1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 194 case lltok::kw_appending: // OptionalLinkage 195 case lltok::kw_dllexport: // OptionalLinkage 196 case lltok::kw_common: // OptionalLinkage 197 case lltok::kw_dllimport: // OptionalLinkage 198 case lltok::kw_extern_weak: // OptionalLinkage 199 case lltok::kw_external: { // OptionalLinkage 200 unsigned Linkage, Visibility; 201 if (ParseOptionalLinkage(Linkage) || 202 ParseOptionalVisibility(Visibility) || 203 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 204 return true; 205 break; 206 } 207 case lltok::kw_default: // OptionalVisibility 208 case lltok::kw_hidden: // OptionalVisibility 209 case lltok::kw_protected: { // OptionalVisibility 210 unsigned Visibility; 211 if (ParseOptionalVisibility(Visibility) || 212 ParseGlobal("", SMLoc(), 0, false, Visibility)) 213 return true; 214 break; 215 } 216 217 case lltok::kw_thread_local: // OptionalThreadLocal 218 case lltok::kw_addrspace: // OptionalAddrSpace 219 case lltok::kw_constant: // GlobalType 220 case lltok::kw_global: // GlobalType 221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 222 break; 223 } 224 } 225 } 226 227 228 /// toplevelentity 229 /// ::= 'module' 'asm' STRINGCONSTANT 230 bool LLParser::ParseModuleAsm() { 231 assert(Lex.getKind() == lltok::kw_module); 232 Lex.Lex(); 233 234 std::string AsmStr; 235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 236 ParseStringConstant(AsmStr)) return true; 237 238 M->appendModuleInlineAsm(AsmStr); 239 return false; 240 } 241 242 /// toplevelentity 243 /// ::= 'target' 'triple' '=' STRINGCONSTANT 244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 245 bool LLParser::ParseTargetDefinition() { 246 assert(Lex.getKind() == lltok::kw_target); 247 std::string Str; 248 switch (Lex.Lex()) { 249 default: return TokError("unknown target property"); 250 case lltok::kw_triple: 251 Lex.Lex(); 252 if (ParseToken(lltok::equal, "expected '=' after target triple") || 253 ParseStringConstant(Str)) 254 return true; 255 M->setTargetTriple(Str); 256 return false; 257 case lltok::kw_datalayout: 258 Lex.Lex(); 259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 260 ParseStringConstant(Str)) 261 return true; 262 M->setDataLayout(Str); 263 return false; 264 } 265 } 266 267 /// toplevelentity 268 /// ::= 'deplibs' '=' '[' ']' 269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 270 bool LLParser::ParseDepLibs() { 271 assert(Lex.getKind() == lltok::kw_deplibs); 272 Lex.Lex(); 273 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 274 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 275 return true; 276 277 if (EatIfPresent(lltok::rsquare)) 278 return false; 279 280 std::string Str; 281 if (ParseStringConstant(Str)) return true; 282 M->addLibrary(Str); 283 284 while (EatIfPresent(lltok::comma)) { 285 if (ParseStringConstant(Str)) return true; 286 M->addLibrary(Str); 287 } 288 289 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 290 } 291 292 /// ParseUnnamedType: 293 /// ::= LocalVarID '=' 'type' type 294 bool LLParser::ParseUnnamedType() { 295 LocTy TypeLoc = Lex.getLoc(); 296 unsigned TypeID = Lex.getUIntVal(); 297 Lex.Lex(); // eat LocalVarID; 298 299 if (ParseToken(lltok::equal, "expected '=' after name") || 300 ParseToken(lltok::kw_type, "expected 'type' after '='")) 301 return true; 302 303 if (TypeID >= NumberedTypes.size()) 304 NumberedTypes.resize(TypeID+1); 305 306 Type *Result = 0; 307 if (ParseStructDefinition(TypeLoc, "", 308 NumberedTypes[TypeID], Result)) return true; 309 310 if (!isa<StructType>(Result)) { 311 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 312 if (Entry.first) 313 return Error(TypeLoc, "non-struct types may not be recursive"); 314 Entry.first = Result; 315 Entry.second = SMLoc(); 316 } 317 318 return false; 319 } 320 321 322 /// toplevelentity 323 /// ::= LocalVar '=' 'type' type 324 bool LLParser::ParseNamedType() { 325 std::string Name = Lex.getStrVal(); 326 LocTy NameLoc = Lex.getLoc(); 327 Lex.Lex(); // eat LocalVar. 328 329 if (ParseToken(lltok::equal, "expected '=' after name") || 330 ParseToken(lltok::kw_type, "expected 'type' after name")) 331 return true; 332 333 Type *Result = 0; 334 if (ParseStructDefinition(NameLoc, Name, 335 NamedTypes[Name], Result)) return true; 336 337 if (!isa<StructType>(Result)) { 338 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 339 if (Entry.first) 340 return Error(NameLoc, "non-struct types may not be recursive"); 341 Entry.first = Result; 342 Entry.second = SMLoc(); 343 } 344 345 return false; 346 } 347 348 349 /// toplevelentity 350 /// ::= 'declare' FunctionHeader 351 bool LLParser::ParseDeclare() { 352 assert(Lex.getKind() == lltok::kw_declare); 353 Lex.Lex(); 354 355 Function *F; 356 return ParseFunctionHeader(F, false); 357 } 358 359 /// toplevelentity 360 /// ::= 'define' FunctionHeader '{' ... 361 bool LLParser::ParseDefine() { 362 assert(Lex.getKind() == lltok::kw_define); 363 Lex.Lex(); 364 365 Function *F; 366 return ParseFunctionHeader(F, true) || 367 ParseFunctionBody(*F); 368 } 369 370 /// ParseGlobalType 371 /// ::= 'constant' 372 /// ::= 'global' 373 bool LLParser::ParseGlobalType(bool &IsConstant) { 374 if (Lex.getKind() == lltok::kw_constant) 375 IsConstant = true; 376 else if (Lex.getKind() == lltok::kw_global) 377 IsConstant = false; 378 else { 379 IsConstant = false; 380 return TokError("expected 'global' or 'constant'"); 381 } 382 Lex.Lex(); 383 return false; 384 } 385 386 /// ParseUnnamedGlobal: 387 /// OptionalVisibility ALIAS ... 388 /// OptionalLinkage OptionalVisibility ... -> global variable 389 /// GlobalID '=' OptionalVisibility ALIAS ... 390 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 391 bool LLParser::ParseUnnamedGlobal() { 392 unsigned VarID = NumberedVals.size(); 393 std::string Name; 394 LocTy NameLoc = Lex.getLoc(); 395 396 // Handle the GlobalID form. 397 if (Lex.getKind() == lltok::GlobalID) { 398 if (Lex.getUIntVal() != VarID) 399 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 400 Twine(VarID) + "'"); 401 Lex.Lex(); // eat GlobalID; 402 403 if (ParseToken(lltok::equal, "expected '=' after name")) 404 return true; 405 } 406 407 bool HasLinkage; 408 unsigned Linkage, Visibility; 409 if (ParseOptionalLinkage(Linkage, HasLinkage) || 410 ParseOptionalVisibility(Visibility)) 411 return true; 412 413 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 415 return ParseAlias(Name, NameLoc, Visibility); 416 } 417 418 /// ParseNamedGlobal: 419 /// GlobalVar '=' OptionalVisibility ALIAS ... 420 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 421 bool LLParser::ParseNamedGlobal() { 422 assert(Lex.getKind() == lltok::GlobalVar); 423 LocTy NameLoc = Lex.getLoc(); 424 std::string Name = Lex.getStrVal(); 425 Lex.Lex(); 426 427 bool HasLinkage; 428 unsigned Linkage, Visibility; 429 if (ParseToken(lltok::equal, "expected '=' in global variable") || 430 ParseOptionalLinkage(Linkage, HasLinkage) || 431 ParseOptionalVisibility(Visibility)) 432 return true; 433 434 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 435 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 436 return ParseAlias(Name, NameLoc, Visibility); 437 } 438 439 // MDString: 440 // ::= '!' STRINGCONSTANT 441 bool LLParser::ParseMDString(MDString *&Result) { 442 std::string Str; 443 if (ParseStringConstant(Str)) return true; 444 Result = MDString::get(Context, Str); 445 return false; 446 } 447 448 // MDNode: 449 // ::= '!' MDNodeNumber 450 // 451 /// This version of ParseMDNodeID returns the slot number and null in the case 452 /// of a forward reference. 453 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 454 // !{ ..., !42, ... } 455 if (ParseUInt32(SlotNo)) return true; 456 457 // Check existing MDNode. 458 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 459 Result = NumberedMetadata[SlotNo]; 460 else 461 Result = 0; 462 return false; 463 } 464 465 bool LLParser::ParseMDNodeID(MDNode *&Result) { 466 // !{ ..., !42, ... } 467 unsigned MID = 0; 468 if (ParseMDNodeID(Result, MID)) return true; 469 470 // If not a forward reference, just return it now. 471 if (Result) return false; 472 473 // Otherwise, create MDNode forward reference. 474 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 475 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 476 477 if (NumberedMetadata.size() <= MID) 478 NumberedMetadata.resize(MID+1); 479 NumberedMetadata[MID] = FwdNode; 480 Result = FwdNode; 481 return false; 482 } 483 484 /// ParseNamedMetadata: 485 /// !foo = !{ !1, !2 } 486 bool LLParser::ParseNamedMetadata() { 487 assert(Lex.getKind() == lltok::MetadataVar); 488 std::string Name = Lex.getStrVal(); 489 Lex.Lex(); 490 491 if (ParseToken(lltok::equal, "expected '=' here") || 492 ParseToken(lltok::exclaim, "Expected '!' here") || 493 ParseToken(lltok::lbrace, "Expected '{' here")) 494 return true; 495 496 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 497 if (Lex.getKind() != lltok::rbrace) 498 do { 499 if (ParseToken(lltok::exclaim, "Expected '!' here")) 500 return true; 501 502 MDNode *N = 0; 503 if (ParseMDNodeID(N)) return true; 504 NMD->addOperand(N); 505 } while (EatIfPresent(lltok::comma)); 506 507 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 508 return true; 509 510 return false; 511 } 512 513 /// ParseStandaloneMetadata: 514 /// !42 = !{...} 515 bool LLParser::ParseStandaloneMetadata() { 516 assert(Lex.getKind() == lltok::exclaim); 517 Lex.Lex(); 518 unsigned MetadataID = 0; 519 520 LocTy TyLoc; 521 Type *Ty = 0; 522 SmallVector<Value *, 16> Elts; 523 if (ParseUInt32(MetadataID) || 524 ParseToken(lltok::equal, "expected '=' here") || 525 ParseType(Ty, TyLoc) || 526 ParseToken(lltok::exclaim, "Expected '!' here") || 527 ParseToken(lltok::lbrace, "Expected '{' here") || 528 ParseMDNodeVector(Elts, NULL) || 529 ParseToken(lltok::rbrace, "expected end of metadata node")) 530 return true; 531 532 MDNode *Init = MDNode::get(Context, Elts); 533 534 // See if this was forward referenced, if so, handle it. 535 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 536 FI = ForwardRefMDNodes.find(MetadataID); 537 if (FI != ForwardRefMDNodes.end()) { 538 MDNode *Temp = FI->second.first; 539 Temp->replaceAllUsesWith(Init); 540 MDNode::deleteTemporary(Temp); 541 ForwardRefMDNodes.erase(FI); 542 543 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 544 } else { 545 if (MetadataID >= NumberedMetadata.size()) 546 NumberedMetadata.resize(MetadataID+1); 547 548 if (NumberedMetadata[MetadataID] != 0) 549 return TokError("Metadata id is already used"); 550 NumberedMetadata[MetadataID] = Init; 551 } 552 553 return false; 554 } 555 556 /// ParseAlias: 557 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 558 /// Aliasee 559 /// ::= TypeAndValue 560 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 561 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 562 /// 563 /// Everything through visibility has already been parsed. 564 /// 565 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 566 unsigned Visibility) { 567 assert(Lex.getKind() == lltok::kw_alias); 568 Lex.Lex(); 569 unsigned Linkage; 570 LocTy LinkageLoc = Lex.getLoc(); 571 if (ParseOptionalLinkage(Linkage)) 572 return true; 573 574 if (Linkage != GlobalValue::ExternalLinkage && 575 Linkage != GlobalValue::WeakAnyLinkage && 576 Linkage != GlobalValue::WeakODRLinkage && 577 Linkage != GlobalValue::InternalLinkage && 578 Linkage != GlobalValue::PrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool IsConstant, UnnamedAddr; 649 GlobalVariable::ThreadLocalMode TLM; 650 LocTy UnnamedAddrLoc; 651 LocTy TyLoc; 652 653 Type *Ty = 0; 654 if (ParseOptionalThreadLocal(TLM) || 655 ParseOptionalAddrSpace(AddrSpace) || 656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 657 &UnnamedAddrLoc) || 658 ParseGlobalType(IsConstant) || 659 ParseType(Ty, TyLoc)) 660 return true; 661 662 // If the linkage is specified and is external, then no initializer is 663 // present. 664 Constant *Init = 0; 665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 666 Linkage != GlobalValue::ExternalWeakLinkage && 667 Linkage != GlobalValue::ExternalLinkage)) { 668 if (ParseGlobalValue(Ty, Init)) 669 return true; 670 } 671 672 if (Ty->isFunctionTy() || Ty->isLabelTy()) 673 return Error(TyLoc, "invalid type for global variable"); 674 675 GlobalVariable *GV = 0; 676 677 // See if the global was forward referenced, if so, use the global. 678 if (!Name.empty()) { 679 if (GlobalValue *GVal = M->getNamedValue(Name)) { 680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 681 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 682 GV = cast<GlobalVariable>(GVal); 683 } 684 } else { 685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 686 I = ForwardRefValIDs.find(NumberedVals.size()); 687 if (I != ForwardRefValIDs.end()) { 688 GV = cast<GlobalVariable>(I->second.first); 689 ForwardRefValIDs.erase(I); 690 } 691 } 692 693 if (GV == 0) { 694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 695 Name, 0, GlobalVariable::NotThreadLocal, 696 AddrSpace); 697 } else { 698 if (GV->getType()->getElementType() != Ty) 699 return Error(TyLoc, 700 "forward reference and definition of global have different types"); 701 702 // Move the forward-reference to the correct spot in the module. 703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 704 } 705 706 if (Name.empty()) 707 NumberedVals.push_back(GV); 708 709 // Set the parsed properties on the global. 710 if (Init) 711 GV->setInitializer(Init); 712 GV->setConstant(IsConstant); 713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 715 GV->setThreadLocalMode(TLM); 716 GV->setUnnamedAddr(UnnamedAddr); 717 718 // Parse attributes on the global. 719 while (Lex.getKind() == lltok::comma) { 720 Lex.Lex(); 721 722 if (Lex.getKind() == lltok::kw_section) { 723 Lex.Lex(); 724 GV->setSection(Lex.getStrVal()); 725 if (ParseToken(lltok::StringConstant, "expected global section string")) 726 return true; 727 } else if (Lex.getKind() == lltok::kw_align) { 728 unsigned Alignment; 729 if (ParseOptionalAlignment(Alignment)) return true; 730 GV->setAlignment(Alignment); 731 } else { 732 TokError("unknown global variable property!"); 733 } 734 } 735 736 return false; 737 } 738 739 740 //===----------------------------------------------------------------------===// 741 // GlobalValue Reference/Resolution Routines. 742 //===----------------------------------------------------------------------===// 743 744 /// GetGlobalVal - Get a value with the specified name or ID, creating a 745 /// forward reference record if needed. This can return null if the value 746 /// exists but does not have the right type. 747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 748 LocTy Loc) { 749 PointerType *PTy = dyn_cast<PointerType>(Ty); 750 if (PTy == 0) { 751 Error(Loc, "global variable reference must have pointer type"); 752 return 0; 753 } 754 755 // Look this name up in the normal function symbol table. 756 GlobalValue *Val = 757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 758 759 // If this is a forward reference for the value, see if we already created a 760 // forward ref record. 761 if (Val == 0) { 762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 763 I = ForwardRefVals.find(Name); 764 if (I != ForwardRefVals.end()) 765 Val = I->second.first; 766 } 767 768 // If we have the value in the symbol table or fwd-ref table, return it. 769 if (Val) { 770 if (Val->getType() == Ty) return Val; 771 Error(Loc, "'@" + Name + "' defined with type '" + 772 getTypeString(Val->getType()) + "'"); 773 return 0; 774 } 775 776 // Otherwise, create a new forward reference for this value and remember it. 777 GlobalValue *FwdVal; 778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 780 else 781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 782 GlobalValue::ExternalWeakLinkage, 0, Name); 783 784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 785 return FwdVal; 786 } 787 788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 789 PointerType *PTy = dyn_cast<PointerType>(Ty); 790 if (PTy == 0) { 791 Error(Loc, "global variable reference must have pointer type"); 792 return 0; 793 } 794 795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 796 797 // If this is a forward reference for the value, see if we already created a 798 // forward ref record. 