1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 780 parseMDNodeID(N)) { 781 return true; 782 } 783 NMD->addOperand(N); 784 } while (EatIfPresent(lltok::comma)); 785 786 return parseToken(lltok::rbrace, "expected end of metadata node"); 787 } 788 789 /// parseStandaloneMetadata: 790 /// !42 = !{...} 791 bool LLParser::parseStandaloneMetadata() { 792 assert(Lex.getKind() == lltok::exclaim); 793 Lex.Lex(); 794 unsigned MetadataID = 0; 795 796 MDNode *Init; 797 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 798 return true; 799 800 // Detect common error, from old metadata syntax. 801 if (Lex.getKind() == lltok::Type) 802 return tokError("unexpected type in metadata definition"); 803 804 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 805 if (Lex.getKind() == lltok::MetadataVar) { 806 if (parseSpecializedMDNode(Init, IsDistinct)) 807 return true; 808 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 809 parseMDTuple(Init, IsDistinct)) 810 return true; 811 812 // See if this was forward referenced, if so, handle it. 813 auto FI = ForwardRefMDNodes.find(MetadataID); 814 if (FI != ForwardRefMDNodes.end()) { 815 FI->second.first->replaceAllUsesWith(Init); 816 ForwardRefMDNodes.erase(FI); 817 818 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 819 } else { 820 if (NumberedMetadata.count(MetadataID)) 821 return tokError("Metadata id is already used"); 822 NumberedMetadata[MetadataID].reset(Init); 823 } 824 825 return false; 826 } 827 828 // Skips a single module summary entry. 829 bool LLParser::skipModuleSummaryEntry() { 830 // Each module summary entry consists of a tag for the entry 831 // type, followed by a colon, then the fields which may be surrounded by 832 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 833 // support is in place we will look for the tokens corresponding to the 834 // expected tags. 835 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 836 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 837 Lex.getKind() != lltok::kw_blockcount) 838 return tokError( 839 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 840 "start of summary entry"); 841 if (Lex.getKind() == lltok::kw_flags) 842 return parseSummaryIndexFlags(); 843 if (Lex.getKind() == lltok::kw_blockcount) 844 return parseBlockCount(); 845 Lex.Lex(); 846 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 847 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 848 return true; 849 // Now walk through the parenthesized entry, until the number of open 850 // parentheses goes back down to 0 (the first '(' was parsed above). 851 unsigned NumOpenParen = 1; 852 do { 853 switch (Lex.getKind()) { 854 case lltok::lparen: 855 NumOpenParen++; 856 break; 857 case lltok::rparen: 858 NumOpenParen--; 859 break; 860 case lltok::Eof: 861 return tokError("found end of file while parsing summary entry"); 862 default: 863 // Skip everything in between parentheses. 864 break; 865 } 866 Lex.Lex(); 867 } while (NumOpenParen > 0); 868 return false; 869 } 870 871 /// SummaryEntry 872 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 873 bool LLParser::parseSummaryEntry() { 874 assert(Lex.getKind() == lltok::SummaryID); 875 unsigned SummaryID = Lex.getUIntVal(); 876 877 // For summary entries, colons should be treated as distinct tokens, 878 // not an indication of the end of a label token. 879 Lex.setIgnoreColonInIdentifiers(true); 880 881 Lex.Lex(); 882 if (parseToken(lltok::equal, "expected '=' here")) 883 return true; 884 885 // If we don't have an index object, skip the summary entry. 886 if (!Index) 887 return skipModuleSummaryEntry(); 888 889 bool result = false; 890 switch (Lex.getKind()) { 891 case lltok::kw_gv: 892 result = parseGVEntry(SummaryID); 893 break; 894 case lltok::kw_module: 895 result = parseModuleEntry(SummaryID); 896 break; 897 case lltok::kw_typeid: 898 result = parseTypeIdEntry(SummaryID); 899 break; 900 case lltok::kw_typeidCompatibleVTable: 901 result = parseTypeIdCompatibleVtableEntry(SummaryID); 902 break; 903 case lltok::kw_flags: 904 result = parseSummaryIndexFlags(); 905 break; 906 case lltok::kw_blockcount: 907 result = parseBlockCount(); 908 break; 909 default: 910 result = error(Lex.getLoc(), "unexpected summary kind"); 911 break; 912 } 913 Lex.setIgnoreColonInIdentifiers(false); 914 return result; 915 } 916 917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 918 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 919 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 920 } 921 922 // If there was an explicit dso_local, update GV. In the absence of an explicit 923 // dso_local we keep the default value. 924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 925 if (DSOLocal) 926 GV.setDSOLocal(true); 927 } 928 929 /// parseIndirectSymbol: 930 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 931 /// OptionalVisibility OptionalDLLStorageClass 932 /// OptionalThreadLocal OptionalUnnamedAddr 933 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 934 /// 935 /// IndirectSymbol 936 /// ::= TypeAndValue 937 /// 938 /// IndirectSymbolAttr 939 /// ::= ',' 'partition' StringConstant 940 /// 941 /// Everything through OptionalUnnamedAddr has already been parsed. 942 /// 943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 944 unsigned L, unsigned Visibility, 945 unsigned DLLStorageClass, bool DSOLocal, 946 GlobalVariable::ThreadLocalMode TLM, 947 GlobalVariable::UnnamedAddr UnnamedAddr) { 948 bool IsAlias; 949 if (Lex.getKind() == lltok::kw_alias) 950 IsAlias = true; 951 else if (Lex.getKind() == lltok::kw_ifunc) 952 IsAlias = false; 953 else 954 llvm_unreachable("Not an alias or ifunc!"); 955 Lex.Lex(); 956 957 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 958 959 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 960 return error(NameLoc, "invalid linkage type for alias"); 961 962 if (!isValidVisibilityForLinkage(Visibility, L)) 963 return error(NameLoc, 964 "symbol with local linkage must have default visibility"); 965 966 Type *Ty; 967 LocTy ExplicitTypeLoc = Lex.getLoc(); 968 if (parseType(Ty) || 969 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 970 return true; 971 972 Constant *Aliasee; 973 LocTy AliaseeLoc = Lex.getLoc(); 974 if (Lex.getKind() != lltok::kw_bitcast && 975 Lex.getKind() != lltok::kw_getelementptr && 976 Lex.getKind() != lltok::kw_addrspacecast && 977 Lex.getKind() != lltok::kw_inttoptr) { 978 if (parseGlobalTypeAndValue(Aliasee)) 979 return true; 980 } else { 981 // The bitcast dest type is not present, it is implied by the dest type. 982 ValID ID; 983 if (parseValID(ID)) 984 return true; 985 if (ID.Kind != ValID::t_Constant) 986 return error(AliaseeLoc, "invalid aliasee"); 987 Aliasee = ID.ConstantVal; 988 } 989 990 Type *AliaseeType = Aliasee->getType(); 991 auto *PTy = dyn_cast<PointerType>(AliaseeType); 992 if (!PTy) 993 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 994 unsigned AddrSpace = PTy->getAddressSpace(); 995 996 if (IsAlias && Ty != PTy->getElementType()) 997 return error(ExplicitTypeLoc, 998 "explicit pointee type doesn't match operand's pointee type"); 999 1000 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 1001 return error(ExplicitTypeLoc, 1002 "explicit pointee type should be a function type"); 1003 1004 GlobalValue *GVal = nullptr; 1005 1006 // See if the alias was forward referenced, if so, prepare to replace the 1007 // forward reference. 1008 if (!Name.empty()) { 1009 GVal = M->getNamedValue(Name); 1010 if (GVal) { 1011 if (!ForwardRefVals.erase(Name)) 1012 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1013 } 1014 } else { 1015 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1016 if (I != ForwardRefValIDs.end()) { 1017 GVal = I->second.first; 1018 ForwardRefValIDs.erase(I); 1019 } 1020 } 1021 1022 // Okay, create the alias but do not insert it into the module yet. 1023 std::unique_ptr<GlobalIndirectSymbol> GA; 1024 if (IsAlias) 1025 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1026 (GlobalValue::LinkageTypes)Linkage, Name, 1027 Aliasee, /*Parent*/ nullptr)); 1028 else 1029 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1030 (GlobalValue::LinkageTypes)Linkage, Name, 1031 Aliasee, /*Parent*/ nullptr)); 1032 GA->setThreadLocalMode(TLM); 1033 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1034 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1035 GA->setUnnamedAddr(UnnamedAddr); 1036 maybeSetDSOLocal(DSOLocal, *GA); 1037 1038 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1039 // Now parse them if there are any. 1040 while (Lex.getKind() == lltok::comma) { 1041 Lex.Lex(); 1042 1043 if (Lex.getKind() == lltok::kw_partition) { 1044 Lex.Lex(); 1045 GA->setPartition(Lex.getStrVal()); 1046 if (parseToken(lltok::StringConstant, "expected partition string")) 1047 return true; 1048 } else { 1049 return tokError("unknown alias or ifunc property!"); 1050 } 1051 } 1052 1053 if (Name.empty()) 1054 NumberedVals.push_back(GA.get()); 1055 1056 if (GVal) { 1057 // Verify that types agree. 1058 if (GVal->getType() != GA->getType()) 1059 return error( 1060 ExplicitTypeLoc, 1061 "forward reference and definition of alias have different types"); 1062 1063 // If they agree, just RAUW the old value with the alias and remove the 1064 // forward ref info. 1065 GVal->replaceAllUsesWith(GA.get()); 1066 GVal->eraseFromParent(); 1067 } 1068 1069 // Insert into the module, we know its name won't collide now. 1070 if (IsAlias) 1071 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1072 else 1073 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1074 assert(GA->getName() == Name && "Should not be a name conflict!"); 1075 1076 // The module owns this now 1077 GA.release(); 1078 1079 return false; 1080 } 1081 1082 /// parseGlobal 1083 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1084 /// OptionalVisibility OptionalDLLStorageClass 1085 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1086 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1087 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1088 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1089 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1090 /// Const OptionalAttrs 1091 /// 1092 /// Everything up to and including OptionalUnnamedAddr has been parsed 1093 /// already. 1094 /// 1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1096 unsigned Linkage, bool HasLinkage, 1097 unsigned Visibility, unsigned DLLStorageClass, 1098 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1099 GlobalVariable::UnnamedAddr UnnamedAddr) { 1100 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1101 return error(NameLoc, 1102 "symbol with local linkage must have default visibility"); 1103 1104 unsigned AddrSpace; 1105 bool IsConstant, IsExternallyInitialized; 1106 LocTy IsExternallyInitializedLoc; 1107 LocTy TyLoc; 1108 1109 Type *Ty = nullptr; 1110 if (parseOptionalAddrSpace(AddrSpace) || 1111 parseOptionalToken(lltok::kw_externally_initialized, 1112 IsExternallyInitialized, 1113 &IsExternallyInitializedLoc) || 1114 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1115 return true; 1116 1117 // If the linkage is specified and is external, then no initializer is 1118 // present. 1119 Constant *Init = nullptr; 1120 if (!HasLinkage || 1121 !GlobalValue::isValidDeclarationLinkage( 1122 (GlobalValue::LinkageTypes)Linkage)) { 1123 if (parseGlobalValue(Ty, Init)) 1124 return true; 1125 } 1126 1127 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1128 return error(TyLoc, "invalid type for global variable"); 1129 1130 GlobalValue *GVal = nullptr; 1131 1132 // See if the global was forward referenced, if so, use the global. 1133 if (!Name.empty()) { 1134 GVal = M->getNamedValue(Name); 1135 if (GVal) { 1136 if (!ForwardRefVals.erase(Name)) 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV; 1148 if (!GVal) { 1149 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1150 Name, nullptr, GlobalVariable::NotThreadLocal, 1151 AddrSpace); 1152 } else { 1153 if (GVal->getValueType() != Ty) 1154 return error( 1155 TyLoc, 1156 "forward reference and definition of global have different types"); 1157 1158 GV = cast<GlobalVariable>(GVal); 1159 1160 // Move the forward-reference to the correct spot in the module. 1161 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1162 } 1163 1164 if (Name.empty()) 1165 NumberedVals.push_back(GV); 1166 1167 // Set the parsed properties on the global. 1168 if (Init) 1169 GV->setInitializer(Init); 1170 GV->setConstant(IsConstant); 1171 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1172 maybeSetDSOLocal(DSOLocal, *GV); 1173 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1174 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1175 GV->setExternallyInitialized(IsExternallyInitialized); 1176 GV->setThreadLocalMode(TLM); 1177 GV->setUnnamedAddr(UnnamedAddr); 1178 1179 // parse attributes on the global. 1180 while (Lex.getKind() == lltok::comma) { 1181 Lex.Lex(); 1182 1183 if (Lex.getKind() == lltok::kw_section) { 1184 Lex.Lex(); 1185 GV->setSection(Lex.getStrVal()); 1186 if (parseToken(lltok::StringConstant, "expected global section string")) 1187 return true; 1188 } else if (Lex.getKind() == lltok::kw_partition) { 1189 Lex.Lex(); 1190 GV->setPartition(Lex.getStrVal()); 1191 if (parseToken(lltok::StringConstant, "expected partition string")) 1192 return true; 1193 } else if (Lex.getKind() == lltok::kw_align) { 1194 MaybeAlign Alignment; 1195 if (parseOptionalAlignment(Alignment)) 1196 return true; 1197 GV->setAlignment(Alignment); 1198 } else if (Lex.getKind() == lltok::MetadataVar) { 1199 if (parseGlobalObjectMetadataAttachment(*GV)) 1200 return true; 1201 } else { 1202 Comdat *C; 1203 if (parseOptionalComdat(Name, C)) 1204 return true; 1205 if (C) 1206 GV->setComdat(C); 1207 else 1208 return tokError("unknown global variable property!"); 1209 } 1210 } 1211 1212 AttrBuilder Attrs; 1213 LocTy BuiltinLoc; 1214 std::vector<unsigned> FwdRefAttrGrps; 1215 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1216 return true; 1217 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1218 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1219 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1220 } 1221 1222 return false; 1223 } 1224 1225 /// parseUnnamedAttrGrp 1226 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1227 bool LLParser::parseUnnamedAttrGrp() { 1228 assert(Lex.getKind() == lltok::kw_attributes); 1229 LocTy AttrGrpLoc = Lex.getLoc(); 1230 Lex.Lex(); 1231 1232 if (Lex.getKind() != lltok::AttrGrpID) 1233 return tokError("expected attribute group id"); 1234 1235 unsigned VarID = Lex.getUIntVal(); 1236 std::vector<unsigned> unused; 1237 LocTy BuiltinLoc; 1238 Lex.Lex(); 1239 1240 if (parseToken(lltok::equal, "expected '=' here") || 1241 parseToken(lltok::lbrace, "expected '{' here") || 1242 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1243 BuiltinLoc) || 1244 parseToken(lltok::rbrace, "expected end of attribute group")) 1245 return true; 1246 1247 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1248 return error(AttrGrpLoc, "attribute group has no attributes"); 1249 1250 return false; 1251 } 1252 1253 /// parseFnAttributeValuePairs 1254 /// ::= <attr> | <attr> '=' <value> 1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1256 std::vector<unsigned> &FwdRefAttrGrps, 1257 bool inAttrGrp, LocTy &BuiltinLoc) { 1258 bool HaveError = false; 1259 1260 B.clear(); 1261 1262 while (true) { 1263 lltok::Kind Token = Lex.getKind(); 1264 if (Token == lltok::kw_builtin) 1265 BuiltinLoc = Lex.getLoc(); 1266 switch (Token) { 1267 default: 1268 if (!inAttrGrp) return HaveError; 1269 return error(Lex.getLoc(), "unterminated attribute group"); 1270 case lltok::rbrace: 1271 // Finished. 1272 return false; 1273 1274 case lltok::AttrGrpID: { 1275 // Allow a function to reference an attribute group: 1276 // 1277 // define void @foo() #1 { ... } 1278 if (inAttrGrp) 1279 HaveError |= error( 1280 Lex.getLoc(), 1281 "cannot have an attribute group reference in an attribute group"); 1282 1283 unsigned AttrGrpNum = Lex.getUIntVal(); 1284 if (inAttrGrp) break; 1285 1286 // Save the reference to the attribute group. We'll fill it in later. 1287 FwdRefAttrGrps.push_back(AttrGrpNum); 1288 break; 1289 } 1290 // Target-dependent attributes: 1291 case lltok::StringConstant: { 1292 if (parseStringAttribute(B)) 1293 return true; 1294 continue; 1295 } 1296 1297 // Target-independent attributes: 1298 case lltok::kw_align: { 1299 // As a hack, we allow function alignment to be initially parsed as an 1300 // attribute on a function declaration/definition or added to an attribute 1301 // group and later moved to the alignment field. 1302 MaybeAlign Alignment; 1303 if (inAttrGrp) { 1304 Lex.Lex(); 1305 uint32_t Value = 0; 1306 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1307 return true; 1308 Alignment = Align(Value); 1309 } else { 1310 if (parseOptionalAlignment(Alignment)) 1311 return true; 1312 } 1313 B.addAlignmentAttr(Alignment); 1314 continue; 1315 } 1316 case lltok::kw_alignstack: { 1317 unsigned Alignment; 1318 if (inAttrGrp) { 1319 Lex.Lex(); 1320 if (parseToken(lltok::equal, "expected '=' here") || 1321 parseUInt32(Alignment)) 1322 return true; 1323 } else { 1324 if (parseOptionalStackAlignment(Alignment)) 1325 return true; 1326 } 1327 B.addStackAlignmentAttr(Alignment); 1328 continue; 1329 } 1330 case lltok::kw_allocsize: { 1331 unsigned ElemSizeArg; 1332 Optional<unsigned> NumElemsArg; 1333 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1334 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1335 return true; 1336 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1337 continue; 1338 } 1339 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1340 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1341 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1342 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1343 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1344 case lltok::kw_inaccessiblememonly: 1345 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1346 case lltok::kw_inaccessiblemem_or_argmemonly: 1347 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1348 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1349 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1350 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1351 case lltok::kw_mustprogress: 1352 B.addAttribute(Attribute::MustProgress); 1353 break; 1354 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1355 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1356 case lltok::kw_nocallback: 1357 B.addAttribute(Attribute::NoCallback); 1358 break; 1359 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1360 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1361 case lltok::kw_noimplicitfloat: 1362 B.addAttribute(Attribute::NoImplicitFloat); break; 1363 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1364 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1365 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1366 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1367 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1368 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1369 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1370 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1371 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1372 case lltok::kw_null_pointer_is_valid: 1373 B.addAttribute(Attribute::NullPointerIsValid); break; 1374 case lltok::kw_optforfuzzing: 1375 B.addAttribute(Attribute::OptForFuzzing); break; 1376 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1377 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1378 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1379 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1380 case lltok::kw_returns_twice: 1381 B.addAttribute(Attribute::ReturnsTwice); break; 1382 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1383 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1384 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1385 case lltok::kw_sspstrong: 1386 B.addAttribute(Attribute::StackProtectStrong); break; 1387 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1388 case lltok::kw_shadowcallstack: 1389 B.addAttribute(Attribute::ShadowCallStack); break; 1390 case lltok::kw_sanitize_address: 1391 B.addAttribute(Attribute::SanitizeAddress); break; 1392 case lltok::kw_sanitize_hwaddress: 1393 B.addAttribute(Attribute::SanitizeHWAddress); break; 1394 case lltok::kw_sanitize_memtag: 1395 B.addAttribute(Attribute::SanitizeMemTag); break; 1396 case lltok::kw_sanitize_thread: 1397 B.addAttribute(Attribute::SanitizeThread); break; 1398 case lltok::kw_sanitize_memory: 1399 B.addAttribute(Attribute::SanitizeMemory); break; 1400 case lltok::kw_speculative_load_hardening: 1401 B.addAttribute(Attribute::SpeculativeLoadHardening); 1402 break; 1403 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1404 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1405 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1406 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1407 case lltok::kw_preallocated: { 1408 Type *Ty; 1409 if (parsePreallocated(Ty)) 1410 return true; 1411 B.addPreallocatedAttr(Ty); 1412 break; 1413 } 1414 1415 // error handling. 1416 case lltok::kw_inreg: 1417 case lltok::kw_signext: 1418 case lltok::kw_zeroext: 1419 HaveError |= 1420 error(Lex.getLoc(), "invalid use of attribute on a function"); 1421 break; 1422 case lltok::kw_byval: 1423 case lltok::kw_dereferenceable: 1424 case lltok::kw_dereferenceable_or_null: 1425 case lltok::kw_inalloca: 1426 case lltok::kw_nest: 1427 case lltok::kw_noalias: 1428 case lltok::kw_noundef: 1429 case lltok::kw_nocapture: 1430 case lltok::kw_nonnull: 1431 case lltok::kw_returned: 1432 case lltok::kw_sret: 1433 case lltok::kw_swifterror: 1434 case lltok::kw_swiftself: 1435 case lltok::kw_immarg: 1436 case lltok::kw_byref: 1437 HaveError |= 1438 error(Lex.getLoc(), 1439 "invalid use of parameter-only attribute on a function"); 1440 break; 1441 } 1442 1443 // parsePreallocated() consumes token 1444 if (Token != lltok::kw_preallocated) 1445 Lex.Lex(); 1446 } 1447 } 1448 1449 //===----------------------------------------------------------------------===// 1450 // GlobalValue Reference/Resolution Routines. 1451 //===----------------------------------------------------------------------===// 1452 1453 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1454 const std::string &Name) { 1455 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1456 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1457 PTy->getAddressSpace(), Name, M); 1458 else 1459 return new GlobalVariable(*M, PTy->getElementType(), false, 1460 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1461 nullptr, GlobalVariable::NotThreadLocal, 1462 PTy->getAddressSpace()); 1463 } 1464 1465 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1466 Value *Val, bool IsCall) { 1467 if (Val->getType() == Ty) 1468 return Val; 1469 // For calls we also accept variables in the program address space. 1470 Type *SuggestedTy = Ty; 1471 if (IsCall && isa<PointerType>(Ty)) { 1472 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1473 M->getDataLayout().getProgramAddressSpace()); 1474 SuggestedTy = TyInProgAS; 1475 if (Val->getType() == TyInProgAS) 1476 return Val; 1477 } 1478 if (Ty->isLabelTy()) 1479 error(Loc, "'" + Name + "' is not a basic block"); 1480 else 1481 error(Loc, "'" + Name + "' defined with type '" + 1482 getTypeString(Val->getType()) + "' but expected '" + 1483 getTypeString(SuggestedTy) + "'"); 1484 return nullptr; 1485 } 1486 1487 /// getGlobalVal - Get a value with the specified name or ID, creating a 1488 /// forward reference record if needed. This can return null if the value 1489 /// exists but does not have the right type. 1490 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1491 LocTy Loc, bool IsCall) { 1492 PointerType *PTy = dyn_cast<PointerType>(Ty); 1493 if (!PTy) { 1494 error(Loc, "global variable reference must have pointer type"); 1495 return nullptr; 1496 } 1497 1498 // Look this name up in the normal function symbol table. 1499 GlobalValue *Val = 1500 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1501 1502 // If this is a forward reference for the value, see if we already created a 1503 // forward ref record. 1504 if (!Val) { 1505 auto I = ForwardRefVals.find(Name); 1506 if (I != ForwardRefVals.end()) 1507 Val = I->second.first; 1508 } 1509 1510 // If we have the value in the symbol table or fwd-ref table, return it. 1511 if (Val) 1512 return cast_or_null<GlobalValue>( 1513 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1514 1515 // Otherwise, create a new forward reference for this value and remember it. 1516 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1517 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1518 return FwdVal; 1519 } 1520 1521 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1522 bool IsCall) { 1523 PointerType *PTy = dyn_cast<PointerType>(Ty); 1524 if (!PTy) { 1525 error(Loc, "global variable reference must have pointer type"); 1526 return nullptr; 1527 } 1528 1529 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefValIDs.find(ID); 1535 if (I != ForwardRefValIDs.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1546 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 //===----------------------------------------------------------------------===// 1551 // Comdat Reference/Resolution Routines. 1552 //===----------------------------------------------------------------------===// 1553 1554 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1555 // Look this name up in the comdat symbol table. 1556 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1557 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1558 if (I != ComdatSymTab.end()) 1559 return &I->second; 1560 1561 // Otherwise, create a new forward reference for this value and remember it. 1562 Comdat *C = M->getOrInsertComdat(Name); 1563 ForwardRefComdats[Name] = Loc; 1564 return C; 1565 } 1566 1567 //===----------------------------------------------------------------------===// 1568 // Helper Routines. 1569 //===----------------------------------------------------------------------===// 1570 1571 /// parseToken - If the current token has the specified kind, eat it and return 1572 /// success. Otherwise, emit the specified error and return failure. 1573 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1574 if (Lex.getKind() != T) 1575 return tokError(ErrMsg); 1576 Lex.Lex(); 1577 return false; 1578 } 1579 1580 /// parseStringConstant 1581 /// ::= StringConstant 1582 bool LLParser::parseStringConstant(std::string &Result) { 1583 if (Lex.getKind() != lltok::StringConstant) 1584 return tokError("expected string constant"); 1585 Result = Lex.getStrVal(); 1586 Lex.Lex(); 1587 return false; 1588 } 1589 1590 /// parseUInt32 1591 /// ::= uint32 1592 bool LLParser::parseUInt32(uint32_t &Val) { 1593 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1594 return tokError("expected integer"); 1595 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1596 if (Val64 != unsigned(Val64)) 1597 return tokError("expected 32-bit integer (too large)"); 1598 Val = Val64; 1599 Lex.Lex(); 1600 return false; 1601 } 1602 1603 /// parseUInt64 1604 /// ::= uint64 1605 bool LLParser::parseUInt64(uint64_t &Val) { 1606 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1607 return tokError("expected integer"); 1608 Val = Lex.getAPSIntVal().getLimitedValue(); 1609 Lex.Lex(); 1610 return false; 1611 } 1612 1613 /// parseTLSModel 1614 /// := 'localdynamic' 1615 /// := 'initialexec' 1616 /// := 'localexec' 1617 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1618 switch (Lex.getKind()) { 1619 default: 1620 return tokError("expected localdynamic, initialexec or localexec"); 1621 case lltok::kw_localdynamic: 1622 TLM = GlobalVariable::LocalDynamicTLSModel; 1623 break; 1624 case lltok::kw_initialexec: 1625 TLM = GlobalVariable::InitialExecTLSModel; 1626 break; 1627 case lltok::kw_localexec: 1628 TLM = GlobalVariable::LocalExecTLSModel; 1629 break; 1630 } 1631 1632 Lex.Lex(); 1633 return false; 1634 } 1635 1636 /// parseOptionalThreadLocal 1637 /// := /*empty*/ 1638 /// := 'thread_local' 1639 /// := 'thread_local' '(' tlsmodel ')' 1640 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1641 TLM = GlobalVariable::NotThreadLocal; 1642 if (!EatIfPresent(lltok::kw_thread_local)) 1643 return false; 1644 1645 TLM = GlobalVariable::GeneralDynamicTLSModel; 1646 if (Lex.getKind() == lltok::lparen) { 1647 Lex.Lex(); 1648 return parseTLSModel(TLM) || 1649 parseToken(lltok::rparen, "expected ')' after thread local model"); 1650 } 1651 return false; 1652 } 1653 1654 /// parseOptionalAddrSpace 1655 /// := /*empty*/ 1656 /// := 'addrspace' '(' uint32 ')' 1657 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1658 AddrSpace = DefaultAS; 1659 if (!EatIfPresent(lltok::kw_addrspace)) 1660 return false; 1661 return parseToken(lltok::lparen, "expected '(' in address space") || 1662 parseUInt32(AddrSpace) || 1663 parseToken(lltok::rparen, "expected ')' in address space"); 1664 } 1665 1666 /// parseStringAttribute 1667 /// := StringConstant 1668 /// := StringConstant '=' StringConstant 1669 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1670 std::string Attr = Lex.getStrVal(); 1671 Lex.Lex(); 1672 std::string Val; 1673 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1674 return true; 1675 B.addAttribute(Attr, Val); 1676 return false; 1677 } 1678 1679 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1680 /// attributes. 1681 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1682 bool HaveError = false; 1683 1684 B.clear(); 1685 1686 while (true) { 1687 lltok::Kind Token = Lex.getKind(); 1688 switch (Token) { 1689 default: // End of attributes. 1690 return HaveError; 1691 case lltok::StringConstant: { 1692 if (parseStringAttribute(B)) 1693 return true; 1694 continue; 1695 } 1696 case lltok::kw_align: { 1697 MaybeAlign Alignment; 1698 if (parseOptionalAlignment(Alignment, true)) 1699 return true; 1700 B.addAlignmentAttr(Alignment); 1701 continue; 1702 } 1703 case lltok::kw_byval: { 1704 Type *Ty; 1705 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1706 return true; 1707 B.addByValAttr(Ty); 1708 continue; 1709 } 1710 case lltok::kw_sret: { 1711 Type *Ty; 1712 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1713 return true; 1714 B.addStructRetAttr(Ty); 1715 continue; 1716 } 1717 case lltok::kw_preallocated: { 1718 Type *Ty; 1719 if (parsePreallocated(Ty)) 1720 return true; 1721 B.addPreallocatedAttr(Ty); 1722 continue; 1723 } 1724 case lltok::kw_dereferenceable: { 1725 uint64_t Bytes; 1726 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1727 return true; 1728 B.addDereferenceableAttr(Bytes); 1729 continue; 1730 } 1731 case lltok::kw_dereferenceable_or_null: { 1732 uint64_t Bytes; 1733 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1734 return true; 1735 B.addDereferenceableOrNullAttr(Bytes); 1736 continue; 1737 } 1738 case lltok::kw_byref: { 1739 Type *Ty; 1740 if (parseByRef(Ty)) 1741 return true; 1742 B.addByRefAttr(Ty); 1743 continue; 1744 } 1745 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1746 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1747 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1748 case lltok::kw_noundef: 1749 B.addAttribute(Attribute::NoUndef); 1750 break; 1751 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1752 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1753 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1754 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1755 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1756 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1757 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1758 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1759 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1760 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1761 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1762 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1763 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1764 1765 case lltok::kw_alignstack: 1766 case lltok::kw_alwaysinline: 1767 case lltok::kw_argmemonly: 1768 case lltok::kw_builtin: 1769 case lltok::kw_inlinehint: 1770 case lltok::kw_jumptable: 1771 case lltok::kw_minsize: 1772 case lltok::kw_mustprogress: 1773 case lltok::kw_naked: 1774 case lltok::kw_nobuiltin: 1775 case lltok::kw_noduplicate: 1776 case lltok::kw_noimplicitfloat: 1777 case lltok::kw_noinline: 1778 case lltok::kw_nonlazybind: 1779 case lltok::kw_nomerge: 1780 case lltok::kw_noredzone: 1781 case lltok::kw_noreturn: 1782 case lltok::kw_nocf_check: 1783 case lltok::kw_nounwind: 1784 case lltok::kw_optforfuzzing: 1785 case lltok::kw_optnone: 1786 case lltok::kw_optsize: 1787 case lltok::kw_returns_twice: 1788 case lltok::kw_sanitize_address: 1789 case lltok::kw_sanitize_hwaddress: 1790 case lltok::kw_sanitize_memtag: 1791 case lltok::kw_sanitize_memory: 1792 case lltok::kw_sanitize_thread: 1793 case lltok::kw_speculative_load_hardening: 1794 case lltok::kw_ssp: 1795 case lltok::kw_sspreq: 1796 case lltok::kw_sspstrong: 1797 case lltok::kw_safestack: 1798 case lltok::kw_shadowcallstack: 1799 case lltok::kw_strictfp: 1800 case lltok::kw_uwtable: 1801 HaveError |= 1802 error(Lex.getLoc(), "invalid use of function-only attribute"); 1803 break; 1804 } 1805 1806 Lex.Lex(); 1807 } 1808 } 1809 1810 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1811 /// attributes. 1812 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1813 bool HaveError = false; 1814 1815 B.clear(); 1816 1817 while (true) { 1818 lltok::Kind Token = Lex.getKind(); 1819 switch (Token) { 1820 default: // End of attributes. 1821 return HaveError; 1822 case lltok::StringConstant: { 1823 if (parseStringAttribute(B)) 1824 return true; 1825 continue; 1826 } 1827 case lltok::kw_dereferenceable: { 1828 uint64_t Bytes; 1829 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1830 return true; 1831 B.addDereferenceableAttr(Bytes); 1832 continue; 1833 } 1834 case lltok::kw_dereferenceable_or_null: { 1835 uint64_t Bytes; 1836 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1837 return true; 1838 B.addDereferenceableOrNullAttr(Bytes); 1839 continue; 1840 } 1841 case lltok::kw_align: { 1842 MaybeAlign Alignment; 1843 if (parseOptionalAlignment(Alignment)) 1844 return true; 1845 B.addAlignmentAttr(Alignment); 1846 continue; 1847 } 1848 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1849 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1850 case lltok::kw_noundef: 1851 B.addAttribute(Attribute::NoUndef); 1852 break; 1853 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1854 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1855 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1856 1857 // error handling. 