1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) {
63   while (true) {
64     lltok::Kind K = L.Lex();
65     // LLLexer will set the opaque pointers option in LLVMContext if it sees an
66     // explicit "ptr".
67     if (K == lltok::star || K == lltok::Error || K == lltok::Eof ||
68         isa_and_nonnull<PointerType>(L.getTyVal())) {
69       return;
70     }
71   }
72 }
73 
74 /// Run: module ::= toplevelentity*
75 bool LLParser::Run(bool UpgradeDebugInfo,
76                    DataLayoutCallbackTy DataLayoutCallback) {
77   // If we haven't decided on whether or not we're using opaque pointers, do a
78   // quick lex over the tokens to see if we explicitly construct any typed or
79   // opaque pointer types.
80   // Don't bail out on an error so we do the same work in the parsing below
81   // regardless of if --opaque-pointers is set.
82   if (!Context.hasSetOpaquePointersValue())
83     setContextOpaquePointers(OPLex, Context);
84 
85   // Prime the lexer.
86   Lex.Lex();
87 
88   if (Context.shouldDiscardValueNames())
89     return error(
90         Lex.getLoc(),
91         "Can't read textual IR with a Context that discards named Values");
92 
93   if (M) {
94     if (parseTargetDefinitions())
95       return true;
96 
97     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
98       M->setDataLayout(*LayoutOverride);
99   }
100 
101   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
102          validateEndOfIndex();
103 }
104 
105 bool LLParser::parseStandaloneConstantValue(Constant *&C,
106                                             const SlotMapping *Slots) {
107   restoreParsingState(Slots);
108   Lex.Lex();
109 
110   Type *Ty = nullptr;
111   if (parseType(Ty) || parseConstantValue(Ty, C))
112     return true;
113   if (Lex.getKind() != lltok::Eof)
114     return error(Lex.getLoc(), "expected end of string");
115   return false;
116 }
117 
118 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
119                                     const SlotMapping *Slots) {
120   restoreParsingState(Slots);
121   Lex.Lex();
122 
123   Read = 0;
124   SMLoc Start = Lex.getLoc();
125   Ty = nullptr;
126   if (parseType(Ty))
127     return true;
128   SMLoc End = Lex.getLoc();
129   Read = End.getPointer() - Start.getPointer();
130 
131   return false;
132 }
133 
134 void LLParser::restoreParsingState(const SlotMapping *Slots) {
135   if (!Slots)
136     return;
137   NumberedVals = Slots->GlobalValues;
138   NumberedMetadata = Slots->MetadataNodes;
139   for (const auto &I : Slots->NamedTypes)
140     NamedTypes.insert(
141         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
142   for (const auto &I : Slots->Types)
143     NumberedTypes.insert(
144         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
145 }
146 
147 /// validateEndOfModule - Do final validity and basic correctness checks at the
148 /// end of the module.
149 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
150   if (!M)
151     return false;
152   // Handle any function attribute group forward references.
153   for (const auto &RAG : ForwardRefAttrGroups) {
154     Value *V = RAG.first;
155     const std::vector<unsigned> &Attrs = RAG.second;
156     AttrBuilder B(Context);
157 
158     for (const auto &Attr : Attrs) {
159       auto R = NumberedAttrBuilders.find(Attr);
160       if (R != NumberedAttrBuilders.end())
161         B.merge(R->second);
162     }
163 
164     if (Function *Fn = dyn_cast<Function>(V)) {
165       AttributeList AS = Fn->getAttributes();
166       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
167       AS = AS.removeFnAttributes(Context);
168 
169       FnAttrs.merge(B);
170 
171       // If the alignment was parsed as an attribute, move to the alignment
172       // field.
173       if (FnAttrs.hasAlignmentAttr()) {
174         Fn->setAlignment(FnAttrs.getAlignment());
175         FnAttrs.removeAttribute(Attribute::Alignment);
176       }
177 
178       AS = AS.addFnAttributes(Context, FnAttrs);
179       Fn->setAttributes(AS);
180     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
181       AttributeList AS = CI->getAttributes();
182       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
183       AS = AS.removeFnAttributes(Context);
184       FnAttrs.merge(B);
185       AS = AS.addFnAttributes(Context, FnAttrs);
186       CI->setAttributes(AS);
187     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
188       AttributeList AS = II->getAttributes();
189       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
190       AS = AS.removeFnAttributes(Context);
191       FnAttrs.merge(B);
192       AS = AS.addFnAttributes(Context, FnAttrs);
193       II->setAttributes(AS);
194     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
195       AttributeList AS = CBI->getAttributes();
196       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
197       AS = AS.removeFnAttributes(Context);
198       FnAttrs.merge(B);
199       AS = AS.addFnAttributes(Context, FnAttrs);
200       CBI->setAttributes(AS);
201     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
202       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
203       Attrs.merge(B);
204       GV->setAttributes(AttributeSet::get(Context,Attrs));
205     } else {
206       llvm_unreachable("invalid object with forward attribute group reference");
207     }
208   }
209 
210   // If there are entries in ForwardRefBlockAddresses at this point, the
211   // function was never defined.
212   if (!ForwardRefBlockAddresses.empty())
213     return error(ForwardRefBlockAddresses.begin()->first.Loc,
214                  "expected function name in blockaddress");
215 
216   for (const auto &NT : NumberedTypes)
217     if (NT.second.second.isValid())
218       return error(NT.second.second,
219                    "use of undefined type '%" + Twine(NT.first) + "'");
220 
221   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
222        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
223     if (I->second.second.isValid())
224       return error(I->second.second,
225                    "use of undefined type named '" + I->getKey() + "'");
226 
227   if (!ForwardRefComdats.empty())
228     return error(ForwardRefComdats.begin()->second,
229                  "use of undefined comdat '$" +
230                      ForwardRefComdats.begin()->first + "'");
231 
232   if (!ForwardRefVals.empty())
233     return error(ForwardRefVals.begin()->second.second,
234                  "use of undefined value '@" + ForwardRefVals.begin()->first +
235                      "'");
236 
237   if (!ForwardRefValIDs.empty())
238     return error(ForwardRefValIDs.begin()->second.second,
239                  "use of undefined value '@" +
240                      Twine(ForwardRefValIDs.begin()->first) + "'");
241 
242   if (!ForwardRefMDNodes.empty())
243     return error(ForwardRefMDNodes.begin()->second.second,
244                  "use of undefined metadata '!" +
245                      Twine(ForwardRefMDNodes.begin()->first) + "'");
246 
247   // Resolve metadata cycles.
248   for (auto &N : NumberedMetadata) {
249     if (N.second && !N.second->isResolved())
250       N.second->resolveCycles();
251   }
252 
253   for (auto *Inst : InstsWithTBAATag) {
254     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
255     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
256     auto *UpgradedMD = UpgradeTBAANode(*MD);
257     if (MD != UpgradedMD)
258       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
259   }
260 
261   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
262   // make_early_inc_range here because we may remove some functions.
263   for (Function &F : llvm::make_early_inc_range(*M))
264     UpgradeCallsToIntrinsic(&F);
265 
266   // Some types could be renamed during loading if several modules are
267   // loaded in the same LLVMContext (LTO scenario). In this case we should
268   // remangle intrinsics names as well.
269   for (Function &F : llvm::make_early_inc_range(*M)) {
270     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
271       F.replaceAllUsesWith(Remangled.getValue());
272       F.eraseFromParent();
273     }
274   }
275 
276   if (UpgradeDebugInfo)
277     llvm::UpgradeDebugInfo(*M);
278 
279   UpgradeModuleFlags(*M);
280   UpgradeSectionAttributes(*M);
281 
282   if (!Slots)
283     return false;
284   // Initialize the slot mapping.
285   // Because by this point we've parsed and validated everything, we can "steal"
286   // the mapping from LLParser as it doesn't need it anymore.
287   Slots->GlobalValues = std::move(NumberedVals);
288   Slots->MetadataNodes = std::move(NumberedMetadata);
289   for (const auto &I : NamedTypes)
290     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
291   for (const auto &I : NumberedTypes)
292     Slots->Types.insert(std::make_pair(I.first, I.second.first));
293 
294   return false;
295 }
296 
297 /// Do final validity and basic correctness checks at the end of the index.
298 bool LLParser::validateEndOfIndex() {
299   if (!Index)
300     return false;
301 
302   if (!ForwardRefValueInfos.empty())
303     return error(ForwardRefValueInfos.begin()->second.front().second,
304                  "use of undefined summary '^" +
305                      Twine(ForwardRefValueInfos.begin()->first) + "'");
306 
307   if (!ForwardRefAliasees.empty())
308     return error(ForwardRefAliasees.begin()->second.front().second,
309                  "use of undefined summary '^" +
310                      Twine(ForwardRefAliasees.begin()->first) + "'");
311 
312   if (!ForwardRefTypeIds.empty())
313     return error(ForwardRefTypeIds.begin()->second.front().second,
314                  "use of undefined type id summary '^" +
315                      Twine(ForwardRefTypeIds.begin()->first) + "'");
316 
317   return false;
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Top-Level Entities
322 //===----------------------------------------------------------------------===//
323 
324 bool LLParser::parseTargetDefinitions() {
325   while (true) {
326     switch (Lex.getKind()) {
327     case lltok::kw_target:
328       if (parseTargetDefinition())
329         return true;
330       break;
331     case lltok::kw_source_filename:
332       if (parseSourceFileName())
333         return true;
334       break;
335     default:
336       return false;
337     }
338   }
339 }
340 
341 bool LLParser::parseTopLevelEntities() {
342   // If there is no Module, then parse just the summary index entries.
343   if (!M) {
344     while (true) {
345       switch (Lex.getKind()) {
346       case lltok::Eof:
347         return false;
348       case lltok::SummaryID:
349         if (parseSummaryEntry())
350           return true;
351         break;
352       case lltok::kw_source_filename:
353         if (parseSourceFileName())
354           return true;
355         break;
356       default:
357         // Skip everything else
358         Lex.Lex();
359       }
360     }
361   }
362   while (true) {
363     switch (Lex.getKind()) {
364     default:
365       return tokError("expected top-level entity");
366     case lltok::Eof: return false;
367     case lltok::kw_declare:
368       if (parseDeclare())
369         return true;
370       break;
371     case lltok::kw_define:
372       if (parseDefine())
373         return true;
374       break;
375     case lltok::kw_module:
376       if (parseModuleAsm())
377         return true;
378       break;
379     case lltok::LocalVarID:
380       if (parseUnnamedType())
381         return true;
382       break;
383     case lltok::LocalVar:
384       if (parseNamedType())
385         return true;
386       break;
387     case lltok::GlobalID:
388       if (parseUnnamedGlobal())
389         return true;
390       break;
391     case lltok::GlobalVar:
392       if (parseNamedGlobal())
393         return true;
394       break;
395     case lltok::ComdatVar:  if (parseComdat()) return true; break;
396     case lltok::exclaim:
397       if (parseStandaloneMetadata())
398         return true;
399       break;
400     case lltok::SummaryID:
401       if (parseSummaryEntry())
402         return true;
403       break;
404     case lltok::MetadataVar:
405       if (parseNamedMetadata())
406         return true;
407       break;
408     case lltok::kw_attributes:
409       if (parseUnnamedAttrGrp())
410         return true;
411       break;
412     case lltok::kw_uselistorder:
413       if (parseUseListOrder())
414         return true;
415       break;
416     case lltok::kw_uselistorder_bb:
417       if (parseUseListOrderBB())
418         return true;
419       break;
420     }
421   }
422 }
423 
424 /// toplevelentity
425 ///   ::= 'module' 'asm' STRINGCONSTANT
426 bool LLParser::parseModuleAsm() {
427   assert(Lex.getKind() == lltok::kw_module);
428   Lex.Lex();
429 
430   std::string AsmStr;
431   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
432       parseStringConstant(AsmStr))
433     return true;
434 
435   M->appendModuleInlineAsm(AsmStr);
436   return false;
437 }
438 
439 /// toplevelentity
440 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
441 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
442 bool LLParser::parseTargetDefinition() {
443   assert(Lex.getKind() == lltok::kw_target);
444   std::string Str;
445   switch (Lex.Lex()) {
446   default:
447     return tokError("unknown target property");
448   case lltok::kw_triple:
449     Lex.Lex();
450     if (parseToken(lltok::equal, "expected '=' after target triple") ||
451         parseStringConstant(Str))
452       return true;
453     M->setTargetTriple(Str);
454     return false;
455   case lltok::kw_datalayout:
456     Lex.Lex();
457     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
458         parseStringConstant(Str))
459       return true;
460     M->setDataLayout(Str);
461     return false;
462   }
463 }
464 
465 /// toplevelentity
466 ///   ::= 'source_filename' '=' STRINGCONSTANT
467 bool LLParser::parseSourceFileName() {
468   assert(Lex.getKind() == lltok::kw_source_filename);
469   Lex.Lex();
470   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
471       parseStringConstant(SourceFileName))
472     return true;
473   if (M)
474     M->setSourceFileName(SourceFileName);
475   return false;
476 }
477 
478 /// parseUnnamedType:
479 ///   ::= LocalVarID '=' 'type' type
480 bool LLParser::parseUnnamedType() {
481   LocTy TypeLoc = Lex.getLoc();
482   unsigned TypeID = Lex.getUIntVal();
483   Lex.Lex(); // eat LocalVarID;
484 
485   if (parseToken(lltok::equal, "expected '=' after name") ||
486       parseToken(lltok::kw_type, "expected 'type' after '='"))
487     return true;
488 
489   Type *Result = nullptr;
490   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
491     return true;
492 
493   if (!isa<StructType>(Result)) {
494     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
495     if (Entry.first)
496       return error(TypeLoc, "non-struct types may not be recursive");
497     Entry.first = Result;
498     Entry.second = SMLoc();
499   }
500 
501   return false;
502 }
503 
504 /// toplevelentity
505 ///   ::= LocalVar '=' 'type' type
506 bool LLParser::parseNamedType() {
507   std::string Name = Lex.getStrVal();
508   LocTy NameLoc = Lex.getLoc();
509   Lex.Lex();  // eat LocalVar.
510 
511   if (parseToken(lltok::equal, "expected '=' after name") ||
512       parseToken(lltok::kw_type, "expected 'type' after name"))
513     return true;
514 
515   Type *Result = nullptr;
516   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
517     return true;
518 
519   if (!isa<StructType>(Result)) {
520     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
521     if (Entry.first)
522       return error(NameLoc, "non-struct types may not be recursive");
523     Entry.first = Result;
524     Entry.second = SMLoc();
525   }
526 
527   return false;
528 }
529 
530 /// toplevelentity
531 ///   ::= 'declare' FunctionHeader
532 bool LLParser::parseDeclare() {
533   assert(Lex.getKind() == lltok::kw_declare);
534   Lex.Lex();
535 
536   std::vector<std::pair<unsigned, MDNode *>> MDs;
537   while (Lex.getKind() == lltok::MetadataVar) {
538     unsigned MDK;
539     MDNode *N;
540     if (parseMetadataAttachment(MDK, N))
541       return true;
542     MDs.push_back({MDK, N});
543   }
544 
545   Function *F;
546   if (parseFunctionHeader(F, false))
547     return true;
548   for (auto &MD : MDs)
549     F->addMetadata(MD.first, *MD.second);
550   return false;
551 }
552 
553 /// toplevelentity
554 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
555 bool LLParser::parseDefine() {
556   assert(Lex.getKind() == lltok::kw_define);
557   Lex.Lex();
558 
559   Function *F;
560   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
561          parseFunctionBody(*F);
562 }
563 
564 /// parseGlobalType
565 ///   ::= 'constant'
566 ///   ::= 'global'
567 bool LLParser::parseGlobalType(bool &IsConstant) {
568   if (Lex.getKind() == lltok::kw_constant)
569     IsConstant = true;
570   else if (Lex.getKind() == lltok::kw_global)
571     IsConstant = false;
572   else {
573     IsConstant = false;
574     return tokError("expected 'global' or 'constant'");
575   }
576   Lex.Lex();
577   return false;
578 }
579 
580 bool LLParser::parseOptionalUnnamedAddr(
581     GlobalVariable::UnnamedAddr &UnnamedAddr) {
582   if (EatIfPresent(lltok::kw_unnamed_addr))
583     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
584   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
585     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
586   else
587     UnnamedAddr = GlobalValue::UnnamedAddr::None;
588   return false;
589 }
590 
591 /// parseUnnamedGlobal:
592 ///   OptionalVisibility (ALIAS | IFUNC) ...
593 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
594 ///   OptionalDLLStorageClass
595 ///                                                     ...   -> global variable
596 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
597 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
598 ///   OptionalVisibility
599 ///                OptionalDLLStorageClass
600 ///                                                     ...   -> global variable
601 bool LLParser::parseUnnamedGlobal() {
602   unsigned VarID = NumberedVals.size();
603   std::string Name;
604   LocTy NameLoc = Lex.getLoc();
605 
606   // Handle the GlobalID form.
607   if (Lex.getKind() == lltok::GlobalID) {
608     if (Lex.getUIntVal() != VarID)
609       return error(Lex.getLoc(),
610                    "variable expected to be numbered '%" + Twine(VarID) + "'");
611     Lex.Lex(); // eat GlobalID;
612 
613     if (parseToken(lltok::equal, "expected '=' after name"))
614       return true;
615   }
616 
617   bool HasLinkage;
618   unsigned Linkage, Visibility, DLLStorageClass;
619   bool DSOLocal;
620   GlobalVariable::ThreadLocalMode TLM;
621   GlobalVariable::UnnamedAddr UnnamedAddr;
622   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
623                            DSOLocal) ||
624       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
625     return true;
626 
627   switch (Lex.getKind()) {
628   default:
629     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
630                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
631   case lltok::kw_alias:
632   case lltok::kw_ifunc:
633     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
634                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
635   }
636 }
637 
638 /// parseNamedGlobal:
639 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
640 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
641 ///                 OptionalVisibility OptionalDLLStorageClass
642 ///                                                     ...   -> global variable
643 bool LLParser::parseNamedGlobal() {
644   assert(Lex.getKind() == lltok::GlobalVar);
645   LocTy NameLoc = Lex.getLoc();
646   std::string Name = Lex.getStrVal();
647   Lex.Lex();
648 
649   bool HasLinkage;
650   unsigned Linkage, Visibility, DLLStorageClass;
651   bool DSOLocal;
652   GlobalVariable::ThreadLocalMode TLM;
653   GlobalVariable::UnnamedAddr UnnamedAddr;
654   if (parseToken(lltok::equal, "expected '=' in global variable") ||
655       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
656                            DSOLocal) ||
657       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
658     return true;
659 
660   switch (Lex.getKind()) {
661   default:
662     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
663                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
664   case lltok::kw_alias:
665   case lltok::kw_ifunc:
666     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
667                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
668   }
669 }
670 
671 bool LLParser::parseComdat() {
672   assert(Lex.getKind() == lltok::ComdatVar);
673   std::string Name = Lex.getStrVal();
674   LocTy NameLoc = Lex.getLoc();
675   Lex.Lex();
676 
677   if (parseToken(lltok::equal, "expected '=' here"))
678     return true;
679 
680   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
681     return tokError("expected comdat type");
682 
683   Comdat::SelectionKind SK;
684   switch (Lex.getKind()) {
685   default:
686     return tokError("unknown selection kind");
687   case lltok::kw_any:
688     SK = Comdat::Any;
689     break;
690   case lltok::kw_exactmatch:
691     SK = Comdat::ExactMatch;
692     break;
693   case lltok::kw_largest:
694     SK = Comdat::Largest;
695     break;
696   case lltok::kw_nodeduplicate:
697     SK = Comdat::NoDeduplicate;
698     break;
699   case lltok::kw_samesize:
700     SK = Comdat::SameSize;
701     break;
702   }
703   Lex.Lex();
704 
705   // See if the comdat was forward referenced, if so, use the comdat.
706   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
707   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
708   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
709     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
710 
711   Comdat *C;
712   if (I != ComdatSymTab.end())
713     C = &I->second;
714   else
715     C = M->getOrInsertComdat(Name);
716   C->setSelectionKind(SK);
717 
718   return false;
719 }
720 
721 // MDString:
722 //   ::= '!' STRINGCONSTANT
723 bool LLParser::parseMDString(MDString *&Result) {
724   std::string Str;
725   if (parseStringConstant(Str))
726     return true;
727   Result = MDString::get(Context, Str);
728   return false;
729 }
730 
731 // MDNode:
732 //   ::= '!' MDNodeNumber
733 bool LLParser::parseMDNodeID(MDNode *&Result) {
734   // !{ ..., !42, ... }
735   LocTy IDLoc = Lex.getLoc();
736   unsigned MID = 0;
737   if (parseUInt32(MID))
738     return true;
739 
740   // If not a forward reference, just return it now.
741   if (NumberedMetadata.count(MID)) {
742     Result = NumberedMetadata[MID];
743     return false;
744   }
745 
746   // Otherwise, create MDNode forward reference.
747   auto &FwdRef = ForwardRefMDNodes[MID];
748   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
749 
750   Result = FwdRef.first.get();
751   NumberedMetadata[MID].reset(Result);
752   return false;
753 }
754 
755 /// parseNamedMetadata:
756 ///   !foo = !{ !1, !2 }
757 bool LLParser::parseNamedMetadata() {
758   assert(Lex.getKind() == lltok::MetadataVar);
759   std::string Name = Lex.getStrVal();
760   Lex.Lex();
761 
762   if (parseToken(lltok::equal, "expected '=' here") ||
763       parseToken(lltok::exclaim, "Expected '!' here") ||
764       parseToken(lltok::lbrace, "Expected '{' here"))
765     return true;
766 
767   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
768   if (Lex.getKind() != lltok::rbrace)
769     do {
770       MDNode *N = nullptr;
771       // parse DIExpressions inline as a special case. They are still MDNodes,
772       // so they can still appear in named metadata. Remove this logic if they
773       // become plain Metadata.
774       if (Lex.getKind() == lltok::MetadataVar &&
775           Lex.getStrVal() == "DIExpression") {
776         if (parseDIExpression(N, /*IsDistinct=*/false))
777           return true;
778         // DIArgLists should only appear inline in a function, as they may
779         // contain LocalAsMetadata arguments which require a function context.
780       } else if (Lex.getKind() == lltok::MetadataVar &&
781                  Lex.getStrVal() == "DIArgList") {
782         return tokError("found DIArgList outside of function");
783       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
784                  parseMDNodeID(N)) {
785         return true;
786       }
787       NMD->addOperand(N);
788     } while (EatIfPresent(lltok::comma));
789 
790   return parseToken(lltok::rbrace, "expected end of metadata node");
791 }
792 
793 /// parseStandaloneMetadata:
794 ///   !42 = !{...}
795 bool LLParser::parseStandaloneMetadata() {
796   assert(Lex.getKind() == lltok::exclaim);
797   Lex.Lex();
798   unsigned MetadataID = 0;
799 
800   MDNode *Init;
801   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
802     return true;
803 
804   // Detect common error, from old metadata syntax.
805   if (Lex.getKind() == lltok::Type)
806     return tokError("unexpected type in metadata definition");
807 
808   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
809   if (Lex.getKind() == lltok::MetadataVar) {
810     if (parseSpecializedMDNode(Init, IsDistinct))
811       return true;
812   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
813              parseMDTuple(Init, IsDistinct))
814     return true;
815 
816   // See if this was forward referenced, if so, handle it.
817   auto FI = ForwardRefMDNodes.find(MetadataID);
818   if (FI != ForwardRefMDNodes.end()) {
819     FI->second.first->replaceAllUsesWith(Init);
820     ForwardRefMDNodes.erase(FI);
821 
822     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
823   } else {
824     if (NumberedMetadata.count(MetadataID))
825       return tokError("Metadata id is already used");
826     NumberedMetadata[MetadataID].reset(Init);
827   }
828 
829   return false;
830 }
831 
832 // Skips a single module summary entry.
833 bool LLParser::skipModuleSummaryEntry() {
834   // Each module summary entry consists of a tag for the entry
835   // type, followed by a colon, then the fields which may be surrounded by
836   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
837   // support is in place we will look for the tokens corresponding to the
838   // expected tags.
839   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
840       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
841       Lex.getKind() != lltok::kw_blockcount)
842     return tokError(
843         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
844         "start of summary entry");
845   if (Lex.getKind() == lltok::kw_flags)
846     return parseSummaryIndexFlags();
847   if (Lex.getKind() == lltok::kw_blockcount)
848     return parseBlockCount();
849   Lex.Lex();
850   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
851       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
852     return true;
853   // Now walk through the parenthesized entry, until the number of open
854   // parentheses goes back down to 0 (the first '(' was parsed above).
855   unsigned NumOpenParen = 1;
856   do {
857     switch (Lex.getKind()) {
858     case lltok::lparen:
859       NumOpenParen++;
860       break;
861     case lltok::rparen:
862       NumOpenParen--;
863       break;
864     case lltok::Eof:
865       return tokError("found end of file while parsing summary entry");
866     default:
867       // Skip everything in between parentheses.
868       break;
869     }
870     Lex.Lex();
871   } while (NumOpenParen > 0);
872   return false;
873 }
874 
875 /// SummaryEntry
876 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
877 bool LLParser::parseSummaryEntry() {
878   assert(Lex.getKind() == lltok::SummaryID);
879   unsigned SummaryID = Lex.getUIntVal();
880 
881   // For summary entries, colons should be treated as distinct tokens,
882   // not an indication of the end of a label token.
883   Lex.setIgnoreColonInIdentifiers(true);
884 
885   Lex.Lex();
886   if (parseToken(lltok::equal, "expected '=' here"))
887     return true;
888 
889   // If we don't have an index object, skip the summary entry.
890   if (!Index)
891     return skipModuleSummaryEntry();
892 
893   bool result = false;
894   switch (Lex.getKind()) {
895   case lltok::kw_gv:
896     result = parseGVEntry(SummaryID);
897     break;
898   case lltok::kw_module:
899     result = parseModuleEntry(SummaryID);
900     break;
901   case lltok::kw_typeid:
902     result = parseTypeIdEntry(SummaryID);
903     break;
904   case lltok::kw_typeidCompatibleVTable:
905     result = parseTypeIdCompatibleVtableEntry(SummaryID);
906     break;
907   case lltok::kw_flags:
908     result = parseSummaryIndexFlags();
909     break;
910   case lltok::kw_blockcount:
911     result = parseBlockCount();
912     break;
913   default:
914     result = error(Lex.getLoc(), "unexpected summary kind");
915     break;
916   }
917   Lex.setIgnoreColonInIdentifiers(false);
918   return result;
919 }
920 
921 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
922   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
923          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
924 }
925 
926 // If there was an explicit dso_local, update GV. In the absence of an explicit
927 // dso_local we keep the default value.
928 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
929   if (DSOLocal)
930     GV.setDSOLocal(true);
931 }
932 
933 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
934                                               Type *Ty2) {
935   std::string ErrString;
936   raw_string_ostream ErrOS(ErrString);
937   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
938   return ErrOS.str();
939 }
940 
941 /// parseAliasOrIFunc:
942 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
943 ///                     OptionalVisibility OptionalDLLStorageClass
944 ///                     OptionalThreadLocal OptionalUnnamedAddr
945 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
946 ///
947 /// AliaseeOrResolver
948 ///   ::= TypeAndValue
949 ///
950 /// SymbolAttrs
951 ///   ::= ',' 'partition' StringConstant
952 ///
953 /// Everything through OptionalUnnamedAddr has already been parsed.
954 ///
955 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
956                                  unsigned L, unsigned Visibility,
957                                  unsigned DLLStorageClass, bool DSOLocal,
958                                  GlobalVariable::ThreadLocalMode TLM,
959                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
960   bool IsAlias;
961   if (Lex.getKind() == lltok::kw_alias)
962     IsAlias = true;
963   else if (Lex.getKind() == lltok::kw_ifunc)
964     IsAlias = false;
965   else
966     llvm_unreachable("Not an alias or ifunc!");
967   Lex.Lex();
968 
969   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
970 
971   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
972     return error(NameLoc, "invalid linkage type for alias");
973 
974   if (!isValidVisibilityForLinkage(Visibility, L))
975     return error(NameLoc,
976                  "symbol with local linkage must have default visibility");
977 
978   Type *Ty;
979   LocTy ExplicitTypeLoc = Lex.getLoc();
980   if (parseType(Ty) ||
981       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
982     return true;
983 
984   Constant *Aliasee;
985   LocTy AliaseeLoc = Lex.getLoc();
986   if (Lex.getKind() != lltok::kw_bitcast &&
987       Lex.getKind() != lltok::kw_getelementptr &&
988       Lex.getKind() != lltok::kw_addrspacecast &&
989       Lex.getKind() != lltok::kw_inttoptr) {
990     if (parseGlobalTypeAndValue(Aliasee))
991       return true;
992   } else {
993     // The bitcast dest type is not present, it is implied by the dest type.
994     ValID ID;
995     if (parseValID(ID, /*PFS=*/nullptr))
996       return true;
997     if (ID.Kind != ValID::t_Constant)
998       return error(AliaseeLoc, "invalid aliasee");
999     Aliasee = ID.ConstantVal;
1000   }
1001 
1002   Type *AliaseeType = Aliasee->getType();
1003   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1004   if (!PTy)
1005     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1006   unsigned AddrSpace = PTy->getAddressSpace();
1007 
1008   if (IsAlias) {
1009     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1010       return error(
1011           ExplicitTypeLoc,
1012           typeComparisonErrorMessage(
1013               "explicit pointee type doesn't match operand's pointee type", Ty,
1014               PTy->getNonOpaquePointerElementType()));
1015   } else {
1016     if (!PTy->isOpaque() &&
1017         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1018       return error(ExplicitTypeLoc,
1019                    "explicit pointee type should be a function type");
1020   }
1021 
1022   GlobalValue *GVal = nullptr;
1023 
1024   // See if the alias was forward referenced, if so, prepare to replace the
1025   // forward reference.
1026   if (!Name.empty()) {
1027     auto I = ForwardRefVals.find(Name);
1028     if (I != ForwardRefVals.end()) {
1029       GVal = I->second.first;
1030       ForwardRefVals.erase(Name);
1031     } else if (M->getNamedValue(Name)) {
1032       return error(NameLoc, "redefinition of global '@" + Name + "'");
1033     }
1034   } else {
1035     auto I = ForwardRefValIDs.find(NumberedVals.size());
1036     if (I != ForwardRefValIDs.end()) {
1037       GVal = I->second.first;
1038       ForwardRefValIDs.erase(I);
1039     }
1040   }
1041 
1042   // Okay, create the alias/ifunc but do not insert it into the module yet.
1043   std::unique_ptr<GlobalAlias> GA;
1044   std::unique_ptr<GlobalIFunc> GI;
1045   GlobalValue *GV;
1046   if (IsAlias) {
1047     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1048                                  (GlobalValue::LinkageTypes)Linkage, Name,
1049                                  Aliasee, /*Parent*/ nullptr));
1050     GV = GA.get();
1051   } else {
1052     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1053                                  (GlobalValue::LinkageTypes)Linkage, Name,
1054                                  Aliasee, /*Parent*/ nullptr));
1055     GV = GI.get();
1056   }
1057   GV->setThreadLocalMode(TLM);
1058   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1059   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1060   GV->setUnnamedAddr(UnnamedAddr);
1061   maybeSetDSOLocal(DSOLocal, *GV);
1062 
1063   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1064   // Now parse them if there are any.
1065   while (Lex.getKind() == lltok::comma) {
1066     Lex.Lex();
1067 
1068     if (Lex.getKind() == lltok::kw_partition) {
1069       Lex.Lex();
1070       GV->setPartition(Lex.getStrVal());
1071       if (parseToken(lltok::StringConstant, "expected partition string"))
1072         return true;
1073     } else {
1074       return tokError("unknown alias or ifunc property!");
1075     }
1076   }
1077 
1078   if (Name.empty())
1079     NumberedVals.push_back(GV);
1080 
1081   if (GVal) {
1082     // Verify that types agree.
1083     if (GVal->getType() != GV->getType())
1084       return error(
1085           ExplicitTypeLoc,
1086           "forward reference and definition of alias have different types");
1087 
1088     // If they agree, just RAUW the old value with the alias and remove the
1089     // forward ref info.
1090     GVal->replaceAllUsesWith(GV);
1091     GVal->eraseFromParent();
1092   }
1093 
1094   // Insert into the module, we know its name won't collide now.
1095   if (IsAlias)
1096     M->getAliasList().push_back(GA.release());
1097   else
1098     M->getIFuncList().push_back(GI.release());
1099   assert(GV->getName() == Name && "Should not be a name conflict!");
1100 
1101   return false;
1102 }
1103 
1104 /// parseGlobal
1105 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1106 ///       OptionalVisibility OptionalDLLStorageClass
1107 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1108 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1109 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1110 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1111 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1112 ///       Const OptionalAttrs
1113 ///
1114 /// Everything up to and including OptionalUnnamedAddr has been parsed
1115 /// already.
1116 ///
1117 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1118                            unsigned Linkage, bool HasLinkage,
1119                            unsigned Visibility, unsigned DLLStorageClass,
1120                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1121                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1122   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1123     return error(NameLoc,
1124                  "symbol with local linkage must have default visibility");
1125 
1126   unsigned AddrSpace;
1127   bool IsConstant, IsExternallyInitialized;
1128   LocTy IsExternallyInitializedLoc;
1129   LocTy TyLoc;
1130 
1131   Type *Ty = nullptr;
1132   if (parseOptionalAddrSpace(AddrSpace) ||
1133       parseOptionalToken(lltok::kw_externally_initialized,
1134                          IsExternallyInitialized,
1135                          &IsExternallyInitializedLoc) ||
1136       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1137     return true;
1138 
1139   // If the linkage is specified and is external, then no initializer is
1140   // present.
1141   Constant *Init = nullptr;
1142   if (!HasLinkage ||
1143       !GlobalValue::isValidDeclarationLinkage(
1144           (GlobalValue::LinkageTypes)Linkage)) {
1145     if (parseGlobalValue(Ty, Init))
1146       return true;
1147   }
1148 
1149   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1150     return error(TyLoc, "invalid type for global variable");
1151 
1152   GlobalValue *GVal = nullptr;
1153 
1154   // See if the global was forward referenced, if so, use the global.
1155   if (!Name.empty()) {
1156     auto I = ForwardRefVals.find(Name);
1157     if (I != ForwardRefVals.end()) {
1158       GVal = I->second.first;
1159       ForwardRefVals.erase(I);
1160     } else if (M->getNamedValue(Name)) {
1161       return error(NameLoc, "redefinition of global '@" + Name + "'");
1162     }
1163   } else {
1164     auto I = ForwardRefValIDs.find(NumberedVals.size());
1165     if (I != ForwardRefValIDs.end()) {
1166       GVal = I->second.first;
1167       ForwardRefValIDs.erase(I);
1168     }
1169   }
1170 
1171   GlobalVariable *GV = new GlobalVariable(
1172       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1173       GlobalVariable::NotThreadLocal, AddrSpace);
1174 
1175   if (Name.empty())
1176     NumberedVals.push_back(GV);
1177 
1178   // Set the parsed properties on the global.
1179   if (Init)
1180     GV->setInitializer(Init);
1181   GV->setConstant(IsConstant);
1182   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1183   maybeSetDSOLocal(DSOLocal, *GV);
1184   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1185   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1186   GV->setExternallyInitialized(IsExternallyInitialized);
1187   GV->setThreadLocalMode(TLM);
1188   GV->setUnnamedAddr(UnnamedAddr);
1189 
1190   if (GVal) {
1191     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1192       return error(
1193           TyLoc,
1194           "forward reference and definition of global have different types");
1195 
1196     GVal->replaceAllUsesWith(GV);
1197     GVal->eraseFromParent();
1198   }
1199 
1200   // parse attributes on the global.
