1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return Error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (ParseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
81          ValidateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (ParseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return Error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (ParseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return Error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return Error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return Error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return Error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                  "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return Error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                  Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return Error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                  Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::ValidateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return Error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return Error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return Error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::ParseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (ParseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (ParseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::ParseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (ParseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (ParseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:         return TokError("expected top-level entity");
345     case lltok::Eof: return false;
346     case lltok::kw_declare: if (ParseDeclare()) return true; break;
347     case lltok::kw_define:  if (ParseDefine()) return true; break;
348     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
349     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
350     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
351     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
352     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
353     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
354     case lltok::ComdatVar:  if (parseComdat()) return true; break;
355     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
356     case lltok::SummaryID:
357       if (ParseSummaryEntry())
358         return true;
359       break;
360     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
361     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
362     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
363     case lltok::kw_uselistorder_bb:
364       if (ParseUseListOrderBB())
365         return true;
366       break;
367     }
368   }
369 }
370 
371 /// toplevelentity
372 ///   ::= 'module' 'asm' STRINGCONSTANT
373 bool LLParser::ParseModuleAsm() {
374   assert(Lex.getKind() == lltok::kw_module);
375   Lex.Lex();
376 
377   std::string AsmStr;
378   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
379       ParseStringConstant(AsmStr)) return true;
380 
381   M->appendModuleInlineAsm(AsmStr);
382   return false;
383 }
384 
385 /// toplevelentity
386 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
387 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
388 bool LLParser::ParseTargetDefinition() {
389   assert(Lex.getKind() == lltok::kw_target);
390   std::string Str;
391   switch (Lex.Lex()) {
392   default: return TokError("unknown target property");
393   case lltok::kw_triple:
394     Lex.Lex();
395     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
396         ParseStringConstant(Str))
397       return true;
398     M->setTargetTriple(Str);
399     return false;
400   case lltok::kw_datalayout:
401     Lex.Lex();
402     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
403         ParseStringConstant(Str))
404       return true;
405     M->setDataLayout(Str);
406     return false;
407   }
408 }
409 
410 /// toplevelentity
411 ///   ::= 'source_filename' '=' STRINGCONSTANT
412 bool LLParser::ParseSourceFileName() {
413   assert(Lex.getKind() == lltok::kw_source_filename);
414   Lex.Lex();
415   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
416       ParseStringConstant(SourceFileName))
417     return true;
418   if (M)
419     M->setSourceFileName(SourceFileName);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'deplibs' '=' '[' ']'
425 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
426 /// FIXME: Remove in 4.0. Currently parse, but ignore.
427 bool LLParser::ParseDepLibs() {
428   assert(Lex.getKind() == lltok::kw_deplibs);
429   Lex.Lex();
430   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
431       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
432     return true;
433 
434   if (EatIfPresent(lltok::rsquare))
435     return false;
436 
437   do {
438     std::string Str;
439     if (ParseStringConstant(Str)) return true;
440   } while (EatIfPresent(lltok::comma));
441 
442   return ParseToken(lltok::rsquare, "expected ']' at end of list");
443 }
444 
445 /// ParseUnnamedType:
446 ///   ::= LocalVarID '=' 'type' type
447 bool LLParser::ParseUnnamedType() {
448   LocTy TypeLoc = Lex.getLoc();
449   unsigned TypeID = Lex.getUIntVal();
450   Lex.Lex(); // eat LocalVarID;
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after '='"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(TypeLoc, "",
458                             NumberedTypes[TypeID], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
462     if (Entry.first)
463       return Error(TypeLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= LocalVar '=' 'type' type
473 bool LLParser::ParseNamedType() {
474   std::string Name = Lex.getStrVal();
475   LocTy NameLoc = Lex.getLoc();
476   Lex.Lex();  // eat LocalVar.
477 
478   if (ParseToken(lltok::equal, "expected '=' after name") ||
479       ParseToken(lltok::kw_type, "expected 'type' after name"))
480     return true;
481 
482   Type *Result = nullptr;
483   if (ParseStructDefinition(NameLoc, Name,
484                             NamedTypes[Name], Result)) return true;
485 
486   if (!isa<StructType>(Result)) {
487     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
488     if (Entry.first)
489       return Error(NameLoc, "non-struct types may not be recursive");
490     Entry.first = Result;
491     Entry.second = SMLoc();
492   }
493 
494   return false;
495 }
496 
497 /// toplevelentity
498 ///   ::= 'declare' FunctionHeader
499 bool LLParser::ParseDeclare() {
500   assert(Lex.getKind() == lltok::kw_declare);
501   Lex.Lex();
502 
503   std::vector<std::pair<unsigned, MDNode *>> MDs;
504   while (Lex.getKind() == lltok::MetadataVar) {
505     unsigned MDK;
506     MDNode *N;
507     if (ParseMetadataAttachment(MDK, N))
508       return true;
509     MDs.push_back({MDK, N});
510   }
511 
512   Function *F;
513   if (ParseFunctionHeader(F, false))
514     return true;
515   for (auto &MD : MDs)
516     F->addMetadata(MD.first, *MD.second);
517   return false;
518 }
519 
520 /// toplevelentity
521 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
522 bool LLParser::ParseDefine() {
523   assert(Lex.getKind() == lltok::kw_define);
524   Lex.Lex();
525 
526   Function *F;
527   return ParseFunctionHeader(F, true) ||
528          ParseOptionalFunctionMetadata(*F) ||
529          ParseFunctionBody(*F);
530 }
531 
532 /// ParseGlobalType
533 ///   ::= 'constant'
534 ///   ::= 'global'
535 bool LLParser::ParseGlobalType(bool &IsConstant) {
536   if (Lex.getKind() == lltok::kw_constant)
537     IsConstant = true;
538   else if (Lex.getKind() == lltok::kw_global)
539     IsConstant = false;
540   else {
541     IsConstant = false;
542     return TokError("expected 'global' or 'constant'");
543   }
544   Lex.Lex();
545   return false;
546 }
547 
548 bool LLParser::ParseOptionalUnnamedAddr(
549     GlobalVariable::UnnamedAddr &UnnamedAddr) {
550   if (EatIfPresent(lltok::kw_unnamed_addr))
551     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
552   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
554   else
555     UnnamedAddr = GlobalValue::UnnamedAddr::None;
556   return false;
557 }
558 
559 /// ParseUnnamedGlobal:
560 ///   OptionalVisibility (ALIAS | IFUNC) ...
561 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
562 ///   OptionalDLLStorageClass
563 ///                                                     ...   -> global variable
564 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
565 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
566 ///                OptionalDLLStorageClass
567 ///                                                     ...   -> global variable
568 bool LLParser::ParseUnnamedGlobal() {
569   unsigned VarID = NumberedVals.size();
570   std::string Name;
571   LocTy NameLoc = Lex.getLoc();
572 
573   // Handle the GlobalID form.
574   if (Lex.getKind() == lltok::GlobalID) {
575     if (Lex.getUIntVal() != VarID)
576       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
577                    Twine(VarID) + "'");
578     Lex.Lex(); // eat GlobalID;
579 
580     if (ParseToken(lltok::equal, "expected '=' after name"))
581       return true;
582   }
583 
584   bool HasLinkage;
585   unsigned Linkage, Visibility, DLLStorageClass;
586   bool DSOLocal;
587   GlobalVariable::ThreadLocalMode TLM;
588   GlobalVariable::UnnamedAddr UnnamedAddr;
589   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
590                            DSOLocal) ||
591       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
592     return true;
593 
594   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
595     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
596                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 
598   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
599                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
600 }
601 
602 /// ParseNamedGlobal:
603 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///                 OptionalVisibility OptionalDLLStorageClass
606 ///                                                     ...   -> global variable
607 bool LLParser::ParseNamedGlobal() {
608   assert(Lex.getKind() == lltok::GlobalVar);
609   LocTy NameLoc = Lex.getLoc();
610   std::string Name = Lex.getStrVal();
611   Lex.Lex();
612 
613   bool HasLinkage;
614   unsigned Linkage, Visibility, DLLStorageClass;
615   bool DSOLocal;
616   GlobalVariable::ThreadLocalMode TLM;
617   GlobalVariable::UnnamedAddr UnnamedAddr;
618   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
619       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
620                            DSOLocal) ||
621       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
622     return true;
623 
624   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
625     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
626                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 
628   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
629                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
630 }
631 
632 bool LLParser::parseComdat() {
633   assert(Lex.getKind() == lltok::ComdatVar);
634   std::string Name = Lex.getStrVal();
635   LocTy NameLoc = Lex.getLoc();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here"))
639     return true;
640 
641   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
642     return TokError("expected comdat type");
643 
644   Comdat::SelectionKind SK;
645   switch (Lex.getKind()) {
646   default:
647     return TokError("unknown selection kind");
648   case lltok::kw_any:
649     SK = Comdat::Any;
650     break;
651   case lltok::kw_exactmatch:
652     SK = Comdat::ExactMatch;
653     break;
654   case lltok::kw_largest:
655     SK = Comdat::Largest;
656     break;
657   case lltok::kw_noduplicates:
658     SK = Comdat::NoDuplicates;
659     break;
660   case lltok::kw_samesize:
661     SK = Comdat::SameSize;
662     break;
663   }
664   Lex.Lex();
665 
666   // See if the comdat was forward referenced, if so, use the comdat.
667   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
668   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
669   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
670     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
671 
672   Comdat *C;
673   if (I != ComdatSymTab.end())
674     C = &I->second;
675   else
676     C = M->getOrInsertComdat(Name);
677   C->setSelectionKind(SK);
678 
679   return false;
680 }
681 
682 // MDString:
683 //   ::= '!' STRINGCONSTANT
684 bool LLParser::ParseMDString(MDString *&Result) {
685   std::string Str;
686   if (ParseStringConstant(Str)) return true;
687   Result = MDString::get(Context, Str);
688   return false;
689 }
690 
691 // MDNode:
692 //   ::= '!' MDNodeNumber
693 bool LLParser::ParseMDNodeID(MDNode *&Result) {
694   // !{ ..., !42, ... }
695   LocTy IDLoc = Lex.getLoc();
696   unsigned MID = 0;
697   if (ParseUInt32(MID))
698     return true;
699 
700   // If not a forward reference, just return it now.
701   if (NumberedMetadata.count(MID)) {
702     Result = NumberedMetadata[MID];
703     return false;
704   }
705 
706   // Otherwise, create MDNode forward reference.
707   auto &FwdRef = ForwardRefMDNodes[MID];
708   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
709 
710   Result = FwdRef.first.get();
711   NumberedMetadata[MID].reset(Result);
712   return false;
713 }
714 
715 /// ParseNamedMetadata:
716 ///   !foo = !{ !1, !2 }
717 bool LLParser::ParseNamedMetadata() {
718   assert(Lex.getKind() == lltok::MetadataVar);
719   std::string Name = Lex.getStrVal();
720   Lex.Lex();
721 
722   if (ParseToken(lltok::equal, "expected '=' here") ||
723       ParseToken(lltok::exclaim, "Expected '!' here") ||
724       ParseToken(lltok::lbrace, "Expected '{' here"))
725     return true;
726 
727   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
728   if (Lex.getKind() != lltok::rbrace)
729     do {
730       MDNode *N = nullptr;
731       // Parse DIExpressions inline as a special case. They are still MDNodes,
732       // so they can still appear in named metadata. Remove this logic if they
733       // become plain Metadata.
734       if (Lex.getKind() == lltok::MetadataVar &&
735           Lex.getStrVal() == "DIExpression") {
736         if (ParseDIExpression(N, /*IsDistinct=*/false))
737           return true;
738       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
739                  ParseMDNodeID(N)) {
740         return true;
741       }
742       NMD->addOperand(N);
743     } while (EatIfPresent(lltok::comma));
744 
745   return ParseToken(lltok::rbrace, "expected end of metadata node");
746 }
747 
748 /// ParseStandaloneMetadata:
749 ///   !42 = !{...}
750 bool LLParser::ParseStandaloneMetadata() {
751   assert(Lex.getKind() == lltok::exclaim);
752   Lex.Lex();
753   unsigned MetadataID = 0;
754 
755   MDNode *Init;
756   if (ParseUInt32(MetadataID) ||
757       ParseToken(lltok::equal, "expected '=' here"))
758     return true;
759 
760   // Detect common error, from old metadata syntax.
761   if (Lex.getKind() == lltok::Type)
762     return TokError("unexpected type in metadata definition");
763 
764   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
765   if (Lex.getKind() == lltok::MetadataVar) {
766     if (ParseSpecializedMDNode(Init, IsDistinct))
767       return true;
768   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
769              ParseMDTuple(Init, IsDistinct))
770     return true;
771 
772   // See if this was forward referenced, if so, handle it.
773   auto FI = ForwardRefMDNodes.find(MetadataID);
774   if (FI != ForwardRefMDNodes.end()) {
775     FI->second.first->replaceAllUsesWith(Init);
776     ForwardRefMDNodes.erase(FI);
777 
778     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
779   } else {
780     if (NumberedMetadata.count(MetadataID))
781       return TokError("Metadata id is already used");
782     NumberedMetadata[MetadataID].reset(Init);
783   }
784 
785   return false;
786 }
787 
788 // Skips a single module summary entry.
789 bool LLParser::SkipModuleSummaryEntry() {
790   // Each module summary entry consists of a tag for the entry
791   // type, followed by a colon, then the fields surrounded by nested sets of
792   // parentheses. The "tag:" looks like a Label. Once parsing support is
793   // in place we will look for the tokens corresponding to the expected tags.
794   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
795       Lex.getKind() != lltok::kw_typeid)
796     return TokError(
797         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
798   Lex.Lex();
799   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
800       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
801     return true;
802   // Now walk through the parenthesized entry, until the number of open
803   // parentheses goes back down to 0 (the first '(' was parsed above).
804   unsigned NumOpenParen = 1;
805   do {
806     switch (Lex.getKind()) {
807     case lltok::lparen:
808       NumOpenParen++;
809       break;
810     case lltok::rparen:
811       NumOpenParen--;
812       break;
813     case lltok::Eof:
814       return TokError("found end of file while parsing summary entry");
815     default:
816       // Skip everything in between parentheses.
817       break;
818     }
819     Lex.Lex();
820   } while (NumOpenParen > 0);
821   return false;
822 }
823 
824 /// SummaryEntry
825 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
826 bool LLParser::ParseSummaryEntry() {
827   assert(Lex.getKind() == lltok::SummaryID);
828   unsigned SummaryID = Lex.getUIntVal();
829 
830   // For summary entries, colons should be treated as distinct tokens,
831   // not an indication of the end of a label token.
832   Lex.setIgnoreColonInIdentifiers(true);
833 
834   Lex.Lex();
835   if (ParseToken(lltok::equal, "expected '=' here"))
836     return true;
837 
838   // If we don't have an index object, skip the summary entry.
839   if (!Index)
840     return SkipModuleSummaryEntry();
841 
842   bool result = false;
843   switch (Lex.getKind()) {
844   case lltok::kw_gv:
845     result = ParseGVEntry(SummaryID);
846     break;
847   case lltok::kw_module:
848     result = ParseModuleEntry(SummaryID);
849     break;
850   case lltok::kw_typeid:
851     result = ParseTypeIdEntry(SummaryID);
852     break;
853   case lltok::kw_typeidCompatibleVTable:
854     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
855     break;
856   case lltok::kw_flags:
857     result = ParseSummaryIndexFlags();
858     break;
859   case lltok::kw_blockcount:
860     result = ParseBlockCount();
861     break;
862   default:
863     result = Error(Lex.getLoc(), "unexpected summary kind");
864     break;
865   }
866   Lex.setIgnoreColonInIdentifiers(false);
867   return result;
868 }
869 
870 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
871   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
872          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
873 }
874 
875 // If there was an explicit dso_local, update GV. In the absence of an explicit
876 // dso_local we keep the default value.
877 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
878   if (DSOLocal)
879     GV.setDSOLocal(true);
880 }
881 
882 /// parseIndirectSymbol:
883 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
884 ///                     OptionalVisibility OptionalDLLStorageClass
885 ///                     OptionalThreadLocal OptionalUnnamedAddr
886 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
887 ///
888 /// IndirectSymbol
889 ///   ::= TypeAndValue
890 ///
891 /// IndirectSymbolAttr
892 ///   ::= ',' 'partition' StringConstant
893 ///
894 /// Everything through OptionalUnnamedAddr has already been parsed.
895 ///
896 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
897                                    unsigned L, unsigned Visibility,
898                                    unsigned DLLStorageClass, bool DSOLocal,
899                                    GlobalVariable::ThreadLocalMode TLM,
900                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
901   bool IsAlias;
902   if (Lex.getKind() == lltok::kw_alias)
903     IsAlias = true;
904   else if (Lex.getKind() == lltok::kw_ifunc)
905     IsAlias = false;
906   else
907     llvm_unreachable("Not an alias or ifunc!");
908   Lex.Lex();
909 
910   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
911 
912   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
913     return Error(NameLoc, "invalid linkage type for alias");
914 
915   if (!isValidVisibilityForLinkage(Visibility, L))
916     return Error(NameLoc,
917                  "symbol with local linkage must have default visibility");
918 
919   Type *Ty;
920   LocTy ExplicitTypeLoc = Lex.getLoc();
921   if (ParseType(Ty) ||
922       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
923     return true;
924 
925   Constant *Aliasee;
926   LocTy AliaseeLoc = Lex.getLoc();
927   if (Lex.getKind() != lltok::kw_bitcast &&
928       Lex.getKind() != lltok::kw_getelementptr &&
929       Lex.getKind() != lltok::kw_addrspacecast &&
930       Lex.getKind() != lltok::kw_inttoptr) {
931     if (ParseGlobalTypeAndValue(Aliasee))
932       return true;
933   } else {
934     // The bitcast dest type is not present, it is implied by the dest type.
935     ValID ID;
936     if (ParseValID(ID))
937       return true;
938     if (ID.Kind != ValID::t_Constant)
939       return Error(AliaseeLoc, "invalid aliasee");
940     Aliasee = ID.ConstantVal;
941   }
942 
943   Type *AliaseeType = Aliasee->getType();
944   auto *PTy = dyn_cast<PointerType>(AliaseeType);
945   if (!PTy)
946     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
947   unsigned AddrSpace = PTy->getAddressSpace();
948 
949   if (IsAlias && Ty != PTy->getElementType())
950     return Error(
951         ExplicitTypeLoc,
952         "explicit pointee type doesn't match operand's pointee type");
953 
954   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
955     return Error(
956         ExplicitTypeLoc,
957         "explicit pointee type should be a function type");
958 
959   GlobalValue *GVal = nullptr;
960 
961   // See if the alias was forward referenced, if so, prepare to replace the
962   // forward reference.
963   if (!Name.empty()) {
964     GVal = M->getNamedValue(Name);
965     if (GVal) {
966       if (!ForwardRefVals.erase(Name))
967         return Error(NameLoc, "redefinition of global '@" + Name + "'");
968     }
969   } else {
970     auto I = ForwardRefValIDs.find(NumberedVals.size());
971     if (I != ForwardRefValIDs.end()) {
972       GVal = I->second.first;
973       ForwardRefValIDs.erase(I);
974     }
975   }
976 
977   // Okay, create the alias but do not insert it into the module yet.
978   std::unique_ptr<GlobalIndirectSymbol> GA;
979   if (IsAlias)
980     GA.reset(GlobalAlias::create(Ty, AddrSpace,
981                                  (GlobalValue::LinkageTypes)Linkage, Name,
982                                  Aliasee, /*Parent*/ nullptr));
983   else
984     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
985                                  (GlobalValue::LinkageTypes)Linkage, Name,
986                                  Aliasee, /*Parent*/ nullptr));
987   GA->setThreadLocalMode(TLM);
988   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
989   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
990   GA->setUnnamedAddr(UnnamedAddr);
991   maybeSetDSOLocal(DSOLocal, *GA);
992 
993   // At this point we've parsed everything except for the IndirectSymbolAttrs.
994   // Now parse them if there are any.
995   while (Lex.getKind() == lltok::comma) {
996     Lex.Lex();
997 
998     if (Lex.getKind() == lltok::kw_partition) {
999       Lex.Lex();
1000       GA->setPartition(Lex.getStrVal());
1001       if (ParseToken(lltok::StringConstant, "expected partition string"))
1002         return true;
1003     } else {
1004       return TokError("unknown alias or ifunc property!");
1005     }
1006   }
1007 
1008   if (Name.empty())
1009     NumberedVals.push_back(GA.get());
1010 
1011   if (GVal) {
1012     // Verify that types agree.
1013     if (GVal->getType() != GA->getType())
1014       return Error(
1015           ExplicitTypeLoc,
1016           "forward reference and definition of alias have different types");
1017 
1018     // If they agree, just RAUW the old value with the alias and remove the
1019     // forward ref info.
1020     GVal->replaceAllUsesWith(GA.get());
1021     GVal->eraseFromParent();
1022   }
1023 
1024   // Insert into the module, we know its name won't collide now.
1025   if (IsAlias)
1026     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1027   else
1028     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1029   assert(GA->getName() == Name && "Should not be a name conflict!");
1030 
1031   // The module owns this now
1032   GA.release();
1033 
1034   return false;
1035 }
1036 
1037 /// ParseGlobal
1038 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1039 ///       OptionalVisibility OptionalDLLStorageClass
1040 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1041 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1042 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1043 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1044 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1045 ///       Const OptionalAttrs
1046 ///
1047 /// Everything up to and including OptionalUnnamedAddr has been parsed
1048 /// already.
1049 ///
1050 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1051                            unsigned Linkage, bool HasLinkage,
1052                            unsigned Visibility, unsigned DLLStorageClass,
1053                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1054                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1055   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1056     return Error(NameLoc,
1057                  "symbol with local linkage must have default visibility");
1058 
1059   unsigned AddrSpace;
1060   bool IsConstant, IsExternallyInitialized;
1061   LocTy IsExternallyInitializedLoc;
1062   LocTy TyLoc;
1063 
1064   Type *Ty = nullptr;
1065   if (ParseOptionalAddrSpace(AddrSpace) ||
1066       ParseOptionalToken(lltok::kw_externally_initialized,
1067                          IsExternallyInitialized,
1068                          &IsExternallyInitializedLoc) ||
1069       ParseGlobalType(IsConstant) ||
1070       ParseType(Ty, TyLoc))
1071     return true;
1072 
1073   // If the linkage is specified and is external, then no initializer is
1074   // present.
1075   Constant *Init = nullptr;
1076   if (!HasLinkage ||
1077       !GlobalValue::isValidDeclarationLinkage(
1078           (GlobalValue::LinkageTypes)Linkage)) {
1079     if (ParseGlobalValue(Ty, Init))
1080       return true;
1081   }
1082 
1083   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1084     return Error(TyLoc, "invalid type for global variable");
1085 
1086   GlobalValue *GVal = nullptr;
1087 
1088   // See if the global was forward referenced, if so, use the global.
1089   if (!Name.empty()) {
1090     GVal = M->getNamedValue(Name);
1091     if (GVal) {
1092       if (!ForwardRefVals.erase(Name))
1093         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1094     }
1095   } else {
1096     auto I = ForwardRefValIDs.find(NumberedVals.size());
1097     if (I != ForwardRefValIDs.end()) {
1098       GVal = I->second.first;
1099       ForwardRefValIDs.erase(I);
1100     }
1101   }
1102 
1103   GlobalVariable *GV;
1104   if (!GVal) {
1105     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1106                             Name, nullptr, GlobalVariable::NotThreadLocal,
1107                             AddrSpace);
1108   } else {
1109     if (GVal->getValueType() != Ty)
1110       return Error(TyLoc,
1111             "forward reference and definition of global have different types");
1112 
1113     GV = cast<GlobalVariable>(GVal);
1114 
1115     // Move the forward-reference to the correct spot in the module.
1116     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1117   }
1118 
1119   if (Name.empty())
1120     NumberedVals.push_back(GV);
1121 
1122   // Set the parsed properties on the global.
1123   if (Init)
1124     GV->setInitializer(Init);
1125   GV->setConstant(IsConstant);
1126   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1127   maybeSetDSOLocal(DSOLocal, *GV);
1128   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1129   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1130   GV->setExternallyInitialized(IsExternallyInitialized);
1131   GV->setThreadLocalMode(TLM);
1132   GV->setUnnamedAddr(UnnamedAddr);
1133 
1134   // Parse attributes on the global.
1135   while (Lex.getKind() == lltok::comma) {
1136     Lex.Lex();
1137 
1138     if (Lex.getKind() == lltok::kw_section) {
1139       Lex.Lex();
1140       GV->setSection(Lex.getStrVal());
1141       if (ParseToken(lltok::StringConstant, "expected global section string"))
1142         return true;
1143     } else if (Lex.getKind() == lltok::kw_partition) {
1144       Lex.Lex();
1145       GV->setPartition(Lex.getStrVal());
1146       if (ParseToken(lltok::StringConstant, "expected partition string"))
1147         return true;
1148     } else if (Lex.getKind() == lltok::kw_align) {
1149       MaybeAlign Alignment;
1150       if (ParseOptionalAlignment(Alignment)) return true;
1151       GV->setAlignment(Alignment);
1152     } else if (Lex.getKind() == lltok::MetadataVar) {
1153       if (ParseGlobalObjectMetadataAttachment(*GV))
1154         return true;
1155     } else {
1156       Comdat *C;
1157       if (parseOptionalComdat(Name, C))
1158         return true;
1159       if (C)
1160         GV->setComdat(C);
1161       else
1162         return TokError("unknown global variable property!");
1163     }
1164   }
1165 
1166   AttrBuilder Attrs;
1167   LocTy BuiltinLoc;
1168   std::vector<unsigned> FwdRefAttrGrps;
1169   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1170     return true;
1171   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1172     GV->setAttributes(AttributeSet::get(Context, Attrs));
1173     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1174   }
1175 
1176   return false;
1177 }
1178 
1179 /// ParseUnnamedAttrGrp
1180 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1181 bool LLParser::ParseUnnamedAttrGrp() {
1182   assert(Lex.getKind() == lltok::kw_attributes);
1183   LocTy AttrGrpLoc = Lex.getLoc();
1184   Lex.Lex();
1185 
1186   if (Lex.getKind() != lltok::AttrGrpID)
1187     return TokError("expected attribute group id");
1188 
1189   unsigned VarID = Lex.getUIntVal();
1190   std::vector<unsigned> unused;
1191   LocTy BuiltinLoc;
1192   Lex.Lex();
1193 
1194   if (ParseToken(lltok::equal, "expected '=' here") ||
1195       ParseToken(lltok::lbrace, "expected '{' here") ||
1196       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1197                                  BuiltinLoc) ||
1198       ParseToken(lltok::rbrace, "expected end of attribute group"))
1199     return true;
1200 
1201   if (!NumberedAttrBuilders[VarID].hasAttributes())
1202     return Error(AttrGrpLoc, "attribute group has no attributes");
1203 
1204   return false;
1205 }
1206 
1207 /// ParseFnAttributeValuePairs
1208 ///   ::= <attr> | <attr> '=' <value>
1209 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1210                                           std::vector<unsigned> &FwdRefAttrGrps,
1211                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1212   bool HaveError = false;
1213 
1214   B.clear();
1215 
1216   while (true) {
1217     lltok::Kind Token = Lex.getKind();
1218     if (Token == lltok::kw_builtin)
1219       BuiltinLoc = Lex.getLoc();
1220     switch (Token) {
1221     default:
1222       if (!inAttrGrp) return HaveError;
1223       return Error(Lex.getLoc(), "unterminated attribute group");
1224     case lltok::rbrace:
1225       // Finished.
1226       return false;
1227 
1228     case lltok::AttrGrpID: {
1229       // Allow a function to reference an attribute group:
1230       //
1231       //   define void @foo() #1 { ... }
1232       if (inAttrGrp)
1233         HaveError |=
1234           Error(Lex.getLoc(),
1235               "cannot have an attribute group reference in an attribute group");
1236 
1237       unsigned AttrGrpNum = Lex.getUIntVal();
1238       if (inAttrGrp) break;
1239 
1240       // Save the reference to the attribute group. We'll fill it in later.
1241       FwdRefAttrGrps.push_back(AttrGrpNum);
1242       break;
1243     }
1244     // Target-dependent attributes:
1245     case lltok::StringConstant: {
1246       if (ParseStringAttribute(B))
1247         return true;
1248       continue;
1249     }
1250 
1251     // Target-independent attributes:
1252     case lltok::kw_align: {
1253       // As a hack, we allow function alignment to be initially parsed as an
1254       // attribute on a function declaration/definition or added to an attribute
1255       // group and later moved to the alignment field.
1256       MaybeAlign Alignment;
1257       if (inAttrGrp) {
1258         Lex.Lex();
1259         uint32_t Value = 0;
1260         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1261           return true;
1262         Alignment = Align(Value);
1263       } else {
1264         if (ParseOptionalAlignment(Alignment))
1265           return true;
1266       }
1267       B.addAlignmentAttr(Alignment);
1268       continue;
1269     }
1270     case lltok::kw_alignstack: {
1271       unsigned Alignment;
1272       if (inAttrGrp) {
1273         Lex.Lex();
1274         if (ParseToken(lltok::equal, "expected '=' here") ||
1275             ParseUInt32(Alignment))
1276           return true;
1277       } else {
1278         if (ParseOptionalStackAlignment(Alignment))
1279           return true;
1280       }
1281       B.addStackAlignmentAttr(Alignment);
1282       continue;
1283     }
1284     case lltok::kw_allocsize: {
1285       unsigned ElemSizeArg;
1286       Optional<unsigned> NumElemsArg;
1287       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1288       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1289         return true;
1290       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1291       continue;
1292     }
1293     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1294     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1295     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1296     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1297     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1298     case lltok::kw_inaccessiblememonly:
1299       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1300     case lltok::kw_inaccessiblemem_or_argmemonly:
1301       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1302     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1303     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1304     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1305     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1306     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1307     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1308     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1309     case lltok::kw_noimplicitfloat:
1310       B.addAttribute(Attribute::NoImplicitFloat); break;
1311     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1312     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1313     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1314     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1315     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1316     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1317     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1318     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1319     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1320     case lltok::kw_null_pointer_is_valid:
1321       B.addAttribute(Attribute::NullPointerIsValid); break;
1322     case lltok::kw_optforfuzzing:
1323       B.addAttribute(Attribute::OptForFuzzing); break;
1324     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1325     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1326     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1327     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1328     case lltok::kw_returns_twice:
1329       B.addAttribute(Attribute::ReturnsTwice); break;
1330     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1331     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1332     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1333     case lltok::kw_sspstrong:
1334       B.addAttribute(Attribute::StackProtectStrong); break;
1335     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1336     case lltok::kw_shadowcallstack:
1337       B.addAttribute(Attribute::ShadowCallStack); break;
1338     case lltok::kw_sanitize_address:
1339       B.addAttribute(Attribute::SanitizeAddress); break;
1340     case lltok::kw_sanitize_hwaddress:
1341       B.addAttribute(Attribute::SanitizeHWAddress); break;
1342     case lltok::kw_sanitize_memtag:
1343       B.addAttribute(Attribute::SanitizeMemTag); break;
1344     case lltok::kw_sanitize_thread:
1345       B.addAttribute(Attribute::SanitizeThread); break;
1346     case lltok::kw_sanitize_memory:
1347       B.addAttribute(Attribute::SanitizeMemory); break;
1348     case lltok::kw_speculative_load_hardening:
1349       B.addAttribute(Attribute::SpeculativeLoadHardening);
1350       break;
1351     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1352     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1353     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1354     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1355     case lltok::kw_preallocated: {
1356       Type *Ty;
1357       if (ParsePreallocated(Ty))
1358         return true;
1359       B.addPreallocatedAttr(Ty);
1360       break;
1361     }
1362 
1363     // Error handling.
1364     case lltok::kw_inreg:
1365     case lltok::kw_signext:
1366     case lltok::kw_zeroext:
1367       HaveError |=
1368         Error(Lex.getLoc(),
1369               "invalid use of attribute on a function");
1370       break;
1371     case lltok::kw_byval:
1372     case lltok::kw_dereferenceable:
1373     case lltok::kw_dereferenceable_or_null:
1374     case lltok::kw_inalloca:
1375     case lltok::kw_nest:
1376     case lltok::kw_noalias:
1377     case lltok::kw_nocapture:
1378     case lltok::kw_nonnull:
1379     case lltok::kw_returned:
1380     case lltok::kw_sret:
1381     case lltok::kw_swifterror:
1382     case lltok::kw_swiftself:
1383     case lltok::kw_immarg:
1384       HaveError |=
1385         Error(Lex.getLoc(),
1386               "invalid use of parameter-only attribute on a function");
1387       break;
1388     }
1389 
1390     // ParsePreallocated() consumes token
1391     if (Token != lltok::kw_preallocated)
1392       Lex.Lex();
1393   }
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 // GlobalValue Reference/Resolution Routines.
1398 //===----------------------------------------------------------------------===//
1399 
1400 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1401                                               const std::string &Name) {
1402   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1403     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1404                             PTy->getAddressSpace(), Name, M);
1405   else
1406     return new GlobalVariable(*M, PTy->getElementType(), false,
1407                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1408                               nullptr, GlobalVariable::NotThreadLocal,
1409                               PTy->getAddressSpace());
1410 }
1411 
1412 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1413                                         Value *Val, bool IsCall) {
1414   if (Val->getType() == Ty)
1415     return Val;
1416   // For calls we also accept variables in the program address space.
1417   Type *SuggestedTy = Ty;
1418   if (IsCall && isa<PointerType>(Ty)) {
1419     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1420         M->getDataLayout().getProgramAddressSpace());
1421     SuggestedTy = TyInProgAS;
1422     if (Val->getType() == TyInProgAS)
1423       return Val;
1424   }
1425   if (Ty->isLabelTy())
1426     Error(Loc, "'" + Name + "' is not a basic block");
1427   else
1428     Error(Loc, "'" + Name + "' defined with type '" +
1429                    getTypeString(Val->getType()) + "' but expected '" +
1430                    getTypeString(SuggestedTy) + "'");
1431   return nullptr;
1432 }
1433 
1434 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1435 /// forward reference record if needed.  This can return null if the value
1436 /// exists but does not have the right type.
1437 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1438                                     LocTy Loc, bool IsCall) {
1439   PointerType *PTy = dyn_cast<PointerType>(Ty);
1440   if (!PTy) {
1441     Error(Loc, "global variable reference must have pointer type");
1442     return nullptr;
1443   }
1444 
1445   // Look this name up in the normal function symbol table.
