1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   default:
836     result = Error(Lex.getLoc(), "unexpected summary kind");
837     break;
838   }
839   Lex.setIgnoreColonInIdentifiers(false);
840   return result;
841 }
842 
843 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
844   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
845          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
846 }
847 
848 // If there was an explicit dso_local, update GV. In the absence of an explicit
849 // dso_local we keep the default value.
850 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
851   if (DSOLocal)
852     GV.setDSOLocal(true);
853 }
854 
855 /// parseIndirectSymbol:
856 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
857 ///                     OptionalVisibility OptionalDLLStorageClass
858 ///                     OptionalThreadLocal OptionalUnnamedAddr
859 //                      'alias|ifunc' IndirectSymbol
860 ///
861 /// IndirectSymbol
862 ///   ::= TypeAndValue
863 ///
864 /// Everything through OptionalUnnamedAddr has already been parsed.
865 ///
866 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
867                                    unsigned L, unsigned Visibility,
868                                    unsigned DLLStorageClass, bool DSOLocal,
869                                    GlobalVariable::ThreadLocalMode TLM,
870                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
871   bool IsAlias;
872   if (Lex.getKind() == lltok::kw_alias)
873     IsAlias = true;
874   else if (Lex.getKind() == lltok::kw_ifunc)
875     IsAlias = false;
876   else
877     llvm_unreachable("Not an alias or ifunc!");
878   Lex.Lex();
879 
880   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
881 
882   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
883     return Error(NameLoc, "invalid linkage type for alias");
884 
885   if (!isValidVisibilityForLinkage(Visibility, L))
886     return Error(NameLoc,
887                  "symbol with local linkage must have default visibility");
888 
889   Type *Ty;
890   LocTy ExplicitTypeLoc = Lex.getLoc();
891   if (ParseType(Ty) ||
892       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
893     return true;
894 
895   Constant *Aliasee;
896   LocTy AliaseeLoc = Lex.getLoc();
897   if (Lex.getKind() != lltok::kw_bitcast &&
898       Lex.getKind() != lltok::kw_getelementptr &&
899       Lex.getKind() != lltok::kw_addrspacecast &&
900       Lex.getKind() != lltok::kw_inttoptr) {
901     if (ParseGlobalTypeAndValue(Aliasee))
902       return true;
903   } else {
904     // The bitcast dest type is not present, it is implied by the dest type.
905     ValID ID;
906     if (ParseValID(ID))
907       return true;
908     if (ID.Kind != ValID::t_Constant)
909       return Error(AliaseeLoc, "invalid aliasee");
910     Aliasee = ID.ConstantVal;
911   }
912 
913   Type *AliaseeType = Aliasee->getType();
914   auto *PTy = dyn_cast<PointerType>(AliaseeType);
915   if (!PTy)
916     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
917   unsigned AddrSpace = PTy->getAddressSpace();
918 
919   if (IsAlias && Ty != PTy->getElementType())
920     return Error(
921         ExplicitTypeLoc,
922         "explicit pointee type doesn't match operand's pointee type");
923 
924   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
925     return Error(
926         ExplicitTypeLoc,
927         "explicit pointee type should be a function type");
928 
929   GlobalValue *GVal = nullptr;
930 
931   // See if the alias was forward referenced, if so, prepare to replace the
932   // forward reference.
933   if (!Name.empty()) {
934     GVal = M->getNamedValue(Name);
935     if (GVal) {
936       if (!ForwardRefVals.erase(Name))
937         return Error(NameLoc, "redefinition of global '@" + Name + "'");
938     }
939   } else {
940     auto I = ForwardRefValIDs.find(NumberedVals.size());
941     if (I != ForwardRefValIDs.end()) {
942       GVal = I->second.first;
943       ForwardRefValIDs.erase(I);
944     }
945   }
946 
947   // Okay, create the alias but do not insert it into the module yet.
948   std::unique_ptr<GlobalIndirectSymbol> GA;
949   if (IsAlias)
950     GA.reset(GlobalAlias::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   else
954     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
955                                  (GlobalValue::LinkageTypes)Linkage, Name,
956                                  Aliasee, /*Parent*/ nullptr));
957   GA->setThreadLocalMode(TLM);
958   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
959   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
960   GA->setUnnamedAddr(UnnamedAddr);
961   maybeSetDSOLocal(DSOLocal, *GA);
962 
963   if (Name.empty())
964     NumberedVals.push_back(GA.get());
965 
966   if (GVal) {
967     // Verify that types agree.
968     if (GVal->getType() != GA->getType())
969       return Error(
970           ExplicitTypeLoc,
971           "forward reference and definition of alias have different types");
972 
973     // If they agree, just RAUW the old value with the alias and remove the
974     // forward ref info.
975     GVal->replaceAllUsesWith(GA.get());
976     GVal->eraseFromParent();
977   }
978 
979   // Insert into the module, we know its name won't collide now.
980   if (IsAlias)
981     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
982   else
983     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
984   assert(GA->getName() == Name && "Should not be a name conflict!");
985 
986   // The module owns this now
987   GA.release();
988 
989   return false;
990 }
991 
992 /// ParseGlobal
993 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
994 ///       OptionalVisibility OptionalDLLStorageClass
995 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
996 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
997 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
998 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
999 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1000 ///       Const OptionalAttrs
1001 ///
1002 /// Everything up to and including OptionalUnnamedAddr has been parsed
1003 /// already.
1004 ///
1005 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1006                            unsigned Linkage, bool HasLinkage,
1007                            unsigned Visibility, unsigned DLLStorageClass,
1008                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1009                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1010   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1011     return Error(NameLoc,
1012                  "symbol with local linkage must have default visibility");
1013 
1014   unsigned AddrSpace;
1015   bool IsConstant, IsExternallyInitialized;
1016   LocTy IsExternallyInitializedLoc;
1017   LocTy TyLoc;
1018 
1019   Type *Ty = nullptr;
1020   if (ParseOptionalAddrSpace(AddrSpace) ||
1021       ParseOptionalToken(lltok::kw_externally_initialized,
1022                          IsExternallyInitialized,
1023                          &IsExternallyInitializedLoc) ||
1024       ParseGlobalType(IsConstant) ||
1025       ParseType(Ty, TyLoc))
1026     return true;
1027 
1028   // If the linkage is specified and is external, then no initializer is
1029   // present.
1030   Constant *Init = nullptr;
1031   if (!HasLinkage ||
1032       !GlobalValue::isValidDeclarationLinkage(
1033           (GlobalValue::LinkageTypes)Linkage)) {
1034     if (ParseGlobalValue(Ty, Init))
1035       return true;
1036   }
1037 
1038   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1039     return Error(TyLoc, "invalid type for global variable");
1040 
1041   GlobalValue *GVal = nullptr;
1042 
1043   // See if the global was forward referenced, if so, use the global.
1044   if (!Name.empty()) {
1045     GVal = M->getNamedValue(Name);
1046     if (GVal) {
1047       if (!ForwardRefVals.erase(Name))
1048         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1049     }
1050   } else {
1051     auto I = ForwardRefValIDs.find(NumberedVals.size());
1052     if (I != ForwardRefValIDs.end()) {
1053       GVal = I->second.first;
1054       ForwardRefValIDs.erase(I);
1055     }
1056   }
1057 
1058   GlobalVariable *GV;
1059   if (!GVal) {
1060     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1061                             Name, nullptr, GlobalVariable::NotThreadLocal,
1062                             AddrSpace);
1063   } else {
1064     if (GVal->getValueType() != Ty)
1065       return Error(TyLoc,
1066             "forward reference and definition of global have different types");
1067 
1068     GV = cast<GlobalVariable>(GVal);
1069 
1070     // Move the forward-reference to the correct spot in the module.
1071     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1072   }
1073 
1074   if (Name.empty())
1075     NumberedVals.push_back(GV);
1076 
1077   // Set the parsed properties on the global.
1078   if (Init)
1079     GV->setInitializer(Init);
1080   GV->setConstant(IsConstant);
1081   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1082   maybeSetDSOLocal(DSOLocal, *GV);
1083   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1084   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1085   GV->setExternallyInitialized(IsExternallyInitialized);
1086   GV->setThreadLocalMode(TLM);
1087   GV->setUnnamedAddr(UnnamedAddr);
1088 
1089   // Parse attributes on the global.
1090   while (Lex.getKind() == lltok::comma) {
1091     Lex.Lex();
1092 
1093     if (Lex.getKind() == lltok::kw_section) {
1094       Lex.Lex();
1095       GV->setSection(Lex.getStrVal());
1096       if (ParseToken(lltok::StringConstant, "expected global section string"))
1097         return true;
1098     } else if (Lex.getKind() == lltok::kw_align) {
1099       unsigned Alignment;
1100       if (ParseOptionalAlignment(Alignment)) return true;
1101       GV->setAlignment(Alignment);
1102     } else if (Lex.getKind() == lltok::MetadataVar) {
1103       if (ParseGlobalObjectMetadataAttachment(*GV))
1104         return true;
1105     } else {
1106       Comdat *C;
1107       if (parseOptionalComdat(Name, C))
1108         return true;
1109       if (C)
1110         GV->setComdat(C);
1111       else
1112         return TokError("unknown global variable property!");
1113     }
1114   }
1115 
1116   AttrBuilder Attrs;
1117   LocTy BuiltinLoc;
1118   std::vector<unsigned> FwdRefAttrGrps;
1119   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1120     return true;
1121   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1122     GV->setAttributes(AttributeSet::get(Context, Attrs));
1123     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1124   }
1125 
1126   return false;
1127 }
1128 
1129 /// ParseUnnamedAttrGrp
1130 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1131 bool LLParser::ParseUnnamedAttrGrp() {
1132   assert(Lex.getKind() == lltok::kw_attributes);
1133   LocTy AttrGrpLoc = Lex.getLoc();
1134   Lex.Lex();
1135 
1136   if (Lex.getKind() != lltok::AttrGrpID)
1137     return TokError("expected attribute group id");
1138 
1139   unsigned VarID = Lex.getUIntVal();
1140   std::vector<unsigned> unused;
1141   LocTy BuiltinLoc;
1142   Lex.Lex();
1143 
1144   if (ParseToken(lltok::equal, "expected '=' here") ||
1145       ParseToken(lltok::lbrace, "expected '{' here") ||
1146       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1147                                  BuiltinLoc) ||
1148       ParseToken(lltok::rbrace, "expected end of attribute group"))
1149     return true;
1150 
1151   if (!NumberedAttrBuilders[VarID].hasAttributes())
1152     return Error(AttrGrpLoc, "attribute group has no attributes");
1153 
1154   return false;
1155 }
1156 
1157 /// ParseFnAttributeValuePairs
1158 ///   ::= <attr> | <attr> '=' <value>
1159 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1160                                           std::vector<unsigned> &FwdRefAttrGrps,
1161                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1162   bool HaveError = false;
1163 
1164   B.clear();
1165 
1166   while (true) {
1167     lltok::Kind Token = Lex.getKind();
1168     if (Token == lltok::kw_builtin)
1169       BuiltinLoc = Lex.getLoc();
1170     switch (Token) {
1171     default:
1172       if (!inAttrGrp) return HaveError;
1173       return Error(Lex.getLoc(), "unterminated attribute group");
1174     case lltok::rbrace:
1175       // Finished.
1176       return false;
1177 
1178     case lltok::AttrGrpID: {
1179       // Allow a function to reference an attribute group:
1180       //
1181       //   define void @foo() #1 { ... }
1182       if (inAttrGrp)
1183         HaveError |=
1184           Error(Lex.getLoc(),
1185               "cannot have an attribute group reference in an attribute group");
1186 
1187       unsigned AttrGrpNum = Lex.getUIntVal();
1188       if (inAttrGrp) break;
1189 
1190       // Save the reference to the attribute group. We'll fill it in later.
1191       FwdRefAttrGrps.push_back(AttrGrpNum);
1192       break;
1193     }
1194     // Target-dependent attributes:
1195     case lltok::StringConstant: {
1196       if (ParseStringAttribute(B))
1197         return true;
1198       continue;
1199     }
1200 
1201     // Target-independent attributes:
1202     case lltok::kw_align: {
1203       // As a hack, we allow function alignment to be initially parsed as an
1204       // attribute on a function declaration/definition or added to an attribute
1205       // group and later moved to the alignment field.
1206       unsigned Alignment;
1207       if (inAttrGrp) {
1208         Lex.Lex();
1209         if (ParseToken(lltok::equal, "expected '=' here") ||
1210             ParseUInt32(Alignment))
1211           return true;
1212       } else {
1213         if (ParseOptionalAlignment(Alignment))
1214           return true;
1215       }
1216       B.addAlignmentAttr(Alignment);
1217       continue;
1218     }
1219     case lltok::kw_alignstack: {
1220       unsigned Alignment;
1221       if (inAttrGrp) {
1222         Lex.Lex();
1223         if (ParseToken(lltok::equal, "expected '=' here") ||
1224             ParseUInt32(Alignment))
1225           return true;
1226       } else {
1227         if (ParseOptionalStackAlignment(Alignment))
1228           return true;
1229       }
1230       B.addStackAlignmentAttr(Alignment);
1231       continue;
1232     }
1233     case lltok::kw_allocsize: {
1234       unsigned ElemSizeArg;
1235       Optional<unsigned> NumElemsArg;
1236       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1237       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1238         return true;
1239       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1240       continue;
1241     }
1242     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1243     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1244     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1245     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1246     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1247     case lltok::kw_inaccessiblememonly:
1248       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1249     case lltok::kw_inaccessiblemem_or_argmemonly:
1250       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1251     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1252     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1253     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1254     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1255     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1256     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1257     case lltok::kw_noimplicitfloat:
1258       B.addAttribute(Attribute::NoImplicitFloat); break;
1259     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1260     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1261     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1262     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1263     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1264     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1265     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1266     case lltok::kw_optforfuzzing:
1267       B.addAttribute(Attribute::OptForFuzzing); break;
1268     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1269     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1270     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1271     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1272     case lltok::kw_returns_twice:
1273       B.addAttribute(Attribute::ReturnsTwice); break;
1274     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1275     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1276     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1277     case lltok::kw_sspstrong:
1278       B.addAttribute(Attribute::StackProtectStrong); break;
1279     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1280     case lltok::kw_shadowcallstack:
1281       B.addAttribute(Attribute::ShadowCallStack); break;
1282     case lltok::kw_sanitize_address:
1283       B.addAttribute(Attribute::SanitizeAddress); break;
1284     case lltok::kw_sanitize_hwaddress:
1285       B.addAttribute(Attribute::SanitizeHWAddress); break;
1286     case lltok::kw_sanitize_thread:
1287       B.addAttribute(Attribute::SanitizeThread); break;
1288     case lltok::kw_sanitize_memory:
1289       B.addAttribute(Attribute::SanitizeMemory); break;
1290     case lltok::kw_speculative_load_hardening:
1291       B.addAttribute(Attribute::SpeculativeLoadHardening);
1292       break;
1293     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1294     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1295     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1296 
1297     // Error handling.
1298     case lltok::kw_inreg:
1299     case lltok::kw_signext:
1300     case lltok::kw_zeroext:
1301       HaveError |=
1302         Error(Lex.getLoc(),
1303               "invalid use of attribute on a function");
1304       break;
1305     case lltok::kw_byval:
1306     case lltok::kw_dereferenceable:
1307     case lltok::kw_dereferenceable_or_null:
1308     case lltok::kw_inalloca:
1309     case lltok::kw_nest:
1310     case lltok::kw_noalias:
1311     case lltok::kw_nocapture:
1312     case lltok::kw_nonnull:
1313     case lltok::kw_returned:
1314     case lltok::kw_sret:
1315     case lltok::kw_swifterror:
1316     case lltok::kw_swiftself:
1317     case lltok::kw_immarg:
1318       HaveError |=
1319         Error(Lex.getLoc(),
1320               "invalid use of parameter-only attribute on a function");
1321       break;
1322     }
1323 
1324     Lex.Lex();
1325   }
1326 }
1327 
1328 //===----------------------------------------------------------------------===//
1329 // GlobalValue Reference/Resolution Routines.
1330 //===----------------------------------------------------------------------===//
1331 
1332 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1333                                               const std::string &Name) {
1334   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1335     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1336                             PTy->getAddressSpace(), Name, M);
1337   else
1338     return new GlobalVariable(*M, PTy->getElementType(), false,
1339                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1340                               nullptr, GlobalVariable::NotThreadLocal,
1341                               PTy->getAddressSpace());
1342 }
1343 
1344 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1345                                         Value *Val, bool IsCall) {
1346   if (Val->getType() == Ty)
1347     return Val;
1348   // For calls we also accept variables in the program address space.
1349   Type *SuggestedTy = Ty;
1350   if (IsCall && isa<PointerType>(Ty)) {
1351     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1352         M->getDataLayout().getProgramAddressSpace());
1353     SuggestedTy = TyInProgAS;
1354     if (Val->getType() == TyInProgAS)
1355       return Val;
1356   }
1357   if (Ty->isLabelTy())
1358     Error(Loc, "'" + Name + "' is not a basic block");
1359   else
1360     Error(Loc, "'" + Name + "' defined with type '" +
1361                    getTypeString(Val->getType()) + "' but expected '" +
1362                    getTypeString(SuggestedTy) + "'");
1363   return nullptr;
1364 }
1365 
1366 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1367 /// forward reference record if needed.  This can return null if the value
1368 /// exists but does not have the right type.
1369 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1370                                     LocTy Loc, bool IsCall) {
1371   PointerType *PTy = dyn_cast<PointerType>(Ty);
1372   if (!PTy) {
1373     Error(Loc, "global variable reference must have pointer type");
1374     return nullptr;
1375   }
1376 
1377   // Look this name up in the normal function symbol table.
1378   GlobalValue *Val =
1379     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1380 
1381   // If this is a forward reference for the value, see if we already created a
1382   // forward ref record.
1383   if (!Val) {
1384     auto I = ForwardRefVals.find(Name);
1385     if (I != ForwardRefVals.end())
1386       Val = I->second.first;
1387   }
1388 
1389   // If we have the value in the symbol table or fwd-ref table, return it.
1390   if (Val)
1391     return cast_or_null<GlobalValue>(
1392         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1393 
1394   // Otherwise, create a new forward reference for this value and remember it.
1395   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1396   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1397   return FwdVal;
1398 }
1399 
1400 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1401                                     bool IsCall) {
1402   PointerType *PTy = dyn_cast<PointerType>(Ty);
1403   if (!PTy) {
1404     Error(Loc, "global variable reference must have pointer type");
1405     return nullptr;
1406   }
1407 
1408   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1409 
1410   // If this is a forward reference for the value, see if we already created a
1411   // forward ref record.
1412   if (!Val) {
1413     auto I = ForwardRefValIDs.find(ID);
1414     if (I != ForwardRefValIDs.end())
1415       Val = I->second.first;
1416   }
1417 
1418   // If we have the value in the symbol table or fwd-ref table, return it.
1419   if (Val)
1420     return cast_or_null<GlobalValue>(
1421         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1422 
1423   // Otherwise, create a new forward reference for this value and remember it.
1424   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1425   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1426   return FwdVal;
1427 }
1428 
1429 //===----------------------------------------------------------------------===//
1430 // Comdat Reference/Resolution Routines.
1431 //===----------------------------------------------------------------------===//
1432 
1433 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1434   // Look this name up in the comdat symbol table.
1435   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1436   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1437   if (I != ComdatSymTab.end())
1438     return &I->second;
1439 
1440   // Otherwise, create a new forward reference for this value and remember it.
1441   Comdat *C = M->getOrInsertComdat(Name);
1442   ForwardRefComdats[Name] = Loc;
1443   return C;
1444 }
1445 
1446 //===----------------------------------------------------------------------===//
1447 // Helper Routines.
1448 //===----------------------------------------------------------------------===//
1449 
1450 /// ParseToken - If the current token has the specified kind, eat it and return
1451 /// success.  Otherwise, emit the specified error and return failure.
1452 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1453   if (Lex.getKind() != T)
1454     return TokError(ErrMsg);
1455   Lex.Lex();
1456   return false;
1457 }
1458 
1459 /// ParseStringConstant
1460 ///   ::= StringConstant
1461 bool LLParser::ParseStringConstant(std::string &Result) {
1462   if (Lex.getKind() != lltok::StringConstant)
1463     return TokError("expected string constant");
1464   Result = Lex.getStrVal();
1465   Lex.Lex();
1466   return false;
1467 }
1468 
1469 /// ParseUInt32
1470 ///   ::= uint32
1471 bool LLParser::ParseUInt32(uint32_t &Val) {
1472   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1473     return TokError("expected integer");
1474   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1475   if (Val64 != unsigned(Val64))
1476     return TokError("expected 32-bit integer (too large)");
1477   Val = Val64;
1478   Lex.Lex();
1479   return false;
1480 }
1481 
1482 /// ParseUInt64
1483 ///   ::= uint64
1484 bool LLParser::ParseUInt64(uint64_t &Val) {
1485   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1486     return TokError("expected integer");
1487   Val = Lex.getAPSIntVal().getLimitedValue();
1488   Lex.Lex();
1489   return false;
1490 }
1491 
1492 /// ParseTLSModel
1493 ///   := 'localdynamic'
1494 ///   := 'initialexec'
1495 ///   := 'localexec'
1496 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1497   switch (Lex.getKind()) {
1498     default:
1499       return TokError("expected localdynamic, initialexec or localexec");
1500     case lltok::kw_localdynamic:
1501       TLM = GlobalVariable::LocalDynamicTLSModel;
1502       break;
1503     case lltok::kw_initialexec:
1504       TLM = GlobalVariable::InitialExecTLSModel;
1505       break;
1506     case lltok::kw_localexec:
1507       TLM = GlobalVariable::LocalExecTLSModel;
1508       break;
1509   }
1510 
1511   Lex.Lex();
1512   return false;
1513 }
1514 
1515 /// ParseOptionalThreadLocal
1516 ///   := /*empty*/
1517 ///   := 'thread_local'
1518 ///   := 'thread_local' '(' tlsmodel ')'
1519 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1520   TLM = GlobalVariable::NotThreadLocal;
1521   if (!EatIfPresent(lltok::kw_thread_local))
1522     return false;
1523 
1524   TLM = GlobalVariable::GeneralDynamicTLSModel;
1525   if (Lex.getKind() == lltok::lparen) {
1526     Lex.Lex();
1527     return ParseTLSModel(TLM) ||
1528       ParseToken(lltok::rparen, "expected ')' after thread local model");
1529   }
1530   return false;
1531 }
1532 
1533 /// ParseOptionalAddrSpace
1534 ///   := /*empty*/
1535 ///   := 'addrspace' '(' uint32 ')'
1536 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1537   AddrSpace = DefaultAS;
1538   if (!EatIfPresent(lltok::kw_addrspace))
1539     return false;
1540   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1541          ParseUInt32(AddrSpace) ||
1542          ParseToken(lltok::rparen, "expected ')' in address space");
1543 }
1544 
1545 /// ParseStringAttribute
1546 ///   := StringConstant
1547 ///   := StringConstant '=' StringConstant
1548 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1549   std::string Attr = Lex.getStrVal();
1550   Lex.Lex();
1551   std::string Val;
1552   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1553     return true;
1554   B.addAttribute(Attr, Val);
1555   return false;
1556 }
1557 
1558 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1559 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1560   bool HaveError = false;
1561 
1562   B.clear();
1563 
1564   while (true) {
1565     lltok::Kind Token = Lex.getKind();
1566     switch (Token) {
1567     default:  // End of attributes.
1568       return HaveError;
1569     case lltok::StringConstant: {
1570       if (ParseStringAttribute(B))
1571         return true;
1572       continue;
1573     }
1574     case lltok::kw_align: {
1575       unsigned Alignment;
1576       if (ParseOptionalAlignment(Alignment))
1577         return true;
1578       B.addAlignmentAttr(Alignment);
1579       continue;
1580     }
1581     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1582     case lltok::kw_dereferenceable: {
1583       uint64_t Bytes;
1584       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1585         return true;
1586       B.addDereferenceableAttr(Bytes);
1587       continue;
1588     }
1589     case lltok::kw_dereferenceable_or_null: {
1590       uint64_t Bytes;
1591       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1592         return true;
1593       B.addDereferenceableOrNullAttr(Bytes);
1594       continue;
1595     }
1596     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1597     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1598     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1599     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1600     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1601     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1602     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1603     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1604     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1605     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1606     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1607     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1608     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1609     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1610     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1611     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1612 
1613     case lltok::kw_alignstack:
1614     case lltok::kw_alwaysinline:
1615     case lltok::kw_argmemonly:
1616     case lltok::kw_builtin:
1617     case lltok::kw_inlinehint:
1618     case lltok::kw_jumptable:
1619     case lltok::kw_minsize:
1620     case lltok::kw_naked:
1621     case lltok::kw_nobuiltin:
1622     case lltok::kw_noduplicate:
1623     case lltok::kw_noimplicitfloat:
1624     case lltok::kw_noinline:
1625     case lltok::kw_nonlazybind:
1626     case lltok::kw_noredzone:
1627     case lltok::kw_noreturn:
1628     case lltok::kw_nocf_check:
1629     case lltok::kw_nounwind:
1630     case lltok::kw_optforfuzzing:
1631     case lltok::kw_optnone:
1632     case lltok::kw_optsize:
1633     case lltok::kw_returns_twice:
1634     case lltok::kw_sanitize_address:
1635     case lltok::kw_sanitize_hwaddress:
1636     case lltok::kw_sanitize_memory:
1637     case lltok::kw_sanitize_thread:
1638     case lltok::kw_speculative_load_hardening:
1639     case lltok::kw_ssp:
1640     case lltok::kw_sspreq:
1641     case lltok::kw_sspstrong:
1642     case lltok::kw_safestack:
1643     case lltok::kw_shadowcallstack:
1644     case lltok::kw_strictfp:
1645     case lltok::kw_uwtable:
1646       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1647       break;
1648     }
1649 
1650     Lex.Lex();
1651   }
1652 }
1653 
1654 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1655 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1656   bool HaveError = false;
1657 
1658   B.clear();
1659 
1660   while (true) {
1661     lltok::Kind Token = Lex.getKind();
1662     switch (Token) {
1663     default:  // End of attributes.
1664       return HaveError;
1665     case lltok::StringConstant: {
1666       if (ParseStringAttribute(B))
1667         return true;
1668       continue;
1669     }
1670     case lltok::kw_dereferenceable: {
1671       uint64_t Bytes;
1672       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1673         return true;
1674       B.addDereferenceableAttr(Bytes);
1675       continue;
1676     }
1677     case lltok::kw_dereferenceable_or_null: {
1678       uint64_t Bytes;
1679       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1680         return true;
1681       B.addDereferenceableOrNullAttr(Bytes);
1682       continue;
1683     }
1684     case lltok::kw_align: {
1685       unsigned Alignment;
1686       if (ParseOptionalAlignment(Alignment))
1687         return true;
1688       B.addAlignmentAttr(Alignment);
1689       continue;
1690     }
1691     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1692     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1693     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1694     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1695     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1696 
1697     // Error handling.
