1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Dwarf.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 #include "llvm/Support/raw_ostream.h" 35 using namespace llvm; 36 37 static std::string getTypeString(Type *T) { 38 std::string Result; 39 raw_string_ostream Tmp(Result); 40 Tmp << *T; 41 return Tmp.str(); 42 } 43 44 /// Run: module ::= toplevelentity* 45 bool LLParser::Run() { 46 // Prime the lexer. 47 Lex.Lex(); 48 49 return ParseTopLevelEntities() || 50 ValidateEndOfModule(); 51 } 52 53 bool LLParser::parseStandaloneConstantValue(Constant *&C, 54 const SlotMapping *Slots) { 55 restoreParsingState(Slots); 56 Lex.Lex(); 57 58 Type *Ty = nullptr; 59 if (ParseType(Ty) || parseConstantValue(Ty, C)) 60 return true; 61 if (Lex.getKind() != lltok::Eof) 62 return Error(Lex.getLoc(), "expected end of string"); 63 return false; 64 } 65 66 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 67 const SlotMapping *Slots) { 68 restoreParsingState(Slots); 69 Lex.Lex(); 70 71 Read = 0; 72 SMLoc Start = Lex.getLoc(); 73 Ty = nullptr; 74 if (ParseType(Ty)) 75 return true; 76 SMLoc End = Lex.getLoc(); 77 Read = End.getPointer() - Start.getPointer(); 78 79 return false; 80 } 81 82 void LLParser::restoreParsingState(const SlotMapping *Slots) { 83 if (!Slots) 84 return; 85 NumberedVals = Slots->GlobalValues; 86 NumberedMetadata = Slots->MetadataNodes; 87 for (const auto &I : Slots->NamedTypes) 88 NamedTypes.insert( 89 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 90 for (const auto &I : Slots->Types) 91 NumberedTypes.insert( 92 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 93 } 94 95 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 96 /// module. 97 bool LLParser::ValidateEndOfModule() { 98 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 99 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 100 101 // Handle any function attribute group forward references. 102 for (std::map<Value*, std::vector<unsigned> >::iterator 103 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 104 I != E; ++I) { 105 Value *V = I->first; 106 std::vector<unsigned> &Vec = I->second; 107 AttrBuilder B; 108 109 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 110 VI != VE; ++VI) 111 B.merge(NumberedAttrBuilders[*VI]); 112 113 if (Function *Fn = dyn_cast<Function>(V)) { 114 AttributeSet AS = Fn->getAttributes(); 115 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 116 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 117 AS.getFnAttributes()); 118 119 FnAttrs.merge(B); 120 121 // If the alignment was parsed as an attribute, move to the alignment 122 // field. 123 if (FnAttrs.hasAlignmentAttr()) { 124 Fn->setAlignment(FnAttrs.getAlignment()); 125 FnAttrs.removeAttribute(Attribute::Alignment); 126 } 127 128 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 129 AttributeSet::get(Context, 130 AttributeSet::FunctionIndex, 131 FnAttrs)); 132 Fn->setAttributes(AS); 133 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 134 AttributeSet AS = CI->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 136 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 137 AS.getFnAttributes()); 138 FnAttrs.merge(B); 139 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 140 AttributeSet::get(Context, 141 AttributeSet::FunctionIndex, 142 FnAttrs)); 143 CI->setAttributes(AS); 144 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 145 AttributeSet AS = II->getAttributes(); 146 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 147 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 148 AS.getFnAttributes()); 149 FnAttrs.merge(B); 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 II->setAttributes(AS); 155 } else { 156 llvm_unreachable("invalid object with forward attribute group reference"); 157 } 158 } 159 160 // If there are entries in ForwardRefBlockAddresses at this point, the 161 // function was never defined. 162 if (!ForwardRefBlockAddresses.empty()) 163 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 164 "expected function name in blockaddress"); 165 166 for (const auto &NT : NumberedTypes) 167 if (NT.second.second.isValid()) 168 return Error(NT.second.second, 169 "use of undefined type '%" + Twine(NT.first) + "'"); 170 171 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 172 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 173 if (I->second.second.isValid()) 174 return Error(I->second.second, 175 "use of undefined type named '" + I->getKey() + "'"); 176 177 if (!ForwardRefComdats.empty()) 178 return Error(ForwardRefComdats.begin()->second, 179 "use of undefined comdat '$" + 180 ForwardRefComdats.begin()->first + "'"); 181 182 if (!ForwardRefVals.empty()) 183 return Error(ForwardRefVals.begin()->second.second, 184 "use of undefined value '@" + ForwardRefVals.begin()->first + 185 "'"); 186 187 if (!ForwardRefValIDs.empty()) 188 return Error(ForwardRefValIDs.begin()->second.second, 189 "use of undefined value '@" + 190 Twine(ForwardRefValIDs.begin()->first) + "'"); 191 192 if (!ForwardRefMDNodes.empty()) 193 return Error(ForwardRefMDNodes.begin()->second.second, 194 "use of undefined metadata '!" + 195 Twine(ForwardRefMDNodes.begin()->first) + "'"); 196 197 // Resolve metadata cycles. 198 for (auto &N : NumberedMetadata) { 199 if (N.second && !N.second->isResolved()) 200 N.second->resolveCycles(); 201 } 202 203 // Look for intrinsic functions and CallInst that need to be upgraded 204 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 205 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 206 207 UpgradeDebugInfo(*M); 208 209 if (!Slots) 210 return false; 211 // Initialize the slot mapping. 212 // Because by this point we've parsed and validated everything, we can "steal" 213 // the mapping from LLParser as it doesn't need it anymore. 214 Slots->GlobalValues = std::move(NumberedVals); 215 Slots->MetadataNodes = std::move(NumberedMetadata); 216 for (const auto &I : NamedTypes) 217 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 218 for (const auto &I : NumberedTypes) 219 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 220 221 return false; 222 } 223 224 //===----------------------------------------------------------------------===// 225 // Top-Level Entities 226 //===----------------------------------------------------------------------===// 227 228 bool LLParser::ParseTopLevelEntities() { 229 while (1) { 230 switch (Lex.getKind()) { 231 default: return TokError("expected top-level entity"); 232 case lltok::Eof: return false; 233 case lltok::kw_declare: if (ParseDeclare()) return true; break; 234 case lltok::kw_define: if (ParseDefine()) return true; break; 235 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 236 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 237 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 238 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 239 case lltok::LocalVar: if (ParseNamedType()) return true; break; 240 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 241 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 242 case lltok::ComdatVar: if (parseComdat()) return true; break; 243 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 244 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 245 246 // The Global variable production with no name can have many different 247 // optional leading prefixes, the production is: 248 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 249 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 250 // ('constant'|'global') ... 251 case lltok::kw_private: // OptionalLinkage 252 case lltok::kw_internal: // OptionalLinkage 253 case lltok::kw_weak: // OptionalLinkage 254 case lltok::kw_weak_odr: // OptionalLinkage 255 case lltok::kw_linkonce: // OptionalLinkage 256 case lltok::kw_linkonce_odr: // OptionalLinkage 257 case lltok::kw_appending: // OptionalLinkage 258 case lltok::kw_common: // OptionalLinkage 259 case lltok::kw_extern_weak: // OptionalLinkage 260 case lltok::kw_external: // OptionalLinkage 261 case lltok::kw_default: // OptionalVisibility 262 case lltok::kw_hidden: // OptionalVisibility 263 case lltok::kw_protected: // OptionalVisibility 264 case lltok::kw_dllimport: // OptionalDLLStorageClass 265 case lltok::kw_dllexport: // OptionalDLLStorageClass 266 case lltok::kw_thread_local: // OptionalThreadLocal 267 case lltok::kw_addrspace: // OptionalAddrSpace 268 case lltok::kw_constant: // GlobalType 269 case lltok::kw_global: { // GlobalType 270 unsigned Linkage, Visibility, DLLStorageClass; 271 bool UnnamedAddr; 272 GlobalVariable::ThreadLocalMode TLM; 273 bool HasLinkage; 274 if (ParseOptionalLinkage(Linkage, HasLinkage) || 275 ParseOptionalVisibility(Visibility) || 276 ParseOptionalDLLStorageClass(DLLStorageClass) || 277 ParseOptionalThreadLocal(TLM) || 278 parseOptionalUnnamedAddr(UnnamedAddr) || 279 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 280 DLLStorageClass, TLM, UnnamedAddr)) 281 return true; 282 break; 283 } 284 285 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 286 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 287 case lltok::kw_uselistorder_bb: 288 if (ParseUseListOrderBB()) return true; break; 289 } 290 } 291 } 292 293 294 /// toplevelentity 295 /// ::= 'module' 'asm' STRINGCONSTANT 296 bool LLParser::ParseModuleAsm() { 297 assert(Lex.getKind() == lltok::kw_module); 298 Lex.Lex(); 299 300 std::string AsmStr; 301 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 302 ParseStringConstant(AsmStr)) return true; 303 304 M->appendModuleInlineAsm(AsmStr); 305 return false; 306 } 307 308 /// toplevelentity 309 /// ::= 'target' 'triple' '=' STRINGCONSTANT 310 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 311 bool LLParser::ParseTargetDefinition() { 312 assert(Lex.getKind() == lltok::kw_target); 313 std::string Str; 314 switch (Lex.Lex()) { 315 default: return TokError("unknown target property"); 316 case lltok::kw_triple: 317 Lex.Lex(); 318 if (ParseToken(lltok::equal, "expected '=' after target triple") || 319 ParseStringConstant(Str)) 320 return true; 321 M->setTargetTriple(Str); 322 return false; 323 case lltok::kw_datalayout: 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 326 ParseStringConstant(Str)) 327 return true; 328 M->setDataLayout(Str); 329 return false; 330 } 331 } 332 333 /// toplevelentity 334 /// ::= 'deplibs' '=' '[' ']' 335 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 336 /// FIXME: Remove in 4.0. Currently parse, but ignore. 337 bool LLParser::ParseDepLibs() { 338 assert(Lex.getKind() == lltok::kw_deplibs); 339 Lex.Lex(); 340 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 341 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 342 return true; 343 344 if (EatIfPresent(lltok::rsquare)) 345 return false; 346 347 do { 348 std::string Str; 349 if (ParseStringConstant(Str)) return true; 350 } while (EatIfPresent(lltok::comma)); 351 352 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 353 } 354 355 /// ParseUnnamedType: 356 /// ::= LocalVarID '=' 'type' type 357 bool LLParser::ParseUnnamedType() { 358 LocTy TypeLoc = Lex.getLoc(); 359 unsigned TypeID = Lex.getUIntVal(); 360 Lex.Lex(); // eat LocalVarID; 361 362 if (ParseToken(lltok::equal, "expected '=' after name") || 363 ParseToken(lltok::kw_type, "expected 'type' after '='")) 364 return true; 365 366 Type *Result = nullptr; 367 if (ParseStructDefinition(TypeLoc, "", 368 NumberedTypes[TypeID], Result)) return true; 369 370 if (!isa<StructType>(Result)) { 371 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 372 if (Entry.first) 373 return Error(TypeLoc, "non-struct types may not be recursive"); 374 Entry.first = Result; 375 Entry.second = SMLoc(); 376 } 377 378 return false; 379 } 380 381 382 /// toplevelentity 383 /// ::= LocalVar '=' 'type' type 384 bool LLParser::ParseNamedType() { 385 std::string Name = Lex.getStrVal(); 386 LocTy NameLoc = Lex.getLoc(); 387 Lex.Lex(); // eat LocalVar. 388 389 if (ParseToken(lltok::equal, "expected '=' after name") || 390 ParseToken(lltok::kw_type, "expected 'type' after name")) 391 return true; 392 393 Type *Result = nullptr; 394 if (ParseStructDefinition(NameLoc, Name, 395 NamedTypes[Name], Result)) return true; 396 397 if (!isa<StructType>(Result)) { 398 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 399 if (Entry.first) 400 return Error(NameLoc, "non-struct types may not be recursive"); 401 Entry.first = Result; 402 Entry.second = SMLoc(); 403 } 404 405 return false; 406 } 407 408 409 /// toplevelentity 410 /// ::= 'declare' FunctionHeader 411 bool LLParser::ParseDeclare() { 412 assert(Lex.getKind() == lltok::kw_declare); 413 Lex.Lex(); 414 415 Function *F; 416 return ParseFunctionHeader(F, false); 417 } 418 419 /// toplevelentity 420 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 421 bool LLParser::ParseDefine() { 422 assert(Lex.getKind() == lltok::kw_define); 423 Lex.Lex(); 424 425 Function *F; 426 return ParseFunctionHeader(F, true) || 427 ParseOptionalFunctionMetadata(*F) || 428 ParseFunctionBody(*F); 429 } 430 431 /// ParseGlobalType 432 /// ::= 'constant' 433 /// ::= 'global' 434 bool LLParser::ParseGlobalType(bool &IsConstant) { 435 if (Lex.getKind() == lltok::kw_constant) 436 IsConstant = true; 437 else if (Lex.getKind() == lltok::kw_global) 438 IsConstant = false; 439 else { 440 IsConstant = false; 441 return TokError("expected 'global' or 'constant'"); 442 } 443 Lex.Lex(); 444 return false; 445 } 446 447 /// ParseUnnamedGlobal: 448 /// OptionalVisibility ALIAS ... 449 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 450 /// ... -> global variable 451 /// GlobalID '=' OptionalVisibility ALIAS ... 452 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 453 /// ... -> global variable 454 bool LLParser::ParseUnnamedGlobal() { 455 unsigned VarID = NumberedVals.size(); 456 std::string Name; 457 LocTy NameLoc = Lex.getLoc(); 458 459 // Handle the GlobalID form. 460 if (Lex.getKind() == lltok::GlobalID) { 461 if (Lex.getUIntVal() != VarID) 462 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 463 Twine(VarID) + "'"); 464 Lex.Lex(); // eat GlobalID; 465 466 if (ParseToken(lltok::equal, "expected '=' after name")) 467 return true; 468 } 469 470 bool HasLinkage; 471 unsigned Linkage, Visibility, DLLStorageClass; 472 GlobalVariable::ThreadLocalMode TLM; 473 bool UnnamedAddr; 474 if (ParseOptionalLinkage(Linkage, HasLinkage) || 475 ParseOptionalVisibility(Visibility) || 476 ParseOptionalDLLStorageClass(DLLStorageClass) || 477 ParseOptionalThreadLocal(TLM) || 478 parseOptionalUnnamedAddr(UnnamedAddr)) 479 return true; 480 481 if (Lex.getKind() != lltok::kw_alias) 482 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 483 DLLStorageClass, TLM, UnnamedAddr); 484 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 485 UnnamedAddr); 486 } 487 488 /// ParseNamedGlobal: 489 /// GlobalVar '=' OptionalVisibility ALIAS ... 490 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 491 /// ... -> global variable 492 bool LLParser::ParseNamedGlobal() { 493 assert(Lex.getKind() == lltok::GlobalVar); 494 LocTy NameLoc = Lex.getLoc(); 495 std::string Name = Lex.getStrVal(); 496 Lex.Lex(); 497 498 bool HasLinkage; 499 unsigned Linkage, Visibility, DLLStorageClass; 500 GlobalVariable::ThreadLocalMode TLM; 501 bool UnnamedAddr; 502 if (ParseToken(lltok::equal, "expected '=' in global variable") || 503 ParseOptionalLinkage(Linkage, HasLinkage) || 504 ParseOptionalVisibility(Visibility) || 505 ParseOptionalDLLStorageClass(DLLStorageClass) || 506 ParseOptionalThreadLocal(TLM) || 507 parseOptionalUnnamedAddr(UnnamedAddr)) 508 return true; 509 510 if (Lex.getKind() != lltok::kw_alias) 511 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 512 DLLStorageClass, TLM, UnnamedAddr); 513 514 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 515 UnnamedAddr); 516 } 517 518 bool LLParser::parseComdat() { 519 assert(Lex.getKind() == lltok::ComdatVar); 520 std::string Name = Lex.getStrVal(); 521 LocTy NameLoc = Lex.getLoc(); 522 Lex.Lex(); 523 524 if (ParseToken(lltok::equal, "expected '=' here")) 525 return true; 526 527 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 528 return TokError("expected comdat type"); 529 530 Comdat::SelectionKind SK; 531 switch (Lex.getKind()) { 532 default: 533 return TokError("unknown selection kind"); 534 case lltok::kw_any: 535 SK = Comdat::Any; 536 break; 537 case lltok::kw_exactmatch: 538 SK = Comdat::ExactMatch; 539 break; 540 case lltok::kw_largest: 541 SK = Comdat::Largest; 542 break; 543 case lltok::kw_noduplicates: 544 SK = Comdat::NoDuplicates; 545 break; 546 case lltok::kw_samesize: 547 SK = Comdat::SameSize; 548 break; 549 } 550 Lex.Lex(); 551 552 // See if the comdat was forward referenced, if so, use the comdat. 553 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 554 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 555 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 556 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 557 558 Comdat *C; 559 if (I != ComdatSymTab.end()) 560 C = &I->second; 561 else 562 C = M->getOrInsertComdat(Name); 563 C->setSelectionKind(SK); 564 565 return false; 566 } 567 568 // MDString: 569 // ::= '!' STRINGCONSTANT 570 bool LLParser::ParseMDString(MDString *&Result) { 571 std::string Str; 572 if (ParseStringConstant(Str)) return true; 573 llvm::UpgradeMDStringConstant(Str); 574 Result = MDString::get(Context, Str); 575 return false; 576 } 577 578 // MDNode: 579 // ::= '!' MDNodeNumber 580 bool LLParser::ParseMDNodeID(MDNode *&Result) { 581 // !{ ..., !42, ... } 582 unsigned MID = 0; 583 if (ParseUInt32(MID)) 584 return true; 585 586 // If not a forward reference, just return it now. 587 if (NumberedMetadata.count(MID)) { 588 Result = NumberedMetadata[MID]; 589 return false; 590 } 591 592 // Otherwise, create MDNode forward reference. 593 auto &FwdRef = ForwardRefMDNodes[MID]; 594 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 595 596 Result = FwdRef.first.get(); 597 NumberedMetadata[MID].reset(Result); 598 return false; 599 } 600 601 /// ParseNamedMetadata: 602 /// !foo = !{ !1, !2 } 603 bool LLParser::ParseNamedMetadata() { 604 assert(Lex.getKind() == lltok::MetadataVar); 605 std::string Name = Lex.getStrVal(); 606 Lex.Lex(); 607 608 if (ParseToken(lltok::equal, "expected '=' here") || 609 ParseToken(lltok::exclaim, "Expected '!' here") || 610 ParseToken(lltok::lbrace, "Expected '{' here")) 611 return true; 612 613 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 614 if (Lex.getKind() != lltok::rbrace) 615 do { 616 if (ParseToken(lltok::exclaim, "Expected '!' here")) 617 return true; 618 619 MDNode *N = nullptr; 620 if (ParseMDNodeID(N)) return true; 621 NMD->addOperand(N); 622 } while (EatIfPresent(lltok::comma)); 623 624 return ParseToken(lltok::rbrace, "expected end of metadata node"); 625 } 626 627 /// ParseStandaloneMetadata: 628 /// !42 = !{...} 629 bool LLParser::ParseStandaloneMetadata() { 630 assert(Lex.getKind() == lltok::exclaim); 631 Lex.Lex(); 632 unsigned MetadataID = 0; 633 634 MDNode *Init; 635 if (ParseUInt32(MetadataID) || 636 ParseToken(lltok::equal, "expected '=' here")) 637 return true; 638 639 // Detect common error, from old metadata syntax. 640 if (Lex.getKind() == lltok::Type) 641 return TokError("unexpected type in metadata definition"); 642 643 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 644 if (Lex.getKind() == lltok::MetadataVar) { 645 if (ParseSpecializedMDNode(Init, IsDistinct)) 646 return true; 647 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 648 ParseMDTuple(Init, IsDistinct)) 649 return true; 650 651 // See if this was forward referenced, if so, handle it. 652 auto FI = ForwardRefMDNodes.find(MetadataID); 653 if (FI != ForwardRefMDNodes.end()) { 654 FI->second.first->replaceAllUsesWith(Init); 655 ForwardRefMDNodes.erase(FI); 656 657 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 658 } else { 659 if (NumberedMetadata.count(MetadataID)) 660 return TokError("Metadata id is already used"); 661 NumberedMetadata[MetadataID].reset(Init); 662 } 663 664 return false; 665 } 666 667 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 668 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 669 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 670 } 671 672 /// ParseAlias: 673 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 674 /// OptionalDLLStorageClass OptionalThreadLocal 675 /// OptionalUnnamedAddr 'alias' Aliasee 676 /// 677 /// Aliasee 678 /// ::= TypeAndValue 679 /// 680 /// Everything through OptionalUnnamedAddr has already been parsed. 681 /// 682 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 683 unsigned Visibility, unsigned DLLStorageClass, 684 GlobalVariable::ThreadLocalMode TLM, 685 bool UnnamedAddr) { 686 assert(Lex.getKind() == lltok::kw_alias); 687 Lex.Lex(); 688 689 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 690 691 if(!GlobalAlias::isValidLinkage(Linkage)) 692 return Error(NameLoc, "invalid linkage type for alias"); 693 694 if (!isValidVisibilityForLinkage(Visibility, L)) 695 return Error(NameLoc, 696 "symbol with local linkage must have default visibility"); 697 698 Type *Ty; 699 LocTy ExplicitTypeLoc = Lex.getLoc(); 700 if (ParseType(Ty) || 701 ParseToken(lltok::comma, "expected comma after alias's type")) 702 return true; 703 704 Constant *Aliasee; 705 LocTy AliaseeLoc = Lex.getLoc(); 706 if (Lex.getKind() != lltok::kw_bitcast && 707 Lex.getKind() != lltok::kw_getelementptr && 708 Lex.getKind() != lltok::kw_addrspacecast && 709 Lex.getKind() != lltok::kw_inttoptr) { 710 if (ParseGlobalTypeAndValue(Aliasee)) 711 return true; 712 } else { 713 // The bitcast dest type is not present, it is implied by the dest type. 714 ValID ID; 715 if (ParseValID(ID)) 716 return true; 717 if (ID.Kind != ValID::t_Constant) 718 return Error(AliaseeLoc, "invalid aliasee"); 719 Aliasee = ID.ConstantVal; 720 } 721 722 Type *AliaseeType = Aliasee->getType(); 723 auto *PTy = dyn_cast<PointerType>(AliaseeType); 724 if (!PTy) 725 return Error(AliaseeLoc, "An alias must have pointer type"); 726 unsigned AddrSpace = PTy->getAddressSpace(); 727 728 if (Ty != PTy->getElementType()) 729 return Error( 730 ExplicitTypeLoc, 731 "explicit pointee type doesn't match operand's pointee type"); 732 733 GlobalValue *GVal = nullptr; 734 735 // See if the alias was forward referenced, if so, prepare to replace the 736 // forward reference. 737 if (!Name.empty()) { 738 GVal = M->getNamedValue(Name); 739 if (GVal) { 740 if (!ForwardRefVals.erase(Name)) 741 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 742 } 743 } else { 744 auto I = ForwardRefValIDs.find(NumberedVals.size()); 745 if (I != ForwardRefValIDs.end()) { 746 GVal = I->second.first; 747 ForwardRefValIDs.erase(I); 748 } 749 } 750 751 // Okay, create the alias but do not insert it into the module yet. 752 std::unique_ptr<GlobalAlias> GA( 753 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 754 Name, Aliasee, /*Parent*/ nullptr)); 755 GA->setThreadLocalMode(TLM); 756 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 757 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 758 GA->setUnnamedAddr(UnnamedAddr); 759 760 if (Name.empty()) 761 NumberedVals.push_back(GA.get()); 762 763 if (GVal) { 764 // Verify that types agree. 765 if (GVal->getType() != GA->getType()) 766 return Error( 767 ExplicitTypeLoc, 768 "forward reference and definition of alias have different types"); 769 770 // If they agree, just RAUW the old value with the alias and remove the 771 // forward ref info. 772 GVal->replaceAllUsesWith(GA.get()); 773 GVal->eraseFromParent(); 774 } 775 776 // Insert into the module, we know its name won't collide now. 777 M->getAliasList().push_back(GA.get()); 778 assert(GA->getName() == Name && "Should not be a name conflict!"); 779 780 // The module owns this now 781 GA.release(); 782 783 return false; 784 } 785 786 /// ParseGlobal 787 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 788 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 789 /// OptionalExternallyInitialized GlobalType Type Const 790 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 791 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 792 /// OptionalExternallyInitialized GlobalType Type Const 793 /// 794 /// Everything up to and including OptionalUnnamedAddr has been parsed 795 /// already. 796 /// 797 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 798 unsigned Linkage, bool HasLinkage, 799 unsigned Visibility, unsigned DLLStorageClass, 800 GlobalVariable::ThreadLocalMode TLM, 801 bool UnnamedAddr) { 802 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 803 return Error(NameLoc, 804 "symbol with local linkage must have default visibility"); 805 806 unsigned AddrSpace; 807 bool IsConstant, IsExternallyInitialized; 808 LocTy IsExternallyInitializedLoc; 809 LocTy TyLoc; 810 811 Type *Ty = nullptr; 812 if (ParseOptionalAddrSpace(AddrSpace) || 813 ParseOptionalToken(lltok::kw_externally_initialized, 814 IsExternallyInitialized, 815 &IsExternallyInitializedLoc) || 816 ParseGlobalType(IsConstant) || 817 ParseType(Ty, TyLoc)) 818 return true; 819 820 // If the linkage is specified and is external, then no initializer is 821 // present. 822 Constant *Init = nullptr; 823 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 824 Linkage != GlobalValue::ExternalLinkage)) { 825 if (ParseGlobalValue(Ty, Init)) 826 return true; 827 } 828 829 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 830 return Error(TyLoc, "invalid type for global variable"); 831 832 GlobalValue *GVal = nullptr; 833 834 // See if the global was forward referenced, if so, use the global. 835 if (!Name.empty()) { 836 GVal = M->getNamedValue(Name); 837 if (GVal) { 838 if (!ForwardRefVals.erase(Name)) 839 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 840 } 841 } else { 842 auto I = ForwardRefValIDs.find(NumberedVals.size()); 843 if (I != ForwardRefValIDs.end()) { 844 GVal = I->second.first; 845 ForwardRefValIDs.erase(I); 846 } 847 } 848 849 GlobalVariable *GV; 850 if (!GVal) { 851 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 852 Name, nullptr, GlobalVariable::NotThreadLocal, 853 AddrSpace); 854 } else { 855 if (GVal->getValueType() != Ty) 856 return Error(TyLoc, 857 "forward reference and definition of global have different types"); 858 859 GV = cast<GlobalVariable>(GVal); 860 861 // Move the forward-reference to the correct spot in the module. 