1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
780                  parseMDNodeID(N)) {
781         return true;
782       }
783       NMD->addOperand(N);
784     } while (EatIfPresent(lltok::comma));
785 
786   return parseToken(lltok::rbrace, "expected end of metadata node");
787 }
788 
789 /// parseStandaloneMetadata:
790 ///   !42 = !{...}
791 bool LLParser::parseStandaloneMetadata() {
792   assert(Lex.getKind() == lltok::exclaim);
793   Lex.Lex();
794   unsigned MetadataID = 0;
795 
796   MDNode *Init;
797   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
798     return true;
799 
800   // Detect common error, from old metadata syntax.
801   if (Lex.getKind() == lltok::Type)
802     return tokError("unexpected type in metadata definition");
803 
804   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
805   if (Lex.getKind() == lltok::MetadataVar) {
806     if (parseSpecializedMDNode(Init, IsDistinct))
807       return true;
808   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
809              parseMDTuple(Init, IsDistinct))
810     return true;
811 
812   // See if this was forward referenced, if so, handle it.
813   auto FI = ForwardRefMDNodes.find(MetadataID);
814   if (FI != ForwardRefMDNodes.end()) {
815     FI->second.first->replaceAllUsesWith(Init);
816     ForwardRefMDNodes.erase(FI);
817 
818     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
819   } else {
820     if (NumberedMetadata.count(MetadataID))
821       return tokError("Metadata id is already used");
822     NumberedMetadata[MetadataID].reset(Init);
823   }
824 
825   return false;
826 }
827 
828 // Skips a single module summary entry.
829 bool LLParser::skipModuleSummaryEntry() {
830   // Each module summary entry consists of a tag for the entry
831   // type, followed by a colon, then the fields which may be surrounded by
832   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
833   // support is in place we will look for the tokens corresponding to the
834   // expected tags.
835   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
836       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
837       Lex.getKind() != lltok::kw_blockcount)
838     return tokError(
839         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
840         "start of summary entry");
841   if (Lex.getKind() == lltok::kw_flags)
842     return parseSummaryIndexFlags();
843   if (Lex.getKind() == lltok::kw_blockcount)
844     return parseBlockCount();
845   Lex.Lex();
846   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
847       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
848     return true;
849   // Now walk through the parenthesized entry, until the number of open
850   // parentheses goes back down to 0 (the first '(' was parsed above).
851   unsigned NumOpenParen = 1;
852   do {
853     switch (Lex.getKind()) {
854     case lltok::lparen:
855       NumOpenParen++;
856       break;
857     case lltok::rparen:
858       NumOpenParen--;
859       break;
860     case lltok::Eof:
861       return tokError("found end of file while parsing summary entry");
862     default:
863       // Skip everything in between parentheses.
864       break;
865     }
866     Lex.Lex();
867   } while (NumOpenParen > 0);
868   return false;
869 }
870 
871 /// SummaryEntry
872 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
873 bool LLParser::parseSummaryEntry() {
874   assert(Lex.getKind() == lltok::SummaryID);
875   unsigned SummaryID = Lex.getUIntVal();
876 
877   // For summary entries, colons should be treated as distinct tokens,
878   // not an indication of the end of a label token.
879   Lex.setIgnoreColonInIdentifiers(true);
880 
881   Lex.Lex();
882   if (parseToken(lltok::equal, "expected '=' here"))
883     return true;
884 
885   // If we don't have an index object, skip the summary entry.
886   if (!Index)
887     return skipModuleSummaryEntry();
888 
889   bool result = false;
890   switch (Lex.getKind()) {
891   case lltok::kw_gv:
892     result = parseGVEntry(SummaryID);
893     break;
894   case lltok::kw_module:
895     result = parseModuleEntry(SummaryID);
896     break;
897   case lltok::kw_typeid:
898     result = parseTypeIdEntry(SummaryID);
899     break;
900   case lltok::kw_typeidCompatibleVTable:
901     result = parseTypeIdCompatibleVtableEntry(SummaryID);
902     break;
903   case lltok::kw_flags:
904     result = parseSummaryIndexFlags();
905     break;
906   case lltok::kw_blockcount:
907     result = parseBlockCount();
908     break;
909   default:
910     result = error(Lex.getLoc(), "unexpected summary kind");
911     break;
912   }
913   Lex.setIgnoreColonInIdentifiers(false);
914   return result;
915 }
916 
917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
918   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
919          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
920 }
921 
922 // If there was an explicit dso_local, update GV. In the absence of an explicit
923 // dso_local we keep the default value.
924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
925   if (DSOLocal)
926     GV.setDSOLocal(true);
927 }
928 
929 /// parseIndirectSymbol:
930 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
931 ///                     OptionalVisibility OptionalDLLStorageClass
932 ///                     OptionalThreadLocal OptionalUnnamedAddr
933 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
934 ///
935 /// IndirectSymbol
936 ///   ::= TypeAndValue
937 ///
938 /// IndirectSymbolAttr
939 ///   ::= ',' 'partition' StringConstant
940 ///
941 /// Everything through OptionalUnnamedAddr has already been parsed.
942 ///
943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
944                                    unsigned L, unsigned Visibility,
945                                    unsigned DLLStorageClass, bool DSOLocal,
946                                    GlobalVariable::ThreadLocalMode TLM,
947                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
948   bool IsAlias;
949   if (Lex.getKind() == lltok::kw_alias)
950     IsAlias = true;
951   else if (Lex.getKind() == lltok::kw_ifunc)
952     IsAlias = false;
953   else
954     llvm_unreachable("Not an alias or ifunc!");
955   Lex.Lex();
956 
957   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
958 
959   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
960     return error(NameLoc, "invalid linkage type for alias");
961 
962   if (!isValidVisibilityForLinkage(Visibility, L))
963     return error(NameLoc,
964                  "symbol with local linkage must have default visibility");
965 
966   Type *Ty;
967   LocTy ExplicitTypeLoc = Lex.getLoc();
968   if (parseType(Ty) ||
969       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
970     return true;
971 
972   Constant *Aliasee;
973   LocTy AliaseeLoc = Lex.getLoc();
974   if (Lex.getKind() != lltok::kw_bitcast &&
975       Lex.getKind() != lltok::kw_getelementptr &&
976       Lex.getKind() != lltok::kw_addrspacecast &&
977       Lex.getKind() != lltok::kw_inttoptr) {
978     if (parseGlobalTypeAndValue(Aliasee))
979       return true;
980   } else {
981     // The bitcast dest type is not present, it is implied by the dest type.
982     ValID ID;
983     if (parseValID(ID))
984       return true;
985     if (ID.Kind != ValID::t_Constant)
986       return error(AliaseeLoc, "invalid aliasee");
987     Aliasee = ID.ConstantVal;
988   }
989 
990   Type *AliaseeType = Aliasee->getType();
991   auto *PTy = dyn_cast<PointerType>(AliaseeType);
992   if (!PTy)
993     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
994   unsigned AddrSpace = PTy->getAddressSpace();
995 
996   if (IsAlias && Ty != PTy->getElementType())
997     return error(ExplicitTypeLoc,
998                  "explicit pointee type doesn't match operand's pointee type");
999 
1000   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1001     return error(ExplicitTypeLoc,
1002                  "explicit pointee type should be a function type");
1003 
1004   GlobalValue *GVal = nullptr;
1005 
1006   // See if the alias was forward referenced, if so, prepare to replace the
1007   // forward reference.
1008   if (!Name.empty()) {
1009     GVal = M->getNamedValue(Name);
1010     if (GVal) {
1011       if (!ForwardRefVals.erase(Name))
1012         return error(NameLoc, "redefinition of global '@" + Name + "'");
1013     }
1014   } else {
1015     auto I = ForwardRefValIDs.find(NumberedVals.size());
1016     if (I != ForwardRefValIDs.end()) {
1017       GVal = I->second.first;
1018       ForwardRefValIDs.erase(I);
1019     }
1020   }
1021 
1022   // Okay, create the alias but do not insert it into the module yet.
1023   std::unique_ptr<GlobalIndirectSymbol> GA;
1024   if (IsAlias)
1025     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1026                                  (GlobalValue::LinkageTypes)Linkage, Name,
1027                                  Aliasee, /*Parent*/ nullptr));
1028   else
1029     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1030                                  (GlobalValue::LinkageTypes)Linkage, Name,
1031                                  Aliasee, /*Parent*/ nullptr));
1032   GA->setThreadLocalMode(TLM);
1033   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1034   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1035   GA->setUnnamedAddr(UnnamedAddr);
1036   maybeSetDSOLocal(DSOLocal, *GA);
1037 
1038   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1039   // Now parse them if there are any.
1040   while (Lex.getKind() == lltok::comma) {
1041     Lex.Lex();
1042 
1043     if (Lex.getKind() == lltok::kw_partition) {
1044       Lex.Lex();
1045       GA->setPartition(Lex.getStrVal());
1046       if (parseToken(lltok::StringConstant, "expected partition string"))
1047         return true;
1048     } else {
1049       return tokError("unknown alias or ifunc property!");
1050     }
1051   }
1052 
1053   if (Name.empty())
1054     NumberedVals.push_back(GA.get());
1055 
1056   if (GVal) {
1057     // Verify that types agree.
1058     if (GVal->getType() != GA->getType())
1059       return error(
1060           ExplicitTypeLoc,
1061           "forward reference and definition of alias have different types");
1062 
1063     // If they agree, just RAUW the old value with the alias and remove the
1064     // forward ref info.
1065     GVal->replaceAllUsesWith(GA.get());
1066     GVal->eraseFromParent();
1067   }
1068 
1069   // Insert into the module, we know its name won't collide now.
1070   if (IsAlias)
1071     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1072   else
1073     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1074   assert(GA->getName() == Name && "Should not be a name conflict!");
1075 
1076   // The module owns this now
1077   GA.release();
1078 
1079   return false;
1080 }
1081 
1082 /// parseGlobal
1083 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1084 ///       OptionalVisibility OptionalDLLStorageClass
1085 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1086 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1087 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1088 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1089 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1090 ///       Const OptionalAttrs
1091 ///
1092 /// Everything up to and including OptionalUnnamedAddr has been parsed
1093 /// already.
1094 ///
1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1096                            unsigned Linkage, bool HasLinkage,
1097                            unsigned Visibility, unsigned DLLStorageClass,
1098                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1099                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1100   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1101     return error(NameLoc,
1102                  "symbol with local linkage must have default visibility");
1103 
1104   unsigned AddrSpace;
1105   bool IsConstant, IsExternallyInitialized;
1106   LocTy IsExternallyInitializedLoc;
1107   LocTy TyLoc;
1108 
1109   Type *Ty = nullptr;
1110   if (parseOptionalAddrSpace(AddrSpace) ||
1111       parseOptionalToken(lltok::kw_externally_initialized,
1112                          IsExternallyInitialized,
1113                          &IsExternallyInitializedLoc) ||
1114       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1115     return true;
1116 
1117   // If the linkage is specified and is external, then no initializer is
1118   // present.
1119   Constant *Init = nullptr;
1120   if (!HasLinkage ||
1121       !GlobalValue::isValidDeclarationLinkage(
1122           (GlobalValue::LinkageTypes)Linkage)) {
1123     if (parseGlobalValue(Ty, Init))
1124       return true;
1125   }
1126 
1127   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1128     return error(TyLoc, "invalid type for global variable");
1129 
1130   GlobalValue *GVal = nullptr;
1131 
1132   // See if the global was forward referenced, if so, use the global.
1133   if (!Name.empty()) {
1134     GVal = M->getNamedValue(Name);
1135     if (GVal) {
1136       if (!ForwardRefVals.erase(Name))
1137         return error(NameLoc, "redefinition of global '@" + Name + "'");
1138     }
1139   } else {
1140     auto I = ForwardRefValIDs.find(NumberedVals.size());
1141     if (I != ForwardRefValIDs.end()) {
1142       GVal = I->second.first;
1143       ForwardRefValIDs.erase(I);
1144     }
1145   }
1146 
1147   GlobalVariable *GV;
1148   if (!GVal) {
1149     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1150                             Name, nullptr, GlobalVariable::NotThreadLocal,
1151                             AddrSpace);
1152   } else {
1153     if (GVal->getValueType() != Ty)
1154       return error(
1155           TyLoc,
1156           "forward reference and definition of global have different types");
1157 
1158     GV = cast<GlobalVariable>(GVal);
1159 
1160     // Move the forward-reference to the correct spot in the module.
1161     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1162   }
1163 
1164   if (Name.empty())
1165     NumberedVals.push_back(GV);
1166 
1167   // Set the parsed properties on the global.
1168   if (Init)
1169     GV->setInitializer(Init);
1170   GV->setConstant(IsConstant);
1171   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1172   maybeSetDSOLocal(DSOLocal, *GV);
1173   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1174   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1175   GV->setExternallyInitialized(IsExternallyInitialized);
1176   GV->setThreadLocalMode(TLM);
1177   GV->setUnnamedAddr(UnnamedAddr);
1178 
1179   // parse attributes on the global.
1180   while (Lex.getKind() == lltok::comma) {
1181     Lex.Lex();
1182 
1183     if (Lex.getKind() == lltok::kw_section) {
1184       Lex.Lex();
1185       GV->setSection(Lex.getStrVal());
1186       if (parseToken(lltok::StringConstant, "expected global section string"))
1187         return true;
1188     } else if (Lex.getKind() == lltok::kw_partition) {
1189       Lex.Lex();
1190       GV->setPartition(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected partition string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_align) {
1194       MaybeAlign Alignment;
1195       if (parseOptionalAlignment(Alignment))
1196         return true;
1197       GV->setAlignment(Alignment);
1198     } else if (Lex.getKind() == lltok::MetadataVar) {
1199       if (parseGlobalObjectMetadataAttachment(*GV))
1200         return true;
1201     } else {
1202       Comdat *C;
1203       if (parseOptionalComdat(Name, C))
1204         return true;
1205       if (C)
1206         GV->setComdat(C);
1207       else
1208         return tokError("unknown global variable property!");
1209     }
1210   }
1211 
1212   AttrBuilder Attrs;
1213   LocTy BuiltinLoc;
1214   std::vector<unsigned> FwdRefAttrGrps;
1215   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1216     return true;
1217   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1218     GV->setAttributes(AttributeSet::get(Context, Attrs));
1219     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// parseUnnamedAttrGrp
1226 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1227 bool LLParser::parseUnnamedAttrGrp() {
1228   assert(Lex.getKind() == lltok::kw_attributes);
1229   LocTy AttrGrpLoc = Lex.getLoc();
1230   Lex.Lex();
1231 
1232   if (Lex.getKind() != lltok::AttrGrpID)
1233     return tokError("expected attribute group id");
1234 
1235   unsigned VarID = Lex.getUIntVal();
1236   std::vector<unsigned> unused;
1237   LocTy BuiltinLoc;
1238   Lex.Lex();
1239 
1240   if (parseToken(lltok::equal, "expected '=' here") ||
1241       parseToken(lltok::lbrace, "expected '{' here") ||
1242       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1243                                  BuiltinLoc) ||
1244       parseToken(lltok::rbrace, "expected end of attribute group"))
1245     return true;
1246 
1247   if (!NumberedAttrBuilders[VarID].hasAttributes())
1248     return error(AttrGrpLoc, "attribute group has no attributes");
1249 
1250   return false;
1251 }
1252 
1253 /// parseFnAttributeValuePairs
1254 ///   ::= <attr> | <attr> '=' <value>
1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1256                                           std::vector<unsigned> &FwdRefAttrGrps,
1257                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1258   bool HaveError = false;
1259 
1260   B.clear();
1261 
1262   while (true) {
1263     lltok::Kind Token = Lex.getKind();
1264     if (Token == lltok::kw_builtin)
1265       BuiltinLoc = Lex.getLoc();
1266     switch (Token) {
1267     default:
1268       if (!inAttrGrp) return HaveError;
1269       return error(Lex.getLoc(), "unterminated attribute group");
1270     case lltok::rbrace:
1271       // Finished.
1272       return false;
1273 
1274     case lltok::AttrGrpID: {
1275       // Allow a function to reference an attribute group:
1276       //
1277       //   define void @foo() #1 { ... }
1278       if (inAttrGrp)
1279         HaveError |= error(
1280             Lex.getLoc(),
1281             "cannot have an attribute group reference in an attribute group");
1282 
1283       unsigned AttrGrpNum = Lex.getUIntVal();
1284       if (inAttrGrp) break;
1285 
1286       // Save the reference to the attribute group. We'll fill it in later.
1287       FwdRefAttrGrps.push_back(AttrGrpNum);
1288       break;
1289     }
1290     // Target-dependent attributes:
1291     case lltok::StringConstant: {
1292       if (parseStringAttribute(B))
1293         return true;
1294       continue;
1295     }
1296 
1297     // Target-independent attributes:
1298     case lltok::kw_align: {
1299       // As a hack, we allow function alignment to be initially parsed as an
1300       // attribute on a function declaration/definition or added to an attribute
1301       // group and later moved to the alignment field.
