206     }
7207 
7208     Constant *CV = dyn_cast<Constant>(V);
7209     if (!CV)
7210       return error(VLoc, "clause argument must be a constant");
7211     LP->addClause(CV);
7212   }
7213 
7214   Inst = LP.release();
7215   return false;
7216 }
7217 
7218 /// parseFreeze
7219 ///   ::= 'freeze' Type Value
7220 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7221   LocTy Loc;
7222   Value *Op;
7223   if (parseTypeAndValue(Op, Loc, PFS))
7224     return true;
7225 
7226   Inst = new FreezeInst(Op);
7227   return false;
7228 }
7229 
7230 /// parseCall
7231 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7232 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7233 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7234 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7235 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7236 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7237 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7238 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7239 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7240                          CallInst::TailCallKind TCK) {
7241   AttrBuilder RetAttrs, FnAttrs;
7242   std::vector<unsigned> FwdRefAttrGrps;
7243   LocTy BuiltinLoc;
7244   unsigned CallAddrSpace;
7245   unsigned CC;
7246   Type *RetType = nullptr;
7247   LocTy RetTypeLoc;
7248   ValID CalleeID;
7249   SmallVector<ParamInfo, 16> ArgList;
7250   SmallVector<OperandBundleDef, 2> BundleList;
7251   LocTy CallLoc = Lex.getLoc();
7252 
7253   if (TCK != CallInst::TCK_None &&
7254       parseToken(lltok::kw_call,
7255                  "expected 'tail call', 'musttail call', or 'notail call'"))
7256     return true;
7257 
7258   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7259 
7260   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7261       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7262       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7263       parseValID(CalleeID) ||
7264       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7265                          PFS.getFunction().isVarArg()) ||
7266       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7267       parseOptionalOperandBundles(BundleList, PFS))
7268     return true;
7269 
7270   // If RetType is a non-function pointer type, then this is the short syntax
7271   // for the call, which means that RetType is just the return type.  Infer the
7272   // rest of the function argument types from the arguments that are present.
7273   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7274   if (!Ty) {
7275     // Pull out the types of all of the arguments...
7276     std::vector<Type*> ParamTypes;
7277     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7278       ParamTypes.push_back(ArgList[i].V->getType());
7279 
7280     if (!FunctionType::isValidReturnType(RetType))
7281       return error(RetTypeLoc, "Invalid result type for LLVM function");
7282 
7283     Ty = FunctionType::get(RetType, ParamTypes, false);
7284   }
7285 
7286   CalleeID.FTy = Ty;
7287 
7288   // Look up the callee.
7289   Value *Callee;
7290   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7291                           &PFS, /*IsCall=*/true))
7292     return true;
7293 
7294   // Set up the Attribute for the function.
7295   SmallVector<AttributeSet, 8> Attrs;
7296 
7297   SmallVector<Value*, 8> Args;
7298 
7299   // Loop through FunctionType's arguments and ensure they are specified
7300   // correctly.  Also, gather any parameter attributes.
7301   FunctionType::param_iterator I = Ty->param_begin();
7302   FunctionType::param_iterator E = Ty->param_end();
7303   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7304     Type *ExpectedTy = nullptr;
7305     if (I != E) {
7306       ExpectedTy = *I++;
7307     } else if (!Ty->isVarArg()) {
7308       return error(ArgList[i].Loc, "too many arguments specified");
7309     }
7310 
7311     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7312       return error(ArgList[i].Loc, "argument is not of expected type '" +
7313                                        getTypeString(ExpectedTy) + "'");
7314     Args.push_back(ArgList[i].V);
7315     Attrs.push_back(ArgList[i].Attrs);
7316   }
7317 
7318   if (I != E)
7319     return error(CallLoc, "not enough parameters specified for call");
7320 
7321   if (FnAttrs.hasAlignmentAttr())
7322     return error(CallLoc, "call instructions may not have an alignment");
7323 
7324   // Finish off the Attribute and check them
7325   AttributeList PAL =
7326       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7327                          AttributeSet::get(Context, RetAttrs), Attrs);
7328 
7329   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7330   CI->setTailCallKind(TCK);
7331   CI->setCallingConv(CC);
7332   if (FMF.any()) {
7333     if (!isa<FPMathOperator>(CI)) {
7334       CI->deleteValue();
7335       return error(CallLoc, "fast-math-flags specified for call without "
7336                             "floating-point scalar or vector return type");
7337     }
7338     CI->setFastMathFlags(FMF);
7339   }
7340   CI->setAttributes(PAL);
7341   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7342   Inst = CI;
7343   return false;
7344 }
7345 
7346 //===----------------------------------------------------------------------===//
7347 // Memory Instructions.
7348 //===----------------------------------------------------------------------===//
7349 
7350 /// parseAlloc
7351 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7352 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7353 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7354   Value *Size = nullptr;
7355   LocTy SizeLoc, TyLoc, ASLoc;
7356   MaybeAlign Alignment;
7357   unsigned AddrSpace = 0;
7358   Type *Ty = nullptr;
7359 
7360   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7361   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7362 
7363   if (parseType(Ty, TyLoc))
7364     return true;
7365 
7366   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7367     return error(TyLoc, "invalid type for alloca");
7368 
7369   bool AteExtraComma = false;
7370   if (EatIfPresent(lltok::comma)) {
7371     if (Lex.getKind() == lltok::kw_align) {
7372       if (parseOptionalAlignment(Alignment))
7373         return true;
7374       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7375         return true;
7376     } else if (Lex.getKind() == lltok::kw_addrspace) {
7377       ASLoc = Lex.getLoc();
7378       if (parseOptionalAddrSpace(AddrSpace))
7379         return true;
7380     } else if (Lex.getKind() == lltok::MetadataVar) {
7381       AteExtraComma = true;
7382     } else {
7383       if (parseTypeAndValue(Size, SizeLoc, PFS))
7384         return true;
7385       if (EatIfPresent(lltok::comma)) {
7386         if (Lex.getKind() == lltok::kw_align) {
7387           if (parseOptionalAlignment(Alignment))
7388             return true;
7389           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7390             return true;
7391         } else if (Lex.getKind() == lltok::kw_addrspace) {
7392           ASLoc = Lex.getLoc();
7393           if (parseOptionalAddrSpace(AddrSpace))
7394             return true;
7395         } else if (Lex.getKind() == lltok::MetadataVar) {
7396           AteExtraComma = true;
7397         }
7398       }
7399     }
7400   }
7401 
7402   if (Size && !Size->getType()->isIntegerTy())
7403     return error(SizeLoc, "element count must have integer type");
7404 
7405   SmallPtrSet<Type *, 4> Visited;
7406   if (!Alignment && !Ty->isSized(&Visited))
7407     return error(TyLoc, "Cannot allocate unsized type");
7408   if (!Alignment)
7409     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7410   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7411   AI->setUsedWithInAlloca(IsInAlloca);
7412   AI->setSwiftError(IsSwiftError);
7413   Inst = AI;
7414   return AteExtraComma ? InstExtraComma : InstNormal;
7415 }
7416 
7417 /// parseLoad
7418 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7419 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7420 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7421 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7422   Value *Val; LocTy Loc;
7423   MaybeAlign Alignment;
7424   bool AteExtraComma = false;
7425   bool isAtomic = false;
7426   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7427   SyncScope::ID SSID = SyncScope::System;
7428 
7429   if (Lex.getKind() == lltok::kw_atomic) {
7430     isAtomic = true;
7431     Lex.Lex();
7432   }
7433 
7434   bool isVolatile = false;
7435   if (Lex.getKind() == lltok::kw_volatile) {
7436     isVolatile = true;
7437     Lex.Lex();
7438   }
7439 
7440   Type *Ty;
7441   LocTy ExplicitTypeLoc = Lex.getLoc();
7442   if (parseType(Ty) ||
7443       parseToken(lltok::comma, "expected comma after load's type") ||
7444       parseTypeAndValue(Val, Loc, PFS) ||
7445       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7446       parseOptionalCommaAlign(Alignment, AteExtraComma))
7447     return true;
7448 
7449   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7450     return error(Loc, "load operand must be a pointer to a first class type");
7451   if (isAtomic && !Alignment)
7452     return error(Loc, "atomic load must have explicit non-zero alignment");
7453   if (Ordering == AtomicOrdering::Release ||
7454       Ordering == AtomicOrdering::AcquireRelease)
7455     return error(Loc, "atomic load cannot use Release ordering");
7456 
7457   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7458     return error(ExplicitTypeLoc,
7459                  "explicit pointee type doesn't match operand's pointee type");
7460   SmallPtrSet<Type *, 4> Visited;
7461   if (!Alignment && !Ty->isSized(&Visited))
7462     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7463   if (!Alignment)
7464     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7465   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7466   return AteExtraComma ? InstExtraComma : InstNormal;
7467 }
7468 
7469 /// parseStore
7470 
7471 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7472 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7473 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7474 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7475   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7476   MaybeAlign Alignment;
7477   bool AteExtraComma = false;
7478   bool isAtomic = false;
7479   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7480   SyncScope::ID SSID = SyncScope::System;
7481 
7482   if (Lex.getKind() == lltok::kw_atomic) {
7483     isAtomic = true;
7484     Lex.Lex();
7485   }
7486 
7487   bool isVolatile = false;
7488   if (Lex.getKind() == lltok::kw_volatile) {
7489     isVolatile = true;
7490     Lex.Lex();
7491   }
7492 
7493   if (parseTypeAndValue(Val, Loc, PFS) ||
7494       parseToken(lltok::comma, "expected ',' after store operand") ||
7495       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7496       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7497       parseOptionalCommaAlign(Alignment, AteExtraComma))
7498     return true;
7499 
7500   if (!Ptr->getType()->isPointerTy())
7501     return error(PtrLoc, "store operand must be a pointer");
7502   if (!Val->getType()->isFirstClassType())
7503     return error(Loc, "store operand must be a first class value");
7504   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7505     return error(Loc, "stored value and pointer type do not match");
7506   if (isAtomic && !Alignment)
7507     return error(Loc, "atomic store must have explicit non-zero alignment");
7508   if (Ordering == AtomicOrdering::Acquire ||
7509       Ordering == AtomicOrdering::AcquireRelease)
7510     return error(Loc, "atomic store cannot use Acquire ordering");
7511   SmallPtrSet<Type *, 4> Visited;
7512   if (!Alignment && !Val->getType()->isSized(&Visited))
7513     return error(Loc, "storing unsized types is not allowed");
7514   if (!Alignment)
7515     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7516 
7517   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7518   return AteExtraComma ? InstExtraComma : InstNormal;
7519 }
7520 
7521 /// parseCmpXchg
7522 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7523 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7524 ///       'Align'?
