1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   UpgradeDebugInfo(*M);
241 
242   UpgradeModuleFlags(*M);
243 
244   if (!Slots)
245     return false;
246   // Initialize the slot mapping.
247   // Because by this point we've parsed and validated everything, we can "steal"
248   // the mapping from LLParser as it doesn't need it anymore.
249   Slots->GlobalValues = std::move(NumberedVals);
250   Slots->MetadataNodes = std::move(NumberedMetadata);
251   for (const auto &I : NamedTypes)
252     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
253   for (const auto &I : NumberedTypes)
254     Slots->Types.insert(std::make_pair(I.first, I.second.first));
255 
256   return false;
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Top-Level Entities
261 //===----------------------------------------------------------------------===//
262 
263 bool LLParser::ParseTopLevelEntities() {
264   while (true) {
265     switch (Lex.getKind()) {
266     default:         return TokError("expected top-level entity");
267     case lltok::Eof: return false;
268     case lltok::kw_declare: if (ParseDeclare()) return true; break;
269     case lltok::kw_define:  if (ParseDefine()) return true; break;
270     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
271     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
272     case lltok::kw_source_filename:
273       if (ParseSourceFileName())
274         return true;
275       break;
276     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
277     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
278     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
279     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
280     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
281     case lltok::ComdatVar:  if (parseComdat()) return true; break;
282     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
283     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
284     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
285     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
286     case lltok::kw_uselistorder_bb:
287       if (ParseUseListOrderBB())
288         return true;
289       break;
290     }
291   }
292 }
293 
294 /// toplevelentity
295 ///   ::= 'module' 'asm' STRINGCONSTANT
296 bool LLParser::ParseModuleAsm() {
297   assert(Lex.getKind() == lltok::kw_module);
298   Lex.Lex();
299 
300   std::string AsmStr;
301   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
302       ParseStringConstant(AsmStr)) return true;
303 
304   M->appendModuleInlineAsm(AsmStr);
305   return false;
306 }
307 
308 /// toplevelentity
309 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
310 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
311 bool LLParser::ParseTargetDefinition() {
312   assert(Lex.getKind() == lltok::kw_target);
313   std::string Str;
314   switch (Lex.Lex()) {
315   default: return TokError("unknown target property");
316   case lltok::kw_triple:
317     Lex.Lex();
318     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
319         ParseStringConstant(Str))
320       return true;
321     M->setTargetTriple(Str);
322     return false;
323   case lltok::kw_datalayout:
324     Lex.Lex();
325     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
326         ParseStringConstant(Str))
327       return true;
328     M->setDataLayout(Str);
329     return false;
330   }
331 }
332 
333 /// toplevelentity
334 ///   ::= 'source_filename' '=' STRINGCONSTANT
335 bool LLParser::ParseSourceFileName() {
336   assert(Lex.getKind() == lltok::kw_source_filename);
337   std::string Str;
338   Lex.Lex();
339   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
340       ParseStringConstant(Str))
341     return true;
342   M->setSourceFileName(Str);
343   return false;
344 }
345 
346 /// toplevelentity
347 ///   ::= 'deplibs' '=' '[' ']'
348 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
349 /// FIXME: Remove in 4.0. Currently parse, but ignore.
350 bool LLParser::ParseDepLibs() {
351   assert(Lex.getKind() == lltok::kw_deplibs);
352   Lex.Lex();
353   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
354       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
355     return true;
356 
357   if (EatIfPresent(lltok::rsquare))
358     return false;
359 
360   do {
361     std::string Str;
362     if (ParseStringConstant(Str)) return true;
363   } while (EatIfPresent(lltok::comma));
364 
365   return ParseToken(lltok::rsquare, "expected ']' at end of list");
366 }
367 
368 /// ParseUnnamedType:
369 ///   ::= LocalVarID '=' 'type' type
370 bool LLParser::ParseUnnamedType() {
371   LocTy TypeLoc = Lex.getLoc();
372   unsigned TypeID = Lex.getUIntVal();
373   Lex.Lex(); // eat LocalVarID;
374 
375   if (ParseToken(lltok::equal, "expected '=' after name") ||
376       ParseToken(lltok::kw_type, "expected 'type' after '='"))
377     return true;
378 
379   Type *Result = nullptr;
380   if (ParseStructDefinition(TypeLoc, "",
381                             NumberedTypes[TypeID], Result)) return true;
382 
383   if (!isa<StructType>(Result)) {
384     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
385     if (Entry.first)
386       return Error(TypeLoc, "non-struct types may not be recursive");
387     Entry.first = Result;
388     Entry.second = SMLoc();
389   }
390 
391   return false;
392 }
393 
394 /// toplevelentity
395 ///   ::= LocalVar '=' 'type' type
396 bool LLParser::ParseNamedType() {
397   std::string Name = Lex.getStrVal();
398   LocTy NameLoc = Lex.getLoc();
399   Lex.Lex();  // eat LocalVar.
400 
401   if (ParseToken(lltok::equal, "expected '=' after name") ||
402       ParseToken(lltok::kw_type, "expected 'type' after name"))
403     return true;
404 
405   Type *Result = nullptr;
406   if (ParseStructDefinition(NameLoc, Name,
407                             NamedTypes[Name], Result)) return true;
408 
409   if (!isa<StructType>(Result)) {
410     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
411     if (Entry.first)
412       return Error(NameLoc, "non-struct types may not be recursive");
413     Entry.first = Result;
414     Entry.second = SMLoc();
415   }
416 
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'declare' FunctionHeader
422 bool LLParser::ParseDeclare() {
423   assert(Lex.getKind() == lltok::kw_declare);
424   Lex.Lex();
425 
426   std::vector<std::pair<unsigned, MDNode *>> MDs;
427   while (Lex.getKind() == lltok::MetadataVar) {
428     unsigned MDK;
429     MDNode *N;
430     if (ParseMetadataAttachment(MDK, N))
431       return true;
432     MDs.push_back({MDK, N});
433   }
434 
435   Function *F;
436   if (ParseFunctionHeader(F, false))
437     return true;
438   for (auto &MD : MDs)
439     F->addMetadata(MD.first, *MD.second);
440   return false;
441 }
442 
443 /// toplevelentity
444 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
445 bool LLParser::ParseDefine() {
446   assert(Lex.getKind() == lltok::kw_define);
447   Lex.Lex();
448 
449   Function *F;
450   return ParseFunctionHeader(F, true) ||
451          ParseOptionalFunctionMetadata(*F) ||
452          ParseFunctionBody(*F);
453 }
454 
455 /// ParseGlobalType
456 ///   ::= 'constant'
457 ///   ::= 'global'
458 bool LLParser::ParseGlobalType(bool &IsConstant) {
459   if (Lex.getKind() == lltok::kw_constant)
460     IsConstant = true;
461   else if (Lex.getKind() == lltok::kw_global)
462     IsConstant = false;
463   else {
464     IsConstant = false;
465     return TokError("expected 'global' or 'constant'");
466   }
467   Lex.Lex();
468   return false;
469 }
470 
471 bool LLParser::ParseOptionalUnnamedAddr(
472     GlobalVariable::UnnamedAddr &UnnamedAddr) {
473   if (EatIfPresent(lltok::kw_unnamed_addr))
474     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
475   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
477   else
478     UnnamedAddr = GlobalValue::UnnamedAddr::None;
479   return false;
480 }
481 
482 /// ParseUnnamedGlobal:
483 ///   OptionalVisibility (ALIAS | IFUNC) ...
484 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
485 ///                                                     ...   -> global variable
486 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
487 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 bool LLParser::ParseUnnamedGlobal() {
490   unsigned VarID = NumberedVals.size();
491   std::string Name;
492   LocTy NameLoc = Lex.getLoc();
493 
494   // Handle the GlobalID form.
495   if (Lex.getKind() == lltok::GlobalID) {
496     if (Lex.getUIntVal() != VarID)
497       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
498                    Twine(VarID) + "'");
499     Lex.Lex(); // eat GlobalID;
500 
501     if (ParseToken(lltok::equal, "expected '=' after name"))
502       return true;
503   }
504 
505   bool HasLinkage;
506   unsigned Linkage, Visibility, DLLStorageClass;
507   GlobalVariable::ThreadLocalMode TLM;
508   GlobalVariable::UnnamedAddr UnnamedAddr;
509   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
510       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
511     return true;
512 
513   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
514     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
515                        DLLStorageClass, TLM, UnnamedAddr);
516 
517   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
518                              DLLStorageClass, TLM, UnnamedAddr);
519 }
520 
521 /// ParseNamedGlobal:
522 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
523 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
524 ///                                                     ...   -> global variable
525 bool LLParser::ParseNamedGlobal() {
526   assert(Lex.getKind() == lltok::GlobalVar);
527   LocTy NameLoc = Lex.getLoc();
528   std::string Name = Lex.getStrVal();
529   Lex.Lex();
530 
531   bool HasLinkage;
532   unsigned Linkage, Visibility, DLLStorageClass;
533   GlobalVariable::ThreadLocalMode TLM;
534   GlobalVariable::UnnamedAddr UnnamedAddr;
535   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
536       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
537       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
538     return true;
539 
540   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
541     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
542                        DLLStorageClass, TLM, UnnamedAddr);
543 
544   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
545                              DLLStorageClass, TLM, UnnamedAddr);
546 }
547 
548 bool LLParser::parseComdat() {
549   assert(Lex.getKind() == lltok::ComdatVar);
550   std::string Name = Lex.getStrVal();
551   LocTy NameLoc = Lex.getLoc();
552   Lex.Lex();
553 
554   if (ParseToken(lltok::equal, "expected '=' here"))
555     return true;
556 
557   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
558     return TokError("expected comdat type");
559 
560   Comdat::SelectionKind SK;
561   switch (Lex.getKind()) {
562   default:
563     return TokError("unknown selection kind");
564   case lltok::kw_any:
565     SK = Comdat::Any;
566     break;
567   case lltok::kw_exactmatch:
568     SK = Comdat::ExactMatch;
569     break;
570   case lltok::kw_largest:
571     SK = Comdat::Largest;
572     break;
573   case lltok::kw_noduplicates:
574     SK = Comdat::NoDuplicates;
575     break;
576   case lltok::kw_samesize:
577     SK = Comdat::SameSize;
578     break;
579   }
580   Lex.Lex();
581 
582   // See if the comdat was forward referenced, if so, use the comdat.
583   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
584   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
585   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
586     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
587 
588   Comdat *C;
589   if (I != ComdatSymTab.end())
590     C = &I->second;
591   else
592     C = M->getOrInsertComdat(Name);
593   C->setSelectionKind(SK);
594 
595   return false;
596 }
597 
598 // MDString:
599 //   ::= '!' STRINGCONSTANT
600 bool LLParser::ParseMDString(MDString *&Result) {
601   std::string Str;
602   if (ParseStringConstant(Str)) return true;
603   Result = MDString::get(Context, Str);
604   return false;
605 }
606 
607 // MDNode:
608 //   ::= '!' MDNodeNumber
609 bool LLParser::ParseMDNodeID(MDNode *&Result) {
610   // !{ ..., !42, ... }
611   LocTy IDLoc = Lex.getLoc();
612   unsigned MID = 0;
613   if (ParseUInt32(MID))
614     return true;
615 
616   // If not a forward reference, just return it now.
617   if (NumberedMetadata.count(MID)) {
618     Result = NumberedMetadata[MID];
619     return false;
620   }
621 
622   // Otherwise, create MDNode forward reference.
623   auto &FwdRef = ForwardRefMDNodes[MID];
624   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
625 
626   Result = FwdRef.first.get();
627   NumberedMetadata[MID].reset(Result);
628   return false;
629 }
630 
631 /// ParseNamedMetadata:
632 ///   !foo = !{ !1, !2 }
633 bool LLParser::ParseNamedMetadata() {
634   assert(Lex.getKind() == lltok::MetadataVar);
635   std::string Name = Lex.getStrVal();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here") ||
639       ParseToken(lltok::exclaim, "Expected '!' here") ||
640       ParseToken(lltok::lbrace, "Expected '{' here"))
641     return true;
642 
643   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
644   if (Lex.getKind() != lltok::rbrace)
645     do {
646       MDNode *N = nullptr;
647       // Parse DIExpressions inline as a special case. They are still MDNodes,
648       // so they can still appear in named metadata. Remove this logic if they
649       // become plain Metadata.
650       if (Lex.getKind() == lltok::MetadataVar &&
651           Lex.getStrVal() == "DIExpression") {
652         if (ParseDIExpression(N, /*IsDistinct=*/false))
653           return true;
654       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
655                  ParseMDNodeID(N)) {
656         return true;
657       }
658       NMD->addOperand(N);
659     } while (EatIfPresent(lltok::comma));
660 
661   return ParseToken(lltok::rbrace, "expected end of metadata node");
662 }
663 
664 /// ParseStandaloneMetadata:
665 ///   !42 = !{...}
666 bool LLParser::ParseStandaloneMetadata() {
667   assert(Lex.getKind() == lltok::exclaim);
668   Lex.Lex();
669   unsigned MetadataID = 0;
670 
671   MDNode *Init;
672   if (ParseUInt32(MetadataID) ||
673       ParseToken(lltok::equal, "expected '=' here"))
674     return true;
675 
676   // Detect common error, from old metadata syntax.
677   if (Lex.getKind() == lltok::Type)
678     return TokError("unexpected type in metadata definition");
679 
680   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
681   if (Lex.getKind() == lltok::MetadataVar) {
682     if (ParseSpecializedMDNode(Init, IsDistinct))
683       return true;
684   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
685              ParseMDTuple(Init, IsDistinct))
686     return true;
687 
688   // See if this was forward referenced, if so, handle it.
689   auto FI = ForwardRefMDNodes.find(MetadataID);
690   if (FI != ForwardRefMDNodes.end()) {
691     FI->second.first->replaceAllUsesWith(Init);
692     ForwardRefMDNodes.erase(FI);
693 
694     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
695   } else {
696     if (NumberedMetadata.count(MetadataID))
697       return TokError("Metadata id is already used");
698     NumberedMetadata[MetadataID].reset(Init);
699   }
700 
701   return false;
702 }
703 
704 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
705   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
706          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
707 }
708 
709 /// parseIndirectSymbol:
710 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
711 ///                     OptionalDLLStorageClass OptionalThreadLocal
712 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
713 ///
714 /// IndirectSymbol
715 ///   ::= TypeAndValue
716 ///
717 /// Everything through OptionalUnnamedAddr has already been parsed.
718 ///
719 bool LLParser::parseIndirectSymbol(
720     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
721     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
722     GlobalVariable::UnnamedAddr UnnamedAddr) {
723   bool IsAlias;
724   if (Lex.getKind() == lltok::kw_alias)
725     IsAlias = true;
726   else if (Lex.getKind() == lltok::kw_ifunc)
727     IsAlias = false;
728   else
729     llvm_unreachable("Not an alias or ifunc!");
730   Lex.Lex();
731 
732   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
733 
734   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
735     return Error(NameLoc, "invalid linkage type for alias");
736 
737   if (!isValidVisibilityForLinkage(Visibility, L))
738     return Error(NameLoc,
739                  "symbol with local linkage must have default visibility");
740 
741   Type *Ty;
742   LocTy ExplicitTypeLoc = Lex.getLoc();
743   if (ParseType(Ty) ||
744       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
745     return true;
746 
747   Constant *Aliasee;
748   LocTy AliaseeLoc = Lex.getLoc();
749   if (Lex.getKind() != lltok::kw_bitcast &&
750       Lex.getKind() != lltok::kw_getelementptr &&
751       Lex.getKind() != lltok::kw_addrspacecast &&
752       Lex.getKind() != lltok::kw_inttoptr) {
753     if (ParseGlobalTypeAndValue(Aliasee))
754       return true;
755   } else {
756     // The bitcast dest type is not present, it is implied by the dest type.
757     ValID ID;
758     if (ParseValID(ID))
759       return true;
760     if (ID.Kind != ValID::t_Constant)
761       return Error(AliaseeLoc, "invalid aliasee");
762     Aliasee = ID.ConstantVal;
763   }
764 
765   Type *AliaseeType = Aliasee->getType();
766   auto *PTy = dyn_cast<PointerType>(AliaseeType);
767   if (!PTy)
768     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
769   unsigned AddrSpace = PTy->getAddressSpace();
770 
771   if (IsAlias && Ty != PTy->getElementType())
772     return Error(
773         ExplicitTypeLoc,
774         "explicit pointee type doesn't match operand's pointee type");
775 
776   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
777     return Error(
778         ExplicitTypeLoc,
779         "explicit pointee type should be a function type");
780 
781   GlobalValue *GVal = nullptr;
782 
783   // See if the alias was forward referenced, if so, prepare to replace the
784   // forward reference.
785   if (!Name.empty()) {
786     GVal = M->getNamedValue(Name);
787     if (GVal) {
788       if (!ForwardRefVals.erase(Name))
789         return Error(NameLoc, "redefinition of global '@" + Name + "'");
790     }
791   } else {
792     auto I = ForwardRefValIDs.find(NumberedVals.size());
793     if (I != ForwardRefValIDs.end()) {
794       GVal = I->second.first;
795       ForwardRefValIDs.erase(I);
796     }
797   }
798 
799   // Okay, create the alias but do not insert it into the module yet.
800   std::unique_ptr<GlobalIndirectSymbol> GA;
801   if (IsAlias)
802     GA.reset(GlobalAlias::create(Ty, AddrSpace,
803                                  (GlobalValue::LinkageTypes)Linkage, Name,
804                                  Aliasee, /*Parent*/ nullptr));
805   else
806     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
807                                  (GlobalValue::LinkageTypes)Linkage, Name,
808                                  Aliasee, /*Parent*/ nullptr));
809   GA->setThreadLocalMode(TLM);
810   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
811   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
812   GA->setUnnamedAddr(UnnamedAddr);
813 
814   if (Name.empty())
815     NumberedVals.push_back(GA.get());
816 
817   if (GVal) {
818     // Verify that types agree.
819     if (GVal->getType() != GA->getType())
820       return Error(
821           ExplicitTypeLoc,
822           "forward reference and definition of alias have different types");
823 
824     // If they agree, just RAUW the old value with the alias and remove the
825     // forward ref info.
826     GVal->replaceAllUsesWith(GA.get());
827     GVal->eraseFromParent();
828   }
829 
830   // Insert into the module, we know its name won't collide now.
831   if (IsAlias)
832     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
833   else
834     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
835   assert(GA->getName() == Name && "Should not be a name conflict!");
836 
837   // The module owns this now
838   GA.release();
839 
840   return false;
841 }
842 
843 /// ParseGlobal
844 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
845 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
846 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
847 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
848 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
849 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
850 ///
851 /// Everything up to and including OptionalUnnamedAddr has been parsed
852 /// already.
853 ///
854 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
855                            unsigned Linkage, bool HasLinkage,
856                            unsigned Visibility, unsigned DLLStorageClass,
857                            GlobalVariable::ThreadLocalMode TLM,
858                            GlobalVariable::UnnamedAddr UnnamedAddr) {
859   if (!isValidVisibilityForLinkage(Visibility, Linkage))
860     return Error(NameLoc,
861                  "symbol with local linkage must have default visibility");
862 
863   unsigned AddrSpace;
864   bool IsConstant, IsExternallyInitialized;
865   LocTy IsExternallyInitializedLoc;
866   LocTy TyLoc;
867 
868   Type *Ty = nullptr;
869   if (ParseOptionalAddrSpace(AddrSpace) ||
870       ParseOptionalToken(lltok::kw_externally_initialized,
871                          IsExternallyInitialized,
872                          &IsExternallyInitializedLoc) ||
873       ParseGlobalType(IsConstant) ||
874       ParseType(Ty, TyLoc))
875     return true;
876 
877   // If the linkage is specified and is external, then no initializer is
878   // present.
879   Constant *Init = nullptr;
880   if (!HasLinkage ||
881       !GlobalValue::isValidDeclarationLinkage(
882           (GlobalValue::LinkageTypes)Linkage)) {
883     if (ParseGlobalValue(Ty, Init))
884       return true;
885   }
886 
887   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
888     return Error(TyLoc, "invalid type for global variable");
889 
890   GlobalValue *GVal = nullptr;
891 
892   // See if the global was forward referenced, if so, use the global.
893   if (!Name.empty()) {
894     GVal = M->getNamedValue(Name);
895     if (GVal) {
896       if (!ForwardRefVals.erase(Name))
897         return Error(NameLoc, "redefinition of global '@" + Name + "'");
898     }
899   } else {
900     auto I = ForwardRefValIDs.find(NumberedVals.size());
901     if (I != ForwardRefValIDs.end()) {
902       GVal = I->second.first;
903       ForwardRefValIDs.erase(I);
904     }
905   }
906 
907   GlobalVariable *GV;
908   if (!GVal) {
909     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
910                             Name, nullptr, GlobalVariable::NotThreadLocal,
911                             AddrSpace);
912   } else {
913     if (GVal->getValueType() != Ty)
914       return Error(TyLoc,
915             "forward reference and definition of global have different types");
916 
917     GV = cast<GlobalVariable>(GVal);
918 
919     // Move the forward-reference to the correct spot in the module.
920     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
921   }
922 
923   if (Name.empty())
924     NumberedVals.push_back(GV);
925 
926   // Set the parsed properties on the global.
927   if (Init)
928     GV->setInitializer(Init);
929   GV->setConstant(IsConstant);
930   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
931   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
932   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
933   GV->setExternallyInitialized(IsExternallyInitialized);
934   GV->setThreadLocalMode(TLM);
935   GV->setUnnamedAddr(UnnamedAddr);
936 
937   // Parse attributes on the global.
938   while (Lex.getKind() == lltok::comma) {
939     Lex.Lex();
940 
941     if (Lex.getKind() == lltok::kw_section) {
942       Lex.Lex();
943       GV->setSection(Lex.getStrVal());
944       if (ParseToken(lltok::StringConstant, "expected global section string"))
945         return true;
946     } else if (Lex.getKind() == lltok::kw_align) {
947       unsigned Alignment;
948       if (ParseOptionalAlignment(Alignment)) return true;
949       GV->setAlignment(Alignment);
950     } else if (Lex.getKind() == lltok::MetadataVar) {
951       if (ParseGlobalObjectMetadataAttachment(*GV))
952         return true;
953     } else {
954       Comdat *C;
955       if (parseOptionalComdat(Name, C))
956         return true;
957       if (C)
958         GV->setComdat(C);
959       else
960         return TokError("unknown global variable property!");
961     }
962   }
963 
964   AttrBuilder Attrs;
965   LocTy BuiltinLoc;
966   std::vector<unsigned> FwdRefAttrGrps;
967   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
968     return true;
969   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
970     GV->setAttributes(AttributeSet::get(Context, Attrs));
971     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
972   }
973 
974   return false;
975 }
976 
977 /// ParseUnnamedAttrGrp
978 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
979 bool LLParser::ParseUnnamedAttrGrp() {
980   assert(Lex.getKind() == lltok::kw_attributes);
981   LocTy AttrGrpLoc = Lex.getLoc();
982   Lex.Lex();
983 
984   if (Lex.getKind() != lltok::AttrGrpID)
985     return TokError("expected attribute group id");
986 
987   unsigned VarID = Lex.getUIntVal();
988   std::vector<unsigned> unused;
989   LocTy BuiltinLoc;
990   Lex.Lex();
991 
992   if (ParseToken(lltok::equal, "expected '=' here") ||
993       ParseToken(lltok::lbrace, "expected '{' here") ||
994       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
995                                  BuiltinLoc) ||
996       ParseToken(lltok::rbrace, "expected end of attribute group"))
997     return true;
998 
999   if (!NumberedAttrBuilders[VarID].hasAttributes())
1000     return Error(AttrGrpLoc, "attribute group has no attributes");
1001 
1002   return false;
1003 }
1004 
1005 /// ParseFnAttributeValuePairs
1006 ///   ::= <attr> | <attr> '=' <value>
1007 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1008                                           std::vector<unsigned> &FwdRefAttrGrps,
1009                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1010   bool HaveError = false;
1011 
1012   B.clear();
1013 
1014   while (true) {
1015     lltok::Kind Token = Lex.getKind();
1016     if (Token == lltok::kw_builtin)
1017       BuiltinLoc = Lex.getLoc();
1018     switch (Token) {
1019     default:
1020       if (!inAttrGrp) return HaveError;
1021       return Error(Lex.getLoc(), "unterminated attribute group");
1022     case lltok::rbrace:
1023       // Finished.
1024       return false;
1025 
1026     case lltok::AttrGrpID: {
1027       // Allow a function to reference an attribute group:
1028       //
1029       //   define void @foo() #1 { ... }
1030       if (inAttrGrp)
1031         HaveError |=
1032           Error(Lex.getLoc(),
1033               "cannot have an attribute group reference in an attribute group");
1034 
1035       unsigned AttrGrpNum = Lex.getUIntVal();
1036       if (inAttrGrp) break;
1037 
1038       // Save the reference to the attribute group. We'll fill it in later.