799 if (Val == 0) { 800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 801 I = ForwardRefValIDs.find(ID); 802 if (I != ForwardRefValIDs.end()) 803 Val = I->second.first; 804 } 805 806 // If we have the value in the symbol table or fwd-ref table, return it. 807 if (Val) { 808 if (Val->getType() == Ty) return Val; 809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 810 getTypeString(Val->getType()) + "'"); 811 return 0; 812 } 813 814 // Otherwise, create a new forward reference for this value and remember it. 815 GlobalValue *FwdVal; 816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 818 else 819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 820 GlobalValue::ExternalWeakLinkage, 0, ""); 821 822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 823 return FwdVal; 824 } 825 826 827 //===----------------------------------------------------------------------===// 828 // Helper Routines. 829 //===----------------------------------------------------------------------===// 830 831 /// ParseToken - If the current token has the specified kind, eat it and return 832 /// success. Otherwise, emit the specified error and return failure. 833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 834 if (Lex.getKind() != T) 835 return TokError(ErrMsg); 836 Lex.Lex(); 837 return false; 838 } 839 840 /// ParseStringConstant 841 /// ::= StringConstant 842 bool LLParser::ParseStringConstant(std::string &Result) { 843 if (Lex.getKind() != lltok::StringConstant) 844 return TokError("expected string constant"); 845 Result = Lex.getStrVal(); 846 Lex.Lex(); 847 return false; 848 } 849 850 /// ParseUInt32 851 /// ::= uint32 852 bool LLParser::ParseUInt32(unsigned &Val) { 853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 854 return TokError("expected integer"); 855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 856 if (Val64 != unsigned(Val64)) 857 return TokError("expected 32-bit integer (too large)"); 858 Val = Val64; 859 Lex.Lex(); 860 return false; 861 } 862 863 /// ParseTLSModel 864 /// := 'localdynamic' 865 /// := 'initialexec' 866 /// := 'localexec' 867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 868 switch (Lex.getKind()) { 869 default: 870 return TokError("expected localdynamic, initialexec or localexec"); 871 case lltok::kw_localdynamic: 872 TLM = GlobalVariable::LocalDynamicTLSModel; 873 break; 874 case lltok::kw_initialexec: 875 TLM = GlobalVariable::InitialExecTLSModel; 876 break; 877 case lltok::kw_localexec: 878 TLM = GlobalVariable::LocalExecTLSModel; 879 break; 880 } 881 882 Lex.Lex(); 883 return false; 884 } 885 886 /// ParseOptionalThreadLocal 887 /// := /*empty*/ 888 /// := 'thread_local' 889 /// := 'thread_local' '(' tlsmodel ')' 890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 891 TLM = GlobalVariable::NotThreadLocal; 892 if (!EatIfPresent(lltok::kw_thread_local)) 893 return false; 894 895 TLM = GlobalVariable::GeneralDynamicTLSModel; 896 if (Lex.getKind() == lltok::lparen) { 897 Lex.Lex(); 898 return ParseTLSModel(TLM) || 899 ParseToken(lltok::rparen, "expected ')' after thread local model"); 900 } 901 return false; 902 } 903 904 /// ParseOptionalAddrSpace 905 /// := /*empty*/ 906 /// := 'addrspace' '(' uint32 ')' 907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 908 AddrSpace = 0; 909 if (!EatIfPresent(lltok::kw_addrspace)) 910 return false; 911 return ParseToken(lltok::lparen, "expected '(' in address space") || 912 ParseUInt32(AddrSpace) || 913 ParseToken(lltok::rparen, "expected ')' in address space"); 914 } 915 916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 917 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 918 /// 2: function attr. 919 bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) { 920 LocTy AttrLoc = Lex.getLoc(); 921 bool HaveError = false; 922 923 B.clear(); 924 925 while (1) { 926 lltok::Kind Token = Lex.getKind(); 927 switch (Token) { 928 default: // End of attributes. 929 return HaveError; 930 case lltok::kw_zeroext: B.addAttribute(Attributes::ZExt); break; 931 case lltok::kw_signext: B.addAttribute(Attributes::SExt); break; 932 case lltok::kw_inreg: B.addAttribute(Attributes::InReg); break; 933 case lltok::kw_sret: B.addAttribute(Attributes::StructRet); break; 934 case lltok::kw_noalias: B.addAttribute(Attributes::NoAlias); break; 935 case lltok::kw_nocapture: B.addAttribute(Attributes::NoCapture); break; 936 case lltok::kw_byval: B.addAttribute(Attributes::ByVal); break; 937 case lltok::kw_nest: B.addAttribute(Attributes::Nest); break; 938 939 case lltok::kw_noreturn: B.addAttribute(Attributes::NoReturn); break; 940 case lltok::kw_nounwind: B.addAttribute(Attributes::NoUnwind); break; 941 case lltok::kw_uwtable: B.addAttribute(Attributes::UWTable); break; 942 case lltok::kw_returns_twice: B.addAttribute(Attributes::ReturnsTwice); break; 943 case lltok::kw_noinline: B.addAttribute(Attributes::NoInline); break; 944 case lltok::kw_readnone: B.addAttribute(Attributes::ReadNone); break; 945 case lltok::kw_readonly: B.addAttribute(Attributes::ReadOnly); break; 946 case lltok::kw_inlinehint: B.addAttribute(Attributes::InlineHint); break; 947 case lltok::kw_alwaysinline: B.addAttribute(Attributes::AlwaysInline); break; 948 case lltok::kw_optsize: B.addAttribute(Attributes::OptimizeForSize); break; 949 case lltok::kw_ssp: B.addAttribute(Attributes::StackProtect); break; 950 case lltok::kw_sspreq: B.addAttribute(Attributes::StackProtectReq); break; 951 case lltok::kw_noredzone: B.addAttribute(Attributes::NoRedZone); break; 952 case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break; 953 case lltok::kw_naked: B.addAttribute(Attributes::Naked); break; 954 case lltok::kw_nonlazybind: B.addAttribute(Attributes::NonLazyBind); break; 955 case lltok::kw_address_safety: B.addAttribute(Attributes::AddressSafety); break; 956 case lltok::kw_forcesizeopt: B.addAttribute(Attributes::ForceSizeOpt); break; 957 958 case lltok::kw_alignstack: { 959 unsigned Alignment; 960 if (ParseOptionalStackAlignment(Alignment)) 961 return true; 962 B.addStackAlignmentAttr(Alignment); 963 continue; 964 } 965 966 case lltok::kw_align: { 967 unsigned Alignment; 968 if (ParseOptionalAlignment(Alignment)) 969 return true; 970 B.addAlignmentAttr(Alignment); 971 continue; 972 } 973 974 } 975 976 // Perform some error checking. 977 switch (Token) { 978 default: 979 if (AttrKind == 2) 980 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 981 break; 982 case lltok::kw_align: 983 // As a hack, we allow "align 2" on functions as a synonym for 984 // "alignstack 2". 985 break; 986 987 // Parameter Only: 988 case lltok::kw_sret: 989 case lltok::kw_nocapture: 990 case lltok::kw_byval: 991 case lltok::kw_nest: 992 if (AttrKind != 0) 993 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 994 break; 995 996 // Function Only: 997 case lltok::kw_noreturn: 998 case lltok::kw_nounwind: 999 case lltok::kw_readnone: 1000 case lltok::kw_readonly: 1001 case lltok::kw_noinline: 1002 case lltok::kw_alwaysinline: 1003 case lltok::kw_optsize: 1004 case lltok::kw_ssp: 1005 case lltok::kw_sspreq: 1006 case lltok::kw_noredzone: 1007 case lltok::kw_noimplicitfloat: 1008 case lltok::kw_naked: 1009 case lltok::kw_inlinehint: 1010 case lltok::kw_alignstack: 1011 case lltok::kw_uwtable: 1012 case lltok::kw_nonlazybind: 1013 case lltok::kw_returns_twice: 1014 case lltok::kw_address_safety: 1015 case lltok::kw_forcesizeopt: 1016 if (AttrKind != 2) 1017 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 1018 break; 1019 } 1020 1021 Lex.Lex(); 1022 } 1023 } 1024 1025 /// ParseOptionalLinkage 1026 /// ::= /*empty*/ 1027 /// ::= 'private' 1028 /// ::= 'linker_private' 1029 /// ::= 'linker_private_weak' 1030 /// ::= 'internal' 1031 /// ::= 'weak' 1032 /// ::= 'weak_odr' 1033 /// ::= 'linkonce' 1034 /// ::= 'linkonce_odr' 1035 /// ::= 'linkonce_odr_auto_hide' 1036 /// ::= 'available_externally' 1037 /// ::= 'appending' 1038 /// ::= 'dllexport' 1039 /// ::= 'common' 1040 /// ::= 'dllimport' 1041 /// ::= 'extern_weak' 1042 /// ::= 'external' 1043 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1044 HasLinkage = false; 1045 switch (Lex.getKind()) { 1046 default: Res=GlobalValue::ExternalLinkage; return false; 1047 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1048 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1049 case lltok::kw_linker_private_weak: 1050 Res = GlobalValue::LinkerPrivateWeakLinkage; 1051 break; 1052 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1053 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1054 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1055 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1056 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1057 case lltok::kw_linkonce_odr_auto_hide: 1058 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1059 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1060 break; 1061 case lltok::kw_available_externally: 1062 Res = GlobalValue::AvailableExternallyLinkage; 1063 break; 1064 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1065 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1066 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1067 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1068 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1069 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1070 } 1071 Lex.Lex(); 1072 HasLinkage = true; 1073 return false; 1074 } 1075 1076 /// ParseOptionalVisibility 1077 /// ::= /*empty*/ 1078 /// ::= 'default' 1079 /// ::= 'hidden' 1080 /// ::= 'protected' 1081 /// 1082 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1083 switch (Lex.getKind()) { 1084 default: Res = GlobalValue::DefaultVisibility; return false; 1085 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1086 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1087 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1088 } 1089 Lex.Lex(); 1090 return false; 1091 } 1092 1093 /// ParseOptionalCallingConv 1094 /// ::= /*empty*/ 1095 /// ::= 'ccc' 1096 /// ::= 'fastcc' 1097 /// ::= 'coldcc' 1098 /// ::= 'x86_stdcallcc' 1099 /// ::= 'x86_fastcallcc' 1100 /// ::= 'x86_thiscallcc' 1101 /// ::= 'arm_apcscc' 1102 /// ::= 'arm_aapcscc' 1103 /// ::= 'arm_aapcs_vfpcc' 1104 /// ::= 'msp430_intrcc' 1105 /// ::= 'ptx_kernel' 1106 /// ::= 'ptx_device' 1107 /// ::= 'spir_func' 1108 /// ::= 'spir_kernel' 1109 /// ::= 'cc' UINT 1110 /// 1111 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1112 switch (Lex.getKind()) { 1113 default: CC = CallingConv::C; return false; 1114 case lltok::kw_ccc: CC = CallingConv::C; break; 1115 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1116 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1117 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1118 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1119 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1120 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1121 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1122 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1123 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1124 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1125 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1126 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1127 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1128 case lltok::kw_cc: { 1129 unsigned ArbitraryCC; 1130 Lex.Lex(); 1131 if (ParseUInt32(ArbitraryCC)) 1132 return true; 1133 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1134 return false; 1135 } 1136 } 1137 1138 Lex.Lex(); 1139 return false; 1140 } 1141 1142 /// ParseInstructionMetadata 1143 /// ::= !dbg !42 (',' !dbg !57)* 1144 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1145 PerFunctionState *PFS) { 1146 do { 1147 if (Lex.getKind() != lltok::MetadataVar) 1148 return TokError("expected metadata after comma"); 1149 1150 std::string Name = Lex.getStrVal(); 1151 unsigned MDK = M->getMDKindID(Name); 1152 Lex.Lex(); 1153 1154 MDNode *Node; 1155 SMLoc Loc = Lex.getLoc(); 1156 1157 if (ParseToken(lltok::exclaim, "expected '!' here")) 1158 return true; 1159 1160 // This code is similar to that of ParseMetadataValue, however it needs to 1161 // have special-case code for a forward reference; see the comments on 1162 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1163 // at the top level here. 1164 if (Lex.getKind() == lltok::lbrace) { 1165 ValID ID; 1166 if (ParseMetadataListValue(ID, PFS)) 1167 return true; 1168 assert(ID.Kind == ValID::t_MDNode); 1169 Inst->setMetadata(MDK, ID.MDNodeVal); 1170 } else { 1171 unsigned NodeID = 0; 1172 if (ParseMDNodeID(Node, NodeID)) 1173 return true; 1174 if (Node) { 1175 // If we got the node, add it to the instruction. 1176 Inst->setMetadata(MDK, Node); 1177 } else { 1178 MDRef R = { Loc, MDK, NodeID }; 1179 // Otherwise, remember that this should be resolved later. 1180 ForwardRefInstMetadata[Inst].push_back(R); 1181 } 1182 } 1183 1184 // If this is the end of the list, we're done. 1185 } while (EatIfPresent(lltok::comma)); 1186 return false; 1187 } 1188 1189 /// ParseOptionalAlignment 1190 /// ::= /* empty */ 1191 /// ::= 'align' 4 1192 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1193 Alignment = 0; 1194 if (!EatIfPresent(lltok::kw_align)) 1195 return false; 1196 LocTy AlignLoc = Lex.getLoc(); 1197 if (ParseUInt32(Alignment)) return true; 1198 if (!isPowerOf2_32(Alignment)) 1199 return Error(AlignLoc, "alignment is not a power of two"); 1200 if (Alignment > Value::MaximumAlignment) 1201 return Error(AlignLoc, "huge alignments are not supported yet"); 1202 return false; 1203 } 1204 1205 /// ParseOptionalCommaAlign 1206 /// ::= 1207 /// ::= ',' align 4 1208 /// 1209 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1210 /// end. 1211 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1212 bool &AteExtraComma) { 1213 AteExtraComma = false; 1214 while (EatIfPresent(lltok::comma)) { 1215 // Metadata at the end is an early exit. 1216 if (Lex.getKind() == lltok::MetadataVar) { 1217 AteExtraComma = true; 1218 return false; 1219 } 1220 1221 if (Lex.getKind() != lltok::kw_align) 1222 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1223 1224 if (ParseOptionalAlignment(Alignment)) return true; 1225 } 1226 1227 return false; 1228 } 1229 1230 /// ParseScopeAndOrdering 1231 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1232 /// else: ::= 1233 /// 1234 /// This sets Scope and Ordering to the parsed values. 1235 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1236 AtomicOrdering &Ordering) { 1237 if (!isAtomic) 1238 return false; 1239 1240 Scope = CrossThread; 1241 if (EatIfPresent(lltok::kw_singlethread)) 1242 Scope = SingleThread; 1243 switch (Lex.getKind()) { 1244 default: return TokError("Expected ordering on atomic instruction"); 1245 case lltok::kw_unordered: Ordering = Unordered; break; 1246 case lltok::kw_monotonic: Ordering = Monotonic; break; 1247 case lltok::kw_acquire: Ordering = Acquire; break; 1248 case lltok::kw_release: Ordering = Release; break; 1249 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1250 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1251 } 1252 Lex.Lex(); 1253 return false; 1254 } 1255 1256 /// ParseOptionalStackAlignment 1257 /// ::= /* empty */ 1258 /// ::= 'alignstack' '(' 4 ')' 1259 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1260 Alignment = 0; 1261 if (!EatIfPresent(lltok::kw_alignstack)) 1262 return false; 1263 LocTy ParenLoc = Lex.getLoc(); 1264 if (!EatIfPresent(lltok::lparen)) 1265 return Error(ParenLoc, "expected '('"); 1266 LocTy AlignLoc = Lex.getLoc(); 1267 if (ParseUInt32(Alignment)) return true; 1268 ParenLoc = Lex.getLoc(); 1269 if (!EatIfPresent(lltok::rparen)) 1270 return Error(ParenLoc, "expected ')'"); 1271 if (!isPowerOf2_32(Alignment)) 1272 return Error(AlignLoc, "stack alignment is not a power of two"); 1273 return false; 1274 } 1275 1276 /// ParseIndexList - This parses the index list for an insert/extractvalue 1277 /// instruction. This sets AteExtraComma in the case where we eat an extra 1278 /// comma at the end of the line and find that it is followed by metadata. 1279 /// Clients that don't allow metadata can call the version of this function that 1280 /// only takes one argument. 