1446   GlobalValue *Val =
1447     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1448 
1449   // If this is a forward reference for the value, see if we already created a
1450   // forward ref record.
1451   if (!Val) {
1452     auto I = ForwardRefVals.find(Name);
1453     if (I != ForwardRefVals.end())
1454       Val = I->second.first;
1455   }
1456 
1457   // If we have the value in the symbol table or fwd-ref table, return it.
1458   if (Val)
1459     return cast_or_null<GlobalValue>(
1460         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1461 
1462   // Otherwise, create a new forward reference for this value and remember it.
1463   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1464   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1465   return FwdVal;
1466 }
1467 
1468 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1469                                     bool IsCall) {
1470   PointerType *PTy = dyn_cast<PointerType>(Ty);
1471   if (!PTy) {
1472     Error(Loc, "global variable reference must have pointer type");
1473     return nullptr;
1474   }
1475 
1476   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1477 
1478   // If this is a forward reference for the value, see if we already created a
1479   // forward ref record.
1480   if (!Val) {
1481     auto I = ForwardRefValIDs.find(ID);
1482     if (I != ForwardRefValIDs.end())
1483       Val = I->second.first;
1484   }
1485 
1486   // If we have the value in the symbol table or fwd-ref table, return it.
1487   if (Val)
1488     return cast_or_null<GlobalValue>(
1489         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1490 
1491   // Otherwise, create a new forward reference for this value and remember it.
1492   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1493   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1494   return FwdVal;
1495 }
1496 
1497 //===----------------------------------------------------------------------===//
1498 // Comdat Reference/Resolution Routines.
1499 //===----------------------------------------------------------------------===//
1500 
1501 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1502   // Look this name up in the comdat symbol table.
1503   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1504   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1505   if (I != ComdatSymTab.end())
1506     return &I->second;
1507 
1508   // Otherwise, create a new forward reference for this value and remember it.
1509   Comdat *C = M->getOrInsertComdat(Name);
1510   ForwardRefComdats[Name] = Loc;
1511   return C;
1512 }
1513 
1514 //===----------------------------------------------------------------------===//
1515 // Helper Routines.
1516 //===----------------------------------------------------------------------===//
1517 
1518 /// ParseToken - If the current token has the specified kind, eat it and return
1519 /// success.  Otherwise, emit the specified error and return failure.
1520 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1521   if (Lex.getKind() != T)
1522     return TokError(ErrMsg);
1523   Lex.Lex();
1524   return false;
1525 }
1526 
1527 /// ParseStringConstant
1528 ///   ::= StringConstant
1529 bool LLParser::ParseStringConstant(std::string &Result) {
1530   if (Lex.getKind() != lltok::StringConstant)
1531     return TokError("expected string constant");
1532   Result = Lex.getStrVal();
1533   Lex.Lex();
1534   return false;
1535 }
1536 
1537 /// ParseUInt32
1538 ///   ::= uint32
1539 bool LLParser::ParseUInt32(uint32_t &Val) {
1540   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1541     return TokError("expected integer");
1542   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1543   if (Val64 != unsigned(Val64))
1544     return TokError("expected 32-bit integer (too large)");
1545   Val = Val64;
1546   Lex.Lex();
1547   return false;
1548 }
1549 
1550 /// ParseUInt64
1551 ///   ::= uint64
1552 bool LLParser::ParseUInt64(uint64_t &Val) {
1553   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1554     return TokError("expected integer");
1555   Val = Lex.getAPSIntVal().getLimitedValue();
1556   Lex.Lex();
1557   return false;
1558 }
1559 
1560 /// ParseTLSModel
1561 ///   := 'localdynamic'
1562 ///   := 'initialexec'
1563 ///   := 'localexec'
1564 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1565   switch (Lex.getKind()) {
1566     default:
1567       return TokError("expected localdynamic, initialexec or localexec");
1568     case lltok::kw_localdynamic:
1569       TLM = GlobalVariable::LocalDynamicTLSModel;
1570       break;
1571     case lltok::kw_initialexec:
1572       TLM = GlobalVariable::InitialExecTLSModel;
1573       break;
1574     case lltok::kw_localexec:
1575       TLM = GlobalVariable::LocalExecTLSModel;
1576       break;
1577   }
1578 
1579   Lex.Lex();
1580   return false;
1581 }
1582 
1583 /// ParseOptionalThreadLocal
1584 ///   := /*empty*/
1585 ///   := 'thread_local'
1586 ///   := 'thread_local' '(' tlsmodel ')'
1587 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1588   TLM = GlobalVariable::NotThreadLocal;
1589   if (!EatIfPresent(lltok::kw_thread_local))
1590     return false;
1591 
1592   TLM = GlobalVariable::GeneralDynamicTLSModel;
1593   if (Lex.getKind() == lltok::lparen) {
1594     Lex.Lex();
1595     return ParseTLSModel(TLM) ||
1596       ParseToken(lltok::rparen, "expected ')' after thread local model");
1597   }
1598   return false;
1599 }
1600 
1601 /// ParseOptionalAddrSpace
1602 ///   := /*empty*/
1603 ///   := 'addrspace' '(' uint32 ')'
1604 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1605   AddrSpace = DefaultAS;
1606   if (!EatIfPresent(lltok::kw_addrspace))
1607     return false;
1608   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1609          ParseUInt32(AddrSpace) ||
1610          ParseToken(lltok::rparen, "expected ')' in address space");
1611 }
1612 
1613 /// ParseStringAttribute
1614 ///   := StringConstant
1615 ///   := StringConstant '=' StringConstant
1616 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1617   std::string Attr = Lex.getStrVal();
1618   Lex.Lex();
1619   std::string Val;
1620   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1621     return true;
1622   B.addAttribute(Attr, Val);
1623   return false;
1624 }
1625 
1626 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1627 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1628   bool HaveError = false;
1629 
1630   B.clear();
1631 
1632   while (true) {
1633     lltok::Kind Token = Lex.getKind();
1634     switch (Token) {
1635     default:  // End of attributes.
1636       return HaveError;
1637     case lltok::StringConstant: {
1638       if (ParseStringAttribute(B))
1639         return true;
1640       continue;
1641     }
1642     case lltok::kw_align: {
1643       MaybeAlign Alignment;
1644       if (ParseOptionalAlignment(Alignment))
1645         return true;
1646       B.addAlignmentAttr(Alignment);
1647       continue;
1648     }
1649     case lltok::kw_byval: {
1650       Type *Ty;
1651       if (ParseByValWithOptionalType(Ty))
1652         return true;
1653       B.addByValAttr(Ty);
1654       continue;
1655     }
1656     case lltok::kw_preallocated: {
1657       Type *Ty;
1658       if (ParsePreallocated(Ty))
1659         return true;
1660       B.addPreallocatedAttr(Ty);
1661       continue;
1662     }
1663     case lltok::kw_dereferenceable: {
1664       uint64_t Bytes;
1665       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1666         return true;
1667       B.addDereferenceableAttr(Bytes);
1668       continue;
1669     }
1670     case lltok::kw_dereferenceable_or_null: {
1671       uint64_t Bytes;
1672       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1673         return true;
1674       B.addDereferenceableOrNullAttr(Bytes);
1675       continue;
1676     }
1677     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1678     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1679     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1680     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1681     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1682     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1683     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1684     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1685     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1686     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1687     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1688     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1689     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1690     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1691     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1692     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1693     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1694 
1695     case lltok::kw_alignstack:
1696     case lltok::kw_alwaysinline:
1697     case lltok::kw_argmemonly:
1698     case lltok::kw_builtin:
1699     case lltok::kw_inlinehint:
1700     case lltok::kw_jumptable:
1701     case lltok::kw_minsize:
1702     case lltok::kw_naked:
1703     case lltok::kw_nobuiltin:
1704     case lltok::kw_noduplicate:
1705     case lltok::kw_noimplicitfloat:
1706     case lltok::kw_noinline:
1707     case lltok::kw_nonlazybind:
1708     case lltok::kw_nomerge:
1709     case lltok::kw_noredzone:
1710     case lltok::kw_noreturn:
1711     case lltok::kw_nocf_check:
1712     case lltok::kw_nounwind:
1713     case lltok::kw_optforfuzzing:
1714     case lltok::kw_optnone:
1715     case lltok::kw_optsize:
1716     case lltok::kw_returns_twice:
1717     case lltok::kw_sanitize_address:
1718     case lltok::kw_sanitize_hwaddress:
1719     case lltok::kw_sanitize_memtag:
1720     case lltok::kw_sanitize_memory:
1721     case lltok::kw_sanitize_thread:
1722     case lltok::kw_speculative_load_hardening:
1723     case lltok::kw_ssp:
1724     case lltok::kw_sspreq:
1725     case lltok::kw_sspstrong:
1726     case lltok::kw_safestack:
1727     case lltok::kw_shadowcallstack:
1728     case lltok::kw_strictfp:
1729     case lltok::kw_uwtable:
1730       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1731       break;
1732     }
1733 
1734     Lex.Lex();
1735   }
1736 }
1737 
1738 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1739 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1740   bool HaveError = false;
1741 
1742   B.clear();
1743 
1744   while (true) {
1745     lltok::Kind Token = Lex.getKind();
1746     switch (Token) {
1747     default:  // End of attributes.
1748       return HaveError;
1749     case lltok::StringConstant: {
1750       if (ParseStringAttribute(B))
1751         return true;
1752       continue;
1753     }
1754     case lltok::kw_dereferenceable: {
1755       uint64_t Bytes;
1756       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1757         return true;
1758       B.addDereferenceableAttr(Bytes);
1759       continue;
1760     }
1761     case lltok::kw_dereferenceable_or_null: {
1762       uint64_t Bytes;
1763       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1764         return true;
1765       B.addDereferenceableOrNullAttr(Bytes);
1766       continue;
1767     }
1768     case lltok::kw_align: {
1769       MaybeAlign Alignment;
1770       if (ParseOptionalAlignment(Alignment))
1771         return true;
1772       B.addAlignmentAttr(Alignment);
1773       continue;
1774     }
1775     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1776     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1777     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1778     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1779     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1780 
1781     // Error handling.
1782     case lltok::kw_byval:
1783     case lltok::kw_inalloca:
1784     case lltok::kw_nest:
1785     case lltok::kw_nocapture:
1786     case lltok::kw_returned:
1787     case lltok::kw_sret:
1788     case lltok::kw_swifterror:
1789     case lltok::kw_swiftself:
1790     case lltok::kw_immarg:
1791       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1792       break;
1793 
1794     case lltok::kw_alignstack:
1795     case lltok::kw_alwaysinline:
1796     case lltok::kw_argmemonly:
1797     case lltok::kw_builtin:
1798     case lltok::kw_cold:
1799     case lltok::kw_inlinehint:
1800     case lltok::kw_jumptable:
1801     case lltok::kw_minsize:
1802     case lltok::kw_naked:
1803     case lltok::kw_nobuiltin:
1804     case lltok::kw_noduplicate:
1805     case lltok::kw_noimplicitfloat:
1806     case lltok::kw_noinline:
1807     case lltok::kw_nonlazybind:
1808     case lltok::kw_nomerge:
1809     case lltok::kw_noredzone:
1810     case lltok::kw_noreturn:
1811     case lltok::kw_nocf_check:
1812     case lltok::kw_nounwind:
1813     case lltok::kw_optforfuzzing:
1814     case lltok::kw_optnone:
1815     case lltok::kw_optsize:
1816     case lltok::kw_returns_twice:
1817     case lltok::kw_sanitize_address:
1818     case lltok::kw_sanitize_hwaddress:
1819     case lltok::kw_sanitize_memtag:
1820     case lltok::kw_sanitize_memory:
1821     case lltok::kw_sanitize_thread:
1822     case lltok::kw_speculative_load_hardening:
1823     case lltok::kw_ssp:
1824     case lltok::kw_sspreq:
1825     case lltok::kw_sspstrong:
1826     case lltok::kw_safestack:
1827     case lltok::kw_shadowcallstack:
1828     case lltok::kw_strictfp:
1829     case lltok::kw_uwtable:
1830       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1831       break;
1832     case lltok::kw_readnone:
1833     case lltok::kw_readonly:
1834       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1835       break;
1836     case lltok::kw_preallocated:
1837       HaveError |=
1838           Error(Lex.getLoc(),
1839                 "invalid use of parameter-only/call site-only attribute");
1840       break;
1841     }
1842 
1843     Lex.Lex();
1844   }
1845 }
1846 
1847 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1848   HasLinkage = true;
1849   switch (Kind) {
1850   default:
1851     HasLinkage = false;
1852     return GlobalValue::ExternalLinkage;
1853   case lltok::kw_private:
1854     return GlobalValue::PrivateLinkage;
1855   case lltok::kw_internal:
1856     return GlobalValue::InternalLinkage;
1857   case lltok::kw_weak:
1858     return GlobalValue::WeakAnyLinkage;
1859   case lltok::kw_weak_odr:
1860     return GlobalValue::WeakODRLinkage;
1861   case lltok::kw_linkonce:
1862     return GlobalValue::LinkOnceAnyLinkage;
1863   case lltok::kw_linkonce_odr:
1864     return GlobalValue::LinkOnceODRLinkage;
1865   case lltok::kw_available_externally:
1866     return GlobalValue::AvailableExternallyLinkage;
1867   case lltok::kw_appending:
1868     return GlobalValue::AppendingLinkage;
1869   case lltok::kw_common:
1870     return GlobalValue::CommonLinkage;
1871   case lltok::kw_extern_weak:
1872     return GlobalValue::ExternalWeakLinkage;
1873   case lltok::kw_external:
1874     return GlobalValue::ExternalLinkage;
1875   }
1876 }
1877 
1878 /// ParseOptionalLinkage
1879 ///   ::= /*empty*/
1880 ///   ::= 'private'
1881 ///   ::= 'internal'
1882 ///   ::= 'weak'
1883 ///   ::= 'weak_odr'
1884 ///   ::= 'linkonce'
1885 ///   ::= 'linkonce_odr'
1886 ///   ::= 'available_externally'
1887 ///   ::= 'appending'
1888 ///   ::= 'common'
1889 ///   ::= 'extern_weak'
1890 ///   ::= 'external'
1891 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1892                                     unsigned &Visibility,
1893                                     unsigned &DLLStorageClass,
1894                                     bool &DSOLocal) {
1895   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1896   if (HasLinkage)
1897     Lex.Lex();
1898   ParseOptionalDSOLocal(DSOLocal);
1899   ParseOptionalVisibility(Visibility);
1900   ParseOptionalDLLStorageClass(DLLStorageClass);
1901 
1902   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1903     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1904   }
1905 
1906   return false;
1907 }
1908 
1909 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1910   switch (Lex.getKind()) {
1911   default:
1912     DSOLocal = false;
1913     break;
1914   case lltok::kw_dso_local:
1915     DSOLocal = true;
1916     Lex.Lex();
1917     break;
1918   case lltok::kw_dso_preemptable:
1919     DSOLocal = false;
1920     Lex.Lex();
1921     break;
1922   }
1923 }
1924 
1925 /// ParseOptionalVisibility
1926 ///   ::= /*empty*/
1927 ///   ::= 'default'
1928 ///   ::= 'hidden'
1929 ///   ::= 'protected'
1930 ///
1931 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1932   switch (Lex.getKind()) {
1933   default:
1934     Res = GlobalValue::DefaultVisibility;
1935     return;
1936   case lltok::kw_default:
1937     Res = GlobalValue::DefaultVisibility;
1938     break;
1939   case lltok::kw_hidden:
1940     Res = GlobalValue::HiddenVisibility;
1941     break;
1942   case lltok::kw_protected:
1943     Res = GlobalValue::ProtectedVisibility;
1944     break;
1945   }
1946   Lex.Lex();
1947 }
1948 
1949 /// ParseOptionalDLLStorageClass
1950 ///   ::= /*empty*/
1951 ///   ::= 'dllimport'
1952 ///   ::= 'dllexport'
1953 ///
1954 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1955   switch (Lex.getKind()) {
1956   default:
1957     Res = GlobalValue::DefaultStorageClass;
1958     return;
1959   case lltok::kw_dllimport:
1960     Res = GlobalValue::DLLImportStorageClass;
1961     break;
1962   case lltok::kw_dllexport:
1963     Res = GlobalValue::DLLExportStorageClass;
1964     break;
1965   }
1966   Lex.Lex();
1967 }
1968 
1969 /// ParseOptionalCallingConv
1970 ///   ::= /*empty*/
1971 ///   ::= 'ccc'
1972 ///   ::= 'fastcc'
1973 ///   ::= 'intel_ocl_bicc'
1974 ///   ::= 'coldcc'
1975 ///   ::= 'cfguard_checkcc'
1976 ///   ::= 'x86_stdcallcc'
1977 ///   ::= 'x86_fastcallcc'
1978 ///   ::= 'x86_thiscallcc'
1979 ///   ::= 'x86_vectorcallcc'
1980 ///   ::= 'arm_apcscc'
1981 ///   ::= 'arm_aapcscc'
1982 ///   ::= 'arm_aapcs_vfpcc'
1983 ///   ::= 'aarch64_vector_pcs'
1984 ///   ::= 'aarch64_sve_vector_pcs'
1985 ///   ::= 'msp430_intrcc'
1986 ///   ::= 'avr_intrcc'
1987 ///   ::= 'avr_signalcc'
1988 ///   ::= 'ptx_kernel'
1989 ///   ::= 'ptx_device'
1990 ///   ::= 'spir_func'
1991 ///   ::= 'spir_kernel'
1992 ///   ::= 'x86_64_sysvcc'
1993 ///   ::= 'win64cc'
1994 ///   ::= 'webkit_jscc'
1995 ///   ::= 'anyregcc'
1996 ///   ::= 'preserve_mostcc'
1997 ///   ::= 'preserve_allcc'
1998 ///   ::= 'ghccc'
1999 ///   ::= 'swiftcc'
2000 ///   ::= 'x86_intrcc'
2001 ///   ::= 'hhvmcc'
2002 ///   ::= 'hhvm_ccc'
2003 ///   ::= 'cxx_fast_tlscc'
2004 ///   ::= 'amdgpu_vs'
2005 ///   ::= 'amdgpu_ls'
2006 ///   ::= 'amdgpu_hs'
2007 ///   ::= 'amdgpu_es'
2008 ///   ::= 'amdgpu_gs'
2009 ///   ::= 'amdgpu_ps'
2010 ///   ::= 'amdgpu_cs'
2011 ///   ::= 'amdgpu_kernel'
2012 ///   ::= 'tailcc'
2013 ///   ::= 'cc' UINT
2014 ///
2015 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2016   switch (Lex.getKind()) {
2017   default:                       CC = CallingConv::C; return false;
2018   case lltok::kw_ccc:            CC = CallingConv::C; break;
2019   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2020   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2021   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2022   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2023   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2024   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2025   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2026   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2027   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2028   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2029   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2030   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2031   case lltok::kw_aarch64_sve_vector_pcs:
2032     CC = CallingConv::AArch64_SVE_VectorCall;
2033     break;
2034   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2035   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2036   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2037   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2038   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2039   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2040   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2041   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2042   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2043   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2044   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2045   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2046   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2047   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2048   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2049   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2050   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2051   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2052   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2053   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2054   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2055   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2056   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2057   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2058   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2059   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2060   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2061   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2062   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2063   case lltok::kw_cc: {
2064       Lex.Lex();
2065       return ParseUInt32(CC);
2066     }
2067   }
2068 
2069   Lex.Lex();
2070   return false;
2071 }
2072 
2073 /// ParseMetadataAttachment
2074 ///   ::= !dbg !42
2075 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2076   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2077 
2078   std::string Name = Lex.getStrVal();
2079   Kind = M->getMDKindID(Name);
2080   Lex.Lex();
2081 
2082   return ParseMDNode(MD);
2083 }
2084 
2085 /// ParseInstructionMetadata
2086 ///   ::= !dbg !42 (',' !dbg !57)*
2087 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2088   do {
2089     if (Lex.getKind() != lltok::MetadataVar)
2090       return TokError("expected metadata after comma");
2091 
2092     unsigned MDK;
2093     MDNode *N;
2094     if (ParseMetadataAttachment(MDK, N))
2095       return true;
2096 
2097     Inst.setMetadata(MDK, N);
2098     if (MDK == LLVMContext::MD_tbaa)
2099       InstsWithTBAATag.push_back(&Inst);
2100 
2101     // If this is the end of the list, we're done.
2102   } while (EatIfPresent(lltok::comma));
2103   return false;
2104 }
2105 
2106 /// ParseGlobalObjectMetadataAttachment
2107 ///   ::= !dbg !57
2108 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2109   unsigned MDK;
2110   MDNode *N;
2111   if (ParseMetadataAttachment(MDK, N))
2112     return true;
2113 
2114   GO.addMetadata(MDK, *N);
2115   return false;
2116 }
2117 
2118 /// ParseOptionalFunctionMetadata
2119 ///   ::= (!dbg !57)*
2120 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2121   while (Lex.getKind() == lltok::MetadataVar)
2122     if (ParseGlobalObjectMetadataAttachment(F))
2123       return true;
2124   return false;
2125 }
2126 
2127 /// ParseOptionalAlignment
2128 ///   ::= /* empty */
2129 ///   ::= 'align' 4
2130 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2131   Alignment = None;
2132   if (!EatIfPresent(lltok::kw_align))
2133     return false;
2134   LocTy AlignLoc = Lex.getLoc();
2135   uint32_t Value = 0;
2136   if (ParseUInt32(Value))
2137     return true;
2138   if (!isPowerOf2_32(Value))
2139     return Error(AlignLoc, "alignment is not a power of two");
2140   if (Value > Value::MaximumAlignment)
2141     return Error(AlignLoc, "huge alignments are not supported yet");
2142   Alignment = Align(Value);
2143   return false;
2144 }
2145 
2146 /// ParseOptionalDerefAttrBytes
2147 ///   ::= /* empty */
2148 ///   ::= AttrKind '(' 4 ')'
2149 ///
2150 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2151 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2152                                            uint64_t &Bytes) {
2153   assert((AttrKind == lltok::kw_dereferenceable ||
2154           AttrKind == lltok::kw_dereferenceable_or_null) &&
2155          "contract!");
2156 
2157   Bytes = 0;
2158   if (!EatIfPresent(AttrKind))
2159     return false;
2160   LocTy ParenLoc = Lex.getLoc();
2161   if (!EatIfPresent(lltok::lparen))
2162     return Error(ParenLoc, "expected '('");
2163   LocTy DerefLoc = Lex.getLoc();
2164   if (ParseUInt64(Bytes)) return true;
2165   ParenLoc = Lex.getLoc();
2166   if (!EatIfPresent(lltok::rparen))
2167     return Error(ParenLoc, "expected ')'");
2168   if (!Bytes)
2169     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2170   return false;
2171 }
2172 
2173 /// ParseOptionalCommaAlign
2174 ///   ::=
2175 ///   ::= ',' align 4
2176 ///
2177 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2178 /// end.
2179 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2180                                        bool &AteExtraComma) {
2181   AteExtraComma = false;
2182   while (EatIfPresent(lltok::comma)) {
2183     // Metadata at the end is an early exit.
2184     if (Lex.getKind() == lltok::MetadataVar) {
2185       AteExtraComma = true;
2186       return false;
2187     }
2188 
2189     if (Lex.getKind() != lltok::kw_align)
2190       return Error(Lex.getLoc(), "expected metadata or 'align'");
2191 
2192     if (ParseOptionalAlignment(Alignment)) return true;
2193   }
2194 
2195   return false;
2196 }
2197 
2198 /// ParseOptionalCommaAddrSpace
2199 ///   ::=
2200 ///   ::= ',' addrspace(1)
2201 ///
2202 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2203 /// end.
2204 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2205                                            LocTy &Loc,
2206                                            bool &AteExtraComma) {
2207   AteExtraComma = false;
2208   while (EatIfPresent(lltok::comma)) {
2209     // Metadata at the end is an early exit.
2210     if (Lex.getKind() == lltok::MetadataVar) {
2211       AteExtraComma = true;
2212       return false;
2213     }
2214 
2215     Loc = Lex.getLoc();
2216     if (Lex.getKind() != lltok::kw_addrspace)
2217       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2218 
2219     if (ParseOptionalAddrSpace(AddrSpace))
2220       return true;
2221   }
2222 
2223   return false;
2224 }
2225 
2226 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2227                                        Optional<unsigned> &HowManyArg) {
2228   Lex.Lex();
2229 
2230   auto StartParen = Lex.getLoc();
2231   if (!EatIfPresent(lltok::lparen))
2232     return Error(StartParen, "expected '('");
2233 
2234   if (ParseUInt32(BaseSizeArg))
2235     return true;
2236 
2237   if (EatIfPresent(lltok::comma)) {
2238     auto HowManyAt = Lex.getLoc();
2239     unsigned HowMany;
2240     if (ParseUInt32(HowMany))
2241       return true;
2242     if (HowMany == BaseSizeArg)
2243       return Error(HowManyAt,
2244                    "'allocsize' indices can't refer to the same parameter");
2245     HowManyArg = HowMany;
2246   } else
2247     HowManyArg = None;
2248 
2249   auto EndParen = Lex.getLoc();
2250   if (!EatIfPresent(lltok::rparen))
2251     return Error(EndParen, "expected ')'");
2252   return false;
2253 }
2254 
2255 /// ParseScopeAndOrdering
2256 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2257 ///   else: ::=
2258 ///
2259 /// This sets Scope and Ordering to the parsed values.
2260 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2261                                      AtomicOrdering &Ordering) {
2262   if (!isAtomic)
2263     return false;
2264 
2265   return ParseScope(SSID) || ParseOrdering(Ordering);
2266 }
2267 
2268 /// ParseScope
2269 ///   ::= syncscope("singlethread" | "<target scope>")?
2270 ///
2271 /// This sets synchronization scope ID to the ID of the parsed value.
2272 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2273   SSID = SyncScope::System;
2274   if (EatIfPresent(lltok::kw_syncscope)) {
2275     auto StartParenAt = Lex.getLoc();
2276     if (!EatIfPresent(lltok::lparen))
2277       return Error(StartParenAt, "Expected '(' in syncscope");
2278 
2279     std::string SSN;
2280     auto SSNAt = Lex.getLoc();
2281     if (ParseStringConstant(SSN))
2282       return Error(SSNAt, "Expected synchronization scope name");
2283 
2284     auto EndParenAt = Lex.getLoc();
2285     if (!EatIfPresent(lltok::rparen))
2286       return Error(EndParenAt, "Expected ')' in syncscope");
2287 
2288     SSID = Context.getOrInsertSyncScopeID(SSN);
2289   }
2290 
2291   return false;
2292 }
2293 
2294 /// ParseOrdering
2295 ///   ::= AtomicOrdering
2296 ///
2297 /// This sets Ordering to the parsed value.
2298 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2299   switch (Lex.getKind()) {
2300   default: return TokError("Expected ordering on atomic instruction");
2301   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2302   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2303   // Not specified yet:
2304   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2305   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2306   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2307   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2308   case lltok::kw_seq_cst:
2309     Ordering = AtomicOrdering::SequentiallyConsistent;
2310     break;
2311   }
2312   Lex.Lex();
2313   return false;
2314 }
2315 
2316 /// ParseOptionalStackAlignment
2317 ///   ::= /* empty */
2318 ///   ::= 'alignstack' '(' 4 ')'
2319 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2320   Alignment = 0;
2321   if (!EatIfPresent(lltok::kw_alignstack))
2322     return false;
2323   LocTy ParenLoc = Lex.getLoc();
2324   if (!EatIfPresent(lltok::lparen))
2325     return Error(ParenLoc, "expected '('");
2326   LocTy AlignLoc = Lex.getLoc();
2327   if (ParseUInt32(Alignment)) return true;
2328   ParenLoc = Lex.getLoc();
2329   if (!EatIfPresent(lltok::rparen))
2330     return Error(ParenLoc, "expected ')'");
2331   if (!isPowerOf2_32(Alignment))
2332     return Error(AlignLoc, "stack alignment is not a power of two");
2333   return false;
2334 }
2335 
2336 /// ParseIndexList - This parses the index list for an insert/extractvalue
2337 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2338 /// comma at the end of the line and find that it is followed by metadata.
2339 /// Clients that don't allow metadata can call the version of this function that
2340 /// only takes one argument.
2341 ///
2342 /// ParseIndexList
2343 ///    ::=  (',' uint32)+
2344 ///
2345 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2346                               bool &AteExtraComma) {
2347   AteExtraComma = false;
2348 
2349   if (Lex.getKind() != lltok::comma)
2350     return TokError("expected ',' as start of index list");
2351 
2352   while (EatIfPresent(lltok::comma)) {
2353     if (Lex.getKind() == lltok::MetadataVar) {
2354       if (Indices.empty()) return TokError("expected index");
2355       AteExtraComma = true;
2356       return false;
2357     }
2358     unsigned Idx = 0;
2359     if (ParseUInt32(Idx)) return true;
2360     Indices.push_back(Idx);
2361   }
2362 
2363   return false;
2364 }
2365 
2366 //===----------------------------------------------------------------------===//
2367 // Type Parsing.
2368 //===----------------------------------------------------------------------===//
2369 
2370 /// ParseType - Parse a type.
2371 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2372   SMLoc TypeLoc = Lex.getLoc();
2373   switch (Lex.getKind()) {
2374   default:
2375     return TokError(Msg);
2376   case lltok::Type:
2377     // Type ::= 'float' | 'void' (etc)
2378     Result = Lex.getTyVal();
2379     Lex.Lex();
2380     break;
2381   case lltok::lbrace:
2382     // Type ::= StructType
2383     if (ParseAnonStructType(Result, false))
2384       return true;
2385     break;
2386   case lltok::lsquare:
2387     // Type ::= '[' ... ']'
2388     Lex.Lex(); // eat the lsquare.
2389     if (ParseArrayVectorType(Result, false))
2390       return true;
2391     break;
2392   case lltok::less: // Either vector or packed struct.
2393     // Type ::= '<' ... '>'
2394     Lex.Lex();
2395     if (Lex.getKind() == lltok::lbrace) {
2396       if (ParseAnonStructType(Result, true) ||
2397           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2398         return true;
2399     } else if (ParseArrayVectorType(Result, true))
2400       return true;
2401     break;
2402   case lltok::LocalVar: {
2403     // Type ::= %foo
2404     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2405 
2406     // If the type hasn't been defined yet, create a forward definition and
2407     // remember where that forward def'n was seen (in case it never is defined).
2408     if (!Entry.first) {
2409       Entry.first = StructType::create(Context, Lex.getStrVal());
2410       Entry.second = Lex.getLoc();
2411     }
2412     Result = Entry.first;
2413     Lex.Lex();
2414     break;
2415   }
2416 
2417   case lltok::LocalVarID: {
2418     // Type ::= %4
2419     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2420 
2421     // If the type hasn't been defined yet, create a forward definition and
2422     // remember where that forward def'n was seen (in case it never is defined).
2423     if (!Entry.first) {
2424       Entry.first = StructType::create(Context);
2425       Entry.second = Lex.getLoc();
2426     }
2427     Result = Entry.first;
2428     Lex.Lex();
2429     break;
2430   }
2431   }
2432 
2433   // Parse the type suffixes.
2434   while (true) {
2435     switch (Lex.getKind()) {
2436     // End of type.
2437     default:
2438       if (!AllowVoid && Result->isVoidTy())
2439         return Error(TypeLoc, "void type only allowed for function results");
2440       return false;
2441 
2442     // Type ::= Type '*'
2443     case lltok::star:
2444       if (Result->isLabelTy())
2445         return TokError("basic block pointers are invalid");
2446       if (Result->isVoidTy())
2447         return TokError("pointers to void are invalid - use i8* instead");
2448       if (!PointerType::isValidElementType(Result))
2449         return TokError("pointer to this type is invalid");
2450       Result = PointerType::getUnqual(Result);
2451       Lex.Lex();
2452       break;
2453 
2454     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2455     case lltok::kw_addrspace: {
2456       if (Result->isLabelTy())
2457         return TokError("basic block pointers are invalid");
2458       if (Result->isVoidTy())
2459         return TokError("pointers to void are invalid; use i8* instead");
2460       if (!PointerType::isValidElementType(Result))
2461         return TokError("pointer to this type is invalid");
2462       unsigned AddrSpace;
2463       if (ParseOptionalAddrSpace(AddrSpace) ||
2464           ParseToken(lltok::star, "expected '*' in address space"))
2465         return true;
2466 
2467       Result = PointerType::get(Result, AddrSpace);
2468       break;
2469     }
2470 
2471     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2472     case lltok::lparen:
2473       if (ParseFunctionType(Result))
2474         return true;
2475       break;
2476     }
2477   }
2478 }
2479 
2480 /// ParseParameterList
2481 ///    ::= '(' ')'
2482 ///    ::= '(' Arg (',' Arg)* ')'
2483 ///  Arg
2484 ///    ::= Type OptionalAttributes Value OptionalAttributes
2485 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2486                                   PerFunctionState &PFS, bool IsMustTailCall,
2487                                   bool InVarArgsFunc) {
2488   if (ParseToken(lltok::lparen, "expected '(' in call"))
2489     return true;
2490 
2491   while (Lex.getKind() != lltok::rparen) {
2492     // If this isn't the first argument, we need a comma.
2493     if (!ArgList.empty() &&
2494         ParseToken(lltok::comma, "expected ',' in argument list"))
2495       return true;
2496 
2497     // Parse an ellipsis if this is a musttail call in a variadic function.
2498     if (Lex.getKind() == lltok::dotdotdot) {
2499       const char *Msg = "unexpected ellipsis in argument list for ";
2500       if (!IsMustTailCall)
2501         return TokError(Twine(Msg) + "non-musttail call");
2502       if (!InVarArgsFunc)
2503         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2504       Lex.Lex();  // Lex the '...', it is purely for readability.
2505       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2506     }
2507 
2508     // Parse the argument.
2509     LocTy ArgLoc;
2510     Type *ArgTy = nullptr;
2511     AttrBuilder ArgAttrs;
2512     Value *V;
2513     if (ParseType(ArgTy, ArgLoc))
2514       return true;
2515 
2516     if (ArgTy->isMetadataTy()) {
2517       if (ParseMetadataAsValue(V, PFS))
2518         return true;
2519     } else {
2520       // Otherwise, handle normal operands.