1201   while (Lex.getKind() == lltok::comma) {
1202     Lex.Lex();
1203 
1204     if (Lex.getKind() == lltok::kw_section) {
1205       Lex.Lex();
1206       GV->setSection(Lex.getStrVal());
1207       if (parseToken(lltok::StringConstant, "expected global section string"))
1208         return true;
1209     } else if (Lex.getKind() == lltok::kw_partition) {
1210       Lex.Lex();
1211       GV->setPartition(Lex.getStrVal());
1212       if (parseToken(lltok::StringConstant, "expected partition string"))
1213         return true;
1214     } else if (Lex.getKind() == lltok::kw_align) {
1215       MaybeAlign Alignment;
1216       if (parseOptionalAlignment(Alignment))
1217         return true;
1218       GV->setAlignment(Alignment);
1219     } else if (Lex.getKind() == lltok::MetadataVar) {
1220       if (parseGlobalObjectMetadataAttachment(*GV))
1221         return true;
1222     } else {
1223       Comdat *C;
1224       if (parseOptionalComdat(Name, C))
1225         return true;
1226       if (C)
1227         GV->setComdat(C);
1228       else
1229         return tokError("unknown global variable property!");
1230     }
1231   }
1232 
1233   AttrBuilder Attrs(M->getContext());
1234   LocTy BuiltinLoc;
1235   std::vector<unsigned> FwdRefAttrGrps;
1236   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1237     return true;
1238   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1239     GV->setAttributes(AttributeSet::get(Context, Attrs));
1240     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1241   }
1242 
1243   return false;
1244 }
1245 
1246 /// parseUnnamedAttrGrp
1247 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1248 bool LLParser::parseUnnamedAttrGrp() {
1249   assert(Lex.getKind() == lltok::kw_attributes);
1250   LocTy AttrGrpLoc = Lex.getLoc();
1251   Lex.Lex();
1252 
1253   if (Lex.getKind() != lltok::AttrGrpID)
1254     return tokError("expected attribute group id");
1255 
1256   unsigned VarID = Lex.getUIntVal();
1257   std::vector<unsigned> unused;
1258   LocTy BuiltinLoc;
1259   Lex.Lex();
1260 
1261   if (parseToken(lltok::equal, "expected '=' here") ||
1262       parseToken(lltok::lbrace, "expected '{' here"))
1263     return true;
1264 
1265   auto R = NumberedAttrBuilders.find(VarID);
1266   if (R == NumberedAttrBuilders.end())
1267     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1268 
1269   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1270       parseToken(lltok::rbrace, "expected end of attribute group"))
1271     return true;
1272 
1273   if (!R->second.hasAttributes())
1274     return error(AttrGrpLoc, "attribute group has no attributes");
1275 
1276   return false;
1277 }
1278 
1279 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1280   switch (Kind) {
1281 #define GET_ATTR_NAMES
1282 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1283   case lltok::kw_##DISPLAY_NAME: \
1284     return Attribute::ENUM_NAME;
1285 #include "llvm/IR/Attributes.inc"
1286   default:
1287     return Attribute::None;
1288   }
1289 }
1290 
1291 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1292                                   bool InAttrGroup) {
1293   if (Attribute::isTypeAttrKind(Attr))
1294     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1295 
1296   switch (Attr) {
1297   case Attribute::Alignment: {
1298     MaybeAlign Alignment;
1299     if (InAttrGroup) {
1300       uint32_t Value = 0;
1301       Lex.Lex();
1302       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1303         return true;
1304       Alignment = Align(Value);
1305     } else {
1306       if (parseOptionalAlignment(Alignment, true))
1307         return true;
1308     }
1309     B.addAlignmentAttr(Alignment);
1310     return false;
1311   }
1312   case Attribute::StackAlignment: {
1313     unsigned Alignment;
1314     if (InAttrGroup) {
1315       Lex.Lex();
1316       if (parseToken(lltok::equal, "expected '=' here") ||
1317           parseUInt32(Alignment))
1318         return true;
1319     } else {
1320       if (parseOptionalStackAlignment(Alignment))
1321         return true;
1322     }
1323     B.addStackAlignmentAttr(Alignment);
1324     return false;
1325   }
1326   case Attribute::AllocSize: {
1327     unsigned ElemSizeArg;
1328     Optional<unsigned> NumElemsArg;
1329     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1330       return true;
1331     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1332     return false;
1333   }
1334   case Attribute::VScaleRange: {
1335     unsigned MinValue, MaxValue;
1336     if (parseVScaleRangeArguments(MinValue, MaxValue))
1337       return true;
1338     B.addVScaleRangeAttr(MinValue,
1339                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1340     return false;
1341   }
1342   case Attribute::Dereferenceable: {
1343     uint64_t Bytes;
1344     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1345       return true;
1346     B.addDereferenceableAttr(Bytes);
1347     return false;
1348   }
1349   case Attribute::DereferenceableOrNull: {
1350     uint64_t Bytes;
1351     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1352       return true;
1353     B.addDereferenceableOrNullAttr(Bytes);
1354     return false;
1355   }
1356   case Attribute::UWTable: {
1357     UWTableKind Kind;
1358     if (parseOptionalUWTableKind(Kind))
1359       return true;
1360     B.addUWTableAttr(Kind);
1361     return false;
1362   }
1363   default:
1364     B.addAttribute(Attr);
1365     Lex.Lex();
1366     return false;
1367   }
1368 }
1369 
1370 /// parseFnAttributeValuePairs
1371 ///   ::= <attr> | <attr> '=' <value>
1372 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1373                                           std::vector<unsigned> &FwdRefAttrGrps,
1374                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1375   bool HaveError = false;
1376 
1377   B.clear();
1378 
1379   while (true) {
1380     lltok::Kind Token = Lex.getKind();
1381     if (Token == lltok::rbrace)
1382       return HaveError; // Finished.
1383 
1384     if (Token == lltok::StringConstant) {
1385       if (parseStringAttribute(B))
1386         return true;
1387       continue;
1388     }
1389 
1390     if (Token == lltok::AttrGrpID) {
1391       // Allow a function to reference an attribute group:
1392       //
1393       //   define void @foo() #1 { ... }
1394       if (InAttrGrp) {
1395         HaveError |= error(
1396             Lex.getLoc(),
1397             "cannot have an attribute group reference in an attribute group");
1398       } else {
1399         // Save the reference to the attribute group. We'll fill it in later.
1400         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1401       }
1402       Lex.Lex();
1403       continue;
1404     }
1405 
1406     SMLoc Loc = Lex.getLoc();
1407     if (Token == lltok::kw_builtin)
1408       BuiltinLoc = Loc;
1409 
1410     Attribute::AttrKind Attr = tokenToAttribute(Token);
1411     if (Attr == Attribute::None) {
1412       if (!InAttrGrp)
1413         return HaveError;
1414       return error(Lex.getLoc(), "unterminated attribute group");
1415     }
1416 
1417     if (parseEnumAttribute(Attr, B, InAttrGrp))
1418       return true;
1419 
1420     // As a hack, we allow function alignment to be initially parsed as an
1421     // attribute on a function declaration/definition or added to an attribute
1422     // group and later moved to the alignment field.
1423     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1424       HaveError |= error(Loc, "this attribute does not apply to functions");
1425   }
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // GlobalValue Reference/Resolution Routines.
1430 //===----------------------------------------------------------------------===//
1431 
1432 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1433   // For opaque pointers, the used global type does not matter. We will later
1434   // RAUW it with a global/function of the correct type.
1435   if (PTy->isOpaque())
1436     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1437                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1438                               nullptr, GlobalVariable::NotThreadLocal,
1439                               PTy->getAddressSpace());
1440 
1441   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1442   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1443     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1444                             PTy->getAddressSpace(), "", M);
1445   else
1446     return new GlobalVariable(
1447         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1448         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1449 }
1450 
1451 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1452                                         Value *Val) {
1453   Type *ValTy = Val->getType();
1454   if (ValTy == Ty)
1455     return Val;
1456   if (Ty->isLabelTy())
1457     error(Loc, "'" + Name + "' is not a basic block");
1458   else
1459     error(Loc, "'" + Name + "' defined with type '" +
1460                    getTypeString(Val->getType()) + "' but expected '" +
1461                    getTypeString(Ty) + "'");
1462   return nullptr;
1463 }
1464 
1465 /// getGlobalVal - Get a value with the specified name or ID, creating a
1466 /// forward reference record if needed.  This can return null if the value
1467 /// exists but does not have the right type.
1468 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1469                                     LocTy Loc) {
1470   PointerType *PTy = dyn_cast<PointerType>(Ty);
1471   if (!PTy) {
1472     error(Loc, "global variable reference must have pointer type");
1473     return nullptr;
1474   }
1475 
1476   // Look this name up in the normal function symbol table.
1477   GlobalValue *Val =
1478     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1479 
1480   // If this is a forward reference for the value, see if we already created a
1481   // forward ref record.
1482   if (!Val) {
1483     auto I = ForwardRefVals.find(Name);
1484     if (I != ForwardRefVals.end())
1485       Val = I->second.first;
1486   }
1487 
1488   // If we have the value in the symbol table or fwd-ref table, return it.
1489   if (Val)
1490     return cast_or_null<GlobalValue>(
1491         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1492 
1493   // Otherwise, create a new forward reference for this value and remember it.
1494   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1495   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1496   return FwdVal;
1497 }
1498 
1499 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1500   PointerType *PTy = dyn_cast<PointerType>(Ty);
1501   if (!PTy) {
1502     error(Loc, "global variable reference must have pointer type");
1503     return nullptr;
1504   }
1505 
1506   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1507 
1508   // If this is a forward reference for the value, see if we already created a
1509   // forward ref record.
1510   if (!Val) {
1511     auto I = ForwardRefValIDs.find(ID);
1512     if (I != ForwardRefValIDs.end())
1513       Val = I->second.first;
1514   }
1515 
1516   // If we have the value in the symbol table or fwd-ref table, return it.
1517   if (Val)
1518     return cast_or_null<GlobalValue>(
1519         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1520 
1521   // Otherwise, create a new forward reference for this value and remember it.
1522   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1523   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1524   return FwdVal;
1525 }
1526 
1527 //===----------------------------------------------------------------------===//
1528 // Comdat Reference/Resolution Routines.
1529 //===----------------------------------------------------------------------===//
1530 
1531 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1532   // Look this name up in the comdat symbol table.
1533   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1534   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1535   if (I != ComdatSymTab.end())
1536     return &I->second;
1537 
1538   // Otherwise, create a new forward reference for this value and remember it.
1539   Comdat *C = M->getOrInsertComdat(Name);
1540   ForwardRefComdats[Name] = Loc;
1541   return C;
1542 }
1543 
1544 //===----------------------------------------------------------------------===//
1545 // Helper Routines.
1546 //===----------------------------------------------------------------------===//
1547 
1548 /// parseToken - If the current token has the specified kind, eat it and return
1549 /// success.  Otherwise, emit the specified error and return failure.
1550 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1551   if (Lex.getKind() != T)
1552     return tokError(ErrMsg);
1553   Lex.Lex();
1554   return false;
1555 }
1556 
1557 /// parseStringConstant
1558 ///   ::= StringConstant
1559 bool LLParser::parseStringConstant(std::string &Result) {
1560   if (Lex.getKind() != lltok::StringConstant)
1561     return tokError("expected string constant");
1562   Result = Lex.getStrVal();
1563   Lex.Lex();
1564   return false;
1565 }
1566 
1567 /// parseUInt32
1568 ///   ::= uint32
1569 bool LLParser::parseUInt32(uint32_t &Val) {
1570   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1571     return tokError("expected integer");
1572   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1573   if (Val64 != unsigned(Val64))
1574     return tokError("expected 32-bit integer (too large)");
1575   Val = Val64;
1576   Lex.Lex();
1577   return false;
1578 }
1579 
1580 /// parseUInt64
1581 ///   ::= uint64
1582 bool LLParser::parseUInt64(uint64_t &Val) {
1583   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1584     return tokError("expected integer");
1585   Val = Lex.getAPSIntVal().getLimitedValue();
1586   Lex.Lex();
1587   return false;
1588 }
1589 
1590 /// parseTLSModel
1591 ///   := 'localdynamic'
1592 ///   := 'initialexec'
1593 ///   := 'localexec'
1594 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1595   switch (Lex.getKind()) {
1596     default:
1597       return tokError("expected localdynamic, initialexec or localexec");
1598     case lltok::kw_localdynamic:
1599       TLM = GlobalVariable::LocalDynamicTLSModel;
1600       break;
1601     case lltok::kw_initialexec:
1602       TLM = GlobalVariable::InitialExecTLSModel;
1603       break;
1604     case lltok::kw_localexec:
1605       TLM = GlobalVariable::LocalExecTLSModel;
1606       break;
1607   }
1608 
1609   Lex.Lex();
1610   return false;
1611 }
1612 
1613 /// parseOptionalThreadLocal
1614 ///   := /*empty*/
1615 ///   := 'thread_local'
1616 ///   := 'thread_local' '(' tlsmodel ')'
1617 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1618   TLM = GlobalVariable::NotThreadLocal;
1619   if (!EatIfPresent(lltok::kw_thread_local))
1620     return false;
1621 
1622   TLM = GlobalVariable::GeneralDynamicTLSModel;
1623   if (Lex.getKind() == lltok::lparen) {
1624     Lex.Lex();
1625     return parseTLSModel(TLM) ||
1626            parseToken(lltok::rparen, "expected ')' after thread local model");
1627   }
1628   return false;
1629 }
1630 
1631 /// parseOptionalAddrSpace
1632 ///   := /*empty*/
1633 ///   := 'addrspace' '(' uint32 ')'
1634 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1635   AddrSpace = DefaultAS;
1636   if (!EatIfPresent(lltok::kw_addrspace))
1637     return false;
1638   return parseToken(lltok::lparen, "expected '(' in address space") ||
1639          parseUInt32(AddrSpace) ||
1640          parseToken(lltok::rparen, "expected ')' in address space");
1641 }
1642 
1643 /// parseStringAttribute
1644 ///   := StringConstant
1645 ///   := StringConstant '=' StringConstant
1646 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1647   std::string Attr = Lex.getStrVal();
1648   Lex.Lex();
1649   std::string Val;
1650   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1651     return true;
1652   B.addAttribute(Attr, Val);
1653   return false;
1654 }
1655 
1656 /// Parse a potentially empty list of parameter or return attributes.
1657 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1658   bool HaveError = false;
1659 
1660   B.clear();
1661 
1662   while (true) {
1663     lltok::Kind Token = Lex.getKind();
1664     if (Token == lltok::StringConstant) {
1665       if (parseStringAttribute(B))
1666         return true;
1667       continue;
1668     }
1669 
1670     SMLoc Loc = Lex.getLoc();
1671     Attribute::AttrKind Attr = tokenToAttribute(Token);
1672     if (Attr == Attribute::None)
1673       return HaveError;
1674 
1675     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1676       return true;
1677 
1678     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1679       HaveError |= error(Loc, "this attribute does not apply to parameters");
1680     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1681       HaveError |= error(Loc, "this attribute does not apply to return values");
1682   }
1683 }
1684 
1685 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1686   HasLinkage = true;
1687   switch (Kind) {
1688   default:
1689     HasLinkage = false;
1690     return GlobalValue::ExternalLinkage;
1691   case lltok::kw_private:
1692     return GlobalValue::PrivateLinkage;
1693   case lltok::kw_internal:
1694     return GlobalValue::InternalLinkage;
1695   case lltok::kw_weak:
1696     return GlobalValue::WeakAnyLinkage;
1697   case lltok::kw_weak_odr:
1698     return GlobalValue::WeakODRLinkage;
1699   case lltok::kw_linkonce:
1700     return GlobalValue::LinkOnceAnyLinkage;
1701   case lltok::kw_linkonce_odr:
1702     return GlobalValue::LinkOnceODRLinkage;
1703   case lltok::kw_available_externally:
1704     return GlobalValue::AvailableExternallyLinkage;
1705   case lltok::kw_appending:
1706     return GlobalValue::AppendingLinkage;
1707   case lltok::kw_common:
1708     return GlobalValue::CommonLinkage;
1709   case lltok::kw_extern_weak:
1710     return GlobalValue::ExternalWeakLinkage;
1711   case lltok::kw_external:
1712     return GlobalValue::ExternalLinkage;
1713   }
1714 }
1715 
1716 /// parseOptionalLinkage
1717 ///   ::= /*empty*/
1718 ///   ::= 'private'
1719 ///   ::= 'internal'
1720 ///   ::= 'weak'
1721 ///   ::= 'weak_odr'
1722 ///   ::= 'linkonce'
1723 ///   ::= 'linkonce_odr'
1724 ///   ::= 'available_externally'
1725 ///   ::= 'appending'
1726 ///   ::= 'common'
1727 ///   ::= 'extern_weak'
1728 ///   ::= 'external'
1729 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1730                                     unsigned &Visibility,
1731                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1732   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1733   if (HasLinkage)
1734     Lex.Lex();
1735   parseOptionalDSOLocal(DSOLocal);
1736   parseOptionalVisibility(Visibility);
1737   parseOptionalDLLStorageClass(DLLStorageClass);
1738 
1739   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1740     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1741   }
1742 
1743   return false;
1744 }
1745 
1746 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1747   switch (Lex.getKind()) {
1748   default:
1749     DSOLocal = false;
1750     break;
1751   case lltok::kw_dso_local:
1752     DSOLocal = true;
1753     Lex.Lex();
1754     break;
1755   case lltok::kw_dso_preemptable:
1756     DSOLocal = false;
1757     Lex.Lex();
1758     break;
1759   }
1760 }
1761 
1762 /// parseOptionalVisibility
1763 ///   ::= /*empty*/
1764 ///   ::= 'default'
1765 ///   ::= 'hidden'
1766 ///   ::= 'protected'
1767 ///
1768 void LLParser::parseOptionalVisibility(unsigned &Res) {
1769   switch (Lex.getKind()) {
1770   default:
1771     Res = GlobalValue::DefaultVisibility;
1772     return;
1773   case lltok::kw_default:
1774     Res = GlobalValue::DefaultVisibility;
1775     break;
1776   case lltok::kw_hidden:
1777     Res = GlobalValue::HiddenVisibility;
1778     break;
1779   case lltok::kw_protected:
1780     Res = GlobalValue::ProtectedVisibility;
1781     break;
1782   }
1783   Lex.Lex();
1784 }
1785 
1786 /// parseOptionalDLLStorageClass
1787 ///   ::= /*empty*/
1788 ///   ::= 'dllimport'
1789 ///   ::= 'dllexport'
1790 ///
1791 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1792   switch (Lex.getKind()) {
1793   default:
1794     Res = GlobalValue::DefaultStorageClass;
1795     return;
1796   case lltok::kw_dllimport:
1797     Res = GlobalValue::DLLImportStorageClass;
1798     break;
1799   case lltok::kw_dllexport:
1800     Res = GlobalValue::DLLExportStorageClass;
1801     break;
1802   }
1803   Lex.Lex();
1804 }
1805 
1806 /// parseOptionalCallingConv
1807 ///   ::= /*empty*/
1808 ///   ::= 'ccc'
1809 ///   ::= 'fastcc'
1810 ///   ::= 'intel_ocl_bicc'
1811 ///   ::= 'coldcc'
1812 ///   ::= 'cfguard_checkcc'
1813 ///   ::= 'x86_stdcallcc'
1814 ///   ::= 'x86_fastcallcc'
1815 ///   ::= 'x86_thiscallcc'
1816 ///   ::= 'x86_vectorcallcc'
1817 ///   ::= 'arm_apcscc'
1818 ///   ::= 'arm_aapcscc'
1819 ///   ::= 'arm_aapcs_vfpcc'
1820 ///   ::= 'aarch64_vector_pcs'
1821 ///   ::= 'aarch64_sve_vector_pcs'
1822 ///   ::= 'msp430_intrcc'
1823 ///   ::= 'avr_intrcc'
1824 ///   ::= 'avr_signalcc'
1825 ///   ::= 'ptx_kernel'
1826 ///   ::= 'ptx_device'
1827 ///   ::= 'spir_func'
1828 ///   ::= 'spir_kernel'
1829 ///   ::= 'x86_64_sysvcc'
1830 ///   ::= 'win64cc'
1831 ///   ::= 'webkit_jscc'
1832 ///   ::= 'anyregcc'
1833 ///   ::= 'preserve_mostcc'
1834 ///   ::= 'preserve_allcc'
1835 ///   ::= 'ghccc'
1836 ///   ::= 'swiftcc'
1837 ///   ::= 'swifttailcc'
1838 ///   ::= 'x86_intrcc'
1839 ///   ::= 'hhvmcc'
1840 ///   ::= 'hhvm_ccc'
1841 ///   ::= 'cxx_fast_tlscc'
1842 ///   ::= 'amdgpu_vs'
1843 ///   ::= 'amdgpu_ls'
1844 ///   ::= 'amdgpu_hs'
1845 ///   ::= 'amdgpu_es'
1846 ///   ::= 'amdgpu_gs'
1847 ///   ::= 'amdgpu_ps'
1848 ///   ::= 'amdgpu_cs'
1849 ///   ::= 'amdgpu_kernel'
1850 ///   ::= 'tailcc'
1851 ///   ::= 'cc' UINT
1852 ///
1853 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1854   switch (Lex.getKind()) {
1855   default:                       CC = CallingConv::C; return false;
1856   case lltok::kw_ccc:            CC = CallingConv::C; break;
1857   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1858   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1859   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1860   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1861   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1862   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1863   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1864   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1865   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1866   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1867   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1868   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1869   case lltok::kw_aarch64_sve_vector_pcs:
1870     CC = CallingConv::AArch64_SVE_VectorCall;
1871     break;
1872   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1873   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1874   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1875   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1876   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1877   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1878   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1879   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1880   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1881   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1882   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1883   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1884   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1885   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1886   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1887   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1888   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1889   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1890   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1891   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1892   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1893   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1894   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1895   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1896   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1897   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1898   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1899   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1900   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1901   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1902   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1903   case lltok::kw_cc: {
1904       Lex.Lex();
1905       return parseUInt32(CC);
1906     }
1907   }
1908 
1909   Lex.Lex();
1910   return false;
1911 }
1912 
1913 /// parseMetadataAttachment
1914 ///   ::= !dbg !42
1915 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1916   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1917 
1918   std::string Name = Lex.getStrVal();
1919   Kind = M->getMDKindID(Name);
1920   Lex.Lex();
1921 
1922   return parseMDNode(MD);
1923 }
1924 
1925 /// parseInstructionMetadata
1926 ///   ::= !dbg !42 (',' !dbg !57)*
1927 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1928   do {
1929     if (Lex.getKind() != lltok::MetadataVar)
1930       return tokError("expected metadata after comma");
1931 
1932     unsigned MDK;
1933     MDNode *N;
1934     if (parseMetadataAttachment(MDK, N))
1935       return true;
1936 
1937     Inst.setMetadata(MDK, N);
1938     if (MDK == LLVMContext::MD_tbaa)
1939       InstsWithTBAATag.push_back(&Inst);
1940 
1941     // If this is the end of the list, we're done.
1942   } while (EatIfPresent(lltok::comma));
1943   return false;
1944 }
1945 
1946 /// parseGlobalObjectMetadataAttachment
1947 ///   ::= !dbg !57
1948 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1949   unsigned MDK;
1950   MDNode *N;
1951   if (parseMetadataAttachment(MDK, N))
1952     return true;
1953 
1954   GO.addMetadata(MDK, *N);
1955   return false;
1956 }
1957 
1958 /// parseOptionalFunctionMetadata
1959 ///   ::= (!dbg !57)*
1960 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1961   while (Lex.getKind() == lltok::MetadataVar)
1962     if (parseGlobalObjectMetadataAttachment(F))
1963       return true;
1964   return false;
1965 }
1966 
1967 /// parseOptionalAlignment
1968 ///   ::= /* empty */
1969 ///   ::= 'align' 4
1970 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1971   Alignment = None;
1972   if (!EatIfPresent(lltok::kw_align))
1973     return false;
1974   LocTy AlignLoc = Lex.getLoc();
1975   uint64_t Value = 0;
1976 
1977   LocTy ParenLoc = Lex.getLoc();
1978   bool HaveParens = false;
1979   if (AllowParens) {
1980     if (EatIfPresent(lltok::lparen))
1981       HaveParens = true;
1982   }
1983 
1984   if (parseUInt64(Value))
1985     return true;
1986 
1987   if (HaveParens && !EatIfPresent(lltok::rparen))
1988     return error(ParenLoc, "expected ')'");
1989 
1990   if (!isPowerOf2_64(Value))
1991     return error(AlignLoc, "alignment is not a power of two");
1992   if (Value > Value::MaximumAlignment)
1993     return error(AlignLoc, "huge alignments are not supported yet");
1994   Alignment = Align(Value);
1995   return false;
1996 }
1997 
1998 /// parseOptionalDerefAttrBytes
1999 ///   ::= /* empty */
2000 ///   ::= AttrKind '(' 4 ')'
2001 ///
2002 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2003 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2004                                            uint64_t &Bytes) {
2005   assert((AttrKind == lltok::kw_dereferenceable ||
2006           AttrKind == lltok::kw_dereferenceable_or_null) &&
2007          "contract!");
2008 
2009   Bytes = 0;
2010   if (!EatIfPresent(AttrKind))
2011     return false;
2012   LocTy ParenLoc = Lex.getLoc();
2013   if (!EatIfPresent(lltok::lparen))
2014     return error(ParenLoc, "expected '('");
2015   LocTy DerefLoc = Lex.getLoc();
2016   if (parseUInt64(Bytes))
2017     return true;
2018   ParenLoc = Lex.getLoc();
2019   if (!EatIfPresent(lltok::rparen))
2020     return error(ParenLoc, "expected ')'");
2021   if (!Bytes)
2022     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2023   return false;
2024 }
2025 
2026 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2027   Lex.Lex();
2028   Kind = UWTableKind::Default;
2029   if (!EatIfPresent(lltok::lparen))
2030     return false;
2031   LocTy KindLoc = Lex.getLoc();
2032   if (Lex.getKind() == lltok::kw_sync)
2033     Kind = UWTableKind::Sync;
2034   else if (Lex.getKind() == lltok::kw_async)
2035     Kind = UWTableKind::Async;
2036   else
2037     return error(KindLoc, "expected unwind table kind");
2038   Lex.Lex();
2039   return parseToken(lltok::rparen, "expected ')'");
2040 }
2041 
2042 /// parseOptionalCommaAlign
2043 ///   ::=
2044 ///   ::= ',' align 4
2045 ///
2046 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2047 /// end.
2048 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2049                                        bool &AteExtraComma) {
2050   AteExtraComma = false;
2051   while (EatIfPresent(lltok::comma)) {
2052     // Metadata at the end is an early exit.
2053     if (Lex.getKind() == lltok::MetadataVar) {
2054       AteExtraComma = true;
2055       return false;
2056     }
2057 
2058     if (Lex.getKind() != lltok::kw_align)
2059       return error(Lex.getLoc(), "expected metadata or 'align'");
2060 
2061     if (parseOptionalAlignment(Alignment))
2062       return true;
2063   }
2064 
2065   return false;
2066 }
2067 
2068 /// parseOptionalCommaAddrSpace
2069 ///   ::=
2070 ///   ::= ',' addrspace(1)
2071 ///
2072 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2073 /// end.
2074 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2075                                            bool &AteExtraComma) {
2076   AteExtraComma = false;
2077   while (EatIfPresent(lltok::comma)) {
2078     // Metadata at the end is an early exit.
2079     if (Lex.getKind() == lltok::MetadataVar) {
2080       AteExtraComma = true;
2081       return false;
2082     }
2083 
2084     Loc = Lex.getLoc();
2085     if (Lex.getKind() != lltok::kw_addrspace)
2086       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2087 
2088     if (parseOptionalAddrSpace(AddrSpace))
2089       return true;
2090   }
2091 
2092   return false;
2093 }
2094 
2095 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2096                                        Optional<unsigned> &HowManyArg) {
2097   Lex.Lex();
2098 
2099   auto StartParen = Lex.getLoc();
2100   if (!EatIfPresent(lltok::lparen))
2101     return error(StartParen, "expected '('");
2102 
2103   if (parseUInt32(BaseSizeArg))
2104     return true;
2105 
2106   if (EatIfPresent(lltok::comma)) {
2107     auto HowManyAt = Lex.getLoc();
2108     unsigned HowMany;
2109     if (parseUInt32(HowMany))
2110       return true;
2111     if (HowMany == BaseSizeArg)
2112       return error(HowManyAt,
2113                    "'allocsize' indices can't refer to the same parameter");
2114     HowManyArg = HowMany;
2115   } else
2116     HowManyArg = None;
2117 
2118   auto EndParen = Lex.getLoc();
2119   if (!EatIfPresent(lltok::rparen))
2120     return error(EndParen, "expected ')'");
2121   return false;
2122 }
2123 
2124 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2125                                          unsigned &MaxValue) {
2126   Lex.Lex();
2127 
2128   auto StartParen = Lex.getLoc();
2129   if (!EatIfPresent(lltok::lparen))
2130     return error(StartParen, "expected '('");
2131 
2132   if (parseUInt32(MinValue))
2133     return true;
2134 
2135   if (EatIfPresent(lltok::comma)) {
2136     if (parseUInt32(MaxValue))
2137       return true;
2138   } else
2139     MaxValue = MinValue;
2140 
2141   auto EndParen = Lex.getLoc();
2142   if (!EatIfPresent(lltok::rparen))
2143     return error(EndParen, "expected ')'");
2144   return false;
2145 }
2146 
2147 /// parseScopeAndOrdering
2148 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2149 ///   else: ::=
2150 ///
2151 /// This sets Scope and Ordering to the parsed values.
2152 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2153                                      AtomicOrdering &Ordering) {
2154   if (!IsAtomic)
2155     return false;
2156 
2157   return parseScope(SSID) || parseOrdering(Ordering);
2158 }
2159 
2160 /// parseScope
2161 ///   ::= syncscope("singlethread" | "<target scope>")?
2162 ///
2163 /// This sets synchronization scope ID to the ID of the parsed value.
2164 bool LLParser::parseScope(SyncScope::ID &SSID) {
2165   SSID = SyncScope::System;
2166   if (EatIfPresent(lltok::kw_syncscope)) {
2167     auto StartParenAt = Lex.getLoc();
2168     if (!EatIfPresent(lltok::lparen))
2169       return error(StartParenAt, "Expected '(' in syncscope");
2170 
2171     std::string SSN;
2172     auto SSNAt = Lex.getLoc();
2173     if (parseStringConstant(SSN))
2174       return error(SSNAt, "Expected synchronization scope name");
2175 
2176     auto EndParenAt = Lex.getLoc();
2177     if (!EatIfPresent(lltok::rparen))
2178       return error(EndParenAt, "Expected ')' in syncscope");
2179 
2180     SSID = Context.getOrInsertSyncScopeID(SSN);
2181   }
2182 
2183   return false;
2184 }
2185 
2186 /// parseOrdering
2187 ///   ::= AtomicOrdering
2188 ///
2189 /// This sets Ordering to the parsed value.
2190 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2191   switch (Lex.getKind()) {
2192   default:
2193     return tokError("Expected ordering on atomic instruction");
2194   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2195   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2196   // Not specified yet:
2197   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2198   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2199   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2200   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2201   case lltok::kw_seq_cst:
2202     Ordering = AtomicOrdering::SequentiallyConsistent;
2203     break;
2204   }
2205   Lex.Lex();
2206   return false;
2207 }
2208 
2209 /// parseOptionalStackAlignment
2210 ///   ::= /* empty */
2211 ///   ::= 'alignstack' '(' 4 ')'
2212 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2213   Alignment = 0;
2214   if (!EatIfPresent(lltok::kw_alignstack))
2215     return false;
2216   LocTy ParenLoc = Lex.getLoc();
2217   if (!EatIfPresent(lltok::lparen))
2218     return error(ParenLoc, "expected '('");
2219   LocTy AlignLoc = Lex.getLoc();
2220   if (parseUInt32(Alignment))
2221     return true;
2222   ParenLoc = Lex.getLoc();
2223   if (!EatIfPresent(lltok::rparen))
2224     return error(ParenLoc, "expected ')'");
2225   if (!isPowerOf2_32(Alignment))
2226     return error(AlignLoc, "stack alignment is not a power of two");
2227   return false;
2228 }
2229 
2230 /// parseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// parseIndexList
2237 ///    ::=  (',' uint32)+
2238 ///
2239 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2240                               bool &AteExtraComma) {
2241   AteExtraComma = false;
2242 
2243   if (Lex.getKind() != lltok::comma)
2244     return tokError("expected ',' as start of index list");
2245 
2246   while (EatIfPresent(lltok::comma)) {
2247     if (Lex.getKind() == lltok::MetadataVar) {
2248       if (Indices.empty())
2249         return tokError("expected index");
2250       AteExtraComma = true;
2251       return false;
2252     }
2253     unsigned Idx = 0;
2254     if (parseUInt32(Idx))
2255       return true;
2256     Indices.push_back(Idx);
2257   }
2258 
2259   return false;
2260 }
2261 
2262 //===----------------------------------------------------------------------===//
2263 // Type Parsing.
2264 //===----------------------------------------------------------------------===//
2265 
2266 /// parseType - parse a type.
2267 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2268   SMLoc TypeLoc = Lex.getLoc();
2269   switch (Lex.getKind()) {
2270   default:
2271     return tokError(Msg);
2272   case lltok::Type:
2273     // Type ::= 'float' | 'void' (etc)
2274     Result = Lex.getTyVal();
2275     Lex.Lex();
2276 
2277     // Handle "ptr" opaque pointer type.
2278     //
2279     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2280     if (Result->isOpaquePointerTy()) {
2281       unsigned AddrSpace;
2282       if (parseOptionalAddrSpace(AddrSpace))
2283         return true;
2284       Result = PointerType::get(getContext(), AddrSpace);
2285 
2286       // Give a nice error for 'ptr*'.
2287       if (Lex.getKind() == lltok::star)
2288         return tokError("ptr* is invalid - use ptr instead");
2289 
2290       // Fall through to parsing the type suffixes only if this 'ptr' is a
2291       // function return. Otherwise, return success, implicitly rejecting other
2292       // suffixes.
2293       if (Lex.getKind() != lltok::lparen)
2294         return false;
2295     }
2296     break;
2297   case lltok::lbrace:
2298     // Type ::= StructType
2299     if (parseAnonStructType(Result, false))
2300       return true;
2301     break;
2302   case lltok::lsquare:
2303     // Type ::= '[' ... ']'
2304     Lex.Lex(); // eat the lsquare.
2305     if (parseArrayVectorType(Result, false))
2306       return true;
2307     break;
2308   case lltok::less: // Either vector or packed struct.
2309     // Type ::= '<' ... '>'
2310     Lex.Lex();
2311     if (Lex.getKind() == lltok::lbrace) {
2312       if (parseAnonStructType(Result, true) ||
2313           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2314         return true;
2315     } else if (parseArrayVectorType(Result, true))
2316       return true;
2317     break;
2318   case lltok::LocalVar: {
2319     // Type ::= %foo
2320     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2321 
2322     // If the type hasn't been defined yet, create a forward definition and
2323     // remember where that forward def'n was seen (in case it never is defined).
2324     if (!Entry.first) {
2325       Entry.first = StructType::create(Context, Lex.getStrVal());
2326       Entry.second = Lex.getLoc();
2327     }
2328     Result = Entry.first;
2329     Lex.Lex();
2330     break;
2331   }
2332 
2333   case lltok::LocalVarID: {
2334     // Type ::= %4
2335     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2336 
2337     // If the type hasn't been defined yet, create a forward definition and
2338     // remember where that forward def'n was seen (in case it never is defined).
2339     if (!Entry.first) {
2340       Entry.first = StructType::create(Context);
2341       Entry.second = Lex.getLoc();
2342     }
2343     Result = Entry.first;
2344     Lex.Lex();
2345     break;
2346   }
2347   }
2348 
2349   // parse the type suffixes.
2350   while (true) {
2351     switch (Lex.getKind()) {
2352     // End of type.
2353     default:
2354       if (!AllowVoid && Result->isVoidTy())
2355         return error(TypeLoc, "void type only allowed for function results");
2356       return false;
2357 
2358     // Type ::= Type '*'
2359     case lltok::star:
2360       if (Result->isLabelTy())
2361         return tokError("basic block pointers are invalid");
2362       if (Result->isVoidTy())
2363         return tokError("pointers to void are invalid - use i8* instead");
2364       if (!PointerType::isValidElementType(Result))
2365         return tokError("pointer to this type is invalid");
2366       Result = PointerType::getUnqual(Result);
2367       Lex.Lex();
2368       break;
2369 
2370     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2371     case lltok::kw_addrspace: {
2372       if (Result->isLabelTy())
2373         return tokError("basic block pointers are invalid");
2374       if (Result->isVoidTy())
2375         return tokError("pointers to void are invalid; use i8* instead");
2376       if (!PointerType::isValidElementType(Result))
2377         return tokError("pointer to this type is invalid");
2378       unsigned AddrSpace;
2379       if (parseOptionalAddrSpace(AddrSpace) ||
2380           parseToken(lltok::star, "expected '*' in address space"))
2381         return true;
2382 
2383       Result = PointerType::get(Result, AddrSpace);
2384       break;
2385     }
2386 
2387     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2388     case lltok::lparen:
2389       if (parseFunctionType(Result))
2390         return true;
2391       break;
2392     }
2393   }
2394 }
2395 
2396 /// parseParameterList
2397 ///    ::= '(' ')'
2398 ///    ::= '(' Arg (',' Arg)* ')'
2399 ///  Arg
2400 ///    ::= Type OptionalAttributes Value OptionalAttributes
2401 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2402                                   PerFunctionState &PFS, bool IsMustTailCall,
2403                                   bool InVarArgsFunc) {
2404   if (parseToken(lltok::lparen, "expected '(' in call"))
2405     return true;
2406 
2407   while (Lex.getKind() != lltok::rparen) {
2408     // If this isn't the first argument, we need a comma.