1858 case lltok::kw_byval: 1859 case lltok::kw_inalloca: 1860 case lltok::kw_nest: 1861 case lltok::kw_nocapture: 1862 case lltok::kw_returned: 1863 case lltok::kw_sret: 1864 case lltok::kw_swifterror: 1865 case lltok::kw_swiftself: 1866 case lltok::kw_immarg: 1867 case lltok::kw_byref: 1868 HaveError |= 1869 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1870 break; 1871 1872 case lltok::kw_alignstack: 1873 case lltok::kw_alwaysinline: 1874 case lltok::kw_argmemonly: 1875 case lltok::kw_builtin: 1876 case lltok::kw_cold: 1877 case lltok::kw_inlinehint: 1878 case lltok::kw_jumptable: 1879 case lltok::kw_minsize: 1880 case lltok::kw_mustprogress: 1881 case lltok::kw_naked: 1882 case lltok::kw_nobuiltin: 1883 case lltok::kw_noduplicate: 1884 case lltok::kw_noimplicitfloat: 1885 case lltok::kw_noinline: 1886 case lltok::kw_nonlazybind: 1887 case lltok::kw_nomerge: 1888 case lltok::kw_noredzone: 1889 case lltok::kw_noreturn: 1890 case lltok::kw_nocf_check: 1891 case lltok::kw_nounwind: 1892 case lltok::kw_optforfuzzing: 1893 case lltok::kw_optnone: 1894 case lltok::kw_optsize: 1895 case lltok::kw_returns_twice: 1896 case lltok::kw_sanitize_address: 1897 case lltok::kw_sanitize_hwaddress: 1898 case lltok::kw_sanitize_memtag: 1899 case lltok::kw_sanitize_memory: 1900 case lltok::kw_sanitize_thread: 1901 case lltok::kw_speculative_load_hardening: 1902 case lltok::kw_ssp: 1903 case lltok::kw_sspreq: 1904 case lltok::kw_sspstrong: 1905 case lltok::kw_safestack: 1906 case lltok::kw_shadowcallstack: 1907 case lltok::kw_strictfp: 1908 case lltok::kw_uwtable: 1909 HaveError |= 1910 error(Lex.getLoc(), "invalid use of function-only attribute"); 1911 break; 1912 case lltok::kw_readnone: 1913 case lltok::kw_readonly: 1914 HaveError |= 1915 error(Lex.getLoc(), "invalid use of attribute on return type"); 1916 break; 1917 case lltok::kw_preallocated: 1918 HaveError |= 1919 error(Lex.getLoc(), 1920 "invalid use of parameter-only/call site-only attribute"); 1921 break; 1922 } 1923 1924 Lex.Lex(); 1925 } 1926 } 1927 1928 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1929 HasLinkage = true; 1930 switch (Kind) { 1931 default: 1932 HasLinkage = false; 1933 return GlobalValue::ExternalLinkage; 1934 case lltok::kw_private: 1935 return GlobalValue::PrivateLinkage; 1936 case lltok::kw_internal: 1937 return GlobalValue::InternalLinkage; 1938 case lltok::kw_weak: 1939 return GlobalValue::WeakAnyLinkage; 1940 case lltok::kw_weak_odr: 1941 return GlobalValue::WeakODRLinkage; 1942 case lltok::kw_linkonce: 1943 return GlobalValue::LinkOnceAnyLinkage; 1944 case lltok::kw_linkonce_odr: 1945 return GlobalValue::LinkOnceODRLinkage; 1946 case lltok::kw_available_externally: 1947 return GlobalValue::AvailableExternallyLinkage; 1948 case lltok::kw_appending: 1949 return GlobalValue::AppendingLinkage; 1950 case lltok::kw_common: 1951 return GlobalValue::CommonLinkage; 1952 case lltok::kw_extern_weak: 1953 return GlobalValue::ExternalWeakLinkage; 1954 case lltok::kw_external: 1955 return GlobalValue::ExternalLinkage; 1956 } 1957 } 1958 1959 /// parseOptionalLinkage 1960 /// ::= /*empty*/ 1961 /// ::= 'private' 1962 /// ::= 'internal' 1963 /// ::= 'weak' 1964 /// ::= 'weak_odr' 1965 /// ::= 'linkonce' 1966 /// ::= 'linkonce_odr' 1967 /// ::= 'available_externally' 1968 /// ::= 'appending' 1969 /// ::= 'common' 1970 /// ::= 'extern_weak' 1971 /// ::= 'external' 1972 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1973 unsigned &Visibility, 1974 unsigned &DLLStorageClass, bool &DSOLocal) { 1975 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1976 if (HasLinkage) 1977 Lex.Lex(); 1978 parseOptionalDSOLocal(DSOLocal); 1979 parseOptionalVisibility(Visibility); 1980 parseOptionalDLLStorageClass(DLLStorageClass); 1981 1982 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1983 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1984 } 1985 1986 return false; 1987 } 1988 1989 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1990 switch (Lex.getKind()) { 1991 default: 1992 DSOLocal = false; 1993 break; 1994 case lltok::kw_dso_local: 1995 DSOLocal = true; 1996 Lex.Lex(); 1997 break; 1998 case lltok::kw_dso_preemptable: 1999 DSOLocal = false; 2000 Lex.Lex(); 2001 break; 2002 } 2003 } 2004 2005 /// parseOptionalVisibility 2006 /// ::= /*empty*/ 2007 /// ::= 'default' 2008 /// ::= 'hidden' 2009 /// ::= 'protected' 2010 /// 2011 void LLParser::parseOptionalVisibility(unsigned &Res) { 2012 switch (Lex.getKind()) { 2013 default: 2014 Res = GlobalValue::DefaultVisibility; 2015 return; 2016 case lltok::kw_default: 2017 Res = GlobalValue::DefaultVisibility; 2018 break; 2019 case lltok::kw_hidden: 2020 Res = GlobalValue::HiddenVisibility; 2021 break; 2022 case lltok::kw_protected: 2023 Res = GlobalValue::ProtectedVisibility; 2024 break; 2025 } 2026 Lex.Lex(); 2027 } 2028 2029 /// parseOptionalDLLStorageClass 2030 /// ::= /*empty*/ 2031 /// ::= 'dllimport' 2032 /// ::= 'dllexport' 2033 /// 2034 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2035 switch (Lex.getKind()) { 2036 default: 2037 Res = GlobalValue::DefaultStorageClass; 2038 return; 2039 case lltok::kw_dllimport: 2040 Res = GlobalValue::DLLImportStorageClass; 2041 break; 2042 case lltok::kw_dllexport: 2043 Res = GlobalValue::DLLExportStorageClass; 2044 break; 2045 } 2046 Lex.Lex(); 2047 } 2048 2049 /// parseOptionalCallingConv 2050 /// ::= /*empty*/ 2051 /// ::= 'ccc' 2052 /// ::= 'fastcc' 2053 /// ::= 'intel_ocl_bicc' 2054 /// ::= 'coldcc' 2055 /// ::= 'cfguard_checkcc' 2056 /// ::= 'x86_stdcallcc' 2057 /// ::= 'x86_fastcallcc' 2058 /// ::= 'x86_thiscallcc' 2059 /// ::= 'x86_vectorcallcc' 2060 /// ::= 'arm_apcscc' 2061 /// ::= 'arm_aapcscc' 2062 /// ::= 'arm_aapcs_vfpcc' 2063 /// ::= 'aarch64_vector_pcs' 2064 /// ::= 'aarch64_sve_vector_pcs' 2065 /// ::= 'msp430_intrcc' 2066 /// ::= 'avr_intrcc' 2067 /// ::= 'avr_signalcc' 2068 /// ::= 'ptx_kernel' 2069 /// ::= 'ptx_device' 2070 /// ::= 'spir_func' 2071 /// ::= 'spir_kernel' 2072 /// ::= 'x86_64_sysvcc' 2073 /// ::= 'win64cc' 2074 /// ::= 'webkit_jscc' 2075 /// ::= 'anyregcc' 2076 /// ::= 'preserve_mostcc' 2077 /// ::= 'preserve_allcc' 2078 /// ::= 'ghccc' 2079 /// ::= 'swiftcc' 2080 /// ::= 'x86_intrcc' 2081 /// ::= 'hhvmcc' 2082 /// ::= 'hhvm_ccc' 2083 /// ::= 'cxx_fast_tlscc' 2084 /// ::= 'amdgpu_vs' 2085 /// ::= 'amdgpu_ls' 2086 /// ::= 'amdgpu_hs' 2087 /// ::= 'amdgpu_es' 2088 /// ::= 'amdgpu_gs' 2089 /// ::= 'amdgpu_ps' 2090 /// ::= 'amdgpu_cs' 2091 /// ::= 'amdgpu_kernel' 2092 /// ::= 'tailcc' 2093 /// ::= 'cc' UINT 2094 /// 2095 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2096 switch (Lex.getKind()) { 2097 default: CC = CallingConv::C; return false; 2098 case lltok::kw_ccc: CC = CallingConv::C; break; 2099 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2100 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2101 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2102 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2103 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2104 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2105 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2106 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2107 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2108 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2109 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2110 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2111 case lltok::kw_aarch64_sve_vector_pcs: 2112 CC = CallingConv::AArch64_SVE_VectorCall; 2113 break; 2114 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2115 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2116 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2117 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2118 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2119 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2120 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2121 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2122 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2123 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2124 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2125 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2126 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2127 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2128 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2129 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2130 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2131 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2132 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2133 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2134 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2135 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2136 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2137 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2138 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2139 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2140 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2141 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2142 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2143 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2144 case lltok::kw_cc: { 2145 Lex.Lex(); 2146 return parseUInt32(CC); 2147 } 2148 } 2149 2150 Lex.Lex(); 2151 return false; 2152 } 2153 2154 /// parseMetadataAttachment 2155 /// ::= !dbg !42 2156 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2157 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2158 2159 std::string Name = Lex.getStrVal(); 2160 Kind = M->getMDKindID(Name); 2161 Lex.Lex(); 2162 2163 return parseMDNode(MD); 2164 } 2165 2166 /// parseInstructionMetadata 2167 /// ::= !dbg !42 (',' !dbg !57)* 2168 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2169 do { 2170 if (Lex.getKind() != lltok::MetadataVar) 2171 return tokError("expected metadata after comma"); 2172 2173 unsigned MDK; 2174 MDNode *N; 2175 if (parseMetadataAttachment(MDK, N)) 2176 return true; 2177 2178 Inst.setMetadata(MDK, N); 2179 if (MDK == LLVMContext::MD_tbaa) 2180 InstsWithTBAATag.push_back(&Inst); 2181 2182 // If this is the end of the list, we're done. 2183 } while (EatIfPresent(lltok::comma)); 2184 return false; 2185 } 2186 2187 /// parseGlobalObjectMetadataAttachment 2188 /// ::= !dbg !57 2189 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2190 unsigned MDK; 2191 MDNode *N; 2192 if (parseMetadataAttachment(MDK, N)) 2193 return true; 2194 2195 GO.addMetadata(MDK, *N); 2196 return false; 2197 } 2198 2199 /// parseOptionalFunctionMetadata 2200 /// ::= (!dbg !57)* 2201 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2202 while (Lex.getKind() == lltok::MetadataVar) 2203 if (parseGlobalObjectMetadataAttachment(F)) 2204 return true; 2205 return false; 2206 } 2207 2208 /// parseOptionalAlignment 2209 /// ::= /* empty */ 2210 /// ::= 'align' 4 2211 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2212 Alignment = None; 2213 if (!EatIfPresent(lltok::kw_align)) 2214 return false; 2215 LocTy AlignLoc = Lex.getLoc(); 2216 uint32_t Value = 0; 2217 2218 LocTy ParenLoc = Lex.getLoc(); 2219 bool HaveParens = false; 2220 if (AllowParens) { 2221 if (EatIfPresent(lltok::lparen)) 2222 HaveParens = true; 2223 } 2224 2225 if (parseUInt32(Value)) 2226 return true; 2227 2228 if (HaveParens && !EatIfPresent(lltok::rparen)) 2229 return error(ParenLoc, "expected ')'"); 2230 2231 if (!isPowerOf2_32(Value)) 2232 return error(AlignLoc, "alignment is not a power of two"); 2233 if (Value > Value::MaximumAlignment) 2234 return error(AlignLoc, "huge alignments are not supported yet"); 2235 Alignment = Align(Value); 2236 return false; 2237 } 2238 2239 /// parseOptionalDerefAttrBytes 2240 /// ::= /* empty */ 2241 /// ::= AttrKind '(' 4 ')' 2242 /// 2243 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2244 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2245 uint64_t &Bytes) { 2246 assert((AttrKind == lltok::kw_dereferenceable || 2247 AttrKind == lltok::kw_dereferenceable_or_null) && 2248 "contract!"); 2249 2250 Bytes = 0; 2251 if (!EatIfPresent(AttrKind)) 2252 return false; 2253 LocTy ParenLoc = Lex.getLoc(); 2254 if (!EatIfPresent(lltok::lparen)) 2255 return error(ParenLoc, "expected '('"); 2256 LocTy DerefLoc = Lex.getLoc(); 2257 if (parseUInt64(Bytes)) 2258 return true; 2259 ParenLoc = Lex.getLoc(); 2260 if (!EatIfPresent(lltok::rparen)) 2261 return error(ParenLoc, "expected ')'"); 2262 if (!Bytes) 2263 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2264 return false; 2265 } 2266 2267 /// parseOptionalCommaAlign 2268 /// ::= 2269 /// ::= ',' align 4 2270 /// 2271 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2272 /// end. 2273 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2274 bool &AteExtraComma) { 2275 AteExtraComma = false; 2276 while (EatIfPresent(lltok::comma)) { 2277 // Metadata at the end is an early exit. 2278 if (Lex.getKind() == lltok::MetadataVar) { 2279 AteExtraComma = true; 2280 return false; 2281 } 2282 2283 if (Lex.getKind() != lltok::kw_align) 2284 return error(Lex.getLoc(), "expected metadata or 'align'"); 2285 2286 if (parseOptionalAlignment(Alignment)) 2287 return true; 2288 } 2289 2290 return false; 2291 } 2292 2293 /// parseOptionalCommaAddrSpace 2294 /// ::= 2295 /// ::= ',' addrspace(1) 2296 /// 2297 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2298 /// end. 2299 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2300 bool &AteExtraComma) { 2301 AteExtraComma = false; 2302 while (EatIfPresent(lltok::comma)) { 2303 // Metadata at the end is an early exit. 2304 if (Lex.getKind() == lltok::MetadataVar) { 2305 AteExtraComma = true; 2306 return false; 2307 } 2308 2309 Loc = Lex.getLoc(); 2310 if (Lex.getKind() != lltok::kw_addrspace) 2311 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2312 2313 if (parseOptionalAddrSpace(AddrSpace)) 2314 return true; 2315 } 2316 2317 return false; 2318 } 2319 2320 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2321 Optional<unsigned> &HowManyArg) { 2322 Lex.Lex(); 2323 2324 auto StartParen = Lex.getLoc(); 2325 if (!EatIfPresent(lltok::lparen)) 2326 return error(StartParen, "expected '('"); 2327 2328 if (parseUInt32(BaseSizeArg)) 2329 return true; 2330 2331 if (EatIfPresent(lltok::comma)) { 2332 auto HowManyAt = Lex.getLoc(); 2333 unsigned HowMany; 2334 if (parseUInt32(HowMany)) 2335 return true; 2336 if (HowMany == BaseSizeArg) 2337 return error(HowManyAt, 2338 "'allocsize' indices can't refer to the same parameter"); 2339 HowManyArg = HowMany; 2340 } else 2341 HowManyArg = None; 2342 2343 auto EndParen = Lex.getLoc(); 2344 if (!EatIfPresent(lltok::rparen)) 2345 return error(EndParen, "expected ')'"); 2346 return false; 2347 } 2348 2349 /// parseScopeAndOrdering 2350 /// if isAtomic: ::= SyncScope? AtomicOrdering 2351 /// else: ::= 2352 /// 2353 /// This sets Scope and Ordering to the parsed values. 2354 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2355 AtomicOrdering &Ordering) { 2356 if (!IsAtomic) 2357 return false; 2358 2359 return parseScope(SSID) || parseOrdering(Ordering); 2360 } 2361 2362 /// parseScope 2363 /// ::= syncscope("singlethread" | "<target scope>")? 2364 /// 2365 /// This sets synchronization scope ID to the ID of the parsed value. 2366 bool LLParser::parseScope(SyncScope::ID &SSID) { 2367 SSID = SyncScope::System; 2368 if (EatIfPresent(lltok::kw_syncscope)) { 2369 auto StartParenAt = Lex.getLoc(); 2370 if (!EatIfPresent(lltok::lparen)) 2371 return error(StartParenAt, "Expected '(' in syncscope"); 2372 2373 std::string SSN; 2374 auto SSNAt = Lex.getLoc(); 2375 if (parseStringConstant(SSN)) 2376 return error(SSNAt, "Expected synchronization scope name"); 2377 2378 auto EndParenAt = Lex.getLoc(); 2379 if (!EatIfPresent(lltok::rparen)) 2380 return error(EndParenAt, "Expected ')' in syncscope"); 2381 2382 SSID = Context.getOrInsertSyncScopeID(SSN); 2383 } 2384 2385 return false; 2386 } 2387 2388 /// parseOrdering 2389 /// ::= AtomicOrdering 2390 /// 2391 /// This sets Ordering to the parsed value. 2392 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2393 switch (Lex.getKind()) { 2394 default: 2395 return tokError("Expected ordering on atomic instruction"); 2396 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2397 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2398 // Not specified yet: 2399 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2400 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2401 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2402 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2403 case lltok::kw_seq_cst: 2404 Ordering = AtomicOrdering::SequentiallyConsistent; 2405 break; 2406 } 2407 Lex.Lex(); 2408 return false; 2409 } 2410 2411 /// parseOptionalStackAlignment 2412 /// ::= /* empty */ 2413 /// ::= 'alignstack' '(' 4 ')' 2414 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2415 Alignment = 0; 2416 if (!EatIfPresent(lltok::kw_alignstack)) 2417 return false; 2418 LocTy ParenLoc = Lex.getLoc(); 2419 if (!EatIfPresent(lltok::lparen)) 2420 return error(ParenLoc, "expected '('"); 2421 LocTy AlignLoc = Lex.getLoc(); 2422 if (parseUInt32(Alignment)) 2423 return true; 2424 ParenLoc = Lex.getLoc(); 2425 if (!EatIfPresent(lltok::rparen)) 2426 return error(ParenLoc, "expected ')'"); 2427 if (!isPowerOf2_32(Alignment)) 2428 return error(AlignLoc, "stack alignment is not a power of two"); 2429 return false; 2430 } 2431 2432 /// parseIndexList - This parses the index list for an insert/extractvalue 2433 /// instruction. This sets AteExtraComma in the case where we eat an extra 2434 /// comma at the end of the line and find that it is followed by metadata. 2435 /// Clients that don't allow metadata can call the version of this function that 2436 /// only takes one argument. 2437 /// 2438 /// parseIndexList 2439 /// ::= (',' uint32)+ 2440 /// 2441 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2442 bool &AteExtraComma) { 2443 AteExtraComma = false; 2444 2445 if (Lex.getKind() != lltok::comma) 2446 return tokError("expected ',' as start of index list"); 2447 2448 while (EatIfPresent(lltok::comma)) { 2449 if (Lex.getKind() == lltok::MetadataVar) { 2450 if (Indices.empty()) 2451 return tokError("expected index"); 2452 AteExtraComma = true; 2453 return false; 2454 } 2455 unsigned Idx = 0; 2456 if (parseUInt32(Idx)) 2457 return true; 2458 Indices.push_back(Idx); 2459 } 2460 2461 return false; 2462 } 2463 2464 //===----------------------------------------------------------------------===// 2465 // Type Parsing. 2466 //===----------------------------------------------------------------------===// 2467 2468 /// parseType - parse a type. 2469 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2470 SMLoc TypeLoc = Lex.getLoc(); 2471 switch (Lex.getKind()) { 2472 default: 2473 return tokError(Msg); 2474 case lltok::Type: 2475 // Type ::= 'float' | 'void' (etc) 2476 Result = Lex.getTyVal(); 2477 Lex.Lex(); 2478 break; 2479 case lltok::lbrace: 2480 // Type ::= StructType 2481 if (parseAnonStructType(Result, false)) 2482 return true; 2483 break; 2484 case lltok::lsquare: 2485 // Type ::= '[' ... ']' 2486 Lex.Lex(); // eat the lsquare. 2487 if (parseArrayVectorType(Result, false)) 2488 return true; 2489 break; 2490 case lltok::less: // Either vector or packed struct. 2491 // Type ::= '<' ... '>' 2492 Lex.Lex(); 2493 if (Lex.getKind() == lltok::lbrace) { 2494 if (parseAnonStructType(Result, true) || 2495 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2496 return true; 2497 } else if (parseArrayVectorType(Result, true)) 2498 return true; 2499 break; 2500 case lltok::LocalVar: { 2501 // Type ::= %foo 2502 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2503 2504 // If the type hasn't been defined yet, create a forward definition and 2505 // remember where that forward def'n was seen (in case it never is defined). 2506 if (!Entry.first) { 2507 Entry.first = StructType::create(Context, Lex.getStrVal()); 2508 Entry.second = Lex.getLoc(); 2509 } 2510 Result = Entry.first; 2511 Lex.Lex(); 2512 break; 2513 } 2514 2515 case lltok::LocalVarID: { 2516 // Type ::= %4 2517 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2518 2519 // If the type hasn't been defined yet, create a forward definition and 2520 // remember where that forward def'n was seen (in case it never is defined). 2521 if (!Entry.first) { 2522 Entry.first = StructType::create(Context); 2523 Entry.second = Lex.getLoc(); 2524 } 2525 Result = Entry.first; 2526 Lex.Lex(); 2527 break; 2528 } 2529 } 2530 2531 // parse the type suffixes. 2532 while (true) { 2533 switch (Lex.getKind()) { 2534 // End of type. 2535 default: 2536 if (!AllowVoid && Result->isVoidTy()) 2537 return error(TypeLoc, "void type only allowed for function results"); 2538 return false; 2539 2540 // Type ::= Type '*' 2541 case lltok::star: 2542 if (Result->isLabelTy()) 2543 return tokError("basic block pointers are invalid"); 2544 if (Result->isVoidTy()) 2545 return tokError("pointers to void are invalid - use i8* instead"); 2546 if (!PointerType::isValidElementType(Result)) 2547 return tokError("pointer to this type is invalid"); 2548 Result = PointerType::getUnqual(Result); 2549 Lex.Lex(); 2550 break; 2551 2552 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2553 case lltok::kw_addrspace: { 2554 if (Result->isLabelTy()) 2555 return tokError("basic block pointers are invalid"); 2556 if (Result->isVoidTy()) 2557 return tokError("pointers to void are invalid; use i8* instead"); 2558 if (!PointerType::isValidElementType(Result)) 2559 return tokError("pointer to this type is invalid"); 2560 unsigned AddrSpace; 2561 if (parseOptionalAddrSpace(AddrSpace) || 2562 parseToken(lltok::star, "expected '*' in address space")) 2563 return true; 2564 2565 Result = PointerType::get(Result, AddrSpace); 2566 break; 2567 } 2568 2569 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2570 case lltok::lparen: 2571 if (parseFunctionType(Result)) 2572 return true; 2573 break; 2574 } 2575 } 2576 } 2577 2578 /// parseParameterList 2579 /// ::= '(' ')' 2580 /// ::= '(' Arg (',' Arg)* ')' 2581 /// Arg 2582 /// ::= Type OptionalAttributes Value OptionalAttributes 2583 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2584 PerFunctionState &PFS, bool IsMustTailCall, 2585 bool InVarArgsFunc) { 2586 if (parseToken(lltok::lparen, "expected '(' in call")) 2587 return true; 2588 2589 while (Lex.getKind() != lltok::rparen) { 2590 // If this isn't the first argument, we need a comma. 2591 if (!ArgList.empty() && 2592 parseToken(lltok::comma, "expected ',' in argument list")) 2593 return true; 2594 2595 // parse an ellipsis if this is a musttail call in a variadic function. 2596 if (Lex.getKind() == lltok::dotdotdot) { 2597 const char *Msg = "unexpected ellipsis in argument list for "; 2598 if (!IsMustTailCall) 2599 return tokError(Twine(Msg) + "non-musttail call"); 2600 if (!InVarArgsFunc) 2601 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2602 Lex.Lex(); // Lex the '...', it is purely for readability. 2603 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2604 } 2605 2606 // parse the argument. 2607 LocTy ArgLoc; 2608 Type *ArgTy = nullptr; 2609 AttrBuilder ArgAttrs; 2610 Value *V; 2611 if (parseType(ArgTy, ArgLoc)) 2612 return true; 2613 2614 if (ArgTy->isMetadataTy()) { 2615 if (parseMetadataAsValue(V, PFS)) 2616 return true; 2617 } else { 2618 // Otherwise, handle normal operands. 2619 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2620 return true; 2621 } 2622 ArgList.push_back(ParamInfo( 2623 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2624 } 2625 2626 if (IsMustTailCall && InVarArgsFunc) 2627 return tokError("expected '...' at end of argument list for musttail call " 2628 "in varargs function"); 2629 2630 Lex.Lex(); // Lex the ')'. 2631 return false; 2632 } 2633 2634 /// parseRequiredTypeAttr 2635 /// ::= attrname(<ty>) 2636 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2637 Result = nullptr; 2638 if (!EatIfPresent(AttrName)) 2639 return true; 2640 if (!EatIfPresent(lltok::lparen)) 2641 return error(Lex.getLoc(), "expected '('"); 2642 if (parseType(Result)) 2643 return true; 2644 if (!EatIfPresent(lltok::rparen)) 2645 return error(Lex.getLoc(), "expected ')'"); 2646 return false; 2647 } 2648 2649 /// parsePreallocated 2650 /// ::= preallocated(<ty>) 2651 bool LLParser::parsePreallocated(Type *&Result) { 2652 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2653 } 2654 2655 /// parseByRef 2656 /// ::= byref(<type>) 2657 bool LLParser::parseByRef(Type *&Result) { 2658 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2659 } 2660 2661 /// parseOptionalOperandBundles 2662 /// ::= /*empty*/ 2663 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2664 /// 2665 /// OperandBundle 2666 /// ::= bundle-tag '(' ')' 2667 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2668 /// 2669 /// bundle-tag ::= String Constant 2670 bool LLParser::parseOptionalOperandBundles( 2671 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2672 LocTy BeginLoc = Lex.getLoc(); 2673 if (!EatIfPresent(lltok::lsquare)) 2674 return false; 2675 2676 while (Lex.getKind() != lltok::rsquare) { 2677 // If this isn't the first operand bundle, we need a comma. 2678 if (!BundleList.empty() && 2679 parseToken(lltok::comma, "expected ',' in input list")) 2680 return true; 2681 2682 std::string Tag; 2683 if (parseStringConstant(Tag)) 2684 return true; 2685 2686 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2687 return true; 2688 2689 std::vector<Value *> Inputs; 2690 while (Lex.getKind() != lltok::rparen) { 2691 // If this isn't the first input, we need a comma. 2692 if (!Inputs.empty() && 2693 parseToken(lltok::comma, "expected ',' in input list")) 2694 return true; 2695 2696 Type *Ty = nullptr; 2697 Value *Input = nullptr; 2698 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2699 return true; 2700 Inputs.push_back(Input); 2701 } 2702 2703 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2704 2705 Lex.Lex(); // Lex the ')'. 2706 } 2707 2708 if (BundleList.empty()) 2709 return error(BeginLoc, "operand bundle set must not be empty"); 2710 2711 Lex.Lex(); // Lex the ']'. 2712 return false; 2713 } 2714 2715 /// parseArgumentList - parse the argument list for a function type or function 2716 /// prototype. 2717 /// ::= '(' ArgTypeListI ')' 2718 /// ArgTypeListI 2719 /// ::= /*empty*/ 2720 /// ::= '...' 2721 /// ::= ArgTypeList ',' '...' 2722 /// ::= ArgType (',' ArgType)* 2723 /// 2724 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2725 bool &IsVarArg) { 2726 unsigned CurValID = 0; 2727 IsVarArg = false; 2728 assert(Lex.getKind() == lltok::lparen); 2729 Lex.Lex(); // eat the (. 2730 2731 if (Lex.getKind() == lltok::rparen) { 2732 // empty 2733 } else if (Lex.getKind() == lltok::dotdotdot) { 2734 IsVarArg = true; 2735 Lex.Lex(); 2736 } else { 2737 LocTy TypeLoc = Lex.getLoc(); 2738 Type *ArgTy = nullptr; 2739 AttrBuilder Attrs; 2740 std::string Name; 2741 2742 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2743 return true; 2744 2745 if (ArgTy->isVoidTy()) 2746 return error(TypeLoc, "argument can not have void type"); 2747 2748 if (Lex.getKind() == lltok::LocalVar) { 2749 Name = Lex.getStrVal(); 2750 Lex.Lex(); 2751 } else if (Lex.getKind() == lltok::LocalVarID) { 2752 if (Lex.getUIntVal() != CurValID) 2753 return error(TypeLoc, "argument expected to be numbered '%" + 2754 Twine(CurValID) + "'"); 2755 ++CurValID; 2756 Lex.Lex(); 2757 } 2758 2759 if (!FunctionType::isValidArgumentType(ArgTy)) 2760 return error(TypeLoc, "invalid type for function argument"); 2761 2762 ArgList.emplace_back(TypeLoc, ArgTy, 2763 AttributeSet::get(ArgTy->getContext(), Attrs), 2764 std::move(Name)); 2765 2766 while (EatIfPresent(lltok::comma)) { 2767 // Handle ... at end of arg list. 2768 if (EatIfPresent(lltok::dotdotdot)) { 2769 IsVarArg = true; 2770 break; 2771 } 2772 2773 // Otherwise must be an argument type. 2774 TypeLoc = Lex.getLoc(); 2775 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2776 return true; 2777 2778 if (ArgTy->isVoidTy()) 2779 return error(TypeLoc, "argument can not have void type"); 2780 2781 if (Lex.getKind() == lltok::LocalVar) { 2782 Name = Lex.getStrVal(); 2783 Lex.Lex(); 2784 } else { 2785 if (Lex.getKind() == lltok::LocalVarID) { 2786 if (Lex.getUIntVal() != CurValID) 2787 return error(TypeLoc, "argument expected to be numbered '%" + 2788 Twine(CurValID) + "'"); 2789 Lex.Lex(); 2790 } 2791 ++CurValID; 2792 Name = ""; 2793 } 2794 2795 if (!ArgTy->isFirstClassType()) 2796 return error(TypeLoc, "invalid type for function argument"); 2797 2798 ArgList.emplace_back(TypeLoc, ArgTy, 2799 AttributeSet::get(ArgTy->getContext(), Attrs), 2800 std::move(Name)); 2801 } 2802 } 2803 2804 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2805 } 2806 2807 /// parseFunctionType 2808 /// ::= Type ArgumentList OptionalAttrs 2809 bool LLParser::parseFunctionType(Type *&Result) { 2810 assert(Lex.getKind() == lltok::lparen); 2811 2812 if (!FunctionType::isValidReturnType(Result)) 2813 return tokError("invalid function return type"); 2814 2815 SmallVector<ArgInfo, 8> ArgList; 2816 bool IsVarArg; 2817 if (parseArgumentList(ArgList, IsVarArg)) 2818 return true; 2819 2820 // Reject names on the arguments lists. 2821 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2822 if (!ArgList[i].Name.empty()) 2823 return error(ArgList[i].Loc, "argument name invalid in function type"); 2824 if (ArgList[i].Attrs.hasAttributes()) 2825 return error(ArgList[i].Loc, 2826 "argument attributes invalid in function type"); 2827 } 2828 2829 SmallVector<Type*, 16> ArgListTy; 2830 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2831 ArgListTy.push_back(ArgList[i].Ty); 2832 2833 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2834 return false; 2835 } 2836 2837 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2838 /// other structs. 2839 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2840 SmallVector<Type*, 8> Elts; 2841 if (parseStructBody(Elts)) 2842 return true; 2843 2844 Result = StructType::get(Context, Elts, Packed); 2845 return false; 2846 } 2847 2848 /// parseStructDefinition - parse a struct in a 'type' definition. 2849 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2850 std::pair<Type *, LocTy> &Entry, 2851 Type *&ResultTy) { 2852 // If the type was already defined, diagnose the redefinition. 2853 if (Entry.first && !Entry.second.isValid()) 2854 return error(TypeLoc, "redefinition of type"); 2855 2856 // If we have opaque, just return without filling in the definition for the 2857 // struct. This counts as a definition as far as the .ll file goes. 2858 if (EatIfPresent(lltok::kw_opaque)) { 2859 // This type is being defined, so clear the location to indicate this. 2860 Entry.second = SMLoc(); 2861 2862 // If this type number has never been uttered, create it. 2863 if (!Entry.first) 2864 Entry.first = StructType::create(Context, Name); 2865 ResultTy = Entry.first; 2866 return false; 2867 } 2868 2869 // If the type starts with '<', then it is either a packed struct or a vector. 2870 bool isPacked = EatIfPresent(lltok::less); 2871 2872 // If we don't have a struct, then we have a random type alias, which we 2873 // accept for compatibility with old files. These types are not allowed to be 2874 // forward referenced and not allowed to be recursive. 2875 if (Lex.getKind() != lltok::lbrace) { 2876 if (Entry.first) 2877 return error(TypeLoc, "forward references to non-struct type"); 2878 2879 ResultTy = nullptr; 2880 if (isPacked) 2881 return parseArrayVectorType(ResultTy, true); 2882 return parseType(ResultTy); 2883 } 2884 2885 // This type is being defined, so clear the location to indicate this. 2886 Entry.second = SMLoc(); 2887 2888 // If this type number has never been uttered, create it. 2889 if (!Entry.first) 2890 Entry.first = StructType::create(Context, Name); 2891 2892 StructType *STy = cast<StructType>(Entry.first); 2893 2894 SmallVector<Type*, 8> Body; 2895 if (parseStructBody(Body) || 2896 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2897 return true; 2898 2899 STy->setBody(Body, isPacked); 2900 ResultTy = STy; 2901 return false; 2902 } 2903 2904 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2905 /// StructType 2906 /// ::= '{' '}' 2907 /// ::= '{' Type (',' Type)* '}' 2908 /// ::= '<' '{' '}' '>' 2909 /// ::= '<' '{' Type (',' Type)* '}' '>' 2910 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2911 assert(Lex.getKind() == lltok::lbrace); 2912 Lex.Lex(); // Consume the '{' 2913 2914 // Handle the empty struct. 2915 if (EatIfPresent(lltok::rbrace)) 2916 return false; 2917 2918 LocTy EltTyLoc = Lex.getLoc(); 2919 Type *Ty = nullptr; 2920 if (parseType(Ty)) 2921 return true; 2922 Body.push_back(Ty); 2923 2924 if (!StructType::isValidElementType(Ty)) 2925 return error(EltTyLoc, "invalid element type for struct"); 2926 2927 while (EatIfPresent(lltok::comma)) { 2928 EltTyLoc = Lex.getLoc(); 2929 if (parseType(Ty)) 2930 return true; 2931 2932 if (!StructType::isValidElementType(Ty)) 2933 return error(EltTyLoc, "invalid element type for struct"); 2934 2935 Body.push_back(Ty); 2936 } 2937 2938 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2939 } 2940 2941 /// parseArrayVectorType - parse an array or vector type, assuming the first 2942 /// token has already been consumed. 2943 /// Type 2944 /// ::= '[' APSINTVAL 'x' Types ']' 2945 /// ::= '<' APSINTVAL 'x' Types '>' 2946 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2947 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2948 bool Scalable = false; 2949 2950 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2951 Lex.Lex(); // consume the 'vscale' 2952 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2953 return true; 2954 2955 Scalable = true; 2956 } 2957 2958 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2959 Lex.getAPSIntVal().getBitWidth() > 64) 2960 return tokError("expected number in address space"); 2961 2962 LocTy SizeLoc = Lex.getLoc(); 2963 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2964 Lex.Lex(); 2965 2966 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2967 return true; 2968 2969 LocTy TypeLoc = Lex.getLoc(); 2970 Type *EltTy = nullptr; 2971 if (parseType(EltTy)) 2972 return true; 2973 2974 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2975 "expected end of sequential type")) 2976 return true; 2977 2978 if (IsVector) { 2979 if (Size == 0) 2980 return error(SizeLoc, "zero element vector is illegal"); 2981 if ((unsigned)Size != Size) 2982 return error(SizeLoc, "size too large for vector"); 2983 if (!VectorType::isValidElementType(EltTy)) 2984 return error(TypeLoc, "invalid vector element type"); 2985 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2986 } else { 2987 if (!ArrayType::isValidElementType(EltTy)) 2988 return error(TypeLoc, "invalid array element type"); 2989 Result = ArrayType::get(EltTy, Size); 2990 } 2991 return false; 2992 } 2993 2994 //===----------------------------------------------------------------------===// 2995 // Function Semantic Analysis. 2996 //===----------------------------------------------------------------------===// 2997 2998 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2999 int functionNumber) 3000 : P(p), F(f), FunctionNumber(functionNumber) { 3001 3002 // Insert unnamed arguments into the NumberedVals list. 3003 for (Argument &A : F.args()) 3004 if (!A.hasName()) 3005 NumberedVals.push_back(&A); 3006 } 3007 3008 LLParser::PerFunctionState::~PerFunctionState() { 3009 // If there were any forward referenced non-basicblock values, delete them. 3010 3011 for (const auto &P : ForwardRefVals) { 3012 if (isa<BasicBlock>(P.second.first)) 3013 continue; 3014 P.second.first->replaceAllUsesWith( 3015 UndefValue::get(P.second.first->getType())); 3016 P.second.first->deleteValue(); 3017 } 3018 3019 for (const auto &P : ForwardRefValIDs) { 3020 if (isa<BasicBlock>(P.second.first)) 3021 continue; 3022 P.second.first->replaceAllUsesWith( 3023 UndefValue::get(P.second.first->getType())); 3024 P.second.first->deleteValue(); 3025 } 3026 } 3027 3028 bool LLParser::PerFunctionState::finishFunction() { 3029 if (!ForwardRefVals.empty()) 3030 return P.error(ForwardRefVals.begin()->second.second, 3031 "use of undefined value '%" + ForwardRefVals.begin()->first + 3032 "'"); 3033 if (!ForwardRefValIDs.empty()) 3034 return P.error(ForwardRefValIDs.begin()->second.second, 3035 "use of undefined value '%" + 3036 Twine(ForwardRefValIDs.begin()->first) + "'"); 3037 return false; 3038 } 3039 3040 /// getVal - Get a value with the specified name or ID, creating a 3041 /// forward reference record if needed. This can return null if the value 3042 /// exists but does not have the right type. 3043 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3044 LocTy Loc, bool IsCall) { 3045 // Look this name up in the normal function symbol table. 