862 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 863 } 864 865 if (Name.empty()) 866 NumberedVals.push_back(GV); 867 868 // Set the parsed properties on the global. 869 if (Init) 870 GV->setInitializer(Init); 871 GV->setConstant(IsConstant); 872 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 873 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 874 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 875 GV->setExternallyInitialized(IsExternallyInitialized); 876 GV->setThreadLocalMode(TLM); 877 GV->setUnnamedAddr(UnnamedAddr); 878 879 // Parse attributes on the global. 880 while (Lex.getKind() == lltok::comma) { 881 Lex.Lex(); 882 883 if (Lex.getKind() == lltok::kw_section) { 884 Lex.Lex(); 885 GV->setSection(Lex.getStrVal()); 886 if (ParseToken(lltok::StringConstant, "expected global section string")) 887 return true; 888 } else if (Lex.getKind() == lltok::kw_align) { 889 unsigned Alignment; 890 if (ParseOptionalAlignment(Alignment)) return true; 891 GV->setAlignment(Alignment); 892 } else { 893 Comdat *C; 894 if (parseOptionalComdat(Name, C)) 895 return true; 896 if (C) 897 GV->setComdat(C); 898 else 899 return TokError("unknown global variable property!"); 900 } 901 } 902 903 return false; 904 } 905 906 /// ParseUnnamedAttrGrp 907 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 908 bool LLParser::ParseUnnamedAttrGrp() { 909 assert(Lex.getKind() == lltok::kw_attributes); 910 LocTy AttrGrpLoc = Lex.getLoc(); 911 Lex.Lex(); 912 913 if (Lex.getKind() != lltok::AttrGrpID) 914 return TokError("expected attribute group id"); 915 916 unsigned VarID = Lex.getUIntVal(); 917 std::vector<unsigned> unused; 918 LocTy BuiltinLoc; 919 Lex.Lex(); 920 921 if (ParseToken(lltok::equal, "expected '=' here") || 922 ParseToken(lltok::lbrace, "expected '{' here") || 923 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 924 BuiltinLoc) || 925 ParseToken(lltok::rbrace, "expected end of attribute group")) 926 return true; 927 928 if (!NumberedAttrBuilders[VarID].hasAttributes()) 929 return Error(AttrGrpLoc, "attribute group has no attributes"); 930 931 return false; 932 } 933 934 /// ParseFnAttributeValuePairs 935 /// ::= <attr> | <attr> '=' <value> 936 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 937 std::vector<unsigned> &FwdRefAttrGrps, 938 bool inAttrGrp, LocTy &BuiltinLoc) { 939 bool HaveError = false; 940 941 B.clear(); 942 943 while (true) { 944 lltok::Kind Token = Lex.getKind(); 945 if (Token == lltok::kw_builtin) 946 BuiltinLoc = Lex.getLoc(); 947 switch (Token) { 948 default: 949 if (!inAttrGrp) return HaveError; 950 return Error(Lex.getLoc(), "unterminated attribute group"); 951 case lltok::rbrace: 952 // Finished. 953 return false; 954 955 case lltok::AttrGrpID: { 956 // Allow a function to reference an attribute group: 957 // 958 // define void @foo() #1 { ... } 959 if (inAttrGrp) 960 HaveError |= 961 Error(Lex.getLoc(), 962 "cannot have an attribute group reference in an attribute group"); 963 964 unsigned AttrGrpNum = Lex.getUIntVal(); 965 if (inAttrGrp) break; 966 967 // Save the reference to the attribute group. We'll fill it in later. 968 FwdRefAttrGrps.push_back(AttrGrpNum); 969 break; 970 } 971 // Target-dependent attributes: 972 case lltok::StringConstant: { 973 if (ParseStringAttribute(B)) 974 return true; 975 continue; 976 } 977 978 // Target-independent attributes: 979 case lltok::kw_align: { 980 // As a hack, we allow function alignment to be initially parsed as an 981 // attribute on a function declaration/definition or added to an attribute 982 // group and later moved to the alignment field. 983 unsigned Alignment; 984 if (inAttrGrp) { 985 Lex.Lex(); 986 if (ParseToken(lltok::equal, "expected '=' here") || 987 ParseUInt32(Alignment)) 988 return true; 989 } else { 990 if (ParseOptionalAlignment(Alignment)) 991 return true; 992 } 993 B.addAlignmentAttr(Alignment); 994 continue; 995 } 996 case lltok::kw_alignstack: { 997 unsigned Alignment; 998 if (inAttrGrp) { 999 Lex.Lex(); 1000 if (ParseToken(lltok::equal, "expected '=' here") || 1001 ParseUInt32(Alignment)) 1002 return true; 1003 } else { 1004 if (ParseOptionalStackAlignment(Alignment)) 1005 return true; 1006 } 1007 B.addStackAlignmentAttr(Alignment); 1008 continue; 1009 } 1010 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1011 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1012 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1013 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1014 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1015 case lltok::kw_inaccessiblememonly: 1016 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1017 case lltok::kw_inaccessiblemem_or_argmemonly: 1018 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1019 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1020 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1021 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1022 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1023 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1024 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1025 case lltok::kw_noimplicitfloat: 1026 B.addAttribute(Attribute::NoImplicitFloat); break; 1027 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1028 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1029 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1030 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1031 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1032 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1033 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1034 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1035 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1036 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1037 case lltok::kw_returns_twice: 1038 B.addAttribute(Attribute::ReturnsTwice); break; 1039 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1040 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1041 case lltok::kw_sspstrong: 1042 B.addAttribute(Attribute::StackProtectStrong); break; 1043 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1044 case lltok::kw_sanitize_address: 1045 B.addAttribute(Attribute::SanitizeAddress); break; 1046 case lltok::kw_sanitize_thread: 1047 B.addAttribute(Attribute::SanitizeThread); break; 1048 case lltok::kw_sanitize_memory: 1049 B.addAttribute(Attribute::SanitizeMemory); break; 1050 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1051 1052 // Error handling. 1053 case lltok::kw_inreg: 1054 case lltok::kw_signext: 1055 case lltok::kw_zeroext: 1056 HaveError |= 1057 Error(Lex.getLoc(), 1058 "invalid use of attribute on a function"); 1059 break; 1060 case lltok::kw_byval: 1061 case lltok::kw_dereferenceable: 1062 case lltok::kw_dereferenceable_or_null: 1063 case lltok::kw_inalloca: 1064 case lltok::kw_nest: 1065 case lltok::kw_noalias: 1066 case lltok::kw_nocapture: 1067 case lltok::kw_nonnull: 1068 case lltok::kw_returned: 1069 case lltok::kw_sret: 1070 HaveError |= 1071 Error(Lex.getLoc(), 1072 "invalid use of parameter-only attribute on a function"); 1073 break; 1074 } 1075 1076 Lex.Lex(); 1077 } 1078 } 1079 1080 //===----------------------------------------------------------------------===// 1081 // GlobalValue Reference/Resolution Routines. 1082 //===----------------------------------------------------------------------===// 1083 1084 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1085 const std::string &Name) { 1086 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1087 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1088 else 1089 return new GlobalVariable(*M, PTy->getElementType(), false, 1090 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1091 nullptr, GlobalVariable::NotThreadLocal, 1092 PTy->getAddressSpace()); 1093 } 1094 1095 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1096 /// forward reference record if needed. This can return null if the value 1097 /// exists but does not have the right type. 1098 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1099 LocTy Loc) { 1100 PointerType *PTy = dyn_cast<PointerType>(Ty); 1101 if (!PTy) { 1102 Error(Loc, "global variable reference must have pointer type"); 1103 return nullptr; 1104 } 1105 1106 // Look this name up in the normal function symbol table. 1107 GlobalValue *Val = 1108 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1109 1110 // If this is a forward reference for the value, see if we already created a 1111 // forward ref record. 1112 if (!Val) { 1113 auto I = ForwardRefVals.find(Name); 1114 if (I != ForwardRefVals.end()) 1115 Val = I->second.first; 1116 } 1117 1118 // If we have the value in the symbol table or fwd-ref table, return it. 1119 if (Val) { 1120 if (Val->getType() == Ty) return Val; 1121 Error(Loc, "'@" + Name + "' defined with type '" + 1122 getTypeString(Val->getType()) + "'"); 1123 return nullptr; 1124 } 1125 1126 // Otherwise, create a new forward reference for this value and remember it. 1127 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1128 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1129 return FwdVal; 1130 } 1131 1132 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1133 PointerType *PTy = dyn_cast<PointerType>(Ty); 1134 if (!PTy) { 1135 Error(Loc, "global variable reference must have pointer type"); 1136 return nullptr; 1137 } 1138 1139 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1140 1141 // If this is a forward reference for the value, see if we already created a 1142 // forward ref record. 1143 if (!Val) { 1144 auto I = ForwardRefValIDs.find(ID); 1145 if (I != ForwardRefValIDs.end()) 1146 Val = I->second.first; 1147 } 1148 1149 // If we have the value in the symbol table or fwd-ref table, return it. 1150 if (Val) { 1151 if (Val->getType() == Ty) return Val; 1152 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1153 getTypeString(Val->getType()) + "'"); 1154 return nullptr; 1155 } 1156 1157 // Otherwise, create a new forward reference for this value and remember it. 1158 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1159 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1160 return FwdVal; 1161 } 1162 1163 1164 //===----------------------------------------------------------------------===// 1165 // Comdat Reference/Resolution Routines. 1166 //===----------------------------------------------------------------------===// 1167 1168 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1169 // Look this name up in the comdat symbol table. 1170 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1171 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1172 if (I != ComdatSymTab.end()) 1173 return &I->second; 1174 1175 // Otherwise, create a new forward reference for this value and remember it. 1176 Comdat *C = M->getOrInsertComdat(Name); 1177 ForwardRefComdats[Name] = Loc; 1178 return C; 1179 } 1180 1181 1182 //===----------------------------------------------------------------------===// 1183 // Helper Routines. 1184 //===----------------------------------------------------------------------===// 1185 1186 /// ParseToken - If the current token has the specified kind, eat it and return 1187 /// success. Otherwise, emit the specified error and return failure. 1188 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1189 if (Lex.getKind() != T) 1190 return TokError(ErrMsg); 1191 Lex.Lex(); 1192 return false; 1193 } 1194 1195 /// ParseStringConstant 1196 /// ::= StringConstant 1197 bool LLParser::ParseStringConstant(std::string &Result) { 1198 if (Lex.getKind() != lltok::StringConstant) 1199 return TokError("expected string constant"); 1200 Result = Lex.getStrVal(); 1201 Lex.Lex(); 1202 return false; 1203 } 1204 1205 /// ParseUInt32 1206 /// ::= uint32 1207 bool LLParser::ParseUInt32(unsigned &Val) { 1208 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1209 return TokError("expected integer"); 1210 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1211 if (Val64 != unsigned(Val64)) 1212 return TokError("expected 32-bit integer (too large)"); 1213 Val = Val64; 1214 Lex.Lex(); 1215 return false; 1216 } 1217 1218 /// ParseUInt64 1219 /// ::= uint64 1220 bool LLParser::ParseUInt64(uint64_t &Val) { 1221 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1222 return TokError("expected integer"); 1223 Val = Lex.getAPSIntVal().getLimitedValue(); 1224 Lex.Lex(); 1225 return false; 1226 } 1227 1228 /// ParseTLSModel 1229 /// := 'localdynamic' 1230 /// := 'initialexec' 1231 /// := 'localexec' 1232 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1233 switch (Lex.getKind()) { 1234 default: 1235 return TokError("expected localdynamic, initialexec or localexec"); 1236 case lltok::kw_localdynamic: 1237 TLM = GlobalVariable::LocalDynamicTLSModel; 1238 break; 1239 case lltok::kw_initialexec: 1240 TLM = GlobalVariable::InitialExecTLSModel; 1241 break; 1242 case lltok::kw_localexec: 1243 TLM = GlobalVariable::LocalExecTLSModel; 1244 break; 1245 } 1246 1247 Lex.Lex(); 1248 return false; 1249 } 1250 1251 /// ParseOptionalThreadLocal 1252 /// := /*empty*/ 1253 /// := 'thread_local' 1254 /// := 'thread_local' '(' tlsmodel ')' 1255 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1256 TLM = GlobalVariable::NotThreadLocal; 1257 if (!EatIfPresent(lltok::kw_thread_local)) 1258 return false; 1259 1260 TLM = GlobalVariable::GeneralDynamicTLSModel; 1261 if (Lex.getKind() == lltok::lparen) { 1262 Lex.Lex(); 1263 return ParseTLSModel(TLM) || 1264 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1265 } 1266 return false; 1267 } 1268 1269 /// ParseOptionalAddrSpace 1270 /// := /*empty*/ 1271 /// := 'addrspace' '(' uint32 ')' 1272 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1273 AddrSpace = 0; 1274 if (!EatIfPresent(lltok::kw_addrspace)) 1275 return false; 1276 return ParseToken(lltok::lparen, "expected '(' in address space") || 1277 ParseUInt32(AddrSpace) || 1278 ParseToken(lltok::rparen, "expected ')' in address space"); 1279 } 1280 1281 /// ParseStringAttribute 1282 /// := StringConstant 1283 /// := StringConstant '=' StringConstant 1284 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1285 std::string Attr = Lex.getStrVal(); 1286 Lex.Lex(); 1287 std::string Val; 1288 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1289 return true; 1290 B.addAttribute(Attr, Val); 1291 return false; 1292 } 1293 1294 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1295 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1296 bool HaveError = false; 1297 1298 B.clear(); 1299 1300 while (1) { 1301 lltok::Kind Token = Lex.getKind(); 1302 switch (Token) { 1303 default: // End of attributes. 1304 return HaveError; 1305 case lltok::StringConstant: { 1306 if (ParseStringAttribute(B)) 1307 return true; 1308 continue; 1309 } 1310 case lltok::kw_align: { 1311 unsigned Alignment; 1312 if (ParseOptionalAlignment(Alignment)) 1313 return true; 1314 B.addAlignmentAttr(Alignment); 1315 continue; 1316 } 1317 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1318 case lltok::kw_dereferenceable: { 1319 uint64_t Bytes; 1320 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1321 return true; 1322 B.addDereferenceableAttr(Bytes); 1323 continue; 1324 } 1325 case lltok::kw_dereferenceable_or_null: { 1326 uint64_t Bytes; 1327 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1328 return true; 1329 B.addDereferenceableOrNullAttr(Bytes); 1330 continue; 1331 } 1332 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1333 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1334 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1335 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1336 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1337 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1338 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1339 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1340 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1341 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1342 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1343 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1344 1345 case lltok::kw_alignstack: 1346 case lltok::kw_alwaysinline: 1347 case lltok::kw_argmemonly: 1348 case lltok::kw_builtin: 1349 case lltok::kw_inlinehint: 1350 case lltok::kw_jumptable: 1351 case lltok::kw_minsize: 1352 case lltok::kw_naked: 1353 case lltok::kw_nobuiltin: 1354 case lltok::kw_noduplicate: 1355 case lltok::kw_noimplicitfloat: 1356 case lltok::kw_noinline: 1357 case lltok::kw_nonlazybind: 1358 case lltok::kw_noredzone: 1359 case lltok::kw_noreturn: 1360 case lltok::kw_nounwind: 1361 case lltok::kw_optnone: 1362 case lltok::kw_optsize: 1363 case lltok::kw_returns_twice: 1364 case lltok::kw_sanitize_address: 1365 case lltok::kw_sanitize_memory: 1366 case lltok::kw_sanitize_thread: 1367 case lltok::kw_ssp: 1368 case lltok::kw_sspreq: 1369 case lltok::kw_sspstrong: 1370 case lltok::kw_safestack: 1371 case lltok::kw_uwtable: 1372 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1373 break; 1374 } 1375 1376 Lex.Lex(); 1377 } 1378 } 1379 1380 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1381 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1382 bool HaveError = false; 1383 1384 B.clear(); 1385 1386 while (1) { 1387 lltok::Kind Token = Lex.getKind(); 1388 switch (Token) { 1389 default: // End of attributes. 1390 return HaveError; 1391 case lltok::StringConstant: { 1392 if (ParseStringAttribute(B)) 1393 return true; 1394 continue; 1395 } 1396 case lltok::kw_dereferenceable: { 1397 uint64_t Bytes; 1398 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1399 return true; 1400 B.addDereferenceableAttr(Bytes); 1401 continue; 1402 } 1403 case lltok::kw_dereferenceable_or_null: { 1404 uint64_t Bytes; 1405 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1406 return true; 1407 B.addDereferenceableOrNullAttr(Bytes); 1408 continue; 1409 } 1410 case lltok::kw_align: { 1411 unsigned Alignment; 1412 if (ParseOptionalAlignment(Alignment)) 1413 return true; 1414 B.addAlignmentAttr(Alignment); 1415 continue; 1416 } 1417 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1418 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1419 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1420 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1421 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1422 1423 // Error handling. 1424 case lltok::kw_byval: 1425 case lltok::kw_inalloca: 1426 case lltok::kw_nest: 1427 case lltok::kw_nocapture: 1428 case lltok::kw_returned: 1429 case lltok::kw_sret: 1430 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1431 break; 1432 1433 case lltok::kw_alignstack: 1434 case lltok::kw_alwaysinline: 1435 case lltok::kw_argmemonly: 1436 case lltok::kw_builtin: 1437 case lltok::kw_cold: 1438 case lltok::kw_inlinehint: 1439 case lltok::kw_jumptable: 1440 case lltok::kw_minsize: 1441 case lltok::kw_naked: 1442 case lltok::kw_nobuiltin: 1443 case lltok::kw_noduplicate: 1444 case lltok::kw_noimplicitfloat: 1445 case lltok::kw_noinline: 1446 case lltok::kw_nonlazybind: 1447 case lltok::kw_noredzone: 1448 case lltok::kw_noreturn: 1449 case lltok::kw_nounwind: 1450 case lltok::kw_optnone: 1451 case lltok::kw_optsize: 1452 case lltok::kw_returns_twice: 1453 case lltok::kw_sanitize_address: 1454 case lltok::kw_sanitize_memory: 1455 case lltok::kw_sanitize_thread: 1456 case lltok::kw_ssp: 1457 case lltok::kw_sspreq: 1458 case lltok::kw_sspstrong: 1459 case lltok::kw_safestack: 1460 case lltok::kw_uwtable: 1461 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1462 break; 1463 1464 case lltok::kw_readnone: 1465 case lltok::kw_readonly: 1466 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1467 } 1468 1469 Lex.Lex(); 1470 } 1471 } 1472 1473 /// ParseOptionalLinkage 1474 /// ::= /*empty*/ 1475 /// ::= 'private' 1476 /// ::= 'internal' 1477 /// ::= 'weak' 1478 /// ::= 'weak_odr' 1479 /// ::= 'linkonce' 1480 /// ::= 'linkonce_odr' 1481 /// ::= 'available_externally' 1482 /// ::= 'appending' 1483 /// ::= 'common' 1484 /// ::= 'extern_weak' 1485 /// ::= 'external' 1486 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1487 HasLinkage = false; 1488 switch (Lex.getKind()) { 1489 default: Res=GlobalValue::ExternalLinkage; return false; 1490 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1491 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1492 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1493 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1494 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1495 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1496 case lltok::kw_available_externally: 1497 Res = GlobalValue::AvailableExternallyLinkage; 1498 break; 1499 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1500 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1501 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1502 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1503 } 1504 Lex.Lex(); 1505 HasLinkage = true; 1506 return false; 1507 } 1508 1509 /// ParseOptionalVisibility 1510 /// ::= /*empty*/ 1511 /// ::= 'default' 1512 /// ::= 'hidden' 1513 /// ::= 'protected' 1514 /// 1515 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1516 switch (Lex.getKind()) { 1517 default: Res = GlobalValue::DefaultVisibility; return false; 1518 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1519 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1520 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1521 } 1522 Lex.Lex(); 1523 return false; 1524 } 1525 1526 /// ParseOptionalDLLStorageClass 1527 /// ::= /*empty*/ 1528 /// ::= 'dllimport' 1529 /// ::= 'dllexport' 1530 /// 1531 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1532 switch (Lex.getKind()) { 1533 default: Res = GlobalValue::DefaultStorageClass; return false; 1534 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1535 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1536 } 1537 Lex.Lex(); 1538 return false; 1539 } 1540 1541 /// ParseOptionalCallingConv 1542 /// ::= /*empty*/ 1543 /// ::= 'ccc' 1544 /// ::= 'fastcc' 1545 /// ::= 'intel_ocl_bicc' 1546 /// ::= 'coldcc' 1547 /// ::= 'x86_stdcallcc' 1548 /// ::= 'x86_fastcallcc' 1549 /// ::= 'x86_thiscallcc' 1550 /// ::= 'x86_vectorcallcc' 1551 /// ::= 'arm_apcscc' 1552 /// ::= 'arm_aapcscc' 1553 /// ::= 'arm_aapcs_vfpcc' 1554 /// ::= 'msp430_intrcc' 1555 /// ::= 'avr_intrcc' 1556 /// ::= 'avr_signalcc' 1557 /// ::= 'ptx_kernel' 1558 /// ::= 'ptx_device' 1559 /// ::= 'spir_func' 1560 /// ::= 'spir_kernel' 1561 /// ::= 'x86_64_sysvcc' 1562 /// ::= 'x86_64_win64cc' 1563 /// ::= 'webkit_jscc' 1564 /// ::= 'anyregcc' 1565 /// ::= 'preserve_mostcc' 1566 /// ::= 'preserve_allcc' 1567 /// ::= 'ghccc' 1568 /// ::= 'x86_intrcc' 1569 /// ::= 'hhvmcc' 1570 /// ::= 'hhvm_ccc' 1571 /// ::= 'cxx_fast_tlscc' 1572 /// ::= 'cc' UINT 1573 /// 1574 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1575 switch (Lex.getKind()) { 1576 default: CC = CallingConv::C; return false; 1577 case lltok::kw_ccc: CC = CallingConv::C; break; 1578 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1579 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1580 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1581 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1582 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1583 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1584 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1585 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1586 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1587 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1588 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1589 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1590 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1591 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1592 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1593 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1594 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1595 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1596 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1597 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1598 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1599 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1600 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1601 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1602 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1603 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1604 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1605 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1606 case lltok::kw_cc: { 1607 Lex.Lex(); 1608 return ParseUInt32(CC); 1609 } 1610 } 1611 1612 Lex.Lex(); 1613 return false; 1614 } 1615 1616 /// ParseMetadataAttachment 1617 /// ::= !dbg !42 1618 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1619 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1620 1621 std::string Name = Lex.getStrVal(); 1622 Kind = M->getMDKindID(Name); 1623 Lex.Lex(); 1624 1625 return ParseMDNode(MD); 1626 } 1627 1628 /// ParseInstructionMetadata 1629 /// ::= !dbg !42 (',' !dbg !57)* 1630 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1631 do { 1632 if (Lex.getKind() != lltok::MetadataVar) 1633 return TokError("expected metadata after comma"); 1634 1635 unsigned MDK; 1636 MDNode *N; 1637 if (ParseMetadataAttachment(MDK, N)) 1638 return true; 1639 1640 Inst.setMetadata(MDK, N); 1641 if (MDK == LLVMContext::MD_tbaa) 1642 InstsWithTBAATag.push_back(&Inst); 1643 1644 // If this is the end of the list, we're done. 1645 } while (EatIfPresent(lltok::comma)); 1646 return false; 1647 } 1648 1649 /// ParseOptionalFunctionMetadata 1650 /// ::= (!dbg !57)* 1651 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1652 while (Lex.getKind() == lltok::MetadataVar) { 1653 unsigned MDK; 1654 MDNode *N; 1655 if (ParseMetadataAttachment(MDK, N)) 1656 return true; 1657 1658 F.setMetadata(MDK, N); 1659 } 1660 return false; 1661 } 1662 1663 /// ParseOptionalAlignment 1664 /// ::= /* empty */ 1665 /// ::= 'align' 4 1666 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1667 Alignment = 0; 1668 if (!EatIfPresent(lltok::kw_align)) 1669 return false; 1670 LocTy AlignLoc = Lex.getLoc(); 1671 if (ParseUInt32(Alignment)) return true; 1672 if (!isPowerOf2_32(Alignment)) 1673 return Error(AlignLoc, "alignment is not a power of two"); 1674 if (Alignment > Value::MaximumAlignment) 1675 return Error(AlignLoc, "huge alignments are not supported yet"); 1676 return false; 1677 } 1678 1679 /// ParseOptionalDerefAttrBytes 1680 /// ::= /* empty */ 1681 /// ::= AttrKind '(' 4 ')' 1682 /// 1683 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1684 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1685 uint64_t &Bytes) { 1686 assert((AttrKind == lltok::kw_dereferenceable || 1687 AttrKind == lltok::kw_dereferenceable_or_null) && 1688 "contract!"); 1689 1690 Bytes = 0; 1691 if (!EatIfPresent(AttrKind)) 1692 return false; 1693 LocTy ParenLoc = Lex.getLoc(); 1694 if (!EatIfPresent(lltok::lparen)) 1695 return Error(ParenLoc, "expected '('"); 1696 LocTy DerefLoc = Lex.getLoc(); 1697 if (ParseUInt64(Bytes)) return true; 1698 ParenLoc = Lex.getLoc(); 1699 if (!EatIfPresent(lltok::rparen)) 1700 return Error(ParenLoc, "expected ')'"); 1701 if (!Bytes) 1702 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1703 return false; 1704 } 1705 1706 /// ParseOptionalCommaAlign 1707 /// ::= 1708 /// ::= ',' align 4 1709 /// 1710 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1711 /// end. 1712 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1713 bool &AteExtraComma) { 1714 AteExtraComma = false; 1715 while (EatIfPresent(lltok::comma)) { 1716 // Metadata at the end is an early exit. 1717 if (Lex.getKind() == lltok::MetadataVar) { 1718 AteExtraComma = true; 1719 return false; 1720 } 1721 1722 if (Lex.getKind() != lltok::kw_align) 1723 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1724 1725 if (ParseOptionalAlignment(Alignment)) return true; 1726 } 1727 1728 return false; 1729 } 1730 1731 /// ParseScopeAndOrdering 1732 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1733 /// else: ::= 1734 /// 1735 /// This sets Scope and Ordering to the parsed values. 