1281 /// 1282 /// ParseIndexList 1283 /// ::= (',' uint32)+ 1284 /// 1285 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1286 bool &AteExtraComma) { 1287 AteExtraComma = false; 1288 1289 if (Lex.getKind() != lltok::comma) 1290 return TokError("expected ',' as start of index list"); 1291 1292 while (EatIfPresent(lltok::comma)) { 1293 if (Lex.getKind() == lltok::MetadataVar) { 1294 AteExtraComma = true; 1295 return false; 1296 } 1297 unsigned Idx = 0; 1298 if (ParseUInt32(Idx)) return true; 1299 Indices.push_back(Idx); 1300 } 1301 1302 return false; 1303 } 1304 1305 //===----------------------------------------------------------------------===// 1306 // Type Parsing. 1307 //===----------------------------------------------------------------------===// 1308 1309 /// ParseType - Parse a type. 1310 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1311 SMLoc TypeLoc = Lex.getLoc(); 1312 switch (Lex.getKind()) { 1313 default: 1314 return TokError("expected type"); 1315 case lltok::Type: 1316 // Type ::= 'float' | 'void' (etc) 1317 Result = Lex.getTyVal(); 1318 Lex.Lex(); 1319 break; 1320 case lltok::lbrace: 1321 // Type ::= StructType 1322 if (ParseAnonStructType(Result, false)) 1323 return true; 1324 break; 1325 case lltok::lsquare: 1326 // Type ::= '[' ... ']' 1327 Lex.Lex(); // eat the lsquare. 1328 if (ParseArrayVectorType(Result, false)) 1329 return true; 1330 break; 1331 case lltok::less: // Either vector or packed struct. 1332 // Type ::= '<' ... '>' 1333 Lex.Lex(); 1334 if (Lex.getKind() == lltok::lbrace) { 1335 if (ParseAnonStructType(Result, true) || 1336 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1337 return true; 1338 } else if (ParseArrayVectorType(Result, true)) 1339 return true; 1340 break; 1341 case lltok::LocalVar: { 1342 // Type ::= %foo 1343 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1344 1345 // If the type hasn't been defined yet, create a forward definition and 1346 // remember where that forward def'n was seen (in case it never is defined). 1347 if (Entry.first == 0) { 1348 Entry.first = StructType::create(Context, Lex.getStrVal()); 1349 Entry.second = Lex.getLoc(); 1350 } 1351 Result = Entry.first; 1352 Lex.Lex(); 1353 break; 1354 } 1355 1356 case lltok::LocalVarID: { 1357 // Type ::= %4 1358 if (Lex.getUIntVal() >= NumberedTypes.size()) 1359 NumberedTypes.resize(Lex.getUIntVal()+1); 1360 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1361 1362 // If the type hasn't been defined yet, create a forward definition and 1363 // remember where that forward def'n was seen (in case it never is defined). 1364 if (Entry.first == 0) { 1365 Entry.first = StructType::create(Context); 1366 Entry.second = Lex.getLoc(); 1367 } 1368 Result = Entry.first; 1369 Lex.Lex(); 1370 break; 1371 } 1372 } 1373 1374 // Parse the type suffixes. 1375 while (1) { 1376 switch (Lex.getKind()) { 1377 // End of type. 1378 default: 1379 if (!AllowVoid && Result->isVoidTy()) 1380 return Error(TypeLoc, "void type only allowed for function results"); 1381 return false; 1382 1383 // Type ::= Type '*' 1384 case lltok::star: 1385 if (Result->isLabelTy()) 1386 return TokError("basic block pointers are invalid"); 1387 if (Result->isVoidTy()) 1388 return TokError("pointers to void are invalid - use i8* instead"); 1389 if (!PointerType::isValidElementType(Result)) 1390 return TokError("pointer to this type is invalid"); 1391 Result = PointerType::getUnqual(Result); 1392 Lex.Lex(); 1393 break; 1394 1395 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1396 case lltok::kw_addrspace: { 1397 if (Result->isLabelTy()) 1398 return TokError("basic block pointers are invalid"); 1399 if (Result->isVoidTy()) 1400 return TokError("pointers to void are invalid; use i8* instead"); 1401 if (!PointerType::isValidElementType(Result)) 1402 return TokError("pointer to this type is invalid"); 1403 unsigned AddrSpace; 1404 if (ParseOptionalAddrSpace(AddrSpace) || 1405 ParseToken(lltok::star, "expected '*' in address space")) 1406 return true; 1407 1408 Result = PointerType::get(Result, AddrSpace); 1409 break; 1410 } 1411 1412 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1413 case lltok::lparen: 1414 if (ParseFunctionType(Result)) 1415 return true; 1416 break; 1417 } 1418 } 1419 } 1420 1421 /// ParseParameterList 1422 /// ::= '(' ')' 1423 /// ::= '(' Arg (',' Arg)* ')' 1424 /// Arg 1425 /// ::= Type OptionalAttributes Value OptionalAttributes 1426 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1427 PerFunctionState &PFS) { 1428 if (ParseToken(lltok::lparen, "expected '(' in call")) 1429 return true; 1430 1431 while (Lex.getKind() != lltok::rparen) { 1432 // If this isn't the first argument, we need a comma. 1433 if (!ArgList.empty() && 1434 ParseToken(lltok::comma, "expected ',' in argument list")) 1435 return true; 1436 1437 // Parse the argument. 1438 LocTy ArgLoc; 1439 Type *ArgTy = 0; 1440 AttrBuilder ArgAttrs; 1441 Value *V; 1442 if (ParseType(ArgTy, ArgLoc)) 1443 return true; 1444 1445 // Otherwise, handle normal operands. 1446 if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS)) 1447 return true; 1448 ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(), 1449 ArgAttrs))); 1450 } 1451 1452 Lex.Lex(); // Lex the ')'. 1453 return false; 1454 } 1455 1456 1457 1458 /// ParseArgumentList - Parse the argument list for a function type or function 1459 /// prototype. 1460 /// ::= '(' ArgTypeListI ')' 1461 /// ArgTypeListI 1462 /// ::= /*empty*/ 1463 /// ::= '...' 1464 /// ::= ArgTypeList ',' '...' 1465 /// ::= ArgType (',' ArgType)* 1466 /// 1467 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1468 bool &isVarArg){ 1469 isVarArg = false; 1470 assert(Lex.getKind() == lltok::lparen); 1471 Lex.Lex(); // eat the (. 1472 1473 if (Lex.getKind() == lltok::rparen) { 1474 // empty 1475 } else if (Lex.getKind() == lltok::dotdotdot) { 1476 isVarArg = true; 1477 Lex.Lex(); 1478 } else { 1479 LocTy TypeLoc = Lex.getLoc(); 1480 Type *ArgTy = 0; 1481 AttrBuilder Attrs; 1482 std::string Name; 1483 1484 if (ParseType(ArgTy) || 1485 ParseOptionalAttrs(Attrs, 0)) return true; 1486 1487 if (ArgTy->isVoidTy()) 1488 return Error(TypeLoc, "argument can not have void type"); 1489 1490 if (Lex.getKind() == lltok::LocalVar) { 1491 Name = Lex.getStrVal(); 1492 Lex.Lex(); 1493 } 1494 1495 if (!FunctionType::isValidArgumentType(ArgTy)) 1496 return Error(TypeLoc, "invalid type for function argument"); 1497 1498 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1499 Attributes::get(ArgTy->getContext(), 1500 Attrs), Name)); 1501 1502 while (EatIfPresent(lltok::comma)) { 1503 // Handle ... at end of arg list. 1504 if (EatIfPresent(lltok::dotdotdot)) { 1505 isVarArg = true; 1506 break; 1507 } 1508 1509 // Otherwise must be an argument type. 1510 TypeLoc = Lex.getLoc(); 1511 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1512 1513 if (ArgTy->isVoidTy()) 1514 return Error(TypeLoc, "argument can not have void type"); 1515 1516 if (Lex.getKind() == lltok::LocalVar) { 1517 Name = Lex.getStrVal(); 1518 Lex.Lex(); 1519 } else { 1520 Name = ""; 1521 } 1522 1523 if (!ArgTy->isFirstClassType()) 1524 return Error(TypeLoc, "invalid type for function argument"); 1525 1526 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1527 Attributes::get(ArgTy->getContext(), Attrs), 1528 Name)); 1529 } 1530 } 1531 1532 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1533 } 1534 1535 /// ParseFunctionType 1536 /// ::= Type ArgumentList OptionalAttrs 1537 bool LLParser::ParseFunctionType(Type *&Result) { 1538 assert(Lex.getKind() == lltok::lparen); 1539 1540 if (!FunctionType::isValidReturnType(Result)) 1541 return TokError("invalid function return type"); 1542 1543 SmallVector<ArgInfo, 8> ArgList; 1544 bool isVarArg; 1545 if (ParseArgumentList(ArgList, isVarArg)) 1546 return true; 1547 1548 // Reject names on the arguments lists. 1549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1550 if (!ArgList[i].Name.empty()) 1551 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1552 if (ArgList[i].Attrs.hasAttributes()) 1553 return Error(ArgList[i].Loc, 1554 "argument attributes invalid in function type"); 1555 } 1556 1557 SmallVector<Type*, 16> ArgListTy; 1558 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1559 ArgListTy.push_back(ArgList[i].Ty); 1560 1561 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1562 return false; 1563 } 1564 1565 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1566 /// other structs. 1567 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1568 SmallVector<Type*, 8> Elts; 1569 if (ParseStructBody(Elts)) return true; 1570 1571 Result = StructType::get(Context, Elts, Packed); 1572 return false; 1573 } 1574 1575 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1576 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1577 std::pair<Type*, LocTy> &Entry, 1578 Type *&ResultTy) { 1579 // If the type was already defined, diagnose the redefinition. 1580 if (Entry.first && !Entry.second.isValid()) 1581 return Error(TypeLoc, "redefinition of type"); 1582 1583 // If we have opaque, just return without filling in the definition for the 1584 // struct. This counts as a definition as far as the .ll file goes. 1585 if (EatIfPresent(lltok::kw_opaque)) { 1586 // This type is being defined, so clear the location to indicate this. 1587 Entry.second = SMLoc(); 1588 1589 // If this type number has never been uttered, create it. 1590 if (Entry.first == 0) 1591 Entry.first = StructType::create(Context, Name); 1592 ResultTy = Entry.first; 1593 return false; 1594 } 1595 1596 // If the type starts with '<', then it is either a packed struct or a vector. 1597 bool isPacked = EatIfPresent(lltok::less); 1598 1599 // If we don't have a struct, then we have a random type alias, which we 1600 // accept for compatibility with old files. These types are not allowed to be 1601 // forward referenced and not allowed to be recursive. 1602 if (Lex.getKind() != lltok::lbrace) { 1603 if (Entry.first) 1604 return Error(TypeLoc, "forward references to non-struct type"); 1605 1606 ResultTy = 0; 1607 if (isPacked) 1608 return ParseArrayVectorType(ResultTy, true); 1609 return ParseType(ResultTy); 1610 } 1611 1612 // This type is being defined, so clear the location to indicate this. 1613 Entry.second = SMLoc(); 1614 1615 // If this type number has never been uttered, create it. 1616 if (Entry.first == 0) 1617 Entry.first = StructType::create(Context, Name); 1618 1619 StructType *STy = cast<StructType>(Entry.first); 1620 1621 SmallVector<Type*, 8> Body; 1622 if (ParseStructBody(Body) || 1623 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1624 return true; 1625 1626 STy->setBody(Body, isPacked); 1627 ResultTy = STy; 1628 return false; 1629 } 1630 1631 1632 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1633 /// StructType 1634 /// ::= '{' '}' 1635 /// ::= '{' Type (',' Type)* '}' 1636 /// ::= '<' '{' '}' '>' 1637 /// ::= '<' '{' Type (',' Type)* '}' '>' 1638 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1639 assert(Lex.getKind() == lltok::lbrace); 1640 Lex.Lex(); // Consume the '{' 1641 1642 // Handle the empty struct. 1643 if (EatIfPresent(lltok::rbrace)) 1644 return false; 1645 1646 LocTy EltTyLoc = Lex.getLoc(); 1647 Type *Ty = 0; 1648 if (ParseType(Ty)) return true; 1649 Body.push_back(Ty); 1650 1651 if (!StructType::isValidElementType(Ty)) 1652 return Error(EltTyLoc, "invalid element type for struct"); 1653 1654 while (EatIfPresent(lltok::comma)) { 1655 EltTyLoc = Lex.getLoc(); 1656 if (ParseType(Ty)) return true; 1657 1658 if (!StructType::isValidElementType(Ty)) 1659 return Error(EltTyLoc, "invalid element type for struct"); 1660 1661 Body.push_back(Ty); 1662 } 1663 1664 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1665 } 1666 1667 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1668 /// token has already been consumed. 1669 /// Type 1670 /// ::= '[' APSINTVAL 'x' Types ']' 1671 /// ::= '<' APSINTVAL 'x' Types '>' 1672 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1673 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1674 Lex.getAPSIntVal().getBitWidth() > 64) 1675 return TokError("expected number in address space"); 1676 1677 LocTy SizeLoc = Lex.getLoc(); 1678 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1679 Lex.Lex(); 1680 1681 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1682 return true; 1683 1684 LocTy TypeLoc = Lex.getLoc(); 1685 Type *EltTy = 0; 1686 if (ParseType(EltTy)) return true; 1687 1688 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1689 "expected end of sequential type")) 1690 return true; 1691 1692 if (isVector) { 1693 if (Size == 0) 1694 return Error(SizeLoc, "zero element vector is illegal"); 1695 if ((unsigned)Size != Size) 1696 return Error(SizeLoc, "size too large for vector"); 1697 if (!VectorType::isValidElementType(EltTy)) 1698 return Error(TypeLoc, 1699 "vector element type must be fp, integer or a pointer to these types"); 1700 Result = VectorType::get(EltTy, unsigned(Size)); 1701 } else { 1702 if (!ArrayType::isValidElementType(EltTy)) 1703 return Error(TypeLoc, "invalid array element type"); 1704 Result = ArrayType::get(EltTy, Size); 1705 } 1706 return false; 1707 } 1708 1709 //===----------------------------------------------------------------------===// 1710 // Function Semantic Analysis. 1711 //===----------------------------------------------------------------------===// 1712 1713 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1714 int functionNumber) 1715 : P(p), F(f), FunctionNumber(functionNumber) { 1716 1717 // Insert unnamed arguments into the NumberedVals list. 1718 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1719 AI != E; ++AI) 1720 if (!AI->hasName()) 1721 NumberedVals.push_back(AI); 1722 } 1723 1724 LLParser::PerFunctionState::~PerFunctionState() { 1725 // If there were any forward referenced non-basicblock values, delete them. 1726 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1727 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1728 if (!isa<BasicBlock>(I->second.first)) { 1729 I->second.first->replaceAllUsesWith( 1730 UndefValue::get(I->second.first->getType())); 1731 delete I->second.first; 1732 I->second.first = 0; 1733 } 1734 1735 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1736 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1737 if (!isa<BasicBlock>(I->second.first)) { 1738 I->second.first->replaceAllUsesWith( 1739 UndefValue::get(I->second.first->getType())); 1740 delete I->second.first; 1741 I->second.first = 0; 1742 } 1743 } 1744 1745 bool LLParser::PerFunctionState::FinishFunction() { 1746 // Check to see if someone took the address of labels in this block. 1747 if (!P.ForwardRefBlockAddresses.empty()) { 1748 ValID FunctionID; 1749 if (!F.getName().empty()) { 1750 FunctionID.Kind = ValID::t_GlobalName; 1751 FunctionID.StrVal = F.getName(); 1752 } else { 1753 FunctionID.Kind = ValID::t_GlobalID; 1754 FunctionID.UIntVal = FunctionNumber; 1755 } 1756 1757 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1758 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1759 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1760 // Resolve all these references. 1761 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1762 return true; 1763 1764 P.ForwardRefBlockAddresses.erase(FRBAI); 1765 } 1766 } 1767 1768 if (!ForwardRefVals.empty()) 1769 return P.Error(ForwardRefVals.begin()->second.second, 1770 "use of undefined value '%" + ForwardRefVals.begin()->first + 1771 "'"); 1772 if (!ForwardRefValIDs.empty()) 1773 return P.Error(ForwardRefValIDs.begin()->second.second, 1774 "use of undefined value '%" + 1775 Twine(ForwardRefValIDs.begin()->first) + "'"); 1776 return false; 1777 } 1778 1779 1780 /// GetVal - Get a value with the specified name or ID, creating a 1781 /// forward reference record if needed. This can return null if the value 1782 /// exists but does not have the right type. 1783 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1784 Type *Ty, LocTy Loc) { 1785 // Look this name up in the normal function symbol table. 1786 Value *Val = F.getValueSymbolTable().lookup(Name); 1787 1788 // If this is a forward reference for the value, see if we already created a 1789 // forward ref record. 