1039       FwdRefAttrGrps.push_back(AttrGrpNum);
1040       break;
1041     }
1042     // Target-dependent attributes:
1043     case lltok::StringConstant: {
1044       if (ParseStringAttribute(B))
1045         return true;
1046       continue;
1047     }
1048 
1049     // Target-independent attributes:
1050     case lltok::kw_align: {
1051       // As a hack, we allow function alignment to be initially parsed as an
1052       // attribute on a function declaration/definition or added to an attribute
1053       // group and later moved to the alignment field.
1054       unsigned Alignment;
1055       if (inAttrGrp) {
1056         Lex.Lex();
1057         if (ParseToken(lltok::equal, "expected '=' here") ||
1058             ParseUInt32(Alignment))
1059           return true;
1060       } else {
1061         if (ParseOptionalAlignment(Alignment))
1062           return true;
1063       }
1064       B.addAlignmentAttr(Alignment);
1065       continue;
1066     }
1067     case lltok::kw_alignstack: {
1068       unsigned Alignment;
1069       if (inAttrGrp) {
1070         Lex.Lex();
1071         if (ParseToken(lltok::equal, "expected '=' here") ||
1072             ParseUInt32(Alignment))
1073           return true;
1074       } else {
1075         if (ParseOptionalStackAlignment(Alignment))
1076           return true;
1077       }
1078       B.addStackAlignmentAttr(Alignment);
1079       continue;
1080     }
1081     case lltok::kw_allocsize: {
1082       unsigned ElemSizeArg;
1083       Optional<unsigned> NumElemsArg;
1084       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1085       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1086         return true;
1087       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1088       continue;
1089     }
1090     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1091     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1092     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1093     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1094     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1095     case lltok::kw_inaccessiblememonly:
1096       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1097     case lltok::kw_inaccessiblemem_or_argmemonly:
1098       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1099     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1100     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1101     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1102     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1103     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1104     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1105     case lltok::kw_noimplicitfloat:
1106       B.addAttribute(Attribute::NoImplicitFloat); break;
1107     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1108     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1109     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1110     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1111     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1112     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1113     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1114     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1115     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1116     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1117     case lltok::kw_returns_twice:
1118       B.addAttribute(Attribute::ReturnsTwice); break;
1119     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1120     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1121     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1122     case lltok::kw_sspstrong:
1123       B.addAttribute(Attribute::StackProtectStrong); break;
1124     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1125     case lltok::kw_sanitize_address:
1126       B.addAttribute(Attribute::SanitizeAddress); break;
1127     case lltok::kw_sanitize_thread:
1128       B.addAttribute(Attribute::SanitizeThread); break;
1129     case lltok::kw_sanitize_memory:
1130       B.addAttribute(Attribute::SanitizeMemory); break;
1131     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1132     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1133     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1134 
1135     // Error handling.
1136     case lltok::kw_inreg:
1137     case lltok::kw_signext:
1138     case lltok::kw_zeroext:
1139       HaveError |=
1140         Error(Lex.getLoc(),
1141               "invalid use of attribute on a function");
1142       break;
1143     case lltok::kw_byval:
1144     case lltok::kw_dereferenceable:
1145     case lltok::kw_dereferenceable_or_null:
1146     case lltok::kw_inalloca:
1147     case lltok::kw_nest:
1148     case lltok::kw_noalias:
1149     case lltok::kw_nocapture:
1150     case lltok::kw_nonnull:
1151     case lltok::kw_returned:
1152     case lltok::kw_sret:
1153     case lltok::kw_swifterror:
1154     case lltok::kw_swiftself:
1155       HaveError |=
1156         Error(Lex.getLoc(),
1157               "invalid use of parameter-only attribute on a function");
1158       break;
1159     }
1160 
1161     Lex.Lex();
1162   }
1163 }
1164 
1165 //===----------------------------------------------------------------------===//
1166 // GlobalValue Reference/Resolution Routines.
1167 //===----------------------------------------------------------------------===//
1168 
1169 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1170                                               const std::string &Name) {
1171   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1172     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1173   else
1174     return new GlobalVariable(*M, PTy->getElementType(), false,
1175                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1176                               nullptr, GlobalVariable::NotThreadLocal,
1177                               PTy->getAddressSpace());
1178 }
1179 
1180 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1181 /// forward reference record if needed.  This can return null if the value
1182 /// exists but does not have the right type.
1183 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1184                                     LocTy Loc) {
1185   PointerType *PTy = dyn_cast<PointerType>(Ty);
1186   if (!PTy) {
1187     Error(Loc, "global variable reference must have pointer type");
1188     return nullptr;
1189   }
1190 
1191   // Look this name up in the normal function symbol table.
1192   GlobalValue *Val =
1193     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1194 
1195   // If this is a forward reference for the value, see if we already created a
1196   // forward ref record.
1197   if (!Val) {
1198     auto I = ForwardRefVals.find(Name);
1199     if (I != ForwardRefVals.end())
1200       Val = I->second.first;
1201   }
1202 
1203   // If we have the value in the symbol table or fwd-ref table, return it.
1204   if (Val) {
1205     if (Val->getType() == Ty) return Val;
1206     Error(Loc, "'@" + Name + "' defined with type '" +
1207           getTypeString(Val->getType()) + "'");
1208     return nullptr;
1209   }
1210 
1211   // Otherwise, create a new forward reference for this value and remember it.
1212   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1213   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1214   return FwdVal;
1215 }
1216 
1217 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1218   PointerType *PTy = dyn_cast<PointerType>(Ty);
1219   if (!PTy) {
1220     Error(Loc, "global variable reference must have pointer type");
1221     return nullptr;
1222   }
1223 
1224   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1225 
1226   // If this is a forward reference for the value, see if we already created a
1227   // forward ref record.
1228   if (!Val) {
1229     auto I = ForwardRefValIDs.find(ID);
1230     if (I != ForwardRefValIDs.end())
1231       Val = I->second.first;
1232   }
1233 
1234   // If we have the value in the symbol table or fwd-ref table, return it.
1235   if (Val) {
1236     if (Val->getType() == Ty) return Val;
1237     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1238           getTypeString(Val->getType()) + "'");
1239     return nullptr;
1240   }
1241 
1242   // Otherwise, create a new forward reference for this value and remember it.
1243   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1244   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1245   return FwdVal;
1246 }
1247 
1248 //===----------------------------------------------------------------------===//
1249 // Comdat Reference/Resolution Routines.
1250 //===----------------------------------------------------------------------===//
1251 
1252 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1253   // Look this name up in the comdat symbol table.
1254   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1255   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1256   if (I != ComdatSymTab.end())
1257     return &I->second;
1258 
1259   // Otherwise, create a new forward reference for this value and remember it.
1260   Comdat *C = M->getOrInsertComdat(Name);
1261   ForwardRefComdats[Name] = Loc;
1262   return C;
1263 }
1264 
1265 //===----------------------------------------------------------------------===//
1266 // Helper Routines.
1267 //===----------------------------------------------------------------------===//
1268 
1269 /// ParseToken - If the current token has the specified kind, eat it and return
1270 /// success.  Otherwise, emit the specified error and return failure.
1271 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1272   if (Lex.getKind() != T)
1273     return TokError(ErrMsg);
1274   Lex.Lex();
1275   return false;
1276 }
1277 
1278 /// ParseStringConstant
1279 ///   ::= StringConstant
1280 bool LLParser::ParseStringConstant(std::string &Result) {
1281   if (Lex.getKind() != lltok::StringConstant)
1282     return TokError("expected string constant");
1283   Result = Lex.getStrVal();
1284   Lex.Lex();
1285   return false;
1286 }
1287 
1288 /// ParseUInt32
1289 ///   ::= uint32
1290 bool LLParser::ParseUInt32(uint32_t &Val) {
1291   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1292     return TokError("expected integer");
1293   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1294   if (Val64 != unsigned(Val64))
1295     return TokError("expected 32-bit integer (too large)");
1296   Val = Val64;
1297   Lex.Lex();
1298   return false;
1299 }
1300 
1301 /// ParseUInt64
1302 ///   ::= uint64
1303 bool LLParser::ParseUInt64(uint64_t &Val) {
1304   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1305     return TokError("expected integer");
1306   Val = Lex.getAPSIntVal().getLimitedValue();
1307   Lex.Lex();
1308   return false;
1309 }
1310 
1311 /// ParseTLSModel
1312 ///   := 'localdynamic'
1313 ///   := 'initialexec'
1314 ///   := 'localexec'
1315 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1316   switch (Lex.getKind()) {
1317     default:
1318       return TokError("expected localdynamic, initialexec or localexec");
1319     case lltok::kw_localdynamic:
1320       TLM = GlobalVariable::LocalDynamicTLSModel;
1321       break;
1322     case lltok::kw_initialexec:
1323       TLM = GlobalVariable::InitialExecTLSModel;
1324       break;
1325     case lltok::kw_localexec:
1326       TLM = GlobalVariable::LocalExecTLSModel;
1327       break;
1328   }
1329 
1330   Lex.Lex();
1331   return false;
1332 }
1333 
1334 /// ParseOptionalThreadLocal
1335 ///   := /*empty*/
1336 ///   := 'thread_local'
1337 ///   := 'thread_local' '(' tlsmodel ')'
1338 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1339   TLM = GlobalVariable::NotThreadLocal;
1340   if (!EatIfPresent(lltok::kw_thread_local))
1341     return false;
1342 
1343   TLM = GlobalVariable::GeneralDynamicTLSModel;
1344   if (Lex.getKind() == lltok::lparen) {
1345     Lex.Lex();
1346     return ParseTLSModel(TLM) ||
1347       ParseToken(lltok::rparen, "expected ')' after thread local model");
1348   }
1349   return false;
1350 }
1351 
1352 /// ParseOptionalAddrSpace
1353 ///   := /*empty*/
1354 ///   := 'addrspace' '(' uint32 ')'
1355 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1356   AddrSpace = 0;
1357   if (!EatIfPresent(lltok::kw_addrspace))
1358     return false;
1359   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1360          ParseUInt32(AddrSpace) ||
1361          ParseToken(lltok::rparen, "expected ')' in address space");
1362 }
1363 
1364 /// ParseStringAttribute
1365 ///   := StringConstant
1366 ///   := StringConstant '=' StringConstant
1367 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1368   std::string Attr = Lex.getStrVal();
1369   Lex.Lex();
1370   std::string Val;
1371   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1372     return true;
1373   B.addAttribute(Attr, Val);
1374   return false;
1375 }
1376 
1377 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1378 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1379   bool HaveError = false;
1380 
1381   B.clear();
1382 
1383   while (true) {
1384     lltok::Kind Token = Lex.getKind();
1385     switch (Token) {
1386     default:  // End of attributes.
1387       return HaveError;
1388     case lltok::StringConstant: {
1389       if (ParseStringAttribute(B))
1390         return true;
1391       continue;
1392     }
1393     case lltok::kw_align: {
1394       unsigned Alignment;
1395       if (ParseOptionalAlignment(Alignment))
1396         return true;
1397       B.addAlignmentAttr(Alignment);
1398       continue;
1399     }
1400     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1401     case lltok::kw_dereferenceable: {
1402       uint64_t Bytes;
1403       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1404         return true;
1405       B.addDereferenceableAttr(Bytes);
1406       continue;
1407     }
1408     case lltok::kw_dereferenceable_or_null: {
1409       uint64_t Bytes;
1410       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1411         return true;
1412       B.addDereferenceableOrNullAttr(Bytes);
1413       continue;
1414     }
1415     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1416     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1417     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1418     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1419     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1420     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1421     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1422     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1423     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1424     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1425     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1426     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1427     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1428     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1429     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1430 
1431     case lltok::kw_alignstack:
1432     case lltok::kw_alwaysinline:
1433     case lltok::kw_argmemonly:
1434     case lltok::kw_builtin:
1435     case lltok::kw_inlinehint:
1436     case lltok::kw_jumptable:
1437     case lltok::kw_minsize:
1438     case lltok::kw_naked:
1439     case lltok::kw_nobuiltin:
1440     case lltok::kw_noduplicate:
1441     case lltok::kw_noimplicitfloat:
1442     case lltok::kw_noinline:
1443     case lltok::kw_nonlazybind:
1444     case lltok::kw_noredzone:
1445     case lltok::kw_noreturn:
1446     case lltok::kw_nounwind:
1447     case lltok::kw_optnone:
1448     case lltok::kw_optsize:
1449     case lltok::kw_returns_twice:
1450     case lltok::kw_sanitize_address:
1451     case lltok::kw_sanitize_memory:
1452     case lltok::kw_sanitize_thread:
1453     case lltok::kw_ssp:
1454     case lltok::kw_sspreq:
1455     case lltok::kw_sspstrong:
1456     case lltok::kw_safestack:
1457     case lltok::kw_strictfp:
1458     case lltok::kw_uwtable:
1459       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1460       break;
1461     }
1462 
1463     Lex.Lex();
1464   }
1465 }
1466 
1467 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1468 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1469   bool HaveError = false;
1470 
1471   B.clear();
1472 
1473   while (true) {
1474     lltok::Kind Token = Lex.getKind();
1475     switch (Token) {
1476     default:  // End of attributes.
1477       return HaveError;
1478     case lltok::StringConstant: {
1479       if (ParseStringAttribute(B))
1480         return true;
1481       continue;
1482     }
1483     case lltok::kw_dereferenceable: {
1484       uint64_t Bytes;
1485       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1486         return true;
1487       B.addDereferenceableAttr(Bytes);
1488       continue;
1489     }
1490     case lltok::kw_dereferenceable_or_null: {
1491       uint64_t Bytes;
1492       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1493         return true;
1494       B.addDereferenceableOrNullAttr(Bytes);
1495       continue;
1496     }
1497     case lltok::kw_align: {
1498       unsigned Alignment;
1499       if (ParseOptionalAlignment(Alignment))
1500         return true;
1501       B.addAlignmentAttr(Alignment);
1502       continue;
1503     }
1504     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1505     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1506     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1507     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1508     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1509 
1510     // Error handling.
1511     case lltok::kw_byval:
1512     case lltok::kw_inalloca:
1513     case lltok::kw_nest:
1514     case lltok::kw_nocapture:
1515     case lltok::kw_returned:
1516     case lltok::kw_sret:
1517     case lltok::kw_swifterror:
1518     case lltok::kw_swiftself:
1519       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1520       break;
1521 
1522     case lltok::kw_alignstack:
1523     case lltok::kw_alwaysinline:
1524     case lltok::kw_argmemonly:
1525     case lltok::kw_builtin:
1526     case lltok::kw_cold:
1527     case lltok::kw_inlinehint:
1528     case lltok::kw_jumptable:
1529     case lltok::kw_minsize:
1530     case lltok::kw_naked:
1531     case lltok::kw_nobuiltin:
1532     case lltok::kw_noduplicate:
1533     case lltok::kw_noimplicitfloat:
1534     case lltok::kw_noinline:
1535     case lltok::kw_nonlazybind:
1536     case lltok::kw_noredzone:
1537     case lltok::kw_noreturn:
1538     case lltok::kw_nounwind:
1539     case lltok::kw_optnone:
1540     case lltok::kw_optsize:
1541     case lltok::kw_returns_twice:
1542     case lltok::kw_sanitize_address:
1543     case lltok::kw_sanitize_memory:
1544     case lltok::kw_sanitize_thread:
1545     case lltok::kw_ssp:
1546     case lltok::kw_sspreq:
1547     case lltok::kw_sspstrong:
1548     case lltok::kw_safestack:
1549     case lltok::kw_strictfp:
1550     case lltok::kw_uwtable:
1551       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1552       break;
1553 
1554     case lltok::kw_readnone:
1555     case lltok::kw_readonly:
1556       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1557     }
1558 
1559     Lex.Lex();
1560   }
1561 }
1562 
1563 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1564   HasLinkage = true;
1565   switch (Kind) {
1566   default:
1567     HasLinkage = false;
1568     return GlobalValue::ExternalLinkage;
1569   case lltok::kw_private:
1570     return GlobalValue::PrivateLinkage;
1571   case lltok::kw_internal:
1572     return GlobalValue::InternalLinkage;
1573   case lltok::kw_weak:
1574     return GlobalValue::WeakAnyLinkage;
1575   case lltok::kw_weak_odr:
1576     return GlobalValue::WeakODRLinkage;
1577   case lltok::kw_linkonce:
1578     return GlobalValue::LinkOnceAnyLinkage;
1579   case lltok::kw_linkonce_odr:
1580     return GlobalValue::LinkOnceODRLinkage;
1581   case lltok::kw_available_externally:
1582     return GlobalValue::AvailableExternallyLinkage;
1583   case lltok::kw_appending:
1584     return GlobalValue::AppendingLinkage;
1585   case lltok::kw_common:
1586     return GlobalValue::CommonLinkage;
1587   case lltok::kw_extern_weak:
1588     return GlobalValue::ExternalWeakLinkage;
1589   case lltok::kw_external:
1590     return GlobalValue::ExternalLinkage;
1591   }
1592 }
1593 
1594 /// ParseOptionalLinkage
1595 ///   ::= /*empty*/
1596 ///   ::= 'private'
1597 ///   ::= 'internal'
1598 ///   ::= 'weak'
1599 ///   ::= 'weak_odr'
1600 ///   ::= 'linkonce'
1601 ///   ::= 'linkonce_odr'
1602 ///   ::= 'available_externally'
1603 ///   ::= 'appending'
1604 ///   ::= 'common'
1605 ///   ::= 'extern_weak'
1606 ///   ::= 'external'
1607 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1608                                     unsigned &Visibility,
1609                                     unsigned &DLLStorageClass) {
1610   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1611   if (HasLinkage)
1612     Lex.Lex();
1613   ParseOptionalVisibility(Visibility);
1614   ParseOptionalDLLStorageClass(DLLStorageClass);
1615   return false;
1616 }
1617 
1618 /// ParseOptionalVisibility
1619 ///   ::= /*empty*/
1620 ///   ::= 'default'
1621 ///   ::= 'hidden'
1622 ///   ::= 'protected'
1623 ///
1624 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1625   switch (Lex.getKind()) {
1626   default:
1627     Res = GlobalValue::DefaultVisibility;
1628     return;
1629   case lltok::kw_default:
1630     Res = GlobalValue::DefaultVisibility;
1631     break;
1632   case lltok::kw_hidden:
1633     Res = GlobalValue::HiddenVisibility;
1634     break;
1635   case lltok::kw_protected:
1636     Res = GlobalValue::ProtectedVisibility;
1637     break;
1638   }
1639   Lex.Lex();
1640 }
1641 
1642 /// ParseOptionalDLLStorageClass
1643 ///   ::= /*empty*/
1644 ///   ::= 'dllimport'
1645 ///   ::= 'dllexport'
1646 ///
1647 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1648   switch (Lex.getKind()) {
1649   default:
1650     Res = GlobalValue::DefaultStorageClass;
1651     return;
1652   case lltok::kw_dllimport:
1653     Res = GlobalValue::DLLImportStorageClass;
1654     break;
1655   case lltok::kw_dllexport:
1656     Res = GlobalValue::DLLExportStorageClass;
1657     break;
1658   }
1659   Lex.Lex();
1660 }
1661 
1662 /// ParseOptionalCallingConv
1663 ///   ::= /*empty*/
1664 ///   ::= 'ccc'
1665 ///   ::= 'fastcc'
1666 ///   ::= 'intel_ocl_bicc'
1667 ///   ::= 'coldcc'
1668 ///   ::= 'x86_stdcallcc'
1669 ///   ::= 'x86_fastcallcc'
1670 ///   ::= 'x86_thiscallcc'
1671 ///   ::= 'x86_vectorcallcc'
1672 ///   ::= 'arm_apcscc'
1673 ///   ::= 'arm_aapcscc'
1674 ///   ::= 'arm_aapcs_vfpcc'
1675 ///   ::= 'msp430_intrcc'
1676 ///   ::= 'avr_intrcc'
1677 ///   ::= 'avr_signalcc'
1678 ///   ::= 'ptx_kernel'
1679 ///   ::= 'ptx_device'
1680 ///   ::= 'spir_func'
1681 ///   ::= 'spir_kernel'
1682 ///   ::= 'x86_64_sysvcc'
1683 ///   ::= 'win64cc'
1684 ///   ::= 'webkit_jscc'
1685 ///   ::= 'anyregcc'
1686 ///   ::= 'preserve_mostcc'
1687 ///   ::= 'preserve_allcc'
1688 ///   ::= 'ghccc'
1689 ///   ::= 'swiftcc'
1690 ///   ::= 'x86_intrcc'
1691 ///   ::= 'hhvmcc'
1692 ///   ::= 'hhvm_ccc'
1693 ///   ::= 'cxx_fast_tlscc'
1694 ///   ::= 'amdgpu_vs'
1695 ///   ::= 'amdgpu_hs'
1696 ///   ::= 'amdgpu_gs'
1697 ///   ::= 'amdgpu_ps'
1698 ///   ::= 'amdgpu_cs'
1699 ///   ::= 'amdgpu_kernel'
1700 ///   ::= 'cc' UINT
1701 ///
1702 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1703   switch (Lex.getKind()) {
1704   default:                       CC = CallingConv::C; return false;
1705   case lltok::kw_ccc:            CC = CallingConv::C; break;
1706   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1707   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1708   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1709   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1710   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1711   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1712   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1713   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1714   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1715   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1716   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1717   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1718   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1719   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1720   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1721   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1722   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1723   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1724   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1725   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1726   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1727   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1728   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1729   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1730   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1731   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1732   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1733   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1734   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1735   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1736   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1737   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1738   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1739   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1740   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1741   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1742   case lltok::kw_cc: {
1743       Lex.Lex();
1744       return ParseUInt32(CC);
1745     }
1746   }
1747 
1748   Lex.Lex();
1749   return false;
1750 }
1751 
1752 /// ParseMetadataAttachment
1753 ///   ::= !dbg !42
1754 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1755   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1756 
1757   std::string Name = Lex.getStrVal();
1758   Kind = M->getMDKindID(Name);
1759   Lex.Lex();
1760 
1761   return ParseMDNode(MD);
1762 }
1763 
1764 /// ParseInstructionMetadata
1765 ///   ::= !dbg !42 (',' !dbg !57)*
1766 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1767   do {
1768     if (Lex.getKind() != lltok::MetadataVar)
1769       return TokError("expected metadata after comma");
1770 
1771     unsigned MDK;
1772     MDNode *N;
1773     if (ParseMetadataAttachment(MDK, N))
1774       return true;
1775 
1776     Inst.setMetadata(MDK, N);
1777     if (MDK == LLVMContext::MD_tbaa)
1778       InstsWithTBAATag.push_back(&Inst);
1779 
1780     // If this is the end of the list, we're done.
1781   } while (EatIfPresent(lltok::comma));
1782   return false;
1783 }
1784 
1785 /// ParseGlobalObjectMetadataAttachment
1786 ///   ::= !dbg !57
1787 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1788   unsigned MDK;
1789   MDNode *N;
1790   if (ParseMetadataAttachment(MDK, N))
1791     return true;
1792 
1793   GO.addMetadata(MDK, *N);
1794   return false;
1795 }
1796 
1797 /// ParseOptionalFunctionMetadata
1798 ///   ::= (!dbg !57)*
1799 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1800   while (Lex.getKind() == lltok::MetadataVar)
1801     if (ParseGlobalObjectMetadataAttachment(F))
1802       return true;
1803   return false;
1804 }
1805 
1806 /// ParseOptionalAlignment
1807 ///   ::= /* empty */
1808 ///   ::= 'align' 4
1809 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1810   Alignment = 0;
1811   if (!EatIfPresent(lltok::kw_align))
1812     return false;
1813   LocTy AlignLoc = Lex.getLoc();
1814   if (ParseUInt32(Alignment)) return true;
1815   if (!isPowerOf2_32(Alignment))
1816     return Error(AlignLoc, "alignment is not a power of two");
1817   if (Alignment > Value::MaximumAlignment)
1818     return Error(AlignLoc, "huge alignments are not supported yet");
1819   return false;
1820 }
1821 
1822 /// ParseOptionalDerefAttrBytes
1823 ///   ::= /* empty */
1824 ///   ::= AttrKind '(' 4 ')'
1825 ///
1826 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1827 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1828                                            uint64_t &Bytes) {
1829   assert((AttrKind == lltok::kw_dereferenceable ||
1830           AttrKind == lltok::kw_dereferenceable_or_null) &&
1831          "contract!");
1832 
1833   Bytes = 0;
1834   if (!EatIfPresent(AttrKind))
1835     return false;
1836   LocTy ParenLoc = Lex.getLoc();
1837   if (!EatIfPresent(lltok::lparen))
1838     return Error(ParenLoc, "expected '('");
1839   LocTy DerefLoc = Lex.getLoc();
1840   if (ParseUInt64(Bytes)) return true;
1841   ParenLoc = Lex.getLoc();
1842   if (!EatIfPresent(lltok::rparen))
1843     return Error(ParenLoc, "expected ')'");
1844   if (!Bytes)
1845     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1846   return false;
1847 }
1848 
1849 /// ParseOptionalCommaAlign
1850 ///   ::=
1851 ///   ::= ',' align 4
1852 ///
1853 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1854 /// end.