2521       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2522         return true;
2523     }
2524     ArgList.push_back(ParamInfo(
2525         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2526   }
2527 
2528   if (IsMustTailCall && InVarArgsFunc)
2529     return TokError("expected '...' at end of argument list for musttail call "
2530                     "in varargs function");
2531 
2532   Lex.Lex();  // Lex the ')'.
2533   return false;
2534 }
2535 
2536 /// ParseByValWithOptionalType
2537 ///   ::= byval
2538 ///   ::= byval(<ty>)
2539 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2540   Result = nullptr;
2541   if (!EatIfPresent(lltok::kw_byval))
2542     return true;
2543   if (!EatIfPresent(lltok::lparen))
2544     return false;
2545   if (ParseType(Result))
2546     return true;
2547   if (!EatIfPresent(lltok::rparen))
2548     return Error(Lex.getLoc(), "expected ')'");
2549   return false;
2550 }
2551 
2552 /// ParsePreallocated
2553 ///   ::= preallocated(<ty>)
2554 bool LLParser::ParsePreallocated(Type *&Result) {
2555   Result = nullptr;
2556   if (!EatIfPresent(lltok::kw_preallocated))
2557     return true;
2558   if (!EatIfPresent(lltok::lparen))
2559     return Error(Lex.getLoc(), "expected '('");
2560   if (ParseType(Result))
2561     return true;
2562   if (!EatIfPresent(lltok::rparen))
2563     return Error(Lex.getLoc(), "expected ')'");
2564   return false;
2565 }
2566 
2567 /// ParseOptionalOperandBundles
2568 ///    ::= /*empty*/
2569 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2570 ///
2571 /// OperandBundle
2572 ///    ::= bundle-tag '(' ')'
2573 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2574 ///
2575 /// bundle-tag ::= String Constant
2576 bool LLParser::ParseOptionalOperandBundles(
2577     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2578   LocTy BeginLoc = Lex.getLoc();
2579   if (!EatIfPresent(lltok::lsquare))
2580     return false;
2581 
2582   while (Lex.getKind() != lltok::rsquare) {
2583     // If this isn't the first operand bundle, we need a comma.
2584     if (!BundleList.empty() &&
2585         ParseToken(lltok::comma, "expected ',' in input list"))
2586       return true;
2587 
2588     std::string Tag;
2589     if (ParseStringConstant(Tag))
2590       return true;
2591 
2592     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2593       return true;
2594 
2595     std::vector<Value *> Inputs;
2596     while (Lex.getKind() != lltok::rparen) {
2597       // If this isn't the first input, we need a comma.
2598       if (!Inputs.empty() &&
2599           ParseToken(lltok::comma, "expected ',' in input list"))
2600         return true;
2601 
2602       Type *Ty = nullptr;
2603       Value *Input = nullptr;
2604       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2605         return true;
2606       Inputs.push_back(Input);
2607     }
2608 
2609     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2610 
2611     Lex.Lex(); // Lex the ')'.
2612   }
2613 
2614   if (BundleList.empty())
2615     return Error(BeginLoc, "operand bundle set must not be empty");
2616 
2617   Lex.Lex(); // Lex the ']'.
2618   return false;
2619 }
2620 
2621 /// ParseArgumentList - Parse the argument list for a function type or function
2622 /// prototype.
2623 ///   ::= '(' ArgTypeListI ')'
2624 /// ArgTypeListI
2625 ///   ::= /*empty*/
2626 ///   ::= '...'
2627 ///   ::= ArgTypeList ',' '...'
2628 ///   ::= ArgType (',' ArgType)*
2629 ///
2630 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2631                                  bool &isVarArg){
2632   unsigned CurValID = 0;
2633   isVarArg = false;
2634   assert(Lex.getKind() == lltok::lparen);
2635   Lex.Lex(); // eat the (.
2636 
2637   if (Lex.getKind() == lltok::rparen) {
2638     // empty
2639   } else if (Lex.getKind() == lltok::dotdotdot) {
2640     isVarArg = true;
2641     Lex.Lex();
2642   } else {
2643     LocTy TypeLoc = Lex.getLoc();
2644     Type *ArgTy = nullptr;
2645     AttrBuilder Attrs;
2646     std::string Name;
2647 
2648     if (ParseType(ArgTy) ||
2649         ParseOptionalParamAttrs(Attrs)) return true;
2650 
2651     if (ArgTy->isVoidTy())
2652       return Error(TypeLoc, "argument can not have void type");
2653 
2654     if (Lex.getKind() == lltok::LocalVar) {
2655       Name = Lex.getStrVal();
2656       Lex.Lex();
2657     } else if (Lex.getKind() == lltok::LocalVarID) {
2658       if (Lex.getUIntVal() != CurValID)
2659         return Error(TypeLoc, "argument expected to be numbered '%" +
2660                                   Twine(CurValID) + "'");
2661       ++CurValID;
2662       Lex.Lex();
2663     }
2664 
2665     if (!FunctionType::isValidArgumentType(ArgTy))
2666       return Error(TypeLoc, "invalid type for function argument");
2667 
2668     ArgList.emplace_back(TypeLoc, ArgTy,
2669                          AttributeSet::get(ArgTy->getContext(), Attrs),
2670                          std::move(Name));
2671 
2672     while (EatIfPresent(lltok::comma)) {
2673       // Handle ... at end of arg list.
2674       if (EatIfPresent(lltok::dotdotdot)) {
2675         isVarArg = true;
2676         break;
2677       }
2678 
2679       // Otherwise must be an argument type.
2680       TypeLoc = Lex.getLoc();
2681       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2682 
2683       if (ArgTy->isVoidTy())
2684         return Error(TypeLoc, "argument can not have void type");
2685 
2686       if (Lex.getKind() == lltok::LocalVar) {
2687         Name = Lex.getStrVal();
2688         Lex.Lex();
2689       } else {
2690         if (Lex.getKind() == lltok::LocalVarID) {
2691           if (Lex.getUIntVal() != CurValID)
2692             return Error(TypeLoc, "argument expected to be numbered '%" +
2693                                       Twine(CurValID) + "'");
2694           Lex.Lex();
2695         }
2696         ++CurValID;
2697         Name = "";
2698       }
2699 
2700       if (!ArgTy->isFirstClassType())
2701         return Error(TypeLoc, "invalid type for function argument");
2702 
2703       ArgList.emplace_back(TypeLoc, ArgTy,
2704                            AttributeSet::get(ArgTy->getContext(), Attrs),
2705                            std::move(Name));
2706     }
2707   }
2708 
2709   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2710 }
2711 
2712 /// ParseFunctionType
2713 ///  ::= Type ArgumentList OptionalAttrs
2714 bool LLParser::ParseFunctionType(Type *&Result) {
2715   assert(Lex.getKind() == lltok::lparen);
2716 
2717   if (!FunctionType::isValidReturnType(Result))
2718     return TokError("invalid function return type");
2719 
2720   SmallVector<ArgInfo, 8> ArgList;
2721   bool isVarArg;
2722   if (ParseArgumentList(ArgList, isVarArg))
2723     return true;
2724 
2725   // Reject names on the arguments lists.
2726   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2727     if (!ArgList[i].Name.empty())
2728       return Error(ArgList[i].Loc, "argument name invalid in function type");
2729     if (ArgList[i].Attrs.hasAttributes())
2730       return Error(ArgList[i].Loc,
2731                    "argument attributes invalid in function type");
2732   }
2733 
2734   SmallVector<Type*, 16> ArgListTy;
2735   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2736     ArgListTy.push_back(ArgList[i].Ty);
2737 
2738   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2739   return false;
2740 }
2741 
2742 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2743 /// other structs.
2744 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2745   SmallVector<Type*, 8> Elts;
2746   if (ParseStructBody(Elts)) return true;
2747 
2748   Result = StructType::get(Context, Elts, Packed);
2749   return false;
2750 }
2751 
2752 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2753 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2754                                      std::pair<Type*, LocTy> &Entry,
2755                                      Type *&ResultTy) {
2756   // If the type was already defined, diagnose the redefinition.
2757   if (Entry.first && !Entry.second.isValid())
2758     return Error(TypeLoc, "redefinition of type");
2759 
2760   // If we have opaque, just return without filling in the definition for the
2761   // struct.  This counts as a definition as far as the .ll file goes.
2762   if (EatIfPresent(lltok::kw_opaque)) {
2763     // This type is being defined, so clear the location to indicate this.
2764     Entry.second = SMLoc();
2765 
2766     // If this type number has never been uttered, create it.
2767     if (!Entry.first)
2768       Entry.first = StructType::create(Context, Name);
2769     ResultTy = Entry.first;
2770     return false;
2771   }
2772 
2773   // If the type starts with '<', then it is either a packed struct or a vector.
2774   bool isPacked = EatIfPresent(lltok::less);
2775 
2776   // If we don't have a struct, then we have a random type alias, which we
2777   // accept for compatibility with old files.  These types are not allowed to be
2778   // forward referenced and not allowed to be recursive.
2779   if (Lex.getKind() != lltok::lbrace) {
2780     if (Entry.first)
2781       return Error(TypeLoc, "forward references to non-struct type");
2782 
2783     ResultTy = nullptr;
2784     if (isPacked)
2785       return ParseArrayVectorType(ResultTy, true);
2786     return ParseType(ResultTy);
2787   }
2788 
2789   // This type is being defined, so clear the location to indicate this.
2790   Entry.second = SMLoc();
2791 
2792   // If this type number has never been uttered, create it.
2793   if (!Entry.first)
2794     Entry.first = StructType::create(Context, Name);
2795 
2796   StructType *STy = cast<StructType>(Entry.first);
2797 
2798   SmallVector<Type*, 8> Body;
2799   if (ParseStructBody(Body) ||
2800       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2801     return true;
2802 
2803   STy->setBody(Body, isPacked);
2804   ResultTy = STy;
2805   return false;
2806 }
2807 
2808 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2809 ///   StructType
2810 ///     ::= '{' '}'
2811 ///     ::= '{' Type (',' Type)* '}'
2812 ///     ::= '<' '{' '}' '>'
2813 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2814 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2815   assert(Lex.getKind() == lltok::lbrace);
2816   Lex.Lex(); // Consume the '{'
2817 
2818   // Handle the empty struct.
2819   if (EatIfPresent(lltok::rbrace))
2820     return false;
2821 
2822   LocTy EltTyLoc = Lex.getLoc();
2823   Type *Ty = nullptr;
2824   if (ParseType(Ty)) return true;
2825   Body.push_back(Ty);
2826 
2827   if (!StructType::isValidElementType(Ty))
2828     return Error(EltTyLoc, "invalid element type for struct");
2829 
2830   while (EatIfPresent(lltok::comma)) {
2831     EltTyLoc = Lex.getLoc();
2832     if (ParseType(Ty)) return true;
2833 
2834     if (!StructType::isValidElementType(Ty))
2835       return Error(EltTyLoc, "invalid element type for struct");
2836 
2837     Body.push_back(Ty);
2838   }
2839 
2840   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2841 }
2842 
2843 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2844 /// token has already been consumed.
2845 ///   Type
2846 ///     ::= '[' APSINTVAL 'x' Types ']'
2847 ///     ::= '<' APSINTVAL 'x' Types '>'
2848 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2849 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2850   bool Scalable = false;
2851 
2852   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2853     Lex.Lex(); // consume the 'vscale'
2854     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2855       return true;
2856 
2857     Scalable = true;
2858   }
2859 
2860   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2861       Lex.getAPSIntVal().getBitWidth() > 64)
2862     return TokError("expected number in address space");
2863 
2864   LocTy SizeLoc = Lex.getLoc();
2865   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2866   Lex.Lex();
2867 
2868   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2869       return true;
2870 
2871   LocTy TypeLoc = Lex.getLoc();
2872   Type *EltTy = nullptr;
2873   if (ParseType(EltTy)) return true;
2874 
2875   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2876                  "expected end of sequential type"))
2877     return true;
2878 
2879   if (isVector) {
2880     if (Size == 0)
2881       return Error(SizeLoc, "zero element vector is illegal");
2882     if ((unsigned)Size != Size)
2883       return Error(SizeLoc, "size too large for vector");
2884     if (!VectorType::isValidElementType(EltTy))
2885       return Error(TypeLoc, "invalid vector element type");
2886     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2887   } else {
2888     if (!ArrayType::isValidElementType(EltTy))
2889       return Error(TypeLoc, "invalid array element type");
2890     Result = ArrayType::get(EltTy, Size);
2891   }
2892   return false;
2893 }
2894 
2895 //===----------------------------------------------------------------------===//
2896 // Function Semantic Analysis.
2897 //===----------------------------------------------------------------------===//
2898 
2899 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2900                                              int functionNumber)
2901   : P(p), F(f), FunctionNumber(functionNumber) {
2902 
2903   // Insert unnamed arguments into the NumberedVals list.
2904   for (Argument &A : F.args())
2905     if (!A.hasName())
2906       NumberedVals.push_back(&A);
2907 }
2908 
2909 LLParser::PerFunctionState::~PerFunctionState() {
2910   // If there were any forward referenced non-basicblock values, delete them.
2911 
2912   for (const auto &P : ForwardRefVals) {
2913     if (isa<BasicBlock>(P.second.first))
2914       continue;
2915     P.second.first->replaceAllUsesWith(
2916         UndefValue::get(P.second.first->getType()));
2917     P.second.first->deleteValue();
2918   }
2919 
2920   for (const auto &P : ForwardRefValIDs) {
2921     if (isa<BasicBlock>(P.second.first))
2922       continue;
2923     P.second.first->replaceAllUsesWith(
2924         UndefValue::get(P.second.first->getType()));
2925     P.second.first->deleteValue();
2926   }
2927 }
2928 
2929 bool LLParser::PerFunctionState::FinishFunction() {
2930   if (!ForwardRefVals.empty())
2931     return P.Error(ForwardRefVals.begin()->second.second,
2932                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2933                    "'");
2934   if (!ForwardRefValIDs.empty())
2935     return P.Error(ForwardRefValIDs.begin()->second.second,
2936                    "use of undefined value '%" +
2937                    Twine(ForwardRefValIDs.begin()->first) + "'");
2938   return false;
2939 }
2940 
2941 /// GetVal - Get a value with the specified name or ID, creating a
2942 /// forward reference record if needed.  This can return null if the value
2943 /// exists but does not have the right type.
2944 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2945                                           LocTy Loc, bool IsCall) {
2946   // Look this name up in the normal function symbol table.
2947   Value *Val = F.getValueSymbolTable()->lookup(Name);
2948 
2949   // If this is a forward reference for the value, see if we already created a
2950   // forward ref record.
2951   if (!Val) {
2952     auto I = ForwardRefVals.find(Name);
2953     if (I != ForwardRefVals.end())
2954       Val = I->second.first;
2955   }
2956 
2957   // If we have the value in the symbol table or fwd-ref table, return it.
2958   if (Val)
2959     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2960 
2961   // Don't make placeholders with invalid type.
2962   if (!Ty->isFirstClassType()) {
2963     P.Error(Loc, "invalid use of a non-first-class type");
2964     return nullptr;
2965   }
2966 
2967   // Otherwise, create a new forward reference for this value and remember it.
2968   Value *FwdVal;
2969   if (Ty->isLabelTy()) {
2970     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2971   } else {
2972     FwdVal = new Argument(Ty, Name);
2973   }
2974 
2975   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2976   return FwdVal;
2977 }
2978 
2979 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2980                                           bool IsCall) {
2981   // Look this name up in the normal function symbol table.
2982   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2983 
2984   // If this is a forward reference for the value, see if we already created a
2985   // forward ref record.
2986   if (!Val) {
2987     auto I = ForwardRefValIDs.find(ID);
2988     if (I != ForwardRefValIDs.end())
2989       Val = I->second.first;
2990   }
2991 
2992   // If we have the value in the symbol table or fwd-ref table, return it.
2993   if (Val)
2994     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2995 
2996   if (!Ty->isFirstClassType()) {
2997     P.Error(Loc, "invalid use of a non-first-class type");
2998     return nullptr;
2999   }
3000 
3001   // Otherwise, create a new forward reference for this value and remember it.
3002   Value *FwdVal;
3003   if (Ty->isLabelTy()) {
3004     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3005   } else {
3006     FwdVal = new Argument(Ty);
3007   }
3008 
3009   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3010   return FwdVal;
3011 }
3012 
3013 /// SetInstName - After an instruction is parsed and inserted into its
3014 /// basic block, this installs its name.
3015 bool LLParser::PerFunctionState::SetInstName(int NameID,
3016                                              const std::string &NameStr,
3017                                              LocTy NameLoc, Instruction *Inst) {
3018   // If this instruction has void type, it cannot have a name or ID specified.
3019   if (Inst->getType()->isVoidTy()) {
3020     if (NameID != -1 || !NameStr.empty())
3021       return P.Error(NameLoc, "instructions returning void cannot have a name");
3022     return false;
3023   }
3024 
3025   // If this was a numbered instruction, verify that the instruction is the
3026   // expected value and resolve any forward references.
3027   if (NameStr.empty()) {
3028     // If neither a name nor an ID was specified, just use the next ID.
3029     if (NameID == -1)
3030       NameID = NumberedVals.size();
3031 
3032     if (unsigned(NameID) != NumberedVals.size())
3033       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3034                      Twine(NumberedVals.size()) + "'");
3035 
3036     auto FI = ForwardRefValIDs.find(NameID);
3037     if (FI != ForwardRefValIDs.end()) {
3038       Value *Sentinel = FI->second.first;
3039       if (Sentinel->getType() != Inst->getType())
3040         return P.Error(NameLoc, "instruction forward referenced with type '" +
3041                        getTypeString(FI->second.first->getType()) + "'");
3042 
3043       Sentinel->replaceAllUsesWith(Inst);
3044       Sentinel->deleteValue();
3045       ForwardRefValIDs.erase(FI);
3046     }
3047 
3048     NumberedVals.push_back(Inst);
3049     return false;
3050   }
3051 
3052   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3053   auto FI = ForwardRefVals.find(NameStr);
3054   if (FI != ForwardRefVals.end()) {
3055     Value *Sentinel = FI->second.first;
3056     if (Sentinel->getType() != Inst->getType())
3057       return P.Error(NameLoc, "instruction forward referenced with type '" +
3058                      getTypeString(FI->second.first->getType()) + "'");
3059 
3060     Sentinel->replaceAllUsesWith(Inst);
3061     Sentinel->deleteValue();
3062     ForwardRefVals.erase(FI);
3063   }
3064 
3065   // Set the name on the instruction.
3066   Inst->setName(NameStr);
3067 
3068   if (Inst->getName() != NameStr)
3069     return P.Error(NameLoc, "multiple definition of local value named '" +
3070                    NameStr + "'");
3071   return false;
3072 }
3073 
3074 /// GetBB - Get a basic block with the specified name or ID, creating a
3075 /// forward reference record if needed.
3076 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3077                                               LocTy Loc) {
3078   return dyn_cast_or_null<BasicBlock>(
3079       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3080 }
3081 
3082 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3083   return dyn_cast_or_null<BasicBlock>(
3084       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3085 }
3086 
3087 /// DefineBB - Define the specified basic block, which is either named or
3088 /// unnamed.  If there is an error, this returns null otherwise it returns
3089 /// the block being defined.
3090 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3091                                                  int NameID, LocTy Loc) {
3092   BasicBlock *BB;
3093   if (Name.empty()) {
3094     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3095       P.Error(Loc, "label expected to be numbered '" +
3096                        Twine(NumberedVals.size()) + "'");
3097       return nullptr;
3098     }
3099     BB = GetBB(NumberedVals.size(), Loc);
3100     if (!BB) {
3101       P.Error(Loc, "unable to create block numbered '" +
3102                        Twine(NumberedVals.size()) + "'");
3103       return nullptr;
3104     }
3105   } else {
3106     BB = GetBB(Name, Loc);
3107     if (!BB) {
3108       P.Error(Loc, "unable to create block named '" + Name + "'");
3109       return nullptr;
3110     }
3111   }
3112 
3113   // Move the block to the end of the function.  Forward ref'd blocks are
3114   // inserted wherever they happen to be referenced.
3115   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3116 
3117   // Remove the block from forward ref sets.
3118   if (Name.empty()) {
3119     ForwardRefValIDs.erase(NumberedVals.size());
3120     NumberedVals.push_back(BB);
3121   } else {
3122     // BB forward references are already in the function symbol table.
3123     ForwardRefVals.erase(Name);
3124   }
3125 
3126   return BB;
3127 }
3128 
3129 //===----------------------------------------------------------------------===//
3130 // Constants.
3131 //===----------------------------------------------------------------------===//
3132 
3133 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3134 /// type implied.  For example, if we parse "4" we don't know what integer type
3135 /// it has.  The value will later be combined with its type and checked for
3136 /// sanity.  PFS is used to convert function-local operands of metadata (since
3137 /// metadata operands are not just parsed here but also converted to values).
3138 /// PFS can be null when we are not parsing metadata values inside a function.
3139 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3140   ID.Loc = Lex.getLoc();
3141   switch (Lex.getKind()) {
3142   default: return TokError("expected value token");
3143   case lltok::GlobalID:  // @42
3144     ID.UIntVal = Lex.getUIntVal();
3145     ID.Kind = ValID::t_GlobalID;
3146     break;
3147   case lltok::GlobalVar:  // @foo
3148     ID.StrVal = Lex.getStrVal();
3149     ID.Kind = ValID::t_GlobalName;
3150     break;
3151   case lltok::LocalVarID:  // %42
3152     ID.UIntVal = Lex.getUIntVal();
3153     ID.Kind = ValID::t_LocalID;
3154     break;
3155   case lltok::LocalVar:  // %foo
3156     ID.StrVal = Lex.getStrVal();
3157     ID.Kind = ValID::t_LocalName;
3158     break;
3159   case lltok::APSInt:
3160     ID.APSIntVal = Lex.getAPSIntVal();
3161     ID.Kind = ValID::t_APSInt;
3162     break;
3163   case lltok::APFloat:
3164     ID.APFloatVal = Lex.getAPFloatVal();
3165     ID.Kind = ValID::t_APFloat;
3166     break;
3167   case lltok::kw_true:
3168     ID.ConstantVal = ConstantInt::getTrue(Context);
3169     ID.Kind = ValID::t_Constant;
3170     break;
3171   case lltok::kw_false:
3172     ID.ConstantVal = ConstantInt::getFalse(Context);
3173     ID.Kind = ValID::t_Constant;
3174     break;
3175   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3176   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3177   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3178   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3179 
3180   case lltok::lbrace: {
3181     // ValID ::= '{' ConstVector '}'
3182     Lex.Lex();
3183     SmallVector<Constant*, 16> Elts;
3184     if (ParseGlobalValueVector(Elts) ||
3185         ParseToken(lltok::rbrace, "expected end of struct constant"))
3186       return true;
3187 
3188     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3189     ID.UIntVal = Elts.size();
3190     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3191            Elts.size() * sizeof(Elts[0]));
3192     ID.Kind = ValID::t_ConstantStruct;
3193     return false;
3194   }
3195   case lltok::less: {
3196     // ValID ::= '<' ConstVector '>'         --> Vector.
3197     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3198     Lex.Lex();
3199     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3200 
3201     SmallVector<Constant*, 16> Elts;
3202     LocTy FirstEltLoc = Lex.getLoc();
3203     if (ParseGlobalValueVector(Elts) ||
3204         (isPackedStruct &&
3205          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3206         ParseToken(lltok::greater, "expected end of constant"))
3207       return true;
3208 
3209     if (isPackedStruct) {
3210       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3211       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3212              Elts.size() * sizeof(Elts[0]));
3213       ID.UIntVal = Elts.size();
3214       ID.Kind = ValID::t_PackedConstantStruct;
3215       return false;
3216     }
3217 
3218     if (Elts.empty())
3219       return Error(ID.Loc, "constant vector must not be empty");
3220 
3221     if (!Elts[0]->getType()->isIntegerTy() &&
3222         !Elts[0]->getType()->isFloatingPointTy() &&
3223         !Elts[0]->getType()->isPointerTy())
3224       return Error(FirstEltLoc,
3225             "vector elements must have integer, pointer or floating point type");
3226 
3227     // Verify that all the vector elements have the same type.
3228     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3229       if (Elts[i]->getType() != Elts[0]->getType())
3230         return Error(FirstEltLoc,
3231                      "vector element #" + Twine(i) +
3232                     " is not of type '" + getTypeString(Elts[0]->getType()));
3233 
3234     ID.ConstantVal = ConstantVector::get(Elts);
3235     ID.Kind = ValID::t_Constant;
3236     return false;
3237   }
3238   case lltok::lsquare: {   // Array Constant
3239     Lex.Lex();
3240     SmallVector<Constant*, 16> Elts;
3241     LocTy FirstEltLoc = Lex.getLoc();
3242     if (ParseGlobalValueVector(Elts) ||
3243         ParseToken(lltok::rsquare, "expected end of array constant"))
3244       return true;
3245 
3246     // Handle empty element.
3247     if (Elts.empty()) {
3248       // Use undef instead of an array because it's inconvenient to determine
3249       // the element type at this point, there being no elements to examine.
3250       ID.Kind = ValID::t_EmptyArray;
3251       return false;
3252     }
3253 
3254     if (!Elts[0]->getType()->isFirstClassType())
3255       return Error(FirstEltLoc, "invalid array element type: " +
3256                    getTypeString(Elts[0]->getType()));
3257 
3258     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3259 
3260     // Verify all elements are correct type!
3261     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3262       if (Elts[i]->getType() != Elts[0]->getType())
3263         return Error(FirstEltLoc,
3264                      "array element #" + Twine(i) +
3265                      " is not of type '" + getTypeString(Elts[0]->getType()));
3266     }
3267 
3268     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3269     ID.Kind = ValID::t_Constant;
3270     return false;
3271   }
3272   case lltok::kw_c:  // c "foo"
3273     Lex.Lex();
3274     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3275                                                   false);
3276     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3277     ID.Kind = ValID::t_Constant;
3278     return false;
3279 
3280   case lltok::kw_asm: {
3281     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3282     //             STRINGCONSTANT
3283     bool HasSideEffect, AlignStack, AsmDialect;
3284     Lex.Lex();
3285     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3286         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3287         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3288         ParseStringConstant(ID.StrVal) ||
3289         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3290         ParseToken(lltok::StringConstant, "expected constraint string"))
3291       return true;
3292     ID.StrVal2 = Lex.getStrVal();
3293     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3294       (unsigned(AsmDialect)<<2);
3295     ID.Kind = ValID::t_InlineAsm;
3296     return false;
3297   }
3298 
3299   case lltok::kw_blockaddress: {
3300     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3301     Lex.Lex();
3302 
3303     ValID Fn, Label;
3304 
3305     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3306         ParseValID(Fn) ||
3307         ParseToken(lltok::comma, "expected comma in block address expression")||
3308         ParseValID(Label) ||
3309         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3310       return true;
3311 
3312     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3313       return Error(Fn.Loc, "expected function name in blockaddress");
3314     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3315       return Error(Label.Loc, "expected basic block name in blockaddress");
3316 
3317     // Try to find the function (but skip it if it's forward-referenced).
3318     GlobalValue *GV = nullptr;
3319     if (Fn.Kind == ValID::t_GlobalID) {
3320       if (Fn.UIntVal < NumberedVals.size())
3321         GV = NumberedVals[Fn.UIntVal];
3322     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3323       GV = M->getNamedValue(Fn.StrVal);
3324     }
3325     Function *F = nullptr;
3326     if (GV) {
3327       // Confirm that it's actually a function with a definition.
3328       if (!isa<Function>(GV))
3329         return Error(Fn.Loc, "expected function name in blockaddress");
3330       F = cast<Function>(GV);
3331       if (F->isDeclaration())
3332         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3333     }
3334 
3335     if (!F) {
3336       // Make a global variable as a placeholder for this reference.
3337       GlobalValue *&FwdRef =
3338           ForwardRefBlockAddresses.insert(std::make_pair(
3339                                               std::move(Fn),
3340                                               std::map<ValID, GlobalValue *>()))
3341               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3342               .first->second;
3343       if (!FwdRef)
3344         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3345                                     GlobalValue::InternalLinkage, nullptr, "");
3346       ID.ConstantVal = FwdRef;
3347       ID.Kind = ValID::t_Constant;
3348       return false;
3349     }
3350 
3351     // We found the function; now find the basic block.  Don't use PFS, since we
3352     // might be inside a constant expression.
3353     BasicBlock *BB;
3354     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3355       if (Label.Kind == ValID::t_LocalID)
3356         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3357       else
3358         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3359       if (!BB)
3360         return Error(Label.Loc, "referenced value is not a basic block");
3361     } else {
3362       if (Label.Kind == ValID::t_LocalID)
3363         return Error(Label.Loc, "cannot take address of numeric label after "
3364                                 "the function is defined");
3365       BB = dyn_cast_or_null<BasicBlock>(
3366           F->getValueSymbolTable()->lookup(Label.StrVal));
3367       if (!BB)
3368         return Error(Label.Loc, "referenced value is not a basic block");
3369     }
3370 
3371     ID.ConstantVal = BlockAddress::get(F, BB);
3372     ID.Kind = ValID::t_Constant;
3373     return false;
3374   }
3375 
3376   case lltok::kw_trunc:
3377   case lltok::kw_zext:
3378   case lltok::kw_sext:
3379   case lltok::kw_fptrunc:
3380   case lltok::kw_fpext:
3381   case lltok::kw_bitcast:
3382   case lltok::kw_addrspacecast:
3383   case lltok::kw_uitofp:
3384   case lltok::kw_sitofp:
3385   case lltok::kw_fptoui:
3386   case lltok::kw_fptosi:
3387   case lltok::kw_inttoptr:
3388   case lltok::kw_ptrtoint: {
3389     unsigned Opc = Lex.getUIntVal();
3390     Type *DestTy = nullptr;
3391     Constant *SrcVal;
3392     Lex.Lex();
3393     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3394         ParseGlobalTypeAndValue(SrcVal) ||
3395         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3396         ParseType(DestTy) ||
3397         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3398       return true;
3399     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3400       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3401                    getTypeString(SrcVal->getType()) + "' to '" +
3402                    getTypeString(DestTy) + "'");
3403     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3404                                                  SrcVal, DestTy);
3405     ID.Kind = ValID::t_Constant;
3406     return false;
3407   }
3408   case lltok::kw_extractvalue: {
3409     Lex.Lex();
3410     Constant *Val;
3411     SmallVector<unsigned, 4> Indices;
3412     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3413         ParseGlobalTypeAndValue(Val) ||
3414         ParseIndexList(Indices) ||
3415         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3416       return true;
3417 
3418     if (!Val->getType()->isAggregateType())
3419       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3420     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3421       return Error(ID.Loc, "invalid indices for extractvalue");
3422     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3423     ID.Kind = ValID::t_Constant;
3424     return false;
3425   }
3426   case lltok::kw_insertvalue: {
3427     Lex.Lex();
3428     Constant *Val0, *Val1;
3429     SmallVector<unsigned, 4> Indices;
3430     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3431         ParseGlobalTypeAndValue(Val0) ||
3432         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3433         ParseGlobalTypeAndValue(Val1) ||
3434         ParseIndexList(Indices) ||
3435         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3436       return true;
3437     if (!Val0->getType()->isAggregateType())
3438       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3439     Type *IndexedType =
3440         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3441     if (!IndexedType)
3442       return Error(ID.Loc, "invalid indices for insertvalue");
3443     if (IndexedType != Val1->getType())
3444       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3445                                getTypeString(Val1->getType()) +
3446                                "' instead of '" + getTypeString(IndexedType) +
3447                                "'");
3448     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3449     ID.Kind = ValID::t_Constant;
3450     return false;
3451   }
3452   case lltok::kw_icmp:
3453   case lltok::kw_fcmp: {
3454     unsigned PredVal, Opc = Lex.getUIntVal();
3455     Constant *Val0, *Val1;
3456     Lex.Lex();
3457     if (ParseCmpPredicate(PredVal, Opc) ||
3458         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3459         ParseGlobalTypeAndValue(Val0) ||
3460         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3461         ParseGlobalTypeAndValue(Val1) ||
3462         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3463       return true;
3464 
3465     if (Val0->getType() != Val1->getType())
3466       return Error(ID.Loc, "compare operands must have the same type");
3467 
3468     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3469 
3470     if (Opc == Instruction::FCmp) {
3471       if (!Val0->getType()->isFPOrFPVectorTy())
3472         return Error(ID.Loc, "fcmp requires floating point operands");
3473       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3474     } else {
3475       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3476       if (!Val0->getType()->isIntOrIntVectorTy() &&
3477           !Val0->getType()->isPtrOrPtrVectorTy())
3478         return Error(ID.Loc, "icmp requires pointer or integer operands");
3479       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3480     }
3481     ID.Kind = ValID::t_Constant;
3482     return false;
3483   }
3484 
3485   // Unary Operators.
3486   case lltok::kw_fneg: {
3487     unsigned Opc = Lex.getUIntVal();
3488     Constant *Val;
3489     Lex.Lex();
3490     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3491         ParseGlobalTypeAndValue(Val) ||
3492         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3493       return true;
3494 
3495     // Check that the type is valid for the operator.
3496     switch (Opc) {
3497     case Instruction::FNeg:
3498       if (!Val->getType()->isFPOrFPVectorTy())
3499         return Error(ID.Loc, "constexpr requires fp operands");
3500       break;
3501     default: llvm_unreachable("Unknown unary operator!");
3502     }
3503     unsigned Flags = 0;
3504     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3505     ID.ConstantVal = C;
3506     ID.Kind = ValID::t_Constant;
3507     return false;
3508   }
3509   // Binary Operators.