7525 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7526   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7527   bool AteExtraComma = false;
7528   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7529   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7530   SyncScope::ID SSID = SyncScope::System;
7531   bool isVolatile = false;
7532   bool isWeak = false;
7533   MaybeAlign Alignment;
7534 
7535   if (EatIfPresent(lltok::kw_weak))
7536     isWeak = true;
7537 
7538   if (EatIfPresent(lltok::kw_volatile))
7539     isVolatile = true;
7540 
7541   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7542       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7543       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7544       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7545       parseTypeAndValue(New, NewLoc, PFS) ||
7546       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7547       parseOrdering(FailureOrdering) ||
7548       parseOptionalCommaAlign(Alignment, AteExtraComma))
7549     return true;
7550 
7551   if (SuccessOrdering == AtomicOrdering::Unordered ||
7552       FailureOrdering == AtomicOrdering::Unordered)
7553     return tokError("cmpxchg cannot be unordered");
7554   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7555     return tokError("cmpxchg failure argument shall be no stronger than the "
7556                     "success argument");
7557   if (FailureOrdering == AtomicOrdering::Release ||
7558       FailureOrdering == AtomicOrdering::AcquireRelease)
7559     return tokError(
7560         "cmpxchg failure ordering cannot include release semantics");
7561   if (!Ptr->getType()->isPointerTy())
7562     return error(PtrLoc, "cmpxchg operand must be a pointer");
7563   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7564     return error(CmpLoc, "compare value and pointer type do not match");
7565   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7566     return error(NewLoc, "new value and pointer type do not match");
7567   if (!New->getType()->isFirstClassType())
7568     return error(NewLoc, "cmpxchg operand must be a first class value");
7569 
7570   const Align DefaultAlignment(
7571       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7572           Cmp->getType()));
7573 
7574   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7575       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7576       FailureOrdering, SSID);
7577   CXI->setVolatile(isVolatile);
7578   CXI->setWeak(isWeak);
7579 
7580   Inst = CXI;
7581   return AteExtraComma ? InstExtraComma : InstNormal;
7582 }
7583 
7584 /// parseAtomicRMW
7585 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7586 ///       'singlethread'? AtomicOrdering
7587 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7588   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7589   bool AteExtraComma = false;
7590   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7591   SyncScope::ID SSID = SyncScope::System;
7592   bool isVolatile = false;
7593   bool IsFP = false;
7594   AtomicRMWInst::BinOp Operation;
7595   MaybeAlign Alignment;
7596 
7597   if (EatIfPresent(lltok::kw_volatile))
7598     isVolatile = true;
7599 
7600   switch (Lex.getKind()) {
7601   default:
7602     return tokError("expected binary operation in atomicrmw");
7603   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7604   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7605   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7606   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7607   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7608   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7609   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7610   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7611   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7612   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7613   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7614   case lltok::kw_fadd:
7615     Operation = AtomicRMWInst::FAdd;
7616     IsFP = true;
7617     break;
7618   case lltok::kw_fsub:
7619     Operation = AtomicRMWInst::FSub;
7620     IsFP = true;
7621     break;
7622   }
7623   Lex.Lex();  // Eat the operation.
7624 
7625   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7626       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7627       parseTypeAndValue(Val, ValLoc, PFS) ||
7628       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7629       parseOptionalCommaAlign(Alignment, AteExtraComma))
7630     return true;
7631 
7632   if (Ordering == AtomicOrdering::Unordered)
7633     return tokError("atomicrmw cannot be unordered");
7634   if (!Ptr->getType()->isPointerTy())
7635     return error(PtrLoc, "atomicrmw operand must be a pointer");
7636   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7637     return error(ValLoc, "atomicrmw value and pointer type do not match");
7638 
7639   if (Operation == AtomicRMWInst::Xchg) {
7640     if (!Val->getType()->isIntegerTy() &&
7641         !Val->getType()->isFloatingPointTy()) {
7642       return error(ValLoc,
7643                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7644                        " operand must be an integer or floating point type");
7645     }
7646   } else if (IsFP) {
7647     if (!Val->getType()->isFloatingPointTy()) {
7648       return error(ValLoc, "atomicrmw " +
7649                                AtomicRMWInst::getOperationName(Operation) +
7650                                " operand must be a floating point type");
7651     }
7652   } else {
7653     if (!Val->getType()->isIntegerTy()) {
7654       return error(ValLoc, "atomicrmw " +
7655                                AtomicRMWInst::getOperationName(Operation) +
7656                                " operand must be an integer");
7657     }
7658   }
7659 
7660   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7661   if (Size < 8 || (Size & (Size - 1)))
7662     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7663                          " integer");
7664   const Align DefaultAlignment(
7665       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7666           Val->getType()));
7667   AtomicRMWInst *RMWI =
7668       new AtomicRMWInst(Operation, Ptr, Val,
7669                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7670   RMWI->setVolatile(isVolatile);
7671   Inst = RMWI;
7672   return AteExtraComma ? InstExtraComma : InstNormal;
7673 }
7674 
7675 /// parseFence
7676 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7677 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7678   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7679   SyncScope::ID SSID = SyncScope::System;
7680   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7681     return true;
7682 
7683   if (Ordering == AtomicOrdering::Unordered)
7684     return tokError("fence cannot be unordered");
7685   if (Ordering == AtomicOrdering::Monotonic)
7686     return tokError("fence cannot be monotonic");
7687 
7688   Inst = new FenceInst(Context, Ordering, SSID);
7689   return InstNormal;
7690 }
7691 
7692 /// parseGetElementPtr
7693 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7694 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7695   Value *Ptr = nullptr;
7696   Value *Val = nullptr;
7697   LocTy Loc, EltLoc;
7698 
7699   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7700 
7701   Type *Ty = nullptr;
7702   LocTy ExplicitTypeLoc = Lex.getLoc();
7703   if (parseType(Ty) ||
7704       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7705       parseTypeAndValue(Ptr, Loc, PFS))
7706     return true;
7707 
7708   Type *BaseType = Ptr->getType();
7709   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7710   if (!BasePointerType)
7711     return error(Loc, "base of getelementptr must be a pointer");
7712 
7713   if (Ty != BasePointerType->getElementType())
7714     return error(ExplicitTypeLoc,
7715                  "explicit pointee type doesn't match operand's pointee type");
7716 
7717   SmallVector<Value*, 16> Indices;
7718   bool AteExtraComma = false;
7719   // GEP returns a vector of pointers if at least one of parameters is a vector.
7720   // All vector parameters should have the same vector width.
7721   ElementCount GEPWidth = BaseType->isVectorTy()
7722                               ? cast<VectorType>(BaseType)->getElementCount()
7723                               : ElementCount::getFixed(0);
7724 
7725   while (EatIfPresent(lltok::comma)) {
7726     if (Lex.getKind() == lltok::MetadataVar) {
7727       AteExtraComma = true;
7728       break;
7729     }
7730     if (parseTypeAndValue(Val, EltLoc, PFS))
7731       return true;
7732     if (!Val->getType()->isIntOrIntVectorTy())
7733       return error(EltLoc, "getelementptr index must be an integer");
7734 
7735     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7736       ElementCount ValNumEl = ValVTy->getElementCount();
7737       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7738         return error(
7739             EltLoc,
7740             "getelementptr vector index has a wrong number of elements");
7741       GEPWidth = ValNumEl;
7742     }
7743     Indices.push_back(Val);
7744   }
7745 
7746   SmallPtrSet<Type*, 4> Visited;
7747   if (!Indices.empty() && !Ty->isSized(&Visited))
7748     return error(Loc, "base element of getelementptr must be sized");
7749 
7750   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7751     return error(Loc, "invalid getelementptr indices");
7752   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7753   if (InBounds)
7754     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7755   return AteExtraComma ? InstExtraComma : InstNormal;
7756 }
7757 
7758 /// parseExtractValue
7759 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7760 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7761   Value *Val; LocTy Loc;
7762   SmallVector<unsigned, 4> Indices;
7763   bool AteExtraComma;
7764   if (parseTypeAndValue(Val, Loc, PFS) ||
7765       parseIndexList(Indices, AteExtraComma))
7766     return true;
7767 
7768   if (!Val->getType()->isAggregateType())
7769     return error(Loc, "extractvalue operand must be aggregate type");
7770 
7771   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7772     return error(Loc, "invalid indices for extractvalue");
7773   Inst = ExtractValueInst::Create(Val, Indices);
7774   return AteExtraComma ? InstExtraComma : InstNormal;
7775 }
7776 
7777 /// parseInsertValue
7778 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7779 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7780   Value *Val0, *Val1; LocTy Loc0, Loc1;
7781   SmallVector<unsigned, 4> Indices;
7782   bool AteExtraComma;
7783   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7784       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7785       parseTypeAndValue(Val1, Loc1, PFS) ||
7786       parseIndexList(Indices, AteExtraComma))
7787     return true;
7788 
7789   if (!Val0->getType()->isAggregateType())
7790     return error(Loc0, "insertvalue operand must be aggregate type");
7791 
7792   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7793   if (!IndexedType)
7794     return error(Loc0, "invalid indices for insertvalue");
7795   if (IndexedType != Val1->getType())
7796     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7797                            getTypeString(Val1->getType()) + "' instead of '" +
7798                            getTypeString(IndexedType) + "'");
7799   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7800   return AteExtraComma ? InstExtraComma : InstNormal;
7801 }
7802 
7803 //===----------------------------------------------------------------------===//
7804 // Embedded metadata.