1790 if (Val == 0) { 1791 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1792 I = ForwardRefVals.find(Name); 1793 if (I != ForwardRefVals.end()) 1794 Val = I->second.first; 1795 } 1796 1797 // If we have the value in the symbol table or fwd-ref table, return it. 1798 if (Val) { 1799 if (Val->getType() == Ty) return Val; 1800 if (Ty->isLabelTy()) 1801 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1802 else 1803 P.Error(Loc, "'%" + Name + "' defined with type '" + 1804 getTypeString(Val->getType()) + "'"); 1805 return 0; 1806 } 1807 1808 // Don't make placeholders with invalid type. 1809 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1810 P.Error(Loc, "invalid use of a non-first-class type"); 1811 return 0; 1812 } 1813 1814 // Otherwise, create a new forward reference for this value and remember it. 1815 Value *FwdVal; 1816 if (Ty->isLabelTy()) 1817 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1818 else 1819 FwdVal = new Argument(Ty, Name); 1820 1821 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1822 return FwdVal; 1823 } 1824 1825 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1826 LocTy Loc) { 1827 // Look this name up in the normal function symbol table. 1828 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1829 1830 // If this is a forward reference for the value, see if we already created a 1831 // forward ref record. 1832 if (Val == 0) { 1833 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1834 I = ForwardRefValIDs.find(ID); 1835 if (I != ForwardRefValIDs.end()) 1836 Val = I->second.first; 1837 } 1838 1839 // If we have the value in the symbol table or fwd-ref table, return it. 1840 if (Val) { 1841 if (Val->getType() == Ty) return Val; 1842 if (Ty->isLabelTy()) 1843 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1844 else 1845 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1846 getTypeString(Val->getType()) + "'"); 1847 return 0; 1848 } 1849 1850 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1851 P.Error(Loc, "invalid use of a non-first-class type"); 1852 return 0; 1853 } 1854 1855 // Otherwise, create a new forward reference for this value and remember it. 1856 Value *FwdVal; 1857 if (Ty->isLabelTy()) 1858 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1859 else 1860 FwdVal = new Argument(Ty); 1861 1862 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1863 return FwdVal; 1864 } 1865 1866 /// SetInstName - After an instruction is parsed and inserted into its 1867 /// basic block, this installs its name. 1868 bool LLParser::PerFunctionState::SetInstName(int NameID, 1869 const std::string &NameStr, 1870 LocTy NameLoc, Instruction *Inst) { 1871 // If this instruction has void type, it cannot have a name or ID specified. 1872 if (Inst->getType()->isVoidTy()) { 1873 if (NameID != -1 || !NameStr.empty()) 1874 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1875 return false; 1876 } 1877 1878 // If this was a numbered instruction, verify that the instruction is the 1879 // expected value and resolve any forward references. 1880 if (NameStr.empty()) { 1881 // If neither a name nor an ID was specified, just use the next ID. 1882 if (NameID == -1) 1883 NameID = NumberedVals.size(); 1884 1885 if (unsigned(NameID) != NumberedVals.size()) 1886 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1887 Twine(NumberedVals.size()) + "'"); 1888 1889 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1890 ForwardRefValIDs.find(NameID); 1891 if (FI != ForwardRefValIDs.end()) { 1892 if (FI->second.first->getType() != Inst->getType()) 1893 return P.Error(NameLoc, "instruction forward referenced with type '" + 1894 getTypeString(FI->second.first->getType()) + "'"); 1895 FI->second.first->replaceAllUsesWith(Inst); 1896 delete FI->second.first; 1897 ForwardRefValIDs.erase(FI); 1898 } 1899 1900 NumberedVals.push_back(Inst); 1901 return false; 1902 } 1903 1904 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1905 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1906 FI = ForwardRefVals.find(NameStr); 1907 if (FI != ForwardRefVals.end()) { 1908 if (FI->second.first->getType() != Inst->getType()) 1909 return P.Error(NameLoc, "instruction forward referenced with type '" + 1910 getTypeString(FI->second.first->getType()) + "'"); 1911 FI->second.first->replaceAllUsesWith(Inst); 1912 delete FI->second.first; 1913 ForwardRefVals.erase(FI); 1914 } 1915 1916 // Set the name on the instruction. 1917 Inst->setName(NameStr); 1918 1919 if (Inst->getName() != NameStr) 1920 return P.Error(NameLoc, "multiple definition of local value named '" + 1921 NameStr + "'"); 1922 return false; 1923 } 1924 1925 /// GetBB - Get a basic block with the specified name or ID, creating a 1926 /// forward reference record if needed. 1927 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1928 LocTy Loc) { 1929 return cast_or_null<BasicBlock>(GetVal(Name, 1930 Type::getLabelTy(F.getContext()), Loc)); 1931 } 1932 1933 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1934 return cast_or_null<BasicBlock>(GetVal(ID, 1935 Type::getLabelTy(F.getContext()), Loc)); 1936 } 1937 1938 /// DefineBB - Define the specified basic block, which is either named or 1939 /// unnamed. If there is an error, this returns null otherwise it returns 1940 /// the block being defined. 1941 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1942 LocTy Loc) { 1943 BasicBlock *BB; 1944 if (Name.empty()) 1945 BB = GetBB(NumberedVals.size(), Loc); 1946 else 1947 BB = GetBB(Name, Loc); 1948 if (BB == 0) return 0; // Already diagnosed error. 1949 1950 // Move the block to the end of the function. Forward ref'd blocks are 1951 // inserted wherever they happen to be referenced. 1952 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1953 1954 // Remove the block from forward ref sets. 1955 if (Name.empty()) { 1956 ForwardRefValIDs.erase(NumberedVals.size()); 1957 NumberedVals.push_back(BB); 1958 } else { 1959 // BB forward references are already in the function symbol table. 1960 ForwardRefVals.erase(Name); 1961 } 1962 1963 return BB; 1964 } 1965 1966 //===----------------------------------------------------------------------===// 1967 // Constants. 1968 //===----------------------------------------------------------------------===// 1969 1970 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1971 /// type implied. For example, if we parse "4" we don't know what integer type 1972 /// it has. The value will later be combined with its type and checked for 1973 /// sanity. PFS is used to convert function-local operands of metadata (since 1974 /// metadata operands are not just parsed here but also converted to values). 1975 /// PFS can be null when we are not parsing metadata values inside a function. 1976 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1977 ID.Loc = Lex.getLoc(); 1978 switch (Lex.getKind()) { 1979 default: return TokError("expected value token"); 1980 case lltok::GlobalID: // @42 1981 ID.UIntVal = Lex.getUIntVal(); 1982 ID.Kind = ValID::t_GlobalID; 1983 break; 1984 case lltok::GlobalVar: // @foo 1985 ID.StrVal = Lex.getStrVal(); 1986 ID.Kind = ValID::t_GlobalName; 1987 break; 1988 case lltok::LocalVarID: // %42 1989 ID.UIntVal = Lex.getUIntVal(); 1990 ID.Kind = ValID::t_LocalID; 1991 break; 1992 case lltok::LocalVar: // %foo 1993 ID.StrVal = Lex.getStrVal(); 1994 ID.Kind = ValID::t_LocalName; 1995 break; 1996 case lltok::exclaim: // !42, !{...}, or !"foo" 1997 return ParseMetadataValue(ID, PFS); 1998 case lltok::APSInt: 1999 ID.APSIntVal = Lex.getAPSIntVal(); 2000 ID.Kind = ValID::t_APSInt; 2001 break; 2002 case lltok::APFloat: 2003 ID.APFloatVal = Lex.getAPFloatVal(); 2004 ID.Kind = ValID::t_APFloat; 2005 break; 2006 case lltok::kw_true: 2007 ID.ConstantVal = ConstantInt::getTrue(Context); 2008 ID.Kind = ValID::t_Constant; 2009 break; 2010 case lltok::kw_false: 2011 ID.ConstantVal = ConstantInt::getFalse(Context); 2012 ID.Kind = ValID::t_Constant; 2013 break; 2014 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2015 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2016 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2017 2018 case lltok::lbrace: { 2019 // ValID ::= '{' ConstVector '}' 2020 Lex.Lex(); 2021 SmallVector<Constant*, 16> Elts; 2022 if (ParseGlobalValueVector(Elts) || 2023 ParseToken(lltok::rbrace, "expected end of struct constant")) 2024 return true; 2025 2026 ID.ConstantStructElts = new Constant*[Elts.size()]; 2027 ID.UIntVal = Elts.size(); 2028 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2029 ID.Kind = ValID::t_ConstantStruct; 2030 return false; 2031 } 2032 case lltok::less: { 2033 // ValID ::= '<' ConstVector '>' --> Vector. 2034 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2035 Lex.Lex(); 2036 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2037 2038 SmallVector<Constant*, 16> Elts; 2039 LocTy FirstEltLoc = Lex.getLoc(); 2040 if (ParseGlobalValueVector(Elts) || 2041 (isPackedStruct && 2042 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2043 ParseToken(lltok::greater, "expected end of constant")) 2044 return true; 2045 2046 if (isPackedStruct) { 2047 ID.ConstantStructElts = new Constant*[Elts.size()]; 2048 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2049 ID.UIntVal = Elts.size(); 2050 ID.Kind = ValID::t_PackedConstantStruct; 2051 return false; 2052 } 2053 2054 if (Elts.empty()) 2055 return Error(ID.Loc, "constant vector must not be empty"); 2056 2057 if (!Elts[0]->getType()->isIntegerTy() && 2058 !Elts[0]->getType()->isFloatingPointTy() && 2059 !Elts[0]->getType()->isPointerTy()) 2060 return Error(FirstEltLoc, 2061 "vector elements must have integer, pointer or floating point type"); 2062 2063 // Verify that all the vector elements have the same type. 2064 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2065 if (Elts[i]->getType() != Elts[0]->getType()) 2066 return Error(FirstEltLoc, 2067 "vector element #" + Twine(i) + 2068 " is not of type '" + getTypeString(Elts[0]->getType())); 2069 2070 ID.ConstantVal = ConstantVector::get(Elts); 2071 ID.Kind = ValID::t_Constant; 2072 return false; 2073 } 2074 case lltok::lsquare: { // Array Constant 2075 Lex.Lex(); 2076 SmallVector<Constant*, 16> Elts; 2077 LocTy FirstEltLoc = Lex.getLoc(); 2078 if (ParseGlobalValueVector(Elts) || 2079 ParseToken(lltok::rsquare, "expected end of array constant")) 2080 return true; 2081 2082 // Handle empty element. 2083 if (Elts.empty()) { 2084 // Use undef instead of an array because it's inconvenient to determine 2085 // the element type at this point, there being no elements to examine. 2086 ID.Kind = ValID::t_EmptyArray; 2087 return false; 2088 } 2089 2090 if (!Elts[0]->getType()->isFirstClassType()) 2091 return Error(FirstEltLoc, "invalid array element type: " + 2092 getTypeString(Elts[0]->getType())); 2093 2094 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2095 2096 // Verify all elements are correct type! 2097 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2098 if (Elts[i]->getType() != Elts[0]->getType()) 2099 return Error(FirstEltLoc, 2100 "array element #" + Twine(i) + 2101 " is not of type '" + getTypeString(Elts[0]->getType())); 2102 } 2103 2104 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2105 ID.Kind = ValID::t_Constant; 2106 return false; 2107 } 2108 case lltok::kw_c: // c "foo" 2109 Lex.Lex(); 2110 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2111 false); 2112 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2113 ID.Kind = ValID::t_Constant; 2114 return false; 2115 2116 case lltok::kw_asm: { 2117 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2118 bool HasSideEffect, AlignStack, AsmDialect; 2119 Lex.Lex(); 2120 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2121 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2122 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2123 ParseStringConstant(ID.StrVal) || 2124 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2125 ParseToken(lltok::StringConstant, "expected constraint string")) 2126 return true; 2127 ID.StrVal2 = Lex.getStrVal(); 2128 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2129 (unsigned(AsmDialect)<<2); 2130 ID.Kind = ValID::t_InlineAsm; 2131 return false; 2132 } 2133 2134 case lltok::kw_blockaddress: { 2135 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2136 Lex.Lex(); 2137 2138 ValID Fn, Label; 2139 LocTy FnLoc, LabelLoc; 2140 2141 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2142 ParseValID(Fn) || 2143 ParseToken(lltok::comma, "expected comma in block address expression")|| 2144 ParseValID(Label) || 2145 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2146 return true; 2147 2148 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2149 return Error(Fn.Loc, "expected function name in blockaddress"); 2150 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2151 return Error(Label.Loc, "expected basic block name in blockaddress"); 2152 2153 // Make a global variable as a placeholder for this reference. 2154 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2155 false, GlobalValue::InternalLinkage, 2156 0, ""); 2157 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2158 ID.ConstantVal = FwdRef; 2159 ID.Kind = ValID::t_Constant; 2160 return false; 2161 } 2162 2163 case lltok::kw_trunc: 2164 case lltok::kw_zext: 2165 case lltok::kw_sext: 2166 case lltok::kw_fptrunc: 2167 case lltok::kw_fpext: 2168 case lltok::kw_bitcast: 2169 case lltok::kw_uitofp: 2170 case lltok::kw_sitofp: 2171 case lltok::kw_fptoui: 2172 case lltok::kw_fptosi: 2173 case lltok::kw_inttoptr: 2174 case lltok::kw_ptrtoint: { 2175 unsigned Opc = Lex.getUIntVal(); 2176 Type *DestTy = 0; 2177 Constant *SrcVal; 2178 Lex.Lex(); 2179 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2180 ParseGlobalTypeAndValue(SrcVal) || 2181 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2182 ParseType(DestTy) || 2183 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2184 return true; 2185 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2186 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2187 getTypeString(SrcVal->getType()) + "' to '" + 2188 getTypeString(DestTy) + "'"); 2189 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2190 SrcVal, DestTy); 2191 ID.Kind = ValID::t_Constant; 2192 return false; 2193 } 2194 case lltok::kw_extractvalue: { 2195 Lex.Lex(); 2196 Constant *Val; 2197 SmallVector<unsigned, 4> Indices; 2198 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2199 ParseGlobalTypeAndValue(Val) || 2200 ParseIndexList(Indices) || 2201 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2202 return true; 2203 2204 if (!Val->getType()->isAggregateType()) 2205 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2206 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2207 return Error(ID.Loc, "invalid indices for extractvalue"); 2208 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2209 ID.Kind = ValID::t_Constant; 2210 return false; 2211 } 2212 case lltok::kw_insertvalue: { 2213 Lex.Lex(); 2214 Constant *Val0, *Val1; 2215 SmallVector<unsigned, 4> Indices; 2216 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2217 ParseGlobalTypeAndValue(Val0) || 2218 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2219 ParseGlobalTypeAndValue(Val1) || 2220 ParseIndexList(Indices) || 2221 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2222 return true; 2223 if (!Val0->getType()->isAggregateType()) 2224 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2225 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2226 return Error(ID.Loc, "invalid indices for insertvalue"); 2227 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2228 ID.Kind = ValID::t_Constant; 2229 return false; 2230 } 2231 case lltok::kw_icmp: 2232 case lltok::kw_fcmp: { 2233 unsigned PredVal, Opc = Lex.getUIntVal(); 2234 Constant *Val0, *Val1; 2235 Lex.Lex(); 2236 if (ParseCmpPredicate(PredVal, Opc) || 2237 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2238 ParseGlobalTypeAndValue(Val0) || 2239 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2240 ParseGlobalTypeAndValue(Val1) || 2241 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2242 return true; 2243 2244 if (Val0->getType() != Val1->getType()) 2245 return Error(ID.Loc, "compare operands must have the same type"); 2246 2247 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2248 2249 if (Opc == Instruction::FCmp) { 2250 if (!Val0->getType()->isFPOrFPVectorTy()) 2251 return Error(ID.Loc, "fcmp requires floating point operands"); 2252 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2253 } else { 2254 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2255 if (!Val0->getType()->isIntOrIntVectorTy() && 2256 !Val0->getType()->getScalarType()->isPointerTy()) 2257 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2258 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2259 } 2260 ID.Kind = ValID::t_Constant; 2261 return false; 2262 } 2263 2264 // Binary Operators. 