1855 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1856                                        bool &AteExtraComma) {
1857   AteExtraComma = false;
1858   while (EatIfPresent(lltok::comma)) {
1859     // Metadata at the end is an early exit.
1860     if (Lex.getKind() == lltok::MetadataVar) {
1861       AteExtraComma = true;
1862       return false;
1863     }
1864 
1865     if (Lex.getKind() != lltok::kw_align)
1866       return Error(Lex.getLoc(), "expected metadata or 'align'");
1867 
1868     if (ParseOptionalAlignment(Alignment)) return true;
1869   }
1870 
1871   return false;
1872 }
1873 
1874 /// ParseOptionalCommaAddrSpace
1875 ///   ::=
1876 ///   ::= ',' addrspace(1)
1877 ///
1878 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1879 /// end.
1880 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1881                                            LocTy &Loc,
1882                                            bool &AteExtraComma) {
1883   AteExtraComma = false;
1884   while (EatIfPresent(lltok::comma)) {
1885     // Metadata at the end is an early exit.
1886     if (Lex.getKind() == lltok::MetadataVar) {
1887       AteExtraComma = true;
1888       return false;
1889     }
1890 
1891     Loc = Lex.getLoc();
1892     if (Lex.getKind() != lltok::kw_addrspace)
1893       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1894 
1895     if (ParseOptionalAddrSpace(AddrSpace))
1896       return true;
1897   }
1898 
1899   return false;
1900 }
1901 
1902 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1903                                        Optional<unsigned> &HowManyArg) {
1904   Lex.Lex();
1905 
1906   auto StartParen = Lex.getLoc();
1907   if (!EatIfPresent(lltok::lparen))
1908     return Error(StartParen, "expected '('");
1909 
1910   if (ParseUInt32(BaseSizeArg))
1911     return true;
1912 
1913   if (EatIfPresent(lltok::comma)) {
1914     auto HowManyAt = Lex.getLoc();
1915     unsigned HowMany;
1916     if (ParseUInt32(HowMany))
1917       return true;
1918     if (HowMany == BaseSizeArg)
1919       return Error(HowManyAt,
1920                    "'allocsize' indices can't refer to the same parameter");
1921     HowManyArg = HowMany;
1922   } else
1923     HowManyArg = None;
1924 
1925   auto EndParen = Lex.getLoc();
1926   if (!EatIfPresent(lltok::rparen))
1927     return Error(EndParen, "expected ')'");
1928   return false;
1929 }
1930 
1931 /// ParseScopeAndOrdering
1932 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1933 ///   else: ::=
1934 ///
1935 /// This sets Scope and Ordering to the parsed values.
1936 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1937                                      AtomicOrdering &Ordering) {
1938   if (!isAtomic)
1939     return false;
1940 
1941   return ParseScope(SSID) || ParseOrdering(Ordering);
1942 }
1943 
1944 /// ParseScope
1945 ///   ::= syncscope("singlethread" | "<target scope>")?
1946 ///
1947 /// This sets synchronization scope ID to the ID of the parsed value.
1948 bool LLParser::ParseScope(SyncScope::ID &SSID) {
1949   SSID = SyncScope::System;
1950   if (EatIfPresent(lltok::kw_syncscope)) {
1951     auto StartParenAt = Lex.getLoc();
1952     if (!EatIfPresent(lltok::lparen))
1953       return Error(StartParenAt, "Expected '(' in syncscope");
1954 
1955     std::string SSN;
1956     auto SSNAt = Lex.getLoc();
1957     if (ParseStringConstant(SSN))
1958       return Error(SSNAt, "Expected synchronization scope name");
1959 
1960     auto EndParenAt = Lex.getLoc();
1961     if (!EatIfPresent(lltok::rparen))
1962       return Error(EndParenAt, "Expected ')' in syncscope");
1963 
1964     SSID = Context.getOrInsertSyncScopeID(SSN);
1965   }
1966 
1967   return false;
1968 }
1969 
1970 /// ParseOrdering
1971 ///   ::= AtomicOrdering
1972 ///
1973 /// This sets Ordering to the parsed value.
1974 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1975   switch (Lex.getKind()) {
1976   default: return TokError("Expected ordering on atomic instruction");
1977   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1978   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1979   // Not specified yet:
1980   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1981   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1982   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1983   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1984   case lltok::kw_seq_cst:
1985     Ordering = AtomicOrdering::SequentiallyConsistent;
1986     break;
1987   }
1988   Lex.Lex();
1989   return false;
1990 }
1991 
1992 /// ParseOptionalStackAlignment
1993 ///   ::= /* empty */
1994 ///   ::= 'alignstack' '(' 4 ')'
1995 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1996   Alignment = 0;
1997   if (!EatIfPresent(lltok::kw_alignstack))
1998     return false;
1999   LocTy ParenLoc = Lex.getLoc();
2000   if (!EatIfPresent(lltok::lparen))
2001     return Error(ParenLoc, "expected '('");
2002   LocTy AlignLoc = Lex.getLoc();
2003   if (ParseUInt32(Alignment)) return true;
2004   ParenLoc = Lex.getLoc();
2005   if (!EatIfPresent(lltok::rparen))
2006     return Error(ParenLoc, "expected ')'");
2007   if (!isPowerOf2_32(Alignment))
2008     return Error(AlignLoc, "stack alignment is not a power of two");
2009   return false;
2010 }
2011 
2012 /// ParseIndexList - This parses the index list for an insert/extractvalue
2013 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2014 /// comma at the end of the line and find that it is followed by metadata.
2015 /// Clients that don't allow metadata can call the version of this function that
2016 /// only takes one argument.
2017 ///
2018 /// ParseIndexList
2019 ///    ::=  (',' uint32)+
2020 ///
2021 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2022                               bool &AteExtraComma) {
2023   AteExtraComma = false;
2024 
2025   if (Lex.getKind() != lltok::comma)
2026     return TokError("expected ',' as start of index list");
2027 
2028   while (EatIfPresent(lltok::comma)) {
2029     if (Lex.getKind() == lltok::MetadataVar) {
2030       if (Indices.empty()) return TokError("expected index");
2031       AteExtraComma = true;
2032       return false;
2033     }
2034     unsigned Idx = 0;
2035     if (ParseUInt32(Idx)) return true;
2036     Indices.push_back(Idx);
2037   }
2038 
2039   return false;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 // Type Parsing.
2044 //===----------------------------------------------------------------------===//
2045 
2046 /// ParseType - Parse a type.
2047 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2048   SMLoc TypeLoc = Lex.getLoc();
2049   switch (Lex.getKind()) {
2050   default:
2051     return TokError(Msg);
2052   case lltok::Type:
2053     // Type ::= 'float' | 'void' (etc)
2054     Result = Lex.getTyVal();
2055     Lex.Lex();
2056     break;
2057   case lltok::lbrace:
2058     // Type ::= StructType
2059     if (ParseAnonStructType(Result, false))
2060       return true;
2061     break;
2062   case lltok::lsquare:
2063     // Type ::= '[' ... ']'
2064     Lex.Lex(); // eat the lsquare.
2065     if (ParseArrayVectorType(Result, false))
2066       return true;
2067     break;
2068   case lltok::less: // Either vector or packed struct.
2069     // Type ::= '<' ... '>'
2070     Lex.Lex();
2071     if (Lex.getKind() == lltok::lbrace) {
2072       if (ParseAnonStructType(Result, true) ||
2073           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2074         return true;
2075     } else if (ParseArrayVectorType(Result, true))
2076       return true;
2077     break;
2078   case lltok::LocalVar: {
2079     // Type ::= %foo
2080     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2081 
2082     // If the type hasn't been defined yet, create a forward definition and
2083     // remember where that forward def'n was seen (in case it never is defined).
2084     if (!Entry.first) {
2085       Entry.first = StructType::create(Context, Lex.getStrVal());
2086       Entry.second = Lex.getLoc();
2087     }
2088     Result = Entry.first;
2089     Lex.Lex();
2090     break;
2091   }
2092 
2093   case lltok::LocalVarID: {
2094     // Type ::= %4
2095     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2096 
2097     // If the type hasn't been defined yet, create a forward definition and
2098     // remember where that forward def'n was seen (in case it never is defined).
2099     if (!Entry.first) {
2100       Entry.first = StructType::create(Context);
2101       Entry.second = Lex.getLoc();
2102     }
2103     Result = Entry.first;
2104     Lex.Lex();
2105     break;
2106   }
2107   }
2108 
2109   // Parse the type suffixes.
2110   while (true) {
2111     switch (Lex.getKind()) {
2112     // End of type.
2113     default:
2114       if (!AllowVoid && Result->isVoidTy())
2115         return Error(TypeLoc, "void type only allowed for function results");
2116       return false;
2117 
2118     // Type ::= Type '*'
2119     case lltok::star:
2120       if (Result->isLabelTy())
2121         return TokError("basic block pointers are invalid");
2122       if (Result->isVoidTy())
2123         return TokError("pointers to void are invalid - use i8* instead");
2124       if (!PointerType::isValidElementType(Result))
2125         return TokError("pointer to this type is invalid");
2126       Result = PointerType::getUnqual(Result);
2127       Lex.Lex();
2128       break;
2129 
2130     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2131     case lltok::kw_addrspace: {
2132       if (Result->isLabelTy())
2133         return TokError("basic block pointers are invalid");
2134       if (Result->isVoidTy())
2135         return TokError("pointers to void are invalid; use i8* instead");
2136       if (!PointerType::isValidElementType(Result))
2137         return TokError("pointer to this type is invalid");
2138       unsigned AddrSpace;
2139       if (ParseOptionalAddrSpace(AddrSpace) ||
2140           ParseToken(lltok::star, "expected '*' in address space"))
2141         return true;
2142 
2143       Result = PointerType::get(Result, AddrSpace);
2144       break;
2145     }
2146 
2147     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2148     case lltok::lparen:
2149       if (ParseFunctionType(Result))
2150         return true;
2151       break;
2152     }
2153   }
2154 }
2155 
2156 /// ParseParameterList
2157 ///    ::= '(' ')'
2158 ///    ::= '(' Arg (',' Arg)* ')'
2159 ///  Arg
2160 ///    ::= Type OptionalAttributes Value OptionalAttributes
2161 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2162                                   PerFunctionState &PFS, bool IsMustTailCall,
2163                                   bool InVarArgsFunc) {
2164   if (ParseToken(lltok::lparen, "expected '(' in call"))
2165     return true;
2166 
2167   while (Lex.getKind() != lltok::rparen) {
2168     // If this isn't the first argument, we need a comma.
2169     if (!ArgList.empty() &&
2170         ParseToken(lltok::comma, "expected ',' in argument list"))
2171       return true;
2172 
2173     // Parse an ellipsis if this is a musttail call in a variadic function.
2174     if (Lex.getKind() == lltok::dotdotdot) {
2175       const char *Msg = "unexpected ellipsis in argument list for ";
2176       if (!IsMustTailCall)
2177         return TokError(Twine(Msg) + "non-musttail call");
2178       if (!InVarArgsFunc)
2179         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2180       Lex.Lex();  // Lex the '...', it is purely for readability.
2181       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2182     }
2183 
2184     // Parse the argument.
2185     LocTy ArgLoc;
2186     Type *ArgTy = nullptr;
2187     AttrBuilder ArgAttrs;
2188     Value *V;
2189     if (ParseType(ArgTy, ArgLoc))
2190       return true;
2191 
2192     if (ArgTy->isMetadataTy()) {
2193       if (ParseMetadataAsValue(V, PFS))
2194         return true;
2195     } else {
2196       // Otherwise, handle normal operands.
2197       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2198         return true;
2199     }
2200     ArgList.push_back(ParamInfo(
2201         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2202   }
2203 
2204   if (IsMustTailCall && InVarArgsFunc)
2205     return TokError("expected '...' at end of argument list for musttail call "
2206                     "in varargs function");
2207 
2208   Lex.Lex();  // Lex the ')'.
2209   return false;
2210 }
2211 
2212 /// ParseOptionalOperandBundles
2213 ///    ::= /*empty*/
2214 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2215 ///
2216 /// OperandBundle
2217 ///    ::= bundle-tag '(' ')'
2218 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2219 ///
2220 /// bundle-tag ::= String Constant
2221 bool LLParser::ParseOptionalOperandBundles(
2222     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2223   LocTy BeginLoc = Lex.getLoc();
2224   if (!EatIfPresent(lltok::lsquare))
2225     return false;
2226 
2227   while (Lex.getKind() != lltok::rsquare) {
2228     // If this isn't the first operand bundle, we need a comma.
2229     if (!BundleList.empty() &&
2230         ParseToken(lltok::comma, "expected ',' in input list"))
2231       return true;
2232 
2233     std::string Tag;
2234     if (ParseStringConstant(Tag))
2235       return true;
2236 
2237     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2238       return true;
2239 
2240     std::vector<Value *> Inputs;
2241     while (Lex.getKind() != lltok::rparen) {
2242       // If this isn't the first input, we need a comma.
2243       if (!Inputs.empty() &&
2244           ParseToken(lltok::comma, "expected ',' in input list"))
2245         return true;
2246 
2247       Type *Ty = nullptr;
2248       Value *Input = nullptr;
2249       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2250         return true;
2251       Inputs.push_back(Input);
2252     }
2253 
2254     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2255 
2256     Lex.Lex(); // Lex the ')'.
2257   }
2258 
2259   if (BundleList.empty())
2260     return Error(BeginLoc, "operand bundle set must not be empty");
2261 
2262   Lex.Lex(); // Lex the ']'.
2263   return false;
2264 }
2265 
2266 /// ParseArgumentList - Parse the argument list for a function type or function
2267 /// prototype.
2268 ///   ::= '(' ArgTypeListI ')'
2269 /// ArgTypeListI
2270 ///   ::= /*empty*/
2271 ///   ::= '...'
2272 ///   ::= ArgTypeList ',' '...'
2273 ///   ::= ArgType (',' ArgType)*
2274 ///
2275 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2276                                  bool &isVarArg){
2277   isVarArg = false;
2278   assert(Lex.getKind() == lltok::lparen);
2279   Lex.Lex(); // eat the (.
2280 
2281   if (Lex.getKind() == lltok::rparen) {
2282     // empty
2283   } else if (Lex.getKind() == lltok::dotdotdot) {
2284     isVarArg = true;
2285     Lex.Lex();
2286   } else {
2287     LocTy TypeLoc = Lex.getLoc();
2288     Type *ArgTy = nullptr;
2289     AttrBuilder Attrs;
2290     std::string Name;
2291 
2292     if (ParseType(ArgTy) ||
2293         ParseOptionalParamAttrs(Attrs)) return true;
2294 
2295     if (ArgTy->isVoidTy())
2296       return Error(TypeLoc, "argument can not have void type");
2297 
2298     if (Lex.getKind() == lltok::LocalVar) {
2299       Name = Lex.getStrVal();
2300       Lex.Lex();
2301     }
2302 
2303     if (!FunctionType::isValidArgumentType(ArgTy))
2304       return Error(TypeLoc, "invalid type for function argument");
2305 
2306     ArgList.emplace_back(TypeLoc, ArgTy,
2307                          AttributeSet::get(ArgTy->getContext(), Attrs),
2308                          std::move(Name));
2309 
2310     while (EatIfPresent(lltok::comma)) {
2311       // Handle ... at end of arg list.
2312       if (EatIfPresent(lltok::dotdotdot)) {
2313         isVarArg = true;
2314         break;
2315       }
2316 
2317       // Otherwise must be an argument type.
2318       TypeLoc = Lex.getLoc();
2319       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2320 
2321       if (ArgTy->isVoidTy())
2322         return Error(TypeLoc, "argument can not have void type");
2323 
2324       if (Lex.getKind() == lltok::LocalVar) {
2325         Name = Lex.getStrVal();
2326         Lex.Lex();
2327       } else {
2328         Name = "";
2329       }
2330 
2331       if (!ArgTy->isFirstClassType())
2332         return Error(TypeLoc, "invalid type for function argument");
2333 
2334       ArgList.emplace_back(TypeLoc, ArgTy,
2335                            AttributeSet::get(ArgTy->getContext(), Attrs),
2336                            std::move(Name));
2337     }
2338   }
2339 
2340   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2341 }
2342 
2343 /// ParseFunctionType
2344 ///  ::= Type ArgumentList OptionalAttrs
2345 bool LLParser::ParseFunctionType(Type *&Result) {
2346   assert(Lex.getKind() == lltok::lparen);
2347 
2348   if (!FunctionType::isValidReturnType(Result))
2349     return TokError("invalid function return type");
2350 
2351   SmallVector<ArgInfo, 8> ArgList;
2352   bool isVarArg;
2353   if (ParseArgumentList(ArgList, isVarArg))
2354     return true;
2355 
2356   // Reject names on the arguments lists.
2357   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2358     if (!ArgList[i].Name.empty())
2359       return Error(ArgList[i].Loc, "argument name invalid in function type");
2360     if (ArgList[i].Attrs.hasAttributes())
2361       return Error(ArgList[i].Loc,
2362                    "argument attributes invalid in function type");
2363   }
2364 
2365   SmallVector<Type*, 16> ArgListTy;
2366   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2367     ArgListTy.push_back(ArgList[i].Ty);
2368 
2369   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2370   return false;
2371 }
2372 
2373 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2374 /// other structs.
2375 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2376   SmallVector<Type*, 8> Elts;
2377   if (ParseStructBody(Elts)) return true;
2378 
2379   Result = StructType::get(Context, Elts, Packed);
2380   return false;
2381 }
2382 
2383 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2384 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2385                                      std::pair<Type*, LocTy> &Entry,
2386                                      Type *&ResultTy) {
2387   // If the type was already defined, diagnose the redefinition.
2388   if (Entry.first && !Entry.second.isValid())
2389     return Error(TypeLoc, "redefinition of type");
2390 
2391   // If we have opaque, just return without filling in the definition for the
2392   // struct.  This counts as a definition as far as the .ll file goes.
2393   if (EatIfPresent(lltok::kw_opaque)) {
2394     // This type is being defined, so clear the location to indicate this.
2395     Entry.second = SMLoc();
2396 
2397     // If this type number has never been uttered, create it.
2398     if (!Entry.first)
2399       Entry.first = StructType::create(Context, Name);
2400     ResultTy = Entry.first;
2401     return false;
2402   }
2403 
2404   // If the type starts with '<', then it is either a packed struct or a vector.
2405   bool isPacked = EatIfPresent(lltok::less);
2406 
2407   // If we don't have a struct, then we have a random type alias, which we
2408   // accept for compatibility with old files.  These types are not allowed to be
2409   // forward referenced and not allowed to be recursive.
2410   if (Lex.getKind() != lltok::lbrace) {
2411     if (Entry.first)
2412       return Error(TypeLoc, "forward references to non-struct type");
2413 
2414     ResultTy = nullptr;
2415     if (isPacked)
2416       return ParseArrayVectorType(ResultTy, true);
2417     return ParseType(ResultTy);
2418   }
2419 
2420   // This type is being defined, so clear the location to indicate this.
2421   Entry.second = SMLoc();
2422 
2423   // If this type number has never been uttered, create it.
2424   if (!Entry.first)
2425     Entry.first = StructType::create(Context, Name);
2426 
2427   StructType *STy = cast<StructType>(Entry.first);
2428 
2429   SmallVector<Type*, 8> Body;
2430   if (ParseStructBody(Body) ||
2431       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2432     return true;
2433 
2434   STy->setBody(Body, isPacked);
2435   ResultTy = STy;
2436   return false;
2437 }
2438 
2439 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2440 ///   StructType
2441 ///     ::= '{' '}'
2442 ///     ::= '{' Type (',' Type)* '}'
2443 ///     ::= '<' '{' '}' '>'
2444 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2445 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2446   assert(Lex.getKind() == lltok::lbrace);
2447   Lex.Lex(); // Consume the '{'
2448 
2449   // Handle the empty struct.
2450   if (EatIfPresent(lltok::rbrace))
2451     return false;
2452 
2453   LocTy EltTyLoc = Lex.getLoc();
2454   Type *Ty = nullptr;
2455   if (ParseType(Ty)) return true;
2456   Body.push_back(Ty);
2457 
2458   if (!StructType::isValidElementType(Ty))
2459     return Error(EltTyLoc, "invalid element type for struct");
2460 
2461   while (EatIfPresent(lltok::comma)) {
2462     EltTyLoc = Lex.getLoc();
2463     if (ParseType(Ty)) return true;
2464 
2465     if (!StructType::isValidElementType(Ty))
2466       return Error(EltTyLoc, "invalid element type for struct");
2467 
2468     Body.push_back(Ty);
2469   }
2470 
2471   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2472 }
2473 
2474 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2475 /// token has already been consumed.
2476 ///   Type
2477 ///     ::= '[' APSINTVAL 'x' Types ']'
2478 ///     ::= '<' APSINTVAL 'x' Types '>'
2479 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2480   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2481       Lex.getAPSIntVal().getBitWidth() > 64)
2482     return TokError("expected number in address space");
2483 
2484   LocTy SizeLoc = Lex.getLoc();
2485   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2486   Lex.Lex();
2487 
2488   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2489       return true;
2490 
2491   LocTy TypeLoc = Lex.getLoc();
2492   Type *EltTy = nullptr;
2493   if (ParseType(EltTy)) return true;
2494 
2495   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2496                  "expected end of sequential type"))
2497     return true;
2498 
2499   if (isVector) {
2500     if (Size == 0)
2501       return Error(SizeLoc, "zero element vector is illegal");
2502     if ((unsigned)Size != Size)
2503       return Error(SizeLoc, "size too large for vector");
2504     if (!VectorType::isValidElementType(EltTy))
2505       return Error(TypeLoc, "invalid vector element type");
2506     Result = VectorType::get(EltTy, unsigned(Size));
2507   } else {
2508     if (!ArrayType::isValidElementType(EltTy))
2509       return Error(TypeLoc, "invalid array element type");
2510     Result = ArrayType::get(EltTy, Size);
2511   }
2512   return false;
2513 }
2514 
2515 //===----------------------------------------------------------------------===//
2516 // Function Semantic Analysis.
2517 //===----------------------------------------------------------------------===//
2518 
2519 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2520                                              int functionNumber)
2521   : P(p), F(f), FunctionNumber(functionNumber) {
2522 
2523   // Insert unnamed arguments into the NumberedVals list.
2524   for (Argument &A : F.args())
2525     if (!A.hasName())
2526       NumberedVals.push_back(&A);
2527 }
2528 
2529 LLParser::PerFunctionState::~PerFunctionState() {
2530   // If there were any forward referenced non-basicblock values, delete them.
2531 
2532   for (const auto &P : ForwardRefVals) {
2533     if (isa<BasicBlock>(P.second.first))
2534       continue;
2535     P.second.first->replaceAllUsesWith(
2536         UndefValue::get(P.second.first->getType()));
2537     P.second.first->deleteValue();
2538   }
2539 
2540   for (const auto &P : ForwardRefValIDs) {
2541     if (isa<BasicBlock>(P.second.first))
2542       continue;
2543     P.second.first->replaceAllUsesWith(
2544         UndefValue::get(P.second.first->getType()));
2545     P.second.first->deleteValue();
2546   }
2547 }
2548 
2549 bool LLParser::PerFunctionState::FinishFunction() {
2550   if (!ForwardRefVals.empty())
2551     return P.Error(ForwardRefVals.begin()->second.second,
2552                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2553                    "'");
2554   if (!ForwardRefValIDs.empty())
2555     return P.Error(ForwardRefValIDs.begin()->second.second,
2556                    "use of undefined value '%" +
2557                    Twine(ForwardRefValIDs.begin()->first) + "'");
2558   return false;
2559 }
2560 
2561 /// GetVal - Get a value with the specified name or ID, creating a
2562 /// forward reference record if needed.  This can return null if the value
2563 /// exists but does not have the right type.
2564 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2565                                           LocTy Loc) {
2566   // Look this name up in the normal function symbol table.
2567   Value *Val = F.getValueSymbolTable()->lookup(Name);
2568 
2569   // If this is a forward reference for the value, see if we already created a
2570   // forward ref record.
2571   if (!Val) {
2572     auto I = ForwardRefVals.find(Name);
2573     if (I != ForwardRefVals.end())
2574       Val = I->second.first;
2575   }
2576 
2577   // If we have the value in the symbol table or fwd-ref table, return it.
2578   if (Val) {
2579     if (Val->getType() == Ty) return Val;
2580     if (Ty->isLabelTy())
2581       P.Error(Loc, "'%" + Name + "' is not a basic block");
2582     else
2583       P.Error(Loc, "'%" + Name + "' defined with type '" +
2584               getTypeString(Val->getType()) + "'");
2585     return nullptr;
2586   }
2587 
2588   // Don't make placeholders with invalid type.