1302       MaybeAlign Alignment;
1303       if (inAttrGrp) {
1304         Lex.Lex();
1305         uint32_t Value = 0;
1306         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1307           return true;
1308         Alignment = Align(Value);
1309       } else {
1310         if (parseOptionalAlignment(Alignment))
1311           return true;
1312       }
1313       B.addAlignmentAttr(Alignment);
1314       continue;
1315     }
1316     case lltok::kw_alignstack: {
1317       unsigned Alignment;
1318       if (inAttrGrp) {
1319         Lex.Lex();
1320         if (parseToken(lltok::equal, "expected '=' here") ||
1321             parseUInt32(Alignment))
1322           return true;
1323       } else {
1324         if (parseOptionalStackAlignment(Alignment))
1325           return true;
1326       }
1327       B.addStackAlignmentAttr(Alignment);
1328       continue;
1329     }
1330     case lltok::kw_allocsize: {
1331       unsigned ElemSizeArg;
1332       Optional<unsigned> NumElemsArg;
1333       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1334       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1335         return true;
1336       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1337       continue;
1338     }
1339     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1340     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1341     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1342     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1343     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1344     case lltok::kw_inaccessiblememonly:
1345       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1346     case lltok::kw_inaccessiblemem_or_argmemonly:
1347       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1348     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1349     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1350     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1351     case lltok::kw_mustprogress:
1352       B.addAttribute(Attribute::MustProgress);
1353       break;
1354     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1355     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1356     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1357     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1358     case lltok::kw_noimplicitfloat:
1359       B.addAttribute(Attribute::NoImplicitFloat); break;
1360     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1361     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1362     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1363     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1364     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1365     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1366     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1367     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1368     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1369     case lltok::kw_null_pointer_is_valid:
1370       B.addAttribute(Attribute::NullPointerIsValid); break;
1371     case lltok::kw_optforfuzzing:
1372       B.addAttribute(Attribute::OptForFuzzing); break;
1373     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1374     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1375     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1376     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1377     case lltok::kw_returns_twice:
1378       B.addAttribute(Attribute::ReturnsTwice); break;
1379     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1380     case lltok::kw_nossp:
1381       B.addAttribute(Attribute::NoStackProtect);
1382       break;
1383     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1384     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1385     case lltok::kw_sspstrong:
1386       B.addAttribute(Attribute::StackProtectStrong); break;
1387     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1388     case lltok::kw_shadowcallstack:
1389       B.addAttribute(Attribute::ShadowCallStack); break;
1390     case lltok::kw_sanitize_address:
1391       B.addAttribute(Attribute::SanitizeAddress); break;
1392     case lltok::kw_sanitize_hwaddress:
1393       B.addAttribute(Attribute::SanitizeHWAddress); break;
1394     case lltok::kw_sanitize_memtag:
1395       B.addAttribute(Attribute::SanitizeMemTag); break;
1396     case lltok::kw_sanitize_thread:
1397       B.addAttribute(Attribute::SanitizeThread); break;
1398     case lltok::kw_sanitize_memory:
1399       B.addAttribute(Attribute::SanitizeMemory); break;
1400     case lltok::kw_speculative_load_hardening:
1401       B.addAttribute(Attribute::SpeculativeLoadHardening);
1402       break;
1403     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1404     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1405     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1406     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1407     case lltok::kw_preallocated: {
1408       Type *Ty;
1409       if (parsePreallocated(Ty))
1410         return true;
1411       B.addPreallocatedAttr(Ty);
1412       break;
1413     }
1414 
1415     // error handling.
1416     case lltok::kw_inreg:
1417     case lltok::kw_signext:
1418     case lltok::kw_zeroext:
1419       HaveError |=
1420           error(Lex.getLoc(), "invalid use of attribute on a function");
1421       break;
1422     case lltok::kw_byval:
1423     case lltok::kw_dereferenceable:
1424     case lltok::kw_dereferenceable_or_null:
1425     case lltok::kw_inalloca:
1426     case lltok::kw_nest:
1427     case lltok::kw_noalias:
1428     case lltok::kw_noundef:
1429     case lltok::kw_nocapture:
1430     case lltok::kw_nonnull:
1431     case lltok::kw_returned:
1432     case lltok::kw_sret:
1433     case lltok::kw_swifterror:
1434     case lltok::kw_swiftself:
1435     case lltok::kw_immarg:
1436     case lltok::kw_byref:
1437       HaveError |=
1438           error(Lex.getLoc(),
1439                 "invalid use of parameter-only attribute on a function");
1440       break;
1441     }
1442 
1443     // parsePreallocated() consumes token
1444     if (Token != lltok::kw_preallocated)
1445       Lex.Lex();
1446   }
1447 }
1448 
1449 //===----------------------------------------------------------------------===//
1450 // GlobalValue Reference/Resolution Routines.
1451 //===----------------------------------------------------------------------===//
1452 
1453 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1454                                               const std::string &Name) {
1455   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1456     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1457                             PTy->getAddressSpace(), Name, M);
1458   else
1459     return new GlobalVariable(*M, PTy->getElementType(), false,
1460                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1461                               nullptr, GlobalVariable::NotThreadLocal,
1462                               PTy->getAddressSpace());
1463 }
1464 
1465 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1466                                         Value *Val, bool IsCall) {
1467   if (Val->getType() == Ty)
1468     return Val;
1469   // For calls we also accept variables in the program address space.
1470   Type *SuggestedTy = Ty;
1471   if (IsCall && isa<PointerType>(Ty)) {
1472     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1473         M->getDataLayout().getProgramAddressSpace());
1474     SuggestedTy = TyInProgAS;
1475     if (Val->getType() == TyInProgAS)
1476       return Val;
1477   }
1478   if (Ty->isLabelTy())
1479     error(Loc, "'" + Name + "' is not a basic block");
1480   else
1481     error(Loc, "'" + Name + "' defined with type '" +
1482                    getTypeString(Val->getType()) + "' but expected '" +
1483                    getTypeString(SuggestedTy) + "'");
1484   return nullptr;
1485 }
1486 
1487 /// getGlobalVal - Get a value with the specified name or ID, creating a
1488 /// forward reference record if needed.  This can return null if the value
1489 /// exists but does not have the right type.
1490 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1491                                     LocTy Loc, bool IsCall) {
1492   PointerType *PTy = dyn_cast<PointerType>(Ty);
1493   if (!PTy) {
1494     error(Loc, "global variable reference must have pointer type");
1495     return nullptr;
1496   }
1497 
1498   // Look this name up in the normal function symbol table.
1499   GlobalValue *Val =
1500     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1501 
1502   // If this is a forward reference for the value, see if we already created a
1503   // forward ref record.
1504   if (!Val) {
1505     auto I = ForwardRefVals.find(Name);
1506     if (I != ForwardRefVals.end())
1507       Val = I->second.first;
1508   }
1509 
1510   // If we have the value in the symbol table or fwd-ref table, return it.
1511   if (Val)
1512     return cast_or_null<GlobalValue>(
1513         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1514 
1515   // Otherwise, create a new forward reference for this value and remember it.
1516   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1517   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1518   return FwdVal;
1519 }
1520 
1521 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1522                                     bool IsCall) {
1523   PointerType *PTy = dyn_cast<PointerType>(Ty);
1524   if (!PTy) {
1525     error(Loc, "global variable reference must have pointer type");
1526     return nullptr;
1527   }
1528 
1529   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1530 
1531   // If this is a forward reference for the value, see if we already created a
1532   // forward ref record.
1533   if (!Val) {
1534     auto I = ForwardRefValIDs.find(ID);
1535     if (I != ForwardRefValIDs.end())
1536       Val = I->second.first;
1537   }
1538 
1539   // If we have the value in the symbol table or fwd-ref table, return it.
1540   if (Val)
1541     return cast_or_null<GlobalValue>(
1542         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1543 
1544   // Otherwise, create a new forward reference for this value and remember it.
1545   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1546   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1547   return FwdVal;
1548 }
1549 
1550 //===----------------------------------------------------------------------===//
1551 // Comdat Reference/Resolution Routines.
1552 //===----------------------------------------------------------------------===//
1553 
1554 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1555   // Look this name up in the comdat symbol table.
1556   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1557   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1558   if (I != ComdatSymTab.end())
1559     return &I->second;
1560 
1561   // Otherwise, create a new forward reference for this value and remember it.
1562   Comdat *C = M->getOrInsertComdat(Name);
1563   ForwardRefComdats[Name] = Loc;
1564   return C;
1565 }
1566 
1567 //===----------------------------------------------------------------------===//
1568 // Helper Routines.
1569 //===----------------------------------------------------------------------===//
1570 
1571 /// parseToken - If the current token has the specified kind, eat it and return
1572 /// success.  Otherwise, emit the specified error and return failure.
1573 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1574   if (Lex.getKind() != T)
1575     return tokError(ErrMsg);
1576   Lex.Lex();
1577   return false;
1578 }
1579 
1580 /// parseStringConstant
1581 ///   ::= StringConstant
1582 bool LLParser::parseStringConstant(std::string &Result) {
1583   if (Lex.getKind() != lltok::StringConstant)
1584     return tokError("expected string constant");
1585   Result = Lex.getStrVal();
1586   Lex.Lex();
1587   return false;
1588 }
1589 
1590 /// parseUInt32
1591 ///   ::= uint32
1592 bool LLParser::parseUInt32(uint32_t &Val) {
1593   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1594     return tokError("expected integer");
1595   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1596   if (Val64 != unsigned(Val64))
1597     return tokError("expected 32-bit integer (too large)");
1598   Val = Val64;
1599   Lex.Lex();
1600   return false;
1601 }
1602 
1603 /// parseUInt64
1604 ///   ::= uint64
1605 bool LLParser::parseUInt64(uint64_t &Val) {
1606   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1607     return tokError("expected integer");
1608   Val = Lex.getAPSIntVal().getLimitedValue();
1609   Lex.Lex();
1610   return false;
1611 }
1612 
1613 /// parseTLSModel
1614 ///   := 'localdynamic'
1615 ///   := 'initialexec'
1616 ///   := 'localexec'
1617 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1618   switch (Lex.getKind()) {
1619     default:
1620       return tokError("expected localdynamic, initialexec or localexec");
1621     case lltok::kw_localdynamic:
1622       TLM = GlobalVariable::LocalDynamicTLSModel;
1623       break;
1624     case lltok::kw_initialexec:
1625       TLM = GlobalVariable::InitialExecTLSModel;
1626       break;
1627     case lltok::kw_localexec:
1628       TLM = GlobalVariable::LocalExecTLSModel;
1629       break;
1630   }
1631 
1632   Lex.Lex();
1633   return false;
1634 }
1635 
1636 /// parseOptionalThreadLocal
1637 ///   := /*empty*/
1638 ///   := 'thread_local'
1639 ///   := 'thread_local' '(' tlsmodel ')'
1640 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1641   TLM = GlobalVariable::NotThreadLocal;
1642   if (!EatIfPresent(lltok::kw_thread_local))
1643     return false;
1644 
1645   TLM = GlobalVariable::GeneralDynamicTLSModel;
1646   if (Lex.getKind() == lltok::lparen) {
1647     Lex.Lex();
1648     return parseTLSModel(TLM) ||
1649            parseToken(lltok::rparen, "expected ')' after thread local model");
1650   }
1651   return false;
1652 }
1653 
1654 /// parseOptionalAddrSpace
1655 ///   := /*empty*/
1656 ///   := 'addrspace' '(' uint32 ')'
1657 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1658   AddrSpace = DefaultAS;
1659   if (!EatIfPresent(lltok::kw_addrspace))
1660     return false;
1661   return parseToken(lltok::lparen, "expected '(' in address space") ||
1662          parseUInt32(AddrSpace) ||
1663          parseToken(lltok::rparen, "expected ')' in address space");
1664 }
1665 
1666 /// parseStringAttribute
1667 ///   := StringConstant
1668 ///   := StringConstant '=' StringConstant
1669 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1670   std::string Attr = Lex.getStrVal();
1671   Lex.Lex();
1672   std::string Val;
1673   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1674     return true;
1675   B.addAttribute(Attr, Val);
1676   return false;
1677 }
1678 
1679 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1680 /// attributes.
1681 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1682   bool HaveError = false;
1683 
1684   B.clear();
1685 
1686   while (true) {
1687     lltok::Kind Token = Lex.getKind();
1688     switch (Token) {
1689     default:  // End of attributes.
1690       return HaveError;
1691     case lltok::StringConstant: {
1692       if (parseStringAttribute(B))
1693         return true;
1694       continue;
1695     }
1696     case lltok::kw_align: {
1697       MaybeAlign Alignment;
1698       if (parseOptionalAlignment(Alignment, true))
1699         return true;
1700       B.addAlignmentAttr(Alignment);
1701       continue;
1702     }
1703     case lltok::kw_byval: {
1704       Type *Ty;
1705       if (parseOptionalTypeAttr(Ty, lltok::kw_byval))
1706         return true;
1707       B.addByValAttr(Ty);
1708       continue;
1709     }
1710     case lltok::kw_sret: {
1711       Type *Ty;
1712       if (parseOptionalTypeAttr(Ty, lltok::kw_sret))
1713         return true;
1714       B.addStructRetAttr(Ty);
1715       continue;
1716     }
1717     case lltok::kw_preallocated: {
1718       Type *Ty;
1719       if (parsePreallocated(Ty))
1720         return true;
1721       B.addPreallocatedAttr(Ty);
1722       continue;
1723     }
1724     case lltok::kw_dereferenceable: {
1725       uint64_t Bytes;
1726       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1727         return true;
1728       B.addDereferenceableAttr(Bytes);
1729       continue;
1730     }
1731     case lltok::kw_dereferenceable_or_null: {
1732       uint64_t Bytes;
1733       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1734         return true;
1735       B.addDereferenceableOrNullAttr(Bytes);
1736       continue;
1737     }
1738     case lltok::kw_byref: {
1739       Type *Ty;
1740       if (parseByRef(Ty))
1741         return true;
1742       B.addByRefAttr(Ty);
1743       continue;
1744     }
1745     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1746     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1747     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1748     case lltok::kw_noundef:
1749       B.addAttribute(Attribute::NoUndef);
1750       break;
1751     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1752     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1753     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1754     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1755     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1756     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1757     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1758     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1759     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1760     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1761     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1762     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1763     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1764 
1765     case lltok::kw_alignstack:
1766     case lltok::kw_alwaysinline:
1767     case lltok::kw_argmemonly:
1768     case lltok::kw_builtin:
1769     case lltok::kw_inlinehint:
1770     case lltok::kw_jumptable:
1771     case lltok::kw_minsize:
1772     case lltok::kw_mustprogress:
1773     case lltok::kw_naked:
1774     case lltok::kw_nobuiltin:
1775     case lltok::kw_noduplicate:
1776     case lltok::kw_noimplicitfloat:
1777     case lltok::kw_noinline:
1778     case lltok::kw_nonlazybind:
1779     case lltok::kw_nomerge:
1780     case lltok::kw_noredzone:
1781     case lltok::kw_noreturn:
1782     case lltok::kw_nocf_check:
1783     case lltok::kw_nounwind:
1784     case lltok::kw_optforfuzzing:
1785     case lltok::kw_optnone:
1786     case lltok::kw_optsize:
1787     case lltok::kw_returns_twice:
1788     case lltok::kw_sanitize_address:
1789     case lltok::kw_sanitize_hwaddress:
1790     case lltok::kw_sanitize_memtag:
1791     case lltok::kw_sanitize_memory:
1792     case lltok::kw_sanitize_thread:
1793     case lltok::kw_speculative_load_hardening:
1794     case lltok::kw_nossp:
1795     case lltok::kw_ssp:
1796     case lltok::kw_sspreq:
1797     case lltok::kw_sspstrong:
1798     case lltok::kw_safestack:
1799     case lltok::kw_shadowcallstack:
1800     case lltok::kw_strictfp:
1801     case lltok::kw_uwtable:
1802       HaveError |=
1803           error(Lex.getLoc(), "invalid use of function-only attribute");
1804       break;
1805     }
1806 
1807     Lex.Lex();
1808   }
1809 }
1810 
1811 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1812 /// attributes.
1813 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1814   bool HaveError = false;
1815 
1816   B.clear();
1817 
1818   while (true) {
1819     lltok::Kind Token = Lex.getKind();
1820     switch (Token) {
1821     default:  // End of attributes.