1698     case lltok::kw_byval:
1699     case lltok::kw_inalloca:
1700     case lltok::kw_nest:
1701     case lltok::kw_nocapture:
1702     case lltok::kw_returned:
1703     case lltok::kw_sret:
1704     case lltok::kw_swifterror:
1705     case lltok::kw_swiftself:
1706     case lltok::kw_immarg:
1707       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1708       break;
1709 
1710     case lltok::kw_alignstack:
1711     case lltok::kw_alwaysinline:
1712     case lltok::kw_argmemonly:
1713     case lltok::kw_builtin:
1714     case lltok::kw_cold:
1715     case lltok::kw_inlinehint:
1716     case lltok::kw_jumptable:
1717     case lltok::kw_minsize:
1718     case lltok::kw_naked:
1719     case lltok::kw_nobuiltin:
1720     case lltok::kw_noduplicate:
1721     case lltok::kw_noimplicitfloat:
1722     case lltok::kw_noinline:
1723     case lltok::kw_nonlazybind:
1724     case lltok::kw_noredzone:
1725     case lltok::kw_noreturn:
1726     case lltok::kw_nocf_check:
1727     case lltok::kw_nounwind:
1728     case lltok::kw_optforfuzzing:
1729     case lltok::kw_optnone:
1730     case lltok::kw_optsize:
1731     case lltok::kw_returns_twice:
1732     case lltok::kw_sanitize_address:
1733     case lltok::kw_sanitize_hwaddress:
1734     case lltok::kw_sanitize_memory:
1735     case lltok::kw_sanitize_thread:
1736     case lltok::kw_speculative_load_hardening:
1737     case lltok::kw_ssp:
1738     case lltok::kw_sspreq:
1739     case lltok::kw_sspstrong:
1740     case lltok::kw_safestack:
1741     case lltok::kw_shadowcallstack:
1742     case lltok::kw_strictfp:
1743     case lltok::kw_uwtable:
1744       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1745       break;
1746 
1747     case lltok::kw_readnone:
1748     case lltok::kw_readonly:
1749       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1750     }
1751 
1752     Lex.Lex();
1753   }
1754 }
1755 
1756 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1757   HasLinkage = true;
1758   switch (Kind) {
1759   default:
1760     HasLinkage = false;
1761     return GlobalValue::ExternalLinkage;
1762   case lltok::kw_private:
1763     return GlobalValue::PrivateLinkage;
1764   case lltok::kw_internal:
1765     return GlobalValue::InternalLinkage;
1766   case lltok::kw_weak:
1767     return GlobalValue::WeakAnyLinkage;
1768   case lltok::kw_weak_odr:
1769     return GlobalValue::WeakODRLinkage;
1770   case lltok::kw_linkonce:
1771     return GlobalValue::LinkOnceAnyLinkage;
1772   case lltok::kw_linkonce_odr:
1773     return GlobalValue::LinkOnceODRLinkage;
1774   case lltok::kw_available_externally:
1775     return GlobalValue::AvailableExternallyLinkage;
1776   case lltok::kw_appending:
1777     return GlobalValue::AppendingLinkage;
1778   case lltok::kw_common:
1779     return GlobalValue::CommonLinkage;
1780   case lltok::kw_extern_weak:
1781     return GlobalValue::ExternalWeakLinkage;
1782   case lltok::kw_external:
1783     return GlobalValue::ExternalLinkage;
1784   }
1785 }
1786 
1787 /// ParseOptionalLinkage
1788 ///   ::= /*empty*/
1789 ///   ::= 'private'
1790 ///   ::= 'internal'
1791 ///   ::= 'weak'
1792 ///   ::= 'weak_odr'
1793 ///   ::= 'linkonce'
1794 ///   ::= 'linkonce_odr'
1795 ///   ::= 'available_externally'
1796 ///   ::= 'appending'
1797 ///   ::= 'common'
1798 ///   ::= 'extern_weak'
1799 ///   ::= 'external'
1800 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1801                                     unsigned &Visibility,
1802                                     unsigned &DLLStorageClass,
1803                                     bool &DSOLocal) {
1804   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1805   if (HasLinkage)
1806     Lex.Lex();
1807   ParseOptionalDSOLocal(DSOLocal);
1808   ParseOptionalVisibility(Visibility);
1809   ParseOptionalDLLStorageClass(DLLStorageClass);
1810 
1811   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1812     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1813   }
1814 
1815   return false;
1816 }
1817 
1818 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1819   switch (Lex.getKind()) {
1820   default:
1821     DSOLocal = false;
1822     break;
1823   case lltok::kw_dso_local:
1824     DSOLocal = true;
1825     Lex.Lex();
1826     break;
1827   case lltok::kw_dso_preemptable:
1828     DSOLocal = false;
1829     Lex.Lex();
1830     break;
1831   }
1832 }
1833 
1834 /// ParseOptionalVisibility
1835 ///   ::= /*empty*/
1836 ///   ::= 'default'
1837 ///   ::= 'hidden'
1838 ///   ::= 'protected'
1839 ///
1840 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1841   switch (Lex.getKind()) {
1842   default:
1843     Res = GlobalValue::DefaultVisibility;
1844     return;
1845   case lltok::kw_default:
1846     Res = GlobalValue::DefaultVisibility;
1847     break;
1848   case lltok::kw_hidden:
1849     Res = GlobalValue::HiddenVisibility;
1850     break;
1851   case lltok::kw_protected:
1852     Res = GlobalValue::ProtectedVisibility;
1853     break;
1854   }
1855   Lex.Lex();
1856 }
1857 
1858 /// ParseOptionalDLLStorageClass
1859 ///   ::= /*empty*/
1860 ///   ::= 'dllimport'
1861 ///   ::= 'dllexport'
1862 ///
1863 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1864   switch (Lex.getKind()) {
1865   default:
1866     Res = GlobalValue::DefaultStorageClass;
1867     return;
1868   case lltok::kw_dllimport:
1869     Res = GlobalValue::DLLImportStorageClass;
1870     break;
1871   case lltok::kw_dllexport:
1872     Res = GlobalValue::DLLExportStorageClass;
1873     break;
1874   }
1875   Lex.Lex();
1876 }
1877 
1878 /// ParseOptionalCallingConv
1879 ///   ::= /*empty*/
1880 ///   ::= 'ccc'
1881 ///   ::= 'fastcc'
1882 ///   ::= 'intel_ocl_bicc'
1883 ///   ::= 'coldcc'
1884 ///   ::= 'x86_stdcallcc'
1885 ///   ::= 'x86_fastcallcc'
1886 ///   ::= 'x86_thiscallcc'
1887 ///   ::= 'x86_vectorcallcc'
1888 ///   ::= 'arm_apcscc'
1889 ///   ::= 'arm_aapcscc'
1890 ///   ::= 'arm_aapcs_vfpcc'
1891 ///   ::= 'aarch64_vector_pcs'
1892 ///   ::= 'msp430_intrcc'
1893 ///   ::= 'avr_intrcc'
1894 ///   ::= 'avr_signalcc'
1895 ///   ::= 'ptx_kernel'
1896 ///   ::= 'ptx_device'
1897 ///   ::= 'spir_func'
1898 ///   ::= 'spir_kernel'
1899 ///   ::= 'x86_64_sysvcc'
1900 ///   ::= 'win64cc'
1901 ///   ::= 'webkit_jscc'
1902 ///   ::= 'anyregcc'
1903 ///   ::= 'preserve_mostcc'
1904 ///   ::= 'preserve_allcc'
1905 ///   ::= 'ghccc'
1906 ///   ::= 'swiftcc'
1907 ///   ::= 'x86_intrcc'
1908 ///   ::= 'hhvmcc'
1909 ///   ::= 'hhvm_ccc'
1910 ///   ::= 'cxx_fast_tlscc'
1911 ///   ::= 'amdgpu_vs'
1912 ///   ::= 'amdgpu_ls'
1913 ///   ::= 'amdgpu_hs'
1914 ///   ::= 'amdgpu_es'
1915 ///   ::= 'amdgpu_gs'
1916 ///   ::= 'amdgpu_ps'
1917 ///   ::= 'amdgpu_cs'
1918 ///   ::= 'amdgpu_kernel'
1919 ///   ::= 'cc' UINT
1920 ///
1921 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1922   switch (Lex.getKind()) {
1923   default:                       CC = CallingConv::C; return false;
1924   case lltok::kw_ccc:            CC = CallingConv::C; break;
1925   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1926   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1927   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1928   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1929   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1930   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1931   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1932   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1933   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1934   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1935   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1936   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1937   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1938   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1939   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1940   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1941   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1942   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1943   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1944   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1945   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1946   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1947   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1948   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1949   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1950   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1951   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1952   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1953   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1954   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1955   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1956   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1957   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1958   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1959   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1960   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1961   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1962   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1963   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1964   case lltok::kw_cc: {
1965       Lex.Lex();
1966       return ParseUInt32(CC);
1967     }
1968   }
1969 
1970   Lex.Lex();
1971   return false;
1972 }
1973 
1974 /// ParseMetadataAttachment
1975 ///   ::= !dbg !42
1976 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1977   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1978 
1979   std::string Name = Lex.getStrVal();
1980   Kind = M->getMDKindID(Name);
1981   Lex.Lex();
1982 
1983   return ParseMDNode(MD);
1984 }
1985 
1986 /// ParseInstructionMetadata
1987 ///   ::= !dbg !42 (',' !dbg !57)*
1988 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1989   do {
1990     if (Lex.getKind() != lltok::MetadataVar)
1991       return TokError("expected metadata after comma");
1992 
1993     unsigned MDK;
1994     MDNode *N;
1995     if (ParseMetadataAttachment(MDK, N))
1996       return true;
1997 
1998     Inst.setMetadata(MDK, N);
1999     if (MDK == LLVMContext::MD_tbaa)
2000       InstsWithTBAATag.push_back(&Inst);
2001 
2002     // If this is the end of the list, we're done.
2003   } while (EatIfPresent(lltok::comma));
2004   return false;
2005 }
2006 
2007 /// ParseGlobalObjectMetadataAttachment
2008 ///   ::= !dbg !57
2009 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2010   unsigned MDK;
2011   MDNode *N;
2012   if (ParseMetadataAttachment(MDK, N))
2013     return true;
2014 
2015   GO.addMetadata(MDK, *N);
2016   return false;
2017 }
2018 
2019 /// ParseOptionalFunctionMetadata
2020 ///   ::= (!dbg !57)*
2021 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2022   while (Lex.getKind() == lltok::MetadataVar)
2023     if (ParseGlobalObjectMetadataAttachment(F))
2024       return true;
2025   return false;
2026 }
2027 
2028 /// ParseOptionalAlignment
2029 ///   ::= /* empty */
2030 ///   ::= 'align' 4
2031 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2032   Alignment = 0;
2033   if (!EatIfPresent(lltok::kw_align))
2034     return false;
2035   LocTy AlignLoc = Lex.getLoc();
2036   if (ParseUInt32(Alignment)) return true;
2037   if (!isPowerOf2_32(Alignment))
2038     return Error(AlignLoc, "alignment is not a power of two");
2039   if (Alignment > Value::MaximumAlignment)
2040     return Error(AlignLoc, "huge alignments are not supported yet");
2041   return false;
2042 }
2043 
2044 /// ParseOptionalDerefAttrBytes
2045 ///   ::= /* empty */
2046 ///   ::= AttrKind '(' 4 ')'
2047 ///
2048 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2049 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2050                                            uint64_t &Bytes) {
2051   assert((AttrKind == lltok::kw_dereferenceable ||
2052           AttrKind == lltok::kw_dereferenceable_or_null) &&
2053          "contract!");
2054 
2055   Bytes = 0;
2056   if (!EatIfPresent(AttrKind))
2057     return false;
2058   LocTy ParenLoc = Lex.getLoc();
2059   if (!EatIfPresent(lltok::lparen))
2060     return Error(ParenLoc, "expected '('");
2061   LocTy DerefLoc = Lex.getLoc();
2062   if (ParseUInt64(Bytes)) return true;
2063   ParenLoc = Lex.getLoc();
2064   if (!EatIfPresent(lltok::rparen))
2065     return Error(ParenLoc, "expected ')'");
2066   if (!Bytes)
2067     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2068   return false;
2069 }
2070 
2071 /// ParseOptionalCommaAlign
2072 ///   ::=
2073 ///   ::= ',' align 4
2074 ///
2075 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2076 /// end.
2077 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2078                                        bool &AteExtraComma) {
2079   AteExtraComma = false;
2080   while (EatIfPresent(lltok::comma)) {
2081     // Metadata at the end is an early exit.
2082     if (Lex.getKind() == lltok::MetadataVar) {
2083       AteExtraComma = true;
2084       return false;
2085     }
2086 
2087     if (Lex.getKind() != lltok::kw_align)
2088       return Error(Lex.getLoc(), "expected metadata or 'align'");
2089 
2090     if (ParseOptionalAlignment(Alignment)) return true;
2091   }
2092 
2093   return false;
2094 }
2095 
2096 /// ParseOptionalCommaAddrSpace
2097 ///   ::=
2098 ///   ::= ',' addrspace(1)
2099 ///
2100 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2101 /// end.
2102 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2103                                            LocTy &Loc,
2104                                            bool &AteExtraComma) {
2105   AteExtraComma = false;
2106   while (EatIfPresent(lltok::comma)) {
2107     // Metadata at the end is an early exit.
2108     if (Lex.getKind() == lltok::MetadataVar) {
2109       AteExtraComma = true;
2110       return false;
2111     }
2112 
2113     Loc = Lex.getLoc();
2114     if (Lex.getKind() != lltok::kw_addrspace)
2115       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2116 
2117     if (ParseOptionalAddrSpace(AddrSpace))
2118       return true;
2119   }
2120 
2121   return false;
2122 }
2123 
2124 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2125                                        Optional<unsigned> &HowManyArg) {
2126   Lex.Lex();
2127 
2128   auto StartParen = Lex.getLoc();
2129   if (!EatIfPresent(lltok::lparen))
2130     return Error(StartParen, "expected '('");
2131 
2132   if (ParseUInt32(BaseSizeArg))
2133     return true;
2134 
2135   if (EatIfPresent(lltok::comma)) {
2136     auto HowManyAt = Lex.getLoc();
2137     unsigned HowMany;
2138     if (ParseUInt32(HowMany))
2139       return true;
2140     if (HowMany == BaseSizeArg)
2141       return Error(HowManyAt,
2142                    "'allocsize' indices can't refer to the same parameter");
2143     HowManyArg = HowMany;
2144   } else
2145     HowManyArg = None;
2146 
2147   auto EndParen = Lex.getLoc();
2148   if (!EatIfPresent(lltok::rparen))
2149     return Error(EndParen, "expected ')'");
2150   return false;
2151 }
2152 
2153 /// ParseScopeAndOrdering
2154 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2155 ///   else: ::=
2156 ///
2157 /// This sets Scope and Ordering to the parsed values.
2158 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2159                                      AtomicOrdering &Ordering) {
2160   if (!isAtomic)
2161     return false;
2162 
2163   return ParseScope(SSID) || ParseOrdering(Ordering);
2164 }
2165 
2166 /// ParseScope
2167 ///   ::= syncscope("singlethread" | "<target scope>")?
2168 ///
2169 /// This sets synchronization scope ID to the ID of the parsed value.
2170 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2171   SSID = SyncScope::System;
2172   if (EatIfPresent(lltok::kw_syncscope)) {
2173     auto StartParenAt = Lex.getLoc();
2174     if (!EatIfPresent(lltok::lparen))
2175       return Error(StartParenAt, "Expected '(' in syncscope");
2176 
2177     std::string SSN;
2178     auto SSNAt = Lex.getLoc();
2179     if (ParseStringConstant(SSN))
2180       return Error(SSNAt, "Expected synchronization scope name");
2181 
2182     auto EndParenAt = Lex.getLoc();
2183     if (!EatIfPresent(lltok::rparen))
2184       return Error(EndParenAt, "Expected ')' in syncscope");
2185 
2186     SSID = Context.getOrInsertSyncScopeID(SSN);
2187   }
2188 
2189   return false;
2190 }
2191 
2192 /// ParseOrdering
2193 ///   ::= AtomicOrdering
2194 ///
2195 /// This sets Ordering to the parsed value.
2196 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2197   switch (Lex.getKind()) {
2198   default: return TokError("Expected ordering on atomic instruction");
2199   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2200   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2201   // Not specified yet:
2202   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2203   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2204   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2205   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2206   case lltok::kw_seq_cst:
2207     Ordering = AtomicOrdering::SequentiallyConsistent;
2208     break;
2209   }
2210   Lex.Lex();
2211   return false;
2212 }
2213 
2214 /// ParseOptionalStackAlignment
2215 ///   ::= /* empty */
2216 ///   ::= 'alignstack' '(' 4 ')'
2217 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2218   Alignment = 0;
2219   if (!EatIfPresent(lltok::kw_alignstack))
2220     return false;
2221   LocTy ParenLoc = Lex.getLoc();
2222   if (!EatIfPresent(lltok::lparen))
2223     return Error(ParenLoc, "expected '('");
2224   LocTy AlignLoc = Lex.getLoc();
2225   if (ParseUInt32(Alignment)) return true;
2226   ParenLoc = Lex.getLoc();
2227   if (!EatIfPresent(lltok::rparen))
2228     return Error(ParenLoc, "expected ')'");
2229   if (!isPowerOf2_32(Alignment))
2230     return Error(AlignLoc, "stack alignment is not a power of two");
2231   return false;
2232 }
2233 
2234 /// ParseIndexList - This parses the index list for an insert/extractvalue
2235 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2236 /// comma at the end of the line and find that it is followed by metadata.
2237 /// Clients that don't allow metadata can call the version of this function that
2238 /// only takes one argument.
2239 ///
2240 /// ParseIndexList
2241 ///    ::=  (',' uint32)+
2242 ///
2243 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2244                               bool &AteExtraComma) {
2245   AteExtraComma = false;
2246 
2247   if (Lex.getKind() != lltok::comma)
2248     return TokError("expected ',' as start of index list");
2249 
2250   while (EatIfPresent(lltok::comma)) {
2251     if (Lex.getKind() == lltok::MetadataVar) {
2252       if (Indices.empty()) return TokError("expected index");
2253       AteExtraComma = true;
2254       return false;
2255     }
2256     unsigned Idx = 0;
2257     if (ParseUInt32(Idx)) return true;
2258     Indices.push_back(Idx);
2259   }
2260 
2261   return false;
2262 }
2263 
2264 //===----------------------------------------------------------------------===//
2265 // Type Parsing.
2266 //===----------------------------------------------------------------------===//
2267 
2268 /// ParseType - Parse a type.
2269 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2270   SMLoc TypeLoc = Lex.getLoc();
2271   switch (Lex.getKind()) {
2272   default:
2273     return TokError(Msg);
2274   case lltok::Type:
2275     // Type ::= 'float' | 'void' (etc)
2276     Result = Lex.getTyVal();
2277     Lex.Lex();
2278     break;
2279   case lltok::lbrace:
2280     // Type ::= StructType
2281     if (ParseAnonStructType(Result, false))
2282       return true;
2283     break;
2284   case lltok::lsquare:
2285     // Type ::= '[' ... ']'
2286     Lex.Lex(); // eat the lsquare.
2287     if (ParseArrayVectorType(Result, false))
2288       return true;
2289     break;
2290   case lltok::less: // Either vector or packed struct.
2291     // Type ::= '<' ... '>'
2292     Lex.Lex();
2293     if (Lex.getKind() == lltok::lbrace) {
2294       if (ParseAnonStructType(Result, true) ||
2295           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2296         return true;
2297     } else if (ParseArrayVectorType(Result, true))
2298       return true;
2299     break;
2300   case lltok::LocalVar: {
2301     // Type ::= %foo
2302     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2303 
2304     // If the type hasn't been defined yet, create a forward definition and
2305     // remember where that forward def'n was seen (in case it never is defined).
2306     if (!Entry.first) {
2307       Entry.first = StructType::create(Context, Lex.getStrVal());
2308       Entry.second = Lex.getLoc();
2309     }
2310     Result = Entry.first;
2311     Lex.Lex();
2312     break;
2313   }
2314 
2315   case lltok::LocalVarID: {
2316     // Type ::= %4
2317     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2318 
2319     // If the type hasn't been defined yet, create a forward definition and
2320     // remember where that forward def'n was seen (in case it never is defined).
2321     if (!Entry.first) {
2322       Entry.first = StructType::create(Context);
2323       Entry.second = Lex.getLoc();
2324     }
2325     Result = Entry.first;
2326     Lex.Lex();
2327     break;
2328   }
2329   }
2330 
2331   // Parse the type suffixes.
2332   while (true) {
2333     switch (Lex.getKind()) {
2334     // End of type.
2335     default:
2336       if (!AllowVoid && Result->isVoidTy())
2337         return Error(TypeLoc, "void type only allowed for function results");
2338       return false;
2339 
2340     // Type ::= Type '*'
2341     case lltok::star:
2342       if (Result->isLabelTy())
2343         return TokError("basic block pointers are invalid");
2344       if (Result->isVoidTy())
2345         return TokError("pointers to void are invalid - use i8* instead");
2346       if (!PointerType::isValidElementType(Result))
2347         return TokError("pointer to this type is invalid");
2348       Result = PointerType::getUnqual(Result);
2349       Lex.Lex();
2350       break;
2351 
2352     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2353     case lltok::kw_addrspace: {
2354       if (Result->isLabelTy())
2355         return TokError("basic block pointers are invalid");
2356       if (Result->isVoidTy())
2357         return TokError("pointers to void are invalid; use i8* instead");
2358       if (!PointerType::isValidElementType(Result))
2359         return TokError("pointer to this type is invalid");
2360       unsigned AddrSpace;
2361       if (ParseOptionalAddrSpace(AddrSpace) ||
2362           ParseToken(lltok::star, "expected '*' in address space"))
2363         return true;
2364 
2365       Result = PointerType::get(Result, AddrSpace);
2366       break;
2367     }
2368 
2369     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2370     case lltok::lparen:
2371       if (ParseFunctionType(Result))
2372         return true;
2373       break;
2374     }
2375   }
2376 }
2377 
2378 /// ParseParameterList
2379 ///    ::= '(' ')'
2380 ///    ::= '(' Arg (',' Arg)* ')'
2381 ///  Arg
2382 ///    ::= Type OptionalAttributes Value OptionalAttributes
2383 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2384                                   PerFunctionState &PFS, bool IsMustTailCall,
2385                                   bool InVarArgsFunc) {
2386   if (ParseToken(lltok::lparen, "expected '(' in call"))
2387     return true;
2388 
2389   while (Lex.getKind() != lltok::rparen) {
2390     // If this isn't the first argument, we need a comma.
2391     if (!ArgList.empty() &&
2392         ParseToken(lltok::comma, "expected ',' in argument list"))
2393       return true;
2394 
2395     // Parse an ellipsis if this is a musttail call in a variadic function.
2396     if (Lex.getKind() == lltok::dotdotdot) {
2397       const char *Msg = "unexpected ellipsis in argument list for ";
2398       if (!IsMustTailCall)
2399         return TokError(Twine(Msg) + "non-musttail call");
2400       if (!InVarArgsFunc)
2401         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2402       Lex.Lex();  // Lex the '...', it is purely for readability.
2403       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2404     }
2405 
2406     // Parse the argument.
2407     LocTy ArgLoc;
2408     Type *ArgTy = nullptr;
2409     AttrBuilder ArgAttrs;
2410     Value *V;
2411     if (ParseType(ArgTy, ArgLoc))
2412       return true;
2413 
2414     if (ArgTy->isMetadataTy()) {
2415       if (ParseMetadataAsValue(V, PFS))
2416         return true;
2417     } else {
2418       // Otherwise, handle normal operands.
2419       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2420         return true;
2421     }
2422     ArgList.push_back(ParamInfo(
2423         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2424   }
2425 
2426   if (IsMustTailCall && InVarArgsFunc)
2427     return TokError("expected '...' at end of argument list for musttail call "
2428                     "in varargs function");
2429 
2430   Lex.Lex();  // Lex the ')'.
2431   return false;
2432 }
2433 
2434 /// ParseOptionalOperandBundles
2435 ///    ::= /*empty*/
2436 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2437 ///
2438 /// OperandBundle
2439 ///    ::= bundle-tag '(' ')'
2440 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2441 ///
2442 /// bundle-tag ::= String Constant
2443 bool LLParser::ParseOptionalOperandBundles(
2444     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2445   LocTy BeginLoc = Lex.getLoc();
2446   if (!EatIfPresent(lltok::lsquare))
2447     return false;
2448 
2449   while (Lex.getKind() != lltok::rsquare) {
2450     // If this isn't the first operand bundle, we need a comma.
2451     if (!BundleList.empty() &&
2452         ParseToken(lltok::comma, "expected ',' in input list"))
2453       return true;
2454 
2455     std::string Tag;
2456     if (ParseStringConstant(Tag))
2457       return true;
2458 
2459     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2460       return true;
2461 
2462     std::vector<Value *> Inputs;
2463     while (Lex.getKind() != lltok::rparen) {
2464       // If this isn't the first input, we need a comma.
2465       if (!Inputs.empty() &&
2466           ParseToken(lltok::comma, "expected ',' in input list"))
2467         return true;
2468 
2469       Type *Ty = nullptr;
2470       Value *Input = nullptr;
2471       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2472         return true;
2473       Inputs.push_back(Input);
2474     }
2475 
2476     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2477 
2478     Lex.Lex(); // Lex the ')'.
2479   }
2480 
2481   if (BundleList.empty())
2482     return Error(BeginLoc, "operand bundle set must not be empty");
2483 
2484   Lex.Lex(); // Lex the ']'.
2485   return false;
2486 }
2487 
2488 /// ParseArgumentList - Parse the argument list for a function type or function
2489 /// prototype.
2490 ///   ::= '(' ArgTypeListI ')'
2491 /// ArgTypeListI
2492 ///   ::= /*empty*/
2493 ///   ::= '...'
2494 ///   ::= ArgTypeList ',' '...'
2495 ///   ::= ArgType (',' ArgType)*
2496 ///
2497 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2498                                  bool &isVarArg){
2499   isVarArg = false;
2500   assert(Lex.getKind() == lltok::lparen);
2501   Lex.Lex(); // eat the (.
2502 
2503   if (Lex.getKind() == lltok::rparen) {
2504     // empty
2505   } else if (Lex.getKind() == lltok::dotdotdot) {
2506     isVarArg = true;
2507     Lex.Lex();
2508   } else {
2509     LocTy TypeLoc = Lex.getLoc();
2510     Type *ArgTy = nullptr;
2511     AttrBuilder Attrs;
2512     std::string Name;
2513 
2514     if (ParseType(ArgTy) ||
2515         ParseOptionalParamAttrs(Attrs)) return true;
2516 
2517     if (ArgTy->isVoidTy())
2518       return Error(TypeLoc, "argument can not have void type");
2519 
2520     if (Lex.getKind() == lltok::LocalVar) {
2521       Name = Lex.getStrVal();
2522       Lex.Lex();
2523     }
2524 
2525     if (!FunctionType::isValidArgumentType(ArgTy))
2526       return Error(TypeLoc, "invalid type for function argument");
2527 
2528     ArgList.emplace_back(TypeLoc, ArgTy,
2529                          AttributeSet::get(ArgTy->getContext(), Attrs),
2530                          std::move(Name));
2531 
2532     while (EatIfPresent(lltok::comma)) {
2533       // Handle ... at end of arg list.
2534       if (EatIfPresent(lltok::dotdotdot)) {
2535         isVarArg = true;
2536         break;
2537       }
2538 
2539       // Otherwise must be an argument type.
2540       TypeLoc = Lex.getLoc();
2541       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2542 
2543       if (ArgTy->isVoidTy())
2544         return Error(TypeLoc, "argument can not have void type");
2545 
2546       if (Lex.getKind() == lltok::LocalVar) {
2547         Name = Lex.getStrVal();
2548         Lex.Lex();
2549       } else {
2550         Name = "";
2551       }
2552 
2553       if (!ArgTy->isFirstClassType())
2554         return Error(TypeLoc, "invalid type for function argument");
2555 
2556       ArgList.emplace_back(TypeLoc, ArgTy,
2557                            AttributeSet::get(ArgTy->getContext(), Attrs),
2558                            std::move(Name));
2559     }
2560   }
2561 
2562   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2563 }
2564 
2565 /// ParseFunctionType
2566 ///  ::= Type ArgumentList OptionalAttrs
2567 bool LLParser::ParseFunctionType(Type *&Result) {
2568   assert(Lex.getKind() == lltok::lparen);
2569 
2570   if (!FunctionType::isValidReturnType(Result))
2571     return TokError("invalid function return type");
2572 
2573   SmallVector<ArgInfo, 8> ArgList;
2574   bool isVarArg;
2575   if (ParseArgumentList(ArgList, isVarArg))
2576     return true;
2577 
2578   // Reject names on the arguments lists.
2579   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2580     if (!ArgList[i].Name.empty())
2581       return Error(ArgList[i].Loc, "argument name invalid in function type");
2582     if (ArgList[i].Attrs.hasAttributes())
2583       return Error(ArgList[i].Loc,
2584                    "argument attributes invalid in function type");
2585   }
2586 
2587   SmallVector<Type*, 16> ArgListTy;
2588   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2589     ArgListTy.push_back(ArgList[i].Ty);
2590 
2591   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2592   return false;
2593 }
2594 
2595 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2596 /// other structs.
2597 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2598   SmallVector<Type*, 8> Elts;
2599   if (ParseStructBody(Elts)) return true;
2600 
2601   Result = StructType::get(Context, Elts, Packed);
2602   return false;
2603 }
2604 
2605 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2606 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2607                                      std::pair<Type*, LocTy> &Entry,
2608                                      Type *&ResultTy) {
2609   // If the type was already defined, diagnose the redefinition.
2610   if (Entry.first && !Entry.second.isValid())
2611     return Error(TypeLoc, "redefinition of type");
2612 
2613   // If we have opaque, just return without filling in the definition for the
2614   // struct.  This counts as a definition as far as the .ll file goes.
2615   if (EatIfPresent(lltok::kw_opaque)) {
2616     // This type is being defined, so clear the location to indicate this.
2617     Entry.second = SMLoc();
2618 
2619     // If this type number has never been uttered, create it.
2620     if (!Entry.first)
2621       Entry.first = StructType::create(Context, Name);
2622     ResultTy = Entry.first;
2623     return false;
2624   }
2625 
2626   // If the type starts with '<', then it is either a packed struct or a vector.
2627   bool isPacked = EatIfPresent(lltok::less);
2628 
2629   // If we don't have a struct, then we have a random type alias, which we
2630   // accept for compatibility with old files.  These types are not allowed to be
2631   // forward referenced and not allowed to be recursive.
2632   if (Lex.getKind() != lltok::lbrace) {
2633     if (Entry.first)
2634       return Error(TypeLoc, "forward references to non-struct type");
2635 
2636     ResultTy = nullptr;
2637     if (isPacked)
2638       return ParseArrayVectorType(ResultTy, true);
2639     return ParseType(ResultTy);
2640   }
2641 
2642   // This type is being defined, so clear the location to indicate this.
2643   Entry.second = SMLoc();
2644 
2645   // If this type number has never been uttered, create it.
2646   if (!Entry.first)
2647     Entry.first = StructType::create(Context, Name);
2648 
2649   StructType *STy = cast<StructType>(Entry.first);
2650 
2651   SmallVector<Type*, 8> Body;
2652   if (ParseStructBody(Body) ||
2653       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2654     return true;
2655 
2656   STy->setBody(Body, isPacked);
2657   ResultTy = STy;
2658   return false;
2659 }
2660 
2661 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2662 ///   StructType
2663 ///     ::= '{' '}'
2664 ///     ::= '{' Type (',' Type)* '}'
2665 ///     ::= '<' '{' '}' '>'
2666 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2667 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2668   assert(Lex.getKind() == lltok::lbrace);
2669   Lex.Lex(); // Consume the '{'
2670 
2671   // Handle the empty struct.
2672   if (EatIfPresent(lltok::rbrace))
2673     return false;
2674 
2675   LocTy EltTyLoc = Lex.getLoc();
2676   Type *Ty = nullptr;
2677   if (ParseType(Ty)) return true;
2678   Body.push_back(Ty);
2679 
2680   if (!StructType::isValidElementType(Ty))
2681     return Error(EltTyLoc, "invalid element type for struct");
2682 
2683   while (EatIfPresent(lltok::comma)) {
2684     EltTyLoc = Lex.getLoc();
2685     if (ParseType(Ty)) return true;
2686 
2687     if (!StructType::isValidElementType(Ty))
2688       return Error(EltTyLoc, "invalid element type for struct");
2689 
2690     Body.push_back(Ty);
2691   }
2692 
2693   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2694 }
2695 
2696 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2697 /// token has already been consumed.