2589   if (!Ty->isFirstClassType()) {
2590     P.Error(Loc, "invalid use of a non-first-class type");
2591     return nullptr;
2592   }
2593 
2594   // Otherwise, create a new forward reference for this value and remember it.
2595   Value *FwdVal;
2596   if (Ty->isLabelTy()) {
2597     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2598   } else {
2599     FwdVal = new Argument(Ty, Name);
2600   }
2601 
2602   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2603   return FwdVal;
2604 }
2605 
2606 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2607   // Look this name up in the normal function symbol table.
2608   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2609 
2610   // If this is a forward reference for the value, see if we already created a
2611   // forward ref record.
2612   if (!Val) {
2613     auto I = ForwardRefValIDs.find(ID);
2614     if (I != ForwardRefValIDs.end())
2615       Val = I->second.first;
2616   }
2617 
2618   // If we have the value in the symbol table or fwd-ref table, return it.
2619   if (Val) {
2620     if (Val->getType() == Ty) return Val;
2621     if (Ty->isLabelTy())
2622       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2623     else
2624       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2625               getTypeString(Val->getType()) + "'");
2626     return nullptr;
2627   }
2628 
2629   if (!Ty->isFirstClassType()) {
2630     P.Error(Loc, "invalid use of a non-first-class type");
2631     return nullptr;
2632   }
2633 
2634   // Otherwise, create a new forward reference for this value and remember it.
2635   Value *FwdVal;
2636   if (Ty->isLabelTy()) {
2637     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2638   } else {
2639     FwdVal = new Argument(Ty);
2640   }
2641 
2642   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2643   return FwdVal;
2644 }
2645 
2646 /// SetInstName - After an instruction is parsed and inserted into its
2647 /// basic block, this installs its name.
2648 bool LLParser::PerFunctionState::SetInstName(int NameID,
2649                                              const std::string &NameStr,
2650                                              LocTy NameLoc, Instruction *Inst) {
2651   // If this instruction has void type, it cannot have a name or ID specified.
2652   if (Inst->getType()->isVoidTy()) {
2653     if (NameID != -1 || !NameStr.empty())
2654       return P.Error(NameLoc, "instructions returning void cannot have a name");
2655     return false;
2656   }
2657 
2658   // If this was a numbered instruction, verify that the instruction is the
2659   // expected value and resolve any forward references.
2660   if (NameStr.empty()) {
2661     // If neither a name nor an ID was specified, just use the next ID.
2662     if (NameID == -1)
2663       NameID = NumberedVals.size();
2664 
2665     if (unsigned(NameID) != NumberedVals.size())
2666       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2667                      Twine(NumberedVals.size()) + "'");
2668 
2669     auto FI = ForwardRefValIDs.find(NameID);
2670     if (FI != ForwardRefValIDs.end()) {
2671       Value *Sentinel = FI->second.first;
2672       if (Sentinel->getType() != Inst->getType())
2673         return P.Error(NameLoc, "instruction forward referenced with type '" +
2674                        getTypeString(FI->second.first->getType()) + "'");
2675 
2676       Sentinel->replaceAllUsesWith(Inst);
2677       Sentinel->deleteValue();
2678       ForwardRefValIDs.erase(FI);
2679     }
2680 
2681     NumberedVals.push_back(Inst);
2682     return false;
2683   }
2684 
2685   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2686   auto FI = ForwardRefVals.find(NameStr);
2687   if (FI != ForwardRefVals.end()) {
2688     Value *Sentinel = FI->second.first;
2689     if (Sentinel->getType() != Inst->getType())
2690       return P.Error(NameLoc, "instruction forward referenced with type '" +
2691                      getTypeString(FI->second.first->getType()) + "'");
2692 
2693     Sentinel->replaceAllUsesWith(Inst);
2694     Sentinel->deleteValue();
2695     ForwardRefVals.erase(FI);
2696   }
2697 
2698   // Set the name on the instruction.
2699   Inst->setName(NameStr);
2700 
2701   if (Inst->getName() != NameStr)
2702     return P.Error(NameLoc, "multiple definition of local value named '" +
2703                    NameStr + "'");
2704   return false;
2705 }
2706 
2707 /// GetBB - Get a basic block with the specified name or ID, creating a
2708 /// forward reference record if needed.
2709 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2710                                               LocTy Loc) {
2711   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2712                                       Type::getLabelTy(F.getContext()), Loc));
2713 }
2714 
2715 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2716   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2717                                       Type::getLabelTy(F.getContext()), Loc));
2718 }
2719 
2720 /// DefineBB - Define the specified basic block, which is either named or
2721 /// unnamed.  If there is an error, this returns null otherwise it returns
2722 /// the block being defined.
2723 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2724                                                  LocTy Loc) {
2725   BasicBlock *BB;
2726   if (Name.empty())
2727     BB = GetBB(NumberedVals.size(), Loc);
2728   else
2729     BB = GetBB(Name, Loc);
2730   if (!BB) return nullptr; // Already diagnosed error.
2731 
2732   // Move the block to the end of the function.  Forward ref'd blocks are
2733   // inserted wherever they happen to be referenced.
2734   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2735 
2736   // Remove the block from forward ref sets.
2737   if (Name.empty()) {
2738     ForwardRefValIDs.erase(NumberedVals.size());
2739     NumberedVals.push_back(BB);
2740   } else {
2741     // BB forward references are already in the function symbol table.
2742     ForwardRefVals.erase(Name);
2743   }
2744 
2745   return BB;
2746 }
2747 
2748 //===----------------------------------------------------------------------===//
2749 // Constants.
2750 //===----------------------------------------------------------------------===//
2751 
2752 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2753 /// type implied.  For example, if we parse "4" we don't know what integer type
2754 /// it has.  The value will later be combined with its type and checked for
2755 /// sanity.  PFS is used to convert function-local operands of metadata (since
2756 /// metadata operands are not just parsed here but also converted to values).
2757 /// PFS can be null when we are not parsing metadata values inside a function.
2758 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2759   ID.Loc = Lex.getLoc();
2760   switch (Lex.getKind()) {
2761   default: return TokError("expected value token");
2762   case lltok::GlobalID:  // @42
2763     ID.UIntVal = Lex.getUIntVal();
2764     ID.Kind = ValID::t_GlobalID;
2765     break;
2766   case lltok::GlobalVar:  // @foo
2767     ID.StrVal = Lex.getStrVal();
2768     ID.Kind = ValID::t_GlobalName;
2769     break;
2770   case lltok::LocalVarID:  // %42
2771     ID.UIntVal = Lex.getUIntVal();
2772     ID.Kind = ValID::t_LocalID;
2773     break;
2774   case lltok::LocalVar:  // %foo
2775     ID.StrVal = Lex.getStrVal();
2776     ID.Kind = ValID::t_LocalName;
2777     break;
2778   case lltok::APSInt:
2779     ID.APSIntVal = Lex.getAPSIntVal();
2780     ID.Kind = ValID::t_APSInt;
2781     break;
2782   case lltok::APFloat:
2783     ID.APFloatVal = Lex.getAPFloatVal();
2784     ID.Kind = ValID::t_APFloat;
2785     break;
2786   case lltok::kw_true:
2787     ID.ConstantVal = ConstantInt::getTrue(Context);
2788     ID.Kind = ValID::t_Constant;
2789     break;
2790   case lltok::kw_false:
2791     ID.ConstantVal = ConstantInt::getFalse(Context);
2792     ID.Kind = ValID::t_Constant;
2793     break;
2794   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2795   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2796   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2797   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2798 
2799   case lltok::lbrace: {
2800     // ValID ::= '{' ConstVector '}'
2801     Lex.Lex();
2802     SmallVector<Constant*, 16> Elts;
2803     if (ParseGlobalValueVector(Elts) ||
2804         ParseToken(lltok::rbrace, "expected end of struct constant"))
2805       return true;
2806 
2807     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2808     ID.UIntVal = Elts.size();
2809     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2810            Elts.size() * sizeof(Elts[0]));
2811     ID.Kind = ValID::t_ConstantStruct;
2812     return false;
2813   }
2814   case lltok::less: {
2815     // ValID ::= '<' ConstVector '>'         --> Vector.
2816     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2817     Lex.Lex();
2818     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2819 
2820     SmallVector<Constant*, 16> Elts;
2821     LocTy FirstEltLoc = Lex.getLoc();
2822     if (ParseGlobalValueVector(Elts) ||
2823         (isPackedStruct &&
2824          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2825         ParseToken(lltok::greater, "expected end of constant"))
2826       return true;
2827 
2828     if (isPackedStruct) {
2829       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2830       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2831              Elts.size() * sizeof(Elts[0]));
2832       ID.UIntVal = Elts.size();
2833       ID.Kind = ValID::t_PackedConstantStruct;
2834       return false;
2835     }
2836 
2837     if (Elts.empty())
2838       return Error(ID.Loc, "constant vector must not be empty");
2839 
2840     if (!Elts[0]->getType()->isIntegerTy() &&
2841         !Elts[0]->getType()->isFloatingPointTy() &&
2842         !Elts[0]->getType()->isPointerTy())
2843       return Error(FirstEltLoc,
2844             "vector elements must have integer, pointer or floating point type");
2845 
2846     // Verify that all the vector elements have the same type.
2847     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2848       if (Elts[i]->getType() != Elts[0]->getType())
2849         return Error(FirstEltLoc,
2850                      "vector element #" + Twine(i) +
2851                     " is not of type '" + getTypeString(Elts[0]->getType()));
2852 
2853     ID.ConstantVal = ConstantVector::get(Elts);
2854     ID.Kind = ValID::t_Constant;
2855     return false;
2856   }
2857   case lltok::lsquare: {   // Array Constant
2858     Lex.Lex();
2859     SmallVector<Constant*, 16> Elts;
2860     LocTy FirstEltLoc = Lex.getLoc();
2861     if (ParseGlobalValueVector(Elts) ||
2862         ParseToken(lltok::rsquare, "expected end of array constant"))
2863       return true;
2864 
2865     // Handle empty element.
2866     if (Elts.empty()) {
2867       // Use undef instead of an array because it's inconvenient to determine
2868       // the element type at this point, there being no elements to examine.
2869       ID.Kind = ValID::t_EmptyArray;
2870       return false;
2871     }
2872 
2873     if (!Elts[0]->getType()->isFirstClassType())
2874       return Error(FirstEltLoc, "invalid array element type: " +
2875                    getTypeString(Elts[0]->getType()));
2876 
2877     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2878 
2879     // Verify all elements are correct type!
2880     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2881       if (Elts[i]->getType() != Elts[0]->getType())
2882         return Error(FirstEltLoc,
2883                      "array element #" + Twine(i) +
2884                      " is not of type '" + getTypeString(Elts[0]->getType()));
2885     }
2886 
2887     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2888     ID.Kind = ValID::t_Constant;
2889     return false;
2890   }
2891   case lltok::kw_c:  // c "foo"
2892     Lex.Lex();
2893     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2894                                                   false);
2895     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2896     ID.Kind = ValID::t_Constant;
2897     return false;
2898 
2899   case lltok::kw_asm: {
2900     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2901     //             STRINGCONSTANT
2902     bool HasSideEffect, AlignStack, AsmDialect;
2903     Lex.Lex();
2904     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2905         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2906         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2907         ParseStringConstant(ID.StrVal) ||
2908         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2909         ParseToken(lltok::StringConstant, "expected constraint string"))
2910       return true;
2911     ID.StrVal2 = Lex.getStrVal();
2912     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2913       (unsigned(AsmDialect)<<2);
2914     ID.Kind = ValID::t_InlineAsm;
2915     return false;
2916   }
2917 
2918   case lltok::kw_blockaddress: {
2919     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2920     Lex.Lex();
2921 
2922     ValID Fn, Label;
2923 
2924     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2925         ParseValID(Fn) ||
2926         ParseToken(lltok::comma, "expected comma in block address expression")||
2927         ParseValID(Label) ||
2928         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2929       return true;
2930 
2931     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2932       return Error(Fn.Loc, "expected function name in blockaddress");
2933     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2934       return Error(Label.Loc, "expected basic block name in blockaddress");
2935 
2936     // Try to find the function (but skip it if it's forward-referenced).
2937     GlobalValue *GV = nullptr;
2938     if (Fn.Kind == ValID::t_GlobalID) {
2939       if (Fn.UIntVal < NumberedVals.size())
2940         GV = NumberedVals[Fn.UIntVal];
2941     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2942       GV = M->getNamedValue(Fn.StrVal);
2943     }
2944     Function *F = nullptr;
2945     if (GV) {
2946       // Confirm that it's actually a function with a definition.
2947       if (!isa<Function>(GV))
2948         return Error(Fn.Loc, "expected function name in blockaddress");
2949       F = cast<Function>(GV);
2950       if (F->isDeclaration())
2951         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2952     }
2953 
2954     if (!F) {
2955       // Make a global variable as a placeholder for this reference.
2956       GlobalValue *&FwdRef =
2957           ForwardRefBlockAddresses.insert(std::make_pair(
2958                                               std::move(Fn),
2959                                               std::map<ValID, GlobalValue *>()))
2960               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2961               .first->second;
2962       if (!FwdRef)
2963         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2964                                     GlobalValue::InternalLinkage, nullptr, "");
2965       ID.ConstantVal = FwdRef;
2966       ID.Kind = ValID::t_Constant;
2967       return false;
2968     }
2969 
2970     // We found the function; now find the basic block.  Don't use PFS, since we
2971     // might be inside a constant expression.
2972     BasicBlock *BB;
2973     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2974       if (Label.Kind == ValID::t_LocalID)
2975         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2976       else
2977         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2978       if (!BB)
2979         return Error(Label.Loc, "referenced value is not a basic block");
2980     } else {
2981       if (Label.Kind == ValID::t_LocalID)
2982         return Error(Label.Loc, "cannot take address of numeric label after "
2983                                 "the function is defined");
2984       BB = dyn_cast_or_null<BasicBlock>(
2985           F->getValueSymbolTable()->lookup(Label.StrVal));
2986       if (!BB)
2987         return Error(Label.Loc, "referenced value is not a basic block");
2988     }
2989 
2990     ID.ConstantVal = BlockAddress::get(F, BB);
2991     ID.Kind = ValID::t_Constant;
2992     return false;
2993   }
2994 
2995   case lltok::kw_trunc:
2996   case lltok::kw_zext:
2997   case lltok::kw_sext:
2998   case lltok::kw_fptrunc:
2999   case lltok::kw_fpext:
3000   case lltok::kw_bitcast:
3001   case lltok::kw_addrspacecast:
3002   case lltok::kw_uitofp:
3003   case lltok::kw_sitofp:
3004   case lltok::kw_fptoui:
3005   case lltok::kw_fptosi:
3006   case lltok::kw_inttoptr:
3007   case lltok::kw_ptrtoint: {
3008     unsigned Opc = Lex.getUIntVal();
3009     Type *DestTy = nullptr;
3010     Constant *SrcVal;
3011     Lex.Lex();
3012     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3013         ParseGlobalTypeAndValue(SrcVal) ||
3014         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3015         ParseType(DestTy) ||
3016         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3017       return true;
3018     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3019       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3020                    getTypeString(SrcVal->getType()) + "' to '" +
3021                    getTypeString(DestTy) + "'");
3022     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3023                                                  SrcVal, DestTy);
3024     ID.Kind = ValID::t_Constant;
3025     return false;
3026   }
3027   case lltok::kw_extractvalue: {
3028     Lex.Lex();
3029     Constant *Val;
3030     SmallVector<unsigned, 4> Indices;
3031     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3032         ParseGlobalTypeAndValue(Val) ||
3033         ParseIndexList(Indices) ||
3034         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3035       return true;
3036 
3037     if (!Val->getType()->isAggregateType())
3038       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3039     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3040       return Error(ID.Loc, "invalid indices for extractvalue");
3041     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3042     ID.Kind = ValID::t_Constant;
3043     return false;
3044   }
3045   case lltok::kw_insertvalue: {
3046     Lex.Lex();
3047     Constant *Val0, *Val1;
3048     SmallVector<unsigned, 4> Indices;
3049     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3050         ParseGlobalTypeAndValue(Val0) ||
3051         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3052         ParseGlobalTypeAndValue(Val1) ||
3053         ParseIndexList(Indices) ||
3054         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3055       return true;
3056     if (!Val0->getType()->isAggregateType())
3057       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3058     Type *IndexedType =
3059         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3060     if (!IndexedType)
3061       return Error(ID.Loc, "invalid indices for insertvalue");
3062     if (IndexedType != Val1->getType())
3063       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3064                                getTypeString(Val1->getType()) +
3065                                "' instead of '" + getTypeString(IndexedType) +
3066                                "'");
3067     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3068     ID.Kind = ValID::t_Constant;
3069     return false;
3070   }
3071   case lltok::kw_icmp:
3072   case lltok::kw_fcmp: {
3073     unsigned PredVal, Opc = Lex.getUIntVal();
3074     Constant *Val0, *Val1;
3075     Lex.Lex();
3076     if (ParseCmpPredicate(PredVal, Opc) ||
3077         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3078         ParseGlobalTypeAndValue(Val0) ||
3079         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3080         ParseGlobalTypeAndValue(Val1) ||
3081         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3082       return true;
3083 
3084     if (Val0->getType() != Val1->getType())
3085       return Error(ID.Loc, "compare operands must have the same type");
3086 
3087     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3088 
3089     if (Opc == Instruction::FCmp) {
3090       if (!Val0->getType()->isFPOrFPVectorTy())
3091         return Error(ID.Loc, "fcmp requires floating point operands");
3092       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3093     } else {
3094       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3095       if (!Val0->getType()->isIntOrIntVectorTy() &&
3096           !Val0->getType()->isPtrOrPtrVectorTy())
3097         return Error(ID.Loc, "icmp requires pointer or integer operands");
3098       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3099     }
3100     ID.Kind = ValID::t_Constant;
3101     return false;
3102   }
3103 
3104   // Binary Operators.
3105   case lltok::kw_add:
3106   case lltok::kw_fadd:
3107   case lltok::kw_sub:
3108   case lltok::kw_fsub:
3109   case lltok::kw_mul:
3110   case lltok::kw_fmul:
3111   case lltok::kw_udiv:
3112   case lltok::kw_sdiv:
3113   case lltok::kw_fdiv:
3114   case lltok::kw_urem:
3115   case lltok::kw_srem:
3116   case lltok::kw_frem:
3117   case lltok::kw_shl:
3118   case lltok::kw_lshr:
3119   case lltok::kw_ashr: {
3120     bool NUW = false;
3121     bool NSW = false;
3122     bool Exact = false;
3123     unsigned Opc = Lex.getUIntVal();
3124     Constant *Val0, *Val1;
3125     Lex.Lex();
3126     LocTy ModifierLoc = Lex.getLoc();
3127     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3128         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3129       if (EatIfPresent(lltok::kw_nuw))
3130         NUW = true;
3131       if (EatIfPresent(lltok::kw_nsw)) {
3132         NSW = true;
3133         if (EatIfPresent(lltok::kw_nuw))
3134           NUW = true;
3135       }
3136     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3137                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3138       if (EatIfPresent(lltok::kw_exact))
3139         Exact = true;
3140     }
3141     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3142         ParseGlobalTypeAndValue(Val0) ||
3143         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3144         ParseGlobalTypeAndValue(Val1) ||
3145         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3146       return true;
3147     if (Val0->getType() != Val1->getType())
3148       return Error(ID.Loc, "operands of constexpr must have same type");
3149     if (!Val0->getType()->isIntOrIntVectorTy()) {
3150       if (NUW)
3151         return Error(ModifierLoc, "nuw only applies to integer operations");
3152       if (NSW)
3153         return Error(ModifierLoc, "nsw only applies to integer operations");
3154     }
3155     // Check that the type is valid for the operator.
3156     switch (Opc) {
3157     case Instruction::Add:
3158     case Instruction::Sub:
3159     case Instruction::Mul:
3160     case Instruction::UDiv:
3161     case Instruction::SDiv:
3162     case Instruction::URem:
3163     case Instruction::SRem:
3164     case Instruction::Shl:
3165     case Instruction::AShr:
3166     case Instruction::LShr:
3167       if (!Val0->getType()->isIntOrIntVectorTy())
3168         return Error(ID.Loc, "constexpr requires integer operands");
3169       break;
3170     case Instruction::FAdd:
3171     case Instruction::FSub:
3172     case Instruction::FMul:
3173     case Instruction::FDiv:
3174     case Instruction::FRem:
3175       if (!Val0->getType()->isFPOrFPVectorTy())
3176         return Error(ID.Loc, "constexpr requires fp operands");
3177       break;
3178     default: llvm_unreachable("Unknown binary operator!");
3179     }
3180     unsigned Flags = 0;
3181     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3182     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3183     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3184     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3185     ID.ConstantVal = C;
3186     ID.Kind = ValID::t_Constant;
3187     return false;
3188   }
3189 
3190   // Logical Operations
3191   case lltok::kw_and:
3192   case lltok::kw_or:
3193   case lltok::kw_xor: {
3194     unsigned Opc = Lex.getUIntVal();
3195     Constant *Val0, *Val1;
3196     Lex.Lex();
3197     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3198         ParseGlobalTypeAndValue(Val0) ||
3199         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3200         ParseGlobalTypeAndValue(Val1) ||
3201         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3202       return true;
3203     if (Val0->getType() != Val1->getType())
3204       return Error(ID.Loc, "operands of constexpr must have same type");
3205     if (!Val0->getType()->isIntOrIntVectorTy())
3206       return Error(ID.Loc,
3207                    "constexpr requires integer or integer vector operands");
3208     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3209     ID.Kind = ValID::t_Constant;
3210     return false;
3211   }
3212 
3213   case lltok::kw_getelementptr:
3214   case lltok::kw_shufflevector:
3215   case lltok::kw_insertelement:
3216   case lltok::kw_extractelement:
3217   case lltok::kw_select: {
3218     unsigned Opc = Lex.getUIntVal();
3219     SmallVector<Constant*, 16> Elts;
3220     bool InBounds = false;
3221     Type *Ty;
3222     Lex.Lex();
3223 
3224     if (Opc == Instruction::GetElementPtr)
3225       InBounds = EatIfPresent(lltok::kw_inbounds);
3226 
3227     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3228       return true;
3229 
3230     LocTy ExplicitTypeLoc = Lex.getLoc();
3231     if (Opc == Instruction::GetElementPtr) {
3232       if (ParseType(Ty) ||
3233           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3234         return true;
3235     }
3236 
3237     Optional<unsigned> InRangeOp;
3238     if (ParseGlobalValueVector(
3239             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3240         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3241       return true;
3242 
3243     if (Opc == Instruction::GetElementPtr) {
3244       if (Elts.size() == 0 ||
3245           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3246         return Error(ID.Loc, "base of getelementptr must be a pointer");
3247 
3248       Type *BaseType = Elts[0]->getType();
3249       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3250       if (Ty != BasePointerType->getElementType())
3251         return Error(
3252             ExplicitTypeLoc,
3253             "explicit pointee type doesn't match operand's pointee type");
3254 
3255       unsigned GEPWidth =
3256           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3257 
3258       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3259       for (Constant *Val : Indices) {
3260         Type *ValTy = Val->getType();
3261         if (!ValTy->isIntOrIntVectorTy())
3262           return Error(ID.Loc, "getelementptr index must be an integer");
3263         if (ValTy->isVectorTy()) {
3264           unsigned ValNumEl = ValTy->getVectorNumElements();
3265           if (GEPWidth && (ValNumEl != GEPWidth))
3266             return Error(
3267                 ID.Loc,
3268                 "getelementptr vector index has a wrong number of elements");
3269           // GEPWidth may have been unknown because the base is a scalar,
3270           // but it is known now.
3271           GEPWidth = ValNumEl;
3272         }
3273       }
3274 
3275       SmallPtrSet<Type*, 4> Visited;
3276       if (!Indices.empty() && !Ty->isSized(&Visited))
3277         return Error(ID.Loc, "base element of getelementptr must be sized");
3278 
3279       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3280         return Error(ID.Loc, "invalid getelementptr indices");
3281 
3282       if (InRangeOp) {
3283         if (*InRangeOp == 0)
3284           return Error(ID.Loc,
3285                        "inrange keyword may not appear on pointer operand");
3286         --*InRangeOp;
3287       }
3288 
3289       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3290                                                       InBounds, InRangeOp);
3291     } else if (Opc == Instruction::Select) {
3292       if (Elts.size() != 3)
3293         return Error(ID.Loc, "expected three operands to select");
3294       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3295                                                               Elts[2]))
3296         return Error(ID.Loc, Reason);
3297       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3298     } else if (Opc == Instruction::ShuffleVector) {
3299       if (Elts.size() != 3)
3300         return Error(ID.Loc, "expected three operands to shufflevector");
3301       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3302         return Error(ID.Loc, "invalid operands to shufflevector");
3303       ID.ConstantVal =
3304                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3305     } else if (Opc == Instruction::ExtractElement) {
3306       if (Elts.size() != 2)
3307         return Error(ID.Loc, "expected two operands to extractelement");
3308       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3309         return Error(ID.Loc, "invalid extractelement operands");
3310       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3311     } else {
3312       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3313       if (Elts.size() != 3)
3314       return Error(ID.Loc, "expected three operands to insertelement");
3315       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3316         return Error(ID.Loc, "invalid insertelement operands");
3317       ID.ConstantVal =
3318                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3319     }
3320 
3321     ID.Kind = ValID::t_Constant;
3322     return false;
3323   }
3324   }
3325 
3326   Lex.Lex();
3327   return false;
3328 }
3329 
3330 /// ParseGlobalValue - Parse a global value with the specified type.