1822       return HaveError;
1823     case lltok::StringConstant: {
1824       if (parseStringAttribute(B))
1825         return true;
1826       continue;
1827     }
1828     case lltok::kw_dereferenceable: {
1829       uint64_t Bytes;
1830       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1831         return true;
1832       B.addDereferenceableAttr(Bytes);
1833       continue;
1834     }
1835     case lltok::kw_dereferenceable_or_null: {
1836       uint64_t Bytes;
1837       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1838         return true;
1839       B.addDereferenceableOrNullAttr(Bytes);
1840       continue;
1841     }
1842     case lltok::kw_align: {
1843       MaybeAlign Alignment;
1844       if (parseOptionalAlignment(Alignment))
1845         return true;
1846       B.addAlignmentAttr(Alignment);
1847       continue;
1848     }
1849     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1850     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1851     case lltok::kw_noundef:
1852       B.addAttribute(Attribute::NoUndef);
1853       break;
1854     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1855     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1856     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1857 
1858     // error handling.
1859     case lltok::kw_byval:
1860     case lltok::kw_inalloca:
1861     case lltok::kw_nest:
1862     case lltok::kw_nocapture:
1863     case lltok::kw_returned:
1864     case lltok::kw_sret:
1865     case lltok::kw_swifterror:
1866     case lltok::kw_swiftself:
1867     case lltok::kw_immarg:
1868     case lltok::kw_byref:
1869       HaveError |=
1870           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1871       break;
1872 
1873     case lltok::kw_alignstack:
1874     case lltok::kw_alwaysinline:
1875     case lltok::kw_argmemonly:
1876     case lltok::kw_builtin:
1877     case lltok::kw_cold:
1878     case lltok::kw_inlinehint:
1879     case lltok::kw_jumptable:
1880     case lltok::kw_minsize:
1881     case lltok::kw_mustprogress:
1882     case lltok::kw_naked:
1883     case lltok::kw_nobuiltin:
1884     case lltok::kw_noduplicate:
1885     case lltok::kw_noimplicitfloat:
1886     case lltok::kw_noinline:
1887     case lltok::kw_nonlazybind:
1888     case lltok::kw_nomerge:
1889     case lltok::kw_noredzone:
1890     case lltok::kw_noreturn:
1891     case lltok::kw_nocf_check:
1892     case lltok::kw_nounwind:
1893     case lltok::kw_optforfuzzing:
1894     case lltok::kw_optnone:
1895     case lltok::kw_optsize:
1896     case lltok::kw_returns_twice:
1897     case lltok::kw_sanitize_address:
1898     case lltok::kw_sanitize_hwaddress:
1899     case lltok::kw_sanitize_memtag:
1900     case lltok::kw_sanitize_memory:
1901     case lltok::kw_sanitize_thread:
1902     case lltok::kw_speculative_load_hardening:
1903     case lltok::kw_nossp:
1904     case lltok::kw_ssp:
1905     case lltok::kw_sspreq:
1906     case lltok::kw_sspstrong:
1907     case lltok::kw_safestack:
1908     case lltok::kw_shadowcallstack:
1909     case lltok::kw_strictfp:
1910     case lltok::kw_uwtable:
1911       HaveError |=
1912           error(Lex.getLoc(), "invalid use of function-only attribute");
1913       break;
1914     case lltok::kw_readnone:
1915     case lltok::kw_readonly:
1916       HaveError |=
1917           error(Lex.getLoc(), "invalid use of attribute on return type");
1918       break;
1919     case lltok::kw_preallocated:
1920       HaveError |=
1921           error(Lex.getLoc(),
1922                 "invalid use of parameter-only/call site-only attribute");
1923       break;
1924     }
1925 
1926     Lex.Lex();
1927   }
1928 }
1929 
1930 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1931   HasLinkage = true;
1932   switch (Kind) {
1933   default:
1934     HasLinkage = false;
1935     return GlobalValue::ExternalLinkage;
1936   case lltok::kw_private:
1937     return GlobalValue::PrivateLinkage;
1938   case lltok::kw_internal:
1939     return GlobalValue::InternalLinkage;
1940   case lltok::kw_weak:
1941     return GlobalValue::WeakAnyLinkage;
1942   case lltok::kw_weak_odr:
1943     return GlobalValue::WeakODRLinkage;
1944   case lltok::kw_linkonce:
1945     return GlobalValue::LinkOnceAnyLinkage;
1946   case lltok::kw_linkonce_odr:
1947     return GlobalValue::LinkOnceODRLinkage;
1948   case lltok::kw_available_externally:
1949     return GlobalValue::AvailableExternallyLinkage;
1950   case lltok::kw_appending:
1951     return GlobalValue::AppendingLinkage;
1952   case lltok::kw_common:
1953     return GlobalValue::CommonLinkage;
1954   case lltok::kw_extern_weak:
1955     return GlobalValue::ExternalWeakLinkage;
1956   case lltok::kw_external:
1957     return GlobalValue::ExternalLinkage;
1958   }
1959 }
1960 
1961 /// parseOptionalLinkage
1962 ///   ::= /*empty*/
1963 ///   ::= 'private'
1964 ///   ::= 'internal'
1965 ///   ::= 'weak'
1966 ///   ::= 'weak_odr'
1967 ///   ::= 'linkonce'
1968 ///   ::= 'linkonce_odr'
1969 ///   ::= 'available_externally'
1970 ///   ::= 'appending'
1971 ///   ::= 'common'
1972 ///   ::= 'extern_weak'
1973 ///   ::= 'external'
1974 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1975                                     unsigned &Visibility,
1976                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1977   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1978   if (HasLinkage)
1979     Lex.Lex();
1980   parseOptionalDSOLocal(DSOLocal);
1981   parseOptionalVisibility(Visibility);
1982   parseOptionalDLLStorageClass(DLLStorageClass);
1983 
1984   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1985     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1986   }
1987 
1988   return false;
1989 }
1990 
1991 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1992   switch (Lex.getKind()) {
1993   default:
1994     DSOLocal = false;
1995     break;
1996   case lltok::kw_dso_local:
1997     DSOLocal = true;
1998     Lex.Lex();
1999     break;
2000   case lltok::kw_dso_preemptable:
2001     DSOLocal = false;
2002     Lex.Lex();
2003     break;
2004   }
2005 }
2006 
2007 /// parseOptionalVisibility
2008 ///   ::= /*empty*/
2009 ///   ::= 'default'
2010 ///   ::= 'hidden'
2011 ///   ::= 'protected'
2012 ///
2013 void LLParser::parseOptionalVisibility(unsigned &Res) {
2014   switch (Lex.getKind()) {
2015   default:
2016     Res = GlobalValue::DefaultVisibility;
2017     return;
2018   case lltok::kw_default:
2019     Res = GlobalValue::DefaultVisibility;
2020     break;
2021   case lltok::kw_hidden:
2022     Res = GlobalValue::HiddenVisibility;
2023     break;
2024   case lltok::kw_protected:
2025     Res = GlobalValue::ProtectedVisibility;
2026     break;
2027   }
2028   Lex.Lex();
2029 }
2030 
2031 /// parseOptionalDLLStorageClass
2032 ///   ::= /*empty*/
2033 ///   ::= 'dllimport'
2034 ///   ::= 'dllexport'
2035 ///
2036 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2037   switch (Lex.getKind()) {
2038   default:
2039     Res = GlobalValue::DefaultStorageClass;
2040     return;
2041   case lltok::kw_dllimport:
2042     Res = GlobalValue::DLLImportStorageClass;
2043     break;
2044   case lltok::kw_dllexport:
2045     Res = GlobalValue::DLLExportStorageClass;
2046     break;
2047   }
2048   Lex.Lex();
2049 }
2050 
2051 /// parseOptionalCallingConv
2052 ///   ::= /*empty*/
2053 ///   ::= 'ccc'
2054 ///   ::= 'fastcc'
2055 ///   ::= 'intel_ocl_bicc'
2056 ///   ::= 'coldcc'
2057 ///   ::= 'cfguard_checkcc'
2058 ///   ::= 'x86_stdcallcc'
2059 ///   ::= 'x86_fastcallcc'
2060 ///   ::= 'x86_thiscallcc'
2061 ///   ::= 'x86_vectorcallcc'
2062 ///   ::= 'arm_apcscc'
2063 ///   ::= 'arm_aapcscc'
2064 ///   ::= 'arm_aapcs_vfpcc'
2065 ///   ::= 'aarch64_vector_pcs'
2066 ///   ::= 'aarch64_sve_vector_pcs'
2067 ///   ::= 'msp430_intrcc'
2068 ///   ::= 'avr_intrcc'
2069 ///   ::= 'avr_signalcc'
2070 ///   ::= 'ptx_kernel'
2071 ///   ::= 'ptx_device'
2072 ///   ::= 'spir_func'
2073 ///   ::= 'spir_kernel'
2074 ///   ::= 'x86_64_sysvcc'
2075 ///   ::= 'win64cc'
2076 ///   ::= 'webkit_jscc'
2077 ///   ::= 'anyregcc'
2078 ///   ::= 'preserve_mostcc'
2079 ///   ::= 'preserve_allcc'
2080 ///   ::= 'ghccc'
2081 ///   ::= 'swiftcc'
2082 ///   ::= 'x86_intrcc'
2083 ///   ::= 'hhvmcc'
2084 ///   ::= 'hhvm_ccc'
2085 ///   ::= 'cxx_fast_tlscc'
2086 ///   ::= 'amdgpu_vs'
2087 ///   ::= 'amdgpu_ls'
2088 ///   ::= 'amdgpu_hs'
2089 ///   ::= 'amdgpu_es'
2090 ///   ::= 'amdgpu_gs'
2091 ///   ::= 'amdgpu_ps'
2092 ///   ::= 'amdgpu_cs'
2093 ///   ::= 'amdgpu_kernel'
2094 ///   ::= 'tailcc'
2095 ///   ::= 'cc' UINT
2096 ///
2097 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2098   switch (Lex.getKind()) {
2099   default:                       CC = CallingConv::C; return false;
2100   case lltok::kw_ccc:            CC = CallingConv::C; break;
2101   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2102   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2103   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2104   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2105   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2106   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2107   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2108   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2109   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2110   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2111   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2112   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2113   case lltok::kw_aarch64_sve_vector_pcs:
2114     CC = CallingConv::AArch64_SVE_VectorCall;
2115     break;
2116   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2117   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2118   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2119   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2120   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2121   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2122   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2123   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2124   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2125   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2126   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2127   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2128   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2129   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2130   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2131   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2132   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2133   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2134   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2135   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2136   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2137   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2138   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2139   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2140   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2141   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2142   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2143   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2144   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2145   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2146   case lltok::kw_cc: {
2147       Lex.Lex();
2148       return parseUInt32(CC);
2149     }
2150   }
2151 
2152   Lex.Lex();
2153   return false;
2154 }
2155 
2156 /// parseMetadataAttachment
2157 ///   ::= !dbg !42
2158 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2159   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2160 
2161   std::string Name = Lex.getStrVal();
2162   Kind = M->getMDKindID(Name);
2163   Lex.Lex();
2164 
2165   return parseMDNode(MD);
2166 }
2167 
2168 /// parseInstructionMetadata
2169 ///   ::= !dbg !42 (',' !dbg !57)*
2170 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2171   do {
2172     if (Lex.getKind() != lltok::MetadataVar)
2173       return tokError("expected metadata after comma");
2174 
2175     unsigned MDK;
2176     MDNode *N;
2177     if (parseMetadataAttachment(MDK, N))
2178       return true;
2179 
2180     Inst.setMetadata(MDK, N);
2181     if (MDK == LLVMContext::MD_tbaa)
2182       InstsWithTBAATag.push_back(&Inst);
2183 
2184     // If this is the end of the list, we're done.
2185   } while (EatIfPresent(lltok::comma));
2186   return false;
2187 }
2188 
2189 /// parseGlobalObjectMetadataAttachment
2190 ///   ::= !dbg !57
2191 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2192   unsigned MDK;
2193   MDNode *N;
2194   if (parseMetadataAttachment(MDK, N))
2195     return true;
2196 
2197   GO.addMetadata(MDK, *N);
2198   return false;
2199 }
2200 
2201 /// parseOptionalFunctionMetadata
2202 ///   ::= (!dbg !57)*
2203 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2204   while (Lex.getKind() == lltok::MetadataVar)
2205     if (parseGlobalObjectMetadataAttachment(F))
2206       return true;
2207   return false;
2208 }
2209 
2210 /// parseOptionalAlignment
2211 ///   ::= /* empty */
2212 ///   ::= 'align' 4
2213 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2214   Alignment = None;
2215   if (!EatIfPresent(lltok::kw_align))
2216     return false;
2217   LocTy AlignLoc = Lex.getLoc();
2218   uint32_t Value = 0;
2219 
2220   LocTy ParenLoc = Lex.getLoc();
2221   bool HaveParens = false;
2222   if (AllowParens) {
2223     if (EatIfPresent(lltok::lparen))
2224       HaveParens = true;
2225   }
2226 
2227   if (parseUInt32(Value))
2228     return true;
2229 
2230   if (HaveParens && !EatIfPresent(lltok::rparen))
2231     return error(ParenLoc, "expected ')'");
2232 
2233   if (!isPowerOf2_32(Value))
2234     return error(AlignLoc, "alignment is not a power of two");
2235   if (Value > Value::MaximumAlignment)
2236     return error(AlignLoc, "huge alignments are not supported yet");
2237   Alignment = Align(Value);
2238   return false;
2239 }
2240 
2241 /// parseOptionalDerefAttrBytes
2242 ///   ::= /* empty */
2243 ///   ::= AttrKind '(' 4 ')'
2244 ///
2245 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2246 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2247                                            uint64_t &Bytes) {
2248   assert((AttrKind == lltok::kw_dereferenceable ||
2249           AttrKind == lltok::kw_dereferenceable_or_null) &&
2250          "contract!");
2251 
2252   Bytes = 0;
2253   if (!EatIfPresent(AttrKind))
2254     return false;
2255   LocTy ParenLoc = Lex.getLoc();
2256   if (!EatIfPresent(lltok::lparen))
2257     return error(ParenLoc, "expected '('");
2258   LocTy DerefLoc = Lex.getLoc();
2259   if (parseUInt64(Bytes))
2260     return true;
2261   ParenLoc = Lex.getLoc();
2262   if (!EatIfPresent(lltok::rparen))
2263     return error(ParenLoc, "expected ')'");
2264   if (!Bytes)
2265     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2266   return false;
2267 }
2268 
2269 /// parseOptionalCommaAlign
2270 ///   ::=
2271 ///   ::= ',' align 4
2272 ///
2273 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2274 /// end.
2275 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2276                                        bool &AteExtraComma) {
2277   AteExtraComma = false;
2278   while (EatIfPresent(lltok::comma)) {
2279     // Metadata at the end is an early exit.
2280     if (Lex.getKind() == lltok::MetadataVar) {
2281       AteExtraComma = true;
2282       return false;
2283     }
2284 
2285     if (Lex.getKind() != lltok::kw_align)
2286       return error(Lex.getLoc(), "expected metadata or 'align'");
2287 
2288     if (parseOptionalAlignment(Alignment))
2289       return true;
2290   }
2291 
2292   return false;
2293 }
2294 
2295 /// parseOptionalCommaAddrSpace
2296 ///   ::=
2297 ///   ::= ',' addrspace(1)
2298 ///
2299 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2300 /// end.
2301 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2302                                            bool &AteExtraComma) {
2303   AteExtraComma = false;
2304   while (EatIfPresent(lltok::comma)) {
2305     // Metadata at the end is an early exit.
2306     if (Lex.getKind() == lltok::MetadataVar) {
2307       AteExtraComma = true;
2308       return false;
2309     }
2310 
2311     Loc = Lex.getLoc();
2312     if (Lex.getKind() != lltok::kw_addrspace)
2313       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2314 
2315     if (parseOptionalAddrSpace(AddrSpace))
2316       return true;
2317   }
2318 
2319   return false;
2320 }
2321 
2322 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2323                                        Optional<unsigned> &HowManyArg) {
2324   Lex.Lex();
2325 
2326   auto StartParen = Lex.getLoc();
2327   if (!EatIfPresent(lltok::lparen))
2328     return error(StartParen, "expected '('");
2329 
2330   if (parseUInt32(BaseSizeArg))
2331     return true;
2332 
2333   if (EatIfPresent(lltok::comma)) {
2334     auto HowManyAt = Lex.getLoc();
2335     unsigned HowMany;
2336     if (parseUInt32(HowMany))
2337       return true;
2338     if (HowMany == BaseSizeArg)
2339       return error(HowManyAt,
2340                    "'allocsize' indices can't refer to the same parameter");
2341     HowManyArg = HowMany;
2342   } else
2343     HowManyArg = None;
2344 
2345   auto EndParen = Lex.getLoc();
2346   if (!EatIfPresent(lltok::rparen))
2347     return error(EndParen, "expected ')'");
2348   return false;
2349 }
2350 
2351 /// parseScopeAndOrdering
2352 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2353 ///   else: ::=
2354 ///
2355 /// This sets Scope and Ordering to the parsed values.