2265 case lltok::kw_add: 2266 case lltok::kw_fadd: 2267 case lltok::kw_sub: 2268 case lltok::kw_fsub: 2269 case lltok::kw_mul: 2270 case lltok::kw_fmul: 2271 case lltok::kw_udiv: 2272 case lltok::kw_sdiv: 2273 case lltok::kw_fdiv: 2274 case lltok::kw_urem: 2275 case lltok::kw_srem: 2276 case lltok::kw_frem: 2277 case lltok::kw_shl: 2278 case lltok::kw_lshr: 2279 case lltok::kw_ashr: { 2280 bool NUW = false; 2281 bool NSW = false; 2282 bool Exact = false; 2283 unsigned Opc = Lex.getUIntVal(); 2284 Constant *Val0, *Val1; 2285 Lex.Lex(); 2286 LocTy ModifierLoc = Lex.getLoc(); 2287 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2288 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2289 if (EatIfPresent(lltok::kw_nuw)) 2290 NUW = true; 2291 if (EatIfPresent(lltok::kw_nsw)) { 2292 NSW = true; 2293 if (EatIfPresent(lltok::kw_nuw)) 2294 NUW = true; 2295 } 2296 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2297 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2298 if (EatIfPresent(lltok::kw_exact)) 2299 Exact = true; 2300 } 2301 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2302 ParseGlobalTypeAndValue(Val0) || 2303 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2304 ParseGlobalTypeAndValue(Val1) || 2305 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2306 return true; 2307 if (Val0->getType() != Val1->getType()) 2308 return Error(ID.Loc, "operands of constexpr must have same type"); 2309 if (!Val0->getType()->isIntOrIntVectorTy()) { 2310 if (NUW) 2311 return Error(ModifierLoc, "nuw only applies to integer operations"); 2312 if (NSW) 2313 return Error(ModifierLoc, "nsw only applies to integer operations"); 2314 } 2315 // Check that the type is valid for the operator. 2316 switch (Opc) { 2317 case Instruction::Add: 2318 case Instruction::Sub: 2319 case Instruction::Mul: 2320 case Instruction::UDiv: 2321 case Instruction::SDiv: 2322 case Instruction::URem: 2323 case Instruction::SRem: 2324 case Instruction::Shl: 2325 case Instruction::AShr: 2326 case Instruction::LShr: 2327 if (!Val0->getType()->isIntOrIntVectorTy()) 2328 return Error(ID.Loc, "constexpr requires integer operands"); 2329 break; 2330 case Instruction::FAdd: 2331 case Instruction::FSub: 2332 case Instruction::FMul: 2333 case Instruction::FDiv: 2334 case Instruction::FRem: 2335 if (!Val0->getType()->isFPOrFPVectorTy()) 2336 return Error(ID.Loc, "constexpr requires fp operands"); 2337 break; 2338 default: llvm_unreachable("Unknown binary operator!"); 2339 } 2340 unsigned Flags = 0; 2341 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2342 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2343 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2344 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2345 ID.ConstantVal = C; 2346 ID.Kind = ValID::t_Constant; 2347 return false; 2348 } 2349 2350 // Logical Operations 2351 case lltok::kw_and: 2352 case lltok::kw_or: 2353 case lltok::kw_xor: { 2354 unsigned Opc = Lex.getUIntVal(); 2355 Constant *Val0, *Val1; 2356 Lex.Lex(); 2357 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2358 ParseGlobalTypeAndValue(Val0) || 2359 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2360 ParseGlobalTypeAndValue(Val1) || 2361 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2362 return true; 2363 if (Val0->getType() != Val1->getType()) 2364 return Error(ID.Loc, "operands of constexpr must have same type"); 2365 if (!Val0->getType()->isIntOrIntVectorTy()) 2366 return Error(ID.Loc, 2367 "constexpr requires integer or integer vector operands"); 2368 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2369 ID.Kind = ValID::t_Constant; 2370 return false; 2371 } 2372 2373 case lltok::kw_getelementptr: 2374 case lltok::kw_shufflevector: 2375 case lltok::kw_insertelement: 2376 case lltok::kw_extractelement: 2377 case lltok::kw_select: { 2378 unsigned Opc = Lex.getUIntVal(); 2379 SmallVector<Constant*, 16> Elts; 2380 bool InBounds = false; 2381 Lex.Lex(); 2382 if (Opc == Instruction::GetElementPtr) 2383 InBounds = EatIfPresent(lltok::kw_inbounds); 2384 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2385 ParseGlobalValueVector(Elts) || 2386 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2387 return true; 2388 2389 if (Opc == Instruction::GetElementPtr) { 2390 if (Elts.size() == 0 || 2391 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2392 return Error(ID.Loc, "getelementptr requires pointer operand"); 2393 2394 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2395 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2396 return Error(ID.Loc, "invalid indices for getelementptr"); 2397 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2398 InBounds); 2399 } else if (Opc == Instruction::Select) { 2400 if (Elts.size() != 3) 2401 return Error(ID.Loc, "expected three operands to select"); 2402 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2403 Elts[2])) 2404 return Error(ID.Loc, Reason); 2405 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2406 } else if (Opc == Instruction::ShuffleVector) { 2407 if (Elts.size() != 3) 2408 return Error(ID.Loc, "expected three operands to shufflevector"); 2409 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2410 return Error(ID.Loc, "invalid operands to shufflevector"); 2411 ID.ConstantVal = 2412 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2413 } else if (Opc == Instruction::ExtractElement) { 2414 if (Elts.size() != 2) 2415 return Error(ID.Loc, "expected two operands to extractelement"); 2416 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2417 return Error(ID.Loc, "invalid extractelement operands"); 2418 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2419 } else { 2420 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2421 if (Elts.size() != 3) 2422 return Error(ID.Loc, "expected three operands to insertelement"); 2423 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2424 return Error(ID.Loc, "invalid insertelement operands"); 2425 ID.ConstantVal = 2426 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2427 } 2428 2429 ID.Kind = ValID::t_Constant; 2430 return false; 2431 } 2432 } 2433 2434 Lex.Lex(); 2435 return false; 2436 } 2437 2438 /// ParseGlobalValue - Parse a global value with the specified type. 2439 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2440 C = 0; 2441 ValID ID; 2442 Value *V = NULL; 2443 bool Parsed = ParseValID(ID) || 2444 ConvertValIDToValue(Ty, ID, V, NULL); 2445 if (V && !(C = dyn_cast<Constant>(V))) 2446 return Error(ID.Loc, "global values must be constants"); 2447 return Parsed; 2448 } 2449 2450 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2451 Type *Ty = 0; 2452 return ParseType(Ty) || 2453 ParseGlobalValue(Ty, V); 2454 } 2455 2456 /// ParseGlobalValueVector 2457 /// ::= /*empty*/ 2458 /// ::= TypeAndValue (',' TypeAndValue)* 2459 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2460 // Empty list. 2461 if (Lex.getKind() == lltok::rbrace || 2462 Lex.getKind() == lltok::rsquare || 2463 Lex.getKind() == lltok::greater || 2464 Lex.getKind() == lltok::rparen) 2465 return false; 2466 2467 Constant *C; 2468 if (ParseGlobalTypeAndValue(C)) return true; 2469 Elts.push_back(C); 2470 2471 while (EatIfPresent(lltok::comma)) { 2472 if (ParseGlobalTypeAndValue(C)) return true; 2473 Elts.push_back(C); 2474 } 2475 2476 return false; 2477 } 2478 2479 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2480 assert(Lex.getKind() == lltok::lbrace); 2481 Lex.Lex(); 2482 2483 SmallVector<Value*, 16> Elts; 2484 if (ParseMDNodeVector(Elts, PFS) || 2485 ParseToken(lltok::rbrace, "expected end of metadata node")) 2486 return true; 2487 2488 ID.MDNodeVal = MDNode::get(Context, Elts); 2489 ID.Kind = ValID::t_MDNode; 2490 return false; 2491 } 2492 2493 /// ParseMetadataValue 2494 /// ::= !42 2495 /// ::= !{...} 2496 /// ::= !"string" 2497 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2498 assert(Lex.getKind() == lltok::exclaim); 2499 Lex.Lex(); 2500 2501 // MDNode: 2502 // !{ ... } 2503 if (Lex.getKind() == lltok::lbrace) 2504 return ParseMetadataListValue(ID, PFS); 2505 2506 // Standalone metadata reference 2507 // !42 2508 if (Lex.getKind() == lltok::APSInt) { 2509 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2510 ID.Kind = ValID::t_MDNode; 2511 return false; 2512 } 2513 2514 // MDString: 2515 // ::= '!' STRINGCONSTANT 2516 if (ParseMDString(ID.MDStringVal)) return true; 2517 ID.Kind = ValID::t_MDString; 2518 return false; 2519 } 2520 2521 2522 //===----------------------------------------------------------------------===// 2523 // Function Parsing. 2524 //===----------------------------------------------------------------------===// 2525 2526 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2527 PerFunctionState *PFS) { 2528 if (Ty->isFunctionTy()) 2529 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2530 2531 switch (ID.Kind) { 2532 case ValID::t_LocalID: 2533 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2534 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2535 return (V == 0); 2536 case ValID::t_LocalName: 2537 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2538 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2539 return (V == 0); 2540 case ValID::t_InlineAsm: { 2541 PointerType *PTy = dyn_cast<PointerType>(Ty); 2542 FunctionType *FTy = 2543 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2544 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2545 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2546 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2547 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2548 return false; 2549 } 2550 case ValID::t_MDNode: 2551 if (!Ty->isMetadataTy()) 2552 return Error(ID.Loc, "metadata value must have metadata type"); 2553 V = ID.MDNodeVal; 2554 return false; 2555 case ValID::t_MDString: 2556 if (!Ty->isMetadataTy()) 2557 return Error(ID.Loc, "metadata value must have metadata type"); 2558 V = ID.MDStringVal; 2559 return false; 2560 case ValID::t_GlobalName: 2561 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2562 return V == 0; 2563 case ValID::t_GlobalID: 2564 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2565 return V == 0; 2566 case ValID::t_APSInt: 2567 if (!Ty->isIntegerTy()) 2568 return Error(ID.Loc, "integer constant must have integer type"); 2569 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2570 V = ConstantInt::get(Context, ID.APSIntVal); 2571 return false; 2572 case ValID::t_APFloat: 2573 if (!Ty->isFloatingPointTy() || 2574 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2575 return Error(ID.Loc, "floating point constant invalid for type"); 2576 2577 // The lexer has no type info, so builds all half, float, and double FP 2578 // constants as double. Fix this here. Long double does not need this. 2579 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2580 bool Ignored; 2581 if (Ty->isHalfTy()) 2582 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2583 &Ignored); 2584 else if (Ty->isFloatTy()) 2585 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2586 &Ignored); 2587 } 2588 V = ConstantFP::get(Context, ID.APFloatVal); 2589 2590 if (V->getType() != Ty) 2591 return Error(ID.Loc, "floating point constant does not have type '" + 2592 getTypeString(Ty) + "'"); 2593 2594 return false; 2595 case ValID::t_Null: 2596 if (!Ty->isPointerTy()) 2597 return Error(ID.Loc, "null must be a pointer type"); 2598 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2599 return false; 2600 case ValID::t_Undef: 2601 // FIXME: LabelTy should not be a first-class type. 2602 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2603 return Error(ID.Loc, "invalid type for undef constant"); 2604 V = UndefValue::get(Ty); 2605 return false; 2606 case ValID::t_EmptyArray: 2607 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2608 return Error(ID.Loc, "invalid empty array initializer"); 2609 V = UndefValue::get(Ty); 2610 return false; 2611 case ValID::t_Zero: 2612 // FIXME: LabelTy should not be a first-class type. 2613 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2614 return Error(ID.Loc, "invalid type for null constant"); 2615 V = Constant::getNullValue(Ty); 2616 return false; 2617 case ValID::t_Constant: 2618 if (ID.ConstantVal->getType() != Ty) 2619 return Error(ID.Loc, "constant expression type mismatch"); 2620 2621 V = ID.ConstantVal; 2622 return false; 2623 case ValID::t_ConstantStruct: 2624 case ValID::t_PackedConstantStruct: 2625 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2626 if (ST->getNumElements() != ID.UIntVal) 2627 return Error(ID.Loc, 2628 "initializer with struct type has wrong # elements"); 2629 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2630 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2631 2632 // Verify that the elements are compatible with the structtype. 2633 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2634 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2635 return Error(ID.Loc, "element " + Twine(i) + 2636 " of struct initializer doesn't match struct element type"); 2637 2638 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2639 ID.UIntVal)); 2640 } else 2641 return Error(ID.Loc, "constant expression type mismatch"); 2642 return false; 2643 } 2644 llvm_unreachable("Invalid ValID"); 2645 } 2646 2647 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2648 V = 0; 2649 ValID ID; 2650 return ParseValID(ID, PFS) || 2651 ConvertValIDToValue(Ty, ID, V, PFS); 2652 } 2653 2654 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2655 Type *Ty = 0; 2656 return ParseType(Ty) || 2657 ParseValue(Ty, V, PFS); 2658 } 2659 2660 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2661 PerFunctionState &PFS) { 2662 Value *V; 2663 Loc = Lex.getLoc(); 2664 if (ParseTypeAndValue(V, PFS)) return true; 2665 if (!isa<BasicBlock>(V)) 2666 return Error(Loc, "expected a basic block"); 2667 BB = cast<BasicBlock>(V); 2668 return false; 2669 } 2670 2671 2672 /// FunctionHeader 2673 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2674 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2675 /// OptionalAlign OptGC 2676 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2677 // Parse the linkage. 2678 LocTy LinkageLoc = Lex.getLoc(); 2679 unsigned Linkage; 2680 2681 unsigned Visibility; 2682 AttrBuilder RetAttrs; 2683 CallingConv::ID CC; 2684 Type *RetType = 0; 2685 LocTy RetTypeLoc = Lex.getLoc(); 2686 if (ParseOptionalLinkage(Linkage) || 2687 ParseOptionalVisibility(Visibility) || 2688 ParseOptionalCallingConv(CC) || 2689 ParseOptionalAttrs(RetAttrs, 1) || 2690 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2691 return true; 2692 2693 // Verify that the linkage is ok. 2694 switch ((GlobalValue::LinkageTypes)Linkage) { 2695 case GlobalValue::ExternalLinkage: 2696 break; // always ok. 2697 case GlobalValue::DLLImportLinkage: 2698 case GlobalValue::ExternalWeakLinkage: 2699 if (isDefine) 2700 return Error(LinkageLoc, "invalid linkage for function definition"); 2701 break; 2702 case GlobalValue::PrivateLinkage: 2703 case GlobalValue::LinkerPrivateLinkage: 2704 case GlobalValue::LinkerPrivateWeakLinkage: 2705 case GlobalValue::InternalLinkage: 2706 case GlobalValue::AvailableExternallyLinkage: 2707 case GlobalValue::LinkOnceAnyLinkage: 2708 case GlobalValue::LinkOnceODRLinkage: 2709 case GlobalValue::LinkOnceODRAutoHideLinkage: 2710 case GlobalValue::WeakAnyLinkage: 2711 case GlobalValue::WeakODRLinkage: 2712 case GlobalValue::DLLExportLinkage: 2713 if (!isDefine) 2714 return Error(LinkageLoc, "invalid linkage for function declaration"); 2715 break; 2716 case GlobalValue::AppendingLinkage: 2717 case GlobalValue::CommonLinkage: 2718 return Error(LinkageLoc, "invalid function linkage type"); 2719 } 2720 2721 if (!FunctionType::isValidReturnType(RetType)) 2722 return Error(RetTypeLoc, "invalid function return type"); 2723 2724 LocTy NameLoc = Lex.getLoc(); 2725 2726 std::string FunctionName; 2727 if (Lex.getKind() == lltok::GlobalVar) { 2728 FunctionName = Lex.getStrVal(); 2729 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2730 unsigned NameID = Lex.getUIntVal(); 2731 2732 if (NameID != NumberedVals.size()) 2733 return TokError("function expected to be numbered '%" + 2734 Twine(NumberedVals.size()) + "'"); 2735 } else { 2736 return TokError("expected function name"); 2737 } 2738 2739 Lex.Lex(); 2740 2741 if (Lex.getKind() != lltok::lparen) 2742 return TokError("expected '(' in function argument list"); 2743 2744 SmallVector<ArgInfo, 8> ArgList; 2745 bool isVarArg; 2746 AttrBuilder FuncAttrs; 2747 std::string Section; 2748 unsigned Alignment; 2749 std::string GC; 2750 bool UnnamedAddr; 2751 LocTy UnnamedAddrLoc; 2752 2753 if (ParseArgumentList(ArgList, isVarArg) || 2754 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2755 &UnnamedAddrLoc) || 2756 ParseOptionalAttrs(FuncAttrs, 2) || 2757 (EatIfPresent(lltok::kw_section) && 2758 ParseStringConstant(Section)) || 2759 ParseOptionalAlignment(Alignment) || 2760 (EatIfPresent(lltok::kw_gc) && 2761 ParseStringConstant(GC))) 2762 return true; 2763 2764 // If the alignment was parsed as an attribute, move to the alignment field. 