3331 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3332   C = nullptr;
3333   ValID ID;
3334   Value *V = nullptr;
3335   bool Parsed = ParseValID(ID) ||
3336                 ConvertValIDToValue(Ty, ID, V, nullptr);
3337   if (V && !(C = dyn_cast<Constant>(V)))
3338     return Error(ID.Loc, "global values must be constants");
3339   return Parsed;
3340 }
3341 
3342 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3343   Type *Ty = nullptr;
3344   return ParseType(Ty) ||
3345          ParseGlobalValue(Ty, V);
3346 }
3347 
3348 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3349   C = nullptr;
3350 
3351   LocTy KwLoc = Lex.getLoc();
3352   if (!EatIfPresent(lltok::kw_comdat))
3353     return false;
3354 
3355   if (EatIfPresent(lltok::lparen)) {
3356     if (Lex.getKind() != lltok::ComdatVar)
3357       return TokError("expected comdat variable");
3358     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3359     Lex.Lex();
3360     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3361       return true;
3362   } else {
3363     if (GlobalName.empty())
3364       return TokError("comdat cannot be unnamed");
3365     C = getComdat(GlobalName, KwLoc);
3366   }
3367 
3368   return false;
3369 }
3370 
3371 /// ParseGlobalValueVector
3372 ///   ::= /*empty*/
3373 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3374 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3375                                       Optional<unsigned> *InRangeOp) {
3376   // Empty list.
3377   if (Lex.getKind() == lltok::rbrace ||
3378       Lex.getKind() == lltok::rsquare ||
3379       Lex.getKind() == lltok::greater ||
3380       Lex.getKind() == lltok::rparen)
3381     return false;
3382 
3383   do {
3384     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3385       *InRangeOp = Elts.size();
3386 
3387     Constant *C;
3388     if (ParseGlobalTypeAndValue(C)) return true;
3389     Elts.push_back(C);
3390   } while (EatIfPresent(lltok::comma));
3391 
3392   return false;
3393 }
3394 
3395 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3396   SmallVector<Metadata *, 16> Elts;
3397   if (ParseMDNodeVector(Elts))
3398     return true;
3399 
3400   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3401   return false;
3402 }
3403 
3404 /// MDNode:
3405 ///  ::= !{ ... }
3406 ///  ::= !7
3407 ///  ::= !DILocation(...)
3408 bool LLParser::ParseMDNode(MDNode *&N) {
3409   if (Lex.getKind() == lltok::MetadataVar)
3410     return ParseSpecializedMDNode(N);
3411 
3412   return ParseToken(lltok::exclaim, "expected '!' here") ||
3413          ParseMDNodeTail(N);
3414 }
3415 
3416 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3417   // !{ ... }
3418   if (Lex.getKind() == lltok::lbrace)
3419     return ParseMDTuple(N);
3420 
3421   // !42
3422   return ParseMDNodeID(N);
3423 }
3424 
3425 namespace {
3426 
3427 /// Structure to represent an optional metadata field.
3428 template <class FieldTy> struct MDFieldImpl {
3429   typedef MDFieldImpl ImplTy;
3430   FieldTy Val;
3431   bool Seen;
3432 
3433   void assign(FieldTy Val) {
3434     Seen = true;
3435     this->Val = std::move(Val);
3436   }
3437 
3438   explicit MDFieldImpl(FieldTy Default)
3439       : Val(std::move(Default)), Seen(false) {}
3440 };
3441 
3442 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3443   uint64_t Max;
3444 
3445   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3446       : ImplTy(Default), Max(Max) {}
3447 };
3448 
3449 struct LineField : public MDUnsignedField {
3450   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3451 };
3452 
3453 struct ColumnField : public MDUnsignedField {
3454   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3455 };
3456 
3457 struct DwarfTagField : public MDUnsignedField {
3458   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3459   DwarfTagField(dwarf::Tag DefaultTag)
3460       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3461 };
3462 
3463 struct DwarfMacinfoTypeField : public MDUnsignedField {
3464   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3465   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3466     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3467 };
3468 
3469 struct DwarfAttEncodingField : public MDUnsignedField {
3470   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3471 };
3472 
3473 struct DwarfVirtualityField : public MDUnsignedField {
3474   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3475 };
3476 
3477 struct DwarfLangField : public MDUnsignedField {
3478   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3479 };
3480 
3481 struct DwarfCCField : public MDUnsignedField {
3482   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3483 };
3484 
3485 struct EmissionKindField : public MDUnsignedField {
3486   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3487 };
3488 
3489 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3490   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3491 };
3492 
3493 struct MDSignedField : public MDFieldImpl<int64_t> {
3494   int64_t Min;
3495   int64_t Max;
3496 
3497   MDSignedField(int64_t Default = 0)
3498       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3499   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3500       : ImplTy(Default), Min(Min), Max(Max) {}
3501 };
3502 
3503 struct MDBoolField : public MDFieldImpl<bool> {
3504   MDBoolField(bool Default = false) : ImplTy(Default) {}
3505 };
3506 
3507 struct MDField : public MDFieldImpl<Metadata *> {
3508   bool AllowNull;
3509 
3510   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3511 };
3512 
3513 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3514   MDConstant() : ImplTy(nullptr) {}
3515 };
3516 
3517 struct MDStringField : public MDFieldImpl<MDString *> {
3518   bool AllowEmpty;
3519   MDStringField(bool AllowEmpty = true)
3520       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3521 };
3522 
3523 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3524   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3525 };
3526 
3527 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3528   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3529   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3530 };
3531 
3532 } // end anonymous namespace
3533 
3534 namespace llvm {
3535 
3536 template <>
3537 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3538                             MDUnsignedField &Result) {
3539   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3540     return TokError("expected unsigned integer");
3541 
3542   auto &U = Lex.getAPSIntVal();
3543   if (U.ugt(Result.Max))
3544     return TokError("value for '" + Name + "' too large, limit is " +
3545                     Twine(Result.Max));
3546   Result.assign(U.getZExtValue());
3547   assert(Result.Val <= Result.Max && "Expected value in range");
3548   Lex.Lex();
3549   return false;
3550 }
3551 
3552 template <>
3553 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3554   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3555 }
3556 template <>
3557 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3558   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3559 }
3560 
3561 template <>
3562 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3563   if (Lex.getKind() == lltok::APSInt)
3564     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3565 
3566   if (Lex.getKind() != lltok::DwarfTag)
3567     return TokError("expected DWARF tag");
3568 
3569   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3570   if (Tag == dwarf::DW_TAG_invalid)
3571     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3572   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3573 
3574   Result.assign(Tag);
3575   Lex.Lex();
3576   return false;
3577 }
3578 
3579 template <>
3580 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3581                             DwarfMacinfoTypeField &Result) {
3582   if (Lex.getKind() == lltok::APSInt)
3583     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3584 
3585   if (Lex.getKind() != lltok::DwarfMacinfo)
3586     return TokError("expected DWARF macinfo type");
3587 
3588   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3589   if (Macinfo == dwarf::DW_MACINFO_invalid)
3590     return TokError(
3591         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3592   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3593 
3594   Result.assign(Macinfo);
3595   Lex.Lex();
3596   return false;
3597 }
3598 
3599 template <>
3600 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3601                             DwarfVirtualityField &Result) {
3602   if (Lex.getKind() == lltok::APSInt)
3603     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3604 
3605   if (Lex.getKind() != lltok::DwarfVirtuality)
3606     return TokError("expected DWARF virtuality code");
3607 
3608   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3609   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3610     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3611                     Lex.getStrVal() + "'");
3612   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3613   Result.assign(Virtuality);
3614   Lex.Lex();
3615   return false;
3616 }
3617 
3618 template <>
3619 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3620   if (Lex.getKind() == lltok::APSInt)
3621     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3622 
3623   if (Lex.getKind() != lltok::DwarfLang)
3624     return TokError("expected DWARF language");
3625 
3626   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3627   if (!Lang)
3628     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3629                     "'");
3630   assert(Lang <= Result.Max && "Expected valid DWARF language");
3631   Result.assign(Lang);
3632   Lex.Lex();
3633   return false;
3634 }
3635 
3636 template <>
3637 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3638   if (Lex.getKind() == lltok::APSInt)
3639     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3640 
3641   if (Lex.getKind() != lltok::DwarfCC)
3642     return TokError("expected DWARF calling convention");
3643 
3644   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3645   if (!CC)
3646     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3647                     "'");
3648   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3649   Result.assign(CC);
3650   Lex.Lex();
3651   return false;
3652 }
3653 
3654 template <>
3655 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3656   if (Lex.getKind() == lltok::APSInt)
3657     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3658 
3659   if (Lex.getKind() != lltok::EmissionKind)
3660     return TokError("expected emission kind");
3661 
3662   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3663   if (!Kind)
3664     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3665                     "'");
3666   assert(*Kind <= Result.Max && "Expected valid emission kind");
3667   Result.assign(*Kind);
3668   Lex.Lex();
3669   return false;
3670 }
3671 
3672 template <>
3673 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3674                             DwarfAttEncodingField &Result) {
3675   if (Lex.getKind() == lltok::APSInt)
3676     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3677 
3678   if (Lex.getKind() != lltok::DwarfAttEncoding)
3679     return TokError("expected DWARF type attribute encoding");
3680 
3681   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3682   if (!Encoding)
3683     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3684                     Lex.getStrVal() + "'");
3685   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3686   Result.assign(Encoding);
3687   Lex.Lex();
3688   return false;
3689 }
3690 
3691 /// DIFlagField
3692 ///  ::= uint32
3693 ///  ::= DIFlagVector
3694 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3695 template <>
3696 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3697 
3698   // Parser for a single flag.
3699   auto parseFlag = [&](DINode::DIFlags &Val) {
3700     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3701       uint32_t TempVal = static_cast<uint32_t>(Val);
3702       bool Res = ParseUInt32(TempVal);
3703       Val = static_cast<DINode::DIFlags>(TempVal);
3704       return Res;
3705     }
3706 
3707     if (Lex.getKind() != lltok::DIFlag)
3708       return TokError("expected debug info flag");
3709 
3710     Val = DINode::getFlag(Lex.getStrVal());
3711     if (!Val)
3712       return TokError(Twine("invalid debug info flag flag '") +
3713                       Lex.getStrVal() + "'");
3714     Lex.Lex();
3715     return false;
3716   };
3717 
3718   // Parse the flags and combine them together.
3719   DINode::DIFlags Combined = DINode::FlagZero;
3720   do {
3721     DINode::DIFlags Val;
3722     if (parseFlag(Val))
3723       return true;
3724     Combined |= Val;
3725   } while (EatIfPresent(lltok::bar));
3726 
3727   Result.assign(Combined);
3728   return false;
3729 }
3730 
3731 template <>
3732 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3733                             MDSignedField &Result) {
3734   if (Lex.getKind() != lltok::APSInt)
3735     return TokError("expected signed integer");
3736 
3737   auto &S = Lex.getAPSIntVal();
3738   if (S < Result.Min)
3739     return TokError("value for '" + Name + "' too small, limit is " +
3740                     Twine(Result.Min));
3741   if (S > Result.Max)
3742     return TokError("value for '" + Name + "' too large, limit is " +
3743                     Twine(Result.Max));
3744   Result.assign(S.getExtValue());
3745   assert(Result.Val >= Result.Min && "Expected value in range");
3746   assert(Result.Val <= Result.Max && "Expected value in range");
3747   Lex.Lex();
3748   return false;
3749 }
3750 
3751 template <>
3752 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3753   switch (Lex.getKind()) {
3754   default:
3755     return TokError("expected 'true' or 'false'");
3756   case lltok::kw_true:
3757     Result.assign(true);
3758     break;
3759   case lltok::kw_false:
3760     Result.assign(false);
3761     break;
3762   }
3763   Lex.Lex();
3764   return false;
3765 }
3766 
3767 template <>
3768 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3769   if (Lex.getKind() == lltok::kw_null) {
3770     if (!Result.AllowNull)
3771       return TokError("'" + Name + "' cannot be null");
3772     Lex.Lex();
3773     Result.assign(nullptr);
3774     return false;
3775   }
3776 
3777   Metadata *MD;
3778   if (ParseMetadata(MD, nullptr))
3779     return true;
3780 
3781   Result.assign(MD);
3782   return false;
3783 }
3784 
3785 template <>
3786 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3787   LocTy ValueLoc = Lex.getLoc();
3788   std::string S;
3789   if (ParseStringConstant(S))
3790     return true;
3791 
3792   if (!Result.AllowEmpty && S.empty())
3793     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3794 
3795   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3796   return false;
3797 }
3798 
3799 template <>
3800 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3801   SmallVector<Metadata *, 4> MDs;
3802   if (ParseMDNodeVector(MDs))
3803     return true;
3804 
3805   Result.assign(std::move(MDs));
3806   return false;
3807 }
3808 
3809 template <>
3810 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3811                             ChecksumKindField &Result) {
3812   if (Lex.getKind() != lltok::ChecksumKind)
3813     return TokError(
3814         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3815 
3816   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3817 
3818   Result.assign(CSKind);
3819   Lex.Lex();
3820   return false;
3821 }
3822 
3823 } // end namespace llvm
3824 
3825 template <class ParserTy>
3826 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3827   do {
3828     if (Lex.getKind() != lltok::LabelStr)
3829       return TokError("expected field label here");
3830 
3831     if (parseField())
3832       return true;
3833   } while (EatIfPresent(lltok::comma));
3834 
3835   return false;
3836 }
3837 
3838 template <class ParserTy>
3839 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3840   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3841   Lex.Lex();
3842 
3843   if (ParseToken(lltok::lparen, "expected '(' here"))
3844     return true;
3845   if (Lex.getKind() != lltok::rparen)
3846     if (ParseMDFieldsImplBody(parseField))
3847       return true;
3848 
3849   ClosingLoc = Lex.getLoc();
3850   return ParseToken(lltok::rparen, "expected ')' here");
3851 }
3852 
3853 template <class FieldTy>
3854 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3855   if (Result.Seen)
3856     return TokError("field '" + Name + "' cannot be specified more than once");
3857 
3858   LocTy Loc = Lex.getLoc();
3859   Lex.Lex();
3860   return ParseMDField(Loc, Name, Result);
3861 }
3862 
3863 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3864   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3865 
3866 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3867   if (Lex.getStrVal() == #CLASS)                                               \
3868     return Parse##CLASS(N, IsDistinct);
3869 #include "llvm/IR/Metadata.def"
3870 
3871   return TokError("expected metadata type");
3872 }
3873 
3874 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3875 #define NOP_FIELD(NAME, TYPE, INIT)
3876 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3877   if (!NAME.Seen)                                                              \
3878     return Error(ClosingLoc, "missing required field '" #NAME "'");
3879 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3880   if (Lex.getStrVal() == #NAME)                                                \
3881     return ParseMDField(#NAME, NAME);
3882 #define PARSE_MD_FIELDS()                                                      \
3883   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3884   do {                                                                         \
3885     LocTy ClosingLoc;                                                          \
3886     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3887       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3888       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3889     }, ClosingLoc))                                                            \
3890       return true;                                                             \
3891     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3892   } while (false)
3893 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3894   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3895 
3896 /// ParseDILocationFields:
3897 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3898 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3899 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3900   OPTIONAL(line, LineField, );                                                 \
3901   OPTIONAL(column, ColumnField, );                                             \
3902   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3903   OPTIONAL(inlinedAt, MDField, );
3904   PARSE_MD_FIELDS();
3905 #undef VISIT_MD_FIELDS
3906 
3907   Result = GET_OR_DISTINCT(
3908       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3909   return false;
3910 }
3911 
3912 /// ParseGenericDINode:
3913 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3914 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3916   REQUIRED(tag, DwarfTagField, );                                              \
3917   OPTIONAL(header, MDStringField, );                                           \
3918   OPTIONAL(operands, MDFieldList, );
3919   PARSE_MD_FIELDS();
3920 #undef VISIT_MD_FIELDS
3921 
3922   Result = GET_OR_DISTINCT(GenericDINode,
3923                            (Context, tag.Val, header.Val, operands.Val));
3924   return false;
3925 }
3926 
3927 /// ParseDISubrange:
3928 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3929 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3931   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3932   OPTIONAL(lowerBound, MDSignedField, );
3933   PARSE_MD_FIELDS();
3934 #undef VISIT_MD_FIELDS
3935 
3936   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3937   return false;
3938 }
3939 
3940 /// ParseDIEnumerator:
3941 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3942 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3944   REQUIRED(name, MDStringField, );                                             \
3945   REQUIRED(value, MDSignedField, );
3946   PARSE_MD_FIELDS();
3947 #undef VISIT_MD_FIELDS
3948 
3949   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3950   return false;
3951 }
3952 
3953 /// ParseDIBasicType:
3954 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3955 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3957   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3958   OPTIONAL(name, MDStringField, );                                             \
3959   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3960   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3961   OPTIONAL(encoding, DwarfAttEncodingField, );
3962   PARSE_MD_FIELDS();
3963 #undef VISIT_MD_FIELDS
3964 
3965   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3966                                          align.Val, encoding.Val));
3967   return false;
3968 }
3969 
3970 /// ParseDIDerivedType:
3971 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3972 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3973 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
3974 ///                      dwarfAddressSpace: 3)
3975 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3976 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3977   REQUIRED(tag, DwarfTagField, );                                              \
3978   OPTIONAL(name, MDStringField, );                                             \
3979   OPTIONAL(file, MDField, );                                                   \
3980   OPTIONAL(line, LineField, );                                                 \
3981   OPTIONAL(scope, MDField, );                                                  \
3982   REQUIRED(baseType, MDField, );                                               \
3983   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3984   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3985   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3986   OPTIONAL(flags, DIFlagField, );                                              \
3987   OPTIONAL(extraData, MDField, );                                              \
3988   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3989   PARSE_MD_FIELDS();
3990 #undef VISIT_MD_FIELDS
3991 
3992   Optional<unsigned> DWARFAddressSpace;
3993   if (dwarfAddressSpace.Val != UINT32_MAX)
3994     DWARFAddressSpace = dwarfAddressSpace.Val;
3995 
3996   Result = GET_OR_DISTINCT(DIDerivedType,
3997                            (Context, tag.Val, name.Val, file.Val, line.Val,
3998                             scope.Val, baseType.Val, size.Val, align.Val,
3999                             offset.Val, DWARFAddressSpace, flags.Val,
4000                             extraData.Val));
4001   return false;
4002 }
4003 
4004 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4005 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4006   REQUIRED(tag, DwarfTagField, );                                              \
4007   OPTIONAL(name, MDStringField, );                                             \
4008   OPTIONAL(file, MDField, );                                                   \
4009   OPTIONAL(line, LineField, );                                                 \
4010   OPTIONAL(scope, MDField, );                                                  \
4011   OPTIONAL(baseType, MDField, );                                               \
4012   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4013   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4014   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4015   OPTIONAL(flags, DIFlagField, );                                              \
4016   OPTIONAL(elements, MDField, );                                               \
4017   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4018   OPTIONAL(vtableHolder, MDField, );                                           \
4019   OPTIONAL(templateParams, MDField, );                                         \
4020   OPTIONAL(identifier, MDStringField, );
4021   PARSE_MD_FIELDS();
4022 #undef VISIT_MD_FIELDS
4023 
4024   // If this has an identifier try to build an ODR type.
4025   if (identifier.Val)
4026     if (auto *CT = DICompositeType::buildODRType(
4027             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4028             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4029             elements.Val, runtimeLang.Val, vtableHolder.Val,
4030             templateParams.Val)) {
4031       Result = CT;
4032       return false;
4033     }
4034 
4035   // Create a new node, and save it in the context if it belongs in the type
4036   // map.