2409     if (!ArgList.empty() &&
2410         parseToken(lltok::comma, "expected ',' in argument list"))
2411       return true;
2412 
2413     // parse an ellipsis if this is a musttail call in a variadic function.
2414     if (Lex.getKind() == lltok::dotdotdot) {
2415       const char *Msg = "unexpected ellipsis in argument list for ";
2416       if (!IsMustTailCall)
2417         return tokError(Twine(Msg) + "non-musttail call");
2418       if (!InVarArgsFunc)
2419         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2420       Lex.Lex();  // Lex the '...', it is purely for readability.
2421       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2422     }
2423 
2424     // parse the argument.
2425     LocTy ArgLoc;
2426     Type *ArgTy = nullptr;
2427     Value *V;
2428     if (parseType(ArgTy, ArgLoc))
2429       return true;
2430 
2431     AttrBuilder ArgAttrs(M->getContext());
2432 
2433     if (ArgTy->isMetadataTy()) {
2434       if (parseMetadataAsValue(V, PFS))
2435         return true;
2436     } else {
2437       // Otherwise, handle normal operands.
2438       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2439         return true;
2440     }
2441     ArgList.push_back(ParamInfo(
2442         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2443   }
2444 
2445   if (IsMustTailCall && InVarArgsFunc)
2446     return tokError("expected '...' at end of argument list for musttail call "
2447                     "in varargs function");
2448 
2449   Lex.Lex();  // Lex the ')'.
2450   return false;
2451 }
2452 
2453 /// parseRequiredTypeAttr
2454 ///   ::= attrname(<ty>)
2455 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2456                                      Attribute::AttrKind AttrKind) {
2457   Type *Ty = nullptr;
2458   if (!EatIfPresent(AttrToken))
2459     return true;
2460   if (!EatIfPresent(lltok::lparen))
2461     return error(Lex.getLoc(), "expected '('");
2462   if (parseType(Ty))
2463     return true;
2464   if (!EatIfPresent(lltok::rparen))
2465     return error(Lex.getLoc(), "expected ')'");
2466 
2467   B.addTypeAttr(AttrKind, Ty);
2468   return false;
2469 }
2470 
2471 /// parseOptionalOperandBundles
2472 ///    ::= /*empty*/
2473 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2474 ///
2475 /// OperandBundle
2476 ///    ::= bundle-tag '(' ')'
2477 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2478 ///
2479 /// bundle-tag ::= String Constant
2480 bool LLParser::parseOptionalOperandBundles(
2481     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2482   LocTy BeginLoc = Lex.getLoc();
2483   if (!EatIfPresent(lltok::lsquare))
2484     return false;
2485 
2486   while (Lex.getKind() != lltok::rsquare) {
2487     // If this isn't the first operand bundle, we need a comma.
2488     if (!BundleList.empty() &&
2489         parseToken(lltok::comma, "expected ',' in input list"))
2490       return true;
2491 
2492     std::string Tag;
2493     if (parseStringConstant(Tag))
2494       return true;
2495 
2496     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2497       return true;
2498 
2499     std::vector<Value *> Inputs;
2500     while (Lex.getKind() != lltok::rparen) {
2501       // If this isn't the first input, we need a comma.
2502       if (!Inputs.empty() &&
2503           parseToken(lltok::comma, "expected ',' in input list"))
2504         return true;
2505 
2506       Type *Ty = nullptr;
2507       Value *Input = nullptr;
2508       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2509         return true;
2510       Inputs.push_back(Input);
2511     }
2512 
2513     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2514 
2515     Lex.Lex(); // Lex the ')'.
2516   }
2517 
2518   if (BundleList.empty())
2519     return error(BeginLoc, "operand bundle set must not be empty");
2520 
2521   Lex.Lex(); // Lex the ']'.
2522   return false;
2523 }
2524 
2525 /// parseArgumentList - parse the argument list for a function type or function
2526 /// prototype.
2527 ///   ::= '(' ArgTypeListI ')'
2528 /// ArgTypeListI
2529 ///   ::= /*empty*/
2530 ///   ::= '...'
2531 ///   ::= ArgTypeList ',' '...'
2532 ///   ::= ArgType (',' ArgType)*
2533 ///
2534 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2535                                  bool &IsVarArg) {
2536   unsigned CurValID = 0;
2537   IsVarArg = false;
2538   assert(Lex.getKind() == lltok::lparen);
2539   Lex.Lex(); // eat the (.
2540 
2541   if (Lex.getKind() == lltok::rparen) {
2542     // empty
2543   } else if (Lex.getKind() == lltok::dotdotdot) {
2544     IsVarArg = true;
2545     Lex.Lex();
2546   } else {
2547     LocTy TypeLoc = Lex.getLoc();
2548     Type *ArgTy = nullptr;
2549     AttrBuilder Attrs(M->getContext());
2550     std::string Name;
2551 
2552     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2553       return true;
2554 
2555     if (ArgTy->isVoidTy())
2556       return error(TypeLoc, "argument can not have void type");
2557 
2558     if (Lex.getKind() == lltok::LocalVar) {
2559       Name = Lex.getStrVal();
2560       Lex.Lex();
2561     } else if (Lex.getKind() == lltok::LocalVarID) {
2562       if (Lex.getUIntVal() != CurValID)
2563         return error(TypeLoc, "argument expected to be numbered '%" +
2564                                   Twine(CurValID) + "'");
2565       ++CurValID;
2566       Lex.Lex();
2567     }
2568 
2569     if (!FunctionType::isValidArgumentType(ArgTy))
2570       return error(TypeLoc, "invalid type for function argument");
2571 
2572     ArgList.emplace_back(TypeLoc, ArgTy,
2573                          AttributeSet::get(ArgTy->getContext(), Attrs),
2574                          std::move(Name));
2575 
2576     while (EatIfPresent(lltok::comma)) {
2577       // Handle ... at end of arg list.
2578       if (EatIfPresent(lltok::dotdotdot)) {
2579         IsVarArg = true;
2580         break;
2581       }
2582 
2583       // Otherwise must be an argument type.
2584       TypeLoc = Lex.getLoc();
2585       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2586         return true;
2587 
2588       if (ArgTy->isVoidTy())
2589         return error(TypeLoc, "argument can not have void type");
2590 
2591       if (Lex.getKind() == lltok::LocalVar) {
2592         Name = Lex.getStrVal();
2593         Lex.Lex();
2594       } else {
2595         if (Lex.getKind() == lltok::LocalVarID) {
2596           if (Lex.getUIntVal() != CurValID)
2597             return error(TypeLoc, "argument expected to be numbered '%" +
2598                                       Twine(CurValID) + "'");
2599           Lex.Lex();
2600         }
2601         ++CurValID;
2602         Name = "";
2603       }
2604 
2605       if (!ArgTy->isFirstClassType())
2606         return error(TypeLoc, "invalid type for function argument");
2607 
2608       ArgList.emplace_back(TypeLoc, ArgTy,
2609                            AttributeSet::get(ArgTy->getContext(), Attrs),
2610                            std::move(Name));
2611     }
2612   }
2613 
2614   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2615 }
2616 
2617 /// parseFunctionType
2618 ///  ::= Type ArgumentList OptionalAttrs
2619 bool LLParser::parseFunctionType(Type *&Result) {
2620   assert(Lex.getKind() == lltok::lparen);
2621 
2622   if (!FunctionType::isValidReturnType(Result))
2623     return tokError("invalid function return type");
2624 
2625   SmallVector<ArgInfo, 8> ArgList;
2626   bool IsVarArg;
2627   if (parseArgumentList(ArgList, IsVarArg))
2628     return true;
2629 
2630   // Reject names on the arguments lists.
2631   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2632     if (!ArgList[i].Name.empty())
2633       return error(ArgList[i].Loc, "argument name invalid in function type");
2634     if (ArgList[i].Attrs.hasAttributes())
2635       return error(ArgList[i].Loc,
2636                    "argument attributes invalid in function type");
2637   }
2638 
2639   SmallVector<Type*, 16> ArgListTy;
2640   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2641     ArgListTy.push_back(ArgList[i].Ty);
2642 
2643   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2644   return false;
2645 }
2646 
2647 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2648 /// other structs.
2649 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2650   SmallVector<Type*, 8> Elts;
2651   if (parseStructBody(Elts))
2652     return true;
2653 
2654   Result = StructType::get(Context, Elts, Packed);
2655   return false;
2656 }
2657 
2658 /// parseStructDefinition - parse a struct in a 'type' definition.
2659 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2660                                      std::pair<Type *, LocTy> &Entry,
2661                                      Type *&ResultTy) {
2662   // If the type was already defined, diagnose the redefinition.
2663   if (Entry.first && !Entry.second.isValid())
2664     return error(TypeLoc, "redefinition of type");
2665 
2666   // If we have opaque, just return without filling in the definition for the
2667   // struct.  This counts as a definition as far as the .ll file goes.
2668   if (EatIfPresent(lltok::kw_opaque)) {
2669     // This type is being defined, so clear the location to indicate this.
2670     Entry.second = SMLoc();
2671 
2672     // If this type number has never been uttered, create it.
2673     if (!Entry.first)
2674       Entry.first = StructType::create(Context, Name);
2675     ResultTy = Entry.first;
2676     return false;
2677   }
2678 
2679   // If the type starts with '<', then it is either a packed struct or a vector.
2680   bool isPacked = EatIfPresent(lltok::less);
2681 
2682   // If we don't have a struct, then we have a random type alias, which we
2683   // accept for compatibility with old files.  These types are not allowed to be
2684   // forward referenced and not allowed to be recursive.
2685   if (Lex.getKind() != lltok::lbrace) {
2686     if (Entry.first)
2687       return error(TypeLoc, "forward references to non-struct type");
2688 
2689     ResultTy = nullptr;
2690     if (isPacked)
2691       return parseArrayVectorType(ResultTy, true);
2692     return parseType(ResultTy);
2693   }
2694 
2695   // This type is being defined, so clear the location to indicate this.
2696   Entry.second = SMLoc();
2697 
2698   // If this type number has never been uttered, create it.
2699   if (!Entry.first)
2700     Entry.first = StructType::create(Context, Name);
2701 
2702   StructType *STy = cast<StructType>(Entry.first);
2703 
2704   SmallVector<Type*, 8> Body;
2705   if (parseStructBody(Body) ||
2706       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2707     return true;
2708 
2709   STy->setBody(Body, isPacked);
2710   ResultTy = STy;
2711   return false;
2712 }
2713 
2714 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2715 ///   StructType
2716 ///     ::= '{' '}'
2717 ///     ::= '{' Type (',' Type)* '}'
2718 ///     ::= '<' '{' '}' '>'
2719 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2720 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2721   assert(Lex.getKind() == lltok::lbrace);
2722   Lex.Lex(); // Consume the '{'
2723 
2724   // Handle the empty struct.
2725   if (EatIfPresent(lltok::rbrace))
2726     return false;
2727 
2728   LocTy EltTyLoc = Lex.getLoc();
2729   Type *Ty = nullptr;
2730   if (parseType(Ty))
2731     return true;
2732   Body.push_back(Ty);
2733 
2734   if (!StructType::isValidElementType(Ty))
2735     return error(EltTyLoc, "invalid element type for struct");
2736 
2737   while (EatIfPresent(lltok::comma)) {
2738     EltTyLoc = Lex.getLoc();
2739     if (parseType(Ty))
2740       return true;
2741 
2742     if (!StructType::isValidElementType(Ty))
2743       return error(EltTyLoc, "invalid element type for struct");
2744 
2745     Body.push_back(Ty);
2746   }
2747 
2748   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2749 }
2750 
2751 /// parseArrayVectorType - parse an array or vector type, assuming the first
2752 /// token has already been consumed.
2753 ///   Type
2754 ///     ::= '[' APSINTVAL 'x' Types ']'
2755 ///     ::= '<' APSINTVAL 'x' Types '>'
2756 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2757 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2758   bool Scalable = false;
2759 
2760   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2761     Lex.Lex(); // consume the 'vscale'
2762     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2763       return true;
2764 
2765     Scalable = true;
2766   }
2767 
2768   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2769       Lex.getAPSIntVal().getBitWidth() > 64)
2770     return tokError("expected number in address space");
2771 
2772   LocTy SizeLoc = Lex.getLoc();
2773   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2774   Lex.Lex();
2775 
2776   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2777     return true;
2778 
2779   LocTy TypeLoc = Lex.getLoc();
2780   Type *EltTy = nullptr;
2781   if (parseType(EltTy))
2782     return true;
2783 
2784   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2785                  "expected end of sequential type"))
2786     return true;
2787 
2788   if (IsVector) {
2789     if (Size == 0)
2790       return error(SizeLoc, "zero element vector is illegal");
2791     if ((unsigned)Size != Size)
2792       return error(SizeLoc, "size too large for vector");
2793     if (!VectorType::isValidElementType(EltTy))
2794       return error(TypeLoc, "invalid vector element type");
2795     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2796   } else {
2797     if (!ArrayType::isValidElementType(EltTy))
2798       return error(TypeLoc, "invalid array element type");
2799     Result = ArrayType::get(EltTy, Size);
2800   }
2801   return false;
2802 }
2803 
2804 //===----------------------------------------------------------------------===//
2805 // Function Semantic Analysis.
2806 //===----------------------------------------------------------------------===//
2807 
2808 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2809                                              int functionNumber)
2810   : P(p), F(f), FunctionNumber(functionNumber) {
2811 
2812   // Insert unnamed arguments into the NumberedVals list.
2813   for (Argument &A : F.args())
2814     if (!A.hasName())
2815       NumberedVals.push_back(&A);
2816 }
2817 
2818 LLParser::PerFunctionState::~PerFunctionState() {
2819   // If there were any forward referenced non-basicblock values, delete them.
2820 
2821   for (const auto &P : ForwardRefVals) {
2822     if (isa<BasicBlock>(P.second.first))
2823       continue;
2824     P.second.first->replaceAllUsesWith(
2825         UndefValue::get(P.second.first->getType()));
2826     P.second.first->deleteValue();
2827   }
2828 
2829   for (const auto &P : ForwardRefValIDs) {
2830     if (isa<BasicBlock>(P.second.first))
2831       continue;
2832     P.second.first->replaceAllUsesWith(
2833         UndefValue::get(P.second.first->getType()));
2834     P.second.first->deleteValue();
2835   }
2836 }
2837 
2838 bool LLParser::PerFunctionState::finishFunction() {
2839   if (!ForwardRefVals.empty())
2840     return P.error(ForwardRefVals.begin()->second.second,
2841                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2842                        "'");
2843   if (!ForwardRefValIDs.empty())
2844     return P.error(ForwardRefValIDs.begin()->second.second,
2845                    "use of undefined value '%" +
2846                        Twine(ForwardRefValIDs.begin()->first) + "'");
2847   return false;
2848 }
2849 
2850 /// getVal - Get a value with the specified name or ID, creating a
2851 /// forward reference record if needed.  This can return null if the value
2852 /// exists but does not have the right type.
2853 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2854                                           LocTy Loc) {
2855   // Look this name up in the normal function symbol table.
2856   Value *Val = F.getValueSymbolTable()->lookup(Name);
2857 
2858   // If this is a forward reference for the value, see if we already created a
2859   // forward ref record.
2860   if (!Val) {
2861     auto I = ForwardRefVals.find(Name);
2862     if (I != ForwardRefVals.end())
2863       Val = I->second.first;
2864   }
2865 
2866   // If we have the value in the symbol table or fwd-ref table, return it.
2867   if (Val)
2868     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2869 
2870   // Don't make placeholders with invalid type.
2871   if (!Ty->isFirstClassType()) {
2872     P.error(Loc, "invalid use of a non-first-class type");
2873     return nullptr;
2874   }
2875 
2876   // Otherwise, create a new forward reference for this value and remember it.
2877   Value *FwdVal;
2878   if (Ty->isLabelTy()) {
2879     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2880   } else {
2881     FwdVal = new Argument(Ty, Name);
2882   }
2883 
2884   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2885   return FwdVal;
2886 }
2887 
2888 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2889   // Look this name up in the normal function symbol table.
2890   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2891 
2892   // If this is a forward reference for the value, see if we already created a
2893   // forward ref record.
2894   if (!Val) {
2895     auto I = ForwardRefValIDs.find(ID);
2896     if (I != ForwardRefValIDs.end())
2897       Val = I->second.first;
2898   }
2899 
2900   // If we have the value in the symbol table or fwd-ref table, return it.
2901   if (Val)
2902     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2903 
2904   if (!Ty->isFirstClassType()) {
2905     P.error(Loc, "invalid use of a non-first-class type");
2906     return nullptr;
2907   }
2908 
2909   // Otherwise, create a new forward reference for this value and remember it.
2910   Value *FwdVal;
2911   if (Ty->isLabelTy()) {
2912     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2913   } else {
2914     FwdVal = new Argument(Ty);
2915   }
2916 
2917   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2918   return FwdVal;
2919 }
2920 
2921 /// setInstName - After an instruction is parsed and inserted into its
2922 /// basic block, this installs its name.
2923 bool LLParser::PerFunctionState::setInstName(int NameID,
2924                                              const std::string &NameStr,
2925                                              LocTy NameLoc, Instruction *Inst) {
2926   // If this instruction has void type, it cannot have a name or ID specified.
2927   if (Inst->getType()->isVoidTy()) {
2928     if (NameID != -1 || !NameStr.empty())
2929       return P.error(NameLoc, "instructions returning void cannot have a name");
2930     return false;
2931   }
2932 
2933   // If this was a numbered instruction, verify that the instruction is the
2934   // expected value and resolve any forward references.
2935   if (NameStr.empty()) {
2936     // If neither a name nor an ID was specified, just use the next ID.
2937     if (NameID == -1)
2938       NameID = NumberedVals.size();
2939 
2940     if (unsigned(NameID) != NumberedVals.size())
2941       return P.error(NameLoc, "instruction expected to be numbered '%" +
2942                                   Twine(NumberedVals.size()) + "'");
2943 
2944     auto FI = ForwardRefValIDs.find(NameID);
2945     if (FI != ForwardRefValIDs.end()) {
2946       Value *Sentinel = FI->second.first;
2947       if (Sentinel->getType() != Inst->getType())
2948         return P.error(NameLoc, "instruction forward referenced with type '" +
2949                                     getTypeString(FI->second.first->getType()) +
2950                                     "'");
2951 
2952       Sentinel->replaceAllUsesWith(Inst);
2953       Sentinel->deleteValue();
2954       ForwardRefValIDs.erase(FI);
2955     }
2956 
2957     NumberedVals.push_back(Inst);
2958     return false;
2959   }
2960 
2961   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2962   auto FI = ForwardRefVals.find(NameStr);
2963   if (FI != ForwardRefVals.end()) {
2964     Value *Sentinel = FI->second.first;
2965     if (Sentinel->getType() != Inst->getType())
2966       return P.error(NameLoc, "instruction forward referenced with type '" +
2967                                   getTypeString(FI->second.first->getType()) +
2968                                   "'");
2969 
2970     Sentinel->replaceAllUsesWith(Inst);
2971     Sentinel->deleteValue();
2972     ForwardRefVals.erase(FI);
2973   }
2974 
2975   // Set the name on the instruction.
2976   Inst->setName(NameStr);
2977 
2978   if (Inst->getName() != NameStr)
2979     return P.error(NameLoc, "multiple definition of local value named '" +
2980                                 NameStr + "'");
2981   return false;
2982 }
2983 
2984 /// getBB - Get a basic block with the specified name or ID, creating a
2985 /// forward reference record if needed.
2986 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2987                                               LocTy Loc) {
2988   return dyn_cast_or_null<BasicBlock>(
2989       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2990 }
2991 
2992 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2993   return dyn_cast_or_null<BasicBlock>(
2994       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2995 }
2996 
2997 /// defineBB - Define the specified basic block, which is either named or
2998 /// unnamed.  If there is an error, this returns null otherwise it returns
2999 /// the block being defined.
3000 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3001                                                  int NameID, LocTy Loc) {
3002   BasicBlock *BB;
3003   if (Name.empty()) {
3004     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3005       P.error(Loc, "label expected to be numbered '" +
3006                        Twine(NumberedVals.size()) + "'");
3007       return nullptr;
3008     }
3009     BB = getBB(NumberedVals.size(), Loc);
3010     if (!BB) {
3011       P.error(Loc, "unable to create block numbered '" +
3012                        Twine(NumberedVals.size()) + "'");
3013       return nullptr;
3014     }
3015   } else {
3016     BB = getBB(Name, Loc);
3017     if (!BB) {
3018       P.error(Loc, "unable to create block named '" + Name + "'");
3019       return nullptr;
3020     }
3021   }
3022 
3023   // Move the block to the end of the function.  Forward ref'd blocks are
3024   // inserted wherever they happen to be referenced.
3025   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3026 
3027   // Remove the block from forward ref sets.
3028   if (Name.empty()) {
3029     ForwardRefValIDs.erase(NumberedVals.size());
3030     NumberedVals.push_back(BB);
3031   } else {
3032     // BB forward references are already in the function symbol table.
3033     ForwardRefVals.erase(Name);
3034   }
3035 
3036   return BB;
3037 }
3038 
3039 //===----------------------------------------------------------------------===//
3040 // Constants.
3041 //===----------------------------------------------------------------------===//
3042 
3043 /// parseValID - parse an abstract value that doesn't necessarily have a
3044 /// type implied.  For example, if we parse "4" we don't know what integer type
3045 /// it has.  The value will later be combined with its type and checked for
3046 /// basic correctness.  PFS is used to convert function-local operands of
3047 /// metadata (since metadata operands are not just parsed here but also
3048 /// converted to values). PFS can be null when we are not parsing metadata
3049 /// values inside a function.
3050 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3051   ID.Loc = Lex.getLoc();
3052   switch (Lex.getKind()) {
3053   default:
3054     return tokError("expected value token");
3055   case lltok::GlobalID:  // @42
3056     ID.UIntVal = Lex.getUIntVal();
3057     ID.Kind = ValID::t_GlobalID;
3058     break;
3059   case lltok::GlobalVar:  // @foo
3060     ID.StrVal = Lex.getStrVal();
3061     ID.Kind = ValID::t_GlobalName;
3062     break;
3063   case lltok::LocalVarID:  // %42
3064     ID.UIntVal = Lex.getUIntVal();
3065     ID.Kind = ValID::t_LocalID;
3066     break;
3067   case lltok::LocalVar:  // %foo
3068     ID.StrVal = Lex.getStrVal();
3069     ID.Kind = ValID::t_LocalName;
3070     break;
3071   case lltok::APSInt:
3072     ID.APSIntVal = Lex.getAPSIntVal();
3073     ID.Kind = ValID::t_APSInt;
3074     break;
3075   case lltok::APFloat:
3076     ID.APFloatVal = Lex.getAPFloatVal();
3077     ID.Kind = ValID::t_APFloat;
3078     break;
3079   case lltok::kw_true:
3080     ID.ConstantVal = ConstantInt::getTrue(Context);
3081     ID.Kind = ValID::t_Constant;
3082     break;
3083   case lltok::kw_false:
3084     ID.ConstantVal = ConstantInt::getFalse(Context);
3085     ID.Kind = ValID::t_Constant;
3086     break;
3087   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3088   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3089   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3090   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3091   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3092 
3093   case lltok::lbrace: {
3094     // ValID ::= '{' ConstVector '}'
3095     Lex.Lex();
3096     SmallVector<Constant*, 16> Elts;
3097     if (parseGlobalValueVector(Elts) ||
3098         parseToken(lltok::rbrace, "expected end of struct constant"))
3099       return true;
3100 
3101     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3102     ID.UIntVal = Elts.size();
3103     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3104            Elts.size() * sizeof(Elts[0]));
3105     ID.Kind = ValID::t_ConstantStruct;
3106     return false;
3107   }
3108   case lltok::less: {
3109     // ValID ::= '<' ConstVector '>'         --> Vector.
3110     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3111     Lex.Lex();
3112     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3113 
3114     SmallVector<Constant*, 16> Elts;
3115     LocTy FirstEltLoc = Lex.getLoc();
3116     if (parseGlobalValueVector(Elts) ||
3117         (isPackedStruct &&
3118          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3119         parseToken(lltok::greater, "expected end of constant"))
3120       return true;
3121 
3122     if (isPackedStruct) {
3123       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3124       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3125              Elts.size() * sizeof(Elts[0]));
3126       ID.UIntVal = Elts.size();
3127       ID.Kind = ValID::t_PackedConstantStruct;
3128       return false;
3129     }
3130 
3131     if (Elts.empty())
3132       return error(ID.Loc, "constant vector must not be empty");
3133 
3134     if (!Elts[0]->getType()->isIntegerTy() &&
3135         !Elts[0]->getType()->isFloatingPointTy() &&
3136         !Elts[0]->getType()->isPointerTy())
3137       return error(
3138           FirstEltLoc,
3139           "vector elements must have integer, pointer or floating point type");
3140 
3141     // Verify that all the vector elements have the same type.
3142     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3143       if (Elts[i]->getType() != Elts[0]->getType())
3144         return error(FirstEltLoc, "vector element #" + Twine(i) +
3145                                       " is not of type '" +
3146                                       getTypeString(Elts[0]->getType()));
3147 
3148     ID.ConstantVal = ConstantVector::get(Elts);
3149     ID.Kind = ValID::t_Constant;
3150     return false;
3151   }
3152   case lltok::lsquare: {   // Array Constant
3153     Lex.Lex();
3154     SmallVector<Constant*, 16> Elts;
3155     LocTy FirstEltLoc = Lex.getLoc();
3156     if (parseGlobalValueVector(Elts) ||
3157         parseToken(lltok::rsquare, "expected end of array constant"))
3158       return true;
3159 
3160     // Handle empty element.
3161     if (Elts.empty()) {
3162       // Use undef instead of an array because it's inconvenient to determine
3163       // the element type at this point, there being no elements to examine.
3164       ID.Kind = ValID::t_EmptyArray;
3165       return false;
3166     }
3167 
3168     if (!Elts[0]->getType()->isFirstClassType())
3169       return error(FirstEltLoc, "invalid array element type: " +
3170                                     getTypeString(Elts[0]->getType()));
3171 
3172     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3173 
3174     // Verify all elements are correct type!
3175     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3176       if (Elts[i]->getType() != Elts[0]->getType())
3177         return error(FirstEltLoc, "array element #" + Twine(i) +
3178                                       " is not of type '" +
3179                                       getTypeString(Elts[0]->getType()));
3180     }
3181 
3182     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3183     ID.Kind = ValID::t_Constant;
3184     return false;
3185   }
3186   case lltok::kw_c:  // c "foo"
3187     Lex.Lex();
3188     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3189                                                   false);
3190     if (parseToken(lltok::StringConstant, "expected string"))
3191       return true;
3192     ID.Kind = ValID::t_Constant;
3193     return false;
3194 
3195   case lltok::kw_asm: {
3196     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3197     //             STRINGCONSTANT
3198     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3199     Lex.Lex();
3200     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3201         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3202         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3203         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3204         parseStringConstant(ID.StrVal) ||
3205         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3206         parseToken(lltok::StringConstant, "expected constraint string"))
3207       return true;
3208     ID.StrVal2 = Lex.getStrVal();
3209     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3210                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3211     ID.Kind = ValID::t_InlineAsm;
3212     return false;
3213   }
3214 
3215   case lltok::kw_blockaddress: {
3216     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3217     Lex.Lex();
3218 
3219     ValID Fn, Label;
3220 
3221     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3222         parseValID(Fn, PFS) ||
3223         parseToken(lltok::comma,
3224                    "expected comma in block address expression") ||
3225         parseValID(Label, PFS) ||
3226         parseToken(lltok::rparen, "expected ')' in block address expression"))
3227       return true;
3228 
3229     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3230       return error(Fn.Loc, "expected function name in blockaddress");
3231     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3232       return error(Label.Loc, "expected basic block name in blockaddress");
3233 
3234     // Try to find the function (but skip it if it's forward-referenced).
3235     GlobalValue *GV = nullptr;
3236     if (Fn.Kind == ValID::t_GlobalID) {
3237       if (Fn.UIntVal < NumberedVals.size())
3238         GV = NumberedVals[Fn.UIntVal];
3239     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3240       GV = M->getNamedValue(Fn.StrVal);
3241     }
3242     Function *F = nullptr;
3243     if (GV) {
3244       // Confirm that it's actually a function with a definition.
3245       if (!isa<Function>(GV))
3246         return error(Fn.Loc, "expected function name in blockaddress");
3247       F = cast<Function>(GV);
3248       if (F->isDeclaration())
3249         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3250     }
3251 
3252     if (!F) {
3253       // Make a global variable as a placeholder for this reference.
3254       GlobalValue *&FwdRef =
3255           ForwardRefBlockAddresses.insert(std::make_pair(
3256                                               std::move(Fn),
3257                                               std::map<ValID, GlobalValue *>()))
3258               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3259               .first->second;
3260       if (!FwdRef) {
3261         unsigned FwdDeclAS;
3262         if (ExpectedTy) {
3263           // If we know the type that the blockaddress is being assigned to,
3264           // we can use the address space of that type.
3265           if (!ExpectedTy->isPointerTy())
3266             return error(ID.Loc,
3267                          "type of blockaddress must be a pointer and not '" +
3268                              getTypeString(ExpectedTy) + "'");
3269           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3270         } else if (PFS) {
3271           // Otherwise, we default the address space of the current function.
3272           FwdDeclAS = PFS->getFunction().getAddressSpace();
3273         } else {
3274           llvm_unreachable("Unknown address space for blockaddress");
3275         }
3276         FwdRef = new GlobalVariable(
3277             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3278             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3279       }
3280 
3281       ID.ConstantVal = FwdRef;
3282       ID.Kind = ValID::t_Constant;
3283       return false;
3284     }
3285 
3286     // We found the function; now find the basic block.  Don't use PFS, since we
3287     // might be inside a constant expression.
3288     BasicBlock *BB;
3289     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3290       if (Label.Kind == ValID::t_LocalID)
3291         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3292       else
3293         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3294       if (!BB)
3295         return error(Label.Loc, "referenced value is not a basic block");
3296     } else {
3297       if (Label.Kind == ValID::t_LocalID)
3298         return error(Label.Loc, "cannot take address of numeric label after "
3299                                 "the function is defined");
3300       BB = dyn_cast_or_null<BasicBlock>(
3301           F->getValueSymbolTable()->lookup(Label.StrVal));
3302       if (!BB)
3303         return error(Label.Loc, "referenced value is not a basic block");
3304     }
3305 
3306     ID.ConstantVal = BlockAddress::get(F, BB);
3307     ID.Kind = ValID::t_Constant;
3308     return false;
3309   }
3310 
3311   case lltok::kw_dso_local_equivalent: {
3312     // ValID ::= 'dso_local_equivalent' @foo
3313     Lex.Lex();
3314 
3315     ValID Fn;
3316 
3317     if (parseValID(Fn, PFS))
3318       return true;
3319 
3320     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3321       return error(Fn.Loc,
3322                    "expected global value name in dso_local_equivalent");
3323 
3324     // Try to find the function (but skip it if it's forward-referenced).
3325     GlobalValue *GV = nullptr;
3326     if (Fn.Kind == ValID::t_GlobalID) {
3327       if (Fn.UIntVal < NumberedVals.size())
3328         GV = NumberedVals[Fn.UIntVal];
3329     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3330       GV = M->getNamedValue(Fn.StrVal);
3331     }
3332 
3333     assert(GV && "Could not find a corresponding global variable");
3334 
3335     if (!GV->getValueType()->isFunctionTy())
3336       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3337                            "in dso_local_equivalent");
3338 
3339     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3340     ID.Kind = ValID::t_Constant;
3341     return false;
3342   }
3343 
3344   case lltok::kw_no_cfi: {
3345     // ValID ::= 'no_cfi' @foo
3346     Lex.Lex();
3347 
3348     if (parseValID(ID, PFS))
3349       return true;
3350 
3351     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3352       return error(ID.Loc, "expected global value name in no_cfi");
3353 
3354     ID.NoCFI = true;
3355     return false;
3356   }
3357 
3358   case lltok::kw_trunc:
3359   case lltok::kw_zext:
3360   case lltok::kw_sext:
3361   case lltok::kw_fptrunc:
3362   case lltok::kw_fpext:
3363   case lltok::kw_bitcast:
3364   case lltok::kw_addrspacecast:
3365   case lltok::kw_uitofp:
3366   case lltok::kw_sitofp:
3367   case lltok::kw_fptoui:
3368   case lltok::kw_fptosi:
3369   case lltok::kw_inttoptr:
3370   case lltok::kw_ptrtoint: {
3371     unsigned Opc = Lex.getUIntVal();
3372     Type *DestTy = nullptr;
3373     Constant *SrcVal;
3374     Lex.Lex();
3375     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3376         parseGlobalTypeAndValue(SrcVal) ||
3377         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3378         parseType(DestTy) ||
3379         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3380       return true;
3381     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3382       return error(ID.Loc, "invalid cast opcode for cast from '" +
3383                                getTypeString(SrcVal->getType()) + "' to '" +
3384                                getTypeString(DestTy) + "'");
3385     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3386                                                  SrcVal, DestTy);
3387     ID.Kind = ValID::t_Constant;
3388     return false;
3389   }
3390   case lltok::kw_extractvalue: {
3391     Lex.Lex();
3392     Constant *Val;
3393     SmallVector<unsigned, 4> Indices;
3394     if (parseToken(lltok::lparen,
3395                    "expected '(' in extractvalue constantexpr") ||
3396         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3397         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3398       return true;
3399 
3400     if (!Val->getType()->isAggregateType())
3401       return error(ID.Loc, "extractvalue operand must be aggregate type");
3402     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3403       return error(ID.Loc, "invalid indices for extractvalue");
3404     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3405     ID.Kind = ValID::t_Constant;
3406     return false;
3407   }
3408   case lltok::kw_insertvalue: {
3409     Lex.Lex();
3410     Constant *Val0, *Val1;
3411     SmallVector<unsigned, 4> Indices;
3412     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3413         parseGlobalTypeAndValue(Val0) ||
3414         parseToken(lltok::comma,
3415                    "expected comma in insertvalue constantexpr") ||
3416         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3417         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3418       return true;
3419     if (!Val0->getType()->isAggregateType())
3420       return error(ID.Loc, "insertvalue operand must be aggregate type");
3421     Type *IndexedType =
3422         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3423     if (!IndexedType)
3424       return error(ID.Loc, "invalid indices for insertvalue");
3425     if (IndexedType != Val1->getType())
3426       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3427                                getTypeString(Val1->getType()) +
3428                                "' instead of '" + getTypeString(IndexedType) +
3429                                "'");
3430     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3431     ID.Kind = ValID::t_Constant;
3432     return false;
3433   }
3434   case lltok::kw_icmp:
3435   case lltok::kw_fcmp: {
3436     unsigned PredVal, Opc = Lex.getUIntVal();
3437     Constant *Val0, *Val1;
3438     Lex.Lex();
3439     if (parseCmpPredicate(PredVal, Opc) ||
3440         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3441         parseGlobalTypeAndValue(Val0) ||
3442         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3443         parseGlobalTypeAndValue(Val1) ||
3444         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3445       return true;
3446 
3447     if (Val0->getType() != Val1->getType())
3448       return error(ID.Loc, "compare operands must have the same type");
3449 
3450     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3451 
3452     if (Opc == Instruction::FCmp) {
3453       if (!Val0->getType()->isFPOrFPVectorTy())
3454         return error(ID.Loc, "fcmp requires floating point operands");
3455       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3456     } else {
3457       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3458       if (!Val0->getType()->isIntOrIntVectorTy() &&
3459           !Val0->getType()->isPtrOrPtrVectorTy())
3460         return error(ID.Loc, "icmp requires pointer or integer operands");
3461       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3462     }
3463     ID.Kind = ValID::t_Constant;
3464     return false;
3465   }
3466 
3467   // Unary Operators.
3468   case lltok::kw_fneg: {
3469     unsigned Opc = Lex.getUIntVal();
3470     Constant *Val;
3471     Lex.Lex();
3472     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3473         parseGlobalTypeAndValue(Val) ||
3474         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3475       return true;
3476 
3477     // Check that the type is valid for the operator.