3510   case lltok::kw_add:
3511   case lltok::kw_fadd:
3512   case lltok::kw_sub:
3513   case lltok::kw_fsub:
3514   case lltok::kw_mul:
3515   case lltok::kw_fmul:
3516   case lltok::kw_udiv:
3517   case lltok::kw_sdiv:
3518   case lltok::kw_fdiv:
3519   case lltok::kw_urem:
3520   case lltok::kw_srem:
3521   case lltok::kw_frem:
3522   case lltok::kw_shl:
3523   case lltok::kw_lshr:
3524   case lltok::kw_ashr: {
3525     bool NUW = false;
3526     bool NSW = false;
3527     bool Exact = false;
3528     unsigned Opc = Lex.getUIntVal();
3529     Constant *Val0, *Val1;
3530     Lex.Lex();
3531     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3532         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3533       if (EatIfPresent(lltok::kw_nuw))
3534         NUW = true;
3535       if (EatIfPresent(lltok::kw_nsw)) {
3536         NSW = true;
3537         if (EatIfPresent(lltok::kw_nuw))
3538           NUW = true;
3539       }
3540     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3541                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3542       if (EatIfPresent(lltok::kw_exact))
3543         Exact = true;
3544     }
3545     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3546         ParseGlobalTypeAndValue(Val0) ||
3547         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3548         ParseGlobalTypeAndValue(Val1) ||
3549         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3550       return true;
3551     if (Val0->getType() != Val1->getType())
3552       return Error(ID.Loc, "operands of constexpr must have same type");
3553     // Check that the type is valid for the operator.
3554     switch (Opc) {
3555     case Instruction::Add:
3556     case Instruction::Sub:
3557     case Instruction::Mul:
3558     case Instruction::UDiv:
3559     case Instruction::SDiv:
3560     case Instruction::URem:
3561     case Instruction::SRem:
3562     case Instruction::Shl:
3563     case Instruction::AShr:
3564     case Instruction::LShr:
3565       if (!Val0->getType()->isIntOrIntVectorTy())
3566         return Error(ID.Loc, "constexpr requires integer operands");
3567       break;
3568     case Instruction::FAdd:
3569     case Instruction::FSub:
3570     case Instruction::FMul:
3571     case Instruction::FDiv:
3572     case Instruction::FRem:
3573       if (!Val0->getType()->isFPOrFPVectorTy())
3574         return Error(ID.Loc, "constexpr requires fp operands");
3575       break;
3576     default: llvm_unreachable("Unknown binary operator!");
3577     }
3578     unsigned Flags = 0;
3579     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3580     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3581     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3582     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3583     ID.ConstantVal = C;
3584     ID.Kind = ValID::t_Constant;
3585     return false;
3586   }
3587 
3588   // Logical Operations
3589   case lltok::kw_and:
3590   case lltok::kw_or:
3591   case lltok::kw_xor: {
3592     unsigned Opc = Lex.getUIntVal();
3593     Constant *Val0, *Val1;
3594     Lex.Lex();
3595     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3596         ParseGlobalTypeAndValue(Val0) ||
3597         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3598         ParseGlobalTypeAndValue(Val1) ||
3599         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3600       return true;
3601     if (Val0->getType() != Val1->getType())
3602       return Error(ID.Loc, "operands of constexpr must have same type");
3603     if (!Val0->getType()->isIntOrIntVectorTy())
3604       return Error(ID.Loc,
3605                    "constexpr requires integer or integer vector operands");
3606     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3607     ID.Kind = ValID::t_Constant;
3608     return false;
3609   }
3610 
3611   case lltok::kw_getelementptr:
3612   case lltok::kw_shufflevector:
3613   case lltok::kw_insertelement:
3614   case lltok::kw_extractelement:
3615   case lltok::kw_select: {
3616     unsigned Opc = Lex.getUIntVal();
3617     SmallVector<Constant*, 16> Elts;
3618     bool InBounds = false;
3619     Type *Ty;
3620     Lex.Lex();
3621 
3622     if (Opc == Instruction::GetElementPtr)
3623       InBounds = EatIfPresent(lltok::kw_inbounds);
3624 
3625     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3626       return true;
3627 
3628     LocTy ExplicitTypeLoc = Lex.getLoc();
3629     if (Opc == Instruction::GetElementPtr) {
3630       if (ParseType(Ty) ||
3631           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3632         return true;
3633     }
3634 
3635     Optional<unsigned> InRangeOp;
3636     if (ParseGlobalValueVector(
3637             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3638         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3639       return true;
3640 
3641     if (Opc == Instruction::GetElementPtr) {
3642       if (Elts.size() == 0 ||
3643           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3644         return Error(ID.Loc, "base of getelementptr must be a pointer");
3645 
3646       Type *BaseType = Elts[0]->getType();
3647       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3648       if (Ty != BasePointerType->getElementType())
3649         return Error(
3650             ExplicitTypeLoc,
3651             "explicit pointee type doesn't match operand's pointee type");
3652 
3653       unsigned GEPWidth = BaseType->isVectorTy()
3654                               ? cast<VectorType>(BaseType)->getNumElements()
3655                               : 0;
3656 
3657       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3658       for (Constant *Val : Indices) {
3659         Type *ValTy = Val->getType();
3660         if (!ValTy->isIntOrIntVectorTy())
3661           return Error(ID.Loc, "getelementptr index must be an integer");
3662         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3663           unsigned ValNumEl = ValVTy->getNumElements();
3664           if (GEPWidth && (ValNumEl != GEPWidth))
3665             return Error(
3666                 ID.Loc,
3667                 "getelementptr vector index has a wrong number of elements");
3668           // GEPWidth may have been unknown because the base is a scalar,
3669           // but it is known now.
3670           GEPWidth = ValNumEl;
3671         }
3672       }
3673 
3674       SmallPtrSet<Type*, 4> Visited;
3675       if (!Indices.empty() && !Ty->isSized(&Visited))
3676         return Error(ID.Loc, "base element of getelementptr must be sized");
3677 
3678       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3679         return Error(ID.Loc, "invalid getelementptr indices");
3680 
3681       if (InRangeOp) {
3682         if (*InRangeOp == 0)
3683           return Error(ID.Loc,
3684                        "inrange keyword may not appear on pointer operand");
3685         --*InRangeOp;
3686       }
3687 
3688       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3689                                                       InBounds, InRangeOp);
3690     } else if (Opc == Instruction::Select) {
3691       if (Elts.size() != 3)
3692         return Error(ID.Loc, "expected three operands to select");
3693       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3694                                                               Elts[2]))
3695         return Error(ID.Loc, Reason);
3696       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3697     } else if (Opc == Instruction::ShuffleVector) {
3698       if (Elts.size() != 3)
3699         return Error(ID.Loc, "expected three operands to shufflevector");
3700       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3701         return Error(ID.Loc, "invalid operands to shufflevector");
3702       SmallVector<int, 16> Mask;
3703       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3704       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3705     } else if (Opc == Instruction::ExtractElement) {
3706       if (Elts.size() != 2)
3707         return Error(ID.Loc, "expected two operands to extractelement");
3708       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3709         return Error(ID.Loc, "invalid extractelement operands");
3710       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3711     } else {
3712       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3713       if (Elts.size() != 3)
3714       return Error(ID.Loc, "expected three operands to insertelement");
3715       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3716         return Error(ID.Loc, "invalid insertelement operands");
3717       ID.ConstantVal =
3718                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3719     }
3720 
3721     ID.Kind = ValID::t_Constant;
3722     return false;
3723   }
3724   }
3725 
3726   Lex.Lex();
3727   return false;
3728 }
3729 
3730 /// ParseGlobalValue - Parse a global value with the specified type.
3731 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3732   C = nullptr;
3733   ValID ID;
3734   Value *V = nullptr;
3735   bool Parsed = ParseValID(ID) ||
3736                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3737   if (V && !(C = dyn_cast<Constant>(V)))
3738     return Error(ID.Loc, "global values must be constants");
3739   return Parsed;
3740 }
3741 
3742 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3743   Type *Ty = nullptr;
3744   return ParseType(Ty) ||
3745          ParseGlobalValue(Ty, V);
3746 }
3747 
3748 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3749   C = nullptr;
3750 
3751   LocTy KwLoc = Lex.getLoc();
3752   if (!EatIfPresent(lltok::kw_comdat))
3753     return false;
3754 
3755   if (EatIfPresent(lltok::lparen)) {
3756     if (Lex.getKind() != lltok::ComdatVar)
3757       return TokError("expected comdat variable");
3758     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3759     Lex.Lex();
3760     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3761       return true;
3762   } else {
3763     if (GlobalName.empty())
3764       return TokError("comdat cannot be unnamed");
3765     C = getComdat(std::string(GlobalName), KwLoc);
3766   }
3767 
3768   return false;
3769 }
3770 
3771 /// ParseGlobalValueVector
3772 ///   ::= /*empty*/
3773 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3774 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3775                                       Optional<unsigned> *InRangeOp) {
3776   // Empty list.
3777   if (Lex.getKind() == lltok::rbrace ||
3778       Lex.getKind() == lltok::rsquare ||
3779       Lex.getKind() == lltok::greater ||
3780       Lex.getKind() == lltok::rparen)
3781     return false;
3782 
3783   do {
3784     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3785       *InRangeOp = Elts.size();
3786 
3787     Constant *C;
3788     if (ParseGlobalTypeAndValue(C)) return true;
3789     Elts.push_back(C);
3790   } while (EatIfPresent(lltok::comma));
3791 
3792   return false;
3793 }
3794 
3795 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3796   SmallVector<Metadata *, 16> Elts;
3797   if (ParseMDNodeVector(Elts))
3798     return true;
3799 
3800   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3801   return false;
3802 }
3803 
3804 /// MDNode:
3805 ///  ::= !{ ... }
3806 ///  ::= !7
3807 ///  ::= !DILocation(...)
3808 bool LLParser::ParseMDNode(MDNode *&N) {
3809   if (Lex.getKind() == lltok::MetadataVar)
3810     return ParseSpecializedMDNode(N);
3811 
3812   return ParseToken(lltok::exclaim, "expected '!' here") ||
3813          ParseMDNodeTail(N);
3814 }
3815 
3816 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3817   // !{ ... }
3818   if (Lex.getKind() == lltok::lbrace)
3819     return ParseMDTuple(N);
3820 
3821   // !42
3822   return ParseMDNodeID(N);
3823 }
3824 
3825 namespace {
3826 
3827 /// Structure to represent an optional metadata field.
3828 template <class FieldTy> struct MDFieldImpl {
3829   typedef MDFieldImpl ImplTy;
3830   FieldTy Val;
3831   bool Seen;
3832 
3833   void assign(FieldTy Val) {
3834     Seen = true;
3835     this->Val = std::move(Val);
3836   }
3837 
3838   explicit MDFieldImpl(FieldTy Default)
3839       : Val(std::move(Default)), Seen(false) {}
3840 };
3841 
3842 /// Structure to represent an optional metadata field that
3843 /// can be of either type (A or B) and encapsulates the
3844 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3845 /// to reimplement the specifics for representing each Field.
3846 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3847   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3848   FieldTypeA A;
3849   FieldTypeB B;
3850   bool Seen;
3851 
3852   enum {
3853     IsInvalid = 0,
3854     IsTypeA = 1,
3855     IsTypeB = 2
3856   } WhatIs;
3857 
3858   void assign(FieldTypeA A) {
3859     Seen = true;
3860     this->A = std::move(A);
3861     WhatIs = IsTypeA;
3862   }
3863 
3864   void assign(FieldTypeB B) {
3865     Seen = true;
3866     this->B = std::move(B);
3867     WhatIs = IsTypeB;
3868   }
3869 
3870   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3871       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3872         WhatIs(IsInvalid) {}
3873 };
3874 
3875 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3876   uint64_t Max;
3877 
3878   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3879       : ImplTy(Default), Max(Max) {}
3880 };
3881 
3882 struct LineField : public MDUnsignedField {
3883   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3884 };
3885 
3886 struct ColumnField : public MDUnsignedField {
3887   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3888 };
3889 
3890 struct DwarfTagField : public MDUnsignedField {
3891   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3892   DwarfTagField(dwarf::Tag DefaultTag)
3893       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3894 };
3895 
3896 struct DwarfMacinfoTypeField : public MDUnsignedField {
3897   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3898   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3899     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3900 };
3901 
3902 struct DwarfAttEncodingField : public MDUnsignedField {
3903   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3904 };
3905 
3906 struct DwarfVirtualityField : public MDUnsignedField {
3907   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3908 };
3909 
3910 struct DwarfLangField : public MDUnsignedField {
3911   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3912 };
3913 
3914 struct DwarfCCField : public MDUnsignedField {
3915   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3916 };
3917 
3918 struct EmissionKindField : public MDUnsignedField {
3919   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3920 };
3921 
3922 struct NameTableKindField : public MDUnsignedField {
3923   NameTableKindField()
3924       : MDUnsignedField(
3925             0, (unsigned)
3926                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3927 };
3928 
3929 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3930   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3931 };
3932 
3933 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3934   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3935 };
3936 
3937 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3938   MDAPSIntField() : ImplTy(APSInt()) {}
3939 };
3940 
3941 struct MDSignedField : public MDFieldImpl<int64_t> {
3942   int64_t Min;
3943   int64_t Max;
3944 
3945   MDSignedField(int64_t Default = 0)
3946       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3947   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3948       : ImplTy(Default), Min(Min), Max(Max) {}
3949 };
3950 
3951 struct MDBoolField : public MDFieldImpl<bool> {
3952   MDBoolField(bool Default = false) : ImplTy(Default) {}
3953 };
3954 
3955 struct MDField : public MDFieldImpl<Metadata *> {
3956   bool AllowNull;
3957 
3958   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3959 };
3960 
3961 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3962   MDConstant() : ImplTy(nullptr) {}
3963 };
3964 
3965 struct MDStringField : public MDFieldImpl<MDString *> {
3966   bool AllowEmpty;
3967   MDStringField(bool AllowEmpty = true)
3968       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3969 };
3970 
3971 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3972   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3973 };
3974 
3975 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3976   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3977 };
3978 
3979 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3980   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3981       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3982 
3983   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3984                     bool AllowNull = true)
3985       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3986 
3987   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3988   bool isMDField() const { return WhatIs == IsTypeB; }
3989   int64_t getMDSignedValue() const {
3990     assert(isMDSignedField() && "Wrong field type");
3991     return A.Val;
3992   }
3993   Metadata *getMDFieldValue() const {
3994     assert(isMDField() && "Wrong field type");
3995     return B.Val;
3996   }
3997 };
3998 
3999 struct MDSignedOrUnsignedField
4000     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4001   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4002 
4003   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4004   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4005   int64_t getMDSignedValue() const {
4006     assert(isMDSignedField() && "Wrong field type");
4007     return A.Val;
4008   }
4009   uint64_t getMDUnsignedValue() const {
4010     assert(isMDUnsignedField() && "Wrong field type");
4011     return B.Val;
4012   }
4013 };
4014 
4015 } // end anonymous namespace
4016 
4017 namespace llvm {
4018 
4019 template <>
4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4021   if (Lex.getKind() != lltok::APSInt)
4022     return TokError("expected integer");
4023 
4024   Result.assign(Lex.getAPSIntVal());
4025   Lex.Lex();
4026   return false;
4027 }
4028 
4029 template <>
4030 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4031                             MDUnsignedField &Result) {
4032   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4033     return TokError("expected unsigned integer");
4034 
4035   auto &U = Lex.getAPSIntVal();
4036   if (U.ugt(Result.Max))
4037     return TokError("value for '" + Name + "' too large, limit is " +
4038                     Twine(Result.Max));
4039   Result.assign(U.getZExtValue());
4040   assert(Result.Val <= Result.Max && "Expected value in range");
4041   Lex.Lex();
4042   return false;
4043 }
4044 
4045 template <>
4046 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4047   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4048 }
4049 template <>
4050 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4051   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4052 }
4053 
4054 template <>
4055 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4056   if (Lex.getKind() == lltok::APSInt)
4057     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4058 
4059   if (Lex.getKind() != lltok::DwarfTag)
4060     return TokError("expected DWARF tag");
4061 
4062   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4063   if (Tag == dwarf::DW_TAG_invalid)
4064     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4065   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4066 
4067   Result.assign(Tag);
4068   Lex.Lex();
4069   return false;
4070 }
4071 
4072 template <>
4073 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4074                             DwarfMacinfoTypeField &Result) {
4075   if (Lex.getKind() == lltok::APSInt)
4076     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4077 
4078   if (Lex.getKind() != lltok::DwarfMacinfo)
4079     return TokError("expected DWARF macinfo type");
4080 
4081   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4082   if (Macinfo == dwarf::DW_MACINFO_invalid)
4083     return TokError(
4084         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4085   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4086 
4087   Result.assign(Macinfo);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 template <>
4093 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4094                             DwarfVirtualityField &Result) {
4095   if (Lex.getKind() == lltok::APSInt)
4096     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4097 
4098   if (Lex.getKind() != lltok::DwarfVirtuality)
4099     return TokError("expected DWARF virtuality code");
4100 
4101   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4102   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4103     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4104                     Lex.getStrVal() + "'");
4105   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4106   Result.assign(Virtuality);
4107   Lex.Lex();
4108   return false;
4109 }
4110 
4111 template <>
4112 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4113   if (Lex.getKind() == lltok::APSInt)
4114     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4115 
4116   if (Lex.getKind() != lltok::DwarfLang)
4117     return TokError("expected DWARF language");
4118 
4119   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4120   if (!Lang)
4121     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4122                     "'");
4123   assert(Lang <= Result.Max && "Expected valid DWARF language");
4124   Result.assign(Lang);
4125   Lex.Lex();
4126   return false;
4127 }
4128 
4129 template <>
4130 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4131   if (Lex.getKind() == lltok::APSInt)
4132     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4133 
4134   if (Lex.getKind() != lltok::DwarfCC)
4135     return TokError("expected DWARF calling convention");
4136 
4137   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4138   if (!CC)
4139     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4140                     "'");
4141   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4142   Result.assign(CC);
4143   Lex.Lex();
4144   return false;
4145 }
4146 
4147 template <>
4148 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4149   if (Lex.getKind() == lltok::APSInt)
4150     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4151 
4152   if (Lex.getKind() != lltok::EmissionKind)
4153     return TokError("expected emission kind");
4154 
4155   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4156   if (!Kind)
4157     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4158                     "'");
4159   assert(*Kind <= Result.Max && "Expected valid emission kind");
4160   Result.assign(*Kind);
4161   Lex.Lex();
4162   return false;
4163 }
4164 
4165 template <>
4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4167                             NameTableKindField &Result) {
4168   if (Lex.getKind() == lltok::APSInt)
4169     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4170 
4171   if (Lex.getKind() != lltok::NameTableKind)
4172     return TokError("expected nameTable kind");
4173 
4174   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4175   if (!Kind)
4176     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4177                     "'");
4178   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4179   Result.assign((unsigned)*Kind);
4180   Lex.Lex();
4181   return false;
4182 }
4183 
4184 template <>
4185 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4186                             DwarfAttEncodingField &Result) {
4187   if (Lex.getKind() == lltok::APSInt)
4188     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4189 
4190   if (Lex.getKind() != lltok::DwarfAttEncoding)
4191     return TokError("expected DWARF type attribute encoding");
4192 
4193   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4194   if (!Encoding)
4195     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4196                     Lex.getStrVal() + "'");
4197   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4198   Result.assign(Encoding);
4199   Lex.Lex();
4200   return false;
4201 }
4202 
4203 /// DIFlagField
4204 ///  ::= uint32
4205 ///  ::= DIFlagVector
4206 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4207 template <>
4208 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4209 
4210   // Parser for a single flag.
4211   auto parseFlag = [&](DINode::DIFlags &Val) {
4212     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4213       uint32_t TempVal = static_cast<uint32_t>(Val);
4214       bool Res = ParseUInt32(TempVal);
4215       Val = static_cast<DINode::DIFlags>(TempVal);
4216       return Res;
4217     }
4218 
4219     if (Lex.getKind() != lltok::DIFlag)
4220       return TokError("expected debug info flag");
4221 
4222     Val = DINode::getFlag(Lex.getStrVal());
4223     if (!Val)
4224       return TokError(Twine("invalid debug info flag flag '") +
4225                       Lex.getStrVal() + "'");
4226     Lex.Lex();
4227     return false;
4228   };
4229 
4230   // Parse the flags and combine them together.
4231   DINode::DIFlags Combined = DINode::FlagZero;
4232   do {
4233     DINode::DIFlags Val;
4234     if (parseFlag(Val))
4235       return true;
4236     Combined |= Val;
4237   } while (EatIfPresent(lltok::bar));
4238 
4239   Result.assign(Combined);
4240   return false;
4241 }
4242 
4243 /// DISPFlagField
4244 ///  ::= uint32
4245 ///  ::= DISPFlagVector
4246 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4247 template <>
4248 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4249 
4250   // Parser for a single flag.
4251   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4252     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4253       uint32_t TempVal = static_cast<uint32_t>(Val);
4254       bool Res = ParseUInt32(TempVal);
4255       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4256       return Res;
4257     }
4258 
4259     if (Lex.getKind() != lltok::DISPFlag)
4260       return TokError("expected debug info flag");
4261 
4262     Val = DISubprogram::getFlag(Lex.getStrVal());
4263     if (!Val)
4264       return TokError(Twine("invalid subprogram debug info flag '") +
4265                       Lex.getStrVal() + "'");
4266     Lex.Lex();
4267     return false;
4268   };
4269 
4270   // Parse the flags and combine them together.
4271   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4272   do {
4273     DISubprogram::DISPFlags Val;
4274     if (parseFlag(Val))
4275       return true;
4276     Combined |= Val;
4277   } while (EatIfPresent(lltok::bar));
4278 
4279   Result.assign(Combined);
4280   return false;
4281 }
4282 
4283 template <>
4284 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4285                             MDSignedField &Result) {
4286   if (Lex.getKind() != lltok::APSInt)
4287     return TokError("expected signed integer");
4288 
4289   auto &S = Lex.getAPSIntVal();
4290   if (S < Result.Min)
4291     return TokError("value for '" + Name + "' too small, limit is " +
4292                     Twine(Result.Min));
4293   if (S > Result.Max)
4294     return TokError("value for '" + Name + "' too large, limit is " +
4295                     Twine(Result.Max));
4296   Result.assign(S.getExtValue());
4297   assert(Result.Val >= Result.Min && "Expected value in range");
4298   assert(Result.Val <= Result.Max && "Expected value in range");
4299   Lex.Lex();
4300   return false;
4301 }
4302 
4303 template <>
4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4305   switch (Lex.getKind()) {
4306   default:
4307     return TokError("expected 'true' or 'false'");
4308   case lltok::kw_true:
4309     Result.assign(true);
4310     break;
4311   case lltok::kw_false:
4312     Result.assign(false);
4313     break;
4314   }
4315   Lex.Lex();
4316   return false;
4317 }
4318 
4319 template <>
4320 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4321   if (Lex.getKind() == lltok::kw_null) {
4322     if (!Result.AllowNull)
4323       return TokError("'" + Name + "' cannot be null");
4324     Lex.Lex();
4325     Result.assign(nullptr);
4326     return false;
4327   }
4328 
4329   Metadata *MD;
4330   if (ParseMetadata(MD, nullptr))
4331     return true;
4332 
4333   Result.assign(MD);
4334   return false;
4335 }
4336 
4337 template <>
4338 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4339                             MDSignedOrMDField &Result) {
4340   // Try to parse a signed int.
4341   if (Lex.getKind() == lltok::APSInt) {
4342     MDSignedField Res = Result.A;
4343     if (!ParseMDField(Loc, Name, Res)) {
4344       Result.assign(Res);
4345       return false;
4346     }
4347     return true;
4348   }
4349 
4350   // Otherwise, try to parse as an MDField.
4351   MDField Res = Result.B;
4352   if (!ParseMDField(Loc, Name, Res)) {
4353     Result.assign(Res);
4354     return false;
4355   }
4356 
4357   return true;
4358 }
4359 
4360 template <>
4361 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4362   LocTy ValueLoc = Lex.getLoc();
4363   std::string S;
4364   if (ParseStringConstant(S))
4365     return true;
4366 
4367   if (!Result.AllowEmpty && S.empty())
4368     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4369 
4370   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4371   return false;
4372 }
4373 
4374 template <>
4375 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4376   SmallVector<Metadata *, 4> MDs;
4377   if (ParseMDNodeVector(MDs))
4378     return true;
4379 
4380   Result.assign(std::move(MDs));
4381   return false;
4382 }
4383 
4384 template <>
4385 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4386                             ChecksumKindField &Result) {
4387   Optional<DIFile::ChecksumKind> CSKind =
4388       DIFile::getChecksumKind(Lex.getStrVal());
4389 
4390   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4391     return TokError(
4392         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4393 
4394   Result.assign(*CSKind);
4395   Lex.Lex();
4396   return false;
4397 }
4398 
4399 } // end namespace llvm
4400 
4401 template <class ParserTy>
4402 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4403   do {
4404     if (Lex.getKind() != lltok::LabelStr)
4405       return TokError("expected field label here");
4406 
4407     if (parseField())
4408       return true;
4409   } while (EatIfPresent(lltok::comma));
4410 
4411   return false;
4412 }
4413 
4414 template <class ParserTy>
4415 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4416   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4417   Lex.Lex();
4418 
4419   if (ParseToken(lltok::lparen, "expected '(' here"))
4420     return true;
4421   if (Lex.getKind() != lltok::rparen)
4422     if (ParseMDFieldsImplBody(parseField))
4423       return true;
4424 
4425   ClosingLoc = Lex.getLoc();
4426   return ParseToken(lltok::rparen, "expected ')' here");
4427 }
4428 
4429 template <class FieldTy>
4430 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4431   if (Result.Seen)
4432     return TokError("field '" + Name + "' cannot be specified more than once");
4433 
4434   LocTy Loc = Lex.getLoc();
4435   Lex.Lex();
4436   return ParseMDField(Loc, Name, Result);
4437 }
4438 
4439 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4440   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4441 
4442 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4443   if (Lex.getStrVal() == #CLASS)                                               \
4444     return Parse##CLASS(N, IsDistinct);
4445 #include "llvm/IR/Metadata.def"
4446 
4447   return TokError("expected metadata type");
4448 }
4449 
4450 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4451 #define NOP_FIELD(NAME, TYPE, INIT)
4452 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4453   if (!NAME.Seen)                                                              \
4454     return Error(ClosingLoc, "missing required field '" #NAME "'");
4455 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4456   if (Lex.getStrVal() == #NAME)                                                \
4457     return ParseMDField(#NAME, NAME);
4458 #define PARSE_MD_FIELDS()                                                      \
4459   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4460   do {                                                                         \
4461     LocTy ClosingLoc;                                                          \
4462     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4463       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4464       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4465     }, ClosingLoc))                                                            \
4466       return true;                                                             \
4467     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4468   } while (false)
4469 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4470   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4471 
4472 /// ParseDILocationFields:
4473 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4474 ///   isImplicitCode: true)
4475 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4476 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4477   OPTIONAL(line, LineField, );                                                 \
4478   OPTIONAL(column, ColumnField, );                                             \
4479   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4480   OPTIONAL(inlinedAt, MDField, );                                              \
4481   OPTIONAL(isImplicitCode, MDBoolField, (false));
4482   PARSE_MD_FIELDS();
4483 #undef VISIT_MD_FIELDS
4484 
4485   Result =
4486       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4487                                    inlinedAt.Val, isImplicitCode.Val));
4488   return false;
4489 }
4490 
4491 /// ParseGenericDINode:
4492 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4493 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4495   REQUIRED(tag, DwarfTagField, );                                              \
4496   OPTIONAL(header, MDStringField, );                                           \
4497   OPTIONAL(operands, MDFieldList, );
4498   PARSE_MD_FIELDS();
4499 #undef VISIT_MD_FIELDS
4500 
4501   Result = GET_OR_DISTINCT(GenericDINode,
4502                            (Context, tag.Val, header.Val, operands.Val));
4503   return false;
4504 }
4505 
4506 /// ParseDISubrange:
4507 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4508 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4509 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4510 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4511 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4512   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4513   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4514   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4515   OPTIONAL(stride, MDSignedOrMDField, );
4516   PARSE_MD_FIELDS();
4517 #undef VISIT_MD_FIELDS
4518 
4519   Metadata *Count = nullptr;
4520   Metadata *LowerBound = nullptr;
4521   Metadata *UpperBound = nullptr;
4522   Metadata *Stride = nullptr;
4523   if (count.isMDSignedField())
4524     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4525         Type::getInt64Ty(Context), count.getMDSignedValue()));
4526   else if (count.isMDField())
4527     Count = count.getMDFieldValue();
4528 
4529   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4530     if (Bound.isMDSignedField())
4531       return ConstantAsMetadata::get(ConstantInt::getSigned(
4532           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4533     if (Bound.isMDField())
4534       return Bound.getMDFieldValue();
4535     return nullptr;
4536   };
4537 
4538   LowerBound = convToMetadata(lowerBound);
4539   UpperBound = convToMetadata(upperBound);
4540   Stride = convToMetadata(stride);
4541 
4542   Result = GET_OR_DISTINCT(DISubrange,
4543                            (Context, Count, LowerBound, UpperBound, Stride));
4544 
4545   return false;
4546 }
4547 
4548 /// ParseDIEnumerator:
4549 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4550 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4552   REQUIRED(name, MDStringField, );                                             \
4553   REQUIRED(value, MDAPSIntField, );                                            \
4554   OPTIONAL(isUnsigned, MDBoolField, (false));
4555   PARSE_MD_FIELDS();
4556 #undef VISIT_MD_FIELDS
4557 
4558   if (isUnsigned.Val && value.Val.isNegative())
4559     return TokError("unsigned enumerator with negative value");
4560 
4561   APSInt Value(value.Val);
4562   // Add a leading zero so that unsigned values with the msb set are not
4563   // mistaken for negative values when used for signed enumerators.
4564   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4565     Value = Value.zext(Value.getBitWidth() + 1);
4566 
4567   Result =
4568       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4569 
4570   return false;
4571 }
4572 
4573 /// ParseDIBasicType:
4574 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4575 ///                    encoding: DW_ATE_encoding, flags: 0)
4576 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4578   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4579   OPTIONAL(name, MDStringField, );                                             \
4580   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4581   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4582   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4583   OPTIONAL(flags, DIFlagField, );
4584   PARSE_MD_FIELDS();
4585 #undef VISIT_MD_FIELDS
4586 
4587   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4588                                          align.Val, encoding.Val, flags.Val));
4589   return false;
4590 }
4591 
4592 /// ParseDIDerivedType:
4593 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4594 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4595 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4596 ///                      dwarfAddressSpace: 3)
4597 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4598 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4599   REQUIRED(tag, DwarfTagField, );                                              \
4600   OPTIONAL(name, MDStringField, );                                             \
4601   OPTIONAL(file, MDField, );                                                   \
4602   OPTIONAL(line, LineField, );                                                 \
4603   OPTIONAL(scope, MDField, );                                                  \
4604   REQUIRED(baseType, MDField, );                                               \
4605   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4606   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4607   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4608   OPTIONAL(flags, DIFlagField, );                                              \
4609   OPTIONAL(extraData, MDField, );                                              \
4610   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4611   PARSE_MD_FIELDS();
4612 #undef VISIT_MD_FIELDS
4613 
4614   Optional<unsigned> DWARFAddressSpace;
4615   if (dwarfAddressSpace.Val != UINT32_MAX)
4616     DWARFAddressSpace = dwarfAddressSpace.Val;
4617 
4618   Result = GET_OR_DISTINCT(DIDerivedType,
4619                            (Context, tag.Val, name.Val, file.Val, line.Val,
4620                             scope.Val, baseType.Val, size.Val, align.Val,
4621                             offset.Val, DWARFAddressSpace, flags.Val,
4622                             extraData.Val));
4623   return false;
4624 }
4625 
4626 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4627 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4628   REQUIRED(tag, DwarfTagField, );                                              \
4629   OPTIONAL(name, MDStringField, );                                             \
4630   OPTIONAL(file, MDField, );                                                   \
4631   OPTIONAL(line, LineField, );                                                 \
4632   OPTIONAL(scope, MDField, );                                                  \
4633   OPTIONAL(baseType, MDField, );                                               \
4634   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4635   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4636   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4637   OPTIONAL(flags, DIFlagField, );                                              \
4638   OPTIONAL(elements, MDField, );                                               \
4639   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4640   OPTIONAL(vtableHolder, MDField, );                                           \
4641   OPTIONAL(templateParams, MDField, );                                         \
4642   OPTIONAL(identifier, MDStringField, );                                       \
4643   OPTIONAL(discriminator, MDField, );                                          \
4644   OPTIONAL(dataLocation, MDField, );
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   // If this has an identifier try to build an ODR type.
4649   if (identifier.Val)
4650     if (auto *CT = DICompositeType::buildODRType(
4651             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4652             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4653             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4654             discriminator.Val, dataLocation.Val)) {
4655       Result = CT;
4656       return false;
4657     }
4658 
4659   // Create a new node, and save it in the context if it belongs in the type
4660   // map.
4661   Result = GET_OR_DISTINCT(
4662       DICompositeType,
4663       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4664        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4665        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4666        discriminator.Val, dataLocation.Val));
4667   return false;
4668 }
4669 
4670 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   OPTIONAL(flags, DIFlagField, );                                              \
4673   OPTIONAL(cc, DwarfCCField, );                                                \
4674   REQUIRED(types, MDField, );
4675   PARSE_MD_FIELDS();
4676 #undef VISIT_MD_FIELDS
4677 
4678   Result = GET_OR_DISTINCT(DISubroutineType,
4679                            (Context, flags.Val, cc.Val, types.Val));
4680   return false;
4681 }
4682 
4683 /// ParseDIFileType:
4684 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4685 ///                   checksumkind: CSK_MD5,
4686 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4687 ///                   source: "source file contents")
4688 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4689   // The default constructed value for checksumkind is required, but will never
4690   // be used, as the parser checks if the field was actually Seen before using
4691   // the Val.