2698 ///   Type
2699 ///     ::= '[' APSINTVAL 'x' Types ']'
2700 ///     ::= '<' APSINTVAL 'x' Types '>'
2701 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2702   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2703       Lex.getAPSIntVal().getBitWidth() > 64)
2704     return TokError("expected number in address space");
2705 
2706   LocTy SizeLoc = Lex.getLoc();
2707   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2708   Lex.Lex();
2709 
2710   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2711       return true;
2712 
2713   LocTy TypeLoc = Lex.getLoc();
2714   Type *EltTy = nullptr;
2715   if (ParseType(EltTy)) return true;
2716 
2717   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2718                  "expected end of sequential type"))
2719     return true;
2720 
2721   if (isVector) {
2722     if (Size == 0)
2723       return Error(SizeLoc, "zero element vector is illegal");
2724     if ((unsigned)Size != Size)
2725       return Error(SizeLoc, "size too large for vector");
2726     if (!VectorType::isValidElementType(EltTy))
2727       return Error(TypeLoc, "invalid vector element type");
2728     Result = VectorType::get(EltTy, unsigned(Size));
2729   } else {
2730     if (!ArrayType::isValidElementType(EltTy))
2731       return Error(TypeLoc, "invalid array element type");
2732     Result = ArrayType::get(EltTy, Size);
2733   }
2734   return false;
2735 }
2736 
2737 //===----------------------------------------------------------------------===//
2738 // Function Semantic Analysis.
2739 //===----------------------------------------------------------------------===//
2740 
2741 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2742                                              int functionNumber)
2743   : P(p), F(f), FunctionNumber(functionNumber) {
2744 
2745   // Insert unnamed arguments into the NumberedVals list.
2746   for (Argument &A : F.args())
2747     if (!A.hasName())
2748       NumberedVals.push_back(&A);
2749 }
2750 
2751 LLParser::PerFunctionState::~PerFunctionState() {
2752   // If there were any forward referenced non-basicblock values, delete them.
2753 
2754   for (const auto &P : ForwardRefVals) {
2755     if (isa<BasicBlock>(P.second.first))
2756       continue;
2757     P.second.first->replaceAllUsesWith(
2758         UndefValue::get(P.second.first->getType()));
2759     P.second.first->deleteValue();
2760   }
2761 
2762   for (const auto &P : ForwardRefValIDs) {
2763     if (isa<BasicBlock>(P.second.first))
2764       continue;
2765     P.second.first->replaceAllUsesWith(
2766         UndefValue::get(P.second.first->getType()));
2767     P.second.first->deleteValue();
2768   }
2769 }
2770 
2771 bool LLParser::PerFunctionState::FinishFunction() {
2772   if (!ForwardRefVals.empty())
2773     return P.Error(ForwardRefVals.begin()->second.second,
2774                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2775                    "'");
2776   if (!ForwardRefValIDs.empty())
2777     return P.Error(ForwardRefValIDs.begin()->second.second,
2778                    "use of undefined value '%" +
2779                    Twine(ForwardRefValIDs.begin()->first) + "'");
2780   return false;
2781 }
2782 
2783 /// GetVal - Get a value with the specified name or ID, creating a
2784 /// forward reference record if needed.  This can return null if the value
2785 /// exists but does not have the right type.
2786 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2787                                           LocTy Loc, bool IsCall) {
2788   // Look this name up in the normal function symbol table.
2789   Value *Val = F.getValueSymbolTable()->lookup(Name);
2790 
2791   // If this is a forward reference for the value, see if we already created a
2792   // forward ref record.
2793   if (!Val) {
2794     auto I = ForwardRefVals.find(Name);
2795     if (I != ForwardRefVals.end())
2796       Val = I->second.first;
2797   }
2798 
2799   // If we have the value in the symbol table or fwd-ref table, return it.
2800   if (Val)
2801     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2802 
2803   // Don't make placeholders with invalid type.
2804   if (!Ty->isFirstClassType()) {
2805     P.Error(Loc, "invalid use of a non-first-class type");
2806     return nullptr;
2807   }
2808 
2809   // Otherwise, create a new forward reference for this value and remember it.
2810   Value *FwdVal;
2811   if (Ty->isLabelTy()) {
2812     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2813   } else {
2814     FwdVal = new Argument(Ty, Name);
2815   }
2816 
2817   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2818   return FwdVal;
2819 }
2820 
2821 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2822                                           bool IsCall) {
2823   // Look this name up in the normal function symbol table.
2824   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2825 
2826   // If this is a forward reference for the value, see if we already created a
2827   // forward ref record.
2828   if (!Val) {
2829     auto I = ForwardRefValIDs.find(ID);
2830     if (I != ForwardRefValIDs.end())
2831       Val = I->second.first;
2832   }
2833 
2834   // If we have the value in the symbol table or fwd-ref table, return it.
2835   if (Val)
2836     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2837 
2838   if (!Ty->isFirstClassType()) {
2839     P.Error(Loc, "invalid use of a non-first-class type");
2840     return nullptr;
2841   }
2842 
2843   // Otherwise, create a new forward reference for this value and remember it.
2844   Value *FwdVal;
2845   if (Ty->isLabelTy()) {
2846     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2847   } else {
2848     FwdVal = new Argument(Ty);
2849   }
2850 
2851   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2852   return FwdVal;
2853 }
2854 
2855 /// SetInstName - After an instruction is parsed and inserted into its
2856 /// basic block, this installs its name.
2857 bool LLParser::PerFunctionState::SetInstName(int NameID,
2858                                              const std::string &NameStr,
2859                                              LocTy NameLoc, Instruction *Inst) {
2860   // If this instruction has void type, it cannot have a name or ID specified.
2861   if (Inst->getType()->isVoidTy()) {
2862     if (NameID != -1 || !NameStr.empty())
2863       return P.Error(NameLoc, "instructions returning void cannot have a name");
2864     return false;
2865   }
2866 
2867   // If this was a numbered instruction, verify that the instruction is the
2868   // expected value and resolve any forward references.
2869   if (NameStr.empty()) {
2870     // If neither a name nor an ID was specified, just use the next ID.
2871     if (NameID == -1)
2872       NameID = NumberedVals.size();
2873 
2874     if (unsigned(NameID) != NumberedVals.size())
2875       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2876                      Twine(NumberedVals.size()) + "'");
2877 
2878     auto FI = ForwardRefValIDs.find(NameID);
2879     if (FI != ForwardRefValIDs.end()) {
2880       Value *Sentinel = FI->second.first;
2881       if (Sentinel->getType() != Inst->getType())
2882         return P.Error(NameLoc, "instruction forward referenced with type '" +
2883                        getTypeString(FI->second.first->getType()) + "'");
2884 
2885       Sentinel->replaceAllUsesWith(Inst);
2886       Sentinel->deleteValue();
2887       ForwardRefValIDs.erase(FI);
2888     }
2889 
2890     NumberedVals.push_back(Inst);
2891     return false;
2892   }
2893 
2894   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2895   auto FI = ForwardRefVals.find(NameStr);
2896   if (FI != ForwardRefVals.end()) {
2897     Value *Sentinel = FI->second.first;
2898     if (Sentinel->getType() != Inst->getType())
2899       return P.Error(NameLoc, "instruction forward referenced with type '" +
2900                      getTypeString(FI->second.first->getType()) + "'");
2901 
2902     Sentinel->replaceAllUsesWith(Inst);
2903     Sentinel->deleteValue();
2904     ForwardRefVals.erase(FI);
2905   }
2906 
2907   // Set the name on the instruction.
2908   Inst->setName(NameStr);
2909 
2910   if (Inst->getName() != NameStr)
2911     return P.Error(NameLoc, "multiple definition of local value named '" +
2912                    NameStr + "'");
2913   return false;
2914 }
2915 
2916 /// GetBB - Get a basic block with the specified name or ID, creating a
2917 /// forward reference record if needed.
2918 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2919                                               LocTy Loc) {
2920   return dyn_cast_or_null<BasicBlock>(
2921       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2922 }
2923 
2924 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2925   return dyn_cast_or_null<BasicBlock>(
2926       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2927 }
2928 
2929 /// DefineBB - Define the specified basic block, which is either named or
2930 /// unnamed.  If there is an error, this returns null otherwise it returns
2931 /// the block being defined.
2932 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2933                                                  int NameID, LocTy Loc) {
2934   BasicBlock *BB;
2935   if (Name.empty()) {
2936     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2937       P.Error(Loc, "label expected to be numbered '" +
2938                        Twine(NumberedVals.size()) + "'");
2939       return nullptr;
2940     }
2941     BB = GetBB(NumberedVals.size(), Loc);
2942     if (!BB) {
2943       P.Error(Loc, "unable to create block numbered '" +
2944                        Twine(NumberedVals.size()) + "'");
2945       return nullptr;
2946     }
2947   } else {
2948     BB = GetBB(Name, Loc);
2949     if (!BB) {
2950       P.Error(Loc, "unable to create block named '" + Name + "'");
2951       return nullptr;
2952     }
2953   }
2954 
2955   // Move the block to the end of the function.  Forward ref'd blocks are
2956   // inserted wherever they happen to be referenced.
2957   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2958 
2959   // Remove the block from forward ref sets.
2960   if (Name.empty()) {
2961     ForwardRefValIDs.erase(NumberedVals.size());
2962     NumberedVals.push_back(BB);
2963   } else {
2964     // BB forward references are already in the function symbol table.
2965     ForwardRefVals.erase(Name);
2966   }
2967 
2968   return BB;
2969 }
2970 
2971 //===----------------------------------------------------------------------===//
2972 // Constants.
2973 //===----------------------------------------------------------------------===//
2974 
2975 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2976 /// type implied.  For example, if we parse "4" we don't know what integer type
2977 /// it has.  The value will later be combined with its type and checked for
2978 /// sanity.  PFS is used to convert function-local operands of metadata (since
2979 /// metadata operands are not just parsed here but also converted to values).
2980 /// PFS can be null when we are not parsing metadata values inside a function.
2981 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2982   ID.Loc = Lex.getLoc();
2983   switch (Lex.getKind()) {
2984   default: return TokError("expected value token");
2985   case lltok::GlobalID:  // @42
2986     ID.UIntVal = Lex.getUIntVal();
2987     ID.Kind = ValID::t_GlobalID;
2988     break;
2989   case lltok::GlobalVar:  // @foo
2990     ID.StrVal = Lex.getStrVal();
2991     ID.Kind = ValID::t_GlobalName;
2992     break;
2993   case lltok::LocalVarID:  // %42
2994     ID.UIntVal = Lex.getUIntVal();
2995     ID.Kind = ValID::t_LocalID;
2996     break;
2997   case lltok::LocalVar:  // %foo
2998     ID.StrVal = Lex.getStrVal();
2999     ID.Kind = ValID::t_LocalName;
3000     break;
3001   case lltok::APSInt:
3002     ID.APSIntVal = Lex.getAPSIntVal();
3003     ID.Kind = ValID::t_APSInt;
3004     break;
3005   case lltok::APFloat:
3006     ID.APFloatVal = Lex.getAPFloatVal();
3007     ID.Kind = ValID::t_APFloat;
3008     break;
3009   case lltok::kw_true:
3010     ID.ConstantVal = ConstantInt::getTrue(Context);
3011     ID.Kind = ValID::t_Constant;
3012     break;
3013   case lltok::kw_false:
3014     ID.ConstantVal = ConstantInt::getFalse(Context);
3015     ID.Kind = ValID::t_Constant;
3016     break;
3017   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3018   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3019   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3020   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3021 
3022   case lltok::lbrace: {
3023     // ValID ::= '{' ConstVector '}'
3024     Lex.Lex();
3025     SmallVector<Constant*, 16> Elts;
3026     if (ParseGlobalValueVector(Elts) ||
3027         ParseToken(lltok::rbrace, "expected end of struct constant"))
3028       return true;
3029 
3030     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3031     ID.UIntVal = Elts.size();
3032     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3033            Elts.size() * sizeof(Elts[0]));
3034     ID.Kind = ValID::t_ConstantStruct;
3035     return false;
3036   }
3037   case lltok::less: {
3038     // ValID ::= '<' ConstVector '>'         --> Vector.
3039     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3040     Lex.Lex();
3041     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3042 
3043     SmallVector<Constant*, 16> Elts;
3044     LocTy FirstEltLoc = Lex.getLoc();
3045     if (ParseGlobalValueVector(Elts) ||
3046         (isPackedStruct &&
3047          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3048         ParseToken(lltok::greater, "expected end of constant"))
3049       return true;
3050 
3051     if (isPackedStruct) {
3052       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3053       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3054              Elts.size() * sizeof(Elts[0]));
3055       ID.UIntVal = Elts.size();
3056       ID.Kind = ValID::t_PackedConstantStruct;
3057       return false;
3058     }
3059 
3060     if (Elts.empty())
3061       return Error(ID.Loc, "constant vector must not be empty");
3062 
3063     if (!Elts[0]->getType()->isIntegerTy() &&
3064         !Elts[0]->getType()->isFloatingPointTy() &&
3065         !Elts[0]->getType()->isPointerTy())
3066       return Error(FirstEltLoc,
3067             "vector elements must have integer, pointer or floating point type");
3068 
3069     // Verify that all the vector elements have the same type.
3070     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3071       if (Elts[i]->getType() != Elts[0]->getType())
3072         return Error(FirstEltLoc,
3073                      "vector element #" + Twine(i) +
3074                     " is not of type '" + getTypeString(Elts[0]->getType()));
3075 
3076     ID.ConstantVal = ConstantVector::get(Elts);
3077     ID.Kind = ValID::t_Constant;
3078     return false;
3079   }
3080   case lltok::lsquare: {   // Array Constant
3081     Lex.Lex();
3082     SmallVector<Constant*, 16> Elts;
3083     LocTy FirstEltLoc = Lex.getLoc();
3084     if (ParseGlobalValueVector(Elts) ||
3085         ParseToken(lltok::rsquare, "expected end of array constant"))
3086       return true;
3087 
3088     // Handle empty element.
3089     if (Elts.empty()) {
3090       // Use undef instead of an array because it's inconvenient to determine
3091       // the element type at this point, there being no elements to examine.
3092       ID.Kind = ValID::t_EmptyArray;
3093       return false;
3094     }
3095 
3096     if (!Elts[0]->getType()->isFirstClassType())
3097       return Error(FirstEltLoc, "invalid array element type: " +
3098                    getTypeString(Elts[0]->getType()));
3099 
3100     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3101 
3102     // Verify all elements are correct type!
3103     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3104       if (Elts[i]->getType() != Elts[0]->getType())
3105         return Error(FirstEltLoc,
3106                      "array element #" + Twine(i) +
3107                      " is not of type '" + getTypeString(Elts[0]->getType()));
3108     }
3109 
3110     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3111     ID.Kind = ValID::t_Constant;
3112     return false;
3113   }
3114   case lltok::kw_c:  // c "foo"
3115     Lex.Lex();
3116     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3117                                                   false);
3118     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3119     ID.Kind = ValID::t_Constant;
3120     return false;
3121 
3122   case lltok::kw_asm: {
3123     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3124     //             STRINGCONSTANT
3125     bool HasSideEffect, AlignStack, AsmDialect;
3126     Lex.Lex();
3127     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3128         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3129         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3130         ParseStringConstant(ID.StrVal) ||
3131         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3132         ParseToken(lltok::StringConstant, "expected constraint string"))
3133       return true;
3134     ID.StrVal2 = Lex.getStrVal();
3135     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3136       (unsigned(AsmDialect)<<2);
3137     ID.Kind = ValID::t_InlineAsm;
3138     return false;
3139   }
3140 
3141   case lltok::kw_blockaddress: {
3142     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3143     Lex.Lex();
3144 
3145     ValID Fn, Label;
3146 
3147     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3148         ParseValID(Fn) ||
3149         ParseToken(lltok::comma, "expected comma in block address expression")||
3150         ParseValID(Label) ||
3151         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3152       return true;
3153 
3154     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3155       return Error(Fn.Loc, "expected function name in blockaddress");
3156     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3157       return Error(Label.Loc, "expected basic block name in blockaddress");
3158 
3159     // Try to find the function (but skip it if it's forward-referenced).
3160     GlobalValue *GV = nullptr;
3161     if (Fn.Kind == ValID::t_GlobalID) {
3162       if (Fn.UIntVal < NumberedVals.size())
3163         GV = NumberedVals[Fn.UIntVal];
3164     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3165       GV = M->getNamedValue(Fn.StrVal);
3166     }
3167     Function *F = nullptr;
3168     if (GV) {
3169       // Confirm that it's actually a function with a definition.
3170       if (!isa<Function>(GV))
3171         return Error(Fn.Loc, "expected function name in blockaddress");
3172       F = cast<Function>(GV);
3173       if (F->isDeclaration())
3174         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3175     }
3176 
3177     if (!F) {
3178       // Make a global variable as a placeholder for this reference.
3179       GlobalValue *&FwdRef =
3180           ForwardRefBlockAddresses.insert(std::make_pair(
3181                                               std::move(Fn),
3182                                               std::map<ValID, GlobalValue *>()))
3183               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3184               .first->second;
3185       if (!FwdRef)
3186         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3187                                     GlobalValue::InternalLinkage, nullptr, "");
3188       ID.ConstantVal = FwdRef;
3189       ID.Kind = ValID::t_Constant;
3190       return false;
3191     }
3192 
3193     // We found the function; now find the basic block.  Don't use PFS, since we
3194     // might be inside a constant expression.
3195     BasicBlock *BB;
3196     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3197       if (Label.Kind == ValID::t_LocalID)
3198         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3199       else
3200         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3201       if (!BB)
3202         return Error(Label.Loc, "referenced value is not a basic block");
3203     } else {
3204       if (Label.Kind == ValID::t_LocalID)
3205         return Error(Label.Loc, "cannot take address of numeric label after "
3206                                 "the function is defined");
3207       BB = dyn_cast_or_null<BasicBlock>(
3208           F->getValueSymbolTable()->lookup(Label.StrVal));
3209       if (!BB)
3210         return Error(Label.Loc, "referenced value is not a basic block");
3211     }
3212 
3213     ID.ConstantVal = BlockAddress::get(F, BB);
3214     ID.Kind = ValID::t_Constant;
3215     return false;
3216   }
3217 
3218   case lltok::kw_trunc:
3219   case lltok::kw_zext:
3220   case lltok::kw_sext:
3221   case lltok::kw_fptrunc:
3222   case lltok::kw_fpext:
3223   case lltok::kw_bitcast:
3224   case lltok::kw_addrspacecast:
3225   case lltok::kw_uitofp:
3226   case lltok::kw_sitofp:
3227   case lltok::kw_fptoui:
3228   case lltok::kw_fptosi:
3229   case lltok::kw_inttoptr:
3230   case lltok::kw_ptrtoint: {
3231     unsigned Opc = Lex.getUIntVal();
3232     Type *DestTy = nullptr;
3233     Constant *SrcVal;
3234     Lex.Lex();
3235     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3236         ParseGlobalTypeAndValue(SrcVal) ||
3237         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3238         ParseType(DestTy) ||
3239         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3240       return true;
3241     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3242       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3243                    getTypeString(SrcVal->getType()) + "' to '" +
3244                    getTypeString(DestTy) + "'");
3245     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3246                                                  SrcVal, DestTy);
3247     ID.Kind = ValID::t_Constant;
3248     return false;
3249   }
3250   case lltok::kw_extractvalue: {
3251     Lex.Lex();
3252     Constant *Val;
3253     SmallVector<unsigned, 4> Indices;
3254     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3255         ParseGlobalTypeAndValue(Val) ||
3256         ParseIndexList(Indices) ||
3257         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3258       return true;
3259 
3260     if (!Val->getType()->isAggregateType())
3261       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3262     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3263       return Error(ID.Loc, "invalid indices for extractvalue");
3264     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3265     ID.Kind = ValID::t_Constant;
3266     return false;
3267   }
3268   case lltok::kw_insertvalue: {
3269     Lex.Lex();
3270     Constant *Val0, *Val1;
3271     SmallVector<unsigned, 4> Indices;
3272     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3273         ParseGlobalTypeAndValue(Val0) ||
3274         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3275         ParseGlobalTypeAndValue(Val1) ||
3276         ParseIndexList(Indices) ||
3277         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3278       return true;
3279     if (!Val0->getType()->isAggregateType())
3280       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3281     Type *IndexedType =
3282         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3283     if (!IndexedType)
3284       return Error(ID.Loc, "invalid indices for insertvalue");
3285     if (IndexedType != Val1->getType())
3286       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3287                                getTypeString(Val1->getType()) +
3288                                "' instead of '" + getTypeString(IndexedType) +
3289                                "'");
3290     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3291     ID.Kind = ValID::t_Constant;
3292     return false;
3293   }
3294   case lltok::kw_icmp:
3295   case lltok::kw_fcmp: {
3296     unsigned PredVal, Opc = Lex.getUIntVal();
3297     Constant *Val0, *Val1;
3298     Lex.Lex();
3299     if (ParseCmpPredicate(PredVal, Opc) ||
3300         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3301         ParseGlobalTypeAndValue(Val0) ||
3302         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3303         ParseGlobalTypeAndValue(Val1) ||
3304         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3305       return true;
3306 
3307     if (Val0->getType() != Val1->getType())
3308       return Error(ID.Loc, "compare operands must have the same type");
3309 
3310     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3311 
3312     if (Opc == Instruction::FCmp) {
3313       if (!Val0->getType()->isFPOrFPVectorTy())
3314         return Error(ID.Loc, "fcmp requires floating point operands");
3315       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3316     } else {
3317       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3318       if (!Val0->getType()->isIntOrIntVectorTy() &&
3319           !Val0->getType()->isPtrOrPtrVectorTy())
3320         return Error(ID.Loc, "icmp requires pointer or integer operands");
3321       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3322     }
3323     ID.Kind = ValID::t_Constant;
3324     return false;
3325   }
3326 
3327   // Unary Operators.
3328   case lltok::kw_fneg: {
3329     unsigned Opc = Lex.getUIntVal();
3330     Constant *Val;
3331     Lex.Lex();
3332     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3333         ParseGlobalTypeAndValue(Val) ||
3334         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3335       return true;
3336 
3337     // Check that the type is valid for the operator.
3338     switch (Opc) {
3339     case Instruction::FNeg:
3340       if (!Val->getType()->isFPOrFPVectorTy())
3341         return Error(ID.Loc, "constexpr requires fp operands");
3342       break;
3343     default: llvm_unreachable("Unknown unary operator!");
3344     }
3345     unsigned Flags = 0;
3346     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3347     ID.ConstantVal = C;
3348     ID.Kind = ValID::t_Constant;
3349     return false;
3350   }
3351   // Binary Operators.
3352   case lltok::kw_add:
3353   case lltok::kw_fadd:
3354   case lltok::kw_sub:
3355   case lltok::kw_fsub:
3356   case lltok::kw_mul:
3357   case lltok::kw_fmul:
3358   case lltok::kw_udiv:
3359   case lltok::kw_sdiv:
3360   case lltok::kw_fdiv:
3361   case lltok::kw_urem:
3362   case lltok::kw_srem:
3363   case lltok::kw_frem:
3364   case lltok::kw_shl:
3365   case lltok::kw_lshr:
3366   case lltok::kw_ashr: {
3367     bool NUW = false;
3368     bool NSW = false;
3369     bool Exact = false;
3370     unsigned Opc = Lex.getUIntVal();
3371     Constant *Val0, *Val1;
3372     Lex.Lex();
3373     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3374         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3375       if (EatIfPresent(lltok::kw_nuw))
3376         NUW = true;
3377       if (EatIfPresent(lltok::kw_nsw)) {
3378         NSW = true;
3379         if (EatIfPresent(lltok::kw_nuw))
3380           NUW = true;
3381       }
3382     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3383                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3384       if (EatIfPresent(lltok::kw_exact))
3385         Exact = true;
3386     }
3387     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3388         ParseGlobalTypeAndValue(Val0) ||
3389         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3390         ParseGlobalTypeAndValue(Val1) ||
3391         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3392       return true;
3393     if (Val0->getType() != Val1->getType())
3394       return Error(ID.Loc, "operands of constexpr must have same type");
3395     // Check that the type is valid for the operator.
3396     switch (Opc) {
3397     case Instruction::Add:
3398     case Instruction::Sub:
3399     case Instruction::Mul:
3400     case Instruction::UDiv:
3401     case Instruction::SDiv:
3402     case Instruction::URem:
3403     case Instruction::SRem:
3404     case Instruction::Shl:
3405     case Instruction::AShr:
3406     case Instruction::LShr:
3407       if (!Val0->getType()->isIntOrIntVectorTy())
3408         return Error(ID.Loc, "constexpr requires integer operands");
3409       break;
3410     case Instruction::FAdd:
3411     case Instruction::FSub:
3412     case Instruction::FMul:
3413     case Instruction::FDiv:
3414     case Instruction::FRem:
3415       if (!Val0->getType()->isFPOrFPVectorTy())
3416         return Error(ID.Loc, "constexpr requires fp operands");
3417       break;
3418     default: llvm_unreachable("Unknown binary operator!");
3419     }
3420     unsigned Flags = 0;
3421     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3422     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3423     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3424     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3425     ID.ConstantVal = C;
3426     ID.Kind = ValID::t_Constant;
3427     return false;
3428   }
3429 
3430   // Logical Operations
3431   case lltok::kw_and:
3432   case lltok::kw_or:
3433   case lltok::kw_xor: {
3434     unsigned Opc = Lex.getUIntVal();
3435     Constant *Val0, *Val1;
3436     Lex.Lex();
3437     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3438         ParseGlobalTypeAndValue(Val0) ||
3439         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3440         ParseGlobalTypeAndValue(Val1) ||
3441         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3442       return true;
3443     if (Val0->getType() != Val1->getType())
3444       return Error(ID.Loc, "operands of constexpr must have same type");
3445     if (!Val0->getType()->isIntOrIntVectorTy())
3446       return Error(ID.Loc,
3447                    "constexpr requires integer or integer vector operands");
3448     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3449     ID.Kind = ValID::t_Constant;
3450     return false;
3451   }
3452 
3453   case lltok::kw_getelementptr:
3454   case lltok::kw_shufflevector:
3455   case lltok::kw_insertelement:
3456   case lltok::kw_extractelement:
3457   case lltok::kw_select: {
3458     unsigned Opc = Lex.getUIntVal();
3459     SmallVector<Constant*, 16> Elts;
3460     bool InBounds = false;
3461     Type *Ty;
3462     Lex.Lex();
3463 
3464     if (Opc == Instruction::GetElementPtr)
3465       InBounds = EatIfPresent(lltok::kw_inbounds);
3466 
3467     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3468       return true;
3469 
3470     LocTy ExplicitTypeLoc = Lex.getLoc();
3471     if (Opc == Instruction::GetElementPtr) {
3472       if (ParseType(Ty) ||
3473           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3474         return true;
3475     }
3476 
3477     Optional<unsigned> InRangeOp;
3478     if (ParseGlobalValueVector(
3479             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3480         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3481       return true;
3482 
3483     if (Opc == Instruction::GetElementPtr) {
3484       if (Elts.size() == 0 ||
3485           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3486         return Error(ID.Loc, "base of getelementptr must be a pointer");
3487 
3488       Type *BaseType = Elts[0]->getType();
3489       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3490       if (Ty != BasePointerType->getElementType())
3491         return Error(
3492             ExplicitTypeLoc,
3493             "explicit pointee type doesn't match operand's pointee type");
3494 
3495       unsigned GEPWidth =
3496           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3497 
3498       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3499       for (Constant *Val : Indices) {
3500         Type *ValTy = Val->getType();
3501         if (!ValTy->isIntOrIntVectorTy())
3502           return Error(ID.Loc, "getelementptr index must be an integer");
3503         if (ValTy->isVectorTy()) {
3504           unsigned ValNumEl = ValTy->getVectorNumElements();
3505           if (GEPWidth && (ValNumEl != GEPWidth))
3506             return Error(
3507                 ID.Loc,
3508                 "getelementptr vector index has a wrong number of elements");
3509           // GEPWidth may have been unknown because the base is a scalar,
3510           // but it is known now.
3511           GEPWidth = ValNumEl;
3512         }
3513       }
3514 
3515       SmallPtrSet<Type*, 4> Visited;
3516       if (!Indices.empty() && !Ty->isSized(&Visited))
3517         return Error(ID.Loc, "base element of getelementptr must be sized");
3518 
3519       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3520         return Error(ID.Loc, "invalid getelementptr indices");
3521 
3522       if (InRangeOp) {
3523         if (*InRangeOp == 0)
3524           return Error(ID.Loc,
3525                        "inrange keyword may not appear on pointer operand");
3526         --*InRangeOp;
3527       }
3528 
3529       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3530                                                       InBounds, InRangeOp);
3531     } else if (Opc == Instruction::Select) {
3532       if (Elts.size() != 3)
3533         return Error(ID.Loc, "expected three operands to select");
3534       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3535                                                               Elts[2]))
3536         return Error(ID.Loc, Reason);
3537       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3538     } else if (Opc == Instruction::ShuffleVector) {
3539       if (Elts.size() != 3)
3540         return Error(ID.Loc, "expected three operands to shufflevector");
3541       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3542         return Error(ID.Loc, "invalid operands to shufflevector");
3543       ID.ConstantVal =
3544                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3545     } else if (Opc == Instruction::ExtractElement) {
3546       if (Elts.size() != 2)
3547         return Error(ID.Loc, "expected two operands to extractelement");
3548       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3549         return Error(ID.Loc, "invalid extractelement operands");
3550       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3551     } else {
3552       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3553       if (Elts.size() != 3)
3554       return Error(ID.Loc, "expected three operands to insertelement");
3555       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3556         return Error(ID.Loc, "invalid insertelement operands");
3557       ID.ConstantVal =
3558                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3559     }
3560 
3561     ID.Kind = ValID::t_Constant;
3562     return false;
3563   }
3564   }
3565 
3566   Lex.Lex();
3567   return false;
3568 }
3569 
3570 /// ParseGlobalValue - Parse a global value with the specified type.