7805 //===----------------------------------------------------------------------===//
7806 
7807 /// parseMDNodeVector
7808 ///   ::= { Element (',' Element)* }
7809 /// Element
7810 ///   ::= 'null' | TypeAndValue
7811 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7812   if (parseToken(lltok::lbrace, "expected '{' here"))
7813     return true;
7814 
7815   // Check for an empty list.
7816   if (EatIfPresent(lltok::rbrace))
7817     return false;
7818 
7819   do {
7820     // Null is a special case since it is typeless.
7821     if (EatIfPresent(lltok::kw_null)) {
7822       Elts.push_back(nullptr);
7823       continue;
7824     }
7825 
7826     Metadata *MD;
7827     if (parseMetadata(MD, nullptr))
7828       return true;
7829     Elts.push_back(MD);
7830   } while (EatIfPresent(lltok::comma));
7831 
7832   return parseToken(lltok::rbrace, "expected end of metadata node");
7833 }
7834 
7835 //===----------------------------------------------------------------------===//
7836 // Use-list order directives.
7837 //===----------------------------------------------------------------------===//
7838 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7839                                 SMLoc Loc) {
7840   if (V->use_empty())
7841     return error(Loc, "value has no uses");
7842 
7843   unsigned NumUses = 0;
7844   SmallDenseMap<const Use *, unsigned, 16> Order;
7845   for (const Use &U : V->uses()) {
7846     if (++NumUses > Indexes.size())
7847       break;
7848     Order[&U] = Indexes[NumUses - 1];
7849   }
7850   if (NumUses < 2)
7851     return error(Loc, "value only has one use");
7852   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7853     return error(Loc,
7854                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7855 
7856   V->sortUseList([&](const Use &L, const Use &R) {
7857     return Order.lookup(&L) < Order.lookup(&R);
7858   });
7859   return false;
7860 }
7861 
7862 /// parseUseListOrderIndexes
7863 ///   ::= '{' uint32 (',' uint32)+ '}'
7864 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7865   SMLoc Loc = Lex.getLoc();
7866   if (parseToken(lltok::lbrace, "expected '{' here"))
7867     return true;
7868   if (Lex.getKind() == lltok::rbrace)
7869     return Lex.Error("expected non-empty list of uselistorder indexes");
7870 
7871   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7872   // indexes should be distinct numbers in the range [0, size-1], and should
7873   // not be in order.
7874   unsigned Offset = 0;
7875   unsigned Max = 0;
7876   bool IsOrdered = true;
7877   assert(Indexes.empty() && "Expected empty order vector");
7878   do {
7879     unsigned Index;
7880     if (parseUInt32(Index))
7881       return true;
7882 
7883     // Update consistency checks.
7884     Offset += Index - Indexes.size();
7885     Max = std::max(Max, Index);
7886     IsOrdered &= Index == Indexes.size();
7887 
7888     Indexes.push_back(Index);
7889   } while (EatIfPresent(lltok::comma));
7890 
7891   if (parseToken(lltok::rbrace, "expected '}' here"))
7892     return true;
7893 
7894   if (Indexes.size() < 2)
7895     return error(Loc, "expected >= 2 uselistorder indexes");
7896   if (Offset != 0 || Max >= Indexes.size())
7897     return error(Loc,
7898                  "expected distinct uselistorder indexes in range [0, size)");
7899   if (IsOrdered)
7900     return error(Loc, "expected uselistorder indexes to change the order");
7901 
7902   return false;
7903 }
7904 
7905 /// parseUseListOrder
7906 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7907 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7908   SMLoc Loc = Lex.getLoc();
7909   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7910     return true;
7911 
7912   Value *V;
7913   SmallVector<unsigned, 16> Indexes;
7914   if (parseTypeAndValue(V, PFS) ||
7915       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7916       parseUseListOrderIndexes(Indexes))
7917     return true;
7918 
7919   return sortUseListOrder(V, Indexes, Loc);
7920 }
7921 
7922 /// parseUseListOrderBB
7923 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7924 bool LLParser::parseUseListOrderBB() {
7925   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7926   SMLoc Loc = Lex.getLoc();
7927   Lex.Lex();
7928 
7929   ValID Fn, Label;
7930   SmallVector<unsigned, 16> Indexes;
7931   if (parseValID(Fn) ||
7932       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7933       parseValID(Label) ||
7934       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7935       parseUseListOrderIndexes(Indexes))
7936     return true;
7937 
7938   // Check the function.
7939   GlobalValue *GV;
7940   if (Fn.Kind == ValID::t_GlobalName)
7941     GV = M->getNamedValue(Fn.StrVal);
7942   else if (Fn.Kind == ValID::t_GlobalID)
7943     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7944   else
7945     return error(Fn.Loc, "expected function name in uselistorder_bb");
7946   if (!GV)
7947     return error(Fn.Loc,
7948                  "invalid function forward reference in uselistorder_bb");
7949   auto *F = dyn_cast<Function>(GV);
7950   if (!F)
7951     return error(Fn.Loc, "expected function name in uselistorder_bb");
7952   if (F->isDeclaration())
7953     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7954 
7955   // Check the basic block.
7956   if (Label.Kind == ValID::t_LocalID)
7957     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7958   if (Label.Kind != ValID::t_LocalName)
7959     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7960   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7961   if (!V)
7962     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7963   if (!isa<BasicBlock>(V))
7964     return error(Label.Loc, "expected basic block in uselistorder_bb");
7965 
7966   return sortUseListOrder(V, Indexes, Loc);
7967 }
7968 
7969 /// ModuleEntry
7970 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7971 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7972 bool LLParser::parseModuleEntry(unsigned ID) {
7973   assert(Lex.getKind() == lltok::kw_module);
7974   Lex.Lex();
7975 
7976   std::string Path;
7977   if (parseToken(lltok::colon, "expected ':' here") ||
7978       parseToken(lltok::lparen, "expected '(' here") ||
7979       parseToken(lltok::kw_path, "expected 'path' here") ||
7980       parseToken(lltok::colon, "expected ':' here") ||
7981       parseStringConstant(Path) ||
7982       parseToken(lltok::comma, "expected ',' here") ||
7983       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7984       parseToken(lltok::colon, "expected ':' here") ||
7985       parseToken(lltok::lparen, "expected '(' here"))
7986     return true;
7987 
7988   ModuleHash Hash;
7989   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7990       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7991       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7992       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7993       parseUInt32(Hash[4]))
7994     return true;
7995 
7996   if (parseToken(lltok::rparen, "expected ')' here") ||
7997       parseToken(lltok::rparen, "expected ')' here"))
7998     return true;
7999 
8000   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8001   ModuleIdMap[ID] = ModuleEntry->first();
8002 
8003   return false;
8004 }
8005 
8006 /// TypeIdEntry
8007 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8008 bool LLParser::parseTypeIdEntry(unsigned ID) {
8009   assert(Lex.getKind() == lltok::kw_typeid);
8010   Lex.Lex();
8011 
8012   std::string Name;
8013   if (parseToken(lltok::colon, "expected ':' here") ||
8014       parseToken(lltok::lparen, "expected '(' here") ||
8015       parseToken(lltok::kw_name, "expected 'name' here") ||
8016       parseToken(lltok::colon, "expected ':' here") ||
8017       parseStringConstant(Name))
8018     return true;
8019 
8020   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8021   if (parseToken(lltok::comma, "expected ',' here") ||
8022       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8023     return true;
8024 
8025   // Check if this ID was forward referenced, and if so, update the
8026   // corresponding GUIDs.