4037   Result = GET_OR_DISTINCT(
4038       DICompositeType,
4039       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4040        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4041        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4042   return false;
4043 }
4044 
4045 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4047   OPTIONAL(flags, DIFlagField, );                                              \
4048   OPTIONAL(cc, DwarfCCField, );                                                \
4049   REQUIRED(types, MDField, );
4050   PARSE_MD_FIELDS();
4051 #undef VISIT_MD_FIELDS
4052 
4053   Result = GET_OR_DISTINCT(DISubroutineType,
4054                            (Context, flags.Val, cc.Val, types.Val));
4055   return false;
4056 }
4057 
4058 /// ParseDIFileType:
4059 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4060 ///                   checksumkind: CSK_MD5,
4061 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4062 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4063 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4064   REQUIRED(filename, MDStringField, );                                         \
4065   REQUIRED(directory, MDStringField, );                                        \
4066   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4067   OPTIONAL(checksum, MDStringField, );
4068   PARSE_MD_FIELDS();
4069 #undef VISIT_MD_FIELDS
4070 
4071   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4072                                     checksumkind.Val, checksum.Val));
4073   return false;
4074 }
4075 
4076 /// ParseDICompileUnit:
4077 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4078 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4079 ///                      splitDebugFilename: "abc.debug",
4080 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4081 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4082 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4083   if (!IsDistinct)
4084     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4085 
4086 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4087   REQUIRED(language, DwarfLangField, );                                        \
4088   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4089   OPTIONAL(producer, MDStringField, );                                         \
4090   OPTIONAL(isOptimized, MDBoolField, );                                        \
4091   OPTIONAL(flags, MDStringField, );                                            \
4092   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4093   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4094   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4095   OPTIONAL(enums, MDField, );                                                  \
4096   OPTIONAL(retainedTypes, MDField, );                                          \
4097   OPTIONAL(globals, MDField, );                                                \
4098   OPTIONAL(imports, MDField, );                                                \
4099   OPTIONAL(macros, MDField, );                                                 \
4100   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4101   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4102   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4103   OPTIONAL(gnuPubnames, MDBoolField, = false);
4104   PARSE_MD_FIELDS();
4105 #undef VISIT_MD_FIELDS
4106 
4107   Result = DICompileUnit::getDistinct(
4108       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4109       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4110       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4111       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4112   return false;
4113 }
4114 
4115 /// ParseDISubprogram:
4116 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4117 ///                     file: !1, line: 7, type: !2, isLocal: false,
4118 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4119 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4120 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4121 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4122 ///                     variables: !6, thrownTypes: !7)
4123 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4124   auto Loc = Lex.getLoc();
4125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4126   OPTIONAL(scope, MDField, );                                                  \
4127   OPTIONAL(name, MDStringField, );                                             \
4128   OPTIONAL(linkageName, MDStringField, );                                      \
4129   OPTIONAL(file, MDField, );                                                   \
4130   OPTIONAL(line, LineField, );                                                 \
4131   OPTIONAL(type, MDField, );                                                   \
4132   OPTIONAL(isLocal, MDBoolField, );                                            \
4133   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4134   OPTIONAL(scopeLine, LineField, );                                            \
4135   OPTIONAL(containingType, MDField, );                                         \
4136   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4137   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4138   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4139   OPTIONAL(flags, DIFlagField, );                                              \
4140   OPTIONAL(isOptimized, MDBoolField, );                                        \
4141   OPTIONAL(unit, MDField, );                                                   \
4142   OPTIONAL(templateParams, MDField, );                                         \
4143   OPTIONAL(declaration, MDField, );                                            \
4144   OPTIONAL(variables, MDField, );                                              \
4145   OPTIONAL(thrownTypes, MDField, );
4146   PARSE_MD_FIELDS();
4147 #undef VISIT_MD_FIELDS
4148 
4149   if (isDefinition.Val && !IsDistinct)
4150     return Lex.Error(
4151         Loc,
4152         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4153 
4154   Result = GET_OR_DISTINCT(
4155       DISubprogram,
4156       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4157        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4158        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4159        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4160        declaration.Val, variables.Val, thrownTypes.Val));
4161   return false;
4162 }
4163 
4164 /// ParseDILexicalBlock:
4165 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4166 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4167 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4168   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4169   OPTIONAL(file, MDField, );                                                   \
4170   OPTIONAL(line, LineField, );                                                 \
4171   OPTIONAL(column, ColumnField, );
4172   PARSE_MD_FIELDS();
4173 #undef VISIT_MD_FIELDS
4174 
4175   Result = GET_OR_DISTINCT(
4176       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4177   return false;
4178 }
4179 
4180 /// ParseDILexicalBlockFile:
4181 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4182 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4183 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4184   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4185   OPTIONAL(file, MDField, );                                                   \
4186   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4187   PARSE_MD_FIELDS();
4188 #undef VISIT_MD_FIELDS
4189 
4190   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4191                            (Context, scope.Val, file.Val, discriminator.Val));
4192   return false;
4193 }
4194 
4195 /// ParseDINamespace:
4196 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4197 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4198 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4199   REQUIRED(scope, MDField, );                                                  \
4200   OPTIONAL(name, MDStringField, );                                             \
4201   OPTIONAL(exportSymbols, MDBoolField, );
4202   PARSE_MD_FIELDS();
4203 #undef VISIT_MD_FIELDS
4204 
4205   Result = GET_OR_DISTINCT(DINamespace,
4206                            (Context, scope.Val, name.Val, exportSymbols.Val));
4207   return false;
4208 }
4209 
4210 /// ParseDIMacro:
4211 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4212 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4213 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4214   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4215   OPTIONAL(line, LineField, );                                                 \
4216   REQUIRED(name, MDStringField, );                                             \
4217   OPTIONAL(value, MDStringField, );
4218   PARSE_MD_FIELDS();
4219 #undef VISIT_MD_FIELDS
4220 
4221   Result = GET_OR_DISTINCT(DIMacro,
4222                            (Context, type.Val, line.Val, name.Val, value.Val));
4223   return false;
4224 }
4225 
4226 /// ParseDIMacroFile:
4227 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4228 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4229 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4230   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4231   OPTIONAL(line, LineField, );                                                 \
4232   REQUIRED(file, MDField, );                                                   \
4233   OPTIONAL(nodes, MDField, );
4234   PARSE_MD_FIELDS();
4235 #undef VISIT_MD_FIELDS
4236 
4237   Result = GET_OR_DISTINCT(DIMacroFile,
4238                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4239   return false;
4240 }
4241 
4242 /// ParseDIModule:
4243 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4244 ///                 includePath: "/usr/include", isysroot: "/")
4245 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4246 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4247   REQUIRED(scope, MDField, );                                                  \
4248   REQUIRED(name, MDStringField, );                                             \
4249   OPTIONAL(configMacros, MDStringField, );                                     \
4250   OPTIONAL(includePath, MDStringField, );                                      \
4251   OPTIONAL(isysroot, MDStringField, );
4252   PARSE_MD_FIELDS();
4253 #undef VISIT_MD_FIELDS
4254 
4255   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4256                            configMacros.Val, includePath.Val, isysroot.Val));
4257   return false;
4258 }
4259 
4260 /// ParseDITemplateTypeParameter:
4261 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4262 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4263 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4264   OPTIONAL(name, MDStringField, );                                             \
4265   REQUIRED(type, MDField, );
4266   PARSE_MD_FIELDS();
4267 #undef VISIT_MD_FIELDS
4268 
4269   Result =
4270       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4271   return false;
4272 }
4273 
4274 /// ParseDITemplateValueParameter:
4275 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4276 ///                                 name: "V", type: !1, value: i32 7)
4277 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4278 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4279   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4280   OPTIONAL(name, MDStringField, );                                             \
4281   OPTIONAL(type, MDField, );                                                   \
4282   REQUIRED(value, MDField, );
4283   PARSE_MD_FIELDS();
4284 #undef VISIT_MD_FIELDS
4285 
4286   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4287                            (Context, tag.Val, name.Val, type.Val, value.Val));
4288   return false;
4289 }
4290 
4291 /// ParseDIGlobalVariable:
4292 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4293 ///                         file: !1, line: 7, type: !2, isLocal: false,
4294 ///                         isDefinition: true, declaration: !3, align: 8)
4295 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4296 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4297   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4298   OPTIONAL(scope, MDField, );                                                  \
4299   OPTIONAL(linkageName, MDStringField, );                                      \
4300   OPTIONAL(file, MDField, );                                                   \
4301   OPTIONAL(line, LineField, );                                                 \
4302   OPTIONAL(type, MDField, );                                                   \
4303   OPTIONAL(isLocal, MDBoolField, );                                            \
4304   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4305   OPTIONAL(declaration, MDField, );                                            \
4306   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4307   PARSE_MD_FIELDS();
4308 #undef VISIT_MD_FIELDS
4309 
4310   Result = GET_OR_DISTINCT(DIGlobalVariable,
4311                            (Context, scope.Val, name.Val, linkageName.Val,
4312                             file.Val, line.Val, type.Val, isLocal.Val,
4313                             isDefinition.Val, declaration.Val, align.Val));
4314   return false;
4315 }
4316 
4317 /// ParseDILocalVariable:
4318 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4319 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4320 ///                        align: 8)
4321 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4322 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4323 ///                        align: 8)
4324 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4325 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4326   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4327   OPTIONAL(name, MDStringField, );                                             \
4328   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4329   OPTIONAL(file, MDField, );                                                   \
4330   OPTIONAL(line, LineField, );                                                 \
4331   OPTIONAL(type, MDField, );                                                   \
4332   OPTIONAL(flags, DIFlagField, );                                              \
4333   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4334   PARSE_MD_FIELDS();
4335 #undef VISIT_MD_FIELDS
4336 
4337   Result = GET_OR_DISTINCT(DILocalVariable,
4338                            (Context, scope.Val, name.Val, file.Val, line.Val,
4339                             type.Val, arg.Val, flags.Val, align.Val));
4340   return false;
4341 }
4342 
4343 /// ParseDIExpression:
4344 ///   ::= !DIExpression(0, 7, -1)
4345 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4346   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4347   Lex.Lex();
4348 
4349   if (ParseToken(lltok::lparen, "expected '(' here"))
4350     return true;
4351 
4352   SmallVector<uint64_t, 8> Elements;
4353   if (Lex.getKind() != lltok::rparen)
4354     do {
4355       if (Lex.getKind() == lltok::DwarfOp) {
4356         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4357           Lex.Lex();
4358           Elements.push_back(Op);
4359           continue;
4360         }
4361         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4362       }
4363 
4364       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4365         return TokError("expected unsigned integer");
4366 
4367       auto &U = Lex.getAPSIntVal();
4368       if (U.ugt(UINT64_MAX))
4369         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4370       Elements.push_back(U.getZExtValue());
4371       Lex.Lex();
4372     } while (EatIfPresent(lltok::comma));
4373 
4374   if (ParseToken(lltok::rparen, "expected ')' here"))
4375     return true;
4376 
4377   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4378   return false;
4379 }
4380 
4381 /// ParseDIGlobalVariableExpression:
4382 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4383 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4384                                                bool IsDistinct) {
4385 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4386   REQUIRED(var, MDField, );                                                    \
4387   REQUIRED(expr, MDField, );
4388   PARSE_MD_FIELDS();
4389 #undef VISIT_MD_FIELDS
4390 
4391   Result =
4392       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4393   return false;
4394 }
4395 
4396 /// ParseDIObjCProperty:
4397 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4398 ///                       getter: "getFoo", attributes: 7, type: !2)
4399 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4401   OPTIONAL(name, MDStringField, );                                             \
4402   OPTIONAL(file, MDField, );                                                   \
4403   OPTIONAL(line, LineField, );                                                 \
4404   OPTIONAL(setter, MDStringField, );                                           \
4405   OPTIONAL(getter, MDStringField, );                                           \
4406   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4407   OPTIONAL(type, MDField, );
4408   PARSE_MD_FIELDS();
4409 #undef VISIT_MD_FIELDS
4410 
4411   Result = GET_OR_DISTINCT(DIObjCProperty,
4412                            (Context, name.Val, file.Val, line.Val, setter.Val,
4413                             getter.Val, attributes.Val, type.Val));
4414   return false;
4415 }
4416 
4417 /// ParseDIImportedEntity:
4418 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4419 ///                         line: 7, name: "foo")
4420 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4422   REQUIRED(tag, DwarfTagField, );                                              \
4423   REQUIRED(scope, MDField, );                                                  \
4424   OPTIONAL(entity, MDField, );                                                 \
4425   OPTIONAL(file, MDField, );                                                   \
4426   OPTIONAL(line, LineField, );                                                 \
4427   OPTIONAL(name, MDStringField, );
4428   PARSE_MD_FIELDS();
4429 #undef VISIT_MD_FIELDS
4430 
4431   Result = GET_OR_DISTINCT(
4432       DIImportedEntity,
4433       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4434   return false;
4435 }
4436 
4437 #undef PARSE_MD_FIELD
4438 #undef NOP_FIELD
4439 #undef REQUIRE_FIELD
4440 #undef DECLARE_FIELD
4441 
4442 /// ParseMetadataAsValue
4443 ///  ::= metadata i32 %local
4444 ///  ::= metadata i32 @global
4445 ///  ::= metadata i32 7
4446 ///  ::= metadata !0
4447 ///  ::= metadata !{...}
4448 ///  ::= metadata !"string"
4449 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4450   // Note: the type 'metadata' has already been parsed.
4451   Metadata *MD;
4452   if (ParseMetadata(MD, &PFS))
4453     return true;
4454 
4455   V = MetadataAsValue::get(Context, MD);
4456   return false;
4457 }
4458 
4459 /// ParseValueAsMetadata
4460 ///  ::= i32 %local
4461 ///  ::= i32 @global
4462 ///  ::= i32 7
4463 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4464                                     PerFunctionState *PFS) {
4465   Type *Ty;
4466   LocTy Loc;
4467   if (ParseType(Ty, TypeMsg, Loc))
4468     return true;
4469   if (Ty->isMetadataTy())
4470     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4471 
4472   Value *V;
4473   if (ParseValue(Ty, V, PFS))
4474     return true;
4475 
4476   MD = ValueAsMetadata::get(V);
4477   return false;
4478 }
4479 
4480 /// ParseMetadata
4481 ///  ::= i32 %local
4482 ///  ::= i32 @global
4483 ///  ::= i32 7
4484 ///  ::= !42
4485 ///  ::= !{...}
4486 ///  ::= !"string"
4487 ///  ::= !DILocation(...)
4488 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4489   if (Lex.getKind() == lltok::MetadataVar) {
4490     MDNode *N;
4491     if (ParseSpecializedMDNode(N))
4492       return true;
4493     MD = N;
4494     return false;
4495   }
4496 
4497   // ValueAsMetadata:
4498   // <type> <value>
4499   if (Lex.getKind() != lltok::exclaim)
4500     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4501 
4502   // '!'.
4503   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4504   Lex.Lex();
4505 
4506   // MDString:
4507   //   ::= '!' STRINGCONSTANT
4508   if (Lex.getKind() == lltok::StringConstant) {
4509     MDString *S;
4510     if (ParseMDString(S))
4511       return true;
4512     MD = S;
4513     return false;
4514   }
4515 
4516   // MDNode:
4517   // !{ ... }
4518   // !7
4519   MDNode *N;
4520   if (ParseMDNodeTail(N))
4521     return true;
4522   MD = N;
4523   return false;
4524 }
4525 
4526 //===----------------------------------------------------------------------===//
4527 // Function Parsing.
4528 //===----------------------------------------------------------------------===//
4529 
4530 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4531                                    PerFunctionState *PFS) {
4532   if (Ty->isFunctionTy())
4533     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4534 
4535   switch (ID.Kind) {
4536   case ValID::t_LocalID:
4537     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4538     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4539     return V == nullptr;
4540   case ValID::t_LocalName:
4541     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4542     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4543     return V == nullptr;
4544   case ValID::t_InlineAsm: {
4545     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4546       return Error(ID.Loc, "invalid type for inline asm constraint string");
4547     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4548                        (ID.UIntVal >> 1) & 1,
4549                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4550     return false;
4551   }
4552   case ValID::t_GlobalName:
4553     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4554     return V == nullptr;
4555   case ValID::t_GlobalID:
4556     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4557     return V == nullptr;
4558   case ValID::t_APSInt:
4559     if (!Ty->isIntegerTy())
4560       return Error(ID.Loc, "integer constant must have integer type");
4561     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4562     V = ConstantInt::get(Context, ID.APSIntVal);
4563     return false;
4564   case ValID::t_APFloat:
4565     if (!Ty->isFloatingPointTy() ||
4566         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4567       return Error(ID.Loc, "floating point constant invalid for type");
4568 
4569     // The lexer has no type info, so builds all half, float, and double FP
4570     // constants as double.  Fix this here.  Long double does not need this.
4571     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4572       bool Ignored;
4573       if (Ty->isHalfTy())
4574         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4575                               &Ignored);
4576       else if (Ty->isFloatTy())
4577         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4578                               &Ignored);
4579     }
4580     V = ConstantFP::get(Context, ID.APFloatVal);
4581 
4582     if (V->getType() != Ty)
4583       return Error(ID.Loc, "floating point constant does not have type '" +
4584                    getTypeString(Ty) + "'");
4585 
4586     return false;
4587   case ValID::t_Null:
4588     if (!Ty->isPointerTy())
4589       return Error(ID.Loc, "null must be a pointer type");
4590     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4591     return false;
4592   case ValID::t_Undef:
4593     // FIXME: LabelTy should not be a first-class type.
4594     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4595       return Error(ID.Loc, "invalid type for undef constant");
4596     V = UndefValue::get(Ty);
4597     return false;
4598   case ValID::t_EmptyArray:
4599     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4600       return Error(ID.Loc, "invalid empty array initializer");
4601     V = UndefValue::get(Ty);
4602     return false;
4603   case ValID::t_Zero:
4604     // FIXME: LabelTy should not be a first-class type.
4605     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4606       return Error(ID.Loc, "invalid type for null constant");
4607     V = Constant::getNullValue(Ty);
4608     return false;
4609   case ValID::t_None:
4610     if (!Ty->isTokenTy())
4611       return Error(ID.Loc, "invalid type for none constant");
4612     V = Constant::getNullValue(Ty);
4613     return false;
4614   case ValID::t_Constant:
4615     if (ID.ConstantVal->getType() != Ty)
4616       return Error(ID.Loc, "constant expression type mismatch");
4617 
4618     V = ID.ConstantVal;
4619     return false;
4620   case ValID::t_ConstantStruct:
4621   case ValID::t_PackedConstantStruct:
4622     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4623       if (ST->getNumElements() != ID.UIntVal)
4624         return Error(ID.Loc,
4625                      "initializer with struct type has wrong # elements");
4626       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4627         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4628 
4629       // Verify that the elements are compatible with the structtype.
4630       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4631         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4632           return Error(ID.Loc, "element " + Twine(i) +
4633                     " of struct initializer doesn't match struct element type");
4634 
4635       V = ConstantStruct::get(
4636           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4637     } else
4638       return Error(ID.Loc, "constant expression type mismatch");
4639     return false;
4640   }
4641   llvm_unreachable("Invalid ValID");
4642 }
4643 
4644 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4645   C = nullptr;
4646   ValID ID;
4647   auto Loc = Lex.getLoc();
4648   if (ParseValID(ID, /*PFS=*/nullptr))
4649     return true;
4650   switch (ID.Kind) {
4651   case ValID::t_APSInt:
4652   case ValID::t_APFloat:
4653   case ValID::t_Undef:
4654   case ValID::t_Constant:
4655   case ValID::t_ConstantStruct:
4656   case ValID::t_PackedConstantStruct: {
4657     Value *V;
4658     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4659       return true;
4660     assert(isa<Constant>(V) && "Expected a constant value");
4661     C = cast<Constant>(V);
4662     return false;
4663   }
4664   case ValID::t_Null:
4665     C = Constant::getNullValue(Ty);
4666     return false;
4667   default:
4668     return Error(Loc, "expected a constant value");
4669   }
4670 }
4671 
4672 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4673   V = nullptr;
4674   ValID ID;
4675   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4676 }
4677 
4678 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4679   Type *Ty = nullptr;
4680   return ParseType(Ty) ||
4681          ParseValue(Ty, V, PFS);
4682 }
4683 
4684 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4685                                       PerFunctionState &PFS) {
4686   Value *V;
4687   Loc = Lex.getLoc();
4688   if (ParseTypeAndValue(V, PFS)) return true;
4689   if (!isa<BasicBlock>(V))
4690     return Error(Loc, "expected a basic block");
4691   BB = cast<BasicBlock>(V);
4692   return false;
4693 }
4694 
4695 /// FunctionHeader
4696 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4697 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4698 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4699 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4700   // Parse the linkage.
4701   LocTy LinkageLoc = Lex.getLoc();
4702   unsigned Linkage;
4703 
4704   unsigned Visibility;
4705   unsigned DLLStorageClass;
4706   AttrBuilder RetAttrs;
4707   unsigned CC;
4708   bool HasLinkage;
4709   Type *RetType = nullptr;
4710   LocTy RetTypeLoc = Lex.getLoc();
4711   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4712       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4713       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4714     return true;
4715 
4716   // Verify that the linkage is ok.
4717   switch ((GlobalValue::LinkageTypes)Linkage) {
4718   case GlobalValue::ExternalLinkage:
4719     break; // always ok.
4720   case GlobalValue::ExternalWeakLinkage:
4721     if (isDefine)
4722       return Error(LinkageLoc, "invalid linkage for function definition");
4723     break;
4724   case GlobalValue::PrivateLinkage:
4725   case GlobalValue::InternalLinkage:
4726   case GlobalValue::AvailableExternallyLinkage:
4727   case GlobalValue::LinkOnceAnyLinkage:
4728   case GlobalValue::LinkOnceODRLinkage:
4729   case GlobalValue::WeakAnyLinkage:
4730   case GlobalValue::WeakODRLinkage:
4731     if (!isDefine)
4732       return Error(LinkageLoc, "invalid linkage for function declaration");
4733     break;
4734   case GlobalValue::AppendingLinkage:
4735   case GlobalValue::CommonLinkage:
4736     return Error(LinkageLoc, "invalid function linkage type");
4737   }
4738 
4739   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4740     return Error(LinkageLoc,
4741                  "symbol with local linkage must have default visibility");
4742 
4743   if (!FunctionType::isValidReturnType(RetType))
4744     return Error(RetTypeLoc, "invalid function return type");
4745 
4746   LocTy NameLoc = Lex.getLoc();
4747 
4748   std::string FunctionName;
4749   if (Lex.getKind() == lltok::GlobalVar) {
4750     FunctionName = Lex.getStrVal();
4751   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4752     unsigned NameID = Lex.getUIntVal();
4753 
4754     if (NameID != NumberedVals.size())
4755       return TokError("function expected to be numbered '%" +
4756                       Twine(NumberedVals.size()) + "'");
4757   } else {
4758     return TokError("expected function name");
4759   }
4760 
4761   Lex.Lex();
4762 
4763   if (Lex.getKind() != lltok::lparen)
4764     return TokError("expected '(' in function argument list");
4765 
4766   SmallVector<ArgInfo, 8> ArgList;
4767   bool isVarArg;
4768   AttrBuilder FuncAttrs;
4769   std::vector<unsigned> FwdRefAttrGrps;
4770   LocTy BuiltinLoc;
4771   std::string Section;
4772   unsigned Alignment;
4773   std::string GC;
4774   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4775   LocTy UnnamedAddrLoc;
4776   Constant *Prefix = nullptr;
4777   Constant *Prologue = nullptr;
4778   Constant *PersonalityFn = nullptr;
4779   Comdat *C;
4780 
4781   if (ParseArgumentList(ArgList, isVarArg) ||
4782       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4783       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4784                                  BuiltinLoc) ||
4785       (EatIfPresent(lltok::kw_section) &&
4786        ParseStringConstant(Section)) ||
4787       parseOptionalComdat(FunctionName, C) ||
4788       ParseOptionalAlignment(Alignment) ||
4789       (EatIfPresent(lltok::kw_gc) &&
4790        ParseStringConstant(GC)) ||
4791       (EatIfPresent(lltok::kw_prefix) &&
4792        ParseGlobalTypeAndValue(Prefix)) ||
4793       (EatIfPresent(lltok::kw_prologue) &&
4794        ParseGlobalTypeAndValue(Prologue)) ||
4795       (EatIfPresent(lltok::kw_personality) &&
4796        ParseGlobalTypeAndValue(PersonalityFn)))
4797     return true;
4798 
4799   if (FuncAttrs.contains(Attribute::Builtin))
4800     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4801 
4802   // If the alignment was parsed as an attribute, move to the alignment field.
4803   if (FuncAttrs.hasAlignmentAttr()) {
4804     Alignment = FuncAttrs.getAlignment();
4805     FuncAttrs.removeAttribute(Attribute::Alignment);
4806   }
4807 
4808   // Okay, if we got here, the function is syntactically valid.  Convert types
4809   // and do semantic checks.
4810   std::vector<Type*> ParamTypeList;
4811   SmallVector<AttributeSet, 8> Attrs;
4812 
4813   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4814     ParamTypeList.push_back(ArgList[i].Ty);
4815     Attrs.push_back(ArgList[i].Attrs);
4816   }
4817 
4818   AttributeList PAL =
4819       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4820                          AttributeSet::get(Context, RetAttrs), Attrs);
4821 
4822   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4823     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4824 
4825   FunctionType *FT =
4826     FunctionType::get(RetType, ParamTypeList, isVarArg);
4827   PointerType *PFT = PointerType::getUnqual(FT);
4828 
4829   Fn = nullptr;
4830   if (!FunctionName.empty()) {
4831     // If this was a definition of a forward reference, remove the definition
4832     // from the forward reference table and fill in the forward ref.
4833     auto FRVI = ForwardRefVals.find(FunctionName);
4834     if (FRVI != ForwardRefVals.end()) {
4835       Fn = M->getFunction(FunctionName);
4836       if (!Fn)
4837         return Error(FRVI->second.second, "invalid forward reference to "
4838                      "function as global value!");
4839       if (Fn->getType() != PFT)
4840         return Error(FRVI->second.second, "invalid forward reference to "
4841                      "function '" + FunctionName + "' with wrong type!");
4842 
4843       ForwardRefVals.erase(FRVI);
4844     } else if ((Fn = M->getFunction(FunctionName))) {
4845       // Reject redefinitions.
4846       return Error(NameLoc, "invalid redefinition of function '" +
4847                    FunctionName + "'");
4848     } else if (M->getNamedValue(FunctionName)) {
4849       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4850     }
4851 
4852   } else {
4853     // If this is a definition of a forward referenced function, make sure the
4854     // types agree.
4855     auto I = ForwardRefValIDs.find(NumberedVals.size());
4856     if (I != ForwardRefValIDs.end()) {
4857       Fn = cast<Function>(I->second.first);
4858       if (Fn->getType() != PFT)
4859         return Error(NameLoc, "type of definition and forward reference of '@" +
4860                      Twine(NumberedVals.size()) + "' disagree");
4861       ForwardRefValIDs.erase(I);
4862     }
4863   }
4864 
4865   if (!Fn)
4866     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4867   else // Move the forward-reference to the correct spot in the module.
4868     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4869 
4870   if (FunctionName.empty())
4871     NumberedVals.push_back(Fn);
4872 
4873   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4874   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4875   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4876   Fn->setCallingConv(CC);
4877   Fn->setAttributes(PAL);
4878   Fn->setUnnamedAddr(UnnamedAddr);
4879   Fn->setAlignment(Alignment);
4880   Fn->setSection(Section);
4881   Fn->setComdat(C);
4882   Fn->setPersonalityFn(PersonalityFn);
4883   if (!GC.empty()) Fn->setGC(GC);
4884   Fn->setPrefixData(Prefix);
4885   Fn->setPrologueData(Prologue);
4886   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4887 
4888   // Add all of the arguments we parsed to the function.
4889   Function::arg_iterator ArgIt = Fn->arg_begin();
4890   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4891     // If the argument has a name, insert it into the argument symbol table.
4892     if (ArgList[i].Name.empty()) continue;
4893 
4894     // Set the name, if it conflicted, it will be auto-renamed.
4895     ArgIt->setName(ArgList[i].Name);
4896 
4897     if (ArgIt->getName() != ArgList[i].Name)
4898       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4899                    ArgList[i].Name + "'");
4900   }
4901 
4902   if (isDefine)
4903     return false;
4904 
4905   // Check the declaration has no block address forward references.