2356 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2357                                      AtomicOrdering &Ordering) {
2358   if (!IsAtomic)
2359     return false;
2360 
2361   return parseScope(SSID) || parseOrdering(Ordering);
2362 }
2363 
2364 /// parseScope
2365 ///   ::= syncscope("singlethread" | "<target scope>")?
2366 ///
2367 /// This sets synchronization scope ID to the ID of the parsed value.
2368 bool LLParser::parseScope(SyncScope::ID &SSID) {
2369   SSID = SyncScope::System;
2370   if (EatIfPresent(lltok::kw_syncscope)) {
2371     auto StartParenAt = Lex.getLoc();
2372     if (!EatIfPresent(lltok::lparen))
2373       return error(StartParenAt, "Expected '(' in syncscope");
2374 
2375     std::string SSN;
2376     auto SSNAt = Lex.getLoc();
2377     if (parseStringConstant(SSN))
2378       return error(SSNAt, "Expected synchronization scope name");
2379 
2380     auto EndParenAt = Lex.getLoc();
2381     if (!EatIfPresent(lltok::rparen))
2382       return error(EndParenAt, "Expected ')' in syncscope");
2383 
2384     SSID = Context.getOrInsertSyncScopeID(SSN);
2385   }
2386 
2387   return false;
2388 }
2389 
2390 /// parseOrdering
2391 ///   ::= AtomicOrdering
2392 ///
2393 /// This sets Ordering to the parsed value.
2394 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2395   switch (Lex.getKind()) {
2396   default:
2397     return tokError("Expected ordering on atomic instruction");
2398   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2399   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2400   // Not specified yet:
2401   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2402   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2403   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2404   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2405   case lltok::kw_seq_cst:
2406     Ordering = AtomicOrdering::SequentiallyConsistent;
2407     break;
2408   }
2409   Lex.Lex();
2410   return false;
2411 }
2412 
2413 /// parseOptionalStackAlignment
2414 ///   ::= /* empty */
2415 ///   ::= 'alignstack' '(' 4 ')'
2416 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2417   Alignment = 0;
2418   if (!EatIfPresent(lltok::kw_alignstack))
2419     return false;
2420   LocTy ParenLoc = Lex.getLoc();
2421   if (!EatIfPresent(lltok::lparen))
2422     return error(ParenLoc, "expected '('");
2423   LocTy AlignLoc = Lex.getLoc();
2424   if (parseUInt32(Alignment))
2425     return true;
2426   ParenLoc = Lex.getLoc();
2427   if (!EatIfPresent(lltok::rparen))
2428     return error(ParenLoc, "expected ')'");
2429   if (!isPowerOf2_32(Alignment))
2430     return error(AlignLoc, "stack alignment is not a power of two");
2431   return false;
2432 }
2433 
2434 /// parseIndexList - This parses the index list for an insert/extractvalue
2435 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2436 /// comma at the end of the line and find that it is followed by metadata.
2437 /// Clients that don't allow metadata can call the version of this function that
2438 /// only takes one argument.
2439 ///
2440 /// parseIndexList
2441 ///    ::=  (',' uint32)+
2442 ///
2443 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2444                               bool &AteExtraComma) {
2445   AteExtraComma = false;
2446 
2447   if (Lex.getKind() != lltok::comma)
2448     return tokError("expected ',' as start of index list");
2449 
2450   while (EatIfPresent(lltok::comma)) {
2451     if (Lex.getKind() == lltok::MetadataVar) {
2452       if (Indices.empty())
2453         return tokError("expected index");
2454       AteExtraComma = true;
2455       return false;
2456     }
2457     unsigned Idx = 0;
2458     if (parseUInt32(Idx))
2459       return true;
2460     Indices.push_back(Idx);
2461   }
2462 
2463   return false;
2464 }
2465 
2466 //===----------------------------------------------------------------------===//
2467 // Type Parsing.
2468 //===----------------------------------------------------------------------===//
2469 
2470 /// parseType - parse a type.
2471 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2472   SMLoc TypeLoc = Lex.getLoc();
2473   switch (Lex.getKind()) {
2474   default:
2475     return tokError(Msg);
2476   case lltok::Type:
2477     // Type ::= 'float' | 'void' (etc)
2478     Result = Lex.getTyVal();
2479     Lex.Lex();
2480     break;
2481   case lltok::lbrace:
2482     // Type ::= StructType
2483     if (parseAnonStructType(Result, false))
2484       return true;
2485     break;
2486   case lltok::lsquare:
2487     // Type ::= '[' ... ']'
2488     Lex.Lex(); // eat the lsquare.
2489     if (parseArrayVectorType(Result, false))
2490       return true;
2491     break;
2492   case lltok::less: // Either vector or packed struct.
2493     // Type ::= '<' ... '>'
2494     Lex.Lex();
2495     if (Lex.getKind() == lltok::lbrace) {
2496       if (parseAnonStructType(Result, true) ||
2497           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2498         return true;
2499     } else if (parseArrayVectorType(Result, true))
2500       return true;
2501     break;
2502   case lltok::LocalVar: {
2503     // Type ::= %foo
2504     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2505 
2506     // If the type hasn't been defined yet, create a forward definition and
2507     // remember where that forward def'n was seen (in case it never is defined).
2508     if (!Entry.first) {
2509       Entry.first = StructType::create(Context, Lex.getStrVal());
2510       Entry.second = Lex.getLoc();
2511     }
2512     Result = Entry.first;
2513     Lex.Lex();
2514     break;
2515   }
2516 
2517   case lltok::LocalVarID: {
2518     // Type ::= %4
2519     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2520 
2521     // If the type hasn't been defined yet, create a forward definition and
2522     // remember where that forward def'n was seen (in case it never is defined).
2523     if (!Entry.first) {
2524       Entry.first = StructType::create(Context);
2525       Entry.second = Lex.getLoc();
2526     }
2527     Result = Entry.first;
2528     Lex.Lex();
2529     break;
2530   }
2531   }
2532 
2533   // parse the type suffixes.
2534   while (true) {
2535     switch (Lex.getKind()) {
2536     // End of type.
2537     default:
2538       if (!AllowVoid && Result->isVoidTy())
2539         return error(TypeLoc, "void type only allowed for function results");
2540       return false;
2541 
2542     // Type ::= Type '*'
2543     case lltok::star:
2544       if (Result->isLabelTy())
2545         return tokError("basic block pointers are invalid");
2546       if (Result->isVoidTy())
2547         return tokError("pointers to void are invalid - use i8* instead");
2548       if (!PointerType::isValidElementType(Result))
2549         return tokError("pointer to this type is invalid");
2550       Result = PointerType::getUnqual(Result);
2551       Lex.Lex();
2552       break;
2553 
2554     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2555     case lltok::kw_addrspace: {
2556       if (Result->isLabelTy())
2557         return tokError("basic block pointers are invalid");
2558       if (Result->isVoidTy())
2559         return tokError("pointers to void are invalid; use i8* instead");
2560       if (!PointerType::isValidElementType(Result))
2561         return tokError("pointer to this type is invalid");
2562       unsigned AddrSpace;
2563       if (parseOptionalAddrSpace(AddrSpace) ||
2564           parseToken(lltok::star, "expected '*' in address space"))
2565         return true;
2566 
2567       Result = PointerType::get(Result, AddrSpace);
2568       break;
2569     }
2570 
2571     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2572     case lltok::lparen:
2573       if (parseFunctionType(Result))
2574         return true;
2575       break;
2576     }
2577   }
2578 }
2579 
2580 /// parseParameterList
2581 ///    ::= '(' ')'
2582 ///    ::= '(' Arg (',' Arg)* ')'
2583 ///  Arg
2584 ///    ::= Type OptionalAttributes Value OptionalAttributes
2585 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2586                                   PerFunctionState &PFS, bool IsMustTailCall,
2587                                   bool InVarArgsFunc) {
2588   if (parseToken(lltok::lparen, "expected '(' in call"))
2589     return true;
2590 
2591   while (Lex.getKind() != lltok::rparen) {
2592     // If this isn't the first argument, we need a comma.
2593     if (!ArgList.empty() &&
2594         parseToken(lltok::comma, "expected ',' in argument list"))
2595       return true;
2596 
2597     // parse an ellipsis if this is a musttail call in a variadic function.
2598     if (Lex.getKind() == lltok::dotdotdot) {
2599       const char *Msg = "unexpected ellipsis in argument list for ";
2600       if (!IsMustTailCall)
2601         return tokError(Twine(Msg) + "non-musttail call");
2602       if (!InVarArgsFunc)
2603         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2604       Lex.Lex();  // Lex the '...', it is purely for readability.
2605       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2606     }
2607 
2608     // parse the argument.
2609     LocTy ArgLoc;
2610     Type *ArgTy = nullptr;
2611     AttrBuilder ArgAttrs;
2612     Value *V;
2613     if (parseType(ArgTy, ArgLoc))
2614       return true;
2615 
2616     if (ArgTy->isMetadataTy()) {
2617       if (parseMetadataAsValue(V, PFS))
2618         return true;
2619     } else {
2620       // Otherwise, handle normal operands.
2621       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2622         return true;
2623     }
2624     ArgList.push_back(ParamInfo(
2625         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2626   }
2627 
2628   if (IsMustTailCall && InVarArgsFunc)
2629     return tokError("expected '...' at end of argument list for musttail call "
2630                     "in varargs function");
2631 
2632   Lex.Lex();  // Lex the ')'.
2633   return false;
2634 }
2635 
2636 /// parseByValWithOptionalType
2637 ///   ::= byval
2638 ///   ::= byval(<ty>)
2639 bool LLParser::parseOptionalTypeAttr(Type *&Result, lltok::Kind AttrName) {
2640   Result = nullptr;
2641   if (!EatIfPresent(AttrName))
2642     return true;
2643   if (!EatIfPresent(lltok::lparen))
2644     return false;
2645   if (parseType(Result))
2646     return true;
2647   if (!EatIfPresent(lltok::rparen))
2648     return error(Lex.getLoc(), "expected ')'");
2649   return false;
2650 }
2651 
2652 /// parseRequiredTypeAttr
2653 ///   ::= attrname(<ty>)
2654 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2655   Result = nullptr;
2656   if (!EatIfPresent(AttrName))
2657     return true;
2658   if (!EatIfPresent(lltok::lparen))
2659     return error(Lex.getLoc(), "expected '('");
2660   if (parseType(Result))
2661     return true;
2662   if (!EatIfPresent(lltok::rparen))
2663     return error(Lex.getLoc(), "expected ')'");
2664   return false;
2665 }
2666 
2667 /// parsePreallocated
2668 ///   ::= preallocated(<ty>)
2669 bool LLParser::parsePreallocated(Type *&Result) {
2670   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2671 }
2672 
2673 /// parseByRef
2674 ///   ::= byref(<type>)
2675 bool LLParser::parseByRef(Type *&Result) {
2676   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2677 }
2678 
2679 /// parseOptionalOperandBundles
2680 ///    ::= /*empty*/
2681 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2682 ///
2683 /// OperandBundle
2684 ///    ::= bundle-tag '(' ')'
2685 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2686 ///
2687 /// bundle-tag ::= String Constant
2688 bool LLParser::parseOptionalOperandBundles(
2689     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2690   LocTy BeginLoc = Lex.getLoc();
2691   if (!EatIfPresent(lltok::lsquare))
2692     return false;
2693 
2694   while (Lex.getKind() != lltok::rsquare) {
2695     // If this isn't the first operand bundle, we need a comma.
2696     if (!BundleList.empty() &&
2697         parseToken(lltok::comma, "expected ',' in input list"))
2698       return true;
2699 
2700     std::string Tag;
2701     if (parseStringConstant(Tag))
2702       return true;
2703 
2704     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2705       return true;
2706 
2707     std::vector<Value *> Inputs;
2708     while (Lex.getKind() != lltok::rparen) {
2709       // If this isn't the first input, we need a comma.
2710       if (!Inputs.empty() &&
2711           parseToken(lltok::comma, "expected ',' in input list"))
2712         return true;
2713 
2714       Type *Ty = nullptr;
2715       Value *Input = nullptr;
2716       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2717         return true;
2718       Inputs.push_back(Input);
2719     }
2720 
2721     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2722 
2723     Lex.Lex(); // Lex the ')'.
2724   }
2725 
2726   if (BundleList.empty())
2727     return error(BeginLoc, "operand bundle set must not be empty");
2728 
2729   Lex.Lex(); // Lex the ']'.
2730   return false;
2731 }
2732 
2733 /// parseArgumentList - parse the argument list for a function type or function
2734 /// prototype.
2735 ///   ::= '(' ArgTypeListI ')'
2736 /// ArgTypeListI
2737 ///   ::= /*empty*/
2738 ///   ::= '...'
2739 ///   ::= ArgTypeList ',' '...'
2740 ///   ::= ArgType (',' ArgType)*
2741 ///
2742 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2743                                  bool &IsVarArg) {
2744   unsigned CurValID = 0;
2745   IsVarArg = false;
2746   assert(Lex.getKind() == lltok::lparen);
2747   Lex.Lex(); // eat the (.
2748 
2749   if (Lex.getKind() == lltok::rparen) {
2750     // empty
2751   } else if (Lex.getKind() == lltok::dotdotdot) {
2752     IsVarArg = true;
2753     Lex.Lex();
2754   } else {
2755     LocTy TypeLoc = Lex.getLoc();
2756     Type *ArgTy = nullptr;
2757     AttrBuilder Attrs;
2758     std::string Name;
2759 
2760     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2761       return true;
2762 
2763     if (ArgTy->isVoidTy())
2764       return error(TypeLoc, "argument can not have void type");
2765 
2766     if (Lex.getKind() == lltok::LocalVar) {
2767       Name = Lex.getStrVal();
2768       Lex.Lex();
2769     } else if (Lex.getKind() == lltok::LocalVarID) {
2770       if (Lex.getUIntVal() != CurValID)
2771         return error(TypeLoc, "argument expected to be numbered '%" +
2772                                   Twine(CurValID) + "'");
2773       ++CurValID;
2774       Lex.Lex();
2775     }
2776 
2777     if (!FunctionType::isValidArgumentType(ArgTy))
2778       return error(TypeLoc, "invalid type for function argument");
2779 
2780     ArgList.emplace_back(TypeLoc, ArgTy,
2781                          AttributeSet::get(ArgTy->getContext(), Attrs),
2782                          std::move(Name));
2783 
2784     while (EatIfPresent(lltok::comma)) {
2785       // Handle ... at end of arg list.
2786       if (EatIfPresent(lltok::dotdotdot)) {
2787         IsVarArg = true;
2788         break;
2789       }
2790 
2791       // Otherwise must be an argument type.
2792       TypeLoc = Lex.getLoc();
2793       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2794         return true;
2795 
2796       if (ArgTy->isVoidTy())
2797         return error(TypeLoc, "argument can not have void type");
2798 
2799       if (Lex.getKind() == lltok::LocalVar) {
2800         Name = Lex.getStrVal();
2801         Lex.Lex();
2802       } else {
2803         if (Lex.getKind() == lltok::LocalVarID) {
2804           if (Lex.getUIntVal() != CurValID)
2805             return error(TypeLoc, "argument expected to be numbered '%" +
2806                                       Twine(CurValID) + "'");
2807           Lex.Lex();
2808         }
2809         ++CurValID;
2810         Name = "";
2811       }
2812 
2813       if (!ArgTy->isFirstClassType())
2814         return error(TypeLoc, "invalid type for function argument");
2815 
2816       ArgList.emplace_back(TypeLoc, ArgTy,
2817                            AttributeSet::get(ArgTy->getContext(), Attrs),
2818                            std::move(Name));
2819     }
2820   }
2821 
2822   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2823 }
2824 
2825 /// parseFunctionType
2826 ///  ::= Type ArgumentList OptionalAttrs
2827 bool LLParser::parseFunctionType(Type *&Result) {
2828   assert(Lex.getKind() == lltok::lparen);
2829 
2830   if (!FunctionType::isValidReturnType(Result))
2831     return tokError("invalid function return type");
2832 
2833   SmallVector<ArgInfo, 8> ArgList;
2834   bool IsVarArg;
2835   if (parseArgumentList(ArgList, IsVarArg))
2836     return true;
2837 
2838   // Reject names on the arguments lists.
2839   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2840     if (!ArgList[i].Name.empty())
2841       return error(ArgList[i].Loc, "argument name invalid in function type");
2842     if (ArgList[i].Attrs.hasAttributes())
2843       return error(ArgList[i].Loc,
2844                    "argument attributes invalid in function type");
2845   }
2846 
2847   SmallVector<Type*, 16> ArgListTy;
2848   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2849     ArgListTy.push_back(ArgList[i].Ty);
2850 
2851   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2852   return false;
2853 }
2854 
2855 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2856 /// other structs.