8027   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8028   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8029     for (auto TIDRef : FwdRefTIDs->second) {
8030       assert(!*TIDRef.first &&
8031              "Forward referenced type id GUID expected to be 0");
8032       *TIDRef.first = GlobalValue::getGUID(Name);
8033     }
8034     ForwardRefTypeIds.erase(FwdRefTIDs);
8035   }
8036 
8037   return false;
8038 }
8039 
8040 /// TypeIdSummary
8041 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8042 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8043   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8044       parseToken(lltok::colon, "expected ':' here") ||
8045       parseToken(lltok::lparen, "expected '(' here") ||
8046       parseTypeTestResolution(TIS.TTRes))
8047     return true;
8048 
8049   if (EatIfPresent(lltok::comma)) {
8050     // Expect optional wpdResolutions field
8051     if (parseOptionalWpdResolutions(TIS.WPDRes))
8052       return true;
8053   }
8054 
8055   if (parseToken(lltok::rparen, "expected ')' here"))
8056     return true;
8057 
8058   return false;
8059 }
8060 
8061 static ValueInfo EmptyVI =
8062     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8063 
8064 /// TypeIdCompatibleVtableEntry
8065 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8066 ///   TypeIdCompatibleVtableInfo
8067 ///   ')'
8068 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8069   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8070   Lex.Lex();
8071 
8072   std::string Name;
8073   if (parseToken(lltok::colon, "expected ':' here") ||
8074       parseToken(lltok::lparen, "expected '(' here") ||
8075       parseToken(lltok::kw_name, "expected 'name' here") ||
8076       parseToken(lltok::colon, "expected ':' here") ||
8077       parseStringConstant(Name))
8078     return true;
8079 
8080   TypeIdCompatibleVtableInfo &TI =
8081       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8082   if (parseToken(lltok::comma, "expected ',' here") ||
8083       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8084       parseToken(lltok::colon, "expected ':' here") ||
8085       parseToken(lltok::lparen, "expected '(' here"))
8086     return true;
8087 
8088   IdToIndexMapType IdToIndexMap;
8089   // parse each call edge
8090   do {
8091     uint64_t Offset;
8092     if (parseToken(lltok::lparen, "expected '(' here") ||
8093         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8094         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8095         parseToken(lltok::comma, "expected ',' here"))
8096       return true;
8097 
8098     LocTy Loc = Lex.getLoc();
8099     unsigned GVId;
8100     ValueInfo VI;
8101     if (parseGVReference(VI, GVId))
8102       return true;
8103 
8104     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8105     // forward reference. We will save the location of the ValueInfo needing an
8106     // update, but can only do so once the std::vector is finalized.
8107     if (VI == EmptyVI)
8108       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8109     TI.push_back({Offset, VI});
8110 
8111     if (parseToken(lltok::rparen, "expected ')' in call"))
8112       return true;
8113   } while (EatIfPresent(lltok::comma));
8114 
8115   // Now that the TI vector is finalized, it is safe to save the locations
8116   // of any forward GV references that need updating later.
8117   for (auto I : IdToIndexMap) {
8118     auto &Infos = ForwardRefValueInfos[I.first];
8119     for (auto P : I.second) {
8120       assert(TI[P.first].VTableVI == EmptyVI &&
8121              "Forward referenced ValueInfo expected to be empty");
8122       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8123     }
8124   }
8125 
8126   if (parseToken(lltok::rparen, "expected ')' here") ||
8127       parseToken(lltok::rparen, "expected ')' here"))
8128     return true;
8129 
8130   // Check if this ID was forward referenced, and if so, update the
8131   // corresponding GUIDs.
8132   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8133   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8134     for (auto TIDRef : FwdRefTIDs->second) {
8135       assert(!*TIDRef.first &&
8136              "Forward referenced type id GUID expected to be 0");
8137       *TIDRef.first = GlobalValue::getGUID(Name);
8138     }
8139     ForwardRefTypeIds.erase(FwdRefTIDs);
8140   }
8141 
8142   return false;
8143 }
8144 
8145 /// TypeTestResolution
8146 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8147 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8148 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8149 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8150 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8151 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8152   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8153       parseToken(lltok::colon, "expected ':' here") ||
8154       parseToken(lltok::lparen, "expected '(' here") ||
8155       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8156       parseToken(lltok::colon, "expected ':' here"))
8157     return true;
8158 
8159   switch (Lex.getKind()) {
8160   case lltok::kw_unknown:
8161     TTRes.TheKind = TypeTestResolution::Unknown;
8162     break;
8163   case lltok::kw_unsat:
8164     TTRes.TheKind = TypeTestResolution::Unsat;
8165     break;
8166   case lltok::kw_byteArray:
8167     TTRes.TheKind = TypeTestResolution::ByteArray;
8168     break;
8169   case lltok::kw_inline:
8170     TTRes.TheKind = TypeTestResolution::Inline;
8171     break;
8172   case lltok::kw_single:
8173     TTRes.TheKind = TypeTestResolution::Single;
8174     break;
8175   case lltok::kw_allOnes:
8176     TTRes.TheKind = TypeTestResolution::AllOnes;
8177     break;
8178   default:
8179     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8180   }
8181   Lex.Lex();
8182 
8183   if (parseToken(lltok::comma, "expected ',' here") ||
8184       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8185       parseToken(lltok::colon, "expected ':' here") ||
8186       parseUInt32(TTRes.SizeM1BitWidth))
8187     return true;
8188 
8189   // parse optional fields
8190   while (EatIfPresent(lltok::comma)) {
8191     switch (Lex.getKind()) {
8192     case lltok::kw_alignLog2:
8193       Lex.Lex();
8194       if (parseToken(lltok::colon, "expected ':'") ||
8195           parseUInt64(TTRes.AlignLog2))
8196         return true;
8197       break;
8198     case lltok::kw_sizeM1:
8199       Lex.Lex();
8200       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8201         return true;
8202       break;
8203     case lltok::kw_bitMask: {
8204       unsigned Val;
8205       Lex.Lex();
8206       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8207         return true;
8208       assert(Val <= 0xff);
8209       TTRes.BitMask = (uint8_t)Val;
8210       break;
8211     }
8212     case lltok::kw_inlineBits:
8213       Lex.Lex();
8214       if (parseToken(lltok::colon, "expected ':'") ||
8215           parseUInt64(TTRes.InlineBits))
8216         return true;
8217       break;
8218     default:
8219       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8220     }
8221   }
8222 
8223   if (parseToken(lltok::rparen, "expected ')' here"))
8224     return true;
8225 
8226   return false;
8227 }
8228 
8229 /// OptionalWpdResolutions
8230 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8231 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8232 bool LLParser::parseOptionalWpdResolutions(
8233     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8234   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8235       parseToken(lltok::colon, "expected ':' here") ||
8236       parseToken(lltok::lparen, "expected '(' here"))
8237     return true;
8238 
8239   do {
8240     uint64_t Offset;
8241     WholeProgramDevirtResolution WPDRes;
8242     if (parseToken(lltok::lparen, "expected '(' here") ||
8243         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8244         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8245         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8246         parseToken(lltok::rparen, "expected ')' here"))
8247       return true;
8248     WPDResMap[Offset] = WPDRes;
8249   } while (EatIfPresent(lltok::comma));
8250 
8251   if (parseToken(lltok::rparen, "expected ')' here"))
8252     return true;
8253 
8254   return false;
8255 }
8256 
8257 /// WpdRes
8258 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8259 ///         [',' OptionalResByArg]? ')'
8260 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8261 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8262 ///         [',' OptionalResByArg]? ')'
8263 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8264 ///         [',' OptionalResByArg]? ')'
8265 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8266   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8267       parseToken(lltok::colon, "expected ':' here") ||
8268       parseToken(lltok::lparen, "expected '(' here") ||
8269       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8270       parseToken(lltok::colon, "expected ':' here"))
8271     return true;
8272 
8273   switch (Lex.getKind()) {
8274   case lltok::kw_indir:
8275     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8276     break;
8277   case lltok::kw_singleImpl:
8278     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8279     break;
8280   case lltok::kw_branchFunnel:
8281     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8282     break;
8283   default:
8284     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8285   }
8286   Lex.Lex();
8287 
8288   // parse optional fields
8289   while (EatIfPresent(lltok::comma)) {
8290     switch (Lex.getKind()) {
8291     case lltok::kw_singleImplName:
8292       Lex.Lex();
8293       if (parseToken(lltok::colon, "expected ':' here") ||
8294           parseStringConstant(WPDRes.SingleImplName))
8295         return true;
8296       break;
8297     case lltok::kw_resByArg:
8298       if (parseOptionalResByArg(WPDRes.ResByArg))
8299         return true;
8300       break;
8301     default:
8302       return error(Lex.getLoc(),
8303                    "expected optional WholeProgramDevirtResolution field");
8304     }
8305   }
8306 
8307   if (parseToken(lltok::rparen, "expected ')' here"))
8308     return true;
8309 
8310   return false;
8311 }
8312 
8313 /// OptionalResByArg
8314 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8315 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8316 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8317 ///                  'virtualConstProp' )
8318 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8319 ///                [',' 'bit' ':' UInt32]? ')'
8320 bool LLParser::parseOptionalResByArg(
8321     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8322         &ResByArg) {
8323   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8324       parseToken(lltok::colon, "expected ':' here") ||
8325       parseToken(lltok::lparen, "expected '(' here"))
8326     return true;
8327 
8328   do {
8329     std::vector<uint64_t> Args;
8330     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8331         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8332         parseToken(lltok::colon, "expected ':' here") ||
8333         parseToken(lltok::lparen, "expected '(' here") ||
8334         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8335         parseToken(lltok::colon, "expected ':' here"))
8336       return true;
8337 
8338     WholeProgramDevirtResolution::ByArg ByArg;
8339     switch (Lex.getKind()) {
8340     case lltok::kw_indir:
8341       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8342       break;
8343     case lltok::kw_uniformRetVal:
8344       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8345       break;
8346     case lltok::kw_uniqueRetVal:
8347       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8348       break;
8349     case lltok::kw_virtualConstProp:
8350       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8351       break;
8352     default:
8353       return error(Lex.getLoc(),
8354                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8355     }
8356     Lex.Lex();
8357 
8358     // parse optional fields
8359     while (EatIfPresent(lltok::comma)) {
8360       switch (Lex.getKind()) {
8361       case lltok::kw_info:
8362         Lex.Lex();
8363         if (parseToken(lltok::colon, "expected ':' here") ||
8364             parseUInt64(ByArg.Info))
8365           return true;
8366         break;
8367       case lltok::kw_byte:
8368         Lex.Lex();
8369         if (parseToken(lltok::colon, "expected ':' here") ||
8370             parseUInt32(ByArg.Byte))
8371           return true;
8372         break;
8373       case lltok::kw_bit:
8374         Lex.Lex();
8375         if (parseToken(lltok::colon, "expected ':' here") ||
8376             parseUInt32(ByArg.Bit))
8377           return true;
8378         break;
8379       default:
8380         return error(Lex.getLoc(),
8381                      "expected optional whole program devirt field");
8382       }
8383     }
8384 
8385     if (parseToken(lltok::rparen, "expected ')' here"))
8386       return true;
8387 
8388     ResByArg[Args] = ByArg;
8389   } while (EatIfPresent(lltok::comma));
8390 
8391   if (parseToken(lltok::rparen, "expected ')' here"))
8392     return true;
8393 
8394   return false;
8395 }
8396 
8397 /// OptionalResByArg
8398 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8399 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8400   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8401       parseToken(lltok::colon, "expected ':' here") ||
8402       parseToken(lltok::lparen, "expected '(' here"))
8403     return true;
8404 
8405   do {
8406     uint64_t Val;
8407     if (parseUInt64(Val))
8408       return true;
8409     Args.push_back(Val);
8410   } while (EatIfPresent(lltok::comma));
8411 
8412   if (parseToken(lltok::rparen, "expected ')' here"))
8413     return true;
8414 
8415   return false;
8416 }
8417 
8418 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8419 
8420 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8421   bool ReadOnly = Fwd->isReadOnly();
8422   bool WriteOnly = Fwd->isWriteOnly();
8423   assert(!(ReadOnly && WriteOnly));
8424   *Fwd = Resolved;
8425   if (ReadOnly)
8426     Fwd->setReadOnly();
8427   if (WriteOnly)
8428     Fwd->setWriteOnly();
8429 }
8430 
8431 /// Stores the given Name/GUID and associated summary into the Index.