3046 Value *Val = F.getValueSymbolTable()->lookup(Name); 3047 3048 // If this is a forward reference for the value, see if we already created a 3049 // forward ref record. 3050 if (!Val) { 3051 auto I = ForwardRefVals.find(Name); 3052 if (I != ForwardRefVals.end()) 3053 Val = I->second.first; 3054 } 3055 3056 // If we have the value in the symbol table or fwd-ref table, return it. 3057 if (Val) 3058 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3059 3060 // Don't make placeholders with invalid type. 3061 if (!Ty->isFirstClassType()) { 3062 P.error(Loc, "invalid use of a non-first-class type"); 3063 return nullptr; 3064 } 3065 3066 // Otherwise, create a new forward reference for this value and remember it. 3067 Value *FwdVal; 3068 if (Ty->isLabelTy()) { 3069 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3070 } else { 3071 FwdVal = new Argument(Ty, Name); 3072 } 3073 3074 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3075 return FwdVal; 3076 } 3077 3078 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3079 bool IsCall) { 3080 // Look this name up in the normal function symbol table. 3081 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3082 3083 // If this is a forward reference for the value, see if we already created a 3084 // forward ref record. 3085 if (!Val) { 3086 auto I = ForwardRefValIDs.find(ID); 3087 if (I != ForwardRefValIDs.end()) 3088 Val = I->second.first; 3089 } 3090 3091 // If we have the value in the symbol table or fwd-ref table, return it. 3092 if (Val) 3093 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3094 3095 if (!Ty->isFirstClassType()) { 3096 P.error(Loc, "invalid use of a non-first-class type"); 3097 return nullptr; 3098 } 3099 3100 // Otherwise, create a new forward reference for this value and remember it. 3101 Value *FwdVal; 3102 if (Ty->isLabelTy()) { 3103 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3104 } else { 3105 FwdVal = new Argument(Ty); 3106 } 3107 3108 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3109 return FwdVal; 3110 } 3111 3112 /// setInstName - After an instruction is parsed and inserted into its 3113 /// basic block, this installs its name. 3114 bool LLParser::PerFunctionState::setInstName(int NameID, 3115 const std::string &NameStr, 3116 LocTy NameLoc, Instruction *Inst) { 3117 // If this instruction has void type, it cannot have a name or ID specified. 3118 if (Inst->getType()->isVoidTy()) { 3119 if (NameID != -1 || !NameStr.empty()) 3120 return P.error(NameLoc, "instructions returning void cannot have a name"); 3121 return false; 3122 } 3123 3124 // If this was a numbered instruction, verify that the instruction is the 3125 // expected value and resolve any forward references. 3126 if (NameStr.empty()) { 3127 // If neither a name nor an ID was specified, just use the next ID. 3128 if (NameID == -1) 3129 NameID = NumberedVals.size(); 3130 3131 if (unsigned(NameID) != NumberedVals.size()) 3132 return P.error(NameLoc, "instruction expected to be numbered '%" + 3133 Twine(NumberedVals.size()) + "'"); 3134 3135 auto FI = ForwardRefValIDs.find(NameID); 3136 if (FI != ForwardRefValIDs.end()) { 3137 Value *Sentinel = FI->second.first; 3138 if (Sentinel->getType() != Inst->getType()) 3139 return P.error(NameLoc, "instruction forward referenced with type '" + 3140 getTypeString(FI->second.first->getType()) + 3141 "'"); 3142 3143 Sentinel->replaceAllUsesWith(Inst); 3144 Sentinel->deleteValue(); 3145 ForwardRefValIDs.erase(FI); 3146 } 3147 3148 NumberedVals.push_back(Inst); 3149 return false; 3150 } 3151 3152 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3153 auto FI = ForwardRefVals.find(NameStr); 3154 if (FI != ForwardRefVals.end()) { 3155 Value *Sentinel = FI->second.first; 3156 if (Sentinel->getType() != Inst->getType()) 3157 return P.error(NameLoc, "instruction forward referenced with type '" + 3158 getTypeString(FI->second.first->getType()) + 3159 "'"); 3160 3161 Sentinel->replaceAllUsesWith(Inst); 3162 Sentinel->deleteValue(); 3163 ForwardRefVals.erase(FI); 3164 } 3165 3166 // Set the name on the instruction. 3167 Inst->setName(NameStr); 3168 3169 if (Inst->getName() != NameStr) 3170 return P.error(NameLoc, "multiple definition of local value named '" + 3171 NameStr + "'"); 3172 return false; 3173 } 3174 3175 /// getBB - Get a basic block with the specified name or ID, creating a 3176 /// forward reference record if needed. 3177 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3178 LocTy Loc) { 3179 return dyn_cast_or_null<BasicBlock>( 3180 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3181 } 3182 3183 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3184 return dyn_cast_or_null<BasicBlock>( 3185 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3186 } 3187 3188 /// defineBB - Define the specified basic block, which is either named or 3189 /// unnamed. If there is an error, this returns null otherwise it returns 3190 /// the block being defined. 3191 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3192 int NameID, LocTy Loc) { 3193 BasicBlock *BB; 3194 if (Name.empty()) { 3195 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3196 P.error(Loc, "label expected to be numbered '" + 3197 Twine(NumberedVals.size()) + "'"); 3198 return nullptr; 3199 } 3200 BB = getBB(NumberedVals.size(), Loc); 3201 if (!BB) { 3202 P.error(Loc, "unable to create block numbered '" + 3203 Twine(NumberedVals.size()) + "'"); 3204 return nullptr; 3205 } 3206 } else { 3207 BB = getBB(Name, Loc); 3208 if (!BB) { 3209 P.error(Loc, "unable to create block named '" + Name + "'"); 3210 return nullptr; 3211 } 3212 } 3213 3214 // Move the block to the end of the function. Forward ref'd blocks are 3215 // inserted wherever they happen to be referenced. 3216 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3217 3218 // Remove the block from forward ref sets. 3219 if (Name.empty()) { 3220 ForwardRefValIDs.erase(NumberedVals.size()); 3221 NumberedVals.push_back(BB); 3222 } else { 3223 // BB forward references are already in the function symbol table. 3224 ForwardRefVals.erase(Name); 3225 } 3226 3227 return BB; 3228 } 3229 3230 //===----------------------------------------------------------------------===// 3231 // Constants. 3232 //===----------------------------------------------------------------------===// 3233 3234 /// parseValID - parse an abstract value that doesn't necessarily have a 3235 /// type implied. For example, if we parse "4" we don't know what integer type 3236 /// it has. The value will later be combined with its type and checked for 3237 /// sanity. PFS is used to convert function-local operands of metadata (since 3238 /// metadata operands are not just parsed here but also converted to values). 3239 /// PFS can be null when we are not parsing metadata values inside a function. 3240 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3241 ID.Loc = Lex.getLoc(); 3242 switch (Lex.getKind()) { 3243 default: 3244 return tokError("expected value token"); 3245 case lltok::GlobalID: // @42 3246 ID.UIntVal = Lex.getUIntVal(); 3247 ID.Kind = ValID::t_GlobalID; 3248 break; 3249 case lltok::GlobalVar: // @foo 3250 ID.StrVal = Lex.getStrVal(); 3251 ID.Kind = ValID::t_GlobalName; 3252 break; 3253 case lltok::LocalVarID: // %42 3254 ID.UIntVal = Lex.getUIntVal(); 3255 ID.Kind = ValID::t_LocalID; 3256 break; 3257 case lltok::LocalVar: // %foo 3258 ID.StrVal = Lex.getStrVal(); 3259 ID.Kind = ValID::t_LocalName; 3260 break; 3261 case lltok::APSInt: 3262 ID.APSIntVal = Lex.getAPSIntVal(); 3263 ID.Kind = ValID::t_APSInt; 3264 break; 3265 case lltok::APFloat: 3266 ID.APFloatVal = Lex.getAPFloatVal(); 3267 ID.Kind = ValID::t_APFloat; 3268 break; 3269 case lltok::kw_true: 3270 ID.ConstantVal = ConstantInt::getTrue(Context); 3271 ID.Kind = ValID::t_Constant; 3272 break; 3273 case lltok::kw_false: 3274 ID.ConstantVal = ConstantInt::getFalse(Context); 3275 ID.Kind = ValID::t_Constant; 3276 break; 3277 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3278 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3279 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3280 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3281 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3282 3283 case lltok::lbrace: { 3284 // ValID ::= '{' ConstVector '}' 3285 Lex.Lex(); 3286 SmallVector<Constant*, 16> Elts; 3287 if (parseGlobalValueVector(Elts) || 3288 parseToken(lltok::rbrace, "expected end of struct constant")) 3289 return true; 3290 3291 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3292 ID.UIntVal = Elts.size(); 3293 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3294 Elts.size() * sizeof(Elts[0])); 3295 ID.Kind = ValID::t_ConstantStruct; 3296 return false; 3297 } 3298 case lltok::less: { 3299 // ValID ::= '<' ConstVector '>' --> Vector. 3300 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3301 Lex.Lex(); 3302 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3303 3304 SmallVector<Constant*, 16> Elts; 3305 LocTy FirstEltLoc = Lex.getLoc(); 3306 if (parseGlobalValueVector(Elts) || 3307 (isPackedStruct && 3308 parseToken(lltok::rbrace, "expected end of packed struct")) || 3309 parseToken(lltok::greater, "expected end of constant")) 3310 return true; 3311 3312 if (isPackedStruct) { 3313 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3314 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3315 Elts.size() * sizeof(Elts[0])); 3316 ID.UIntVal = Elts.size(); 3317 ID.Kind = ValID::t_PackedConstantStruct; 3318 return false; 3319 } 3320 3321 if (Elts.empty()) 3322 return error(ID.Loc, "constant vector must not be empty"); 3323 3324 if (!Elts[0]->getType()->isIntegerTy() && 3325 !Elts[0]->getType()->isFloatingPointTy() && 3326 !Elts[0]->getType()->isPointerTy()) 3327 return error( 3328 FirstEltLoc, 3329 "vector elements must have integer, pointer or floating point type"); 3330 3331 // Verify that all the vector elements have the same type. 3332 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3333 if (Elts[i]->getType() != Elts[0]->getType()) 3334 return error(FirstEltLoc, "vector element #" + Twine(i) + 3335 " is not of type '" + 3336 getTypeString(Elts[0]->getType())); 3337 3338 ID.ConstantVal = ConstantVector::get(Elts); 3339 ID.Kind = ValID::t_Constant; 3340 return false; 3341 } 3342 case lltok::lsquare: { // Array Constant 3343 Lex.Lex(); 3344 SmallVector<Constant*, 16> Elts; 3345 LocTy FirstEltLoc = Lex.getLoc(); 3346 if (parseGlobalValueVector(Elts) || 3347 parseToken(lltok::rsquare, "expected end of array constant")) 3348 return true; 3349 3350 // Handle empty element. 3351 if (Elts.empty()) { 3352 // Use undef instead of an array because it's inconvenient to determine 3353 // the element type at this point, there being no elements to examine. 3354 ID.Kind = ValID::t_EmptyArray; 3355 return false; 3356 } 3357 3358 if (!Elts[0]->getType()->isFirstClassType()) 3359 return error(FirstEltLoc, "invalid array element type: " + 3360 getTypeString(Elts[0]->getType())); 3361 3362 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3363 3364 // Verify all elements are correct type! 3365 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3366 if (Elts[i]->getType() != Elts[0]->getType()) 3367 return error(FirstEltLoc, "array element #" + Twine(i) + 3368 " is not of type '" + 3369 getTypeString(Elts[0]->getType())); 3370 } 3371 3372 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3373 ID.Kind = ValID::t_Constant; 3374 return false; 3375 } 3376 case lltok::kw_c: // c "foo" 3377 Lex.Lex(); 3378 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3379 false); 3380 if (parseToken(lltok::StringConstant, "expected string")) 3381 return true; 3382 ID.Kind = ValID::t_Constant; 3383 return false; 3384 3385 case lltok::kw_asm: { 3386 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3387 // STRINGCONSTANT 3388 bool HasSideEffect, AlignStack, AsmDialect; 3389 Lex.Lex(); 3390 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3391 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3392 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3393 parseStringConstant(ID.StrVal) || 3394 parseToken(lltok::comma, "expected comma in inline asm expression") || 3395 parseToken(lltok::StringConstant, "expected constraint string")) 3396 return true; 3397 ID.StrVal2 = Lex.getStrVal(); 3398 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3399 (unsigned(AsmDialect)<<2); 3400 ID.Kind = ValID::t_InlineAsm; 3401 return false; 3402 } 3403 3404 case lltok::kw_blockaddress: { 3405 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3406 Lex.Lex(); 3407 3408 ValID Fn, Label; 3409 3410 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3411 parseValID(Fn) || 3412 parseToken(lltok::comma, 3413 "expected comma in block address expression") || 3414 parseValID(Label) || 3415 parseToken(lltok::rparen, "expected ')' in block address expression")) 3416 return true; 3417 3418 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3419 return error(Fn.Loc, "expected function name in blockaddress"); 3420 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3421 return error(Label.Loc, "expected basic block name in blockaddress"); 3422 3423 // Try to find the function (but skip it if it's forward-referenced). 3424 GlobalValue *GV = nullptr; 3425 if (Fn.Kind == ValID::t_GlobalID) { 3426 if (Fn.UIntVal < NumberedVals.size()) 3427 GV = NumberedVals[Fn.UIntVal]; 3428 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3429 GV = M->getNamedValue(Fn.StrVal); 3430 } 3431 Function *F = nullptr; 3432 if (GV) { 3433 // Confirm that it's actually a function with a definition. 3434 if (!isa<Function>(GV)) 3435 return error(Fn.Loc, "expected function name in blockaddress"); 3436 F = cast<Function>(GV); 3437 if (F->isDeclaration()) 3438 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3439 } 3440 3441 if (!F) { 3442 // Make a global variable as a placeholder for this reference. 3443 GlobalValue *&FwdRef = 3444 ForwardRefBlockAddresses.insert(std::make_pair( 3445 std::move(Fn), 3446 std::map<ValID, GlobalValue *>())) 3447 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3448 .first->second; 3449 if (!FwdRef) 3450 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3451 GlobalValue::InternalLinkage, nullptr, ""); 3452 ID.ConstantVal = FwdRef; 3453 ID.Kind = ValID::t_Constant; 3454 return false; 3455 } 3456 3457 // We found the function; now find the basic block. Don't use PFS, since we 3458 // might be inside a constant expression. 3459 BasicBlock *BB; 3460 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3461 if (Label.Kind == ValID::t_LocalID) 3462 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3463 else 3464 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3465 if (!BB) 3466 return error(Label.Loc, "referenced value is not a basic block"); 3467 } else { 3468 if (Label.Kind == ValID::t_LocalID) 3469 return error(Label.Loc, "cannot take address of numeric label after " 3470 "the function is defined"); 3471 BB = dyn_cast_or_null<BasicBlock>( 3472 F->getValueSymbolTable()->lookup(Label.StrVal)); 3473 if (!BB) 3474 return error(Label.Loc, "referenced value is not a basic block"); 3475 } 3476 3477 ID.ConstantVal = BlockAddress::get(F, BB); 3478 ID.Kind = ValID::t_Constant; 3479 return false; 3480 } 3481 3482 case lltok::kw_dso_local_equivalent: { 3483 // ValID ::= 'dso_local_equivalent' @foo 3484 Lex.Lex(); 3485 3486 ValID Fn; 3487 3488 if (parseValID(Fn)) 3489 return true; 3490 3491 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3492 return error(Fn.Loc, 3493 "expected global value name in dso_local_equivalent"); 3494 3495 // Try to find the function (but skip it if it's forward-referenced). 3496 GlobalValue *GV = nullptr; 3497 if (Fn.Kind == ValID::t_GlobalID) { 3498 if (Fn.UIntVal < NumberedVals.size()) 3499 GV = NumberedVals[Fn.UIntVal]; 3500 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3501 GV = M->getNamedValue(Fn.StrVal); 3502 } 3503 3504 assert(GV && "Could not find a corresponding global variable"); 3505 3506 if (!GV->getValueType()->isFunctionTy()) 3507 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3508 "in dso_local_equivalent"); 3509 3510 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3511 ID.Kind = ValID::t_Constant; 3512 return false; 3513 } 3514 3515 case lltok::kw_trunc: 3516 case lltok::kw_zext: 3517 case lltok::kw_sext: 3518 case lltok::kw_fptrunc: 3519 case lltok::kw_fpext: 3520 case lltok::kw_bitcast: 3521 case lltok::kw_addrspacecast: 3522 case lltok::kw_uitofp: 3523 case lltok::kw_sitofp: 3524 case lltok::kw_fptoui: 3525 case lltok::kw_fptosi: 3526 case lltok::kw_inttoptr: 3527 case lltok::kw_ptrtoint: { 3528 unsigned Opc = Lex.getUIntVal(); 3529 Type *DestTy = nullptr; 3530 Constant *SrcVal; 3531 Lex.Lex(); 3532 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3533 parseGlobalTypeAndValue(SrcVal) || 3534 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3535 parseType(DestTy) || 3536 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3537 return true; 3538 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3539 return error(ID.Loc, "invalid cast opcode for cast from '" + 3540 getTypeString(SrcVal->getType()) + "' to '" + 3541 getTypeString(DestTy) + "'"); 3542 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3543 SrcVal, DestTy); 3544 ID.Kind = ValID::t_Constant; 3545 return false; 3546 } 3547 case lltok::kw_extractvalue: { 3548 Lex.Lex(); 3549 Constant *Val; 3550 SmallVector<unsigned, 4> Indices; 3551 if (parseToken(lltok::lparen, 3552 "expected '(' in extractvalue constantexpr") || 3553 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3554 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3555 return true; 3556 3557 if (!Val->getType()->isAggregateType()) 3558 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3559 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3560 return error(ID.Loc, "invalid indices for extractvalue"); 3561 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3562 ID.Kind = ValID::t_Constant; 3563 return false; 3564 } 3565 case lltok::kw_insertvalue: { 3566 Lex.Lex(); 3567 Constant *Val0, *Val1; 3568 SmallVector<unsigned, 4> Indices; 3569 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3570 parseGlobalTypeAndValue(Val0) || 3571 parseToken(lltok::comma, 3572 "expected comma in insertvalue constantexpr") || 3573 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3574 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3575 return true; 3576 if (!Val0->getType()->isAggregateType()) 3577 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3578 Type *IndexedType = 3579 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3580 if (!IndexedType) 3581 return error(ID.Loc, "invalid indices for insertvalue"); 3582 if (IndexedType != Val1->getType()) 3583 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3584 getTypeString(Val1->getType()) + 3585 "' instead of '" + getTypeString(IndexedType) + 3586 "'"); 3587 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3588 ID.Kind = ValID::t_Constant; 3589 return false; 3590 } 3591 case lltok::kw_icmp: 3592 case lltok::kw_fcmp: { 3593 unsigned PredVal, Opc = Lex.getUIntVal(); 3594 Constant *Val0, *Val1; 3595 Lex.Lex(); 3596 if (parseCmpPredicate(PredVal, Opc) || 3597 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3598 parseGlobalTypeAndValue(Val0) || 3599 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3600 parseGlobalTypeAndValue(Val1) || 3601 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3602 return true; 3603 3604 if (Val0->getType() != Val1->getType()) 3605 return error(ID.Loc, "compare operands must have the same type"); 3606 3607 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3608 3609 if (Opc == Instruction::FCmp) { 3610 if (!Val0->getType()->isFPOrFPVectorTy()) 3611 return error(ID.Loc, "fcmp requires floating point operands"); 3612 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3613 } else { 3614 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3615 if (!Val0->getType()->isIntOrIntVectorTy() && 3616 !Val0->getType()->isPtrOrPtrVectorTy()) 3617 return error(ID.Loc, "icmp requires pointer or integer operands"); 3618 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3619 } 3620 ID.Kind = ValID::t_Constant; 3621 return false; 3622 } 3623 3624 // Unary Operators. 3625 case lltok::kw_fneg: { 3626 unsigned Opc = Lex.getUIntVal(); 3627 Constant *Val; 3628 Lex.Lex(); 3629 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3630 parseGlobalTypeAndValue(Val) || 3631 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3632 return true; 3633 3634 // Check that the type is valid for the operator. 3635 switch (Opc) { 3636 case Instruction::FNeg: 3637 if (!Val->getType()->isFPOrFPVectorTy()) 3638 return error(ID.Loc, "constexpr requires fp operands"); 3639 break; 3640 default: llvm_unreachable("Unknown unary operator!"); 3641 } 3642 unsigned Flags = 0; 3643 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3644 ID.ConstantVal = C; 3645 ID.Kind = ValID::t_Constant; 3646 return false; 3647 } 3648 // Binary Operators. 3649 case lltok::kw_add: 3650 case lltok::kw_fadd: 3651 case lltok::kw_sub: 3652 case lltok::kw_fsub: 3653 case lltok::kw_mul: 3654 case lltok::kw_fmul: 3655 case lltok::kw_udiv: 3656 case lltok::kw_sdiv: 3657 case lltok::kw_fdiv: 3658 case lltok::kw_urem: 3659 case lltok::kw_srem: 3660 case lltok::kw_frem: 3661 case lltok::kw_shl: 3662 case lltok::kw_lshr: 3663 case lltok::kw_ashr: { 3664 bool NUW = false; 3665 bool NSW = false; 3666 bool Exact = false; 3667 unsigned Opc = Lex.getUIntVal(); 3668 Constant *Val0, *Val1; 3669 Lex.Lex(); 3670 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3671 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3672 if (EatIfPresent(lltok::kw_nuw)) 3673 NUW = true; 3674 if (EatIfPresent(lltok::kw_nsw)) { 3675 NSW = true; 3676 if (EatIfPresent(lltok::kw_nuw)) 3677 NUW = true; 3678 } 3679 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3680 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3681 if (EatIfPresent(lltok::kw_exact)) 3682 Exact = true; 3683 } 3684 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3685 parseGlobalTypeAndValue(Val0) || 3686 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3687 parseGlobalTypeAndValue(Val1) || 3688 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3689 return true; 3690 if (Val0->getType() != Val1->getType()) 3691 return error(ID.Loc, "operands of constexpr must have same type"); 3692 // Check that the type is valid for the operator. 3693 switch (Opc) { 3694 case Instruction::Add: 3695 case Instruction::Sub: 3696 case Instruction::Mul: 3697 case Instruction::UDiv: 3698 case Instruction::SDiv: 3699 case Instruction::URem: 3700 case Instruction::SRem: 3701 case Instruction::Shl: 3702 case Instruction::AShr: 3703 case Instruction::LShr: 3704 if (!Val0->getType()->isIntOrIntVectorTy()) 3705 return error(ID.Loc, "constexpr requires integer operands"); 3706 break; 3707 case Instruction::FAdd: 3708 case Instruction::FSub: 3709 case Instruction::FMul: 3710 case Instruction::FDiv: 3711 case Instruction::FRem: 3712 if (!Val0->getType()->isFPOrFPVectorTy()) 3713 return error(ID.Loc, "constexpr requires fp operands"); 3714 break; 3715 default: llvm_unreachable("Unknown binary operator!"); 3716 } 3717 unsigned Flags = 0; 3718 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3719 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3720 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3721 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3722 ID.ConstantVal = C; 3723 ID.Kind = ValID::t_Constant; 3724 return false; 3725 } 3726 3727 // Logical Operations 3728 case lltok::kw_and: 3729 case lltok::kw_or: 3730 case lltok::kw_xor: { 3731 unsigned Opc = Lex.getUIntVal(); 3732 Constant *Val0, *Val1; 3733 Lex.Lex(); 3734 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3735 parseGlobalTypeAndValue(Val0) || 3736 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3737 parseGlobalTypeAndValue(Val1) || 3738 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3739 return true; 3740 if (Val0->getType() != Val1->getType()) 3741 return error(ID.Loc, "operands of constexpr must have same type"); 3742 if (!Val0->getType()->isIntOrIntVectorTy()) 3743 return error(ID.Loc, 3744 "constexpr requires integer or integer vector operands"); 3745 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3746 ID.Kind = ValID::t_Constant; 3747 return false; 3748 } 3749 3750 case lltok::kw_getelementptr: 3751 case lltok::kw_shufflevector: 3752 case lltok::kw_insertelement: 3753 case lltok::kw_extractelement: 3754 case lltok::kw_select: { 3755 unsigned Opc = Lex.getUIntVal(); 3756 SmallVector<Constant*, 16> Elts; 3757 bool InBounds = false; 3758 Type *Ty; 3759 Lex.Lex(); 3760 3761 if (Opc == Instruction::GetElementPtr) 3762 InBounds = EatIfPresent(lltok::kw_inbounds); 3763 3764 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3765 return true; 3766 3767 LocTy ExplicitTypeLoc = Lex.getLoc(); 3768 if (Opc == Instruction::GetElementPtr) { 3769 if (parseType(Ty) || 3770 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3771 return true; 3772 } 3773 3774 Optional<unsigned> InRangeOp; 3775 if (parseGlobalValueVector( 3776 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3777 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3778 return true; 3779 3780 if (Opc == Instruction::GetElementPtr) { 3781 if (Elts.size() == 0 || 3782 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3783 return error(ID.Loc, "base of getelementptr must be a pointer"); 3784 3785 Type *BaseType = Elts[0]->getType(); 3786 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3787 if (Ty != BasePointerType->getElementType()) 3788 return error( 3789 ExplicitTypeLoc, 3790 "explicit pointee type doesn't match operand's pointee type"); 3791 3792 unsigned GEPWidth = 3793 BaseType->isVectorTy() 3794 ? cast<FixedVectorType>(BaseType)->getNumElements() 3795 : 0; 3796 3797 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3798 for (Constant *Val : Indices) { 3799 Type *ValTy = Val->getType(); 3800 if (!ValTy->isIntOrIntVectorTy()) 3801 return error(ID.Loc, "getelementptr index must be an integer"); 3802 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3803 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3804 if (GEPWidth && (ValNumEl != GEPWidth)) 3805 return error( 3806 ID.Loc, 3807 "getelementptr vector index has a wrong number of elements"); 3808 // GEPWidth may have been unknown because the base is a scalar, 3809 // but it is known now. 3810 GEPWidth = ValNumEl; 3811 } 3812 } 3813 3814 SmallPtrSet<Type*, 4> Visited; 3815 if (!Indices.empty() && !Ty->isSized(&Visited)) 3816 return error(ID.Loc, "base element of getelementptr must be sized"); 3817 3818 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3819 return error(ID.Loc, "invalid getelementptr indices"); 3820 3821 if (InRangeOp) { 3822 if (*InRangeOp == 0) 3823 return error(ID.Loc, 3824 "inrange keyword may not appear on pointer operand"); 3825 --*InRangeOp; 3826 } 3827 3828 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3829 InBounds, InRangeOp); 3830 } else if (Opc == Instruction::Select) { 3831 if (Elts.size() != 3) 3832 return error(ID.Loc, "expected three operands to select"); 3833 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3834 Elts[2])) 3835 return error(ID.Loc, Reason); 3836 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3837 } else if (Opc == Instruction::ShuffleVector) { 3838 if (Elts.size() != 3) 3839 return error(ID.Loc, "expected three operands to shufflevector"); 3840 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3841 return error(ID.Loc, "invalid operands to shufflevector"); 3842 SmallVector<int, 16> Mask; 3843 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3844 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3845 } else if (Opc == Instruction::ExtractElement) { 3846 if (Elts.size() != 2) 3847 return error(ID.Loc, "expected two operands to extractelement"); 3848 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3849 return error(ID.Loc, "invalid extractelement operands"); 3850 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3851 } else { 3852 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3853 if (Elts.size() != 3) 3854 return error(ID.Loc, "expected three operands to insertelement"); 3855 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3856 return error(ID.Loc, "invalid insertelement operands"); 3857 ID.ConstantVal = 3858 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3859 } 3860 3861 ID.Kind = ValID::t_Constant; 3862 return false; 3863 } 3864 } 3865 3866 Lex.Lex(); 3867 return false; 3868 } 3869 3870 /// parseGlobalValue - parse a global value with the specified type. 3871 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3872 C = nullptr; 3873 ValID ID; 3874 Value *V = nullptr; 3875 bool Parsed = parseValID(ID) || 3876 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3877 if (V && !(C = dyn_cast<Constant>(V))) 3878 return error(ID.Loc, "global values must be constants"); 3879 return Parsed; 3880 } 3881 3882 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3883 Type *Ty = nullptr; 3884 return parseType(Ty) || parseGlobalValue(Ty, V); 3885 } 3886 3887 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3888 C = nullptr; 3889 3890 LocTy KwLoc = Lex.getLoc(); 3891 if (!EatIfPresent(lltok::kw_comdat)) 3892 return false; 3893 3894 if (EatIfPresent(lltok::lparen)) { 3895 if (Lex.getKind() != lltok::ComdatVar) 3896 return tokError("expected comdat variable"); 3897 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3898 Lex.Lex(); 3899 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3900 return true; 3901 } else { 3902 if (GlobalName.empty()) 3903 return tokError("comdat cannot be unnamed"); 3904 C = getComdat(std::string(GlobalName), KwLoc); 3905 } 3906 3907 return false; 3908 } 3909 3910 /// parseGlobalValueVector 3911 /// ::= /*empty*/ 3912 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3913 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3914 Optional<unsigned> *InRangeOp) { 3915 // Empty list. 3916 if (Lex.getKind() == lltok::rbrace || 3917 Lex.getKind() == lltok::rsquare || 3918 Lex.getKind() == lltok::greater || 3919 Lex.getKind() == lltok::rparen) 3920 return false; 3921 3922 do { 3923 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3924 *InRangeOp = Elts.size(); 3925 3926 Constant *C; 3927 if (parseGlobalTypeAndValue(C)) 3928 return true; 3929 Elts.push_back(C); 3930 } while (EatIfPresent(lltok::comma)); 3931 3932 return false; 3933 } 3934 3935 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3936 SmallVector<Metadata *, 16> Elts; 3937 if (parseMDNodeVector(Elts)) 3938 return true; 3939 3940 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3941 return false; 3942 } 3943 3944 /// MDNode: 3945 /// ::= !{ ... } 3946 /// ::= !7 3947 /// ::= !DILocation(...) 3948 bool LLParser::parseMDNode(MDNode *&N) { 3949 if (Lex.getKind() == lltok::MetadataVar) 3950 return parseSpecializedMDNode(N); 3951 3952 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3953 } 3954 3955 bool LLParser::parseMDNodeTail(MDNode *&N) { 3956 // !{ ... } 3957 if (Lex.getKind() == lltok::lbrace) 3958 return parseMDTuple(N); 3959 3960 // !42 3961 return parseMDNodeID(N); 3962 } 3963 3964 namespace { 3965 3966 /// Structure to represent an optional metadata field. 3967 template <class FieldTy> struct MDFieldImpl { 3968 typedef MDFieldImpl ImplTy; 3969 FieldTy Val; 3970 bool Seen; 3971 3972 void assign(FieldTy Val) { 3973 Seen = true; 3974 this->Val = std::move(Val); 3975 } 3976 3977 explicit MDFieldImpl(FieldTy Default) 3978 : Val(std::move(Default)), Seen(false) {} 3979 }; 3980 3981 /// Structure to represent an optional metadata field that 3982 /// can be of either type (A or B) and encapsulates the 3983 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3984 /// to reimplement the specifics for representing each Field. 