3478     switch (Opc) {
3479     case Instruction::FNeg:
3480       if (!Val->getType()->isFPOrFPVectorTy())
3481         return error(ID.Loc, "constexpr requires fp operands");
3482       break;
3483     default: llvm_unreachable("Unknown unary operator!");
3484     }
3485     unsigned Flags = 0;
3486     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3487     ID.ConstantVal = C;
3488     ID.Kind = ValID::t_Constant;
3489     return false;
3490   }
3491   // Binary Operators.
3492   case lltok::kw_add:
3493   case lltok::kw_fadd:
3494   case lltok::kw_sub:
3495   case lltok::kw_fsub:
3496   case lltok::kw_mul:
3497   case lltok::kw_fmul:
3498   case lltok::kw_udiv:
3499   case lltok::kw_sdiv:
3500   case lltok::kw_fdiv:
3501   case lltok::kw_urem:
3502   case lltok::kw_srem:
3503   case lltok::kw_frem:
3504   case lltok::kw_shl:
3505   case lltok::kw_lshr:
3506   case lltok::kw_ashr: {
3507     bool NUW = false;
3508     bool NSW = false;
3509     bool Exact = false;
3510     unsigned Opc = Lex.getUIntVal();
3511     Constant *Val0, *Val1;
3512     Lex.Lex();
3513     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3514         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3515       if (EatIfPresent(lltok::kw_nuw))
3516         NUW = true;
3517       if (EatIfPresent(lltok::kw_nsw)) {
3518         NSW = true;
3519         if (EatIfPresent(lltok::kw_nuw))
3520           NUW = true;
3521       }
3522     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3523                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3524       if (EatIfPresent(lltok::kw_exact))
3525         Exact = true;
3526     }
3527     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3528         parseGlobalTypeAndValue(Val0) ||
3529         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3530         parseGlobalTypeAndValue(Val1) ||
3531         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3532       return true;
3533     if (Val0->getType() != Val1->getType())
3534       return error(ID.Loc, "operands of constexpr must have same type");
3535     // Check that the type is valid for the operator.
3536     switch (Opc) {
3537     case Instruction::Add:
3538     case Instruction::Sub:
3539     case Instruction::Mul:
3540     case Instruction::UDiv:
3541     case Instruction::SDiv:
3542     case Instruction::URem:
3543     case Instruction::SRem:
3544     case Instruction::Shl:
3545     case Instruction::AShr:
3546     case Instruction::LShr:
3547       if (!Val0->getType()->isIntOrIntVectorTy())
3548         return error(ID.Loc, "constexpr requires integer operands");
3549       break;
3550     case Instruction::FAdd:
3551     case Instruction::FSub:
3552     case Instruction::FMul:
3553     case Instruction::FDiv:
3554     case Instruction::FRem:
3555       if (!Val0->getType()->isFPOrFPVectorTy())
3556         return error(ID.Loc, "constexpr requires fp operands");
3557       break;
3558     default: llvm_unreachable("Unknown binary operator!");
3559     }
3560     unsigned Flags = 0;
3561     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3562     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3563     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3564     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3565     ID.ConstantVal = C;
3566     ID.Kind = ValID::t_Constant;
3567     return false;
3568   }
3569 
3570   // Logical Operations
3571   case lltok::kw_and:
3572   case lltok::kw_or:
3573   case lltok::kw_xor: {
3574     unsigned Opc = Lex.getUIntVal();
3575     Constant *Val0, *Val1;
3576     Lex.Lex();
3577     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3578         parseGlobalTypeAndValue(Val0) ||
3579         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3580         parseGlobalTypeAndValue(Val1) ||
3581         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3582       return true;
3583     if (Val0->getType() != Val1->getType())
3584       return error(ID.Loc, "operands of constexpr must have same type");
3585     if (!Val0->getType()->isIntOrIntVectorTy())
3586       return error(ID.Loc,
3587                    "constexpr requires integer or integer vector operands");
3588     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3589     ID.Kind = ValID::t_Constant;
3590     return false;
3591   }
3592 
3593   case lltok::kw_getelementptr:
3594   case lltok::kw_shufflevector:
3595   case lltok::kw_insertelement:
3596   case lltok::kw_extractelement:
3597   case lltok::kw_select: {
3598     unsigned Opc = Lex.getUIntVal();
3599     SmallVector<Constant*, 16> Elts;
3600     bool InBounds = false;
3601     Type *Ty;
3602     Lex.Lex();
3603 
3604     if (Opc == Instruction::GetElementPtr)
3605       InBounds = EatIfPresent(lltok::kw_inbounds);
3606 
3607     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3608       return true;
3609 
3610     LocTy ExplicitTypeLoc = Lex.getLoc();
3611     if (Opc == Instruction::GetElementPtr) {
3612       if (parseType(Ty) ||
3613           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3614         return true;
3615     }
3616 
3617     Optional<unsigned> InRangeOp;
3618     if (parseGlobalValueVector(
3619             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3620         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3621       return true;
3622 
3623     if (Opc == Instruction::GetElementPtr) {
3624       if (Elts.size() == 0 ||
3625           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3626         return error(ID.Loc, "base of getelementptr must be a pointer");
3627 
3628       Type *BaseType = Elts[0]->getType();
3629       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3630       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3631         return error(
3632             ExplicitTypeLoc,
3633             typeComparisonErrorMessage(
3634                 "explicit pointee type doesn't match operand's pointee type",
3635                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3636       }
3637 
3638       unsigned GEPWidth =
3639           BaseType->isVectorTy()
3640               ? cast<FixedVectorType>(BaseType)->getNumElements()
3641               : 0;
3642 
3643       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3644       for (Constant *Val : Indices) {
3645         Type *ValTy = Val->getType();
3646         if (!ValTy->isIntOrIntVectorTy())
3647           return error(ID.Loc, "getelementptr index must be an integer");
3648         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3649           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3650           if (GEPWidth && (ValNumEl != GEPWidth))
3651             return error(
3652                 ID.Loc,
3653                 "getelementptr vector index has a wrong number of elements");
3654           // GEPWidth may have been unknown because the base is a scalar,
3655           // but it is known now.
3656           GEPWidth = ValNumEl;
3657         }
3658       }
3659 
3660       SmallPtrSet<Type*, 4> Visited;
3661       if (!Indices.empty() && !Ty->isSized(&Visited))
3662         return error(ID.Loc, "base element of getelementptr must be sized");
3663 
3664       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3665         return error(ID.Loc, "invalid getelementptr indices");
3666 
3667       if (InRangeOp) {
3668         if (*InRangeOp == 0)
3669           return error(ID.Loc,
3670                        "inrange keyword may not appear on pointer operand");
3671         --*InRangeOp;
3672       }
3673 
3674       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3675                                                       InBounds, InRangeOp);
3676     } else if (Opc == Instruction::Select) {
3677       if (Elts.size() != 3)
3678         return error(ID.Loc, "expected three operands to select");
3679       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3680                                                               Elts[2]))
3681         return error(ID.Loc, Reason);
3682       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3683     } else if (Opc == Instruction::ShuffleVector) {
3684       if (Elts.size() != 3)
3685         return error(ID.Loc, "expected three operands to shufflevector");
3686       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3687         return error(ID.Loc, "invalid operands to shufflevector");
3688       SmallVector<int, 16> Mask;
3689       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3690       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3691     } else if (Opc == Instruction::ExtractElement) {
3692       if (Elts.size() != 2)
3693         return error(ID.Loc, "expected two operands to extractelement");
3694       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3695         return error(ID.Loc, "invalid extractelement operands");
3696       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3697     } else {
3698       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3699       if (Elts.size() != 3)
3700         return error(ID.Loc, "expected three operands to insertelement");
3701       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3702         return error(ID.Loc, "invalid insertelement operands");
3703       ID.ConstantVal =
3704                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3705     }
3706 
3707     ID.Kind = ValID::t_Constant;
3708     return false;
3709   }
3710   }
3711 
3712   Lex.Lex();
3713   return false;
3714 }
3715 
3716 /// parseGlobalValue - parse a global value with the specified type.
3717 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3718   C = nullptr;
3719   ValID ID;
3720   Value *V = nullptr;
3721   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3722                 convertValIDToValue(Ty, ID, V, nullptr);
3723   if (V && !(C = dyn_cast<Constant>(V)))
3724     return error(ID.Loc, "global values must be constants");
3725   return Parsed;
3726 }
3727 
3728 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3729   Type *Ty = nullptr;
3730   return parseType(Ty) || parseGlobalValue(Ty, V);
3731 }
3732 
3733 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3734   C = nullptr;
3735 
3736   LocTy KwLoc = Lex.getLoc();
3737   if (!EatIfPresent(lltok::kw_comdat))
3738     return false;
3739 
3740   if (EatIfPresent(lltok::lparen)) {
3741     if (Lex.getKind() != lltok::ComdatVar)
3742       return tokError("expected comdat variable");
3743     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3744     Lex.Lex();
3745     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3746       return true;
3747   } else {
3748     if (GlobalName.empty())
3749       return tokError("comdat cannot be unnamed");
3750     C = getComdat(std::string(GlobalName), KwLoc);
3751   }
3752 
3753   return false;
3754 }
3755 
3756 /// parseGlobalValueVector
3757 ///   ::= /*empty*/
3758 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3759 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3760                                       Optional<unsigned> *InRangeOp) {
3761   // Empty list.
3762   if (Lex.getKind() == lltok::rbrace ||
3763       Lex.getKind() == lltok::rsquare ||
3764       Lex.getKind() == lltok::greater ||
3765       Lex.getKind() == lltok::rparen)
3766     return false;
3767 
3768   do {
3769     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3770       *InRangeOp = Elts.size();
3771 
3772     Constant *C;
3773     if (parseGlobalTypeAndValue(C))
3774       return true;
3775     Elts.push_back(C);
3776   } while (EatIfPresent(lltok::comma));
3777 
3778   return false;
3779 }
3780 
3781 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3782   SmallVector<Metadata *, 16> Elts;
3783   if (parseMDNodeVector(Elts))
3784     return true;
3785 
3786   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3787   return false;
3788 }
3789 
3790 /// MDNode:
3791 ///  ::= !{ ... }
3792 ///  ::= !7
3793 ///  ::= !DILocation(...)
3794 bool LLParser::parseMDNode(MDNode *&N) {
3795   if (Lex.getKind() == lltok::MetadataVar)
3796     return parseSpecializedMDNode(N);
3797 
3798   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3799 }
3800 
3801 bool LLParser::parseMDNodeTail(MDNode *&N) {
3802   // !{ ... }
3803   if (Lex.getKind() == lltok::lbrace)
3804     return parseMDTuple(N);
3805 
3806   // !42
3807   return parseMDNodeID(N);
3808 }
3809 
3810 namespace {
3811 
3812 /// Structure to represent an optional metadata field.
3813 template <class FieldTy> struct MDFieldImpl {
3814   typedef MDFieldImpl ImplTy;
3815   FieldTy Val;
3816   bool Seen;
3817 
3818   void assign(FieldTy Val) {
3819     Seen = true;
3820     this->Val = std::move(Val);
3821   }
3822 
3823   explicit MDFieldImpl(FieldTy Default)
3824       : Val(std::move(Default)), Seen(false) {}
3825 };
3826 
3827 /// Structure to represent an optional metadata field that
3828 /// can be of either type (A or B) and encapsulates the
3829 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3830 /// to reimplement the specifics for representing each Field.
3831 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3832   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3833   FieldTypeA A;
3834   FieldTypeB B;
3835   bool Seen;
3836 
3837   enum {
3838     IsInvalid = 0,
3839     IsTypeA = 1,
3840     IsTypeB = 2
3841   } WhatIs;
3842 
3843   void assign(FieldTypeA A) {
3844     Seen = true;
3845     this->A = std::move(A);
3846     WhatIs = IsTypeA;
3847   }
3848 
3849   void assign(FieldTypeB B) {
3850     Seen = true;
3851     this->B = std::move(B);
3852     WhatIs = IsTypeB;
3853   }
3854 
3855   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3856       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3857         WhatIs(IsInvalid) {}
3858 };
3859 
3860 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3861   uint64_t Max;
3862 
3863   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3864       : ImplTy(Default), Max(Max) {}
3865 };
3866 
3867 struct LineField : public MDUnsignedField {
3868   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3869 };
3870 
3871 struct ColumnField : public MDUnsignedField {
3872   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3873 };
3874 
3875 struct DwarfTagField : public MDUnsignedField {
3876   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3877   DwarfTagField(dwarf::Tag DefaultTag)
3878       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3879 };
3880 
3881 struct DwarfMacinfoTypeField : public MDUnsignedField {
3882   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3883   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3884     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3885 };
3886 
3887 struct DwarfAttEncodingField : public MDUnsignedField {
3888   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3889 };
3890 
3891 struct DwarfVirtualityField : public MDUnsignedField {
3892   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3893 };
3894 
3895 struct DwarfLangField : public MDUnsignedField {
3896   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3897 };
3898 
3899 struct DwarfCCField : public MDUnsignedField {
3900   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3901 };
3902 
3903 struct EmissionKindField : public MDUnsignedField {
3904   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3905 };
3906 
3907 struct NameTableKindField : public MDUnsignedField {
3908   NameTableKindField()
3909       : MDUnsignedField(
3910             0, (unsigned)
3911                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3912 };
3913 
3914 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3915   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3916 };
3917 
3918 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3919   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3920 };
3921 
3922 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3923   MDAPSIntField() : ImplTy(APSInt()) {}
3924 };
3925 
3926 struct MDSignedField : public MDFieldImpl<int64_t> {
3927   int64_t Min;
3928   int64_t Max;
3929 
3930   MDSignedField(int64_t Default = 0)
3931       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3932   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3933       : ImplTy(Default), Min(Min), Max(Max) {}
3934 };
3935 
3936 struct MDBoolField : public MDFieldImpl<bool> {
3937   MDBoolField(bool Default = false) : ImplTy(Default) {}
3938 };
3939 
3940 struct MDField : public MDFieldImpl<Metadata *> {
3941   bool AllowNull;
3942 
3943   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3944 };
3945 
3946 struct MDStringField : public MDFieldImpl<MDString *> {
3947   bool AllowEmpty;
3948   MDStringField(bool AllowEmpty = true)
3949       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3950 };
3951 
3952 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3953   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3954 };
3955 
3956 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3957   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3958 };
3959 
3960 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3961   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3962       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3963 
3964   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3965                     bool AllowNull = true)
3966       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3967 
3968   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3969   bool isMDField() const { return WhatIs == IsTypeB; }
3970   int64_t getMDSignedValue() const {
3971     assert(isMDSignedField() && "Wrong field type");
3972     return A.Val;
3973   }
3974   Metadata *getMDFieldValue() const {
3975     assert(isMDField() && "Wrong field type");
3976     return B.Val;
3977   }
3978 };
3979 
3980 } // end anonymous namespace
3981 
3982 namespace llvm {
3983 
3984 template <>
3985 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3986   if (Lex.getKind() != lltok::APSInt)
3987     return tokError("expected integer");
3988 
3989   Result.assign(Lex.getAPSIntVal());
3990   Lex.Lex();
3991   return false;
3992 }
3993 
3994 template <>
3995 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3996                             MDUnsignedField &Result) {
3997   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3998     return tokError("expected unsigned integer");
3999 
4000   auto &U = Lex.getAPSIntVal();
4001   if (U.ugt(Result.Max))
4002     return tokError("value for '" + Name + "' too large, limit is " +
4003                     Twine(Result.Max));
4004   Result.assign(U.getZExtValue());
4005   assert(Result.Val <= Result.Max && "Expected value in range");
4006   Lex.Lex();
4007   return false;
4008 }
4009 
4010 template <>
4011 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4012   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4013 }
4014 template <>
4015 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4016   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4017 }
4018 
4019 template <>
4020 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4021   if (Lex.getKind() == lltok::APSInt)
4022     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4023 
4024   if (Lex.getKind() != lltok::DwarfTag)
4025     return tokError("expected DWARF tag");
4026 
4027   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4028   if (Tag == dwarf::DW_TAG_invalid)
4029     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4030   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4031 
4032   Result.assign(Tag);
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4039                             DwarfMacinfoTypeField &Result) {
4040   if (Lex.getKind() == lltok::APSInt)
4041     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 
4043   if (Lex.getKind() != lltok::DwarfMacinfo)
4044     return tokError("expected DWARF macinfo type");
4045 
4046   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4047   if (Macinfo == dwarf::DW_MACINFO_invalid)
4048     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4049                     Lex.getStrVal() + "'");
4050   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4051 
4052   Result.assign(Macinfo);
4053   Lex.Lex();
4054   return false;
4055 }
4056 
4057 template <>
4058 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4059                             DwarfVirtualityField &Result) {
4060   if (Lex.getKind() == lltok::APSInt)
4061     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4062 
4063   if (Lex.getKind() != lltok::DwarfVirtuality)
4064     return tokError("expected DWARF virtuality code");
4065 
4066   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4067   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4068     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4069                     Lex.getStrVal() + "'");
4070   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4071   Result.assign(Virtuality);
4072   Lex.Lex();
4073   return false;
4074 }
4075 
4076 template <>
4077 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4078   if (Lex.getKind() == lltok::APSInt)
4079     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4080 
4081   if (Lex.getKind() != lltok::DwarfLang)
4082     return tokError("expected DWARF language");
4083 
4084   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4085   if (!Lang)
4086     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4087                     "'");
4088   assert(Lang <= Result.Max && "Expected valid DWARF language");
4089   Result.assign(Lang);
4090   Lex.Lex();
4091   return false;
4092 }
4093 
4094 template <>
4095 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4096   if (Lex.getKind() == lltok::APSInt)
4097     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4098 
4099   if (Lex.getKind() != lltok::DwarfCC)
4100     return tokError("expected DWARF calling convention");
4101 
4102   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4103   if (!CC)
4104     return tokError("invalid DWARF calling convention" + Twine(" '") +
4105                     Lex.getStrVal() + "'");
4106   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4107   Result.assign(CC);
4108   Lex.Lex();
4109   return false;
4110 }
4111 
4112 template <>
4113 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4114                             EmissionKindField &Result) {
4115   if (Lex.getKind() == lltok::APSInt)
4116     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4117 
4118   if (Lex.getKind() != lltok::EmissionKind)
4119     return tokError("expected emission kind");
4120 
4121   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4122   if (!Kind)
4123     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4124                     "'");
4125   assert(*Kind <= Result.Max && "Expected valid emission kind");
4126   Result.assign(*Kind);
4127   Lex.Lex();
4128   return false;
4129 }
4130 
4131 template <>
4132 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4133                             NameTableKindField &Result) {
4134   if (Lex.getKind() == lltok::APSInt)
4135     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4136 
4137   if (Lex.getKind() != lltok::NameTableKind)
4138     return tokError("expected nameTable kind");
4139 
4140   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4141   if (!Kind)
4142     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4143                     "'");
4144   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4145   Result.assign((unsigned)*Kind);
4146   Lex.Lex();
4147   return false;
4148 }
4149 
4150 template <>
4151 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4152                             DwarfAttEncodingField &Result) {
4153   if (Lex.getKind() == lltok::APSInt)
4154     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4155 
4156   if (Lex.getKind() != lltok::DwarfAttEncoding)
4157     return tokError("expected DWARF type attribute encoding");
4158 
4159   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4160   if (!Encoding)
4161     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4162                     Lex.getStrVal() + "'");
4163   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4164   Result.assign(Encoding);
4165   Lex.Lex();
4166   return false;
4167 }
4168 
4169 /// DIFlagField
4170 ///  ::= uint32
4171 ///  ::= DIFlagVector
4172 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4173 template <>
4174 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4175 
4176   // parser for a single flag.
4177   auto parseFlag = [&](DINode::DIFlags &Val) {
4178     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4179       uint32_t TempVal = static_cast<uint32_t>(Val);
4180       bool Res = parseUInt32(TempVal);
4181       Val = static_cast<DINode::DIFlags>(TempVal);
4182       return Res;
4183     }
4184 
4185     if (Lex.getKind() != lltok::DIFlag)
4186       return tokError("expected debug info flag");
4187 
4188     Val = DINode::getFlag(Lex.getStrVal());
4189     if (!Val)
4190       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4191                       "'");
4192     Lex.Lex();
4193     return false;
4194   };
4195 
4196   // parse the flags and combine them together.
4197   DINode::DIFlags Combined = DINode::FlagZero;
4198   do {
4199     DINode::DIFlags Val;
4200     if (parseFlag(Val))
4201       return true;
4202     Combined |= Val;
4203   } while (EatIfPresent(lltok::bar));
4204 
4205   Result.assign(Combined);
4206   return false;
4207 }
4208 
4209 /// DISPFlagField
4210 ///  ::= uint32
4211 ///  ::= DISPFlagVector
4212 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4213 template <>
4214 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4215 
4216   // parser for a single flag.
4217   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4218     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4219       uint32_t TempVal = static_cast<uint32_t>(Val);
4220       bool Res = parseUInt32(TempVal);
4221       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4222       return Res;
4223     }
4224 
4225     if (Lex.getKind() != lltok::DISPFlag)
4226       return tokError("expected debug info flag");
4227 
4228     Val = DISubprogram::getFlag(Lex.getStrVal());
4229     if (!Val)
4230       return tokError(Twine("invalid subprogram debug info flag '") +
4231                       Lex.getStrVal() + "'");
4232     Lex.Lex();
4233     return false;
4234   };
4235 
4236   // parse the flags and combine them together.
4237   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4238   do {
4239     DISubprogram::DISPFlags Val;
4240     if (parseFlag(Val))
4241       return true;
4242     Combined |= Val;
4243   } while (EatIfPresent(lltok::bar));
4244 
4245   Result.assign(Combined);
4246   return false;
4247 }
4248 
4249 template <>
4250 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4251   if (Lex.getKind() != lltok::APSInt)
4252     return tokError("expected signed integer");
4253 
4254   auto &S = Lex.getAPSIntVal();
4255   if (S < Result.Min)
4256     return tokError("value for '" + Name + "' too small, limit is " +
4257                     Twine(Result.Min));
4258   if (S > Result.Max)
4259     return tokError("value for '" + Name + "' too large, limit is " +
4260                     Twine(Result.Max));
4261   Result.assign(S.getExtValue());
4262   assert(Result.Val >= Result.Min && "Expected value in range");
4263   assert(Result.Val <= Result.Max && "Expected value in range");
4264   Lex.Lex();
4265   return false;
4266 }
4267 
4268 template <>
4269 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4270   switch (Lex.getKind()) {
4271   default:
4272     return tokError("expected 'true' or 'false'");
4273   case lltok::kw_true:
4274     Result.assign(true);
4275     break;
4276   case lltok::kw_false:
4277     Result.assign(false);
4278     break;
4279   }
4280   Lex.Lex();
4281   return false;
4282 }
4283 
4284 template <>
4285 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4286   if (Lex.getKind() == lltok::kw_null) {
4287     if (!Result.AllowNull)
4288       return tokError("'" + Name + "' cannot be null");
4289     Lex.Lex();
4290     Result.assign(nullptr);
4291     return false;
4292   }
4293 
4294   Metadata *MD;
4295   if (parseMetadata(MD, nullptr))
4296     return true;
4297 
4298   Result.assign(MD);
4299   return false;
4300 }
4301 
4302 template <>
4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4304                             MDSignedOrMDField &Result) {
4305   // Try to parse a signed int.
4306   if (Lex.getKind() == lltok::APSInt) {
4307     MDSignedField Res = Result.A;
4308     if (!parseMDField(Loc, Name, Res)) {
4309       Result.assign(Res);
4310       return false;
4311     }
4312     return true;
4313   }
4314 
4315   // Otherwise, try to parse as an MDField.
4316   MDField Res = Result.B;
4317   if (!parseMDField(Loc, Name, Res)) {
4318     Result.assign(Res);
4319     return false;
4320   }
4321 
4322   return true;
4323 }
4324 
4325 template <>
4326 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4327   LocTy ValueLoc = Lex.getLoc();
4328   std::string S;
4329   if (parseStringConstant(S))
4330     return true;
4331 
4332   if (!Result.AllowEmpty && S.empty())
4333     return error(ValueLoc, "'" + Name + "' cannot be empty");
4334 
4335   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4336   return false;
4337 }
4338 
4339 template <>
4340 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4341   SmallVector<Metadata *, 4> MDs;
4342   if (parseMDNodeVector(MDs))
4343     return true;
4344 
4345   Result.assign(std::move(MDs));
4346   return false;
4347 }
4348 
4349 template <>
4350 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4351                             ChecksumKindField &Result) {
4352   Optional<DIFile::ChecksumKind> CSKind =
4353       DIFile::getChecksumKind(Lex.getStrVal());
4354 
4355   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4356     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4357                     "'");
4358 
4359   Result.assign(*CSKind);
4360   Lex.Lex();
4361   return false;
4362 }
4363 
4364 } // end namespace llvm
4365 
4366 template <class ParserTy>
4367 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4368   do {
4369     if (Lex.getKind() != lltok::LabelStr)
4370       return tokError("expected field label here");
4371 
4372     if (ParseField())
4373       return true;
4374   } while (EatIfPresent(lltok::comma));
4375 
4376   return false;
4377 }
4378 
4379 template <class ParserTy>
4380 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4381   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4382   Lex.Lex();
4383 
4384   if (parseToken(lltok::lparen, "expected '(' here"))
4385     return true;
4386   if (Lex.getKind() != lltok::rparen)
4387     if (parseMDFieldsImplBody(ParseField))
4388       return true;
4389 
4390   ClosingLoc = Lex.getLoc();
4391   return parseToken(lltok::rparen, "expected ')' here");
4392 }
4393 
4394 template <class FieldTy>
4395 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4396   if (Result.Seen)
4397     return tokError("field '" + Name + "' cannot be specified more than once");
4398 
4399   LocTy Loc = Lex.getLoc();
4400   Lex.Lex();
4401   return parseMDField(Loc, Name, Result);
4402 }
4403 
4404 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4405   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4406 
4407 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4408   if (Lex.getStrVal() == #CLASS)                                               \
4409     return parse##CLASS(N, IsDistinct);
4410 #include "llvm/IR/Metadata.def"
4411 
4412   return tokError("expected metadata type");
4413 }
4414 
4415 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4416 #define NOP_FIELD(NAME, TYPE, INIT)
4417 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4418   if (!NAME.Seen)                                                              \
4419     return error(ClosingLoc, "missing required field '" #NAME "'");
4420 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4421   if (Lex.getStrVal() == #NAME)                                                \
4422     return parseMDField(#NAME, NAME);
4423 #define PARSE_MD_FIELDS()                                                      \
4424   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4425   do {                                                                         \
4426     LocTy ClosingLoc;                                                          \
4427     if (parseMDFieldsImpl(                                                     \
4428             [&]() -> bool {                                                    \
4429               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4430               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4431                               "'");                                            \
4432             },                                                                 \
4433             ClosingLoc))                                                       \
4434       return true;                                                             \
4435     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4436   } while (false)
4437 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4438   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4439 
4440 /// parseDILocationFields:
4441 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4442 ///   isImplicitCode: true)
4443 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4444 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4445   OPTIONAL(line, LineField, );                                                 \
4446   OPTIONAL(column, ColumnField, );                                             \
4447   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4448   OPTIONAL(inlinedAt, MDField, );                                              \
4449   OPTIONAL(isImplicitCode, MDBoolField, (false));
4450   PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452 
4453   Result =
4454       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4455                                    inlinedAt.Val, isImplicitCode.Val));
4456   return false;
4457 }
4458 
4459 /// parseGenericDINode:
4460 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4461 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4462 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4463   REQUIRED(tag, DwarfTagField, );                                              \
4464   OPTIONAL(header, MDStringField, );                                           \
4465   OPTIONAL(operands, MDFieldList, );
4466   PARSE_MD_FIELDS();
4467 #undef VISIT_MD_FIELDS
4468 
4469   Result = GET_OR_DISTINCT(GenericDINode,
4470                            (Context, tag.Val, header.Val, operands.Val));
4471   return false;
4472 }
4473 
4474 /// parseDISubrange:
4475 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4476 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4477 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4478 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4479 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4480   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4481   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4482   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4483   OPTIONAL(stride, MDSignedOrMDField, );
4484   PARSE_MD_FIELDS();
4485 #undef VISIT_MD_FIELDS
4486 
4487   Metadata *Count = nullptr;
4488   Metadata *LowerBound = nullptr;
4489   Metadata *UpperBound = nullptr;
4490   Metadata *Stride = nullptr;
4491 
4492   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4493     if (Bound.isMDSignedField())
4494       return ConstantAsMetadata::get(ConstantInt::getSigned(
4495           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4496     if (Bound.isMDField())
4497       return Bound.getMDFieldValue();
4498     return nullptr;
4499   };
4500 
4501   Count = convToMetadata(count);
4502   LowerBound = convToMetadata(lowerBound);
4503   UpperBound = convToMetadata(upperBound);
4504   Stride = convToMetadata(stride);
4505 
4506   Result = GET_OR_DISTINCT(DISubrange,
4507                            (Context, Count, LowerBound, UpperBound, Stride));
4508 
4509   return false;
4510 }
4511 
4512 /// parseDIGenericSubrange:
4513 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4514 ///   !node3)
4515 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4516 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4517   OPTIONAL(count, MDSignedOrMDField, );                                        \
4518   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4519   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4520   OPTIONAL(stride, MDSignedOrMDField, );
4521   PARSE_MD_FIELDS();
4522 #undef VISIT_MD_FIELDS
4523 
4524   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4525     if (Bound.isMDSignedField())
4526       return DIExpression::get(
4527           Context, {dwarf::DW_OP_consts,
4528                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4529     if (Bound.isMDField())
4530       return Bound.getMDFieldValue();
4531     return nullptr;
4532   };
4533 
4534   Metadata *Count = ConvToMetadata(count);
4535   Metadata *LowerBound = ConvToMetadata(lowerBound);
4536   Metadata *UpperBound = ConvToMetadata(upperBound);
4537   Metadata *Stride = ConvToMetadata(stride);
4538 
4539   Result = GET_OR_DISTINCT(DIGenericSubrange,
4540                            (Context, Count, LowerBound, UpperBound, Stride));
4541 
4542   return false;
4543 }
4544 
4545 /// parseDIEnumerator:
4546 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4547 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4549   REQUIRED(name, MDStringField, );                                             \
4550   REQUIRED(value, MDAPSIntField, );                                            \
4551   OPTIONAL(isUnsigned, MDBoolField, (false));
4552   PARSE_MD_FIELDS();
4553 #undef VISIT_MD_FIELDS
4554 
4555   if (isUnsigned.Val && value.Val.isNegative())
4556     return tokError("unsigned enumerator with negative value");
4557 
4558   APSInt Value(value.Val);
4559   // Add a leading zero so that unsigned values with the msb set are not
4560   // mistaken for negative values when used for signed enumerators.
4561   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4562     Value = Value.zext(Value.getBitWidth() + 1);
4563 
4564   Result =
4565       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4566 
4567   return false;
4568 }
4569 
4570 /// parseDIBasicType:
4571 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4572 ///                    encoding: DW_ATE_encoding, flags: 0)
4573 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4575   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4576   OPTIONAL(name, MDStringField, );                                             \
4577   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4578   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4579   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4580   OPTIONAL(flags, DIFlagField, );
4581   PARSE_MD_FIELDS();
4582 #undef VISIT_MD_FIELDS
4583 
4584   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4585                                          align.Val, encoding.Val, flags.Val));
4586   return false;
4587 }
4588 
4589 /// parseDIStringType:
4590 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4591 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4594   OPTIONAL(name, MDStringField, );                                             \
4595   OPTIONAL(stringLength, MDField, );                                           \
4596   OPTIONAL(stringLengthExpression, MDField, );                                 \
4597   OPTIONAL(stringLocationExpression, MDField, );                               \
4598   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4599   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4600   OPTIONAL(encoding, DwarfAttEncodingField, );
4601   PARSE_MD_FIELDS();
4602 #undef VISIT_MD_FIELDS
4603 
4604   Result = GET_OR_DISTINCT(
4605       DIStringType,
4606       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4607        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4608   return false;
4609 }
4610 
4611 /// parseDIDerivedType:
4612 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4613 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4614 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4615 ///                      dwarfAddressSpace: 3)
4616 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4618   REQUIRED(tag, DwarfTagField, );                                              \
4619   OPTIONAL(name, MDStringField, );                                             \
4620   OPTIONAL(file, MDField, );                                                   \
4621   OPTIONAL(line, LineField, );                                                 \
4622   OPTIONAL(scope, MDField, );                                                  \
4623   REQUIRED(baseType, MDField, );                                               \
4624   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4625   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4626   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4627   OPTIONAL(flags, DIFlagField, );                                              \
4628   OPTIONAL(extraData, MDField, );                                              \
4629   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4630   OPTIONAL(annotations, MDField, );
4631   PARSE_MD_FIELDS();
4632 #undef VISIT_MD_FIELDS
4633 
4634   Optional<unsigned> DWARFAddressSpace;
4635   if (dwarfAddressSpace.Val != UINT32_MAX)
4636     DWARFAddressSpace = dwarfAddressSpace.Val;
4637 
4638   Result = GET_OR_DISTINCT(DIDerivedType,
4639                            (Context, tag.Val, name.Val, file.Val, line.Val,
4640                             scope.Val, baseType.Val, size.Val, align.Val,
4641                             offset.Val, DWARFAddressSpace, flags.Val,
4642                             extraData.Val, annotations.Val));
4643   return false;
4644 }
4645 
4646 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4647 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4648   REQUIRED(tag, DwarfTagField, );                                              \
4649   OPTIONAL(name, MDStringField, );                                             \
4650   OPTIONAL(file, MDField, );                                                   \
4651   OPTIONAL(line, LineField, );                                                 \
4652   OPTIONAL(scope, MDField, );                                                  \
4653   OPTIONAL(baseType, MDField, );                                               \
4654   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4655   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4656   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4657   OPTIONAL(flags, DIFlagField, );                                              \
4658   OPTIONAL(elements, MDField, );                                               \
4659   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4660   OPTIONAL(vtableHolder, MDField, );                                           \
4661   OPTIONAL(templateParams, MDField, );                                         \
4662   OPTIONAL(identifier, MDStringField, );                                       \
4663   OPTIONAL(discriminator, MDField, );                                          \
4664   OPTIONAL(dataLocation, MDField, );                                           \
4665   OPTIONAL(associated, MDField, );                                             \
4666   OPTIONAL(allocated, MDField, );                                              \
4667   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4668   OPTIONAL(annotations, MDField, );
4669   PARSE_MD_FIELDS();
4670 #undef VISIT_MD_FIELDS
4671 
4672   Metadata *Rank = nullptr;
4673   if (rank.isMDSignedField())
4674     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4675         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4676   else if (rank.isMDField())
4677     Rank = rank.getMDFieldValue();
4678 
4679   // If this has an identifier try to build an ODR type.
4680   if (identifier.Val)
4681     if (auto *CT = DICompositeType::buildODRType(
4682             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4683             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4684             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4685             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4686             Rank, annotations.Val)) {
4687       Result = CT;
4688       return false;
4689     }
4690 
4691   // Create a new node, and save it in the context if it belongs in the type
4692   // map.
4693   Result = GET_OR_DISTINCT(
4694       DICompositeType,
4695       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4696        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4697        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4698        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4699        annotations.Val));
4700   return false;
4701 }
4702 
4703 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4705   OPTIONAL(flags, DIFlagField, );                                              \
4706   OPTIONAL(cc, DwarfCCField, );                                                \
4707   REQUIRED(types, MDField, );
4708   PARSE_MD_FIELDS();
4709 #undef VISIT_MD_FIELDS
4710 
4711   Result = GET_OR_DISTINCT(DISubroutineType,
4712                            (Context, flags.Val, cc.Val, types.Val));
4713   return false;
4714 }
4715 
4716 /// parseDIFileType:
4717 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4718 ///                   checksumkind: CSK_MD5,
4719 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4720 ///                   source: "source file contents")
4721 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4722   // The default constructed value for checksumkind is required, but will never
4723   // be used, as the parser checks if the field was actually Seen before using
4724   // the Val.