3571 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3572   C = nullptr;
3573   ValID ID;
3574   Value *V = nullptr;
3575   bool Parsed = ParseValID(ID) ||
3576                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3577   if (V && !(C = dyn_cast<Constant>(V)))
3578     return Error(ID.Loc, "global values must be constants");
3579   return Parsed;
3580 }
3581 
3582 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3583   Type *Ty = nullptr;
3584   return ParseType(Ty) ||
3585          ParseGlobalValue(Ty, V);
3586 }
3587 
3588 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3589   C = nullptr;
3590 
3591   LocTy KwLoc = Lex.getLoc();
3592   if (!EatIfPresent(lltok::kw_comdat))
3593     return false;
3594 
3595   if (EatIfPresent(lltok::lparen)) {
3596     if (Lex.getKind() != lltok::ComdatVar)
3597       return TokError("expected comdat variable");
3598     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3599     Lex.Lex();
3600     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3601       return true;
3602   } else {
3603     if (GlobalName.empty())
3604       return TokError("comdat cannot be unnamed");
3605     C = getComdat(GlobalName, KwLoc);
3606   }
3607 
3608   return false;
3609 }
3610 
3611 /// ParseGlobalValueVector
3612 ///   ::= /*empty*/
3613 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3614 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3615                                       Optional<unsigned> *InRangeOp) {
3616   // Empty list.
3617   if (Lex.getKind() == lltok::rbrace ||
3618       Lex.getKind() == lltok::rsquare ||
3619       Lex.getKind() == lltok::greater ||
3620       Lex.getKind() == lltok::rparen)
3621     return false;
3622 
3623   do {
3624     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3625       *InRangeOp = Elts.size();
3626 
3627     Constant *C;
3628     if (ParseGlobalTypeAndValue(C)) return true;
3629     Elts.push_back(C);
3630   } while (EatIfPresent(lltok::comma));
3631 
3632   return false;
3633 }
3634 
3635 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3636   SmallVector<Metadata *, 16> Elts;
3637   if (ParseMDNodeVector(Elts))
3638     return true;
3639 
3640   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3641   return false;
3642 }
3643 
3644 /// MDNode:
3645 ///  ::= !{ ... }
3646 ///  ::= !7
3647 ///  ::= !DILocation(...)
3648 bool LLParser::ParseMDNode(MDNode *&N) {
3649   if (Lex.getKind() == lltok::MetadataVar)
3650     return ParseSpecializedMDNode(N);
3651 
3652   return ParseToken(lltok::exclaim, "expected '!' here") ||
3653          ParseMDNodeTail(N);
3654 }
3655 
3656 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3657   // !{ ... }
3658   if (Lex.getKind() == lltok::lbrace)
3659     return ParseMDTuple(N);
3660 
3661   // !42
3662   return ParseMDNodeID(N);
3663 }
3664 
3665 namespace {
3666 
3667 /// Structure to represent an optional metadata field.
3668 template <class FieldTy> struct MDFieldImpl {
3669   typedef MDFieldImpl ImplTy;
3670   FieldTy Val;
3671   bool Seen;
3672 
3673   void assign(FieldTy Val) {
3674     Seen = true;
3675     this->Val = std::move(Val);
3676   }
3677 
3678   explicit MDFieldImpl(FieldTy Default)
3679       : Val(std::move(Default)), Seen(false) {}
3680 };
3681 
3682 /// Structure to represent an optional metadata field that
3683 /// can be of either type (A or B) and encapsulates the
3684 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3685 /// to reimplement the specifics for representing each Field.
3686 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3687   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3688   FieldTypeA A;
3689   FieldTypeB B;
3690   bool Seen;
3691 
3692   enum {
3693     IsInvalid = 0,
3694     IsTypeA = 1,
3695     IsTypeB = 2
3696   } WhatIs;
3697 
3698   void assign(FieldTypeA A) {
3699     Seen = true;
3700     this->A = std::move(A);
3701     WhatIs = IsTypeA;
3702   }
3703 
3704   void assign(FieldTypeB B) {
3705     Seen = true;
3706     this->B = std::move(B);
3707     WhatIs = IsTypeB;
3708   }
3709 
3710   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3711       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3712         WhatIs(IsInvalid) {}
3713 };
3714 
3715 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3716   uint64_t Max;
3717 
3718   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3719       : ImplTy(Default), Max(Max) {}
3720 };
3721 
3722 struct LineField : public MDUnsignedField {
3723   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3724 };
3725 
3726 struct ColumnField : public MDUnsignedField {
3727   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3728 };
3729 
3730 struct DwarfTagField : public MDUnsignedField {
3731   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3732   DwarfTagField(dwarf::Tag DefaultTag)
3733       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3734 };
3735 
3736 struct DwarfMacinfoTypeField : public MDUnsignedField {
3737   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3738   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3739     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3740 };
3741 
3742 struct DwarfAttEncodingField : public MDUnsignedField {
3743   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3744 };
3745 
3746 struct DwarfVirtualityField : public MDUnsignedField {
3747   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3748 };
3749 
3750 struct DwarfLangField : public MDUnsignedField {
3751   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3752 };
3753 
3754 struct DwarfCCField : public MDUnsignedField {
3755   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3756 };
3757 
3758 struct EmissionKindField : public MDUnsignedField {
3759   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3760 };
3761 
3762 struct NameTableKindField : public MDUnsignedField {
3763   NameTableKindField()
3764       : MDUnsignedField(
3765             0, (unsigned)
3766                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3767 };
3768 
3769 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3770   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3771 };
3772 
3773 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3774   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3775 };
3776 
3777 struct MDSignedField : public MDFieldImpl<int64_t> {
3778   int64_t Min;
3779   int64_t Max;
3780 
3781   MDSignedField(int64_t Default = 0)
3782       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3783   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3784       : ImplTy(Default), Min(Min), Max(Max) {}
3785 };
3786 
3787 struct MDBoolField : public MDFieldImpl<bool> {
3788   MDBoolField(bool Default = false) : ImplTy(Default) {}
3789 };
3790 
3791 struct MDField : public MDFieldImpl<Metadata *> {
3792   bool AllowNull;
3793 
3794   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3795 };
3796 
3797 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3798   MDConstant() : ImplTy(nullptr) {}
3799 };
3800 
3801 struct MDStringField : public MDFieldImpl<MDString *> {
3802   bool AllowEmpty;
3803   MDStringField(bool AllowEmpty = true)
3804       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3805 };
3806 
3807 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3808   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3809 };
3810 
3811 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3812   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3813 };
3814 
3815 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3816   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3817       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3818 
3819   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3820                     bool AllowNull = true)
3821       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3822 
3823   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3824   bool isMDField() const { return WhatIs == IsTypeB; }
3825   int64_t getMDSignedValue() const {
3826     assert(isMDSignedField() && "Wrong field type");
3827     return A.Val;
3828   }
3829   Metadata *getMDFieldValue() const {
3830     assert(isMDField() && "Wrong field type");
3831     return B.Val;
3832   }
3833 };
3834 
3835 struct MDSignedOrUnsignedField
3836     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3837   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3838 
3839   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3840   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3841   int64_t getMDSignedValue() const {
3842     assert(isMDSignedField() && "Wrong field type");
3843     return A.Val;
3844   }
3845   uint64_t getMDUnsignedValue() const {
3846     assert(isMDUnsignedField() && "Wrong field type");
3847     return B.Val;
3848   }
3849 };
3850 
3851 } // end anonymous namespace
3852 
3853 namespace llvm {
3854 
3855 template <>
3856 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3857                             MDUnsignedField &Result) {
3858   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3859     return TokError("expected unsigned integer");
3860 
3861   auto &U = Lex.getAPSIntVal();
3862   if (U.ugt(Result.Max))
3863     return TokError("value for '" + Name + "' too large, limit is " +
3864                     Twine(Result.Max));
3865   Result.assign(U.getZExtValue());
3866   assert(Result.Val <= Result.Max && "Expected value in range");
3867   Lex.Lex();
3868   return false;
3869 }
3870 
3871 template <>
3872 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3873   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3874 }
3875 template <>
3876 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3877   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3878 }
3879 
3880 template <>
3881 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3882   if (Lex.getKind() == lltok::APSInt)
3883     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3884 
3885   if (Lex.getKind() != lltok::DwarfTag)
3886     return TokError("expected DWARF tag");
3887 
3888   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3889   if (Tag == dwarf::DW_TAG_invalid)
3890     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3891   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3892 
3893   Result.assign(Tag);
3894   Lex.Lex();
3895   return false;
3896 }
3897 
3898 template <>
3899 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3900                             DwarfMacinfoTypeField &Result) {
3901   if (Lex.getKind() == lltok::APSInt)
3902     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3903 
3904   if (Lex.getKind() != lltok::DwarfMacinfo)
3905     return TokError("expected DWARF macinfo type");
3906 
3907   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3908   if (Macinfo == dwarf::DW_MACINFO_invalid)
3909     return TokError(
3910         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3911   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3912 
3913   Result.assign(Macinfo);
3914   Lex.Lex();
3915   return false;
3916 }
3917 
3918 template <>
3919 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3920                             DwarfVirtualityField &Result) {
3921   if (Lex.getKind() == lltok::APSInt)
3922     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3923 
3924   if (Lex.getKind() != lltok::DwarfVirtuality)
3925     return TokError("expected DWARF virtuality code");
3926 
3927   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3928   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3929     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3930                     Lex.getStrVal() + "'");
3931   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3932   Result.assign(Virtuality);
3933   Lex.Lex();
3934   return false;
3935 }
3936 
3937 template <>
3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3939   if (Lex.getKind() == lltok::APSInt)
3940     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3941 
3942   if (Lex.getKind() != lltok::DwarfLang)
3943     return TokError("expected DWARF language");
3944 
3945   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3946   if (!Lang)
3947     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3948                     "'");
3949   assert(Lang <= Result.Max && "Expected valid DWARF language");
3950   Result.assign(Lang);
3951   Lex.Lex();
3952   return false;
3953 }
3954 
3955 template <>
3956 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3957   if (Lex.getKind() == lltok::APSInt)
3958     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3959 
3960   if (Lex.getKind() != lltok::DwarfCC)
3961     return TokError("expected DWARF calling convention");
3962 
3963   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3964   if (!CC)
3965     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3966                     "'");
3967   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3968   Result.assign(CC);
3969   Lex.Lex();
3970   return false;
3971 }
3972 
3973 template <>
3974 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3975   if (Lex.getKind() == lltok::APSInt)
3976     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3977 
3978   if (Lex.getKind() != lltok::EmissionKind)
3979     return TokError("expected emission kind");
3980 
3981   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3982   if (!Kind)
3983     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3984                     "'");
3985   assert(*Kind <= Result.Max && "Expected valid emission kind");
3986   Result.assign(*Kind);
3987   Lex.Lex();
3988   return false;
3989 }
3990 
3991 template <>
3992 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3993                             NameTableKindField &Result) {
3994   if (Lex.getKind() == lltok::APSInt)
3995     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3996 
3997   if (Lex.getKind() != lltok::NameTableKind)
3998     return TokError("expected nameTable kind");
3999 
4000   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4001   if (!Kind)
4002     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4003                     "'");
4004   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4005   Result.assign((unsigned)*Kind);
4006   Lex.Lex();
4007   return false;
4008 }
4009 
4010 template <>
4011 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4012                             DwarfAttEncodingField &Result) {
4013   if (Lex.getKind() == lltok::APSInt)
4014     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4015 
4016   if (Lex.getKind() != lltok::DwarfAttEncoding)
4017     return TokError("expected DWARF type attribute encoding");
4018 
4019   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4020   if (!Encoding)
4021     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4022                     Lex.getStrVal() + "'");
4023   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4024   Result.assign(Encoding);
4025   Lex.Lex();
4026   return false;
4027 }
4028 
4029 /// DIFlagField
4030 ///  ::= uint32
4031 ///  ::= DIFlagVector
4032 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4033 template <>
4034 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4035 
4036   // Parser for a single flag.
4037   auto parseFlag = [&](DINode::DIFlags &Val) {
4038     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4039       uint32_t TempVal = static_cast<uint32_t>(Val);
4040       bool Res = ParseUInt32(TempVal);
4041       Val = static_cast<DINode::DIFlags>(TempVal);
4042       return Res;
4043     }
4044 
4045     if (Lex.getKind() != lltok::DIFlag)
4046       return TokError("expected debug info flag");
4047 
4048     Val = DINode::getFlag(Lex.getStrVal());
4049     if (!Val)
4050       return TokError(Twine("invalid debug info flag flag '") +
4051                       Lex.getStrVal() + "'");
4052     Lex.Lex();
4053     return false;
4054   };
4055 
4056   // Parse the flags and combine them together.
4057   DINode::DIFlags Combined = DINode::FlagZero;
4058   do {
4059     DINode::DIFlags Val;
4060     if (parseFlag(Val))
4061       return true;
4062     Combined |= Val;
4063   } while (EatIfPresent(lltok::bar));
4064 
4065   Result.assign(Combined);
4066   return false;
4067 }
4068 
4069 /// DISPFlagField
4070 ///  ::= uint32
4071 ///  ::= DISPFlagVector
4072 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4073 template <>
4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4075 
4076   // Parser for a single flag.
4077   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4078     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4079       uint32_t TempVal = static_cast<uint32_t>(Val);
4080       bool Res = ParseUInt32(TempVal);
4081       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4082       return Res;
4083     }
4084 
4085     if (Lex.getKind() != lltok::DISPFlag)
4086       return TokError("expected debug info flag");
4087 
4088     Val = DISubprogram::getFlag(Lex.getStrVal());
4089     if (!Val)
4090       return TokError(Twine("invalid subprogram debug info flag '") +
4091                       Lex.getStrVal() + "'");
4092     Lex.Lex();
4093     return false;
4094   };
4095 
4096   // Parse the flags and combine them together.
4097   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4098   do {
4099     DISubprogram::DISPFlags Val;
4100     if (parseFlag(Val))
4101       return true;
4102     Combined |= Val;
4103   } while (EatIfPresent(lltok::bar));
4104 
4105   Result.assign(Combined);
4106   return false;
4107 }
4108 
4109 template <>
4110 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4111                             MDSignedField &Result) {
4112   if (Lex.getKind() != lltok::APSInt)
4113     return TokError("expected signed integer");
4114 
4115   auto &S = Lex.getAPSIntVal();
4116   if (S < Result.Min)
4117     return TokError("value for '" + Name + "' too small, limit is " +
4118                     Twine(Result.Min));
4119   if (S > Result.Max)
4120     return TokError("value for '" + Name + "' too large, limit is " +
4121                     Twine(Result.Max));
4122   Result.assign(S.getExtValue());
4123   assert(Result.Val >= Result.Min && "Expected value in range");
4124   assert(Result.Val <= Result.Max && "Expected value in range");
4125   Lex.Lex();
4126   return false;
4127 }
4128 
4129 template <>
4130 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4131   switch (Lex.getKind()) {
4132   default:
4133     return TokError("expected 'true' or 'false'");
4134   case lltok::kw_true:
4135     Result.assign(true);
4136     break;
4137   case lltok::kw_false:
4138     Result.assign(false);
4139     break;
4140   }
4141   Lex.Lex();
4142   return false;
4143 }
4144 
4145 template <>
4146 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4147   if (Lex.getKind() == lltok::kw_null) {
4148     if (!Result.AllowNull)
4149       return TokError("'" + Name + "' cannot be null");
4150     Lex.Lex();
4151     Result.assign(nullptr);
4152     return false;
4153   }
4154 
4155   Metadata *MD;
4156   if (ParseMetadata(MD, nullptr))
4157     return true;
4158 
4159   Result.assign(MD);
4160   return false;
4161 }
4162 
4163 template <>
4164 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4165                             MDSignedOrMDField &Result) {
4166   // Try to parse a signed int.
4167   if (Lex.getKind() == lltok::APSInt) {
4168     MDSignedField Res = Result.A;
4169     if (!ParseMDField(Loc, Name, Res)) {
4170       Result.assign(Res);
4171       return false;
4172     }
4173     return true;
4174   }
4175 
4176   // Otherwise, try to parse as an MDField.
4177   MDField Res = Result.B;
4178   if (!ParseMDField(Loc, Name, Res)) {
4179     Result.assign(Res);
4180     return false;
4181   }
4182 
4183   return true;
4184 }
4185 
4186 template <>
4187 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4188                             MDSignedOrUnsignedField &Result) {
4189   if (Lex.getKind() != lltok::APSInt)
4190     return false;
4191 
4192   if (Lex.getAPSIntVal().isSigned()) {
4193     MDSignedField Res = Result.A;
4194     if (ParseMDField(Loc, Name, Res))
4195       return true;
4196     Result.assign(Res);
4197     return false;
4198   }
4199 
4200   MDUnsignedField Res = Result.B;
4201   if (ParseMDField(Loc, Name, Res))
4202     return true;
4203   Result.assign(Res);
4204   return false;
4205 }
4206 
4207 template <>
4208 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4209   LocTy ValueLoc = Lex.getLoc();
4210   std::string S;
4211   if (ParseStringConstant(S))
4212     return true;
4213 
4214   if (!Result.AllowEmpty && S.empty())
4215     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4216 
4217   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4218   return false;
4219 }
4220 
4221 template <>
4222 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4223   SmallVector<Metadata *, 4> MDs;
4224   if (ParseMDNodeVector(MDs))
4225     return true;
4226 
4227   Result.assign(std::move(MDs));
4228   return false;
4229 }
4230 
4231 template <>
4232 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4233                             ChecksumKindField &Result) {
4234   Optional<DIFile::ChecksumKind> CSKind =
4235       DIFile::getChecksumKind(Lex.getStrVal());
4236 
4237   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4238     return TokError(
4239         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4240 
4241   Result.assign(*CSKind);
4242   Lex.Lex();
4243   return false;
4244 }
4245 
4246 } // end namespace llvm
4247 
4248 template <class ParserTy>
4249 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4250   do {
4251     if (Lex.getKind() != lltok::LabelStr)
4252       return TokError("expected field label here");
4253 
4254     if (parseField())
4255       return true;
4256   } while (EatIfPresent(lltok::comma));
4257 
4258   return false;
4259 }
4260 
4261 template <class ParserTy>
4262 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4263   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4264   Lex.Lex();
4265 
4266   if (ParseToken(lltok::lparen, "expected '(' here"))
4267     return true;
4268   if (Lex.getKind() != lltok::rparen)
4269     if (ParseMDFieldsImplBody(parseField))
4270       return true;
4271 
4272   ClosingLoc = Lex.getLoc();
4273   return ParseToken(lltok::rparen, "expected ')' here");
4274 }
4275 
4276 template <class FieldTy>
4277 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4278   if (Result.Seen)
4279     return TokError("field '" + Name + "' cannot be specified more than once");
4280 
4281   LocTy Loc = Lex.getLoc();
4282   Lex.Lex();
4283   return ParseMDField(Loc, Name, Result);
4284 }
4285 
4286 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4287   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4288 
4289 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4290   if (Lex.getStrVal() == #CLASS)                                               \
4291     return Parse##CLASS(N, IsDistinct);
4292 #include "llvm/IR/Metadata.def"
4293 
4294   return TokError("expected metadata type");
4295 }
4296 
4297 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4298 #define NOP_FIELD(NAME, TYPE, INIT)
4299 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4300   if (!NAME.Seen)                                                              \
4301     return Error(ClosingLoc, "missing required field '" #NAME "'");
4302 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4303   if (Lex.getStrVal() == #NAME)                                                \
4304     return ParseMDField(#NAME, NAME);
4305 #define PARSE_MD_FIELDS()                                                      \
4306   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4307   do {                                                                         \
4308     LocTy ClosingLoc;                                                          \
4309     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4310       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4311       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4312     }, ClosingLoc))                                                            \
4313       return true;                                                             \
4314     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4315   } while (false)
4316 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4317   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4318 
4319 /// ParseDILocationFields:
4320 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4321 ///   isImplicitCode: true)
4322 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4323 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4324   OPTIONAL(line, LineField, );                                                 \
4325   OPTIONAL(column, ColumnField, );                                             \
4326   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4327   OPTIONAL(inlinedAt, MDField, );                                              \
4328   OPTIONAL(isImplicitCode, MDBoolField, (false));
4329   PARSE_MD_FIELDS();
4330 #undef VISIT_MD_FIELDS
4331 
4332   Result =
4333       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4334                                    inlinedAt.Val, isImplicitCode.Val));
4335   return false;
4336 }
4337 
4338 /// ParseGenericDINode:
4339 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4340 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4341 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4342   REQUIRED(tag, DwarfTagField, );                                              \
4343   OPTIONAL(header, MDStringField, );                                           \
4344   OPTIONAL(operands, MDFieldList, );
4345   PARSE_MD_FIELDS();
4346 #undef VISIT_MD_FIELDS
4347 
4348   Result = GET_OR_DISTINCT(GenericDINode,
4349                            (Context, tag.Val, header.Val, operands.Val));
4350   return false;
4351 }
4352 
4353 /// ParseDISubrange:
4354 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4355 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4356 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4357 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4358   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4359   OPTIONAL(lowerBound, MDSignedField, );
4360   PARSE_MD_FIELDS();
4361 #undef VISIT_MD_FIELDS
4362 
4363   if (count.isMDSignedField())
4364     Result = GET_OR_DISTINCT(
4365         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4366   else if (count.isMDField())
4367     Result = GET_OR_DISTINCT(
4368         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4369   else
4370     return true;
4371 
4372   return false;
4373 }
4374 
4375 /// ParseDIEnumerator:
4376 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4377 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4379   REQUIRED(name, MDStringField, );                                             \
4380   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4381   OPTIONAL(isUnsigned, MDBoolField, (false));
4382   PARSE_MD_FIELDS();
4383 #undef VISIT_MD_FIELDS
4384 
4385   if (isUnsigned.Val && value.isMDSignedField())
4386     return TokError("unsigned enumerator with negative value");
4387 
4388   int64_t Value = value.isMDSignedField()
4389                       ? value.getMDSignedValue()
4390                       : static_cast<int64_t>(value.getMDUnsignedValue());
4391   Result =
4392       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4393 
4394   return false;
4395 }
4396 
4397 /// ParseDIBasicType:
4398 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4399 ///                    encoding: DW_ATE_encoding, flags: 0)
4400 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4402   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4403   OPTIONAL(name, MDStringField, );                                             \
4404   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4405   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4406   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4407   OPTIONAL(flags, DIFlagField, );
4408   PARSE_MD_FIELDS();
4409 #undef VISIT_MD_FIELDS
4410 
4411   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4412                                          align.Val, encoding.Val, flags.Val));
4413   return false;
4414 }
4415 
4416 /// ParseDIDerivedType:
4417 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4418 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4419 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4420 ///                      dwarfAddressSpace: 3)
4421 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4422 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4423   REQUIRED(tag, DwarfTagField, );                                              \
4424   OPTIONAL(name, MDStringField, );                                             \
4425   OPTIONAL(file, MDField, );                                                   \
4426   OPTIONAL(line, LineField, );                                                 \
4427   OPTIONAL(scope, MDField, );                                                  \
4428   REQUIRED(baseType, MDField, );                                               \
4429   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4430   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4431   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4432   OPTIONAL(flags, DIFlagField, );                                              \
4433   OPTIONAL(extraData, MDField, );                                              \
4434   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4435   PARSE_MD_FIELDS();
4436 #undef VISIT_MD_FIELDS
4437 
4438   Optional<unsigned> DWARFAddressSpace;
4439   if (dwarfAddressSpace.Val != UINT32_MAX)
4440     DWARFAddressSpace = dwarfAddressSpace.Val;
4441 
4442   Result = GET_OR_DISTINCT(DIDerivedType,
4443                            (Context, tag.Val, name.Val, file.Val, line.Val,
4444                             scope.Val, baseType.Val, size.Val, align.Val,
4445                             offset.Val, DWARFAddressSpace, flags.Val,
4446                             extraData.Val));
4447   return false;
4448 }
4449 
4450 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4451 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4452   REQUIRED(tag, DwarfTagField, );                                              \
4453   OPTIONAL(name, MDStringField, );                                             \
4454   OPTIONAL(file, MDField, );                                                   \
4455   OPTIONAL(line, LineField, );                                                 \
4456   OPTIONAL(scope, MDField, );                                                  \
4457   OPTIONAL(baseType, MDField, );                                               \
4458   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4459   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4460   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4461   OPTIONAL(flags, DIFlagField, );                                              \
4462   OPTIONAL(elements, MDField, );                                               \
4463   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4464   OPTIONAL(vtableHolder, MDField, );                                           \
4465   OPTIONAL(templateParams, MDField, );                                         \
4466   OPTIONAL(identifier, MDStringField, );                                       \
4467   OPTIONAL(discriminator, MDField, );
4468   PARSE_MD_FIELDS();
4469 #undef VISIT_MD_FIELDS
4470 
4471   // If this has an identifier try to build an ODR type.
4472   if (identifier.Val)
4473     if (auto *CT = DICompositeType::buildODRType(
4474             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4475             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4476             elements.Val, runtimeLang.Val, vtableHolder.Val,
4477             templateParams.Val, discriminator.Val)) {
4478       Result = CT;
4479       return false;
4480     }
4481 
4482   // Create a new node, and save it in the context if it belongs in the type
4483   // map.
4484   Result = GET_OR_DISTINCT(
4485       DICompositeType,
4486       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4487        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4488        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4489        discriminator.Val));
4490   return false;
4491 }
4492 
4493 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4495   OPTIONAL(flags, DIFlagField, );                                              \
4496   OPTIONAL(cc, DwarfCCField, );                                                \
4497   REQUIRED(types, MDField, );
4498   PARSE_MD_FIELDS();
4499 #undef VISIT_MD_FIELDS
4500 
4501   Result = GET_OR_DISTINCT(DISubroutineType,
4502                            (Context, flags.Val, cc.Val, types.Val));
4503   return false;
4504 }
4505 
4506 /// ParseDIFileType:
4507 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4508 ///                   checksumkind: CSK_MD5,
4509 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4510 ///                   source: "source file contents")
4511 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4512   // The default constructed value for checksumkind is required, but will never
4513   // be used, as the parser checks if the field was actually Seen before using
4514   // the Val.
4515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4516   REQUIRED(filename, MDStringField, );                                         \
4517   REQUIRED(directory, MDStringField, );                                        \
4518   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4519   OPTIONAL(checksum, MDStringField, );                                         \
4520   OPTIONAL(source, MDStringField, );
4521   PARSE_MD_FIELDS();
4522 #undef VISIT_MD_FIELDS
4523 
4524   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4525   if (checksumkind.Seen && checksum.Seen)
4526     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4527   else if (checksumkind.Seen || checksum.Seen)
4528     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4529 
4530   Optional<MDString *> OptSource;
4531   if (source.Seen)
4532     OptSource = source.Val;
4533   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4534                                     OptChecksum, OptSource));
4535   return false;
4536 }
4537 
4538 /// ParseDICompileUnit:
4539 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4540 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4541 ///                      splitDebugFilename: "abc.debug",
4542 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4543 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4544 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4545   if (!IsDistinct)
4546     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4547 
4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4549   REQUIRED(language, DwarfLangField, );                                        \
4550   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4551   OPTIONAL(producer, MDStringField, );                                         \
4552   OPTIONAL(isOptimized, MDBoolField, );                                        \
4553   OPTIONAL(flags, MDStringField, );                                            \
4554   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4555   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4556   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4557   OPTIONAL(enums, MDField, );                                                  \
4558   OPTIONAL(retainedTypes, MDField, );                                          \
4559   OPTIONAL(globals, MDField, );                                                \
4560   OPTIONAL(imports, MDField, );                                                \
4561   OPTIONAL(macros, MDField, );                                                 \
4562   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4563   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4564   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4565   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4566   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4567   PARSE_MD_FIELDS();
4568 #undef VISIT_MD_FIELDS
4569 
4570   Result = DICompileUnit::getDistinct(
4571       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4572       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4573       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4574       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4575       debugBaseAddress.Val);
4576   return false;
4577 }
4578 
4579 /// ParseDISubprogram:
4580 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4581 ///                     file: !1, line: 7, type: !2, isLocal: false,
4582 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4583 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4584 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4585 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4586 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4587 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4588   auto Loc = Lex.getLoc();
4589 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4590   OPTIONAL(scope, MDField, );                                                  \
4591   OPTIONAL(name, MDStringField, );                                             \
4592   OPTIONAL(linkageName, MDStringField, );                                      \
4593   OPTIONAL(file, MDField, );                                                   \
4594   OPTIONAL(line, LineField, );                                                 \
4595   OPTIONAL(type, MDField, );                                                   \
4596   OPTIONAL(isLocal, MDBoolField, );                                            \
4597   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4598   OPTIONAL(scopeLine, LineField, );                                            \
4599   OPTIONAL(containingType, MDField, );                                         \
4600   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4601   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4602   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4603   OPTIONAL(flags, DIFlagField, );                                              \
4604   OPTIONAL(spFlags, DISPFlagField, );                                          \
4605   OPTIONAL(isOptimized, MDBoolField, );                                        \
4606   OPTIONAL(unit, MDField, );                                                   \
4607   OPTIONAL(templateParams, MDField, );                                         \
4608   OPTIONAL(declaration, MDField, );                                            \
4609   OPTIONAL(retainedNodes, MDField, );                                          \
4610   OPTIONAL(thrownTypes, MDField, );
4611   PARSE_MD_FIELDS();
4612 #undef VISIT_MD_FIELDS
4613 
4614   // An explicit spFlags field takes precedence over individual fields in
4615   // older IR versions.