3985 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3986 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3987 FieldTypeA A; 3988 FieldTypeB B; 3989 bool Seen; 3990 3991 enum { 3992 IsInvalid = 0, 3993 IsTypeA = 1, 3994 IsTypeB = 2 3995 } WhatIs; 3996 3997 void assign(FieldTypeA A) { 3998 Seen = true; 3999 this->A = std::move(A); 4000 WhatIs = IsTypeA; 4001 } 4002 4003 void assign(FieldTypeB B) { 4004 Seen = true; 4005 this->B = std::move(B); 4006 WhatIs = IsTypeB; 4007 } 4008 4009 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4010 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4011 WhatIs(IsInvalid) {} 4012 }; 4013 4014 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4015 uint64_t Max; 4016 4017 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4018 : ImplTy(Default), Max(Max) {} 4019 }; 4020 4021 struct LineField : public MDUnsignedField { 4022 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4023 }; 4024 4025 struct ColumnField : public MDUnsignedField { 4026 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4027 }; 4028 4029 struct DwarfTagField : public MDUnsignedField { 4030 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4031 DwarfTagField(dwarf::Tag DefaultTag) 4032 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4033 }; 4034 4035 struct DwarfMacinfoTypeField : public MDUnsignedField { 4036 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4037 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4038 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4039 }; 4040 4041 struct DwarfAttEncodingField : public MDUnsignedField { 4042 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4043 }; 4044 4045 struct DwarfVirtualityField : public MDUnsignedField { 4046 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4047 }; 4048 4049 struct DwarfLangField : public MDUnsignedField { 4050 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4051 }; 4052 4053 struct DwarfCCField : public MDUnsignedField { 4054 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4055 }; 4056 4057 struct EmissionKindField : public MDUnsignedField { 4058 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4059 }; 4060 4061 struct NameTableKindField : public MDUnsignedField { 4062 NameTableKindField() 4063 : MDUnsignedField( 4064 0, (unsigned) 4065 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4066 }; 4067 4068 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4069 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4070 }; 4071 4072 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4073 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4074 }; 4075 4076 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4077 MDAPSIntField() : ImplTy(APSInt()) {} 4078 }; 4079 4080 struct MDSignedField : public MDFieldImpl<int64_t> { 4081 int64_t Min; 4082 int64_t Max; 4083 4084 MDSignedField(int64_t Default = 0) 4085 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4086 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4087 : ImplTy(Default), Min(Min), Max(Max) {} 4088 }; 4089 4090 struct MDBoolField : public MDFieldImpl<bool> { 4091 MDBoolField(bool Default = false) : ImplTy(Default) {} 4092 }; 4093 4094 struct MDField : public MDFieldImpl<Metadata *> { 4095 bool AllowNull; 4096 4097 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4098 }; 4099 4100 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4101 MDConstant() : ImplTy(nullptr) {} 4102 }; 4103 4104 struct MDStringField : public MDFieldImpl<MDString *> { 4105 bool AllowEmpty; 4106 MDStringField(bool AllowEmpty = true) 4107 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4108 }; 4109 4110 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4111 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4112 }; 4113 4114 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4115 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4116 }; 4117 4118 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4119 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4120 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4121 4122 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4123 bool AllowNull = true) 4124 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4125 4126 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4127 bool isMDField() const { return WhatIs == IsTypeB; } 4128 int64_t getMDSignedValue() const { 4129 assert(isMDSignedField() && "Wrong field type"); 4130 return A.Val; 4131 } 4132 Metadata *getMDFieldValue() const { 4133 assert(isMDField() && "Wrong field type"); 4134 return B.Val; 4135 } 4136 }; 4137 4138 struct MDSignedOrUnsignedField 4139 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4140 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4141 4142 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4143 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4144 int64_t getMDSignedValue() const { 4145 assert(isMDSignedField() && "Wrong field type"); 4146 return A.Val; 4147 } 4148 uint64_t getMDUnsignedValue() const { 4149 assert(isMDUnsignedField() && "Wrong field type"); 4150 return B.Val; 4151 } 4152 }; 4153 4154 } // end anonymous namespace 4155 4156 namespace llvm { 4157 4158 template <> 4159 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4160 if (Lex.getKind() != lltok::APSInt) 4161 return tokError("expected integer"); 4162 4163 Result.assign(Lex.getAPSIntVal()); 4164 Lex.Lex(); 4165 return false; 4166 } 4167 4168 template <> 4169 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4170 MDUnsignedField &Result) { 4171 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4172 return tokError("expected unsigned integer"); 4173 4174 auto &U = Lex.getAPSIntVal(); 4175 if (U.ugt(Result.Max)) 4176 return tokError("value for '" + Name + "' too large, limit is " + 4177 Twine(Result.Max)); 4178 Result.assign(U.getZExtValue()); 4179 assert(Result.Val <= Result.Max && "Expected value in range"); 4180 Lex.Lex(); 4181 return false; 4182 } 4183 4184 template <> 4185 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4186 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4187 } 4188 template <> 4189 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4190 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4191 } 4192 4193 template <> 4194 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4195 if (Lex.getKind() == lltok::APSInt) 4196 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4197 4198 if (Lex.getKind() != lltok::DwarfTag) 4199 return tokError("expected DWARF tag"); 4200 4201 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4202 if (Tag == dwarf::DW_TAG_invalid) 4203 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4204 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4205 4206 Result.assign(Tag); 4207 Lex.Lex(); 4208 return false; 4209 } 4210 4211 template <> 4212 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4213 DwarfMacinfoTypeField &Result) { 4214 if (Lex.getKind() == lltok::APSInt) 4215 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4216 4217 if (Lex.getKind() != lltok::DwarfMacinfo) 4218 return tokError("expected DWARF macinfo type"); 4219 4220 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4221 if (Macinfo == dwarf::DW_MACINFO_invalid) 4222 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4223 Lex.getStrVal() + "'"); 4224 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4225 4226 Result.assign(Macinfo); 4227 Lex.Lex(); 4228 return false; 4229 } 4230 4231 template <> 4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4233 DwarfVirtualityField &Result) { 4234 if (Lex.getKind() == lltok::APSInt) 4235 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4236 4237 if (Lex.getKind() != lltok::DwarfVirtuality) 4238 return tokError("expected DWARF virtuality code"); 4239 4240 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4241 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4242 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4243 Lex.getStrVal() + "'"); 4244 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4245 Result.assign(Virtuality); 4246 Lex.Lex(); 4247 return false; 4248 } 4249 4250 template <> 4251 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4252 if (Lex.getKind() == lltok::APSInt) 4253 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4254 4255 if (Lex.getKind() != lltok::DwarfLang) 4256 return tokError("expected DWARF language"); 4257 4258 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4259 if (!Lang) 4260 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4261 "'"); 4262 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4263 Result.assign(Lang); 4264 Lex.Lex(); 4265 return false; 4266 } 4267 4268 template <> 4269 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4270 if (Lex.getKind() == lltok::APSInt) 4271 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4272 4273 if (Lex.getKind() != lltok::DwarfCC) 4274 return tokError("expected DWARF calling convention"); 4275 4276 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4277 if (!CC) 4278 return tokError("invalid DWARF calling convention" + Twine(" '") + 4279 Lex.getStrVal() + "'"); 4280 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4281 Result.assign(CC); 4282 Lex.Lex(); 4283 return false; 4284 } 4285 4286 template <> 4287 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4288 EmissionKindField &Result) { 4289 if (Lex.getKind() == lltok::APSInt) 4290 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4291 4292 if (Lex.getKind() != lltok::EmissionKind) 4293 return tokError("expected emission kind"); 4294 4295 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4296 if (!Kind) 4297 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4298 "'"); 4299 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4300 Result.assign(*Kind); 4301 Lex.Lex(); 4302 return false; 4303 } 4304 4305 template <> 4306 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4307 NameTableKindField &Result) { 4308 if (Lex.getKind() == lltok::APSInt) 4309 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4310 4311 if (Lex.getKind() != lltok::NameTableKind) 4312 return tokError("expected nameTable kind"); 4313 4314 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4315 if (!Kind) 4316 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4317 "'"); 4318 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4319 Result.assign((unsigned)*Kind); 4320 Lex.Lex(); 4321 return false; 4322 } 4323 4324 template <> 4325 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4326 DwarfAttEncodingField &Result) { 4327 if (Lex.getKind() == lltok::APSInt) 4328 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4329 4330 if (Lex.getKind() != lltok::DwarfAttEncoding) 4331 return tokError("expected DWARF type attribute encoding"); 4332 4333 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4334 if (!Encoding) 4335 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4336 Lex.getStrVal() + "'"); 4337 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4338 Result.assign(Encoding); 4339 Lex.Lex(); 4340 return false; 4341 } 4342 4343 /// DIFlagField 4344 /// ::= uint32 4345 /// ::= DIFlagVector 4346 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4347 template <> 4348 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4349 4350 // parser for a single flag. 4351 auto parseFlag = [&](DINode::DIFlags &Val) { 4352 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4353 uint32_t TempVal = static_cast<uint32_t>(Val); 4354 bool Res = parseUInt32(TempVal); 4355 Val = static_cast<DINode::DIFlags>(TempVal); 4356 return Res; 4357 } 4358 4359 if (Lex.getKind() != lltok::DIFlag) 4360 return tokError("expected debug info flag"); 4361 4362 Val = DINode::getFlag(Lex.getStrVal()); 4363 if (!Val) 4364 return tokError(Twine("invalid debug info flag flag '") + 4365 Lex.getStrVal() + "'"); 4366 Lex.Lex(); 4367 return false; 4368 }; 4369 4370 // parse the flags and combine them together. 4371 DINode::DIFlags Combined = DINode::FlagZero; 4372 do { 4373 DINode::DIFlags Val; 4374 if (parseFlag(Val)) 4375 return true; 4376 Combined |= Val; 4377 } while (EatIfPresent(lltok::bar)); 4378 4379 Result.assign(Combined); 4380 return false; 4381 } 4382 4383 /// DISPFlagField 4384 /// ::= uint32 4385 /// ::= DISPFlagVector 4386 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4387 template <> 4388 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4389 4390 // parser for a single flag. 4391 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4392 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4393 uint32_t TempVal = static_cast<uint32_t>(Val); 4394 bool Res = parseUInt32(TempVal); 4395 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4396 return Res; 4397 } 4398 4399 if (Lex.getKind() != lltok::DISPFlag) 4400 return tokError("expected debug info flag"); 4401 4402 Val = DISubprogram::getFlag(Lex.getStrVal()); 4403 if (!Val) 4404 return tokError(Twine("invalid subprogram debug info flag '") + 4405 Lex.getStrVal() + "'"); 4406 Lex.Lex(); 4407 return false; 4408 }; 4409 4410 // parse the flags and combine them together. 4411 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4412 do { 4413 DISubprogram::DISPFlags Val; 4414 if (parseFlag(Val)) 4415 return true; 4416 Combined |= Val; 4417 } while (EatIfPresent(lltok::bar)); 4418 4419 Result.assign(Combined); 4420 return false; 4421 } 4422 4423 template <> 4424 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4425 if (Lex.getKind() != lltok::APSInt) 4426 return tokError("expected signed integer"); 4427 4428 auto &S = Lex.getAPSIntVal(); 4429 if (S < Result.Min) 4430 return tokError("value for '" + Name + "' too small, limit is " + 4431 Twine(Result.Min)); 4432 if (S > Result.Max) 4433 return tokError("value for '" + Name + "' too large, limit is " + 4434 Twine(Result.Max)); 4435 Result.assign(S.getExtValue()); 4436 assert(Result.Val >= Result.Min && "Expected value in range"); 4437 assert(Result.Val <= Result.Max && "Expected value in range"); 4438 Lex.Lex(); 4439 return false; 4440 } 4441 4442 template <> 4443 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4444 switch (Lex.getKind()) { 4445 default: 4446 return tokError("expected 'true' or 'false'"); 4447 case lltok::kw_true: 4448 Result.assign(true); 4449 break; 4450 case lltok::kw_false: 4451 Result.assign(false); 4452 break; 4453 } 4454 Lex.Lex(); 4455 return false; 4456 } 4457 4458 template <> 4459 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4460 if (Lex.getKind() == lltok::kw_null) { 4461 if (!Result.AllowNull) 4462 return tokError("'" + Name + "' cannot be null"); 4463 Lex.Lex(); 4464 Result.assign(nullptr); 4465 return false; 4466 } 4467 4468 Metadata *MD; 4469 if (parseMetadata(MD, nullptr)) 4470 return true; 4471 4472 Result.assign(MD); 4473 return false; 4474 } 4475 4476 template <> 4477 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4478 MDSignedOrMDField &Result) { 4479 // Try to parse a signed int. 4480 if (Lex.getKind() == lltok::APSInt) { 4481 MDSignedField Res = Result.A; 4482 if (!parseMDField(Loc, Name, Res)) { 4483 Result.assign(Res); 4484 return false; 4485 } 4486 return true; 4487 } 4488 4489 // Otherwise, try to parse as an MDField. 4490 MDField Res = Result.B; 4491 if (!parseMDField(Loc, Name, Res)) { 4492 Result.assign(Res); 4493 return false; 4494 } 4495 4496 return true; 4497 } 4498 4499 template <> 4500 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4501 LocTy ValueLoc = Lex.getLoc(); 4502 std::string S; 4503 if (parseStringConstant(S)) 4504 return true; 4505 4506 if (!Result.AllowEmpty && S.empty()) 4507 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4508 4509 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4510 return false; 4511 } 4512 4513 template <> 4514 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4515 SmallVector<Metadata *, 4> MDs; 4516 if (parseMDNodeVector(MDs)) 4517 return true; 4518 4519 Result.assign(std::move(MDs)); 4520 return false; 4521 } 4522 4523 template <> 4524 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4525 ChecksumKindField &Result) { 4526 Optional<DIFile::ChecksumKind> CSKind = 4527 DIFile::getChecksumKind(Lex.getStrVal()); 4528 4529 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4530 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4531 "'"); 4532 4533 Result.assign(*CSKind); 4534 Lex.Lex(); 4535 return false; 4536 } 4537 4538 } // end namespace llvm 4539 4540 template <class ParserTy> 4541 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4542 do { 4543 if (Lex.getKind() != lltok::LabelStr) 4544 return tokError("expected field label here"); 4545 4546 if (ParseField()) 4547 return true; 4548 } while (EatIfPresent(lltok::comma)); 4549 4550 return false; 4551 } 4552 4553 template <class ParserTy> 4554 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4555 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4556 Lex.Lex(); 4557 4558 if (parseToken(lltok::lparen, "expected '(' here")) 4559 return true; 4560 if (Lex.getKind() != lltok::rparen) 4561 if (parseMDFieldsImplBody(ParseField)) 4562 return true; 4563 4564 ClosingLoc = Lex.getLoc(); 4565 return parseToken(lltok::rparen, "expected ')' here"); 4566 } 4567 4568 template <class FieldTy> 4569 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4570 if (Result.Seen) 4571 return tokError("field '" + Name + "' cannot be specified more than once"); 4572 4573 LocTy Loc = Lex.getLoc(); 4574 Lex.Lex(); 4575 return parseMDField(Loc, Name, Result); 4576 } 4577 4578 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4579 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4580 4581 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4582 if (Lex.getStrVal() == #CLASS) \ 4583 return parse##CLASS(N, IsDistinct); 4584 #include "llvm/IR/Metadata.def" 4585 4586 return tokError("expected metadata type"); 4587 } 4588 4589 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4590 #define NOP_FIELD(NAME, TYPE, INIT) 4591 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4592 if (!NAME.Seen) \ 4593 return error(ClosingLoc, "missing required field '" #NAME "'"); 4594 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4595 if (Lex.getStrVal() == #NAME) \ 4596 return parseMDField(#NAME, NAME); 4597 #define PARSE_MD_FIELDS() \ 4598 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4599 do { \ 4600 LocTy ClosingLoc; \ 4601 if (parseMDFieldsImpl( \ 4602 [&]() -> bool { \ 4603 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4604 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4605 "'"); \ 4606 }, \ 4607 ClosingLoc)) \ 4608 return true; \ 4609 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4610 } while (false) 4611 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4612 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4613 4614 /// parseDILocationFields: 4615 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4616 /// isImplicitCode: true) 4617 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4618 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4619 OPTIONAL(line, LineField, ); \ 4620 OPTIONAL(column, ColumnField, ); \ 4621 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4622 OPTIONAL(inlinedAt, MDField, ); \ 4623 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4624 PARSE_MD_FIELDS(); 4625 #undef VISIT_MD_FIELDS 4626 4627 Result = 4628 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4629 inlinedAt.Val, isImplicitCode.Val)); 4630 return false; 4631 } 4632 4633 /// parseGenericDINode: 4634 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4635 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4637 REQUIRED(tag, DwarfTagField, ); \ 4638 OPTIONAL(header, MDStringField, ); \ 4639 OPTIONAL(operands, MDFieldList, ); 4640 PARSE_MD_FIELDS(); 4641 #undef VISIT_MD_FIELDS 4642 4643 Result = GET_OR_DISTINCT(GenericDINode, 4644 (Context, tag.Val, header.Val, operands.Val)); 4645 return false; 4646 } 4647 4648 /// parseDISubrange: 4649 /// ::= !DISubrange(count: 30, lowerBound: 2) 4650 /// ::= !DISubrange(count: !node, lowerBound: 2) 4651 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4652 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4654 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4655 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4656 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4657 OPTIONAL(stride, MDSignedOrMDField, ); 4658 PARSE_MD_FIELDS(); 4659 #undef VISIT_MD_FIELDS 4660 4661 Metadata *Count = nullptr; 4662 Metadata *LowerBound = nullptr; 4663 Metadata *UpperBound = nullptr; 4664 Metadata *Stride = nullptr; 4665 if (count.isMDSignedField()) 4666 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4667 Type::getInt64Ty(Context), count.getMDSignedValue())); 4668 else if (count.isMDField()) 4669 Count = count.getMDFieldValue(); 4670 4671 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4672 if (Bound.isMDSignedField()) 4673 return ConstantAsMetadata::get(ConstantInt::getSigned( 4674 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4675 if (Bound.isMDField()) 4676 return Bound.getMDFieldValue(); 4677 return nullptr; 4678 }; 4679 4680 LowerBound = convToMetadata(lowerBound); 4681 UpperBound = convToMetadata(upperBound); 4682 Stride = convToMetadata(stride); 4683 4684 Result = GET_OR_DISTINCT(DISubrange, 4685 (Context, Count, LowerBound, UpperBound, Stride)); 4686 4687 return false; 4688 } 4689 4690 /// parseDIGenericSubrange: 4691 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4692 /// !node3) 4693 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4695 OPTIONAL(count, MDSignedOrMDField, ); \ 4696 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4697 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4698 OPTIONAL(stride, MDSignedOrMDField, ); 4699 PARSE_MD_FIELDS(); 4700 #undef VISIT_MD_FIELDS 4701 4702 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4703 if (Bound.isMDSignedField()) 4704 return DIExpression::get( 4705 Context, {dwarf::DW_OP_consts, 4706 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4707 if (Bound.isMDField()) 4708 return Bound.getMDFieldValue(); 4709 return nullptr; 4710 }; 4711 4712 Metadata *Count = ConvToMetadata(count); 4713 Metadata *LowerBound = ConvToMetadata(lowerBound); 4714 Metadata *UpperBound = ConvToMetadata(upperBound); 4715 Metadata *Stride = ConvToMetadata(stride); 4716 4717 Result = GET_OR_DISTINCT(DIGenericSubrange, 4718 (Context, Count, LowerBound, UpperBound, Stride)); 4719 4720 return false; 4721 } 4722 4723 /// parseDIEnumerator: 4724 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4725 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4727 REQUIRED(name, MDStringField, ); \ 4728 REQUIRED(value, MDAPSIntField, ); \ 4729 OPTIONAL(isUnsigned, MDBoolField, (false)); 4730 PARSE_MD_FIELDS(); 4731 #undef VISIT_MD_FIELDS 4732 4733 if (isUnsigned.Val && value.Val.isNegative()) 4734 return tokError("unsigned enumerator with negative value"); 4735 4736 APSInt Value(value.Val); 4737 // Add a leading zero so that unsigned values with the msb set are not 4738 // mistaken for negative values when used for signed enumerators. 4739 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4740 Value = Value.zext(Value.getBitWidth() + 1); 4741 4742 Result = 4743 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4744 4745 return false; 4746 } 4747 4748 /// parseDIBasicType: 4749 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4750 /// encoding: DW_ATE_encoding, flags: 0) 4751 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4753 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4754 OPTIONAL(name, MDStringField, ); \ 4755 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4756 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4757 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4758 OPTIONAL(flags, DIFlagField, ); 4759 PARSE_MD_FIELDS(); 4760 #undef VISIT_MD_FIELDS 4761 4762 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4763 align.Val, encoding.Val, flags.Val)); 4764 return false; 4765 } 4766 4767 /// parseDIStringType: 4768 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4769 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4770 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4771 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4772 OPTIONAL(name, MDStringField, ); \ 4773 OPTIONAL(stringLength, MDField, ); \ 4774 OPTIONAL(stringLengthExpression, MDField, ); \ 4775 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4776 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4777 OPTIONAL(encoding, DwarfAttEncodingField, ); 4778 PARSE_MD_FIELDS(); 4779 #undef VISIT_MD_FIELDS 4780 4781 Result = GET_OR_DISTINCT(DIStringType, 4782 (Context, tag.Val, name.Val, stringLength.Val, 4783 stringLengthExpression.Val, size.Val, align.Val, 4784 encoding.Val)); 4785 return false; 4786 } 4787 4788 /// parseDIDerivedType: 4789 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4790 /// line: 7, scope: !1, baseType: !2, size: 32, 4791 /// align: 32, offset: 0, flags: 0, extraData: !3, 4792 /// dwarfAddressSpace: 3) 4793 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4794 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4795 REQUIRED(tag, DwarfTagField, ); \ 4796 OPTIONAL(name, MDStringField, ); \ 4797 OPTIONAL(file, MDField, ); \ 4798 OPTIONAL(line, LineField, ); \ 4799 OPTIONAL(scope, MDField, ); \ 4800 REQUIRED(baseType, MDField, ); \ 4801 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4802 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4803 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4804 OPTIONAL(flags, DIFlagField, ); \ 4805 OPTIONAL(extraData, MDField, ); \ 4806 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4807 PARSE_MD_FIELDS(); 4808 #undef VISIT_MD_FIELDS 4809 4810 Optional<unsigned> DWARFAddressSpace; 4811 if (dwarfAddressSpace.Val != UINT32_MAX) 4812 DWARFAddressSpace = dwarfAddressSpace.Val; 4813 4814 Result = GET_OR_DISTINCT(DIDerivedType, 4815 (Context, tag.Val, name.Val, file.Val, line.Val, 4816 scope.Val, baseType.Val, size.Val, align.Val, 4817 offset.Val, DWARFAddressSpace, flags.Val, 4818 extraData.Val)); 4819 return false; 4820 } 4821 4822 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4823 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4824 REQUIRED(tag, DwarfTagField, ); \ 4825 OPTIONAL(name, MDStringField, ); \ 4826 OPTIONAL(file, MDField, ); \ 4827 OPTIONAL(line, LineField, ); \ 4828 OPTIONAL(scope, MDField, ); \ 4829 OPTIONAL(baseType, MDField, ); \ 4830 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4831 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4832 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4833 OPTIONAL(flags, DIFlagField, ); \ 4834 OPTIONAL(elements, MDField, ); \ 4835 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4836 OPTIONAL(vtableHolder, MDField, ); \ 4837 OPTIONAL(templateParams, MDField, ); \ 4838 OPTIONAL(identifier, MDStringField, ); \ 4839 OPTIONAL(discriminator, MDField, ); \ 4840 OPTIONAL(dataLocation, MDField, ); \ 4841 OPTIONAL(associated, MDField, ); \ 4842 OPTIONAL(allocated, MDField, ); \ 4843 OPTIONAL(rank, MDSignedOrMDField, ); 4844 PARSE_MD_FIELDS(); 4845 #undef VISIT_MD_FIELDS 4846 4847 Metadata *Rank = nullptr; 4848 if (rank.isMDSignedField()) 4849 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4850 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4851 else if (rank.isMDField()) 4852 Rank = rank.getMDFieldValue(); 4853 4854 // If this has an identifier try to build an ODR type. 4855 if (identifier.Val) 4856 if (auto *CT = DICompositeType::buildODRType( 4857 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4858 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4859 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4860 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4861 Rank)) { 4862 Result = CT; 4863 return false; 4864 } 4865 4866 // Create a new node, and save it in the context if it belongs in the type 4867 // map. 4868 Result = GET_OR_DISTINCT( 4869 DICompositeType, 4870 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4871 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4872 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4873 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4874 Rank)); 4875 return false; 4876 } 4877 4878 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4880 OPTIONAL(flags, DIFlagField, ); \ 4881 OPTIONAL(cc, DwarfCCField, ); \ 4882 REQUIRED(types, MDField, ); 4883 PARSE_MD_FIELDS(); 4884 #undef VISIT_MD_FIELDS 4885 4886 Result = GET_OR_DISTINCT(DISubroutineType, 4887 (Context, flags.Val, cc.Val, types.Val)); 4888 return false; 4889 } 4890 4891 /// parseDIFileType: 4892 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4893 /// checksumkind: CSK_MD5, 4894 /// checksum: "000102030405060708090a0b0c0d0e0f", 4895 /// source: "source file contents") 4896 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4897 // The default constructed value for checksumkind is required, but will never 4898 // be used, as the parser checks if the field was actually Seen before using 4899 // the Val. 4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4901 REQUIRED(filename, MDStringField, ); \ 4902 REQUIRED(directory, MDStringField, ); \ 4903 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4904 OPTIONAL(checksum, MDStringField, ); \ 4905 OPTIONAL(source, MDStringField, ); 4906 PARSE_MD_FIELDS(); 4907 #undef VISIT_MD_FIELDS 4908 4909 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4910 if (checksumkind.Seen && checksum.Seen) 4911 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4912 else if (checksumkind.Seen || checksum.Seen) 4913 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4914 4915 Optional<MDString *> OptSource; 4916 if (source.Seen) 4917 OptSource = source.Val; 4918 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4919 OptChecksum, OptSource)); 4920 return false; 4921 } 4922 4923 /// parseDICompileUnit: 4924 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4925 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4926 /// splitDebugFilename: "abc.debug", 4927 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4928 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4929 /// sysroot: "/", sdk: "MacOSX.sdk") 4930 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4931 if (!IsDistinct) 4932 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4933 4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4935 REQUIRED(language, DwarfLangField, ); \ 4936 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4937 OPTIONAL(producer, MDStringField, ); \ 4938 OPTIONAL(isOptimized, MDBoolField, ); \ 4939 OPTIONAL(flags, MDStringField, ); \ 4940 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4941 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4942 OPTIONAL(emissionKind, EmissionKindField, ); \ 4943 OPTIONAL(enums, MDField, ); \ 4944 OPTIONAL(retainedTypes, MDField, ); \ 4945 OPTIONAL(globals, MDField, ); \ 4946 OPTIONAL(imports, MDField, ); \ 4947 OPTIONAL(macros, MDField, ); \ 4948 OPTIONAL(dwoId, MDUnsignedField, ); \ 4949 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4950 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4951 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4952 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4953 OPTIONAL(sysroot, MDStringField, ); \ 4954 OPTIONAL(sdk, MDStringField, ); 4955 PARSE_MD_FIELDS(); 4956 #undef VISIT_MD_FIELDS 4957 4958 Result = DICompileUnit::getDistinct( 4959 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4960 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4961 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4962 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4963 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4964 return false; 4965 } 4966 4967 /// parseDISubprogram: 4968 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4969 /// file: !1, line: 7, type: !2, isLocal: false, 4970 /// isDefinition: true, scopeLine: 8, containingType: !3, 4971 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4972 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4973 /// spFlags: 10, isOptimized: false, templateParams: !4, 4974 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4975 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4976 auto Loc = Lex.getLoc(); 4977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4978 OPTIONAL(scope, MDField, ); \ 4979 OPTIONAL(name, MDStringField, ); \ 4980 OPTIONAL(linkageName, MDStringField, ); \ 4981 OPTIONAL(file, MDField, ); \ 4982 OPTIONAL(line, LineField, ); \ 4983 OPTIONAL(type, MDField, ); \ 4984 OPTIONAL(isLocal, MDBoolField, ); \ 4985 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4986 OPTIONAL(scopeLine, LineField, ); \ 4987 OPTIONAL(containingType, MDField, ); \ 4988 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4989 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4990 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4991 OPTIONAL(flags, DIFlagField, ); \ 4992 OPTIONAL(spFlags, DISPFlagField, ); \ 4993 OPTIONAL(isOptimized, MDBoolField, ); \ 4994 OPTIONAL(unit, MDField, ); \ 4995 OPTIONAL(templateParams, MDField, ); \ 4996 OPTIONAL(declaration, MDField, ); \ 4997 OPTIONAL(retainedNodes, MDField, ); \ 4998 OPTIONAL(thrownTypes, MDField, ); 4999 PARSE_MD_FIELDS(); 5000 #undef VISIT_MD_FIELDS 5001 5002 // An explicit spFlags field takes precedence over individual fields in 5003 // older IR versions. 5004 DISubprogram::DISPFlags SPFlags = 5005 spFlags.Seen ? spFlags.Val 5006 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5007 isOptimized.Val, virtuality.Val); 5008 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5009 return Lex.Error( 5010 Loc, 5011 "missing 'distinct', required for !DISubprogram that is a Definition"); 5012 Result = GET_OR_DISTINCT( 5013 DISubprogram, 5014 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5015 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5016 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5017 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5018 return false; 5019 } 5020 5021 /// parseDILexicalBlock: 5022 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5023 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5025 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5026 OPTIONAL(file, MDField, ); \ 5027 OPTIONAL(line, LineField, ); \ 5028 OPTIONAL(column, ColumnField, ); 5029 PARSE_MD_FIELDS(); 5030 #undef VISIT_MD_FIELDS 5031 5032 Result = GET_OR_DISTINCT( 5033 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5034 return false; 5035 } 5036 5037 /// parseDILexicalBlockFile: 5038 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5039 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5040 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5041 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5042 OPTIONAL(file, MDField, ); \ 5043 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5044 PARSE_MD_FIELDS(); 5045 #undef VISIT_MD_FIELDS 5046 5047 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5048 (Context, scope.Val, file.Val, discriminator.Val)); 5049 return false; 5050 } 5051 5052 /// parseDICommonBlock: 5053 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5054 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5055 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5056 REQUIRED(scope, MDField, ); \ 5057 OPTIONAL(declaration, MDField, ); \ 5058 OPTIONAL(name, MDStringField, ); \ 5059 OPTIONAL(file, MDField, ); \ 5060 OPTIONAL(line, LineField, ); 5061 PARSE_MD_FIELDS(); 5062 #undef VISIT_MD_FIELDS 5063 5064 Result = GET_OR_DISTINCT(DICommonBlock, 5065 (Context, scope.Val, declaration.Val, name.Val, 5066 file.Val, line.Val)); 5067 return false; 5068 } 5069 5070 /// parseDINamespace: 5071 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5072 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5073 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5074 REQUIRED(scope, MDField, ); \ 5075 OPTIONAL(name, MDStringField, ); \ 5076 OPTIONAL(exportSymbols, MDBoolField, ); 5077 PARSE_MD_FIELDS(); 5078 #undef VISIT_MD_FIELDS 5079 5080 Result = GET_OR_DISTINCT(DINamespace, 5081 (Context, scope.Val, name.Val, exportSymbols.Val)); 5082 return false; 5083 } 5084 5085 /// parseDIMacro: 5086 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5087 /// "SomeValue") 5088 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5089 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5090 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5091 OPTIONAL(line, LineField, ); \ 5092 REQUIRED(name, MDStringField, ); \ 5093 OPTIONAL(value, MDStringField, ); 5094 PARSE_MD_FIELDS(); 5095 #undef VISIT_MD_FIELDS 5096 5097 Result = GET_OR_DISTINCT(DIMacro, 5098 (Context, type.Val, line.Val, name.Val, value.Val)); 5099 return false; 5100 } 5101 5102 /// parseDIMacroFile: 5103 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5104 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5105 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5106 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5107 OPTIONAL(line, LineField, ); \ 5108 REQUIRED(file, MDField, ); \ 5109 OPTIONAL(nodes, MDField, ); 5110 PARSE_MD_FIELDS(); 5111 #undef VISIT_MD_FIELDS 5112 5113 Result = GET_OR_DISTINCT(DIMacroFile, 5114 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5115 return false; 5116 } 5117 5118 /// parseDIModule: 5119 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5120 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5121 /// file: !1, line: 4) 5122 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5123 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5124 REQUIRED(scope, MDField, ); \ 5125 REQUIRED(name, MDStringField, ); \ 5126 OPTIONAL(configMacros, MDStringField, ); \ 5127 OPTIONAL(includePath, MDStringField, ); \ 5128 OPTIONAL(apinotes, MDStringField, ); \ 5129 OPTIONAL(file, MDField, ); \ 5130 OPTIONAL(line, LineField, ); 5131 PARSE_MD_FIELDS(); 5132 #undef VISIT_MD_FIELDS 5133 5134 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5135 configMacros.Val, includePath.Val, 5136 apinotes.Val, line.Val)); 5137 return false; 5138 } 5139 5140 /// parseDITemplateTypeParameter: 5141 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5142 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5144 OPTIONAL(name, MDStringField, ); \ 5145 REQUIRED(type, MDField, ); \ 5146 OPTIONAL(defaulted, MDBoolField, ); 5147 PARSE_MD_FIELDS(); 5148 #undef VISIT_MD_FIELDS 5149 5150 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5151 (Context, name.Val, type.Val, defaulted.Val)); 5152 return false; 5153 } 5154 5155 /// parseDITemplateValueParameter: 5156 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5157 /// name: "V", type: !1, defaulted: false, 5158 /// value: i32 7) 5159 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5160 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5161 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5162 OPTIONAL(name, MDStringField, ); \ 5163 OPTIONAL(type, MDField, ); \ 5164 OPTIONAL(defaulted, MDBoolField, ); \ 5165 REQUIRED(value, MDField, ); 5166 5167 PARSE_MD_FIELDS(); 5168 #undef VISIT_MD_FIELDS 5169 5170 Result = GET_OR_DISTINCT( 5171 DITemplateValueParameter, 5172 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5173 return false; 5174 } 5175 5176 /// parseDIGlobalVariable: 5177 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5178 /// file: !1, line: 7, type: !2, isLocal: false, 5179 /// isDefinition: true, templateParams: !3, 5180 /// declaration: !4, align: 8) 5181 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5182 