2857 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2858   SmallVector<Type*, 8> Elts;
2859   if (parseStructBody(Elts))
2860     return true;
2861 
2862   Result = StructType::get(Context, Elts, Packed);
2863   return false;
2864 }
2865 
2866 /// parseStructDefinition - parse a struct in a 'type' definition.
2867 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2868                                      std::pair<Type *, LocTy> &Entry,
2869                                      Type *&ResultTy) {
2870   // If the type was already defined, diagnose the redefinition.
2871   if (Entry.first && !Entry.second.isValid())
2872     return error(TypeLoc, "redefinition of type");
2873 
2874   // If we have opaque, just return without filling in the definition for the
2875   // struct.  This counts as a definition as far as the .ll file goes.
2876   if (EatIfPresent(lltok::kw_opaque)) {
2877     // This type is being defined, so clear the location to indicate this.
2878     Entry.second = SMLoc();
2879 
2880     // If this type number has never been uttered, create it.
2881     if (!Entry.first)
2882       Entry.first = StructType::create(Context, Name);
2883     ResultTy = Entry.first;
2884     return false;
2885   }
2886 
2887   // If the type starts with '<', then it is either a packed struct or a vector.
2888   bool isPacked = EatIfPresent(lltok::less);
2889 
2890   // If we don't have a struct, then we have a random type alias, which we
2891   // accept for compatibility with old files.  These types are not allowed to be
2892   // forward referenced and not allowed to be recursive.
2893   if (Lex.getKind() != lltok::lbrace) {
2894     if (Entry.first)
2895       return error(TypeLoc, "forward references to non-struct type");
2896 
2897     ResultTy = nullptr;
2898     if (isPacked)
2899       return parseArrayVectorType(ResultTy, true);
2900     return parseType(ResultTy);
2901   }
2902 
2903   // This type is being defined, so clear the location to indicate this.
2904   Entry.second = SMLoc();
2905 
2906   // If this type number has never been uttered, create it.
2907   if (!Entry.first)
2908     Entry.first = StructType::create(Context, Name);
2909 
2910   StructType *STy = cast<StructType>(Entry.first);
2911 
2912   SmallVector<Type*, 8> Body;
2913   if (parseStructBody(Body) ||
2914       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2915     return true;
2916 
2917   STy->setBody(Body, isPacked);
2918   ResultTy = STy;
2919   return false;
2920 }
2921 
2922 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2923 ///   StructType
2924 ///     ::= '{' '}'
2925 ///     ::= '{' Type (',' Type)* '}'
2926 ///     ::= '<' '{' '}' '>'
2927 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2928 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2929   assert(Lex.getKind() == lltok::lbrace);
2930   Lex.Lex(); // Consume the '{'
2931 
2932   // Handle the empty struct.
2933   if (EatIfPresent(lltok::rbrace))
2934     return false;
2935 
2936   LocTy EltTyLoc = Lex.getLoc();
2937   Type *Ty = nullptr;
2938   if (parseType(Ty))
2939     return true;
2940   Body.push_back(Ty);
2941 
2942   if (!StructType::isValidElementType(Ty))
2943     return error(EltTyLoc, "invalid element type for struct");
2944 
2945   while (EatIfPresent(lltok::comma)) {
2946     EltTyLoc = Lex.getLoc();
2947     if (parseType(Ty))
2948       return true;
2949 
2950     if (!StructType::isValidElementType(Ty))
2951       return error(EltTyLoc, "invalid element type for struct");
2952 
2953     Body.push_back(Ty);
2954   }
2955 
2956   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2957 }
2958 
2959 /// parseArrayVectorType - parse an array or vector type, assuming the first
2960 /// token has already been consumed.
2961 ///   Type
2962 ///     ::= '[' APSINTVAL 'x' Types ']'
2963 ///     ::= '<' APSINTVAL 'x' Types '>'
2964 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2965 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2966   bool Scalable = false;
2967 
2968   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2969     Lex.Lex(); // consume the 'vscale'
2970     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2971       return true;
2972 
2973     Scalable = true;
2974   }
2975 
2976   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2977       Lex.getAPSIntVal().getBitWidth() > 64)
2978     return tokError("expected number in address space");
2979 
2980   LocTy SizeLoc = Lex.getLoc();
2981   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2982   Lex.Lex();
2983 
2984   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2985     return true;
2986 
2987   LocTy TypeLoc = Lex.getLoc();
2988   Type *EltTy = nullptr;
2989   if (parseType(EltTy))
2990     return true;
2991 
2992   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2993                  "expected end of sequential type"))
2994     return true;
2995 
2996   if (IsVector) {
2997     if (Size == 0)
2998       return error(SizeLoc, "zero element vector is illegal");
2999     if ((unsigned)Size != Size)
3000       return error(SizeLoc, "size too large for vector");
3001     if (!VectorType::isValidElementType(EltTy))
3002       return error(TypeLoc, "invalid vector element type");
3003     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3004   } else {
3005     if (!ArrayType::isValidElementType(EltTy))
3006       return error(TypeLoc, "invalid array element type");
3007     Result = ArrayType::get(EltTy, Size);
3008   }
3009   return false;
3010 }
3011 
3012 //===----------------------------------------------------------------------===//
3013 // Function Semantic Analysis.
3014 //===----------------------------------------------------------------------===//
3015 
3016 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3017                                              int functionNumber)
3018   : P(p), F(f), FunctionNumber(functionNumber) {
3019 
3020   // Insert unnamed arguments into the NumberedVals list.
3021   for (Argument &A : F.args())
3022     if (!A.hasName())
3023       NumberedVals.push_back(&A);
3024 }
3025 
3026 LLParser::PerFunctionState::~PerFunctionState() {
3027   // If there were any forward referenced non-basicblock values, delete them.
3028 
3029   for (const auto &P : ForwardRefVals) {
3030     if (isa<BasicBlock>(P.second.first))
3031       continue;
3032     P.second.first->replaceAllUsesWith(
3033         UndefValue::get(P.second.first->getType()));
3034     P.second.first->deleteValue();
3035   }
3036 
3037   for (const auto &P : ForwardRefValIDs) {
3038     if (isa<BasicBlock>(P.second.first))
3039       continue;
3040     P.second.first->replaceAllUsesWith(
3041         UndefValue::get(P.second.first->getType()));
3042     P.second.first->deleteValue();
3043   }
3044 }
3045 
3046 bool LLParser::PerFunctionState::finishFunction() {
3047   if (!ForwardRefVals.empty())
3048     return P.error(ForwardRefVals.begin()->second.second,
3049                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3050                        "'");
3051   if (!ForwardRefValIDs.empty())
3052     return P.error(ForwardRefValIDs.begin()->second.second,
3053                    "use of undefined value '%" +
3054                        Twine(ForwardRefValIDs.begin()->first) + "'");
3055   return false;
3056 }
3057 
3058 /// getVal - Get a value with the specified name or ID, creating a
3059 /// forward reference record if needed.  This can return null if the value
3060 /// exists but does not have the right type.
3061 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3062                                           LocTy Loc, bool IsCall) {
3063   // Look this name up in the normal function symbol table.
3064   Value *Val = F.getValueSymbolTable()->lookup(Name);
3065 
3066   // If this is a forward reference for the value, see if we already created a
3067   // forward ref record.
3068   if (!Val) {
3069     auto I = ForwardRefVals.find(Name);
3070     if (I != ForwardRefVals.end())
3071       Val = I->second.first;
3072   }
3073 
3074   // If we have the value in the symbol table or fwd-ref table, return it.
3075   if (Val)
3076     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3077 
3078   // Don't make placeholders with invalid type.
3079   if (!Ty->isFirstClassType()) {
3080     P.error(Loc, "invalid use of a non-first-class type");
3081     return nullptr;
3082   }
3083 
3084   // Otherwise, create a new forward reference for this value and remember it.
3085   Value *FwdVal;
3086   if (Ty->isLabelTy()) {
3087     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3088   } else {
3089     FwdVal = new Argument(Ty, Name);
3090   }
3091 
3092   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3093   return FwdVal;
3094 }
3095 
3096 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3097                                           bool IsCall) {
3098   // Look this name up in the normal function symbol table.
3099   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3100 
3101   // If this is a forward reference for the value, see if we already created a
3102   // forward ref record.
3103   if (!Val) {
3104     auto I = ForwardRefValIDs.find(ID);
3105     if (I != ForwardRefValIDs.end())
3106       Val = I->second.first;
3107   }
3108 
3109   // If we have the value in the symbol table or fwd-ref table, return it.
3110   if (Val)
3111     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3112 
3113   if (!Ty->isFirstClassType()) {
3114     P.error(Loc, "invalid use of a non-first-class type");
3115     return nullptr;
3116   }
3117 
3118   // Otherwise, create a new forward reference for this value and remember it.
3119   Value *FwdVal;
3120   if (Ty->isLabelTy()) {
3121     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3122   } else {
3123     FwdVal = new Argument(Ty);
3124   }
3125 
3126   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3127   return FwdVal;
3128 }
3129 
3130 /// setInstName - After an instruction is parsed and inserted into its
3131 /// basic block, this installs its name.
3132 bool LLParser::PerFunctionState::setInstName(int NameID,
3133                                              const std::string &NameStr,
3134                                              LocTy NameLoc, Instruction *Inst) {
3135   // If this instruction has void type, it cannot have a name or ID specified.
3136   if (Inst->getType()->isVoidTy()) {
3137     if (NameID != -1 || !NameStr.empty())
3138       return P.error(NameLoc, "instructions returning void cannot have a name");
3139     return false;
3140   }
3141 
3142   // If this was a numbered instruction, verify that the instruction is the
3143   // expected value and resolve any forward references.
3144   if (NameStr.empty()) {
3145     // If neither a name nor an ID was specified, just use the next ID.
3146     if (NameID == -1)
3147       NameID = NumberedVals.size();
3148 
3149     if (unsigned(NameID) != NumberedVals.size())
3150       return P.error(NameLoc, "instruction expected to be numbered '%" +
3151                                   Twine(NumberedVals.size()) + "'");
3152 
3153     auto FI = ForwardRefValIDs.find(NameID);
3154     if (FI != ForwardRefValIDs.end()) {
3155       Value *Sentinel = FI->second.first;
3156       if (Sentinel->getType() != Inst->getType())
3157         return P.error(NameLoc, "instruction forward referenced with type '" +
3158                                     getTypeString(FI->second.first->getType()) +
3159                                     "'");
3160 
3161       Sentinel->replaceAllUsesWith(Inst);
3162       Sentinel->deleteValue();
3163       ForwardRefValIDs.erase(FI);
3164     }
3165 
3166     NumberedVals.push_back(Inst);
3167     return false;
3168   }
3169 
3170   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3171   auto FI = ForwardRefVals.find(NameStr);
3172   if (FI != ForwardRefVals.end()) {
3173     Value *Sentinel = FI->second.first;
3174     if (Sentinel->getType() != Inst->getType())
3175       return P.error(NameLoc, "instruction forward referenced with type '" +
3176                                   getTypeString(FI->second.first->getType()) +
3177                                   "'");
3178 
3179     Sentinel->replaceAllUsesWith(Inst);
3180     Sentinel->deleteValue();
3181     ForwardRefVals.erase(FI);
3182   }
3183 
3184   // Set the name on the instruction.
3185   Inst->setName(NameStr);
3186 
3187   if (Inst->getName() != NameStr)
3188     return P.error(NameLoc, "multiple definition of local value named '" +
3189                                 NameStr + "'");
3190   return false;
3191 }
3192 
3193 /// getBB - Get a basic block with the specified name or ID, creating a
3194 /// forward reference record if needed.
3195 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3196                                               LocTy Loc) {
3197   return dyn_cast_or_null<BasicBlock>(
3198       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3199 }
3200 
3201 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3202   return dyn_cast_or_null<BasicBlock>(
3203       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3204 }
3205 
3206 /// defineBB - Define the specified basic block, which is either named or
3207 /// unnamed.  If there is an error, this returns null otherwise it returns
3208 /// the block being defined.
3209 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3210                                                  int NameID, LocTy Loc) {
3211   BasicBlock *BB;
3212   if (Name.empty()) {
3213     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3214       P.error(Loc, "label expected to be numbered '" +
3215                        Twine(NumberedVals.size()) + "'");
3216       return nullptr;
3217     }
3218     BB = getBB(NumberedVals.size(), Loc);
3219     if (!BB) {
3220       P.error(Loc, "unable to create block numbered '" +
3221                        Twine(NumberedVals.size()) + "'");
3222       return nullptr;
3223     }
3224   } else {
3225     BB = getBB(Name, Loc);
3226     if (!BB) {
3227       P.error(Loc, "unable to create block named '" + Name + "'");
3228       return nullptr;
3229     }
3230   }
3231 
3232   // Move the block to the end of the function.  Forward ref'd blocks are
3233   // inserted wherever they happen to be referenced.
3234   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3235 
3236   // Remove the block from forward ref sets.
3237   if (Name.empty()) {
3238     ForwardRefValIDs.erase(NumberedVals.size());
3239     NumberedVals.push_back(BB);
3240   } else {
3241     // BB forward references are already in the function symbol table.
3242     ForwardRefVals.erase(Name);
3243   }
3244 
3245   return BB;
3246 }
3247 
3248 //===----------------------------------------------------------------------===//
3249 // Constants.
3250 //===----------------------------------------------------------------------===//
3251 
3252 /// parseValID - parse an abstract value that doesn't necessarily have a
3253 /// type implied.  For example, if we parse "4" we don't know what integer type
3254 /// it has.  The value will later be combined with its type and checked for
3255 /// sanity.  PFS is used to convert function-local operands of metadata (since
3256 /// metadata operands are not just parsed here but also converted to values).
3257 /// PFS can be null when we are not parsing metadata values inside a function.
3258 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3259   ID.Loc = Lex.getLoc();
3260   switch (Lex.getKind()) {
3261   default:
3262     return tokError("expected value token");
3263   case lltok::GlobalID:  // @42
3264     ID.UIntVal = Lex.getUIntVal();
3265     ID.Kind = ValID::t_GlobalID;
3266     break;
3267   case lltok::GlobalVar:  // @foo
3268     ID.StrVal = Lex.getStrVal();
3269     ID.Kind = ValID::t_GlobalName;
3270     break;
3271   case lltok::LocalVarID:  // %42
3272     ID.UIntVal = Lex.getUIntVal();
3273     ID.Kind = ValID::t_LocalID;
3274     break;
3275   case lltok::LocalVar:  // %foo
3276     ID.StrVal = Lex.getStrVal();
3277     ID.Kind = ValID::t_LocalName;
3278     break;
3279   case lltok::APSInt:
3280     ID.APSIntVal = Lex.getAPSIntVal();
3281     ID.Kind = ValID::t_APSInt;
3282     break;
3283   case lltok::APFloat:
3284     ID.APFloatVal = Lex.getAPFloatVal();
3285     ID.Kind = ValID::t_APFloat;
3286     break;
3287   case lltok::kw_true:
3288     ID.ConstantVal = ConstantInt::getTrue(Context);
3289     ID.Kind = ValID::t_Constant;
3290     break;
3291   case lltok::kw_false:
3292     ID.ConstantVal = ConstantInt::getFalse(Context);
3293     ID.Kind = ValID::t_Constant;
3294     break;
3295   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3296   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3297   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3298   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3299 
3300   case lltok::lbrace: {
3301     // ValID ::= '{' ConstVector '}'
3302     Lex.Lex();
3303     SmallVector<Constant*, 16> Elts;
3304     if (parseGlobalValueVector(Elts) ||
3305         parseToken(lltok::rbrace, "expected end of struct constant"))
3306       return true;
3307 
3308     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3309     ID.UIntVal = Elts.size();
3310     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3311            Elts.size() * sizeof(Elts[0]));
3312     ID.Kind = ValID::t_ConstantStruct;
3313     return false;
3314   }
3315   case lltok::less: {
3316     // ValID ::= '<' ConstVector '>'         --> Vector.
3317     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3318     Lex.Lex();
3319     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3320 
3321     SmallVector<Constant*, 16> Elts;
3322     LocTy FirstEltLoc = Lex.getLoc();
3323     if (parseGlobalValueVector(Elts) ||
3324         (isPackedStruct &&
3325          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3326         parseToken(lltok::greater, "expected end of constant"))
3327       return true;
3328 
3329     if (isPackedStruct) {
3330       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3331       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3332              Elts.size() * sizeof(Elts[0]));
3333       ID.UIntVal = Elts.size();
3334       ID.Kind = ValID::t_PackedConstantStruct;
3335       return false;
3336     }
3337 
3338     if (Elts.empty())
3339       return error(ID.Loc, "constant vector must not be empty");
3340 
3341     if (!Elts[0]->getType()->isIntegerTy() &&
3342         !Elts[0]->getType()->isFloatingPointTy() &&
3343         !Elts[0]->getType()->isPointerTy())
3344       return error(
3345           FirstEltLoc,
3346           "vector elements must have integer, pointer or floating point type");
3347 
3348     // Verify that all the vector elements have the same type.