4616   DISubprogram::DISPFlags SPFlags =
4617       spFlags.Seen ? spFlags.Val
4618                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4619                                              isOptimized.Val, virtuality.Val);
4620   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4621     return Lex.Error(
4622         Loc,
4623         "missing 'distinct', required for !DISubprogram that is a Definition");
4624   Result = GET_OR_DISTINCT(
4625       DISubprogram,
4626       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4627        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4628        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4629        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4630   return false;
4631 }
4632 
4633 /// ParseDILexicalBlock:
4634 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4635 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4637   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4638   OPTIONAL(file, MDField, );                                                   \
4639   OPTIONAL(line, LineField, );                                                 \
4640   OPTIONAL(column, ColumnField, );
4641   PARSE_MD_FIELDS();
4642 #undef VISIT_MD_FIELDS
4643 
4644   Result = GET_OR_DISTINCT(
4645       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4646   return false;
4647 }
4648 
4649 /// ParseDILexicalBlockFile:
4650 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4651 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4652 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4653   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4654   OPTIONAL(file, MDField, );                                                   \
4655   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4656   PARSE_MD_FIELDS();
4657 #undef VISIT_MD_FIELDS
4658 
4659   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4660                            (Context, scope.Val, file.Val, discriminator.Val));
4661   return false;
4662 }
4663 
4664 /// ParseDICommonBlock:
4665 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4666 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4667 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4668   REQUIRED(scope, MDField, );                                                  \
4669   OPTIONAL(declaration, MDField, );                                            \
4670   OPTIONAL(name, MDStringField, );                                             \
4671   OPTIONAL(file, MDField, );                                                   \
4672   OPTIONAL(line, LineField, );
4673   PARSE_MD_FIELDS();
4674 #undef VISIT_MD_FIELDS
4675 
4676   Result = GET_OR_DISTINCT(DICommonBlock,
4677                            (Context, scope.Val, declaration.Val, name.Val,
4678                             file.Val, line.Val));
4679   return false;
4680 }
4681 
4682 /// ParseDINamespace:
4683 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4684 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4686   REQUIRED(scope, MDField, );                                                  \
4687   OPTIONAL(name, MDStringField, );                                             \
4688   OPTIONAL(exportSymbols, MDBoolField, );
4689   PARSE_MD_FIELDS();
4690 #undef VISIT_MD_FIELDS
4691 
4692   Result = GET_OR_DISTINCT(DINamespace,
4693                            (Context, scope.Val, name.Val, exportSymbols.Val));
4694   return false;
4695 }
4696 
4697 /// ParseDIMacro:
4698 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4699 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4700 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4701   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4702   OPTIONAL(line, LineField, );                                                 \
4703   REQUIRED(name, MDStringField, );                                             \
4704   OPTIONAL(value, MDStringField, );
4705   PARSE_MD_FIELDS();
4706 #undef VISIT_MD_FIELDS
4707 
4708   Result = GET_OR_DISTINCT(DIMacro,
4709                            (Context, type.Val, line.Val, name.Val, value.Val));
4710   return false;
4711 }
4712 
4713 /// ParseDIMacroFile:
4714 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4715 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4717   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4718   OPTIONAL(line, LineField, );                                                 \
4719   REQUIRED(file, MDField, );                                                   \
4720   OPTIONAL(nodes, MDField, );
4721   PARSE_MD_FIELDS();
4722 #undef VISIT_MD_FIELDS
4723 
4724   Result = GET_OR_DISTINCT(DIMacroFile,
4725                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4726   return false;
4727 }
4728 
4729 /// ParseDIModule:
4730 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4731 ///                 includePath: "/usr/include", isysroot: "/")
4732 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4734   REQUIRED(scope, MDField, );                                                  \
4735   REQUIRED(name, MDStringField, );                                             \
4736   OPTIONAL(configMacros, MDStringField, );                                     \
4737   OPTIONAL(includePath, MDStringField, );                                      \
4738   OPTIONAL(isysroot, MDStringField, );
4739   PARSE_MD_FIELDS();
4740 #undef VISIT_MD_FIELDS
4741 
4742   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4743                            configMacros.Val, includePath.Val, isysroot.Val));
4744   return false;
4745 }
4746 
4747 /// ParseDITemplateTypeParameter:
4748 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4749 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4751   OPTIONAL(name, MDStringField, );                                             \
4752   REQUIRED(type, MDField, );
4753   PARSE_MD_FIELDS();
4754 #undef VISIT_MD_FIELDS
4755 
4756   Result =
4757       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4758   return false;
4759 }
4760 
4761 /// ParseDITemplateValueParameter:
4762 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4763 ///                                 name: "V", type: !1, value: i32 7)
4764 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4766   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4767   OPTIONAL(name, MDStringField, );                                             \
4768   OPTIONAL(type, MDField, );                                                   \
4769   REQUIRED(value, MDField, );
4770   PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772 
4773   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4774                            (Context, tag.Val, name.Val, type.Val, value.Val));
4775   return false;
4776 }
4777 
4778 /// ParseDIGlobalVariable:
4779 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4780 ///                         file: !1, line: 7, type: !2, isLocal: false,
4781 ///                         isDefinition: true, templateParams: !3,
4782 ///                         declaration: !4, align: 8)
4783 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4784 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4785   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4786   OPTIONAL(scope, MDField, );                                                  \
4787   OPTIONAL(linkageName, MDStringField, );                                      \
4788   OPTIONAL(file, MDField, );                                                   \
4789   OPTIONAL(line, LineField, );                                                 \
4790   OPTIONAL(type, MDField, );                                                   \
4791   OPTIONAL(isLocal, MDBoolField, );                                            \
4792   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4793   OPTIONAL(templateParams, MDField, );                                         \
4794   OPTIONAL(declaration, MDField, );                                            \
4795   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4796   PARSE_MD_FIELDS();
4797 #undef VISIT_MD_FIELDS
4798 
4799   Result =
4800       GET_OR_DISTINCT(DIGlobalVariable,
4801                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4802                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4803                        declaration.Val, templateParams.Val, align.Val));
4804   return false;
4805 }
4806 
4807 /// ParseDILocalVariable:
4808 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4809 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4810 ///                        align: 8)
4811 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4812 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4813 ///                        align: 8)
4814 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4816   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4817   OPTIONAL(name, MDStringField, );                                             \
4818   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4819   OPTIONAL(file, MDField, );                                                   \
4820   OPTIONAL(line, LineField, );                                                 \
4821   OPTIONAL(type, MDField, );                                                   \
4822   OPTIONAL(flags, DIFlagField, );                                              \
4823   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4824   PARSE_MD_FIELDS();
4825 #undef VISIT_MD_FIELDS
4826 
4827   Result = GET_OR_DISTINCT(DILocalVariable,
4828                            (Context, scope.Val, name.Val, file.Val, line.Val,
4829                             type.Val, arg.Val, flags.Val, align.Val));
4830   return false;
4831 }
4832 
4833 /// ParseDILabel:
4834 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4835 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4836 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4837   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4838   REQUIRED(name, MDStringField, );                                             \
4839   REQUIRED(file, MDField, );                                                   \
4840   REQUIRED(line, LineField, );
4841   PARSE_MD_FIELDS();
4842 #undef VISIT_MD_FIELDS
4843 
4844   Result = GET_OR_DISTINCT(DILabel,
4845                            (Context, scope.Val, name.Val, file.Val, line.Val));
4846   return false;
4847 }
4848 
4849 /// ParseDIExpression:
4850 ///   ::= !DIExpression(0, 7, -1)
4851 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4852   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4853   Lex.Lex();
4854 
4855   if (ParseToken(lltok::lparen, "expected '(' here"))
4856     return true;
4857 
4858   SmallVector<uint64_t, 8> Elements;
4859   if (Lex.getKind() != lltok::rparen)
4860     do {
4861       if (Lex.getKind() == lltok::DwarfOp) {
4862         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4863           Lex.Lex();
4864           Elements.push_back(Op);
4865           continue;
4866         }
4867         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4868       }
4869 
4870       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4871         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4872           Lex.Lex();
4873           Elements.push_back(Op);
4874           continue;
4875         }
4876         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4877       }
4878 
4879       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4880         return TokError("expected unsigned integer");
4881 
4882       auto &U = Lex.getAPSIntVal();
4883       if (U.ugt(UINT64_MAX))
4884         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4885       Elements.push_back(U.getZExtValue());
4886       Lex.Lex();
4887     } while (EatIfPresent(lltok::comma));
4888 
4889   if (ParseToken(lltok::rparen, "expected ')' here"))
4890     return true;
4891 
4892   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4893   return false;
4894 }
4895 
4896 /// ParseDIGlobalVariableExpression:
4897 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4898 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4899                                                bool IsDistinct) {
4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4901   REQUIRED(var, MDField, );                                                    \
4902   REQUIRED(expr, MDField, );
4903   PARSE_MD_FIELDS();
4904 #undef VISIT_MD_FIELDS
4905 
4906   Result =
4907       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4908   return false;
4909 }
4910 
4911 /// ParseDIObjCProperty:
4912 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4913 ///                       getter: "getFoo", attributes: 7, type: !2)
4914 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4916   OPTIONAL(name, MDStringField, );                                             \
4917   OPTIONAL(file, MDField, );                                                   \
4918   OPTIONAL(line, LineField, );                                                 \
4919   OPTIONAL(setter, MDStringField, );                                           \
4920   OPTIONAL(getter, MDStringField, );                                           \
4921   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4922   OPTIONAL(type, MDField, );
4923   PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4925 
4926   Result = GET_OR_DISTINCT(DIObjCProperty,
4927                            (Context, name.Val, file.Val, line.Val, setter.Val,
4928                             getter.Val, attributes.Val, type.Val));
4929   return false;
4930 }
4931 
4932 /// ParseDIImportedEntity:
4933 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4934 ///                         line: 7, name: "foo")
4935 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4937   REQUIRED(tag, DwarfTagField, );                                              \
4938   REQUIRED(scope, MDField, );                                                  \
4939   OPTIONAL(entity, MDField, );                                                 \
4940   OPTIONAL(file, MDField, );                                                   \
4941   OPTIONAL(line, LineField, );                                                 \
4942   OPTIONAL(name, MDStringField, );
4943   PARSE_MD_FIELDS();
4944 #undef VISIT_MD_FIELDS
4945 
4946   Result = GET_OR_DISTINCT(
4947       DIImportedEntity,
4948       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4949   return false;
4950 }
4951 
4952 #undef PARSE_MD_FIELD
4953 #undef NOP_FIELD
4954 #undef REQUIRE_FIELD
4955 #undef DECLARE_FIELD
4956 
4957 /// ParseMetadataAsValue
4958 ///  ::= metadata i32 %local
4959 ///  ::= metadata i32 @global
4960 ///  ::= metadata i32 7
4961 ///  ::= metadata !0
4962 ///  ::= metadata !{...}
4963 ///  ::= metadata !"string"
4964 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4965   // Note: the type 'metadata' has already been parsed.
4966   Metadata *MD;
4967   if (ParseMetadata(MD, &PFS))
4968     return true;
4969 
4970   V = MetadataAsValue::get(Context, MD);
4971   return false;
4972 }
4973 
4974 /// ParseValueAsMetadata
4975 ///  ::= i32 %local
4976 ///  ::= i32 @global
4977 ///  ::= i32 7
4978 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4979                                     PerFunctionState *PFS) {
4980   Type *Ty;
4981   LocTy Loc;
4982   if (ParseType(Ty, TypeMsg, Loc))
4983     return true;
4984   if (Ty->isMetadataTy())
4985     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4986 
4987   Value *V;
4988   if (ParseValue(Ty, V, PFS))
4989     return true;
4990 
4991   MD = ValueAsMetadata::get(V);
4992   return false;
4993 }
4994 
4995 /// ParseMetadata
4996 ///  ::= i32 %local
4997 ///  ::= i32 @global
4998 ///  ::= i32 7
4999 ///  ::= !42
5000 ///  ::= !{...}
5001 ///  ::= !"string"
5002 ///  ::= !DILocation(...)
5003 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5004   if (Lex.getKind() == lltok::MetadataVar) {
5005     MDNode *N;
5006     if (ParseSpecializedMDNode(N))
5007       return true;
5008     MD = N;
5009     return false;
5010   }
5011 
5012   // ValueAsMetadata:
5013   // <type> <value>
5014   if (Lex.getKind() != lltok::exclaim)
5015     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5016 
5017   // '!'.
5018   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5019   Lex.Lex();
5020 
5021   // MDString:
5022   //   ::= '!' STRINGCONSTANT
5023   if (Lex.getKind() == lltok::StringConstant) {
5024     MDString *S;
5025     if (ParseMDString(S))
5026       return true;
5027     MD = S;
5028     return false;
5029   }
5030 
5031   // MDNode:
5032   // !{ ... }
5033   // !7
5034   MDNode *N;
5035   if (ParseMDNodeTail(N))
5036     return true;
5037   MD = N;
5038   return false;
5039 }
5040 
5041 //===----------------------------------------------------------------------===//
5042 // Function Parsing.
5043 //===----------------------------------------------------------------------===//
5044 
5045 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5046                                    PerFunctionState *PFS, bool IsCall) {
5047   if (Ty->isFunctionTy())
5048     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5049 
5050   switch (ID.Kind) {
5051   case ValID::t_LocalID:
5052     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5053     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5054     return V == nullptr;
5055   case ValID::t_LocalName:
5056     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5057     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5058     return V == nullptr;
5059   case ValID::t_InlineAsm: {
5060     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5061       return Error(ID.Loc, "invalid type for inline asm constraint string");
5062     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5063                        (ID.UIntVal >> 1) & 1,
5064                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5065     return false;
5066   }
5067   case ValID::t_GlobalName:
5068     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5069     return V == nullptr;
5070   case ValID::t_GlobalID:
5071     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5072     return V == nullptr;
5073   case ValID::t_APSInt:
5074     if (!Ty->isIntegerTy())
5075       return Error(ID.Loc, "integer constant must have integer type");
5076     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5077     V = ConstantInt::get(Context, ID.APSIntVal);
5078     return false;
5079   case ValID::t_APFloat:
5080     if (!Ty->isFloatingPointTy() ||
5081         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5082       return Error(ID.Loc, "floating point constant invalid for type");
5083 
5084     // The lexer has no type info, so builds all half, float, and double FP
5085     // constants as double.  Fix this here.  Long double does not need this.
5086     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5087       bool Ignored;
5088       if (Ty->isHalfTy())
5089         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5090                               &Ignored);
5091       else if (Ty->isFloatTy())
5092         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5093                               &Ignored);
5094     }
5095     V = ConstantFP::get(Context, ID.APFloatVal);
5096 
5097     if (V->getType() != Ty)
5098       return Error(ID.Loc, "floating point constant does not have type '" +
5099                    getTypeString(Ty) + "'");
5100 
5101     return false;
5102   case ValID::t_Null:
5103     if (!Ty->isPointerTy())
5104       return Error(ID.Loc, "null must be a pointer type");
5105     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5106     return false;
5107   case ValID::t_Undef:
5108     // FIXME: LabelTy should not be a first-class type.
5109     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5110       return Error(ID.Loc, "invalid type for undef constant");
5111     V = UndefValue::get(Ty);
5112     return false;
5113   case ValID::t_EmptyArray:
5114     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5115       return Error(ID.Loc, "invalid empty array initializer");
5116     V = UndefValue::get(Ty);
5117     return false;
5118   case ValID::t_Zero:
5119     // FIXME: LabelTy should not be a first-class type.
5120     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5121       return Error(ID.Loc, "invalid type for null constant");
5122     V = Constant::getNullValue(Ty);
5123     return false;
5124   case ValID::t_None:
5125     if (!Ty->isTokenTy())
5126       return Error(ID.Loc, "invalid type for none constant");
5127     V = Constant::getNullValue(Ty);
5128     return false;
5129   case ValID::t_Constant:
5130     if (ID.ConstantVal->getType() != Ty)
5131       return Error(ID.Loc, "constant expression type mismatch");
5132 
5133     V = ID.ConstantVal;
5134     return false;
5135   case ValID::t_ConstantStruct:
5136   case ValID::t_PackedConstantStruct:
5137     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5138       if (ST->getNumElements() != ID.UIntVal)
5139         return Error(ID.Loc,
5140                      "initializer with struct type has wrong # elements");
5141       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5142         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5143 
5144       // Verify that the elements are compatible with the structtype.
5145       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5146         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5147           return Error(ID.Loc, "element " + Twine(i) +
5148                     " of struct initializer doesn't match struct element type");
5149 
5150       V = ConstantStruct::get(
5151           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5152     } else
5153       return Error(ID.Loc, "constant expression type mismatch");
5154     return false;
5155   }
5156   llvm_unreachable("Invalid ValID");
5157 }
5158 
5159 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5160   C = nullptr;
5161   ValID ID;
5162   auto Loc = Lex.getLoc();
5163   if (ParseValID(ID, /*PFS=*/nullptr))
5164     return true;
5165   switch (ID.Kind) {
5166   case ValID::t_APSInt:
5167   case ValID::t_APFloat:
5168   case ValID::t_Undef:
5169   case ValID::t_Constant:
5170   case ValID::t_ConstantStruct:
5171   case ValID::t_PackedConstantStruct: {
5172     Value *V;
5173     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5174       return true;
5175     assert(isa<Constant>(V) && "Expected a constant value");
5176     C = cast<Constant>(V);
5177     return false;
5178   }
5179   case ValID::t_Null:
5180     C = Constant::getNullValue(Ty);
5181     return false;
5182   default:
5183     return Error(Loc, "expected a constant value");
5184   }
5185 }
5186 
5187 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5188   V = nullptr;
5189   ValID ID;
5190   return ParseValID(ID, PFS) ||
5191          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5192 }
5193 
5194 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5195   Type *Ty = nullptr;
5196   return ParseType(Ty) ||
5197          ParseValue(Ty, V, PFS);
5198 }
5199 
5200 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5201                                       PerFunctionState &PFS) {
5202   Value *V;
5203   Loc = Lex.getLoc();
5204   if (ParseTypeAndValue(V, PFS)) return true;
5205   if (!isa<BasicBlock>(V))
5206     return Error(Loc, "expected a basic block");
5207   BB = cast<BasicBlock>(V);
5208   return false;
5209 }
5210 
5211 /// FunctionHeader
5212 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5213 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5214 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5215 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5216 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5217   // Parse the linkage.
5218   LocTy LinkageLoc = Lex.getLoc();
5219   unsigned Linkage;
5220   unsigned Visibility;
5221   unsigned DLLStorageClass;
5222   bool DSOLocal;
5223   AttrBuilder RetAttrs;
5224   unsigned CC;
5225   bool HasLinkage;
5226   Type *RetType = nullptr;
5227   LocTy RetTypeLoc = Lex.getLoc();
5228   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5229                            DSOLocal) ||
5230       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5231       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5232     return true;
5233 
5234   // Verify that the linkage is ok.
5235   switch ((GlobalValue::LinkageTypes)Linkage) {
5236   case GlobalValue::ExternalLinkage:
5237     break; // always ok.
5238   case GlobalValue::ExternalWeakLinkage:
5239     if (isDefine)
5240       return Error(LinkageLoc, "invalid linkage for function definition");
5241     break;
5242   case GlobalValue::PrivateLinkage:
5243   case GlobalValue::InternalLinkage:
5244   case GlobalValue::AvailableExternallyLinkage:
5245   case GlobalValue::LinkOnceAnyLinkage:
5246   case GlobalValue::LinkOnceODRLinkage:
5247   case GlobalValue::WeakAnyLinkage:
5248   case GlobalValue::WeakODRLinkage:
5249     if (!isDefine)
5250       return Error(LinkageLoc, "invalid linkage for function declaration");
5251     break;
5252   case GlobalValue::AppendingLinkage:
5253   case GlobalValue::CommonLinkage:
5254     return Error(LinkageLoc, "invalid function linkage type");
5255   }
5256 
5257   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5258     return Error(LinkageLoc,
5259                  "symbol with local linkage must have default visibility");
5260 
5261   if (!FunctionType::isValidReturnType(RetType))
5262     return Error(RetTypeLoc, "invalid function return type");
5263 
5264   LocTy NameLoc = Lex.getLoc();
5265 
5266   std::string FunctionName;
5267   if (Lex.getKind() == lltok::GlobalVar) {
5268     FunctionName = Lex.getStrVal();
5269   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5270     unsigned NameID = Lex.getUIntVal();
5271 
5272     if (NameID != NumberedVals.size())
5273       return TokError("function expected to be numbered '%" +
5274                       Twine(NumberedVals.size()) + "'");
5275   } else {
5276     return TokError("expected function name");
5277   }
5278 
5279   Lex.Lex();
5280 
5281   if (Lex.getKind() != lltok::lparen)
5282     return TokError("expected '(' in function argument list");
5283 
5284   SmallVector<ArgInfo, 8> ArgList;
5285   bool isVarArg;
5286   AttrBuilder FuncAttrs;
5287   std::vector<unsigned> FwdRefAttrGrps;
5288   LocTy BuiltinLoc;
5289   std::string Section;
5290   unsigned Alignment;
5291   std::string GC;
5292   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5293   unsigned AddrSpace = 0;
5294   Constant *Prefix = nullptr;
5295   Constant *Prologue = nullptr;
5296   Constant *PersonalityFn = nullptr;
5297   Comdat *C;
5298 
5299   if (ParseArgumentList(ArgList, isVarArg) ||
5300       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5301       ParseOptionalProgramAddrSpace(AddrSpace) ||
5302       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5303                                  BuiltinLoc) ||
5304       (EatIfPresent(lltok::kw_section) &&
5305        ParseStringConstant(Section)) ||
5306       parseOptionalComdat(FunctionName, C) ||
5307       ParseOptionalAlignment(Alignment) ||
5308       (EatIfPresent(lltok::kw_gc) &&
5309        ParseStringConstant(GC)) ||
5310       (EatIfPresent(lltok::kw_prefix) &&
5311        ParseGlobalTypeAndValue(Prefix)) ||
5312       (EatIfPresent(lltok::kw_prologue) &&
5313        ParseGlobalTypeAndValue(Prologue)) ||
5314       (EatIfPresent(lltok::kw_personality) &&
5315        ParseGlobalTypeAndValue(PersonalityFn)))
5316     return true;
5317 
5318   if (FuncAttrs.contains(Attribute::Builtin))
5319     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5320 
5321   // If the alignment was parsed as an attribute, move to the alignment field.
5322   if (FuncAttrs.hasAlignmentAttr()) {
5323     Alignment = FuncAttrs.getAlignment();
5324     FuncAttrs.removeAttribute(Attribute::Alignment);
5325   }
5326 
5327   // Okay, if we got here, the function is syntactically valid.  Convert types
5328   // and do semantic checks.
5329   std::vector<Type*> ParamTypeList;
5330   SmallVector<AttributeSet, 8> Attrs;
5331 
5332   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5333     ParamTypeList.push_back(ArgList[i].Ty);
5334     Attrs.push_back(ArgList[i].Attrs);
5335   }
5336 
5337   AttributeList PAL =
5338       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5339                          AttributeSet::get(Context, RetAttrs), Attrs);
5340 
5341   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5342     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5343 
5344   FunctionType *FT =
5345     FunctionType::get(RetType, ParamTypeList, isVarArg);
5346   PointerType *PFT = PointerType::get(FT, AddrSpace);
5347 
5348   Fn = nullptr;
5349   if (!FunctionName.empty()) {
5350     // If this was a definition of a forward reference, remove the definition
5351     // from the forward reference table and fill in the forward ref.
5352     auto FRVI = ForwardRefVals.find(FunctionName);
5353     if (FRVI != ForwardRefVals.end()) {
5354       Fn = M->getFunction(FunctionName);
5355       if (!Fn)
5356         return Error(FRVI->second.second, "invalid forward reference to "
5357                      "function as global value!");
5358       if (Fn->getType() != PFT)
5359         return Error(FRVI->second.second, "invalid forward reference to "
5360                      "function '" + FunctionName + "' with wrong type: "
5361                      "expected '" + getTypeString(PFT) + "' but was '" +
5362                      getTypeString(Fn->getType()) + "'");
5363       ForwardRefVals.erase(FRVI);
5364     } else if ((Fn = M->getFunction(FunctionName))) {
5365       // Reject redefinitions.
5366       return Error(NameLoc, "invalid redefinition of function '" +
5367                    FunctionName + "'");
5368     } else if (M->getNamedValue(FunctionName)) {
5369       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5370     }
5371 
5372   } else {
5373     // If this is a definition of a forward referenced function, make sure the
5374     // types agree.
5375     auto I = ForwardRefValIDs.find(NumberedVals.size());
5376     if (I != ForwardRefValIDs.end()) {
5377       Fn = cast<Function>(I->second.first);
5378       if (Fn->getType() != PFT)
5379         return Error(NameLoc, "type of definition and forward reference of '@" +
5380                      Twine(NumberedVals.size()) + "' disagree: "
5381                      "expected '" + getTypeString(PFT) + "' but was '" +
5382                      getTypeString(Fn->getType()) + "'");
5383       ForwardRefValIDs.erase(I);
5384     }
5385   }
5386 
5387   if (!Fn)
5388     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5389                           FunctionName, M);
5390   else // Move the forward-reference to the correct spot in the module.
5391     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5392 
5393   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5394 
5395   if (FunctionName.empty())
5396     NumberedVals.push_back(Fn);
5397 
5398   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5399   maybeSetDSOLocal(DSOLocal, *Fn);
5400   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5401   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5402   Fn->setCallingConv(CC);
5403   Fn->setAttributes(PAL);
5404   Fn->setUnnamedAddr(UnnamedAddr);
5405   Fn->setAlignment(Alignment);
5406   Fn->setSection(Section);
5407   Fn->setComdat(C);
5408   Fn->setPersonalityFn(PersonalityFn);
5409   if (!GC.empty()) Fn->setGC(GC);
5410   Fn->setPrefixData(Prefix);
5411   Fn->setPrologueData(Prologue);
5412   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5413 
5414   // Add all of the arguments we parsed to the function.
5415   Function::arg_iterator ArgIt = Fn->arg_begin();
5416   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5417     // If the argument has a name, insert it into the argument symbol table.
5418     if (ArgList[i].Name.empty()) continue;
5419 
5420     // Set the name, if it conflicted, it will be auto-renamed.
5421     ArgIt->setName(ArgList[i].Name);
5422 
5423     if (ArgIt->getName() != ArgList[i].Name)
5424       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5425                    ArgList[i].Name + "'");
5426   }
5427 
5428   if (isDefine)
5429     return false;
5430 
5431   // Check the declaration has no block address forward references.
5432   ValID ID;
5433   if (FunctionName.empty()) {
5434     ID.Kind = ValID::t_GlobalID;
5435     ID.UIntVal = NumberedVals.size() - 1;
5436   } else {
5437     ID.Kind = ValID::t_GlobalName;
5438     ID.StrVal = FunctionName;
5439   }
5440   auto Blocks = ForwardRefBlockAddresses.find(ID);
5441   if (Blocks != ForwardRefBlockAddresses.end())
5442     return Error(Blocks->first.Loc,
5443                  "cannot take blockaddress inside a declaration");
5444   return false;
5445 }
5446 
5447 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5448   ValID ID;
5449   if (FunctionNumber == -1) {
5450     ID.Kind = ValID::t_GlobalName;
5451     ID.StrVal = F.getName();
5452   } else {
5453     ID.Kind = ValID::t_GlobalID;
5454     ID.UIntVal = FunctionNumber;
5455   }
5456 
5457   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5458   if (Blocks == P.ForwardRefBlockAddresses.end())
5459     return false;
5460 
5461   for (const auto &I : Blocks->second) {
5462     const ValID &BBID = I.first;
5463     GlobalValue *GV = I.second;
5464 
5465     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5466            "Expected local id or name");
5467     BasicBlock *BB;
5468     if (BBID.Kind == ValID::t_LocalName)
5469       BB = GetBB(BBID.StrVal, BBID.Loc);
5470     else
5471       BB = GetBB(BBID.UIntVal, BBID.Loc);
5472     if (!BB)
5473       return P.Error(BBID.Loc, "referenced value is not a basic block");
5474 
5475     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5476     GV->eraseFromParent();
5477   }
5478 
5479   P.ForwardRefBlockAddresses.erase(Blocks);
5480   return false;
5481 }
5482 
5483 /// ParseFunctionBody
5484 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5485 bool LLParser::ParseFunctionBody(Function &Fn) {
5486   if (Lex.getKind() != lltok::lbrace)
5487     return TokError("expected '{' in function body");
5488   Lex.Lex();  // eat the {.
5489 
5490   int FunctionNumber = -1;
5491   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5492 
5493   PerFunctionState PFS(*this, Fn, FunctionNumber);
5494 
5495   // Resolve block addresses and allow basic blocks to be forward-declared
5496   // within this function.
5497   if (PFS.resolveForwardRefBlockAddresses())
5498     return true;
5499   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5500 
5501   // We need at least one basic block.
5502   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5503     return TokError("function body requires at least one basic block");
5504 
5505   while (Lex.getKind() != lltok::rbrace &&
5506          Lex.getKind() != lltok::kw_uselistorder)
5507     if (ParseBasicBlock(PFS)) return true;
5508 
5509   while (Lex.getKind() != lltok::rbrace)
5510     if (ParseUseListOrder(&PFS))
5511       return true;
5512 
5513   // Eat the }.
5514   Lex.Lex();
5515 
5516   // Verify function is ok.
5517   return PFS.FinishFunction();
5518 }
5519 
5520 /// ParseBasicBlock
5521 ///   ::= (LabelStr|LabelID)? Instruction*
5522 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5523   // If this basic block starts out with a name, remember it.
5524   std::string Name;
5525   int NameID = -1;
5526   LocTy NameLoc = Lex.getLoc();
5527   if (Lex.getKind() == lltok::LabelStr) {
5528     Name = Lex.getStrVal();
5529     Lex.Lex();
5530   } else if (Lex.getKind() == lltok::LabelID) {
5531     NameID = Lex.getUIntVal();
5532     Lex.Lex();
5533   }
5534 
5535   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5536   if (!BB)
5537     return true;
5538 
5539   std::string NameStr;
5540 
5541   // Parse the instructions in this block until we get a terminator.
5542   Instruction *Inst;
5543   do {
5544     // This instruction may have three possibilities for a name: a) none
5545     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5546     LocTy NameLoc = Lex.getLoc();
5547     int NameID = -1;
5548     NameStr = "";
5549 
5550     if (Lex.getKind() == lltok::LocalVarID) {
5551       NameID = Lex.getUIntVal();
5552       Lex.Lex();
5553       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5554         return true;
5555     } else if (Lex.getKind() == lltok::LocalVar) {
5556       NameStr = Lex.getStrVal();
5557       Lex.Lex();
5558       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5559         return true;
5560     }
5561 
5562     switch (ParseInstruction(Inst, BB, PFS)) {
5563     default: llvm_unreachable("Unknown ParseInstruction result!");
5564     case InstError: return true;
5565     case InstNormal:
5566       BB->getInstList().push_back(Inst);
5567 
5568       // With a normal result, we check to see if the instruction is followed by
5569       // a comma and metadata.