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5183 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5184 OPTIONAL(scope, MDField, ); \ 5185 OPTIONAL(linkageName, MDStringField, ); \ 5186 OPTIONAL(file, MDField, ); \ 5187 OPTIONAL(line, LineField, ); \ 5188 OPTIONAL(type, MDField, ); \ 5189 OPTIONAL(isLocal, MDBoolField, ); \ 5190 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5191 OPTIONAL(templateParams, MDField, ); \ 5192 OPTIONAL(declaration, MDField, ); \ 5193 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5194 PARSE_MD_FIELDS(); 5195 #undef VISIT_MD_FIELDS 5196 5197 Result = 5198 GET_OR_DISTINCT(DIGlobalVariable, 5199 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5200 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5201 declaration.Val, templateParams.Val, align.Val)); 5202 return false; 5203 } 5204 5205 /// parseDILocalVariable: 5206 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5207 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5208 /// align: 8) 5209 /// ::= !DILocalVariable(scope: !0, name: "foo", 5210 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5211 /// align: 8) 5212 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5213 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5214 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5215 OPTIONAL(name, MDStringField, ); \ 5216 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5217 OPTIONAL(file, MDField, ); \ 5218 OPTIONAL(line, LineField, ); \ 5219 OPTIONAL(type, MDField, ); \ 5220 OPTIONAL(flags, DIFlagField, ); \ 5221 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5222 PARSE_MD_FIELDS(); 5223 #undef VISIT_MD_FIELDS 5224 5225 Result = GET_OR_DISTINCT(DILocalVariable, 5226 (Context, scope.Val, name.Val, file.Val, line.Val, 5227 type.Val, arg.Val, flags.Val, align.Val)); 5228 return false; 5229 } 5230 5231 /// parseDILabel: 5232 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5233 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5234 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5235 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5236 REQUIRED(name, MDStringField, ); \ 5237 REQUIRED(file, MDField, ); \ 5238 REQUIRED(line, LineField, ); 5239 PARSE_MD_FIELDS(); 5240 #undef VISIT_MD_FIELDS 5241 5242 Result = GET_OR_DISTINCT(DILabel, 5243 (Context, scope.Val, name.Val, file.Val, line.Val)); 5244 return false; 5245 } 5246 5247 /// parseDIExpression: 5248 /// ::= !DIExpression(0, 7, -1) 5249 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5250 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5251 Lex.Lex(); 5252 5253 if (parseToken(lltok::lparen, "expected '(' here")) 5254 return true; 5255 5256 SmallVector<uint64_t, 8> Elements; 5257 if (Lex.getKind() != lltok::rparen) 5258 do { 5259 if (Lex.getKind() == lltok::DwarfOp) { 5260 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5261 Lex.Lex(); 5262 Elements.push_back(Op); 5263 continue; 5264 } 5265 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5266 } 5267 5268 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5269 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5270 Lex.Lex(); 5271 Elements.push_back(Op); 5272 continue; 5273 } 5274 return tokError(Twine("invalid DWARF attribute encoding '") + 5275 Lex.getStrVal() + "'"); 5276 } 5277 5278 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5279 return tokError("expected unsigned integer"); 5280 5281 auto &U = Lex.getAPSIntVal(); 5282 if (U.ugt(UINT64_MAX)) 5283 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5284 Elements.push_back(U.getZExtValue()); 5285 Lex.Lex(); 5286 } while (EatIfPresent(lltok::comma)); 5287 5288 if (parseToken(lltok::rparen, "expected ')' here")) 5289 return true; 5290 5291 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5292 return false; 5293 } 5294 5295 /// parseDIGlobalVariableExpression: 5296 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5297 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5298 bool IsDistinct) { 5299 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5300 REQUIRED(var, MDField, ); \ 5301 REQUIRED(expr, MDField, ); 5302 PARSE_MD_FIELDS(); 5303 #undef VISIT_MD_FIELDS 5304 5305 Result = 5306 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5307 return false; 5308 } 5309 5310 /// parseDIObjCProperty: 5311 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5312 /// getter: "getFoo", attributes: 7, type: !2) 5313 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5315 OPTIONAL(name, MDStringField, ); \ 5316 OPTIONAL(file, MDField, ); \ 5317 OPTIONAL(line, LineField, ); \ 5318 OPTIONAL(setter, MDStringField, ); \ 5319 OPTIONAL(getter, MDStringField, ); \ 5320 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5321 OPTIONAL(type, MDField, ); 5322 PARSE_MD_FIELDS(); 5323 #undef VISIT_MD_FIELDS 5324 5325 Result = GET_OR_DISTINCT(DIObjCProperty, 5326 (Context, name.Val, file.Val, line.Val, setter.Val, 5327 getter.Val, attributes.Val, type.Val)); 5328 return false; 5329 } 5330 5331 /// parseDIImportedEntity: 5332 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5333 /// line: 7, name: "foo") 5334 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5336 REQUIRED(tag, DwarfTagField, ); \ 5337 REQUIRED(scope, MDField, ); \ 5338 OPTIONAL(entity, MDField, ); \ 5339 OPTIONAL(file, MDField, ); \ 5340 OPTIONAL(line, LineField, ); \ 5341 OPTIONAL(name, MDStringField, ); 5342 PARSE_MD_FIELDS(); 5343 #undef VISIT_MD_FIELDS 5344 5345 Result = GET_OR_DISTINCT( 5346 DIImportedEntity, 5347 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5348 return false; 5349 } 5350 5351 #undef PARSE_MD_FIELD 5352 #undef NOP_FIELD 5353 #undef REQUIRE_FIELD 5354 #undef DECLARE_FIELD 5355 5356 /// parseMetadataAsValue 5357 /// ::= metadata i32 %local 5358 /// ::= metadata i32 @global 5359 /// ::= metadata i32 7 5360 /// ::= metadata !0 5361 /// ::= metadata !{...} 5362 /// ::= metadata !"string" 5363 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5364 // Note: the type 'metadata' has already been parsed. 5365 Metadata *MD; 5366 if (parseMetadata(MD, &PFS)) 5367 return true; 5368 5369 V = MetadataAsValue::get(Context, MD); 5370 return false; 5371 } 5372 5373 /// parseValueAsMetadata 5374 /// ::= i32 %local 5375 /// ::= i32 @global 5376 /// ::= i32 7 5377 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5378 PerFunctionState *PFS) { 5379 Type *Ty; 5380 LocTy Loc; 5381 if (parseType(Ty, TypeMsg, Loc)) 5382 return true; 5383 if (Ty->isMetadataTy()) 5384 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5385 5386 Value *V; 5387 if (parseValue(Ty, V, PFS)) 5388 return true; 5389 5390 MD = ValueAsMetadata::get(V); 5391 return false; 5392 } 5393 5394 /// parseMetadata 5395 /// ::= i32 %local 5396 /// ::= i32 @global 5397 /// ::= i32 7 5398 /// ::= !42 5399 /// ::= !{...} 5400 /// ::= !"string" 5401 /// ::= !DILocation(...) 5402 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5403 if (Lex.getKind() == lltok::MetadataVar) { 5404 MDNode *N; 5405 if (parseSpecializedMDNode(N)) 5406 return true; 5407 MD = N; 5408 return false; 5409 } 5410 5411 // ValueAsMetadata: 5412 // <type> <value> 5413 if (Lex.getKind() != lltok::exclaim) 5414 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5415 5416 // '!'. 5417 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5418 Lex.Lex(); 5419 5420 // MDString: 5421 // ::= '!' STRINGCONSTANT 5422 if (Lex.getKind() == lltok::StringConstant) { 5423 MDString *S; 5424 if (parseMDString(S)) 5425 return true; 5426 MD = S; 5427 return false; 5428 } 5429 5430 // MDNode: 5431 // !{ ... } 5432 // !7 5433 MDNode *N; 5434 if (parseMDNodeTail(N)) 5435 return true; 5436 MD = N; 5437 return false; 5438 } 5439 5440 //===----------------------------------------------------------------------===// 5441 // Function Parsing. 5442 //===----------------------------------------------------------------------===// 5443 5444 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5445 PerFunctionState *PFS, bool IsCall) { 5446 if (Ty->isFunctionTy()) 5447 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5448 5449 switch (ID.Kind) { 5450 case ValID::t_LocalID: 5451 if (!PFS) 5452 return error(ID.Loc, "invalid use of function-local name"); 5453 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5454 return V == nullptr; 5455 case ValID::t_LocalName: 5456 if (!PFS) 5457 return error(ID.Loc, "invalid use of function-local name"); 5458 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5459 return V == nullptr; 5460 case ValID::t_InlineAsm: { 5461 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5462 return error(ID.Loc, "invalid type for inline asm constraint string"); 5463 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5464 (ID.UIntVal >> 1) & 1, 5465 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5466 return false; 5467 } 5468 case ValID::t_GlobalName: 5469 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5470 return V == nullptr; 5471 case ValID::t_GlobalID: 5472 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5473 return V == nullptr; 5474 case ValID::t_APSInt: 5475 if (!Ty->isIntegerTy()) 5476 return error(ID.Loc, "integer constant must have integer type"); 5477 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5478 V = ConstantInt::get(Context, ID.APSIntVal); 5479 return false; 5480 case ValID::t_APFloat: 5481 if (!Ty->isFloatingPointTy() || 5482 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5483 return error(ID.Loc, "floating point constant invalid for type"); 5484 5485 // The lexer has no type info, so builds all half, bfloat, float, and double 5486 // FP constants as double. Fix this here. Long double does not need this. 5487 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5488 // Check for signaling before potentially converting and losing that info. 5489 bool IsSNAN = ID.APFloatVal.isSignaling(); 5490 bool Ignored; 5491 if (Ty->isHalfTy()) 5492 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5493 &Ignored); 5494 else if (Ty->isBFloatTy()) 5495 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5496 &Ignored); 5497 else if (Ty->isFloatTy()) 5498 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5499 &Ignored); 5500 if (IsSNAN) { 5501 // The convert call above may quiet an SNaN, so manufacture another 5502 // SNaN. The bitcast works because the payload (significand) parameter 5503 // is truncated to fit. 5504 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5505 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5506 ID.APFloatVal.isNegative(), &Payload); 5507 } 5508 } 5509 V = ConstantFP::get(Context, ID.APFloatVal); 5510 5511 if (V->getType() != Ty) 5512 return error(ID.Loc, "floating point constant does not have type '" + 5513 getTypeString(Ty) + "'"); 5514 5515 return false; 5516 case ValID::t_Null: 5517 if (!Ty->isPointerTy()) 5518 return error(ID.Loc, "null must be a pointer type"); 5519 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5520 return false; 5521 case ValID::t_Undef: 5522 // FIXME: LabelTy should not be a first-class type. 5523 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5524 return error(ID.Loc, "invalid type for undef constant"); 5525 V = UndefValue::get(Ty); 5526 return false; 5527 case ValID::t_EmptyArray: 5528 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5529 return error(ID.Loc, "invalid empty array initializer"); 5530 V = UndefValue::get(Ty); 5531 return false; 5532 case ValID::t_Zero: 5533 // FIXME: LabelTy should not be a first-class type. 5534 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5535 return error(ID.Loc, "invalid type for null constant"); 5536 V = Constant::getNullValue(Ty); 5537 return false; 5538 case ValID::t_None: 5539 if (!Ty->isTokenTy()) 5540 return error(ID.Loc, "invalid type for none constant"); 5541 V = Constant::getNullValue(Ty); 5542 return false; 5543 case ValID::t_Poison: 5544 // FIXME: LabelTy should not be a first-class type. 5545 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5546 return error(ID.Loc, "invalid type for poison constant"); 5547 V = PoisonValue::get(Ty); 5548 return false; 5549 case ValID::t_Constant: 5550 if (ID.ConstantVal->getType() != Ty) 5551 return error(ID.Loc, "constant expression type mismatch"); 5552 V = ID.ConstantVal; 5553 return false; 5554 case ValID::t_ConstantStruct: 5555 case ValID::t_PackedConstantStruct: 5556 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5557 if (ST->getNumElements() != ID.UIntVal) 5558 return error(ID.Loc, 5559 "initializer with struct type has wrong # elements"); 5560 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5561 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5562 5563 // Verify that the elements are compatible with the structtype. 5564 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5565 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5566 return error( 5567 ID.Loc, 5568 "element " + Twine(i) + 5569 " of struct initializer doesn't match struct element type"); 5570 5571 V = ConstantStruct::get( 5572 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5573 } else 5574 return error(ID.Loc, "constant expression type mismatch"); 5575 return false; 5576 } 5577 llvm_unreachable("Invalid ValID"); 5578 } 5579 5580 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5581 C = nullptr; 5582 ValID ID; 5583 auto Loc = Lex.getLoc(); 5584 if (parseValID(ID, /*PFS=*/nullptr)) 5585 return true; 5586 switch (ID.Kind) { 5587 case ValID::t_APSInt: 5588 case ValID::t_APFloat: 5589 case ValID::t_Undef: 5590 case ValID::t_Constant: 5591 case ValID::t_ConstantStruct: 5592 case ValID::t_PackedConstantStruct: { 5593 Value *V; 5594 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5595 return true; 5596 assert(isa<Constant>(V) && "Expected a constant value"); 5597 C = cast<Constant>(V); 5598 return false; 5599 } 5600 case ValID::t_Null: 5601 C = Constant::getNullValue(Ty); 5602 return false; 5603 default: 5604 return error(Loc, "expected a constant value"); 5605 } 5606 } 5607 5608 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5609 V = nullptr; 5610 ValID ID; 5611 return parseValID(ID, PFS) || 5612 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5613 } 5614 5615 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5616 Type *Ty = nullptr; 5617 return parseType(Ty) || parseValue(Ty, V, PFS); 5618 } 5619 5620 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5621 PerFunctionState &PFS) { 5622 Value *V; 5623 Loc = Lex.getLoc(); 5624 if (parseTypeAndValue(V, PFS)) 5625 return true; 5626 if (!isa<BasicBlock>(V)) 5627 return error(Loc, "expected a basic block"); 5628 BB = cast<BasicBlock>(V); 5629 return false; 5630 } 5631 5632 /// FunctionHeader 5633 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5634 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5635 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5636 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5637 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5638 // parse the linkage. 5639 LocTy LinkageLoc = Lex.getLoc(); 5640 unsigned Linkage; 5641 unsigned Visibility; 5642 unsigned DLLStorageClass; 5643 bool DSOLocal; 5644 AttrBuilder RetAttrs; 5645 unsigned CC; 5646 bool HasLinkage; 5647 Type *RetType = nullptr; 5648 LocTy RetTypeLoc = Lex.getLoc(); 5649 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5650 DSOLocal) || 5651 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5652 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5653 return true; 5654 5655 // Verify that the linkage is ok. 5656 switch ((GlobalValue::LinkageTypes)Linkage) { 5657 case GlobalValue::ExternalLinkage: 5658 break; // always ok. 5659 case GlobalValue::ExternalWeakLinkage: 5660 if (IsDefine) 5661 return error(LinkageLoc, "invalid linkage for function definition"); 5662 break; 5663 case GlobalValue::PrivateLinkage: 5664 case GlobalValue::InternalLinkage: 5665 case GlobalValue::AvailableExternallyLinkage: 5666 case GlobalValue::LinkOnceAnyLinkage: 5667 case GlobalValue::LinkOnceODRLinkage: 5668 case GlobalValue::WeakAnyLinkage: 5669 case GlobalValue::WeakODRLinkage: 5670 if (!IsDefine) 5671 return error(LinkageLoc, "invalid linkage for function declaration"); 5672 break; 5673 case GlobalValue::AppendingLinkage: 5674 case GlobalValue::CommonLinkage: 5675 return error(LinkageLoc, "invalid function linkage type"); 5676 } 5677 5678 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5679 return error(LinkageLoc, 5680 "symbol with local linkage must have default visibility"); 5681 5682 if (!FunctionType::isValidReturnType(RetType)) 5683 return error(RetTypeLoc, "invalid function return type"); 5684 5685 LocTy NameLoc = Lex.getLoc(); 5686 5687 std::string FunctionName; 5688 if (Lex.getKind() == lltok::GlobalVar) { 5689 FunctionName = Lex.getStrVal(); 5690 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5691 unsigned NameID = Lex.getUIntVal(); 5692 5693 if (NameID != NumberedVals.size()) 5694 return tokError("function expected to be numbered '%" + 5695 Twine(NumberedVals.size()) + "'"); 5696 } else { 5697 return tokError("expected function name"); 5698 } 5699 5700 Lex.Lex(); 5701 5702 if (Lex.getKind() != lltok::lparen) 5703 return tokError("expected '(' in function argument list"); 5704 5705 SmallVector<ArgInfo, 8> ArgList; 5706 bool IsVarArg; 5707 AttrBuilder FuncAttrs; 5708 std::vector<unsigned> FwdRefAttrGrps; 5709 LocTy BuiltinLoc; 5710 std::string Section; 5711 std::string Partition; 5712 MaybeAlign Alignment; 5713 std::string GC; 5714 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5715 unsigned AddrSpace = 0; 5716 Constant *Prefix = nullptr; 5717 Constant *Prologue = nullptr; 5718 Constant *PersonalityFn = nullptr; 5719 Comdat *C; 5720 5721 if (parseArgumentList(ArgList, IsVarArg) || 5722 parseOptionalUnnamedAddr(UnnamedAddr) || 5723 parseOptionalProgramAddrSpace(AddrSpace) || 5724 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5725 BuiltinLoc) || 5726 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5727 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5728 parseOptionalComdat(FunctionName, C) || 5729 parseOptionalAlignment(Alignment) || 5730 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5731 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5732 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5733 (EatIfPresent(lltok::kw_personality) && 5734 parseGlobalTypeAndValue(PersonalityFn))) 5735 return true; 5736 5737 if (FuncAttrs.contains(Attribute::Builtin)) 5738 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5739 5740 // If the alignment was parsed as an attribute, move to the alignment field. 5741 if (FuncAttrs.hasAlignmentAttr()) { 5742 Alignment = FuncAttrs.getAlignment(); 5743 FuncAttrs.removeAttribute(Attribute::Alignment); 5744 } 5745 5746 // Okay, if we got here, the function is syntactically valid. Convert types 5747 // and do semantic checks. 5748 std::vector<Type*> ParamTypeList; 5749 SmallVector<AttributeSet, 8> Attrs; 5750 5751 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5752 ParamTypeList.push_back(ArgList[i].Ty); 5753 Attrs.push_back(ArgList[i].Attrs); 5754 } 5755 5756 AttributeList PAL = 5757 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5758 AttributeSet::get(Context, RetAttrs), Attrs); 5759 5760 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5761 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5762 5763 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5764 PointerType *PFT = PointerType::get(FT, AddrSpace); 5765 5766 Fn = nullptr; 5767 if (!FunctionName.empty()) { 5768 // If this was a definition of a forward reference, remove the definition 5769 // from the forward reference table and fill in the forward ref. 5770 auto FRVI = ForwardRefVals.find(FunctionName); 5771 if (FRVI != ForwardRefVals.end()) { 5772 Fn = M->getFunction(FunctionName); 5773 if (!Fn) 5774 return error(FRVI->second.second, "invalid forward reference to " 5775 "function as global value!"); 5776 if (Fn->getType() != PFT) 5777 return error(FRVI->second.second, 5778 "invalid forward reference to " 5779 "function '" + 5780 FunctionName + 5781 "' with wrong type: " 5782 "expected '" + 5783 getTypeString(PFT) + "' but was '" + 5784 getTypeString(Fn->getType()) + "'"); 5785 ForwardRefVals.erase(FRVI); 5786 } else if ((Fn = M->getFunction(FunctionName))) { 5787 // Reject redefinitions. 5788 return error(NameLoc, 5789 "invalid redefinition of function '" + FunctionName + "'"); 5790 } else if (M->getNamedValue(FunctionName)) { 5791 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5792 } 5793 5794 } else { 5795 // If this is a definition of a forward referenced function, make sure the 5796 // types agree. 5797 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5798 if (I != ForwardRefValIDs.end()) { 5799 Fn = cast<Function>(I->second.first); 5800 if (Fn->getType() != PFT) 5801 return error(NameLoc, "type of definition and forward reference of '@" + 5802 Twine(NumberedVals.size()) + 5803 "' disagree: " 5804 "expected '" + 5805 getTypeString(PFT) + "' but was '" + 5806 getTypeString(Fn->getType()) + "'"); 5807 ForwardRefValIDs.erase(I); 5808 } 5809 } 5810 5811 if (!Fn) 5812 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5813 FunctionName, M); 5814 else // Move the forward-reference to the correct spot in the module. 5815 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5816 5817 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5818 5819 if (FunctionName.empty()) 5820 NumberedVals.push_back(Fn); 5821 5822 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5823 maybeSetDSOLocal(DSOLocal, *Fn); 5824 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5825 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5826 Fn->setCallingConv(CC); 5827 Fn->setAttributes(PAL); 5828 Fn->setUnnamedAddr(UnnamedAddr); 5829 Fn->setAlignment(MaybeAlign(Alignment)); 5830 Fn->setSection(Section); 5831 Fn->setPartition(Partition); 5832 Fn->setComdat(C); 5833 Fn->setPersonalityFn(PersonalityFn); 5834 if (!GC.empty()) Fn->setGC(GC); 5835 Fn->setPrefixData(Prefix); 5836 Fn->setPrologueData(Prologue); 5837 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5838 5839 // Add all of the arguments we parsed to the function. 5840 Function::arg_iterator ArgIt = Fn->arg_begin(); 5841 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5842 // If the argument has a name, insert it into the argument symbol table. 5843 if (ArgList[i].Name.empty()) continue; 5844 5845 // Set the name, if it conflicted, it will be auto-renamed. 5846 ArgIt->setName(ArgList[i].Name); 5847 5848 if (ArgIt->getName() != ArgList[i].Name) 5849 return error(ArgList[i].Loc, 5850 "redefinition of argument '%" + ArgList[i].Name + "'"); 5851 } 5852 5853 if (IsDefine) 5854 return false; 5855 5856 // Check the declaration has no block address forward references. 5857 ValID ID; 5858 if (FunctionName.empty()) { 5859 ID.Kind = ValID::t_GlobalID; 5860 ID.UIntVal = NumberedVals.size() - 1; 5861 } else { 5862 ID.Kind = ValID::t_GlobalName; 5863 ID.StrVal = FunctionName; 5864 } 5865 auto Blocks = ForwardRefBlockAddresses.find(ID); 5866 if (Blocks != ForwardRefBlockAddresses.end()) 5867 return error(Blocks->first.Loc, 5868 "cannot take blockaddress inside a declaration"); 5869 return false; 5870 } 5871 5872 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5873 ValID ID; 5874 if (FunctionNumber == -1) { 5875 ID.Kind = ValID::t_GlobalName; 5876 ID.StrVal = std::string(F.getName()); 5877 } else { 5878 ID.Kind = ValID::t_GlobalID; 5879 ID.UIntVal = FunctionNumber; 5880 } 5881 5882 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5883 if (Blocks == P.ForwardRefBlockAddresses.end()) 5884 return false; 5885 5886 for (const auto &I : Blocks->second) { 5887 const ValID &BBID = I.first; 5888 GlobalValue *GV = I.second; 5889 5890 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5891 "Expected local id or name"); 5892 BasicBlock *BB; 5893 if (BBID.Kind == ValID::t_LocalName) 5894 BB = getBB(BBID.StrVal, BBID.Loc); 5895 else 5896 BB = getBB(BBID.UIntVal, BBID.Loc); 5897 if (!BB) 5898 return P.error(BBID.Loc, "referenced value is not a basic block"); 5899 5900 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5901 GV->eraseFromParent(); 5902 } 5903 5904 P.ForwardRefBlockAddresses.erase(Blocks); 5905 return false; 5906 } 5907 5908 /// parseFunctionBody 5909 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5910 bool LLParser::parseFunctionBody(Function &Fn) { 5911 if (Lex.getKind() != lltok::lbrace) 5912 return tokError("expected '{' in function body"); 5913 Lex.Lex(); // eat the {. 5914 5915 int FunctionNumber = -1; 5916 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5917 5918 PerFunctionState PFS(*this, Fn, FunctionNumber); 5919 5920 // Resolve block addresses and allow basic blocks to be forward-declared 5921 // within this function. 5922 if (PFS.resolveForwardRefBlockAddresses()) 5923 return true; 5924 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5925 5926 // We need at least one basic block. 5927 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5928 return tokError("function body requires at least one basic block"); 5929 5930 while (Lex.getKind() != lltok::rbrace && 5931 Lex.getKind() != lltok::kw_uselistorder) 5932 if (parseBasicBlock(PFS)) 5933 return true; 5934 5935 while (Lex.getKind() != lltok::rbrace) 5936 if (parseUseListOrder(&PFS)) 5937 return true; 5938 5939 // Eat the }. 5940 Lex.Lex(); 5941 5942 // Verify function is ok. 5943 return PFS.finishFunction(); 5944 } 5945 5946 /// parseBasicBlock 5947 /// ::= (LabelStr|LabelID)? Instruction* 5948 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5949 // If this basic block starts out with a name, remember it. 5950 std::string Name; 5951 int NameID = -1; 5952 LocTy NameLoc = Lex.getLoc(); 5953 if (Lex.getKind() == lltok::LabelStr) { 5954 Name = Lex.getStrVal(); 5955 Lex.Lex(); 5956 } else if (Lex.getKind() == lltok::LabelID) { 5957 NameID = Lex.getUIntVal(); 5958 Lex.Lex(); 5959 } 5960 5961 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5962 if (!BB) 5963 return true; 5964 5965 std::string NameStr; 5966 5967 // parse the instructions in this block until we get a terminator. 5968 Instruction *Inst; 5969 do { 5970 // This instruction may have three possibilities for a name: a) none 5971 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5972 LocTy NameLoc = Lex.getLoc(); 5973 int NameID = -1; 5974 NameStr = ""; 5975 5976 if (Lex.getKind() == lltok::LocalVarID) { 5977 NameID = Lex.getUIntVal(); 5978 Lex.Lex(); 5979 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5980 return true; 5981 } else if (Lex.getKind() == lltok::LocalVar) { 5982 NameStr = Lex.getStrVal(); 5983 Lex.Lex(); 5984 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5985 return true; 5986 } 5987 5988 switch (parseInstruction(Inst, BB, PFS)) { 5989 default: 5990 llvm_unreachable("Unknown parseInstruction result!"); 5991 case InstError: return true; 5992 case InstNormal: 5993 BB->getInstList().push_back(Inst); 5994 5995 // With a normal result, we check to see if the instruction is followed by 5996 // a comma and metadata. 5997 if (EatIfPresent(lltok::comma)) 5998 if (parseInstructionMetadata(*Inst)) 5999 return true; 6000 break; 6001 case InstExtraComma: 6002 BB->getInstList().push_back(Inst); 6003 6004 // If the instruction parser ate an extra comma at the end of it, it 6005 // *must* be followed by metadata. 6006 if (parseInstructionMetadata(*Inst)) 6007 return true; 6008 break; 6009 } 6010 6011 // Set the name on the instruction. 6012 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6013 return true; 6014 } while (!Inst->isTerminator()); 6015 6016 return false; 6017 } 6018 6019 //===----------------------------------------------------------------------===// 6020 // Instruction Parsing. 6021 //===----------------------------------------------------------------------===// 6022 6023 /// parseInstruction - parse one of the many different instructions. 6024 /// 6025 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6026 PerFunctionState &PFS) { 6027 lltok::Kind Token = Lex.getKind(); 6028 if (Token == lltok::Eof) 6029 return tokError("found end of file when expecting more instructions"); 6030 LocTy Loc = Lex.getLoc(); 6031 unsigned KeywordVal = Lex.getUIntVal(); 6032 Lex.Lex(); // Eat the keyword. 6033 6034 switch (Token) { 6035 default: 6036 return error(Loc, "expected instruction opcode"); 6037 // Terminator Instructions. 6038 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6039 case lltok::kw_ret: 6040 return parseRet(Inst, BB, PFS); 6041 case lltok::kw_br: 6042 return parseBr(Inst, PFS); 6043 case lltok::kw_switch: 6044 return parseSwitch(Inst, PFS); 6045 case lltok::kw_indirectbr: 6046 return parseIndirectBr(Inst, PFS); 6047 case lltok::kw_invoke: 6048 return parseInvoke(Inst, PFS); 6049 case lltok::kw_resume: 6050 return parseResume(Inst, PFS); 6051 case lltok::kw_cleanupret: 6052 return parseCleanupRet(Inst, PFS); 6053 case lltok::kw_catchret: 6054 return parseCatchRet(Inst, PFS); 6055 case lltok::kw_catchswitch: 6056 return parseCatchSwitch(Inst, PFS); 6057 case lltok::kw_catchpad: 6058 return parseCatchPad(Inst, PFS); 6059 case lltok::kw_cleanuppad: 6060 return parseCleanupPad(Inst, PFS); 6061 case lltok::kw_callbr: 6062 return parseCallBr(Inst, PFS); 6063 // Unary Operators. 6064 case lltok::kw_fneg: { 6065 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6066 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6067 if (Res != 0) 6068 return Res; 6069 if (FMF.any()) 6070 Inst->setFastMathFlags(FMF); 6071 return false; 6072 } 6073 // Binary Operators. 6074 case lltok::kw_add: 6075 case lltok::kw_sub: 6076 case lltok::kw_mul: 6077 case lltok::kw_shl: { 6078 bool NUW = EatIfPresent(lltok::kw_nuw); 6079 bool NSW = EatIfPresent(lltok::kw_nsw); 6080 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6081 6082 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6083 return true; 6084 6085 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6086 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6087 return false; 6088 } 6089 case lltok::kw_fadd: 6090 case lltok::kw_fsub: 6091 case lltok::kw_fmul: 6092 case lltok::kw_fdiv: 6093 case lltok::kw_frem: { 6094 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6095 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6096 if (Res != 0) 6097 return Res; 6098 if (FMF.any()) 6099 Inst->setFastMathFlags(FMF); 6100 return 0; 6101 } 6102 6103 case lltok::kw_sdiv: 6104 case lltok::kw_udiv: 6105 case lltok::kw_lshr: 6106 case lltok::kw_ashr: { 6107 bool Exact = EatIfPresent(lltok::kw_exact); 6108 6109 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6110 return true; 6111 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6112 return false; 6113 } 6114 6115 case lltok::kw_urem: 6116 case lltok::kw_srem: 6117 return parseArithmetic(Inst, PFS, KeywordVal, 6118 /*IsFP*/ false); 6119 case lltok::kw_and: 6120 case lltok::kw_or: 6121 case lltok::kw_xor: 6122 return parseLogical(Inst, PFS, KeywordVal); 6123 case lltok::kw_icmp: 6124 return parseCompare(Inst, PFS, KeywordVal); 6125 case lltok::kw_fcmp: { 6126 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6127 int Res = parseCompare(Inst, PFS, KeywordVal); 6128 if (Res != 0) 6129 return Res; 6130 if (FMF.any()) 6131 Inst->setFastMathFlags(FMF); 6132 return 0; 6133 } 6134 6135 // Casts. 6136 case lltok::kw_trunc: 6137 case lltok::kw_zext: 6138 case lltok::kw_sext: 6139 case lltok::kw_fptrunc: 6140 case lltok::kw_fpext: 6141 case lltok::kw_bitcast: 6142 case lltok::kw_addrspacecast: 6143 case lltok::kw_uitofp: 6144 case lltok::kw_sitofp: 6145 case lltok::kw_fptoui: 6146 case lltok::kw_fptosi: 6147 case lltok::kw_inttoptr: 6148 case lltok::kw_ptrtoint: 6149 return parseCast(Inst, PFS, KeywordVal); 6150 // Other. 6151 case lltok::kw_select: { 6152 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6153 int Res = parseSelect(Inst, PFS); 6154 if (Res != 0) 6155 return Res; 6156 if (FMF.any()) { 6157 if (!isa<FPMathOperator>(Inst)) 6158 return error(Loc, "fast-math-flags specified for select without " 6159 "floating-point scalar or vector return type"); 6160 Inst->setFastMathFlags(FMF); 6161 } 6162 return 0; 6163 } 6164 case lltok::kw_va_arg: 6165 return parseVAArg(Inst, PFS); 6166 case lltok::kw_extractelement: 6167 return parseExtractElement(Inst, PFS); 6168 case lltok::kw_insertelement: 6169 return parseInsertElement(Inst, PFS); 6170 case lltok::kw_shufflevector: 6171 return parseShuffleVector(Inst, PFS); 6172 case lltok::kw_phi: { 6173 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6174 int Res = parsePHI(Inst, PFS); 6175 if (Res != 0) 6176 return Res; 6177 if (FMF.any()) { 6178 if (!isa<FPMathOperator>(Inst)) 6179 return error(Loc, "fast-math-flags specified for phi without " 6180 "floating-point scalar or vector return type"); 6181 Inst->setFastMathFlags(FMF); 6182 } 6183 return 0; 6184 } 6185 case lltok::kw_landingpad: 6186 return parseLandingPad(Inst, PFS); 6187 case lltok::kw_freeze: 6188 return parseFreeze(Inst, PFS); 6189 // Call. 6190 case lltok::kw_call: 6191 return parseCall(Inst, PFS, CallInst::TCK_None); 6192 case lltok::kw_tail: 6193 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6194 case lltok::kw_musttail: 6195 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6196 case lltok::kw_notail: 6197 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6198 // Memory. 6199 case lltok::kw_alloca: 6200 return parseAlloc(Inst, PFS); 6201 case lltok::kw_load: 6202 return parseLoad(Inst, PFS); 6203 case lltok::kw_store: 6204 return parseStore(Inst, PFS); 6205 case lltok::kw_cmpxchg: 6206 return parseCmpXchg(Inst, PFS); 6207 case lltok::kw_atomicrmw: 6208 return parseAtomicRMW(Inst, PFS); 6209 case lltok::kw_fence: 6210 return parseFence(Inst, PFS); 6211 case lltok::kw_getelementptr: 6212 return parseGetElementPtr(Inst, PFS); 6213 case lltok::kw_extractvalue: 6214 return parseExtractValue(Inst, PFS); 6215 case lltok::kw_insertvalue: 6216 return parseInsertValue(Inst, PFS); 6217 } 6218 } 6219 6220 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6221 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6222 if (Opc == Instruction::FCmp) { 6223 switch (Lex.getKind()) { 6224 default: 6225 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6226 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6227 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6228 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6229 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6230 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6231 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6232 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6233 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6234 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6235 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6236 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6237 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6238 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6239 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6240 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6241 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6242 } 6243 } else { 6244 switch (Lex.getKind()) { 6245 default: 6246 return tokError("expected icmp predicate (e.g. 'eq')"); 6247 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6248 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6249 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6250 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6251 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6252 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6253 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6254 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6255 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6256 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6257 } 6258 } 6259 Lex.Lex(); 6260 return false; 6261 } 6262 6263 //===----------------------------------------------------------------------===// 6264 // Terminator Instructions. 