8432 /// Also updates any forward references to the associated entry ID.
8433 void LLParser::addGlobalValueToIndex(
8434     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8435     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8436   // First create the ValueInfo utilizing the Name or GUID.
8437   ValueInfo VI;
8438   if (GUID != 0) {
8439     assert(Name.empty());
8440     VI = Index->getOrInsertValueInfo(GUID);
8441   } else {
8442     assert(!Name.empty());
8443     if (M) {
8444       auto *GV = M->getNamedValue(Name);
8445       assert(GV);
8446       VI = Index->getOrInsertValueInfo(GV);
8447     } else {
8448       assert(
8449           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8450           "Need a source_filename to compute GUID for local");
8451       GUID = GlobalValue::getGUID(
8452           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8453       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8454     }
8455   }
8456 
8457   // Resolve forward references from calls/refs
8458   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8459   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8460     for (auto VIRef : FwdRefVIs->second) {
8461       assert(VIRef.first->getRef() == FwdVIRef &&
8462              "Forward referenced ValueInfo expected to be empty");
8463       resolveFwdRef(VIRef.first, VI);
8464     }
8465     ForwardRefValueInfos.erase(FwdRefVIs);
8466   }
8467 
8468   // Resolve forward references from aliases
8469   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8470   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8471     for (auto AliaseeRef : FwdRefAliasees->second) {
8472       assert(!AliaseeRef.first->hasAliasee() &&
8473              "Forward referencing alias already has aliasee");
8474       assert(Summary && "Aliasee must be a definition");
8475       AliaseeRef.first->setAliasee(VI, Summary.get());
8476     }
8477     ForwardRefAliasees.erase(FwdRefAliasees);
8478   }
8479 
8480   // Add the summary if one was provided.
8481   if (Summary)
8482     Index->addGlobalValueSummary(VI, std::move(Summary));
8483 
8484   // Save the associated ValueInfo for use in later references by ID.
8485   if (ID == NumberedValueInfos.size())
8486     NumberedValueInfos.push_back(VI);
8487   else {
8488     // Handle non-continuous numbers (to make test simplification easier).
8489     if (ID > NumberedValueInfos.size())
8490       NumberedValueInfos.resize(ID + 1);
8491     NumberedValueInfos[ID] = VI;
8492   }
8493 }
8494 
8495 /// parseSummaryIndexFlags
8496 ///   ::= 'flags' ':' UInt64
8497 bool LLParser::parseSummaryIndexFlags() {
8498   assert(Lex.getKind() == lltok::kw_flags);
8499   Lex.Lex();
8500 
8501   if (parseToken(lltok::colon, "expected ':' here"))
8502     return true;
8503   uint64_t Flags;
8504   if (parseUInt64(Flags))
8505     return true;
8506   if (Index)
8507     Index->setFlags(Flags);
8508   return false;
8509 }
8510 
8511 /// parseBlockCount
8512 ///   ::= 'blockcount' ':' UInt64
8513 bool LLParser::parseBlockCount() {
8514   assert(Lex.getKind() == lltok::kw_blockcount);
8515   Lex.Lex();
8516 
8517   if (parseToken(lltok::colon, "expected ':' here"))
8518     return true;
8519   uint64_t BlockCount;
8520   if (parseUInt64(BlockCount))
8521     return true;
8522   if (Index)
8523     Index->setBlockCount(BlockCount);
8524   return false;
8525 }
8526 
8527 /// parseGVEntry
8528 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8529 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8530 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8531 bool LLParser::parseGVEntry(unsigned ID) {
8532   assert(Lex.getKind() == lltok::kw_gv);
8533   Lex.Lex();
8534 
8535   if (parseToken(lltok::colon, "expected ':' here") ||
8536       parseToken(lltok::lparen, "expected '(' here"))
8537     return true;
8538 
8539   std::string Name;
8540   GlobalValue::GUID GUID = 0;
8541   switch (Lex.getKind()) {
8542   case lltok::kw_name:
8543     Lex.Lex();
8544     if (parseToken(lltok::colon, "expected ':' here") ||
8545         parseStringConstant(Name))
8546       return true;
8547     // Can't create GUID/ValueInfo until we have the linkage.
8548     break;
8549   case lltok::kw_guid:
8550     Lex.Lex();
8551     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8552       return true;
8553     break;
8554   default:
8555     return error(Lex.getLoc(), "expected name or guid tag");
8556   }
8557 
8558   if (!EatIfPresent(lltok::comma)) {
8559     // No summaries. Wrap up.
8560     if (parseToken(lltok::rparen, "expected ')' here"))
8561       return true;
8562     // This was created for a call to an external or indirect target.
8563     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8564     // created for indirect calls with VP. A Name with no GUID came from
8565     // an external definition. We pass ExternalLinkage since that is only
8566     // used when the GUID must be computed from Name, and in that case
8567     // the symbol must have external linkage.
8568     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8569                           nullptr);
8570     return false;
8571   }
8572 
8573   // Have a list of summaries
8574   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8575       parseToken(lltok::colon, "expected ':' here") ||
8576       parseToken(lltok::lparen, "expected '(' here"))
8577     return true;
8578   do {
8579     switch (Lex.getKind()) {
8580     case lltok::kw_function:
8581       if (parseFunctionSummary(Name, GUID, ID))
8582         return true;
8583       break;
8584     case lltok::kw_variable:
8585       if (parseVariableSummary(Name, GUID, ID))
8586         return true;
8587       break;
8588     case lltok::kw_alias:
8589       if (parseAliasSummary(Name, GUID, ID))
8590         return true;
8591       break;
8592     default:
8593       return error(Lex.getLoc(), "expected summary type");
8594     }
8595   } while (EatIfPresent(lltok::comma));
8596 
8597   if (parseToken(lltok::rparen, "expected ')' here") ||
8598       parseToken(lltok::rparen, "expected ')' here"))
8599     return true;
8600 
8601   return false;
8602 }
8603 
8604 /// FunctionSummary
8605 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8606 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8607 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8608 ///         [',' OptionalRefs]? ')'
8609 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8610                                     unsigned ID) {
8611   assert(Lex.getKind() == lltok::kw_function);
8612   Lex.Lex();
8613 
8614   StringRef ModulePath;
8615   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8616       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8617       /*NotEligibleToImport=*/false,
8618       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8619   unsigned InstCount;
8620   std::vector<FunctionSummary::EdgeTy> Calls;
8621   FunctionSummary::TypeIdInfo TypeIdInfo;
8622   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8623   std::vector<ValueInfo> Refs;
8624   // Default is all-zeros (conservative values).