1736 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1737 AtomicOrdering &Ordering) { 1738 if (!isAtomic) 1739 return false; 1740 1741 Scope = CrossThread; 1742 if (EatIfPresent(lltok::kw_singlethread)) 1743 Scope = SingleThread; 1744 1745 return ParseOrdering(Ordering); 1746 } 1747 1748 /// ParseOrdering 1749 /// ::= AtomicOrdering 1750 /// 1751 /// This sets Ordering to the parsed value. 1752 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1753 switch (Lex.getKind()) { 1754 default: return TokError("Expected ordering on atomic instruction"); 1755 case lltok::kw_unordered: Ordering = Unordered; break; 1756 case lltok::kw_monotonic: Ordering = Monotonic; break; 1757 case lltok::kw_acquire: Ordering = Acquire; break; 1758 case lltok::kw_release: Ordering = Release; break; 1759 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1760 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1761 } 1762 Lex.Lex(); 1763 return false; 1764 } 1765 1766 /// ParseOptionalStackAlignment 1767 /// ::= /* empty */ 1768 /// ::= 'alignstack' '(' 4 ')' 1769 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1770 Alignment = 0; 1771 if (!EatIfPresent(lltok::kw_alignstack)) 1772 return false; 1773 LocTy ParenLoc = Lex.getLoc(); 1774 if (!EatIfPresent(lltok::lparen)) 1775 return Error(ParenLoc, "expected '('"); 1776 LocTy AlignLoc = Lex.getLoc(); 1777 if (ParseUInt32(Alignment)) return true; 1778 ParenLoc = Lex.getLoc(); 1779 if (!EatIfPresent(lltok::rparen)) 1780 return Error(ParenLoc, "expected ')'"); 1781 if (!isPowerOf2_32(Alignment)) 1782 return Error(AlignLoc, "stack alignment is not a power of two"); 1783 return false; 1784 } 1785 1786 /// ParseIndexList - This parses the index list for an insert/extractvalue 1787 /// instruction. This sets AteExtraComma in the case where we eat an extra 1788 /// comma at the end of the line and find that it is followed by metadata. 1789 /// Clients that don't allow metadata can call the version of this function that 1790 /// only takes one argument. 1791 /// 1792 /// ParseIndexList 1793 /// ::= (',' uint32)+ 1794 /// 1795 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1796 bool &AteExtraComma) { 1797 AteExtraComma = false; 1798 1799 if (Lex.getKind() != lltok::comma) 1800 return TokError("expected ',' as start of index list"); 1801 1802 while (EatIfPresent(lltok::comma)) { 1803 if (Lex.getKind() == lltok::MetadataVar) { 1804 if (Indices.empty()) return TokError("expected index"); 1805 AteExtraComma = true; 1806 return false; 1807 } 1808 unsigned Idx = 0; 1809 if (ParseUInt32(Idx)) return true; 1810 Indices.push_back(Idx); 1811 } 1812 1813 return false; 1814 } 1815 1816 //===----------------------------------------------------------------------===// 1817 // Type Parsing. 1818 //===----------------------------------------------------------------------===// 1819 1820 /// ParseType - Parse a type. 1821 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1822 SMLoc TypeLoc = Lex.getLoc(); 1823 switch (Lex.getKind()) { 1824 default: 1825 return TokError(Msg); 1826 case lltok::Type: 1827 // Type ::= 'float' | 'void' (etc) 1828 Result = Lex.getTyVal(); 1829 Lex.Lex(); 1830 break; 1831 case lltok::lbrace: 1832 // Type ::= StructType 1833 if (ParseAnonStructType(Result, false)) 1834 return true; 1835 break; 1836 case lltok::lsquare: 1837 // Type ::= '[' ... ']' 1838 Lex.Lex(); // eat the lsquare. 1839 if (ParseArrayVectorType(Result, false)) 1840 return true; 1841 break; 1842 case lltok::less: // Either vector or packed struct. 1843 // Type ::= '<' ... '>' 1844 Lex.Lex(); 1845 if (Lex.getKind() == lltok::lbrace) { 1846 if (ParseAnonStructType(Result, true) || 1847 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1848 return true; 1849 } else if (ParseArrayVectorType(Result, true)) 1850 return true; 1851 break; 1852 case lltok::LocalVar: { 1853 // Type ::= %foo 1854 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1855 1856 // If the type hasn't been defined yet, create a forward definition and 1857 // remember where that forward def'n was seen (in case it never is defined). 1858 if (!Entry.first) { 1859 Entry.first = StructType::create(Context, Lex.getStrVal()); 1860 Entry.second = Lex.getLoc(); 1861 } 1862 Result = Entry.first; 1863 Lex.Lex(); 1864 break; 1865 } 1866 1867 case lltok::LocalVarID: { 1868 // Type ::= %4 1869 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1870 1871 // If the type hasn't been defined yet, create a forward definition and 1872 // remember where that forward def'n was seen (in case it never is defined). 1873 if (!Entry.first) { 1874 Entry.first = StructType::create(Context); 1875 Entry.second = Lex.getLoc(); 1876 } 1877 Result = Entry.first; 1878 Lex.Lex(); 1879 break; 1880 } 1881 } 1882 1883 // Parse the type suffixes. 1884 while (1) { 1885 switch (Lex.getKind()) { 1886 // End of type. 1887 default: 1888 if (!AllowVoid && Result->isVoidTy()) 1889 return Error(TypeLoc, "void type only allowed for function results"); 1890 return false; 1891 1892 // Type ::= Type '*' 1893 case lltok::star: 1894 if (Result->isLabelTy()) 1895 return TokError("basic block pointers are invalid"); 1896 if (Result->isVoidTy()) 1897 return TokError("pointers to void are invalid - use i8* instead"); 1898 if (!PointerType::isValidElementType(Result)) 1899 return TokError("pointer to this type is invalid"); 1900 Result = PointerType::getUnqual(Result); 1901 Lex.Lex(); 1902 break; 1903 1904 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1905 case lltok::kw_addrspace: { 1906 if (Result->isLabelTy()) 1907 return TokError("basic block pointers are invalid"); 1908 if (Result->isVoidTy()) 1909 return TokError("pointers to void are invalid; use i8* instead"); 1910 if (!PointerType::isValidElementType(Result)) 1911 return TokError("pointer to this type is invalid"); 1912 unsigned AddrSpace; 1913 if (ParseOptionalAddrSpace(AddrSpace) || 1914 ParseToken(lltok::star, "expected '*' in address space")) 1915 return true; 1916 1917 Result = PointerType::get(Result, AddrSpace); 1918 break; 1919 } 1920 1921 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1922 case lltok::lparen: 1923 if (ParseFunctionType(Result)) 1924 return true; 1925 break; 1926 } 1927 } 1928 } 1929 1930 /// ParseParameterList 1931 /// ::= '(' ')' 1932 /// ::= '(' Arg (',' Arg)* ')' 1933 /// Arg 1934 /// ::= Type OptionalAttributes Value OptionalAttributes 1935 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1936 PerFunctionState &PFS, bool IsMustTailCall, 1937 bool InVarArgsFunc) { 1938 if (ParseToken(lltok::lparen, "expected '(' in call")) 1939 return true; 1940 1941 unsigned AttrIndex = 1; 1942 while (Lex.getKind() != lltok::rparen) { 1943 // If this isn't the first argument, we need a comma. 1944 if (!ArgList.empty() && 1945 ParseToken(lltok::comma, "expected ',' in argument list")) 1946 return true; 1947 1948 // Parse an ellipsis if this is a musttail call in a variadic function. 1949 if (Lex.getKind() == lltok::dotdotdot) { 1950 const char *Msg = "unexpected ellipsis in argument list for "; 1951 if (!IsMustTailCall) 1952 return TokError(Twine(Msg) + "non-musttail call"); 1953 if (!InVarArgsFunc) 1954 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1955 Lex.Lex(); // Lex the '...', it is purely for readability. 1956 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1957 } 1958 1959 // Parse the argument. 1960 LocTy ArgLoc; 1961 Type *ArgTy = nullptr; 1962 AttrBuilder ArgAttrs; 1963 Value *V; 1964 if (ParseType(ArgTy, ArgLoc)) 1965 return true; 1966 1967 if (ArgTy->isMetadataTy()) { 1968 if (ParseMetadataAsValue(V, PFS)) 1969 return true; 1970 } else { 1971 // Otherwise, handle normal operands. 1972 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1973 return true; 1974 } 1975 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1976 AttrIndex++, 1977 ArgAttrs))); 1978 } 1979 1980 if (IsMustTailCall && InVarArgsFunc) 1981 return TokError("expected '...' at end of argument list for musttail call " 1982 "in varargs function"); 1983 1984 Lex.Lex(); // Lex the ')'. 1985 return false; 1986 } 1987 1988 /// ParseOptionalOperandBundles 1989 /// ::= /*empty*/ 1990 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1991 /// 1992 /// OperandBundle 1993 /// ::= bundle-tag '(' ')' 1994 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1995 /// 1996 /// bundle-tag ::= String Constant 1997 bool LLParser::ParseOptionalOperandBundles( 1998 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1999 LocTy BeginLoc = Lex.getLoc(); 2000 if (!EatIfPresent(lltok::lsquare)) 2001 return false; 2002 2003 while (Lex.getKind() != lltok::rsquare) { 2004 // If this isn't the first operand bundle, we need a comma. 2005 if (!BundleList.empty() && 2006 ParseToken(lltok::comma, "expected ',' in input list")) 2007 return true; 2008 2009 std::string Tag; 2010 if (ParseStringConstant(Tag)) 2011 return true; 2012 2013 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2014 return true; 2015 2016 std::vector<Value *> Inputs; 2017 while (Lex.getKind() != lltok::rparen) { 2018 // If this isn't the first input, we need a comma. 2019 if (!Inputs.empty() && 2020 ParseToken(lltok::comma, "expected ',' in input list")) 2021 return true; 2022 2023 Type *Ty = nullptr; 2024 Value *Input = nullptr; 2025 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2026 return true; 2027 Inputs.push_back(Input); 2028 } 2029 2030 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2031 2032 Lex.Lex(); // Lex the ')'. 2033 } 2034 2035 if (BundleList.empty()) 2036 return Error(BeginLoc, "operand bundle set must not be empty"); 2037 2038 Lex.Lex(); // Lex the ']'. 2039 return false; 2040 } 2041 2042 /// ParseArgumentList - Parse the argument list for a function type or function 2043 /// prototype. 2044 /// ::= '(' ArgTypeListI ')' 2045 /// ArgTypeListI 2046 /// ::= /*empty*/ 2047 /// ::= '...' 2048 /// ::= ArgTypeList ',' '...' 2049 /// ::= ArgType (',' ArgType)* 2050 /// 2051 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2052 bool &isVarArg){ 2053 isVarArg = false; 2054 assert(Lex.getKind() == lltok::lparen); 2055 Lex.Lex(); // eat the (. 2056 2057 if (Lex.getKind() == lltok::rparen) { 2058 // empty 2059 } else if (Lex.getKind() == lltok::dotdotdot) { 2060 isVarArg = true; 2061 Lex.Lex(); 2062 } else { 2063 LocTy TypeLoc = Lex.getLoc(); 2064 Type *ArgTy = nullptr; 2065 AttrBuilder Attrs; 2066 std::string Name; 2067 2068 if (ParseType(ArgTy) || 2069 ParseOptionalParamAttrs(Attrs)) return true; 2070 2071 if (ArgTy->isVoidTy()) 2072 return Error(TypeLoc, "argument can not have void type"); 2073 2074 if (Lex.getKind() == lltok::LocalVar) { 2075 Name = Lex.getStrVal(); 2076 Lex.Lex(); 2077 } 2078 2079 if (!FunctionType::isValidArgumentType(ArgTy)) 2080 return Error(TypeLoc, "invalid type for function argument"); 2081 2082 unsigned AttrIndex = 1; 2083 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2084 AttrIndex++, Attrs), 2085 std::move(Name)); 2086 2087 while (EatIfPresent(lltok::comma)) { 2088 // Handle ... at end of arg list. 2089 if (EatIfPresent(lltok::dotdotdot)) { 2090 isVarArg = true; 2091 break; 2092 } 2093 2094 // Otherwise must be an argument type. 2095 TypeLoc = Lex.getLoc(); 2096 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2097 2098 if (ArgTy->isVoidTy()) 2099 return Error(TypeLoc, "argument can not have void type"); 2100 2101 if (Lex.getKind() == lltok::LocalVar) { 2102 Name = Lex.getStrVal(); 2103 Lex.Lex(); 2104 } else { 2105 Name = ""; 2106 } 2107 2108 if (!ArgTy->isFirstClassType()) 2109 return Error(TypeLoc, "invalid type for function argument"); 2110 2111 ArgList.emplace_back( 2112 TypeLoc, ArgTy, 2113 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2114 std::move(Name)); 2115 } 2116 } 2117 2118 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2119 } 2120 2121 /// ParseFunctionType 2122 /// ::= Type ArgumentList OptionalAttrs 2123 bool LLParser::ParseFunctionType(Type *&Result) { 2124 assert(Lex.getKind() == lltok::lparen); 2125 2126 if (!FunctionType::isValidReturnType(Result)) 2127 return TokError("invalid function return type"); 2128 2129 SmallVector<ArgInfo, 8> ArgList; 2130 bool isVarArg; 2131 if (ParseArgumentList(ArgList, isVarArg)) 2132 return true; 2133 2134 // Reject names on the arguments lists. 2135 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2136 if (!ArgList[i].Name.empty()) 2137 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2138 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2139 return Error(ArgList[i].Loc, 2140 "argument attributes invalid in function type"); 2141 } 2142 2143 SmallVector<Type*, 16> ArgListTy; 2144 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2145 ArgListTy.push_back(ArgList[i].Ty); 2146 2147 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2148 return false; 2149 } 2150 2151 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2152 /// other structs. 2153 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2154 SmallVector<Type*, 8> Elts; 2155 if (ParseStructBody(Elts)) return true; 2156 2157 Result = StructType::get(Context, Elts, Packed); 2158 return false; 2159 } 2160 2161 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2162 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2163 std::pair<Type*, LocTy> &Entry, 2164 Type *&ResultTy) { 2165 // If the type was already defined, diagnose the redefinition. 2166 if (Entry.first && !Entry.second.isValid()) 2167 return Error(TypeLoc, "redefinition of type"); 2168 2169 // If we have opaque, just return without filling in the definition for the 2170 // struct. This counts as a definition as far as the .ll file goes. 2171 if (EatIfPresent(lltok::kw_opaque)) { 2172 // This type is being defined, so clear the location to indicate this. 2173 Entry.second = SMLoc(); 2174 2175 // If this type number has never been uttered, create it. 2176 if (!Entry.first) 2177 Entry.first = StructType::create(Context, Name); 2178 ResultTy = Entry.first; 2179 return false; 2180 } 2181 2182 // If the type starts with '<', then it is either a packed struct or a vector. 2183 bool isPacked = EatIfPresent(lltok::less); 2184 2185 // If we don't have a struct, then we have a random type alias, which we 2186 // accept for compatibility with old files. These types are not allowed to be 2187 // forward referenced and not allowed to be recursive. 2188 if (Lex.getKind() != lltok::lbrace) { 2189 if (Entry.first) 2190 return Error(TypeLoc, "forward references to non-struct type"); 2191 2192 ResultTy = nullptr; 2193 if (isPacked) 2194 return ParseArrayVectorType(ResultTy, true); 2195 return ParseType(ResultTy); 2196 } 2197 2198 // This type is being defined, so clear the location to indicate this. 2199 Entry.second = SMLoc(); 2200 2201 // If this type number has never been uttered, create it. 2202 if (!Entry.first) 2203 Entry.first = StructType::create(Context, Name); 2204 2205 StructType *STy = cast<StructType>(Entry.first); 2206 2207 SmallVector<Type*, 8> Body; 2208 if (ParseStructBody(Body) || 2209 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2210 return true; 2211 2212 STy->setBody(Body, isPacked); 2213 ResultTy = STy; 2214 return false; 2215 } 2216 2217 2218 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2219 /// StructType 2220 /// ::= '{' '}' 2221 /// ::= '{' Type (',' Type)* '}' 2222 /// ::= '<' '{' '}' '>' 2223 /// ::= '<' '{' Type (',' Type)* '}' '>' 2224 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2225 assert(Lex.getKind() == lltok::lbrace); 2226 Lex.Lex(); // Consume the '{' 2227 2228 // Handle the empty struct. 2229 if (EatIfPresent(lltok::rbrace)) 2230 return false; 2231 2232 LocTy EltTyLoc = Lex.getLoc(); 2233 Type *Ty = nullptr; 2234 if (ParseType(Ty)) return true; 2235 Body.push_back(Ty); 2236 2237 if (!StructType::isValidElementType(Ty)) 2238 return Error(EltTyLoc, "invalid element type for struct"); 2239 2240 while (EatIfPresent(lltok::comma)) { 2241 EltTyLoc = Lex.getLoc(); 2242 if (ParseType(Ty)) return true; 2243 2244 if (!StructType::isValidElementType(Ty)) 2245 return Error(EltTyLoc, "invalid element type for struct"); 2246 2247 Body.push_back(Ty); 2248 } 2249 2250 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2251 } 2252 2253 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2254 /// token has already been consumed. 2255 /// Type 2256 /// ::= '[' APSINTVAL 'x' Types ']' 2257 /// ::= '<' APSINTVAL 'x' Types '>' 2258 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2259 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2260 Lex.getAPSIntVal().getBitWidth() > 64) 2261 return TokError("expected number in address space"); 2262 2263 LocTy SizeLoc = Lex.getLoc(); 2264 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2265 Lex.Lex(); 2266 2267 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2268 return true; 2269 2270 LocTy TypeLoc = Lex.getLoc(); 2271 Type *EltTy = nullptr; 2272 if (ParseType(EltTy)) return true; 2273 2274 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2275 "expected end of sequential type")) 2276 return true; 2277 2278 if (isVector) { 2279 if (Size == 0) 2280 return Error(SizeLoc, "zero element vector is illegal"); 2281 if ((unsigned)Size != Size) 2282 return Error(SizeLoc, "size too large for vector"); 2283 if (!VectorType::isValidElementType(EltTy)) 2284 return Error(TypeLoc, "invalid vector element type"); 2285 Result = VectorType::get(EltTy, unsigned(Size)); 2286 } else { 2287 if (!ArrayType::isValidElementType(EltTy)) 2288 return Error(TypeLoc, "invalid array element type"); 2289 Result = ArrayType::get(EltTy, Size); 2290 } 2291 return false; 2292 } 2293 2294 //===----------------------------------------------------------------------===// 2295 // Function Semantic Analysis. 2296 //===----------------------------------------------------------------------===// 2297 2298 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2299 int functionNumber) 2300 : P(p), F(f), FunctionNumber(functionNumber) { 2301 2302 // Insert unnamed arguments into the NumberedVals list. 2303 for (Argument &A : F.args()) 2304 if (!A.hasName()) 2305 NumberedVals.push_back(&A); 2306 } 2307 2308 LLParser::PerFunctionState::~PerFunctionState() { 2309 // If there were any forward referenced non-basicblock values, delete them. 2310 2311 for (const auto &P : ForwardRefVals) { 2312 if (isa<BasicBlock>(P.second.first)) 2313 continue; 2314 P.second.first->replaceAllUsesWith( 2315 UndefValue::get(P.second.first->getType())); 2316 delete P.second.first; 2317 } 2318 2319 for (const auto &P : ForwardRefValIDs) { 2320 if (isa<BasicBlock>(P.second.first)) 2321 continue; 2322 P.second.first->replaceAllUsesWith( 2323 UndefValue::get(P.second.first->getType())); 2324 delete P.second.first; 2325 } 2326 } 2327 2328 bool LLParser::PerFunctionState::FinishFunction() { 2329 if (!ForwardRefVals.empty()) 2330 return P.Error(ForwardRefVals.begin()->second.second, 2331 "use of undefined value '%" + ForwardRefVals.begin()->first + 2332 "'"); 2333 if (!ForwardRefValIDs.empty()) 2334 return P.Error(ForwardRefValIDs.begin()->second.second, 2335 "use of undefined value '%" + 2336 Twine(ForwardRefValIDs.begin()->first) + "'"); 2337 return false; 2338 } 2339 2340 2341 /// GetVal - Get a value with the specified name or ID, creating a 2342 /// forward reference record if needed. This can return null if the value 2343 /// exists but does not have the right type. 2344 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2345 LocTy Loc) { 2346 // Look this name up in the normal function symbol table. 2347 Value *Val = F.getValueSymbolTable().lookup(Name); 2348 2349 // If this is a forward reference for the value, see if we already created a 2350 // forward ref record. 2351 if (!Val) { 2352 auto I = ForwardRefVals.find(Name); 2353 if (I != ForwardRefVals.end()) 2354 Val = I->second.first; 2355 } 2356 2357 // If we have the value in the symbol table or fwd-ref table, return it. 2358 if (Val) { 2359 if (Val->getType() == Ty) return Val; 2360 if (Ty->isLabelTy()) 2361 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2362 else 2363 P.Error(Loc, "'%" + Name + "' defined with type '" + 2364 getTypeString(Val->getType()) + "'"); 2365 return nullptr; 2366 } 2367 2368 // Don't make placeholders with invalid type. 2369 if (!Ty->isFirstClassType()) { 2370 P.Error(Loc, "invalid use of a non-first-class type"); 2371 return nullptr; 2372 } 2373 2374 // Otherwise, create a new forward reference for this value and remember it. 2375 Value *FwdVal; 2376 if (Ty->isLabelTy()) { 2377 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2378 } else { 2379 FwdVal = new Argument(Ty, Name); 2380 } 2381 2382 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2383 return FwdVal; 2384 } 2385 2386 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2387 // Look this name up in the normal function symbol table. 2388 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2389 2390 // If this is a forward reference for the value, see if we already created a 2391 // forward ref record. 2392 if (!Val) { 2393 auto I = ForwardRefValIDs.find(ID); 2394 if (I != ForwardRefValIDs.end()) 2395 Val = I->second.first; 2396 } 2397 2398 // If we have the value in the symbol table or fwd-ref table, return it. 2399 if (Val) { 2400 if (Val->getType() == Ty) return Val; 2401 if (Ty->isLabelTy()) 2402 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2403 else 2404 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2405 getTypeString(Val->getType()) + "'"); 2406 return nullptr; 2407 } 2408 2409 if (!Ty->isFirstClassType()) { 2410 P.Error(Loc, "invalid use of a non-first-class type"); 2411 return nullptr; 2412 } 2413 2414 // Otherwise, create a new forward reference for this value and remember it. 2415 Value *FwdVal; 2416 if (Ty->isLabelTy()) { 2417 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2418 } else { 2419 FwdVal = new Argument(Ty); 2420 } 2421 2422 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2423 return FwdVal; 2424 } 2425 2426 /// SetInstName - After an instruction is parsed and inserted into its 2427 /// basic block, this installs its name. 2428 bool LLParser::PerFunctionState::SetInstName(int NameID, 2429 const std::string &NameStr, 2430 LocTy NameLoc, Instruction *Inst) { 2431 // If this instruction has void type, it cannot have a name or ID specified. 2432 if (Inst->getType()->isVoidTy()) { 2433 if (NameID != -1 || !NameStr.empty()) 2434 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2435 return false; 2436 } 2437 2438 // If this was a numbered instruction, verify that the instruction is the 2439 // expected value and resolve any forward references. 2440 if (NameStr.empty()) { 2441 // If neither a name nor an ID was specified, just use the next ID. 2442 if (NameID == -1) 2443 NameID = NumberedVals.size(); 2444 2445 if (unsigned(NameID) != NumberedVals.size()) 2446 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2447 Twine(NumberedVals.size()) + "'"); 2448 2449 auto FI = ForwardRefValIDs.find(NameID); 2450 if (FI != ForwardRefValIDs.end()) { 2451 Value *Sentinel = FI->second.first; 2452 if (Sentinel->getType() != Inst->getType()) 2453 return P.Error(NameLoc, "instruction forward referenced with type '" + 2454 getTypeString(FI->second.first->getType()) + "'"); 2455 2456 Sentinel->replaceAllUsesWith(Inst); 2457 delete Sentinel; 2458 ForwardRefValIDs.erase(FI); 2459 } 2460 2461 NumberedVals.push_back(Inst); 2462 return false; 2463 } 2464 2465 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2466 auto FI = ForwardRefVals.find(NameStr); 2467 if (FI != ForwardRefVals.end()) { 2468 Value *Sentinel = FI->second.first; 2469 if (Sentinel->getType() != Inst->getType()) 2470 return P.Error(NameLoc, "instruction forward referenced with type '" + 2471 getTypeString(FI->second.first->getType()) + "'"); 2472 2473 Sentinel->replaceAllUsesWith(Inst); 2474 delete Sentinel; 2475 ForwardRefVals.erase(FI); 2476 } 2477 2478 // Set the name on the instruction. 