6265 //===----------------------------------------------------------------------===// 6266 6267 /// parseRet - parse a return instruction. 6268 /// ::= 'ret' void (',' !dbg, !1)* 6269 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6270 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6271 PerFunctionState &PFS) { 6272 SMLoc TypeLoc = Lex.getLoc(); 6273 Type *Ty = nullptr; 6274 if (parseType(Ty, true /*void allowed*/)) 6275 return true; 6276 6277 Type *ResType = PFS.getFunction().getReturnType(); 6278 6279 if (Ty->isVoidTy()) { 6280 if (!ResType->isVoidTy()) 6281 return error(TypeLoc, "value doesn't match function result type '" + 6282 getTypeString(ResType) + "'"); 6283 6284 Inst = ReturnInst::Create(Context); 6285 return false; 6286 } 6287 6288 Value *RV; 6289 if (parseValue(Ty, RV, PFS)) 6290 return true; 6291 6292 if (ResType != RV->getType()) 6293 return error(TypeLoc, "value doesn't match function result type '" + 6294 getTypeString(ResType) + "'"); 6295 6296 Inst = ReturnInst::Create(Context, RV); 6297 return false; 6298 } 6299 6300 /// parseBr 6301 /// ::= 'br' TypeAndValue 6302 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6303 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6304 LocTy Loc, Loc2; 6305 Value *Op0; 6306 BasicBlock *Op1, *Op2; 6307 if (parseTypeAndValue(Op0, Loc, PFS)) 6308 return true; 6309 6310 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6311 Inst = BranchInst::Create(BB); 6312 return false; 6313 } 6314 6315 if (Op0->getType() != Type::getInt1Ty(Context)) 6316 return error(Loc, "branch condition must have 'i1' type"); 6317 6318 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6319 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6320 parseToken(lltok::comma, "expected ',' after true destination") || 6321 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6322 return true; 6323 6324 Inst = BranchInst::Create(Op1, Op2, Op0); 6325 return false; 6326 } 6327 6328 /// parseSwitch 6329 /// Instruction 6330 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6331 /// JumpTable 6332 /// ::= (TypeAndValue ',' TypeAndValue)* 6333 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6334 LocTy CondLoc, BBLoc; 6335 Value *Cond; 6336 BasicBlock *DefaultBB; 6337 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6338 parseToken(lltok::comma, "expected ',' after switch condition") || 6339 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6340 parseToken(lltok::lsquare, "expected '[' with switch table")) 6341 return true; 6342 6343 if (!Cond->getType()->isIntegerTy()) 6344 return error(CondLoc, "switch condition must have integer type"); 6345 6346 // parse the jump table pairs. 6347 SmallPtrSet<Value*, 32> SeenCases; 6348 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6349 while (Lex.getKind() != lltok::rsquare) { 6350 Value *Constant; 6351 BasicBlock *DestBB; 6352 6353 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6354 parseToken(lltok::comma, "expected ',' after case value") || 6355 parseTypeAndBasicBlock(DestBB, PFS)) 6356 return true; 6357 6358 if (!SeenCases.insert(Constant).second) 6359 return error(CondLoc, "duplicate case value in switch"); 6360 if (!isa<ConstantInt>(Constant)) 6361 return error(CondLoc, "case value is not a constant integer"); 6362 6363 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6364 } 6365 6366 Lex.Lex(); // Eat the ']'. 6367 6368 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6369 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6370 SI->addCase(Table[i].first, Table[i].second); 6371 Inst = SI; 6372 return false; 6373 } 6374 6375 /// parseIndirectBr 6376 /// Instruction 6377 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6378 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6379 LocTy AddrLoc; 6380 Value *Address; 6381 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6382 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6383 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6384 return true; 6385 6386 if (!Address->getType()->isPointerTy()) 6387 return error(AddrLoc, "indirectbr address must have pointer type"); 6388 6389 // parse the destination list. 6390 SmallVector<BasicBlock*, 16> DestList; 6391 6392 if (Lex.getKind() != lltok::rsquare) { 6393 BasicBlock *DestBB; 6394 if (parseTypeAndBasicBlock(DestBB, PFS)) 6395 return true; 6396 DestList.push_back(DestBB); 6397 6398 while (EatIfPresent(lltok::comma)) { 6399 if (parseTypeAndBasicBlock(DestBB, PFS)) 6400 return true; 6401 DestList.push_back(DestBB); 6402 } 6403 } 6404 6405 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6406 return true; 6407 6408 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6409 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6410 IBI->addDestination(DestList[i]); 6411 Inst = IBI; 6412 return false; 6413 } 6414 6415 /// parseInvoke 6416 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6417 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6418 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6419 LocTy CallLoc = Lex.getLoc(); 6420 AttrBuilder RetAttrs, FnAttrs; 6421 std::vector<unsigned> FwdRefAttrGrps; 6422 LocTy NoBuiltinLoc; 6423 unsigned CC; 6424 unsigned InvokeAddrSpace; 6425 Type *RetType = nullptr; 6426 LocTy RetTypeLoc; 6427 ValID CalleeID; 6428 SmallVector<ParamInfo, 16> ArgList; 6429 SmallVector<OperandBundleDef, 2> BundleList; 6430 6431 BasicBlock *NormalBB, *UnwindBB; 6432 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6433 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6434 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6435 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6436 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6437 NoBuiltinLoc) || 6438 parseOptionalOperandBundles(BundleList, PFS) || 6439 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6440 parseTypeAndBasicBlock(NormalBB, PFS) || 6441 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6442 parseTypeAndBasicBlock(UnwindBB, PFS)) 6443 return true; 6444 6445 // If RetType is a non-function pointer type, then this is the short syntax 6446 // for the call, which means that RetType is just the return type. Infer the 6447 // rest of the function argument types from the arguments that are present. 6448 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6449 if (!Ty) { 6450 // Pull out the types of all of the arguments... 6451 std::vector<Type*> ParamTypes; 6452 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6453 ParamTypes.push_back(ArgList[i].V->getType()); 6454 6455 if (!FunctionType::isValidReturnType(RetType)) 6456 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6457 6458 Ty = FunctionType::get(RetType, ParamTypes, false); 6459 } 6460 6461 CalleeID.FTy = Ty; 6462 6463 // Look up the callee. 6464 Value *Callee; 6465 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6466 Callee, &PFS, /*IsCall=*/true)) 6467 return true; 6468 6469 // Set up the Attribute for the function. 6470 SmallVector<Value *, 8> Args; 6471 SmallVector<AttributeSet, 8> ArgAttrs; 6472 6473 // Loop through FunctionType's arguments and ensure they are specified 6474 // correctly. Also, gather any parameter attributes. 6475 FunctionType::param_iterator I = Ty->param_begin(); 6476 FunctionType::param_iterator E = Ty->param_end(); 6477 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6478 Type *ExpectedTy = nullptr; 6479 if (I != E) { 6480 ExpectedTy = *I++; 6481 } else if (!Ty->isVarArg()) { 6482 return error(ArgList[i].Loc, "too many arguments specified"); 6483 } 6484 6485 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6486 return error(ArgList[i].Loc, "argument is not of expected type '" + 6487 getTypeString(ExpectedTy) + "'"); 6488 Args.push_back(ArgList[i].V); 6489 ArgAttrs.push_back(ArgList[i].Attrs); 6490 } 6491 6492 if (I != E) 6493 return error(CallLoc, "not enough parameters specified for call"); 6494 6495 if (FnAttrs.hasAlignmentAttr()) 6496 return error(CallLoc, "invoke instructions may not have an alignment"); 6497 6498 // Finish off the Attribute and check them 6499 AttributeList PAL = 6500 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6501 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6502 6503 InvokeInst *II = 6504 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6505 II->setCallingConv(CC); 6506 II->setAttributes(PAL); 6507 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6508 Inst = II; 6509 return false; 6510 } 6511 6512 /// parseResume 6513 /// ::= 'resume' TypeAndValue 6514 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6515 Value *Exn; LocTy ExnLoc; 6516 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6517 return true; 6518 6519 ResumeInst *RI = ResumeInst::Create(Exn); 6520 Inst = RI; 6521 return false; 6522 } 6523 6524 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6525 PerFunctionState &PFS) { 6526 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6527 return true; 6528 6529 while (Lex.getKind() != lltok::rsquare) { 6530 // If this isn't the first argument, we need a comma. 6531 if (!Args.empty() && 6532 parseToken(lltok::comma, "expected ',' in argument list")) 6533 return true; 6534 6535 // parse the argument. 6536 LocTy ArgLoc; 6537 Type *ArgTy = nullptr; 6538 if (parseType(ArgTy, ArgLoc)) 6539 return true; 6540 6541 Value *V; 6542 if (ArgTy->isMetadataTy()) { 6543 if (parseMetadataAsValue(V, PFS)) 6544 return true; 6545 } else { 6546 if (parseValue(ArgTy, V, PFS)) 6547 return true; 6548 } 6549 Args.push_back(V); 6550 } 6551 6552 Lex.Lex(); // Lex the ']'. 6553 return false; 6554 } 6555 6556 /// parseCleanupRet 6557 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6558 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6559 Value *CleanupPad = nullptr; 6560 6561 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6562 return true; 6563 6564 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6565 return true; 6566 6567 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6568 return true; 6569 6570 BasicBlock *UnwindBB = nullptr; 6571 if (Lex.getKind() == lltok::kw_to) { 6572 Lex.Lex(); 6573 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6574 return true; 6575 } else { 6576 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6577 return true; 6578 } 6579 } 6580 6581 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6582 return false; 6583 } 6584 6585 /// parseCatchRet 6586 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6587 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6588 Value *CatchPad = nullptr; 6589 6590 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6591 return true; 6592 6593 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6594 return true; 6595 6596 BasicBlock *BB; 6597 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6598 parseTypeAndBasicBlock(BB, PFS)) 6599 return true; 6600 6601 Inst = CatchReturnInst::Create(CatchPad, BB); 6602 return false; 6603 } 6604 6605 /// parseCatchSwitch 6606 /// ::= 'catchswitch' within Parent 6607 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6608 Value *ParentPad; 6609 6610 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6611 return true; 6612 6613 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6614 Lex.getKind() != lltok::LocalVarID) 6615 return tokError("expected scope value for catchswitch"); 6616 6617 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6618 return true; 6619 6620 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6621 return true; 6622 6623 SmallVector<BasicBlock *, 32> Table; 6624 do { 6625 BasicBlock *DestBB; 6626 if (parseTypeAndBasicBlock(DestBB, PFS)) 6627 return true; 6628 Table.push_back(DestBB); 6629 } while (EatIfPresent(lltok::comma)); 6630 6631 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6632 return true; 6633 6634 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6635 return true; 6636 6637 BasicBlock *UnwindBB = nullptr; 6638 if (EatIfPresent(lltok::kw_to)) { 6639 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6640 return true; 6641 } else { 6642 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6643 return true; 6644 } 6645 6646 auto *CatchSwitch = 6647 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6648 for (BasicBlock *DestBB : Table) 6649 CatchSwitch->addHandler(DestBB); 6650 Inst = CatchSwitch; 6651 return false; 6652 } 6653 6654 /// parseCatchPad 6655 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6656 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6657 Value *CatchSwitch = nullptr; 6658 6659 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6660 return true; 6661 6662 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6663 return tokError("expected scope value for catchpad"); 6664 6665 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6666 return true; 6667 6668 SmallVector<Value *, 8> Args; 6669 if (parseExceptionArgs(Args, PFS)) 6670 return true; 6671 6672 Inst = CatchPadInst::Create(CatchSwitch, Args); 6673 return false; 6674 } 6675 6676 /// parseCleanupPad 6677 /// ::= 'cleanuppad' within Parent ParamList 6678 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6679 Value *ParentPad = nullptr; 6680 6681 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6682 return true; 6683 6684 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6685 Lex.getKind() != lltok::LocalVarID) 6686 return tokError("expected scope value for cleanuppad"); 6687 6688 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6689 return true; 6690 6691 SmallVector<Value *, 8> Args; 6692 if (parseExceptionArgs(Args, PFS)) 6693 return true; 6694 6695 Inst = CleanupPadInst::Create(ParentPad, Args); 6696 return false; 6697 } 6698 6699 //===----------------------------------------------------------------------===// 6700 // Unary Operators. 6701 //===----------------------------------------------------------------------===// 6702 6703 /// parseUnaryOp 6704 /// ::= UnaryOp TypeAndValue ',' Value 6705 /// 6706 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6707 /// operand is allowed. 6708 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6709 unsigned Opc, bool IsFP) { 6710 LocTy Loc; Value *LHS; 6711 if (parseTypeAndValue(LHS, Loc, PFS)) 6712 return true; 6713 6714 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6715 : LHS->getType()->isIntOrIntVectorTy(); 6716 6717 if (!Valid) 6718 return error(Loc, "invalid operand type for instruction"); 6719 6720 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6721 return false; 6722 } 6723 6724 /// parseCallBr 6725 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6726 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6727 /// '[' LabelList ']' 6728 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6729 LocTy CallLoc = Lex.getLoc(); 6730 AttrBuilder RetAttrs, FnAttrs; 6731 std::vector<unsigned> FwdRefAttrGrps; 6732 LocTy NoBuiltinLoc; 6733 unsigned CC; 6734 Type *RetType = nullptr; 6735 LocTy RetTypeLoc; 6736 ValID CalleeID; 6737 SmallVector<ParamInfo, 16> ArgList; 6738 SmallVector<OperandBundleDef, 2> BundleList; 6739 6740 BasicBlock *DefaultDest; 6741 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6742 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6743 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6744 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6745 NoBuiltinLoc) || 6746 parseOptionalOperandBundles(BundleList, PFS) || 6747 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6748 parseTypeAndBasicBlock(DefaultDest, PFS) || 6749 parseToken(lltok::lsquare, "expected '[' in callbr")) 6750 return true; 6751 6752 // parse the destination list. 6753 SmallVector<BasicBlock *, 16> IndirectDests; 6754 6755 if (Lex.getKind() != lltok::rsquare) { 6756 BasicBlock *DestBB; 6757 if (parseTypeAndBasicBlock(DestBB, PFS)) 6758 return true; 6759 IndirectDests.push_back(DestBB); 6760 6761 while (EatIfPresent(lltok::comma)) { 6762 if (parseTypeAndBasicBlock(DestBB, PFS)) 6763 return true; 6764 IndirectDests.push_back(DestBB); 6765 } 6766 } 6767 6768 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6769 return true; 6770 6771 // If RetType is a non-function pointer type, then this is the short syntax 6772 // for the call, which means that RetType is just the return type. Infer the 6773 // rest of the function argument types from the arguments that are present. 6774 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6775 if (!Ty) { 6776 // Pull out the types of all of the arguments... 6777 std::vector<Type *> ParamTypes; 6778 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6779 ParamTypes.push_back(ArgList[i].V->getType()); 6780 6781 if (!FunctionType::isValidReturnType(RetType)) 6782 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6783 6784 Ty = FunctionType::get(RetType, ParamTypes, false); 6785 } 6786 6787 CalleeID.FTy = Ty; 6788 6789 // Look up the callee. 6790 Value *Callee; 6791 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6792 /*IsCall=*/true)) 6793 return true; 6794 6795 // Set up the Attribute for the function. 6796 SmallVector<Value *, 8> Args; 6797 SmallVector<AttributeSet, 8> ArgAttrs; 6798 6799 // Loop through FunctionType's arguments and ensure they are specified 6800 // correctly. Also, gather any parameter attributes. 6801 FunctionType::param_iterator I = Ty->param_begin(); 6802 FunctionType::param_iterator E = Ty->param_end(); 6803 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6804 Type *ExpectedTy = nullptr; 6805 if (I != E) { 6806 ExpectedTy = *I++; 6807 } else if (!Ty->isVarArg()) { 6808 return error(ArgList[i].Loc, "too many arguments specified"); 6809 } 6810 6811 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6812 return error(ArgList[i].Loc, "argument is not of expected type '" + 6813 getTypeString(ExpectedTy) + "'"); 6814 Args.push_back(ArgList[i].V); 6815 ArgAttrs.push_back(ArgList[i].Attrs); 6816 } 6817 6818 if (I != E) 6819 return error(CallLoc, "not enough parameters specified for call"); 6820 6821 if (FnAttrs.hasAlignmentAttr()) 6822 return error(CallLoc, "callbr instructions may not have an alignment"); 6823 6824 // Finish off the Attribute and check them 6825 AttributeList PAL = 6826 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6827 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6828 6829 CallBrInst *CBI = 6830 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6831 BundleList); 6832 CBI->setCallingConv(CC); 6833 CBI->setAttributes(PAL); 6834 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6835 Inst = CBI; 6836 return false; 6837 } 6838 6839 //===----------------------------------------------------------------------===// 6840 // Binary Operators. 6841 //===----------------------------------------------------------------------===// 6842 6843 /// parseArithmetic 6844 /// ::= ArithmeticOps TypeAndValue ',' Value 6845 /// 6846 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6847 /// operand is allowed. 6848 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6849 unsigned Opc, bool IsFP) { 6850 LocTy Loc; Value *LHS, *RHS; 6851 if (parseTypeAndValue(LHS, Loc, PFS) || 6852 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6853 parseValue(LHS->getType(), RHS, PFS)) 6854 return true; 6855 6856 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6857 : LHS->getType()->isIntOrIntVectorTy(); 6858 6859 if (!Valid) 6860 return error(Loc, "invalid operand type for instruction"); 6861 6862 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6863 return false; 6864 } 6865 6866 /// parseLogical 6867 /// ::= ArithmeticOps TypeAndValue ',' Value { 6868 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6869 unsigned Opc) { 6870 LocTy Loc; Value *LHS, *RHS; 6871 if (parseTypeAndValue(LHS, Loc, PFS) || 6872 parseToken(lltok::comma, "expected ',' in logical operation") || 6873 parseValue(LHS->getType(), RHS, PFS)) 6874 return true; 6875 6876 if (!LHS->getType()->isIntOrIntVectorTy()) 6877 return error(Loc, 6878 "instruction requires integer or integer vector operands"); 6879 6880 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6881 return false; 6882 } 6883 6884 /// parseCompare 6885 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6886 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6887 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6888 unsigned Opc) { 6889 // parse the integer/fp comparison predicate. 6890 LocTy Loc; 6891 unsigned Pred; 6892 Value *LHS, *RHS; 6893 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6894 parseToken(lltok::comma, "expected ',' after compare value") || 6895 parseValue(LHS->getType(), RHS, PFS)) 6896 return true; 6897 6898 if (Opc == Instruction::FCmp) { 6899 if (!LHS->getType()->isFPOrFPVectorTy()) 6900 return error(Loc, "fcmp requires floating point operands"); 6901 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6902 } else { 6903 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6904 if (!LHS->getType()->isIntOrIntVectorTy() && 6905 !LHS->getType()->isPtrOrPtrVectorTy()) 6906 return error(Loc, "icmp requires integer operands"); 6907 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6908 } 6909 return false; 6910 } 6911 6912 //===----------------------------------------------------------------------===// 6913 // Other Instructions. 6914 //===----------------------------------------------------------------------===// 6915 6916 /// parseCast 6917 /// ::= CastOpc TypeAndValue 'to' Type 6918 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6919 unsigned Opc) { 6920 LocTy Loc; 6921 Value *Op; 6922 Type *DestTy = nullptr; 6923 if (parseTypeAndValue(Op, Loc, PFS) || 6924 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6925 parseType(DestTy)) 6926 return true; 6927 6928 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6929 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6930 return error(Loc, "invalid cast opcode for cast from '" + 6931 getTypeString(Op->getType()) + "' to '" + 6932 getTypeString(DestTy) + "'"); 6933 } 6934 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6935 return false; 6936 } 6937 6938 /// parseSelect 6939 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6940 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6941 LocTy Loc; 6942 Value *Op0, *Op1, *Op2; 6943 if (parseTypeAndValue(Op0, Loc, PFS) || 6944 parseToken(lltok::comma, "expected ',' after select condition") || 6945 parseTypeAndValue(Op1, PFS) || 6946 parseToken(lltok::comma, "expected ',' after select value") || 6947 parseTypeAndValue(Op2, PFS)) 6948 return true; 6949 6950 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6951 return error(Loc, Reason); 6952 6953 Inst = SelectInst::Create(Op0, Op1, Op2); 6954 return false; 6955 } 6956 6957 /// parseVAArg 6958 /// ::= 'va_arg' TypeAndValue ',' Type 6959 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6960 Value *Op; 6961 Type *EltTy = nullptr; 6962 LocTy TypeLoc; 6963 if (parseTypeAndValue(Op, PFS) || 6964 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6965 parseType(EltTy, TypeLoc)) 6966 return true; 6967 6968 if (!EltTy->isFirstClassType()) 6969 return error(TypeLoc, "va_arg requires operand with first class type"); 6970 6971 Inst = new VAArgInst(Op, EltTy); 6972 return false; 6973 } 6974 6975 /// parseExtractElement 6976 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6977 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6978 LocTy Loc; 6979 Value *Op0, *Op1; 6980 if (parseTypeAndValue(Op0, Loc, PFS) || 6981 parseToken(lltok::comma, "expected ',' after extract value") || 6982 parseTypeAndValue(Op1, PFS)) 6983 return true; 6984 6985 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6986 return error(Loc, "invalid extractelement operands"); 6987 6988 Inst = ExtractElementInst::Create(Op0, Op1); 6989 return false; 6990 } 6991 6992 /// parseInsertElement 6993 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6994 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6995 LocTy Loc; 6996 Value *Op0, *Op1, *Op2; 6997 if (parseTypeAndValue(Op0, Loc, PFS) || 6998 parseToken(lltok::comma, "expected ',' after insertelement value") || 6999 parseTypeAndValue(Op1, PFS) || 7000 parseToken(lltok::comma, "expected ',' after insertelement value") || 7001 parseTypeAndValue(Op2, PFS)) 7002 return true; 7003 7004 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7005 return error(Loc, "invalid insertelement operands"); 7006 7007 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7008 return false; 7009 } 7010 7011 /// parseShuffleVector 7012 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7013 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7014 LocTy Loc; 7015 Value *Op0, *Op1, *Op2; 7016 if (parseTypeAndValue(Op0, Loc, PFS) || 7017 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7018 parseTypeAndValue(Op1, PFS) || 7019 parseToken(lltok::comma, "expected ',' after shuffle value") || 7020 parseTypeAndValue(Op2, PFS)) 7021 return true; 7022 7023 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7024 return error(Loc, "invalid shufflevector operands"); 7025 7026 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7027 return false; 7028 } 7029 7030 /// parsePHI 7031 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7032 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7033 Type *Ty = nullptr; LocTy TypeLoc; 7034 Value *Op0, *Op1; 7035 7036 if (parseType(Ty, TypeLoc) || 7037 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7038 parseValue(Ty, Op0, PFS) || 7039 parseToken(lltok::comma, "expected ',' after insertelement value") || 7040 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7041 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7042 return true; 7043 7044 bool AteExtraComma = false; 7045 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7046 7047 while (true) { 7048 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7049 7050 if (!EatIfPresent(lltok::comma)) 7051 break; 7052 7053 if (Lex.getKind() == lltok::MetadataVar) { 7054 AteExtraComma = true; 7055 break; 7056 } 7057 7058 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7059 parseValue(Ty, Op0, PFS) || 7060 parseToken(lltok::comma, "expected ',' after insertelement value") || 7061 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7062 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7063 return true; 7064 } 7065 7066 if (!Ty->isFirstClassType()) 7067 return error(TypeLoc, "phi node must have first class type"); 7068 7069 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7070 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7071 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7072 Inst = PN; 7073 return AteExtraComma ? InstExtraComma : InstNormal; 7074 } 7075 7076 /// parseLandingPad 7077 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7078 /// Clause 7079 /// ::= 'catch' TypeAndValue 7080 /// ::= 'filter' 7081 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7082 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7083 Type *Ty = nullptr; LocTy TyLoc; 7084 7085 if (parseType(Ty, TyLoc)) 7086 return true; 7087 7088 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7089 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7090 7091 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7092 LandingPadInst::ClauseType CT; 7093 if (EatIfPresent(lltok::kw_catch)) 7094 CT = LandingPadInst::Catch; 7095 else if (EatIfPresent(lltok::kw_filter)) 7096 CT = LandingPadInst::Filter; 7097 else 7098 return tokError("expected 'catch' or 'filter' clause type"); 7099 7100 Value *V; 7101 LocTy VLoc; 7102 if (parseTypeAndValue(V, VLoc, PFS)) 7103 return true; 7104 7105 // A 'catch' type expects a non-array constant. A filter clause expects an 7106 // array constant. 7107 if (CT == LandingPadInst::Catch) { 7108 if (isa<ArrayType>(V->getType())) 7109 error(VLoc, "'catch' clause has an invalid type"); 7110 } else { 7111 if (!isa<ArrayType>(V->getType())) 7112 error(VLoc, "'filter' clause has an invalid type"); 7113 } 7114 7115 Constant *CV = dyn_cast<Constant>(V); 7116 if (!CV) 7117 return error(VLoc, "clause argument must be a constant"); 7118 LP->addClause(CV); 7119 } 7120 7121 Inst = LP.release(); 7122 return false; 7123 } 7124 7125 /// parseFreeze 7126 /// ::= 'freeze' Type Value 7127 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7128 LocTy Loc; 7129 Value *Op; 7130 if (parseTypeAndValue(Op, Loc, PFS)) 7131 return true; 7132 7133 Inst = new FreezeInst(Op); 7134 return false; 7135 } 7136 7137 /// parseCall 7138 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7139 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7140 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7141 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7142 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7143 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7144 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7145 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7146 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7147 CallInst::TailCallKind TCK) { 7148 AttrBuilder RetAttrs, FnAttrs; 7149 std::vector<unsigned> FwdRefAttrGrps; 7150 LocTy BuiltinLoc; 7151 unsigned CallAddrSpace; 7152 unsigned CC; 7153 Type *RetType = nullptr; 7154 LocTy RetTypeLoc; 7155 ValID CalleeID; 7156 SmallVector<ParamInfo, 16> ArgList; 7157 SmallVector<OperandBundleDef, 2> BundleList; 7158 LocTy CallLoc = Lex.getLoc(); 7159 7160 if (TCK != CallInst::TCK_None && 7161 parseToken(lltok::kw_call, 7162 "expected 'tail call', 'musttail call', or 'notail call'")) 7163 return true; 7164 7165 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7166 7167 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7168 parseOptionalProgramAddrSpace(CallAddrSpace) || 7169 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7170 parseValID(CalleeID) || 7171 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7172 PFS.getFunction().isVarArg()) || 7173 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7174 parseOptionalOperandBundles(BundleList, PFS)) 7175 return true; 7176 7177 // If RetType is a non-function pointer type, then this is the short syntax 7178 // for the call, which means that RetType is just the return type. Infer the 7179 // rest of the function argument types from the arguments that are present. 7180 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7181 if (!Ty) { 7182 // Pull out the types of all of the arguments... 7183 std::vector<Type*> ParamTypes; 7184 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7185 ParamTypes.push_back(ArgList[i].V->getType()); 7186 7187 if (!FunctionType::isValidReturnType(RetType)) 7188 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7189 7190 Ty = FunctionType::get(RetType, ParamTypes, false); 7191 } 7192 7193 CalleeID.FTy = Ty; 7194 7195 // Look up the callee. 7196 Value *Callee; 7197 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7198 &PFS, /*IsCall=*/true)) 7199 return true; 7200 7201 // Set up the Attribute for the function. 7202 SmallVector<AttributeSet, 8> Attrs; 7203 7204 SmallVector<Value*, 8> Args; 7205 7206 // Loop through FunctionType's arguments and ensure they are specified 7207 // correctly. Also, gather any parameter attributes. 7208 FunctionType::param_iterator I = Ty->param_begin(); 7209 FunctionType::param_iterator E = Ty->param_end(); 7210 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7211 Type *ExpectedTy = nullptr; 7212 if (I != E) { 7213 ExpectedTy = *I++; 7214 } else if (!Ty->isVarArg()) { 7215 return error(ArgList[i].Loc, "too many arguments specified"); 7216 } 7217 7218 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7219 return error(ArgList[i].Loc, "argument is not of expected type '" + 7220 getTypeString(ExpectedTy) + "'"); 7221 Args.push_back(ArgList[i].V); 7222 Attrs.push_back(ArgList[i].Attrs); 7223 } 7224 7225 if (I != E) 7226 return error(CallLoc, "not enough parameters specified for call"); 7227 7228 if (FnAttrs.hasAlignmentAttr()) 7229 return error(CallLoc, "call instructions may not have an alignment"); 7230 7231 // Finish off the Attribute and check them 7232 AttributeList PAL = 7233 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7234 AttributeSet::get(Context, RetAttrs), Attrs); 7235 7236 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7237 CI->setTailCallKind(TCK); 7238 CI->setCallingConv(CC); 7239 if (FMF.any()) { 7240 if (!isa<FPMathOperator>(CI)) { 7241 CI->deleteValue(); 7242 return error(CallLoc, "fast-math-flags specified for call without " 7243 "floating-point scalar or vector return type"); 7244 } 7245 CI->setFastMathFlags(FMF); 7246 } 7247 CI->setAttributes(PAL); 7248 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7249 Inst = CI; 7250 return false; 7251 } 7252 7253 //===----------------------------------------------------------------------===// 7254 // Memory Instructions. 7255 //===----------------------------------------------------------------------===// 7256 7257 /// parseAlloc 7258 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7259 /// (',' 'align' i32)? (',', 'addrspace(n))? 