3349     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3350       if (Elts[i]->getType() != Elts[0]->getType())
3351         return error(FirstEltLoc, "vector element #" + Twine(i) +
3352                                       " is not of type '" +
3353                                       getTypeString(Elts[0]->getType()));
3354 
3355     ID.ConstantVal = ConstantVector::get(Elts);
3356     ID.Kind = ValID::t_Constant;
3357     return false;
3358   }
3359   case lltok::lsquare: {   // Array Constant
3360     Lex.Lex();
3361     SmallVector<Constant*, 16> Elts;
3362     LocTy FirstEltLoc = Lex.getLoc();
3363     if (parseGlobalValueVector(Elts) ||
3364         parseToken(lltok::rsquare, "expected end of array constant"))
3365       return true;
3366 
3367     // Handle empty element.
3368     if (Elts.empty()) {
3369       // Use undef instead of an array because it's inconvenient to determine
3370       // the element type at this point, there being no elements to examine.
3371       ID.Kind = ValID::t_EmptyArray;
3372       return false;
3373     }
3374 
3375     if (!Elts[0]->getType()->isFirstClassType())
3376       return error(FirstEltLoc, "invalid array element type: " +
3377                                     getTypeString(Elts[0]->getType()));
3378 
3379     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3380 
3381     // Verify all elements are correct type!
3382     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3383       if (Elts[i]->getType() != Elts[0]->getType())
3384         return error(FirstEltLoc, "array element #" + Twine(i) +
3385                                       " is not of type '" +
3386                                       getTypeString(Elts[0]->getType()));
3387     }
3388 
3389     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3390     ID.Kind = ValID::t_Constant;
3391     return false;
3392   }
3393   case lltok::kw_c:  // c "foo"
3394     Lex.Lex();
3395     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3396                                                   false);
3397     if (parseToken(lltok::StringConstant, "expected string"))
3398       return true;
3399     ID.Kind = ValID::t_Constant;
3400     return false;
3401 
3402   case lltok::kw_asm: {
3403     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3404     //             STRINGCONSTANT
3405     bool HasSideEffect, AlignStack, AsmDialect;
3406     Lex.Lex();
3407     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3408         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3409         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3410         parseStringConstant(ID.StrVal) ||
3411         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3412         parseToken(lltok::StringConstant, "expected constraint string"))
3413       return true;
3414     ID.StrVal2 = Lex.getStrVal();
3415     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3416       (unsigned(AsmDialect)<<2);
3417     ID.Kind = ValID::t_InlineAsm;
3418     return false;
3419   }
3420 
3421   case lltok::kw_blockaddress: {
3422     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3423     Lex.Lex();
3424 
3425     ValID Fn, Label;
3426 
3427     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3428         parseValID(Fn) ||
3429         parseToken(lltok::comma,
3430                    "expected comma in block address expression") ||
3431         parseValID(Label) ||
3432         parseToken(lltok::rparen, "expected ')' in block address expression"))
3433       return true;
3434 
3435     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3436       return error(Fn.Loc, "expected function name in blockaddress");
3437     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3438       return error(Label.Loc, "expected basic block name in blockaddress");
3439 
3440     // Try to find the function (but skip it if it's forward-referenced).
3441     GlobalValue *GV = nullptr;
3442     if (Fn.Kind == ValID::t_GlobalID) {
3443       if (Fn.UIntVal < NumberedVals.size())
3444         GV = NumberedVals[Fn.UIntVal];
3445     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3446       GV = M->getNamedValue(Fn.StrVal);
3447     }
3448     Function *F = nullptr;
3449     if (GV) {
3450       // Confirm that it's actually a function with a definition.
3451       if (!isa<Function>(GV))
3452         return error(Fn.Loc, "expected function name in blockaddress");
3453       F = cast<Function>(GV);
3454       if (F->isDeclaration())
3455         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3456     }
3457 
3458     if (!F) {
3459       // Make a global variable as a placeholder for this reference.
3460       GlobalValue *&FwdRef =
3461           ForwardRefBlockAddresses.insert(std::make_pair(
3462                                               std::move(Fn),
3463                                               std::map<ValID, GlobalValue *>()))
3464               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3465               .first->second;
3466       if (!FwdRef)
3467         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3468                                     GlobalValue::InternalLinkage, nullptr, "");
3469       ID.ConstantVal = FwdRef;
3470       ID.Kind = ValID::t_Constant;
3471       return false;
3472     }
3473 
3474     // We found the function; now find the basic block.  Don't use PFS, since we
3475     // might be inside a constant expression.
3476     BasicBlock *BB;
3477     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3478       if (Label.Kind == ValID::t_LocalID)
3479         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3480       else
3481         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3482       if (!BB)
3483         return error(Label.Loc, "referenced value is not a basic block");
3484     } else {
3485       if (Label.Kind == ValID::t_LocalID)
3486         return error(Label.Loc, "cannot take address of numeric label after "
3487                                 "the function is defined");
3488       BB = dyn_cast_or_null<BasicBlock>(
3489           F->getValueSymbolTable()->lookup(Label.StrVal));
3490       if (!BB)
3491         return error(Label.Loc, "referenced value is not a basic block");
3492     }
3493 
3494     ID.ConstantVal = BlockAddress::get(F, BB);
3495     ID.Kind = ValID::t_Constant;
3496     return false;
3497   }
3498 
3499   case lltok::kw_trunc:
3500   case lltok::kw_zext:
3501   case lltok::kw_sext:
3502   case lltok::kw_fptrunc:
3503   case lltok::kw_fpext:
3504   case lltok::kw_bitcast:
3505   case lltok::kw_addrspacecast:
3506   case lltok::kw_uitofp:
3507   case lltok::kw_sitofp:
3508   case lltok::kw_fptoui:
3509   case lltok::kw_fptosi:
3510   case lltok::kw_inttoptr:
3511   case lltok::kw_ptrtoint: {
3512     unsigned Opc = Lex.getUIntVal();
3513     Type *DestTy = nullptr;
3514     Constant *SrcVal;
3515     Lex.Lex();
3516     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3517         parseGlobalTypeAndValue(SrcVal) ||
3518         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3519         parseType(DestTy) ||
3520         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3521       return true;
3522     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3523       return error(ID.Loc, "invalid cast opcode for cast from '" +
3524                                getTypeString(SrcVal->getType()) + "' to '" +
3525                                getTypeString(DestTy) + "'");
3526     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3527                                                  SrcVal, DestTy);
3528     ID.Kind = ValID::t_Constant;
3529     return false;
3530   }
3531   case lltok::kw_extractvalue: {
3532     Lex.Lex();
3533     Constant *Val;
3534     SmallVector<unsigned, 4> Indices;
3535     if (parseToken(lltok::lparen,
3536                    "expected '(' in extractvalue constantexpr") ||
3537         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3538         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3539       return true;
3540 
3541     if (!Val->getType()->isAggregateType())
3542       return error(ID.Loc, "extractvalue operand must be aggregate type");
3543     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3544       return error(ID.Loc, "invalid indices for extractvalue");
3545     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3546     ID.Kind = ValID::t_Constant;
3547     return false;
3548   }
3549   case lltok::kw_insertvalue: {
3550     Lex.Lex();
3551     Constant *Val0, *Val1;
3552     SmallVector<unsigned, 4> Indices;
3553     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3554         parseGlobalTypeAndValue(Val0) ||
3555         parseToken(lltok::comma,
3556                    "expected comma in insertvalue constantexpr") ||
3557         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3558         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3559       return true;
3560     if (!Val0->getType()->isAggregateType())
3561       return error(ID.Loc, "insertvalue operand must be aggregate type");
3562     Type *IndexedType =
3563         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3564     if (!IndexedType)
3565       return error(ID.Loc, "invalid indices for insertvalue");
3566     if (IndexedType != Val1->getType())
3567       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3568                                getTypeString(Val1->getType()) +
3569                                "' instead of '" + getTypeString(IndexedType) +
3570                                "'");
3571     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3572     ID.Kind = ValID::t_Constant;
3573     return false;
3574   }
3575   case lltok::kw_icmp:
3576   case lltok::kw_fcmp: {
3577     unsigned PredVal, Opc = Lex.getUIntVal();
3578     Constant *Val0, *Val1;
3579     Lex.Lex();
3580     if (parseCmpPredicate(PredVal, Opc) ||
3581         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3582         parseGlobalTypeAndValue(Val0) ||
3583         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3584         parseGlobalTypeAndValue(Val1) ||
3585         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3586       return true;
3587 
3588     if (Val0->getType() != Val1->getType())
3589       return error(ID.Loc, "compare operands must have the same type");
3590 
3591     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3592 
3593     if (Opc == Instruction::FCmp) {
3594       if (!Val0->getType()->isFPOrFPVectorTy())
3595         return error(ID.Loc, "fcmp requires floating point operands");
3596       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3597     } else {
3598       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3599       if (!Val0->getType()->isIntOrIntVectorTy() &&
3600           !Val0->getType()->isPtrOrPtrVectorTy())
3601         return error(ID.Loc, "icmp requires pointer or integer operands");
3602       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3603     }
3604     ID.Kind = ValID::t_Constant;
3605     return false;
3606   }
3607 
3608   // Unary Operators.
3609   case lltok::kw_fneg: {
3610     unsigned Opc = Lex.getUIntVal();
3611     Constant *Val;
3612     Lex.Lex();
3613     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3614         parseGlobalTypeAndValue(Val) ||
3615         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3616       return true;
3617 
3618     // Check that the type is valid for the operator.
3619     switch (Opc) {
3620     case Instruction::FNeg:
3621       if (!Val->getType()->isFPOrFPVectorTy())
3622         return error(ID.Loc, "constexpr requires fp operands");
3623       break;
3624     default: llvm_unreachable("Unknown unary operator!");
3625     }
3626     unsigned Flags = 0;
3627     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3628     ID.ConstantVal = C;
3629     ID.Kind = ValID::t_Constant;
3630     return false;
3631   }
3632   // Binary Operators.
3633   case lltok::kw_add:
3634   case lltok::kw_fadd:
3635   case lltok::kw_sub:
3636   case lltok::kw_fsub:
3637   case lltok::kw_mul:
3638   case lltok::kw_fmul:
3639   case lltok::kw_udiv:
3640   case lltok::kw_sdiv:
3641   case lltok::kw_fdiv:
3642   case lltok::kw_urem:
3643   case lltok::kw_srem:
3644   case lltok::kw_frem:
3645   case lltok::kw_shl:
3646   case lltok::kw_lshr:
3647   case lltok::kw_ashr: {
3648     bool NUW = false;
3649     bool NSW = false;
3650     bool Exact = false;
3651     unsigned Opc = Lex.getUIntVal();
3652     Constant *Val0, *Val1;
3653     Lex.Lex();
3654     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3655         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3656       if (EatIfPresent(lltok::kw_nuw))
3657         NUW = true;
3658       if (EatIfPresent(lltok::kw_nsw)) {
3659         NSW = true;
3660         if (EatIfPresent(lltok::kw_nuw))
3661           NUW = true;
3662       }
3663     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3664                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3665       if (EatIfPresent(lltok::kw_exact))
3666         Exact = true;
3667     }
3668     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3669         parseGlobalTypeAndValue(Val0) ||
3670         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3671         parseGlobalTypeAndValue(Val1) ||
3672         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3673       return true;
3674     if (Val0->getType() != Val1->getType())
3675       return error(ID.Loc, "operands of constexpr must have same type");
3676     // Check that the type is valid for the operator.
3677     switch (Opc) {
3678     case Instruction::Add:
3679     case Instruction::Sub:
3680     case Instruction::Mul:
3681     case Instruction::UDiv:
3682     case Instruction::SDiv:
3683     case Instruction::URem:
3684     case Instruction::SRem:
3685     case Instruction::Shl:
3686     case Instruction::AShr:
3687     case Instruction::LShr:
3688       if (!Val0->getType()->isIntOrIntVectorTy())
3689         return error(ID.Loc, "constexpr requires integer operands");
3690       break;
3691     case Instruction::FAdd:
3692     case Instruction::FSub:
3693     case Instruction::FMul:
3694     case Instruction::FDiv:
3695     case Instruction::FRem:
3696       if (!Val0->getType()->isFPOrFPVectorTy())
3697         return error(ID.Loc, "constexpr requires fp operands");
3698       break;
3699     default: llvm_unreachable("Unknown binary operator!");
3700     }
3701     unsigned Flags = 0;
3702     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3703     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3704     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3705     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3706     ID.ConstantVal = C;
3707     ID.Kind = ValID::t_Constant;
3708     return false;
3709   }
3710 
3711   // Logical Operations
3712   case lltok::kw_and:
3713   case lltok::kw_or:
3714   case lltok::kw_xor: {
3715     unsigned Opc = Lex.getUIntVal();
3716     Constant *Val0, *Val1;
3717     Lex.Lex();
3718     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3719         parseGlobalTypeAndValue(Val0) ||
3720         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3721         parseGlobalTypeAndValue(Val1) ||
3722         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3723       return true;
3724     if (Val0->getType() != Val1->getType())
3725       return error(ID.Loc, "operands of constexpr must have same type");
3726     if (!Val0->getType()->isIntOrIntVectorTy())
3727       return error(ID.Loc,
3728                    "constexpr requires integer or integer vector operands");
3729     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3730     ID.Kind = ValID::t_Constant;
3731     return false;
3732   }
3733 
3734   case lltok::kw_getelementptr:
3735   case lltok::kw_shufflevector:
3736   case lltok::kw_insertelement:
3737   case lltok::kw_extractelement:
3738   case lltok::kw_select: {
3739     unsigned Opc = Lex.getUIntVal();
3740     SmallVector<Constant*, 16> Elts;
3741     bool InBounds = false;
3742     Type *Ty;
3743     Lex.Lex();
3744 
3745     if (Opc == Instruction::GetElementPtr)
3746       InBounds = EatIfPresent(lltok::kw_inbounds);
3747 
3748     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3749       return true;
3750 
3751     LocTy ExplicitTypeLoc = Lex.getLoc();
3752     if (Opc == Instruction::GetElementPtr) {
3753       if (parseType(Ty) ||
3754           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3755         return true;
3756     }
3757 
3758     Optional<unsigned> InRangeOp;
3759     if (parseGlobalValueVector(
3760             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3761         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3762       return true;
3763 
3764     if (Opc == Instruction::GetElementPtr) {
3765       if (Elts.size() == 0 ||
3766           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3767         return error(ID.Loc, "base of getelementptr must be a pointer");
3768 
3769       Type *BaseType = Elts[0]->getType();
3770       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3771       if (Ty != BasePointerType->getElementType())
3772         return error(
3773             ExplicitTypeLoc,
3774             "explicit pointee type doesn't match operand's pointee type");
3775 
3776       unsigned GEPWidth =
3777           BaseType->isVectorTy()
3778               ? cast<FixedVectorType>(BaseType)->getNumElements()
3779               : 0;
3780 
3781       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3782       for (Constant *Val : Indices) {
3783         Type *ValTy = Val->getType();
3784         if (!ValTy->isIntOrIntVectorTy())
3785           return error(ID.Loc, "getelementptr index must be an integer");
3786         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3787           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3788           if (GEPWidth && (ValNumEl != GEPWidth))
3789             return error(
3790                 ID.Loc,
3791                 "getelementptr vector index has a wrong number of elements");
3792           // GEPWidth may have been unknown because the base is a scalar,
3793           // but it is known now.
3794           GEPWidth = ValNumEl;
3795         }
3796       }
3797 
3798       SmallPtrSet<Type*, 4> Visited;
3799       if (!Indices.empty() && !Ty->isSized(&Visited))
3800         return error(ID.Loc, "base element of getelementptr must be sized");
3801 
3802       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3803         return error(ID.Loc, "invalid getelementptr indices");
3804 
3805       if (InRangeOp) {
3806         if (*InRangeOp == 0)
3807           return error(ID.Loc,
3808                        "inrange keyword may not appear on pointer operand");
3809         --*InRangeOp;
3810       }
3811 
3812       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3813                                                       InBounds, InRangeOp);
3814     } else if (Opc == Instruction::Select) {
3815       if (Elts.size() != 3)
3816         return error(ID.Loc, "expected three operands to select");
3817       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3818                                                               Elts[2]))
3819         return error(ID.Loc, Reason);
3820       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3821     } else if (Opc == Instruction::ShuffleVector) {
3822       if (Elts.size() != 3)
3823         return error(ID.Loc, "expected three operands to shufflevector");
3824       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3825         return error(ID.Loc, "invalid operands to shufflevector");
3826       SmallVector<int, 16> Mask;
3827       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3828       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3829     } else if (Opc == Instruction::ExtractElement) {
3830       if (Elts.size() != 2)
3831         return error(ID.Loc, "expected two operands to extractelement");
3832       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3833         return error(ID.Loc, "invalid extractelement operands");
3834       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3835     } else {
3836       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3837       if (Elts.size() != 3)
3838         return error(ID.Loc, "expected three operands to insertelement");
3839       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3840         return error(ID.Loc, "invalid insertelement operands");
3841       ID.ConstantVal =
3842                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3843     }
3844 
3845     ID.Kind = ValID::t_Constant;
3846     return false;
3847   }
3848   }
3849 
3850   Lex.Lex();
3851   return false;
3852 }
3853 
3854 /// parseGlobalValue - parse a global value with the specified type.