2479 Inst->setName(NameStr); 2480 2481 if (Inst->getName() != NameStr) 2482 return P.Error(NameLoc, "multiple definition of local value named '" + 2483 NameStr + "'"); 2484 return false; 2485 } 2486 2487 /// GetBB - Get a basic block with the specified name or ID, creating a 2488 /// forward reference record if needed. 2489 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2490 LocTy Loc) { 2491 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2492 Type::getLabelTy(F.getContext()), Loc)); 2493 } 2494 2495 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2496 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2497 Type::getLabelTy(F.getContext()), Loc)); 2498 } 2499 2500 /// DefineBB - Define the specified basic block, which is either named or 2501 /// unnamed. If there is an error, this returns null otherwise it returns 2502 /// the block being defined. 2503 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2504 LocTy Loc) { 2505 BasicBlock *BB; 2506 if (Name.empty()) 2507 BB = GetBB(NumberedVals.size(), Loc); 2508 else 2509 BB = GetBB(Name, Loc); 2510 if (!BB) return nullptr; // Already diagnosed error. 2511 2512 // Move the block to the end of the function. Forward ref'd blocks are 2513 // inserted wherever they happen to be referenced. 2514 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2515 2516 // Remove the block from forward ref sets. 2517 if (Name.empty()) { 2518 ForwardRefValIDs.erase(NumberedVals.size()); 2519 NumberedVals.push_back(BB); 2520 } else { 2521 // BB forward references are already in the function symbol table. 2522 ForwardRefVals.erase(Name); 2523 } 2524 2525 return BB; 2526 } 2527 2528 //===----------------------------------------------------------------------===// 2529 // Constants. 2530 //===----------------------------------------------------------------------===// 2531 2532 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2533 /// type implied. For example, if we parse "4" we don't know what integer type 2534 /// it has. The value will later be combined with its type and checked for 2535 /// sanity. PFS is used to convert function-local operands of metadata (since 2536 /// metadata operands are not just parsed here but also converted to values). 2537 /// PFS can be null when we are not parsing metadata values inside a function. 2538 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2539 ID.Loc = Lex.getLoc(); 2540 switch (Lex.getKind()) { 2541 default: return TokError("expected value token"); 2542 case lltok::GlobalID: // @42 2543 ID.UIntVal = Lex.getUIntVal(); 2544 ID.Kind = ValID::t_GlobalID; 2545 break; 2546 case lltok::GlobalVar: // @foo 2547 ID.StrVal = Lex.getStrVal(); 2548 ID.Kind = ValID::t_GlobalName; 2549 break; 2550 case lltok::LocalVarID: // %42 2551 ID.UIntVal = Lex.getUIntVal(); 2552 ID.Kind = ValID::t_LocalID; 2553 break; 2554 case lltok::LocalVar: // %foo 2555 ID.StrVal = Lex.getStrVal(); 2556 ID.Kind = ValID::t_LocalName; 2557 break; 2558 case lltok::APSInt: 2559 ID.APSIntVal = Lex.getAPSIntVal(); 2560 ID.Kind = ValID::t_APSInt; 2561 break; 2562 case lltok::APFloat: 2563 ID.APFloatVal = Lex.getAPFloatVal(); 2564 ID.Kind = ValID::t_APFloat; 2565 break; 2566 case lltok::kw_true: 2567 ID.ConstantVal = ConstantInt::getTrue(Context); 2568 ID.Kind = ValID::t_Constant; 2569 break; 2570 case lltok::kw_false: 2571 ID.ConstantVal = ConstantInt::getFalse(Context); 2572 ID.Kind = ValID::t_Constant; 2573 break; 2574 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2575 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2576 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2577 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2578 2579 case lltok::lbrace: { 2580 // ValID ::= '{' ConstVector '}' 2581 Lex.Lex(); 2582 SmallVector<Constant*, 16> Elts; 2583 if (ParseGlobalValueVector(Elts) || 2584 ParseToken(lltok::rbrace, "expected end of struct constant")) 2585 return true; 2586 2587 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2588 ID.UIntVal = Elts.size(); 2589 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2590 Elts.size() * sizeof(Elts[0])); 2591 ID.Kind = ValID::t_ConstantStruct; 2592 return false; 2593 } 2594 case lltok::less: { 2595 // ValID ::= '<' ConstVector '>' --> Vector. 2596 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2597 Lex.Lex(); 2598 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2599 2600 SmallVector<Constant*, 16> Elts; 2601 LocTy FirstEltLoc = Lex.getLoc(); 2602 if (ParseGlobalValueVector(Elts) || 2603 (isPackedStruct && 2604 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2605 ParseToken(lltok::greater, "expected end of constant")) 2606 return true; 2607 2608 if (isPackedStruct) { 2609 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2610 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2611 Elts.size() * sizeof(Elts[0])); 2612 ID.UIntVal = Elts.size(); 2613 ID.Kind = ValID::t_PackedConstantStruct; 2614 return false; 2615 } 2616 2617 if (Elts.empty()) 2618 return Error(ID.Loc, "constant vector must not be empty"); 2619 2620 if (!Elts[0]->getType()->isIntegerTy() && 2621 !Elts[0]->getType()->isFloatingPointTy() && 2622 !Elts[0]->getType()->isPointerTy()) 2623 return Error(FirstEltLoc, 2624 "vector elements must have integer, pointer or floating point type"); 2625 2626 // Verify that all the vector elements have the same type. 2627 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2628 if (Elts[i]->getType() != Elts[0]->getType()) 2629 return Error(FirstEltLoc, 2630 "vector element #" + Twine(i) + 2631 " is not of type '" + getTypeString(Elts[0]->getType())); 2632 2633 ID.ConstantVal = ConstantVector::get(Elts); 2634 ID.Kind = ValID::t_Constant; 2635 return false; 2636 } 2637 case lltok::lsquare: { // Array Constant 2638 Lex.Lex(); 2639 SmallVector<Constant*, 16> Elts; 2640 LocTy FirstEltLoc = Lex.getLoc(); 2641 if (ParseGlobalValueVector(Elts) || 2642 ParseToken(lltok::rsquare, "expected end of array constant")) 2643 return true; 2644 2645 // Handle empty element. 2646 if (Elts.empty()) { 2647 // Use undef instead of an array because it's inconvenient to determine 2648 // the element type at this point, there being no elements to examine. 2649 ID.Kind = ValID::t_EmptyArray; 2650 return false; 2651 } 2652 2653 if (!Elts[0]->getType()->isFirstClassType()) 2654 return Error(FirstEltLoc, "invalid array element type: " + 2655 getTypeString(Elts[0]->getType())); 2656 2657 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2658 2659 // Verify all elements are correct type! 2660 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2661 if (Elts[i]->getType() != Elts[0]->getType()) 2662 return Error(FirstEltLoc, 2663 "array element #" + Twine(i) + 2664 " is not of type '" + getTypeString(Elts[0]->getType())); 2665 } 2666 2667 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2668 ID.Kind = ValID::t_Constant; 2669 return false; 2670 } 2671 case lltok::kw_c: // c "foo" 2672 Lex.Lex(); 2673 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2674 false); 2675 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2676 ID.Kind = ValID::t_Constant; 2677 return false; 2678 2679 case lltok::kw_asm: { 2680 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2681 // STRINGCONSTANT 2682 bool HasSideEffect, AlignStack, AsmDialect; 2683 Lex.Lex(); 2684 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2685 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2686 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2687 ParseStringConstant(ID.StrVal) || 2688 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2689 ParseToken(lltok::StringConstant, "expected constraint string")) 2690 return true; 2691 ID.StrVal2 = Lex.getStrVal(); 2692 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2693 (unsigned(AsmDialect)<<2); 2694 ID.Kind = ValID::t_InlineAsm; 2695 return false; 2696 } 2697 2698 case lltok::kw_blockaddress: { 2699 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2700 Lex.Lex(); 2701 2702 ValID Fn, Label; 2703 2704 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2705 ParseValID(Fn) || 2706 ParseToken(lltok::comma, "expected comma in block address expression")|| 2707 ParseValID(Label) || 2708 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2709 return true; 2710 2711 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2712 return Error(Fn.Loc, "expected function name in blockaddress"); 2713 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2714 return Error(Label.Loc, "expected basic block name in blockaddress"); 2715 2716 // Try to find the function (but skip it if it's forward-referenced). 2717 GlobalValue *GV = nullptr; 2718 if (Fn.Kind == ValID::t_GlobalID) { 2719 if (Fn.UIntVal < NumberedVals.size()) 2720 GV = NumberedVals[Fn.UIntVal]; 2721 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2722 GV = M->getNamedValue(Fn.StrVal); 2723 } 2724 Function *F = nullptr; 2725 if (GV) { 2726 // Confirm that it's actually a function with a definition. 2727 if (!isa<Function>(GV)) 2728 return Error(Fn.Loc, "expected function name in blockaddress"); 2729 F = cast<Function>(GV); 2730 if (F->isDeclaration()) 2731 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2732 } 2733 2734 if (!F) { 2735 // Make a global variable as a placeholder for this reference. 2736 GlobalValue *&FwdRef = 2737 ForwardRefBlockAddresses.insert(std::make_pair( 2738 std::move(Fn), 2739 std::map<ValID, GlobalValue *>())) 2740 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2741 .first->second; 2742 if (!FwdRef) 2743 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2744 GlobalValue::InternalLinkage, nullptr, ""); 2745 ID.ConstantVal = FwdRef; 2746 ID.Kind = ValID::t_Constant; 2747 return false; 2748 } 2749 2750 // We found the function; now find the basic block. Don't use PFS, since we 2751 // might be inside a constant expression. 2752 BasicBlock *BB; 2753 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2754 if (Label.Kind == ValID::t_LocalID) 2755 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2756 else 2757 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2758 if (!BB) 2759 return Error(Label.Loc, "referenced value is not a basic block"); 2760 } else { 2761 if (Label.Kind == ValID::t_LocalID) 2762 return Error(Label.Loc, "cannot take address of numeric label after " 2763 "the function is defined"); 2764 BB = dyn_cast_or_null<BasicBlock>( 2765 F->getValueSymbolTable().lookup(Label.StrVal)); 2766 if (!BB) 2767 return Error(Label.Loc, "referenced value is not a basic block"); 2768 } 2769 2770 ID.ConstantVal = BlockAddress::get(F, BB); 2771 ID.Kind = ValID::t_Constant; 2772 return false; 2773 } 2774 2775 case lltok::kw_trunc: 2776 case lltok::kw_zext: 2777 case lltok::kw_sext: 2778 case lltok::kw_fptrunc: 2779 case lltok::kw_fpext: 2780 case lltok::kw_bitcast: 2781 case lltok::kw_addrspacecast: 2782 case lltok::kw_uitofp: 2783 case lltok::kw_sitofp: 2784 case lltok::kw_fptoui: 2785 case lltok::kw_fptosi: 2786 case lltok::kw_inttoptr: 2787 case lltok::kw_ptrtoint: { 2788 unsigned Opc = Lex.getUIntVal(); 2789 Type *DestTy = nullptr; 2790 Constant *SrcVal; 2791 Lex.Lex(); 2792 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2793 ParseGlobalTypeAndValue(SrcVal) || 2794 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2795 ParseType(DestTy) || 2796 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2797 return true; 2798 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2799 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2800 getTypeString(SrcVal->getType()) + "' to '" + 2801 getTypeString(DestTy) + "'"); 2802 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2803 SrcVal, DestTy); 2804 ID.Kind = ValID::t_Constant; 2805 return false; 2806 } 2807 case lltok::kw_extractvalue: { 2808 Lex.Lex(); 2809 Constant *Val; 2810 SmallVector<unsigned, 4> Indices; 2811 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2812 ParseGlobalTypeAndValue(Val) || 2813 ParseIndexList(Indices) || 2814 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2815 return true; 2816 2817 if (!Val->getType()->isAggregateType()) 2818 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2819 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2820 return Error(ID.Loc, "invalid indices for extractvalue"); 2821 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2822 ID.Kind = ValID::t_Constant; 2823 return false; 2824 } 2825 case lltok::kw_insertvalue: { 2826 Lex.Lex(); 2827 Constant *Val0, *Val1; 2828 SmallVector<unsigned, 4> Indices; 2829 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2830 ParseGlobalTypeAndValue(Val0) || 2831 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2832 ParseGlobalTypeAndValue(Val1) || 2833 ParseIndexList(Indices) || 2834 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2835 return true; 2836 if (!Val0->getType()->isAggregateType()) 2837 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2838 Type *IndexedType = 2839 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2840 if (!IndexedType) 2841 return Error(ID.Loc, "invalid indices for insertvalue"); 2842 if (IndexedType != Val1->getType()) 2843 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2844 getTypeString(Val1->getType()) + 2845 "' instead of '" + getTypeString(IndexedType) + 2846 "'"); 2847 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2848 ID.Kind = ValID::t_Constant; 2849 return false; 2850 } 2851 case lltok::kw_icmp: 2852 case lltok::kw_fcmp: { 2853 unsigned PredVal, Opc = Lex.getUIntVal(); 2854 Constant *Val0, *Val1; 2855 Lex.Lex(); 2856 if (ParseCmpPredicate(PredVal, Opc) || 2857 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2858 ParseGlobalTypeAndValue(Val0) || 2859 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2860 ParseGlobalTypeAndValue(Val1) || 2861 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2862 return true; 2863 2864 if (Val0->getType() != Val1->getType()) 2865 return Error(ID.Loc, "compare operands must have the same type"); 2866 2867 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2868 2869 if (Opc == Instruction::FCmp) { 2870 if (!Val0->getType()->isFPOrFPVectorTy()) 2871 return Error(ID.Loc, "fcmp requires floating point operands"); 2872 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2873 } else { 2874 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2875 if (!Val0->getType()->isIntOrIntVectorTy() && 2876 !Val0->getType()->getScalarType()->isPointerTy()) 2877 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2878 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2879 } 2880 ID.Kind = ValID::t_Constant; 2881 return false; 2882 } 2883 2884 // Binary Operators. 2885 case lltok::kw_add: 2886 case lltok::kw_fadd: 2887 case lltok::kw_sub: 2888 case lltok::kw_fsub: 2889 case lltok::kw_mul: 2890 case lltok::kw_fmul: 2891 case lltok::kw_udiv: 2892 case lltok::kw_sdiv: 2893 case lltok::kw_fdiv: 2894 case lltok::kw_urem: 2895 case lltok::kw_srem: 2896 case lltok::kw_frem: 2897 case lltok::kw_shl: 2898 case lltok::kw_lshr: 2899 case lltok::kw_ashr: { 2900 bool NUW = false; 2901 bool NSW = false; 2902 bool Exact = false; 2903 unsigned Opc = Lex.getUIntVal(); 2904 Constant *Val0, *Val1; 2905 Lex.Lex(); 2906 LocTy ModifierLoc = Lex.getLoc(); 2907 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2908 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2909 if (EatIfPresent(lltok::kw_nuw)) 2910 NUW = true; 2911 if (EatIfPresent(lltok::kw_nsw)) { 2912 NSW = true; 2913 if (EatIfPresent(lltok::kw_nuw)) 2914 NUW = true; 2915 } 2916 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2917 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2918 if (EatIfPresent(lltok::kw_exact)) 2919 Exact = true; 2920 } 2921 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2922 ParseGlobalTypeAndValue(Val0) || 2923 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2924 ParseGlobalTypeAndValue(Val1) || 2925 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2926 return true; 2927 if (Val0->getType() != Val1->getType()) 2928 return Error(ID.Loc, "operands of constexpr must have same type"); 2929 if (!Val0->getType()->isIntOrIntVectorTy()) { 2930 if (NUW) 2931 return Error(ModifierLoc, "nuw only applies to integer operations"); 2932 if (NSW) 2933 return Error(ModifierLoc, "nsw only applies to integer operations"); 2934 } 2935 // Check that the type is valid for the operator. 2936 switch (Opc) { 2937 case Instruction::Add: 2938 case Instruction::Sub: 2939 case Instruction::Mul: 2940 case Instruction::UDiv: 2941 case Instruction::SDiv: 2942 case Instruction::URem: 2943 case Instruction::SRem: 2944 case Instruction::Shl: 2945 case Instruction::AShr: 2946 case Instruction::LShr: 2947 if (!Val0->getType()->isIntOrIntVectorTy()) 2948 return Error(ID.Loc, "constexpr requires integer operands"); 2949 break; 2950 case Instruction::FAdd: 2951 case Instruction::FSub: 2952 case Instruction::FMul: 2953 case Instruction::FDiv: 2954 case Instruction::FRem: 2955 if (!Val0->getType()->isFPOrFPVectorTy()) 2956 return Error(ID.Loc, "constexpr requires fp operands"); 2957 break; 2958 default: llvm_unreachable("Unknown binary operator!"); 2959 } 2960 unsigned Flags = 0; 2961 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2962 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2963 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2964 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2965 ID.ConstantVal = C; 2966 ID.Kind = ValID::t_Constant; 2967 return false; 2968 } 2969 2970 // Logical Operations 2971 case lltok::kw_and: 2972 case lltok::kw_or: 2973 case lltok::kw_xor: { 2974 unsigned Opc = Lex.getUIntVal(); 2975 Constant *Val0, *Val1; 2976 Lex.Lex(); 2977 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2978 ParseGlobalTypeAndValue(Val0) || 2979 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2980 ParseGlobalTypeAndValue(Val1) || 2981 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2982 return true; 2983 if (Val0->getType() != Val1->getType()) 2984 return Error(ID.Loc, "operands of constexpr must have same type"); 2985 if (!Val0->getType()->isIntOrIntVectorTy()) 2986 return Error(ID.Loc, 2987 "constexpr requires integer or integer vector operands"); 2988 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2989 ID.Kind = ValID::t_Constant; 2990 return false; 2991 } 2992 2993 case lltok::kw_getelementptr: 2994 case lltok::kw_shufflevector: 2995 case lltok::kw_insertelement: 2996 case lltok::kw_extractelement: 2997 case lltok::kw_select: { 2998 unsigned Opc = Lex.getUIntVal(); 2999 SmallVector<Constant*, 16> Elts; 3000 bool InBounds = false; 3001 Type *Ty; 3002 Lex.Lex(); 3003 3004 if (Opc == Instruction::GetElementPtr) 3005 InBounds = EatIfPresent(lltok::kw_inbounds); 3006 3007 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3008 return true; 3009 3010 LocTy ExplicitTypeLoc = Lex.getLoc(); 3011 if (Opc == Instruction::GetElementPtr) { 3012 if (ParseType(Ty) || 3013 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3014 return true; 3015 } 3016 3017 if (ParseGlobalValueVector(Elts) || 3018 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3019 return true; 3020 3021 if (Opc == Instruction::GetElementPtr) { 3022 if (Elts.size() == 0 || 3023 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3024 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3025 3026 Type *BaseType = Elts[0]->getType(); 3027 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3028 if (Ty != BasePointerType->getElementType()) 3029 return Error( 3030 ExplicitTypeLoc, 3031 "explicit pointee type doesn't match operand's pointee type"); 3032 3033 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3034 for (Constant *Val : Indices) { 3035 Type *ValTy = Val->getType(); 3036 if (!ValTy->getScalarType()->isIntegerTy()) 3037 return Error(ID.Loc, "getelementptr index must be an integer"); 3038 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3039 return Error(ID.Loc, "getelementptr index type missmatch"); 3040 if (ValTy->isVectorTy()) { 3041 unsigned ValNumEl = ValTy->getVectorNumElements(); 3042 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3043 if (ValNumEl != PtrNumEl) 3044 return Error( 3045 ID.Loc, 3046 "getelementptr vector index has a wrong number of elements"); 3047 } 3048 } 3049 3050 SmallPtrSet<Type*, 4> Visited; 3051 if (!Indices.empty() && !Ty->isSized(&Visited)) 3052 return Error(ID.Loc, "base element of getelementptr must be sized"); 3053 3054 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3055 return Error(ID.Loc, "invalid getelementptr indices"); 3056 ID.ConstantVal = 3057 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3058 } else if (Opc == Instruction::Select) { 3059 if (Elts.size() != 3) 3060 return Error(ID.Loc, "expected three operands to select"); 3061 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3062 Elts[2])) 3063 return Error(ID.Loc, Reason); 3064 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3065 } else if (Opc == Instruction::ShuffleVector) { 3066 if (Elts.size() != 3) 3067 return Error(ID.Loc, "expected three operands to shufflevector"); 3068 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3069 return Error(ID.Loc, "invalid operands to shufflevector"); 3070 ID.ConstantVal = 3071 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3072 } else if (Opc == Instruction::ExtractElement) { 3073 if (Elts.size() != 2) 3074 return Error(ID.Loc, "expected two operands to extractelement"); 3075 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3076 return Error(ID.Loc, "invalid extractelement operands"); 3077 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3078 } else { 3079 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3080 if (Elts.size() != 3) 3081 return Error(ID.Loc, "expected three operands to insertelement"); 3082 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3083 return Error(ID.Loc, "invalid insertelement operands"); 3084 ID.ConstantVal = 3085 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3086 } 3087 3088 ID.Kind = ValID::t_Constant; 3089 return false; 3090 } 3091 } 3092 3093 Lex.Lex(); 3094 return false; 3095 } 3096 3097 /// ParseGlobalValue - Parse a global value with the specified type. 3098 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3099 C = nullptr; 3100 ValID ID; 3101 Value *V = nullptr; 3102 bool Parsed = ParseValID(ID) || 3103 ConvertValIDToValue(Ty, ID, V, nullptr); 3104 if (V && !(C = dyn_cast<Constant>(V))) 3105 return Error(ID.Loc, "global values must be constants"); 3106 return Parsed; 3107 } 3108 3109 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3110 Type *Ty = nullptr; 3111 return ParseType(Ty) || 3112 ParseGlobalValue(Ty, V); 3113 } 3114 3115 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3116 C = nullptr; 3117 3118 LocTy KwLoc = Lex.getLoc(); 3119 if (!EatIfPresent(lltok::kw_comdat)) 3120 return false; 3121 3122 if (EatIfPresent(lltok::lparen)) { 3123 if (Lex.getKind() != lltok::ComdatVar) 3124 return TokError("expected comdat variable"); 3125 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3126 Lex.Lex(); 3127 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3128 return true; 3129 } else { 3130 if (GlobalName.empty()) 3131 return TokError("comdat cannot be unnamed"); 3132 C = getComdat(GlobalName, KwLoc); 3133 } 3134 3135 return false; 3136 } 3137 3138 /// ParseGlobalValueVector 3139 /// ::= /*empty*/ 3140 /// ::= TypeAndValue (',' TypeAndValue)* 3141 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3142 // Empty list. 3143 if (Lex.getKind() == lltok::rbrace || 3144 Lex.getKind() == lltok::rsquare || 3145 Lex.getKind() == lltok::greater || 3146 Lex.getKind() == lltok::rparen) 3147 return false; 3148 3149 Constant *C; 3150 if (ParseGlobalTypeAndValue(C)) return true; 3151 Elts.push_back(C); 3152 3153 while (EatIfPresent(lltok::comma)) { 3154 if (ParseGlobalTypeAndValue(C)) return true; 3155 Elts.push_back(C); 3156 } 3157 3158 return false; 3159 } 3160 3161 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3162 SmallVector<Metadata *, 16> Elts; 3163 if (ParseMDNodeVector(Elts)) 3164 return true; 3165 3166 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3167 return false; 3168 } 3169 3170 /// MDNode: 3171 /// ::= !{ ... } 3172 /// ::= !7 3173 /// ::= !DILocation(...) 3174 bool LLParser::ParseMDNode(MDNode *&N) { 3175 if (Lex.getKind() == lltok::MetadataVar) 3176 return ParseSpecializedMDNode(N); 3177 3178 return ParseToken(lltok::exclaim, "expected '!' here") || 3179 ParseMDNodeTail(N); 3180 } 3181 3182 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3183 // !{ ... } 3184 if (Lex.getKind() == lltok::lbrace) 3185 return ParseMDTuple(N); 3186 3187 // !42 3188 return ParseMDNodeID(N); 3189 } 3190 3191 namespace { 3192 3193 /// Structure to represent an optional metadata field. 