7260 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7261 Value *Size = nullptr; 7262 LocTy SizeLoc, TyLoc, ASLoc; 7263 MaybeAlign Alignment; 7264 unsigned AddrSpace = 0; 7265 Type *Ty = nullptr; 7266 7267 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7268 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7269 7270 if (parseType(Ty, TyLoc)) 7271 return true; 7272 7273 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7274 return error(TyLoc, "invalid type for alloca"); 7275 7276 bool AteExtraComma = false; 7277 if (EatIfPresent(lltok::comma)) { 7278 if (Lex.getKind() == lltok::kw_align) { 7279 if (parseOptionalAlignment(Alignment)) 7280 return true; 7281 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7282 return true; 7283 } else if (Lex.getKind() == lltok::kw_addrspace) { 7284 ASLoc = Lex.getLoc(); 7285 if (parseOptionalAddrSpace(AddrSpace)) 7286 return true; 7287 } else if (Lex.getKind() == lltok::MetadataVar) { 7288 AteExtraComma = true; 7289 } else { 7290 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7291 return true; 7292 if (EatIfPresent(lltok::comma)) { 7293 if (Lex.getKind() == lltok::kw_align) { 7294 if (parseOptionalAlignment(Alignment)) 7295 return true; 7296 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7297 return true; 7298 } else if (Lex.getKind() == lltok::kw_addrspace) { 7299 ASLoc = Lex.getLoc(); 7300 if (parseOptionalAddrSpace(AddrSpace)) 7301 return true; 7302 } else if (Lex.getKind() == lltok::MetadataVar) { 7303 AteExtraComma = true; 7304 } 7305 } 7306 } 7307 } 7308 7309 if (Size && !Size->getType()->isIntegerTy()) 7310 return error(SizeLoc, "element count must have integer type"); 7311 7312 SmallPtrSet<Type *, 4> Visited; 7313 if (!Alignment && !Ty->isSized(&Visited)) 7314 return error(TyLoc, "Cannot allocate unsized type"); 7315 if (!Alignment) 7316 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7317 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7318 AI->setUsedWithInAlloca(IsInAlloca); 7319 AI->setSwiftError(IsSwiftError); 7320 Inst = AI; 7321 return AteExtraComma ? InstExtraComma : InstNormal; 7322 } 7323 7324 /// parseLoad 7325 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7326 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7327 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7328 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7329 Value *Val; LocTy Loc; 7330 MaybeAlign Alignment; 7331 bool AteExtraComma = false; 7332 bool isAtomic = false; 7333 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7334 SyncScope::ID SSID = SyncScope::System; 7335 7336 if (Lex.getKind() == lltok::kw_atomic) { 7337 isAtomic = true; 7338 Lex.Lex(); 7339 } 7340 7341 bool isVolatile = false; 7342 if (Lex.getKind() == lltok::kw_volatile) { 7343 isVolatile = true; 7344 Lex.Lex(); 7345 } 7346 7347 Type *Ty; 7348 LocTy ExplicitTypeLoc = Lex.getLoc(); 7349 if (parseType(Ty) || 7350 parseToken(lltok::comma, "expected comma after load's type") || 7351 parseTypeAndValue(Val, Loc, PFS) || 7352 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7353 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7354 return true; 7355 7356 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7357 return error(Loc, "load operand must be a pointer to a first class type"); 7358 if (isAtomic && !Alignment) 7359 return error(Loc, "atomic load must have explicit non-zero alignment"); 7360 if (Ordering == AtomicOrdering::Release || 7361 Ordering == AtomicOrdering::AcquireRelease) 7362 return error(Loc, "atomic load cannot use Release ordering"); 7363 7364 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7365 return error(ExplicitTypeLoc, 7366 "explicit pointee type doesn't match operand's pointee type"); 7367 SmallPtrSet<Type *, 4> Visited; 7368 if (!Alignment && !Ty->isSized(&Visited)) 7369 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7370 if (!Alignment) 7371 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7372 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7373 return AteExtraComma ? InstExtraComma : InstNormal; 7374 } 7375 7376 /// parseStore 7377 7378 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7379 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7380 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7381 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7382 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7383 MaybeAlign Alignment; 7384 bool AteExtraComma = false; 7385 bool isAtomic = false; 7386 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7387 SyncScope::ID SSID = SyncScope::System; 7388 7389 if (Lex.getKind() == lltok::kw_atomic) { 7390 isAtomic = true; 7391 Lex.Lex(); 7392 } 7393 7394 bool isVolatile = false; 7395 if (Lex.getKind() == lltok::kw_volatile) { 7396 isVolatile = true; 7397 Lex.Lex(); 7398 } 7399 7400 if (parseTypeAndValue(Val, Loc, PFS) || 7401 parseToken(lltok::comma, "expected ',' after store operand") || 7402 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7403 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7404 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7405 return true; 7406 7407 if (!Ptr->getType()->isPointerTy()) 7408 return error(PtrLoc, "store operand must be a pointer"); 7409 if (!Val->getType()->isFirstClassType()) 7410 return error(Loc, "store operand must be a first class value"); 7411 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7412 return error(Loc, "stored value and pointer type do not match"); 7413 if (isAtomic && !Alignment) 7414 return error(Loc, "atomic store must have explicit non-zero alignment"); 7415 if (Ordering == AtomicOrdering::Acquire || 7416 Ordering == AtomicOrdering::AcquireRelease) 7417 return error(Loc, "atomic store cannot use Acquire ordering"); 7418 SmallPtrSet<Type *, 4> Visited; 7419 if (!Alignment && !Val->getType()->isSized(&Visited)) 7420 return error(Loc, "storing unsized types is not allowed"); 7421 if (!Alignment) 7422 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7423 7424 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7425 return AteExtraComma ? InstExtraComma : InstNormal; 7426 } 7427 7428 /// parseCmpXchg 7429 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7430 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7431 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7432 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7433 bool AteExtraComma = false; 7434 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7435 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7436 SyncScope::ID SSID = SyncScope::System; 7437 bool isVolatile = false; 7438 bool isWeak = false; 7439 7440 if (EatIfPresent(lltok::kw_weak)) 7441 isWeak = true; 7442 7443 if (EatIfPresent(lltok::kw_volatile)) 7444 isVolatile = true; 7445 7446 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7447 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7448 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7449 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7450 parseTypeAndValue(New, NewLoc, PFS) || 7451 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7452 parseOrdering(FailureOrdering)) 7453 return true; 7454 7455 if (SuccessOrdering == AtomicOrdering::Unordered || 7456 FailureOrdering == AtomicOrdering::Unordered) 7457 return tokError("cmpxchg cannot be unordered"); 7458 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7459 return tokError("cmpxchg failure argument shall be no stronger than the " 7460 "success argument"); 7461 if (FailureOrdering == AtomicOrdering::Release || 7462 FailureOrdering == AtomicOrdering::AcquireRelease) 7463 return tokError( 7464 "cmpxchg failure ordering cannot include release semantics"); 7465 if (!Ptr->getType()->isPointerTy()) 7466 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7467 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7468 return error(CmpLoc, "compare value and pointer type do not match"); 7469 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7470 return error(NewLoc, "new value and pointer type do not match"); 7471 if (!New->getType()->isFirstClassType()) 7472 return error(NewLoc, "cmpxchg operand must be a first class value"); 7473 7474 Align Alignment( 7475 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7476 Cmp->getType())); 7477 7478 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7479 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7480 CXI->setVolatile(isVolatile); 7481 CXI->setWeak(isWeak); 7482 Inst = CXI; 7483 return AteExtraComma ? InstExtraComma : InstNormal; 7484 } 7485 7486 /// parseAtomicRMW 7487 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7488 /// 'singlethread'? AtomicOrdering 7489 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7490 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7491 bool AteExtraComma = false; 7492 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7493 SyncScope::ID SSID = SyncScope::System; 7494 bool isVolatile = false; 7495 bool IsFP = false; 7496 AtomicRMWInst::BinOp Operation; 7497 7498 if (EatIfPresent(lltok::kw_volatile)) 7499 isVolatile = true; 7500 7501 switch (Lex.getKind()) { 7502 default: 7503 return tokError("expected binary operation in atomicrmw"); 7504 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7505 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7506 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7507 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7508 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7509 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7510 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7511 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7512 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7513 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7514 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7515 case lltok::kw_fadd: 7516 Operation = AtomicRMWInst::FAdd; 7517 IsFP = true; 7518 break; 7519 case lltok::kw_fsub: 7520 Operation = AtomicRMWInst::FSub; 7521 IsFP = true; 7522 break; 7523 } 7524 Lex.Lex(); // Eat the operation. 7525 7526 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7527 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7528 parseTypeAndValue(Val, ValLoc, PFS) || 7529 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7530 return true; 7531 7532 if (Ordering == AtomicOrdering::Unordered) 7533 return tokError("atomicrmw cannot be unordered"); 7534 if (!Ptr->getType()->isPointerTy()) 7535 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7536 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7537 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7538 7539 if (Operation == AtomicRMWInst::Xchg) { 7540 if (!Val->getType()->isIntegerTy() && 7541 !Val->getType()->isFloatingPointTy()) { 7542 return error(ValLoc, 7543 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7544 " operand must be an integer or floating point type"); 7545 } 7546 } else if (IsFP) { 7547 if (!Val->getType()->isFloatingPointTy()) { 7548 return error(ValLoc, "atomicrmw " + 7549 AtomicRMWInst::getOperationName(Operation) + 7550 " operand must be a floating point type"); 7551 } 7552 } else { 7553 if (!Val->getType()->isIntegerTy()) { 7554 return error(ValLoc, "atomicrmw " + 7555 AtomicRMWInst::getOperationName(Operation) + 7556 " operand must be an integer"); 7557 } 7558 } 7559 7560 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7561 if (Size < 8 || (Size & (Size - 1))) 7562 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7563 " integer"); 7564 Align Alignment( 7565 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7566 Val->getType())); 7567 AtomicRMWInst *RMWI = 7568 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7569 RMWI->setVolatile(isVolatile); 7570 Inst = RMWI; 7571 return AteExtraComma ? InstExtraComma : InstNormal; 7572 } 7573 7574 /// parseFence 7575 /// ::= 'fence' 'singlethread'? AtomicOrdering 7576 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7577 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7578 SyncScope::ID SSID = SyncScope::System; 7579 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7580 return true; 7581 7582 if (Ordering == AtomicOrdering::Unordered) 7583 return tokError("fence cannot be unordered"); 7584 if (Ordering == AtomicOrdering::Monotonic) 7585 return tokError("fence cannot be monotonic"); 7586 7587 Inst = new FenceInst(Context, Ordering, SSID); 7588 return InstNormal; 7589 } 7590 7591 /// parseGetElementPtr 7592 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7593 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7594 Value *Ptr = nullptr; 7595 Value *Val = nullptr; 7596 LocTy Loc, EltLoc; 7597 7598 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7599 7600 Type *Ty = nullptr; 7601 LocTy ExplicitTypeLoc = Lex.getLoc(); 7602 if (parseType(Ty) || 7603 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7604 parseTypeAndValue(Ptr, Loc, PFS)) 7605 return true; 7606 7607 Type *BaseType = Ptr->getType(); 7608 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7609 if (!BasePointerType) 7610 return error(Loc, "base of getelementptr must be a pointer"); 7611 7612 if (Ty != BasePointerType->getElementType()) 7613 return error(ExplicitTypeLoc, 7614 "explicit pointee type doesn't match operand's pointee type"); 7615 7616 SmallVector<Value*, 16> Indices; 7617 bool AteExtraComma = false; 7618 // GEP returns a vector of pointers if at least one of parameters is a vector. 7619 // All vector parameters should have the same vector width. 7620 ElementCount GEPWidth = BaseType->isVectorTy() 7621 ? cast<VectorType>(BaseType)->getElementCount() 7622 : ElementCount::getFixed(0); 7623 7624 while (EatIfPresent(lltok::comma)) { 7625 if (Lex.getKind() == lltok::MetadataVar) { 7626 AteExtraComma = true; 7627 break; 7628 } 7629 if (parseTypeAndValue(Val, EltLoc, PFS)) 7630 return true; 7631 if (!Val->getType()->isIntOrIntVectorTy()) 7632 return error(EltLoc, "getelementptr index must be an integer"); 7633 7634 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7635 ElementCount ValNumEl = ValVTy->getElementCount(); 7636 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7637 return error( 7638 EltLoc, 7639 "getelementptr vector index has a wrong number of elements"); 7640 GEPWidth = ValNumEl; 7641 } 7642 Indices.push_back(Val); 7643 } 7644 7645 SmallPtrSet<Type*, 4> Visited; 7646 if (!Indices.empty() && !Ty->isSized(&Visited)) 7647 return error(Loc, "base element of getelementptr must be sized"); 7648 7649 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7650 return error(Loc, "invalid getelementptr indices"); 7651 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7652 if (InBounds) 7653 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7654 return AteExtraComma ? InstExtraComma : InstNormal; 7655 } 7656 7657 /// parseExtractValue 7658 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7659 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7660 Value *Val; LocTy Loc; 7661 SmallVector<unsigned, 4> Indices; 7662 bool AteExtraComma; 7663 if (parseTypeAndValue(Val, Loc, PFS) || 7664 parseIndexList(Indices, AteExtraComma)) 7665 return true; 7666 7667 if (!Val->getType()->isAggregateType()) 7668 return error(Loc, "extractvalue operand must be aggregate type"); 7669 7670 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7671 return error(Loc, "invalid indices for extractvalue"); 7672 Inst = ExtractValueInst::Create(Val, Indices); 7673 return AteExtraComma ? InstExtraComma : InstNormal; 7674 } 7675 7676 /// parseInsertValue 7677 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7678 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7679 Value *Val0, *Val1; LocTy Loc0, Loc1; 7680 SmallVector<unsigned, 4> Indices; 7681 bool AteExtraComma; 7682 if (parseTypeAndValue(Val0, Loc0, PFS) || 7683 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7684 parseTypeAndValue(Val1, Loc1, PFS) || 7685 parseIndexList(Indices, AteExtraComma)) 7686 return true; 7687 7688 if (!Val0->getType()->isAggregateType()) 7689 return error(Loc0, "insertvalue operand must be aggregate type"); 7690 7691 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7692 if (!IndexedType) 7693 return error(Loc0, "invalid indices for insertvalue"); 7694 if (IndexedType != Val1->getType()) 7695 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7696 getTypeString(Val1->getType()) + "' instead of '" + 7697 getTypeString(IndexedType) + "'"); 7698 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7699 return AteExtraComma ? InstExtraComma : InstNormal; 7700 } 7701 7702 //===----------------------------------------------------------------------===// 7703 // Embedded metadata. 7704 //===----------------------------------------------------------------------===// 7705 7706 /// parseMDNodeVector 7707 /// ::= { Element (',' Element)* } 7708 /// Element 7709 /// ::= 'null' | TypeAndValue 7710 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7711 if (parseToken(lltok::lbrace, "expected '{' here")) 7712 return true; 7713 7714 // Check for an empty list. 7715 if (EatIfPresent(lltok::rbrace)) 7716 return false; 7717 7718 do { 7719 // Null is a special case since it is typeless. 7720 if (EatIfPresent(lltok::kw_null)) { 7721 Elts.push_back(nullptr); 7722 continue; 7723 } 7724 7725 Metadata *MD; 7726 if (parseMetadata(MD, nullptr)) 7727 return true; 7728 Elts.push_back(MD); 7729 } while (EatIfPresent(lltok::comma)); 7730 7731 return parseToken(lltok::rbrace, "expected end of metadata node"); 7732 } 7733 7734 //===----------------------------------------------------------------------===// 7735 // Use-list order directives. 7736 //===----------------------------------------------------------------------===// 7737 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7738 SMLoc Loc) { 7739 if (V->use_empty()) 7740 return error(Loc, "value has no uses"); 7741 7742 unsigned NumUses = 0; 7743 SmallDenseMap<const Use *, unsigned, 16> Order; 7744 for (const Use &U : V->uses()) { 7745 if (++NumUses > Indexes.size()) 7746 break; 7747 Order[&U] = Indexes[NumUses - 1]; 7748 } 7749 if (NumUses < 2) 7750 return error(Loc, "value only has one use"); 7751 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7752 return error(Loc, 7753 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7754 7755 V->sortUseList([&](const Use &L, const Use &R) { 7756 return Order.lookup(&L) < Order.lookup(&R); 7757 }); 7758 return false; 7759 } 7760 7761 /// parseUseListOrderIndexes 7762 /// ::= '{' uint32 (',' uint32)+ '}' 7763 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7764 SMLoc Loc = Lex.getLoc(); 7765 if (parseToken(lltok::lbrace, "expected '{' here")) 7766 return true; 7767 if (Lex.getKind() == lltok::rbrace) 7768 return Lex.Error("expected non-empty list of uselistorder indexes"); 7769 7770 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7771 // indexes should be distinct numbers in the range [0, size-1], and should 7772 // not be in order. 7773 unsigned Offset = 0; 7774 unsigned Max = 0; 7775 bool IsOrdered = true; 7776 assert(Indexes.empty() && "Expected empty order vector"); 7777 do { 7778 unsigned Index; 7779 if (parseUInt32(Index)) 7780 return true; 7781 7782 // Update consistency checks. 7783 Offset += Index - Indexes.size(); 7784 Max = std::max(Max, Index); 7785 IsOrdered &= Index == Indexes.size(); 7786 7787 Indexes.push_back(Index); 7788 } while (EatIfPresent(lltok::comma)); 7789 7790 if (parseToken(lltok::rbrace, "expected '}' here")) 7791 return true; 7792 7793 if (Indexes.size() < 2) 7794 return error(Loc, "expected >= 2 uselistorder indexes"); 7795 if (Offset != 0 || Max >= Indexes.size()) 7796 return error(Loc, 7797 "expected distinct uselistorder indexes in range [0, size)"); 7798 if (IsOrdered) 7799 return error(Loc, "expected uselistorder indexes to change the order"); 7800 7801 return false; 7802 } 7803 7804 /// parseUseListOrder 7805 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7806 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7807 SMLoc Loc = Lex.getLoc(); 7808 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7809 return true; 7810 7811 Value *V; 7812 SmallVector<unsigned, 16> Indexes; 7813 if (parseTypeAndValue(V, PFS) || 7814 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7815 parseUseListOrderIndexes(Indexes)) 7816 return true; 7817 7818 return sortUseListOrder(V, Indexes, Loc); 7819 } 7820 7821 /// parseUseListOrderBB 7822 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7823 bool LLParser::parseUseListOrderBB() { 7824 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7825 SMLoc Loc = Lex.getLoc(); 7826 Lex.Lex(); 7827 7828 ValID Fn, Label; 7829 SmallVector<unsigned, 16> Indexes; 7830 if (parseValID(Fn) || 7831 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7832 parseValID(Label) || 7833 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7834 parseUseListOrderIndexes(Indexes)) 7835 return true; 7836 7837 // Check the function. 7838 GlobalValue *GV; 7839 if (Fn.Kind == ValID::t_GlobalName) 7840 GV = M->getNamedValue(Fn.StrVal); 7841 else if (Fn.Kind == ValID::t_GlobalID) 7842 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7843 else 7844 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7845 if (!GV) 7846 return error(Fn.Loc, 7847 "invalid function forward reference in uselistorder_bb"); 7848 auto *F = dyn_cast<Function>(GV); 7849 if (!F) 7850 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7851 if (F->isDeclaration()) 7852 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7853 7854 // Check the basic block. 7855 if (Label.Kind == ValID::t_LocalID) 7856 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7857 if (Label.Kind != ValID::t_LocalName) 7858 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7859 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7860 if (!V) 7861 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7862 if (!isa<BasicBlock>(V)) 7863 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7864 7865 return sortUseListOrder(V, Indexes, Loc); 7866 } 7867 7868 /// ModuleEntry 7869 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7870 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7871 bool LLParser::parseModuleEntry(unsigned ID) { 7872 assert(Lex.getKind() == lltok::kw_module); 7873 Lex.Lex(); 7874 7875 std::string Path; 7876 if (parseToken(lltok::colon, "expected ':' here") || 7877 parseToken(lltok::lparen, "expected '(' here") || 7878 parseToken(lltok::kw_path, "expected 'path' here") || 7879 parseToken(lltok::colon, "expected ':' here") || 7880 parseStringConstant(Path) || 7881 parseToken(lltok::comma, "expected ',' here") || 7882 parseToken(lltok::kw_hash, "expected 'hash' here") || 7883 parseToken(lltok::colon, "expected ':' here") || 7884 parseToken(lltok::lparen, "expected '(' here")) 7885 return true; 7886 7887 ModuleHash Hash; 7888 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7889 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7890 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7891 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7892 parseUInt32(Hash[4])) 7893 return true; 7894 7895 if (parseToken(lltok::rparen, "expected ')' here") || 7896 parseToken(lltok::rparen, "expected ')' here")) 7897 return true; 7898 7899 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7900 ModuleIdMap[ID] = ModuleEntry->first(); 7901 7902 return false; 7903 } 7904 7905 /// TypeIdEntry 7906 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7907 bool LLParser::parseTypeIdEntry(unsigned ID) { 7908 assert(Lex.getKind() == lltok::kw_typeid); 7909 Lex.Lex(); 7910 7911 std::string Name; 7912 if (parseToken(lltok::colon, "expected ':' here") || 7913 parseToken(lltok::lparen, "expected '(' here") || 7914 parseToken(lltok::kw_name, "expected 'name' here") || 7915 parseToken(lltok::colon, "expected ':' here") || 7916 parseStringConstant(Name)) 7917 return true; 7918 7919 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7920 if (parseToken(lltok::comma, "expected ',' here") || 7921 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7922 return true; 7923 7924 // Check if this ID was forward referenced, and if so, update the 7925 // corresponding GUIDs. 7926 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7927 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7928 for (auto TIDRef : FwdRefTIDs->second) { 7929 assert(!*TIDRef.first && 7930 "Forward referenced type id GUID expected to be 0"); 7931 *TIDRef.first = GlobalValue::getGUID(Name); 7932 } 7933 ForwardRefTypeIds.erase(FwdRefTIDs); 7934 } 7935 7936 return false; 7937 } 7938 7939 /// TypeIdSummary 7940 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7941 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7942 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7943 parseToken(lltok::colon, "expected ':' here") || 7944 parseToken(lltok::lparen, "expected '(' here") || 7945 parseTypeTestResolution(TIS.TTRes)) 7946 return true; 7947 7948 if (EatIfPresent(lltok::comma)) { 7949 // Expect optional wpdResolutions field 7950 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7951 return true; 7952 } 7953 7954 if (parseToken(lltok::rparen, "expected ')' here")) 7955 return true; 7956 7957 return false; 7958 } 7959 7960 static ValueInfo EmptyVI = 7961 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7962 7963 /// TypeIdCompatibleVtableEntry 7964 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7965 /// TypeIdCompatibleVtableInfo 7966 /// ')' 7967 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7968 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7969 Lex.Lex(); 7970 7971 std::string Name; 7972 if (parseToken(lltok::colon, "expected ':' here") || 7973 parseToken(lltok::lparen, "expected '(' here") || 7974 parseToken(lltok::kw_name, "expected 'name' here") || 7975 parseToken(lltok::colon, "expected ':' here") || 7976 parseStringConstant(Name)) 7977 return true; 7978 7979 TypeIdCompatibleVtableInfo &TI = 7980 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7981 if (parseToken(lltok::comma, "expected ',' here") || 7982 parseToken(lltok::kw_summary, "expected 'summary' here") || 7983 parseToken(lltok::colon, "expected ':' here") || 7984 parseToken(lltok::lparen, "expected '(' here")) 7985 return true; 7986 7987 IdToIndexMapType IdToIndexMap; 7988 // parse each call edge 7989 do { 7990 uint64_t Offset; 7991 if (parseToken(lltok::lparen, "expected '(' here") || 7992 parseToken(lltok::kw_offset, "expected 'offset' here") || 7993 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7994 parseToken(lltok::comma, "expected ',' here")) 7995 return true; 7996 7997 LocTy Loc = Lex.getLoc(); 7998 unsigned GVId; 7999 ValueInfo VI; 8000 if (parseGVReference(VI, GVId)) 8001 return true; 8002 8003 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8004 // forward reference. We will save the location of the ValueInfo needing an 8005 // update, but can only do so once the std::vector is finalized. 8006 if (VI == EmptyVI) 8007 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8008 TI.push_back({Offset, VI}); 8009 8010 if (parseToken(lltok::rparen, "expected ')' in call")) 8011 return true; 8012 } while (EatIfPresent(lltok::comma)); 8013 8014 // Now that the TI vector is finalized, it is safe to save the locations 8015 // of any forward GV references that need updating later. 8016 for (auto I : IdToIndexMap) { 8017 auto &Infos = ForwardRefValueInfos[I.first]; 8018 for (auto P : I.second) { 8019 assert(TI[P.first].VTableVI == EmptyVI && 8020 "Forward referenced ValueInfo expected to be empty"); 8021 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8022 } 8023 } 8024 8025 if (parseToken(lltok::rparen, "expected ')' here") || 8026 parseToken(lltok::rparen, "expected ')' here")) 8027 return true; 8028 8029 // Check if this ID was forward referenced, and if so, update the 8030 // corresponding GUIDs. 8031 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8032 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8033 for (auto TIDRef : FwdRefTIDs->second) { 8034 assert(!*TIDRef.first && 8035 "Forward referenced type id GUID expected to be 0"); 8036 *TIDRef.first = GlobalValue::getGUID(Name); 8037 } 8038 ForwardRefTypeIds.erase(FwdRefTIDs); 8039 } 8040 8041 return false; 8042 } 8043 8044 /// TypeTestResolution 8045 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8046 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8047 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8048 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8049 /// [',' 'inlinesBits' ':' UInt64]? ')' 8050 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8051 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8052 parseToken(lltok::colon, "expected ':' here") || 8053 parseToken(lltok::lparen, "expected '(' here") || 8054 parseToken(lltok::kw_kind, "expected 'kind' here") || 8055 parseToken(lltok::colon, "expected ':' here")) 8056 return true; 8057 8058 switch (Lex.getKind()) { 8059 case lltok::kw_unknown: 8060 TTRes.TheKind = TypeTestResolution::Unknown; 8061 break; 8062 case lltok::kw_unsat: 8063 TTRes.TheKind = TypeTestResolution::Unsat; 8064 break; 8065 case lltok::kw_byteArray: 8066 TTRes.TheKind = TypeTestResolution::ByteArray; 8067 break; 8068 case lltok::kw_inline: 8069 TTRes.TheKind = TypeTestResolution::Inline; 8070 break; 8071 case lltok::kw_single: 8072 TTRes.TheKind = TypeTestResolution::Single; 8073 break; 8074 case lltok::kw_allOnes: 8075 TTRes.TheKind = TypeTestResolution::AllOnes; 8076 break; 8077 default: 8078 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8079 } 8080 Lex.Lex(); 8081 8082 if (parseToken(lltok::comma, "expected ',' here") || 8083 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8084 parseToken(lltok::colon, "expected ':' here") || 8085 parseUInt32(TTRes.SizeM1BitWidth)) 8086 return true; 8087 8088 // parse optional fields 8089 while (EatIfPresent(lltok::comma)) { 8090 switch (Lex.getKind()) { 8091 case lltok::kw_alignLog2: 8092 Lex.Lex(); 8093 if (parseToken(lltok::colon, "expected ':'") || 8094 parseUInt64(TTRes.AlignLog2)) 8095 return true; 8096 break; 8097 case lltok::kw_sizeM1: 8098 Lex.Lex(); 8099 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8100 return true; 8101 break; 8102 case lltok::kw_bitMask: { 8103 unsigned Val; 8104 Lex.Lex(); 8105 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8106 return true; 8107 assert(Val <= 0xff); 8108 TTRes.BitMask = (uint8_t)Val; 8109 break; 8110 } 8111 case lltok::kw_inlineBits: 8112 Lex.Lex(); 8113 if (parseToken(lltok::colon, "expected ':'") || 8114 parseUInt64(TTRes.InlineBits)) 8115 return true; 8116 break; 8117 default: 8118 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8119 } 8120 } 8121 8122 if (parseToken(lltok::rparen, "expected ')' here")) 8123 return true; 8124 8125 return false; 8126 } 8127 8128 /// OptionalWpdResolutions 8129 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8130 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8131 bool LLParser::parseOptionalWpdResolutions( 8132 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8133 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8134 parseToken(lltok::colon, "expected ':' here") || 8135 parseToken(lltok::lparen, "expected '(' here")) 8136 return true; 8137 8138 do { 8139 uint64_t Offset; 8140 WholeProgramDevirtResolution WPDRes; 8141 if (parseToken(lltok::lparen, "expected '(' here") || 8142 parseToken(lltok::kw_offset, "expected 'offset' here") || 8143 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8144 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8145 parseToken(lltok::rparen, "expected ')' here")) 8146 return true; 8147 WPDResMap[Offset] = WPDRes; 8148 } while (EatIfPresent(lltok::comma)); 8149 8150 if (parseToken(lltok::rparen, "expected ')' here")) 8151 return true; 8152 8153 return false; 8154 } 8155 8156 /// WpdRes 8157 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8158 /// [',' OptionalResByArg]? ')' 8159 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8160 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8161 /// [',' OptionalResByArg]? ')' 8162 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8163 /// [',' OptionalResByArg]? ')' 8164 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8165 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8166 parseToken(lltok::colon, "expected ':' here") || 8167 parseToken(lltok::lparen, "expected '(' here") || 8168 parseToken(lltok::kw_kind, "expected 'kind' here") || 8169 parseToken(lltok::colon, "expected ':' here")) 8170 return true; 8171 8172 switch (Lex.getKind()) { 8173 case lltok::kw_indir: 8174 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8175 break; 8176 case lltok::kw_singleImpl: 8177 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8178 break; 8179 case lltok::kw_branchFunnel: 8180 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8181 break; 8182 default: 8183 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8184 } 8185 Lex.Lex(); 8186 8187 // parse optional fields 8188 while (EatIfPresent(lltok::comma)) { 8189 switch (Lex.getKind()) { 8190 case lltok::kw_singleImplName: 8191 Lex.Lex(); 8192 if (parseToken(lltok::colon, "expected ':' here") || 8193 parseStringConstant(WPDRes.SingleImplName)) 8194 return true; 8195 break; 8196 case lltok::kw_resByArg: 8197 if (parseOptionalResByArg(WPDRes.ResByArg)) 8198 return true; 8199 break; 8200 default: 8201 return error(Lex.getLoc(), 8202 "expected optional WholeProgramDevirtResolution field"); 8203 } 8204 } 8205 8206 if (parseToken(lltok::rparen, "expected ')' here")) 8207 return true; 8208 8209 return false; 8210 } 8211 8212 /// OptionalResByArg 8213 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8214 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8215 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8216 /// 'virtualConstProp' ) 8217 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8218 /// [',' 'bit' ':' UInt32]? ')' 8219 bool LLParser::parseOptionalResByArg( 8220 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8221 &ResByArg) { 8222 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8223 parseToken(lltok::colon, "expected ':' here") || 8224 parseToken(lltok::lparen, "expected '(' here")) 8225 return true; 8226 8227 do { 8228 std::vector<uint64_t> Args; 8229 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8230 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8231 parseToken(lltok::colon, "expected ':' here") || 8232 parseToken(lltok::lparen, "expected '(' here") || 8233 parseToken(lltok::kw_kind, "expected 'kind' here") || 8234 parseToken(lltok::colon, "expected ':' here")) 8235 return true; 8236 8237 WholeProgramDevirtResolution::ByArg ByArg; 8238 switch (Lex.getKind()) { 8239 case lltok::kw_indir: 8240 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8241 break; 8242 case lltok::kw_uniformRetVal: 8243 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8244 break; 8245 case lltok::kw_uniqueRetVal: 8246 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8247 break; 8248 case lltok::kw_virtualConstProp: 8249 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8250 break; 8251 default: 8252 return error(Lex.getLoc(), 8253 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8254 } 8255 Lex.Lex(); 8256 8257 // parse optional fields 8258 while (EatIfPresent(lltok::comma)) { 8259 switch (Lex.getKind()) { 8260 case lltok::kw_info: 8261 Lex.Lex(); 8262 if (parseToken(lltok::colon, "expected ':' here") || 8263 parseUInt64(ByArg.Info)) 8264 return true; 8265 break; 8266 case lltok::kw_byte: 8267 Lex.Lex(); 8268 if (parseToken(lltok::colon, "expected ':' here") || 8269 parseUInt32(ByArg.Byte)) 8270 return true; 8271 break; 8272 case lltok::kw_bit: 8273 Lex.Lex(); 8274 if (parseToken(lltok::colon, "expected ':' here") || 8275 parseUInt32(ByArg.Bit)) 8276 return true; 8277 break; 8278 default: 8279 return error(Lex.getLoc(), 8280 "expected optional whole program devirt field"); 8281 } 8282 } 8283 8284 if (parseToken(lltok::rparen, "expected ')' here")) 8285 return true; 8286 8287 ResByArg[Args] = ByArg; 8288 } while (EatIfPresent(lltok::comma)); 8289 8290 if (parseToken(lltok::rparen, "expected ')' here")) 8291 return true; 8292 8293 return false; 8294 } 8295 8296 /// OptionalResByArg 8297 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8298 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8299 if (parseToken(lltok::kw_args, "expected 'args' here") || 8300 parseToken(lltok::colon, "expected ':' here") || 8301 parseToken(lltok::lparen, "expected '(' here")) 8302 return true; 8303 8304 do { 8305 uint64_t Val; 8306 if (parseUInt64(Val)) 8307 return true; 8308 Args.push_back(Val); 8309 } while (EatIfPresent(lltok::comma)); 8310 8311 if (parseToken(lltok::rparen, "expected ')' here")) 8312 return true; 8313 8314 return false; 8315 } 8316 8317 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8318 8319 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8320 bool ReadOnly = Fwd->isReadOnly(); 8321 bool WriteOnly = Fwd->isWriteOnly(); 8322 assert(!(ReadOnly && WriteOnly)); 8323 *Fwd = Resolved; 8324 if (ReadOnly) 8325 Fwd->setReadOnly(); 8326 if (WriteOnly) 8327 Fwd->setWriteOnly(); 8328 } 8329 8330 /// Stores the given Name/GUID and associated summary into the Index. 8331 /// Also updates any forward references to the associated entry ID. 8332 void LLParser::addGlobalValueToIndex( 8333 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8334 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8335 // First create the ValueInfo utilizing the Name or GUID. 8336 ValueInfo VI; 8337 if (GUID != 0) { 8338 assert(Name.empty()); 8339 VI = Index->getOrInsertValueInfo(GUID); 8340 } else { 8341 assert(!Name.empty()); 8342 if (M) { 8343 auto *GV = M->getNamedValue(Name); 8344 assert(GV); 8345 VI = Index->getOrInsertValueInfo(GV); 8346 } else { 8347 assert( 8348 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8349 "Need a source_filename to compute GUID for local"); 8350 GUID = GlobalValue::getGUID( 8351 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8352 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8353 } 8354 } 8355 8356 // Resolve forward references from calls/refs 8357 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8358 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8359 for (auto VIRef : FwdRefVIs->second) { 8360 assert(VIRef.first->getRef() == FwdVIRef && 8361 "Forward referenced ValueInfo expected to be empty"); 8362 resolveFwdRef(VIRef.first, VI); 8363 } 8364 ForwardRefValueInfos.erase(FwdRefVIs); 8365 } 8366 8367 // Resolve forward references from aliases 8368 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8369 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8370 for (auto AliaseeRef : FwdRefAliasees->second) { 8371 assert(!AliaseeRef.first->hasAliasee() && 8372 "Forward referencing alias already has aliasee"); 8373 assert(Summary && "Aliasee must be a definition"); 8374 AliaseeRef.first->setAliasee(VI, Summary.get()); 8375 } 8376 ForwardRefAliasees.erase(FwdRefAliasees); 8377 } 8378 8379 // Add the summary if one was provided. 