3855 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3856   C = nullptr;
3857   ValID ID;
3858   Value *V = nullptr;
3859   bool Parsed = parseValID(ID) ||
3860                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3861   if (V && !(C = dyn_cast<Constant>(V)))
3862     return error(ID.Loc, "global values must be constants");
3863   return Parsed;
3864 }
3865 
3866 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3867   Type *Ty = nullptr;
3868   return parseType(Ty) || parseGlobalValue(Ty, V);
3869 }
3870 
3871 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3872   C = nullptr;
3873 
3874   LocTy KwLoc = Lex.getLoc();
3875   if (!EatIfPresent(lltok::kw_comdat))
3876     return false;
3877 
3878   if (EatIfPresent(lltok::lparen)) {
3879     if (Lex.getKind() != lltok::ComdatVar)
3880       return tokError("expected comdat variable");
3881     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3882     Lex.Lex();
3883     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3884       return true;
3885   } else {
3886     if (GlobalName.empty())
3887       return tokError("comdat cannot be unnamed");
3888     C = getComdat(std::string(GlobalName), KwLoc);
3889   }
3890 
3891   return false;
3892 }
3893 
3894 /// parseGlobalValueVector
3895 ///   ::= /*empty*/
3896 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3897 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3898                                       Optional<unsigned> *InRangeOp) {
3899   // Empty list.
3900   if (Lex.getKind() == lltok::rbrace ||
3901       Lex.getKind() == lltok::rsquare ||
3902       Lex.getKind() == lltok::greater ||
3903       Lex.getKind() == lltok::rparen)
3904     return false;
3905 
3906   do {
3907     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3908       *InRangeOp = Elts.size();
3909 
3910     Constant *C;
3911     if (parseGlobalTypeAndValue(C))
3912       return true;
3913     Elts.push_back(C);
3914   } while (EatIfPresent(lltok::comma));
3915 
3916   return false;
3917 }
3918 
3919 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3920   SmallVector<Metadata *, 16> Elts;
3921   if (parseMDNodeVector(Elts))
3922     return true;
3923 
3924   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3925   return false;
3926 }
3927 
3928 /// MDNode:
3929 ///  ::= !{ ... }
3930 ///  ::= !7
3931 ///  ::= !DILocation(...)
3932 bool LLParser::parseMDNode(MDNode *&N) {
3933   if (Lex.getKind() == lltok::MetadataVar)
3934     return parseSpecializedMDNode(N);
3935 
3936   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3937 }
3938 
3939 bool LLParser::parseMDNodeTail(MDNode *&N) {
3940   // !{ ... }
3941   if (Lex.getKind() == lltok::lbrace)
3942     return parseMDTuple(N);
3943 
3944   // !42
3945   return parseMDNodeID(N);
3946 }
3947 
3948 namespace {
3949 
3950 /// Structure to represent an optional metadata field.
3951 template <class FieldTy> struct MDFieldImpl {
3952   typedef MDFieldImpl ImplTy;
3953   FieldTy Val;
3954   bool Seen;
3955 
3956   void assign(FieldTy Val) {
3957     Seen = true;
3958     this->Val = std::move(Val);
3959   }
3960 
3961   explicit MDFieldImpl(FieldTy Default)
3962       : Val(std::move(Default)), Seen(false) {}
3963 };
3964 
3965 /// Structure to represent an optional metadata field that
3966 /// can be of either type (A or B) and encapsulates the
3967 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3968 /// to reimplement the specifics for representing each Field.
3969 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3970   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3971   FieldTypeA A;
3972   FieldTypeB B;
3973   bool Seen;
3974 
3975   enum {
3976     IsInvalid = 0,
3977     IsTypeA = 1,
3978     IsTypeB = 2
3979   } WhatIs;
3980 
3981   void assign(FieldTypeA A) {
3982     Seen = true;
3983     this->A = std::move(A);
3984     WhatIs = IsTypeA;
3985   }
3986 
3987   void assign(FieldTypeB B) {
3988     Seen = true;
3989     this->B = std::move(B);
3990     WhatIs = IsTypeB;
3991   }
3992 
3993   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3994       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3995         WhatIs(IsInvalid) {}
3996 };
3997 
3998 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3999   uint64_t Max;
4000 
4001   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4002       : ImplTy(Default), Max(Max) {}
4003 };
4004 
4005 struct LineField : public MDUnsignedField {
4006   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4007 };
4008 
4009 struct ColumnField : public MDUnsignedField {
4010   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4011 };
4012 
4013 struct DwarfTagField : public MDUnsignedField {
4014   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4015   DwarfTagField(dwarf::Tag DefaultTag)
4016       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4017 };
4018 
4019 struct DwarfMacinfoTypeField : public MDUnsignedField {
4020   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4021   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4022     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4023 };
4024 
4025 struct DwarfAttEncodingField : public MDUnsignedField {
4026   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4027 };
4028 
4029 struct DwarfVirtualityField : public MDUnsignedField {
4030   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4031 };
4032 
4033 struct DwarfLangField : public MDUnsignedField {
4034   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4035 };
4036 
4037 struct DwarfCCField : public MDUnsignedField {
4038   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4039 };
4040 
4041 struct EmissionKindField : public MDUnsignedField {
4042   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4043 };
4044 
4045 struct NameTableKindField : public MDUnsignedField {
4046   NameTableKindField()
4047       : MDUnsignedField(
4048             0, (unsigned)
4049                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4050 };
4051 
4052 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4053   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4054 };
4055 
4056 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4057   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4058 };
4059 
4060 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4061   MDAPSIntField() : ImplTy(APSInt()) {}
4062 };
4063 
4064 struct MDSignedField : public MDFieldImpl<int64_t> {
4065   int64_t Min;
4066   int64_t Max;
4067 
4068   MDSignedField(int64_t Default = 0)
4069       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4070   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4071       : ImplTy(Default), Min(Min), Max(Max) {}
4072 };
4073 
4074 struct MDBoolField : public MDFieldImpl<bool> {
4075   MDBoolField(bool Default = false) : ImplTy(Default) {}
4076 };
4077 
4078 struct MDField : public MDFieldImpl<Metadata *> {
4079   bool AllowNull;
4080 
4081   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4082 };
4083 
4084 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4085   MDConstant() : ImplTy(nullptr) {}
4086 };
4087 
4088 struct MDStringField : public MDFieldImpl<MDString *> {
4089   bool AllowEmpty;
4090   MDStringField(bool AllowEmpty = true)
4091       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4092 };
4093 
4094 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4095   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4096 };
4097 
4098 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4099   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4100 };
4101 
4102 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4103   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4104       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4105 
4106   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4107                     bool AllowNull = true)
4108       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4109 
4110   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4111   bool isMDField() const { return WhatIs == IsTypeB; }
4112   int64_t getMDSignedValue() const {
4113     assert(isMDSignedField() && "Wrong field type");
4114     return A.Val;
4115   }
4116   Metadata *getMDFieldValue() const {
4117     assert(isMDField() && "Wrong field type");
4118     return B.Val;
4119   }
4120 };
4121 
4122 struct MDSignedOrUnsignedField
4123     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4124   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4125 
4126   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4127   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4128   int64_t getMDSignedValue() const {
4129     assert(isMDSignedField() && "Wrong field type");
4130     return A.Val;
4131   }
4132   uint64_t getMDUnsignedValue() const {
4133     assert(isMDUnsignedField() && "Wrong field type");
4134     return B.Val;
4135   }
4136 };
4137 
4138 } // end anonymous namespace
4139 
4140 namespace llvm {
4141 
4142 template <>
4143 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4144   if (Lex.getKind() != lltok::APSInt)
4145     return tokError("expected integer");
4146 
4147   Result.assign(Lex.getAPSIntVal());
4148   Lex.Lex();
4149   return false;
4150 }
4151 
4152 template <>
4153 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4154                             MDUnsignedField &Result) {
4155   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4156     return tokError("expected unsigned integer");
4157 
4158   auto &U = Lex.getAPSIntVal();
4159   if (U.ugt(Result.Max))
4160     return tokError("value for '" + Name + "' too large, limit is " +
4161                     Twine(Result.Max));
4162   Result.assign(U.getZExtValue());
4163   assert(Result.Val <= Result.Max && "Expected value in range");
4164   Lex.Lex();
4165   return false;
4166 }
4167 
4168 template <>
4169 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4170   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4171 }
4172 template <>
4173 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4174   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4175 }
4176 
4177 template <>
4178 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4179   if (Lex.getKind() == lltok::APSInt)
4180     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4181 
4182   if (Lex.getKind() != lltok::DwarfTag)
4183     return tokError("expected DWARF tag");
4184 
4185   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4186   if (Tag == dwarf::DW_TAG_invalid)
4187     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4188   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4189 
4190   Result.assign(Tag);
4191   Lex.Lex();
4192   return false;
4193 }
4194 
4195 template <>
4196 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4197                             DwarfMacinfoTypeField &Result) {
4198   if (Lex.getKind() == lltok::APSInt)
4199     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4200 
4201   if (Lex.getKind() != lltok::DwarfMacinfo)
4202     return tokError("expected DWARF macinfo type");
4203 
4204   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4205   if (Macinfo == dwarf::DW_MACINFO_invalid)
4206     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4207                     Lex.getStrVal() + "'");
4208   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4209 
4210   Result.assign(Macinfo);
4211   Lex.Lex();
4212   return false;
4213 }
4214 
4215 template <>
4216 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4217                             DwarfVirtualityField &Result) {
4218   if (Lex.getKind() == lltok::APSInt)
4219     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4220 
4221   if (Lex.getKind() != lltok::DwarfVirtuality)
4222     return tokError("expected DWARF virtuality code");
4223 
4224   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4225   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4226     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4227                     Lex.getStrVal() + "'");
4228   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4229   Result.assign(Virtuality);
4230   Lex.Lex();
4231   return false;
4232 }
4233 
4234 template <>
4235 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4236   if (Lex.getKind() == lltok::APSInt)
4237     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4238 
4239   if (Lex.getKind() != lltok::DwarfLang)
4240     return tokError("expected DWARF language");
4241 
4242   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4243   if (!Lang)
4244     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4245                     "'");
4246   assert(Lang <= Result.Max && "Expected valid DWARF language");
4247   Result.assign(Lang);
4248   Lex.Lex();
4249   return false;
4250 }
4251 
4252 template <>
4253 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4254   if (Lex.getKind() == lltok::APSInt)
4255     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4256 
4257   if (Lex.getKind() != lltok::DwarfCC)
4258     return tokError("expected DWARF calling convention");
4259 
4260   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4261   if (!CC)
4262     return tokError("invalid DWARF calling convention" + Twine(" '") +
4263                     Lex.getStrVal() + "'");
4264   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4265   Result.assign(CC);
4266   Lex.Lex();
4267   return false;
4268 }
4269 
4270 template <>
4271 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4272                             EmissionKindField &Result) {
4273   if (Lex.getKind() == lltok::APSInt)
4274     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4275 
4276   if (Lex.getKind() != lltok::EmissionKind)
4277     return tokError("expected emission kind");
4278 
4279   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4280   if (!Kind)
4281     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4282                     "'");
4283   assert(*Kind <= Result.Max && "Expected valid emission kind");
4284   Result.assign(*Kind);
4285   Lex.Lex();
4286   return false;
4287 }
4288 
4289 template <>
4290 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4291                             NameTableKindField &Result) {
4292   if (Lex.getKind() == lltok::APSInt)
4293     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4294 
4295   if (Lex.getKind() != lltok::NameTableKind)
4296     return tokError("expected nameTable kind");
4297 
4298   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4299   if (!Kind)
4300     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4301                     "'");
4302   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4303   Result.assign((unsigned)*Kind);
4304   Lex.Lex();
4305   return false;
4306 }
4307 
4308 template <>
4309 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4310                             DwarfAttEncodingField &Result) {
4311   if (Lex.getKind() == lltok::APSInt)
4312     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4313 
4314   if (Lex.getKind() != lltok::DwarfAttEncoding)
4315     return tokError("expected DWARF type attribute encoding");
4316 
4317   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4318   if (!Encoding)
4319     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4320                     Lex.getStrVal() + "'");
4321   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4322   Result.assign(Encoding);
4323   Lex.Lex();
4324   return false;
4325 }
4326 
4327 /// DIFlagField
4328 ///  ::= uint32
4329 ///  ::= DIFlagVector
4330 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4331 template <>
4332 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4333 
4334   // parser for a single flag.
4335   auto parseFlag = [&](DINode::DIFlags &Val) {
4336     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4337       uint32_t TempVal = static_cast<uint32_t>(Val);
4338       bool Res = parseUInt32(TempVal);
4339       Val = static_cast<DINode::DIFlags>(TempVal);
4340       return Res;
4341     }
4342 
4343     if (Lex.getKind() != lltok::DIFlag)
4344       return tokError("expected debug info flag");
4345 
4346     Val = DINode::getFlag(Lex.getStrVal());
4347     if (!Val)
4348       return tokError(Twine("invalid debug info flag flag '") +
4349                       Lex.getStrVal() + "'");
4350     Lex.Lex();
4351     return false;
4352   };
4353 
4354   // parse the flags and combine them together.
4355   DINode::DIFlags Combined = DINode::FlagZero;
4356   do {
4357     DINode::DIFlags Val;
4358     if (parseFlag(Val))
4359       return true;
4360     Combined |= Val;
4361   } while (EatIfPresent(lltok::bar));
4362 
4363   Result.assign(Combined);
4364   return false;
4365 }
4366 
4367 /// DISPFlagField
4368 ///  ::= uint32
4369 ///  ::= DISPFlagVector
4370 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4371 template <>
4372 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4373 
4374   // parser for a single flag.
4375   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4376     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4377       uint32_t TempVal = static_cast<uint32_t>(Val);
4378       bool Res = parseUInt32(TempVal);
4379       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4380       return Res;
4381     }
4382 
4383     if (Lex.getKind() != lltok::DISPFlag)
4384       return tokError("expected debug info flag");
4385 
4386     Val = DISubprogram::getFlag(Lex.getStrVal());
4387     if (!Val)
4388       return tokError(Twine("invalid subprogram debug info flag '") +
4389                       Lex.getStrVal() + "'");
4390     Lex.Lex();
4391     return false;
4392   };
4393 
4394   // parse the flags and combine them together.
4395   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4396   do {
4397     DISubprogram::DISPFlags Val;
4398     if (parseFlag(Val))
4399       return true;
4400     Combined |= Val;
4401   } while (EatIfPresent(lltok::bar));
4402 
4403   Result.assign(Combined);
4404   return false;
4405 }
4406 
4407 template <>
4408 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4409   if (Lex.getKind() != lltok::APSInt)
4410     return tokError("expected signed integer");
4411 
4412   auto &S = Lex.getAPSIntVal();
4413   if (S < Result.Min)
4414     return tokError("value for '" + Name + "' too small, limit is " +
4415                     Twine(Result.Min));
4416   if (S > Result.Max)
4417     return tokError("value for '" + Name + "' too large, limit is " +
4418                     Twine(Result.Max));
4419   Result.assign(S.getExtValue());
4420   assert(Result.Val >= Result.Min && "Expected value in range");
4421   assert(Result.Val <= Result.Max && "Expected value in range");
4422   Lex.Lex();
4423   return false;
4424 }
4425 
4426 template <>
4427 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4428   switch (Lex.getKind()) {
4429   default:
4430     return tokError("expected 'true' or 'false'");
4431   case lltok::kw_true:
4432     Result.assign(true);
4433     break;
4434   case lltok::kw_false:
4435     Result.assign(false);
4436     break;
4437   }
4438   Lex.Lex();
4439   return false;
4440 }
4441 
4442 template <>
4443 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4444   if (Lex.getKind() == lltok::kw_null) {
4445     if (!Result.AllowNull)
4446       return tokError("'" + Name + "' cannot be null");
4447     Lex.Lex();
4448     Result.assign(nullptr);
4449     return false;
4450   }
4451 
4452   Metadata *MD;
4453   if (parseMetadata(MD, nullptr))
4454     return true;
4455 
4456   Result.assign(MD);
4457   return false;
4458 }
4459 
4460 template <>
4461 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4462                             MDSignedOrMDField &Result) {
4463   // Try to parse a signed int.