3194 template <class FieldTy> struct MDFieldImpl { 3195 typedef MDFieldImpl ImplTy; 3196 FieldTy Val; 3197 bool Seen; 3198 3199 void assign(FieldTy Val) { 3200 Seen = true; 3201 this->Val = std::move(Val); 3202 } 3203 3204 explicit MDFieldImpl(FieldTy Default) 3205 : Val(std::move(Default)), Seen(false) {} 3206 }; 3207 3208 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3209 uint64_t Max; 3210 3211 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3212 : ImplTy(Default), Max(Max) {} 3213 }; 3214 struct LineField : public MDUnsignedField { 3215 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3216 }; 3217 struct ColumnField : public MDUnsignedField { 3218 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3219 }; 3220 struct DwarfTagField : public MDUnsignedField { 3221 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3222 DwarfTagField(dwarf::Tag DefaultTag) 3223 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3224 }; 3225 struct DwarfMacinfoTypeField : public MDUnsignedField { 3226 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3227 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3228 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3229 }; 3230 struct DwarfAttEncodingField : public MDUnsignedField { 3231 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3232 }; 3233 struct DwarfVirtualityField : public MDUnsignedField { 3234 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3235 }; 3236 struct DwarfLangField : public MDUnsignedField { 3237 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3238 }; 3239 3240 struct DIFlagField : public MDUnsignedField { 3241 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3242 }; 3243 3244 struct MDSignedField : public MDFieldImpl<int64_t> { 3245 int64_t Min; 3246 int64_t Max; 3247 3248 MDSignedField(int64_t Default = 0) 3249 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3250 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3251 : ImplTy(Default), Min(Min), Max(Max) {} 3252 }; 3253 3254 struct MDBoolField : public MDFieldImpl<bool> { 3255 MDBoolField(bool Default = false) : ImplTy(Default) {} 3256 }; 3257 struct MDField : public MDFieldImpl<Metadata *> { 3258 bool AllowNull; 3259 3260 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3261 }; 3262 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3263 MDConstant() : ImplTy(nullptr) {} 3264 }; 3265 struct MDStringField : public MDFieldImpl<MDString *> { 3266 bool AllowEmpty; 3267 MDStringField(bool AllowEmpty = true) 3268 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3269 }; 3270 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3271 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3272 }; 3273 3274 } // end namespace 3275 3276 namespace llvm { 3277 3278 template <> 3279 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3280 MDUnsignedField &Result) { 3281 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3282 return TokError("expected unsigned integer"); 3283 3284 auto &U = Lex.getAPSIntVal(); 3285 if (U.ugt(Result.Max)) 3286 return TokError("value for '" + Name + "' too large, limit is " + 3287 Twine(Result.Max)); 3288 Result.assign(U.getZExtValue()); 3289 assert(Result.Val <= Result.Max && "Expected value in range"); 3290 Lex.Lex(); 3291 return false; 3292 } 3293 3294 template <> 3295 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3296 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3297 } 3298 template <> 3299 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3300 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3301 } 3302 3303 template <> 3304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3305 if (Lex.getKind() == lltok::APSInt) 3306 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3307 3308 if (Lex.getKind() != lltok::DwarfTag) 3309 return TokError("expected DWARF tag"); 3310 3311 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3312 if (Tag == dwarf::DW_TAG_invalid) 3313 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3314 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3315 3316 Result.assign(Tag); 3317 Lex.Lex(); 3318 return false; 3319 } 3320 3321 template <> 3322 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3323 DwarfMacinfoTypeField &Result) { 3324 if (Lex.getKind() == lltok::APSInt) 3325 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3326 3327 if (Lex.getKind() != lltok::DwarfMacinfo) 3328 return TokError("expected DWARF macinfo type"); 3329 3330 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3331 if (Macinfo == dwarf::DW_MACINFO_invalid) 3332 return TokError( 3333 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3334 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3335 3336 Result.assign(Macinfo); 3337 Lex.Lex(); 3338 return false; 3339 } 3340 3341 template <> 3342 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3343 DwarfVirtualityField &Result) { 3344 if (Lex.getKind() == lltok::APSInt) 3345 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3346 3347 if (Lex.getKind() != lltok::DwarfVirtuality) 3348 return TokError("expected DWARF virtuality code"); 3349 3350 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3351 if (!Virtuality) 3352 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3353 Lex.getStrVal() + "'"); 3354 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3355 Result.assign(Virtuality); 3356 Lex.Lex(); 3357 return false; 3358 } 3359 3360 template <> 3361 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3362 if (Lex.getKind() == lltok::APSInt) 3363 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3364 3365 if (Lex.getKind() != lltok::DwarfLang) 3366 return TokError("expected DWARF language"); 3367 3368 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3369 if (!Lang) 3370 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3371 "'"); 3372 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3373 Result.assign(Lang); 3374 Lex.Lex(); 3375 return false; 3376 } 3377 3378 template <> 3379 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3380 DwarfAttEncodingField &Result) { 3381 if (Lex.getKind() == lltok::APSInt) 3382 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3383 3384 if (Lex.getKind() != lltok::DwarfAttEncoding) 3385 return TokError("expected DWARF type attribute encoding"); 3386 3387 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3388 if (!Encoding) 3389 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3390 Lex.getStrVal() + "'"); 3391 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3392 Result.assign(Encoding); 3393 Lex.Lex(); 3394 return false; 3395 } 3396 3397 /// DIFlagField 3398 /// ::= uint32 3399 /// ::= DIFlagVector 3400 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3401 template <> 3402 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3403 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3404 3405 // Parser for a single flag. 3406 auto parseFlag = [&](unsigned &Val) { 3407 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3408 return ParseUInt32(Val); 3409 3410 if (Lex.getKind() != lltok::DIFlag) 3411 return TokError("expected debug info flag"); 3412 3413 Val = DINode::getFlag(Lex.getStrVal()); 3414 if (!Val) 3415 return TokError(Twine("invalid debug info flag flag '") + 3416 Lex.getStrVal() + "'"); 3417 Lex.Lex(); 3418 return false; 3419 }; 3420 3421 // Parse the flags and combine them together. 3422 unsigned Combined = 0; 3423 do { 3424 unsigned Val; 3425 if (parseFlag(Val)) 3426 return true; 3427 Combined |= Val; 3428 } while (EatIfPresent(lltok::bar)); 3429 3430 Result.assign(Combined); 3431 return false; 3432 } 3433 3434 template <> 3435 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3436 MDSignedField &Result) { 3437 if (Lex.getKind() != lltok::APSInt) 3438 return TokError("expected signed integer"); 3439 3440 auto &S = Lex.getAPSIntVal(); 3441 if (S < Result.Min) 3442 return TokError("value for '" + Name + "' too small, limit is " + 3443 Twine(Result.Min)); 3444 if (S > Result.Max) 3445 return TokError("value for '" + Name + "' too large, limit is " + 3446 Twine(Result.Max)); 3447 Result.assign(S.getExtValue()); 3448 assert(Result.Val >= Result.Min && "Expected value in range"); 3449 assert(Result.Val <= Result.Max && "Expected value in range"); 3450 Lex.Lex(); 3451 return false; 3452 } 3453 3454 template <> 3455 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3456 switch (Lex.getKind()) { 3457 default: 3458 return TokError("expected 'true' or 'false'"); 3459 case lltok::kw_true: 3460 Result.assign(true); 3461 break; 3462 case lltok::kw_false: 3463 Result.assign(false); 3464 break; 3465 } 3466 Lex.Lex(); 3467 return false; 3468 } 3469 3470 template <> 3471 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3472 if (Lex.getKind() == lltok::kw_null) { 3473 if (!Result.AllowNull) 3474 return TokError("'" + Name + "' cannot be null"); 3475 Lex.Lex(); 3476 Result.assign(nullptr); 3477 return false; 3478 } 3479 3480 Metadata *MD; 3481 if (ParseMetadata(MD, nullptr)) 3482 return true; 3483 3484 Result.assign(MD); 3485 return false; 3486 } 3487 3488 template <> 3489 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3490 Metadata *MD; 3491 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3492 return true; 3493 3494 Result.assign(cast<ConstantAsMetadata>(MD)); 3495 return false; 3496 } 3497 3498 template <> 3499 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3500 LocTy ValueLoc = Lex.getLoc(); 3501 std::string S; 3502 if (ParseStringConstant(S)) 3503 return true; 3504 3505 if (!Result.AllowEmpty && S.empty()) 3506 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3507 3508 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3509 return false; 3510 } 3511 3512 template <> 3513 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3514 SmallVector<Metadata *, 4> MDs; 3515 if (ParseMDNodeVector(MDs)) 3516 return true; 3517 3518 Result.assign(std::move(MDs)); 3519 return false; 3520 } 3521 3522 } // end namespace llvm 3523 3524 template <class ParserTy> 3525 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3526 do { 3527 if (Lex.getKind() != lltok::LabelStr) 3528 return TokError("expected field label here"); 3529 3530 if (parseField()) 3531 return true; 3532 } while (EatIfPresent(lltok::comma)); 3533 3534 return false; 3535 } 3536 3537 template <class ParserTy> 3538 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3539 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3540 Lex.Lex(); 3541 3542 if (ParseToken(lltok::lparen, "expected '(' here")) 3543 return true; 3544 if (Lex.getKind() != lltok::rparen) 3545 if (ParseMDFieldsImplBody(parseField)) 3546 return true; 3547 3548 ClosingLoc = Lex.getLoc(); 3549 return ParseToken(lltok::rparen, "expected ')' here"); 3550 } 3551 3552 template <class FieldTy> 3553 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3554 if (Result.Seen) 3555 return TokError("field '" + Name + "' cannot be specified more than once"); 3556 3557 LocTy Loc = Lex.getLoc(); 3558 Lex.Lex(); 3559 return ParseMDField(Loc, Name, Result); 3560 } 3561 3562 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3563 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3564 3565 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3566 if (Lex.getStrVal() == #CLASS) \ 3567 return Parse##CLASS(N, IsDistinct); 3568 #include "llvm/IR/Metadata.def" 3569 3570 return TokError("expected metadata type"); 3571 } 3572 3573 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3574 #define NOP_FIELD(NAME, TYPE, INIT) 3575 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3576 if (!NAME.Seen) \ 3577 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3578 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3579 if (Lex.getStrVal() == #NAME) \ 3580 return ParseMDField(#NAME, NAME); 3581 #define PARSE_MD_FIELDS() \ 3582 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3583 do { \ 3584 LocTy ClosingLoc; \ 3585 if (ParseMDFieldsImpl([&]() -> bool { \ 3586 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3587 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3588 }, ClosingLoc)) \ 3589 return true; \ 3590 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3591 } while (false) 3592 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3593 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3594 3595 /// ParseDILocationFields: 3596 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3597 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3598 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3599 OPTIONAL(line, LineField, ); \ 3600 OPTIONAL(column, ColumnField, ); \ 3601 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3602 OPTIONAL(inlinedAt, MDField, ); 3603 PARSE_MD_FIELDS(); 3604 #undef VISIT_MD_FIELDS 3605 3606 Result = GET_OR_DISTINCT( 3607 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3608 return false; 3609 } 3610 3611 /// ParseGenericDINode: 3612 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3613 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3615 REQUIRED(tag, DwarfTagField, ); \ 3616 OPTIONAL(header, MDStringField, ); \ 3617 OPTIONAL(operands, MDFieldList, ); 3618 PARSE_MD_FIELDS(); 3619 #undef VISIT_MD_FIELDS 3620 3621 Result = GET_OR_DISTINCT(GenericDINode, 3622 (Context, tag.Val, header.Val, operands.Val)); 3623 return false; 3624 } 3625 3626 /// ParseDISubrange: 3627 /// ::= !DISubrange(count: 30, lowerBound: 2) 3628 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3629 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3630 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3631 OPTIONAL(lowerBound, MDSignedField, ); 3632 PARSE_MD_FIELDS(); 3633 #undef VISIT_MD_FIELDS 3634 3635 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3636 return false; 3637 } 3638 3639 /// ParseDIEnumerator: 3640 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3641 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3643 REQUIRED(name, MDStringField, ); \ 3644 REQUIRED(value, MDSignedField, ); 3645 PARSE_MD_FIELDS(); 3646 #undef VISIT_MD_FIELDS 3647 3648 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3649 return false; 3650 } 3651 3652 /// ParseDIBasicType: 3653 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3654 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3656 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3657 OPTIONAL(name, MDStringField, ); \ 3658 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3659 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3660 OPTIONAL(encoding, DwarfAttEncodingField, ); 3661 PARSE_MD_FIELDS(); 3662 #undef VISIT_MD_FIELDS 3663 3664 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3665 align.Val, encoding.Val)); 3666 return false; 3667 } 3668 3669 /// ParseDIDerivedType: 3670 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3671 /// line: 7, scope: !1, baseType: !2, size: 32, 3672 /// align: 32, offset: 0, flags: 0, extraData: !3) 3673 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3674 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3675 REQUIRED(tag, DwarfTagField, ); \ 3676 OPTIONAL(name, MDStringField, ); \ 3677 OPTIONAL(file, MDField, ); \ 3678 OPTIONAL(line, LineField, ); \ 3679 OPTIONAL(scope, MDField, ); \ 3680 REQUIRED(baseType, MDField, ); \ 3681 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3682 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3683 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3684 OPTIONAL(flags, DIFlagField, ); \ 3685 OPTIONAL(extraData, MDField, ); 3686 PARSE_MD_FIELDS(); 3687 #undef VISIT_MD_FIELDS 3688 3689 Result = GET_OR_DISTINCT(DIDerivedType, 3690 (Context, tag.Val, name.Val, file.Val, line.Val, 3691 scope.Val, baseType.Val, size.Val, align.Val, 3692 offset.Val, flags.Val, extraData.Val)); 3693 return false; 3694 } 3695 3696 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3697 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3698 REQUIRED(tag, DwarfTagField, ); \ 3699 OPTIONAL(name, MDStringField, ); \ 3700 OPTIONAL(file, MDField, ); \ 3701 OPTIONAL(line, LineField, ); \ 3702 OPTIONAL(scope, MDField, ); \ 3703 OPTIONAL(baseType, MDField, ); \ 3704 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3705 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3706 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3707 OPTIONAL(flags, DIFlagField, ); \ 3708 OPTIONAL(elements, MDField, ); \ 3709 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3710 OPTIONAL(vtableHolder, MDField, ); \ 3711 OPTIONAL(templateParams, MDField, ); \ 3712 OPTIONAL(identifier, MDStringField, ); 3713 PARSE_MD_FIELDS(); 3714 #undef VISIT_MD_FIELDS 3715 3716 Result = GET_OR_DISTINCT( 3717 DICompositeType, 3718 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3719 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3720 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3721 return false; 3722 } 3723 3724 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3726 OPTIONAL(flags, DIFlagField, ); \ 3727 REQUIRED(types, MDField, ); 3728 PARSE_MD_FIELDS(); 3729 #undef VISIT_MD_FIELDS 3730 3731 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3732 return false; 3733 } 3734 3735 /// ParseDIFileType: 3736 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3737 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3738 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3739 REQUIRED(filename, MDStringField, ); \ 3740 REQUIRED(directory, MDStringField, ); 3741 PARSE_MD_FIELDS(); 3742 #undef VISIT_MD_FIELDS 3743 3744 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3745 return false; 3746 } 3747 3748 /// ParseDICompileUnit: 3749 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3750 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3751 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3752 /// enums: !1, retainedTypes: !2, subprograms: !3, 3753 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3754 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3755 if (!IsDistinct) 3756 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3757 3758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3759 REQUIRED(language, DwarfLangField, ); \ 3760 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3761 OPTIONAL(producer, MDStringField, ); \ 3762 OPTIONAL(isOptimized, MDBoolField, ); \ 3763 OPTIONAL(flags, MDStringField, ); \ 3764 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3765 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3766 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3767 OPTIONAL(enums, MDField, ); \ 3768 OPTIONAL(retainedTypes, MDField, ); \ 3769 OPTIONAL(subprograms, MDField, ); \ 3770 OPTIONAL(globals, MDField, ); \ 3771 OPTIONAL(imports, MDField, ); \ 3772 OPTIONAL(macros, MDField, ); \ 3773 OPTIONAL(dwoId, MDUnsignedField, ); 3774 PARSE_MD_FIELDS(); 3775 #undef VISIT_MD_FIELDS 3776 3777 Result = DICompileUnit::getDistinct( 3778 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3779 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3780 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val, 3781 dwoId.Val); 3782 return false; 3783 } 3784 3785 /// ParseDISubprogram: 3786 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3787 /// file: !1, line: 7, type: !2, isLocal: false, 3788 /// isDefinition: true, scopeLine: 8, containingType: !3, 3789 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3790 /// virtualIndex: 10, flags: 11, 3791 /// isOptimized: false, templateParams: !4, declaration: !5, 3792 /// variables: !6) 3793 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3794 auto Loc = Lex.getLoc(); 3795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3796 OPTIONAL(scope, MDField, ); \ 3797 OPTIONAL(name, MDStringField, ); \ 3798 OPTIONAL(linkageName, MDStringField, ); \ 3799 OPTIONAL(file, MDField, ); \ 3800 OPTIONAL(line, LineField, ); \ 3801 OPTIONAL(type, MDField, ); \ 3802 OPTIONAL(isLocal, MDBoolField, ); \ 3803 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3804 OPTIONAL(scopeLine, LineField, ); \ 3805 OPTIONAL(containingType, MDField, ); \ 3806 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3807 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3808 OPTIONAL(flags, DIFlagField, ); \ 3809 OPTIONAL(isOptimized, MDBoolField, ); \ 3810 OPTIONAL(templateParams, MDField, ); \ 3811 OPTIONAL(declaration, MDField, ); \ 3812 OPTIONAL(variables, MDField, ); 3813 PARSE_MD_FIELDS(); 3814 #undef VISIT_MD_FIELDS 3815 3816 if (isDefinition.Val && !IsDistinct) 3817 return Lex.Error( 3818 Loc, 3819 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3820 3821 Result = GET_OR_DISTINCT( 3822 DISubprogram, 3823 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 3824 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 3825 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val, 3826 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val)); 3827 return false; 3828 } 3829 3830 /// ParseDILexicalBlock: 3831 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3832 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3833 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3834 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3835 OPTIONAL(file, MDField, ); \ 3836 OPTIONAL(line, LineField, ); \ 3837 OPTIONAL(column, ColumnField, ); 3838 PARSE_MD_FIELDS(); 3839 #undef VISIT_MD_FIELDS 3840 3841 Result = GET_OR_DISTINCT( 3842 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3843 return false; 3844 } 3845 3846 /// ParseDILexicalBlockFile: 3847 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3848 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3849 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3850 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3851 OPTIONAL(file, MDField, ); \ 3852 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3853 PARSE_MD_FIELDS(); 3854 #undef VISIT_MD_FIELDS 3855 3856 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3857 (Context, scope.Val, file.Val, discriminator.Val)); 3858 return false; 3859 } 3860 3861 /// ParseDINamespace: 3862 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3863 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3865 REQUIRED(scope, MDField, ); \ 3866 OPTIONAL(file, MDField, ); \ 3867 OPTIONAL(name, MDStringField, ); \ 3868 OPTIONAL(line, LineField, ); 3869 PARSE_MD_FIELDS(); 3870 #undef VISIT_MD_FIELDS 3871 3872 Result = GET_OR_DISTINCT(DINamespace, 3873 (Context, scope.Val, file.Val, name.Val, line.Val)); 3874 return false; 3875 } 3876 3877 /// ParseDIMacro: 3878 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 3879 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 3880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3881 REQUIRED(type, DwarfMacinfoTypeField, ); \ 3882 REQUIRED(line, LineField, ); \ 3883 REQUIRED(name, MDStringField, ); \ 3884 OPTIONAL(value, MDStringField, ); 3885 PARSE_MD_FIELDS(); 3886 #undef VISIT_MD_FIELDS 3887 3888 Result = GET_OR_DISTINCT(DIMacro, 3889 (Context, type.Val, line.Val, name.Val, value.Val)); 3890 return false; 3891 } 3892 3893 /// ParseDIMacroFile: 3894 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 3895 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 3896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3897 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 3898 REQUIRED(line, LineField, ); \ 3899 REQUIRED(file, MDField, ); \ 3900 OPTIONAL(nodes, MDField, ); 3901 PARSE_MD_FIELDS(); 3902 #undef VISIT_MD_FIELDS 3903 3904 Result = GET_OR_DISTINCT(DIMacroFile, 3905 (Context, type.Val, line.Val, file.Val, nodes.Val)); 3906 return false; 3907 } 3908 3909 3910 /// ParseDIModule: 3911 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3912 /// includePath: "/usr/include", isysroot: "/") 3913 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3914 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3915 REQUIRED(scope, MDField, ); \ 3916 REQUIRED(name, MDStringField, ); \ 3917 OPTIONAL(configMacros, MDStringField, ); \ 3918 OPTIONAL(includePath, MDStringField, ); \ 3919 OPTIONAL(isysroot, MDStringField, ); 3920 PARSE_MD_FIELDS(); 3921 #undef VISIT_MD_FIELDS 3922 3923 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3924 configMacros.Val, includePath.Val, isysroot.Val)); 3925 return false; 3926 } 3927 3928 /// ParseDITemplateTypeParameter: 3929 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3930 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3931 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3932 OPTIONAL(name, MDStringField, ); \ 3933 REQUIRED(type, MDField, ); 3934 PARSE_MD_FIELDS(); 3935 #undef VISIT_MD_FIELDS 3936 3937 Result = 3938 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3939 return false; 3940 } 3941 3942 /// ParseDITemplateValueParameter: 3943 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3944 /// name: "V", type: !1, value: i32 7) 3945 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3947 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3948 OPTIONAL(name, MDStringField, ); \ 3949 OPTIONAL(type, MDField, ); \ 3950 REQUIRED(value, MDField, ); 3951 PARSE_MD_FIELDS(); 3952 #undef VISIT_MD_FIELDS 3953 3954 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3955 (Context, tag.Val, name.Val, type.Val, value.Val)); 3956 return false; 3957 } 3958 3959 /// ParseDIGlobalVariable: 3960 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3961 /// file: !1, line: 7, type: !2, isLocal: false, 3962 /// isDefinition: true, variable: i32* @foo, 3963 /// declaration: !3) 3964 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3966 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3967 OPTIONAL(scope, MDField, ); \ 3968 OPTIONAL(linkageName, MDStringField, ); \ 3969 OPTIONAL(file, MDField, ); \ 3970 OPTIONAL(line, LineField, ); \ 3971 OPTIONAL(type, MDField, ); \ 3972 OPTIONAL(isLocal, MDBoolField, ); \ 3973 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3974 OPTIONAL(variable, MDConstant, ); \ 3975 OPTIONAL(declaration, MDField, ); 3976 PARSE_MD_FIELDS(); 3977 #undef VISIT_MD_FIELDS 3978 3979 Result = GET_OR_DISTINCT(DIGlobalVariable, 3980 (Context, scope.Val, name.Val, linkageName.Val, 3981 file.Val, line.Val, type.Val, isLocal.Val, 3982 isDefinition.Val, variable.Val, declaration.Val)); 3983 return false; 3984 } 3985 3986 /// ParseDILocalVariable: 3987 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3988 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3989 /// ::= !DILocalVariable(scope: !0, name: "foo", 3990 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3991 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3993 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3994 OPTIONAL(name, MDStringField, ); \ 3995 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3996 OPTIONAL(file, MDField, ); \ 3997 OPTIONAL(line, LineField, ); \ 3998 OPTIONAL(type, MDField, ); \ 3999 OPTIONAL(flags, DIFlagField, ); 4000 PARSE_MD_FIELDS(); 4001 #undef VISIT_MD_FIELDS 4002 4003 Result = GET_OR_DISTINCT(DILocalVariable, 4004 (Context, scope.Val, name.Val, file.Val, line.Val, 4005 type.Val, arg.Val, flags.Val)); 4006 return false; 4007 } 4008 4009 /// ParseDIExpression: 4010 /// ::= !DIExpression(0, 7, -1) 4011 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4012 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4013 Lex.Lex(); 4014 4015 if (ParseToken(lltok::lparen, "expected '(' here")) 4016 return true; 4017 4018 SmallVector<uint64_t, 8> Elements; 4019 if (Lex.getKind() != lltok::rparen) 4020 do { 4021 if (Lex.getKind() == lltok::DwarfOp) { 4022 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4023 Lex.Lex(); 4024 Elements.push_back(Op); 4025 continue; 4026 } 4027 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4028 } 4029 4030 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4031 return TokError("expected unsigned integer"); 4032 4033 auto &U = Lex.getAPSIntVal(); 4034 if (U.ugt(UINT64_MAX)) 4035 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4036 Elements.push_back(U.getZExtValue()); 4037 Lex.Lex(); 4038 } while (EatIfPresent(lltok::comma)); 4039 4040 if (ParseToken(lltok::rparen, "expected ')' here")) 4041 return true; 4042 4043 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4044 return false; 4045 } 4046 4047 /// ParseDIObjCProperty: 4048 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4049 /// getter: "getFoo", attributes: 7, type: !2) 4050 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4052 OPTIONAL(name, MDStringField, ); \ 4053 OPTIONAL(file, MDField, ); \ 4054 OPTIONAL(line, LineField, ); \ 4055 OPTIONAL(setter, MDStringField, ); \ 4056 OPTIONAL(getter, MDStringField, ); \ 4057 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4058 OPTIONAL(type, MDField, ); 4059 PARSE_MD_FIELDS(); 4060 #undef VISIT_MD_FIELDS 4061 4062 Result = GET_OR_DISTINCT(DIObjCProperty, 4063 (Context, name.Val, file.Val, line.Val, setter.Val, 4064 getter.Val, attributes.Val, type.Val)); 4065 return false; 4066 } 4067 4068 /// ParseDIImportedEntity: 4069 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4070 /// line: 7, name: "foo") 4071 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4072 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4073 REQUIRED(tag, DwarfTagField, ); \ 4074 REQUIRED(scope, MDField, ); \ 4075 OPTIONAL(entity, MDField, ); \ 4076 OPTIONAL(line, LineField, ); \ 4077 OPTIONAL(name, MDStringField, ); 4078 PARSE_MD_FIELDS(); 4079 #undef VISIT_MD_FIELDS 4080 4081 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4082 entity.Val, line.Val, name.Val)); 4083 return false; 4084 } 4085 4086 #undef PARSE_MD_FIELD 4087 #undef NOP_FIELD 4088 #undef REQUIRE_FIELD 4089 #undef DECLARE_FIELD 4090 4091 /// ParseMetadataAsValue 4092 /// ::= metadata i32 %local 4093 /// ::= metadata i32 @global 4094 /// ::= metadata i32 7 4095 /// ::= metadata !0 4096 /// ::= metadata !