4725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4726   REQUIRED(filename, MDStringField, );                                         \
4727   REQUIRED(directory, MDStringField, );                                        \
4728   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4729   OPTIONAL(checksum, MDStringField, );                                         \
4730   OPTIONAL(source, MDStringField, );
4731   PARSE_MD_FIELDS();
4732 #undef VISIT_MD_FIELDS
4733 
4734   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4735   if (checksumkind.Seen && checksum.Seen)
4736     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4737   else if (checksumkind.Seen || checksum.Seen)
4738     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4739 
4740   Optional<MDString *> OptSource;
4741   if (source.Seen)
4742     OptSource = source.Val;
4743   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4744                                     OptChecksum, OptSource));
4745   return false;
4746 }
4747 
4748 /// parseDICompileUnit:
4749 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4750 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4751 ///                      splitDebugFilename: "abc.debug",
4752 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4753 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4754 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4755 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4756   if (!IsDistinct)
4757     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4758 
4759 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4760   REQUIRED(language, DwarfLangField, );                                        \
4761   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4762   OPTIONAL(producer, MDStringField, );                                         \
4763   OPTIONAL(isOptimized, MDBoolField, );                                        \
4764   OPTIONAL(flags, MDStringField, );                                            \
4765   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4766   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4767   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4768   OPTIONAL(enums, MDField, );                                                  \
4769   OPTIONAL(retainedTypes, MDField, );                                          \
4770   OPTIONAL(globals, MDField, );                                                \
4771   OPTIONAL(imports, MDField, );                                                \
4772   OPTIONAL(macros, MDField, );                                                 \
4773   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4774   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4775   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4776   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4777   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4778   OPTIONAL(sysroot, MDStringField, );                                          \
4779   OPTIONAL(sdk, MDStringField, );
4780   PARSE_MD_FIELDS();
4781 #undef VISIT_MD_FIELDS
4782 
4783   Result = DICompileUnit::getDistinct(
4784       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4785       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4786       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4787       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4788       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4789   return false;
4790 }
4791 
4792 /// parseDISubprogram:
4793 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4794 ///                     file: !1, line: 7, type: !2, isLocal: false,
4795 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4796 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4797 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4798 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4799 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4800 ///                     annotations: !8)
4801 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4802   auto Loc = Lex.getLoc();
4803 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4804   OPTIONAL(scope, MDField, );                                                  \
4805   OPTIONAL(name, MDStringField, );                                             \
4806   OPTIONAL(linkageName, MDStringField, );                                      \
4807   OPTIONAL(file, MDField, );                                                   \
4808   OPTIONAL(line, LineField, );                                                 \
4809   OPTIONAL(type, MDField, );                                                   \
4810   OPTIONAL(isLocal, MDBoolField, );                                            \
4811   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4812   OPTIONAL(scopeLine, LineField, );                                            \
4813   OPTIONAL(containingType, MDField, );                                         \
4814   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4815   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4816   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4817   OPTIONAL(flags, DIFlagField, );                                              \
4818   OPTIONAL(spFlags, DISPFlagField, );                                          \
4819   OPTIONAL(isOptimized, MDBoolField, );                                        \
4820   OPTIONAL(unit, MDField, );                                                   \
4821   OPTIONAL(templateParams, MDField, );                                         \
4822   OPTIONAL(declaration, MDField, );                                            \
4823   OPTIONAL(retainedNodes, MDField, );                                          \
4824   OPTIONAL(thrownTypes, MDField, );                                            \
4825   OPTIONAL(annotations, MDField, );
4826   PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4828 
4829   // An explicit spFlags field takes precedence over individual fields in
4830   // older IR versions.
4831   DISubprogram::DISPFlags SPFlags =
4832       spFlags.Seen ? spFlags.Val
4833                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4834                                              isOptimized.Val, virtuality.Val);
4835   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4836     return Lex.Error(
4837         Loc,
4838         "missing 'distinct', required for !DISubprogram that is a Definition");
4839   Result = GET_OR_DISTINCT(
4840       DISubprogram,
4841       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4842        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4843        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4844        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4845   return false;
4846 }
4847 
4848 /// parseDILexicalBlock:
4849 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4850 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4852   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4853   OPTIONAL(file, MDField, );                                                   \
4854   OPTIONAL(line, LineField, );                                                 \
4855   OPTIONAL(column, ColumnField, );
4856   PARSE_MD_FIELDS();
4857 #undef VISIT_MD_FIELDS
4858 
4859   Result = GET_OR_DISTINCT(
4860       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4861   return false;
4862 }
4863 
4864 /// parseDILexicalBlockFile:
4865 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4866 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4868   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4869   OPTIONAL(file, MDField, );                                                   \
4870   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4871   PARSE_MD_FIELDS();
4872 #undef VISIT_MD_FIELDS
4873 
4874   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4875                            (Context, scope.Val, file.Val, discriminator.Val));
4876   return false;
4877 }
4878 
4879 /// parseDICommonBlock:
4880 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4881 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4883   REQUIRED(scope, MDField, );                                                  \
4884   OPTIONAL(declaration, MDField, );                                            \
4885   OPTIONAL(name, MDStringField, );                                             \
4886   OPTIONAL(file, MDField, );                                                   \
4887   OPTIONAL(line, LineField, );
4888   PARSE_MD_FIELDS();
4889 #undef VISIT_MD_FIELDS
4890 
4891   Result = GET_OR_DISTINCT(DICommonBlock,
4892                            (Context, scope.Val, declaration.Val, name.Val,
4893                             file.Val, line.Val));
4894   return false;
4895 }
4896 
4897 /// parseDINamespace:
4898 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4899 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4901   REQUIRED(scope, MDField, );                                                  \
4902   OPTIONAL(name, MDStringField, );                                             \
4903   OPTIONAL(exportSymbols, MDBoolField, );
4904   PARSE_MD_FIELDS();
4905 #undef VISIT_MD_FIELDS
4906 
4907   Result = GET_OR_DISTINCT(DINamespace,
4908                            (Context, scope.Val, name.Val, exportSymbols.Val));
4909   return false;
4910 }
4911 
4912 /// parseDIMacro:
4913 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4914 ///   "SomeValue")
4915 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4917   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4918   OPTIONAL(line, LineField, );                                                 \
4919   REQUIRED(name, MDStringField, );                                             \
4920   OPTIONAL(value, MDStringField, );
4921   PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4923 
4924   Result = GET_OR_DISTINCT(DIMacro,
4925                            (Context, type.Val, line.Val, name.Val, value.Val));
4926   return false;
4927 }
4928 
4929 /// parseDIMacroFile:
4930 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4931 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4932 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4933   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4934   OPTIONAL(line, LineField, );                                                 \
4935   REQUIRED(file, MDField, );                                                   \
4936   OPTIONAL(nodes, MDField, );
4937   PARSE_MD_FIELDS();
4938 #undef VISIT_MD_FIELDS
4939 
4940   Result = GET_OR_DISTINCT(DIMacroFile,
4941                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4942   return false;
4943 }
4944 
4945 /// parseDIModule:
4946 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4947 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4948 ///   file: !1, line: 4, isDecl: false)
4949 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4950 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4951   REQUIRED(scope, MDField, );                                                  \
4952   REQUIRED(name, MDStringField, );                                             \
4953   OPTIONAL(configMacros, MDStringField, );                                     \
4954   OPTIONAL(includePath, MDStringField, );                                      \
4955   OPTIONAL(apinotes, MDStringField, );                                         \
4956   OPTIONAL(file, MDField, );                                                   \
4957   OPTIONAL(line, LineField, );                                                 \
4958   OPTIONAL(isDecl, MDBoolField, );
4959   PARSE_MD_FIELDS();
4960 #undef VISIT_MD_FIELDS
4961 
4962   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4963                                       configMacros.Val, includePath.Val,
4964                                       apinotes.Val, line.Val, isDecl.Val));
4965   return false;
4966 }
4967 
4968 /// parseDITemplateTypeParameter:
4969 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4970 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4972   OPTIONAL(name, MDStringField, );                                             \
4973   REQUIRED(type, MDField, );                                                   \
4974   OPTIONAL(defaulted, MDBoolField, );
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4979                            (Context, name.Val, type.Val, defaulted.Val));
4980   return false;
4981 }
4982 
4983 /// parseDITemplateValueParameter:
4984 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4985 ///                                 name: "V", type: !1, defaulted: false,
4986 ///                                 value: i32 7)
4987 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4989   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4990   OPTIONAL(name, MDStringField, );                                             \
4991   OPTIONAL(type, MDField, );                                                   \
4992   OPTIONAL(defaulted, MDBoolField, );                                          \
4993   REQUIRED(value, MDField, );
4994 
4995   PARSE_MD_FIELDS();
4996 #undef VISIT_MD_FIELDS
4997 
4998   Result = GET_OR_DISTINCT(
4999       DITemplateValueParameter,
5000       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5001   return false;
5002 }
5003 
5004 /// parseDIGlobalVariable:
5005 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5006 ///                         file: !1, line: 7, type: !2, isLocal: false,
5007 ///                         isDefinition: true, templateParams: !3,
5008 ///                         declaration: !4, align: 8)
5009 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5010 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5011   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5012   OPTIONAL(scope, MDField, );                                                  \
5013   OPTIONAL(linkageName, MDStringField, );                                      \
5014   OPTIONAL(file, MDField, );                                                   \
5015   OPTIONAL(line, LineField, );                                                 \
5016   OPTIONAL(type, MDField, );                                                   \
5017   OPTIONAL(isLocal, MDBoolField, );                                            \
5018   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5019   OPTIONAL(templateParams, MDField, );                                         \
5020   OPTIONAL(declaration, MDField, );                                            \
5021   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5022   OPTIONAL(annotations, MDField, );
5023   PARSE_MD_FIELDS();
5024 #undef VISIT_MD_FIELDS
5025 
5026   Result =
5027       GET_OR_DISTINCT(DIGlobalVariable,
5028                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5029                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5030                        declaration.Val, templateParams.Val, align.Val,
5031                        annotations.Val));
5032   return false;
5033 }
5034 
5035 /// parseDILocalVariable:
5036 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5037 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5038 ///                        align: 8)
5039 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5040 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5041 ///                        align: 8)
5042 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5043 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5044   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5045   OPTIONAL(name, MDStringField, );                                             \
5046   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5047   OPTIONAL(file, MDField, );                                                   \
5048   OPTIONAL(line, LineField, );                                                 \
5049   OPTIONAL(type, MDField, );                                                   \
5050   OPTIONAL(flags, DIFlagField, );                                              \
5051   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5052   OPTIONAL(annotations, MDField, );
5053   PARSE_MD_FIELDS();
5054 #undef VISIT_MD_FIELDS
5055 
5056   Result = GET_OR_DISTINCT(DILocalVariable,
5057                            (Context, scope.Val, name.Val, file.Val, line.Val,
5058                             type.Val, arg.Val, flags.Val, align.Val,
5059                             annotations.Val));
5060   return false;
5061 }
5062 
5063 /// parseDILabel:
5064 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5065 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5066 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5067   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5068   REQUIRED(name, MDStringField, );                                             \
5069   REQUIRED(file, MDField, );                                                   \
5070   REQUIRED(line, LineField, );
5071   PARSE_MD_FIELDS();
5072 #undef VISIT_MD_FIELDS
5073 
5074   Result = GET_OR_DISTINCT(DILabel,
5075                            (Context, scope.Val, name.Val, file.Val, line.Val));
5076   return false;
5077 }
5078 
5079 /// parseDIExpression:
5080 ///   ::= !DIExpression(0, 7, -1)
5081 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5082   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5083   Lex.Lex();
5084 
5085   if (parseToken(lltok::lparen, "expected '(' here"))
5086     return true;
5087 
5088   SmallVector<uint64_t, 8> Elements;
5089   if (Lex.getKind() != lltok::rparen)
5090     do {
5091       if (Lex.getKind() == lltok::DwarfOp) {
5092         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5093           Lex.Lex();
5094           Elements.push_back(Op);
5095           continue;
5096         }
5097         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5098       }
5099 
5100       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5101         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5102           Lex.Lex();
5103           Elements.push_back(Op);
5104           continue;
5105         }
5106         return tokError(Twine("invalid DWARF attribute encoding '") +
5107                         Lex.getStrVal() + "'");
5108       }
5109 
5110       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5111         return tokError("expected unsigned integer");
5112 
5113       auto &U = Lex.getAPSIntVal();
5114       if (U.ugt(UINT64_MAX))
5115         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5116       Elements.push_back(U.getZExtValue());
5117       Lex.Lex();
5118     } while (EatIfPresent(lltok::comma));
5119 
5120   if (parseToken(lltok::rparen, "expected ')' here"))
5121     return true;
5122 
5123   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5124   return false;
5125 }
5126 
5127 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5128   return parseDIArgList(Result, IsDistinct, nullptr);
5129 }
5130 /// ParseDIArgList:
5131 ///   ::= !DIArgList(i32 7, i64 %0)
5132 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5133                               PerFunctionState *PFS) {
5134   assert(PFS && "Expected valid function state");
5135   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5136   Lex.Lex();
5137 
5138   if (parseToken(lltok::lparen, "expected '(' here"))
5139     return true;
5140 
5141   SmallVector<ValueAsMetadata *, 4> Args;
5142   if (Lex.getKind() != lltok::rparen)
5143     do {
5144       Metadata *MD;
5145       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5146         return true;
5147       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5148     } while (EatIfPresent(lltok::comma));
5149 
5150   if (parseToken(lltok::rparen, "expected ')' here"))
5151     return true;
5152 
5153   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5154   return false;
5155 }
5156 
5157 /// parseDIGlobalVariableExpression:
5158 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5159 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5160                                                bool IsDistinct) {
5161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5162   REQUIRED(var, MDField, );                                                    \
5163   REQUIRED(expr, MDField, );
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result =
5168       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5169   return false;
5170 }
5171 
5172 /// parseDIObjCProperty:
5173 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5174 ///                       getter: "getFoo", attributes: 7, type: !2)
5175 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5177   OPTIONAL(name, MDStringField, );                                             \
5178   OPTIONAL(file, MDField, );                                                   \
5179   OPTIONAL(line, LineField, );                                                 \
5180   OPTIONAL(setter, MDStringField, );                                           \
5181   OPTIONAL(getter, MDStringField, );                                           \
5182   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5183   OPTIONAL(type, MDField, );
5184   PARSE_MD_FIELDS();
5185 #undef VISIT_MD_FIELDS
5186 
5187   Result = GET_OR_DISTINCT(DIObjCProperty,
5188                            (Context, name.Val, file.Val, line.Val, setter.Val,
5189                             getter.Val, attributes.Val, type.Val));
5190   return false;
5191 }
5192 
5193 /// parseDIImportedEntity:
5194 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5195 ///                         line: 7, name: "foo", elements: !2)
5196 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5197 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5198   REQUIRED(tag, DwarfTagField, );                                              \
5199   REQUIRED(scope, MDField, );                                                  \
5200   OPTIONAL(entity, MDField, );                                                 \
5201   OPTIONAL(file, MDField, );                                                   \
5202   OPTIONAL(line, LineField, );                                                 \
5203   OPTIONAL(name, MDStringField, );                                             \
5204   OPTIONAL(elements, MDField, );
5205   PARSE_MD_FIELDS();
5206 #undef VISIT_MD_FIELDS
5207 
5208   Result = GET_OR_DISTINCT(DIImportedEntity,
5209                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5210                             line.Val, name.Val, elements.Val));
5211   return false;
5212 }
5213 
5214 #undef PARSE_MD_FIELD
5215 #undef NOP_FIELD
5216 #undef REQUIRE_FIELD
5217 #undef DECLARE_FIELD
5218 
5219 /// parseMetadataAsValue
5220 ///  ::= metadata i32 %local
5221 ///  ::= metadata i32 @global
5222 ///  ::= metadata i32 7
5223 ///  ::= metadata !0
5224 ///  ::= metadata !{...}
5225 ///  ::= metadata !"string"
5226 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5227   // Note: the type 'metadata' has already been parsed.
5228   Metadata *MD;
5229   if (parseMetadata(MD, &PFS))
5230     return true;
5231 
5232   V = MetadataAsValue::get(Context, MD);
5233   return false;
5234 }
5235 
5236 /// parseValueAsMetadata
5237 ///  ::= i32 %local
5238 ///  ::= i32 @global
5239 ///  ::= i32 7
5240 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5241                                     PerFunctionState *PFS) {
5242   Type *Ty;
5243   LocTy Loc;
5244   if (parseType(Ty, TypeMsg, Loc))
5245     return true;
5246   if (Ty->isMetadataTy())
5247     return error(Loc, "invalid metadata-value-metadata roundtrip");
5248 
5249   Value *V;
5250   if (parseValue(Ty, V, PFS))
5251     return true;
5252 
5253   MD = ValueAsMetadata::get(V);
5254   return false;
5255 }
5256 
5257 /// parseMetadata
5258 ///  ::= i32 %local
5259 ///  ::= i32 @global
5260 ///  ::= i32 7
5261 ///  ::= !42
5262 ///  ::= !{...}
5263 ///  ::= !"string"
5264 ///  ::= !DILocation(...)
5265 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5266   if (Lex.getKind() == lltok::MetadataVar) {
5267     MDNode *N;
5268     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5269     // so parsing this requires a Function State.
5270     if (Lex.getStrVal() == "DIArgList") {
5271       if (parseDIArgList(N, false, PFS))
5272         return true;
5273     } else if (parseSpecializedMDNode(N)) {
5274       return true;
5275     }
5276     MD = N;
5277     return false;
5278   }
5279 
5280   // ValueAsMetadata:
5281   // <type> <value>
5282   if (Lex.getKind() != lltok::exclaim)
5283     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5284 
5285   // '!'.
5286   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5287   Lex.Lex();
5288 
5289   // MDString:
5290   //   ::= '!' STRINGCONSTANT
5291   if (Lex.getKind() == lltok::StringConstant) {
5292     MDString *S;
5293     if (parseMDString(S))
5294       return true;
5295     MD = S;
5296     return false;
5297   }
5298 
5299   // MDNode:
5300   // !{ ... }
5301   // !7
5302   MDNode *N;
5303   if (parseMDNodeTail(N))
5304     return true;
5305   MD = N;
5306   return false;
5307 }
5308 
5309 //===----------------------------------------------------------------------===//
5310 // Function Parsing.
5311 //===----------------------------------------------------------------------===//
5312 
5313 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5314                                    PerFunctionState *PFS) {
5315   if (Ty->isFunctionTy())
5316     return error(ID.Loc, "functions are not values, refer to them as pointers");
5317 
5318   switch (ID.Kind) {
5319   case ValID::t_LocalID:
5320     if (!PFS)
5321       return error(ID.Loc, "invalid use of function-local name");
5322     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5323     return V == nullptr;
5324   case ValID::t_LocalName:
5325     if (!PFS)
5326       return error(ID.Loc, "invalid use of function-local name");
5327     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5328     return V == nullptr;
5329   case ValID::t_InlineAsm: {
5330     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5331       return error(ID.Loc, "invalid type for inline asm constraint string");
5332     V = InlineAsm::get(
5333         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5334         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5335     return false;
5336   }
5337   case ValID::t_GlobalName:
5338     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5339     if (V && ID.NoCFI)
5340       V = NoCFIValue::get(cast<GlobalValue>(V));
5341     return V == nullptr;
5342   case ValID::t_GlobalID:
5343     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5344     if (V && ID.NoCFI)
5345       V = NoCFIValue::get(cast<GlobalValue>(V));
5346     return V == nullptr;
5347   case ValID::t_APSInt:
5348     if (!Ty->isIntegerTy())
5349       return error(ID.Loc, "integer constant must have integer type");
5350     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5351     V = ConstantInt::get(Context, ID.APSIntVal);
5352     return false;
5353   case ValID::t_APFloat:
5354     if (!Ty->isFloatingPointTy() ||
5355         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5356       return error(ID.Loc, "floating point constant invalid for type");
5357 
5358     // The lexer has no type info, so builds all half, bfloat, float, and double
5359     // FP constants as double.  Fix this here.  Long double does not need this.
5360     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5361       // Check for signaling before potentially converting and losing that info.
5362       bool IsSNAN = ID.APFloatVal.isSignaling();
5363       bool Ignored;
5364       if (Ty->isHalfTy())
5365         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5366                               &Ignored);
5367       else if (Ty->isBFloatTy())
5368         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5369                               &Ignored);
5370       else if (Ty->isFloatTy())
5371         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5372                               &Ignored);
5373       if (IsSNAN) {
5374         // The convert call above may quiet an SNaN, so manufacture another
5375         // SNaN. The bitcast works because the payload (significand) parameter
5376         // is truncated to fit.
5377         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5378         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5379                                          ID.APFloatVal.isNegative(), &Payload);
5380       }
5381     }
5382     V = ConstantFP::get(Context, ID.APFloatVal);
5383 
5384     if (V->getType() != Ty)
5385       return error(ID.Loc, "floating point constant does not have type '" +
5386                                getTypeString(Ty) + "'");
5387 
5388     return false;
5389   case ValID::t_Null:
5390     if (!Ty->isPointerTy())
5391       return error(ID.Loc, "null must be a pointer type");
5392     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5393     return false;
5394   case ValID::t_Undef:
5395     // FIXME: LabelTy should not be a first-class type.
5396     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5397       return error(ID.Loc, "invalid type for undef constant");
5398     V = UndefValue::get(Ty);
5399     return false;
5400   case ValID::t_EmptyArray:
5401     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5402       return error(ID.Loc, "invalid empty array initializer");
5403     V = UndefValue::get(Ty);
5404     return false;
5405   case ValID::t_Zero:
5406     // FIXME: LabelTy should not be a first-class type.
5407     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5408       return error(ID.Loc, "invalid type for null constant");
5409     V = Constant::getNullValue(Ty);
5410     return false;
5411   case ValID::t_None:
5412     if (!Ty->isTokenTy())
5413       return error(ID.Loc, "invalid type for none constant");
5414     V = Constant::getNullValue(Ty);
5415     return false;
5416   case ValID::t_Poison:
5417     // FIXME: LabelTy should not be a first-class type.
5418     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5419       return error(ID.Loc, "invalid type for poison constant");
5420     V = PoisonValue::get(Ty);
5421     return false;
5422   case ValID::t_Constant:
5423     if (ID.ConstantVal->getType() != Ty)
5424       return error(ID.Loc, "constant expression type mismatch: got type '" +
5425                                getTypeString(ID.ConstantVal->getType()) +
5426                                "' but expected '" + getTypeString(Ty) + "'");
5427     V = ID.ConstantVal;
5428     return false;
5429   case ValID::t_ConstantStruct:
5430   case ValID::t_PackedConstantStruct:
5431     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5432       if (ST->getNumElements() != ID.UIntVal)
5433         return error(ID.Loc,
5434                      "initializer with struct type has wrong # elements");
5435       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5436         return error(ID.Loc, "packed'ness of initializer and type don't match");
5437 
5438       // Verify that the elements are compatible with the structtype.
5439       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5440         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5441           return error(
5442               ID.Loc,
5443               "element " + Twine(i) +
5444                   " of struct initializer doesn't match struct element type");
5445 
5446       V = ConstantStruct::get(
5447           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5448     } else
5449       return error(ID.Loc, "constant expression type mismatch");
5450     return false;
5451   }
5452   llvm_unreachable("Invalid ValID");
5453 }
5454 
5455 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5456   C = nullptr;
5457   ValID ID;
5458   auto Loc = Lex.getLoc();
5459   if (parseValID(ID, /*PFS=*/nullptr))
5460     return true;
5461   switch (ID.Kind) {
5462   case ValID::t_APSInt:
5463   case ValID::t_APFloat:
5464   case ValID::t_Undef:
5465   case ValID::t_Constant:
5466   case ValID::t_ConstantStruct:
5467   case ValID::t_PackedConstantStruct: {
5468     Value *V;
5469     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5470       return true;
5471     assert(isa<Constant>(V) && "Expected a constant value");
5472     C = cast<Constant>(V);
5473     return false;
5474   }
5475   case ValID::t_Null:
5476     C = Constant::getNullValue(Ty);
5477     return false;
5478   default:
5479     return error(Loc, "expected a constant value");
5480   }
5481 }
5482 
5483 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5484   V = nullptr;
5485   ValID ID;
5486   return parseValID(ID, PFS, Ty) ||
5487          convertValIDToValue(Ty, ID, V, PFS);
5488 }
5489 
5490 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5491   Type *Ty = nullptr;
5492   return parseType(Ty) || parseValue(Ty, V, PFS);
5493 }
5494 
5495 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5496                                       PerFunctionState &PFS) {
5497   Value *V;
5498   Loc = Lex.getLoc();
5499   if (parseTypeAndValue(V, PFS))
5500     return true;
5501   if (!isa<BasicBlock>(V))
5502     return error(Loc, "expected a basic block");
5503   BB = cast<BasicBlock>(V);
5504   return false;
5505 }
5506 
5507 /// FunctionHeader
5508 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5509 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5510 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5511 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5512 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5513   // parse the linkage.
5514   LocTy LinkageLoc = Lex.getLoc();
5515   unsigned Linkage;
5516   unsigned Visibility;
5517   unsigned DLLStorageClass;
5518   bool DSOLocal;
5519   AttrBuilder RetAttrs(M->getContext());
5520   unsigned CC;
5521   bool HasLinkage;
5522   Type *RetType = nullptr;
5523   LocTy RetTypeLoc = Lex.getLoc();
5524   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5525                            DSOLocal) ||
5526       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5527       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5528     return true;
5529 
5530   // Verify that the linkage is ok.
5531   switch ((GlobalValue::LinkageTypes)Linkage) {
5532   case GlobalValue::ExternalLinkage:
5533     break; // always ok.
5534   case GlobalValue::ExternalWeakLinkage:
5535     if (IsDefine)
5536       return error(LinkageLoc, "invalid linkage for function definition");
5537     break;
5538   case GlobalValue::PrivateLinkage:
5539   case GlobalValue::InternalLinkage:
5540   case GlobalValue::AvailableExternallyLinkage:
5541   case GlobalValue::LinkOnceAnyLinkage:
5542   case GlobalValue::LinkOnceODRLinkage:
5543   case GlobalValue::WeakAnyLinkage:
5544   case GlobalValue::WeakODRLinkage:
5545     if (!IsDefine)
5546       return error(LinkageLoc, "invalid linkage for function declaration");
5547     break;
5548   case GlobalValue::AppendingLinkage:
5549   case GlobalValue::CommonLinkage:
5550     return error(LinkageLoc, "invalid function linkage type");
5551   }
5552 
5553   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5554     return error(LinkageLoc,
5555                  "symbol with local linkage must have default visibility");
5556 
5557   if (!FunctionType::isValidReturnType(RetType))
5558     return error(RetTypeLoc, "invalid function return type");
5559 
5560   LocTy NameLoc = Lex.getLoc();
5561 
5562   std::string FunctionName;
5563   if (Lex.getKind() == lltok::GlobalVar) {
5564     FunctionName = Lex.getStrVal();
5565   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5566     unsigned NameID = Lex.getUIntVal();
5567 
5568     if (NameID != NumberedVals.size())
5569       return tokError("function expected to be numbered '%" +
5570                       Twine(NumberedVals.size()) + "'");
5571   } else {
5572     return tokError("expected function name");
5573   }
5574 
5575   Lex.Lex();
5576 
5577   if (Lex.getKind() != lltok::lparen)
5578     return tokError("expected '(' in function argument list");
5579 
5580   SmallVector<ArgInfo, 8> ArgList;
5581   bool IsVarArg;
5582   AttrBuilder FuncAttrs(M->getContext());
5583   std::vector<unsigned> FwdRefAttrGrps;
5584   LocTy BuiltinLoc;
5585   std::string Section;
5586   std::string Partition;
5587   MaybeAlign Alignment;
5588   std::string GC;
5589   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5590   unsigned AddrSpace = 0;
5591   Constant *Prefix = nullptr;
5592   Constant *Prologue = nullptr;
5593   Constant *PersonalityFn = nullptr;
5594   Comdat *C;
5595 
5596   if (parseArgumentList(ArgList, IsVarArg) ||
5597       parseOptionalUnnamedAddr(UnnamedAddr) ||
5598       parseOptionalProgramAddrSpace(AddrSpace) ||
5599       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5600                                  BuiltinLoc) ||
5601       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5602       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5603       parseOptionalComdat(FunctionName, C) ||
5604       parseOptionalAlignment(Alignment) ||
5605       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5606       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5607       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5608       (EatIfPresent(lltok::kw_personality) &&
5609        parseGlobalTypeAndValue(PersonalityFn)))
5610     return true;
5611 
5612   if (FuncAttrs.contains(Attribute::Builtin))
5613     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5614 
5615   // If the alignment was parsed as an attribute, move to the alignment field.
5616   if (FuncAttrs.hasAlignmentAttr()) {
5617     Alignment = FuncAttrs.getAlignment();
5618     FuncAttrs.removeAttribute(Attribute::Alignment);
5619   }
5620 
5621   // Okay, if we got here, the function is syntactically valid.  Convert types
5622   // and do semantic checks.
5623   std::vector<Type*> ParamTypeList;
5624   SmallVector<AttributeSet, 8> Attrs;
5625 
5626   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5627     ParamTypeList.push_back(ArgList[i].Ty);
5628     Attrs.push_back(ArgList[i].Attrs);
5629   }
5630 
5631   AttributeList PAL =
5632       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5633                          AttributeSet::get(Context, RetAttrs), Attrs);
5634 
5635   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5636     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5637 
5638   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5639   PointerType *PFT = PointerType::get(FT, AddrSpace);
5640 
5641   Fn = nullptr;
5642   GlobalValue *FwdFn = nullptr;
5643   if (!FunctionName.empty()) {
5644     // If this was a definition of a forward reference, remove the definition
5645     // from the forward reference table and fill in the forward ref.
5646     auto FRVI = ForwardRefVals.find(FunctionName);
5647     if (FRVI != ForwardRefVals.end()) {
5648       FwdFn = FRVI->second.first;
5649       if (!FwdFn->getType()->isOpaque() &&
5650           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5651         return error(FRVI->second.second, "invalid forward reference to "
5652                                           "function as global value!");
5653       if (FwdFn->getType() != PFT)
5654         return error(FRVI->second.second,
5655                      "invalid forward reference to "
5656                      "function '" +
5657                          FunctionName +
5658                          "' with wrong type: "
5659                          "expected '" +
5660                          getTypeString(PFT) + "' but was '" +
5661                          getTypeString(FwdFn->getType()) + "'");
5662       ForwardRefVals.erase(FRVI);
5663     } else if ((Fn = M->getFunction(FunctionName))) {
5664       // Reject redefinitions.
5665       return error(NameLoc,
5666                    "invalid redefinition of function '" + FunctionName + "'");
5667     } else if (M->getNamedValue(FunctionName)) {
5668       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5669     }
5670 
5671   } else {
5672     // If this is a definition of a forward referenced function, make sure the
5673     // types agree.
5674     auto I = ForwardRefValIDs.find(NumberedVals.size());
5675     if (I != ForwardRefValIDs.end()) {
5676       FwdFn = I->second.first;
5677       if (FwdFn->getType() != PFT)
5678         return error(NameLoc, "type of definition and forward reference of '@" +
5679                                   Twine(NumberedVals.size()) +
5680                                   "' disagree: "
5681                                   "expected '" +
5682                                   getTypeString(PFT) + "' but was '" +
5683                                   getTypeString(FwdFn->getType()) + "'");
5684       ForwardRefValIDs.erase(I);
5685     }
5686   }
5687 
5688   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5689                         FunctionName, M);
5690 
5691   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5692 
5693   if (FunctionName.empty())
5694     NumberedVals.push_back(Fn);
5695 
5696   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5697   maybeSetDSOLocal(DSOLocal, *Fn);
5698   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5699   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5700   Fn->setCallingConv(CC);
5701   Fn->setAttributes(PAL);
5702   Fn->setUnnamedAddr(UnnamedAddr);
5703   Fn->setAlignment(MaybeAlign(Alignment));
5704   Fn->setSection(Section);
5705   Fn->setPartition(Partition);
5706   Fn->setComdat(C);
5707   Fn->setPersonalityFn(PersonalityFn);
5708   if (!GC.empty()) Fn->setGC(GC);
5709   Fn->setPrefixData(Prefix);
5710   Fn->setPrologueData(Prologue);
5711   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5712 
5713   // Add all of the arguments we parsed to the function.
5714   Function::arg_iterator ArgIt = Fn->arg_begin();
5715   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5716     // If the argument has a name, insert it into the argument symbol table.
5717     if (ArgList[i].Name.empty()) continue;
5718 
5719     // Set the name, if it conflicted, it will be auto-renamed.
5720     ArgIt->setName(ArgList[i].Name);
5721 
5722     if (ArgIt->getName() != ArgList[i].Name)
5723       return error(ArgList[i].Loc,
5724                    "redefinition of argument '%" + ArgList[i].Name + "'");
5725   }
5726 
5727   if (FwdFn) {
5728     FwdFn->replaceAllUsesWith(Fn);
5729     FwdFn->eraseFromParent();
5730   }
5731 
5732   if (IsDefine)
5733     return false;
5734 
5735   // Check the declaration has no block address forward references.
5736   ValID ID;
5737   if (FunctionName.empty()) {
5738     ID.Kind = ValID::t_GlobalID;
5739     ID.UIntVal = NumberedVals.size() - 1;
5740   } else {
5741     ID.Kind = ValID::t_GlobalName;
5742     ID.StrVal = FunctionName;
5743   }
5744   auto Blocks = ForwardRefBlockAddresses.find(ID);
5745   if (Blocks != ForwardRefBlockAddresses.end())
5746     return error(Blocks->first.Loc,
5747                  "cannot take blockaddress inside a declaration");
5748   return false;
5749 }
5750 
5751 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5752   ValID ID;
5753   if (FunctionNumber == -1) {
5754     ID.Kind = ValID::t_GlobalName;
5755     ID.StrVal = std::string(F.getName());
5756   } else {
5757     ID.Kind = ValID::t_GlobalID;
5758     ID.UIntVal = FunctionNumber;
5759   }
5760 
5761   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5762   if (Blocks == P.ForwardRefBlockAddresses.end())
5763     return false;
5764 
5765   for (const auto &I : Blocks->second) {
5766     const ValID &BBID = I.first;
5767     GlobalValue *GV = I.second;
5768 
5769     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5770            "Expected local id or name");
5771     BasicBlock *BB;
5772     if (BBID.Kind == ValID::t_LocalName)
5773       BB = getBB(BBID.StrVal, BBID.Loc);
5774     else
5775       BB = getBB(BBID.UIntVal, BBID.Loc);
5776     if (!BB)
5777       return P.error(BBID.Loc, "referenced value is not a basic block");
5778 
5779     Value *ResolvedVal = BlockAddress::get(&F, BB);
5780     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5781                                            ResolvedVal);
5782     if (!ResolvedVal)
5783       return true;
5784     GV->replaceAllUsesWith(ResolvedVal);
5785     GV->eraseFromParent();
5786   }
5787 
5788   P.ForwardRefBlockAddresses.erase(Blocks);
5789   return false;
5790 }
5791 
5792 /// parseFunctionBody
5793 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5794 bool LLParser::parseFunctionBody(Function &Fn) {
5795   if (Lex.getKind() != lltok::lbrace)
5796     return tokError("expected '{' in function body");
5797   Lex.Lex();  // eat the {.
5798 
5799   int FunctionNumber = -1;
5800   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5801 
5802   PerFunctionState PFS(*this, Fn, FunctionNumber);
5803 
5804   // Resolve block addresses and allow basic blocks to be forward-declared
5805   // within this function.
5806   if (PFS.resolveForwardRefBlockAddresses())
5807     return true;
5808   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5809 
5810   // We need at least one basic block.
5811   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5812     return tokError("function body requires at least one basic block");
5813 
5814   while (Lex.getKind() != lltok::rbrace &&
5815          Lex.getKind() != lltok::kw_uselistorder)
5816     if (parseBasicBlock(PFS))
5817       return true;
5818 
5819   while (Lex.getKind() != lltok::rbrace)
5820     if (parseUseListOrder(&PFS))
5821       return true;
5822 
5823   // Eat the }.
5824   Lex.Lex();
5825 
5826   // Verify function is ok.
5827   return PFS.finishFunction();
5828 }
5829 
5830 /// parseBasicBlock
5831 ///   ::= (LabelStr|LabelID)? Instruction*
5832 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5833   // If this basic block starts out with a name, remember it.
5834   std::string Name;
5835   int NameID = -1;
5836   LocTy NameLoc = Lex.getLoc();
5837   if (Lex.getKind() == lltok::LabelStr) {
5838     Name = Lex.getStrVal();
5839     Lex.Lex();
5840   } else if (Lex.getKind() == lltok::LabelID) {
5841     NameID = Lex.getUIntVal();
5842     Lex.Lex();
5843   }
5844 
5845   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5846   if (!BB)
5847     return true;
5848 
5849   std::string NameStr;
5850 
5851   // parse the instructions in this block until we get a terminator.