2765 if (FuncAttrs.hasAlignmentAttr()) { 2766 Alignment = FuncAttrs.getAlignment(); 2767 FuncAttrs.removeAttribute(Attributes::Alignment); 2768 } 2769 2770 // Okay, if we got here, the function is syntactically valid. Convert types 2771 // and do semantic checks. 2772 std::vector<Type*> ParamTypeList; 2773 SmallVector<AttributeWithIndex, 8> Attrs; 2774 2775 if (RetAttrs.hasAttributes()) 2776 Attrs.push_back( 2777 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 2778 Attributes::get(RetType->getContext(), 2779 RetAttrs))); 2780 2781 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2782 ParamTypeList.push_back(ArgList[i].Ty); 2783 if (ArgList[i].Attrs.hasAttributes()) 2784 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2785 } 2786 2787 if (FuncAttrs.hasAttributes()) 2788 Attrs.push_back( 2789 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 2790 Attributes::get(RetType->getContext(), 2791 FuncAttrs))); 2792 2793 AttrListPtr PAL = AttrListPtr::get(Attrs); 2794 2795 if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) && 2796 !RetType->isVoidTy()) 2797 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2798 2799 FunctionType *FT = 2800 FunctionType::get(RetType, ParamTypeList, isVarArg); 2801 PointerType *PFT = PointerType::getUnqual(FT); 2802 2803 Fn = 0; 2804 if (!FunctionName.empty()) { 2805 // If this was a definition of a forward reference, remove the definition 2806 // from the forward reference table and fill in the forward ref. 2807 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2808 ForwardRefVals.find(FunctionName); 2809 if (FRVI != ForwardRefVals.end()) { 2810 Fn = M->getFunction(FunctionName); 2811 if (!Fn) 2812 return Error(FRVI->second.second, "invalid forward reference to " 2813 "function as global value!"); 2814 if (Fn->getType() != PFT) 2815 return Error(FRVI->second.second, "invalid forward reference to " 2816 "function '" + FunctionName + "' with wrong type!"); 2817 2818 ForwardRefVals.erase(FRVI); 2819 } else if ((Fn = M->getFunction(FunctionName))) { 2820 // Reject redefinitions. 2821 return Error(NameLoc, "invalid redefinition of function '" + 2822 FunctionName + "'"); 2823 } else if (M->getNamedValue(FunctionName)) { 2824 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2825 } 2826 2827 } else { 2828 // If this is a definition of a forward referenced function, make sure the 2829 // types agree. 2830 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2831 = ForwardRefValIDs.find(NumberedVals.size()); 2832 if (I != ForwardRefValIDs.end()) { 2833 Fn = cast<Function>(I->second.first); 2834 if (Fn->getType() != PFT) 2835 return Error(NameLoc, "type of definition and forward reference of '@" + 2836 Twine(NumberedVals.size()) + "' disagree"); 2837 ForwardRefValIDs.erase(I); 2838 } 2839 } 2840 2841 if (Fn == 0) 2842 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2843 else // Move the forward-reference to the correct spot in the module. 2844 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2845 2846 if (FunctionName.empty()) 2847 NumberedVals.push_back(Fn); 2848 2849 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2850 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2851 Fn->setCallingConv(CC); 2852 Fn->setAttributes(PAL); 2853 Fn->setUnnamedAddr(UnnamedAddr); 2854 Fn->setAlignment(Alignment); 2855 Fn->setSection(Section); 2856 if (!GC.empty()) Fn->setGC(GC.c_str()); 2857 2858 // Add all of the arguments we parsed to the function. 2859 Function::arg_iterator ArgIt = Fn->arg_begin(); 2860 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2861 // If the argument has a name, insert it into the argument symbol table. 2862 if (ArgList[i].Name.empty()) continue; 2863 2864 // Set the name, if it conflicted, it will be auto-renamed. 2865 ArgIt->setName(ArgList[i].Name); 2866 2867 if (ArgIt->getName() != ArgList[i].Name) 2868 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2869 ArgList[i].Name + "'"); 2870 } 2871 2872 return false; 2873 } 2874 2875 2876 /// ParseFunctionBody 2877 /// ::= '{' BasicBlock+ '}' 2878 /// 2879 bool LLParser::ParseFunctionBody(Function &Fn) { 2880 if (Lex.getKind() != lltok::lbrace) 2881 return TokError("expected '{' in function body"); 2882 Lex.Lex(); // eat the {. 2883 2884 int FunctionNumber = -1; 2885 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2886 2887 PerFunctionState PFS(*this, Fn, FunctionNumber); 2888 2889 // We need at least one basic block. 2890 if (Lex.getKind() == lltok::rbrace) 2891 return TokError("function body requires at least one basic block"); 2892 2893 while (Lex.getKind() != lltok::rbrace) 2894 if (ParseBasicBlock(PFS)) return true; 2895 2896 // Eat the }. 2897 Lex.Lex(); 2898 2899 // Verify function is ok. 2900 return PFS.FinishFunction(); 2901 } 2902 2903 /// ParseBasicBlock 2904 /// ::= LabelStr? Instruction* 2905 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2906 // If this basic block starts out with a name, remember it. 2907 std::string Name; 2908 LocTy NameLoc = Lex.getLoc(); 2909 if (Lex.getKind() == lltok::LabelStr) { 2910 Name = Lex.getStrVal(); 2911 Lex.Lex(); 2912 } 2913 2914 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2915 if (BB == 0) return true; 2916 2917 std::string NameStr; 2918 2919 // Parse the instructions in this block until we get a terminator. 2920 Instruction *Inst; 2921 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2922 do { 2923 // This instruction may have three possibilities for a name: a) none 2924 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2925 LocTy NameLoc = Lex.getLoc(); 2926 int NameID = -1; 2927 NameStr = ""; 2928 2929 if (Lex.getKind() == lltok::LocalVarID) { 2930 NameID = Lex.getUIntVal(); 2931 Lex.Lex(); 2932 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2933 return true; 2934 } else if (Lex.getKind() == lltok::LocalVar) { 2935 NameStr = Lex.getStrVal(); 2936 Lex.Lex(); 2937 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2938 return true; 2939 } 2940 2941 switch (ParseInstruction(Inst, BB, PFS)) { 2942 default: llvm_unreachable("Unknown ParseInstruction result!"); 2943 case InstError: return true; 2944 case InstNormal: 2945 BB->getInstList().push_back(Inst); 2946 2947 // With a normal result, we check to see if the instruction is followed by 2948 // a comma and metadata. 2949 if (EatIfPresent(lltok::comma)) 2950 if (ParseInstructionMetadata(Inst, &PFS)) 2951 return true; 2952 break; 2953 case InstExtraComma: 2954 BB->getInstList().push_back(Inst); 2955 2956 // If the instruction parser ate an extra comma at the end of it, it 2957 // *must* be followed by metadata. 2958 if (ParseInstructionMetadata(Inst, &PFS)) 2959 return true; 2960 break; 2961 } 2962 2963 // Set the name on the instruction. 2964 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2965 } while (!isa<TerminatorInst>(Inst)); 2966 2967 return false; 2968 } 2969 2970 //===----------------------------------------------------------------------===// 2971 // Instruction Parsing. 2972 //===----------------------------------------------------------------------===// 2973 2974 /// ParseInstruction - Parse one of the many different instructions. 2975 /// 2976 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2977 PerFunctionState &PFS) { 2978 lltok::Kind Token = Lex.getKind(); 2979 if (Token == lltok::Eof) 2980 return TokError("found end of file when expecting more instructions"); 2981 LocTy Loc = Lex.getLoc(); 2982 unsigned KeywordVal = Lex.getUIntVal(); 2983 Lex.Lex(); // Eat the keyword. 2984 2985 switch (Token) { 2986 default: return Error(Loc, "expected instruction opcode"); 2987 // Terminator Instructions. 2988 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2989 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2990 case lltok::kw_br: return ParseBr(Inst, PFS); 2991 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2992 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2993 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2994 case lltok::kw_resume: return ParseResume(Inst, PFS); 2995 // Binary Operators. 2996 case lltok::kw_add: 2997 case lltok::kw_sub: 2998 case lltok::kw_mul: 2999 case lltok::kw_shl: { 3000 bool NUW = EatIfPresent(lltok::kw_nuw); 3001 bool NSW = EatIfPresent(lltok::kw_nsw); 3002 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3003 3004 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3005 3006 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3007 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3008 return false; 3009 } 3010 case lltok::kw_fadd: 3011 case lltok::kw_fsub: 3012 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3013 3014 case lltok::kw_sdiv: 3015 case lltok::kw_udiv: 3016 case lltok::kw_lshr: 3017 case lltok::kw_ashr: { 3018 bool Exact = EatIfPresent(lltok::kw_exact); 3019 3020 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3021 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3022 return false; 3023 } 3024 3025 case lltok::kw_urem: 3026 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3027 case lltok::kw_fdiv: 3028 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3029 case lltok::kw_and: 3030 case lltok::kw_or: 3031 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3032 case lltok::kw_icmp: 3033 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3034 // Casts. 3035 case lltok::kw_trunc: 3036 case lltok::kw_zext: 3037 case lltok::kw_sext: 3038 case lltok::kw_fptrunc: 3039 case lltok::kw_fpext: 3040 case lltok::kw_bitcast: 3041 case lltok::kw_uitofp: 3042 case lltok::kw_sitofp: 3043 case lltok::kw_fptoui: 3044 case lltok::kw_fptosi: 3045 case lltok::kw_inttoptr: 3046 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3047 // Other. 3048 case lltok::kw_select: return ParseSelect(Inst, PFS); 3049 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3050 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3051 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3052 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3053 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3054 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3055 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3056 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3057 // Memory. 3058 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3059 case lltok::kw_load: return ParseLoad(Inst, PFS); 3060 case lltok::kw_store: return ParseStore(Inst, PFS); 3061 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3062 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3063 case lltok::kw_fence: return ParseFence(Inst, PFS); 3064 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3065 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3066 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3067 } 3068 } 3069 3070 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3071 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3072 if (Opc == Instruction::FCmp) { 3073 switch (Lex.getKind()) { 3074 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3075 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3076 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3077 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3078 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3079 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3080 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3081 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3082 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3083 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3084 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3085 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3086 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3087 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3088 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3089 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3090 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3091 } 3092 } else { 3093 switch (Lex.getKind()) { 3094 default: TokError("expected icmp predicate (e.g. 'eq')"); 3095 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3096 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3097 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3098 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3099 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3100 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3101 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3102 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3103 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3104 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3105 } 3106 } 3107 Lex.Lex(); 3108 return false; 3109 } 3110 3111 //===----------------------------------------------------------------------===// 3112 // Terminator Instructions. 3113 //===----------------------------------------------------------------------===// 3114 3115 /// ParseRet - Parse a return instruction. 3116 /// ::= 'ret' void (',' !dbg, !1)* 3117 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3118 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3119 PerFunctionState &PFS) { 3120 SMLoc TypeLoc = Lex.getLoc(); 3121 Type *Ty = 0; 3122 if (ParseType(Ty, true /*void allowed*/)) return true; 3123 3124 Type *ResType = PFS.getFunction().getReturnType(); 3125 3126 if (Ty->isVoidTy()) { 3127 if (!ResType->isVoidTy()) 3128 return Error(TypeLoc, "value doesn't match function result type '" + 3129 getTypeString(ResType) + "'"); 3130 3131 Inst = ReturnInst::Create(Context); 3132 return false; 3133 } 3134 3135 Value *RV; 3136 if (ParseValue(Ty, RV, PFS)) return true; 3137 3138 if (ResType != RV->getType()) 3139 return Error(TypeLoc, "value doesn't match function result type '" + 3140 getTypeString(ResType) + "'"); 3141 3142 Inst = ReturnInst::Create(Context, RV); 3143 return false; 3144 } 3145 3146 3147 /// ParseBr 3148 /// ::= 'br' TypeAndValue 3149 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3150 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3151 LocTy Loc, Loc2; 3152 Value *Op0; 3153 BasicBlock *Op1, *Op2; 3154 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3155 3156 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3157 Inst = BranchInst::Create(BB); 3158 return false; 3159 } 3160 3161 if (Op0->getType() != Type::getInt1Ty(Context)) 3162 return Error(Loc, "branch condition must have 'i1' type"); 3163 3164 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3165 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3166 ParseToken(lltok::comma, "expected ',' after true destination") || 3167 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3168 return true; 3169 3170 Inst = BranchInst::Create(Op1, Op2, Op0); 3171 return false; 3172 } 3173 3174 /// ParseSwitch 3175 /// Instruction 3176 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3177 /// JumpTable 3178 /// ::= (TypeAndValue ',' TypeAndValue)* 3179 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3180 LocTy CondLoc, BBLoc; 3181 Value *Cond; 3182 BasicBlock *DefaultBB; 3183 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3184 ParseToken(lltok::comma, "expected ',' after switch condition") || 3185 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3186 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3187 return true; 3188 3189 if (!Cond->getType()->isIntegerTy()) 3190 return Error(CondLoc, "switch condition must have integer type"); 3191 3192 // Parse the jump table pairs. 