4906   ValID ID;
4907   if (FunctionName.empty()) {
4908     ID.Kind = ValID::t_GlobalID;
4909     ID.UIntVal = NumberedVals.size() - 1;
4910   } else {
4911     ID.Kind = ValID::t_GlobalName;
4912     ID.StrVal = FunctionName;
4913   }
4914   auto Blocks = ForwardRefBlockAddresses.find(ID);
4915   if (Blocks != ForwardRefBlockAddresses.end())
4916     return Error(Blocks->first.Loc,
4917                  "cannot take blockaddress inside a declaration");
4918   return false;
4919 }
4920 
4921 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4922   ValID ID;
4923   if (FunctionNumber == -1) {
4924     ID.Kind = ValID::t_GlobalName;
4925     ID.StrVal = F.getName();
4926   } else {
4927     ID.Kind = ValID::t_GlobalID;
4928     ID.UIntVal = FunctionNumber;
4929   }
4930 
4931   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4932   if (Blocks == P.ForwardRefBlockAddresses.end())
4933     return false;
4934 
4935   for (const auto &I : Blocks->second) {
4936     const ValID &BBID = I.first;
4937     GlobalValue *GV = I.second;
4938 
4939     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4940            "Expected local id or name");
4941     BasicBlock *BB;
4942     if (BBID.Kind == ValID::t_LocalName)
4943       BB = GetBB(BBID.StrVal, BBID.Loc);
4944     else
4945       BB = GetBB(BBID.UIntVal, BBID.Loc);
4946     if (!BB)
4947       return P.Error(BBID.Loc, "referenced value is not a basic block");
4948 
4949     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4950     GV->eraseFromParent();
4951   }
4952 
4953   P.ForwardRefBlockAddresses.erase(Blocks);
4954   return false;
4955 }
4956 
4957 /// ParseFunctionBody
4958 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4959 bool LLParser::ParseFunctionBody(Function &Fn) {
4960   if (Lex.getKind() != lltok::lbrace)
4961     return TokError("expected '{' in function body");
4962   Lex.Lex();  // eat the {.
4963 
4964   int FunctionNumber = -1;
4965   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4966 
4967   PerFunctionState PFS(*this, Fn, FunctionNumber);
4968 
4969   // Resolve block addresses and allow basic blocks to be forward-declared
4970   // within this function.
4971   if (PFS.resolveForwardRefBlockAddresses())
4972     return true;
4973   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4974 
4975   // We need at least one basic block.
4976   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4977     return TokError("function body requires at least one basic block");
4978 
4979   while (Lex.getKind() != lltok::rbrace &&
4980          Lex.getKind() != lltok::kw_uselistorder)
4981     if (ParseBasicBlock(PFS)) return true;
4982 
4983   while (Lex.getKind() != lltok::rbrace)
4984     if (ParseUseListOrder(&PFS))
4985       return true;
4986 
4987   // Eat the }.
4988   Lex.Lex();
4989 
4990   // Verify function is ok.
4991   return PFS.FinishFunction();
4992 }
4993 
4994 /// ParseBasicBlock
4995 ///   ::= LabelStr? Instruction*
4996 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4997   // If this basic block starts out with a name, remember it.
4998   std::string Name;
4999   LocTy NameLoc = Lex.getLoc();
5000   if (Lex.getKind() == lltok::LabelStr) {
5001     Name = Lex.getStrVal();
5002     Lex.Lex();
5003   }
5004 
5005   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5006   if (!BB)
5007     return Error(NameLoc,
5008                  "unable to create block named '" + Name + "'");
5009 
5010   std::string NameStr;
5011 
5012   // Parse the instructions in this block until we get a terminator.
5013   Instruction *Inst;
5014   do {
5015     // This instruction may have three possibilities for a name: a) none
5016     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5017     LocTy NameLoc = Lex.getLoc();
5018     int NameID = -1;
5019     NameStr = "";
5020 
5021     if (Lex.getKind() == lltok::LocalVarID) {
5022       NameID = Lex.getUIntVal();
5023       Lex.Lex();
5024       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5025         return true;
5026     } else if (Lex.getKind() == lltok::LocalVar) {
5027       NameStr = Lex.getStrVal();
5028       Lex.Lex();
5029       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5030         return true;
5031     }
5032 
5033     switch (ParseInstruction(Inst, BB, PFS)) {
5034     default: llvm_unreachable("Unknown ParseInstruction result!");
5035     case InstError: return true;
5036     case InstNormal:
5037       BB->getInstList().push_back(Inst);
5038 
5039       // With a normal result, we check to see if the instruction is followed by
5040       // a comma and metadata.
5041       if (EatIfPresent(lltok::comma))
5042         if (ParseInstructionMetadata(*Inst))
5043           return true;
5044       break;
5045     case InstExtraComma:
5046       BB->getInstList().push_back(Inst);
5047 
5048       // If the instruction parser ate an extra comma at the end of it, it
5049       // *must* be followed by metadata.
5050       if (ParseInstructionMetadata(*Inst))
5051         return true;
5052       break;
5053     }
5054 
5055     // Set the name on the instruction.
5056     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5057   } while (!isa<TerminatorInst>(Inst));
5058 
5059   return false;
5060 }
5061 
5062 //===----------------------------------------------------------------------===//
5063 // Instruction Parsing.
5064 //===----------------------------------------------------------------------===//
5065 
5066 /// ParseInstruction - Parse one of the many different instructions.
5067 ///
5068 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5069                                PerFunctionState &PFS) {
5070   lltok::Kind Token = Lex.getKind();
5071   if (Token == lltok::Eof)
5072     return TokError("found end of file when expecting more instructions");
5073   LocTy Loc = Lex.getLoc();
5074   unsigned KeywordVal = Lex.getUIntVal();
5075   Lex.Lex();  // Eat the keyword.
5076 
5077   switch (Token) {
5078   default:                    return Error(Loc, "expected instruction opcode");
5079   // Terminator Instructions.
5080   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5081   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5082   case lltok::kw_br:          return ParseBr(Inst, PFS);
5083   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5084   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5085   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5086   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5087   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5088   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5089   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5090   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5091   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5092   // Binary Operators.
5093   case lltok::kw_add:
5094   case lltok::kw_sub:
5095   case lltok::kw_mul:
5096   case lltok::kw_shl: {
5097     bool NUW = EatIfPresent(lltok::kw_nuw);
5098     bool NSW = EatIfPresent(lltok::kw_nsw);
5099     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5100 
5101     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5102 
5103     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5104     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5105     return false;
5106   }
5107   case lltok::kw_fadd:
5108   case lltok::kw_fsub:
5109   case lltok::kw_fmul:
5110   case lltok::kw_fdiv:
5111   case lltok::kw_frem: {
5112     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5113     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5114     if (Res != 0)
5115       return Res;
5116     if (FMF.any())
5117       Inst->setFastMathFlags(FMF);
5118     return 0;
5119   }
5120 
5121   case lltok::kw_sdiv:
5122   case lltok::kw_udiv:
5123   case lltok::kw_lshr:
5124   case lltok::kw_ashr: {
5125     bool Exact = EatIfPresent(lltok::kw_exact);
5126 
5127     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5128     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5129     return false;
5130   }
5131 
5132   case lltok::kw_urem:
5133   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5134   case lltok::kw_and:
5135   case lltok::kw_or:
5136   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5137   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5138   case lltok::kw_fcmp: {
5139     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5140     int Res = ParseCompare(Inst, PFS, KeywordVal);
5141     if (Res != 0)
5142       return Res;
5143     if (FMF.any())
5144       Inst->setFastMathFlags(FMF);
5145     return 0;
5146   }
5147 
5148   // Casts.
5149   case lltok::kw_trunc:
5150   case lltok::kw_zext:
5151   case lltok::kw_sext:
5152   case lltok::kw_fptrunc:
5153   case lltok::kw_fpext:
5154   case lltok::kw_bitcast:
5155   case lltok::kw_addrspacecast:
5156   case lltok::kw_uitofp:
5157   case lltok::kw_sitofp:
5158   case lltok::kw_fptoui:
5159   case lltok::kw_fptosi:
5160   case lltok::kw_inttoptr:
5161   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5162   // Other.
5163   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5164   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5165   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5166   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5167   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5168   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5169   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5170   // Call.
5171   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5172   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5173   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5174   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5175   // Memory.
5176   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5177   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5178   case lltok::kw_store:          return ParseStore(Inst, PFS);
5179   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5180   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5181   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5182   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5183   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5184   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5185   }
5186 }
5187 
5188 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5189 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5190   if (Opc == Instruction::FCmp) {
5191     switch (Lex.getKind()) {
5192     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5193     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5194     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5195     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5196     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5197     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5198     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5199     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5200     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5201     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5202     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5203     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5204     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5205     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5206     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5207     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5208     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5209     }
5210   } else {
5211     switch (Lex.getKind()) {
5212     default: return TokError("expected icmp predicate (e.g. 'eq')");
5213     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5214     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5215     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5216     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5217     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5218     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5219     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5220     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5221     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5222     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5223     }
5224   }
5225   Lex.Lex();
5226   return false;
5227 }
5228 
5229 //===----------------------------------------------------------------------===//
5230 // Terminator Instructions.
5231 //===----------------------------------------------------------------------===//
5232 
5233 /// ParseRet - Parse a return instruction.
5234 ///   ::= 'ret' void (',' !dbg, !1)*
5235 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5236 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5237                         PerFunctionState &PFS) {
5238   SMLoc TypeLoc = Lex.getLoc();
5239   Type *Ty = nullptr;
5240   if (ParseType(Ty, true /*void allowed*/)) return true;
5241 
5242   Type *ResType = PFS.getFunction().getReturnType();
5243 
5244   if (Ty->isVoidTy()) {
5245     if (!ResType->isVoidTy())
5246       return Error(TypeLoc, "value doesn't match function result type '" +
5247                    getTypeString(ResType) + "'");
5248 
5249     Inst = ReturnInst::Create(Context);
5250     return false;
5251   }
5252 
5253   Value *RV;
5254   if (ParseValue(Ty, RV, PFS)) return true;
5255 
5256   if (ResType != RV->getType())
5257     return Error(TypeLoc, "value doesn't match function result type '" +
5258                  getTypeString(ResType) + "'");
5259 
5260   Inst = ReturnInst::Create(Context, RV);
5261   return false;
5262 }
5263 
5264 /// ParseBr
5265 ///   ::= 'br' TypeAndValue
5266 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5267 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5268   LocTy Loc, Loc2;
5269   Value *Op0;
5270   BasicBlock *Op1, *Op2;
5271   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5272 
5273   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5274     Inst = BranchInst::Create(BB);
5275     return false;
5276   }
5277 
5278   if (Op0->getType() != Type::getInt1Ty(Context))
5279     return Error(Loc, "branch condition must have 'i1' type");
5280 
5281   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5282       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5283       ParseToken(lltok::comma, "expected ',' after true destination") ||
5284       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5285     return true;
5286 
5287   Inst = BranchInst::Create(Op1, Op2, Op0);
5288   return false;
5289 }
5290 
5291 /// ParseSwitch
5292 ///  Instruction
5293 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5294 ///  JumpTable
5295 ///    ::= (TypeAndValue ',' TypeAndValue)*
5296 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5297   LocTy CondLoc, BBLoc;
5298   Value *Cond;
5299   BasicBlock *DefaultBB;
5300   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5301       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5302       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5303       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5304     return true;
5305 
5306   if (!Cond->getType()->isIntegerTy())
5307     return Error(CondLoc, "switch condition must have integer type");
5308 
5309   // Parse the jump table pairs.
5310   SmallPtrSet<Value*, 32> SeenCases;
5311   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5312   while (Lex.getKind() != lltok::rsquare) {
5313     Value *Constant;
5314     BasicBlock *DestBB;
5315 
5316     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5317         ParseToken(lltok::comma, "expected ',' after case value") ||
5318         ParseTypeAndBasicBlock(DestBB, PFS))
5319       return true;
5320 
5321     if (!SeenCases.insert(Constant).second)
5322       return Error(CondLoc, "duplicate case value in switch");
5323     if (!isa<ConstantInt>(Constant))
5324       return Error(CondLoc, "case value is not a constant integer");
5325 
5326     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5327   }
5328 
5329   Lex.Lex();  // Eat the ']'.
5330 
5331   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5332   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5333     SI->addCase(Table[i].first, Table[i].second);
5334   Inst = SI;
5335   return false;
5336 }
5337 
5338 /// ParseIndirectBr
5339 ///  Instruction
5340 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5341 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5342   LocTy AddrLoc;
5343   Value *Address;
5344   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5345       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5346       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5347     return true;
5348 
5349   if (!Address->getType()->isPointerTy())
5350     return Error(AddrLoc, "indirectbr address must have pointer type");
5351 
5352   // Parse the destination list.
5353   SmallVector<BasicBlock*, 16> DestList;
5354 
5355   if (Lex.getKind() != lltok::rsquare) {
5356     BasicBlock *DestBB;
5357     if (ParseTypeAndBasicBlock(DestBB, PFS))
5358       return true;
5359     DestList.push_back(DestBB);
5360 
5361     while (EatIfPresent(lltok::comma)) {
5362       if (ParseTypeAndBasicBlock(DestBB, PFS))
5363         return true;
5364       DestList.push_back(DestBB);
5365     }
5366   }
5367 
5368   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5369     return true;
5370 
5371   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5372   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5373     IBI->addDestination(DestList[i]);
5374   Inst = IBI;
5375   return false;
5376 }
5377 
5378 /// ParseInvoke
5379 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5380 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5381 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5382   LocTy CallLoc = Lex.getLoc();
5383   AttrBuilder RetAttrs, FnAttrs;
5384   std::vector<unsigned> FwdRefAttrGrps;
5385   LocTy NoBuiltinLoc;
5386   unsigned CC;
5387   Type *RetType = nullptr;
5388   LocTy RetTypeLoc;
5389   ValID CalleeID;
5390   SmallVector<ParamInfo, 16> ArgList;
5391   SmallVector<OperandBundleDef, 2> BundleList;
5392 
5393   BasicBlock *NormalBB, *UnwindBB;
5394   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5395       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5396       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5397       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5398                                  NoBuiltinLoc) ||
5399       ParseOptionalOperandBundles(BundleList, PFS) ||
5400       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5401       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5402       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5403       ParseTypeAndBasicBlock(UnwindBB, PFS))
5404     return true;
5405 
5406   // If RetType is a non-function pointer type, then this is the short syntax
5407   // for the call, which means that RetType is just the return type.  Infer the
5408   // rest of the function argument types from the arguments that are present.
5409   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5410   if (!Ty) {
5411     // Pull out the types of all of the arguments...
5412     std::vector<Type*> ParamTypes;
5413     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5414       ParamTypes.push_back(ArgList[i].V->getType());
5415 
5416     if (!FunctionType::isValidReturnType(RetType))
5417       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5418 
5419     Ty = FunctionType::get(RetType, ParamTypes, false);
5420   }
5421 
5422   CalleeID.FTy = Ty;
5423 
5424   // Look up the callee.
5425   Value *Callee;
5426   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5427     return true;
5428 
5429   // Set up the Attribute for the function.
5430   SmallVector<Value *, 8> Args;
5431   SmallVector<AttributeSet, 8> ArgAttrs;
5432 
5433   // Loop through FunctionType's arguments and ensure they are specified
5434   // correctly.  Also, gather any parameter attributes.
5435   FunctionType::param_iterator I = Ty->param_begin();
5436   FunctionType::param_iterator E = Ty->param_end();
5437   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5438     Type *ExpectedTy = nullptr;
5439     if (I != E) {
5440       ExpectedTy = *I++;
5441     } else if (!Ty->isVarArg()) {
5442       return Error(ArgList[i].Loc, "too many arguments specified");
5443     }
5444 
5445     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5446       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5447                    getTypeString(ExpectedTy) + "'");
5448     Args.push_back(ArgList[i].V);
5449     ArgAttrs.push_back(ArgList[i].Attrs);
5450   }
5451 
5452   if (I != E)
5453     return Error(CallLoc, "not enough parameters specified for call");
5454 
5455   if (FnAttrs.hasAlignmentAttr())
5456     return Error(CallLoc, "invoke instructions may not have an alignment");
5457 
5458   // Finish off the Attribute and check them
5459   AttributeList PAL =
5460       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5461                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5462 
5463   InvokeInst *II =
5464       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5465   II->setCallingConv(CC);
5466   II->setAttributes(PAL);
5467   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5468   Inst = II;
5469   return false;
5470 }
5471 
5472 /// ParseResume
5473 ///   ::= 'resume' TypeAndValue
5474 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5475   Value *Exn; LocTy ExnLoc;
5476   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5477     return true;
5478 
5479   ResumeInst *RI = ResumeInst::Create(Exn);
5480   Inst = RI;
5481   return false;
5482 }
5483 
5484 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5485                                   PerFunctionState &PFS) {
5486   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5487     return true;
5488 
5489   while (Lex.getKind() != lltok::rsquare) {
5490     // If this isn't the first argument, we need a comma.
5491     if (!Args.empty() &&
5492         ParseToken(lltok::comma, "expected ',' in argument list"))
5493       return true;
5494 
5495     // Parse the argument.
5496     LocTy ArgLoc;
5497     Type *ArgTy = nullptr;
5498     if (ParseType(ArgTy, ArgLoc))
5499       return true;
5500 
5501     Value *V;
5502     if (ArgTy->isMetadataTy()) {
5503       if (ParseMetadataAsValue(V, PFS))
5504         return true;
5505     } else {
5506       if (ParseValue(ArgTy, V, PFS))
5507         return true;
5508     }
5509     Args.push_back(V);
5510   }
5511 
5512   Lex.Lex();  // Lex the ']'.
5513   return false;
5514 }
5515 
5516 /// ParseCleanupRet
5517 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5518 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5519   Value *CleanupPad = nullptr;
5520 
5521   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5522     return true;
5523 
5524   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5525     return true;
5526 
5527   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5528     return true;
5529 
5530   BasicBlock *UnwindBB = nullptr;
5531   if (Lex.getKind() == lltok::kw_to) {
5532     Lex.Lex();
5533     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5534       return true;
5535   } else {
5536     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5537       return true;
5538     }
5539   }
5540 
5541   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5542   return false;
5543 }
5544 
5545 /// ParseCatchRet
5546 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5547 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5548   Value *CatchPad = nullptr;
5549 
5550   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5551     return true;
5552 
5553   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5554     return true;
5555 
5556   BasicBlock *BB;
5557   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5558       ParseTypeAndBasicBlock(BB, PFS))
5559       return true;
5560 
5561   Inst = CatchReturnInst::Create(CatchPad, BB);
5562   return false;
5563 }
5564 
5565 /// ParseCatchSwitch
5566 ///   ::= 'catchswitch' within Parent
5567 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5568   Value *ParentPad;
5569   LocTy BBLoc;
5570 
5571   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5572     return true;
5573 
5574   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5575       Lex.getKind() != lltok::LocalVarID)
5576     return TokError("expected scope value for catchswitch");
5577 
5578   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5579     return true;
5580 
5581   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5582     return true;
5583 
5584   SmallVector<BasicBlock *, 32> Table;
5585   do {
5586     BasicBlock *DestBB;
5587     if (ParseTypeAndBasicBlock(DestBB, PFS))
5588       return true;
5589     Table.push_back(DestBB);
5590   } while (EatIfPresent(lltok::comma));
5591 
5592   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5593     return true;
5594 
5595   if (ParseToken(lltok::kw_unwind,
5596                  "expected 'unwind' after catchswitch scope"))
5597     return true;
5598 
5599   BasicBlock *UnwindBB = nullptr;
5600   if (EatIfPresent(lltok::kw_to)) {
5601     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5602       return true;
5603   } else {
5604     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5605       return true;
5606   }
5607 
5608   auto *CatchSwitch =
5609       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5610   for (BasicBlock *DestBB : Table)
5611     CatchSwitch->addHandler(DestBB);
5612   Inst = CatchSwitch;
5613   return false;
5614 }
5615 
5616 /// ParseCatchPad
5617 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5618 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5619   Value *CatchSwitch = nullptr;
5620 
5621   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5622     return true;
5623 
5624   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5625     return TokError("expected scope value for catchpad");
5626 
5627   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5628     return true;
5629 
5630   SmallVector<Value *, 8> Args;
5631   if (ParseExceptionArgs(Args, PFS))
5632     return true;
5633 
5634   Inst = CatchPadInst::Create(CatchSwitch, Args);
5635   return false;
5636 }
5637 
5638 /// ParseCleanupPad
5639 ///   ::= 'cleanuppad' within Parent ParamList
5640 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5641   Value *ParentPad = nullptr;
5642 
5643   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5644     return true;
5645 
5646   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5647       Lex.getKind() != lltok::LocalVarID)
5648     return TokError("expected scope value for cleanuppad");
5649 
5650   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5651     return true;
5652 
5653   SmallVector<Value *, 8> Args;
5654   if (ParseExceptionArgs(Args, PFS))
5655     return true;
5656 
5657   Inst = CleanupPadInst::Create(ParentPad, Args);
5658   return false;
5659 }
5660 
5661 //===----------------------------------------------------------------------===//
5662 // Binary Operators.
5663 //===----------------------------------------------------------------------===//
5664 
5665 /// ParseArithmetic
5666 ///  ::= ArithmeticOps TypeAndValue ',' Value
5667 ///
5668 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5669 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5670 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5671                                unsigned Opc, unsigned OperandType) {
5672   LocTy Loc; Value *LHS, *RHS;
5673   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5674       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5675       ParseValue(LHS->getType(), RHS, PFS))
5676     return true;
5677 
5678   bool Valid;
5679   switch (OperandType) {
5680   default: llvm_unreachable("Unknown operand type!");
5681   case 0: // int or FP.
5682     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5683             LHS->getType()->isFPOrFPVectorTy();
5684     break;
5685   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5686   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5687   }
5688 
5689   if (!Valid)
5690     return Error(Loc, "invalid operand type for instruction");
5691 
5692   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5693   return false;
5694 }
5695 
5696 /// ParseLogical
5697 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5698 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5699                             unsigned Opc) {
5700   LocTy Loc; Value *LHS, *RHS;
5701   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5702       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5703       ParseValue(LHS->getType(), RHS, PFS))
5704     return true;
5705 
5706   if (!LHS->getType()->isIntOrIntVectorTy())
5707     return Error(Loc,"instruction requires integer or integer vector operands");
5708 
5709   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5710   return false;
5711 }
5712 
5713 /// ParseCompare
5714 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5715 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5716 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5717                             unsigned Opc) {
5718   // Parse the integer/fp comparison predicate.
5719   LocTy Loc;
5720   unsigned Pred;
5721   Value *LHS, *RHS;
5722   if (ParseCmpPredicate(Pred, Opc) ||
5723       ParseTypeAndValue(LHS, Loc, PFS) ||
5724       ParseToken(lltok::comma, "expected ',' after compare value") ||
5725       ParseValue(LHS->getType(), RHS, PFS))
5726     return true;
5727 
5728   if (Opc == Instruction::FCmp) {
5729     if (!LHS->getType()->isFPOrFPVectorTy())
5730       return Error(Loc, "fcmp requires floating point operands");
5731     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5732   } else {
5733     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5734     if (!LHS->getType()->isIntOrIntVectorTy() &&
5735         !LHS->getType()->isPtrOrPtrVectorTy())
5736       return Error(Loc, "icmp requires integer operands");
5737     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5738   }
5739   return false;
5740 }
5741 
5742 //===----------------------------------------------------------------------===//
5743 // Other Instructions.