4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4693   REQUIRED(filename, MDStringField, );                                         \
4694   REQUIRED(directory, MDStringField, );                                        \
4695   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4696   OPTIONAL(checksum, MDStringField, );                                         \
4697   OPTIONAL(source, MDStringField, );
4698   PARSE_MD_FIELDS();
4699 #undef VISIT_MD_FIELDS
4700 
4701   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4702   if (checksumkind.Seen && checksum.Seen)
4703     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4704   else if (checksumkind.Seen || checksum.Seen)
4705     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4706 
4707   Optional<MDString *> OptSource;
4708   if (source.Seen)
4709     OptSource = source.Val;
4710   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4711                                     OptChecksum, OptSource));
4712   return false;
4713 }
4714 
4715 /// ParseDICompileUnit:
4716 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4717 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4718 ///                      splitDebugFilename: "abc.debug",
4719 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4720 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4721 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4722 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4723   if (!IsDistinct)
4724     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4725 
4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4727   REQUIRED(language, DwarfLangField, );                                        \
4728   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4729   OPTIONAL(producer, MDStringField, );                                         \
4730   OPTIONAL(isOptimized, MDBoolField, );                                        \
4731   OPTIONAL(flags, MDStringField, );                                            \
4732   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4733   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4734   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4735   OPTIONAL(enums, MDField, );                                                  \
4736   OPTIONAL(retainedTypes, MDField, );                                          \
4737   OPTIONAL(globals, MDField, );                                                \
4738   OPTIONAL(imports, MDField, );                                                \
4739   OPTIONAL(macros, MDField, );                                                 \
4740   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4741   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4742   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4743   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4744   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4745   OPTIONAL(sysroot, MDStringField, );                                          \
4746   OPTIONAL(sdk, MDStringField, );
4747   PARSE_MD_FIELDS();
4748 #undef VISIT_MD_FIELDS
4749 
4750   Result = DICompileUnit::getDistinct(
4751       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4752       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4753       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4754       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4755       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4756   return false;
4757 }
4758 
4759 /// ParseDISubprogram:
4760 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4761 ///                     file: !1, line: 7, type: !2, isLocal: false,
4762 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4763 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4764 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4765 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4766 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4767 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4768   auto Loc = Lex.getLoc();
4769 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4770   OPTIONAL(scope, MDField, );                                                  \
4771   OPTIONAL(name, MDStringField, );                                             \
4772   OPTIONAL(linkageName, MDStringField, );                                      \
4773   OPTIONAL(file, MDField, );                                                   \
4774   OPTIONAL(line, LineField, );                                                 \
4775   OPTIONAL(type, MDField, );                                                   \
4776   OPTIONAL(isLocal, MDBoolField, );                                            \
4777   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4778   OPTIONAL(scopeLine, LineField, );                                            \
4779   OPTIONAL(containingType, MDField, );                                         \
4780   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4781   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4782   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4783   OPTIONAL(flags, DIFlagField, );                                              \
4784   OPTIONAL(spFlags, DISPFlagField, );                                          \
4785   OPTIONAL(isOptimized, MDBoolField, );                                        \
4786   OPTIONAL(unit, MDField, );                                                   \
4787   OPTIONAL(templateParams, MDField, );                                         \
4788   OPTIONAL(declaration, MDField, );                                            \
4789   OPTIONAL(retainedNodes, MDField, );                                          \
4790   OPTIONAL(thrownTypes, MDField, );
4791   PARSE_MD_FIELDS();
4792 #undef VISIT_MD_FIELDS
4793 
4794   // An explicit spFlags field takes precedence over individual fields in
4795   // older IR versions.
4796   DISubprogram::DISPFlags SPFlags =
4797       spFlags.Seen ? spFlags.Val
4798                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4799                                              isOptimized.Val, virtuality.Val);
4800   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4801     return Lex.Error(
4802         Loc,
4803         "missing 'distinct', required for !DISubprogram that is a Definition");
4804   Result = GET_OR_DISTINCT(
4805       DISubprogram,
4806       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4807        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4808        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4809        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4810   return false;
4811 }
4812 
4813 /// ParseDILexicalBlock:
4814 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4815 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4817   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4818   OPTIONAL(file, MDField, );                                                   \
4819   OPTIONAL(line, LineField, );                                                 \
4820   OPTIONAL(column, ColumnField, );
4821   PARSE_MD_FIELDS();
4822 #undef VISIT_MD_FIELDS
4823 
4824   Result = GET_OR_DISTINCT(
4825       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4826   return false;
4827 }
4828 
4829 /// ParseDILexicalBlockFile:
4830 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4831 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4833   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4834   OPTIONAL(file, MDField, );                                                   \
4835   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4836   PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4839   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4840                            (Context, scope.Val, file.Val, discriminator.Val));
4841   return false;
4842 }
4843 
4844 /// ParseDICommonBlock:
4845 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4846 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4848   REQUIRED(scope, MDField, );                                                  \
4849   OPTIONAL(declaration, MDField, );                                            \
4850   OPTIONAL(name, MDStringField, );                                             \
4851   OPTIONAL(file, MDField, );                                                   \
4852   OPTIONAL(line, LineField, );
4853   PARSE_MD_FIELDS();
4854 #undef VISIT_MD_FIELDS
4855 
4856   Result = GET_OR_DISTINCT(DICommonBlock,
4857                            (Context, scope.Val, declaration.Val, name.Val,
4858                             file.Val, line.Val));
4859   return false;
4860 }
4861 
4862 /// ParseDINamespace:
4863 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4864 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4865 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4866   REQUIRED(scope, MDField, );                                                  \
4867   OPTIONAL(name, MDStringField, );                                             \
4868   OPTIONAL(exportSymbols, MDBoolField, );
4869   PARSE_MD_FIELDS();
4870 #undef VISIT_MD_FIELDS
4871 
4872   Result = GET_OR_DISTINCT(DINamespace,
4873                            (Context, scope.Val, name.Val, exportSymbols.Val));
4874   return false;
4875 }
4876 
4877 /// ParseDIMacro:
4878 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4879 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4881   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4882   OPTIONAL(line, LineField, );                                                 \
4883   REQUIRED(name, MDStringField, );                                             \
4884   OPTIONAL(value, MDStringField, );
4885   PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4887 
4888   Result = GET_OR_DISTINCT(DIMacro,
4889                            (Context, type.Val, line.Val, name.Val, value.Val));
4890   return false;
4891 }
4892 
4893 /// ParseDIMacroFile:
4894 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4895 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4897   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4898   OPTIONAL(line, LineField, );                                                 \
4899   REQUIRED(file, MDField, );                                                   \
4900   OPTIONAL(nodes, MDField, );
4901   PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4903 
4904   Result = GET_OR_DISTINCT(DIMacroFile,
4905                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4906   return false;
4907 }
4908 
4909 /// ParseDIModule:
4910 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4911 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4912 ///   file: !1, line: 4)
4913 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4914 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4915   REQUIRED(scope, MDField, );                                                  \
4916   REQUIRED(name, MDStringField, );                                             \
4917   OPTIONAL(configMacros, MDStringField, );                                     \
4918   OPTIONAL(includePath, MDStringField, );                                      \
4919   OPTIONAL(apinotes, MDStringField, );                                         \
4920   OPTIONAL(file, MDField, );                                                   \
4921   OPTIONAL(line, LineField, );
4922   PARSE_MD_FIELDS();
4923 #undef VISIT_MD_FIELDS
4924 
4925   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4926                                       configMacros.Val, includePath.Val,
4927                                       apinotes.Val, line.Val));
4928   return false;
4929 }
4930 
4931 /// ParseDITemplateTypeParameter:
4932 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4933 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4935   OPTIONAL(name, MDStringField, );                                             \
4936   REQUIRED(type, MDField, );                                                   \
4937   OPTIONAL(defaulted, MDBoolField, );
4938   PARSE_MD_FIELDS();
4939 #undef VISIT_MD_FIELDS
4940 
4941   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4942                            (Context, name.Val, type.Val, defaulted.Val));
4943   return false;
4944 }
4945 
4946 /// ParseDITemplateValueParameter:
4947 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4948 ///                                 name: "V", type: !1, defaulted: false,
4949 ///                                 value: i32 7)
4950 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4952   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4953   OPTIONAL(name, MDStringField, );                                             \
4954   OPTIONAL(type, MDField, );                                                   \
4955   OPTIONAL(defaulted, MDBoolField, );                                          \
4956   REQUIRED(value, MDField, );
4957 
4958   PARSE_MD_FIELDS();
4959 #undef VISIT_MD_FIELDS
4960 
4961   Result = GET_OR_DISTINCT(
4962       DITemplateValueParameter,
4963       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4964   return false;
4965 }
4966 
4967 /// ParseDIGlobalVariable:
4968 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4969 ///                         file: !1, line: 7, type: !2, isLocal: false,
4970 ///                         isDefinition: true, templateParams: !3,
4971 ///                         declaration: !4, align: 8)
4972 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4974   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4975   OPTIONAL(scope, MDField, );                                                  \
4976   OPTIONAL(linkageName, MDStringField, );                                      \
4977   OPTIONAL(file, MDField, );                                                   \
4978   OPTIONAL(line, LineField, );                                                 \
4979   OPTIONAL(type, MDField, );                                                   \
4980   OPTIONAL(isLocal, MDBoolField, );                                            \
4981   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4982   OPTIONAL(templateParams, MDField, );                                         \
4983   OPTIONAL(declaration, MDField, );                                            \
4984   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4985   PARSE_MD_FIELDS();
4986 #undef VISIT_MD_FIELDS
4987 
4988   Result =
4989       GET_OR_DISTINCT(DIGlobalVariable,
4990                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4991                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4992                        declaration.Val, templateParams.Val, align.Val));
4993   return false;
4994 }
4995 
4996 /// ParseDILocalVariable:
4997 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4998 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4999 ///                        align: 8)
5000 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5001 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5002 ///                        align: 8)
5003 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5004 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5005   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5006   OPTIONAL(name, MDStringField, );                                             \
5007   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5008   OPTIONAL(file, MDField, );                                                   \
5009   OPTIONAL(line, LineField, );                                                 \
5010   OPTIONAL(type, MDField, );                                                   \
5011   OPTIONAL(flags, DIFlagField, );                                              \
5012   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5013   PARSE_MD_FIELDS();
5014 #undef VISIT_MD_FIELDS
5015 
5016   Result = GET_OR_DISTINCT(DILocalVariable,
5017                            (Context, scope.Val, name.Val, file.Val, line.Val,
5018                             type.Val, arg.Val, flags.Val, align.Val));
5019   return false;
5020 }
5021 
5022 /// ParseDILabel:
5023 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5024 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5025 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5026   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5027   REQUIRED(name, MDStringField, );                                             \
5028   REQUIRED(file, MDField, );                                                   \
5029   REQUIRED(line, LineField, );
5030   PARSE_MD_FIELDS();
5031 #undef VISIT_MD_FIELDS
5032 
5033   Result = GET_OR_DISTINCT(DILabel,
5034                            (Context, scope.Val, name.Val, file.Val, line.Val));
5035   return false;
5036 }
5037 
5038 /// ParseDIExpression:
5039 ///   ::= !DIExpression(0, 7, -1)
5040 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5041   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5042   Lex.Lex();
5043 
5044   if (ParseToken(lltok::lparen, "expected '(' here"))
5045     return true;
5046 
5047   SmallVector<uint64_t, 8> Elements;
5048   if (Lex.getKind() != lltok::rparen)
5049     do {
5050       if (Lex.getKind() == lltok::DwarfOp) {
5051         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5052           Lex.Lex();
5053           Elements.push_back(Op);
5054           continue;
5055         }
5056         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5057       }
5058 
5059       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5060         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5061           Lex.Lex();
5062           Elements.push_back(Op);
5063           continue;
5064         }
5065         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5066       }
5067 
5068       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5069         return TokError("expected unsigned integer");
5070 
5071       auto &U = Lex.getAPSIntVal();
5072       if (U.ugt(UINT64_MAX))
5073         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5074       Elements.push_back(U.getZExtValue());
5075       Lex.Lex();
5076     } while (EatIfPresent(lltok::comma));
5077 
5078   if (ParseToken(lltok::rparen, "expected ')' here"))
5079     return true;
5080 
5081   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5082   return false;
5083 }
5084 
5085 /// ParseDIGlobalVariableExpression:
5086 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5087 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5088                                                bool IsDistinct) {
5089 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5090   REQUIRED(var, MDField, );                                                    \
5091   REQUIRED(expr, MDField, );
5092   PARSE_MD_FIELDS();
5093 #undef VISIT_MD_FIELDS
5094 
5095   Result =
5096       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5097   return false;
5098 }
5099 
5100 /// ParseDIObjCProperty:
5101 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5102 ///                       getter: "getFoo", attributes: 7, type: !2)
5103 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5104 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5105   OPTIONAL(name, MDStringField, );                                             \
5106   OPTIONAL(file, MDField, );                                                   \
5107   OPTIONAL(line, LineField, );                                                 \
5108   OPTIONAL(setter, MDStringField, );                                           \
5109   OPTIONAL(getter, MDStringField, );                                           \
5110   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5111   OPTIONAL(type, MDField, );
5112   PARSE_MD_FIELDS();
5113 #undef VISIT_MD_FIELDS
5114 
5115   Result = GET_OR_DISTINCT(DIObjCProperty,
5116                            (Context, name.Val, file.Val, line.Val, setter.Val,
5117                             getter.Val, attributes.Val, type.Val));
5118   return false;
5119 }
5120 
5121 /// ParseDIImportedEntity:
5122 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5123 ///                         line: 7, name: "foo")
5124 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5126   REQUIRED(tag, DwarfTagField, );                                              \
5127   REQUIRED(scope, MDField, );                                                  \
5128   OPTIONAL(entity, MDField, );                                                 \
5129   OPTIONAL(file, MDField, );                                                   \
5130   OPTIONAL(line, LineField, );                                                 \
5131   OPTIONAL(name, MDStringField, );
5132   PARSE_MD_FIELDS();
5133 #undef VISIT_MD_FIELDS
5134 
5135   Result = GET_OR_DISTINCT(
5136       DIImportedEntity,
5137       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5138   return false;
5139 }
5140 
5141 #undef PARSE_MD_FIELD
5142 #undef NOP_FIELD
5143 #undef REQUIRE_FIELD
5144 #undef DECLARE_FIELD
5145 
5146 /// ParseMetadataAsValue
5147 ///  ::= metadata i32 %local
5148 ///  ::= metadata i32 @global
5149 ///  ::= metadata i32 7
5150 ///  ::= metadata !0
5151 ///  ::= metadata !{...}
5152 ///  ::= metadata !"string"
5153 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5154   // Note: the type 'metadata' has already been parsed.
5155   Metadata *MD;
5156   if (ParseMetadata(MD, &PFS))
5157     return true;
5158 
5159   V = MetadataAsValue::get(Context, MD);
5160   return false;
5161 }
5162 
5163 /// ParseValueAsMetadata
5164 ///  ::= i32 %local
5165 ///  ::= i32 @global
5166 ///  ::= i32 7
5167 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5168                                     PerFunctionState *PFS) {
5169   Type *Ty;
5170   LocTy Loc;
5171   if (ParseType(Ty, TypeMsg, Loc))
5172     return true;
5173   if (Ty->isMetadataTy())
5174     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5175 
5176   Value *V;
5177   if (ParseValue(Ty, V, PFS))
5178     return true;
5179 
5180   MD = ValueAsMetadata::get(V);
5181   return false;
5182 }
5183 
5184 /// ParseMetadata
5185 ///  ::= i32 %local
5186 ///  ::= i32 @global
5187 ///  ::= i32 7
5188 ///  ::= !42
5189 ///  ::= !{...}
5190 ///  ::= !"string"
5191 ///  ::= !DILocation(...)
5192 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5193   if (Lex.getKind() == lltok::MetadataVar) {
5194     MDNode *N;
5195     if (ParseSpecializedMDNode(N))
5196       return true;
5197     MD = N;
5198     return false;
5199   }
5200 
5201   // ValueAsMetadata:
5202   // <type> <value>
5203   if (Lex.getKind() != lltok::exclaim)
5204     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5205 
5206   // '!'.
5207   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5208   Lex.Lex();
5209 
5210   // MDString:
5211   //   ::= '!' STRINGCONSTANT
5212   if (Lex.getKind() == lltok::StringConstant) {
5213     MDString *S;
5214     if (ParseMDString(S))
5215       return true;
5216     MD = S;
5217     return false;
5218   }
5219 
5220   // MDNode:
5221   // !{ ... }
5222   // !7
5223   MDNode *N;
5224   if (ParseMDNodeTail(N))
5225     return true;
5226   MD = N;
5227   return false;
5228 }
5229 
5230 //===----------------------------------------------------------------------===//
5231 // Function Parsing.
5232 //===----------------------------------------------------------------------===//
5233 
5234 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5235                                    PerFunctionState *PFS, bool IsCall) {
5236   if (Ty->isFunctionTy())
5237     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5238 
5239   switch (ID.Kind) {
5240   case ValID::t_LocalID:
5241     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5242     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5243     return V == nullptr;
5244   case ValID::t_LocalName:
5245     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5246     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5247     return V == nullptr;
5248   case ValID::t_InlineAsm: {
5249     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5250       return Error(ID.Loc, "invalid type for inline asm constraint string");
5251     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5252                        (ID.UIntVal >> 1) & 1,
5253                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5254     return false;
5255   }
5256   case ValID::t_GlobalName:
5257     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5258     return V == nullptr;
5259   case ValID::t_GlobalID:
5260     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5261     return V == nullptr;
5262   case ValID::t_APSInt:
5263     if (!Ty->isIntegerTy())
5264       return Error(ID.Loc, "integer constant must have integer type");
5265     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5266     V = ConstantInt::get(Context, ID.APSIntVal);
5267     return false;
5268   case ValID::t_APFloat:
5269     if (!Ty->isFloatingPointTy() ||
5270         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5271       return Error(ID.Loc, "floating point constant invalid for type");
5272 
5273     // The lexer has no type info, so builds all half, bfloat, float, and double
5274     // FP constants as double.  Fix this here.  Long double does not need this.
5275     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5276       bool Ignored;
5277       if (Ty->isHalfTy())
5278         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5279                               &Ignored);
5280       else if (Ty->isBFloatTy())
5281         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5282                               &Ignored);
5283       else if (Ty->isFloatTy())
5284         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5285                               &Ignored);
5286     }
5287     V = ConstantFP::get(Context, ID.APFloatVal);
5288 
5289     if (V->getType() != Ty)
5290       return Error(ID.Loc, "floating point constant does not have type '" +
5291                    getTypeString(Ty) + "'");
5292 
5293     return false;
5294   case ValID::t_Null:
5295     if (!Ty->isPointerTy())
5296       return Error(ID.Loc, "null must be a pointer type");
5297     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5298     return false;
5299   case ValID::t_Undef:
5300     // FIXME: LabelTy should not be a first-class type.
5301     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5302       return Error(ID.Loc, "invalid type for undef constant");
5303     V = UndefValue::get(Ty);
5304     return false;
5305   case ValID::t_EmptyArray:
5306     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5307       return Error(ID.Loc, "invalid empty array initializer");
5308     V = UndefValue::get(Ty);
5309     return false;
5310   case ValID::t_Zero:
5311     // FIXME: LabelTy should not be a first-class type.
5312     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5313       return Error(ID.Loc, "invalid type for null constant");
5314     V = Constant::getNullValue(Ty);
5315     return false;
5316   case ValID::t_None:
5317     if (!Ty->isTokenTy())
5318       return Error(ID.Loc, "invalid type for none constant");
5319     V = Constant::getNullValue(Ty);
5320     return false;
5321   case ValID::t_Constant:
5322     if (ID.ConstantVal->getType() != Ty)
5323       return Error(ID.Loc, "constant expression type mismatch");
5324 
5325     V = ID.ConstantVal;
5326     return false;
5327   case ValID::t_ConstantStruct:
5328   case ValID::t_PackedConstantStruct:
5329     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5330       if (ST->getNumElements() != ID.UIntVal)
5331         return Error(ID.Loc,
5332                      "initializer with struct type has wrong # elements");
5333       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5334         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5335 
5336       // Verify that the elements are compatible with the structtype.
5337       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5338         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5339           return Error(ID.Loc, "element " + Twine(i) +
5340                     " of struct initializer doesn't match struct element type");
5341 
5342       V = ConstantStruct::get(
5343           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5344     } else
5345       return Error(ID.Loc, "constant expression type mismatch");
5346     return false;
5347   }
5348   llvm_unreachable("Invalid ValID");
5349 }
5350 
5351 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5352   C = nullptr;
5353   ValID ID;
5354   auto Loc = Lex.getLoc();
5355   if (ParseValID(ID, /*PFS=*/nullptr))
5356     return true;
5357   switch (ID.Kind) {
5358   case ValID::t_APSInt:
5359   case ValID::t_APFloat:
5360   case ValID::t_Undef:
5361   case ValID::t_Constant:
5362   case ValID::t_ConstantStruct:
5363   case ValID::t_PackedConstantStruct: {
5364     Value *V;
5365     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5366       return true;
5367     assert(isa<Constant>(V) && "Expected a constant value");
5368     C = cast<Constant>(V);
5369     return false;
5370   }
5371   case ValID::t_Null:
5372     C = Constant::getNullValue(Ty);
5373     return false;
5374   default:
5375     return Error(Loc, "expected a constant value");
5376   }
5377 }
5378 
5379 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5380   V = nullptr;
5381   ValID ID;
5382   return ParseValID(ID, PFS) ||
5383          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5384 }
5385 
5386 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5387   Type *Ty = nullptr;
5388   return ParseType(Ty) ||
5389          ParseValue(Ty, V, PFS);
5390 }
5391 
5392 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5393                                       PerFunctionState &PFS) {
5394   Value *V;
5395   Loc = Lex.getLoc();
5396   if (ParseTypeAndValue(V, PFS)) return true;
5397   if (!isa<BasicBlock>(V))
5398     return Error(Loc, "expected a basic block");
5399   BB = cast<BasicBlock>(V);
5400   return false;
5401 }
5402 
5403 /// FunctionHeader
5404 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5405 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5406 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5407 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5408 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5409   // Parse the linkage.
5410   LocTy LinkageLoc = Lex.getLoc();
5411   unsigned Linkage;
5412   unsigned Visibility;
5413   unsigned DLLStorageClass;
5414   bool DSOLocal;
5415   AttrBuilder RetAttrs;
5416   unsigned CC;
5417   bool HasLinkage;
5418   Type *RetType = nullptr;
5419   LocTy RetTypeLoc = Lex.getLoc();
5420   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5421                            DSOLocal) ||
5422       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5423       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5424     return true;
5425 
5426   // Verify that the linkage is ok.
5427   switch ((GlobalValue::LinkageTypes)Linkage) {
5428   case GlobalValue::ExternalLinkage:
5429     break; // always ok.
5430   case GlobalValue::ExternalWeakLinkage:
5431     if (isDefine)
5432       return Error(LinkageLoc, "invalid linkage for function definition");
5433     break;
5434   case GlobalValue::PrivateLinkage:
5435   case GlobalValue::InternalLinkage:
5436   case GlobalValue::AvailableExternallyLinkage:
5437   case GlobalValue::LinkOnceAnyLinkage:
5438   case GlobalValue::LinkOnceODRLinkage:
5439   case GlobalValue::WeakAnyLinkage:
5440   case GlobalValue::WeakODRLinkage:
5441     if (!isDefine)
5442       return Error(LinkageLoc, "invalid linkage for function declaration");
5443     break;
5444   case GlobalValue::AppendingLinkage:
5445   case GlobalValue::CommonLinkage:
5446     return Error(LinkageLoc, "invalid function linkage type");
5447   }
5448 
5449   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5450     return Error(LinkageLoc,
5451                  "symbol with local linkage must have default visibility");
5452 
5453   if (!FunctionType::isValidReturnType(RetType))
5454     return Error(RetTypeLoc, "invalid function return type");
5455 
5456   LocTy NameLoc = Lex.getLoc();
5457 
5458   std::string FunctionName;
5459   if (Lex.getKind() == lltok::GlobalVar) {
5460     FunctionName = Lex.getStrVal();
5461   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5462     unsigned NameID = Lex.getUIntVal();
5463 
5464     if (NameID != NumberedVals.size())
5465       return TokError("function expected to be numbered '%" +
5466                       Twine(NumberedVals.size()) + "'");
5467   } else {
5468     return TokError("expected function name");
5469   }
5470 
5471   Lex.Lex();
5472 
5473   if (Lex.getKind() != lltok::lparen)
5474     return TokError("expected '(' in function argument list");
5475 
5476   SmallVector<ArgInfo, 8> ArgList;
5477   bool isVarArg;
5478   AttrBuilder FuncAttrs;
5479   std::vector<unsigned> FwdRefAttrGrps;
5480   LocTy BuiltinLoc;
5481   std::string Section;
5482   std::string Partition;
5483   MaybeAlign Alignment;
5484   std::string GC;
5485   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5486   unsigned AddrSpace = 0;
5487   Constant *Prefix = nullptr;
5488   Constant *Prologue = nullptr;
5489   Constant *PersonalityFn = nullptr;
5490   Comdat *C;
5491 
5492   if (ParseArgumentList(ArgList, isVarArg) ||
5493       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5494       ParseOptionalProgramAddrSpace(AddrSpace) ||
5495       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5496                                  BuiltinLoc) ||
5497       (EatIfPresent(lltok::kw_section) &&
5498        ParseStringConstant(Section)) ||
5499       (EatIfPresent(lltok::kw_partition) &&
5500        ParseStringConstant(Partition)) ||
5501       parseOptionalComdat(FunctionName, C) ||
5502       ParseOptionalAlignment(Alignment) ||
5503       (EatIfPresent(lltok::kw_gc) &&
5504        ParseStringConstant(GC)) ||
5505       (EatIfPresent(lltok::kw_prefix) &&
5506        ParseGlobalTypeAndValue(Prefix)) ||
5507       (EatIfPresent(lltok::kw_prologue) &&
5508        ParseGlobalTypeAndValue(Prologue)) ||
5509       (EatIfPresent(lltok::kw_personality) &&
5510        ParseGlobalTypeAndValue(PersonalityFn)))
5511     return true;
5512 
5513   if (FuncAttrs.contains(Attribute::Builtin))
5514     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5515 
5516   // If the alignment was parsed as an attribute, move to the alignment field.
5517   if (FuncAttrs.hasAlignmentAttr()) {
5518     Alignment = FuncAttrs.getAlignment();
5519     FuncAttrs.removeAttribute(Attribute::Alignment);
5520   }
5521 
5522   // Okay, if we got here, the function is syntactically valid.  Convert types
5523   // and do semantic checks.
5524   std::vector<Type*> ParamTypeList;
5525   SmallVector<AttributeSet, 8> Attrs;
5526 
5527   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5528     ParamTypeList.push_back(ArgList[i].Ty);
5529     Attrs.push_back(ArgList[i].Attrs);
5530   }
5531 
5532   AttributeList PAL =
5533       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5534                          AttributeSet::get(Context, RetAttrs), Attrs);
5535 
5536   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5537     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5538 
5539   FunctionType *FT =
5540     FunctionType::get(RetType, ParamTypeList, isVarArg);
5541   PointerType *PFT = PointerType::get(FT, AddrSpace);
5542 
5543   Fn = nullptr;
5544   if (!FunctionName.empty()) {
5545     // If this was a definition of a forward reference, remove the definition
5546     // from the forward reference table and fill in the forward ref.
5547     auto FRVI = ForwardRefVals.find(FunctionName);
5548     if (FRVI != ForwardRefVals.end()) {
5549       Fn = M->getFunction(FunctionName);
5550       if (!Fn)
5551         return Error(FRVI->second.second, "invalid forward reference to "
5552                      "function as global value!");
5553       if (Fn->getType() != PFT)
5554         return Error(FRVI->second.second, "invalid forward reference to "
5555                      "function '" + FunctionName + "' with wrong type: "
5556                      "expected '" + getTypeString(PFT) + "' but was '" +
5557                      getTypeString(Fn->getType()) + "'");
5558       ForwardRefVals.erase(FRVI);
5559     } else if ((Fn = M->getFunction(FunctionName))) {
5560       // Reject redefinitions.
5561       return Error(NameLoc, "invalid redefinition of function '" +
5562                    FunctionName + "'");
5563     } else if (M->getNamedValue(FunctionName)) {
5564       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5565     }
5566 
5567   } else {
5568     // If this is a definition of a forward referenced function, make sure the
5569     // types agree.
5570     auto I = ForwardRefValIDs.find(NumberedVals.size());
5571     if (I != ForwardRefValIDs.end()) {
5572       Fn = cast<Function>(I->second.first);
5573       if (Fn->getType() != PFT)
5574         return Error(NameLoc, "type of definition and forward reference of '@" +
5575                      Twine(NumberedVals.size()) + "' disagree: "
5576                      "expected '" + getTypeString(PFT) + "' but was '" +
5577                      getTypeString(Fn->getType()) + "'");
5578       ForwardRefValIDs.erase(I);
5579     }
5580   }
5581 
5582   if (!Fn)
5583     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5584                           FunctionName, M);
5585   else // Move the forward-reference to the correct spot in the module.
5586     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5587 
5588   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5589 
5590   if (FunctionName.empty())
5591     NumberedVals.push_back(Fn);
5592 
5593   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5594   maybeSetDSOLocal(DSOLocal, *Fn);
5595   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5596   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5597   Fn->setCallingConv(CC);
5598   Fn->setAttributes(PAL);
5599   Fn->setUnnamedAddr(UnnamedAddr);
5600   Fn->setAlignment(MaybeAlign(Alignment));
5601   Fn->setSection(Section);
5602   Fn->setPartition(Partition);
5603   Fn->setComdat(C);
5604   Fn->setPersonalityFn(PersonalityFn);
5605   if (!GC.empty()) Fn->setGC(GC);
5606   Fn->setPrefixData(Prefix);
5607   Fn->setPrologueData(Prologue);
5608   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5609 
5610   // Add all of the arguments we parsed to the function.
5611   Function::arg_iterator ArgIt = Fn->arg_begin();
5612   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5613     // If the argument has a name, insert it into the argument symbol table.
5614     if (ArgList[i].Name.empty()) continue;
5615 
5616     // Set the name, if it conflicted, it will be auto-renamed.
5617     ArgIt->setName(ArgList[i].Name);
5618 
5619     if (ArgIt->getName() != ArgList[i].Name)
5620       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5621                    ArgList[i].Name + "'");
5622   }
5623 
5624   if (isDefine)
5625     return false;
5626 
5627   // Check the declaration has no block address forward references.
5628   ValID ID;
5629   if (FunctionName.empty()) {
5630     ID.Kind = ValID::t_GlobalID;
5631     ID.UIntVal = NumberedVals.size() - 1;
5632   } else {
5633     ID.Kind = ValID::t_GlobalName;
5634     ID.StrVal = FunctionName;
5635   }
5636   auto Blocks = ForwardRefBlockAddresses.find(ID);
5637   if (Blocks != ForwardRefBlockAddresses.end())
5638     return Error(Blocks->first.Loc,
5639                  "cannot take blockaddress inside a declaration");
5640   return false;
5641 }
5642 
5643 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5644   ValID ID;
5645   if (FunctionNumber == -1) {
5646     ID.Kind = ValID::t_GlobalName;
5647     ID.StrVal = std::string(F.getName());
5648   } else {
5649     ID.Kind = ValID::t_GlobalID;
5650     ID.UIntVal = FunctionNumber;
5651   }
5652 
5653   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5654   if (Blocks == P.ForwardRefBlockAddresses.end())
5655     return false;
5656 
5657   for (const auto &I : Blocks->second) {
5658     const ValID &BBID = I.first;
5659     GlobalValue *GV = I.second;
5660 
5661     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5662            "Expected local id or name");
5663     BasicBlock *BB;
5664     if (BBID.Kind == ValID::t_LocalName)
5665       BB = GetBB(BBID.StrVal, BBID.Loc);
5666     else
5667       BB = GetBB(BBID.UIntVal, BBID.Loc);
5668     if (!BB)
5669       return P.Error(BBID.Loc, "referenced value is not a basic block");
5670 
5671     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5672     GV->eraseFromParent();
5673   }
5674 
5675   P.ForwardRefBlockAddresses.erase(Blocks);
5676   return false;
5677 }
5678 
5679 /// ParseFunctionBody
5680 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5681 bool LLParser::ParseFunctionBody(Function &Fn) {
5682   if (Lex.getKind() != lltok::lbrace)
5683     return TokError("expected '{' in function body");
5684   Lex.Lex();  // eat the {.
5685 
5686   int FunctionNumber = -1;
5687   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5688 
5689   PerFunctionState PFS(*this, Fn, FunctionNumber);
5690 
5691   // Resolve block addresses and allow basic blocks to be forward-declared
5692   // within this function.
5693   if (PFS.resolveForwardRefBlockAddresses())
5694     return true;
5695   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5696 
5697   // We need at least one basic block.
5698   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5699     return TokError("function body requires at least one basic block");
5700 
5701   while (Lex.getKind() != lltok::rbrace &&
5702          Lex.getKind() != lltok::kw_uselistorder)
5703     if (ParseBasicBlock(PFS)) return true;
5704 
5705   while (Lex.getKind() != lltok::rbrace)
5706     if (ParseUseListOrder(&PFS))
5707       return true;
5708 
5709   // Eat the }.
5710   Lex.Lex();
5711 
5712   // Verify function is ok.
5713   return PFS.FinishFunction();
5714 }
5715 
5716 /// ParseBasicBlock
5717 ///   ::= (LabelStr|LabelID)? Instruction*
5718 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5719   // If this basic block starts out with a name, remember it.
5720   std::string Name;
5721   int NameID = -1;
5722   LocTy NameLoc = Lex.getLoc();
5723   if (Lex.getKind() == lltok::LabelStr) {
5724     Name = Lex.getStrVal();
5725     Lex.Lex();
5726   } else if (Lex.getKind() == lltok::LabelID) {
5727     NameID = Lex.getUIntVal();
5728     Lex.Lex();
5729   }
5730 
5731   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5732   if (!BB)
5733     return true;
5734 
5735   std::string NameStr;
5736 
5737   // Parse the instructions in this block until we get a terminator.
5738   Instruction *Inst;
5739   do {
5740     // This instruction may have three possibilities for a name: a) none
5741     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5742     LocTy NameLoc = Lex.getLoc();
5743     int NameID = -1;
5744     NameStr = "";
5745 
5746     if (Lex.getKind() == lltok::LocalVarID) {
5747       NameID = Lex.getUIntVal();
5748       Lex.Lex();
5749       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5750         return true;
5751     } else if (Lex.getKind() == lltok::LocalVar) {
5752       NameStr = Lex.getStrVal();
5753       Lex.Lex();
5754       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5755         return true;
5756     }
5757 
5758     switch (ParseInstruction(Inst, BB, PFS)) {
5759     default: llvm_unreachable("Unknown ParseInstruction result!");
5760     case InstError: return true;
5761     case InstNormal:
5762       BB->getInstList().push_back(Inst);
5763 
5764       // With a normal result, we check to see if the instruction is followed by
5765       // a comma and metadata.