{...} 4097 /// ::= metadata !"string" 4098 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4099 // Note: the type 'metadata' has already been parsed. 4100 Metadata *MD; 4101 if (ParseMetadata(MD, &PFS)) 4102 return true; 4103 4104 V = MetadataAsValue::get(Context, MD); 4105 return false; 4106 } 4107 4108 /// ParseValueAsMetadata 4109 /// ::= i32 %local 4110 /// ::= i32 @global 4111 /// ::= i32 7 4112 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4113 PerFunctionState *PFS) { 4114 Type *Ty; 4115 LocTy Loc; 4116 if (ParseType(Ty, TypeMsg, Loc)) 4117 return true; 4118 if (Ty->isMetadataTy()) 4119 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4120 4121 Value *V; 4122 if (ParseValue(Ty, V, PFS)) 4123 return true; 4124 4125 MD = ValueAsMetadata::get(V); 4126 return false; 4127 } 4128 4129 /// ParseMetadata 4130 /// ::= i32 %local 4131 /// ::= i32 @global 4132 /// ::= i32 7 4133 /// ::= !42 4134 /// ::= !{...} 4135 /// ::= !"string" 4136 /// ::= !DILocation(...) 4137 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4138 if (Lex.getKind() == lltok::MetadataVar) { 4139 MDNode *N; 4140 if (ParseSpecializedMDNode(N)) 4141 return true; 4142 MD = N; 4143 return false; 4144 } 4145 4146 // ValueAsMetadata: 4147 // <type> <value> 4148 if (Lex.getKind() != lltok::exclaim) 4149 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4150 4151 // '!'. 4152 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4153 Lex.Lex(); 4154 4155 // MDString: 4156 // ::= '!' STRINGCONSTANT 4157 if (Lex.getKind() == lltok::StringConstant) { 4158 MDString *S; 4159 if (ParseMDString(S)) 4160 return true; 4161 MD = S; 4162 return false; 4163 } 4164 4165 // MDNode: 4166 // !{ ... } 4167 // !7 4168 MDNode *N; 4169 if (ParseMDNodeTail(N)) 4170 return true; 4171 MD = N; 4172 return false; 4173 } 4174 4175 4176 //===----------------------------------------------------------------------===// 4177 // Function Parsing. 4178 //===----------------------------------------------------------------------===// 4179 4180 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4181 PerFunctionState *PFS) { 4182 if (Ty->isFunctionTy()) 4183 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4184 4185 switch (ID.Kind) { 4186 case ValID::t_LocalID: 4187 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4188 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4189 return V == nullptr; 4190 case ValID::t_LocalName: 4191 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4192 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4193 return V == nullptr; 4194 case ValID::t_InlineAsm: { 4195 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4196 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4197 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4198 (ID.UIntVal >> 1) & 1, 4199 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4200 return false; 4201 } 4202 case ValID::t_GlobalName: 4203 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4204 return V == nullptr; 4205 case ValID::t_GlobalID: 4206 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4207 return V == nullptr; 4208 case ValID::t_APSInt: 4209 if (!Ty->isIntegerTy()) 4210 return Error(ID.Loc, "integer constant must have integer type"); 4211 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4212 V = ConstantInt::get(Context, ID.APSIntVal); 4213 return false; 4214 case ValID::t_APFloat: 4215 if (!Ty->isFloatingPointTy() || 4216 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4217 return Error(ID.Loc, "floating point constant invalid for type"); 4218 4219 // The lexer has no type info, so builds all half, float, and double FP 4220 // constants as double. Fix this here. Long double does not need this. 4221 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4222 bool Ignored; 4223 if (Ty->isHalfTy()) 4224 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4225 &Ignored); 4226 else if (Ty->isFloatTy()) 4227 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4228 &Ignored); 4229 } 4230 V = ConstantFP::get(Context, ID.APFloatVal); 4231 4232 if (V->getType() != Ty) 4233 return Error(ID.Loc, "floating point constant does not have type '" + 4234 getTypeString(Ty) + "'"); 4235 4236 return false; 4237 case ValID::t_Null: 4238 if (!Ty->isPointerTy()) 4239 return Error(ID.Loc, "null must be a pointer type"); 4240 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4241 return false; 4242 case ValID::t_Undef: 4243 // FIXME: LabelTy should not be a first-class type. 4244 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4245 return Error(ID.Loc, "invalid type for undef constant"); 4246 V = UndefValue::get(Ty); 4247 return false; 4248 case ValID::t_EmptyArray: 4249 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4250 return Error(ID.Loc, "invalid empty array initializer"); 4251 V = UndefValue::get(Ty); 4252 return false; 4253 case ValID::t_Zero: 4254 // FIXME: LabelTy should not be a first-class type. 4255 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4256 return Error(ID.Loc, "invalid type for null constant"); 4257 V = Constant::getNullValue(Ty); 4258 return false; 4259 case ValID::t_None: 4260 if (!Ty->isTokenTy()) 4261 return Error(ID.Loc, "invalid type for none constant"); 4262 V = Constant::getNullValue(Ty); 4263 return false; 4264 case ValID::t_Constant: 4265 if (ID.ConstantVal->getType() != Ty) 4266 return Error(ID.Loc, "constant expression type mismatch"); 4267 4268 V = ID.ConstantVal; 4269 return false; 4270 case ValID::t_ConstantStruct: 4271 case ValID::t_PackedConstantStruct: 4272 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4273 if (ST->getNumElements() != ID.UIntVal) 4274 return Error(ID.Loc, 4275 "initializer with struct type has wrong # elements"); 4276 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4277 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4278 4279 // Verify that the elements are compatible with the structtype. 4280 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4281 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4282 return Error(ID.Loc, "element " + Twine(i) + 4283 " of struct initializer doesn't match struct element type"); 4284 4285 V = ConstantStruct::get( 4286 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4287 } else 4288 return Error(ID.Loc, "constant expression type mismatch"); 4289 return false; 4290 } 4291 llvm_unreachable("Invalid ValID"); 4292 } 4293 4294 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4295 C = nullptr; 4296 ValID ID; 4297 auto Loc = Lex.getLoc(); 4298 if (ParseValID(ID, /*PFS=*/nullptr)) 4299 return true; 4300 switch (ID.Kind) { 4301 case ValID::t_APSInt: 4302 case ValID::t_APFloat: 4303 case ValID::t_Undef: 4304 case ValID::t_Constant: 4305 case ValID::t_ConstantStruct: 4306 case ValID::t_PackedConstantStruct: { 4307 Value *V; 4308 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4309 return true; 4310 assert(isa<Constant>(V) && "Expected a constant value"); 4311 C = cast<Constant>(V); 4312 return false; 4313 } 4314 default: 4315 return Error(Loc, "expected a constant value"); 4316 } 4317 } 4318 4319 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4320 V = nullptr; 4321 ValID ID; 4322 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4323 } 4324 4325 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4326 Type *Ty = nullptr; 4327 return ParseType(Ty) || 4328 ParseValue(Ty, V, PFS); 4329 } 4330 4331 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4332 PerFunctionState &PFS) { 4333 Value *V; 4334 Loc = Lex.getLoc(); 4335 if (ParseTypeAndValue(V, PFS)) return true; 4336 if (!isa<BasicBlock>(V)) 4337 return Error(Loc, "expected a basic block"); 4338 BB = cast<BasicBlock>(V); 4339 return false; 4340 } 4341 4342 4343 /// FunctionHeader 4344 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4345 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4346 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4347 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4348 // Parse the linkage. 4349 LocTy LinkageLoc = Lex.getLoc(); 4350 unsigned Linkage; 4351 4352 unsigned Visibility; 4353 unsigned DLLStorageClass; 4354 AttrBuilder RetAttrs; 4355 unsigned CC; 4356 Type *RetType = nullptr; 4357 LocTy RetTypeLoc = Lex.getLoc(); 4358 if (ParseOptionalLinkage(Linkage) || 4359 ParseOptionalVisibility(Visibility) || 4360 ParseOptionalDLLStorageClass(DLLStorageClass) || 4361 ParseOptionalCallingConv(CC) || 4362 ParseOptionalReturnAttrs(RetAttrs) || 4363 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4364 return true; 4365 4366 // Verify that the linkage is ok. 4367 switch ((GlobalValue::LinkageTypes)Linkage) { 4368 case GlobalValue::ExternalLinkage: 4369 break; // always ok. 4370 case GlobalValue::ExternalWeakLinkage: 4371 if (isDefine) 4372 return Error(LinkageLoc, "invalid linkage for function definition"); 4373 break; 4374 case GlobalValue::PrivateLinkage: 4375 case GlobalValue::InternalLinkage: 4376 case GlobalValue::AvailableExternallyLinkage: 4377 case GlobalValue::LinkOnceAnyLinkage: 4378 case GlobalValue::LinkOnceODRLinkage: 4379 case GlobalValue::WeakAnyLinkage: 4380 case GlobalValue::WeakODRLinkage: 4381 if (!isDefine) 4382 return Error(LinkageLoc, "invalid linkage for function declaration"); 4383 break; 4384 case GlobalValue::AppendingLinkage: 4385 case GlobalValue::CommonLinkage: 4386 return Error(LinkageLoc, "invalid function linkage type"); 4387 } 4388 4389 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4390 return Error(LinkageLoc, 4391 "symbol with local linkage must have default visibility"); 4392 4393 if (!FunctionType::isValidReturnType(RetType)) 4394 return Error(RetTypeLoc, "invalid function return type"); 4395 4396 LocTy NameLoc = Lex.getLoc(); 4397 4398 std::string FunctionName; 4399 if (Lex.getKind() == lltok::GlobalVar) { 4400 FunctionName = Lex.getStrVal(); 4401 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4402 unsigned NameID = Lex.getUIntVal(); 4403 4404 if (NameID != NumberedVals.size()) 4405 return TokError("function expected to be numbered '%" + 4406 Twine(NumberedVals.size()) + "'"); 4407 } else { 4408 return TokError("expected function name"); 4409 } 4410 4411 Lex.Lex(); 4412 4413 if (Lex.getKind() != lltok::lparen) 4414 return TokError("expected '(' in function argument list"); 4415 4416 SmallVector<ArgInfo, 8> ArgList; 4417 bool isVarArg; 4418 AttrBuilder FuncAttrs; 4419 std::vector<unsigned> FwdRefAttrGrps; 4420 LocTy BuiltinLoc; 4421 std::string Section; 4422 unsigned Alignment; 4423 std::string GC; 4424 bool UnnamedAddr; 4425 LocTy UnnamedAddrLoc; 4426 Constant *Prefix = nullptr; 4427 Constant *Prologue = nullptr; 4428 Constant *PersonalityFn = nullptr; 4429 Comdat *C; 4430 4431 if (ParseArgumentList(ArgList, isVarArg) || 4432 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4433 &UnnamedAddrLoc) || 4434 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4435 BuiltinLoc) || 4436 (EatIfPresent(lltok::kw_section) && 4437 ParseStringConstant(Section)) || 4438 parseOptionalComdat(FunctionName, C) || 4439 ParseOptionalAlignment(Alignment) || 4440 (EatIfPresent(lltok::kw_gc) && 4441 ParseStringConstant(GC)) || 4442 (EatIfPresent(lltok::kw_prefix) && 4443 ParseGlobalTypeAndValue(Prefix)) || 4444 (EatIfPresent(lltok::kw_prologue) && 4445 ParseGlobalTypeAndValue(Prologue)) || 4446 (EatIfPresent(lltok::kw_personality) && 4447 ParseGlobalTypeAndValue(PersonalityFn))) 4448 return true; 4449 4450 if (FuncAttrs.contains(Attribute::Builtin)) 4451 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4452 4453 // If the alignment was parsed as an attribute, move to the alignment field. 4454 if (FuncAttrs.hasAlignmentAttr()) { 4455 Alignment = FuncAttrs.getAlignment(); 4456 FuncAttrs.removeAttribute(Attribute::Alignment); 4457 } 4458 4459 // Okay, if we got here, the function is syntactically valid. Convert types 4460 // and do semantic checks. 4461 std::vector<Type*> ParamTypeList; 4462 SmallVector<AttributeSet, 8> Attrs; 4463 4464 if (RetAttrs.hasAttributes()) 4465 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4466 AttributeSet::ReturnIndex, 4467 RetAttrs)); 4468 4469 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4470 ParamTypeList.push_back(ArgList[i].Ty); 4471 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4472 AttrBuilder B(ArgList[i].Attrs, i + 1); 4473 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4474 } 4475 } 4476 4477 if (FuncAttrs.hasAttributes()) 4478 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4479 AttributeSet::FunctionIndex, 4480 FuncAttrs)); 4481 4482 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4483 4484 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4485 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4486 4487 FunctionType *FT = 4488 FunctionType::get(RetType, ParamTypeList, isVarArg); 4489 PointerType *PFT = PointerType::getUnqual(FT); 4490 4491 Fn = nullptr; 4492 if (!FunctionName.empty()) { 4493 // If this was a definition of a forward reference, remove the definition 4494 // from the forward reference table and fill in the forward ref. 4495 auto FRVI = ForwardRefVals.find(FunctionName); 4496 if (FRVI != ForwardRefVals.end()) { 4497 Fn = M->getFunction(FunctionName); 4498 if (!Fn) 4499 return Error(FRVI->second.second, "invalid forward reference to " 4500 "function as global value!"); 4501 if (Fn->getType() != PFT) 4502 return Error(FRVI->second.second, "invalid forward reference to " 4503 "function '" + FunctionName + "' with wrong type!"); 4504 4505 ForwardRefVals.erase(FRVI); 4506 } else if ((Fn = M->getFunction(FunctionName))) { 4507 // Reject redefinitions. 4508 return Error(NameLoc, "invalid redefinition of function '" + 4509 FunctionName + "'"); 4510 } else if (M->getNamedValue(FunctionName)) { 4511 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4512 } 4513 4514 } else { 4515 // If this is a definition of a forward referenced function, make sure the 4516 // types agree. 4517 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4518 if (I != ForwardRefValIDs.end()) { 4519 Fn = cast<Function>(I->second.first); 4520 if (Fn->getType() != PFT) 4521 return Error(NameLoc, "type of definition and forward reference of '@" + 4522 Twine(NumberedVals.size()) + "' disagree"); 4523 ForwardRefValIDs.erase(I); 4524 } 4525 } 4526 4527 if (!Fn) 4528 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4529 else // Move the forward-reference to the correct spot in the module. 4530 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4531 4532 if (FunctionName.empty()) 4533 NumberedVals.push_back(Fn); 4534 4535 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4536 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4537 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4538 Fn->setCallingConv(CC); 4539 Fn->setAttributes(PAL); 4540 Fn->setUnnamedAddr(UnnamedAddr); 4541 Fn->setAlignment(Alignment); 4542 Fn->setSection(Section); 4543 Fn->setComdat(C); 4544 Fn->setPersonalityFn(PersonalityFn); 4545 if (!GC.empty()) Fn->setGC(GC.c_str()); 4546 Fn->setPrefixData(Prefix); 4547 Fn->setPrologueData(Prologue); 4548 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4549 4550 // Add all of the arguments we parsed to the function. 4551 Function::arg_iterator ArgIt = Fn->arg_begin(); 4552 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4553 // If the argument has a name, insert it into the argument symbol table. 4554 if (ArgList[i].Name.empty()) continue; 4555 4556 // Set the name, if it conflicted, it will be auto-renamed. 4557 ArgIt->setName(ArgList[i].Name); 4558 4559 if (ArgIt->getName() != ArgList[i].Name) 4560 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4561 ArgList[i].Name + "'"); 4562 } 4563 4564 if (isDefine) 4565 return false; 4566 4567 // Check the declaration has no block address forward references. 4568 ValID ID; 4569 if (FunctionName.empty()) { 4570 ID.Kind = ValID::t_GlobalID; 4571 ID.UIntVal = NumberedVals.size() - 1; 4572 } else { 4573 ID.Kind = ValID::t_GlobalName; 4574 ID.StrVal = FunctionName; 4575 } 4576 auto Blocks = ForwardRefBlockAddresses.find(ID); 4577 if (Blocks != ForwardRefBlockAddresses.end()) 4578 return Error(Blocks->first.Loc, 4579 "cannot take blockaddress inside a declaration"); 4580 return false; 4581 } 4582 4583 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4584 ValID ID; 4585 if (FunctionNumber == -1) { 4586 ID.Kind = ValID::t_GlobalName; 4587 ID.StrVal = F.getName(); 4588 } else { 4589 ID.Kind = ValID::t_GlobalID; 4590 ID.UIntVal = FunctionNumber; 4591 } 4592 4593 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4594 if (Blocks == P.ForwardRefBlockAddresses.end()) 4595 return false; 4596 4597 for (const auto &I : Blocks->second) { 4598 const ValID &BBID = I.first; 4599 GlobalValue *GV = I.second; 4600 4601 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4602 "Expected local id or name"); 4603 BasicBlock *BB; 4604 if (BBID.Kind == ValID::t_LocalName) 4605 BB = GetBB(BBID.StrVal, BBID.Loc); 4606 else 4607 BB = GetBB(BBID.UIntVal, BBID.Loc); 4608 if (!BB) 4609 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4610 4611 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4612 GV->eraseFromParent(); 4613 } 4614 4615 P.ForwardRefBlockAddresses.erase(Blocks); 4616 return false; 4617 } 4618 4619 /// ParseFunctionBody 4620 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4621 bool LLParser::ParseFunctionBody(Function &Fn) { 4622 if (Lex.getKind() != lltok::lbrace) 4623 return TokError("expected '{' in function body"); 4624 Lex.Lex(); // eat the {. 4625 4626 int FunctionNumber = -1; 4627 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4628 4629 PerFunctionState PFS(*this, Fn, FunctionNumber); 4630 4631 // Resolve block addresses and allow basic blocks to be forward-declared 4632 // within this function. 4633 if (PFS.resolveForwardRefBlockAddresses()) 4634 return true; 4635 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4636 4637 // We need at least one basic block. 4638 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4639 return TokError("function body requires at least one basic block"); 4640 4641 while (Lex.getKind() != lltok::rbrace && 4642 Lex.getKind() != lltok::kw_uselistorder) 4643 if (ParseBasicBlock(PFS)) return true; 4644 4645 while (Lex.getKind() != lltok::rbrace) 4646 if (ParseUseListOrder(&PFS)) 4647 return true; 4648 4649 // Eat the }. 4650 Lex.Lex(); 4651 4652 // Verify function is ok. 4653 return PFS.FinishFunction(); 4654 } 4655 4656 /// ParseBasicBlock 4657 /// ::= LabelStr? Instruction* 4658 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4659 // If this basic block starts out with a name, remember it. 4660 std::string Name; 4661 LocTy NameLoc = Lex.getLoc(); 4662 if (Lex.getKind() == lltok::LabelStr) { 4663 Name = Lex.getStrVal(); 4664 Lex.Lex(); 4665 } 4666 4667 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4668 if (!BB) 4669 return Error(NameLoc, 4670 "unable to create block named '" + Name + "'"); 4671 4672 std::string NameStr; 4673 4674 // Parse the instructions in this block until we get a terminator. 4675 Instruction *Inst; 4676 do { 4677 // This instruction may have three possibilities for a name: a) none 4678 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4679 LocTy NameLoc = Lex.getLoc(); 4680 int NameID = -1; 4681 NameStr = ""; 4682 4683 if (Lex.getKind() == lltok::LocalVarID) { 4684 NameID = Lex.getUIntVal(); 4685 Lex.Lex(); 4686 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4687 return true; 4688 } else if (Lex.getKind() == lltok::LocalVar) { 4689 NameStr = Lex.getStrVal(); 4690 Lex.Lex(); 4691 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4692 return true; 4693 } 4694 4695 switch (ParseInstruction(Inst, BB, PFS)) { 4696 default: llvm_unreachable("Unknown ParseInstruction result!"); 4697 case InstError: return true; 4698 case InstNormal: 4699 BB->getInstList().push_back(Inst); 4700 4701 // With a normal result, we check to see if the instruction is followed by 4702 // a comma and metadata. 4703 if (EatIfPresent(lltok::comma)) 4704 if (ParseInstructionMetadata(*Inst)) 4705 return true; 4706 break; 4707 case InstExtraComma: 4708 BB->getInstList().push_back(Inst); 4709 4710 // If the instruction parser ate an extra comma at the end of it, it 4711 // *must* be followed by metadata. 4712 if (ParseInstructionMetadata(*Inst)) 4713 return true; 4714 break; 4715 } 4716 4717 // Set the name on the instruction. 4718 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4719 } while (!isa<TerminatorInst>(Inst)); 4720 4721 return false; 4722 } 4723 4724 //===----------------------------------------------------------------------===// 4725 // Instruction Parsing. 4726 //===----------------------------------------------------------------------===// 4727 4728 /// ParseInstruction - Parse one of the many different instructions. 4729 /// 4730 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4731 PerFunctionState &PFS) { 4732 lltok::Kind Token = Lex.getKind(); 4733 if (Token == lltok::Eof) 4734 return TokError("found end of file when expecting more instructions"); 4735 LocTy Loc = Lex.getLoc(); 4736 unsigned KeywordVal = Lex.getUIntVal(); 4737 Lex.Lex(); // Eat the keyword. 4738 4739 switch (Token) { 4740 default: return Error(Loc, "expected instruction opcode"); 4741 // Terminator Instructions. 4742 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4743 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4744 case lltok::kw_br: return ParseBr(Inst, PFS); 4745 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4746 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4747 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4748 case lltok::kw_resume: return ParseResume(Inst, PFS); 4749 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4750 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4751 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4752 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4753 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4754 // Binary Operators. 4755 case lltok::kw_add: 4756 case lltok::kw_sub: 4757 case lltok::kw_mul: 4758 case lltok::kw_shl: { 4759 bool NUW = EatIfPresent(lltok::kw_nuw); 4760 bool NSW = EatIfPresent(lltok::kw_nsw); 4761 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4762 4763 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4764 4765 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4766 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4767 return false; 4768 } 4769 case lltok::kw_fadd: 4770 case lltok::kw_fsub: 4771 case lltok::kw_fmul: 4772 case lltok::kw_fdiv: 4773 case lltok::kw_frem: { 4774 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4775 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4776 if (Res != 0) 4777 return Res; 4778 if (FMF.any()) 4779 Inst->setFastMathFlags(FMF); 4780 return 0; 4781 } 4782 4783 case lltok::kw_sdiv: 4784 case lltok::kw_udiv: 4785 case lltok::kw_lshr: 4786 case lltok::kw_ashr: { 4787 bool Exact = EatIfPresent(lltok::kw_exact); 4788 4789 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4790 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4791 return false; 4792 } 4793 4794 case lltok::kw_urem: 4795 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4796 case lltok::kw_and: 4797 case lltok::kw_or: 4798 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4799 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4800 case lltok::kw_fcmp: { 4801 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4802 int Res = ParseCompare(Inst, PFS, KeywordVal); 4803 if (Res != 0) 4804 return Res; 4805 if (FMF.any()) 4806 Inst->setFastMathFlags(FMF); 4807 return 0; 4808 } 4809 4810 // Casts. 