5570       if (EatIfPresent(lltok::comma))
5571         if (ParseInstructionMetadata(*Inst))
5572           return true;
5573       break;
5574     case InstExtraComma:
5575       BB->getInstList().push_back(Inst);
5576 
5577       // If the instruction parser ate an extra comma at the end of it, it
5578       // *must* be followed by metadata.
5579       if (ParseInstructionMetadata(*Inst))
5580         return true;
5581       break;
5582     }
5583 
5584     // Set the name on the instruction.
5585     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5586   } while (!Inst->isTerminator());
5587 
5588   return false;
5589 }
5590 
5591 //===----------------------------------------------------------------------===//
5592 // Instruction Parsing.
5593 //===----------------------------------------------------------------------===//
5594 
5595 /// ParseInstruction - Parse one of the many different instructions.
5596 ///
5597 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5598                                PerFunctionState &PFS) {
5599   lltok::Kind Token = Lex.getKind();
5600   if (Token == lltok::Eof)
5601     return TokError("found end of file when expecting more instructions");
5602   LocTy Loc = Lex.getLoc();
5603   unsigned KeywordVal = Lex.getUIntVal();
5604   Lex.Lex();  // Eat the keyword.
5605 
5606   switch (Token) {
5607   default:                    return Error(Loc, "expected instruction opcode");
5608   // Terminator Instructions.
5609   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5610   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5611   case lltok::kw_br:          return ParseBr(Inst, PFS);
5612   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5613   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5614   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5615   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5616   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5617   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5618   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5619   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5620   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5621   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5622   // Unary Operators.
5623   case lltok::kw_fneg: {
5624     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5625     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5626     if (Res != 0)
5627       return Res;
5628     if (FMF.any())
5629       Inst->setFastMathFlags(FMF);
5630     return false;
5631   }
5632   // Binary Operators.
5633   case lltok::kw_add:
5634   case lltok::kw_sub:
5635   case lltok::kw_mul:
5636   case lltok::kw_shl: {
5637     bool NUW = EatIfPresent(lltok::kw_nuw);
5638     bool NSW = EatIfPresent(lltok::kw_nsw);
5639     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5640 
5641     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5642 
5643     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5644     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5645     return false;
5646   }
5647   case lltok::kw_fadd:
5648   case lltok::kw_fsub:
5649   case lltok::kw_fmul:
5650   case lltok::kw_fdiv:
5651   case lltok::kw_frem: {
5652     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5653     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5654     if (Res != 0)
5655       return Res;
5656     if (FMF.any())
5657       Inst->setFastMathFlags(FMF);
5658     return 0;
5659   }
5660 
5661   case lltok::kw_sdiv:
5662   case lltok::kw_udiv:
5663   case lltok::kw_lshr:
5664   case lltok::kw_ashr: {
5665     bool Exact = EatIfPresent(lltok::kw_exact);
5666 
5667     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5668     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5669     return false;
5670   }
5671 
5672   case lltok::kw_urem:
5673   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5674                                                 /*IsFP*/false);
5675   case lltok::kw_and:
5676   case lltok::kw_or:
5677   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5678   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5679   case lltok::kw_fcmp: {
5680     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5681     int Res = ParseCompare(Inst, PFS, KeywordVal);
5682     if (Res != 0)
5683       return Res;
5684     if (FMF.any())
5685       Inst->setFastMathFlags(FMF);
5686     return 0;
5687   }
5688 
5689   // Casts.
5690   case lltok::kw_trunc:
5691   case lltok::kw_zext:
5692   case lltok::kw_sext:
5693   case lltok::kw_fptrunc:
5694   case lltok::kw_fpext:
5695   case lltok::kw_bitcast:
5696   case lltok::kw_addrspacecast:
5697   case lltok::kw_uitofp:
5698   case lltok::kw_sitofp:
5699   case lltok::kw_fptoui:
5700   case lltok::kw_fptosi:
5701   case lltok::kw_inttoptr:
5702   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5703   // Other.
5704   case lltok::kw_select: {
5705     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5706     int Res = ParseSelect(Inst, PFS);
5707     if (Res != 0)
5708       return Res;
5709     if (FMF.any()) {
5710       if (!Inst->getType()->isFPOrFPVectorTy())
5711         return Error(Loc, "fast-math-flags specified for select without "
5712                           "floating-point scalar or vector return type");
5713       Inst->setFastMathFlags(FMF);
5714     }
5715     return 0;
5716   }
5717   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5718   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5719   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5720   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5721   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5722   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5723   // Call.
5724   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5725   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5726   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5727   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5728   // Memory.
5729   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5730   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5731   case lltok::kw_store:          return ParseStore(Inst, PFS);
5732   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5733   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5734   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5735   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5736   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5737   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5738   }
5739 }
5740 
5741 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5742 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5743   if (Opc == Instruction::FCmp) {
5744     switch (Lex.getKind()) {
5745     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5746     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5747     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5748     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5749     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5750     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5751     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5752     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5753     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5754     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5755     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5756     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5757     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5758     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5759     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5760     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5761     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5762     }
5763   } else {
5764     switch (Lex.getKind()) {
5765     default: return TokError("expected icmp predicate (e.g. 'eq')");
5766     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5767     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5768     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5769     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5770     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5771     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5772     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5773     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5774     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5775     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5776     }
5777   }
5778   Lex.Lex();
5779   return false;
5780 }
5781 
5782 //===----------------------------------------------------------------------===//
5783 // Terminator Instructions.
5784 //===----------------------------------------------------------------------===//
5785 
5786 /// ParseRet - Parse a return instruction.
5787 ///   ::= 'ret' void (',' !dbg, !1)*
5788 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5789 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5790                         PerFunctionState &PFS) {
5791   SMLoc TypeLoc = Lex.getLoc();
5792   Type *Ty = nullptr;
5793   if (ParseType(Ty, true /*void allowed*/)) return true;
5794 
5795   Type *ResType = PFS.getFunction().getReturnType();
5796 
5797   if (Ty->isVoidTy()) {
5798     if (!ResType->isVoidTy())
5799       return Error(TypeLoc, "value doesn't match function result type '" +
5800                    getTypeString(ResType) + "'");
5801 
5802     Inst = ReturnInst::Create(Context);
5803     return false;
5804   }
5805 
5806   Value *RV;
5807   if (ParseValue(Ty, RV, PFS)) return true;
5808 
5809   if (ResType != RV->getType())
5810     return Error(TypeLoc, "value doesn't match function result type '" +
5811                  getTypeString(ResType) + "'");
5812 
5813   Inst = ReturnInst::Create(Context, RV);
5814   return false;
5815 }
5816 
5817 /// ParseBr
5818 ///   ::= 'br' TypeAndValue
5819 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5820 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5821   LocTy Loc, Loc2;
5822   Value *Op0;
5823   BasicBlock *Op1, *Op2;
5824   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5825 
5826   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5827     Inst = BranchInst::Create(BB);
5828     return false;
5829   }
5830 
5831   if (Op0->getType() != Type::getInt1Ty(Context))
5832     return Error(Loc, "branch condition must have 'i1' type");
5833 
5834   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5835       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5836       ParseToken(lltok::comma, "expected ',' after true destination") ||
5837       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5838     return true;
5839 
5840   Inst = BranchInst::Create(Op1, Op2, Op0);
5841   return false;
5842 }
5843 
5844 /// ParseSwitch
5845 ///  Instruction
5846 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5847 ///  JumpTable
5848 ///    ::= (TypeAndValue ',' TypeAndValue)*
5849 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5850   LocTy CondLoc, BBLoc;
5851   Value *Cond;
5852   BasicBlock *DefaultBB;
5853   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5854       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5855       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5856       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5857     return true;
5858 
5859   if (!Cond->getType()->isIntegerTy())
5860     return Error(CondLoc, "switch condition must have integer type");
5861 
5862   // Parse the jump table pairs.
5863   SmallPtrSet<Value*, 32> SeenCases;
5864   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5865   while (Lex.getKind() != lltok::rsquare) {
5866     Value *Constant;
5867     BasicBlock *DestBB;
5868 
5869     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5870         ParseToken(lltok::comma, "expected ',' after case value") ||
5871         ParseTypeAndBasicBlock(DestBB, PFS))
5872       return true;
5873 
5874     if (!SeenCases.insert(Constant).second)
5875       return Error(CondLoc, "duplicate case value in switch");
5876     if (!isa<ConstantInt>(Constant))
5877       return Error(CondLoc, "case value is not a constant integer");
5878 
5879     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5880   }
5881 
5882   Lex.Lex();  // Eat the ']'.
5883 
5884   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5885   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5886     SI->addCase(Table[i].first, Table[i].second);
5887   Inst = SI;
5888   return false;
5889 }
5890 
5891 /// ParseIndirectBr
5892 ///  Instruction
5893 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5894 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5895   LocTy AddrLoc;
5896   Value *Address;
5897   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5898       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5899       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5900     return true;
5901 
5902   if (!Address->getType()->isPointerTy())
5903     return Error(AddrLoc, "indirectbr address must have pointer type");
5904 
5905   // Parse the destination list.
5906   SmallVector<BasicBlock*, 16> DestList;
5907 
5908   if (Lex.getKind() != lltok::rsquare) {
5909     BasicBlock *DestBB;
5910     if (ParseTypeAndBasicBlock(DestBB, PFS))
5911       return true;
5912     DestList.push_back(DestBB);
5913 
5914     while (EatIfPresent(lltok::comma)) {
5915       if (ParseTypeAndBasicBlock(DestBB, PFS))
5916         return true;
5917       DestList.push_back(DestBB);
5918     }
5919   }
5920 
5921   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5922     return true;
5923 
5924   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5925   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5926     IBI->addDestination(DestList[i]);
5927   Inst = IBI;
5928   return false;
5929 }
5930 
5931 /// ParseInvoke
5932 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5933 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5934 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5935   LocTy CallLoc = Lex.getLoc();
5936   AttrBuilder RetAttrs, FnAttrs;
5937   std::vector<unsigned> FwdRefAttrGrps;
5938   LocTy NoBuiltinLoc;
5939   unsigned CC;
5940   unsigned InvokeAddrSpace;
5941   Type *RetType = nullptr;
5942   LocTy RetTypeLoc;
5943   ValID CalleeID;
5944   SmallVector<ParamInfo, 16> ArgList;
5945   SmallVector<OperandBundleDef, 2> BundleList;
5946 
5947   BasicBlock *NormalBB, *UnwindBB;
5948   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5949       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5950       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5951       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5952       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5953                                  NoBuiltinLoc) ||
5954       ParseOptionalOperandBundles(BundleList, PFS) ||
5955       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5956       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5957       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5958       ParseTypeAndBasicBlock(UnwindBB, PFS))
5959     return true;
5960 
5961   // If RetType is a non-function pointer type, then this is the short syntax
5962   // for the call, which means that RetType is just the return type.  Infer the
5963   // rest of the function argument types from the arguments that are present.
5964   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5965   if (!Ty) {
5966     // Pull out the types of all of the arguments...
5967     std::vector<Type*> ParamTypes;
5968     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5969       ParamTypes.push_back(ArgList[i].V->getType());
5970 
5971     if (!FunctionType::isValidReturnType(RetType))
5972       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5973 
5974     Ty = FunctionType::get(RetType, ParamTypes, false);
5975   }
5976 
5977   CalleeID.FTy = Ty;
5978 
5979   // Look up the callee.
5980   Value *Callee;
5981   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5982                           Callee, &PFS, /*IsCall=*/true))
5983     return true;
5984 
5985   // Set up the Attribute for the function.
5986   SmallVector<Value *, 8> Args;
5987   SmallVector<AttributeSet, 8> ArgAttrs;
5988 
5989   // Loop through FunctionType's arguments and ensure they are specified
5990   // correctly.  Also, gather any parameter attributes.
5991   FunctionType::param_iterator I = Ty->param_begin();
5992   FunctionType::param_iterator E = Ty->param_end();
5993   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5994     Type *ExpectedTy = nullptr;
5995     if (I != E) {
5996       ExpectedTy = *I++;
5997     } else if (!Ty->isVarArg()) {
5998       return Error(ArgList[i].Loc, "too many arguments specified");
5999     }
6000 
6001     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6002       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6003                    getTypeString(ExpectedTy) + "'");
6004     Args.push_back(ArgList[i].V);
6005     ArgAttrs.push_back(ArgList[i].Attrs);
6006   }
6007 
6008   if (I != E)
6009     return Error(CallLoc, "not enough parameters specified for call");
6010 
6011   if (FnAttrs.hasAlignmentAttr())
6012     return Error(CallLoc, "invoke instructions may not have an alignment");
6013 
6014   // Finish off the Attribute and check them
6015   AttributeList PAL =
6016       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6017                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6018 
6019   InvokeInst *II =
6020       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6021   II->setCallingConv(CC);
6022   II->setAttributes(PAL);
6023   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6024   Inst = II;
6025   return false;
6026 }
6027 
6028 /// ParseResume
6029 ///   ::= 'resume' TypeAndValue
6030 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6031   Value *Exn; LocTy ExnLoc;
6032   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6033     return true;
6034 
6035   ResumeInst *RI = ResumeInst::Create(Exn);
6036   Inst = RI;
6037   return false;
6038 }
6039 
6040 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6041                                   PerFunctionState &PFS) {
6042   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6043     return true;
6044 
6045   while (Lex.getKind() != lltok::rsquare) {
6046     // If this isn't the first argument, we need a comma.
6047     if (!Args.empty() &&
6048         ParseToken(lltok::comma, "expected ',' in argument list"))
6049       return true;
6050 
6051     // Parse the argument.
6052     LocTy ArgLoc;
6053     Type *ArgTy = nullptr;
6054     if (ParseType(ArgTy, ArgLoc))
6055       return true;
6056 
6057     Value *V;
6058     if (ArgTy->isMetadataTy()) {
6059       if (ParseMetadataAsValue(V, PFS))
6060         return true;
6061     } else {
6062       if (ParseValue(ArgTy, V, PFS))
6063         return true;
6064     }
6065     Args.push_back(V);
6066   }
6067 
6068   Lex.Lex();  // Lex the ']'.
6069   return false;
6070 }
6071 
6072 /// ParseCleanupRet
6073 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6074 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6075   Value *CleanupPad = nullptr;
6076 
6077   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6078     return true;
6079 
6080   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6081     return true;
6082 
6083   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6084     return true;
6085 
6086   BasicBlock *UnwindBB = nullptr;
6087   if (Lex.getKind() == lltok::kw_to) {
6088     Lex.Lex();
6089     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6090       return true;
6091   } else {
6092     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6093       return true;
6094     }
6095   }
6096 
6097   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6098   return false;
6099 }
6100 
6101 /// ParseCatchRet
6102 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6103 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6104   Value *CatchPad = nullptr;
6105 
6106   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6107     return true;
6108 
6109   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6110     return true;
6111 
6112   BasicBlock *BB;
6113   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6114       ParseTypeAndBasicBlock(BB, PFS))
6115       return true;
6116 
6117   Inst = CatchReturnInst::Create(CatchPad, BB);
6118   return false;
6119 }
6120 
6121 /// ParseCatchSwitch
6122 ///   ::= 'catchswitch' within Parent
6123 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6124   Value *ParentPad;
6125 
6126   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6127     return true;
6128 
6129   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6130       Lex.getKind() != lltok::LocalVarID)
6131     return TokError("expected scope value for catchswitch");
6132 
6133   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6134     return true;
6135 
6136   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6137     return true;
6138 
6139   SmallVector<BasicBlock *, 32> Table;
6140   do {
6141     BasicBlock *DestBB;
6142     if (ParseTypeAndBasicBlock(DestBB, PFS))
6143       return true;
6144     Table.push_back(DestBB);
6145   } while (EatIfPresent(lltok::comma));
6146 
6147   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6148     return true;
6149 
6150   if (ParseToken(lltok::kw_unwind,
6151                  "expected 'unwind' after catchswitch scope"))
6152     return true;
6153 
6154   BasicBlock *UnwindBB = nullptr;
6155   if (EatIfPresent(lltok::kw_to)) {
6156     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6157       return true;
6158   } else {
6159     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6160       return true;
6161   }
6162 
6163   auto *CatchSwitch =
6164       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6165   for (BasicBlock *DestBB : Table)
6166     CatchSwitch->addHandler(DestBB);
6167   Inst = CatchSwitch;
6168   return false;
6169 }
6170 
6171 /// ParseCatchPad
6172 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6173 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6174   Value *CatchSwitch = nullptr;
6175 
6176   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6177     return true;
6178 
6179   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6180     return TokError("expected scope value for catchpad");
6181 
6182   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6183     return true;
6184 
6185   SmallVector<Value *, 8> Args;
6186   if (ParseExceptionArgs(Args, PFS))
6187     return true;
6188 
6189   Inst = CatchPadInst::Create(CatchSwitch, Args);
6190   return false;
6191 }
6192 
6193 /// ParseCleanupPad
6194 ///   ::= 'cleanuppad' within Parent ParamList
6195 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6196   Value *ParentPad = nullptr;
6197 
6198   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6199     return true;
6200 
6201   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6202       Lex.getKind() != lltok::LocalVarID)
6203     return TokError("expected scope value for cleanuppad");
6204 
6205   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6206     return true;
6207 
6208   SmallVector<Value *, 8> Args;
6209   if (ParseExceptionArgs(Args, PFS))
6210     return true;
6211 
6212   Inst = CleanupPadInst::Create(ParentPad, Args);
6213   return false;
6214 }
6215 
6216 //===----------------------------------------------------------------------===//
6217 // Unary Operators.
6218 //===----------------------------------------------------------------------===//
6219 
6220 /// ParseUnaryOp
6221 ///  ::= UnaryOp TypeAndValue ',' Value
6222 ///
6223 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6224 /// operand is allowed.
6225 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6226                             unsigned Opc, bool IsFP) {
6227   LocTy Loc; Value *LHS;
6228   if (ParseTypeAndValue(LHS, Loc, PFS))
6229     return true;
6230 
6231   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6232                     : LHS->getType()->isIntOrIntVectorTy();
6233 
6234   if (!Valid)
6235     return Error(Loc, "invalid operand type for instruction");
6236 
6237   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6238   return false;
6239 }
6240 
6241 /// ParseCallBr
6242 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6243 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6244 ///       '[' LabelList ']'
6245 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6246   LocTy CallLoc = Lex.getLoc();
6247   AttrBuilder RetAttrs, FnAttrs;
6248   std::vector<unsigned> FwdRefAttrGrps;
6249   LocTy NoBuiltinLoc;
6250   unsigned CC;
6251   Type *RetType = nullptr;
6252   LocTy RetTypeLoc;
6253   ValID CalleeID;
6254   SmallVector<ParamInfo, 16> ArgList;
6255   SmallVector<OperandBundleDef, 2> BundleList;
6256 
6257   BasicBlock *DefaultDest;
6258   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6259       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6260       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6261       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6262                                  NoBuiltinLoc) ||
6263       ParseOptionalOperandBundles(BundleList, PFS) ||
6264       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6265       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6266       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6267     return true;
6268 
6269   // Parse the destination list.
6270   SmallVector<BasicBlock *, 16> IndirectDests;
6271 
6272   if (Lex.getKind() != lltok::rsquare) {
6273     BasicBlock *DestBB;
6274     if (ParseTypeAndBasicBlock(DestBB, PFS))
6275       return true;
6276     IndirectDests.push_back(DestBB);
6277 
6278     while (EatIfPresent(lltok::comma)) {
6279       if (ParseTypeAndBasicBlock(DestBB, PFS))
6280         return true;
6281       IndirectDests.push_back(DestBB);
6282     }
6283   }
6284 
6285   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6286     return true;
6287 
6288   // If RetType is a non-function pointer type, then this is the short syntax
6289   // for the call, which means that RetType is just the return type.  Infer the
6290   // rest of the function argument types from the arguments that are present.
6291   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6292   if (!Ty) {
6293     // Pull out the types of all of the arguments...
6294     std::vector<Type *> ParamTypes;
6295     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6296       ParamTypes.push_back(ArgList[i].V->getType());
6297 
6298     if (!FunctionType::isValidReturnType(RetType))
6299       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6300 
6301     Ty = FunctionType::get(RetType, ParamTypes, false);
6302   }
6303 
6304   CalleeID.FTy = Ty;
6305 
6306   // Look up the callee.
6307   Value *Callee;
6308   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6309                           /*IsCall=*/true))
6310     return true;
6311 
6312   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6313     return Error(RetTypeLoc, "asm-goto outputs not supported");
6314 
6315   // Set up the Attribute for the function.
6316   SmallVector<Value *, 8> Args;
6317   SmallVector<AttributeSet, 8> ArgAttrs;
6318 
6319   // Loop through FunctionType's arguments and ensure they are specified
6320   // correctly.  Also, gather any parameter attributes.
6321   FunctionType::param_iterator I = Ty->param_begin();
6322   FunctionType::param_iterator E = Ty->param_end();
6323   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6324     Type *ExpectedTy = nullptr;
6325     if (I != E) {
6326       ExpectedTy = *I++;
6327     } else if (!Ty->isVarArg()) {
6328       return Error(ArgList[i].Loc, "too many arguments specified");
6329     }
6330 
6331     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6332       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6333                                        getTypeString(ExpectedTy) + "'");
6334     Args.push_back(ArgList[i].V);
6335     ArgAttrs.push_back(ArgList[i].Attrs);
6336   }
6337 
6338   if (I != E)
6339     return Error(CallLoc, "not enough parameters specified for call");
6340 
6341   if (FnAttrs.hasAlignmentAttr())
6342     return Error(CallLoc, "callbr instructions may not have an alignment");
6343 
6344   // Finish off the Attribute and check them
6345   AttributeList PAL =
6346       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6347                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6348 
6349   CallBrInst *CBI =
6350       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6351                          BundleList);
6352   CBI->setCallingConv(CC);
6353   CBI->setAttributes(PAL);
6354   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6355   Inst = CBI;
6356   return false;
6357 }
6358 
6359 //===----------------------------------------------------------------------===//
6360 // Binary Operators.
6361 //===----------------------------------------------------------------------===//
6362 
6363 /// ParseArithmetic
6364 ///  ::= ArithmeticOps TypeAndValue ',' Value
6365 ///
6366 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6367 /// operand is allowed.
6368 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6369                                unsigned Opc, bool IsFP) {
6370   LocTy Loc; Value *LHS, *RHS;
6371   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6372       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6373       ParseValue(LHS->getType(), RHS, PFS))
6374     return true;
6375 
6376   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6377                     : LHS->getType()->isIntOrIntVectorTy();
6378 
6379   if (!Valid)
6380     return Error(Loc, "invalid operand type for instruction");
6381 
6382   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6383   return false;
6384 }
6385 
6386 /// ParseLogical
6387 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6388 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6389                             unsigned Opc) {
6390   LocTy Loc; Value *LHS, *RHS;
6391   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6392       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6393       ParseValue(LHS->getType(), RHS, PFS))
6394     return true;
6395 
6396   if (!LHS->getType()->isIntOrIntVectorTy())
6397     return Error(Loc,"instruction requires integer or integer vector operands");
6398 
6399   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6400   return false;
6401 }
6402 
6403 /// ParseCompare
6404 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6405 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6406 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6407                             unsigned Opc) {
6408   // Parse the integer/fp comparison predicate.
6409   LocTy Loc;
6410   unsigned Pred;
6411   Value *LHS, *RHS;
6412   if (ParseCmpPredicate(Pred, Opc) ||
6413       ParseTypeAndValue(LHS, Loc, PFS) ||
6414       ParseToken(lltok::comma, "expected ',' after compare value") ||
6415       ParseValue(LHS->getType(), RHS, PFS))
6416     return true;
6417 
6418   if (Opc == Instruction::FCmp) {
6419     if (!LHS->getType()->isFPOrFPVectorTy())
6420       return Error(Loc, "fcmp requires floating point operands");
6421     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6422   } else {
6423     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6424     if (!LHS->getType()->isIntOrIntVectorTy() &&
6425         !LHS->getType()->isPtrOrPtrVectorTy())
6426       return Error(Loc, "icmp requires integer operands");
6427     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6428   }
6429   return false;
6430 }
6431 
6432 //===----------------------------------------------------------------------===//
6433 // Other Instructions.
6434 //===----------------------------------------------------------------------===//
6435 
6436 
6437 /// ParseCast
6438 ///   ::= CastOpc TypeAndValue 'to' Type
6439 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6440                          unsigned Opc) {
6441   LocTy Loc;
6442   Value *Op;
6443   Type *DestTy = nullptr;
6444   if (ParseTypeAndValue(Op, Loc, PFS) ||
6445       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6446       ParseType(DestTy))
6447     return true;
6448 
6449   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6450     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6451     return Error(Loc, "invalid cast opcode for cast from '" +
6452                  getTypeString(Op->getType()) + "' to '" +
6453                  getTypeString(DestTy) + "'");
6454   }
6455   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6456   return false;
6457 }
6458 
6459 /// ParseSelect
6460 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6461 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6462   LocTy Loc;
6463   Value *Op0, *Op1, *Op2;
6464   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6465       ParseToken(lltok::comma, "expected ',' after select condition") ||
6466       ParseTypeAndValue(Op1, PFS) ||
6467       ParseToken(lltok::comma, "expected ',' after select value") ||
6468       ParseTypeAndValue(Op2, PFS))
6469     return true;
6470 
6471   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6472     return Error(Loc, Reason);
6473 
6474   Inst = SelectInst::Create(Op0, Op1, Op2);
6475   return false;
6476 }
6477 
6478 /// ParseVA_Arg
6479 ///   ::= 'va_arg' TypeAndValue ',' Type
6480 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6481   Value *Op;
6482   Type *EltTy = nullptr;
6483   LocTy TypeLoc;
6484   if (ParseTypeAndValue(Op, PFS) ||
6485       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6486       ParseType(EltTy, TypeLoc))
6487     return true;
6488 
6489   if (!EltTy->isFirstClassType())
6490     return Error(TypeLoc, "va_arg requires operand with first class type");
6491 
6492   Inst = new VAArgInst(Op, EltTy);
6493   return false;
6494 }
6495 
6496 /// ParseExtractElement
6497 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6498 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6499   LocTy Loc;
6500   Value *Op0, *Op1;
6501   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6502       ParseToken(lltok::comma, "expected ',' after extract value") ||
6503       ParseTypeAndValue(Op1, PFS))
6504     return true;
6505 
6506   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6507     return Error(Loc, "invalid extractelement operands");
6508 
6509   Inst = ExtractElementInst::Create(Op0, Op1);
6510   return false;
6511 }
6512 
6513 /// ParseInsertElement
6514 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6515 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6516   LocTy Loc;
6517   Value *Op0, *Op1, *Op2;
6518   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6519       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6520       ParseTypeAndValue(Op1, PFS) ||
6521       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6522       ParseTypeAndValue(Op2, PFS))
6523     return true;
6524 
6525   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6526     return Error(Loc, "invalid insertelement operands");
6527 
6528   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6529   return false;
6530 }
6531 
6532 /// ParseShuffleVector
6533 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6534 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6535   LocTy Loc;
6536   Value *Op0, *Op1, *Op2;
6537   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6538       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6539       ParseTypeAndValue(Op1, PFS) ||
6540       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6541       ParseTypeAndValue(Op2, PFS))
6542     return true;
6543 
6544   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6545     return Error(Loc, "invalid shufflevector operands");
6546 
6547   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6548   return false;
6549 }
6550 
6551 /// ParsePHI
6552 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6553 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6554   Type *Ty = nullptr;  LocTy TypeLoc;
6555   Value *Op0, *Op1;
6556 
6557   if (ParseType(Ty, TypeLoc) ||
6558       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6559       ParseValue(Ty, Op0, PFS) ||
6560       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6561       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6562       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6563     return true;
6564 
6565   bool AteExtraComma = false;
6566   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6567 
6568   while (true) {
6569     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6570 
6571     if (!EatIfPresent(lltok::comma))
6572       break;
6573 
6574     if (Lex.getKind() == lltok::MetadataVar) {
6575       AteExtraComma = true;
6576       break;
6577     }
6578 
6579     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6580         ParseValue(Ty, Op0, PFS) ||
6581         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6582         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6583         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6584       return true;
6585   }
6586 
6587   if (!Ty->isFirstClassType())
6588     return Error(TypeLoc, "phi node must have first class type");
6589 
6590   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6591   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6592     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6593   Inst = PN;
6594   return AteExtraComma ? InstExtraComma : InstNormal;
6595 }
6596 
6597 /// ParseLandingPad
6598 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6599 /// Clause
6600 ///   ::= 'catch' TypeAndValue
6601 ///   ::= 'filter'
6602 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6603 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6604   Type *Ty = nullptr; LocTy TyLoc;
6605 
6606   if (ParseType(Ty, TyLoc))
6607     return true;
6608 
6609   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6610   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6611 
6612   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6613     LandingPadInst::ClauseType CT;
6614     if (EatIfPresent(lltok::kw_catch))
6615       CT = LandingPadInst::Catch;
6616     else if (EatIfPresent(lltok::kw_filter))
6617       CT = LandingPadInst::Filter;
6618     else
6619       return TokError("expected 'catch' or 'filter' clause type");
6620 
6621     Value *V;
6622     LocTy VLoc;
6623     if (ParseTypeAndValue(V, VLoc, PFS))
6624       return true;
6625 
6626     // A 'catch' type expects a non-array constant. A filter clause expects an
6627     // array constant.