5766       if (EatIfPresent(lltok::comma))
5767         if (ParseInstructionMetadata(*Inst))
5768           return true;
5769       break;
5770     case InstExtraComma:
5771       BB->getInstList().push_back(Inst);
5772 
5773       // If the instruction parser ate an extra comma at the end of it, it
5774       // *must* be followed by metadata.
5775       if (ParseInstructionMetadata(*Inst))
5776         return true;
5777       break;
5778     }
5779 
5780     // Set the name on the instruction.
5781     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5782   } while (!Inst->isTerminator());
5783 
5784   return false;
5785 }
5786 
5787 //===----------------------------------------------------------------------===//
5788 // Instruction Parsing.
5789 //===----------------------------------------------------------------------===//
5790 
5791 /// ParseInstruction - Parse one of the many different instructions.
5792 ///
5793 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5794                                PerFunctionState &PFS) {
5795   lltok::Kind Token = Lex.getKind();
5796   if (Token == lltok::Eof)
5797     return TokError("found end of file when expecting more instructions");
5798   LocTy Loc = Lex.getLoc();
5799   unsigned KeywordVal = Lex.getUIntVal();
5800   Lex.Lex();  // Eat the keyword.
5801 
5802   switch (Token) {
5803   default:                    return Error(Loc, "expected instruction opcode");
5804   // Terminator Instructions.
5805   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5806   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5807   case lltok::kw_br:          return ParseBr(Inst, PFS);
5808   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5809   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5810   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5811   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5812   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5813   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5814   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5815   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5816   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5817   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5818   // Unary Operators.
5819   case lltok::kw_fneg: {
5820     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5821     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5822     if (Res != 0)
5823       return Res;
5824     if (FMF.any())
5825       Inst->setFastMathFlags(FMF);
5826     return false;
5827   }
5828   // Binary Operators.
5829   case lltok::kw_add:
5830   case lltok::kw_sub:
5831   case lltok::kw_mul:
5832   case lltok::kw_shl: {
5833     bool NUW = EatIfPresent(lltok::kw_nuw);
5834     bool NSW = EatIfPresent(lltok::kw_nsw);
5835     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5836 
5837     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5838 
5839     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5840     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5841     return false;
5842   }
5843   case lltok::kw_fadd:
5844   case lltok::kw_fsub:
5845   case lltok::kw_fmul:
5846   case lltok::kw_fdiv:
5847   case lltok::kw_frem: {
5848     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5849     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5850     if (Res != 0)
5851       return Res;
5852     if (FMF.any())
5853       Inst->setFastMathFlags(FMF);
5854     return 0;
5855   }
5856 
5857   case lltok::kw_sdiv:
5858   case lltok::kw_udiv:
5859   case lltok::kw_lshr:
5860   case lltok::kw_ashr: {
5861     bool Exact = EatIfPresent(lltok::kw_exact);
5862 
5863     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5864     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5865     return false;
5866   }
5867 
5868   case lltok::kw_urem:
5869   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5870                                                 /*IsFP*/false);
5871   case lltok::kw_and:
5872   case lltok::kw_or:
5873   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5874   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5875   case lltok::kw_fcmp: {
5876     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5877     int Res = ParseCompare(Inst, PFS, KeywordVal);
5878     if (Res != 0)
5879       return Res;
5880     if (FMF.any())
5881       Inst->setFastMathFlags(FMF);
5882     return 0;
5883   }
5884 
5885   // Casts.
5886   case lltok::kw_trunc:
5887   case lltok::kw_zext:
5888   case lltok::kw_sext:
5889   case lltok::kw_fptrunc:
5890   case lltok::kw_fpext:
5891   case lltok::kw_bitcast:
5892   case lltok::kw_addrspacecast:
5893   case lltok::kw_uitofp:
5894   case lltok::kw_sitofp:
5895   case lltok::kw_fptoui:
5896   case lltok::kw_fptosi:
5897   case lltok::kw_inttoptr:
5898   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5899   // Other.
5900   case lltok::kw_select: {
5901     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5902     int Res = ParseSelect(Inst, PFS);
5903     if (Res != 0)
5904       return Res;
5905     if (FMF.any()) {
5906       if (!isa<FPMathOperator>(Inst))
5907         return Error(Loc, "fast-math-flags specified for select without "
5908                           "floating-point scalar or vector return type");
5909       Inst->setFastMathFlags(FMF);
5910     }
5911     return 0;
5912   }
5913   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5914   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5915   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5916   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5917   case lltok::kw_phi: {
5918     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5919     int Res = ParsePHI(Inst, PFS);
5920     if (Res != 0)
5921       return Res;
5922     if (FMF.any()) {
5923       if (!isa<FPMathOperator>(Inst))
5924         return Error(Loc, "fast-math-flags specified for phi without "
5925                           "floating-point scalar or vector return type");
5926       Inst->setFastMathFlags(FMF);
5927     }
5928     return 0;
5929   }
5930   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5931   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5932   // Call.
5933   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5934   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5935   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5936   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5937   // Memory.
5938   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5939   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5940   case lltok::kw_store:          return ParseStore(Inst, PFS);
5941   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5942   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5943   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5944   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5945   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5946   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5947   }
5948 }
5949 
5950 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5951 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5952   if (Opc == Instruction::FCmp) {
5953     switch (Lex.getKind()) {
5954     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5955     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5956     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5957     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5958     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5959     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5960     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5961     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5962     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5963     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5964     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5965     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5966     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5967     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5968     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5969     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5970     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5971     }
5972   } else {
5973     switch (Lex.getKind()) {
5974     default: return TokError("expected icmp predicate (e.g. 'eq')");
5975     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5976     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5977     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5978     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5979     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5980     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5981     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5982     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5983     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5984     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5985     }
5986   }
5987   Lex.Lex();
5988   return false;
5989 }
5990 
5991 //===----------------------------------------------------------------------===//
5992 // Terminator Instructions.
5993 //===----------------------------------------------------------------------===//
5994 
5995 /// ParseRet - Parse a return instruction.
5996 ///   ::= 'ret' void (',' !dbg, !1)*
5997 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5998 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5999                         PerFunctionState &PFS) {
6000   SMLoc TypeLoc = Lex.getLoc();
6001   Type *Ty = nullptr;
6002   if (ParseType(Ty, true /*void allowed*/)) return true;
6003 
6004   Type *ResType = PFS.getFunction().getReturnType();
6005 
6006   if (Ty->isVoidTy()) {
6007     if (!ResType->isVoidTy())
6008       return Error(TypeLoc, "value doesn't match function result type '" +
6009                    getTypeString(ResType) + "'");
6010 
6011     Inst = ReturnInst::Create(Context);
6012     return false;
6013   }
6014 
6015   Value *RV;
6016   if (ParseValue(Ty, RV, PFS)) return true;
6017 
6018   if (ResType != RV->getType())
6019     return Error(TypeLoc, "value doesn't match function result type '" +
6020                  getTypeString(ResType) + "'");
6021 
6022   Inst = ReturnInst::Create(Context, RV);
6023   return false;
6024 }
6025 
6026 /// ParseBr
6027 ///   ::= 'br' TypeAndValue
6028 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6029 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6030   LocTy Loc, Loc2;
6031   Value *Op0;
6032   BasicBlock *Op1, *Op2;
6033   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6034 
6035   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6036     Inst = BranchInst::Create(BB);
6037     return false;
6038   }
6039 
6040   if (Op0->getType() != Type::getInt1Ty(Context))
6041     return Error(Loc, "branch condition must have 'i1' type");
6042 
6043   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6044       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6045       ParseToken(lltok::comma, "expected ',' after true destination") ||
6046       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6047     return true;
6048 
6049   Inst = BranchInst::Create(Op1, Op2, Op0);
6050   return false;
6051 }
6052 
6053 /// ParseSwitch
6054 ///  Instruction
6055 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6056 ///  JumpTable
6057 ///    ::= (TypeAndValue ',' TypeAndValue)*
6058 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6059   LocTy CondLoc, BBLoc;
6060   Value *Cond;
6061   BasicBlock *DefaultBB;
6062   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6063       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6064       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6065       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6066     return true;
6067 
6068   if (!Cond->getType()->isIntegerTy())
6069     return Error(CondLoc, "switch condition must have integer type");
6070 
6071   // Parse the jump table pairs.
6072   SmallPtrSet<Value*, 32> SeenCases;
6073   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6074   while (Lex.getKind() != lltok::rsquare) {
6075     Value *Constant;
6076     BasicBlock *DestBB;
6077 
6078     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6079         ParseToken(lltok::comma, "expected ',' after case value") ||
6080         ParseTypeAndBasicBlock(DestBB, PFS))
6081       return true;
6082 
6083     if (!SeenCases.insert(Constant).second)
6084       return Error(CondLoc, "duplicate case value in switch");
6085     if (!isa<ConstantInt>(Constant))
6086       return Error(CondLoc, "case value is not a constant integer");
6087 
6088     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6089   }
6090 
6091   Lex.Lex();  // Eat the ']'.
6092 
6093   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6094   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6095     SI->addCase(Table[i].first, Table[i].second);
6096   Inst = SI;
6097   return false;
6098 }
6099 
6100 /// ParseIndirectBr
6101 ///  Instruction
6102 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6103 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6104   LocTy AddrLoc;
6105   Value *Address;
6106   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6107       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6108       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6109     return true;
6110 
6111   if (!Address->getType()->isPointerTy())
6112     return Error(AddrLoc, "indirectbr address must have pointer type");
6113 
6114   // Parse the destination list.
6115   SmallVector<BasicBlock*, 16> DestList;
6116 
6117   if (Lex.getKind() != lltok::rsquare) {
6118     BasicBlock *DestBB;
6119     if (ParseTypeAndBasicBlock(DestBB, PFS))
6120       return true;
6121     DestList.push_back(DestBB);
6122 
6123     while (EatIfPresent(lltok::comma)) {
6124       if (ParseTypeAndBasicBlock(DestBB, PFS))
6125         return true;
6126       DestList.push_back(DestBB);
6127     }
6128   }
6129 
6130   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6131     return true;
6132 
6133   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6134   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6135     IBI->addDestination(DestList[i]);
6136   Inst = IBI;
6137   return false;
6138 }
6139 
6140 /// ParseInvoke
6141 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6142 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6143 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6144   LocTy CallLoc = Lex.getLoc();
6145   AttrBuilder RetAttrs, FnAttrs;
6146   std::vector<unsigned> FwdRefAttrGrps;
6147   LocTy NoBuiltinLoc;
6148   unsigned CC;
6149   unsigned InvokeAddrSpace;
6150   Type *RetType = nullptr;
6151   LocTy RetTypeLoc;
6152   ValID CalleeID;
6153   SmallVector<ParamInfo, 16> ArgList;
6154   SmallVector<OperandBundleDef, 2> BundleList;
6155 
6156   BasicBlock *NormalBB, *UnwindBB;
6157   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6158       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6159       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6160       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6161       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6162                                  NoBuiltinLoc) ||
6163       ParseOptionalOperandBundles(BundleList, PFS) ||
6164       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6165       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6166       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6167       ParseTypeAndBasicBlock(UnwindBB, PFS))
6168     return true;
6169 
6170   // If RetType is a non-function pointer type, then this is the short syntax
6171   // for the call, which means that RetType is just the return type.  Infer the
6172   // rest of the function argument types from the arguments that are present.
6173   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6174   if (!Ty) {
6175     // Pull out the types of all of the arguments...
6176     std::vector<Type*> ParamTypes;
6177     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6178       ParamTypes.push_back(ArgList[i].V->getType());
6179 
6180     if (!FunctionType::isValidReturnType(RetType))
6181       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6182 
6183     Ty = FunctionType::get(RetType, ParamTypes, false);
6184   }
6185 
6186   CalleeID.FTy = Ty;
6187 
6188   // Look up the callee.
6189   Value *Callee;
6190   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6191                           Callee, &PFS, /*IsCall=*/true))
6192     return true;
6193 
6194   // Set up the Attribute for the function.
6195   SmallVector<Value *, 8> Args;
6196   SmallVector<AttributeSet, 8> ArgAttrs;
6197 
6198   // Loop through FunctionType's arguments and ensure they are specified
6199   // correctly.  Also, gather any parameter attributes.
6200   FunctionType::param_iterator I = Ty->param_begin();
6201   FunctionType::param_iterator E = Ty->param_end();
6202   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6203     Type *ExpectedTy = nullptr;
6204     if (I != E) {
6205       ExpectedTy = *I++;
6206     } else if (!Ty->isVarArg()) {
6207       return Error(ArgList[i].Loc, "too many arguments specified");
6208     }
6209 
6210     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6211       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6212                    getTypeString(ExpectedTy) + "'");
6213     Args.push_back(ArgList[i].V);
6214     ArgAttrs.push_back(ArgList[i].Attrs);
6215   }
6216 
6217   if (I != E)
6218     return Error(CallLoc, "not enough parameters specified for call");
6219 
6220   if (FnAttrs.hasAlignmentAttr())
6221     return Error(CallLoc, "invoke instructions may not have an alignment");
6222 
6223   // Finish off the Attribute and check them
6224   AttributeList PAL =
6225       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6226                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6227 
6228   InvokeInst *II =
6229       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6230   II->setCallingConv(CC);
6231   II->setAttributes(PAL);
6232   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6233   Inst = II;
6234   return false;
6235 }
6236 
6237 /// ParseResume
6238 ///   ::= 'resume' TypeAndValue
6239 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6240   Value *Exn; LocTy ExnLoc;
6241   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6242     return true;
6243 
6244   ResumeInst *RI = ResumeInst::Create(Exn);
6245   Inst = RI;
6246   return false;
6247 }
6248 
6249 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6250                                   PerFunctionState &PFS) {
6251   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6252     return true;
6253 
6254   while (Lex.getKind() != lltok::rsquare) {
6255     // If this isn't the first argument, we need a comma.
6256     if (!Args.empty() &&
6257         ParseToken(lltok::comma, "expected ',' in argument list"))
6258       return true;
6259 
6260     // Parse the argument.
6261     LocTy ArgLoc;
6262     Type *ArgTy = nullptr;
6263     if (ParseType(ArgTy, ArgLoc))
6264       return true;
6265 
6266     Value *V;
6267     if (ArgTy->isMetadataTy()) {
6268       if (ParseMetadataAsValue(V, PFS))
6269         return true;
6270     } else {
6271       if (ParseValue(ArgTy, V, PFS))
6272         return true;
6273     }
6274     Args.push_back(V);
6275   }
6276 
6277   Lex.Lex();  // Lex the ']'.
6278   return false;
6279 }
6280 
6281 /// ParseCleanupRet
6282 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6283 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6284   Value *CleanupPad = nullptr;
6285 
6286   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6287     return true;
6288 
6289   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6290     return true;
6291 
6292   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6293     return true;
6294 
6295   BasicBlock *UnwindBB = nullptr;
6296   if (Lex.getKind() == lltok::kw_to) {
6297     Lex.Lex();
6298     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6299       return true;
6300   } else {
6301     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6302       return true;
6303     }
6304   }
6305 
6306   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6307   return false;
6308 }
6309 
6310 /// ParseCatchRet
6311 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6312 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6313   Value *CatchPad = nullptr;
6314 
6315   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6316     return true;
6317 
6318   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6319     return true;
6320 
6321   BasicBlock *BB;
6322   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6323       ParseTypeAndBasicBlock(BB, PFS))
6324       return true;
6325 
6326   Inst = CatchReturnInst::Create(CatchPad, BB);
6327   return false;
6328 }
6329 
6330 /// ParseCatchSwitch
6331 ///   ::= 'catchswitch' within Parent
6332 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6333   Value *ParentPad;
6334 
6335   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6336     return true;
6337 
6338   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6339       Lex.getKind() != lltok::LocalVarID)
6340     return TokError("expected scope value for catchswitch");
6341 
6342   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6343     return true;
6344 
6345   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6346     return true;
6347 
6348   SmallVector<BasicBlock *, 32> Table;
6349   do {
6350     BasicBlock *DestBB;
6351     if (ParseTypeAndBasicBlock(DestBB, PFS))
6352       return true;
6353     Table.push_back(DestBB);
6354   } while (EatIfPresent(lltok::comma));
6355 
6356   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6357     return true;
6358 
6359   if (ParseToken(lltok::kw_unwind,
6360                  "expected 'unwind' after catchswitch scope"))
6361     return true;
6362 
6363   BasicBlock *UnwindBB = nullptr;
6364   if (EatIfPresent(lltok::kw_to)) {
6365     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6366       return true;
6367   } else {
6368     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6369       return true;
6370   }
6371 
6372   auto *CatchSwitch =
6373       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6374   for (BasicBlock *DestBB : Table)
6375     CatchSwitch->addHandler(DestBB);
6376   Inst = CatchSwitch;
6377   return false;
6378 }
6379 
6380 /// ParseCatchPad
6381 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6382 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6383   Value *CatchSwitch = nullptr;
6384 
6385   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6386     return true;
6387 
6388   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6389     return TokError("expected scope value for catchpad");
6390 
6391   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6392     return true;
6393 
6394   SmallVector<Value *, 8> Args;
6395   if (ParseExceptionArgs(Args, PFS))
6396     return true;
6397 
6398   Inst = CatchPadInst::Create(CatchSwitch, Args);
6399   return false;
6400 }
6401 
6402 /// ParseCleanupPad
6403 ///   ::= 'cleanuppad' within Parent ParamList
6404 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6405   Value *ParentPad = nullptr;
6406 
6407   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6408     return true;
6409 
6410   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6411       Lex.getKind() != lltok::LocalVarID)
6412     return TokError("expected scope value for cleanuppad");
6413 
6414   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6415     return true;
6416 
6417   SmallVector<Value *, 8> Args;
6418   if (ParseExceptionArgs(Args, PFS))
6419     return true;
6420 
6421   Inst = CleanupPadInst::Create(ParentPad, Args);
6422   return false;
6423 }
6424 
6425 //===----------------------------------------------------------------------===//
6426 // Unary Operators.
6427 //===----------------------------------------------------------------------===//
6428 
6429 /// ParseUnaryOp
6430 ///  ::= UnaryOp TypeAndValue ',' Value
6431 ///
6432 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6433 /// operand is allowed.
6434 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6435                             unsigned Opc, bool IsFP) {
6436   LocTy Loc; Value *LHS;
6437   if (ParseTypeAndValue(LHS, Loc, PFS))
6438     return true;
6439 
6440   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6441                     : LHS->getType()->isIntOrIntVectorTy();
6442 
6443   if (!Valid)
6444     return Error(Loc, "invalid operand type for instruction");
6445 
6446   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6447   return false;
6448 }
6449 
6450 /// ParseCallBr
6451 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6452 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6453 ///       '[' LabelList ']'
6454 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6455   LocTy CallLoc = Lex.getLoc();
6456   AttrBuilder RetAttrs, FnAttrs;
6457   std::vector<unsigned> FwdRefAttrGrps;
6458   LocTy NoBuiltinLoc;
6459   unsigned CC;
6460   Type *RetType = nullptr;
6461   LocTy RetTypeLoc;
6462   ValID CalleeID;
6463   SmallVector<ParamInfo, 16> ArgList;
6464   SmallVector<OperandBundleDef, 2> BundleList;
6465 
6466   BasicBlock *DefaultDest;
6467   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6468       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6469       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6470       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6471                                  NoBuiltinLoc) ||
6472       ParseOptionalOperandBundles(BundleList, PFS) ||
6473       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6474       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6475       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6476     return true;
6477 
6478   // Parse the destination list.
6479   SmallVector<BasicBlock *, 16> IndirectDests;
6480 
6481   if (Lex.getKind() != lltok::rsquare) {
6482     BasicBlock *DestBB;
6483     if (ParseTypeAndBasicBlock(DestBB, PFS))
6484       return true;
6485     IndirectDests.push_back(DestBB);
6486 
6487     while (EatIfPresent(lltok::comma)) {
6488       if (ParseTypeAndBasicBlock(DestBB, PFS))
6489         return true;
6490       IndirectDests.push_back(DestBB);
6491     }
6492   }
6493 
6494   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6495     return true;
6496 
6497   // If RetType is a non-function pointer type, then this is the short syntax
6498   // for the call, which means that RetType is just the return type.  Infer the
6499   // rest of the function argument types from the arguments that are present.
6500   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6501   if (!Ty) {
6502     // Pull out the types of all of the arguments...
6503     std::vector<Type *> ParamTypes;
6504     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6505       ParamTypes.push_back(ArgList[i].V->getType());
6506 
6507     if (!FunctionType::isValidReturnType(RetType))
6508       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6509 
6510     Ty = FunctionType::get(RetType, ParamTypes, false);
6511   }
6512 
6513   CalleeID.FTy = Ty;
6514 
6515   // Look up the callee.
6516   Value *Callee;
6517   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6518                           /*IsCall=*/true))
6519     return true;
6520 
6521   // Set up the Attribute for the function.
6522   SmallVector<Value *, 8> Args;
6523   SmallVector<AttributeSet, 8> ArgAttrs;
6524 
6525   // Loop through FunctionType's arguments and ensure they are specified
6526   // correctly.  Also, gather any parameter attributes.
6527   FunctionType::param_iterator I = Ty->param_begin();
6528   FunctionType::param_iterator E = Ty->param_end();
6529   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6530     Type *ExpectedTy = nullptr;
6531     if (I != E) {
6532       ExpectedTy = *I++;
6533     } else if (!Ty->isVarArg()) {
6534       return Error(ArgList[i].Loc, "too many arguments specified");
6535     }
6536 
6537     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6538       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6539                                        getTypeString(ExpectedTy) + "'");
6540     Args.push_back(ArgList[i].V);
6541     ArgAttrs.push_back(ArgList[i].Attrs);
6542   }
6543 
6544   if (I != E)
6545     return Error(CallLoc, "not enough parameters specified for call");
6546 
6547   if (FnAttrs.hasAlignmentAttr())
6548     return Error(CallLoc, "callbr instructions may not have an alignment");
6549 
6550   // Finish off the Attribute and check them
6551   AttributeList PAL =
6552       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6553                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6554 
6555   CallBrInst *CBI =
6556       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6557                          BundleList);
6558   CBI->setCallingConv(CC);
6559   CBI->setAttributes(PAL);
6560   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6561   Inst = CBI;
6562   return false;
6563 }
6564 
6565 //===----------------------------------------------------------------------===//
6566 // Binary Operators.
6567 //===----------------------------------------------------------------------===//
6568 
6569 /// ParseArithmetic
6570 ///  ::= ArithmeticOps TypeAndValue ',' Value
6571 ///
6572 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6573 /// operand is allowed.
6574 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6575                                unsigned Opc, bool IsFP) {
6576   LocTy Loc; Value *LHS, *RHS;
6577   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6578       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6579       ParseValue(LHS->getType(), RHS, PFS))
6580     return true;
6581 
6582   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6583                     : LHS->getType()->isIntOrIntVectorTy();
6584 
6585   if (!Valid)
6586     return Error(Loc, "invalid operand type for instruction");
6587 
6588   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6589   return false;
6590 }
6591 
6592 /// ParseLogical
6593 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6594 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6595                             unsigned Opc) {
6596   LocTy Loc; Value *LHS, *RHS;
6597   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6598       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6599       ParseValue(LHS->getType(), RHS, PFS))
6600     return true;
6601 
6602   if (!LHS->getType()->isIntOrIntVectorTy())
6603     return Error(Loc,"instruction requires integer or integer vector operands");
6604 
6605   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6606   return false;
6607 }
6608 
6609 /// ParseCompare
6610 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6611 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6612 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6613                             unsigned Opc) {
6614   // Parse the integer/fp comparison predicate.
6615   LocTy Loc;
6616   unsigned Pred;
6617   Value *LHS, *RHS;
6618   if (ParseCmpPredicate(Pred, Opc) ||
6619       ParseTypeAndValue(LHS, Loc, PFS) ||
6620       ParseToken(lltok::comma, "expected ',' after compare value") ||
6621       ParseValue(LHS->getType(), RHS, PFS))
6622     return true;
6623 
6624   if (Opc == Instruction::FCmp) {
6625     if (!LHS->getType()->isFPOrFPVectorTy())
6626       return Error(Loc, "fcmp requires floating point operands");
6627     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6628   } else {
6629     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6630     if (!LHS->getType()->isIntOrIntVectorTy() &&
6631         !LHS->getType()->isPtrOrPtrVectorTy())
6632       return Error(Loc, "icmp requires integer operands");
6633     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6634   }
6635   return false;
6636 }
6637 
6638 //===----------------------------------------------------------------------===//
6639 // Other Instructions.
6640 //===----------------------------------------------------------------------===//
6641 
6642 
6643 /// ParseCast
6644 ///   ::= CastOpc TypeAndValue 'to' Type
6645 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6646                          unsigned Opc) {
6647   LocTy Loc;
6648   Value *Op;
6649   Type *DestTy = nullptr;
6650   if (ParseTypeAndValue(Op, Loc, PFS) ||
6651       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6652       ParseType(DestTy))
6653     return true;
6654 
6655   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6656     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6657     return Error(Loc, "invalid cast opcode for cast from '" +
6658                  getTypeString(Op->getType()) + "' to '" +
6659                  getTypeString(DestTy) + "'");
6660   }
6661   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6662   return false;
6663 }
6664 
6665 /// ParseSelect
6666 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6667 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6668   LocTy Loc;
6669   Value *Op0, *Op1, *Op2;
6670   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6671       ParseToken(lltok::comma, "expected ',' after select condition") ||
6672       ParseTypeAndValue(Op1, PFS) ||
6673       ParseToken(lltok::comma, "expected ',' after select value") ||
6674       ParseTypeAndValue(Op2, PFS))
6675     return true;
6676 
6677   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6678     return Error(Loc, Reason);
6679 
6680   Inst = SelectInst::Create(Op0, Op1, Op2);
6681   return false;
6682 }
6683 
6684 /// ParseVA_Arg
6685 ///   ::= 'va_arg' TypeAndValue ',' Type
6686 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6687   Value *Op;
6688   Type *EltTy = nullptr;
6689   LocTy TypeLoc;
6690   if (ParseTypeAndValue(Op, PFS) ||
6691       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6692       ParseType(EltTy, TypeLoc))
6693     return true;
6694 
6695   if (!EltTy->isFirstClassType())
6696     return Error(TypeLoc, "va_arg requires operand with first class type");
6697 
6698   Inst = new VAArgInst(Op, EltTy);
6699   return false;
6700 }
6701 
6702 /// ParseExtractElement
6703 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6704 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6705   LocTy Loc;
6706   Value *Op0, *Op1;
6707   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6708       ParseToken(lltok::comma, "expected ',' after extract value") ||
6709       ParseTypeAndValue(Op1, PFS))
6710     return true;
6711 
6712   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6713     return Error(Loc, "invalid extractelement operands");
6714 
6715   Inst = ExtractElementInst::Create(Op0, Op1);
6716   return false;
6717 }
6718 
6719 /// ParseInsertElement
6720 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6721 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6722   LocTy Loc;
6723   Value *Op0, *Op1, *Op2;
6724   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6725       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6726       ParseTypeAndValue(Op1, PFS) ||
6727       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6728       ParseTypeAndValue(Op2, PFS))
6729     return true;
6730 
6731   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6732     return Error(Loc, "invalid insertelement operands");
6733 
6734   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6735   return false;
6736 }
6737 
6738 /// ParseShuffleVector
6739 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6740 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6741   LocTy Loc;
6742   Value *Op0, *Op1, *Op2;
6743   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6744       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6745       ParseTypeAndValue(Op1, PFS) ||
6746       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6747       ParseTypeAndValue(Op2, PFS))
6748     return true;
6749 
6750   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6751     return Error(Loc, "invalid shufflevector operands");
6752 
6753   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6754   return false;
6755 }
6756 
6757 /// ParsePHI
6758 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6759 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6760   Type *Ty = nullptr;  LocTy TypeLoc;
6761   Value *Op0, *Op1;
6762 
6763   if (ParseType(Ty, TypeLoc) ||
6764       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6765       ParseValue(Ty, Op0, PFS) ||
6766       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6767       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6768       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6769     return true;
6770 
6771   bool AteExtraComma = false;
6772   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6773 
6774   while (true) {
6775     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6776 
6777     if (!EatIfPresent(lltok::comma))
6778       break;
6779 
6780     if (Lex.getKind() == lltok::MetadataVar) {
6781       AteExtraComma = true;
6782       break;
6783     }
6784 
6785     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6786         ParseValue(Ty, Op0, PFS) ||
6787         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6788         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6789         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6790       return true;
6791   }
6792 
6793   if (!Ty->isFirstClassType())
6794     return Error(TypeLoc, "phi node must have first class type");
6795 
6796   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6797   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6798     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6799   Inst = PN;
6800   return AteExtraComma ? InstExtraComma : InstNormal;
6801 }
6802 
6803 /// ParseLandingPad
6804 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6805 /// Clause
6806 ///   ::= 'catch' TypeAndValue
6807 ///   ::= 'filter'
6808 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6809 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6810   Type *Ty = nullptr; LocTy TyLoc;
6811 
6812   if (ParseType(Ty, TyLoc))
6813     return true;
6814 
6815   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6816   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6817 
6818   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6819     LandingPadInst::ClauseType CT;
6820     if (EatIfPresent(lltok::kw_catch))
6821       CT = LandingPadInst::Catch;
6822     else if (EatIfPresent(lltok::kw_filter))
6823       CT = LandingPadInst::Filter;
6824     else
6825       return TokError("expected 'catch' or 'filter' clause type");
6826 
6827     Value *V;
6828     LocTy VLoc;
6829     if (ParseTypeAndValue(V, VLoc, PFS))
6830       return true;
6831 
6832     // A 'catch' type expects a non-array constant. A filter clause expects an
6833     // array constant.
6834     if (CT == LandingPadInst::Catch) {
6835       if (isa<ArrayType>(V->getType()))
6836         Error(VLoc, "'catch' clause has an invalid type");
6837     } else {
6838       if (!isa<ArrayType>(V->getType()))
6839         Error(VLoc, "'filter' clause has an invalid type");
6840     }
6841 
6842     Constant *CV = dyn_cast<Constant>(V);
6843     if (!CV)
6844       return Error(VLoc, "clause argument must be a constant");
6845     LP->addClause(CV);
6846   }
6847 
6848   Inst = LP.release();
6849   return false;
6850 }
6851 
6852 /// ParseFreeze
6853 ///   ::= 'freeze' Type Value
6854 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6855   LocTy Loc;
6856   Value *Op;
6857   if (ParseTypeAndValue(Op, Loc, PFS))
6858     return true;
6859 
6860   Inst = new FreezeInst(Op);
6861   return false;
6862 }
6863 
6864 /// ParseCall
6865 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6866 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6867 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6868 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6869 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6870 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6871 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6872 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6873 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6874                          CallInst::TailCallKind TCK) {
6875   AttrBuilder RetAttrs, FnAttrs;
6876   std::vector<unsigned> FwdRefAttrGrps;
6877   LocTy BuiltinLoc;
6878   unsigned CallAddrSpace;
6879   unsigned CC;
6880   Type *RetType = nullptr;
6881   LocTy RetTypeLoc;
6882   ValID CalleeID;
6883   SmallVector<ParamInfo, 16> ArgList;
6884   SmallVector<OperandBundleDef, 2> BundleList;
6885   LocTy CallLoc = Lex.getLoc();
6886 
6887   if (TCK != CallInst::TCK_None &&
6888       ParseToken(lltok::kw_call,
6889                  "expected 'tail call', 'musttail call', or 'notail call'"))
6890     return true;
6891 
6892   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6893 
6894   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6895       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6896       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6897       ParseValID(CalleeID) ||
6898       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6899                          PFS.getFunction().isVarArg()) ||
6900       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6901       ParseOptionalOperandBundles(BundleList, PFS))
6902     return true;
6903 
6904   // If RetType is a non-function pointer type, then this is the short syntax
6905   // for the call, which means that RetType is just the return type.  Infer the
6906   // rest of the function argument types from the arguments that are present.
6907   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6908   if (!Ty) {
6909     // Pull out the types of all of the arguments...
6910     std::vector<Type*> ParamTypes;
6911     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6912       ParamTypes.push_back(ArgList[i].V->getType());
6913 
6914     if (!FunctionType::isValidReturnType(RetType))
6915       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6916 
6917     Ty = FunctionType::get(RetType, ParamTypes, false);
6918   }
6919 
6920   CalleeID.FTy = Ty;
6921 
6922   // Look up the callee.
6923   Value *Callee;
6924   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6925                           &PFS, /*IsCall=*/true))
6926     return true;
6927 
6928   // Set up the Attribute for the function.
6929   SmallVector<AttributeSet, 8> Attrs;
6930 
6931   SmallVector<Value*, 8> Args;
6932 
6933   // Loop through FunctionType's arguments and ensure they are specified
6934   // correctly.  Also, gather any parameter attributes.
6935   FunctionType::param_iterator I = Ty->param_begin();
6936   FunctionType::param_iterator E = Ty->param_end();
6937   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6938     Type *ExpectedTy = nullptr;
6939     if (I != E) {
6940       ExpectedTy = *I++;
6941     } else if (!Ty->isVarArg()) {
6942       return Error(ArgList[i].Loc, "too many arguments specified");
6943     }
6944 
6945     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6946       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6947                    getTypeString(ExpectedTy) + "'");
6948     Args.push_back(ArgList[i].V);
6949     Attrs.push_back(ArgList[i].Attrs);
6950   }
6951 
6952   if (I != E)
6953     return Error(CallLoc, "not enough parameters specified for call");
6954 
6955   if (FnAttrs.hasAlignmentAttr())
6956     return Error(CallLoc, "call instructions may not have an alignment");
6957 
6958   // Finish off the Attribute and check them
6959   AttributeList PAL =
6960       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6961                          AttributeSet::get(Context, RetAttrs), Attrs);
6962 
6963   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6964   CI->setTailCallKind(TCK);
6965   CI->setCallingConv(CC);
6966   if (FMF.any()) {
6967     if (!isa<FPMathOperator>(CI)) {
6968       CI->deleteValue();
6969       return Error(CallLoc, "fast-math-flags specified for call without "
6970                    "floating-point scalar or vector return type");
6971     }
6972     CI->setFastMathFlags(FMF);
6973   }
6974   CI->setAttributes(PAL);
6975   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6976   Inst = CI;
6977   return false;
6978 }
6979 
6980 //===----------------------------------------------------------------------===//
6981 // Memory Instructions.