8625   FunctionSummary::FFlags FFlags = {};
8626   if (parseToken(lltok::colon, "expected ':' here") ||
8627       parseToken(lltok::lparen, "expected '(' here") ||
8628       parseModuleReference(ModulePath) ||
8629       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8630       parseToken(lltok::comma, "expected ',' here") ||
8631       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8632       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8633     return true;
8634 
8635   // parse optional fields
8636   while (EatIfPresent(lltok::comma)) {
8637     switch (Lex.getKind()) {
8638     case lltok::kw_funcFlags:
8639       if (parseOptionalFFlags(FFlags))
8640         return true;
8641       break;
8642     case lltok::kw_calls:
8643       if (parseOptionalCalls(Calls))
8644         return true;
8645       break;
8646     case lltok::kw_typeIdInfo:
8647       if (parseOptionalTypeIdInfo(TypeIdInfo))
8648         return true;
8649       break;
8650     case lltok::kw_refs:
8651       if (parseOptionalRefs(Refs))
8652         return true;
8653       break;
8654     case lltok::kw_params:
8655       if (parseOptionalParamAccesses(ParamAccesses))
8656         return true;
8657       break;
8658     default:
8659       return error(Lex.getLoc(), "expected optional function summary field");
8660     }
8661   }
8662 
8663   if (parseToken(lltok::rparen, "expected ')' here"))
8664     return true;
8665 
8666   auto FS = std::make_unique<FunctionSummary>(
8667       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8668       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8669       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8670       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8671       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8672       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8673       std::move(ParamAccesses));
8674 
8675   FS->setModulePath(ModulePath);
8676 
8677   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8678                         ID, std::move(FS));
8679 
8680   return false;
8681 }
8682 
8683 /// VariableSummary
8684 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8685 ///         [',' OptionalRefs]? ')'
8686 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8687                                     unsigned ID) {
8688   assert(Lex.getKind() == lltok::kw_variable);
8689   Lex.Lex();
8690 
8691   StringRef ModulePath;
8692   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8693       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8694       /*NotEligibleToImport=*/false,
8695       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8696   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8697                                         /* WriteOnly */ false,
8698                                         /* Constant */ false,
8699                                         GlobalObject::VCallVisibilityPublic);
8700   std::vector<ValueInfo> Refs;
8701   VTableFuncList VTableFuncs;
8702   if (parseToken(lltok::colon, "expected ':' here") ||
8703       parseToken(lltok::lparen, "expected '(' here") ||
8704       parseModuleReference(ModulePath) ||
8705       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8706       parseToken(lltok::comma, "expected ',' here") ||
8707       parseGVarFlags(GVarFlags))
8708     return true;
8709 
8710   // parse optional fields
8711   while (EatIfPresent(lltok::comma)) {
8712     switch (Lex.getKind()) {
8713     case lltok::kw_vTableFuncs:
8714       if (parseOptionalVTableFuncs(VTableFuncs))
8715         return true;
8716       break;
8717     case lltok::kw_refs:
8718       if (parseOptionalRefs(Refs))
8719         return true;
8720       break;
8721     default:
8722       return error(Lex.getLoc(), "expected optional variable summary field");
8723     }
8724   }
8725 
8726   if (parseToken(lltok::rparen, "expected ')' here"))
8727     return true;
8728 
8729   auto GS =
8730       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8731 
8732   GS->setModulePath(ModulePath);
8733   GS->setVTableFuncs(std::move(VTableFuncs));
8734 
8735   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8736                         ID, std::move(GS));
8737 
8738   return false;
8739 }
8740 
8741 /// AliasSummary
8742 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8743 ///         'aliasee' ':' GVReference ')'
8744 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8745                                  unsigned ID) {
8746   assert(Lex.getKind() == lltok::kw_alias);
8747   LocTy Loc = Lex.getLoc();
8748   Lex.Lex();
8749 
8750   StringRef ModulePath;
8751   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8752       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8753       /*NotEligibleToImport=*/false,
8754       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8755   if (parseToken(lltok::colon, "expected ':' here") ||
8756       parseToken(lltok::lparen, "expected '(' here") ||
8757       parseModuleReference(ModulePath) ||
8758       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8759       parseToken(lltok::comma, "expected ',' here") ||
8760       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8761       parseToken(lltok::colon, "expected ':' here"))
8762     return true;
8763 
8764   ValueInfo AliaseeVI;
8765   unsigned GVId;
8766   if (parseGVReference(AliaseeVI, GVId))
8767     return true;
8768 
8769   if (parseToken(lltok::rparen, "expected ')' here"))
8770     return true;
8771 
8772   auto AS = std::make_unique<AliasSummary>(GVFlags);
8773 
8774   AS->setModulePath(ModulePath);
8775 
8776   // Record forward reference if the aliasee is not parsed yet.
8777   if (AliaseeVI.getRef() == FwdVIRef) {
8778     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8779   } else {
8780     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8781     assert(Summary && "Aliasee must be a definition");
8782     AS->setAliasee(AliaseeVI, Summary);
8783   }
8784 
8785   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8786                         ID, std::move(AS));
8787 
8788   return false;
8789 }
8790 
8791 /// Flag
8792 ///   ::= [0|1]
8793 bool LLParser::parseFlag(unsigned &Val) {
8794   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8795     return tokError("expected integer");
8796   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8797   Lex.Lex();
8798   return false;
8799 }
8800 
8801 /// OptionalFFlags
8802 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8803 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8804 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8805 ///        [',' 'noInline' ':' Flag]? ')'
8806 ///        [',' 'alwaysInline' ':' Flag]? ')'
8807 
8808 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8809   assert(Lex.getKind() == lltok::kw_funcFlags);
8810   Lex.Lex();
8811 
8812   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8813       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8814     return true;
8815 
8816   do {
8817     unsigned Val = 0;
8818     switch (Lex.getKind()) {
8819     case lltok::kw_readNone:
8820       Lex.Lex();
8821       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8822         return true;
8823       FFlags.ReadNone = Val;
8824       break;
8825     case lltok::kw_readOnly:
8826       Lex.Lex();
8827       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8828         return true;
8829       FFlags.ReadOnly = Val;
8830       break;
8831     case lltok::kw_noRecurse:
8832       Lex.Lex();
8833       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8834         return true;
8835       FFlags.NoRecurse = Val;
8836       break;
8837     case lltok::kw_returnDoesNotAlias:
8838       Lex.Lex();
8839       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8840         return true;
8841       FFlags.ReturnDoesNotAlias = Val;
8842       break;
8843     case lltok::kw_noInline:
8844       Lex.Lex();
8845       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8846         return true;
8847       FFlags.NoInline = Val;
8848       break;
8849     case lltok::kw_alwaysInline:
8850       Lex.Lex();
8851       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8852         return true;
8853       FFlags.AlwaysInline = Val;
8854       break;
8855     default:
8856       return error(Lex.getLoc(), "expected function flag type");
8857     }
8858   } while (EatIfPresent(lltok::comma));
8859 
8860   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8861     return true;
8862 
8863   return false;
8864 }
8865 
8866 /// OptionalCalls
8867 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8868 /// Call ::= '(' 'callee' ':' GVReference
8869 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8870 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8871   assert(Lex.getKind() == lltok::kw_calls);
8872   Lex.Lex();
8873 
8874   if (parseToken(lltok::colon, "expected ':' in calls") |
8875       parseToken(lltok::lparen, "expected '(' in calls"))
8876     return true;
8877 
8878   IdToIndexMapType IdToIndexMap;
8879   // parse each call edge
8880   do {
8881     ValueInfo VI;
8882     if (parseToken(lltok::lparen, "expected '(' in call") ||
8883         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8884         parseToken(lltok::colon, "expected ':'"))
8885       return true;
8886 
8887     LocTy Loc = Lex.getLoc();
8888     unsigned GVId;
8889     if (parseGVReference(VI, GVId))
8890       return true;
8891 
8892     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8893     unsigned RelBF = 0;
8894     if (EatIfPresent(lltok::comma)) {
8895       // Expect either hotness or relbf
8896       if (EatIfPresent(lltok::kw_hotness)) {
8897         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8898           return true;
8899       } else {
8900         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8901             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8902           return true;
8903       }
8904     }
8905     // Keep track of the Call array index needing a forward reference.
8906     // We will save the location of the ValueInfo needing an update, but
8907     // can only do so once the std::vector is finalized.
8908     if (VI.getRef() == FwdVIRef)
8909       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8910     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8911 
8912     if (parseToken(lltok::rparen, "expected ')' in call"))
8913       return true;
8914   } while (EatIfPresent(lltok::comma));
8915 
8916   // Now that the Calls vector is finalized, it is safe to save the locations
8917   // of any forward GV references that need updating later.
8918   for (auto I : IdToIndexMap) {
8919     auto &Infos = ForwardRefValueInfos[I.first];
8920     for (auto P : I.second) {
8921       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8922              "Forward referenced ValueInfo expected to be empty");
8923       Infos.emplace_back(&Calls[P.first].first, P.second);
8924     }
8925   }
8926 
8927   if (parseToken(lltok::rparen, "expected ')' in calls"))
8928     return true;
8929 
8930   return false;
8931 }
8932 
8933 /// Hotness
8934 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8935 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8936   switch (Lex.getKind()) {
8937   case lltok::kw_unknown:
8938     Hotness = CalleeInfo::HotnessType::Unknown;
8939     break;
8940   case lltok::kw_cold:
8941     Hotness = CalleeInfo::HotnessType::Cold;
8942     break;
8943   case lltok::kw_none:
8944     Hotness = CalleeInfo::HotnessType::None;
8945     break;
8946   case lltok::kw_hot:
8947     Hotness = CalleeInfo::HotnessType::Hot;
8948     break;
8949   case lltok::kw_critical:
8950     Hotness = CalleeInfo::HotnessType::Critical;
8951     break;
8952   default:
8953     return error(Lex.getLoc(), "invalid call edge hotness");
8954   }
8955   Lex.Lex();
8956   return false;
8957 }
8958 
8959 /// OptionalVTableFuncs
8960 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8961 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8962 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8963   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8964   Lex.Lex();
8965 
8966   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8967       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8968     return true;
8969 
8970   IdToIndexMapType IdToIndexMap;
8971   // parse each virtual function pair
8972   do {
8973     ValueInfo VI;
8974     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8975         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8976         parseToken(lltok::colon, "expected ':'"))
8977       return true;
8978 
8979     LocTy Loc = Lex.getLoc();
8980     unsigned GVId;
8981     if (parseGVReference(VI, GVId))
8982       return true;
8983 
8984     uint64_t Offset;
8985     if (parseToken(lltok::comma, "expected comma") ||
8986         parseToken(lltok::kw_offset, "expected offset") ||
8987         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8988       return true;
8989 
8990     // Keep track of the VTableFuncs array index needing a forward reference.
8991     // We will save the location of the ValueInfo needing an update, but
8992     // can only do so once the std::vector is finalized.