3193 SmallPtrSet<Value*, 32> SeenCases; 3194 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3195 while (Lex.getKind() != lltok::rsquare) { 3196 Value *Constant; 3197 BasicBlock *DestBB; 3198 3199 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3200 ParseToken(lltok::comma, "expected ',' after case value") || 3201 ParseTypeAndBasicBlock(DestBB, PFS)) 3202 return true; 3203 3204 if (!SeenCases.insert(Constant)) 3205 return Error(CondLoc, "duplicate case value in switch"); 3206 if (!isa<ConstantInt>(Constant)) 3207 return Error(CondLoc, "case value is not a constant integer"); 3208 3209 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3210 } 3211 3212 Lex.Lex(); // Eat the ']'. 3213 3214 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3215 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3216 SI->addCase(Table[i].first, Table[i].second); 3217 Inst = SI; 3218 return false; 3219 } 3220 3221 /// ParseIndirectBr 3222 /// Instruction 3223 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3224 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3225 LocTy AddrLoc; 3226 Value *Address; 3227 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3228 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3229 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3230 return true; 3231 3232 if (!Address->getType()->isPointerTy()) 3233 return Error(AddrLoc, "indirectbr address must have pointer type"); 3234 3235 // Parse the destination list. 3236 SmallVector<BasicBlock*, 16> DestList; 3237 3238 if (Lex.getKind() != lltok::rsquare) { 3239 BasicBlock *DestBB; 3240 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3241 return true; 3242 DestList.push_back(DestBB); 3243 3244 while (EatIfPresent(lltok::comma)) { 3245 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3246 return true; 3247 DestList.push_back(DestBB); 3248 } 3249 } 3250 3251 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3252 return true; 3253 3254 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3255 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3256 IBI->addDestination(DestList[i]); 3257 Inst = IBI; 3258 return false; 3259 } 3260 3261 3262 /// ParseInvoke 3263 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3264 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3265 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3266 LocTy CallLoc = Lex.getLoc(); 3267 AttrBuilder RetAttrs, FnAttrs; 3268 CallingConv::ID CC; 3269 Type *RetType = 0; 3270 LocTy RetTypeLoc; 3271 ValID CalleeID; 3272 SmallVector<ParamInfo, 16> ArgList; 3273 3274 BasicBlock *NormalBB, *UnwindBB; 3275 if (ParseOptionalCallingConv(CC) || 3276 ParseOptionalAttrs(RetAttrs, 1) || 3277 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3278 ParseValID(CalleeID) || 3279 ParseParameterList(ArgList, PFS) || 3280 ParseOptionalAttrs(FnAttrs, 2) || 3281 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3282 ParseTypeAndBasicBlock(NormalBB, PFS) || 3283 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3284 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3285 return true; 3286 3287 // If RetType is a non-function pointer type, then this is the short syntax 3288 // for the call, which means that RetType is just the return type. Infer the 3289 // rest of the function argument types from the arguments that are present. 3290 PointerType *PFTy = 0; 3291 FunctionType *Ty = 0; 3292 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3293 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3294 // Pull out the types of all of the arguments... 3295 std::vector<Type*> ParamTypes; 3296 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3297 ParamTypes.push_back(ArgList[i].V->getType()); 3298 3299 if (!FunctionType::isValidReturnType(RetType)) 3300 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3301 3302 Ty = FunctionType::get(RetType, ParamTypes, false); 3303 PFTy = PointerType::getUnqual(Ty); 3304 } 3305 3306 // Look up the callee. 3307 Value *Callee; 3308 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3309 3310 // Set up the Attributes for the function. 3311 SmallVector<AttributeWithIndex, 8> Attrs; 3312 if (RetAttrs.hasAttributes()) 3313 Attrs.push_back( 3314 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3315 Attributes::get(Callee->getContext(), 3316 RetAttrs))); 3317 3318 SmallVector<Value*, 8> Args; 3319 3320 // Loop through FunctionType's arguments and ensure they are specified 3321 // correctly. Also, gather any parameter attributes. 3322 FunctionType::param_iterator I = Ty->param_begin(); 3323 FunctionType::param_iterator E = Ty->param_end(); 3324 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3325 Type *ExpectedTy = 0; 3326 if (I != E) { 3327 ExpectedTy = *I++; 3328 } else if (!Ty->isVarArg()) { 3329 return Error(ArgList[i].Loc, "too many arguments specified"); 3330 } 3331 3332 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3333 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3334 getTypeString(ExpectedTy) + "'"); 3335 Args.push_back(ArgList[i].V); 3336 if (ArgList[i].Attrs.hasAttributes()) 3337 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3338 } 3339 3340 if (I != E) 3341 return Error(CallLoc, "not enough parameters specified for call"); 3342 3343 if (FnAttrs.hasAttributes()) 3344 Attrs.push_back( 3345 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3346 Attributes::get(Callee->getContext(), 3347 FnAttrs))); 3348 3349 // Finish off the Attributes and check them 3350 AttrListPtr PAL = AttrListPtr::get(Attrs); 3351 3352 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3353 II->setCallingConv(CC); 3354 II->setAttributes(PAL); 3355 Inst = II; 3356 return false; 3357 } 3358 3359 /// ParseResume 3360 /// ::= 'resume' TypeAndValue 3361 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3362 Value *Exn; LocTy ExnLoc; 3363 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3364 return true; 3365 3366 ResumeInst *RI = ResumeInst::Create(Exn); 3367 Inst = RI; 3368 return false; 3369 } 3370 3371 //===----------------------------------------------------------------------===// 3372 // Binary Operators. 3373 //===----------------------------------------------------------------------===// 3374 3375 /// ParseArithmetic 3376 /// ::= ArithmeticOps TypeAndValue ',' Value 3377 /// 3378 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3379 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3380 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3381 unsigned Opc, unsigned OperandType) { 3382 LocTy Loc; Value *LHS, *RHS; 3383 if (ParseTypeAndValue(LHS, Loc, PFS) || 3384 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3385 ParseValue(LHS->getType(), RHS, PFS)) 3386 return true; 3387 3388 bool Valid; 3389 switch (OperandType) { 3390 default: llvm_unreachable("Unknown operand type!"); 3391 case 0: // int or FP. 3392 Valid = LHS->getType()->isIntOrIntVectorTy() || 3393 LHS->getType()->isFPOrFPVectorTy(); 3394 break; 3395 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3396 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3397 } 3398 3399 if (!Valid) 3400 return Error(Loc, "invalid operand type for instruction"); 3401 3402 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3403 return false; 3404 } 3405 3406 /// ParseLogical 3407 /// ::= ArithmeticOps TypeAndValue ',' Value { 3408 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3409 unsigned Opc) { 3410 LocTy Loc; Value *LHS, *RHS; 3411 if (ParseTypeAndValue(LHS, Loc, PFS) || 3412 ParseToken(lltok::comma, "expected ',' in logical operation") || 3413 ParseValue(LHS->getType(), RHS, PFS)) 3414 return true; 3415 3416 if (!LHS->getType()->isIntOrIntVectorTy()) 3417 return Error(Loc,"instruction requires integer or integer vector operands"); 3418 3419 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3420 return false; 3421 } 3422 3423 3424 /// ParseCompare 3425 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3426 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3427 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3428 unsigned Opc) { 3429 // Parse the integer/fp comparison predicate. 3430 LocTy Loc; 3431 unsigned Pred; 3432 Value *LHS, *RHS; 3433 if (ParseCmpPredicate(Pred, Opc) || 3434 ParseTypeAndValue(LHS, Loc, PFS) || 3435 ParseToken(lltok::comma, "expected ',' after compare value") || 3436 ParseValue(LHS->getType(), RHS, PFS)) 3437 return true; 3438 3439 if (Opc == Instruction::FCmp) { 3440 if (!LHS->getType()->isFPOrFPVectorTy()) 3441 return Error(Loc, "fcmp requires floating point operands"); 3442 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3443 } else { 3444 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3445 if (!LHS->getType()->isIntOrIntVectorTy() && 3446 !LHS->getType()->getScalarType()->isPointerTy()) 3447 return Error(Loc, "icmp requires integer operands"); 3448 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3449 } 3450 return false; 3451 } 3452 3453 //===----------------------------------------------------------------------===// 3454 // Other Instructions. 3455 //===----------------------------------------------------------------------===// 3456 3457 3458 /// ParseCast 3459 /// ::= CastOpc TypeAndValue 'to' Type 3460 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3461 unsigned Opc) { 3462 LocTy Loc; 3463 Value *Op; 3464 Type *DestTy = 0; 3465 if (ParseTypeAndValue(Op, Loc, PFS) || 3466 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3467 ParseType(DestTy)) 3468 return true; 3469 3470 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3471 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3472 return Error(Loc, "invalid cast opcode for cast from '" + 3473 getTypeString(Op->getType()) + "' to '" + 3474 getTypeString(DestTy) + "'"); 3475 } 3476 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3477 return false; 3478 } 3479 3480 /// ParseSelect 3481 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3482 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3483 LocTy Loc; 3484 Value *Op0, *Op1, *Op2; 3485 if (ParseTypeAndValue(Op0, Loc, PFS) || 3486 ParseToken(lltok::comma, "expected ',' after select condition") || 3487 ParseTypeAndValue(Op1, PFS) || 3488 ParseToken(lltok::comma, "expected ',' after select value") || 3489 ParseTypeAndValue(Op2, PFS)) 3490 return true; 3491 3492 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3493 return Error(Loc, Reason); 3494 3495 Inst = SelectInst::Create(Op0, Op1, Op2); 3496 return false; 3497 } 3498 3499 /// ParseVA_Arg 3500 /// ::= 'va_arg' TypeAndValue ',' Type 3501 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3502 Value *Op; 3503 Type *EltTy = 0; 3504 LocTy TypeLoc; 3505 if (ParseTypeAndValue(Op, PFS) || 3506 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3507 ParseType(EltTy, TypeLoc)) 3508 return true; 3509 3510 if (!EltTy->isFirstClassType()) 3511 return Error(TypeLoc, "va_arg requires operand with first class type"); 3512 3513 Inst = new VAArgInst(Op, EltTy); 3514 return false; 3515 } 3516 3517 /// ParseExtractElement 3518 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3519 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3520 LocTy Loc; 3521 Value *Op0, *Op1; 3522 if (ParseTypeAndValue(Op0, Loc, PFS) || 3523 ParseToken(lltok::comma, "expected ',' after extract value") || 3524 ParseTypeAndValue(Op1, PFS)) 3525 return true; 3526 3527 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3528 return Error(Loc, "invalid extractelement operands"); 3529 3530 Inst = ExtractElementInst::Create(Op0, Op1); 3531 return false; 3532 } 3533 3534 /// ParseInsertElement 3535 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3536 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3537 LocTy Loc; 3538 Value *Op0, *Op1, *Op2; 3539 if (ParseTypeAndValue(Op0, Loc, PFS) || 3540 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3541 ParseTypeAndValue(Op1, PFS) || 3542 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3543 ParseTypeAndValue(Op2, PFS)) 3544 return true; 3545 3546 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3547 return Error(Loc, "invalid insertelement operands"); 3548 3549 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3550 return false; 3551 } 3552 3553 /// ParseShuffleVector 3554 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3555 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3556 LocTy Loc; 3557 Value *Op0, *Op1, *Op2; 3558 if (ParseTypeAndValue(Op0, Loc, PFS) || 3559 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3560 ParseTypeAndValue(Op1, PFS) || 3561 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3562 ParseTypeAndValue(Op2, PFS)) 3563 return true; 3564 3565 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3566 return Error(Loc, "invalid shufflevector operands"); 3567 3568 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3569 return false; 3570 } 3571 3572 /// ParsePHI 3573 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3574 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3575 Type *Ty = 0; LocTy TypeLoc; 3576 Value *Op0, *Op1; 3577 3578 if (ParseType(Ty, TypeLoc) || 3579 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3580 ParseValue(Ty, Op0, PFS) || 3581 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3582 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3583 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3584 return true; 3585 3586 bool AteExtraComma = false; 3587 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3588 while (1) { 3589 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3590 3591 if (!EatIfPresent(lltok::comma)) 3592 break; 3593 3594 if (Lex.getKind() == lltok::MetadataVar) { 3595 AteExtraComma = true; 3596 break; 3597 } 3598 3599 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3600 ParseValue(Ty, Op0, PFS) || 3601 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3602 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3603 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3604 return true; 3605 } 3606 3607 if (!Ty->isFirstClassType()) 3608 return Error(TypeLoc, "phi node must have first class type"); 3609 3610 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3611 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3612 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3613 Inst = PN; 3614 return AteExtraComma ? InstExtraComma : InstNormal; 3615 } 3616 3617 /// ParseLandingPad 3618 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3619 /// Clause 3620 /// ::= 'catch' TypeAndValue 3621 /// ::= 'filter' 3622 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3623 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3624 Type *Ty = 0; LocTy TyLoc; 3625 Value *PersFn; LocTy PersFnLoc; 3626 3627 if (ParseType(Ty, TyLoc) || 3628 ParseToken(lltok::kw_personality, "expected 'personality'") || 3629 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3630 return true; 3631 3632 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3633 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3634 3635 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3636 LandingPadInst::ClauseType CT; 3637 if (EatIfPresent(lltok::kw_catch)) 3638 CT = LandingPadInst::Catch; 3639 else if (EatIfPresent(lltok::kw_filter)) 3640 CT = LandingPadInst::Filter; 3641 else 3642 return TokError("expected 'catch' or 'filter' clause type"); 3643 3644 Value *V; LocTy VLoc; 3645 if (ParseTypeAndValue(V, VLoc, PFS)) { 3646 delete LP; 3647 return true; 3648 } 3649 3650 // A 'catch' type expects a non-array constant. A filter clause expects an 3651 // array constant. 