6982 //===----------------------------------------------------------------------===//
6983 
6984 /// ParseAlloc
6985 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6986 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6987 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6988   Value *Size = nullptr;
6989   LocTy SizeLoc, TyLoc, ASLoc;
6990   MaybeAlign Alignment;
6991   unsigned AddrSpace = 0;
6992   Type *Ty = nullptr;
6993 
6994   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6995   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6996 
6997   if (ParseType(Ty, TyLoc)) return true;
6998 
6999   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7000     return Error(TyLoc, "invalid type for alloca");
7001 
7002   bool AteExtraComma = false;
7003   if (EatIfPresent(lltok::comma)) {
7004     if (Lex.getKind() == lltok::kw_align) {
7005       if (ParseOptionalAlignment(Alignment))
7006         return true;
7007       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7008         return true;
7009     } else if (Lex.getKind() == lltok::kw_addrspace) {
7010       ASLoc = Lex.getLoc();
7011       if (ParseOptionalAddrSpace(AddrSpace))
7012         return true;
7013     } else if (Lex.getKind() == lltok::MetadataVar) {
7014       AteExtraComma = true;
7015     } else {
7016       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7017         return true;
7018       if (EatIfPresent(lltok::comma)) {
7019         if (Lex.getKind() == lltok::kw_align) {
7020           if (ParseOptionalAlignment(Alignment))
7021             return true;
7022           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7023             return true;
7024         } else if (Lex.getKind() == lltok::kw_addrspace) {
7025           ASLoc = Lex.getLoc();
7026           if (ParseOptionalAddrSpace(AddrSpace))
7027             return true;
7028         } else if (Lex.getKind() == lltok::MetadataVar) {
7029           AteExtraComma = true;
7030         }
7031       }
7032     }
7033   }
7034 
7035   if (Size && !Size->getType()->isIntegerTy())
7036     return Error(SizeLoc, "element count must have integer type");
7037 
7038   SmallPtrSet<Type *, 4> Visited;
7039   if (!Alignment && !Ty->isSized(&Visited))
7040     return Error(TyLoc, "Cannot allocate unsized type");
7041   if (!Alignment)
7042     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7043   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7044   AI->setUsedWithInAlloca(IsInAlloca);
7045   AI->setSwiftError(IsSwiftError);
7046   Inst = AI;
7047   return AteExtraComma ? InstExtraComma : InstNormal;
7048 }
7049 
7050 /// ParseLoad
7051 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7052 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7053 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7054 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7055   Value *Val; LocTy Loc;
7056   MaybeAlign Alignment;
7057   bool AteExtraComma = false;
7058   bool isAtomic = false;
7059   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7060   SyncScope::ID SSID = SyncScope::System;
7061 
7062   if (Lex.getKind() == lltok::kw_atomic) {
7063     isAtomic = true;
7064     Lex.Lex();
7065   }
7066 
7067   bool isVolatile = false;
7068   if (Lex.getKind() == lltok::kw_volatile) {
7069     isVolatile = true;
7070     Lex.Lex();
7071   }
7072 
7073   Type *Ty;
7074   LocTy ExplicitTypeLoc = Lex.getLoc();
7075   if (ParseType(Ty) ||
7076       ParseToken(lltok::comma, "expected comma after load's type") ||
7077       ParseTypeAndValue(Val, Loc, PFS) ||
7078       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7079       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7080     return true;
7081 
7082   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7083     return Error(Loc, "load operand must be a pointer to a first class type");
7084   if (isAtomic && !Alignment)
7085     return Error(Loc, "atomic load must have explicit non-zero alignment");
7086   if (Ordering == AtomicOrdering::Release ||
7087       Ordering == AtomicOrdering::AcquireRelease)
7088     return Error(Loc, "atomic load cannot use Release ordering");
7089 
7090   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7091     return Error(ExplicitTypeLoc,
7092                  "explicit pointee type doesn't match operand's pointee type");
7093   SmallPtrSet<Type *, 4> Visited;
7094   if (!Alignment && !Ty->isSized(&Visited))
7095     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7096   if (!Alignment)
7097     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7098   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7099   return AteExtraComma ? InstExtraComma : InstNormal;
7100 }
7101 
7102 /// ParseStore
7103 
7104 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7105 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7106 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7107 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7108   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7109   MaybeAlign Alignment;
7110   bool AteExtraComma = false;
7111   bool isAtomic = false;
7112   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7113   SyncScope::ID SSID = SyncScope::System;
7114 
7115   if (Lex.getKind() == lltok::kw_atomic) {
7116     isAtomic = true;
7117     Lex.Lex();
7118   }
7119 
7120   bool isVolatile = false;
7121   if (Lex.getKind() == lltok::kw_volatile) {
7122     isVolatile = true;
7123     Lex.Lex();
7124   }
7125 
7126   if (ParseTypeAndValue(Val, Loc, PFS) ||
7127       ParseToken(lltok::comma, "expected ',' after store operand") ||
7128       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7129       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7130       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7131     return true;
7132 
7133   if (!Ptr->getType()->isPointerTy())
7134     return Error(PtrLoc, "store operand must be a pointer");
7135   if (!Val->getType()->isFirstClassType())
7136     return Error(Loc, "store operand must be a first class value");
7137   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7138     return Error(Loc, "stored value and pointer type do not match");
7139   if (isAtomic && !Alignment)
7140     return Error(Loc, "atomic store must have explicit non-zero alignment");
7141   if (Ordering == AtomicOrdering::Acquire ||
7142       Ordering == AtomicOrdering::AcquireRelease)
7143     return Error(Loc, "atomic store cannot use Acquire ordering");
7144   SmallPtrSet<Type *, 4> Visited;
7145   if (!Alignment && !Val->getType()->isSized(&Visited))
7146     return Error(Loc, "storing unsized types is not allowed");
7147   if (!Alignment)
7148     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7149 
7150   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7151   return AteExtraComma ? InstExtraComma : InstNormal;
7152 }
7153 
7154 /// ParseCmpXchg
7155 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7156 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7157 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7158   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7159   bool AteExtraComma = false;
7160   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7161   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7162   SyncScope::ID SSID = SyncScope::System;
7163   bool isVolatile = false;
7164   bool isWeak = false;
7165 
7166   if (EatIfPresent(lltok::kw_weak))
7167     isWeak = true;
7168 
7169   if (EatIfPresent(lltok::kw_volatile))
7170     isVolatile = true;
7171 
7172   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7173       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7174       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7175       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7176       ParseTypeAndValue(New, NewLoc, PFS) ||
7177       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7178       ParseOrdering(FailureOrdering))
7179     return true;
7180 
7181   if (SuccessOrdering == AtomicOrdering::Unordered ||
7182       FailureOrdering == AtomicOrdering::Unordered)
7183     return TokError("cmpxchg cannot be unordered");
7184   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7185     return TokError("cmpxchg failure argument shall be no stronger than the "
7186                     "success argument");
7187   if (FailureOrdering == AtomicOrdering::Release ||
7188       FailureOrdering == AtomicOrdering::AcquireRelease)
7189     return TokError(
7190         "cmpxchg failure ordering cannot include release semantics");
7191   if (!Ptr->getType()->isPointerTy())
7192     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7193   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7194     return Error(CmpLoc, "compare value and pointer type do not match");
7195   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7196     return Error(NewLoc, "new value and pointer type do not match");
7197   if (!New->getType()->isFirstClassType())
7198     return Error(NewLoc, "cmpxchg operand must be a first class value");
7199   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7200       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7201   CXI->setVolatile(isVolatile);
7202   CXI->setWeak(isWeak);
7203   Inst = CXI;
7204   return AteExtraComma ? InstExtraComma : InstNormal;
7205 }
7206 
7207 /// ParseAtomicRMW
7208 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7209 ///       'singlethread'? AtomicOrdering
7210 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7211   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7212   bool AteExtraComma = false;
7213   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7214   SyncScope::ID SSID = SyncScope::System;
7215   bool isVolatile = false;
7216   bool IsFP = false;
7217   AtomicRMWInst::BinOp Operation;
7218 
7219   if (EatIfPresent(lltok::kw_volatile))
7220     isVolatile = true;
7221 
7222   switch (Lex.getKind()) {
7223   default: return TokError("expected binary operation in atomicrmw");
7224   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7225   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7226   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7227   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7228   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7229   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7230   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7231   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7232   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7233   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7234   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7235   case lltok::kw_fadd:
7236     Operation = AtomicRMWInst::FAdd;
7237     IsFP = true;
7238     break;
7239   case lltok::kw_fsub:
7240     Operation = AtomicRMWInst::FSub;
7241     IsFP = true;
7242     break;
7243   }
7244   Lex.Lex();  // Eat the operation.
7245 
7246   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7247       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7248       ParseTypeAndValue(Val, ValLoc, PFS) ||
7249       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7250     return true;
7251 
7252   if (Ordering == AtomicOrdering::Unordered)
7253     return TokError("atomicrmw cannot be unordered");
7254   if (!Ptr->getType()->isPointerTy())
7255     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7256   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7257     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7258 
7259   if (Operation == AtomicRMWInst::Xchg) {
7260     if (!Val->getType()->isIntegerTy() &&
7261         !Val->getType()->isFloatingPointTy()) {
7262       return Error(ValLoc, "atomicrmw " +
7263                    AtomicRMWInst::getOperationName(Operation) +
7264                    " operand must be an integer or floating point type");
7265     }
7266   } else if (IsFP) {
7267     if (!Val->getType()->isFloatingPointTy()) {
7268       return Error(ValLoc, "atomicrmw " +
7269                    AtomicRMWInst::getOperationName(Operation) +
7270                    " operand must be a floating point type");
7271     }
7272   } else {
7273     if (!Val->getType()->isIntegerTy()) {
7274       return Error(ValLoc, "atomicrmw " +
7275                    AtomicRMWInst::getOperationName(Operation) +
7276                    " operand must be an integer");
7277     }
7278   }
7279 
7280   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7281   if (Size < 8 || (Size & (Size - 1)))
7282     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7283                          " integer");
7284 
7285   AtomicRMWInst *RMWI =
7286     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7287   RMWI->setVolatile(isVolatile);
7288   Inst = RMWI;
7289   return AteExtraComma ? InstExtraComma : InstNormal;
7290 }
7291 
7292 /// ParseFence
7293 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7294 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7295   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7296   SyncScope::ID SSID = SyncScope::System;
7297   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7298     return true;
7299 
7300   if (Ordering == AtomicOrdering::Unordered)
7301     return TokError("fence cannot be unordered");
7302   if (Ordering == AtomicOrdering::Monotonic)
7303     return TokError("fence cannot be monotonic");
7304 
7305   Inst = new FenceInst(Context, Ordering, SSID);
7306   return InstNormal;
7307 }
7308 
7309 /// ParseGetElementPtr
7310 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7311 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7312   Value *Ptr = nullptr;
7313   Value *Val = nullptr;
7314   LocTy Loc, EltLoc;
7315 
7316   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7317 
7318   Type *Ty = nullptr;
7319   LocTy ExplicitTypeLoc = Lex.getLoc();
7320   if (ParseType(Ty) ||
7321       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7322       ParseTypeAndValue(Ptr, Loc, PFS))
7323     return true;
7324 
7325   Type *BaseType = Ptr->getType();
7326   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7327   if (!BasePointerType)
7328     return Error(Loc, "base of getelementptr must be a pointer");
7329 
7330   if (Ty != BasePointerType->getElementType())
7331     return Error(ExplicitTypeLoc,
7332                  "explicit pointee type doesn't match operand's pointee type");
7333 
7334   SmallVector<Value*, 16> Indices;
7335   bool AteExtraComma = false;
7336   // GEP returns a vector of pointers if at least one of parameters is a vector.
7337   // All vector parameters should have the same vector width.
7338   ElementCount GEPWidth = BaseType->isVectorTy()
7339                               ? cast<VectorType>(BaseType)->getElementCount()
7340                               : ElementCount(0, false);
7341 
7342   while (EatIfPresent(lltok::comma)) {
7343     if (Lex.getKind() == lltok::MetadataVar) {
7344       AteExtraComma = true;
7345       break;
7346     }
7347     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7348     if (!Val->getType()->isIntOrIntVectorTy())
7349       return Error(EltLoc, "getelementptr index must be an integer");
7350 
7351     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7352       ElementCount ValNumEl = ValVTy->getElementCount();
7353       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7354         return Error(EltLoc,
7355           "getelementptr vector index has a wrong number of elements");
7356       GEPWidth = ValNumEl;
7357     }
7358     Indices.push_back(Val);
7359   }
7360 
7361   SmallPtrSet<Type*, 4> Visited;
7362   if (!Indices.empty() && !Ty->isSized(&Visited))
7363     return Error(Loc, "base element of getelementptr must be sized");
7364 
7365   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7366     return Error(Loc, "invalid getelementptr indices");
7367   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7368   if (InBounds)
7369     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7370   return AteExtraComma ? InstExtraComma : InstNormal;
7371 }
7372 
7373 /// ParseExtractValue
7374 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7375 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7376   Value *Val; LocTy Loc;
7377   SmallVector<unsigned, 4> Indices;
7378   bool AteExtraComma;
7379   if (ParseTypeAndValue(Val, Loc, PFS) ||
7380       ParseIndexList(Indices, AteExtraComma))
7381     return true;
7382 
7383   if (!Val->getType()->isAggregateType())
7384     return Error(Loc, "extractvalue operand must be aggregate type");
7385 
7386   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7387     return Error(Loc, "invalid indices for extractvalue");
7388   Inst = ExtractValueInst::Create(Val, Indices);
7389   return AteExtraComma ? InstExtraComma : InstNormal;
7390 }
7391 
7392 /// ParseInsertValue
7393 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7394 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7395   Value *Val0, *Val1; LocTy Loc0, Loc1;
7396   SmallVector<unsigned, 4> Indices;
7397   bool AteExtraComma;
7398   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7399       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7400       ParseTypeAndValue(Val1, Loc1, PFS) ||
7401       ParseIndexList(Indices, AteExtraComma))
7402     return true;
7403 
7404   if (!Val0->getType()->isAggregateType())
7405     return Error(Loc0, "insertvalue operand must be aggregate type");
7406 
7407   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7408   if (!IndexedType)
7409     return Error(Loc0, "invalid indices for insertvalue");
7410   if (IndexedType != Val1->getType())
7411     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7412                            getTypeString(Val1->getType()) + "' instead of '" +
7413                            getTypeString(IndexedType) + "'");
7414   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7415   return AteExtraComma ? InstExtraComma : InstNormal;
7416 }
7417 
7418 //===----------------------------------------------------------------------===//
7419 // Embedded metadata.
7420 //===----------------------------------------------------------------------===//
7421 
7422 /// ParseMDNodeVector
7423 ///   ::= { Element (',' Element)* }
7424 /// Element
7425 ///   ::= 'null' | TypeAndValue
7426 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7427   if (ParseToken(lltok::lbrace, "expected '{' here"))
7428     return true;
7429 
7430   // Check for an empty list.
7431   if (EatIfPresent(lltok::rbrace))
7432     return false;
7433 
7434   do {
7435     // Null is a special case since it is typeless.
7436     if (EatIfPresent(lltok::kw_null)) {
7437       Elts.push_back(nullptr);
7438       continue;
7439     }
7440 
7441     Metadata *MD;
7442     if (ParseMetadata(MD, nullptr))
7443       return true;
7444     Elts.push_back(MD);
7445   } while (EatIfPresent(lltok::comma));
7446 
7447   return ParseToken(lltok::rbrace, "expected end of metadata node");
7448 }
7449 
7450 //===----------------------------------------------------------------------===//
7451 // Use-list order directives.
7452 //===----------------------------------------------------------------------===//
7453 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7454                                 SMLoc Loc) {
7455   if (V->use_empty())
7456     return Error(Loc, "value has no uses");
7457 
7458   unsigned NumUses = 0;
7459   SmallDenseMap<const Use *, unsigned, 16> Order;
7460   for (const Use &U : V->uses()) {
7461     if (++NumUses > Indexes.size())
7462       break;
7463     Order[&U] = Indexes[NumUses - 1];
7464   }
7465   if (NumUses < 2)
7466     return Error(Loc, "value only has one use");
7467   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7468     return Error(Loc,
7469                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7470 
7471   V->sortUseList([&](const Use &L, const Use &R) {
7472     return Order.lookup(&L) < Order.lookup(&R);
7473   });
7474   return false;
7475 }
7476 
7477 /// ParseUseListOrderIndexes
7478 ///   ::= '{' uint32 (',' uint32)+ '}'
7479 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7480   SMLoc Loc = Lex.getLoc();
7481   if (ParseToken(lltok::lbrace, "expected '{' here"))
7482     return true;
7483   if (Lex.getKind() == lltok::rbrace)
7484     return Lex.Error("expected non-empty list of uselistorder indexes");
7485 
7486   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7487   // indexes should be distinct numbers in the range [0, size-1], and should
7488   // not be in order.
7489   unsigned Offset = 0;
7490   unsigned Max = 0;
7491   bool IsOrdered = true;
7492   assert(Indexes.empty() && "Expected empty order vector");
7493   do {
7494     unsigned Index;
7495     if (ParseUInt32(Index))
7496       return true;
7497 
7498     // Update consistency checks.
7499     Offset += Index - Indexes.size();
7500     Max = std::max(Max, Index);
7501     IsOrdered &= Index == Indexes.size();
7502 
7503     Indexes.push_back(Index);
7504   } while (EatIfPresent(lltok::comma));
7505 
7506   if (ParseToken(lltok::rbrace, "expected '}' here"))
7507     return true;
7508 
7509   if (Indexes.size() < 2)
7510     return Error(Loc, "expected >= 2 uselistorder indexes");
7511   if (Offset != 0 || Max >= Indexes.size())
7512     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7513   if (IsOrdered)
7514     return Error(Loc, "expected uselistorder indexes to change the order");
7515 
7516   return false;
7517 }
7518 
7519 /// ParseUseListOrder
7520 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7521 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7522   SMLoc Loc = Lex.getLoc();
7523   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7524     return true;
7525 
7526   Value *V;
7527   SmallVector<unsigned, 16> Indexes;
7528   if (ParseTypeAndValue(V, PFS) ||
7529       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7530       ParseUseListOrderIndexes(Indexes))
7531     return true;
7532 
7533   return sortUseListOrder(V, Indexes, Loc);
7534 }
7535 
7536 /// ParseUseListOrderBB
7537 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7538 bool LLParser::ParseUseListOrderBB() {
7539   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7540   SMLoc Loc = Lex.getLoc();
7541   Lex.Lex();
7542 
7543   ValID Fn, Label;
7544   SmallVector<unsigned, 16> Indexes;
7545   if (ParseValID(Fn) ||
7546       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7547       ParseValID(Label) ||
7548       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7549       ParseUseListOrderIndexes(Indexes))
7550     return true;
7551 
7552   // Check the function.
7553   GlobalValue *GV;
7554   if (Fn.Kind == ValID::t_GlobalName)
7555     GV = M->getNamedValue(Fn.StrVal);
7556   else if (Fn.Kind == ValID::t_GlobalID)
7557     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7558   else
7559     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7560   if (!GV)
7561     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7562   auto *F = dyn_cast<Function>(GV);
7563   if (!F)
7564     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7565   if (F->isDeclaration())
7566     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7567 
7568   // Check the basic block.
7569   if (Label.Kind == ValID::t_LocalID)
7570     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7571   if (Label.Kind != ValID::t_LocalName)
7572     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7573   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7574   if (!V)
7575     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7576   if (!isa<BasicBlock>(V))
7577     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7578 
7579   return sortUseListOrder(V, Indexes, Loc);
7580 }
7581 
7582 /// ModuleEntry
7583 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7584 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7585 bool LLParser::ParseModuleEntry(unsigned ID) {
7586   assert(Lex.getKind() == lltok::kw_module);
7587   Lex.Lex();
7588 
7589   std::string Path;
7590   if (ParseToken(lltok::colon, "expected ':' here") ||
7591       ParseToken(lltok::lparen, "expected '(' here") ||
7592       ParseToken(lltok::kw_path, "expected 'path' here") ||
7593       ParseToken(lltok::colon, "expected ':' here") ||
7594       ParseStringConstant(Path) ||
7595       ParseToken(lltok::comma, "expected ',' here") ||
7596       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7597       ParseToken(lltok::colon, "expected ':' here") ||
7598       ParseToken(lltok::lparen, "expected '(' here"))
7599     return true;
7600 
7601   ModuleHash Hash;
7602   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7603       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7604       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7605       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7606       ParseUInt32(Hash[4]))
7607     return true;
7608 
7609   if (ParseToken(lltok::rparen, "expected ')' here") ||
7610       ParseToken(lltok::rparen, "expected ')' here"))
7611     return true;
7612 
7613   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7614   ModuleIdMap[ID] = ModuleEntry->first();
7615 
7616   return false;
7617 }
7618 
7619 /// TypeIdEntry
7620 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7621 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7622   assert(Lex.getKind() == lltok::kw_typeid);
7623   Lex.Lex();
7624 
7625   std::string Name;
7626   if (ParseToken(lltok::colon, "expected ':' here") ||
7627       ParseToken(lltok::lparen, "expected '(' here") ||
7628       ParseToken(lltok::kw_name, "expected 'name' here") ||
7629       ParseToken(lltok::colon, "expected ':' here") ||
7630       ParseStringConstant(Name))
7631     return true;
7632 
7633   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7634   if (ParseToken(lltok::comma, "expected ',' here") ||
7635       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7636     return true;
7637 
7638   // Check if this ID was forward referenced, and if so, update the
7639   // corresponding GUIDs.
7640   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7641   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7642     for (auto TIDRef : FwdRefTIDs->second) {
7643       assert(!*TIDRef.first &&
7644              "Forward referenced type id GUID expected to be 0");
7645       *TIDRef.first = GlobalValue::getGUID(Name);
7646     }
7647     ForwardRefTypeIds.erase(FwdRefTIDs);
7648   }
7649 
7650   return false;
7651 }
7652 
7653 /// TypeIdSummary
7654 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7655 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7656   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7657       ParseToken(lltok::colon, "expected ':' here") ||
7658       ParseToken(lltok::lparen, "expected '(' here") ||
7659       ParseTypeTestResolution(TIS.TTRes))
7660     return true;
7661 
7662   if (EatIfPresent(lltok::comma)) {
7663     // Expect optional wpdResolutions field
7664     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7665       return true;
7666   }
7667 
7668   if (ParseToken(lltok::rparen, "expected ')' here"))
7669     return true;
7670 
7671   return false;
7672 }
7673 
7674 static ValueInfo EmptyVI =
7675     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7676 
7677 /// TypeIdCompatibleVtableEntry
7678 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7679 ///   TypeIdCompatibleVtableInfo
7680 ///   ')'
7681 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7682   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7683   Lex.Lex();
7684 
7685   std::string Name;
7686   if (ParseToken(lltok::colon, "expected ':' here") ||
7687       ParseToken(lltok::lparen, "expected '(' here") ||
7688       ParseToken(lltok::kw_name, "expected 'name' here") ||
7689       ParseToken(lltok::colon, "expected ':' here") ||
7690       ParseStringConstant(Name))
7691     return true;
7692 
7693   TypeIdCompatibleVtableInfo &TI =
7694       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7695   if (ParseToken(lltok::comma, "expected ',' here") ||
7696       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7697       ParseToken(lltok::colon, "expected ':' here") ||
7698       ParseToken(lltok::lparen, "expected '(' here"))
7699     return true;
7700 
7701   IdToIndexMapType IdToIndexMap;
7702   // Parse each call edge
7703   do {
7704     uint64_t Offset;
7705     if (ParseToken(lltok::lparen, "expected '(' here") ||
7706         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7707         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7708         ParseToken(lltok::comma, "expected ',' here"))
7709       return true;
7710 
7711     LocTy Loc = Lex.getLoc();
7712     unsigned GVId;
7713     ValueInfo VI;
7714     if (ParseGVReference(VI, GVId))
7715       return true;
7716 
7717     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7718     // forward reference. We will save the location of the ValueInfo needing an
7719     // update, but can only do so once the std::vector is finalized.
7720     if (VI == EmptyVI)
7721       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7722     TI.push_back({Offset, VI});
7723 
7724     if (ParseToken(lltok::rparen, "expected ')' in call"))
7725       return true;
7726   } while (EatIfPresent(lltok::comma));
7727 
7728   // Now that the TI vector is finalized, it is safe to save the locations
7729   // of any forward GV references that need updating later.
7730   for (auto I : IdToIndexMap) {
7731     for (auto P : I.second) {
7732       assert(TI[P.first].VTableVI == EmptyVI &&
7733              "Forward referenced ValueInfo expected to be empty");
7734       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7735           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7736       FwdRef.first->second.push_back(
7737           std::make_pair(&TI[P.first].VTableVI, P.second));
7738     }
7739   }
7740 
7741   if (ParseToken(lltok::rparen, "expected ')' here") ||
7742       ParseToken(lltok::rparen, "expected ')' here"))
7743     return true;
7744 
7745   // Check if this ID was forward referenced, and if so, update the
7746   // corresponding GUIDs.
7747   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7748   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7749     for (auto TIDRef : FwdRefTIDs->second) {
7750       assert(!*TIDRef.first &&
7751              "Forward referenced type id GUID expected to be 0");
7752       *TIDRef.first = GlobalValue::getGUID(Name);
7753     }
7754     ForwardRefTypeIds.erase(FwdRefTIDs);
7755   }
7756 
7757   return false;
7758 }
7759 
7760 /// TypeTestResolution
7761 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7762 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7763 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7764 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7765 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7766 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7767   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7768       ParseToken(lltok::colon, "expected ':' here") ||
7769       ParseToken(lltok::lparen, "expected '(' here") ||
7770       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7771       ParseToken(lltok::colon, "expected ':' here"))
7772     return true;
7773 
7774   switch (Lex.getKind()) {
7775   case lltok::kw_unsat:
7776     TTRes.TheKind = TypeTestResolution::Unsat;
7777     break;
7778   case lltok::kw_byteArray:
7779     TTRes.TheKind = TypeTestResolution::ByteArray;
7780     break;
7781   case lltok::kw_inline:
7782     TTRes.TheKind = TypeTestResolution::Inline;
7783     break;
7784   case lltok::kw_single:
7785     TTRes.TheKind = TypeTestResolution::Single;
7786     break;
7787   case lltok::kw_allOnes:
7788     TTRes.TheKind = TypeTestResolution::AllOnes;
7789     break;
7790   default:
7791     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7792   }
7793   Lex.Lex();
7794 
7795   if (ParseToken(lltok::comma, "expected ',' here") ||
7796       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7797       ParseToken(lltok::colon, "expected ':' here") ||
7798       ParseUInt32(TTRes.SizeM1BitWidth))
7799     return true;
7800 
7801   // Parse optional fields
7802   while (EatIfPresent(lltok::comma)) {
7803     switch (Lex.getKind()) {
7804     case lltok::kw_alignLog2:
7805       Lex.Lex();
7806       if (ParseToken(lltok::colon, "expected ':'") ||
7807           ParseUInt64(TTRes.AlignLog2))
7808         return true;
7809       break;
7810     case lltok::kw_sizeM1:
7811       Lex.Lex();
7812       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7813         return true;
7814       break;
7815     case lltok::kw_bitMask: {
7816       unsigned Val;
7817       Lex.Lex();
7818       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7819         return true;
7820       assert(Val <= 0xff);
7821       TTRes.BitMask = (uint8_t)Val;
7822       break;
7823     }
7824     case lltok::kw_inlineBits:
7825       Lex.Lex();
7826       if (ParseToken(lltok::colon, "expected ':'") ||
7827           ParseUInt64(TTRes.InlineBits))
7828         return true;
7829       break;
7830     default:
7831       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7832     }
7833   }
7834 
7835   if (ParseToken(lltok::rparen, "expected ')' here"))
7836     return true;
7837 
7838   return false;
7839 }
7840 
7841 /// OptionalWpdResolutions
7842 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7843 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7844 bool LLParser::ParseOptionalWpdResolutions(
7845     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7846   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7847       ParseToken(lltok::colon, "expected ':' here") ||
7848       ParseToken(lltok::lparen, "expected '(' here"))
7849     return true;
7850 
7851   do {
7852     uint64_t Offset;
7853     WholeProgramDevirtResolution WPDRes;
7854     if (ParseToken(lltok::lparen, "expected '(' here") ||
7855         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7856         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7857         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7858         ParseToken(lltok::rparen, "expected ')' here"))
7859       return true;
7860     WPDResMap[Offset] = WPDRes;
7861   } while (EatIfPresent(lltok::comma));
7862 
7863   if (ParseToken(lltok::rparen, "expected ')' here"))
7864     return true;
7865 
7866   return false;
7867 }
7868 
7869 /// WpdRes
7870 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7871 ///         [',' OptionalResByArg]? ')'
7872 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7873 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7874 ///         [',' OptionalResByArg]? ')'
7875 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7876 ///         [',' OptionalResByArg]? ')'
7877 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7878   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7879       ParseToken(lltok::colon, "expected ':' here") ||
7880       ParseToken(lltok::lparen, "expected '(' here") ||
7881       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7882       ParseToken(lltok::colon, "expected ':' here"))
7883     return true;
7884 
7885   switch (Lex.getKind()) {
7886   case lltok::kw_indir:
7887     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7888     break;
7889   case lltok::kw_singleImpl:
7890     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7891     break;
7892   case lltok::kw_branchFunnel:
7893     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7894     break;
7895   default:
7896     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7897   }
7898   Lex.Lex();
7899 
7900   // Parse optional fields
7901   while (EatIfPresent(lltok::comma)) {
7902     switch (Lex.getKind()) {
7903     case lltok::kw_singleImplName:
7904       Lex.Lex();
7905       if (ParseToken(lltok::colon, "expected ':' here") ||
7906           ParseStringConstant(WPDRes.SingleImplName))
7907         return true;
7908       break;
7909     case lltok::kw_resByArg:
7910       if (ParseOptionalResByArg(WPDRes.ResByArg))
7911         return true;
7912       break;
7913     default:
7914       return Error(Lex.getLoc(),
7915                    "expected optional WholeProgramDevirtResolution field");
7916     }
7917   }
7918 
7919   if (ParseToken(lltok::rparen, "expected ')' here"))
7920     return true;
7921 
7922   return false;
7923 }
7924 
7925 /// OptionalResByArg
7926 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7927 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7928 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7929 ///                  'virtualConstProp' )
7930 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7931 ///                [',' 'bit' ':' UInt32]? ')'
7932 bool LLParser::ParseOptionalResByArg(
7933     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7934         &ResByArg) {
7935   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7936       ParseToken(lltok::colon, "expected ':' here") ||
7937       ParseToken(lltok::lparen, "expected '(' here"))
7938     return true;
7939 
7940   do {
7941     std::vector<uint64_t> Args;
7942     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7943         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7944         ParseToken(lltok::colon, "expected ':' here") ||
7945         ParseToken(lltok::lparen, "expected '(' here") ||
7946         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7947         ParseToken(lltok::colon, "expected ':' here"))
7948       return true;
7949 
7950     WholeProgramDevirtResolution::ByArg ByArg;
7951     switch (Lex.getKind()) {
7952     case lltok::kw_indir:
7953       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7954       break;
7955     case lltok::kw_uniformRetVal:
7956       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7957       break;
7958     case lltok::kw_uniqueRetVal:
7959       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7960       break;
7961     case lltok::kw_virtualConstProp:
7962       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7963       break;
7964     default:
7965       return Error(Lex.getLoc(),
7966                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7967     }
7968     Lex.Lex();
7969 
7970     // Parse optional fields
7971     while (EatIfPresent(lltok::comma)) {
7972       switch (Lex.getKind()) {
7973       case lltok::kw_info:
7974         Lex.Lex();
7975         if (ParseToken(lltok::colon, "expected ':' here") ||
7976             ParseUInt64(ByArg.Info))
7977           return true;
7978         break;
7979       case lltok::kw_byte:
7980         Lex.Lex();
7981         if (ParseToken(lltok::colon, "expected ':' here") ||
7982             ParseUInt32(ByArg.Byte))
7983           return true;
7984         break;
7985       case lltok::kw_bit:
7986         Lex.Lex();
7987         if (ParseToken(lltok::colon, "expected ':' here") ||
7988             ParseUInt32(ByArg.Bit))
7989           return true;
7990         break;
7991       default:
7992         return Error(Lex.getLoc(),
7993                      "expected optional whole program devirt field");
7994       }
7995     }
7996 
7997     if (ParseToken(lltok::rparen, "expected ')' here"))
7998       return true;
7999 
8000     ResByArg[Args] = ByArg;
8001   } while (EatIfPresent(lltok::comma));
8002 
8003   if (ParseToken(lltok::rparen, "expected ')' here"))
8004     return true;
8005 
8006   return false;
8007 }
8008 
8009 /// OptionalResByArg
8010 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8011 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8012   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8013       ParseToken(lltok::colon, "expected ':' here") ||
8014       ParseToken(lltok::lparen, "expected '(' here"))
8015     return true;
8016 
8017   do {
8018     uint64_t Val;
8019     if (ParseUInt64(Val))
8020       return true;
8021     Args.push_back(Val);
8022   } while (EatIfPresent(lltok::comma));
8023 
8024   if (ParseToken(lltok::rparen, "expected ')' here"))
8025     return true;
8026 
8027   return false;
8028 }
8029 
8030 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8031 
8032 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8033   bool ReadOnly = Fwd->isReadOnly();
8034   bool WriteOnly = Fwd->isWriteOnly();
8035   assert(!(ReadOnly && WriteOnly));
8036   *Fwd = Resolved;
8037   if (ReadOnly)
8038     Fwd->setReadOnly();
8039   if (WriteOnly)
8040     Fwd->setWriteOnly();
8041 }
8042 
8043 /// Stores the given Name/GUID and associated summary into the Index.
8044 /// Also updates any forward references to the associated entry ID.
8045 void LLParser::AddGlobalValueToIndex(
8046     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8047     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8048   // First create the ValueInfo utilizing the Name or GUID.