6628     if (CT == LandingPadInst::Catch) {
6629       if (isa<ArrayType>(V->getType()))
6630         Error(VLoc, "'catch' clause has an invalid type");
6631     } else {
6632       if (!isa<ArrayType>(V->getType()))
6633         Error(VLoc, "'filter' clause has an invalid type");
6634     }
6635 
6636     Constant *CV = dyn_cast<Constant>(V);
6637     if (!CV)
6638       return Error(VLoc, "clause argument must be a constant");
6639     LP->addClause(CV);
6640   }
6641 
6642   Inst = LP.release();
6643   return false;
6644 }
6645 
6646 /// ParseCall
6647 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6648 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6649 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6650 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6651 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6652 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6653 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6654 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6655 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6656                          CallInst::TailCallKind TCK) {
6657   AttrBuilder RetAttrs, FnAttrs;
6658   std::vector<unsigned> FwdRefAttrGrps;
6659   LocTy BuiltinLoc;
6660   unsigned CallAddrSpace;
6661   unsigned CC;
6662   Type *RetType = nullptr;
6663   LocTy RetTypeLoc;
6664   ValID CalleeID;
6665   SmallVector<ParamInfo, 16> ArgList;
6666   SmallVector<OperandBundleDef, 2> BundleList;
6667   LocTy CallLoc = Lex.getLoc();
6668 
6669   if (TCK != CallInst::TCK_None &&
6670       ParseToken(lltok::kw_call,
6671                  "expected 'tail call', 'musttail call', or 'notail call'"))
6672     return true;
6673 
6674   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6675 
6676   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6677       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6678       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6679       ParseValID(CalleeID) ||
6680       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6681                          PFS.getFunction().isVarArg()) ||
6682       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6683       ParseOptionalOperandBundles(BundleList, PFS))
6684     return true;
6685 
6686   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6687     return Error(CallLoc, "fast-math-flags specified for call without "
6688                           "floating-point scalar or vector return type");
6689 
6690   // If RetType is a non-function pointer type, then this is the short syntax
6691   // for the call, which means that RetType is just the return type.  Infer the
6692   // rest of the function argument types from the arguments that are present.
6693   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6694   if (!Ty) {
6695     // Pull out the types of all of the arguments...
6696     std::vector<Type*> ParamTypes;
6697     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6698       ParamTypes.push_back(ArgList[i].V->getType());
6699 
6700     if (!FunctionType::isValidReturnType(RetType))
6701       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6702 
6703     Ty = FunctionType::get(RetType, ParamTypes, false);
6704   }
6705 
6706   CalleeID.FTy = Ty;
6707 
6708   // Look up the callee.
6709   Value *Callee;
6710   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6711                           &PFS, /*IsCall=*/true))
6712     return true;
6713 
6714   // Set up the Attribute for the function.
6715   SmallVector<AttributeSet, 8> Attrs;
6716 
6717   SmallVector<Value*, 8> Args;
6718 
6719   // Loop through FunctionType's arguments and ensure they are specified
6720   // correctly.  Also, gather any parameter attributes.
6721   FunctionType::param_iterator I = Ty->param_begin();
6722   FunctionType::param_iterator E = Ty->param_end();
6723   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6724     Type *ExpectedTy = nullptr;
6725     if (I != E) {
6726       ExpectedTy = *I++;
6727     } else if (!Ty->isVarArg()) {
6728       return Error(ArgList[i].Loc, "too many arguments specified");
6729     }
6730 
6731     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6732       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6733                    getTypeString(ExpectedTy) + "'");
6734     Args.push_back(ArgList[i].V);
6735     Attrs.push_back(ArgList[i].Attrs);
6736   }
6737 
6738   if (I != E)
6739     return Error(CallLoc, "not enough parameters specified for call");
6740 
6741   if (FnAttrs.hasAlignmentAttr())
6742     return Error(CallLoc, "call instructions may not have an alignment");
6743 
6744   // Finish off the Attribute and check them
6745   AttributeList PAL =
6746       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6747                          AttributeSet::get(Context, RetAttrs), Attrs);
6748 
6749   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6750   CI->setTailCallKind(TCK);
6751   CI->setCallingConv(CC);
6752   if (FMF.any())
6753     CI->setFastMathFlags(FMF);
6754   CI->setAttributes(PAL);
6755   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6756   Inst = CI;
6757   return false;
6758 }
6759 
6760 //===----------------------------------------------------------------------===//
6761 // Memory Instructions.
6762 //===----------------------------------------------------------------------===//
6763 
6764 /// ParseAlloc
6765 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6766 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6767 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6768   Value *Size = nullptr;
6769   LocTy SizeLoc, TyLoc, ASLoc;
6770   unsigned Alignment = 0;
6771   unsigned AddrSpace = 0;
6772   Type *Ty = nullptr;
6773 
6774   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6775   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6776 
6777   if (ParseType(Ty, TyLoc)) return true;
6778 
6779   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6780     return Error(TyLoc, "invalid type for alloca");
6781 
6782   bool AteExtraComma = false;
6783   if (EatIfPresent(lltok::comma)) {
6784     if (Lex.getKind() == lltok::kw_align) {
6785       if (ParseOptionalAlignment(Alignment))
6786         return true;
6787       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6788         return true;
6789     } else if (Lex.getKind() == lltok::kw_addrspace) {
6790       ASLoc = Lex.getLoc();
6791       if (ParseOptionalAddrSpace(AddrSpace))
6792         return true;
6793     } else if (Lex.getKind() == lltok::MetadataVar) {
6794       AteExtraComma = true;
6795     } else {
6796       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6797         return true;
6798       if (EatIfPresent(lltok::comma)) {
6799         if (Lex.getKind() == lltok::kw_align) {
6800           if (ParseOptionalAlignment(Alignment))
6801             return true;
6802           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6803             return true;
6804         } else if (Lex.getKind() == lltok::kw_addrspace) {
6805           ASLoc = Lex.getLoc();
6806           if (ParseOptionalAddrSpace(AddrSpace))
6807             return true;
6808         } else if (Lex.getKind() == lltok::MetadataVar) {
6809           AteExtraComma = true;
6810         }
6811       }
6812     }
6813   }
6814 
6815   if (Size && !Size->getType()->isIntegerTy())
6816     return Error(SizeLoc, "element count must have integer type");
6817 
6818   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6819   AI->setUsedWithInAlloca(IsInAlloca);
6820   AI->setSwiftError(IsSwiftError);
6821   Inst = AI;
6822   return AteExtraComma ? InstExtraComma : InstNormal;
6823 }
6824 
6825 /// ParseLoad
6826 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6827 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6828 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6829 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6830   Value *Val; LocTy Loc;
6831   unsigned Alignment = 0;
6832   bool AteExtraComma = false;
6833   bool isAtomic = false;
6834   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6835   SyncScope::ID SSID = SyncScope::System;
6836 
6837   if (Lex.getKind() == lltok::kw_atomic) {
6838     isAtomic = true;
6839     Lex.Lex();
6840   }
6841 
6842   bool isVolatile = false;
6843   if (Lex.getKind() == lltok::kw_volatile) {
6844     isVolatile = true;
6845     Lex.Lex();
6846   }
6847 
6848   Type *Ty;
6849   LocTy ExplicitTypeLoc = Lex.getLoc();
6850   if (ParseType(Ty) ||
6851       ParseToken(lltok::comma, "expected comma after load's type") ||
6852       ParseTypeAndValue(Val, Loc, PFS) ||
6853       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6854       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6855     return true;
6856 
6857   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6858     return Error(Loc, "load operand must be a pointer to a first class type");
6859   if (isAtomic && !Alignment)
6860     return Error(Loc, "atomic load must have explicit non-zero alignment");
6861   if (Ordering == AtomicOrdering::Release ||
6862       Ordering == AtomicOrdering::AcquireRelease)
6863     return Error(Loc, "atomic load cannot use Release ordering");
6864 
6865   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6866     return Error(ExplicitTypeLoc,
6867                  "explicit pointee type doesn't match operand's pointee type");
6868 
6869   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6870   return AteExtraComma ? InstExtraComma : InstNormal;
6871 }
6872 
6873 /// ParseStore
6874 
6875 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6876 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6877 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6878 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6879   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6880   unsigned Alignment = 0;
6881   bool AteExtraComma = false;
6882   bool isAtomic = false;
6883   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6884   SyncScope::ID SSID = SyncScope::System;
6885 
6886   if (Lex.getKind() == lltok::kw_atomic) {
6887     isAtomic = true;
6888     Lex.Lex();
6889   }
6890 
6891   bool isVolatile = false;
6892   if (Lex.getKind() == lltok::kw_volatile) {
6893     isVolatile = true;
6894     Lex.Lex();
6895   }
6896 
6897   if (ParseTypeAndValue(Val, Loc, PFS) ||
6898       ParseToken(lltok::comma, "expected ',' after store operand") ||
6899       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6900       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6901       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6902     return true;
6903 
6904   if (!Ptr->getType()->isPointerTy())
6905     return Error(PtrLoc, "store operand must be a pointer");
6906   if (!Val->getType()->isFirstClassType())
6907     return Error(Loc, "store operand must be a first class value");
6908   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6909     return Error(Loc, "stored value and pointer type do not match");
6910   if (isAtomic && !Alignment)
6911     return Error(Loc, "atomic store must have explicit non-zero alignment");
6912   if (Ordering == AtomicOrdering::Acquire ||
6913       Ordering == AtomicOrdering::AcquireRelease)
6914     return Error(Loc, "atomic store cannot use Acquire ordering");
6915 
6916   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6917   return AteExtraComma ? InstExtraComma : InstNormal;
6918 }
6919 
6920 /// ParseCmpXchg
6921 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6922 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6923 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6924   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6925   bool AteExtraComma = false;
6926   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6927   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6928   SyncScope::ID SSID = SyncScope::System;
6929   bool isVolatile = false;
6930   bool isWeak = false;
6931 
6932   if (EatIfPresent(lltok::kw_weak))
6933     isWeak = true;
6934 
6935   if (EatIfPresent(lltok::kw_volatile))
6936     isVolatile = true;
6937 
6938   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6939       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6940       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6941       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6942       ParseTypeAndValue(New, NewLoc, PFS) ||
6943       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6944       ParseOrdering(FailureOrdering))
6945     return true;
6946 
6947   if (SuccessOrdering == AtomicOrdering::Unordered ||
6948       FailureOrdering == AtomicOrdering::Unordered)
6949     return TokError("cmpxchg cannot be unordered");
6950   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6951     return TokError("cmpxchg failure argument shall be no stronger than the "
6952                     "success argument");
6953   if (FailureOrdering == AtomicOrdering::Release ||
6954       FailureOrdering == AtomicOrdering::AcquireRelease)
6955     return TokError(
6956         "cmpxchg failure ordering cannot include release semantics");
6957   if (!Ptr->getType()->isPointerTy())
6958     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6959   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6960     return Error(CmpLoc, "compare value and pointer type do not match");
6961   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6962     return Error(NewLoc, "new value and pointer type do not match");
6963   if (!New->getType()->isFirstClassType())
6964     return Error(NewLoc, "cmpxchg operand must be a first class value");
6965   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6966       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6967   CXI->setVolatile(isVolatile);
6968   CXI->setWeak(isWeak);
6969   Inst = CXI;
6970   return AteExtraComma ? InstExtraComma : InstNormal;
6971 }
6972 
6973 /// ParseAtomicRMW
6974 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6975 ///       'singlethread'? AtomicOrdering
6976 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6977   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6978   bool AteExtraComma = false;
6979   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6980   SyncScope::ID SSID = SyncScope::System;
6981   bool isVolatile = false;
6982   bool IsFP = false;
6983   AtomicRMWInst::BinOp Operation;
6984 
6985   if (EatIfPresent(lltok::kw_volatile))
6986     isVolatile = true;
6987 
6988   switch (Lex.getKind()) {
6989   default: return TokError("expected binary operation in atomicrmw");
6990   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6991   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6992   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6993   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6994   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6995   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6996   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6997   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6998   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6999   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7000   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7001   case lltok::kw_fadd:
7002     Operation = AtomicRMWInst::FAdd;
7003     IsFP = true;
7004     break;
7005   case lltok::kw_fsub:
7006     Operation = AtomicRMWInst::FSub;
7007     IsFP = true;
7008     break;
7009   }
7010   Lex.Lex();  // Eat the operation.
7011 
7012   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7013       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7014       ParseTypeAndValue(Val, ValLoc, PFS) ||
7015       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7016     return true;
7017 
7018   if (Ordering == AtomicOrdering::Unordered)
7019     return TokError("atomicrmw cannot be unordered");
7020   if (!Ptr->getType()->isPointerTy())
7021     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7022   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7023     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7024 
7025   if (Operation == AtomicRMWInst::Xchg) {
7026     if (!Val->getType()->isIntegerTy() &&
7027         !Val->getType()->isFloatingPointTy()) {
7028       return Error(ValLoc, "atomicrmw " +
7029                    AtomicRMWInst::getOperationName(Operation) +
7030                    " operand must be an integer or floating point type");
7031     }
7032   } else if (IsFP) {
7033     if (!Val->getType()->isFloatingPointTy()) {
7034       return Error(ValLoc, "atomicrmw " +
7035                    AtomicRMWInst::getOperationName(Operation) +
7036                    " operand must be a floating point type");
7037     }
7038   } else {
7039     if (!Val->getType()->isIntegerTy()) {
7040       return Error(ValLoc, "atomicrmw " +
7041                    AtomicRMWInst::getOperationName(Operation) +
7042                    " operand must be an integer");
7043     }
7044   }
7045 
7046   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7047   if (Size < 8 || (Size & (Size - 1)))
7048     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7049                          " integer");
7050 
7051   AtomicRMWInst *RMWI =
7052     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7053   RMWI->setVolatile(isVolatile);
7054   Inst = RMWI;
7055   return AteExtraComma ? InstExtraComma : InstNormal;
7056 }
7057 
7058 /// ParseFence
7059 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7060 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7061   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7062   SyncScope::ID SSID = SyncScope::System;
7063   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7064     return true;
7065 
7066   if (Ordering == AtomicOrdering::Unordered)
7067     return TokError("fence cannot be unordered");
7068   if (Ordering == AtomicOrdering::Monotonic)
7069     return TokError("fence cannot be monotonic");
7070 
7071   Inst = new FenceInst(Context, Ordering, SSID);
7072   return InstNormal;
7073 }
7074 
7075 /// ParseGetElementPtr
7076 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7077 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7078   Value *Ptr = nullptr;
7079   Value *Val = nullptr;
7080   LocTy Loc, EltLoc;
7081 
7082   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7083 
7084   Type *Ty = nullptr;
7085   LocTy ExplicitTypeLoc = Lex.getLoc();
7086   if (ParseType(Ty) ||
7087       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7088       ParseTypeAndValue(Ptr, Loc, PFS))
7089     return true;
7090 
7091   Type *BaseType = Ptr->getType();
7092   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7093   if (!BasePointerType)
7094     return Error(Loc, "base of getelementptr must be a pointer");
7095 
7096   if (Ty != BasePointerType->getElementType())
7097     return Error(ExplicitTypeLoc,
7098                  "explicit pointee type doesn't match operand's pointee type");
7099 
7100   SmallVector<Value*, 16> Indices;
7101   bool AteExtraComma = false;
7102   // GEP returns a vector of pointers if at least one of parameters is a vector.
7103   // All vector parameters should have the same vector width.
7104   unsigned GEPWidth = BaseType->isVectorTy() ?
7105     BaseType->getVectorNumElements() : 0;
7106 
7107   while (EatIfPresent(lltok::comma)) {
7108     if (Lex.getKind() == lltok::MetadataVar) {
7109       AteExtraComma = true;
7110       break;
7111     }
7112     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7113     if (!Val->getType()->isIntOrIntVectorTy())
7114       return Error(EltLoc, "getelementptr index must be an integer");
7115 
7116     if (Val->getType()->isVectorTy()) {
7117       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7118       if (GEPWidth && GEPWidth != ValNumEl)
7119         return Error(EltLoc,
7120           "getelementptr vector index has a wrong number of elements");
7121       GEPWidth = ValNumEl;
7122     }
7123     Indices.push_back(Val);
7124   }
7125 
7126   SmallPtrSet<Type*, 4> Visited;
7127   if (!Indices.empty() && !Ty->isSized(&Visited))
7128     return Error(Loc, "base element of getelementptr must be sized");
7129 
7130   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7131     return Error(Loc, "invalid getelementptr indices");
7132   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7133   if (InBounds)
7134     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7135   return AteExtraComma ? InstExtraComma : InstNormal;
7136 }
7137 
7138 /// ParseExtractValue
7139 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7140 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7141   Value *Val; LocTy Loc;
7142   SmallVector<unsigned, 4> Indices;
7143   bool AteExtraComma;
7144   if (ParseTypeAndValue(Val, Loc, PFS) ||
7145       ParseIndexList(Indices, AteExtraComma))
7146     return true;
7147 
7148   if (!Val->getType()->isAggregateType())
7149     return Error(Loc, "extractvalue operand must be aggregate type");
7150 
7151   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7152     return Error(Loc, "invalid indices for extractvalue");
7153   Inst = ExtractValueInst::Create(Val, Indices);
7154   return AteExtraComma ? InstExtraComma : InstNormal;
7155 }
7156 
7157 /// ParseInsertValue
7158 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7159 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7160   Value *Val0, *Val1; LocTy Loc0, Loc1;
7161   SmallVector<unsigned, 4> Indices;
7162   bool AteExtraComma;
7163   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7164       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7165       ParseTypeAndValue(Val1, Loc1, PFS) ||
7166       ParseIndexList(Indices, AteExtraComma))
7167     return true;
7168 
7169   if (!Val0->getType()->isAggregateType())
7170     return Error(Loc0, "insertvalue operand must be aggregate type");
7171 
7172   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7173   if (!IndexedType)
7174     return Error(Loc0, "invalid indices for insertvalue");
7175   if (IndexedType != Val1->getType())
7176     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7177                            getTypeString(Val1->getType()) + "' instead of '" +
7178                            getTypeString(IndexedType) + "'");
7179   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7180   return AteExtraComma ? InstExtraComma : InstNormal;
7181 }
7182 
7183 //===----------------------------------------------------------------------===//
7184 // Embedded metadata.
7185 //===----------------------------------------------------------------------===//
7186 
7187 /// ParseMDNodeVector
7188 ///   ::= { Element (',' Element)* }
7189 /// Element
7190 ///   ::= 'null' | TypeAndValue
7191 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7192   if (ParseToken(lltok::lbrace, "expected '{' here"))
7193     return true;
7194 
7195   // Check for an empty list.
7196   if (EatIfPresent(lltok::rbrace))
7197     return false;
7198 
7199   do {
7200     // Null is a special case since it is typeless.
7201     if (EatIfPresent(lltok::kw_null)) {
7202       Elts.push_back(nullptr);
7203       continue;
7204     }
7205 
7206     Metadata *MD;
7207     if (ParseMetadata(MD, nullptr))
7208       return true;
7209     Elts.push_back(MD);
7210   } while (EatIfPresent(lltok::comma));
7211 
7212   return ParseToken(lltok::rbrace, "expected end of metadata node");
7213 }
7214 
7215 //===----------------------------------------------------------------------===//
7216 // Use-list order directives.
7217 //===----------------------------------------------------------------------===//
7218 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7219                                 SMLoc Loc) {
7220   if (V->use_empty())
7221     return Error(Loc, "value has no uses");
7222 
7223   unsigned NumUses = 0;
7224   SmallDenseMap<const Use *, unsigned, 16> Order;
7225   for (const Use &U : V->uses()) {
7226     if (++NumUses > Indexes.size())
7227       break;
7228     Order[&U] = Indexes[NumUses - 1];
7229   }
7230   if (NumUses < 2)
7231     return Error(Loc, "value only has one use");
7232   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7233     return Error(Loc,
7234                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7235 
7236   V->sortUseList([&](const Use &L, const Use &R) {
7237     return Order.lookup(&L) < Order.lookup(&R);
7238   });
7239   return false;
7240 }
7241 
7242 /// ParseUseListOrderIndexes
7243 ///   ::= '{' uint32 (',' uint32)+ '}'
7244 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7245   SMLoc Loc = Lex.getLoc();
7246   if (ParseToken(lltok::lbrace, "expected '{' here"))
7247     return true;
7248   if (Lex.getKind() == lltok::rbrace)
7249     return Lex.Error("expected non-empty list of uselistorder indexes");
7250 
7251   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7252   // indexes should be distinct numbers in the range [0, size-1], and should
7253   // not be in order.
7254   unsigned Offset = 0;
7255   unsigned Max = 0;
7256   bool IsOrdered = true;
7257   assert(Indexes.empty() && "Expected empty order vector");
7258   do {
7259     unsigned Index;
7260     if (ParseUInt32(Index))
7261       return true;
7262 
7263     // Update consistency checks.
7264     Offset += Index - Indexes.size();
7265     Max = std::max(Max, Index);
7266     IsOrdered &= Index == Indexes.size();
7267 
7268     Indexes.push_back(Index);
7269   } while (EatIfPresent(lltok::comma));
7270 
7271   if (ParseToken(lltok::rbrace, "expected '}' here"))
7272     return true;
7273 
7274   if (Indexes.size() < 2)
7275     return Error(Loc, "expected >= 2 uselistorder indexes");
7276   if (Offset != 0 || Max >= Indexes.size())
7277     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7278   if (IsOrdered)
7279     return Error(Loc, "expected uselistorder indexes to change the order");
7280 
7281   return false;
7282 }
7283 
7284 /// ParseUseListOrder
7285 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7286 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7287   SMLoc Loc = Lex.getLoc();
7288   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7289     return true;
7290 
7291   Value *V;
7292   SmallVector<unsigned, 16> Indexes;
7293   if (ParseTypeAndValue(V, PFS) ||
7294       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7295       ParseUseListOrderIndexes(Indexes))
7296     return true;
7297 
7298   return sortUseListOrder(V, Indexes, Loc);
7299 }
7300 
7301 /// ParseUseListOrderBB
7302 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7303 bool LLParser::ParseUseListOrderBB() {
7304   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7305   SMLoc Loc = Lex.getLoc();
7306   Lex.Lex();
7307 
7308   ValID Fn, Label;
7309   SmallVector<unsigned, 16> Indexes;
7310   if (ParseValID(Fn) ||
7311       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7312       ParseValID(Label) ||
7313       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7314       ParseUseListOrderIndexes(Indexes))
7315     return true;
7316 
7317   // Check the function.
7318   GlobalValue *GV;
7319   if (Fn.Kind == ValID::t_GlobalName)
7320     GV = M->getNamedValue(Fn.StrVal);
7321   else if (Fn.Kind == ValID::t_GlobalID)
7322     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7323   else
7324     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7325   if (!GV)
7326     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7327   auto *F = dyn_cast<Function>(GV);
7328   if (!F)
7329     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7330   if (F->isDeclaration())
7331     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7332 
7333   // Check the basic block.
7334   if (Label.Kind == ValID::t_LocalID)
7335     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7336   if (Label.Kind != ValID::t_LocalName)
7337     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7338   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7339   if (!V)
7340     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7341   if (!isa<BasicBlock>(V))
7342     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7343 
7344   return sortUseListOrder(V, Indexes, Loc);
7345 }
7346 
7347 /// ModuleEntry
7348 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7349 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7350 bool LLParser::ParseModuleEntry(unsigned ID) {
7351   assert(Lex.getKind() == lltok::kw_module);
7352   Lex.Lex();
7353 
7354   std::string Path;
7355   if (ParseToken(lltok::colon, "expected ':' here") ||
7356       ParseToken(lltok::lparen, "expected '(' here") ||
7357       ParseToken(lltok::kw_path, "expected 'path' here") ||
7358       ParseToken(lltok::colon, "expected ':' here") ||
7359       ParseStringConstant(Path) ||
7360       ParseToken(lltok::comma, "expected ',' here") ||
7361       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7362       ParseToken(lltok::colon, "expected ':' here") ||
7363       ParseToken(lltok::lparen, "expected '(' here"))
7364     return true;
7365 
7366   ModuleHash Hash;
7367   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7368       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7369       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7370       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7371       ParseUInt32(Hash[4]))
7372     return true;
7373 
7374   if (ParseToken(lltok::rparen, "expected ')' here") ||
7375       ParseToken(lltok::rparen, "expected ')' here"))
7376     return true;
7377 
7378   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7379   ModuleIdMap[ID] = ModuleEntry->first();
7380 
7381   return false;
7382 }
7383 
7384 /// TypeIdEntry
7385 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7386 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7387   assert(Lex.getKind() == lltok::kw_typeid);
7388   Lex.Lex();
7389 
7390   std::string Name;
7391   if (ParseToken(lltok::colon, "expected ':' here") ||
7392       ParseToken(lltok::lparen, "expected '(' here") ||
7393       ParseToken(lltok::kw_name, "expected 'name' here") ||
7394       ParseToken(lltok::colon, "expected ':' here") ||
7395       ParseStringConstant(Name))
7396     return true;
7397 
7398   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7399   if (ParseToken(lltok::comma, "expected ',' here") ||
7400       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7401     return true;
7402 
7403   // Check if this ID was forward referenced, and if so, update the
7404   // corresponding GUIDs.
7405   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7406   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7407     for (auto TIDRef : FwdRefTIDs->second) {
7408       assert(!*TIDRef.first &&
7409              "Forward referenced type id GUID expected to be 0");
7410       *TIDRef.first = GlobalValue::getGUID(Name);
7411     }
7412     ForwardRefTypeIds.erase(FwdRefTIDs);
7413   }
7414 
7415   return false;
7416 }
7417 
7418 /// TypeIdSummary
7419 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7420 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7421   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7422       ParseToken(lltok::colon, "expected ':' here") ||
7423       ParseToken(lltok::lparen, "expected '(' here") ||
7424       ParseTypeTestResolution(TIS.TTRes))
7425     return true;
7426 
7427   if (EatIfPresent(lltok::comma)) {
7428     // Expect optional wpdResolutions field
7429     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7430       return true;
7431   }
7432 
7433   if (ParseToken(lltok::rparen, "expected ')' here"))
7434     return true;
7435 
7436   return false;
7437 }
7438 
7439 /// TypeTestResolution
7440 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7441 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7442 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7443 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7444 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7445 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7446   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7447       ParseToken(lltok::colon, "expected ':' here") ||
7448       ParseToken(lltok::lparen, "expected '(' here") ||
7449       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7450       ParseToken(lltok::colon, "expected ':' here"))
7451     return true;
7452 
7453   switch (Lex.getKind()) {
7454   case lltok::kw_unsat:
7455     TTRes.TheKind = TypeTestResolution::Unsat;
7456     break;
7457   case lltok::kw_byteArray:
7458     TTRes.TheKind = TypeTestResolution::ByteArray;
7459     break;
7460   case lltok::kw_inline:
7461     TTRes.TheKind = TypeTestResolution::Inline;
7462     break;
7463   case lltok::kw_single:
7464     TTRes.TheKind = TypeTestResolution::Single;
7465     break;
7466   case lltok::kw_allOnes:
7467     TTRes.TheKind = TypeTestResolution::AllOnes;
7468     break;
7469   default:
7470     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7471   }
7472   Lex.Lex();
7473 
7474   if (ParseToken(lltok::comma, "expected ',' here") ||
7475       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7476       ParseToken(lltok::colon, "expected ':' here") ||
7477       ParseUInt32(TTRes.SizeM1BitWidth))
7478     return true;
7479 
7480   // Parse optional fields
7481   while (EatIfPresent(lltok::comma)) {
7482     switch (Lex.getKind()) {
7483     case lltok::kw_alignLog2:
7484       Lex.Lex();
7485       if (ParseToken(lltok::colon, "expected ':'") ||
7486           ParseUInt64(TTRes.AlignLog2))
7487         return true;
7488       break;
7489     case lltok::kw_sizeM1:
7490       Lex.Lex();
7491       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7492         return true;
7493       break;
7494     case lltok::kw_bitMask: {
7495       unsigned Val;
7496       Lex.Lex();
7497       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7498         return true;
7499       assert(Val <= 0xff);
7500       TTRes.BitMask = (uint8_t)Val;
7501       break;
7502     }
7503     case lltok::kw_inlineBits:
7504       Lex.Lex();
7505       if (ParseToken(lltok::colon, "expected ':'") ||
7506           ParseUInt64(TTRes.InlineBits))
7507         return true;
7508       break;
7509     default:
7510       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7511     }
7512   }
7513 
7514   if (ParseToken(lltok::rparen, "expected ')' here"))
7515     return true;
7516 
7517   return false;
7518 }
7519 
7520 /// OptionalWpdResolutions
7521 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7522 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7523 bool LLParser::ParseOptionalWpdResolutions(
7524     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7525   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7526       ParseToken(lltok::colon, "expected ':' here") ||
7527       ParseToken(lltok::lparen, "expected '(' here"))
7528     return true;
7529 
7530   do {
7531     uint64_t Offset;
7532     WholeProgramDevirtResolution WPDRes;
7533     if (ParseToken(lltok::lparen, "expected '(' here") ||
7534         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7535         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7536         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7537         ParseToken(lltok::rparen, "expected ')' here"))
7538       return true;
7539     WPDResMap[Offset] = WPDRes;
7540   } while (EatIfPresent(lltok::comma));
7541 
7542   if (ParseToken(lltok::rparen, "expected ')' here"))
7543     return true;
7544 
7545   return false;
7546 }
7547 
7548 /// WpdRes
7549 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7550 ///         [',' OptionalResByArg]? ')'
7551 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7552 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7553 ///         [',' OptionalResByArg]? ')'
7554 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7555 ///         [',' OptionalResByArg]? ')'
7556 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7557   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7558       ParseToken(lltok::colon, "expected ':' here") ||
7559       ParseToken(lltok::lparen, "expected '(' here") ||
7560       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7561       ParseToken(lltok::colon, "expected ':' here"))
7562     return true;
7563 
7564   switch (Lex.getKind()) {
7565   case lltok::kw_indir:
7566     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7567     break;
7568   case lltok::kw_singleImpl:
7569     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7570     break;
7571   case lltok::kw_branchFunnel:
7572     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7573     break;
7574   default:
7575     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7576   }
7577   Lex.Lex();
7578 
7579   // Parse optional fields
7580   while (EatIfPresent(lltok::comma)) {
7581     switch (Lex.getKind()) {
7582     case lltok::kw_singleImplName:
7583       Lex.Lex();
7584       if (ParseToken(lltok::colon, "expected ':' here") ||
7585           ParseStringConstant(WPDRes.SingleImplName))
7586         return true;
7587       break;
7588     case lltok::kw_resByArg:
7589       if (ParseOptionalResByArg(WPDRes.ResByArg))
7590         return true;
7591       break;
7592     default:
7593       return Error(Lex.getLoc(),
7594                    "expected optional WholeProgramDevirtResolution field");
7595     }
7596   }
7597 
7598   if (ParseToken(lltok::rparen, "expected ')' here"))
7599     return true;
7600 
7601   return false;
7602 }
7603 
7604 /// OptionalResByArg
7605 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7606 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7607 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7608 ///                  'virtualConstProp' )
7609 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7610 ///                [',' 'bit' ':' UInt32]? ')'
7611 bool LLParser::ParseOptionalResByArg(
7612     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7613         &ResByArg) {
7614   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7615       ParseToken(lltok::colon, "expected ':' here") ||
7616       ParseToken(lltok::lparen, "expected '(' here"))
7617     return true;
7618 
7619   do {
7620     std::vector<uint64_t> Args;
7621     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7622         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7623         ParseToken(lltok::colon, "expected ':' here") ||
7624         ParseToken(lltok::lparen, "expected '(' here") ||
7625         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7626         ParseToken(lltok::colon, "expected ':' here"))
7627       return true;
7628 
7629     WholeProgramDevirtResolution::ByArg ByArg;
7630     switch (Lex.getKind()) {
7631     case lltok::kw_indir:
7632       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7633       break;
7634     case lltok::kw_uniformRetVal:
7635       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7636       break;
7637     case lltok::kw_uniqueRetVal:
7638       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7639       break;
7640     case lltok::kw_virtualConstProp:
7641       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7642       break;
7643     default:
7644       return Error(Lex.getLoc(),
7645                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7646     }
7647     Lex.Lex();
7648 
7649     // Parse optional fields
7650     while (EatIfPresent(lltok::comma)) {
7651       switch (Lex.getKind()) {
7652       case lltok::kw_info:
7653         Lex.Lex();
7654         if (ParseToken(lltok::colon, "expected ':' here") ||
7655             ParseUInt64(ByArg.Info))
7656           return true;
7657         break;
7658       case lltok::kw_byte:
7659         Lex.Lex();
7660         if (ParseToken(lltok::colon, "expected ':' here") ||
7661             ParseUInt32(ByArg.Byte))
7662           return true;
7663         break;
7664       case lltok::kw_bit:
7665         Lex.Lex();
7666         if (ParseToken(lltok::colon, "expected ':' here") ||
7667             ParseUInt32(ByArg.Bit))
7668           return true;
7669         break;
7670       default:
7671         return Error(Lex.getLoc(),
7672                      "expected optional whole program devirt field");
7673       }
7674     }
7675 
7676     if (ParseToken(lltok::rparen, "expected ')' here"))
7677       return true;
7678 
7679     ResByArg[Args] = ByArg;
7680   } while (EatIfPresent(lltok::comma));
7681 
7682   if (ParseToken(lltok::rparen, "expected ')' here"))
7683     return true;
7684 
7685   return false;
7686 }
7687 
7688 /// OptionalResByArg
7689 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7690 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7691   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7692       ParseToken(lltok::colon, "expected ':' here") ||
7693       ParseToken(lltok::lparen, "expected '(' here"))
7694     return true;
7695 
7696   do {
7697     uint64_t Val;
7698     if (ParseUInt64(Val))
7699       return true;
7700     Args.push_back(Val);
7701   } while (EatIfPresent(lltok::comma));
7702 
7703   if (ParseToken(lltok::rparen, "expected ')' here"))
7704     return true;
7705 
7706   return false;
7707 }
7708 
7709 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7710 
7711 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7712   bool ReadOnly = Fwd->isReadOnly();
7713   *Fwd = Resolved;
7714   if (ReadOnly)
7715     Fwd->setReadOnly();
7716 }
7717 
7718 /// Stores the given Name/GUID and associated summary into the Index.