5852   Instruction *Inst;
5853   do {
5854     // This instruction may have three possibilities for a name: a) none
5855     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5856     LocTy NameLoc = Lex.getLoc();
5857     int NameID = -1;
5858     NameStr = "";
5859 
5860     if (Lex.getKind() == lltok::LocalVarID) {
5861       NameID = Lex.getUIntVal();
5862       Lex.Lex();
5863       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5864         return true;
5865     } else if (Lex.getKind() == lltok::LocalVar) {
5866       NameStr = Lex.getStrVal();
5867       Lex.Lex();
5868       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5869         return true;
5870     }
5871 
5872     switch (parseInstruction(Inst, BB, PFS)) {
5873     default:
5874       llvm_unreachable("Unknown parseInstruction result!");
5875     case InstError: return true;
5876     case InstNormal:
5877       BB->getInstList().push_back(Inst);
5878 
5879       // With a normal result, we check to see if the instruction is followed by
5880       // a comma and metadata.
5881       if (EatIfPresent(lltok::comma))
5882         if (parseInstructionMetadata(*Inst))
5883           return true;
5884       break;
5885     case InstExtraComma:
5886       BB->getInstList().push_back(Inst);
5887 
5888       // If the instruction parser ate an extra comma at the end of it, it
5889       // *must* be followed by metadata.
5890       if (parseInstructionMetadata(*Inst))
5891         return true;
5892       break;
5893     }
5894 
5895     // Set the name on the instruction.
5896     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5897       return true;
5898   } while (!Inst->isTerminator());
5899 
5900   return false;
5901 }
5902 
5903 //===----------------------------------------------------------------------===//
5904 // Instruction Parsing.
5905 //===----------------------------------------------------------------------===//
5906 
5907 /// parseInstruction - parse one of the many different instructions.
5908 ///
5909 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5910                                PerFunctionState &PFS) {
5911   lltok::Kind Token = Lex.getKind();
5912   if (Token == lltok::Eof)
5913     return tokError("found end of file when expecting more instructions");
5914   LocTy Loc = Lex.getLoc();
5915   unsigned KeywordVal = Lex.getUIntVal();
5916   Lex.Lex();  // Eat the keyword.
5917 
5918   switch (Token) {
5919   default:
5920     return error(Loc, "expected instruction opcode");
5921   // Terminator Instructions.
5922   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5923   case lltok::kw_ret:
5924     return parseRet(Inst, BB, PFS);
5925   case lltok::kw_br:
5926     return parseBr(Inst, PFS);
5927   case lltok::kw_switch:
5928     return parseSwitch(Inst, PFS);
5929   case lltok::kw_indirectbr:
5930     return parseIndirectBr(Inst, PFS);
5931   case lltok::kw_invoke:
5932     return parseInvoke(Inst, PFS);
5933   case lltok::kw_resume:
5934     return parseResume(Inst, PFS);
5935   case lltok::kw_cleanupret:
5936     return parseCleanupRet(Inst, PFS);
5937   case lltok::kw_catchret:
5938     return parseCatchRet(Inst, PFS);
5939   case lltok::kw_catchswitch:
5940     return parseCatchSwitch(Inst, PFS);
5941   case lltok::kw_catchpad:
5942     return parseCatchPad(Inst, PFS);
5943   case lltok::kw_cleanuppad:
5944     return parseCleanupPad(Inst, PFS);
5945   case lltok::kw_callbr:
5946     return parseCallBr(Inst, PFS);
5947   // Unary Operators.
5948   case lltok::kw_fneg: {
5949     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5950     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5951     if (Res != 0)
5952       return Res;
5953     if (FMF.any())
5954       Inst->setFastMathFlags(FMF);
5955     return false;
5956   }
5957   // Binary Operators.
5958   case lltok::kw_add:
5959   case lltok::kw_sub:
5960   case lltok::kw_mul:
5961   case lltok::kw_shl: {
5962     bool NUW = EatIfPresent(lltok::kw_nuw);
5963     bool NSW = EatIfPresent(lltok::kw_nsw);
5964     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5965 
5966     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5967       return true;
5968 
5969     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5970     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5971     return false;
5972   }
5973   case lltok::kw_fadd:
5974   case lltok::kw_fsub:
5975   case lltok::kw_fmul:
5976   case lltok::kw_fdiv:
5977   case lltok::kw_frem: {
5978     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5979     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5980     if (Res != 0)
5981       return Res;
5982     if (FMF.any())
5983       Inst->setFastMathFlags(FMF);
5984     return 0;
5985   }
5986 
5987   case lltok::kw_sdiv:
5988   case lltok::kw_udiv:
5989   case lltok::kw_lshr:
5990   case lltok::kw_ashr: {
5991     bool Exact = EatIfPresent(lltok::kw_exact);
5992 
5993     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5994       return true;
5995     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5996     return false;
5997   }
5998 
5999   case lltok::kw_urem:
6000   case lltok::kw_srem:
6001     return parseArithmetic(Inst, PFS, KeywordVal,
6002                            /*IsFP*/ false);
6003   case lltok::kw_and:
6004   case lltok::kw_or:
6005   case lltok::kw_xor:
6006     return parseLogical(Inst, PFS, KeywordVal);
6007   case lltok::kw_icmp:
6008     return parseCompare(Inst, PFS, KeywordVal);
6009   case lltok::kw_fcmp: {
6010     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6011     int Res = parseCompare(Inst, PFS, KeywordVal);
6012     if (Res != 0)
6013       return Res;
6014     if (FMF.any())
6015       Inst->setFastMathFlags(FMF);
6016     return 0;
6017   }
6018 
6019   // Casts.
6020   case lltok::kw_trunc:
6021   case lltok::kw_zext:
6022   case lltok::kw_sext:
6023   case lltok::kw_fptrunc:
6024   case lltok::kw_fpext:
6025   case lltok::kw_bitcast:
6026   case lltok::kw_addrspacecast:
6027   case lltok::kw_uitofp:
6028   case lltok::kw_sitofp:
6029   case lltok::kw_fptoui:
6030   case lltok::kw_fptosi:
6031   case lltok::kw_inttoptr:
6032   case lltok::kw_ptrtoint:
6033     return parseCast(Inst, PFS, KeywordVal);
6034   // Other.
6035   case lltok::kw_select: {
6036     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6037     int Res = parseSelect(Inst, PFS);
6038     if (Res != 0)
6039       return Res;
6040     if (FMF.any()) {
6041       if (!isa<FPMathOperator>(Inst))
6042         return error(Loc, "fast-math-flags specified for select without "
6043                           "floating-point scalar or vector return type");
6044       Inst->setFastMathFlags(FMF);
6045     }
6046     return 0;
6047   }
6048   case lltok::kw_va_arg:
6049     return parseVAArg(Inst, PFS);
6050   case lltok::kw_extractelement:
6051     return parseExtractElement(Inst, PFS);
6052   case lltok::kw_insertelement:
6053     return parseInsertElement(Inst, PFS);
6054   case lltok::kw_shufflevector:
6055     return parseShuffleVector(Inst, PFS);
6056   case lltok::kw_phi: {
6057     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6058     int Res = parsePHI(Inst, PFS);
6059     if (Res != 0)
6060       return Res;
6061     if (FMF.any()) {
6062       if (!isa<FPMathOperator>(Inst))
6063         return error(Loc, "fast-math-flags specified for phi without "
6064                           "floating-point scalar or vector return type");
6065       Inst->setFastMathFlags(FMF);
6066     }
6067     return 0;
6068   }
6069   case lltok::kw_landingpad:
6070     return parseLandingPad(Inst, PFS);
6071   case lltok::kw_freeze:
6072     return parseFreeze(Inst, PFS);
6073   // Call.
6074   case lltok::kw_call:
6075     return parseCall(Inst, PFS, CallInst::TCK_None);
6076   case lltok::kw_tail:
6077     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6078   case lltok::kw_musttail:
6079     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6080   case lltok::kw_notail:
6081     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6082   // Memory.
6083   case lltok::kw_alloca:
6084     return parseAlloc(Inst, PFS);
6085   case lltok::kw_load:
6086     return parseLoad(Inst, PFS);
6087   case lltok::kw_store:
6088     return parseStore(Inst, PFS);
6089   case lltok::kw_cmpxchg:
6090     return parseCmpXchg(Inst, PFS);
6091   case lltok::kw_atomicrmw:
6092     return parseAtomicRMW(Inst, PFS);
6093   case lltok::kw_fence:
6094     return parseFence(Inst, PFS);
6095   case lltok::kw_getelementptr:
6096     return parseGetElementPtr(Inst, PFS);
6097   case lltok::kw_extractvalue:
6098     return parseExtractValue(Inst, PFS);
6099   case lltok::kw_insertvalue:
6100     return parseInsertValue(Inst, PFS);
6101   }
6102 }
6103 
6104 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6105 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6106   if (Opc == Instruction::FCmp) {
6107     switch (Lex.getKind()) {
6108     default:
6109       return tokError("expected fcmp predicate (e.g. 'oeq')");
6110     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6111     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6112     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6113     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6114     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6115     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6116     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6117     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6118     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6119     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6120     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6121     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6122     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6123     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6124     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6125     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6126     }
6127   } else {
6128     switch (Lex.getKind()) {
6129     default:
6130       return tokError("expected icmp predicate (e.g. 'eq')");
6131     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6132     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6133     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6134     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6135     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6136     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6137     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6138     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6139     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6140     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6141     }
6142   }
6143   Lex.Lex();
6144   return false;
6145 }
6146 
6147 //===----------------------------------------------------------------------===//
6148 // Terminator Instructions.
6149 //===----------------------------------------------------------------------===//
6150 
6151 /// parseRet - parse a return instruction.
6152 ///   ::= 'ret' void (',' !dbg, !1)*
6153 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6154 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6155                         PerFunctionState &PFS) {
6156   SMLoc TypeLoc = Lex.getLoc();
6157   Type *Ty = nullptr;
6158   if (parseType(Ty, true /*void allowed*/))
6159     return true;
6160 
6161   Type *ResType = PFS.getFunction().getReturnType();
6162 
6163   if (Ty->isVoidTy()) {
6164     if (!ResType->isVoidTy())
6165       return error(TypeLoc, "value doesn't match function result type '" +
6166                                 getTypeString(ResType) + "'");
6167 
6168     Inst = ReturnInst::Create(Context);
6169     return false;
6170   }
6171 
6172   Value *RV;
6173   if (parseValue(Ty, RV, PFS))
6174     return true;
6175 
6176   if (ResType != RV->getType())
6177     return error(TypeLoc, "value doesn't match function result type '" +
6178                               getTypeString(ResType) + "'");
6179 
6180   Inst = ReturnInst::Create(Context, RV);
6181   return false;
6182 }
6183 
6184 /// parseBr
6185 ///   ::= 'br' TypeAndValue
6186 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6187 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6188   LocTy Loc, Loc2;
6189   Value *Op0;
6190   BasicBlock *Op1, *Op2;
6191   if (parseTypeAndValue(Op0, Loc, PFS))
6192     return true;
6193 
6194   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6195     Inst = BranchInst::Create(BB);
6196     return false;
6197   }
6198 
6199   if (Op0->getType() != Type::getInt1Ty(Context))
6200     return error(Loc, "branch condition must have 'i1' type");
6201 
6202   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6203       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6204       parseToken(lltok::comma, "expected ',' after true destination") ||
6205       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6206     return true;
6207 
6208   Inst = BranchInst::Create(Op1, Op2, Op0);
6209   return false;
6210 }
6211 
6212 /// parseSwitch
6213 ///  Instruction
6214 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6215 ///  JumpTable
6216 ///    ::= (TypeAndValue ',' TypeAndValue)*
6217 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6218   LocTy CondLoc, BBLoc;
6219   Value *Cond;
6220   BasicBlock *DefaultBB;
6221   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6222       parseToken(lltok::comma, "expected ',' after switch condition") ||
6223       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6224       parseToken(lltok::lsquare, "expected '[' with switch table"))
6225     return true;
6226 
6227   if (!Cond->getType()->isIntegerTy())
6228     return error(CondLoc, "switch condition must have integer type");
6229 
6230   // parse the jump table pairs.
6231   SmallPtrSet<Value*, 32> SeenCases;
6232   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6233   while (Lex.getKind() != lltok::rsquare) {
6234     Value *Constant;
6235     BasicBlock *DestBB;
6236 
6237     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6238         parseToken(lltok::comma, "expected ',' after case value") ||
6239         parseTypeAndBasicBlock(DestBB, PFS))
6240       return true;
6241 
6242     if (!SeenCases.insert(Constant).second)
6243       return error(CondLoc, "duplicate case value in switch");
6244     if (!isa<ConstantInt>(Constant))
6245       return error(CondLoc, "case value is not a constant integer");
6246 
6247     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6248   }
6249 
6250   Lex.Lex();  // Eat the ']'.
6251 
6252   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6253   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6254     SI->addCase(Table[i].first, Table[i].second);
6255   Inst = SI;
6256   return false;
6257 }
6258 
6259 /// parseIndirectBr
6260 ///  Instruction
6261 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6262 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6263   LocTy AddrLoc;
6264   Value *Address;
6265   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6266       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6267       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6268     return true;
6269 
6270   if (!Address->getType()->isPointerTy())
6271     return error(AddrLoc, "indirectbr address must have pointer type");
6272 
6273   // parse the destination list.
6274   SmallVector<BasicBlock*, 16> DestList;
6275 
6276   if (Lex.getKind() != lltok::rsquare) {
6277     BasicBlock *DestBB;
6278     if (parseTypeAndBasicBlock(DestBB, PFS))
6279       return true;
6280     DestList.push_back(DestBB);
6281 
6282     while (EatIfPresent(lltok::comma)) {
6283       if (parseTypeAndBasicBlock(DestBB, PFS))
6284         return true;
6285       DestList.push_back(DestBB);
6286     }
6287   }
6288 
6289   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6290     return true;
6291 
6292   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6293   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6294     IBI->addDestination(DestList[i]);
6295   Inst = IBI;
6296   return false;
6297 }
6298 
6299 /// parseInvoke
6300 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6301 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6302 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6303   LocTy CallLoc = Lex.getLoc();
6304   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6305   std::vector<unsigned> FwdRefAttrGrps;
6306   LocTy NoBuiltinLoc;
6307   unsigned CC;
6308   unsigned InvokeAddrSpace;
6309   Type *RetType = nullptr;
6310   LocTy RetTypeLoc;
6311   ValID CalleeID;
6312   SmallVector<ParamInfo, 16> ArgList;
6313   SmallVector<OperandBundleDef, 2> BundleList;
6314 
6315   BasicBlock *NormalBB, *UnwindBB;
6316   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6317       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6318       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6319       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6320       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6321                                  NoBuiltinLoc) ||
6322       parseOptionalOperandBundles(BundleList, PFS) ||
6323       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6324       parseTypeAndBasicBlock(NormalBB, PFS) ||
6325       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6326       parseTypeAndBasicBlock(UnwindBB, PFS))
6327     return true;
6328 
6329   // If RetType is a non-function pointer type, then this is the short syntax
6330   // for the call, which means that RetType is just the return type.  Infer the
6331   // rest of the function argument types from the arguments that are present.
6332   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6333   if (!Ty) {
6334     // Pull out the types of all of the arguments...
6335     std::vector<Type*> ParamTypes;
6336     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6337       ParamTypes.push_back(ArgList[i].V->getType());
6338 
6339     if (!FunctionType::isValidReturnType(RetType))
6340       return error(RetTypeLoc, "Invalid result type for LLVM function");
6341 
6342     Ty = FunctionType::get(RetType, ParamTypes, false);
6343   }
6344 
6345   CalleeID.FTy = Ty;
6346 
6347   // Look up the callee.
6348   Value *Callee;
6349   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6350                           Callee, &PFS))
6351     return true;
6352 
6353   // Set up the Attribute for the function.
6354   SmallVector<Value *, 8> Args;
6355   SmallVector<AttributeSet, 8> ArgAttrs;
6356 
6357   // Loop through FunctionType's arguments and ensure they are specified
6358   // correctly.  Also, gather any parameter attributes.
6359   FunctionType::param_iterator I = Ty->param_begin();
6360   FunctionType::param_iterator E = Ty->param_end();
6361   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6362     Type *ExpectedTy = nullptr;
6363     if (I != E) {
6364       ExpectedTy = *I++;
6365     } else if (!Ty->isVarArg()) {
6366       return error(ArgList[i].Loc, "too many arguments specified");
6367     }
6368 
6369     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6370       return error(ArgList[i].Loc, "argument is not of expected type '" +
6371                                        getTypeString(ExpectedTy) + "'");
6372     Args.push_back(ArgList[i].V);
6373     ArgAttrs.push_back(ArgList[i].Attrs);
6374   }
6375 
6376   if (I != E)
6377     return error(CallLoc, "not enough parameters specified for call");
6378 
6379   if (FnAttrs.hasAlignmentAttr())
6380     return error(CallLoc, "invoke instructions may not have an alignment");
6381 
6382   // Finish off the Attribute and check them
6383   AttributeList PAL =
6384       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6385                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6386 
6387   InvokeInst *II =
6388       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6389   II->setCallingConv(CC);
6390   II->setAttributes(PAL);
6391   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6392   Inst = II;
6393   return false;
6394 }
6395 
6396 /// parseResume
6397 ///   ::= 'resume' TypeAndValue
6398 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6399   Value *Exn; LocTy ExnLoc;
6400   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6401     return true;
6402 
6403   ResumeInst *RI = ResumeInst::Create(Exn);
6404   Inst = RI;
6405   return false;
6406 }
6407 
6408 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6409                                   PerFunctionState &PFS) {
6410   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6411     return true;
6412 
6413   while (Lex.getKind() != lltok::rsquare) {
6414     // If this isn't the first argument, we need a comma.
6415     if (!Args.empty() &&
6416         parseToken(lltok::comma, "expected ',' in argument list"))
6417       return true;
6418 
6419     // parse the argument.
6420     LocTy ArgLoc;
6421     Type *ArgTy = nullptr;
6422     if (parseType(ArgTy, ArgLoc))
6423       return true;
6424 
6425     Value *V;
6426     if (ArgTy->isMetadataTy()) {
6427       if (parseMetadataAsValue(V, PFS))
6428         return true;
6429     } else {
6430       if (parseValue(ArgTy, V, PFS))
6431         return true;
6432     }
6433     Args.push_back(V);
6434   }
6435 
6436   Lex.Lex();  // Lex the ']'.
6437   return false;
6438 }
6439 
6440 /// parseCleanupRet
6441 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6442 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6443   Value *CleanupPad = nullptr;
6444 
6445   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6446     return true;
6447 
6448   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6449     return true;
6450 
6451   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6452     return true;
6453 
6454   BasicBlock *UnwindBB = nullptr;
6455   if (Lex.getKind() == lltok::kw_to) {
6456     Lex.Lex();
6457     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6458       return true;
6459   } else {
6460     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6461       return true;
6462     }
6463   }
6464 
6465   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6466   return false;
6467 }
6468 
6469 /// parseCatchRet
6470 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6471 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6472   Value *CatchPad = nullptr;
6473 
6474   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6475     return true;
6476 
6477   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6478     return true;
6479 
6480   BasicBlock *BB;
6481   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6482       parseTypeAndBasicBlock(BB, PFS))
6483     return true;
6484 
6485   Inst = CatchReturnInst::Create(CatchPad, BB);
6486   return false;
6487 }
6488 
6489 /// parseCatchSwitch
6490 ///   ::= 'catchswitch' within Parent
6491 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6492   Value *ParentPad;
6493 
6494   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6495     return true;
6496 
6497   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6498       Lex.getKind() != lltok::LocalVarID)
6499     return tokError("expected scope value for catchswitch");
6500 
6501   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6502     return true;
6503 
6504   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6505     return true;
6506 
6507   SmallVector<BasicBlock *, 32> Table;
6508   do {
6509     BasicBlock *DestBB;
6510     if (parseTypeAndBasicBlock(DestBB, PFS))
6511       return true;
6512     Table.push_back(DestBB);
6513   } while (EatIfPresent(lltok::comma));
6514 
6515   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6516     return true;
6517 
6518   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6519     return true;
6520 
6521   BasicBlock *UnwindBB = nullptr;
6522   if (EatIfPresent(lltok::kw_to)) {
6523     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6524       return true;
6525   } else {
6526     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6527       return true;
6528   }
6529 
6530   auto *CatchSwitch =
6531       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6532   for (BasicBlock *DestBB : Table)
6533     CatchSwitch->addHandler(DestBB);
6534   Inst = CatchSwitch;
6535   return false;
6536 }
6537 
6538 /// parseCatchPad
6539 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6540 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6541   Value *CatchSwitch = nullptr;
6542 
6543   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6544     return true;
6545 
6546   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6547     return tokError("expected scope value for catchpad");
6548 
6549   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6550     return true;
6551 
6552   SmallVector<Value *, 8> Args;
6553   if (parseExceptionArgs(Args, PFS))
6554     return true;
6555 
6556   Inst = CatchPadInst::Create(CatchSwitch, Args);
6557   return false;
6558 }
6559 
6560 /// parseCleanupPad
6561 ///   ::= 'cleanuppad' within Parent ParamList
6562 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6563   Value *ParentPad = nullptr;
6564 
6565   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6566     return true;
6567 
6568   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6569       Lex.getKind() != lltok::LocalVarID)
6570     return tokError("expected scope value for cleanuppad");
6571 
6572   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6573     return true;
6574 
6575   SmallVector<Value *, 8> Args;
6576   if (parseExceptionArgs(Args, PFS))
6577     return true;
6578 
6579   Inst = CleanupPadInst::Create(ParentPad, Args);
6580   return false;
6581 }
6582 
6583 //===----------------------------------------------------------------------===//
6584 // Unary Operators.
6585 //===----------------------------------------------------------------------===//
6586 
6587 /// parseUnaryOp
6588 ///  ::= UnaryOp TypeAndValue ',' Value
6589 ///
6590 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6591 /// operand is allowed.
6592 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6593                             unsigned Opc, bool IsFP) {
6594   LocTy Loc; Value *LHS;
6595   if (parseTypeAndValue(LHS, Loc, PFS))
6596     return true;
6597 
6598   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6599                     : LHS->getType()->isIntOrIntVectorTy();
6600 
6601   if (!Valid)
6602     return error(Loc, "invalid operand type for instruction");
6603 
6604   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6605   return false;
6606 }
6607 
6608 /// parseCallBr
6609 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6610 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6611 ///       '[' LabelList ']'
6612 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6613   LocTy CallLoc = Lex.getLoc();
6614   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6615   std::vector<unsigned> FwdRefAttrGrps;
6616   LocTy NoBuiltinLoc;
6617   unsigned CC;
6618   Type *RetType = nullptr;
6619   LocTy RetTypeLoc;
6620   ValID CalleeID;
6621   SmallVector<ParamInfo, 16> ArgList;
6622   SmallVector<OperandBundleDef, 2> BundleList;
6623 
6624   BasicBlock *DefaultDest;
6625   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6626       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6627       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6628       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6629                                  NoBuiltinLoc) ||
6630       parseOptionalOperandBundles(BundleList, PFS) ||
6631       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6632       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6633       parseToken(lltok::lsquare, "expected '[' in callbr"))
6634     return true;
6635 
6636   // parse the destination list.
6637   SmallVector<BasicBlock *, 16> IndirectDests;
6638 
6639   if (Lex.getKind() != lltok::rsquare) {
6640     BasicBlock *DestBB;
6641     if (parseTypeAndBasicBlock(DestBB, PFS))
6642       return true;
6643     IndirectDests.push_back(DestBB);
6644 
6645     while (EatIfPresent(lltok::comma)) {
6646       if (parseTypeAndBasicBlock(DestBB, PFS))
6647         return true;
6648       IndirectDests.push_back(DestBB);
6649     }
6650   }
6651 
6652   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6653     return true;
6654 
6655   // If RetType is a non-function pointer type, then this is the short syntax
6656   // for the call, which means that RetType is just the return type.  Infer the
6657   // rest of the function argument types from the arguments that are present.
6658   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6659   if (!Ty) {
6660     // Pull out the types of all of the arguments...
6661     std::vector<Type *> ParamTypes;
6662     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6663       ParamTypes.push_back(ArgList[i].V->getType());
6664 
6665     if (!FunctionType::isValidReturnType(RetType))
6666       return error(RetTypeLoc, "Invalid result type for LLVM function");
6667 
6668     Ty = FunctionType::get(RetType, ParamTypes, false);
6669   }
6670 
6671   CalleeID.FTy = Ty;
6672 
6673   // Look up the callee.
6674   Value *Callee;
6675   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6676     return true;
6677 
6678   // Set up the Attribute for the function.
6679   SmallVector<Value *, 8> Args;
6680   SmallVector<AttributeSet, 8> ArgAttrs;
6681 
6682   // Loop through FunctionType's arguments and ensure they are specified
6683   // correctly.  Also, gather any parameter attributes.
6684   FunctionType::param_iterator I = Ty->param_begin();
6685   FunctionType::param_iterator E = Ty->param_end();
6686   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6687     Type *ExpectedTy = nullptr;
6688     if (I != E) {
6689       ExpectedTy = *I++;
6690     } else if (!Ty->isVarArg()) {
6691       return error(ArgList[i].Loc, "too many arguments specified");
6692     }
6693 
6694     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6695       return error(ArgList[i].Loc, "argument is not of expected type '" +
6696                                        getTypeString(ExpectedTy) + "'");
6697     Args.push_back(ArgList[i].V);
6698     ArgAttrs.push_back(ArgList[i].Attrs);
6699   }
6700 
6701   if (I != E)
6702     return error(CallLoc, "not enough parameters specified for call");
6703 
6704   if (FnAttrs.hasAlignmentAttr())
6705     return error(CallLoc, "callbr instructions may not have an alignment");
6706 
6707   // Finish off the Attribute and check them
6708   AttributeList PAL =
6709       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6710                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6711 
6712   CallBrInst *CBI =
6713       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6714                          BundleList);
6715   CBI->setCallingConv(CC);
6716   CBI->setAttributes(PAL);
6717   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6718   Inst = CBI;
6719   return false;
6720 }
6721 
6722 //===----------------------------------------------------------------------===//
6723 // Binary Operators.
6724 //===----------------------------------------------------------------------===//
6725 
6726 /// parseArithmetic
6727 ///  ::= ArithmeticOps TypeAndValue ',' Value
6728 ///
6729 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6730 /// operand is allowed.
6731 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6732                                unsigned Opc, bool IsFP) {
6733   LocTy Loc; Value *LHS, *RHS;
6734   if (parseTypeAndValue(LHS, Loc, PFS) ||
6735       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6736       parseValue(LHS->getType(), RHS, PFS))
6737     return true;
6738 
6739   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6740                     : LHS->getType()->isIntOrIntVectorTy();
6741 
6742   if (!Valid)
6743     return error(Loc, "invalid operand type for instruction");
6744 
6745   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6746   return false;
6747 }
6748 
6749 /// parseLogical
6750 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6751 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6752                             unsigned Opc) {
6753   LocTy Loc; Value *LHS, *RHS;
6754   if (parseTypeAndValue(LHS, Loc, PFS) ||
6755       parseToken(lltok::comma, "expected ',' in logical operation") ||
6756       parseValue(LHS->getType(), RHS, PFS))
6757     return true;
6758 
6759   if (!LHS->getType()->isIntOrIntVectorTy())
6760     return error(Loc,
6761                  "instruction requires integer or integer vector operands");
6762 
6763   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6764   return false;
6765 }
6766 
6767 /// parseCompare
6768 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6769 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6770 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6771                             unsigned Opc) {
6772   // parse the integer/fp comparison predicate.
6773   LocTy Loc;
6774   unsigned Pred;
6775   Value *LHS, *RHS;
6776   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6777       parseToken(lltok::comma, "expected ',' after compare value") ||
6778       parseValue(LHS->getType(), RHS, PFS))
6779     return true;
6780 
6781   if (Opc == Instruction::FCmp) {
6782     if (!LHS->getType()->isFPOrFPVectorTy())
6783       return error(Loc, "fcmp requires floating point operands");
6784     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6785   } else {
6786     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6787     if (!LHS->getType()->isIntOrIntVectorTy() &&
6788         !LHS->getType()->isPtrOrPtrVectorTy())
6789       return error(Loc, "icmp requires integer operands");
6790     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6791   }
6792   return false;
6793 }
6794 
6795 //===----------------------------------------------------------------------===//
6796 // Other Instructions.
6797 //===----------------------------------------------------------------------===//
6798 
6799 /// parseCast
6800 ///   ::= CastOpc TypeAndValue 'to' Type
6801 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6802                          unsigned Opc) {
6803   LocTy Loc;
6804   Value *Op;
6805   Type *DestTy = nullptr;
6806   if (parseTypeAndValue(Op, Loc, PFS) ||
6807       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6808       parseType(DestTy))
6809     return true;
6810 
6811   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6812     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6813     return error(Loc, "invalid cast opcode for cast from '" +
6814                           getTypeString(Op->getType()) + "' to '" +
6815                           getTypeString(DestTy) + "'");
6816   }
6817   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6818   return false;
6819 }
6820 
6821 /// parseSelect
6822 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6823 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6824   LocTy Loc;
6825   Value *Op0, *Op1, *Op2;
6826   if (parseTypeAndValue(Op0, Loc, PFS) ||
6827       parseToken(lltok::comma, "expected ',' after select condition") ||
6828       parseTypeAndValue(Op1, PFS) ||
6829       parseToken(lltok::comma, "expected ',' after select value") ||
6830       parseTypeAndValue(Op2, PFS))
6831     return true;
6832 
6833   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6834     return error(Loc, Reason);
6835 
6836   Inst = SelectInst::Create(Op0, Op1, Op2);
6837   return false;
6838 }
6839 
6840 /// parseVAArg
6841 ///   ::= 'va_arg' TypeAndValue ',' Type
6842 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6843   Value *Op;
6844   Type *EltTy = nullptr;
6845   LocTy TypeLoc;
6846   if (parseTypeAndValue(Op, PFS) ||
6847       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6848       parseType(EltTy, TypeLoc))
6849     return true;
6850 
6851   if (!EltTy->isFirstClassType())
6852     return error(TypeLoc, "va_arg requires operand with first class type");
6853 
6854   Inst = new VAArgInst(Op, EltTy);
6855   return false;
6856 }
6857 
6858 /// parseExtractElement
6859 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6860 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6861   LocTy Loc;
6862   Value *Op0, *Op1;
6863   if (parseTypeAndValue(Op0, Loc, PFS) ||
6864       parseToken(lltok::comma, "expected ',' after extract value") ||
6865       parseTypeAndValue(Op1, PFS))
6866     return true;
6867 
6868   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6869     return error(Loc, "invalid extractelement operands");
6870 
6871   Inst = ExtractElementInst::Create(Op0, Op1);
6872   return false;
6873 }
6874 
6875 /// parseInsertElement
6876 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6877 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6878   LocTy Loc;
6879   Value *Op0, *Op1, *Op2;
6880   if (parseTypeAndValue(Op0, Loc, PFS) ||
6881       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6882       parseTypeAndValue(Op1, PFS) ||
6883       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6884       parseTypeAndValue(Op2, PFS))
6885     return true;
6886 
6887   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6888     return error(Loc, "invalid insertelement operands");
6889 
6890   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6891   return false;
6892 }
6893 
6894 /// parseShuffleVector
6895 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6896 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6897   LocTy Loc;
6898   Value *Op0, *Op1, *Op2;
6899   if (parseTypeAndValue(Op0, Loc, PFS) ||
6900       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6901       parseTypeAndValue(Op1, PFS) ||
6902       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6903       parseTypeAndValue(Op2, PFS))
6904     return true;
6905 
6906   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6907     return error(Loc, "invalid shufflevector operands");
6908 
6909   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6910   return false;
6911 }
6912 
6913 /// parsePHI
6914 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6915 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6916   Type *Ty = nullptr;  LocTy TypeLoc;
6917   Value *Op0, *Op1;
6918 
6919   if (parseType(Ty, TypeLoc) ||
6920       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6921       parseValue(Ty, Op0, PFS) ||
6922       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6923       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6924       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6925     return true;
6926 
6927   bool AteExtraComma = false;
6928   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6929 
6930   while (true) {
6931     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6932 
6933     if (!EatIfPresent(lltok::comma))
6934       break;
6935 
6936     if (Lex.getKind() == lltok::MetadataVar) {
6937       AteExtraComma = true;
6938       break;
6939     }
6940 
6941     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6942         parseValue(Ty, Op0, PFS) ||
6943         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6944         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6945         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6946       return true;
6947   }
6948 
6949   if (!Ty->isFirstClassType())
6950     return error(TypeLoc, "phi node must have first class type");
6951 
6952   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6953   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6954     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6955   Inst = PN;
6956   return AteExtraComma ? InstExtraComma : InstNormal;
6957 }
6958 
6959 /// parseLandingPad
6960 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6961 /// Clause
6962 ///   ::= 'catch' TypeAndValue
6963 ///   ::= 'filter'
6964 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6965 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6966   Type *Ty = nullptr; LocTy TyLoc;
6967 
6968   if (parseType(Ty, TyLoc))
6969     return true;
6970 
6971   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6972   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6973 
6974   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6975     LandingPadInst::ClauseType CT;
6976     if (EatIfPresent(lltok::kw_catch))
6977       CT = LandingPadInst::Catch;
6978     else if (EatIfPresent(lltok::kw_filter))
6979       CT = LandingPadInst::Filter;
6980     else
6981       return tokError("expected 'catch' or 'filter' clause type");
6982 
6983     Value *V;
6984     LocTy VLoc;
6985     if (parseTypeAndValue(V, VLoc, PFS))
6986       return true;
6987 
6988     // A 'catch' type expects a non-array constant. A filter clause expects an
6989     // array constant.
6990     if (CT == LandingPadInst::Catch) {
6991       if (isa<ArrayType>(V->getType()))
6992         error(VLoc, "'catch' clause has an invalid type");
6993     } else {
6994       if (!isa<ArrayType>(V->getType()))
6995         error(VLoc, "'filter' clause has an invalid type");
6996     }
6997 
6998     Constant *CV = dyn_cast<Constant>(V);
6999     if (!CV)
7000       return error(VLoc, "clause argument must be a constant");
7001     LP->addClause(CV);
7002   }
7003 
7004   Inst = LP.release();
7005   return false;
7006 }
7007 
7008 /// parseFreeze
7009 ///   ::= 'freeze' Type Value
7010 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7011   LocTy Loc;
7012   Value *Op;
7013   if (parseTypeAndValue(Op, Loc, PFS))
7014     return true;
7015 
7016   Inst = new FreezeInst(Op);
7017   return false;
7018 }
7019 
7020 /// parseCall
7021 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7022 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7023 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7024 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7025 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7026 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7027 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7028 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7029 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7030                          CallInst::TailCallKind TCK) {
7031   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7032   std::vector<unsigned> FwdRefAttrGrps;
7033   LocTy BuiltinLoc;
7034   unsigned CallAddrSpace;
7035   unsigned CC;
7036   Type *RetType = nullptr;
7037   LocTy RetTypeLoc;
7038   ValID CalleeID;
7039   SmallVector<ParamInfo, 16> ArgList;
7040   SmallVector<OperandBundleDef, 2> BundleList;
7041   LocTy CallLoc = Lex.getLoc();
7042 
7043   if (TCK != CallInst::TCK_None &&
7044       parseToken(lltok::kw_call,
7045                  "expected 'tail call', 'musttail call', or 'notail call'"))
7046     return true;
7047 
7048   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7049 
7050   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7051       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7052       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7053       parseValID(CalleeID, &PFS) ||
7054       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7055                          PFS.getFunction().isVarArg()) ||
7056       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7057       parseOptionalOperandBundles(BundleList, PFS))
7058     return true;
7059 
7060   // If RetType is a non-function pointer type, then this is the short syntax
7061   // for the call, which means that RetType is just the return type.  Infer the
7062   // rest of the function argument types from the arguments that are present.
7063   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7064   if (!Ty) {
7065     // Pull out the types of all of the arguments...
7066     std::vector<Type*> ParamTypes;
7067     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7068       ParamTypes.push_back(ArgList[i].V->getType());
7069 
7070     if (!FunctionType::isValidReturnType(RetType))
7071       return error(RetTypeLoc, "Invalid result type for LLVM function");
7072 
7073     Ty = FunctionType::get(RetType, ParamTypes, false);
7074   }
7075 
7076   CalleeID.FTy = Ty;
7077 
7078   // Look up the callee.
7079   Value *Callee;
7080   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7081                           &PFS))
7082     return true;
7083 
7084   // Set up the Attribute for the function.
7085   SmallVector<AttributeSet, 8> Attrs;
7086 
7087   SmallVector<Value*, 8> Args;
7088 
7089   // Loop through FunctionType's arguments and ensure they are specified
7090   // correctly.  Also, gather any parameter attributes.