5744 //===----------------------------------------------------------------------===//
5745 
5746 
5747 /// ParseCast
5748 ///   ::= CastOpc TypeAndValue 'to' Type
5749 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5750                          unsigned Opc) {
5751   LocTy Loc;
5752   Value *Op;
5753   Type *DestTy = nullptr;
5754   if (ParseTypeAndValue(Op, Loc, PFS) ||
5755       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5756       ParseType(DestTy))
5757     return true;
5758 
5759   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5760     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5761     return Error(Loc, "invalid cast opcode for cast from '" +
5762                  getTypeString(Op->getType()) + "' to '" +
5763                  getTypeString(DestTy) + "'");
5764   }
5765   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5766   return false;
5767 }
5768 
5769 /// ParseSelect
5770 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5771 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5772   LocTy Loc;
5773   Value *Op0, *Op1, *Op2;
5774   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5775       ParseToken(lltok::comma, "expected ',' after select condition") ||
5776       ParseTypeAndValue(Op1, PFS) ||
5777       ParseToken(lltok::comma, "expected ',' after select value") ||
5778       ParseTypeAndValue(Op2, PFS))
5779     return true;
5780 
5781   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5782     return Error(Loc, Reason);
5783 
5784   Inst = SelectInst::Create(Op0, Op1, Op2);
5785   return false;
5786 }
5787 
5788 /// ParseVA_Arg
5789 ///   ::= 'va_arg' TypeAndValue ',' Type
5790 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5791   Value *Op;
5792   Type *EltTy = nullptr;
5793   LocTy TypeLoc;
5794   if (ParseTypeAndValue(Op, PFS) ||
5795       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5796       ParseType(EltTy, TypeLoc))
5797     return true;
5798 
5799   if (!EltTy->isFirstClassType())
5800     return Error(TypeLoc, "va_arg requires operand with first class type");
5801 
5802   Inst = new VAArgInst(Op, EltTy);
5803   return false;
5804 }
5805 
5806 /// ParseExtractElement
5807 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5808 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5809   LocTy Loc;
5810   Value *Op0, *Op1;
5811   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5812       ParseToken(lltok::comma, "expected ',' after extract value") ||
5813       ParseTypeAndValue(Op1, PFS))
5814     return true;
5815 
5816   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5817     return Error(Loc, "invalid extractelement operands");
5818 
5819   Inst = ExtractElementInst::Create(Op0, Op1);
5820   return false;
5821 }
5822 
5823 /// ParseInsertElement
5824 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5825 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5826   LocTy Loc;
5827   Value *Op0, *Op1, *Op2;
5828   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5829       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5830       ParseTypeAndValue(Op1, PFS) ||
5831       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5832       ParseTypeAndValue(Op2, PFS))
5833     return true;
5834 
5835   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5836     return Error(Loc, "invalid insertelement operands");
5837 
5838   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5839   return false;
5840 }
5841 
5842 /// ParseShuffleVector
5843 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5844 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5845   LocTy Loc;
5846   Value *Op0, *Op1, *Op2;
5847   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5848       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5849       ParseTypeAndValue(Op1, PFS) ||
5850       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5851       ParseTypeAndValue(Op2, PFS))
5852     return true;
5853 
5854   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5855     return Error(Loc, "invalid shufflevector operands");
5856 
5857   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5858   return false;
5859 }
5860 
5861 /// ParsePHI
5862 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5863 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5864   Type *Ty = nullptr;  LocTy TypeLoc;
5865   Value *Op0, *Op1;
5866 
5867   if (ParseType(Ty, TypeLoc) ||
5868       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5869       ParseValue(Ty, Op0, PFS) ||
5870       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5871       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5872       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5873     return true;
5874 
5875   bool AteExtraComma = false;
5876   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5877 
5878   while (true) {
5879     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5880 
5881     if (!EatIfPresent(lltok::comma))
5882       break;
5883 
5884     if (Lex.getKind() == lltok::MetadataVar) {
5885       AteExtraComma = true;
5886       break;
5887     }
5888 
5889     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5890         ParseValue(Ty, Op0, PFS) ||
5891         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5892         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5893         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5894       return true;
5895   }
5896 
5897   if (!Ty->isFirstClassType())
5898     return Error(TypeLoc, "phi node must have first class type");
5899 
5900   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5901   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5902     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5903   Inst = PN;
5904   return AteExtraComma ? InstExtraComma : InstNormal;
5905 }
5906 
5907 /// ParseLandingPad
5908 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5909 /// Clause
5910 ///   ::= 'catch' TypeAndValue
5911 ///   ::= 'filter'
5912 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5913 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5914   Type *Ty = nullptr; LocTy TyLoc;
5915 
5916   if (ParseType(Ty, TyLoc))
5917     return true;
5918 
5919   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5920   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5921 
5922   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5923     LandingPadInst::ClauseType CT;
5924     if (EatIfPresent(lltok::kw_catch))
5925       CT = LandingPadInst::Catch;
5926     else if (EatIfPresent(lltok::kw_filter))
5927       CT = LandingPadInst::Filter;
5928     else
5929       return TokError("expected 'catch' or 'filter' clause type");
5930 
5931     Value *V;
5932     LocTy VLoc;
5933     if (ParseTypeAndValue(V, VLoc, PFS))
5934       return true;
5935 
5936     // A 'catch' type expects a non-array constant. A filter clause expects an
5937     // array constant.
5938     if (CT == LandingPadInst::Catch) {
5939       if (isa<ArrayType>(V->getType()))
5940         Error(VLoc, "'catch' clause has an invalid type");
5941     } else {
5942       if (!isa<ArrayType>(V->getType()))
5943         Error(VLoc, "'filter' clause has an invalid type");
5944     }
5945 
5946     Constant *CV = dyn_cast<Constant>(V);
5947     if (!CV)
5948       return Error(VLoc, "clause argument must be a constant");
5949     LP->addClause(CV);
5950   }
5951 
5952   Inst = LP.release();
5953   return false;
5954 }
5955 
5956 /// ParseCall
5957 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5958 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5959 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5960 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5961 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5962 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5963 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5964 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5965 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5966                          CallInst::TailCallKind TCK) {
5967   AttrBuilder RetAttrs, FnAttrs;
5968   std::vector<unsigned> FwdRefAttrGrps;
5969   LocTy BuiltinLoc;
5970   unsigned CC;
5971   Type *RetType = nullptr;
5972   LocTy RetTypeLoc;
5973   ValID CalleeID;
5974   SmallVector<ParamInfo, 16> ArgList;
5975   SmallVector<OperandBundleDef, 2> BundleList;
5976   LocTy CallLoc = Lex.getLoc();
5977 
5978   if (TCK != CallInst::TCK_None &&
5979       ParseToken(lltok::kw_call,
5980                  "expected 'tail call', 'musttail call', or 'notail call'"))
5981     return true;
5982 
5983   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5984 
5985   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5986       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5987       ParseValID(CalleeID) ||
5988       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5989                          PFS.getFunction().isVarArg()) ||
5990       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5991       ParseOptionalOperandBundles(BundleList, PFS))
5992     return true;
5993 
5994   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5995     return Error(CallLoc, "fast-math-flags specified for call without "
5996                           "floating-point scalar or vector return type");
5997 
5998   // If RetType is a non-function pointer type, then this is the short syntax
5999   // for the call, which means that RetType is just the return type.  Infer the
6000   // rest of the function argument types from the arguments that are present.
6001   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6002   if (!Ty) {
6003     // Pull out the types of all of the arguments...
6004     std::vector<Type*> ParamTypes;
6005     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6006       ParamTypes.push_back(ArgList[i].V->getType());
6007 
6008     if (!FunctionType::isValidReturnType(RetType))
6009       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6010 
6011     Ty = FunctionType::get(RetType, ParamTypes, false);
6012   }
6013 
6014   CalleeID.FTy = Ty;
6015 
6016   // Look up the callee.
6017   Value *Callee;
6018   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6019     return true;
6020 
6021   // Set up the Attribute for the function.
6022   SmallVector<AttributeSet, 8> Attrs;
6023 
6024   SmallVector<Value*, 8> Args;
6025 
6026   // Loop through FunctionType's arguments and ensure they are specified
6027   // correctly.  Also, gather any parameter attributes.
6028   FunctionType::param_iterator I = Ty->param_begin();
6029   FunctionType::param_iterator E = Ty->param_end();
6030   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6031     Type *ExpectedTy = nullptr;
6032     if (I != E) {
6033       ExpectedTy = *I++;
6034     } else if (!Ty->isVarArg()) {
6035       return Error(ArgList[i].Loc, "too many arguments specified");
6036     }
6037 
6038     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6039       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6040                    getTypeString(ExpectedTy) + "'");
6041     Args.push_back(ArgList[i].V);
6042     Attrs.push_back(ArgList[i].Attrs);
6043   }
6044 
6045   if (I != E)
6046     return Error(CallLoc, "not enough parameters specified for call");
6047 
6048   if (FnAttrs.hasAlignmentAttr())
6049     return Error(CallLoc, "call instructions may not have an alignment");
6050 
6051   // Finish off the Attribute and check them
6052   AttributeList PAL =
6053       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6054                          AttributeSet::get(Context, RetAttrs), Attrs);
6055 
6056   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6057   CI->setTailCallKind(TCK);
6058   CI->setCallingConv(CC);
6059   if (FMF.any())
6060     CI->setFastMathFlags(FMF);
6061   CI->setAttributes(PAL);
6062   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6063   Inst = CI;
6064   return false;
6065 }
6066 
6067 //===----------------------------------------------------------------------===//
6068 // Memory Instructions.
6069 //===----------------------------------------------------------------------===//
6070 
6071 /// ParseAlloc
6072 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6073 ///       (',' 'align' i32)?
6074 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6075   Value *Size = nullptr;
6076   LocTy SizeLoc, TyLoc, ASLoc;
6077   unsigned Alignment = 0;
6078   unsigned AddrSpace = 0;
6079   Type *Ty = nullptr;
6080 
6081   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6082   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6083 
6084   if (ParseType(Ty, TyLoc)) return true;
6085 
6086   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6087     return Error(TyLoc, "invalid type for alloca");
6088 
6089   bool AteExtraComma = false;
6090   if (EatIfPresent(lltok::comma)) {
6091     if (Lex.getKind() == lltok::kw_align) {
6092       if (ParseOptionalAlignment(Alignment))
6093         return true;
6094       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6095         return true;
6096     } else if (Lex.getKind() == lltok::kw_addrspace) {
6097       ASLoc = Lex.getLoc();
6098       if (ParseOptionalAddrSpace(AddrSpace))
6099         return true;
6100     } else if (Lex.getKind() == lltok::MetadataVar) {
6101       AteExtraComma = true;
6102     } else {
6103       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6104           ParseOptionalCommaAlign(Alignment, AteExtraComma) ||
6105           (!AteExtraComma &&
6106            ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)))
6107         return true;
6108     }
6109   }
6110 
6111   if (Size && !Size->getType()->isIntegerTy())
6112     return Error(SizeLoc, "element count must have integer type");
6113 
6114   const DataLayout &DL = M->getDataLayout();
6115   unsigned AS = DL.getAllocaAddrSpace();
6116   if (AS != AddrSpace) {
6117     // TODO: In the future it should be possible to specify addrspace per-alloca.
6118     return Error(ASLoc, "address space must match datalayout");
6119   }
6120 
6121   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6122   AI->setUsedWithInAlloca(IsInAlloca);
6123   AI->setSwiftError(IsSwiftError);
6124   Inst = AI;
6125   return AteExtraComma ? InstExtraComma : InstNormal;
6126 }
6127 
6128 /// ParseLoad
6129 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6130 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6131 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6132 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6133   Value *Val; LocTy Loc;
6134   unsigned Alignment = 0;
6135   bool AteExtraComma = false;
6136   bool isAtomic = false;
6137   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6138   SyncScope::ID SSID = SyncScope::System;
6139 
6140   if (Lex.getKind() == lltok::kw_atomic) {
6141     isAtomic = true;
6142     Lex.Lex();
6143   }
6144 
6145   bool isVolatile = false;
6146   if (Lex.getKind() == lltok::kw_volatile) {
6147     isVolatile = true;
6148     Lex.Lex();
6149   }
6150 
6151   Type *Ty;
6152   LocTy ExplicitTypeLoc = Lex.getLoc();
6153   if (ParseType(Ty) ||
6154       ParseToken(lltok::comma, "expected comma after load's type") ||
6155       ParseTypeAndValue(Val, Loc, PFS) ||
6156       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6157       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6158     return true;
6159 
6160   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6161     return Error(Loc, "load operand must be a pointer to a first class type");
6162   if (isAtomic && !Alignment)
6163     return Error(Loc, "atomic load must have explicit non-zero alignment");
6164   if (Ordering == AtomicOrdering::Release ||
6165       Ordering == AtomicOrdering::AcquireRelease)
6166     return Error(Loc, "atomic load cannot use Release ordering");
6167 
6168   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6169     return Error(ExplicitTypeLoc,
6170                  "explicit pointee type doesn't match operand's pointee type");
6171 
6172   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6173   return AteExtraComma ? InstExtraComma : InstNormal;
6174 }
6175 
6176 /// ParseStore
6177 
6178 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6179 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6180 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6181 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6182   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6183   unsigned Alignment = 0;
6184   bool AteExtraComma = false;
6185   bool isAtomic = false;
6186   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6187   SyncScope::ID SSID = SyncScope::System;
6188 
6189   if (Lex.getKind() == lltok::kw_atomic) {
6190     isAtomic = true;
6191     Lex.Lex();
6192   }
6193 
6194   bool isVolatile = false;
6195   if (Lex.getKind() == lltok::kw_volatile) {
6196     isVolatile = true;
6197     Lex.Lex();
6198   }
6199 
6200   if (ParseTypeAndValue(Val, Loc, PFS) ||
6201       ParseToken(lltok::comma, "expected ',' after store operand") ||
6202       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6203       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6204       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6205     return true;
6206 
6207   if (!Ptr->getType()->isPointerTy())
6208     return Error(PtrLoc, "store operand must be a pointer");
6209   if (!Val->getType()->isFirstClassType())
6210     return Error(Loc, "store operand must be a first class value");
6211   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6212     return Error(Loc, "stored value and pointer type do not match");
6213   if (isAtomic && !Alignment)
6214     return Error(Loc, "atomic store must have explicit non-zero alignment");
6215   if (Ordering == AtomicOrdering::Acquire ||
6216       Ordering == AtomicOrdering::AcquireRelease)
6217     return Error(Loc, "atomic store cannot use Acquire ordering");
6218 
6219   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6220   return AteExtraComma ? InstExtraComma : InstNormal;
6221 }
6222 
6223 /// ParseCmpXchg
6224 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6225 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6226 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6227   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6228   bool AteExtraComma = false;
6229   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6230   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6231   SyncScope::ID SSID = SyncScope::System;
6232   bool isVolatile = false;
6233   bool isWeak = false;
6234 
6235   if (EatIfPresent(lltok::kw_weak))
6236     isWeak = true;
6237 
6238   if (EatIfPresent(lltok::kw_volatile))
6239     isVolatile = true;
6240 
6241   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6242       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6243       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6244       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6245       ParseTypeAndValue(New, NewLoc, PFS) ||
6246       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6247       ParseOrdering(FailureOrdering))
6248     return true;
6249 
6250   if (SuccessOrdering == AtomicOrdering::Unordered ||
6251       FailureOrdering == AtomicOrdering::Unordered)
6252     return TokError("cmpxchg cannot be unordered");
6253   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6254     return TokError("cmpxchg failure argument shall be no stronger than the "
6255                     "success argument");
6256   if (FailureOrdering == AtomicOrdering::Release ||
6257       FailureOrdering == AtomicOrdering::AcquireRelease)
6258     return TokError(
6259         "cmpxchg failure ordering cannot include release semantics");
6260   if (!Ptr->getType()->isPointerTy())
6261     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6262   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6263     return Error(CmpLoc, "compare value and pointer type do not match");
6264   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6265     return Error(NewLoc, "new value and pointer type do not match");
6266   if (!New->getType()->isFirstClassType())
6267     return Error(NewLoc, "cmpxchg operand must be a first class value");
6268   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6269       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6270   CXI->setVolatile(isVolatile);
6271   CXI->setWeak(isWeak);
6272   Inst = CXI;
6273   return AteExtraComma ? InstExtraComma : InstNormal;
6274 }
6275 
6276 /// ParseAtomicRMW
6277 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6278 ///       'singlethread'? AtomicOrdering
6279 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6280   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6281   bool AteExtraComma = false;
6282   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6283   SyncScope::ID SSID = SyncScope::System;
6284   bool isVolatile = false;
6285   AtomicRMWInst::BinOp Operation;
6286 
6287   if (EatIfPresent(lltok::kw_volatile))
6288     isVolatile = true;
6289 
6290   switch (Lex.getKind()) {
6291   default: return TokError("expected binary operation in atomicrmw");
6292   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6293   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6294   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6295   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6296   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6297   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6298   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6299   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6300   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6301   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6302   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6303   }
6304   Lex.Lex();  // Eat the operation.
6305 
6306   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6307       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6308       ParseTypeAndValue(Val, ValLoc, PFS) ||
6309       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6310     return true;
6311 
6312   if (Ordering == AtomicOrdering::Unordered)
6313     return TokError("atomicrmw cannot be unordered");
6314   if (!Ptr->getType()->isPointerTy())
6315     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6316   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6317     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6318   if (!Val->getType()->isIntegerTy())
6319     return Error(ValLoc, "atomicrmw operand must be an integer");
6320   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6321   if (Size < 8 || (Size & (Size - 1)))
6322     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6323                          " integer");
6324 
6325   AtomicRMWInst *RMWI =
6326     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6327   RMWI->setVolatile(isVolatile);
6328   Inst = RMWI;
6329   return AteExtraComma ? InstExtraComma : InstNormal;
6330 }
6331 
6332 /// ParseFence
6333 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6334 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6335   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6336   SyncScope::ID SSID = SyncScope::System;
6337   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6338     return true;
6339 
6340   if (Ordering == AtomicOrdering::Unordered)
6341     return TokError("fence cannot be unordered");
6342   if (Ordering == AtomicOrdering::Monotonic)
6343     return TokError("fence cannot be monotonic");
6344 
6345   Inst = new FenceInst(Context, Ordering, SSID);
6346   return InstNormal;
6347 }
6348 
6349 /// ParseGetElementPtr
6350 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6351 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6352   Value *Ptr = nullptr;
6353   Value *Val = nullptr;
6354   LocTy Loc, EltLoc;
6355 
6356   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6357 
6358   Type *Ty = nullptr;
6359   LocTy ExplicitTypeLoc = Lex.getLoc();
6360   if (ParseType(Ty) ||
6361       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6362       ParseTypeAndValue(Ptr, Loc, PFS))
6363     return true;
6364 
6365   Type *BaseType = Ptr->getType();
6366   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6367   if (!BasePointerType)
6368     return Error(Loc, "base of getelementptr must be a pointer");
6369 
6370   if (Ty != BasePointerType->getElementType())
6371     return Error(ExplicitTypeLoc,
6372                  "explicit pointee type doesn't match operand's pointee type");
6373 
6374   SmallVector<Value*, 16> Indices;
6375   bool AteExtraComma = false;
6376   // GEP returns a vector of pointers if at least one of parameters is a vector.
6377   // All vector parameters should have the same vector width.
6378   unsigned GEPWidth = BaseType->isVectorTy() ?
6379     BaseType->getVectorNumElements() : 0;
6380 
6381   while (EatIfPresent(lltok::comma)) {
6382     if (Lex.getKind() == lltok::MetadataVar) {
6383       AteExtraComma = true;
6384       break;
6385     }
6386     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6387     if (!Val->getType()->isIntOrIntVectorTy())
6388       return Error(EltLoc, "getelementptr index must be an integer");
6389 
6390     if (Val->getType()->isVectorTy()) {
6391       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6392       if (GEPWidth && GEPWidth != ValNumEl)
6393         return Error(EltLoc,
6394           "getelementptr vector index has a wrong number of elements");
6395       GEPWidth = ValNumEl;
6396     }
6397     Indices.push_back(Val);
6398   }
6399 
6400   SmallPtrSet<Type*, 4> Visited;
6401   if (!Indices.empty() && !Ty->isSized(&Visited))
6402     return Error(Loc, "base element of getelementptr must be sized");
6403 
6404   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6405     return Error(Loc, "invalid getelementptr indices");
6406   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6407   if (InBounds)
6408     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6409   return AteExtraComma ? InstExtraComma : InstNormal;
6410 }
6411 
6412 /// ParseExtractValue
6413 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6414 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6415   Value *Val; LocTy Loc;
6416   SmallVector<unsigned, 4> Indices;
6417   bool AteExtraComma;
6418   if (ParseTypeAndValue(Val, Loc, PFS) ||
6419       ParseIndexList(Indices, AteExtraComma))
6420     return true;
6421 
6422   if (!Val->getType()->isAggregateType())
6423     return Error(Loc, "extractvalue operand must be aggregate type");
6424 
6425   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6426     return Error(Loc, "invalid indices for extractvalue");
6427   Inst = ExtractValueInst::Create(Val, Indices);
6428   return AteExtraComma ? InstExtraComma : InstNormal;
6429 }
6430 
6431 /// ParseInsertValue
6432 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6433 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6434   Value *Val0, *Val1; LocTy Loc0, Loc1;
6435   SmallVector<unsigned, 4> Indices;
6436   bool AteExtraComma;
6437   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6438       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6439       ParseTypeAndValue(Val1, Loc1, PFS) ||
6440       ParseIndexList(Indices, AteExtraComma))
6441     return true;
6442 
6443   if (!Val0->getType()->isAggregateType())
6444     return Error(Loc0, "insertvalue operand must be aggregate type");
6445 
6446   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6447   if (!IndexedType)
6448     return Error(Loc0, "invalid indices for insertvalue");
6449   if (IndexedType != Val1->getType())
6450     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6451                            getTypeString(Val1->getType()) + "' instead of '" +
6452                            getTypeString(IndexedType) + "'");
6453   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6454   return AteExtraComma ? InstExtraComma : InstNormal;
6455 }
6456 
6457 //===----------------------------------------------------------------------===//
6458 // Embedded metadata.
6459 //===----------------------------------------------------------------------===//
6460 
6461 /// ParseMDNodeVector
6462 ///   ::= { Element (',' Element)* }
6463 /// Element
6464 ///   ::= 'null' | TypeAndValue
6465 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6466   if (ParseToken(lltok::lbrace, "expected '{' here"))
6467     return true;
6468 
6469   // Check for an empty list.
6470   if (EatIfPresent(lltok::rbrace))
6471     return false;
6472 
6473   do {
6474     // Null is a special case since it is typeless.
6475     if (EatIfPresent(lltok::kw_null)) {
6476       Elts.push_back(nullptr);
6477       continue;
6478     }
6479 
6480     Metadata *MD;
6481     if (ParseMetadata(MD, nullptr))
6482       return true;
6483     Elts.push_back(MD);
6484   } while (EatIfPresent(lltok::comma));
6485 
6486   return ParseToken(lltok::rbrace, "expected end of metadata node");
6487 }
6488 
6489 //===----------------------------------------------------------------------===//
6490 // Use-list order directives.
6491 //===----------------------------------------------------------------------===//
6492 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6493                                 SMLoc Loc) {
6494   if (V->use_empty())
6495     return Error(Loc, "value has no uses");
6496 
6497   unsigned NumUses = 0;
6498   SmallDenseMap<const Use *, unsigned, 16> Order;
6499   for (const Use &U : V->uses()) {
6500     if (++NumUses > Indexes.size())
6501       break;
6502     Order[&U] = Indexes[NumUses - 1];
6503   }
6504   if (NumUses < 2)
6505     return Error(Loc, "value only has one use");
6506   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6507     return Error(Loc, "wrong number of indexes, expected " +
6508                           Twine(std::distance(V->use_begin(), V->use_end())));
6509 
6510   V->sortUseList([&](const Use &L, const Use &R) {
6511     return Order.lookup(&L) < Order.lookup(&R);
6512   });
6513   return false;
6514 }
6515 
6516 /// ParseUseListOrderIndexes
6517 ///   ::= '{' uint32 (',' uint32)+ '}'
6518 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6519   SMLoc Loc = Lex.getLoc();
6520   if (ParseToken(lltok::lbrace, "expected '{' here"))
6521     return true;
6522   if (Lex.getKind() == lltok::rbrace)
6523     return Lex.Error("expected non-empty list of uselistorder indexes");
6524 
6525   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6526   // indexes should be distinct numbers in the range [0, size-1], and should
6527   // not be in order.
6528   unsigned Offset = 0;
6529   unsigned Max = 0;
6530   bool IsOrdered = true;
6531   assert(Indexes.empty() && "Expected empty order vector");
6532   do {
6533     unsigned Index;
6534     if (ParseUInt32(Index))
6535       return true;
6536 
6537     // Update consistency checks.
6538     Offset += Index - Indexes.size();
6539     Max = std::max(Max, Index);
6540     IsOrdered &= Index == Indexes.size();
6541 
6542     Indexes.push_back(Index);
6543   } while (EatIfPresent(lltok::comma));
6544 
6545   if (ParseToken(lltok::rbrace, "expected '}' here"))
6546     return true;
6547 
6548   if (Indexes.size() < 2)
6549     return Error(Loc, "expected >= 2 uselistorder indexes");
6550   if (Offset != 0 || Max >= Indexes.size())
6551     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6552   if (IsOrdered)
6553     return Error(Loc, "expected uselistorder indexes to change the order");
6554 
6555   return false;
6556 }
6557 
6558 /// ParseUseListOrder
6559 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6560 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6561   SMLoc Loc = Lex.getLoc();
6562   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6563     return true;
6564 
6565   Value *V;
6566   SmallVector<unsigned, 16> Indexes;
6567   if (ParseTypeAndValue(V, PFS) ||
6568       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6569       ParseUseListOrderIndexes(Indexes))
6570     return true;
6571 
6572   return sortUseListOrder(V, Indexes, Loc);
6573 }
6574 
6575 /// ParseUseListOrderBB
6576 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6577 bool LLParser::ParseUseListOrderBB() {
6578   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6579   SMLoc Loc = Lex.getLoc();
6580   Lex.Lex();
6581 
6582   ValID Fn, Label;
6583   SmallVector<unsigned, 16> Indexes;
6584   if (ParseValID(Fn) ||
6585       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6586       ParseValID(Label) ||
6587       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6588       ParseUseListOrderIndexes(Indexes))
6589     return true;
6590 
6591   // Check the function.
6592   GlobalValue *GV;
6593   if (Fn.Kind == ValID::t_GlobalName)
6594     GV = M->getNamedValue(Fn.StrVal);
6595   else if (Fn.Kind == ValID::t_GlobalID)
6596     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6597   else
6598     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6599   if (!GV)
6600     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6601   auto *F = dyn_cast<Function>(GV);
6602   if (!F)
6603     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6604   if (F->isDeclaration())
6605     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6606 
6607   // Check the basic block.
6608   if (Label.Kind == ValID::t_LocalID)
6609     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6610   if (Label.Kind != ValID::t_LocalName)
6611     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6612   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6613   if (!V)
6614     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6615   if (!isa<BasicBlock>(V))
6616     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6617 
6618   return sortUseListOrder(V, Indexes, Loc);
6619 }
6620