8049   ValueInfo VI;
8050   if (GUID != 0) {
8051     assert(Name.empty());
8052     VI = Index->getOrInsertValueInfo(GUID);
8053   } else {
8054     assert(!Name.empty());
8055     if (M) {
8056       auto *GV = M->getNamedValue(Name);
8057       assert(GV);
8058       VI = Index->getOrInsertValueInfo(GV);
8059     } else {
8060       assert(
8061           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8062           "Need a source_filename to compute GUID for local");
8063       GUID = GlobalValue::getGUID(
8064           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8065       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8066     }
8067   }
8068 
8069   // Resolve forward references from calls/refs
8070   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8071   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8072     for (auto VIRef : FwdRefVIs->second) {
8073       assert(VIRef.first->getRef() == FwdVIRef &&
8074              "Forward referenced ValueInfo expected to be empty");
8075       resolveFwdRef(VIRef.first, VI);
8076     }
8077     ForwardRefValueInfos.erase(FwdRefVIs);
8078   }
8079 
8080   // Resolve forward references from aliases
8081   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8082   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8083     for (auto AliaseeRef : FwdRefAliasees->second) {
8084       assert(!AliaseeRef.first->hasAliasee() &&
8085              "Forward referencing alias already has aliasee");
8086       assert(Summary && "Aliasee must be a definition");
8087       AliaseeRef.first->setAliasee(VI, Summary.get());
8088     }
8089     ForwardRefAliasees.erase(FwdRefAliasees);
8090   }
8091 
8092   // Add the summary if one was provided.
8093   if (Summary)
8094     Index->addGlobalValueSummary(VI, std::move(Summary));
8095 
8096   // Save the associated ValueInfo for use in later references by ID.
8097   if (ID == NumberedValueInfos.size())
8098     NumberedValueInfos.push_back(VI);
8099   else {
8100     // Handle non-continuous numbers (to make test simplification easier).
8101     if (ID > NumberedValueInfos.size())
8102       NumberedValueInfos.resize(ID + 1);
8103     NumberedValueInfos[ID] = VI;
8104   }
8105 }
8106 
8107 /// ParseSummaryIndexFlags
8108 ///   ::= 'flags' ':' UInt64
8109 bool LLParser::ParseSummaryIndexFlags() {
8110   assert(Lex.getKind() == lltok::kw_flags);
8111   Lex.Lex();
8112 
8113   if (ParseToken(lltok::colon, "expected ':' here"))
8114     return true;
8115   uint64_t Flags;
8116   if (ParseUInt64(Flags))
8117     return true;
8118   Index->setFlags(Flags);
8119   return false;
8120 }
8121 
8122 /// ParseBlockCount
8123 ///   ::= 'blockcount' ':' UInt64
8124 bool LLParser::ParseBlockCount() {
8125   assert(Lex.getKind() == lltok::kw_blockcount);
8126   Lex.Lex();
8127 
8128   if (ParseToken(lltok::colon, "expected ':' here"))
8129     return true;
8130   uint64_t BlockCount;
8131   if (ParseUInt64(BlockCount))
8132     return true;
8133   Index->setBlockCount(BlockCount);
8134   return false;
8135 }
8136 
8137 /// ParseGVEntry
8138 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8139 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8140 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8141 bool LLParser::ParseGVEntry(unsigned ID) {
8142   assert(Lex.getKind() == lltok::kw_gv);
8143   Lex.Lex();
8144 
8145   if (ParseToken(lltok::colon, "expected ':' here") ||
8146       ParseToken(lltok::lparen, "expected '(' here"))
8147     return true;
8148 
8149   std::string Name;
8150   GlobalValue::GUID GUID = 0;
8151   switch (Lex.getKind()) {
8152   case lltok::kw_name:
8153     Lex.Lex();
8154     if (ParseToken(lltok::colon, "expected ':' here") ||
8155         ParseStringConstant(Name))
8156       return true;
8157     // Can't create GUID/ValueInfo until we have the linkage.
8158     break;
8159   case lltok::kw_guid:
8160     Lex.Lex();
8161     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8162       return true;
8163     break;
8164   default:
8165     return Error(Lex.getLoc(), "expected name or guid tag");
8166   }
8167 
8168   if (!EatIfPresent(lltok::comma)) {
8169     // No summaries. Wrap up.
8170     if (ParseToken(lltok::rparen, "expected ')' here"))
8171       return true;
8172     // This was created for a call to an external or indirect target.
8173     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8174     // created for indirect calls with VP. A Name with no GUID came from
8175     // an external definition. We pass ExternalLinkage since that is only
8176     // used when the GUID must be computed from Name, and in that case
8177     // the symbol must have external linkage.
8178     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8179                           nullptr);
8180     return false;
8181   }
8182 
8183   // Have a list of summaries
8184   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8185       ParseToken(lltok::colon, "expected ':' here") ||
8186       ParseToken(lltok::lparen, "expected '(' here"))
8187     return true;
8188   do {
8189     switch (Lex.getKind()) {
8190     case lltok::kw_function:
8191       if (ParseFunctionSummary(Name, GUID, ID))
8192         return true;
8193       break;
8194     case lltok::kw_variable:
8195       if (ParseVariableSummary(Name, GUID, ID))
8196         return true;
8197       break;
8198     case lltok::kw_alias:
8199       if (ParseAliasSummary(Name, GUID, ID))
8200         return true;
8201       break;
8202     default:
8203       return Error(Lex.getLoc(), "expected summary type");
8204     }
8205   } while (EatIfPresent(lltok::comma));
8206 
8207   if (ParseToken(lltok::rparen, "expected ')' here") ||
8208       ParseToken(lltok::rparen, "expected ')' here"))
8209     return true;
8210 
8211   return false;
8212 }
8213 
8214 /// FunctionSummary
8215 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8216 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8217 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8218 ///         [',' OptionalRefs]? ')'
8219 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8220                                     unsigned ID) {
8221   assert(Lex.getKind() == lltok::kw_function);
8222   Lex.Lex();
8223 
8224   StringRef ModulePath;
8225   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8226       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8227       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8228   unsigned InstCount;
8229   std::vector<FunctionSummary::EdgeTy> Calls;
8230   FunctionSummary::TypeIdInfo TypeIdInfo;
8231   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8232   std::vector<ValueInfo> Refs;
8233   // Default is all-zeros (conservative values).
8234   FunctionSummary::FFlags FFlags = {};
8235   if (ParseToken(lltok::colon, "expected ':' here") ||
8236       ParseToken(lltok::lparen, "expected '(' here") ||
8237       ParseModuleReference(ModulePath) ||
8238       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8239       ParseToken(lltok::comma, "expected ',' here") ||
8240       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8241       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8242     return true;
8243 
8244   // Parse optional fields
8245   while (EatIfPresent(lltok::comma)) {
8246     switch (Lex.getKind()) {
8247     case lltok::kw_funcFlags:
8248       if (ParseOptionalFFlags(FFlags))
8249         return true;
8250       break;
8251     case lltok::kw_calls:
8252       if (ParseOptionalCalls(Calls))
8253         return true;
8254       break;
8255     case lltok::kw_typeIdInfo:
8256       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8257         return true;
8258       break;
8259     case lltok::kw_refs:
8260       if (ParseOptionalRefs(Refs))
8261         return true;
8262       break;
8263     case lltok::kw_params:
8264       if (ParseOptionalParamAccesses(ParamAccesses))
8265         return true;
8266       break;
8267     default:
8268       return Error(Lex.getLoc(), "expected optional function summary field");
8269     }
8270   }
8271 
8272   if (ParseToken(lltok::rparen, "expected ')' here"))
8273     return true;
8274 
8275   auto FS = std::make_unique<FunctionSummary>(
8276       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8277       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8278       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8279       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8280       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8281       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8282       std::move(ParamAccesses));
8283 
8284   FS->setModulePath(ModulePath);
8285 
8286   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8287                         ID, std::move(FS));
8288 
8289   return false;
8290 }
8291 
8292 /// VariableSummary
8293 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8294 ///         [',' OptionalRefs]? ')'
8295 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8296                                     unsigned ID) {
8297   assert(Lex.getKind() == lltok::kw_variable);
8298   Lex.Lex();
8299 
8300   StringRef ModulePath;
8301   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8302       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8303       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8304   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8305                                         /* WriteOnly */ false,
8306                                         /* Constant */ false,
8307                                         GlobalObject::VCallVisibilityPublic);
8308   std::vector<ValueInfo> Refs;
8309   VTableFuncList VTableFuncs;
8310   if (ParseToken(lltok::colon, "expected ':' here") ||
8311       ParseToken(lltok::lparen, "expected '(' here") ||
8312       ParseModuleReference(ModulePath) ||
8313       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8314       ParseToken(lltok::comma, "expected ',' here") ||
8315       ParseGVarFlags(GVarFlags))
8316     return true;
8317 
8318   // Parse optional fields
8319   while (EatIfPresent(lltok::comma)) {
8320     switch (Lex.getKind()) {
8321     case lltok::kw_vTableFuncs:
8322       if (ParseOptionalVTableFuncs(VTableFuncs))
8323         return true;
8324       break;
8325     case lltok::kw_refs:
8326       if (ParseOptionalRefs(Refs))
8327         return true;
8328       break;
8329     default:
8330       return Error(Lex.getLoc(), "expected optional variable summary field");
8331     }
8332   }
8333 
8334   if (ParseToken(lltok::rparen, "expected ')' here"))
8335     return true;
8336 
8337   auto GS =
8338       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8339 
8340   GS->setModulePath(ModulePath);
8341   GS->setVTableFuncs(std::move(VTableFuncs));
8342 
8343   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8344                         ID, std::move(GS));
8345 
8346   return false;
8347 }
8348 
8349 /// AliasSummary
8350 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8351 ///         'aliasee' ':' GVReference ')'
8352 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8353                                  unsigned ID) {
8354   assert(Lex.getKind() == lltok::kw_alias);
8355   LocTy Loc = Lex.getLoc();
8356   Lex.Lex();
8357 
8358   StringRef ModulePath;
8359   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8360       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8361       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8362   if (ParseToken(lltok::colon, "expected ':' here") ||
8363       ParseToken(lltok::lparen, "expected '(' here") ||
8364       ParseModuleReference(ModulePath) ||
8365       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8366       ParseToken(lltok::comma, "expected ',' here") ||
8367       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8368       ParseToken(lltok::colon, "expected ':' here"))
8369     return true;
8370 
8371   ValueInfo AliaseeVI;
8372   unsigned GVId;
8373   if (ParseGVReference(AliaseeVI, GVId))
8374     return true;
8375 
8376   if (ParseToken(lltok::rparen, "expected ')' here"))
8377     return true;
8378 
8379   auto AS = std::make_unique<AliasSummary>(GVFlags);
8380 
8381   AS->setModulePath(ModulePath);
8382 
8383   // Record forward reference if the aliasee is not parsed yet.
8384   if (AliaseeVI.getRef() == FwdVIRef) {
8385     auto FwdRef = ForwardRefAliasees.insert(
8386         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8387     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8388   } else {
8389     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8390     assert(Summary && "Aliasee must be a definition");
8391     AS->setAliasee(AliaseeVI, Summary);
8392   }
8393 
8394   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8395                         ID, std::move(AS));
8396 
8397   return false;
8398 }
8399 
8400 /// Flag
8401 ///   ::= [0|1]
8402 bool LLParser::ParseFlag(unsigned &Val) {
8403   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8404     return TokError("expected integer");
8405   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8406   Lex.Lex();
8407   return false;
8408 }
8409 
8410 /// OptionalFFlags
8411 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8412 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8413 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8414 ///        [',' 'noInline' ':' Flag]? ')'
8415 ///        [',' 'alwaysInline' ':' Flag]? ')'
8416 
8417 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8418   assert(Lex.getKind() == lltok::kw_funcFlags);
8419   Lex.Lex();
8420 
8421   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8422       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8423     return true;
8424 
8425   do {
8426     unsigned Val = 0;
8427     switch (Lex.getKind()) {
8428     case lltok::kw_readNone:
8429       Lex.Lex();
8430       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8431         return true;
8432       FFlags.ReadNone = Val;
8433       break;
8434     case lltok::kw_readOnly:
8435       Lex.Lex();
8436       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8437         return true;
8438       FFlags.ReadOnly = Val;
8439       break;
8440     case lltok::kw_noRecurse:
8441       Lex.Lex();
8442       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8443         return true;
8444       FFlags.NoRecurse = Val;
8445       break;
8446     case lltok::kw_returnDoesNotAlias:
8447       Lex.Lex();
8448       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8449         return true;
8450       FFlags.ReturnDoesNotAlias = Val;
8451       break;
8452     case lltok::kw_noInline:
8453       Lex.Lex();
8454       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8455         return true;
8456       FFlags.NoInline = Val;
8457       break;
8458     case lltok::kw_alwaysInline:
8459       Lex.Lex();
8460       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8461         return true;
8462       FFlags.AlwaysInline = Val;
8463       break;
8464     default:
8465       return Error(Lex.getLoc(), "expected function flag type");
8466     }
8467   } while (EatIfPresent(lltok::comma));
8468 
8469   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8470     return true;
8471 
8472   return false;
8473 }
8474 
8475 /// OptionalCalls
8476 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8477 /// Call ::= '(' 'callee' ':' GVReference
8478 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8479 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8480   assert(Lex.getKind() == lltok::kw_calls);
8481   Lex.Lex();
8482 
8483   if (ParseToken(lltok::colon, "expected ':' in calls") |
8484       ParseToken(lltok::lparen, "expected '(' in calls"))
8485     return true;
8486 
8487   IdToIndexMapType IdToIndexMap;
8488   // Parse each call edge
8489   do {
8490     ValueInfo VI;
8491     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8492         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8493         ParseToken(lltok::colon, "expected ':'"))
8494       return true;
8495 
8496     LocTy Loc = Lex.getLoc();
8497     unsigned GVId;
8498     if (ParseGVReference(VI, GVId))
8499       return true;
8500 
8501     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8502     unsigned RelBF = 0;
8503     if (EatIfPresent(lltok::comma)) {
8504       // Expect either hotness or relbf
8505       if (EatIfPresent(lltok::kw_hotness)) {
8506         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8507           return true;
8508       } else {
8509         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8510             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8511           return true;
8512       }
8513     }
8514     // Keep track of the Call array index needing a forward reference.
8515     // We will save the location of the ValueInfo needing an update, but
8516     // can only do so once the std::vector is finalized.
8517     if (VI.getRef() == FwdVIRef)
8518       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8519     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8520 
8521     if (ParseToken(lltok::rparen, "expected ')' in call"))
8522       return true;
8523   } while (EatIfPresent(lltok::comma));
8524 
8525   // Now that the Calls vector is finalized, it is safe to save the locations
8526   // of any forward GV references that need updating later.
8527   for (auto I : IdToIndexMap) {
8528     for (auto P : I.second) {
8529       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8530              "Forward referenced ValueInfo expected to be empty");
8531       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8532           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8533       FwdRef.first->second.push_back(
8534           std::make_pair(&Calls[P.first].first, P.second));
8535     }
8536   }
8537 
8538   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8539     return true;
8540 
8541   return false;
8542 }
8543 
8544 /// Hotness
8545 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8546 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8547   switch (Lex.getKind()) {
8548   case lltok::kw_unknown:
8549     Hotness = CalleeInfo::HotnessType::Unknown;
8550     break;
8551   case lltok::kw_cold:
8552     Hotness = CalleeInfo::HotnessType::Cold;
8553     break;
8554   case lltok::kw_none:
8555     Hotness = CalleeInfo::HotnessType::None;
8556     break;
8557   case lltok::kw_hot:
8558     Hotness = CalleeInfo::HotnessType::Hot;
8559     break;
8560   case lltok::kw_critical:
8561     Hotness = CalleeInfo::HotnessType::Critical;
8562     break;
8563   default:
8564     return Error(Lex.getLoc(), "invalid call edge hotness");
8565   }
8566   Lex.Lex();
8567   return false;
8568 }
8569 
8570 /// OptionalVTableFuncs
8571 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8572 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8573 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8574   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8575   Lex.Lex();
8576 
8577   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8578       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8579     return true;
8580 
8581   IdToIndexMapType IdToIndexMap;
8582   // Parse each virtual function pair
8583   do {
8584     ValueInfo VI;
8585     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8586         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8587         ParseToken(lltok::colon, "expected ':'"))
8588       return true;
8589 
8590     LocTy Loc = Lex.getLoc();
8591     unsigned GVId;
8592     if (ParseGVReference(VI, GVId))
8593       return true;
8594 
8595     uint64_t Offset;
8596     if (ParseToken(lltok::comma, "expected comma") ||
8597         ParseToken(lltok::kw_offset, "expected offset") ||
8598         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8599       return true;
8600 
8601     // Keep track of the VTableFuncs array index needing a forward reference.
8602     // We will save the location of the ValueInfo needing an update, but
8603     // can only do so once the std::vector is finalized.
8604     if (VI == EmptyVI)
8605       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8606     VTableFuncs.push_back({VI, Offset});
8607 
8608     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8609       return true;
8610   } while (EatIfPresent(lltok::comma));
8611 
8612   // Now that the VTableFuncs vector is finalized, it is safe to save the
8613   // locations of any forward GV references that need updating later.
8614   for (auto I : IdToIndexMap) {
8615     for (auto P : I.second) {
8616       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8617              "Forward referenced ValueInfo expected to be empty");
8618       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8619           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8620       FwdRef.first->second.push_back(
8621           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8622     }
8623   }
8624 
8625   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8626     return true;
8627 
8628   return false;
8629 }
8630 
8631 /// ParamNo := 'param' ':' UInt64
8632 bool LLParser::ParseParamNo(uint64_t &ParamNo) {
8633   if (ParseToken(lltok::kw_param, "expected 'param' here") ||
8634       ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo))
8635     return true;
8636   return false;
8637 }
8638 
8639 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8640 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) {
8641   APSInt Lower;
8642   APSInt Upper;
8643   auto ParseAPSInt = [&](APSInt &Val) {
8644     if (Lex.getKind() != lltok::APSInt)
8645       return TokError("expected integer");
8646     Val = Lex.getAPSIntVal();
8647     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8648     Val.setIsSigned(true);
8649     Lex.Lex();
8650     return false;
8651   };
8652   if (ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8653       ParseToken(lltok::colon, "expected ':' here") ||
8654       ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8655       ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8656       ParseToken(lltok::rsquare, "expected ']' here"))
8657     return true;
8658 
8659   ++Upper;
8660   Range =
8661       (Lower == Upper && !Lower.isMaxValue())
8662           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8663           : ConstantRange(Lower, Upper);
8664 
8665   return false;
8666 }
8667 
8668 /// ParamAccessCall
8669 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8670 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call) {
8671   if (ParseToken(lltok::lparen, "expected '(' here") ||
8672       ParseToken(lltok::kw_callee, "expected 'callee' here") ||
8673       ParseToken(lltok::colon, "expected ':' here"))
8674     return true;
8675 
8676   unsigned GVId;
8677   ValueInfo VI;
8678   if (ParseGVReference(VI, GVId))
8679     return true;
8680 
8681   Call.Callee = VI.getGUID();
8682 
8683   if (ParseToken(lltok::comma, "expected ',' here") ||
8684       ParseParamNo(Call.ParamNo) ||
8685       ParseToken(lltok::comma, "expected ',' here") ||
8686       ParseParamAccessOffset(Call.Offsets))
8687     return true;
8688 
8689   if (ParseToken(lltok::rparen, "expected ')' here"))
8690     return true;
8691 
8692   return false;
8693 }
8694 
8695 /// ParamAccess
8696 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8697 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8698 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param) {
8699   if (ParseToken(lltok::lparen, "expected '(' here") ||
8700       ParseParamNo(Param.ParamNo) ||
8701       ParseToken(lltok::comma, "expected ',' here") ||
8702       ParseParamAccessOffset(Param.Use))
8703     return true;
8704 
8705   if (EatIfPresent(lltok::comma)) {
8706     if (ParseToken(lltok::kw_calls, "expected 'calls' here") ||
8707         ParseToken(lltok::colon, "expected ':' here") ||
8708         ParseToken(lltok::lparen, "expected '(' here"))
8709       return true;
8710     do {
8711       FunctionSummary::ParamAccess::Call Call;
8712       if (ParseParamAccessCall(Call))
8713         return true;
8714       Param.Calls.push_back(Call);
8715     } while (EatIfPresent(lltok::comma));
8716 
8717     if (ParseToken(lltok::rparen, "expected ')' here"))
8718       return true;
8719   }
8720 
8721   if (ParseToken(lltok::rparen, "expected ')' here"))
8722     return true;
8723 
8724   return false;
8725 }
8726 
8727 /// OptionalParamAccesses
8728 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8729 bool LLParser::ParseOptionalParamAccesses(
8730     std::vector<FunctionSummary::ParamAccess> &Params) {
8731   assert(Lex.getKind() == lltok::kw_params);
8732   Lex.Lex();
8733 
8734   if (ParseToken(lltok::colon, "expected ':' here") ||
8735       ParseToken(lltok::lparen, "expected '(' here"))
8736     return true;
8737 
8738   do {
8739     FunctionSummary::ParamAccess ParamAccess;
8740     if (ParseParamAccess(ParamAccess))
8741       return true;
8742     Params.push_back(ParamAccess);
8743   } while (EatIfPresent(lltok::comma));
8744 
8745   if (ParseToken(lltok::rparen, "expected ')' here"))
8746     return true;
8747 
8748   return false;
8749 }
8750 
8751 /// OptionalRefs
8752 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8753 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8754   assert(Lex.getKind() == lltok::kw_refs);
8755   Lex.Lex();
8756 
8757   if (ParseToken(lltok::colon, "expected ':' in refs") ||
8758       ParseToken(lltok::lparen, "expected '(' in refs"))
8759     return true;
8760 
8761   struct ValueContext {
8762     ValueInfo VI;
8763     unsigned GVId;
8764     LocTy Loc;
8765   };
8766   std::vector<ValueContext> VContexts;
8767   // Parse each ref edge
8768   do {
8769     ValueContext VC;
8770     VC.Loc = Lex.getLoc();
8771     if (ParseGVReference(VC.VI, VC.GVId))
8772       return true;
8773     VContexts.push_back(VC);
8774   } while (EatIfPresent(lltok::comma));
8775 
8776   // Sort value contexts so that ones with writeonly
8777   // and readonly ValueInfo  are at the end of VContexts vector.
8778   // See FunctionSummary::specialRefCounts()
8779   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8780     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8781   });
8782 
8783   IdToIndexMapType IdToIndexMap;
8784   for (auto &VC : VContexts) {
8785     // Keep track of the Refs array index needing a forward reference.
8786     // We will save the location of the ValueInfo needing an update, but
8787     // can only do so once the std::vector is finalized.
8788     if (VC.VI.getRef() == FwdVIRef)
8789       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8790     Refs.push_back(VC.VI);
8791   }
8792 
8793   // Now that the Refs vector is finalized, it is safe to save the locations
8794   // of any forward GV references that need updating later.
8795   for (auto I : IdToIndexMap) {
8796     for (auto P : I.second) {
8797       assert(Refs[P.first].getRef() == FwdVIRef &&
8798              "Forward referenced ValueInfo expected to be empty");
8799       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8800           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8801       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8802     }
8803   }
8804 
8805   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8806     return true;
8807 
8808   return false;
8809 }
8810 
8811 /// OptionalTypeIdInfo
8812 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8813 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8814 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8815 bool LLParser::ParseOptionalTypeIdInfo(
8816     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8817   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8818   Lex.Lex();
8819 
8820   if (ParseToken(lltok::colon, "expected ':' here") ||
8821       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8822     return true;
8823 
8824   do {
8825     switch (Lex.getKind()) {
8826     case lltok::kw_typeTests:
8827       if (ParseTypeTests(TypeIdInfo.TypeTests))
8828         return true;
8829       break;
8830     case lltok::kw_typeTestAssumeVCalls:
8831       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8832                            TypeIdInfo.TypeTestAssumeVCalls))
8833         return true;
8834       break;
8835     case lltok::kw_typeCheckedLoadVCalls:
8836       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8837                            TypeIdInfo.TypeCheckedLoadVCalls))
8838         return true;
8839       break;
8840     case lltok::kw_typeTestAssumeConstVCalls:
8841       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8842                               TypeIdInfo.TypeTestAssumeConstVCalls))
8843         return true;
8844       break;
8845     case lltok::kw_typeCheckedLoadConstVCalls:
8846       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8847                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8848         return true;
8849       break;
8850     default:
8851       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8852     }
8853   } while (EatIfPresent(lltok::comma));
8854 
8855   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8856     return true;
8857 
8858   return false;
8859 }
8860 
8861 /// TypeTests
8862 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8863 ///         [',' (SummaryID | UInt64)]* ')'
8864 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8865   assert(Lex.getKind() == lltok::kw_typeTests);
8866   Lex.Lex();
8867 
8868   if (ParseToken(lltok::colon, "expected ':' here") ||
8869       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8870     return true;
8871 
8872   IdToIndexMapType IdToIndexMap;
8873   do {
8874     GlobalValue::GUID GUID = 0;
8875     if (Lex.getKind() == lltok::SummaryID) {
8876       unsigned ID = Lex.getUIntVal();
8877       LocTy Loc = Lex.getLoc();
8878       // Keep track of the TypeTests array index needing a forward reference.
8879       // We will save the location of the GUID needing an update, but
8880       // can only do so once the std::vector is finalized.
8881       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8882       Lex.Lex();
8883     } else if (ParseUInt64(GUID))
8884       return true;
8885     TypeTests.push_back(GUID);
8886   } while (EatIfPresent(lltok::comma));
8887 
8888   // Now that the TypeTests vector is finalized, it is safe to save the
8889   // locations of any forward GV references that need updating later.
8890   for (auto I : IdToIndexMap) {
8891     for (auto P : I.second) {
8892       assert(TypeTests[P.first] == 0 &&
8893              "Forward referenced type id GUID expected to be 0");
8894       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8895           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8896       FwdRef.first->second.push_back(
8897           std::make_pair(&TypeTests[P.first], P.second));
8898     }
8899   }
8900 
8901   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8902     return true;
8903 
8904   return false;
8905 }
8906 
8907 /// VFuncIdList
8908 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8909 bool LLParser::ParseVFuncIdList(
8910     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8911   assert(Lex.getKind() == Kind);
8912   Lex.Lex();
8913 
8914   if (ParseToken(lltok::colon, "expected ':' here") ||
8915       ParseToken(lltok::lparen, "expected '(' here"))
8916     return true;
8917 
8918   IdToIndexMapType IdToIndexMap;
8919   do {
8920     FunctionSummary::VFuncId VFuncId;
8921     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8922       return true;
8923     VFuncIdList.push_back(VFuncId);
8924   } while (EatIfPresent(lltok::comma));
8925 
8926   if (ParseToken(lltok::rparen, "expected ')' here"))
8927     return true;
8928 
8929   // Now that the VFuncIdList vector is finalized, it is safe to save the
8930   // locations of any forward GV references that need updating later.
8931   for (auto I : IdToIndexMap) {
8932     for (auto P : I.second) {
8933       assert(VFuncIdList[P.first].GUID == 0 &&
8934              "Forward referenced type id GUID expected to be 0");
8935       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8936           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8937       FwdRef.first->second.push_back(
8938           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8939     }
8940   }
8941 
8942   return false;
8943 }
8944 
8945 /// ConstVCallList
8946 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8947 bool LLParser::ParseConstVCallList(
8948     lltok::Kind Kind,
8949     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8950   assert(Lex.getKind() == Kind);
8951   Lex.Lex();
8952 
8953   if (ParseToken(lltok::colon, "expected ':' here") ||
8954       ParseToken(lltok::lparen, "expected '(' here"))
8955     return true;
8956 
8957   IdToIndexMapType IdToIndexMap;
8958   do {
8959     FunctionSummary::ConstVCall ConstVCall;
8960     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8961       return true;
8962     ConstVCallList.push_back(ConstVCall);
8963   } while (EatIfPresent(lltok::comma));
8964 
8965   if (ParseToken(lltok::rparen, "expected ')' here"))
8966     return true;
8967 
8968   // Now that the ConstVCallList vector is finalized, it is safe to save the
8969   // locations of any forward GV references that need updating later.
8970   for (auto I : IdToIndexMap) {
8971     for (auto P : I.second) {
8972       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8973              "Forward referenced type id GUID expected to be 0");
8974       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8975           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8976       FwdRef.first->second.push_back(
8977           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8978     }
8979   }
8980 
8981   return false;
8982 }
8983 
8984 /// ConstVCall
8985 ///   ::= '(' VFuncId ',' Args ')'
8986 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8987                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8988   if (ParseToken(lltok::lparen, "expected '(' here") ||
8989       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8990     return true;
8991 
8992   if (EatIfPresent(lltok::comma))
8993     if (ParseArgs(ConstVCall.Args))
8994       return true;
8995 
8996   if (ParseToken(lltok::rparen, "expected ')' here"))
8997     return true;
8998 
8999   return false;
9000 }
9001 
9002 /// VFuncId
9003 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9004 ///         'offset' ':' UInt64 ')'
9005 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
9006                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9007   assert(Lex.getKind() == lltok::kw_vFuncId);
9008   Lex.Lex();
9009 
9010   if (ParseToken(lltok::colon, "expected ':' here") ||
9011       ParseToken(lltok::lparen, "expected '(' here"))
9012     return true;
9013 
9014   if (Lex.getKind() == lltok::SummaryID) {
9015     VFuncId.GUID = 0;
9016     unsigned ID = Lex.getUIntVal();
9017     LocTy Loc = Lex.getLoc();
9018     // Keep track of the array index needing a forward reference.
9019     // We will save the location of the GUID needing an update, but
9020     // can only do so once the caller's std::vector is finalized.
9021     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9022     Lex.Lex();
9023   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
9024              ParseToken(lltok::colon, "expected ':' here") ||
9025              ParseUInt64(VFuncId.GUID))
9026     return true;
9027 
9028   if (ParseToken(lltok::comma, "expected ',' here") ||
9029       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
9030       ParseToken(lltok::colon, "expected ':' here") ||
9031       ParseUInt64(VFuncId.Offset) ||
9032       ParseToken(lltok::rparen, "expected ')' here"))
9033     return true;
9034 
9035   return false;
9036 }
9037 
9038 /// GVFlags
9039 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9040 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9041 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9042 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9043   assert(Lex.getKind() == lltok::kw_flags);
9044   Lex.Lex();
9045 
9046   if (ParseToken(lltok::colon, "expected ':' here") ||
9047       ParseToken(lltok::lparen, "expected '(' here"))
9048     return true;
9049 
9050   do {
9051     unsigned Flag = 0;
9052     switch (Lex.getKind()) {
9053     case lltok::kw_linkage:
9054       Lex.Lex();
9055       if (ParseToken(lltok::colon, "expected ':'"))
9056         return true;
9057       bool HasLinkage;
9058       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9059       assert(HasLinkage && "Linkage not optional in summary entry");
9060       Lex.Lex();
9061       break;
9062     case lltok::kw_notEligibleToImport:
9063       Lex.Lex();
9064       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9065         return true;
9066       GVFlags.NotEligibleToImport = Flag;
9067       break;
9068     case lltok::kw_live:
9069       Lex.Lex();
9070       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9071         return true;
9072       GVFlags.Live = Flag;
9073       break;
9074     case lltok::kw_dsoLocal:
9075       Lex.Lex();
9076       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9077         return true;
9078       GVFlags.DSOLocal = Flag;
9079       break;
9080     case lltok::kw_canAutoHide:
9081       Lex.Lex();
9082       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9083         return true;
9084       GVFlags.CanAutoHide = Flag;
9085       break;
9086     default:
9087       return Error(Lex.getLoc(), "expected gv flag type");
9088     }
9089   } while (EatIfPresent(lltok::comma));
9090 
9091   if (ParseToken(lltok::rparen, "expected ')' here"))
9092     return true;
9093 
9094   return false;
9095 }
9096 
9097 /// GVarFlags
9098 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9099 ///                      ',' 'writeonly' ':' Flag
9100 ///                      ',' 'constant' ':' Flag ')'
9101 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9102   assert(Lex.getKind() == lltok::kw_varFlags);
9103   Lex.Lex();
9104 
9105   if (ParseToken(lltok::colon, "expected ':' here") ||
9106       ParseToken(lltok::lparen, "expected '(' here"))
9107     return true;
9108 
9109   auto ParseRest = [this](unsigned int &Val) {
9110     Lex.Lex();
9111     if (ParseToken(lltok::colon, "expected ':'"))
9112       return true;
9113     return ParseFlag(Val);
9114   };
9115 
9116   do {
9117     unsigned Flag = 0;
9118     switch (Lex.getKind()) {
9119     case lltok::kw_readonly:
9120       if (ParseRest(Flag))
9121         return true;
9122       GVarFlags.MaybeReadOnly = Flag;
9123       break;
9124     case lltok::kw_writeonly:
9125       if (ParseRest(Flag))
9126         return true;
9127       GVarFlags.MaybeWriteOnly = Flag;
9128       break;
9129     case lltok::kw_constant:
9130       if (ParseRest(Flag))
9131         return true;
9132       GVarFlags.Constant = Flag;
9133       break;
9134     case lltok::kw_vcall_visibility:
9135       if (ParseRest(Flag))
9136         return true;
9137       GVarFlags.VCallVisibility = Flag;
9138       break;
9139     default:
9140       return Error(Lex.getLoc(), "expected gvar flag type");
9141     }
9142   } while (EatIfPresent(lltok::comma));
9143   return ParseToken(lltok::rparen, "expected ')' here");
9144 }
9145 
9146 /// ModuleReference
9147 ///   ::= 'module' ':' UInt
9148 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
9149   // Parse module id.
9150   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9151       ParseToken(lltok::colon, "expected ':' here") ||
9152       ParseToken(lltok::SummaryID, "expected module ID"))
9153     return true;
9154 
9155   unsigned ModuleID = Lex.getUIntVal();
9156   auto I = ModuleIdMap.find(ModuleID);
9157   // We should have already parsed all module IDs
9158   assert(I != ModuleIdMap.end());
9159   ModulePath = I->second;
9160   return false;
9161 }
9162 
9163 /// GVReference
9164 ///   ::= SummaryID
9165 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9166   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9167   if (!ReadOnly)
9168     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9169   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9170     return true;
9171 
9172   GVId = Lex.getUIntVal();
9173   // Check if we already have a VI for this GV
9174   if (GVId < NumberedValueInfos.size()) {
9175     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9176     VI = NumberedValueInfos[GVId];
9177   } else
9178     // We will create a forward reference to the stored location.
9179     VI = ValueInfo(false, FwdVIRef);
9180 
9181   if (ReadOnly)
9182     VI.setReadOnly();
9183   if (WriteOnly)
9184     VI.setWriteOnly();
9185   return false;
9186 }
9187