8993     if (VI == EmptyVI)
8994       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8995     VTableFuncs.push_back({VI, Offset});
8996 
8997     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8998       return true;
8999   } while (EatIfPresent(lltok::comma));
9000 
9001   // Now that the VTableFuncs vector is finalized, it is safe to save the
9002   // locations of any forward GV references that need updating later.
9003   for (auto I : IdToIndexMap) {
9004     auto &Infos = ForwardRefValueInfos[I.first];
9005     for (auto P : I.second) {
9006       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9007              "Forward referenced ValueInfo expected to be empty");
9008       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9009     }
9010   }
9011 
9012   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9013     return true;
9014 
9015   return false;
9016 }
9017 
9018 /// ParamNo := 'param' ':' UInt64
9019 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9020   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9021       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9022     return true;
9023   return false;
9024 }
9025 
9026 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9027 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9028   APSInt Lower;
9029   APSInt Upper;
9030   auto ParseAPSInt = [&](APSInt &Val) {
9031     if (Lex.getKind() != lltok::APSInt)
9032       return tokError("expected integer");
9033     Val = Lex.getAPSIntVal();
9034     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9035     Val.setIsSigned(true);
9036     Lex.Lex();
9037     return false;
9038   };
9039   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9040       parseToken(lltok::colon, "expected ':' here") ||
9041       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9042       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9043       parseToken(lltok::rsquare, "expected ']' here"))
9044     return true;
9045 
9046   ++Upper;
9047   Range =
9048       (Lower == Upper && !Lower.isMaxValue())
9049           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9050           : ConstantRange(Lower, Upper);
9051 
9052   return false;
9053 }
9054 
9055 /// ParamAccessCall
9056 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9057 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9058                                     IdLocListType &IdLocList) {
9059   if (parseToken(lltok::lparen, "expected '(' here") ||
9060       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9061       parseToken(lltok::colon, "expected ':' here"))
9062     return true;
9063 
9064   unsigned GVId;
9065   ValueInfo VI;
9066   LocTy Loc = Lex.getLoc();
9067   if (parseGVReference(VI, GVId))
9068     return true;
9069 
9070   Call.Callee = VI;
9071   IdLocList.emplace_back(GVId, Loc);
9072 
9073   if (parseToken(lltok::comma, "expected ',' here") ||
9074       parseParamNo(Call.ParamNo) ||
9075       parseToken(lltok::comma, "expected ',' here") ||
9076       parseParamAccessOffset(Call.Offsets))
9077     return true;
9078 
9079   if (parseToken(lltok::rparen, "expected ')' here"))
9080     return true;
9081 
9082   return false;
9083 }
9084 
9085 /// ParamAccess
9086 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9087 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9088 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9089                                 IdLocListType &IdLocList) {
9090   if (parseToken(lltok::lparen, "expected '(' here") ||
9091       parseParamNo(Param.ParamNo) ||
9092       parseToken(lltok::comma, "expected ',' here") ||
9093       parseParamAccessOffset(Param.Use))
9094     return true;
9095 
9096   if (EatIfPresent(lltok::comma)) {
9097     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9098         parseToken(lltok::colon, "expected ':' here") ||
9099         parseToken(lltok::lparen, "expected '(' here"))
9100       return true;
9101     do {
9102       FunctionSummary::ParamAccess::Call Call;
9103       if (parseParamAccessCall(Call, IdLocList))
9104         return true;
9105       Param.Calls.push_back(Call);
9106     } while (EatIfPresent(lltok::comma));
9107 
9108     if (parseToken(lltok::rparen, "expected ')' here"))
9109       return true;
9110   }
9111 
9112   if (parseToken(lltok::rparen, "expected ')' here"))
9113     return true;
9114 
9115   return false;
9116 }
9117 
9118 /// OptionalParamAccesses
9119 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9120 bool LLParser::parseOptionalParamAccesses(
9121     std::vector<FunctionSummary::ParamAccess> &Params) {
9122   assert(Lex.getKind() == lltok::kw_params);
9123   Lex.Lex();
9124 
9125   if (parseToken(lltok::colon, "expected ':' here") ||
9126       parseToken(lltok::lparen, "expected '(' here"))
9127     return true;
9128 
9129   IdLocListType VContexts;
9130   size_t CallsNum = 0;
9131   do {
9132     FunctionSummary::ParamAccess ParamAccess;
9133     if (parseParamAccess(ParamAccess, VContexts))
9134       return true;
9135     CallsNum += ParamAccess.Calls.size();
9136     assert(VContexts.size() == CallsNum);
9137     Params.emplace_back(std::move(ParamAccess));
9138   } while (EatIfPresent(lltok::comma));
9139 
9140   if (parseToken(lltok::rparen, "expected ')' here"))
9141     return true;
9142 
9143   // Now that the Params is finalized, it is safe to save the locations
9144   // of any forward GV references that need updating later.
9145   IdLocListType::const_iterator ItContext = VContexts.begin();
9146   for (auto &PA : Params) {
9147     for (auto &C : PA.Calls) {
9148       if (C.Callee.getRef() == FwdVIRef)
9149         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9150                                                             ItContext->second);
9151       ++ItContext;
9152     }
9153   }
9154   assert(ItContext == VContexts.end());
9155 
9156   return false;
9157 }
9158 
9159 /// OptionalRefs
9160 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9161 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9162   assert(Lex.getKind() == lltok::kw_refs);
9163   Lex.Lex();
9164 
9165   if (parseToken(lltok::colon, "expected ':' in refs") ||
9166       parseToken(lltok::lparen, "expected '(' in refs"))
9167     return true;
9168 
9169   struct ValueContext {
9170     ValueInfo VI;
9171     unsigned GVId;
9172     LocTy Loc;
9173   };
9174   std::vector<ValueContext> VContexts;
9175   // parse each ref edge
9176   do {
9177     ValueContext VC;
9178     VC.Loc = Lex.getLoc();
9179     if (parseGVReference(VC.VI, VC.GVId))
9180       return true;
9181     VContexts.push_back(VC);
9182   } while (EatIfPresent(lltok::comma));
9183 
9184   // Sort value contexts so that ones with writeonly
9185   // and readonly ValueInfo  are at the end of VContexts vector.
9186   // See FunctionSummary::specialRefCounts()
9187   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9188     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9189   });
9190 
9191   IdToIndexMapType IdToIndexMap;
9192   for (auto &VC : VContexts) {
9193     // Keep track of the Refs array index needing a forward reference.
9194     // We will save the location of the ValueInfo needing an update, but
9195     // can only do so once the std::vector is finalized.
9196     if (VC.VI.getRef() == FwdVIRef)
9197       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9198     Refs.push_back(VC.VI);
9199   }
9200 
9201   // Now that the Refs vector is finalized, it is safe to save the locations
9202   // of any forward GV references that need updating later.
9203   for (auto I : IdToIndexMap) {
9204     auto &Infos = ForwardRefValueInfos[I.first];
9205     for (auto P : I.second) {
9206       assert(Refs[P.first].getRef() == FwdVIRef &&
9207              "Forward referenced ValueInfo expected to be empty");
9208       Infos.emplace_back(&Refs[P.first], P.second);
9209     }
9210   }
9211 
9212   if (parseToken(lltok::rparen, "expected ')' in refs"))
9213     return true;
9214 
9215   return false;
9216 }
9217 
9218 /// OptionalTypeIdInfo
9219 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9220 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9221 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9222 bool LLParser::parseOptionalTypeIdInfo(
9223     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9224   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9225   Lex.Lex();
9226 
9227   if (parseToken(lltok::colon, "expected ':' here") ||
9228       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9229     return true;
9230 
9231   do {
9232     switch (Lex.getKind()) {
9233     case lltok::kw_typeTests:
9234       if (parseTypeTests(TypeIdInfo.TypeTests))
9235         return true;
9236       break;
9237     case lltok::kw_typeTestAssumeVCalls:
9238       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9239                            TypeIdInfo.TypeTestAssumeVCalls))
9240         return true;
9241       break;
9242     case lltok::kw_typeCheckedLoadVCalls:
9243       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9244                            TypeIdInfo.TypeCheckedLoadVCalls))
9245         return true;
9246       break;
9247     case lltok::kw_typeTestAssumeConstVCalls:
9248       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9249                               TypeIdInfo.TypeTestAssumeConstVCalls))
9250         return true;
9251       break;
9252     case lltok::kw_typeCheckedLoadConstVCalls:
9253       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9254                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9255         return true;
9256       break;
9257     default:
9258       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9259     }
9260   } while (EatIfPresent(lltok::comma));
9261 
9262   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9263     return true;
9264 
9265   return false;
9266 }
9267 
9268 /// TypeTests
9269 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9270 ///         [',' (SummaryID | UInt64)]* ')'
9271 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9272   assert(Lex.getKind() == lltok::kw_typeTests);
9273   Lex.Lex();
9274 
9275   if (parseToken(lltok::colon, "expected ':' here") ||
9276       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9277     return true;
9278 
9279   IdToIndexMapType IdToIndexMap;
9280   do {
9281     GlobalValue::GUID GUID = 0;
9282     if (Lex.getKind() == lltok::SummaryID) {
9283       unsigned ID = Lex.getUIntVal();
9284       LocTy Loc = Lex.getLoc();
9285       // Keep track of the TypeTests array index needing a forward reference.
9286       // We will save the location of the GUID needing an update, but
9287       // can only do so once the std::vector is finalized.
9288       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9289       Lex.Lex();
9290     } else if (parseUInt64(GUID))
9291       return true;
9292     TypeTests.push_back(GUID);
9293   } while (EatIfPresent(lltok::comma));
9294 
9295   // Now that the TypeTests vector is finalized, it is safe to save the
9296   // locations of any forward GV references that need updating later.