4811 case lltok::kw_trunc: 4812 case lltok::kw_zext: 4813 case lltok::kw_sext: 4814 case lltok::kw_fptrunc: 4815 case lltok::kw_fpext: 4816 case lltok::kw_bitcast: 4817 case lltok::kw_addrspacecast: 4818 case lltok::kw_uitofp: 4819 case lltok::kw_sitofp: 4820 case lltok::kw_fptoui: 4821 case lltok::kw_fptosi: 4822 case lltok::kw_inttoptr: 4823 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4824 // Other. 4825 case lltok::kw_select: return ParseSelect(Inst, PFS); 4826 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4827 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4828 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4829 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4830 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4831 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4832 // Call. 4833 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4834 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4835 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4836 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 4837 // Memory. 4838 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4839 case lltok::kw_load: return ParseLoad(Inst, PFS); 4840 case lltok::kw_store: return ParseStore(Inst, PFS); 4841 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4842 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4843 case lltok::kw_fence: return ParseFence(Inst, PFS); 4844 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4845 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4846 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4847 } 4848 } 4849 4850 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4851 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4852 if (Opc == Instruction::FCmp) { 4853 switch (Lex.getKind()) { 4854 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4855 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4856 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4857 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4858 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4859 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4860 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4861 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4862 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4863 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4864 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4865 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4866 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4867 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4868 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4869 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4870 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4871 } 4872 } else { 4873 switch (Lex.getKind()) { 4874 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4875 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4876 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4877 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4878 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4879 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4880 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4881 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4882 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4883 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4884 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4885 } 4886 } 4887 Lex.Lex(); 4888 return false; 4889 } 4890 4891 //===----------------------------------------------------------------------===// 4892 // Terminator Instructions. 4893 //===----------------------------------------------------------------------===// 4894 4895 /// ParseRet - Parse a return instruction. 4896 /// ::= 'ret' void (',' !dbg, !1)* 4897 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4898 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4899 PerFunctionState &PFS) { 4900 SMLoc TypeLoc = Lex.getLoc(); 4901 Type *Ty = nullptr; 4902 if (ParseType(Ty, true /*void allowed*/)) return true; 4903 4904 Type *ResType = PFS.getFunction().getReturnType(); 4905 4906 if (Ty->isVoidTy()) { 4907 if (!ResType->isVoidTy()) 4908 return Error(TypeLoc, "value doesn't match function result type '" + 4909 getTypeString(ResType) + "'"); 4910 4911 Inst = ReturnInst::Create(Context); 4912 return false; 4913 } 4914 4915 Value *RV; 4916 if (ParseValue(Ty, RV, PFS)) return true; 4917 4918 if (ResType != RV->getType()) 4919 return Error(TypeLoc, "value doesn't match function result type '" + 4920 getTypeString(ResType) + "'"); 4921 4922 Inst = ReturnInst::Create(Context, RV); 4923 return false; 4924 } 4925 4926 4927 /// ParseBr 4928 /// ::= 'br' TypeAndValue 4929 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4930 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4931 LocTy Loc, Loc2; 4932 Value *Op0; 4933 BasicBlock *Op1, *Op2; 4934 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4935 4936 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4937 Inst = BranchInst::Create(BB); 4938 return false; 4939 } 4940 4941 if (Op0->getType() != Type::getInt1Ty(Context)) 4942 return Error(Loc, "branch condition must have 'i1' type"); 4943 4944 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4945 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4946 ParseToken(lltok::comma, "expected ',' after true destination") || 4947 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4948 return true; 4949 4950 Inst = BranchInst::Create(Op1, Op2, Op0); 4951 return false; 4952 } 4953 4954 /// ParseSwitch 4955 /// Instruction 4956 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4957 /// JumpTable 4958 /// ::= (TypeAndValue ',' TypeAndValue)* 4959 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4960 LocTy CondLoc, BBLoc; 4961 Value *Cond; 4962 BasicBlock *DefaultBB; 4963 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4964 ParseToken(lltok::comma, "expected ',' after switch condition") || 4965 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4966 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4967 return true; 4968 4969 if (!Cond->getType()->isIntegerTy()) 4970 return Error(CondLoc, "switch condition must have integer type"); 4971 4972 // Parse the jump table pairs. 4973 SmallPtrSet<Value*, 32> SeenCases; 4974 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4975 while (Lex.getKind() != lltok::rsquare) { 4976 Value *Constant; 4977 BasicBlock *DestBB; 4978 4979 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4980 ParseToken(lltok::comma, "expected ',' after case value") || 4981 ParseTypeAndBasicBlock(DestBB, PFS)) 4982 return true; 4983 4984 if (!SeenCases.insert(Constant).second) 4985 return Error(CondLoc, "duplicate case value in switch"); 4986 if (!isa<ConstantInt>(Constant)) 4987 return Error(CondLoc, "case value is not a constant integer"); 4988 4989 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4990 } 4991 4992 Lex.Lex(); // Eat the ']'. 4993 4994 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4995 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4996 SI->addCase(Table[i].first, Table[i].second); 4997 Inst = SI; 4998 return false; 4999 } 5000 5001 /// ParseIndirectBr 5002 /// Instruction 5003 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5004 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5005 LocTy AddrLoc; 5006 Value *Address; 5007 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5008 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5009 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5010 return true; 5011 5012 if (!Address->getType()->isPointerTy()) 5013 return Error(AddrLoc, "indirectbr address must have pointer type"); 5014 5015 // Parse the destination list. 5016 SmallVector<BasicBlock*, 16> DestList; 5017 5018 if (Lex.getKind() != lltok::rsquare) { 5019 BasicBlock *DestBB; 5020 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5021 return true; 5022 DestList.push_back(DestBB); 5023 5024 while (EatIfPresent(lltok::comma)) { 5025 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5026 return true; 5027 DestList.push_back(DestBB); 5028 } 5029 } 5030 5031 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5032 return true; 5033 5034 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5035 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5036 IBI->addDestination(DestList[i]); 5037 Inst = IBI; 5038 return false; 5039 } 5040 5041 5042 /// ParseInvoke 5043 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5044 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5045 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5046 LocTy CallLoc = Lex.getLoc(); 5047 AttrBuilder RetAttrs, FnAttrs; 5048 std::vector<unsigned> FwdRefAttrGrps; 5049 LocTy NoBuiltinLoc; 5050 unsigned CC; 5051 Type *RetType = nullptr; 5052 LocTy RetTypeLoc; 5053 ValID CalleeID; 5054 SmallVector<ParamInfo, 16> ArgList; 5055 SmallVector<OperandBundleDef, 2> BundleList; 5056 5057 BasicBlock *NormalBB, *UnwindBB; 5058 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5059 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5060 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5061 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5062 NoBuiltinLoc) || 5063 ParseOptionalOperandBundles(BundleList, PFS) || 5064 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5065 ParseTypeAndBasicBlock(NormalBB, PFS) || 5066 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5067 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5068 return true; 5069 5070 // If RetType is a non-function pointer type, then this is the short syntax 5071 // for the call, which means that RetType is just the return type. Infer the 5072 // rest of the function argument types from the arguments that are present. 5073 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5074 if (!Ty) { 5075 // Pull out the types of all of the arguments... 5076 std::vector<Type*> ParamTypes; 5077 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5078 ParamTypes.push_back(ArgList[i].V->getType()); 5079 5080 if (!FunctionType::isValidReturnType(RetType)) 5081 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5082 5083 Ty = FunctionType::get(RetType, ParamTypes, false); 5084 } 5085 5086 CalleeID.FTy = Ty; 5087 5088 // Look up the callee. 5089 Value *Callee; 5090 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5091 return true; 5092 5093 // Set up the Attribute for the function. 5094 SmallVector<AttributeSet, 8> Attrs; 5095 if (RetAttrs.hasAttributes()) 5096 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5097 AttributeSet::ReturnIndex, 5098 RetAttrs)); 5099 5100 SmallVector<Value*, 8> Args; 5101 5102 // Loop through FunctionType's arguments and ensure they are specified 5103 // correctly. Also, gather any parameter attributes. 5104 FunctionType::param_iterator I = Ty->param_begin(); 5105 FunctionType::param_iterator E = Ty->param_end(); 5106 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5107 Type *ExpectedTy = nullptr; 5108 if (I != E) { 5109 ExpectedTy = *I++; 5110 } else if (!Ty->isVarArg()) { 5111 return Error(ArgList[i].Loc, "too many arguments specified"); 5112 } 5113 5114 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5115 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5116 getTypeString(ExpectedTy) + "'"); 5117 Args.push_back(ArgList[i].V); 5118 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5119 AttrBuilder B(ArgList[i].Attrs, i + 1); 5120 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5121 } 5122 } 5123 5124 if (I != E) 5125 return Error(CallLoc, "not enough parameters specified for call"); 5126 5127 if (FnAttrs.hasAttributes()) { 5128 if (FnAttrs.hasAlignmentAttr()) 5129 return Error(CallLoc, "invoke instructions may not have an alignment"); 5130 5131 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5132 AttributeSet::FunctionIndex, 5133 FnAttrs)); 5134 } 5135 5136 // Finish off the Attribute and check them 5137 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5138 5139 InvokeInst *II = 5140 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5141 II->setCallingConv(CC); 5142 II->setAttributes(PAL); 5143 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5144 Inst = II; 5145 return false; 5146 } 5147 5148 /// ParseResume 5149 /// ::= 'resume' TypeAndValue 5150 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5151 Value *Exn; LocTy ExnLoc; 5152 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5153 return true; 5154 5155 ResumeInst *RI = ResumeInst::Create(Exn); 5156 Inst = RI; 5157 return false; 5158 } 5159 5160 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5161 PerFunctionState &PFS) { 5162 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5163 return true; 5164 5165 while (Lex.getKind() != lltok::rsquare) { 5166 // If this isn't the first argument, we need a comma. 5167 if (!Args.empty() && 5168 ParseToken(lltok::comma, "expected ',' in argument list")) 5169 return true; 5170 5171 // Parse the argument. 5172 LocTy ArgLoc; 5173 Type *ArgTy = nullptr; 5174 if (ParseType(ArgTy, ArgLoc)) 5175 return true; 5176 5177 Value *V; 5178 if (ArgTy->isMetadataTy()) { 5179 if (ParseMetadataAsValue(V, PFS)) 5180 return true; 5181 } else { 5182 if (ParseValue(ArgTy, V, PFS)) 5183 return true; 5184 } 5185 Args.push_back(V); 5186 } 5187 5188 Lex.Lex(); // Lex the ']'. 5189 return false; 5190 } 5191 5192 /// ParseCleanupRet 5193 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5194 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5195 Value *CleanupPad = nullptr; 5196 5197 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5198 return true; 5199 5200 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5201 return true; 5202 5203 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5204 return true; 5205 5206 BasicBlock *UnwindBB = nullptr; 5207 if (Lex.getKind() == lltok::kw_to) { 5208 Lex.Lex(); 5209 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5210 return true; 5211 } else { 5212 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5213 return true; 5214 } 5215 } 5216 5217 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5218 return false; 5219 } 5220 5221 /// ParseCatchRet 5222 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5223 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5224 Value *CatchPad = nullptr; 5225 5226 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5227 return true; 5228 5229 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5230 return true; 5231 5232 BasicBlock *BB; 5233 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5234 ParseTypeAndBasicBlock(BB, PFS)) 5235 return true; 5236 5237 Inst = CatchReturnInst::Create(CatchPad, BB); 5238 return false; 5239 } 5240 5241 /// ParseCatchSwitch 5242 /// ::= 'catchswitch' within Parent 5243 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5244 Value *ParentPad; 5245 LocTy BBLoc; 5246 5247 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5248 return true; 5249 5250 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5251 Lex.getKind() != lltok::LocalVarID) 5252 return TokError("expected scope value for catchswitch"); 5253 5254 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5255 return true; 5256 5257 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5258 return true; 5259 5260 SmallVector<BasicBlock *, 32> Table; 5261 do { 5262 BasicBlock *DestBB; 5263 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5264 return true; 5265 Table.push_back(DestBB); 5266 } while (EatIfPresent(lltok::comma)); 5267 5268 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5269 return true; 5270 5271 if (ParseToken(lltok::kw_unwind, 5272 "expected 'unwind' after catchswitch scope")) 5273 return true; 5274 5275 BasicBlock *UnwindBB = nullptr; 5276 if (EatIfPresent(lltok::kw_to)) { 5277 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5278 return true; 5279 } else { 5280 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5281 return true; 5282 } 5283 5284 auto *CatchSwitch = 5285 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5286 for (BasicBlock *DestBB : Table) 5287 CatchSwitch->addHandler(DestBB); 5288 Inst = CatchSwitch; 5289 return false; 5290 } 5291 5292 /// ParseCatchPad 5293 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5294 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5295 Value *CatchSwitch = nullptr; 5296 5297 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5298 return true; 5299 5300 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5301 return TokError("expected scope value for catchpad"); 5302 5303 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5304 return true; 5305 5306 SmallVector<Value *, 8> Args; 5307 if (ParseExceptionArgs(Args, PFS)) 5308 return true; 5309 5310 Inst = CatchPadInst::Create(CatchSwitch, Args); 5311 return false; 5312 } 5313 5314 /// ParseCleanupPad 5315 /// ::= 'cleanuppad' within Parent ParamList 5316 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5317 Value *ParentPad = nullptr; 5318 5319 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5320 return true; 5321 5322 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5323 Lex.getKind() != lltok::LocalVarID) 5324 return TokError("expected scope value for cleanuppad"); 5325 5326 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5327 return true; 5328 5329 SmallVector<Value *, 8> Args; 5330 if (ParseExceptionArgs(Args, PFS)) 5331 return true; 5332 5333 Inst = CleanupPadInst::Create(ParentPad, Args); 5334 return false; 5335 } 5336 5337 //===----------------------------------------------------------------------===// 5338 // Binary Operators. 5339 //===----------------------------------------------------------------------===// 5340 5341 /// ParseArithmetic 5342 /// ::= ArithmeticOps TypeAndValue ',' Value 5343 /// 5344 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5345 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5346 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5347 unsigned Opc, unsigned OperandType) { 5348 LocTy Loc; Value *LHS, *RHS; 5349 if (ParseTypeAndValue(LHS, Loc, PFS) || 5350 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5351 ParseValue(LHS->getType(), RHS, PFS)) 5352 return true; 5353 5354 bool Valid; 5355 switch (OperandType) { 5356 default: llvm_unreachable("Unknown operand type!"); 5357 case 0: // int or FP. 5358 Valid = LHS->getType()->isIntOrIntVectorTy() || 5359 LHS->getType()->isFPOrFPVectorTy(); 5360 break; 5361 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5362 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5363 } 5364 5365 if (!Valid) 5366 return Error(Loc, "invalid operand type for instruction"); 5367 5368 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5369 return false; 5370 } 5371 5372 /// ParseLogical 5373 /// ::= ArithmeticOps TypeAndValue ',' Value { 5374 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5375 unsigned Opc) { 5376 LocTy Loc; Value *LHS, *RHS; 5377 if (ParseTypeAndValue(LHS, Loc, PFS) || 5378 ParseToken(lltok::comma, "expected ',' in logical operation") || 5379 ParseValue(LHS->getType(), RHS, PFS)) 5380 return true; 5381 5382 if (!LHS->getType()->isIntOrIntVectorTy()) 5383 return Error(Loc,"instruction requires integer or integer vector operands"); 5384 5385 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5386 return false; 5387 } 5388 5389 5390 /// ParseCompare 5391 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5392 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5393 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5394 unsigned Opc) { 5395 // Parse the integer/fp comparison predicate. 5396 LocTy Loc; 5397 unsigned Pred; 5398 Value *LHS, *RHS; 5399 if (ParseCmpPredicate(Pred, Opc) || 5400 ParseTypeAndValue(LHS, Loc, PFS) || 5401 ParseToken(lltok::comma, "expected ',' after compare value") || 5402 ParseValue(LHS->getType(), RHS, PFS)) 5403 return true; 5404 5405 if (Opc == Instruction::FCmp) { 5406 if (!LHS->getType()->isFPOrFPVectorTy()) 5407 return Error(Loc, "fcmp requires floating point operands"); 5408 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5409 } else { 5410 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5411 if (!LHS->getType()->isIntOrIntVectorTy() && 5412 !LHS->getType()->getScalarType()->isPointerTy()) 5413 return Error(Loc, "icmp requires integer operands"); 5414 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5415 } 5416 return false; 5417 } 5418 5419 //===----------------------------------------------------------------------===// 5420 // Other Instructions. 5421 //===----------------------------------------------------------------------===// 5422 5423 5424 /// ParseCast 5425 /// ::= CastOpc TypeAndValue 'to' Type 5426 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5427 unsigned Opc) { 5428 LocTy Loc; 5429 Value *Op; 5430 Type *DestTy = nullptr; 5431 if (ParseTypeAndValue(Op, Loc, PFS) || 5432 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5433 ParseType(DestTy)) 5434 return true; 5435 5436 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5437 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5438 return Error(Loc, "invalid cast opcode for cast from '" + 5439 getTypeString(Op->getType()) + "' to '" + 5440 getTypeString(DestTy) + "'"); 5441 } 5442 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5443 return false; 5444 } 5445 5446 /// ParseSelect 5447 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5448 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5449 LocTy Loc; 5450 Value *Op0, *Op1, *Op2; 5451 if (ParseTypeAndValue(Op0, Loc, PFS) || 5452 ParseToken(lltok::comma, "expected ',' after select condition") || 5453 ParseTypeAndValue(Op1, PFS) || 5454 ParseToken(lltok::comma, "expected ',' after select value") || 5455 ParseTypeAndValue(Op2, PFS)) 5456 return true; 5457 5458 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5459 return Error(Loc, Reason); 5460 5461 Inst = SelectInst::Create(Op0, Op1, Op2); 5462 return false; 5463 } 5464 5465 /// ParseVA_Arg 5466 /// ::= 'va_arg' TypeAndValue ',' Type 5467 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5468 Value *Op; 5469 Type *EltTy = nullptr; 5470 LocTy TypeLoc; 5471 if (ParseTypeAndValue(Op, PFS) || 5472 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5473 ParseType(EltTy, TypeLoc)) 5474 return true; 5475 5476 if (!EltTy->isFirstClassType()) 5477 return Error(TypeLoc, "va_arg requires operand with first class type"); 5478 5479 Inst = new VAArgInst(Op, EltTy); 5480 return false; 5481 } 5482 5483 /// ParseExtractElement 5484 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5485 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5486 LocTy Loc; 5487 Value *Op0, *Op1; 5488 if (ParseTypeAndValue(Op0, Loc, PFS) || 5489 ParseToken(lltok::comma, "expected ',' after extract value") || 5490 ParseTypeAndValue(Op1, PFS)) 5491 return true; 5492 5493 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5494 return Error(Loc, "invalid extractelement operands"); 5495 5496 Inst = ExtractElementInst::Create(Op0, Op1); 5497 return false; 5498 } 5499 5500 /// ParseInsertElement 5501 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5502 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5503 LocTy Loc; 5504 Value *Op0, *Op1, *Op2; 5505 if (ParseTypeAndValue(Op0, Loc, PFS) || 5506 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5507 ParseTypeAndValue(Op1, PFS) || 5508 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5509 ParseTypeAndValue(Op2, PFS)) 5510 return true; 5511 5512 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5513 return Error(Loc, "invalid insertelement operands"); 5514 5515 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5516 return false; 5517 } 5518 5519 /// ParseShuffleVector 5520 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5521 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5522 LocTy Loc; 5523 Value *Op0, *Op1, *Op2; 5524 if (ParseTypeAndValue(Op0, Loc, PFS) || 5525 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5526 ParseTypeAndValue(Op1, PFS) || 5527 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5528 ParseTypeAndValue(Op2, PFS)) 5529 return true; 5530 5531 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5532 return Error(Loc, "invalid shufflevector operands"); 5533 5534 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5535 return false; 5536 } 5537 5538 /// ParsePHI 5539 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5540 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5541 Type *Ty = nullptr; LocTy TypeLoc; 5542 Value *Op0, *Op1; 5543 5544 if (ParseType(Ty, TypeLoc) || 5545 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5546 ParseValue(Ty, Op0, PFS) || 5547 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5548 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5549 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5550 return true; 5551 5552 bool AteExtraComma = false; 5553 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5554 while (1) { 5555 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5556 5557 if (!EatIfPresent(lltok::comma)) 5558 break; 5559 5560 if (Lex.getKind() == lltok::MetadataVar) { 5561 AteExtraComma = true; 5562 break; 5563 } 5564 5565 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5566 ParseValue(Ty, Op0, PFS) || 5567 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5568 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5569 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5570 return true; 5571 } 5572 5573 if (!Ty->isFirstClassType()) 5574 return Error(TypeLoc, "phi node must have first class type"); 5575 5576 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5577 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5578 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5579 Inst = PN; 5580 return AteExtraComma ? InstExtraComma : InstNormal; 5581 } 5582 5583 /// ParseLandingPad 5584 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5585 /// Clause 5586 /// ::= 'catch' TypeAndValue 5587 /// ::= 'filter' 5588 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5589 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5590 Type *Ty = nullptr; LocTy TyLoc; 5591 5592 if (ParseType(Ty, TyLoc)) 5593 return true; 5594 5595 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5596 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5597 5598 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5599 LandingPadInst::ClauseType CT; 5600 if (EatIfPresent(lltok::kw_catch)) 5601 CT = LandingPadInst::Catch; 5602 else if (EatIfPresent(lltok::kw_filter)) 5603 CT = LandingPadInst::Filter; 5604 else 5605 return TokError("expected 'catch' or 'filter' clause type"); 5606 5607 Value *V; 5608 LocTy VLoc; 5609 if (ParseTypeAndValue(V, VLoc, PFS)) 5610 return true; 5611 5612 // A 'catch' type expects a non-array constant. A filter clause expects an 5613 // array constant. 