8380 if (Summary) 8381 Index->addGlobalValueSummary(VI, std::move(Summary)); 8382 8383 // Save the associated ValueInfo for use in later references by ID. 8384 if (ID == NumberedValueInfos.size()) 8385 NumberedValueInfos.push_back(VI); 8386 else { 8387 // Handle non-continuous numbers (to make test simplification easier). 8388 if (ID > NumberedValueInfos.size()) 8389 NumberedValueInfos.resize(ID + 1); 8390 NumberedValueInfos[ID] = VI; 8391 } 8392 } 8393 8394 /// parseSummaryIndexFlags 8395 /// ::= 'flags' ':' UInt64 8396 bool LLParser::parseSummaryIndexFlags() { 8397 assert(Lex.getKind() == lltok::kw_flags); 8398 Lex.Lex(); 8399 8400 if (parseToken(lltok::colon, "expected ':' here")) 8401 return true; 8402 uint64_t Flags; 8403 if (parseUInt64(Flags)) 8404 return true; 8405 if (Index) 8406 Index->setFlags(Flags); 8407 return false; 8408 } 8409 8410 /// parseBlockCount 8411 /// ::= 'blockcount' ':' UInt64 8412 bool LLParser::parseBlockCount() { 8413 assert(Lex.getKind() == lltok::kw_blockcount); 8414 Lex.Lex(); 8415 8416 if (parseToken(lltok::colon, "expected ':' here")) 8417 return true; 8418 uint64_t BlockCount; 8419 if (parseUInt64(BlockCount)) 8420 return true; 8421 if (Index) 8422 Index->setBlockCount(BlockCount); 8423 return false; 8424 } 8425 8426 /// parseGVEntry 8427 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8428 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8429 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8430 bool LLParser::parseGVEntry(unsigned ID) { 8431 assert(Lex.getKind() == lltok::kw_gv); 8432 Lex.Lex(); 8433 8434 if (parseToken(lltok::colon, "expected ':' here") || 8435 parseToken(lltok::lparen, "expected '(' here")) 8436 return true; 8437 8438 std::string Name; 8439 GlobalValue::GUID GUID = 0; 8440 switch (Lex.getKind()) { 8441 case lltok::kw_name: 8442 Lex.Lex(); 8443 if (parseToken(lltok::colon, "expected ':' here") || 8444 parseStringConstant(Name)) 8445 return true; 8446 // Can't create GUID/ValueInfo until we have the linkage. 8447 break; 8448 case lltok::kw_guid: 8449 Lex.Lex(); 8450 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8451 return true; 8452 break; 8453 default: 8454 return error(Lex.getLoc(), "expected name or guid tag"); 8455 } 8456 8457 if (!EatIfPresent(lltok::comma)) { 8458 // No summaries. Wrap up. 8459 if (parseToken(lltok::rparen, "expected ')' here")) 8460 return true; 8461 // This was created for a call to an external or indirect target. 8462 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8463 // created for indirect calls with VP. A Name with no GUID came from 8464 // an external definition. We pass ExternalLinkage since that is only 8465 // used when the GUID must be computed from Name, and in that case 8466 // the symbol must have external linkage. 8467 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8468 nullptr); 8469 return false; 8470 } 8471 8472 // Have a list of summaries 8473 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8474 parseToken(lltok::colon, "expected ':' here") || 8475 parseToken(lltok::lparen, "expected '(' here")) 8476 return true; 8477 do { 8478 switch (Lex.getKind()) { 8479 case lltok::kw_function: 8480 if (parseFunctionSummary(Name, GUID, ID)) 8481 return true; 8482 break; 8483 case lltok::kw_variable: 8484 if (parseVariableSummary(Name, GUID, ID)) 8485 return true; 8486 break; 8487 case lltok::kw_alias: 8488 if (parseAliasSummary(Name, GUID, ID)) 8489 return true; 8490 break; 8491 default: 8492 return error(Lex.getLoc(), "expected summary type"); 8493 } 8494 } while (EatIfPresent(lltok::comma)); 8495 8496 if (parseToken(lltok::rparen, "expected ')' here") || 8497 parseToken(lltok::rparen, "expected ')' here")) 8498 return true; 8499 8500 return false; 8501 } 8502 8503 /// FunctionSummary 8504 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8505 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8506 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8507 /// [',' OptionalRefs]? ')' 8508 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8509 unsigned ID) { 8510 assert(Lex.getKind() == lltok::kw_function); 8511 Lex.Lex(); 8512 8513 StringRef ModulePath; 8514 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8515 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8516 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8517 unsigned InstCount; 8518 std::vector<FunctionSummary::EdgeTy> Calls; 8519 FunctionSummary::TypeIdInfo TypeIdInfo; 8520 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8521 std::vector<ValueInfo> Refs; 8522 // Default is all-zeros (conservative values). 8523 FunctionSummary::FFlags FFlags = {}; 8524 if (parseToken(lltok::colon, "expected ':' here") || 8525 parseToken(lltok::lparen, "expected '(' here") || 8526 parseModuleReference(ModulePath) || 8527 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8528 parseToken(lltok::comma, "expected ',' here") || 8529 parseToken(lltok::kw_insts, "expected 'insts' here") || 8530 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8531 return true; 8532 8533 // parse optional fields 8534 while (EatIfPresent(lltok::comma)) { 8535 switch (Lex.getKind()) { 8536 case lltok::kw_funcFlags: 8537 if (parseOptionalFFlags(FFlags)) 8538 return true; 8539 break; 8540 case lltok::kw_calls: 8541 if (parseOptionalCalls(Calls)) 8542 return true; 8543 break; 8544 case lltok::kw_typeIdInfo: 8545 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8546 return true; 8547 break; 8548 case lltok::kw_refs: 8549 if (parseOptionalRefs(Refs)) 8550 return true; 8551 break; 8552 case lltok::kw_params: 8553 if (parseOptionalParamAccesses(ParamAccesses)) 8554 return true; 8555 break; 8556 default: 8557 return error(Lex.getLoc(), "expected optional function summary field"); 8558 } 8559 } 8560 8561 if (parseToken(lltok::rparen, "expected ')' here")) 8562 return true; 8563 8564 auto FS = std::make_unique<FunctionSummary>( 8565 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8566 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8567 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8568 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8569 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8570 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8571 std::move(ParamAccesses)); 8572 8573 FS->setModulePath(ModulePath); 8574 8575 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8576 ID, std::move(FS)); 8577 8578 return false; 8579 } 8580 8581 /// VariableSummary 8582 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8583 /// [',' OptionalRefs]? ')' 8584 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8585 unsigned ID) { 8586 assert(Lex.getKind() == lltok::kw_variable); 8587 Lex.Lex(); 8588 8589 StringRef ModulePath; 8590 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8591 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8592 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8593 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8594 /* WriteOnly */ false, 8595 /* Constant */ false, 8596 GlobalObject::VCallVisibilityPublic); 8597 std::vector<ValueInfo> Refs; 8598 VTableFuncList VTableFuncs; 8599 if (parseToken(lltok::colon, "expected ':' here") || 8600 parseToken(lltok::lparen, "expected '(' here") || 8601 parseModuleReference(ModulePath) || 8602 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8603 parseToken(lltok::comma, "expected ',' here") || 8604 parseGVarFlags(GVarFlags)) 8605 return true; 8606 8607 // parse optional fields 8608 while (EatIfPresent(lltok::comma)) { 8609 switch (Lex.getKind()) { 8610 case lltok::kw_vTableFuncs: 8611 if (parseOptionalVTableFuncs(VTableFuncs)) 8612 return true; 8613 break; 8614 case lltok::kw_refs: 8615 if (parseOptionalRefs(Refs)) 8616 return true; 8617 break; 8618 default: 8619 return error(Lex.getLoc(), "expected optional variable summary field"); 8620 } 8621 } 8622 8623 if (parseToken(lltok::rparen, "expected ')' here")) 8624 return true; 8625 8626 auto GS = 8627 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8628 8629 GS->setModulePath(ModulePath); 8630 GS->setVTableFuncs(std::move(VTableFuncs)); 8631 8632 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8633 ID, std::move(GS)); 8634 8635 return false; 8636 } 8637 8638 /// AliasSummary 8639 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8640 /// 'aliasee' ':' GVReference ')' 8641 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8642 unsigned ID) { 8643 assert(Lex.getKind() == lltok::kw_alias); 8644 LocTy Loc = Lex.getLoc(); 8645 Lex.Lex(); 8646 8647 StringRef ModulePath; 8648 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8649 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8650 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8651 if (parseToken(lltok::colon, "expected ':' here") || 8652 parseToken(lltok::lparen, "expected '(' here") || 8653 parseModuleReference(ModulePath) || 8654 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8655 parseToken(lltok::comma, "expected ',' here") || 8656 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8657 parseToken(lltok::colon, "expected ':' here")) 8658 return true; 8659 8660 ValueInfo AliaseeVI; 8661 unsigned GVId; 8662 if (parseGVReference(AliaseeVI, GVId)) 8663 return true; 8664 8665 if (parseToken(lltok::rparen, "expected ')' here")) 8666 return true; 8667 8668 auto AS = std::make_unique<AliasSummary>(GVFlags); 8669 8670 AS->setModulePath(ModulePath); 8671 8672 // Record forward reference if the aliasee is not parsed yet. 8673 if (AliaseeVI.getRef() == FwdVIRef) { 8674 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8675 } else { 8676 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8677 assert(Summary && "Aliasee must be a definition"); 8678 AS->setAliasee(AliaseeVI, Summary); 8679 } 8680 8681 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8682 ID, std::move(AS)); 8683 8684 return false; 8685 } 8686 8687 /// Flag 8688 /// ::= [0|1] 8689 bool LLParser::parseFlag(unsigned &Val) { 8690 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8691 return tokError("expected integer"); 8692 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8693 Lex.Lex(); 8694 return false; 8695 } 8696 8697 /// OptionalFFlags 8698 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8699 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8700 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8701 /// [',' 'noInline' ':' Flag]? ')' 8702 /// [',' 'alwaysInline' ':' Flag]? ')' 8703 8704 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8705 assert(Lex.getKind() == lltok::kw_funcFlags); 8706 Lex.Lex(); 8707 8708 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8709 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8710 return true; 8711 8712 do { 8713 unsigned Val = 0; 8714 switch (Lex.getKind()) { 8715 case lltok::kw_readNone: 8716 Lex.Lex(); 8717 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8718 return true; 8719 FFlags.ReadNone = Val; 8720 break; 8721 case lltok::kw_readOnly: 8722 Lex.Lex(); 8723 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8724 return true; 8725 FFlags.ReadOnly = Val; 8726 break; 8727 case lltok::kw_noRecurse: 8728 Lex.Lex(); 8729 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8730 return true; 8731 FFlags.NoRecurse = Val; 8732 break; 8733 case lltok::kw_returnDoesNotAlias: 8734 Lex.Lex(); 8735 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8736 return true; 8737 FFlags.ReturnDoesNotAlias = Val; 8738 break; 8739 case lltok::kw_noInline: 8740 Lex.Lex(); 8741 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8742 return true; 8743 FFlags.NoInline = Val; 8744 break; 8745 case lltok::kw_alwaysInline: 8746 Lex.Lex(); 8747 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8748 return true; 8749 FFlags.AlwaysInline = Val; 8750 break; 8751 default: 8752 return error(Lex.getLoc(), "expected function flag type"); 8753 } 8754 } while (EatIfPresent(lltok::comma)); 8755 8756 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8757 return true; 8758 8759 return false; 8760 } 8761 8762 /// OptionalCalls 8763 /// := 'calls' ':' '(' Call [',' Call]* ')' 8764 /// Call ::= '(' 'callee' ':' GVReference 8765 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8766 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8767 assert(Lex.getKind() == lltok::kw_calls); 8768 Lex.Lex(); 8769 8770 if (parseToken(lltok::colon, "expected ':' in calls") | 8771 parseToken(lltok::lparen, "expected '(' in calls")) 8772 return true; 8773 8774 IdToIndexMapType IdToIndexMap; 8775 // parse each call edge 8776 do { 8777 ValueInfo VI; 8778 if (parseToken(lltok::lparen, "expected '(' in call") || 8779 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8780 parseToken(lltok::colon, "expected ':'")) 8781 return true; 8782 8783 LocTy Loc = Lex.getLoc(); 8784 unsigned GVId; 8785 if (parseGVReference(VI, GVId)) 8786 return true; 8787 8788 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8789 unsigned RelBF = 0; 8790 if (EatIfPresent(lltok::comma)) { 8791 // Expect either hotness or relbf 8792 if (EatIfPresent(lltok::kw_hotness)) { 8793 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8794 return true; 8795 } else { 8796 if (parseToken(lltok::kw_relbf, "expected relbf") || 8797 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8798 return true; 8799 } 8800 } 8801 // Keep track of the Call array index needing a forward reference. 8802 // We will save the location of the ValueInfo needing an update, but 8803 // can only do so once the std::vector is finalized. 8804 if (VI.getRef() == FwdVIRef) 8805 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8806 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8807 8808 if (parseToken(lltok::rparen, "expected ')' in call")) 8809 return true; 8810 } while (EatIfPresent(lltok::comma)); 8811 8812 // Now that the Calls vector is finalized, it is safe to save the locations 8813 // of any forward GV references that need updating later. 8814 for (auto I : IdToIndexMap) { 8815 auto &Infos = ForwardRefValueInfos[I.first]; 8816 for (auto P : I.second) { 8817 assert(Calls[P.first].first.getRef() == FwdVIRef && 8818 "Forward referenced ValueInfo expected to be empty"); 8819 Infos.emplace_back(&Calls[P.first].first, P.second); 8820 } 8821 } 8822 8823 if (parseToken(lltok::rparen, "expected ')' in calls")) 8824 return true; 8825 8826 return false; 8827 } 8828 8829 /// Hotness 8830 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8831 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8832 switch (Lex.getKind()) { 8833 case lltok::kw_unknown: 8834 Hotness = CalleeInfo::HotnessType::Unknown; 8835 break; 8836 case lltok::kw_cold: 8837 Hotness = CalleeInfo::HotnessType::Cold; 8838 break; 8839 case lltok::kw_none: 8840 Hotness = CalleeInfo::HotnessType::None; 8841 break; 8842 case lltok::kw_hot: 8843 Hotness = CalleeInfo::HotnessType::Hot; 8844 break; 8845 case lltok::kw_critical: 8846 Hotness = CalleeInfo::HotnessType::Critical; 8847 break; 8848 default: 8849 return error(Lex.getLoc(), "invalid call edge hotness"); 8850 } 8851 Lex.Lex(); 8852 return false; 8853 } 8854 8855 /// OptionalVTableFuncs 8856 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8857 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8858 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8859 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8860 Lex.Lex(); 8861 8862 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8863 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8864 return true; 8865 8866 IdToIndexMapType IdToIndexMap; 8867 // parse each virtual function pair 8868 do { 8869 ValueInfo VI; 8870 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8871 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8872 parseToken(lltok::colon, "expected ':'")) 8873 return true; 8874 8875 LocTy Loc = Lex.getLoc(); 8876 unsigned GVId; 8877 if (parseGVReference(VI, GVId)) 8878 return true; 8879 8880 uint64_t Offset; 8881 if (parseToken(lltok::comma, "expected comma") || 8882 parseToken(lltok::kw_offset, "expected offset") || 8883 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8884 return true; 8885 8886 // Keep track of the VTableFuncs array index needing a forward reference. 8887 // We will save the location of the ValueInfo needing an update, but 8888 // can only do so once the std::vector is finalized. 8889 if (VI == EmptyVI) 8890 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8891 VTableFuncs.push_back({VI, Offset}); 8892 8893 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8894 return true; 8895 } while (EatIfPresent(lltok::comma)); 8896 8897 // Now that the VTableFuncs vector is finalized, it is safe to save the 8898 // locations of any forward GV references that need updating later. 8899 for (auto I : IdToIndexMap) { 8900 auto &Infos = ForwardRefValueInfos[I.first]; 8901 for (auto P : I.second) { 8902 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8903 "Forward referenced ValueInfo expected to be empty"); 8904 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8905 } 8906 } 8907 8908 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8909 return true; 8910 8911 return false; 8912 } 8913 8914 /// ParamNo := 'param' ':' UInt64 8915 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8916 if (parseToken(lltok::kw_param, "expected 'param' here") || 8917 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8918 return true; 8919 return false; 8920 } 8921 8922 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8923 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8924 APSInt Lower; 8925 APSInt Upper; 8926 auto ParseAPSInt = [&](APSInt &Val) { 8927 if (Lex.getKind() != lltok::APSInt) 8928 return tokError("expected integer"); 8929 Val = Lex.getAPSIntVal(); 8930 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8931 Val.setIsSigned(true); 8932 Lex.Lex(); 8933 return false; 8934 }; 8935 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8936 parseToken(lltok::colon, "expected ':' here") || 8937 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8938 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8939 parseToken(lltok::rsquare, "expected ']' here")) 8940 return true; 8941 8942 ++Upper; 8943 Range = 8944 (Lower == Upper && !Lower.isMaxValue()) 8945 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8946 : ConstantRange(Lower, Upper); 8947 8948 return false; 8949 } 8950 8951 /// ParamAccessCall 8952 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8953 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8954 IdLocListType &IdLocList) { 8955 if (parseToken(lltok::lparen, "expected '(' here") || 8956 parseToken(lltok::kw_callee, "expected 'callee' here") || 8957 parseToken(lltok::colon, "expected ':' here")) 8958 return true; 8959 8960 unsigned GVId; 8961 ValueInfo VI; 8962 LocTy Loc = Lex.getLoc(); 8963 if (parseGVReference(VI, GVId)) 8964 return true; 8965 8966 Call.Callee = VI; 8967 IdLocList.emplace_back(GVId, Loc); 8968 8969 if (parseToken(lltok::comma, "expected ',' here") || 8970 parseParamNo(Call.ParamNo) || 8971 parseToken(lltok::comma, "expected ',' here") || 8972 parseParamAccessOffset(Call.Offsets)) 8973 return true; 8974 8975 if (parseToken(lltok::rparen, "expected ')' here")) 8976 return true; 8977 8978 return false; 8979 } 8980 8981 /// ParamAccess 8982 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8983 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8984 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8985 IdLocListType &IdLocList) { 8986 if (parseToken(lltok::lparen, "expected '(' here") || 8987 parseParamNo(Param.ParamNo) || 8988 parseToken(lltok::comma, "expected ',' here") || 8989 parseParamAccessOffset(Param.Use)) 8990 return true; 8991 8992 if (EatIfPresent(lltok::comma)) { 8993 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8994 parseToken(lltok::colon, "expected ':' here") || 8995 parseToken(lltok::lparen, "expected '(' here")) 8996 return true; 8997 do { 8998 FunctionSummary::ParamAccess::Call Call; 8999 if (parseParamAccessCall(Call, IdLocList)) 9000 return true; 9001 Param.Calls.push_back(Call); 9002 } while (EatIfPresent(lltok::comma)); 9003 9004 if (parseToken(lltok::rparen, "expected ')' here")) 9005 return true; 9006 } 9007 9008 if (parseToken(lltok::rparen, "expected ')' here")) 9009 return true; 9010 9011 return false; 9012 } 9013 9014 /// OptionalParamAccesses 9015 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9016 bool LLParser::parseOptionalParamAccesses( 9017 std::vector<FunctionSummary::ParamAccess> &Params) { 9018 assert(Lex.getKind() == lltok::kw_params); 9019 Lex.Lex(); 9020 9021 if (parseToken(lltok::colon, "expected ':' here") || 9022 parseToken(lltok::lparen, "expected '(' here")) 9023 return true; 9024 9025 IdLocListType VContexts; 9026 size_t CallsNum = 0; 9027 do { 9028 FunctionSummary::ParamAccess ParamAccess; 9029 if (parseParamAccess(ParamAccess, VContexts)) 9030 return true; 9031 CallsNum += ParamAccess.Calls.size(); 9032 assert(VContexts.size() == CallsNum); 9033 Params.emplace_back(std::move(ParamAccess)); 9034 } while (EatIfPresent(lltok::comma)); 9035 9036 if (parseToken(lltok::rparen, "expected ')' here")) 9037 return true; 9038 9039 // Now that the Params is finalized, it is safe to save the locations 9040 // of any forward GV references that need updating later. 9041 IdLocListType::const_iterator ItContext = VContexts.begin(); 9042 for (auto &PA : Params) { 9043 for (auto &C : PA.Calls) { 9044 if (C.Callee.getRef() == FwdVIRef) 9045 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9046 ItContext->second); 9047 ++ItContext; 9048 } 9049 } 9050 assert(ItContext == VContexts.end()); 9051 9052 return false; 9053 } 9054 9055 /// OptionalRefs 9056 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9057 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9058 assert(Lex.getKind() == lltok::kw_refs); 9059 Lex.Lex(); 9060 9061 if (parseToken(lltok::colon, "expected ':' in refs") || 9062 parseToken(lltok::lparen, "expected '(' in refs")) 9063 return true; 9064 9065 struct ValueContext { 9066 ValueInfo VI; 9067 unsigned GVId; 9068 LocTy Loc; 9069 }; 9070 std::vector<ValueContext> VContexts; 9071 // parse each ref edge 9072 do { 9073 ValueContext VC; 9074 VC.Loc = Lex.getLoc(); 9075 if (parseGVReference(VC.VI, VC.GVId)) 9076 return true; 9077 VContexts.push_back(VC); 9078 } while (EatIfPresent(lltok::comma)); 9079 9080 // Sort value contexts so that ones with writeonly 9081 // and readonly ValueInfo are at the end of VContexts vector. 9082 // See FunctionSummary::specialRefCounts() 9083 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9084 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9085 }); 9086 9087 IdToIndexMapType IdToIndexMap; 9088 for (auto &VC : VContexts) { 9089 // Keep track of the Refs array index needing a forward reference. 9090 // We will save the location of the ValueInfo needing an update, but 9091 // can only do so once the std::vector is finalized. 9092 if (VC.VI.getRef() == FwdVIRef) 9093 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9094 Refs.push_back(VC.VI); 9095 } 9096 9097 // Now that the Refs vector is finalized, it is safe to save the locations 9098 // of any forward GV references that need updating later. 9099 for (auto I : IdToIndexMap) { 9100 auto &Infos = ForwardRefValueInfos[I.first]; 9101 for (auto P : I.second) { 9102 assert(Refs[P.first].getRef() == FwdVIRef && 9103 "Forward referenced ValueInfo expected to be empty"); 9104 Infos.emplace_back(&Refs[P.first], P.second); 9105 } 9106 } 9107 9108 if (parseToken(lltok::rparen, "expected ')' in refs")) 9109 return true; 9110 9111 return false; 9112 } 9113 9114 /// OptionalTypeIdInfo 9115 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9116 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9117 /// [',' TypeCheckedLoadConstVCalls]? ')' 9118 bool LLParser::parseOptionalTypeIdInfo( 9119 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9120 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9121 Lex.Lex(); 9122 9123 if (parseToken(lltok::colon, "expected ':' here") || 9124 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9125 return true; 9126 9127 do { 9128 switch (Lex.getKind()) { 9129 case lltok::kw_typeTests: 9130 if (parseTypeTests(TypeIdInfo.TypeTests)) 9131 return true; 9132 break; 9133 case lltok::kw_typeTestAssumeVCalls: 9134 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9135 TypeIdInfo.TypeTestAssumeVCalls)) 9136 return true; 9137 break; 9138 case lltok::kw_typeCheckedLoadVCalls: 9139 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9140 TypeIdInfo.TypeCheckedLoadVCalls)) 9141 return true; 9142 break; 9143 case lltok::kw_typeTestAssumeConstVCalls: 9144 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9145 TypeIdInfo.TypeTestAssumeConstVCalls)) 9146 return true; 9147 break; 9148 case lltok::kw_typeCheckedLoadConstVCalls: 9149 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9150 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9151 return true; 9152 break; 9153 default: 9154 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9155 } 9156 } while (EatIfPresent(lltok::comma)); 9157 9158 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9159 return true; 9160 9161 return false; 9162 } 9163 9164 /// TypeTests 9165 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9166 /// [',' (SummaryID | UInt64)]* ')' 9167 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9168 assert(Lex.getKind() == lltok::kw_typeTests); 9169 Lex.Lex(); 9170 9171 if (parseToken(lltok::colon, "expected ':' here") || 9172 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9173 return true; 9174 9175 IdToIndexMapType IdToIndexMap; 9176 do { 9177 GlobalValue::GUID GUID = 0; 9178 if (Lex.getKind() == lltok::SummaryID) { 9179 unsigned ID = Lex.getUIntVal(); 9180 LocTy Loc = Lex.getLoc(); 9181 // Keep track of the TypeTests array index needing a forward reference. 9182 // We will save the location of the GUID needing an update, but 9183 // can only do so once the std::vector is finalized. 9184 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9185 Lex.Lex(); 9186 } else if (parseUInt64(GUID)) 9187 return true; 9188 TypeTests.push_back(GUID); 9189 } while (EatIfPresent(lltok::comma)); 9190 9191 // Now that the TypeTests vector is finalized, it is safe to save the 9192 // locations of any forward GV references that need updating later. 9193 for (auto I : IdToIndexMap) { 9194 auto &Ids = ForwardRefTypeIds[I.first]; 9195 for (auto P : I.second) { 9196 assert(TypeTests[P.first] == 0 && 9197 "Forward referenced type id GUID expected to be 0"); 9198 Ids.emplace_back(&TypeTests[P.first], P.second); 9199 } 9200 } 9201 9202 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9203 return true; 9204 9205 return false; 9206 } 9207 9208 /// VFuncIdList 9209 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9210 bool LLParser::parseVFuncIdList( 9211 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9212 assert(Lex.getKind() == Kind); 9213 Lex.Lex(); 9214 9215 if (parseToken(lltok::colon, "expected ':' here") || 9216 parseToken(lltok::lparen, "expected '(' here")) 9217 return true; 9218 9219 IdToIndexMapType IdToIndexMap; 9220 do { 9221 FunctionSummary::VFuncId VFuncId; 9222 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9223 return true; 9224 VFuncIdList.push_back(VFuncId); 9225 } while (EatIfPresent(lltok::comma)); 9226 9227 if (parseToken(lltok::rparen, "expected ')' here")) 9228 return true; 9229 9230 // Now that the VFuncIdList vector is finalized, it is safe to save the 9231 // locations of any forward GV references that need updating later. 9232 for (auto I : IdToIndexMap) { 9233 auto &Ids = ForwardRefTypeIds[I.first]; 9234 for (auto P : I.second) { 9235 assert(VFuncIdList[P.first].GUID == 0 && 9236 "Forward referenced type id GUID expected to be 0"); 9237 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9238 } 9239 } 9240 9241 return false; 9242 } 9243 9244 /// ConstVCallList 9245 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9246 bool LLParser::parseConstVCallList( 9247 lltok::Kind Kind, 9248 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9249 assert(Lex.getKind() == Kind); 9250 Lex.Lex(); 9251 9252 if (parseToken(lltok::colon, "expected ':' here") || 9253 parseToken(lltok::lparen, "expected '(' here")) 9254 return true; 9255 9256 IdToIndexMapType IdToIndexMap; 9257 do { 9258 FunctionSummary::ConstVCall ConstVCall; 9259 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9260 return true; 9261 ConstVCallList.push_back(ConstVCall); 9262 } while (EatIfPresent(lltok::comma)); 9263 9264 if (parseToken(lltok::rparen, "expected ')' here")) 9265 return true; 9266 9267 // Now that the ConstVCallList vector is finalized, it is safe to save the 9268 // locations of any forward GV references that need updating later. 9269 for (auto I : IdToIndexMap) { 9270 auto &Ids = ForwardRefTypeIds[I.first]; 9271 for (auto P : I.second) { 9272 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9273 "Forward referenced type id GUID expected to be 0"); 9274 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9275 } 9276 } 9277 9278 return false; 9279 } 9280 9281 /// ConstVCall 9282 /// ::= '(' VFuncId ',' Args ')' 9283 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9284 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9285 if (parseToken(lltok::lparen, "expected '(' here") || 9286 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9287 return true; 9288 9289 if (EatIfPresent(lltok::comma)) 9290 if (parseArgs(ConstVCall.Args)) 9291 return true; 9292 9293 if (parseToken(lltok::rparen, "expected ')' here")) 9294 return true; 9295 9296 return false; 9297 } 9298 9299 /// VFuncId 9300 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9301 /// 'offset' ':' UInt64 ')' 9302 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9303 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9304 assert(Lex.getKind() == lltok::kw_vFuncId); 9305 Lex.Lex(); 9306 9307 if (parseToken(lltok::colon, "expected ':' here") || 9308 parseToken(lltok::lparen, "expected '(' here")) 9309 return true; 9310 9311 if (Lex.getKind() == lltok::SummaryID) { 9312 VFuncId.GUID = 0; 9313 unsigned ID = Lex.getUIntVal(); 9314 LocTy Loc = Lex.getLoc(); 9315 // Keep track of the array index needing a forward reference. 9316 // We will save the location of the GUID needing an update, but 9317 // can only do so once the caller's std::vector is finalized. 9318 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9319 Lex.Lex(); 9320 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9321 parseToken(lltok::colon, "expected ':' here") || 9322 parseUInt64(VFuncId.GUID)) 9323 return true; 9324 9325 if (parseToken(lltok::comma, "expected ',' here") || 9326 parseToken(lltok::kw_offset, "expected 'offset' here") || 9327 parseToken(lltok::colon, "expected ':' here") || 9328 parseUInt64(VFuncId.Offset) || 9329 parseToken(lltok::rparen, "expected ')' here")) 9330 return true; 9331 9332 return false; 9333 } 9334 9335 /// GVFlags 9336 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9337 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9338 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9339 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9340 assert(Lex.getKind() == lltok::kw_flags); 9341 Lex.Lex(); 9342 9343 if (parseToken(lltok::colon, "expected ':' here") || 9344 parseToken(lltok::lparen, "expected '(' here")) 9345 return true; 9346 9347 do { 9348 unsigned Flag = 0; 9349 switch (Lex.getKind()) { 9350 case lltok::kw_linkage: 9351 Lex.Lex(); 9352 if (parseToken(lltok::colon, "expected ':'")) 9353 return true; 9354 bool HasLinkage; 9355 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9356 assert(HasLinkage && "Linkage not optional in summary entry"); 9357 Lex.Lex(); 9358 break; 9359 case lltok::kw_notEligibleToImport: 9360 Lex.Lex(); 9361 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9362 return true; 9363 GVFlags.NotEligibleToImport = Flag; 9364 break; 9365 case lltok::kw_live: 9366 Lex.Lex(); 9367 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9368 return true; 9369 GVFlags.Live = Flag; 9370 break; 9371 case lltok::kw_dsoLocal: 9372 Lex.Lex(); 9373 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9374 return true; 9375 GVFlags.DSOLocal = Flag; 9376 break; 9377 case lltok::kw_canAutoHide: 9378 Lex.Lex(); 9379 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9380 return true; 9381 GVFlags.CanAutoHide = Flag; 9382 break; 9383 default: 9384 return error(Lex.getLoc(), "expected gv flag type"); 9385 } 9386 } while (EatIfPresent(lltok::comma)); 9387 9388 if (parseToken(lltok::rparen, "expected ')' here")) 9389 return true; 9390 9391 return false; 9392 } 9393 9394 /// GVarFlags 9395 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9396 /// ',' 'writeonly' ':' Flag 9397 /// ',' 'constant' ':' Flag ')' 9398 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9399 assert(Lex.getKind() == lltok::kw_varFlags); 9400 Lex.Lex(); 9401 9402 if (parseToken(lltok::colon, "expected ':' here") || 9403 parseToken(lltok::lparen, "expected '(' here")) 9404 return true; 9405 9406 auto ParseRest = [this](unsigned int &Val) { 9407 Lex.Lex(); 9408 if (parseToken(lltok::colon, "expected ':'")) 9409 return true; 9410 return parseFlag(Val); 9411 }; 9412 9413 do { 9414 unsigned Flag = 0; 9415 switch (Lex.getKind()) { 9416 case lltok::kw_readonly: 9417 if (ParseRest(Flag)) 9418 return true; 9419 GVarFlags.MaybeReadOnly = Flag; 9420 break; 9421 case lltok::kw_writeonly: 9422 if (ParseRest(Flag)) 9423 return true; 9424 GVarFlags.MaybeWriteOnly = Flag; 9425 break; 9426 case lltok::kw_constant: 9427 if (ParseRest(Flag)) 9428 return true; 9429 GVarFlags.Constant = Flag; 9430 break; 9431 case lltok::kw_vcall_visibility: 9432 if (ParseRest(Flag)) 9433 return true; 9434 GVarFlags.VCallVisibility = Flag; 9435 break; 9436 default: 9437 return error(Lex.getLoc(), "expected gvar flag type"); 9438 } 9439 } while (EatIfPresent(lltok::comma)); 9440 return parseToken(lltok::rparen, "expected ')' here"); 9441 } 9442 9443 /// ModuleReference 9444 /// ::= 'module' ':' UInt 9445 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9446 // parse module id. 9447 if (parseToken(lltok::kw_module, "expected 'module' here") || 9448 parseToken(lltok::colon, "expected ':' here") || 9449 parseToken(lltok::SummaryID, "expected module ID")) 9450 return true; 9451 9452 unsigned ModuleID = Lex.getUIntVal(); 9453 auto I = ModuleIdMap.find(ModuleID); 9454 // We should have already parsed all module IDs 9455 assert(I != ModuleIdMap.end()); 9456 ModulePath = I->second; 9457 return false; 9458 } 9459 9460 /// GVReference 9461 /// ::= SummaryID 9462 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9463 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9464 if (!ReadOnly) 9465 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9466 if (parseToken(lltok::SummaryID, "expected GV ID")) 9467 return true; 9468 9469 GVId = Lex.getUIntVal(); 9470 // Check if we already have a VI for this GV 9471 if (GVId < NumberedValueInfos.size()) { 9472 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9473 VI = NumberedValueInfos[GVId]; 9474 } else 9475 // We will create a forward reference to the stored location. 9476 VI = ValueInfo(false, FwdVIRef); 9477 9478 if (ReadOnly) 9479 VI.setReadOnly(); 9480 if (WriteOnly) 9481 VI.setWriteOnly(); 9482 return false; 9483 } 9484