9297   for (auto I : IdToIndexMap) {
9298     auto &Ids = ForwardRefTypeIds[I.first];
9299     for (auto P : I.second) {
9300       assert(TypeTests[P.first] == 0 &&
9301              "Forward referenced type id GUID expected to be 0");
9302       Ids.emplace_back(&TypeTests[P.first], P.second);
9303     }
9304   }
9305 
9306   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9307     return true;
9308 
9309   return false;
9310 }
9311 
9312 /// VFuncIdList
9313 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9314 bool LLParser::parseVFuncIdList(
9315     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9316   assert(Lex.getKind() == Kind);
9317   Lex.Lex();
9318 
9319   if (parseToken(lltok::colon, "expected ':' here") ||
9320       parseToken(lltok::lparen, "expected '(' here"))
9321     return true;
9322 
9323   IdToIndexMapType IdToIndexMap;
9324   do {
9325     FunctionSummary::VFuncId VFuncId;
9326     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9327       return true;
9328     VFuncIdList.push_back(VFuncId);
9329   } while (EatIfPresent(lltok::comma));
9330 
9331   if (parseToken(lltok::rparen, "expected ')' here"))
9332     return true;
9333 
9334   // Now that the VFuncIdList vector is finalized, it is safe to save the
9335   // locations of any forward GV references that need updating later.
9336   for (auto I : IdToIndexMap) {
9337     auto &Ids = ForwardRefTypeIds[I.first];
9338     for (auto P : I.second) {
9339       assert(VFuncIdList[P.first].GUID == 0 &&
9340              "Forward referenced type id GUID expected to be 0");
9341       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9342     }
9343   }
9344 
9345   return false;
9346 }
9347 
9348 /// ConstVCallList
9349 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9350 bool LLParser::parseConstVCallList(
9351     lltok::Kind Kind,
9352     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9353   assert(Lex.getKind() == Kind);
9354   Lex.Lex();
9355 
9356   if (parseToken(lltok::colon, "expected ':' here") ||
9357       parseToken(lltok::lparen, "expected '(' here"))
9358     return true;
9359 
9360   IdToIndexMapType IdToIndexMap;
9361   do {
9362     FunctionSummary::ConstVCall ConstVCall;
9363     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9364       return true;
9365     ConstVCallList.push_back(ConstVCall);
9366   } while (EatIfPresent(lltok::comma));
9367 
9368   if (parseToken(lltok::rparen, "expected ')' here"))
9369     return true;
9370 
9371   // Now that the ConstVCallList vector is finalized, it is safe to save the
9372   // locations of any forward GV references that need updating later.
9373   for (auto I : IdToIndexMap) {
9374     auto &Ids = ForwardRefTypeIds[I.first];
9375     for (auto P : I.second) {
9376       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9377              "Forward referenced type id GUID expected to be 0");
9378       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9379     }
9380   }
9381 
9382   return false;
9383 }
9384 
9385 /// ConstVCall
9386 ///   ::= '(' VFuncId ',' Args ')'
9387 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9388                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9389   if (parseToken(lltok::lparen, "expected '(' here") ||
9390       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9391     return true;
9392 
9393   if (EatIfPresent(lltok::comma))
9394     if (parseArgs(ConstVCall.Args))
9395       return true;
9396 
9397   if (parseToken(lltok::rparen, "expected ')' here"))
9398     return true;
9399 
9400   return false;
9401 }
9402 
9403 /// VFuncId
9404 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9405 ///         'offset' ':' UInt64 ')'
9406 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9407                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9408   assert(Lex.getKind() == lltok::kw_vFuncId);
9409   Lex.Lex();
9410 
9411   if (parseToken(lltok::colon, "expected ':' here") ||
9412       parseToken(lltok::lparen, "expected '(' here"))
9413     return true;
9414 
9415   if (Lex.getKind() == lltok::SummaryID) {
9416     VFuncId.GUID = 0;
9417     unsigned ID = Lex.getUIntVal();
9418     LocTy Loc = Lex.getLoc();
9419     // Keep track of the array index needing a forward reference.
9420     // We will save the location of the GUID needing an update, but
9421     // can only do so once the caller's std::vector is finalized.
9422     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9423     Lex.Lex();
9424   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9425              parseToken(lltok::colon, "expected ':' here") ||
9426              parseUInt64(VFuncId.GUID))
9427     return true;
9428 
9429   if (parseToken(lltok::comma, "expected ',' here") ||
9430       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9431       parseToken(lltok::colon, "expected ':' here") ||
9432       parseUInt64(VFuncId.Offset) ||
9433       parseToken(lltok::rparen, "expected ')' here"))
9434     return true;
9435 
9436   return false;
9437 }
9438 
9439 /// GVFlags
9440 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9441 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9442 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9443 ///         'canAutoHide' ':' Flag ',' ')'
9444 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9445   assert(Lex.getKind() == lltok::kw_flags);
9446   Lex.Lex();
9447 
9448   if (parseToken(lltok::colon, "expected ':' here") ||
9449       parseToken(lltok::lparen, "expected '(' here"))
9450     return true;
9451 
9452   do {
9453     unsigned Flag = 0;
9454     switch (Lex.getKind()) {
9455     case lltok::kw_linkage:
9456       Lex.Lex();
9457       if (parseToken(lltok::colon, "expected ':'"))
9458         return true;
9459       bool HasLinkage;
9460       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9461       assert(HasLinkage && "Linkage not optional in summary entry");
9462       Lex.Lex();
9463       break;
9464     case lltok::kw_visibility:
9465       Lex.Lex();
9466       if (parseToken(lltok::colon, "expected ':'"))
9467         return true;
9468       parseOptionalVisibility(Flag);
9469       GVFlags.Visibility = Flag;
9470       break;
9471     case lltok::kw_notEligibleToImport:
9472       Lex.Lex();
9473       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9474         return true;
9475       GVFlags.NotEligibleToImport = Flag;
9476       break;
9477     case lltok::kw_live:
9478       Lex.Lex();
9479       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9480         return true;
9481       GVFlags.Live = Flag;
9482       break;
9483     case lltok::kw_dsoLocal:
9484       Lex.Lex();
9485       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9486         return true;
9487       GVFlags.DSOLocal = Flag;
9488       break;
9489     case lltok::kw_canAutoHide:
9490       Lex.Lex();
9491       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9492         return true;
9493       GVFlags.CanAutoHide = Flag;
9494       break;
9495     default:
9496       return error(Lex.getLoc(), "expected gv flag type");
9497     }
9498   } while (EatIfPresent(lltok::comma));
9499 
9500   if (parseToken(lltok::rparen, "expected ')' here"))
9501     return true;
9502 
9503   return false;
9504 }
9505 
9506 /// GVarFlags
9507 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9508 ///                      ',' 'writeonly' ':' Flag
9509 ///                      ',' 'constant' ':' Flag ')'
9510 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9511   assert(Lex.getKind() == lltok::kw_varFlags);
9512   Lex.Lex();
9513 
9514   if (parseToken(lltok::colon, "expected ':' here") ||
9515       parseToken(lltok::lparen, "expected '(' here"))
9516     return true;
9517 
9518   auto ParseRest = [this](unsigned int &Val) {
9519     Lex.Lex();
9520     if (parseToken(lltok::colon, "expected ':'"))
9521       return true;
9522     return parseFlag(Val);
9523   };
9524 
9525   do {
9526     unsigned Flag = 0;
9527     switch (Lex.getKind()) {
9528     case lltok::kw_readonly:
9529       if (ParseRest(Flag))
9530         return true;
9531       GVarFlags.MaybeReadOnly = Flag;
9532       break;
9533     case lltok::kw_writeonly:
9534       if (ParseRest(Flag))
9535         return true;
9536       GVarFlags.MaybeWriteOnly = Flag;
9537       break;
9538     case lltok::kw_constant:
9539       if (ParseRest(Flag))
9540         return true;
9541       GVarFlags.Constant = Flag;
9542       break;
9543     case lltok::kw_vcall_visibility:
9544       if (ParseRest(Flag))
9545         return true;
9546       GVarFlags.VCallVisibility = Flag;
9547       break;
9548     default:
9549       return error(Lex.getLoc(), "expected gvar flag type");
9550     }
9551   } while (EatIfPresent(lltok::comma));
9552   return parseToken(lltok::rparen, "expected ')' here");
9553 }
9554 
9555 /// ModuleReference
9556 ///   ::= 'module' ':' UInt
9557 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9558   // parse module id.
9559   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9560       parseToken(lltok::colon, "expected ':' here") ||
9561       parseToken(lltok::SummaryID, "expected module ID"))
9562     return true;
9563 
9564   unsigned ModuleID = Lex.getUIntVal();
9565   auto I = ModuleIdMap.find(ModuleID);
9566   // We should have already parsed all module IDs
9567   assert(I != ModuleIdMap.end());
9568   ModulePath = I->second;
9569   return false;
9570 }
9571 
9572 /// GVReference
9573 ///   ::= SummaryID
9574 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9575   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9576   if (!ReadOnly)
9577     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9578   if (parseToken(lltok::SummaryID, "expected GV ID"))
9579     return true;
9580 
9581   GVId = Lex.getUIntVal();
9582   // Check if we already have a VI for this GV
9583   if (GVId < NumberedValueInfos.size()) {
9584     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9585     VI = NumberedValueInfos[GVId];
9586   } else
9587     // We will create a forward reference to the stored location.
9588     VI = ValueInfo(false, FwdVIRef);
9589 
9590   if (ReadOnly)
9591     VI.setReadOnly();
9592   if (WriteOnly)
9593     VI.setWriteOnly();
9594   return false;
9595 }
9596