3652 if (CT == LandingPadInst::Catch) { 3653 if (isa<ArrayType>(V->getType())) 3654 Error(VLoc, "'catch' clause has an invalid type"); 3655 } else { 3656 if (!isa<ArrayType>(V->getType())) 3657 Error(VLoc, "'filter' clause has an invalid type"); 3658 } 3659 3660 LP->addClause(V); 3661 } 3662 3663 Inst = LP; 3664 return false; 3665 } 3666 3667 /// ParseCall 3668 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3669 /// ParameterList OptionalAttrs 3670 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3671 bool isTail) { 3672 AttrBuilder RetAttrs, FnAttrs; 3673 CallingConv::ID CC; 3674 Type *RetType = 0; 3675 LocTy RetTypeLoc; 3676 ValID CalleeID; 3677 SmallVector<ParamInfo, 16> ArgList; 3678 LocTy CallLoc = Lex.getLoc(); 3679 3680 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3681 ParseOptionalCallingConv(CC) || 3682 ParseOptionalAttrs(RetAttrs, 1) || 3683 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3684 ParseValID(CalleeID) || 3685 ParseParameterList(ArgList, PFS) || 3686 ParseOptionalAttrs(FnAttrs, 2)) 3687 return true; 3688 3689 // If RetType is a non-function pointer type, then this is the short syntax 3690 // for the call, which means that RetType is just the return type. Infer the 3691 // rest of the function argument types from the arguments that are present. 3692 PointerType *PFTy = 0; 3693 FunctionType *Ty = 0; 3694 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3695 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3696 // Pull out the types of all of the arguments... 3697 std::vector<Type*> ParamTypes; 3698 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3699 ParamTypes.push_back(ArgList[i].V->getType()); 3700 3701 if (!FunctionType::isValidReturnType(RetType)) 3702 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3703 3704 Ty = FunctionType::get(RetType, ParamTypes, false); 3705 PFTy = PointerType::getUnqual(Ty); 3706 } 3707 3708 // Look up the callee. 3709 Value *Callee; 3710 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3711 3712 // Set up the Attributes for the function. 3713 SmallVector<AttributeWithIndex, 8> Attrs; 3714 if (RetAttrs.hasAttributes()) 3715 Attrs.push_back( 3716 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3717 Attributes::get(Callee->getContext(), 3718 RetAttrs))); 3719 3720 SmallVector<Value*, 8> Args; 3721 3722 // Loop through FunctionType's arguments and ensure they are specified 3723 // correctly. Also, gather any parameter attributes. 3724 FunctionType::param_iterator I = Ty->param_begin(); 3725 FunctionType::param_iterator E = Ty->param_end(); 3726 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3727 Type *ExpectedTy = 0; 3728 if (I != E) { 3729 ExpectedTy = *I++; 3730 } else if (!Ty->isVarArg()) { 3731 return Error(ArgList[i].Loc, "too many arguments specified"); 3732 } 3733 3734 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3735 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3736 getTypeString(ExpectedTy) + "'"); 3737 Args.push_back(ArgList[i].V); 3738 if (ArgList[i].Attrs.hasAttributes()) 3739 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3740 } 3741 3742 if (I != E) 3743 return Error(CallLoc, "not enough parameters specified for call"); 3744 3745 if (FnAttrs.hasAttributes()) 3746 Attrs.push_back( 3747 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3748 Attributes::get(Callee->getContext(), 3749 FnAttrs))); 3750 3751 // Finish off the Attributes and check them 3752 AttrListPtr PAL = AttrListPtr::get(Attrs); 3753 3754 CallInst *CI = CallInst::Create(Callee, Args); 3755 CI->setTailCall(isTail); 3756 CI->setCallingConv(CC); 3757 CI->setAttributes(PAL); 3758 Inst = CI; 3759 return false; 3760 } 3761 3762 //===----------------------------------------------------------------------===// 3763 // Memory Instructions. 3764 //===----------------------------------------------------------------------===// 3765 3766 /// ParseAlloc 3767 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3768 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3769 Value *Size = 0; 3770 LocTy SizeLoc; 3771 unsigned Alignment = 0; 3772 Type *Ty = 0; 3773 if (ParseType(Ty)) return true; 3774 3775 bool AteExtraComma = false; 3776 if (EatIfPresent(lltok::comma)) { 3777 if (Lex.getKind() == lltok::kw_align) { 3778 if (ParseOptionalAlignment(Alignment)) return true; 3779 } else if (Lex.getKind() == lltok::MetadataVar) { 3780 AteExtraComma = true; 3781 } else { 3782 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3783 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3784 return true; 3785 } 3786 } 3787 3788 if (Size && !Size->getType()->isIntegerTy()) 3789 return Error(SizeLoc, "element count must have integer type"); 3790 3791 Inst = new AllocaInst(Ty, Size, Alignment); 3792 return AteExtraComma ? InstExtraComma : InstNormal; 3793 } 3794 3795 /// ParseLoad 3796 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3797 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3798 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3799 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3800 Value *Val; LocTy Loc; 3801 unsigned Alignment = 0; 3802 bool AteExtraComma = false; 3803 bool isAtomic = false; 3804 AtomicOrdering Ordering = NotAtomic; 3805 SynchronizationScope Scope = CrossThread; 3806 3807 if (Lex.getKind() == lltok::kw_atomic) { 3808 isAtomic = true; 3809 Lex.Lex(); 3810 } 3811 3812 bool isVolatile = false; 3813 if (Lex.getKind() == lltok::kw_volatile) { 3814 isVolatile = true; 3815 Lex.Lex(); 3816 } 3817 3818 if (ParseTypeAndValue(Val, Loc, PFS) || 3819 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3820 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3821 return true; 3822 3823 if (!Val->getType()->isPointerTy() || 3824 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3825 return Error(Loc, "load operand must be a pointer to a first class type"); 3826 if (isAtomic && !Alignment) 3827 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3828 if (Ordering == Release || Ordering == AcquireRelease) 3829 return Error(Loc, "atomic load cannot use Release ordering"); 3830 3831 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3832 return AteExtraComma ? InstExtraComma : InstNormal; 3833 } 3834 3835 /// ParseStore 3836 3837 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3838 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3839 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3840 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3841 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3842 unsigned Alignment = 0; 3843 bool AteExtraComma = false; 3844 bool isAtomic = false; 3845 AtomicOrdering Ordering = NotAtomic; 3846 SynchronizationScope Scope = CrossThread; 3847 3848 if (Lex.getKind() == lltok::kw_atomic) { 3849 isAtomic = true; 3850 Lex.Lex(); 3851 } 3852 3853 bool isVolatile = false; 3854 if (Lex.getKind() == lltok::kw_volatile) { 3855 isVolatile = true; 3856 Lex.Lex(); 3857 } 3858 3859 if (ParseTypeAndValue(Val, Loc, PFS) || 3860 ParseToken(lltok::comma, "expected ',' after store operand") || 3861 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3862 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3863 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3864 return true; 3865 3866 if (!Ptr->getType()->isPointerTy()) 3867 return Error(PtrLoc, "store operand must be a pointer"); 3868 if (!Val->getType()->isFirstClassType()) 3869 return Error(Loc, "store operand must be a first class value"); 3870 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3871 return Error(Loc, "stored value and pointer type do not match"); 3872 if (isAtomic && !Alignment) 3873 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3874 if (Ordering == Acquire || Ordering == AcquireRelease) 3875 return Error(Loc, "atomic store cannot use Acquire ordering"); 3876 3877 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3878 return AteExtraComma ? InstExtraComma : InstNormal; 3879 } 3880 3881 /// ParseCmpXchg 3882 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3883 /// 'singlethread'? AtomicOrdering 3884 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3885 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3886 bool AteExtraComma = false; 3887 AtomicOrdering Ordering = NotAtomic; 3888 SynchronizationScope Scope = CrossThread; 3889 bool isVolatile = false; 3890 3891 if (EatIfPresent(lltok::kw_volatile)) 3892 isVolatile = true; 3893 3894 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3895 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3896 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3897 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3898 ParseTypeAndValue(New, NewLoc, PFS) || 3899 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3900 return true; 3901 3902 if (Ordering == Unordered) 3903 return TokError("cmpxchg cannot be unordered"); 3904 if (!Ptr->getType()->isPointerTy()) 3905 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3906 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3907 return Error(CmpLoc, "compare value and pointer type do not match"); 3908 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3909 return Error(NewLoc, "new value and pointer type do not match"); 3910 if (!New->getType()->isIntegerTy()) 3911 return Error(NewLoc, "cmpxchg operand must be an integer"); 3912 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3913 if (Size < 8 || (Size & (Size - 1))) 3914 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3915 " integer"); 3916 3917 AtomicCmpXchgInst *CXI = 3918 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3919 CXI->setVolatile(isVolatile); 3920 Inst = CXI; 3921 return AteExtraComma ? InstExtraComma : InstNormal; 3922 } 3923 3924 /// ParseAtomicRMW 3925 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3926 /// 'singlethread'? AtomicOrdering 3927 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3928 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3929 bool AteExtraComma = false; 3930 AtomicOrdering Ordering = NotAtomic; 3931 SynchronizationScope Scope = CrossThread; 3932 bool isVolatile = false; 3933 AtomicRMWInst::BinOp Operation; 3934 3935 if (EatIfPresent(lltok::kw_volatile)) 3936 isVolatile = true; 3937 3938 switch (Lex.getKind()) { 3939 default: return TokError("expected binary operation in atomicrmw"); 3940 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3941 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3942 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3943 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3944 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3945 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3946 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3947 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3948 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3949 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3950 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3951 } 3952 Lex.Lex(); // Eat the operation. 3953 3954 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3955 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3956 ParseTypeAndValue(Val, ValLoc, PFS) || 3957 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3958 return true; 3959 3960 if (Ordering == Unordered) 3961 return TokError("atomicrmw cannot be unordered"); 3962 if (!Ptr->getType()->isPointerTy()) 3963 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3964 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3965 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3966 if (!Val->getType()->isIntegerTy()) 3967 return Error(ValLoc, "atomicrmw operand must be an integer"); 3968 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3969 if (Size < 8 || (Size & (Size - 1))) 3970 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3971 " integer"); 3972 3973 AtomicRMWInst *RMWI = 3974 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3975 RMWI->setVolatile(isVolatile); 3976 Inst = RMWI; 3977 return AteExtraComma ? InstExtraComma : InstNormal; 3978 } 3979 3980 /// ParseFence 3981 /// ::= 'fence' 'singlethread'? AtomicOrdering 3982 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3983 AtomicOrdering Ordering = NotAtomic; 3984 SynchronizationScope Scope = CrossThread; 3985 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3986 return true; 3987 3988 if (Ordering == Unordered) 3989 return TokError("fence cannot be unordered"); 3990 if (Ordering == Monotonic) 3991 return TokError("fence cannot be monotonic"); 3992 3993 Inst = new FenceInst(Context, Ordering, Scope); 3994 return InstNormal; 3995 } 3996 3997 /// ParseGetElementPtr 3998 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3999 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 4000 Value *Ptr = 0; 4001 Value *Val = 0; 4002 LocTy Loc, EltLoc; 4003 4004 bool InBounds = EatIfPresent(lltok::kw_inbounds); 4005 4006 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 4007 4008 if (!Ptr->getType()->getScalarType()->isPointerTy()) 4009 return Error(Loc, "base of getelementptr must be a pointer"); 4010 4011 SmallVector<Value*, 16> Indices; 4012 bool AteExtraComma = false; 4013 while (EatIfPresent(lltok::comma)) { 4014 if (Lex.getKind() == lltok::MetadataVar) { 4015 AteExtraComma = true; 4016 break; 4017 } 4018 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4019 if (!Val->getType()->getScalarType()->isIntegerTy()) 4020 return Error(EltLoc, "getelementptr index must be an integer"); 4021 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4022 return Error(EltLoc, "getelementptr index type missmatch"); 4023 if (Val->getType()->isVectorTy()) { 4024 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4025 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4026 if (ValNumEl != PtrNumEl) 4027 return Error(EltLoc, 4028 "getelementptr vector index has a wrong number of elements"); 4029 } 4030 Indices.push_back(Val); 4031 } 4032 4033 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 4034 return Error(EltLoc, "vector getelementptrs must have a single index"); 4035 4036 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4037 return Error(Loc, "invalid getelementptr indices"); 4038 Inst = GetElementPtrInst::Create(Ptr, Indices); 4039 if (InBounds) 4040 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4041 return AteExtraComma ? InstExtraComma : InstNormal; 4042 } 4043 4044 /// ParseExtractValue 4045 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4046 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4047 Value *Val; LocTy Loc; 4048 SmallVector<unsigned, 4> Indices; 4049 bool AteExtraComma; 4050 if (ParseTypeAndValue(Val, Loc, PFS) || 4051 ParseIndexList(Indices, AteExtraComma)) 4052 return true; 4053 4054 if (!Val->getType()->isAggregateType()) 4055 return Error(Loc, "extractvalue operand must be aggregate type"); 4056 4057 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4058 return Error(Loc, "invalid indices for extractvalue"); 4059 Inst = ExtractValueInst::Create(Val, Indices); 4060 return AteExtraComma ? InstExtraComma : InstNormal; 4061 } 4062 4063 /// ParseInsertValue 4064 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4065 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4066 Value *Val0, *Val1; LocTy Loc0, Loc1; 4067 SmallVector<unsigned, 4> Indices; 4068 bool AteExtraComma; 4069 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4070 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4071 ParseTypeAndValue(Val1, Loc1, PFS) || 4072 ParseIndexList(Indices, AteExtraComma)) 4073 return true; 4074 4075 if (!Val0->getType()->isAggregateType()) 4076 return Error(Loc0, "insertvalue operand must be aggregate type"); 4077 4078 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4079 return Error(Loc0, "invalid indices for insertvalue"); 4080 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4081 return AteExtraComma ? InstExtraComma : InstNormal; 4082 } 4083 4084 //===----------------------------------------------------------------------===// 4085 // Embedded metadata. 4086 //===----------------------------------------------------------------------===// 4087 4088 /// ParseMDNodeVector 4089 /// ::= Element (',' Element)* 4090 /// Element 4091 /// ::= 'null' | TypeAndValue 4092 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4093 PerFunctionState *PFS) { 4094 // Check for an empty list. 4095 if (Lex.getKind() == lltok::rbrace) 4096 return false; 4097 4098 do { 4099 // Null is a special case since it is typeless. 4100 if (EatIfPresent(lltok::kw_null)) { 4101 Elts.push_back(0); 4102 continue; 4103 } 4104 4105 Value *V = 0; 4106 if (ParseTypeAndValue(V, PFS)) return true; 4107 Elts.push_back(V); 4108 } while (EatIfPresent(lltok::comma)); 4109 4110 return false; 4111 } 4112