7091   FunctionType::param_iterator I = Ty->param_begin();
7092   FunctionType::param_iterator E = Ty->param_end();
7093   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7094     Type *ExpectedTy = nullptr;
7095     if (I != E) {
7096       ExpectedTy = *I++;
7097     } else if (!Ty->isVarArg()) {
7098       return error(ArgList[i].Loc, "too many arguments specified");
7099     }
7100 
7101     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7102       return error(ArgList[i].Loc, "argument is not of expected type '" +
7103                                        getTypeString(ExpectedTy) + "'");
7104     Args.push_back(ArgList[i].V);
7105     Attrs.push_back(ArgList[i].Attrs);
7106   }
7107 
7108   if (I != E)
7109     return error(CallLoc, "not enough parameters specified for call");
7110 
7111   if (FnAttrs.hasAlignmentAttr())
7112     return error(CallLoc, "call instructions may not have an alignment");
7113 
7114   // Finish off the Attribute and check them
7115   AttributeList PAL =
7116       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7117                          AttributeSet::get(Context, RetAttrs), Attrs);
7118 
7119   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7120   CI->setTailCallKind(TCK);
7121   CI->setCallingConv(CC);
7122   if (FMF.any()) {
7123     if (!isa<FPMathOperator>(CI)) {
7124       CI->deleteValue();
7125       return error(CallLoc, "fast-math-flags specified for call without "
7126                             "floating-point scalar or vector return type");
7127     }
7128     CI->setFastMathFlags(FMF);
7129   }
7130   CI->setAttributes(PAL);
7131   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7132   Inst = CI;
7133   return false;
7134 }
7135 
7136 //===----------------------------------------------------------------------===//
7137 // Memory Instructions.
7138 //===----------------------------------------------------------------------===//
7139 
7140 /// parseAlloc
7141 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7142 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7143 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7144   Value *Size = nullptr;
7145   LocTy SizeLoc, TyLoc, ASLoc;
7146   MaybeAlign Alignment;
7147   unsigned AddrSpace = 0;
7148   Type *Ty = nullptr;
7149 
7150   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7151   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7152 
7153   if (parseType(Ty, TyLoc))
7154     return true;
7155 
7156   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7157     return error(TyLoc, "invalid type for alloca");
7158 
7159   bool AteExtraComma = false;
7160   if (EatIfPresent(lltok::comma)) {
7161     if (Lex.getKind() == lltok::kw_align) {
7162       if (parseOptionalAlignment(Alignment))
7163         return true;
7164       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7165         return true;
7166     } else if (Lex.getKind() == lltok::kw_addrspace) {
7167       ASLoc = Lex.getLoc();
7168       if (parseOptionalAddrSpace(AddrSpace))
7169         return true;
7170     } else if (Lex.getKind() == lltok::MetadataVar) {
7171       AteExtraComma = true;
7172     } else {
7173       if (parseTypeAndValue(Size, SizeLoc, PFS))
7174         return true;
7175       if (EatIfPresent(lltok::comma)) {
7176         if (Lex.getKind() == lltok::kw_align) {
7177           if (parseOptionalAlignment(Alignment))
7178             return true;
7179           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7180             return true;
7181         } else if (Lex.getKind() == lltok::kw_addrspace) {
7182           ASLoc = Lex.getLoc();
7183           if (parseOptionalAddrSpace(AddrSpace))
7184             return true;
7185         } else if (Lex.getKind() == lltok::MetadataVar) {
7186           AteExtraComma = true;
7187         }
7188       }
7189     }
7190   }
7191 
7192   if (Size && !Size->getType()->isIntegerTy())
7193     return error(SizeLoc, "element count must have integer type");
7194 
7195   SmallPtrSet<Type *, 4> Visited;
7196   if (!Alignment && !Ty->isSized(&Visited))
7197     return error(TyLoc, "Cannot allocate unsized type");
7198   if (!Alignment)
7199     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7200   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7201   AI->setUsedWithInAlloca(IsInAlloca);
7202   AI->setSwiftError(IsSwiftError);
7203   Inst = AI;
7204   return AteExtraComma ? InstExtraComma : InstNormal;
7205 }
7206 
7207 /// parseLoad
7208 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7209 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7210 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7211 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7212   Value *Val; LocTy Loc;
7213   MaybeAlign Alignment;
7214   bool AteExtraComma = false;
7215   bool isAtomic = false;
7216   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7217   SyncScope::ID SSID = SyncScope::System;
7218 
7219   if (Lex.getKind() == lltok::kw_atomic) {
7220     isAtomic = true;
7221     Lex.Lex();
7222   }
7223 
7224   bool isVolatile = false;
7225   if (Lex.getKind() == lltok::kw_volatile) {
7226     isVolatile = true;
7227     Lex.Lex();
7228   }
7229 
7230   Type *Ty;
7231   LocTy ExplicitTypeLoc = Lex.getLoc();
7232   if (parseType(Ty) ||
7233       parseToken(lltok::comma, "expected comma after load's type") ||
7234       parseTypeAndValue(Val, Loc, PFS) ||
7235       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7236       parseOptionalCommaAlign(Alignment, AteExtraComma))
7237     return true;
7238 
7239   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7240     return error(Loc, "load operand must be a pointer to a first class type");
7241   if (isAtomic && !Alignment)
7242     return error(Loc, "atomic load must have explicit non-zero alignment");
7243   if (Ordering == AtomicOrdering::Release ||
7244       Ordering == AtomicOrdering::AcquireRelease)
7245     return error(Loc, "atomic load cannot use Release ordering");
7246 
7247   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7248     return error(
7249         ExplicitTypeLoc,
7250         typeComparisonErrorMessage(
7251             "explicit pointee type doesn't match operand's pointee type", Ty,
7252             Val->getType()->getNonOpaquePointerElementType()));
7253   }
7254   SmallPtrSet<Type *, 4> Visited;
7255   if (!Alignment && !Ty->isSized(&Visited))
7256     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7257   if (!Alignment)
7258     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7259   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7260   return AteExtraComma ? InstExtraComma : InstNormal;
7261 }
7262 
7263 /// parseStore
7264 
7265 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7266 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7267 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7268 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7269   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7270   MaybeAlign Alignment;
7271   bool AteExtraComma = false;
7272   bool isAtomic = false;
7273   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7274   SyncScope::ID SSID = SyncScope::System;
7275 
7276   if (Lex.getKind() == lltok::kw_atomic) {
7277     isAtomic = true;
7278     Lex.Lex();
7279   }
7280 
7281   bool isVolatile = false;
7282   if (Lex.getKind() == lltok::kw_volatile) {
7283     isVolatile = true;
7284     Lex.Lex();
7285   }
7286 
7287   if (parseTypeAndValue(Val, Loc, PFS) ||
7288       parseToken(lltok::comma, "expected ',' after store operand") ||
7289       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7290       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7291       parseOptionalCommaAlign(Alignment, AteExtraComma))
7292     return true;
7293 
7294   if (!Ptr->getType()->isPointerTy())
7295     return error(PtrLoc, "store operand must be a pointer");
7296   if (!Val->getType()->isFirstClassType())
7297     return error(Loc, "store operand must be a first class value");
7298   if (!cast<PointerType>(Ptr->getType())
7299            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7300     return error(Loc, "stored value and pointer type do not match");
7301   if (isAtomic && !Alignment)
7302     return error(Loc, "atomic store must have explicit non-zero alignment");
7303   if (Ordering == AtomicOrdering::Acquire ||
7304       Ordering == AtomicOrdering::AcquireRelease)
7305     return error(Loc, "atomic store cannot use Acquire ordering");
7306   SmallPtrSet<Type *, 4> Visited;
7307   if (!Alignment && !Val->getType()->isSized(&Visited))
7308     return error(Loc, "storing unsized types is not allowed");
7309   if (!Alignment)
7310     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7311 
7312   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7313   return AteExtraComma ? InstExtraComma : InstNormal;
7314 }
7315 
7316 /// parseCmpXchg
7317 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7318 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7319 ///       'Align'?
7320 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7321   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7322   bool AteExtraComma = false;
7323   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7324   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7325   SyncScope::ID SSID = SyncScope::System;
7326   bool isVolatile = false;
7327   bool isWeak = false;
7328   MaybeAlign Alignment;
7329 
7330   if (EatIfPresent(lltok::kw_weak))
7331     isWeak = true;
7332 
7333   if (EatIfPresent(lltok::kw_volatile))
7334     isVolatile = true;
7335 
7336   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7337       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7338       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7339       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7340       parseTypeAndValue(New, NewLoc, PFS) ||
7341       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7342       parseOrdering(FailureOrdering) ||
7343       parseOptionalCommaAlign(Alignment, AteExtraComma))
7344     return true;
7345 
7346   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7347     return tokError("invalid cmpxchg success ordering");
7348   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7349     return tokError("invalid cmpxchg failure ordering");
7350   if (!Ptr->getType()->isPointerTy())
7351     return error(PtrLoc, "cmpxchg operand must be a pointer");
7352   if (!cast<PointerType>(Ptr->getType())
7353            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7354     return error(CmpLoc, "compare value and pointer type do not match");
7355   if (!cast<PointerType>(Ptr->getType())
7356            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7357     return error(NewLoc, "new value and pointer type do not match");
7358   if (Cmp->getType() != New->getType())
7359     return error(NewLoc, "compare value and new value type do not match");
7360   if (!New->getType()->isFirstClassType())
7361     return error(NewLoc, "cmpxchg operand must be a first class value");
7362 
7363   const Align DefaultAlignment(
7364       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7365           Cmp->getType()));
7366 
7367   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7368       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7369       FailureOrdering, SSID);
7370   CXI->setVolatile(isVolatile);
7371   CXI->setWeak(isWeak);
7372 
7373   Inst = CXI;
7374   return AteExtraComma ? InstExtraComma : InstNormal;
7375 }
7376 
7377 /// parseAtomicRMW
7378 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7379 ///       'singlethread'? AtomicOrdering
7380 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7381   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7382   bool AteExtraComma = false;
7383   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7384   SyncScope::ID SSID = SyncScope::System;
7385   bool isVolatile = false;
7386   bool IsFP = false;
7387   AtomicRMWInst::BinOp Operation;
7388   MaybeAlign Alignment;
7389 
7390   if (EatIfPresent(lltok::kw_volatile))
7391     isVolatile = true;
7392 
7393   switch (Lex.getKind()) {
7394   default:
7395     return tokError("expected binary operation in atomicrmw");
7396   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7397   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7398   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7399   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7400   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7401   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7402   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7403   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7404   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7405   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7406   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7407   case lltok::kw_fadd:
7408     Operation = AtomicRMWInst::FAdd;
7409     IsFP = true;
7410     break;
7411   case lltok::kw_fsub:
7412     Operation = AtomicRMWInst::FSub;
7413     IsFP = true;
7414     break;
7415   }
7416   Lex.Lex();  // Eat the operation.
7417 
7418   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7419       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7420       parseTypeAndValue(Val, ValLoc, PFS) ||
7421       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7422       parseOptionalCommaAlign(Alignment, AteExtraComma))
7423     return true;
7424 
7425   if (Ordering == AtomicOrdering::Unordered)
7426     return tokError("atomicrmw cannot be unordered");
7427   if (!Ptr->getType()->isPointerTy())
7428     return error(PtrLoc, "atomicrmw operand must be a pointer");
7429   if (!cast<PointerType>(Ptr->getType())
7430            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7431     return error(ValLoc, "atomicrmw value and pointer type do not match");
7432 
7433   if (Operation == AtomicRMWInst::Xchg) {
7434     if (!Val->getType()->isIntegerTy() &&
7435         !Val->getType()->isFloatingPointTy()) {
7436       return error(ValLoc,
7437                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7438                        " operand must be an integer or floating point type");
7439     }
7440   } else if (IsFP) {
7441     if (!Val->getType()->isFloatingPointTy()) {
7442       return error(ValLoc, "atomicrmw " +
7443                                AtomicRMWInst::getOperationName(Operation) +
7444                                " operand must be a floating point type");
7445     }
7446   } else {
7447     if (!Val->getType()->isIntegerTy()) {
7448       return error(ValLoc, "atomicrmw " +
7449                                AtomicRMWInst::getOperationName(Operation) +
7450                                " operand must be an integer");
7451     }
7452   }
7453 
7454   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7455   if (Size < 8 || (Size & (Size - 1)))
7456     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7457                          " integer");
7458   const Align DefaultAlignment(
7459       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7460           Val->getType()));
7461   AtomicRMWInst *RMWI =
7462       new AtomicRMWInst(Operation, Ptr, Val,
7463                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7464   RMWI->setVolatile(isVolatile);
7465   Inst = RMWI;
7466   return AteExtraComma ? InstExtraComma : InstNormal;
7467 }
7468 
7469 /// parseFence
7470 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7471 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7472   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7473   SyncScope::ID SSID = SyncScope::System;
7474   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7475     return true;
7476 
7477   if (Ordering == AtomicOrdering::Unordered)
7478     return tokError("fence cannot be unordered");
7479   if (Ordering == AtomicOrdering::Monotonic)
7480     return tokError("fence cannot be monotonic");
7481 
7482   Inst = new FenceInst(Context, Ordering, SSID);
7483   return InstNormal;
7484 }
7485 
7486 /// parseGetElementPtr
7487 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7488 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7489   Value *Ptr = nullptr;
7490   Value *Val = nullptr;
7491   LocTy Loc, EltLoc;
7492 
7493   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7494 
7495   Type *Ty = nullptr;
7496   LocTy ExplicitTypeLoc = Lex.getLoc();
7497   if (parseType(Ty) ||
7498       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7499       parseTypeAndValue(Ptr, Loc, PFS))
7500     return true;
7501 
7502   Type *BaseType = Ptr->getType();
7503   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7504   if (!BasePointerType)
7505     return error(Loc, "base of getelementptr must be a pointer");
7506 
7507   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7508     return error(
7509         ExplicitTypeLoc,
7510         typeComparisonErrorMessage(
7511             "explicit pointee type doesn't match operand's pointee type", Ty,
7512             BasePointerType->getNonOpaquePointerElementType()));
7513   }
7514 
7515   SmallVector<Value*, 16> Indices;
7516   bool AteExtraComma = false;
7517   // GEP returns a vector of pointers if at least one of parameters is a vector.
7518   // All vector parameters should have the same vector width.
7519   ElementCount GEPWidth = BaseType->isVectorTy()
7520                               ? cast<VectorType>(BaseType)->getElementCount()
7521                               : ElementCount::getFixed(0);
7522 
7523   while (EatIfPresent(lltok::comma)) {
7524     if (Lex.getKind() == lltok::MetadataVar) {
7525       AteExtraComma = true;
7526       break;
7527     }
7528     if (parseTypeAndValue(Val, EltLoc, PFS))
7529       return true;
7530     if (!Val->getType()->isIntOrIntVectorTy())
7531       return error(EltLoc, "getelementptr index must be an integer");
7532 
7533     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7534       ElementCount ValNumEl = ValVTy->getElementCount();
7535       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7536         return error(
7537             EltLoc,
7538             "getelementptr vector index has a wrong number of elements");
7539       GEPWidth = ValNumEl;
7540     }
7541     Indices.push_back(Val);
7542   }
7543 
7544   SmallPtrSet<Type*, 4> Visited;
7545   if (!Indices.empty() && !Ty->isSized(&Visited))
7546     return error(Loc, "base element of getelementptr must be sized");
7547 
7548   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7549     return error(Loc, "invalid getelementptr indices");
7550   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7551   if (InBounds)
7552     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7553   return AteExtraComma ? InstExtraComma : InstNormal;
7554 }
7555 
7556 /// parseExtractValue
7557 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7558 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7559   Value *Val; LocTy Loc;
7560   SmallVector<unsigned, 4> Indices;
7561   bool AteExtraComma;
7562   if (parseTypeAndValue(Val, Loc, PFS) ||
7563       parseIndexList(Indices, AteExtraComma))
7564     return true;
7565 
7566   if (!Val->getType()->isAggregateType())
7567     return error(Loc, "extractvalue operand must be aggregate type");
7568 
7569   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7570     return error(Loc, "invalid indices for extractvalue");
7571   Inst = ExtractValueInst::Create(Val, Indices);
7572   return AteExtraComma ? InstExtraComma : InstNormal;
7573 }
7574 
7575 /// parseInsertValue
7576 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7577 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7578   Value *Val0, *Val1; LocTy Loc0, Loc1;
7579   SmallVector<unsigned, 4> Indices;
7580   bool AteExtraComma;
7581   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7582       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7583       parseTypeAndValue(Val1, Loc1, PFS) ||
7584       parseIndexList(Indices, AteExtraComma))
7585     return true;
7586 
7587   if (!Val0->getType()->isAggregateType())
7588     return error(Loc0, "insertvalue operand must be aggregate type");
7589 
7590   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7591   if (!IndexedType)
7592     return error(Loc0, "invalid indices for insertvalue");
7593   if (IndexedType != Val1->getType())
7594     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7595                            getTypeString(Val1->getType()) + "' instead of '" +
7596                            getTypeString(IndexedType) + "'");
7597   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7598   return AteExtraComma ? InstExtraComma : InstNormal;
7599 }
7600 
7601 //===----------------------------------------------------------------------===//
7602 // Embedded metadata.
7603 //===----------------------------------------------------------------------===//
7604 
7605 /// parseMDNodeVector
7606 ///   ::= { Element (',' Element)* }
7607 /// Element
7608 ///   ::= 'null' | TypeAndValue
7609 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7610   if (parseToken(lltok::lbrace, "expected '{' here"))
7611     return true;
7612 
7613   // Check for an empty list.
7614   if (EatIfPresent(lltok::rbrace))
7615     return false;
7616 
7617   do {
7618     // Null is a special case since it is typeless.
7619     if (EatIfPresent(lltok::kw_null)) {
7620       Elts.push_back(nullptr);
7621       continue;
7622     }
7623 
7624     Metadata *MD;
7625     if (parseMetadata(MD, nullptr))
7626       return true;
7627     Elts.push_back(MD);
7628   } while (EatIfPresent(lltok::comma));
7629 
7630   return parseToken(lltok::rbrace, "expected end of metadata node");
7631 }
7632 
7633 //===----------------------------------------------------------------------===//
7634 // Use-list order directives.
7635 //===----------------------------------------------------------------------===//
7636 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7637                                 SMLoc Loc) {
7638   if (V->use_empty())
7639     return error(Loc, "value has no uses");
7640 
7641   unsigned NumUses = 0;
7642   SmallDenseMap<const Use *, unsigned, 16> Order;
7643   for (const Use &U : V->uses()) {
7644     if (++NumUses > Indexes.size())
7645       break;
7646     Order[&U] = Indexes[NumUses - 1];
7647   }
7648   if (NumUses < 2)
7649     return error(Loc, "value only has one use");
7650   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7651     return error(Loc,
7652                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7653 
7654   V->sortUseList([&](const Use &L, const Use &R) {
7655     return Order.lookup(&L) < Order.lookup(&R);
7656   });
7657   return false;
7658 }
7659 
7660 /// parseUseListOrderIndexes
7661 ///   ::= '{' uint32 (',' uint32)+ '}'
7662 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7663   SMLoc Loc = Lex.getLoc();
7664   if (parseToken(lltok::lbrace, "expected '{' here"))
7665     return true;
7666   if (Lex.getKind() == lltok::rbrace)
7667     return Lex.Error("expected non-empty list of uselistorder indexes");
7668 
7669   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7670   // indexes should be distinct numbers in the range [0, size-1], and should
7671   // not be in order.
7672   unsigned Offset = 0;
7673   unsigned Max = 0;
7674   bool IsOrdered = true;
7675   assert(Indexes.empty() && "Expected empty order vector");
7676   do {
7677     unsigned Index;
7678     if (parseUInt32(Index))
7679       return true;
7680 
7681     // Update consistency checks.
7682     Offset += Index - Indexes.size();
7683     Max = std::max(Max, Index);
7684     IsOrdered &= Index == Indexes.size();
7685 
7686     Indexes.push_back(Index);
7687   } while (EatIfPresent(lltok::comma));
7688 
7689   if (parseToken(lltok::rbrace, "expected '}' here"))
7690     return true;
7691 
7692   if (Indexes.size() < 2)
7693     return error(Loc, "expected >= 2 uselistorder indexes");
7694   if (Offset != 0 || Max >= Indexes.size())
7695     return error(Loc,
7696                  "expected distinct uselistorder indexes in range [0, size)");
7697   if (IsOrdered)
7698     return error(Loc, "expected uselistorder indexes to change the order");
7699 
7700   return false;
7701 }
7702 
7703 /// parseUseListOrder
7704 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7705 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7706   SMLoc Loc = Lex.getLoc();
7707   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7708     return true;
7709 
7710   Value *V;
7711   SmallVector<unsigned, 16> Indexes;
7712   if (parseTypeAndValue(V, PFS) ||
7713       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7714       parseUseListOrderIndexes(Indexes))
7715     return true;
7716 
7717   return sortUseListOrder(V, Indexes, Loc);
7718 }
7719 
7720 /// parseUseListOrderBB
7721 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7722 bool LLParser::parseUseListOrderBB() {
7723   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7724   SMLoc Loc = Lex.getLoc();
7725   Lex.Lex();
7726 
7727   ValID Fn, Label;
7728   SmallVector<unsigned, 16> Indexes;
7729   if (parseValID(Fn, /*PFS=*/nullptr) ||
7730       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7731       parseValID(Label, /*PFS=*/nullptr) ||
7732       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7733       parseUseListOrderIndexes(Indexes))
7734     return true;
7735 
7736   // Check the function.
7737   GlobalValue *GV;
7738   if (Fn.Kind == ValID::t_GlobalName)
7739     GV = M->getNamedValue(Fn.StrVal);
7740   else if (Fn.Kind == ValID::t_GlobalID)
7741     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7742   else
7743     return error(Fn.Loc, "expected function name in uselistorder_bb");
7744   if (!GV)
7745     return error(Fn.Loc,
7746                  "invalid function forward reference in uselistorder_bb");
7747   auto *F = dyn_cast<Function>(GV);
7748   if (!F)
7749     return error(Fn.Loc, "expected function name in uselistorder_bb");
7750   if (F->isDeclaration())
7751     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7752 
7753   // Check the basic block.
7754   if (Label.Kind == ValID::t_LocalID)
7755     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7756   if (Label.Kind != ValID::t_LocalName)
7757     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7758   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7759   if (!V)
7760     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7761   if (!isa<BasicBlock>(V))
7762     return error(Label.Loc, "expected basic block in uselistorder_bb");
7763 
7764   return sortUseListOrder(V, Indexes, Loc);
7765 }
7766 
7767 /// ModuleEntry
7768 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7769 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7770 bool LLParser::parseModuleEntry(unsigned ID) {
7771   assert(Lex.getKind() == lltok::kw_module);
7772   Lex.Lex();
7773 
7774   std::string Path;
7775   if (parseToken(lltok::colon, "expected ':' here") ||
7776       parseToken(lltok::lparen, "expected '(' here") ||
7777       parseToken(lltok::kw_path, "expected 'path' here") ||
7778       parseToken(lltok::colon, "expected ':' here") ||
7779       parseStringConstant(Path) ||
7780       parseToken(lltok::comma, "expected ',' here") ||
7781       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7782       parseToken(lltok::colon, "expected ':' here") ||
7783       parseToken(lltok::lparen, "expected '(' here"))
7784     return true;
7785 
7786   ModuleHash Hash;
7787   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7788       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7789       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7790       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7791       parseUInt32(Hash[4]))
7792     return true;
7793 
7794   if (parseToken(lltok::rparen, "expected ')' here") ||
7795       parseToken(lltok::rparen, "expected ')' here"))
7796     return true;
7797 
7798   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7799   ModuleIdMap[ID] = ModuleEntry->first();
7800 
7801   return false;
7802 }
7803 
7804 /// TypeIdEntry
7805 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7806 bool LLParser::parseTypeIdEntry(unsigned ID) {
7807   assert(Lex.getKind() == lltok::kw_typeid);
7808   Lex.Lex();
7809 
7810   std::string Name;
7811   if (parseToken(lltok::colon, "expected ':' here") ||
7812       parseToken(lltok::lparen, "expected '(' here") ||
7813       parseToken(lltok::kw_name, "expected 'name' here") ||
7814       parseToken(lltok::colon, "expected ':' here") ||
7815       parseStringConstant(Name))
7816     return true;
7817 
7818   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7819   if (parseToken(lltok::comma, "expected ',' here") ||
7820       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7821     return true;
7822 
7823   // Check if this ID was forward referenced, and if so, update the
7824   // corresponding GUIDs.
7825   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7826   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7827     for (auto TIDRef : FwdRefTIDs->second) {
7828       assert(!*TIDRef.first &&
7829              "Forward referenced type id GUID expected to be 0");
7830       *TIDRef.first = GlobalValue::getGUID(Name);
7831     }
7832     ForwardRefTypeIds.erase(FwdRefTIDs);
7833   }
7834 
7835   return false;
7836 }
7837 
7838 /// TypeIdSummary
7839 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7840 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7841   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7842       parseToken(lltok::colon, "expected ':' here") ||
7843       parseToken(lltok::lparen, "expected '(' here") ||
7844       parseTypeTestResolution(TIS.TTRes))
7845     return true;
7846 
7847   if (EatIfPresent(lltok::comma)) {
7848     // Expect optional wpdResolutions field
7849     if (parseOptionalWpdResolutions(TIS.WPDRes))
7850       return true;
7851   }
7852 
7853   if (parseToken(lltok::rparen, "expected ')' here"))
7854     return true;
7855 
7856   return false;
7857 }
7858 
7859 static ValueInfo EmptyVI =
7860     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7861 
7862 /// TypeIdCompatibleVtableEntry
7863 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7864 ///   TypeIdCompatibleVtableInfo
7865 ///   ')'
7866 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7867   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7868   Lex.Lex();
7869 
7870   std::string Name;
7871   if (parseToken(lltok::colon, "expected ':' here") ||
7872       parseToken(lltok::lparen, "expected '(' here") ||
7873       parseToken(lltok::kw_name, "expected 'name' here") ||
7874       parseToken(lltok::colon, "expected ':' here") ||
7875       parseStringConstant(Name))
7876     return true;
7877 
7878   TypeIdCompatibleVtableInfo &TI =
7879       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7880   if (parseToken(lltok::comma, "expected ',' here") ||
7881       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7882       parseToken(lltok::colon, "expected ':' here") ||
7883       parseToken(lltok::lparen, "expected '(' here"))
7884     return true;
7885 
7886   IdToIndexMapType IdToIndexMap;
7887   // parse each call edge
7888   do {
7889     uint64_t Offset;
7890     if (parseToken(lltok::lparen, "expected '(' here") ||
7891         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7892         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7893         parseToken(lltok::comma, "expected ',' here"))
7894       return true;
7895 
7896     LocTy Loc = Lex.getLoc();
7897     unsigned GVId;
7898     ValueInfo VI;
7899     if (parseGVReference(VI, GVId))
7900       return true;
7901 
7902     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7903     // forward reference. We will save the location of the ValueInfo needing an
7904     // update, but can only do so once the std::vector is finalized.
7905     if (VI == EmptyVI)
7906       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7907     TI.push_back({Offset, VI});
7908 
7909     if (parseToken(lltok::rparen, "expected ')' in call"))
7910       return true;
7911   } while (EatIfPresent(lltok::comma));
7912 
7913   // Now that the TI vector is finalized, it is safe to save the locations
7914   // of any forward GV references that need updating later.
7915   for (auto I : IdToIndexMap) {
7916     auto &Infos = ForwardRefValueInfos[I.first];
7917     for (auto P : I.second) {
7918       assert(TI[P.first].VTableVI == EmptyVI &&
7919              "Forward referenced ValueInfo expected to be empty");
7920       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7921     }
7922   }
7923 
7924   if (parseToken(lltok::rparen, "expected ')' here") ||
7925       parseToken(lltok::rparen, "expected ')' here"))
7926     return true;
7927 
7928   // Check if this ID was forward referenced, and if so, update the
7929   // corresponding GUIDs.
7930   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7931   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7932     for (auto TIDRef : FwdRefTIDs->second) {
7933       assert(!*TIDRef.first &&
7934              "Forward referenced type id GUID expected to be 0");
7935       *TIDRef.first = GlobalValue::getGUID(Name);
7936     }
7937     ForwardRefTypeIds.erase(FwdRefTIDs);
7938   }
7939 
7940   return false;
7941 }
7942 
7943 /// TypeTestResolution
7944 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7945 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7946 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7947 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7948 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7949 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7950   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7951       parseToken(lltok::colon, "expected ':' here") ||
7952       parseToken(lltok::lparen, "expected '(' here") ||
7953       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7954       parseToken(lltok::colon, "expected ':' here"))
7955     return true;
7956 
7957   switch (Lex.getKind()) {
7958   case lltok::kw_unknown:
7959     TTRes.TheKind = TypeTestResolution::Unknown;
7960     break;
7961   case lltok::kw_unsat:
7962     TTRes.TheKind = TypeTestResolution::Unsat;
7963     break;
7964   case lltok::kw_byteArray:
7965     TTRes.TheKind = TypeTestResolution::ByteArray;
7966     break;
7967   case lltok::kw_inline:
7968     TTRes.TheKind = TypeTestResolution::Inline;
7969     break;
7970   case lltok::kw_single:
7971     TTRes.TheKind = TypeTestResolution::Single;
7972     break;
7973   case lltok::kw_allOnes:
7974     TTRes.TheKind = TypeTestResolution::AllOnes;
7975     break;
7976   default:
7977     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7978   }
7979   Lex.Lex();
7980 
7981   if (parseToken(lltok::comma, "expected ',' here") ||
7982       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7983       parseToken(lltok::colon, "expected ':' here") ||
7984       parseUInt32(TTRes.SizeM1BitWidth))
7985     return true;
7986 
7987   // parse optional fields
7988   while (EatIfPresent(lltok::comma)) {
7989     switch (Lex.getKind()) {
7990     case lltok::kw_alignLog2:
7991       Lex.Lex();
7992       if (parseToken(lltok::colon, "expected ':'") ||
7993           parseUInt64(TTRes.AlignLog2))
7994         return true;
7995       break;
7996     case lltok::kw_sizeM1:
7997       Lex.Lex();
7998       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7999         return true;
8000       break;
8001     case lltok::kw_bitMask: {
8002       unsigned Val;
8003       Lex.Lex();
8004       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8005         return true;
8006       assert(Val <= 0xff);
8007       TTRes.BitMask = (uint8_t)Val;
8008       break;
8009     }
8010     case lltok::kw_inlineBits:
8011       Lex.Lex();
8012       if (parseToken(lltok::colon, "expected ':'") ||
8013           parseUInt64(TTRes.InlineBits))
8014         return true;
8015       break;
8016     default:
8017       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8018     }
8019   }
8020 
8021   if (parseToken(lltok::rparen, "expected ')' here"))
8022     return true;
8023 
8024   return false;
8025 }
8026 
8027 /// OptionalWpdResolutions
8028 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8029 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8030 bool LLParser::parseOptionalWpdResolutions(
8031     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8032   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8033       parseToken(lltok::colon, "expected ':' here") ||
8034       parseToken(lltok::lparen, "expected '(' here"))
8035     return true;
8036 
8037   do {
8038     uint64_t Offset;
8039     WholeProgramDevirtResolution WPDRes;
8040     if (parseToken(lltok::lparen, "expected '(' here") ||
8041         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8042         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8043         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8044         parseToken(lltok::rparen, "expected ')' here"))
8045       return true;
8046     WPDResMap[Offset] = WPDRes;
8047   } while (EatIfPresent(lltok::comma));
8048 
8049   if (parseToken(lltok::rparen, "expected ')' here"))
8050     return true;
8051 
8052   return false;
8053 }
8054 
8055 /// WpdRes
8056 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8057 ///         [',' OptionalResByArg]? ')'
8058 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8059 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8060 ///         [',' OptionalResByArg]? ')'
8061 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8062 ///         [',' OptionalResByArg]? ')'
8063 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8064   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8065       parseToken(lltok::colon, "expected ':' here") ||
8066       parseToken(lltok::lparen, "expected '(' here") ||
8067       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8068       parseToken(lltok::colon, "expected ':' here"))
8069     return true;
8070 
8071   switch (Lex.getKind()) {
8072   case lltok::kw_indir:
8073     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8074     break;
8075   case lltok::kw_singleImpl:
8076     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8077     break;
8078   case lltok::kw_branchFunnel:
8079     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8080     break;
8081   default:
8082     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8083   }
8084   Lex.Lex();
8085 
8086   // parse optional fields
8087   while (EatIfPresent(lltok::comma)) {
8088     switch (Lex.getKind()) {
8089     case lltok::kw_singleImplName:
8090       Lex.Lex();
8091       if (parseToken(lltok::colon, "expected ':' here") ||
8092           parseStringConstant(WPDRes.SingleImplName))
8093         return true;
8094       break;
8095     case lltok::kw_resByArg:
8096       if (parseOptionalResByArg(WPDRes.ResByArg))
8097         return true;
8098       break;
8099     default:
8100       return error(Lex.getLoc(),
8101                    "expected optional WholeProgramDevirtResolution field");
8102     }
8103   }
8104 
8105   if (parseToken(lltok::rparen, "expected ')' here"))
8106     return true;
8107 
8108   return false;
8109 }
8110 
8111 /// OptionalResByArg
8112 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8113 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8114 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8115 ///                  'virtualConstProp' )
8116 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8117 ///                [',' 'bit' ':' UInt32]? ')'
8118 bool LLParser::parseOptionalResByArg(
8119     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8120         &ResByArg) {
8121   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8122       parseToken(lltok::colon, "expected ':' here") ||
8123       parseToken(lltok::lparen, "expected '(' here"))
8124     return true;
8125 
8126   do {
8127     std::vector<uint64_t> Args;
8128     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8129         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8130         parseToken(lltok::colon, "expected ':' here") ||
8131         parseToken(lltok::lparen, "expected '(' here") ||
8132         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8133         parseToken(lltok::colon, "expected ':' here"))
8134       return true;
8135 
8136     WholeProgramDevirtResolution::ByArg ByArg;
8137     switch (Lex.getKind()) {
8138     case lltok::kw_indir:
8139       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8140       break;
8141     case lltok::kw_uniformRetVal:
8142       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8143       break;
8144     case lltok::kw_uniqueRetVal:
8145       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8146       break;
8147     case lltok::kw_virtualConstProp:
8148       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8149       break;
8150     default:
8151       return error(Lex.getLoc(),
8152                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8153     }
8154     Lex.Lex();
8155 
8156     // parse optional fields
8157     while (EatIfPresent(lltok::comma)) {
8158       switch (Lex.getKind()) {
8159       case lltok::kw_info:
8160         Lex.Lex();
8161         if (parseToken(lltok::colon, "expected ':' here") ||
8162             parseUInt64(ByArg.Info))
8163           return true;
8164         break;
8165       case lltok::kw_byte:
8166         Lex.Lex();
8167         if (parseToken(lltok::colon, "expected ':' here") ||
8168             parseUInt32(ByArg.Byte))
8169           return true;
8170         break;
8171       case lltok::kw_bit:
8172         Lex.Lex();
8173         if (parseToken(lltok::colon, "expected ':' here") ||
8174             parseUInt32(ByArg.Bit))
8175           return true;
8176         break;
8177       default:
8178         return error(Lex.getLoc(),
8179                      "expected optional whole program devirt field");
8180       }
8181     }
8182 
8183     if (parseToken(lltok::rparen, "expected ')' here"))
8184       return true;
8185 
8186     ResByArg[Args] = ByArg;
8187   } while (EatIfPresent(lltok::comma));
8188 
8189   if (parseToken(lltok::rparen, "expected ')' here"))
8190     return true;
8191 
8192   return false;
8193 }
8194 
8195 /// OptionalResByArg
8196 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8197 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8198   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8199       parseToken(lltok::colon, "expected ':' here") ||
8200       parseToken(lltok::lparen, "expected '(' here"))
8201     return true;
8202 
8203   do {
8204     uint64_t Val;
8205     if (parseUInt64(Val))
8206       return true;
8207     Args.push_back(Val);
8208   } while (EatIfPresent(lltok::comma));
8209 
8210   if (parseToken(lltok::rparen, "expected ')' here"))
8211     return true;
8212 
8213   return false;
8214 }
8215 
8216 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8217 
8218 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8219   bool ReadOnly = Fwd->isReadOnly();
8220   bool WriteOnly = Fwd->isWriteOnly();
8221   assert(!(ReadOnly && WriteOnly));
8222   *Fwd = Resolved;
8223   if (ReadOnly)
8224     Fwd->setReadOnly();
8225   if (WriteOnly)
8226     Fwd->setWriteOnly();
8227 }
8228 
8229 /// Stores the given Name/GUID and associated summary into the Index.
8230 /// Also updates any forward references to the associated entry ID.
8231 void LLParser::addGlobalValueToIndex(
8232     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8233     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8234   // First create the ValueInfo utilizing the Name or GUID.