7719 /// Also updates any forward references to the associated entry ID.
7720 void LLParser::AddGlobalValueToIndex(
7721     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7722     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7723   // First create the ValueInfo utilizing the Name or GUID.
7724   ValueInfo VI;
7725   if (GUID != 0) {
7726     assert(Name.empty());
7727     VI = Index->getOrInsertValueInfo(GUID);
7728   } else {
7729     assert(!Name.empty());
7730     if (M) {
7731       auto *GV = M->getNamedValue(Name);
7732       assert(GV);
7733       VI = Index->getOrInsertValueInfo(GV);
7734     } else {
7735       assert(
7736           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7737           "Need a source_filename to compute GUID for local");
7738       GUID = GlobalValue::getGUID(
7739           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7740       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7741     }
7742   }
7743 
7744   // Resolve forward references from calls/refs
7745   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7746   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7747     for (auto VIRef : FwdRefVIs->second) {
7748       assert(VIRef.first->getRef() == FwdVIRef &&
7749              "Forward referenced ValueInfo expected to be empty");
7750       resolveFwdRef(VIRef.first, VI);
7751     }
7752     ForwardRefValueInfos.erase(FwdRefVIs);
7753   }
7754 
7755   // Resolve forward references from aliases
7756   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7757   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7758     for (auto AliaseeRef : FwdRefAliasees->second) {
7759       assert(!AliaseeRef.first->hasAliasee() &&
7760              "Forward referencing alias already has aliasee");
7761       assert(Summary && "Aliasee must be a definition");
7762       AliaseeRef.first->setAliasee(VI, Summary.get());
7763     }
7764     ForwardRefAliasees.erase(FwdRefAliasees);
7765   }
7766 
7767   // Add the summary if one was provided.
7768   if (Summary)
7769     Index->addGlobalValueSummary(VI, std::move(Summary));
7770 
7771   // Save the associated ValueInfo for use in later references by ID.
7772   if (ID == NumberedValueInfos.size())
7773     NumberedValueInfos.push_back(VI);
7774   else {
7775     // Handle non-continuous numbers (to make test simplification easier).
7776     if (ID > NumberedValueInfos.size())
7777       NumberedValueInfos.resize(ID + 1);
7778     NumberedValueInfos[ID] = VI;
7779   }
7780 }
7781 
7782 /// ParseGVEntry
7783 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7784 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7785 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7786 bool LLParser::ParseGVEntry(unsigned ID) {
7787   assert(Lex.getKind() == lltok::kw_gv);
7788   Lex.Lex();
7789 
7790   if (ParseToken(lltok::colon, "expected ':' here") ||
7791       ParseToken(lltok::lparen, "expected '(' here"))
7792     return true;
7793 
7794   std::string Name;
7795   GlobalValue::GUID GUID = 0;
7796   switch (Lex.getKind()) {
7797   case lltok::kw_name:
7798     Lex.Lex();
7799     if (ParseToken(lltok::colon, "expected ':' here") ||
7800         ParseStringConstant(Name))
7801       return true;
7802     // Can't create GUID/ValueInfo until we have the linkage.
7803     break;
7804   case lltok::kw_guid:
7805     Lex.Lex();
7806     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7807       return true;
7808     break;
7809   default:
7810     return Error(Lex.getLoc(), "expected name or guid tag");
7811   }
7812 
7813   if (!EatIfPresent(lltok::comma)) {
7814     // No summaries. Wrap up.
7815     if (ParseToken(lltok::rparen, "expected ')' here"))
7816       return true;
7817     // This was created for a call to an external or indirect target.
7818     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7819     // created for indirect calls with VP. A Name with no GUID came from
7820     // an external definition. We pass ExternalLinkage since that is only
7821     // used when the GUID must be computed from Name, and in that case
7822     // the symbol must have external linkage.
7823     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7824                           nullptr);
7825     return false;
7826   }
7827 
7828   // Have a list of summaries
7829   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7830       ParseToken(lltok::colon, "expected ':' here"))
7831     return true;
7832 
7833   do {
7834     if (ParseToken(lltok::lparen, "expected '(' here"))
7835       return true;
7836     switch (Lex.getKind()) {
7837     case lltok::kw_function:
7838       if (ParseFunctionSummary(Name, GUID, ID))
7839         return true;
7840       break;
7841     case lltok::kw_variable:
7842       if (ParseVariableSummary(Name, GUID, ID))
7843         return true;
7844       break;
7845     case lltok::kw_alias:
7846       if (ParseAliasSummary(Name, GUID, ID))
7847         return true;
7848       break;
7849     default:
7850       return Error(Lex.getLoc(), "expected summary type");
7851     }
7852     if (ParseToken(lltok::rparen, "expected ')' here"))
7853       return true;
7854   } while (EatIfPresent(lltok::comma));
7855 
7856   if (ParseToken(lltok::rparen, "expected ')' here"))
7857     return true;
7858 
7859   return false;
7860 }
7861 
7862 /// FunctionSummary
7863 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7864 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7865 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7866 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7867                                     unsigned ID) {
7868   assert(Lex.getKind() == lltok::kw_function);
7869   Lex.Lex();
7870 
7871   StringRef ModulePath;
7872   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7873       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7874       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7875   unsigned InstCount;
7876   std::vector<FunctionSummary::EdgeTy> Calls;
7877   FunctionSummary::TypeIdInfo TypeIdInfo;
7878   std::vector<ValueInfo> Refs;
7879   // Default is all-zeros (conservative values).
7880   FunctionSummary::FFlags FFlags = {};
7881   if (ParseToken(lltok::colon, "expected ':' here") ||
7882       ParseToken(lltok::lparen, "expected '(' here") ||
7883       ParseModuleReference(ModulePath) ||
7884       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7885       ParseToken(lltok::comma, "expected ',' here") ||
7886       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7887       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7888     return true;
7889 
7890   // Parse optional fields
7891   while (EatIfPresent(lltok::comma)) {
7892     switch (Lex.getKind()) {
7893     case lltok::kw_funcFlags:
7894       if (ParseOptionalFFlags(FFlags))
7895         return true;
7896       break;
7897     case lltok::kw_calls:
7898       if (ParseOptionalCalls(Calls))
7899         return true;
7900       break;
7901     case lltok::kw_typeIdInfo:
7902       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7903         return true;
7904       break;
7905     case lltok::kw_refs:
7906       if (ParseOptionalRefs(Refs))
7907         return true;
7908       break;
7909     default:
7910       return Error(Lex.getLoc(), "expected optional function summary field");
7911     }
7912   }
7913 
7914   if (ParseToken(lltok::rparen, "expected ')' here"))
7915     return true;
7916 
7917   auto FS = llvm::make_unique<FunctionSummary>(
7918       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7919       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7920       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7921       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7922       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7923       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7924 
7925   FS->setModulePath(ModulePath);
7926 
7927   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7928                         ID, std::move(FS));
7929 
7930   return false;
7931 }
7932 
7933 /// VariableSummary
7934 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7935 ///         [',' OptionalRefs]? ')'
7936 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7937                                     unsigned ID) {
7938   assert(Lex.getKind() == lltok::kw_variable);
7939   Lex.Lex();
7940 
7941   StringRef ModulePath;
7942   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7943       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7944       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7945   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7946   std::vector<ValueInfo> Refs;
7947   if (ParseToken(lltok::colon, "expected ':' here") ||
7948       ParseToken(lltok::lparen, "expected '(' here") ||
7949       ParseModuleReference(ModulePath) ||
7950       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7951       ParseToken(lltok::comma, "expected ',' here") ||
7952       ParseGVarFlags(GVarFlags))
7953     return true;
7954 
7955   // Parse optional refs field
7956   if (EatIfPresent(lltok::comma)) {
7957     if (ParseOptionalRefs(Refs))
7958       return true;
7959   }
7960 
7961   if (ParseToken(lltok::rparen, "expected ')' here"))
7962     return true;
7963 
7964   auto GS =
7965       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7966 
7967   GS->setModulePath(ModulePath);
7968 
7969   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7970                         ID, std::move(GS));
7971 
7972   return false;
7973 }
7974 
7975 /// AliasSummary
7976 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7977 ///         'aliasee' ':' GVReference ')'
7978 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7979                                  unsigned ID) {
7980   assert(Lex.getKind() == lltok::kw_alias);
7981   LocTy Loc = Lex.getLoc();
7982   Lex.Lex();
7983 
7984   StringRef ModulePath;
7985   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7986       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7987       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7988   if (ParseToken(lltok::colon, "expected ':' here") ||
7989       ParseToken(lltok::lparen, "expected '(' here") ||
7990       ParseModuleReference(ModulePath) ||
7991       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7992       ParseToken(lltok::comma, "expected ',' here") ||
7993       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7994       ParseToken(lltok::colon, "expected ':' here"))
7995     return true;
7996 
7997   ValueInfo AliaseeVI;
7998   unsigned GVId;
7999   if (ParseGVReference(AliaseeVI, GVId))
8000     return true;
8001 
8002   if (ParseToken(lltok::rparen, "expected ')' here"))
8003     return true;
8004 
8005   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8006 
8007   AS->setModulePath(ModulePath);
8008 
8009   // Record forward reference if the aliasee is not parsed yet.
8010   if (AliaseeVI.getRef() == FwdVIRef) {
8011     auto FwdRef = ForwardRefAliasees.insert(
8012         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8013     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8014   } else {
8015     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8016     assert(Summary && "Aliasee must be a definition");
8017     AS->setAliasee(AliaseeVI, Summary);
8018   }
8019 
8020   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8021                         ID, std::move(AS));
8022 
8023   return false;
8024 }
8025 
8026 /// Flag
8027 ///   ::= [0|1]
8028 bool LLParser::ParseFlag(unsigned &Val) {
8029   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8030     return TokError("expected integer");
8031   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8032   Lex.Lex();
8033   return false;
8034 }
8035 
8036 /// OptionalFFlags
8037 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8038 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8039 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8040 ///        [',' 'noInline' ':' Flag]? ')'
8041 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8042   assert(Lex.getKind() == lltok::kw_funcFlags);
8043   Lex.Lex();
8044 
8045   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8046       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8047     return true;
8048 
8049   do {
8050     unsigned Val = 0;
8051     switch (Lex.getKind()) {
8052     case lltok::kw_readNone:
8053       Lex.Lex();
8054       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8055         return true;
8056       FFlags.ReadNone = Val;
8057       break;
8058     case lltok::kw_readOnly:
8059       Lex.Lex();
8060       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8061         return true;
8062       FFlags.ReadOnly = Val;
8063       break;
8064     case lltok::kw_noRecurse:
8065       Lex.Lex();
8066       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8067         return true;
8068       FFlags.NoRecurse = Val;
8069       break;
8070     case lltok::kw_returnDoesNotAlias:
8071       Lex.Lex();
8072       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8073         return true;
8074       FFlags.ReturnDoesNotAlias = Val;
8075       break;
8076     case lltok::kw_noInline:
8077       Lex.Lex();
8078       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8079         return true;
8080       FFlags.NoInline = Val;
8081       break;
8082     default:
8083       return Error(Lex.getLoc(), "expected function flag type");
8084     }
8085   } while (EatIfPresent(lltok::comma));
8086 
8087   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8088     return true;
8089 
8090   return false;
8091 }
8092 
8093 /// OptionalCalls
8094 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8095 /// Call ::= '(' 'callee' ':' GVReference
8096 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8097 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8098   assert(Lex.getKind() == lltok::kw_calls);
8099   Lex.Lex();
8100 
8101   if (ParseToken(lltok::colon, "expected ':' in calls") |
8102       ParseToken(lltok::lparen, "expected '(' in calls"))
8103     return true;
8104 
8105   IdToIndexMapType IdToIndexMap;
8106   // Parse each call edge
8107   do {
8108     ValueInfo VI;
8109     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8110         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8111         ParseToken(lltok::colon, "expected ':'"))
8112       return true;
8113 
8114     LocTy Loc = Lex.getLoc();
8115     unsigned GVId;
8116     if (ParseGVReference(VI, GVId))
8117       return true;
8118 
8119     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8120     unsigned RelBF = 0;
8121     if (EatIfPresent(lltok::comma)) {
8122       // Expect either hotness or relbf
8123       if (EatIfPresent(lltok::kw_hotness)) {
8124         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8125           return true;
8126       } else {
8127         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8128             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8129           return true;
8130       }
8131     }
8132     // Keep track of the Call array index needing a forward reference.
8133     // We will save the location of the ValueInfo needing an update, but
8134     // can only do so once the std::vector is finalized.
8135     if (VI.getRef() == FwdVIRef)
8136       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8137     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8138 
8139     if (ParseToken(lltok::rparen, "expected ')' in call"))
8140       return true;
8141   } while (EatIfPresent(lltok::comma));
8142 
8143   // Now that the Calls vector is finalized, it is safe to save the locations
8144   // of any forward GV references that need updating later.
8145   for (auto I : IdToIndexMap) {
8146     for (auto P : I.second) {
8147       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8148              "Forward referenced ValueInfo expected to be empty");
8149       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8150           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8151       FwdRef.first->second.push_back(
8152           std::make_pair(&Calls[P.first].first, P.second));
8153     }
8154   }
8155 
8156   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8157     return true;
8158 
8159   return false;
8160 }
8161 
8162 /// Hotness
8163 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8164 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8165   switch (Lex.getKind()) {
8166   case lltok::kw_unknown:
8167     Hotness = CalleeInfo::HotnessType::Unknown;
8168     break;
8169   case lltok::kw_cold:
8170     Hotness = CalleeInfo::HotnessType::Cold;
8171     break;
8172   case lltok::kw_none:
8173     Hotness = CalleeInfo::HotnessType::None;
8174     break;
8175   case lltok::kw_hot:
8176     Hotness = CalleeInfo::HotnessType::Hot;
8177     break;
8178   case lltok::kw_critical:
8179     Hotness = CalleeInfo::HotnessType::Critical;
8180     break;
8181   default:
8182     return Error(Lex.getLoc(), "invalid call edge hotness");
8183   }
8184   Lex.Lex();
8185   return false;
8186 }
8187 
8188 /// OptionalRefs
8189 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8190 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8191   assert(Lex.getKind() == lltok::kw_refs);
8192   Lex.Lex();
8193 
8194   if (ParseToken(lltok::colon, "expected ':' in refs") |
8195       ParseToken(lltok::lparen, "expected '(' in refs"))
8196     return true;
8197 
8198   struct ValueContext {
8199     ValueInfo VI;
8200     unsigned GVId;
8201     LocTy Loc;
8202   };
8203   std::vector<ValueContext> VContexts;
8204   // Parse each ref edge
8205   do {
8206     ValueContext VC;
8207     VC.Loc = Lex.getLoc();
8208     if (ParseGVReference(VC.VI, VC.GVId))
8209       return true;
8210     VContexts.push_back(VC);
8211   } while (EatIfPresent(lltok::comma));
8212 
8213   // Sort value contexts so that ones with readonly ValueInfo are at the end
8214   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8215   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8216     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8217   });
8218 
8219   IdToIndexMapType IdToIndexMap;
8220   for (auto &VC : VContexts) {
8221     // Keep track of the Refs array index needing a forward reference.
8222     // We will save the location of the ValueInfo needing an update, but
8223     // can only do so once the std::vector is finalized.
8224     if (VC.VI.getRef() == FwdVIRef)
8225       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8226     Refs.push_back(VC.VI);
8227   }
8228 
8229   // Now that the Refs vector is finalized, it is safe to save the locations
8230   // of any forward GV references that need updating later.
8231   for (auto I : IdToIndexMap) {
8232     for (auto P : I.second) {
8233       assert(Refs[P.first].getRef() == FwdVIRef &&
8234              "Forward referenced ValueInfo expected to be empty");
8235       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8236           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8237       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8238     }
8239   }
8240 
8241   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8242     return true;
8243 
8244   return false;
8245 }
8246 
8247 /// OptionalTypeIdInfo
8248 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8249 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8250 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8251 bool LLParser::ParseOptionalTypeIdInfo(
8252     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8253   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8254   Lex.Lex();
8255 
8256   if (ParseToken(lltok::colon, "expected ':' here") ||
8257       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8258     return true;
8259 
8260   do {
8261     switch (Lex.getKind()) {
8262     case lltok::kw_typeTests:
8263       if (ParseTypeTests(TypeIdInfo.TypeTests))
8264         return true;
8265       break;
8266     case lltok::kw_typeTestAssumeVCalls:
8267       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8268                            TypeIdInfo.TypeTestAssumeVCalls))
8269         return true;
8270       break;
8271     case lltok::kw_typeCheckedLoadVCalls:
8272       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8273                            TypeIdInfo.TypeCheckedLoadVCalls))
8274         return true;
8275       break;
8276     case lltok::kw_typeTestAssumeConstVCalls:
8277       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8278                               TypeIdInfo.TypeTestAssumeConstVCalls))
8279         return true;
8280       break;
8281     case lltok::kw_typeCheckedLoadConstVCalls:
8282       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8283                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8284         return true;
8285       break;
8286     default:
8287       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8288     }
8289   } while (EatIfPresent(lltok::comma));
8290 
8291   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8292     return true;
8293 
8294   return false;
8295 }
8296 
8297 /// TypeTests
8298 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8299 ///         [',' (SummaryID | UInt64)]* ')'
8300 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8301   assert(Lex.getKind() == lltok::kw_typeTests);
8302   Lex.Lex();
8303 
8304   if (ParseToken(lltok::colon, "expected ':' here") ||
8305       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8306     return true;
8307 
8308   IdToIndexMapType IdToIndexMap;
8309   do {
8310     GlobalValue::GUID GUID = 0;
8311     if (Lex.getKind() == lltok::SummaryID) {
8312       unsigned ID = Lex.getUIntVal();
8313       LocTy Loc = Lex.getLoc();
8314       // Keep track of the TypeTests array index needing a forward reference.
8315       // We will save the location of the GUID needing an update, but
8316       // can only do so once the std::vector is finalized.
8317       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8318       Lex.Lex();
8319     } else if (ParseUInt64(GUID))
8320       return true;
8321     TypeTests.push_back(GUID);
8322   } while (EatIfPresent(lltok::comma));
8323 
8324   // Now that the TypeTests vector is finalized, it is safe to save the
8325   // locations of any forward GV references that need updating later.
8326   for (auto I : IdToIndexMap) {
8327     for (auto P : I.second) {
8328       assert(TypeTests[P.first] == 0 &&
8329              "Forward referenced type id GUID expected to be 0");
8330       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8331           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8332       FwdRef.first->second.push_back(
8333           std::make_pair(&TypeTests[P.first], P.second));
8334     }
8335   }
8336 
8337   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8338     return true;
8339 
8340   return false;
8341 }
8342 
8343 /// VFuncIdList
8344 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8345 bool LLParser::ParseVFuncIdList(
8346     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8347   assert(Lex.getKind() == Kind);
8348   Lex.Lex();
8349 
8350   if (ParseToken(lltok::colon, "expected ':' here") ||
8351       ParseToken(lltok::lparen, "expected '(' here"))
8352     return true;
8353 
8354   IdToIndexMapType IdToIndexMap;
8355   do {
8356     FunctionSummary::VFuncId VFuncId;
8357     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8358       return true;
8359     VFuncIdList.push_back(VFuncId);
8360   } while (EatIfPresent(lltok::comma));
8361 
8362   if (ParseToken(lltok::rparen, "expected ')' here"))
8363     return true;
8364 
8365   // Now that the VFuncIdList vector is finalized, it is safe to save the
8366   // locations of any forward GV references that need updating later.
8367   for (auto I : IdToIndexMap) {
8368     for (auto P : I.second) {
8369       assert(VFuncIdList[P.first].GUID == 0 &&
8370              "Forward referenced type id GUID expected to be 0");
8371       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8372           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8373       FwdRef.first->second.push_back(
8374           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8375     }
8376   }
8377 
8378   return false;
8379 }
8380 
8381 /// ConstVCallList
8382 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8383 bool LLParser::ParseConstVCallList(
8384     lltok::Kind Kind,
8385     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8386   assert(Lex.getKind() == Kind);
8387   Lex.Lex();
8388 
8389   if (ParseToken(lltok::colon, "expected ':' here") ||
8390       ParseToken(lltok::lparen, "expected '(' here"))
8391     return true;
8392 
8393   IdToIndexMapType IdToIndexMap;
8394   do {
8395     FunctionSummary::ConstVCall ConstVCall;
8396     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8397       return true;
8398     ConstVCallList.push_back(ConstVCall);
8399   } while (EatIfPresent(lltok::comma));
8400 
8401   if (ParseToken(lltok::rparen, "expected ')' here"))
8402     return true;
8403 
8404   // Now that the ConstVCallList vector is finalized, it is safe to save the
8405   // locations of any forward GV references that need updating later.
8406   for (auto I : IdToIndexMap) {
8407     for (auto P : I.second) {
8408       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8409              "Forward referenced type id GUID expected to be 0");
8410       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8411           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8412       FwdRef.first->second.push_back(
8413           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8414     }
8415   }
8416 
8417   return false;
8418 }
8419 
8420 /// ConstVCall
8421 ///   ::= '(' VFuncId ',' Args ')'
8422 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8423                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8424   if (ParseToken(lltok::lparen, "expected '(' here") ||
8425       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8426     return true;
8427 
8428   if (EatIfPresent(lltok::comma))
8429     if (ParseArgs(ConstVCall.Args))
8430       return true;
8431 
8432   if (ParseToken(lltok::rparen, "expected ')' here"))
8433     return true;
8434 
8435   return false;
8436 }
8437 
8438 /// VFuncId
8439 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8440 ///         'offset' ':' UInt64 ')'
8441 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8442                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8443   assert(Lex.getKind() == lltok::kw_vFuncId);
8444   Lex.Lex();
8445 
8446   if (ParseToken(lltok::colon, "expected ':' here") ||
8447       ParseToken(lltok::lparen, "expected '(' here"))
8448     return true;
8449 
8450   if (Lex.getKind() == lltok::SummaryID) {
8451     VFuncId.GUID = 0;
8452     unsigned ID = Lex.getUIntVal();
8453     LocTy Loc = Lex.getLoc();
8454     // Keep track of the array index needing a forward reference.
8455     // We will save the location of the GUID needing an update, but
8456     // can only do so once the caller's std::vector is finalized.
8457     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8458     Lex.Lex();
8459   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8460              ParseToken(lltok::colon, "expected ':' here") ||
8461              ParseUInt64(VFuncId.GUID))
8462     return true;
8463 
8464   if (ParseToken(lltok::comma, "expected ',' here") ||
8465       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8466       ParseToken(lltok::colon, "expected ':' here") ||
8467       ParseUInt64(VFuncId.Offset) ||
8468       ParseToken(lltok::rparen, "expected ')' here"))
8469     return true;
8470 
8471   return false;
8472 }
8473 
8474 /// GVFlags
8475 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8476 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8477 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8478 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8479   assert(Lex.getKind() == lltok::kw_flags);
8480   Lex.Lex();
8481 
8482   if (ParseToken(lltok::colon, "expected ':' here") ||
8483       ParseToken(lltok::lparen, "expected '(' here"))
8484     return true;
8485 
8486   do {
8487     unsigned Flag = 0;
8488     switch (Lex.getKind()) {
8489     case lltok::kw_linkage:
8490       Lex.Lex();
8491       if (ParseToken(lltok::colon, "expected ':'"))
8492         return true;
8493       bool HasLinkage;
8494       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8495       assert(HasLinkage && "Linkage not optional in summary entry");
8496       Lex.Lex();
8497       break;
8498     case lltok::kw_notEligibleToImport:
8499       Lex.Lex();
8500       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8501         return true;
8502       GVFlags.NotEligibleToImport = Flag;
8503       break;
8504     case lltok::kw_live:
8505       Lex.Lex();
8506       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8507         return true;
8508       GVFlags.Live = Flag;
8509       break;
8510     case lltok::kw_dsoLocal:
8511       Lex.Lex();
8512       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8513         return true;
8514       GVFlags.DSOLocal = Flag;
8515       break;
8516     case lltok::kw_canAutoHide:
8517       Lex.Lex();
8518       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8519         return true;
8520       GVFlags.CanAutoHide = Flag;
8521       break;
8522     default:
8523       return Error(Lex.getLoc(), "expected gv flag type");
8524     }
8525   } while (EatIfPresent(lltok::comma));
8526 
8527   if (ParseToken(lltok::rparen, "expected ')' here"))
8528     return true;
8529 
8530   return false;
8531 }
8532 
8533 /// GVarFlags
8534 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8535 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8536   assert(Lex.getKind() == lltok::kw_varFlags);
8537   Lex.Lex();
8538 
8539   unsigned Flag = 0;
8540   if (ParseToken(lltok::colon, "expected ':' here") ||
8541       ParseToken(lltok::lparen, "expected '(' here") ||
8542       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8543       ParseToken(lltok::colon, "expected ':' here"))
8544     return true;
8545 
8546   ParseFlag(Flag);
8547   GVarFlags.ReadOnly = Flag;
8548 
8549   if (ParseToken(lltok::rparen, "expected ')' here"))
8550     return true;
8551   return false;
8552 }
8553 
8554 /// ModuleReference
8555 ///   ::= 'module' ':' UInt
8556 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8557   // Parse module id.
8558   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8559       ParseToken(lltok::colon, "expected ':' here") ||
8560       ParseToken(lltok::SummaryID, "expected module ID"))
8561     return true;
8562 
8563   unsigned ModuleID = Lex.getUIntVal();
8564   auto I = ModuleIdMap.find(ModuleID);
8565   // We should have already parsed all module IDs
8566   assert(I != ModuleIdMap.end());
8567   ModulePath = I->second;
8568   return false;
8569 }
8570 
8571 /// GVReference
8572 ///   ::= SummaryID
8573 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8574   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8575   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8576     return true;
8577 
8578   GVId = Lex.getUIntVal();
8579   // Check if we already have a VI for this GV
8580   if (GVId < NumberedValueInfos.size()) {
8581     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8582     VI = NumberedValueInfos[GVId];
8583   } else
8584     // We will create a forward reference to the stored location.
8585     VI = ValueInfo(false, FwdVIRef);
8586 
8587   if (ReadOnly)
8588     VI.setReadOnly();
8589   return false;
8590 }
8591