5614 if (CT == LandingPadInst::Catch) { 5615 if (isa<ArrayType>(V->getType())) 5616 Error(VLoc, "'catch' clause has an invalid type"); 5617 } else { 5618 if (!isa<ArrayType>(V->getType())) 5619 Error(VLoc, "'filter' clause has an invalid type"); 5620 } 5621 5622 Constant *CV = dyn_cast<Constant>(V); 5623 if (!CV) 5624 return Error(VLoc, "clause argument must be a constant"); 5625 LP->addClause(CV); 5626 } 5627 5628 Inst = LP.release(); 5629 return false; 5630 } 5631 5632 /// ParseCall 5633 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5634 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5635 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5636 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5637 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5638 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5639 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5640 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5641 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5642 CallInst::TailCallKind TCK) { 5643 AttrBuilder RetAttrs, FnAttrs; 5644 std::vector<unsigned> FwdRefAttrGrps; 5645 LocTy BuiltinLoc; 5646 unsigned CC; 5647 Type *RetType = nullptr; 5648 LocTy RetTypeLoc; 5649 ValID CalleeID; 5650 SmallVector<ParamInfo, 16> ArgList; 5651 SmallVector<OperandBundleDef, 2> BundleList; 5652 LocTy CallLoc = Lex.getLoc(); 5653 5654 if (TCK != CallInst::TCK_None && 5655 ParseToken(lltok::kw_call, 5656 "expected 'tail call', 'musttail call', or 'notail call'")) 5657 return true; 5658 5659 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5660 5661 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5662 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5663 ParseValID(CalleeID) || 5664 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5665 PFS.getFunction().isVarArg()) || 5666 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5667 ParseOptionalOperandBundles(BundleList, PFS)) 5668 return true; 5669 5670 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5671 return Error(CallLoc, "fast-math-flags specified for call without " 5672 "floating-point scalar or vector return type"); 5673 5674 // If RetType is a non-function pointer type, then this is the short syntax 5675 // for the call, which means that RetType is just the return type. Infer the 5676 // rest of the function argument types from the arguments that are present. 5677 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5678 if (!Ty) { 5679 // Pull out the types of all of the arguments... 5680 std::vector<Type*> ParamTypes; 5681 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5682 ParamTypes.push_back(ArgList[i].V->getType()); 5683 5684 if (!FunctionType::isValidReturnType(RetType)) 5685 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5686 5687 Ty = FunctionType::get(RetType, ParamTypes, false); 5688 } 5689 5690 CalleeID.FTy = Ty; 5691 5692 // Look up the callee. 5693 Value *Callee; 5694 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5695 return true; 5696 5697 // Set up the Attribute for the function. 5698 SmallVector<AttributeSet, 8> Attrs; 5699 if (RetAttrs.hasAttributes()) 5700 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5701 AttributeSet::ReturnIndex, 5702 RetAttrs)); 5703 5704 SmallVector<Value*, 8> Args; 5705 5706 // Loop through FunctionType's arguments and ensure they are specified 5707 // correctly. Also, gather any parameter attributes. 5708 FunctionType::param_iterator I = Ty->param_begin(); 5709 FunctionType::param_iterator E = Ty->param_end(); 5710 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5711 Type *ExpectedTy = nullptr; 5712 if (I != E) { 5713 ExpectedTy = *I++; 5714 } else if (!Ty->isVarArg()) { 5715 return Error(ArgList[i].Loc, "too many arguments specified"); 5716 } 5717 5718 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5719 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5720 getTypeString(ExpectedTy) + "'"); 5721 Args.push_back(ArgList[i].V); 5722 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5723 AttrBuilder B(ArgList[i].Attrs, i + 1); 5724 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5725 } 5726 } 5727 5728 if (I != E) 5729 return Error(CallLoc, "not enough parameters specified for call"); 5730 5731 if (FnAttrs.hasAttributes()) { 5732 if (FnAttrs.hasAlignmentAttr()) 5733 return Error(CallLoc, "call instructions may not have an alignment"); 5734 5735 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5736 AttributeSet::FunctionIndex, 5737 FnAttrs)); 5738 } 5739 5740 // Finish off the Attribute and check them 5741 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5742 5743 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5744 CI->setTailCallKind(TCK); 5745 CI->setCallingConv(CC); 5746 if (FMF.any()) 5747 CI->setFastMathFlags(FMF); 5748 CI->setAttributes(PAL); 5749 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5750 Inst = CI; 5751 return false; 5752 } 5753 5754 //===----------------------------------------------------------------------===// 5755 // Memory Instructions. 5756 //===----------------------------------------------------------------------===// 5757 5758 /// ParseAlloc 5759 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5760 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5761 Value *Size = nullptr; 5762 LocTy SizeLoc, TyLoc; 5763 unsigned Alignment = 0; 5764 Type *Ty = nullptr; 5765 5766 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5767 5768 if (ParseType(Ty, TyLoc)) return true; 5769 5770 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5771 return Error(TyLoc, "invalid type for alloca"); 5772 5773 bool AteExtraComma = false; 5774 if (EatIfPresent(lltok::comma)) { 5775 if (Lex.getKind() == lltok::kw_align) { 5776 if (ParseOptionalAlignment(Alignment)) return true; 5777 } else if (Lex.getKind() == lltok::MetadataVar) { 5778 AteExtraComma = true; 5779 } else { 5780 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5781 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5782 return true; 5783 } 5784 } 5785 5786 if (Size && !Size->getType()->isIntegerTy()) 5787 return Error(SizeLoc, "element count must have integer type"); 5788 5789 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5790 AI->setUsedWithInAlloca(IsInAlloca); 5791 Inst = AI; 5792 return AteExtraComma ? InstExtraComma : InstNormal; 5793 } 5794 5795 /// ParseLoad 5796 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5797 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5798 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5799 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5800 Value *Val; LocTy Loc; 5801 unsigned Alignment = 0; 5802 bool AteExtraComma = false; 5803 bool isAtomic = false; 5804 AtomicOrdering Ordering = NotAtomic; 5805 SynchronizationScope Scope = CrossThread; 5806 5807 if (Lex.getKind() == lltok::kw_atomic) { 5808 isAtomic = true; 5809 Lex.Lex(); 5810 } 5811 5812 bool isVolatile = false; 5813 if (Lex.getKind() == lltok::kw_volatile) { 5814 isVolatile = true; 5815 Lex.Lex(); 5816 } 5817 5818 Type *Ty; 5819 LocTy ExplicitTypeLoc = Lex.getLoc(); 5820 if (ParseType(Ty) || 5821 ParseToken(lltok::comma, "expected comma after load's type") || 5822 ParseTypeAndValue(Val, Loc, PFS) || 5823 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5824 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5825 return true; 5826 5827 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5828 return Error(Loc, "load operand must be a pointer to a first class type"); 5829 if (isAtomic && !Alignment) 5830 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5831 if (Ordering == Release || Ordering == AcquireRelease) 5832 return Error(Loc, "atomic load cannot use Release ordering"); 5833 5834 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5835 return Error(ExplicitTypeLoc, 5836 "explicit pointee type doesn't match operand's pointee type"); 5837 5838 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5839 return AteExtraComma ? InstExtraComma : InstNormal; 5840 } 5841 5842 /// ParseStore 5843 5844 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5845 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5846 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5847 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5848 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5849 unsigned Alignment = 0; 5850 bool AteExtraComma = false; 5851 bool isAtomic = false; 5852 AtomicOrdering Ordering = NotAtomic; 5853 SynchronizationScope Scope = CrossThread; 5854 5855 if (Lex.getKind() == lltok::kw_atomic) { 5856 isAtomic = true; 5857 Lex.Lex(); 5858 } 5859 5860 bool isVolatile = false; 5861 if (Lex.getKind() == lltok::kw_volatile) { 5862 isVolatile = true; 5863 Lex.Lex(); 5864 } 5865 5866 if (ParseTypeAndValue(Val, Loc, PFS) || 5867 ParseToken(lltok::comma, "expected ',' after store operand") || 5868 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5869 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5870 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5871 return true; 5872 5873 if (!Ptr->getType()->isPointerTy()) 5874 return Error(PtrLoc, "store operand must be a pointer"); 5875 if (!Val->getType()->isFirstClassType()) 5876 return Error(Loc, "store operand must be a first class value"); 5877 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5878 return Error(Loc, "stored value and pointer type do not match"); 5879 if (isAtomic && !Alignment) 5880 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5881 if (Ordering == Acquire || Ordering == AcquireRelease) 5882 return Error(Loc, "atomic store cannot use Acquire ordering"); 5883 5884 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5885 return AteExtraComma ? InstExtraComma : InstNormal; 5886 } 5887 5888 /// ParseCmpXchg 5889 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5890 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5891 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5892 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5893 bool AteExtraComma = false; 5894 AtomicOrdering SuccessOrdering = NotAtomic; 5895 AtomicOrdering FailureOrdering = NotAtomic; 5896 SynchronizationScope Scope = CrossThread; 5897 bool isVolatile = false; 5898 bool isWeak = false; 5899 5900 if (EatIfPresent(lltok::kw_weak)) 5901 isWeak = true; 5902 5903 if (EatIfPresent(lltok::kw_volatile)) 5904 isVolatile = true; 5905 5906 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5907 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5908 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5909 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5910 ParseTypeAndValue(New, NewLoc, PFS) || 5911 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5912 ParseOrdering(FailureOrdering)) 5913 return true; 5914 5915 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5916 return TokError("cmpxchg cannot be unordered"); 5917 if (SuccessOrdering < FailureOrdering) 5918 return TokError("cmpxchg must be at least as ordered on success as failure"); 5919 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5920 return TokError("cmpxchg failure ordering cannot include release semantics"); 5921 if (!Ptr->getType()->isPointerTy()) 5922 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5923 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5924 return Error(CmpLoc, "compare value and pointer type do not match"); 5925 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5926 return Error(NewLoc, "new value and pointer type do not match"); 5927 if (!New->getType()->isFirstClassType()) 5928 return Error(NewLoc, "cmpxchg operand must be a first class value"); 5929 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5930 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5931 CXI->setVolatile(isVolatile); 5932 CXI->setWeak(isWeak); 5933 Inst = CXI; 5934 return AteExtraComma ? InstExtraComma : InstNormal; 5935 } 5936 5937 /// ParseAtomicRMW 5938 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5939 /// 'singlethread'? AtomicOrdering 5940 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5941 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5942 bool AteExtraComma = false; 5943 AtomicOrdering Ordering = NotAtomic; 5944 SynchronizationScope Scope = CrossThread; 5945 bool isVolatile = false; 5946 AtomicRMWInst::BinOp Operation; 5947 5948 if (EatIfPresent(lltok::kw_volatile)) 5949 isVolatile = true; 5950 5951 switch (Lex.getKind()) { 5952 default: return TokError("expected binary operation in atomicrmw"); 5953 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5954 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5955 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5956 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5957 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5958 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5959 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5960 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5961 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5962 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5963 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5964 } 5965 Lex.Lex(); // Eat the operation. 5966 5967 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5968 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5969 ParseTypeAndValue(Val, ValLoc, PFS) || 5970 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5971 return true; 5972 5973 if (Ordering == Unordered) 5974 return TokError("atomicrmw cannot be unordered"); 5975 if (!Ptr->getType()->isPointerTy()) 5976 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5977 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5978 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5979 if (!Val->getType()->isIntegerTy()) 5980 return Error(ValLoc, "atomicrmw operand must be an integer"); 5981 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5982 if (Size < 8 || (Size & (Size - 1))) 5983 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5984 " integer"); 5985 5986 AtomicRMWInst *RMWI = 5987 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5988 RMWI->setVolatile(isVolatile); 5989 Inst = RMWI; 5990 return AteExtraComma ? InstExtraComma : InstNormal; 5991 } 5992 5993 /// ParseFence 5994 /// ::= 'fence' 'singlethread'? AtomicOrdering 5995 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5996 AtomicOrdering Ordering = NotAtomic; 5997 SynchronizationScope Scope = CrossThread; 5998 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5999 return true; 6000 6001 if (Ordering == Unordered) 6002 return TokError("fence cannot be unordered"); 6003 if (Ordering == Monotonic) 6004 return TokError("fence cannot be monotonic"); 6005 6006 Inst = new FenceInst(Context, Ordering, Scope); 6007 return InstNormal; 6008 } 6009 6010 /// ParseGetElementPtr 6011 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6012 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6013 Value *Ptr = nullptr; 6014 Value *Val = nullptr; 6015 LocTy Loc, EltLoc; 6016 6017 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6018 6019 Type *Ty = nullptr; 6020 LocTy ExplicitTypeLoc = Lex.getLoc(); 6021 if (ParseType(Ty) || 6022 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6023 ParseTypeAndValue(Ptr, Loc, PFS)) 6024 return true; 6025 6026 Type *BaseType = Ptr->getType(); 6027 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6028 if (!BasePointerType) 6029 return Error(Loc, "base of getelementptr must be a pointer"); 6030 6031 if (Ty != BasePointerType->getElementType()) 6032 return Error(ExplicitTypeLoc, 6033 "explicit pointee type doesn't match operand's pointee type"); 6034 6035 SmallVector<Value*, 16> Indices; 6036 bool AteExtraComma = false; 6037 // GEP returns a vector of pointers if at least one of parameters is a vector. 6038 // All vector parameters should have the same vector width. 6039 unsigned GEPWidth = BaseType->isVectorTy() ? 6040 BaseType->getVectorNumElements() : 0; 6041 6042 while (EatIfPresent(lltok::comma)) { 6043 if (Lex.getKind() == lltok::MetadataVar) { 6044 AteExtraComma = true; 6045 break; 6046 } 6047 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6048 if (!Val->getType()->getScalarType()->isIntegerTy()) 6049 return Error(EltLoc, "getelementptr index must be an integer"); 6050 6051 if (Val->getType()->isVectorTy()) { 6052 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6053 if (GEPWidth && GEPWidth != ValNumEl) 6054 return Error(EltLoc, 6055 "getelementptr vector index has a wrong number of elements"); 6056 GEPWidth = ValNumEl; 6057 } 6058 Indices.push_back(Val); 6059 } 6060 6061 SmallPtrSet<Type*, 4> Visited; 6062 if (!Indices.empty() && !Ty->isSized(&Visited)) 6063 return Error(Loc, "base element of getelementptr must be sized"); 6064 6065 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6066 return Error(Loc, "invalid getelementptr indices"); 6067 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6068 if (InBounds) 6069 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6070 return AteExtraComma ? InstExtraComma : InstNormal; 6071 } 6072 6073 /// ParseExtractValue 6074 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6075 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6076 Value *Val; LocTy Loc; 6077 SmallVector<unsigned, 4> Indices; 6078 bool AteExtraComma; 6079 if (ParseTypeAndValue(Val, Loc, PFS) || 6080 ParseIndexList(Indices, AteExtraComma)) 6081 return true; 6082 6083 if (!Val->getType()->isAggregateType()) 6084 return Error(Loc, "extractvalue operand must be aggregate type"); 6085 6086 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6087 return Error(Loc, "invalid indices for extractvalue"); 6088 Inst = ExtractValueInst::Create(Val, Indices); 6089 return AteExtraComma ? InstExtraComma : InstNormal; 6090 } 6091 6092 /// ParseInsertValue 6093 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6094 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6095 Value *Val0, *Val1; LocTy Loc0, Loc1; 6096 SmallVector<unsigned, 4> Indices; 6097 bool AteExtraComma; 6098 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6099 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6100 ParseTypeAndValue(Val1, Loc1, PFS) || 6101 ParseIndexList(Indices, AteExtraComma)) 6102 return true; 6103 6104 if (!Val0->getType()->isAggregateType()) 6105 return Error(Loc0, "insertvalue operand must be aggregate type"); 6106 6107 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6108 if (!IndexedType) 6109 return Error(Loc0, "invalid indices for insertvalue"); 6110 if (IndexedType != Val1->getType()) 6111 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6112 getTypeString(Val1->getType()) + "' instead of '" + 6113 getTypeString(IndexedType) + "'"); 6114 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6115 return AteExtraComma ? InstExtraComma : InstNormal; 6116 } 6117 6118 //===----------------------------------------------------------------------===// 6119 // Embedded metadata. 6120 //===----------------------------------------------------------------------===// 6121 6122 /// ParseMDNodeVector 6123 /// ::= { Element (',' Element)* } 6124 /// Element 6125 /// ::= 'null' | TypeAndValue 6126 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6127 if (ParseToken(lltok::lbrace, "expected '{' here")) 6128 return true; 6129 6130 // Check for an empty list. 6131 if (EatIfPresent(lltok::rbrace)) 6132 return false; 6133 6134 do { 6135 // Null is a special case since it is typeless. 6136 if (EatIfPresent(lltok::kw_null)) { 6137 Elts.push_back(nullptr); 6138 continue; 6139 } 6140 6141 Metadata *MD; 6142 if (ParseMetadata(MD, nullptr)) 6143 return true; 6144 Elts.push_back(MD); 6145 } while (EatIfPresent(lltok::comma)); 6146 6147 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6148 } 6149 6150 //===----------------------------------------------------------------------===// 6151 // Use-list order directives. 6152 //===----------------------------------------------------------------------===// 6153 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6154 SMLoc Loc) { 6155 if (V->use_empty()) 6156 return Error(Loc, "value has no uses"); 6157 6158 unsigned NumUses = 0; 6159 SmallDenseMap<const Use *, unsigned, 16> Order; 6160 for (const Use &U : V->uses()) { 6161 if (++NumUses > Indexes.size()) 6162 break; 6163 Order[&U] = Indexes[NumUses - 1]; 6164 } 6165 if (NumUses < 2) 6166 return Error(Loc, "value only has one use"); 6167 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6168 return Error(Loc, "wrong number of indexes, expected " + 6169 Twine(std::distance(V->use_begin(), V->use_end()))); 6170 6171 V->sortUseList([&](const Use &L, const Use &R) { 6172 return Order.lookup(&L) < Order.lookup(&R); 6173 }); 6174 return false; 6175 } 6176 6177 /// ParseUseListOrderIndexes 6178 /// ::= '{' uint32 (',' uint32)+ '}' 6179 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6180 SMLoc Loc = Lex.getLoc(); 6181 if (ParseToken(lltok::lbrace, "expected '{' here")) 6182 return true; 6183 if (Lex.getKind() == lltok::rbrace) 6184 return Lex.Error("expected non-empty list of uselistorder indexes"); 6185 6186 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6187 // indexes should be distinct numbers in the range [0, size-1], and should 6188 // not be in order. 6189 unsigned Offset = 0; 6190 unsigned Max = 0; 6191 bool IsOrdered = true; 6192 assert(Indexes.empty() && "Expected empty order vector"); 6193 do { 6194 unsigned Index; 6195 if (ParseUInt32(Index)) 6196 return true; 6197 6198 // Update consistency checks. 6199 Offset += Index - Indexes.size(); 6200 Max = std::max(Max, Index); 6201 IsOrdered &= Index == Indexes.size(); 6202 6203 Indexes.push_back(Index); 6204 } while (EatIfPresent(lltok::comma)); 6205 6206 if (ParseToken(lltok::rbrace, "expected '}' here")) 6207 return true; 6208 6209 if (Indexes.size() < 2) 6210 return Error(Loc, "expected >= 2 uselistorder indexes"); 6211 if (Offset != 0 || Max >= Indexes.size()) 6212 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6213 if (IsOrdered) 6214 return Error(Loc, "expected uselistorder indexes to change the order"); 6215 6216 return false; 6217 } 6218 6219 /// ParseUseListOrder 6220 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6221 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6222 SMLoc Loc = Lex.getLoc(); 6223 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6224 return true; 6225 6226 Value *V; 6227 SmallVector<unsigned, 16> Indexes; 6228 if (ParseTypeAndValue(V, PFS) || 6229 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6230 ParseUseListOrderIndexes(Indexes)) 6231 return true; 6232 6233 return sortUseListOrder(V, Indexes, Loc); 6234 } 6235 6236 /// ParseUseListOrderBB 6237 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6238 bool LLParser::ParseUseListOrderBB() { 6239 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6240 SMLoc Loc = Lex.getLoc(); 6241 Lex.Lex(); 6242 6243 ValID Fn, Label; 6244 SmallVector<unsigned, 16> Indexes; 6245 if (ParseValID(Fn) || 6246 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6247 ParseValID(Label) || 6248 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6249 ParseUseListOrderIndexes(Indexes)) 6250 return true; 6251 6252 // Check the function. 6253 GlobalValue *GV; 6254 if (Fn.Kind == ValID::t_GlobalName) 6255 GV = M->getNamedValue(Fn.StrVal); 6256 else if (Fn.Kind == ValID::t_GlobalID) 6257 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6258 else 6259 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6260 if (!GV) 6261 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6262 auto *F = dyn_cast<Function>(GV); 6263 if (!F) 6264 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6265 if (F->isDeclaration()) 6266 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6267 6268 // Check the basic block. 6269 if (Label.Kind == ValID::t_LocalID) 6270 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6271 if (Label.Kind != ValID::t_LocalName) 6272 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6273 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6274 if (!V) 6275 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6276 if (!isa<BasicBlock>(V)) 6277 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6278 6279 return sortUseListOrder(V, Indexes, Loc); 6280 } 6281