8235   ValueInfo VI;
8236   if (GUID != 0) {
8237     assert(Name.empty());
8238     VI = Index->getOrInsertValueInfo(GUID);
8239   } else {
8240     assert(!Name.empty());
8241     if (M) {
8242       auto *GV = M->getNamedValue(Name);
8243       assert(GV);
8244       VI = Index->getOrInsertValueInfo(GV);
8245     } else {
8246       assert(
8247           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8248           "Need a source_filename to compute GUID for local");
8249       GUID = GlobalValue::getGUID(
8250           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8251       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8252     }
8253   }
8254 
8255   // Resolve forward references from calls/refs
8256   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8257   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8258     for (auto VIRef : FwdRefVIs->second) {
8259       assert(VIRef.first->getRef() == FwdVIRef &&
8260              "Forward referenced ValueInfo expected to be empty");
8261       resolveFwdRef(VIRef.first, VI);
8262     }
8263     ForwardRefValueInfos.erase(FwdRefVIs);
8264   }
8265 
8266   // Resolve forward references from aliases
8267   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8268   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8269     for (auto AliaseeRef : FwdRefAliasees->second) {
8270       assert(!AliaseeRef.first->hasAliasee() &&
8271              "Forward referencing alias already has aliasee");
8272       assert(Summary && "Aliasee must be a definition");
8273       AliaseeRef.first->setAliasee(VI, Summary.get());
8274     }
8275     ForwardRefAliasees.erase(FwdRefAliasees);
8276   }
8277 
8278   // Add the summary if one was provided.
8279   if (Summary)
8280     Index->addGlobalValueSummary(VI, std::move(Summary));
8281 
8282   // Save the associated ValueInfo for use in later references by ID.
8283   if (ID == NumberedValueInfos.size())
8284     NumberedValueInfos.push_back(VI);
8285   else {
8286     // Handle non-continuous numbers (to make test simplification easier).
8287     if (ID > NumberedValueInfos.size())
8288       NumberedValueInfos.resize(ID + 1);
8289     NumberedValueInfos[ID] = VI;
8290   }
8291 }
8292 
8293 /// parseSummaryIndexFlags
8294 ///   ::= 'flags' ':' UInt64
8295 bool LLParser::parseSummaryIndexFlags() {
8296   assert(Lex.getKind() == lltok::kw_flags);
8297   Lex.Lex();
8298 
8299   if (parseToken(lltok::colon, "expected ':' here"))
8300     return true;
8301   uint64_t Flags;
8302   if (parseUInt64(Flags))
8303     return true;
8304   if (Index)
8305     Index->setFlags(Flags);
8306   return false;
8307 }
8308 
8309 /// parseBlockCount
8310 ///   ::= 'blockcount' ':' UInt64
8311 bool LLParser::parseBlockCount() {
8312   assert(Lex.getKind() == lltok::kw_blockcount);
8313   Lex.Lex();
8314 
8315   if (parseToken(lltok::colon, "expected ':' here"))
8316     return true;
8317   uint64_t BlockCount;
8318   if (parseUInt64(BlockCount))
8319     return true;
8320   if (Index)
8321     Index->setBlockCount(BlockCount);
8322   return false;
8323 }
8324 
8325 /// parseGVEntry
8326 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8327 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8328 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8329 bool LLParser::parseGVEntry(unsigned ID) {
8330   assert(Lex.getKind() == lltok::kw_gv);
8331   Lex.Lex();
8332 
8333   if (parseToken(lltok::colon, "expected ':' here") ||
8334       parseToken(lltok::lparen, "expected '(' here"))
8335     return true;
8336 
8337   std::string Name;
8338   GlobalValue::GUID GUID = 0;
8339   switch (Lex.getKind()) {
8340   case lltok::kw_name:
8341     Lex.Lex();
8342     if (parseToken(lltok::colon, "expected ':' here") ||
8343         parseStringConstant(Name))
8344       return true;
8345     // Can't create GUID/ValueInfo until we have the linkage.
8346     break;
8347   case lltok::kw_guid:
8348     Lex.Lex();
8349     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8350       return true;
8351     break;
8352   default:
8353     return error(Lex.getLoc(), "expected name or guid tag");
8354   }
8355 
8356   if (!EatIfPresent(lltok::comma)) {
8357     // No summaries. Wrap up.
8358     if (parseToken(lltok::rparen, "expected ')' here"))
8359       return true;
8360     // This was created for a call to an external or indirect target.
8361     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8362     // created for indirect calls with VP. A Name with no GUID came from
8363     // an external definition. We pass ExternalLinkage since that is only
8364     // used when the GUID must be computed from Name, and in that case
8365     // the symbol must have external linkage.
8366     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8367                           nullptr);
8368     return false;
8369   }
8370 
8371   // Have a list of summaries
8372   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8373       parseToken(lltok::colon, "expected ':' here") ||
8374       parseToken(lltok::lparen, "expected '(' here"))
8375     return true;
8376   do {
8377     switch (Lex.getKind()) {
8378     case lltok::kw_function:
8379       if (parseFunctionSummary(Name, GUID, ID))
8380         return true;
8381       break;
8382     case lltok::kw_variable:
8383       if (parseVariableSummary(Name, GUID, ID))
8384         return true;
8385       break;
8386     case lltok::kw_alias:
8387       if (parseAliasSummary(Name, GUID, ID))
8388         return true;
8389       break;
8390     default:
8391       return error(Lex.getLoc(), "expected summary type");
8392     }
8393   } while (EatIfPresent(lltok::comma));
8394 
8395   if (parseToken(lltok::rparen, "expected ')' here") ||
8396       parseToken(lltok::rparen, "expected ')' here"))
8397     return true;
8398 
8399   return false;
8400 }
8401 
8402 /// FunctionSummary
8403 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8404 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8405 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8406 ///         [',' OptionalRefs]? ')'
8407 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8408                                     unsigned ID) {
8409   assert(Lex.getKind() == lltok::kw_function);
8410   Lex.Lex();
8411 
8412   StringRef ModulePath;
8413   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8414       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8415       /*NotEligibleToImport=*/false,
8416       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8417   unsigned InstCount;
8418   std::vector<FunctionSummary::EdgeTy> Calls;
8419   FunctionSummary::TypeIdInfo TypeIdInfo;
8420   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8421   std::vector<ValueInfo> Refs;
8422   // Default is all-zeros (conservative values).
8423   FunctionSummary::FFlags FFlags = {};
8424   if (parseToken(lltok::colon, "expected ':' here") ||
8425       parseToken(lltok::lparen, "expected '(' here") ||
8426       parseModuleReference(ModulePath) ||
8427       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8428       parseToken(lltok::comma, "expected ',' here") ||
8429       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8430       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8431     return true;
8432 
8433   // parse optional fields
8434   while (EatIfPresent(lltok::comma)) {
8435     switch (Lex.getKind()) {
8436     case lltok::kw_funcFlags:
8437       if (parseOptionalFFlags(FFlags))
8438         return true;
8439       break;
8440     case lltok::kw_calls:
8441       if (parseOptionalCalls(Calls))
8442         return true;
8443       break;
8444     case lltok::kw_typeIdInfo:
8445       if (parseOptionalTypeIdInfo(TypeIdInfo))
8446         return true;
8447       break;
8448     case lltok::kw_refs:
8449       if (parseOptionalRefs(Refs))
8450         return true;
8451       break;
8452     case lltok::kw_params:
8453       if (parseOptionalParamAccesses(ParamAccesses))
8454         return true;
8455       break;
8456     default:
8457       return error(Lex.getLoc(), "expected optional function summary field");
8458     }
8459   }
8460 
8461   if (parseToken(lltok::rparen, "expected ')' here"))
8462     return true;
8463 
8464   auto FS = std::make_unique<FunctionSummary>(
8465       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8466       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8467       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8468       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8469       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8470       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8471       std::move(ParamAccesses));
8472 
8473   FS->setModulePath(ModulePath);
8474 
8475   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8476                         ID, std::move(FS));
8477 
8478   return false;
8479 }
8480 
8481 /// VariableSummary
8482 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8483 ///         [',' OptionalRefs]? ')'
8484 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8485                                     unsigned ID) {
8486   assert(Lex.getKind() == lltok::kw_variable);
8487   Lex.Lex();
8488 
8489   StringRef ModulePath;
8490   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8491       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8492       /*NotEligibleToImport=*/false,
8493       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8494   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8495                                         /* WriteOnly */ false,
8496                                         /* Constant */ false,
8497                                         GlobalObject::VCallVisibilityPublic);
8498   std::vector<ValueInfo> Refs;
8499   VTableFuncList VTableFuncs;
8500   if (parseToken(lltok::colon, "expected ':' here") ||
8501       parseToken(lltok::lparen, "expected '(' here") ||
8502       parseModuleReference(ModulePath) ||
8503       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8504       parseToken(lltok::comma, "expected ',' here") ||
8505       parseGVarFlags(GVarFlags))
8506     return true;
8507 
8508   // parse optional fields
8509   while (EatIfPresent(lltok::comma)) {
8510     switch (Lex.getKind()) {
8511     case lltok::kw_vTableFuncs:
8512       if (parseOptionalVTableFuncs(VTableFuncs))
8513         return true;
8514       break;
8515     case lltok::kw_refs:
8516       if (parseOptionalRefs(Refs))
8517         return true;
8518       break;
8519     default:
8520       return error(Lex.getLoc(), "expected optional variable summary field");
8521     }
8522   }
8523 
8524   if (parseToken(lltok::rparen, "expected ')' here"))
8525     return true;
8526 
8527   auto GS =
8528       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8529 
8530   GS->setModulePath(ModulePath);
8531   GS->setVTableFuncs(std::move(VTableFuncs));
8532 
8533   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8534                         ID, std::move(GS));
8535 
8536   return false;
8537 }
8538 
8539 /// AliasSummary
8540 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8541 ///         'aliasee' ':' GVReference ')'
8542 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8543                                  unsigned ID) {
8544   assert(Lex.getKind() == lltok::kw_alias);
8545   LocTy Loc = Lex.getLoc();
8546   Lex.Lex();
8547 
8548   StringRef ModulePath;
8549   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8550       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8551       /*NotEligibleToImport=*/false,
8552       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8553   if (parseToken(lltok::colon, "expected ':' here") ||
8554       parseToken(lltok::lparen, "expected '(' here") ||
8555       parseModuleReference(ModulePath) ||
8556       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8557       parseToken(lltok::comma, "expected ',' here") ||
8558       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8559       parseToken(lltok::colon, "expected ':' here"))
8560     return true;
8561 
8562   ValueInfo AliaseeVI;
8563   unsigned GVId;
8564   if (parseGVReference(AliaseeVI, GVId))
8565     return true;
8566 
8567   if (parseToken(lltok::rparen, "expected ')' here"))
8568     return true;
8569 
8570   auto AS = std::make_unique<AliasSummary>(GVFlags);
8571 
8572   AS->setModulePath(ModulePath);
8573 
8574   // Record forward reference if the aliasee is not parsed yet.
8575   if (AliaseeVI.getRef() == FwdVIRef) {
8576     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8577   } else {
8578     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8579     assert(Summary && "Aliasee must be a definition");
8580     AS->setAliasee(AliaseeVI, Summary);
8581   }
8582 
8583   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8584                         ID, std::move(AS));
8585 
8586   return false;
8587 }
8588 
8589 /// Flag
8590 ///   ::= [0|1]
8591 bool LLParser::parseFlag(unsigned &Val) {
8592   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8593     return tokError("expected integer");
8594   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8595   Lex.Lex();
8596   return false;
8597 }
8598 
8599 /// OptionalFFlags
8600 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8601 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8602 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8603 ///        [',' 'noInline' ':' Flag]? ')'
8604 ///        [',' 'alwaysInline' ':' Flag]? ')'
8605 ///        [',' 'noUnwind' ':' Flag]? ')'
8606 ///        [',' 'mayThrow' ':' Flag]? ')'
8607 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8608 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8609 
8610 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8611   assert(Lex.getKind() == lltok::kw_funcFlags);
8612   Lex.Lex();
8613 
8614   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8615       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8616     return true;
8617 
8618   do {
8619     unsigned Val = 0;
8620     switch (Lex.getKind()) {
8621     case lltok::kw_readNone:
8622       Lex.Lex();
8623       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8624         return true;
8625       FFlags.ReadNone = Val;
8626       break;
8627     case lltok::kw_readOnly:
8628       Lex.Lex();
8629       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8630         return true;
8631       FFlags.ReadOnly = Val;
8632       break;
8633     case lltok::kw_noRecurse:
8634       Lex.Lex();
8635       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8636         return true;
8637       FFlags.NoRecurse = Val;
8638       break;
8639     case lltok::kw_returnDoesNotAlias:
8640       Lex.Lex();
8641       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8642         return true;
8643       FFlags.ReturnDoesNotAlias = Val;
8644       break;
8645     case lltok::kw_noInline:
8646       Lex.Lex();
8647       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8648         return true;
8649       FFlags.NoInline = Val;
8650       break;
8651     case lltok::kw_alwaysInline:
8652       Lex.Lex();
8653       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8654         return true;
8655       FFlags.AlwaysInline = Val;
8656       break;
8657     case lltok::kw_noUnwind:
8658       Lex.Lex();
8659       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8660         return true;
8661       FFlags.NoUnwind = Val;
8662       break;
8663     case lltok::kw_mayThrow:
8664       Lex.Lex();
8665       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8666         return true;
8667       FFlags.MayThrow = Val;
8668       break;
8669     case lltok::kw_hasUnknownCall:
8670       Lex.Lex();
8671       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8672         return true;
8673       FFlags.HasUnknownCall = Val;
8674       break;
8675     case lltok::kw_mustBeUnreachable:
8676       Lex.Lex();
8677       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8678         return true;
8679       FFlags.MustBeUnreachable = Val;
8680       break;
8681     default:
8682       return error(Lex.getLoc(), "expected function flag type");
8683     }
8684   } while (EatIfPresent(lltok::comma));
8685 
8686   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8687     return true;
8688 
8689   return false;
8690 }
8691 
8692 /// OptionalCalls
8693 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8694 /// Call ::= '(' 'callee' ':' GVReference
8695 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8696 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8697   assert(Lex.getKind() == lltok::kw_calls);
8698   Lex.Lex();
8699 
8700   if (parseToken(lltok::colon, "expected ':' in calls") ||
8701       parseToken(lltok::lparen, "expected '(' in calls"))
8702     return true;
8703 
8704   IdToIndexMapType IdToIndexMap;
8705   // parse each call edge
8706   do {
8707     ValueInfo VI;
8708     if (parseToken(lltok::lparen, "expected '(' in call") ||
8709         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8710         parseToken(lltok::colon, "expected ':'"))
8711       return true;
8712 
8713     LocTy Loc = Lex.getLoc();
8714     unsigned GVId;
8715     if (parseGVReference(VI, GVId))
8716       return true;
8717 
8718     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8719     unsigned RelBF = 0;
8720     if (EatIfPresent(lltok::comma)) {
8721       // Expect either hotness or relbf
8722       if (EatIfPresent(lltok::kw_hotness)) {
8723         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8724           return true;
8725       } else {
8726         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8727             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8728           return true;
8729       }
8730     }
8731     // Keep track of the Call array index needing a forward reference.
8732     // We will save the location of the ValueInfo needing an update, but
8733     // can only do so once the std::vector is finalized.
8734     if (VI.getRef() == FwdVIRef)
8735       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8736     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8737 
8738     if (parseToken(lltok::rparen, "expected ')' in call"))
8739       return true;
8740   } while (EatIfPresent(lltok::comma));
8741 
8742   // Now that the Calls vector is finalized, it is safe to save the locations
8743   // of any forward GV references that need updating later.
8744   for (auto I : IdToIndexMap) {
8745     auto &Infos = ForwardRefValueInfos[I.first];
8746     for (auto P : I.second) {
8747       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8748              "Forward referenced ValueInfo expected to be empty");
8749       Infos.emplace_back(&Calls[P.first].first, P.second);
8750     }
8751   }
8752 
8753   if (parseToken(lltok::rparen, "expected ')' in calls"))
8754     return true;
8755 
8756   return false;
8757 }
8758 
8759 /// Hotness
8760 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8761 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8762   switch (Lex.getKind()) {
8763   case lltok::kw_unknown:
8764     Hotness = CalleeInfo::HotnessType::Unknown;
8765     break;
8766   case lltok::kw_cold:
8767     Hotness = CalleeInfo::HotnessType::Cold;
8768     break;
8769   case lltok::kw_none:
8770     Hotness = CalleeInfo::HotnessType::None;
8771     break;
8772   case lltok::kw_hot:
8773     Hotness = CalleeInfo::HotnessType::Hot;
8774     break;
8775   case lltok::kw_critical:
8776     Hotness = CalleeInfo::HotnessType::Critical;
8777     break;
8778   default:
8779     return error(Lex.getLoc(), "invalid call edge hotness");
8780   }
8781   Lex.Lex();
8782   return false;
8783 }
8784 
8785 /// OptionalVTableFuncs
8786 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8787 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8788 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8789   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8790   Lex.Lex();
8791 
8792   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8793       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8794     return true;
8795 
8796   IdToIndexMapType IdToIndexMap;
8797   // parse each virtual function pair
8798   do {
8799     ValueInfo VI;
8800     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8801         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8802         parseToken(lltok::colon, "expected ':'"))
8803       return true;
8804 
8805     LocTy Loc = Lex.getLoc();
8806     unsigned GVId;
8807     if (parseGVReference(VI, GVId))
8808       return true;
8809 
8810     uint64_t Offset;
8811     if (parseToken(lltok::comma, "expected comma") ||
8812         parseToken(lltok::kw_offset, "expected offset") ||
8813         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8814       return true;
8815 
8816     // Keep track of the VTableFuncs array index needing a forward reference.
8817     // We will save the location of the ValueInfo needing an update, but
8818     // can only do so once the std::vector is finalized.
8819     if (VI == EmptyVI)
8820       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8821     VTableFuncs.push_back({VI, Offset});
8822 
8823     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8824       return true;
8825   } while (EatIfPresent(lltok::comma));
8826 
8827   // Now that the VTableFuncs vector is finalized, it is safe to save the
8828   // locations of any forward GV references that need updating later.
8829   for (auto I : IdToIndexMap) {
8830     auto &Infos = ForwardRefValueInfos[I.first];
8831     for (auto P : I.second) {
8832       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8833              "Forward referenced ValueInfo expected to be empty");
8834       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8835     }
8836   }
8837 
8838   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8839     return true;
8840 
8841   return false;
8842 }
8843 
8844 /// ParamNo := 'param' ':' UInt64
8845 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8846   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8847       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8848     return true;
8849   return false;
8850 }
8851 
8852 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8853 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8854   APSInt Lower;
8855   APSInt Upper;
8856   auto ParseAPSInt = [&](APSInt &Val) {
8857     if (Lex.getKind() != lltok::APSInt)
8858       return tokError("expected integer");
8859     Val = Lex.getAPSIntVal();
8860     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8861     Val.setIsSigned(true);
8862     Lex.Lex();
8863     return false;
8864   };
8865   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8866       parseToken(lltok::colon, "expected ':' here") ||
8867       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8868       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8869       parseToken(lltok::rsquare, "expected ']' here"))
8870     return true;
8871 
8872   ++Upper;
8873   Range =
8874       (Lower == Upper && !Lower.isMaxValue())
8875           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8876           : ConstantRange(Lower, Upper);
8877 
8878   return false;
8879 }
8880 
8881 /// ParamAccessCall
8882 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8883 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8884                                     IdLocListType &IdLocList) {
8885   if (parseToken(lltok::lparen, "expected '(' here") ||
8886       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8887       parseToken(lltok::colon, "expected ':' here"))
8888     return true;
8889 
8890   unsigned GVId;
8891   ValueInfo VI;
8892   LocTy Loc = Lex.getLoc();
8893   if (parseGVReference(VI, GVId))
8894     return true;
8895 
8896   Call.Callee = VI;
8897   IdLocList.emplace_back(GVId, Loc);
8898 
8899   if (parseToken(lltok::comma, "expected ',' here") ||
8900       parseParamNo(Call.ParamNo) ||
8901       parseToken(lltok::comma, "expected ',' here") ||
8902       parseParamAccessOffset(Call.Offsets))
8903     return true;
8904 
8905   if (parseToken(lltok::rparen, "expected ')' here"))
8906     return true;
8907 
8908   return false;
8909 }
8910 
8911 /// ParamAccess
8912 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8913 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8914 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8915                                 IdLocListType &IdLocList) {
8916   if (parseToken(lltok::lparen, "expected '(' here") ||
8917       parseParamNo(Param.ParamNo) ||
8918       parseToken(lltok::comma, "expected ',' here") ||
8919       parseParamAccessOffset(Param.Use))
8920     return true;
8921 
8922   if (EatIfPresent(lltok::comma)) {
8923     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8924         parseToken(lltok::colon, "expected ':' here") ||
8925         parseToken(lltok::lparen, "expected '(' here"))
8926       return true;
8927     do {
8928       FunctionSummary::ParamAccess::Call Call;
8929       if (parseParamAccessCall(Call, IdLocList))
8930         return true;
8931       Param.Calls.push_back(Call);
8932     } while (EatIfPresent(lltok::comma));
8933 
8934     if (parseToken(lltok::rparen, "expected ')' here"))
8935       return true;
8936   }
8937 
8938   if (parseToken(lltok::rparen, "expected ')' here"))
8939     return true;
8940 
8941   return false;
8942 }
8943 
8944 /// OptionalParamAccesses
8945 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8946 bool LLParser::parseOptionalParamAccesses(
8947     std::vector<FunctionSummary::ParamAccess> &Params) {
8948   assert(Lex.getKind() == lltok::kw_params);
8949   Lex.Lex();
8950 
8951   if (parseToken(lltok::colon, "expected ':' here") ||
8952       parseToken(lltok::lparen, "expected '(' here"))
8953     return true;
8954 
8955   IdLocListType VContexts;
8956   size_t CallsNum = 0;
8957   do {
8958     FunctionSummary::ParamAccess ParamAccess;
8959     if (parseParamAccess(ParamAccess, VContexts))
8960       return true;
8961     CallsNum += ParamAccess.Calls.size();
8962     assert(VContexts.size() == CallsNum);
8963     (void)CallsNum;
8964     Params.emplace_back(std::move(ParamAccess));
8965   } while (EatIfPresent(lltok::comma));
8966 
8967   if (parseToken(lltok::rparen, "expected ')' here"))
8968     return true;
8969 
8970   // Now that the Params is finalized, it is safe to save the locations
8971   // of any forward GV references that need updating later.
8972   IdLocListType::const_iterator ItContext = VContexts.begin();
8973   for (auto &PA : Params) {
8974     for (auto &C : PA.Calls) {
8975       if (C.Callee.getRef() == FwdVIRef)
8976         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8977                                                             ItContext->second);
8978       ++ItContext;
8979     }
8980   }
8981   assert(ItContext == VContexts.end());
8982 
8983   return false;
8984 }
8985 
8986 /// OptionalRefs
8987 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8988 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8989   assert(Lex.getKind() == lltok::kw_refs);
8990   Lex.Lex();
8991 
8992   if (parseToken(lltok::colon, "expected ':' in refs") ||
8993       parseToken(lltok::lparen, "expected '(' in refs"))
8994     return true;
8995 
8996   struct ValueContext {
8997     ValueInfo VI;
8998     unsigned GVId;
8999     LocTy Loc;
9000   };
9001   std::vector<ValueContext> VContexts;
9002   // parse each ref edge
9003   do {
9004     ValueContext VC;
9005     VC.Loc = Lex.getLoc();
9006     if (parseGVReference(VC.VI, VC.GVId))
9007       return true;
9008     VContexts.push_back(VC);
9009   } while (EatIfPresent(lltok::comma));
9010 
9011   // Sort value contexts so that ones with writeonly
9012   // and readonly ValueInfo  are at the end of VContexts vector.
9013   // See FunctionSummary::specialRefCounts()
9014   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9015     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9016   });
9017 
9018   IdToIndexMapType IdToIndexMap;
9019   for (auto &VC : VContexts) {
9020     // Keep track of the Refs array index needing a forward reference.
9021     // We will save the location of the ValueInfo needing an update, but
9022     // can only do so once the std::vector is finalized.
9023     if (VC.VI.getRef() == FwdVIRef)
9024       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9025     Refs.push_back(VC.VI);
9026   }
9027 
9028   // Now that the Refs vector is finalized, it is safe to save the locations
9029   // of any forward GV references that need updating later.
9030   for (auto I : IdToIndexMap) {
9031     auto &Infos = ForwardRefValueInfos[I.first];
9032     for (auto P : I.second) {
9033       assert(Refs[P.first].getRef() == FwdVIRef &&
9034              "Forward referenced ValueInfo expected to be empty");
9035       Infos.emplace_back(&Refs[P.first], P.second);
9036     }
9037   }
9038 
9039   if (parseToken(lltok::rparen, "expected ')' in refs"))
9040     return true;
9041 
9042   return false;
9043 }
9044 
9045 /// OptionalTypeIdInfo
9046 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9047 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9048 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9049 bool LLParser::parseOptionalTypeIdInfo(
9050     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9051   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9052   Lex.Lex();
9053 
9054   if (parseToken(lltok::colon, "expected ':' here") ||
9055       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9056     return true;
9057 
9058   do {
9059     switch (Lex.getKind()) {
9060     case lltok::kw_typeTests:
9061       if (parseTypeTests(TypeIdInfo.TypeTests))
9062         return true;
9063       break;
9064     case lltok::kw_typeTestAssumeVCalls:
9065       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9066                            TypeIdInfo.TypeTestAssumeVCalls))
9067         return true;
9068       break;
9069     case lltok::kw_typeCheckedLoadVCalls:
9070       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9071                            TypeIdInfo.TypeCheckedLoadVCalls))
9072         return true;
9073       break;
9074     case lltok::kw_typeTestAssumeConstVCalls:
9075       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9076                               TypeIdInfo.TypeTestAssumeConstVCalls))
9077         return true;
9078       break;
9079     case lltok::kw_typeCheckedLoadConstVCalls:
9080       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9081                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9082         return true;
9083       break;
9084     default:
9085       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9086     }
9087   } while (EatIfPresent(lltok::comma));
9088 
9089   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9090     return true;
9091 
9092   return false;
9093 }
9094 
9095 /// TypeTests
9096 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9097 ///         [',' (SummaryID | UInt64)]* ')'
9098 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9099   assert(Lex.getKind() == lltok::kw_typeTests);
9100   Lex.Lex();
9101 
9102   if (parseToken(lltok::colon, "expected ':' here") ||
9103       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9104     return true;
9105 
9106   IdToIndexMapType IdToIndexMap;
9107   do {
9108     GlobalValue::GUID GUID = 0;
9109     if (Lex.getKind() == lltok::SummaryID) {
9110       unsigned ID = Lex.getUIntVal();
9111       LocTy Loc = Lex.getLoc();
9112       // Keep track of the TypeTests array index needing a forward reference.
9113       // We will save the location of the GUID needing an update, but
9114       // can only do so once the std::vector is finalized.
9115       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9116       Lex.Lex();
9117     } else if (parseUInt64(GUID))
9118       return true;
9119     TypeTests.push_back(GUID);
9120   } while (EatIfPresent(lltok::comma));
9121 
9122   // Now that the TypeTests vector is finalized, it is safe to save the
9123   // locations of any forward GV references that need updating later.
9124   for (auto I : IdToIndexMap) {
9125     auto &Ids = ForwardRefTypeIds[I.first];
9126     for (auto P : I.second) {
9127       assert(TypeTests[P.first] == 0 &&
9128              "Forward referenced type id GUID expected to be 0");
9129       Ids.emplace_back(&TypeTests[P.first], P.second);
9130     }
9131   }
9132 
9133   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9134     return true;
9135 
9136   return false;
9137 }
9138 
9139 /// VFuncIdList
9140 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9141 bool LLParser::parseVFuncIdList(
9142     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9143   assert(Lex.getKind() == Kind);
9144   Lex.Lex();
9145 
9146   if (parseToken(lltok::colon, "expected ':' here") ||
9147       parseToken(lltok::lparen, "expected '(' here"))
9148     return true;
9149 
9150   IdToIndexMapType IdToIndexMap;
9151   do {
9152     FunctionSummary::VFuncId VFuncId;
9153     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9154       return true;
9155     VFuncIdList.push_back(VFuncId);
9156   } while (EatIfPresent(lltok::comma));
9157 
9158   if (parseToken(lltok::rparen, "expected ')' here"))
9159     return true;
9160 
9161   // Now that the VFuncIdList vector is finalized, it is safe to save the
9162   // locations of any forward GV references that need updating later.
9163   for (auto I : IdToIndexMap) {
9164     auto &Ids = ForwardRefTypeIds[I.first];
9165     for (auto P : I.second) {
9166       assert(VFuncIdList[P.first].GUID == 0 &&
9167              "Forward referenced type id GUID expected to be 0");
9168       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9169     }
9170   }
9171 
9172   return false;
9173 }
9174 
9175 /// ConstVCallList
9176 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9177 bool LLParser::parseConstVCallList(
9178     lltok::Kind Kind,
9179     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9180   assert(Lex.getKind() == Kind);
9181   Lex.Lex();
9182 
9183   if (parseToken(lltok::colon, "expected ':' here") ||
9184       parseToken(lltok::lparen, "expected '(' here"))
9185     return true;
9186 
9187   IdToIndexMapType IdToIndexMap;
9188   do {
9189     FunctionSummary::ConstVCall ConstVCall;
9190     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9191       return true;
9192     ConstVCallList.push_back(ConstVCall);
9193   } while (EatIfPresent(lltok::comma));
9194 
9195   if (parseToken(lltok::rparen, "expected ')' here"))
9196     return true;
9197 
9198   // Now that the ConstVCallList vector is finalized, it is safe to save the
9199   // locations of any forward GV references that need updating later.
9200   for (auto I : IdToIndexMap) {
9201     auto &Ids = ForwardRefTypeIds[I.first];
9202     for (auto P : I.second) {
9203       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9204              "Forward referenced type id GUID expected to be 0");
9205       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9206     }
9207   }
9208 
9209   return false;
9210 }
9211 
9212 /// ConstVCall
9213 ///   ::= '(' VFuncId ',' Args ')'
9214 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9215                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9216   if (parseToken(lltok::lparen, "expected '(' here") ||
9217       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9218     return true;
9219 
9220   if (EatIfPresent(lltok::comma))
9221     if (parseArgs(ConstVCall.Args))
9222       return true;
9223 
9224   if (parseToken(lltok::rparen, "expected ')' here"))
9225     return true;
9226 
9227   return false;
9228 }
9229 
9230 /// VFuncId
9231 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9232 ///         'offset' ':' UInt64 ')'
9233 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9234                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9235   assert(Lex.getKind() == lltok::kw_vFuncId);
9236   Lex.Lex();
9237 
9238   if (parseToken(lltok::colon, "expected ':' here") ||
9239       parseToken(lltok::lparen, "expected '(' here"))
9240     return true;
9241 
9242   if (Lex.getKind() == lltok::SummaryID) {
9243     VFuncId.GUID = 0;
9244     unsigned ID = Lex.getUIntVal();
9245     LocTy Loc = Lex.getLoc();
9246     // Keep track of the array index needing a forward reference.
9247     // We will save the location of the GUID needing an update, but
9248     // can only do so once the caller's std::vector is finalized.
9249     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9250     Lex.Lex();
9251   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9252              parseToken(lltok::colon, "expected ':' here") ||
9253              parseUInt64(VFuncId.GUID))
9254     return true;
9255 
9256   if (parseToken(lltok::comma, "expected ',' here") ||
9257       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9258       parseToken(lltok::colon, "expected ':' here") ||
9259       parseUInt64(VFuncId.Offset) ||
9260       parseToken(lltok::rparen, "expected ')' here"))
9261     return true;
9262 
9263   return false;
9264 }
9265 
9266 /// GVFlags
9267 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9268 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9269 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9270 ///         'canAutoHide' ':' Flag ',' ')'
9271 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9272   assert(Lex.getKind() == lltok::kw_flags);
9273   Lex.Lex();
9274 
9275   if (parseToken(lltok::colon, "expected ':' here") ||
9276       parseToken(lltok::lparen, "expected '(' here"))
9277     return true;
9278 
9279   do {
9280     unsigned Flag = 0;
9281     switch (Lex.getKind()) {
9282     case lltok::kw_linkage:
9283       Lex.Lex();
9284       if (parseToken(lltok::colon, "expected ':'"))
9285         return true;
9286       bool HasLinkage;
9287       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9288       assert(HasLinkage && "Linkage not optional in summary entry");
9289       Lex.Lex();
9290       break;
9291     case lltok::kw_visibility:
9292       Lex.Lex();
9293       if (parseToken(lltok::colon, "expected ':'"))
9294         return true;
9295       parseOptionalVisibility(Flag);
9296       GVFlags.Visibility = Flag;
9297       break;
9298     case lltok::kw_notEligibleToImport:
9299       Lex.Lex();
9300       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9301         return true;
9302       GVFlags.NotEligibleToImport = Flag;
9303       break;
9304     case lltok::kw_live:
9305       Lex.Lex();
9306       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9307         return true;
9308       GVFlags.Live = Flag;
9309       break;
9310     case lltok::kw_dsoLocal:
9311       Lex.Lex();
9312       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9313         return true;
9314       GVFlags.DSOLocal = Flag;
9315       break;
9316     case lltok::kw_canAutoHide:
9317       Lex.Lex();
9318       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9319         return true;
9320       GVFlags.CanAutoHide = Flag;
9321       break;
9322     default:
9323       return error(Lex.getLoc(), "expected gv flag type");
9324     }
9325   } while (EatIfPresent(lltok::comma));
9326 
9327   if (parseToken(lltok::rparen, "expected ')' here"))
9328     return true;
9329 
9330   return false;
9331 }
9332 
9333 /// GVarFlags
9334 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9335 ///                      ',' 'writeonly' ':' Flag
9336 ///                      ',' 'constant' ':' Flag ')'
9337 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9338   assert(Lex.getKind() == lltok::kw_varFlags);
9339   Lex.Lex();
9340 
9341   if (parseToken(lltok::colon, "expected ':' here") ||
9342       parseToken(lltok::lparen, "expected '(' here"))
9343     return true;
9344 
9345   auto ParseRest = [this](unsigned int &Val) {
9346     Lex.Lex();
9347     if (parseToken(lltok::colon, "expected ':'"))
9348       return true;
9349     return parseFlag(Val);
9350   };
9351 
9352   do {
9353     unsigned Flag = 0;
9354     switch (Lex.getKind()) {
9355     case lltok::kw_readonly:
9356       if (ParseRest(Flag))
9357         return true;
9358       GVarFlags.MaybeReadOnly = Flag;
9359       break;
9360     case lltok::kw_writeonly:
9361       if (ParseRest(Flag))
9362         return true;
9363       GVarFlags.MaybeWriteOnly = Flag;
9364       break;
9365     case lltok::kw_constant:
9366       if (ParseRest(Flag))
9367         return true;
9368       GVarFlags.Constant = Flag;
9369       break;
9370     case lltok::kw_vcall_visibility:
9371       if (ParseRest(Flag))
9372         return true;
9373       GVarFlags.VCallVisibility = Flag;
9374       break;
9375     default:
9376       return error(Lex.getLoc(), "expected gvar flag type");
9377     }
9378   } while (EatIfPresent(lltok::comma));
9379   return parseToken(lltok::rparen, "expected ')' here");
9380 }
9381 
9382 /// ModuleReference
9383 ///   ::= 'module' ':' UInt
9384 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9385   // parse module id.
9386   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9387       parseToken(lltok::colon, "expected ':' here") ||
9388       parseToken(lltok::SummaryID, "expected module ID"))
9389     return true;
9390 
9391   unsigned ModuleID = Lex.getUIntVal();
9392   auto I = ModuleIdMap.find(ModuleID);
9393   // We should have already parsed all module IDs
9394   assert(I != ModuleIdMap.end());
9395   ModulePath = I->second;
9396   return false;
9397 }
9398 
9399 /// GVReference
9400 ///   ::= SummaryID
9401 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9402   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9403   if (!ReadOnly)
9404     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9405   if (parseToken(lltok::SummaryID, "expected GV ID"))
9406     return true;
9407 
9408   GVId = Lex.getUIntVal();
9409   // Check if we already have a VI for this GV
9410   if (GVId < NumberedValueInfos.size()) {
9411     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9412     VI = NumberedValueInfos[GVId];
9413   } else
9414     // We will create a forward reference to the stored location.
9415     VI = ValueInfo(false, FwdVIRef);
9416 
9417   if (ReadOnly)
9418     VI.setReadOnly();
9419   if (WriteOnly)
9420     VI.setWriteOnly();
9421   return false;
9422 }
9423