4464   if (Lex.getKind() == lltok::APSInt) {
4465     MDSignedField Res = Result.A;
4466     if (!parseMDField(Loc, Name, Res)) {
4467       Result.assign(Res);
4468       return false;
4469     }
4470     return true;
4471   }
4472 
4473   // Otherwise, try to parse as an MDField.
4474   MDField Res = Result.B;
4475   if (!parseMDField(Loc, Name, Res)) {
4476     Result.assign(Res);
4477     return false;
4478   }
4479 
4480   return true;
4481 }
4482 
4483 template <>
4484 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4485   LocTy ValueLoc = Lex.getLoc();
4486   std::string S;
4487   if (parseStringConstant(S))
4488     return true;
4489 
4490   if (!Result.AllowEmpty && S.empty())
4491     return error(ValueLoc, "'" + Name + "' cannot be empty");
4492 
4493   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4494   return false;
4495 }
4496 
4497 template <>
4498 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4499   SmallVector<Metadata *, 4> MDs;
4500   if (parseMDNodeVector(MDs))
4501     return true;
4502 
4503   Result.assign(std::move(MDs));
4504   return false;
4505 }
4506 
4507 template <>
4508 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4509                             ChecksumKindField &Result) {
4510   Optional<DIFile::ChecksumKind> CSKind =
4511       DIFile::getChecksumKind(Lex.getStrVal());
4512 
4513   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4514     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4515                     "'");
4516 
4517   Result.assign(*CSKind);
4518   Lex.Lex();
4519   return false;
4520 }
4521 
4522 } // end namespace llvm
4523 
4524 template <class ParserTy>
4525 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4526   do {
4527     if (Lex.getKind() != lltok::LabelStr)
4528       return tokError("expected field label here");
4529 
4530     if (ParseField())
4531       return true;
4532   } while (EatIfPresent(lltok::comma));
4533 
4534   return false;
4535 }
4536 
4537 template <class ParserTy>
4538 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4539   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4540   Lex.Lex();
4541 
4542   if (parseToken(lltok::lparen, "expected '(' here"))
4543     return true;
4544   if (Lex.getKind() != lltok::rparen)
4545     if (parseMDFieldsImplBody(ParseField))
4546       return true;
4547 
4548   ClosingLoc = Lex.getLoc();
4549   return parseToken(lltok::rparen, "expected ')' here");
4550 }
4551 
4552 template <class FieldTy>
4553 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4554   if (Result.Seen)
4555     return tokError("field '" + Name + "' cannot be specified more than once");
4556 
4557   LocTy Loc = Lex.getLoc();
4558   Lex.Lex();
4559   return parseMDField(Loc, Name, Result);
4560 }
4561 
4562 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4563   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4564 
4565 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4566   if (Lex.getStrVal() == #CLASS)                                               \
4567     return parse##CLASS(N, IsDistinct);
4568 #include "llvm/IR/Metadata.def"
4569 
4570   return tokError("expected metadata type");
4571 }
4572 
4573 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4574 #define NOP_FIELD(NAME, TYPE, INIT)
4575 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4576   if (!NAME.Seen)                                                              \
4577     return error(ClosingLoc, "missing required field '" #NAME "'");
4578 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4579   if (Lex.getStrVal() == #NAME)                                                \
4580     return parseMDField(#NAME, NAME);
4581 #define PARSE_MD_FIELDS()                                                      \
4582   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4583   do {                                                                         \
4584     LocTy ClosingLoc;                                                          \
4585     if (parseMDFieldsImpl(                                                     \
4586             [&]() -> bool {                                                    \
4587               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4588               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4589                               "'");                                            \
4590             },                                                                 \
4591             ClosingLoc))                                                       \
4592       return true;                                                             \
4593     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4594   } while (false)
4595 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4596   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4597 
4598 /// parseDILocationFields:
4599 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4600 ///   isImplicitCode: true)
4601 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4603   OPTIONAL(line, LineField, );                                                 \
4604   OPTIONAL(column, ColumnField, );                                             \
4605   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4606   OPTIONAL(inlinedAt, MDField, );                                              \
4607   OPTIONAL(isImplicitCode, MDBoolField, (false));
4608   PARSE_MD_FIELDS();
4609 #undef VISIT_MD_FIELDS
4610 
4611   Result =
4612       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4613                                    inlinedAt.Val, isImplicitCode.Val));
4614   return false;
4615 }
4616 
4617 /// parseGenericDINode:
4618 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4619 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4620 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4621   REQUIRED(tag, DwarfTagField, );                                              \
4622   OPTIONAL(header, MDStringField, );                                           \
4623   OPTIONAL(operands, MDFieldList, );
4624   PARSE_MD_FIELDS();
4625 #undef VISIT_MD_FIELDS
4626 
4627   Result = GET_OR_DISTINCT(GenericDINode,
4628                            (Context, tag.Val, header.Val, operands.Val));
4629   return false;
4630 }
4631 
4632 /// parseDISubrange:
4633 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4634 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4635 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4636 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4637 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4638   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4639   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4640   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4641   OPTIONAL(stride, MDSignedOrMDField, );
4642   PARSE_MD_FIELDS();
4643 #undef VISIT_MD_FIELDS
4644 
4645   Metadata *Count = nullptr;
4646   Metadata *LowerBound = nullptr;
4647   Metadata *UpperBound = nullptr;
4648   Metadata *Stride = nullptr;
4649   if (count.isMDSignedField())
4650     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4651         Type::getInt64Ty(Context), count.getMDSignedValue()));
4652   else if (count.isMDField())
4653     Count = count.getMDFieldValue();
4654 
4655   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4656     if (Bound.isMDSignedField())
4657       return ConstantAsMetadata::get(ConstantInt::getSigned(
4658           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4659     if (Bound.isMDField())
4660       return Bound.getMDFieldValue();
4661     return nullptr;
4662   };
4663 
4664   LowerBound = convToMetadata(lowerBound);
4665   UpperBound = convToMetadata(upperBound);
4666   Stride = convToMetadata(stride);
4667 
4668   Result = GET_OR_DISTINCT(DISubrange,
4669                            (Context, Count, LowerBound, UpperBound, Stride));
4670 
4671   return false;
4672 }
4673 
4674 /// parseDIGenericSubrange:
4675 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4676 ///   !node3)
4677 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4679   OPTIONAL(count, MDSignedOrMDField, );                                        \
4680   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4681   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4682   OPTIONAL(stride, MDSignedOrMDField, );
4683   PARSE_MD_FIELDS();
4684 #undef VISIT_MD_FIELDS
4685 
4686   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4687     if (Bound.isMDSignedField())
4688       return DIExpression::get(
4689           Context, {dwarf::DW_OP_consts,
4690                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4691     if (Bound.isMDField())
4692       return Bound.getMDFieldValue();
4693     return nullptr;
4694   };
4695 
4696   Metadata *Count = ConvToMetadata(count);
4697   Metadata *LowerBound = ConvToMetadata(lowerBound);
4698   Metadata *UpperBound = ConvToMetadata(upperBound);
4699   Metadata *Stride = ConvToMetadata(stride);
4700 
4701   Result = GET_OR_DISTINCT(DIGenericSubrange,
4702                            (Context, Count, LowerBound, UpperBound, Stride));
4703 
4704   return false;
4705 }
4706 
4707 /// parseDIEnumerator:
4708 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4709 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4710 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4711   REQUIRED(name, MDStringField, );                                             \
4712   REQUIRED(value, MDAPSIntField, );                                            \
4713   OPTIONAL(isUnsigned, MDBoolField, (false));
4714   PARSE_MD_FIELDS();
4715 #undef VISIT_MD_FIELDS
4716 
4717   if (isUnsigned.Val && value.Val.isNegative())
4718     return tokError("unsigned enumerator with negative value");
4719 
4720   APSInt Value(value.Val);
4721   // Add a leading zero so that unsigned values with the msb set are not
4722   // mistaken for negative values when used for signed enumerators.
4723   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4724     Value = Value.zext(Value.getBitWidth() + 1);
4725 
4726   Result =
4727       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4728 
4729   return false;
4730 }
4731 
4732 /// parseDIBasicType:
4733 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4734 ///                    encoding: DW_ATE_encoding, flags: 0)
4735 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4738   OPTIONAL(name, MDStringField, );                                             \
4739   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4740   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4741   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4742   OPTIONAL(flags, DIFlagField, );
4743   PARSE_MD_FIELDS();
4744 #undef VISIT_MD_FIELDS
4745 
4746   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4747                                          align.Val, encoding.Val, flags.Val));
4748   return false;
4749 }
4750 
4751 /// parseDIStringType:
4752 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4753 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4754 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4755   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4756   OPTIONAL(name, MDStringField, );                                             \
4757   OPTIONAL(stringLength, MDField, );                                           \
4758   OPTIONAL(stringLengthExpression, MDField, );                                 \
4759   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4760   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4761   OPTIONAL(encoding, DwarfAttEncodingField, );
4762   PARSE_MD_FIELDS();
4763 #undef VISIT_MD_FIELDS
4764 
4765   Result = GET_OR_DISTINCT(DIStringType,
4766                            (Context, tag.Val, name.Val, stringLength.Val,
4767                             stringLengthExpression.Val, size.Val, align.Val,
4768                             encoding.Val));
4769   return false;
4770 }
4771 
4772 /// parseDIDerivedType:
4773 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4774 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4775 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4776 ///                      dwarfAddressSpace: 3)
4777 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4778 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4779   REQUIRED(tag, DwarfTagField, );                                              \
4780   OPTIONAL(name, MDStringField, );                                             \
4781   OPTIONAL(file, MDField, );                                                   \
4782   OPTIONAL(line, LineField, );                                                 \
4783   OPTIONAL(scope, MDField, );                                                  \
4784   REQUIRED(baseType, MDField, );                                               \
4785   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4786   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4787   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4788   OPTIONAL(flags, DIFlagField, );                                              \
4789   OPTIONAL(extraData, MDField, );                                              \
4790   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4791   PARSE_MD_FIELDS();
4792 #undef VISIT_MD_FIELDS
4793 
4794   Optional<unsigned> DWARFAddressSpace;
4795   if (dwarfAddressSpace.Val != UINT32_MAX)
4796     DWARFAddressSpace = dwarfAddressSpace.Val;
4797 
4798   Result = GET_OR_DISTINCT(DIDerivedType,
4799                            (Context, tag.Val, name.Val, file.Val, line.Val,
4800                             scope.Val, baseType.Val, size.Val, align.Val,
4801                             offset.Val, DWARFAddressSpace, flags.Val,
4802                             extraData.Val));
4803   return false;
4804 }
4805 
4806 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4808   REQUIRED(tag, DwarfTagField, );                                              \
4809   OPTIONAL(name, MDStringField, );                                             \
4810   OPTIONAL(file, MDField, );                                                   \
4811   OPTIONAL(line, LineField, );                                                 \
4812   OPTIONAL(scope, MDField, );                                                  \
4813   OPTIONAL(baseType, MDField, );                                               \
4814   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4815   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4816   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4817   OPTIONAL(flags, DIFlagField, );                                              \
4818   OPTIONAL(elements, MDField, );                                               \
4819   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4820   OPTIONAL(vtableHolder, MDField, );                                           \
4821   OPTIONAL(templateParams, MDField, );                                         \
4822   OPTIONAL(identifier, MDStringField, );                                       \
4823   OPTIONAL(discriminator, MDField, );                                          \
4824   OPTIONAL(dataLocation, MDField, );                                           \
4825   OPTIONAL(associated, MDField, );                                             \
4826   OPTIONAL(allocated, MDField, );                                              \
4827   OPTIONAL(rank, MDSignedOrMDField, );
4828   PARSE_MD_FIELDS();
4829 #undef VISIT_MD_FIELDS
4830 
4831   Metadata *Rank = nullptr;
4832   if (rank.isMDSignedField())
4833     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4834         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4835   else if (rank.isMDField())
4836     Rank = rank.getMDFieldValue();
4837 
4838   // If this has an identifier try to build an ODR type.
4839   if (identifier.Val)
4840     if (auto *CT = DICompositeType::buildODRType(
4841             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4842             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4843             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4844             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4845             Rank)) {
4846       Result = CT;
4847       return false;
4848     }
4849 
4850   // Create a new node, and save it in the context if it belongs in the type
4851   // map.
4852   Result = GET_OR_DISTINCT(
4853       DICompositeType,
4854       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4855        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4856        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4857        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4858        Rank));
4859   return false;
4860 }
4861 
4862 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4863 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4864   OPTIONAL(flags, DIFlagField, );                                              \
4865   OPTIONAL(cc, DwarfCCField, );                                                \
4866   REQUIRED(types, MDField, );
4867   PARSE_MD_FIELDS();
4868 #undef VISIT_MD_FIELDS
4869 
4870   Result = GET_OR_DISTINCT(DISubroutineType,
4871                            (Context, flags.Val, cc.Val, types.Val));
4872   return false;
4873 }
4874 
4875 /// parseDIFileType:
4876 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4877 ///                   checksumkind: CSK_MD5,
4878 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4879 ///                   source: "source file contents")
4880 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4881   // The default constructed value for checksumkind is required, but will never
4882   // be used, as the parser checks if the field was actually Seen before using
4883   // the Val.
4884 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4885   REQUIRED(filename, MDStringField, );                                         \
4886   REQUIRED(directory, MDStringField, );                                        \
4887   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4888   OPTIONAL(checksum, MDStringField, );                                         \
4889   OPTIONAL(source, MDStringField, );
4890   PARSE_MD_FIELDS();
4891 #undef VISIT_MD_FIELDS
4892 
4893   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4894   if (checksumkind.Seen && checksum.Seen)
4895     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4896   else if (checksumkind.Seen || checksum.Seen)
4897     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4898 
4899   Optional<MDString *> OptSource;
4900   if (source.Seen)
4901     OptSource = source.Val;
4902   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4903                                     OptChecksum, OptSource));
4904   return false;
4905 }
4906 
4907 /// parseDICompileUnit:
4908 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4909 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4910 ///                      splitDebugFilename: "abc.debug",
4911 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4912 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4913 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4914 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4915   if (!IsDistinct)
4916     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4917 
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4919   REQUIRED(language, DwarfLangField, );                                        \
4920   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4921   OPTIONAL(producer, MDStringField, );                                         \
4922   OPTIONAL(isOptimized, MDBoolField, );                                        \
4923   OPTIONAL(flags, MDStringField, );                                            \
4924   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4925   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4926   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4927   OPTIONAL(enums, MDField, );                                                  \
4928   OPTIONAL(retainedTypes, MDField, );                                          \
4929   OPTIONAL(globals, MDField, );                                                \
4930   OPTIONAL(imports, MDField, );                                                \
4931   OPTIONAL(macros, MDField, );                                                 \
4932   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4933   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4934   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4935   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4936   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4937   OPTIONAL(sysroot, MDStringField, );                                          \
4938   OPTIONAL(sdk, MDStringField, );
4939   PARSE_MD_FIELDS();
4940 #undef VISIT_MD_FIELDS
4941 
4942   Result = DICompileUnit::getDistinct(
4943       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4944       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4945       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4946       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4947       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4948   return false;
4949 }
4950 
4951 /// parseDISubprogram:
4952 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4953 ///                     file: !1, line: 7, type: !2, isLocal: false,
4954 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4955 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4956 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4957 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4958 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4959 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4960   auto Loc = Lex.getLoc();
4961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4962   OPTIONAL(scope, MDField, );                                                  \
4963   OPTIONAL(name, MDStringField, );                                             \
4964   OPTIONAL(linkageName, MDStringField, );                                      \
4965   OPTIONAL(file, MDField, );                                                   \
4966   OPTIONAL(line, LineField, );                                                 \
4967   OPTIONAL(type, MDField, );                                                   \
4968   OPTIONAL(isLocal, MDBoolField, );                                            \
4969   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4970   OPTIONAL(scopeLine, LineField, );                                            \
4971   OPTIONAL(containingType, MDField, );                                         \
4972   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4973   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4974   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4975   OPTIONAL(flags, DIFlagField, );                                              \
4976   OPTIONAL(spFlags, DISPFlagField, );                                          \
4977   OPTIONAL(isOptimized, MDBoolField, );                                        \
4978   OPTIONAL(unit, MDField, );                                                   \
4979   OPTIONAL(templateParams, MDField, );                                         \
4980   OPTIONAL(declaration, MDField, );                                            \
4981   OPTIONAL(retainedNodes, MDField, );                                          \
4982   OPTIONAL(thrownTypes, MDField, );
4983   PARSE_MD_FIELDS();
4984 #undef VISIT_MD_FIELDS
4985 
4986   // An explicit spFlags field takes precedence over individual fields in
4987   // older IR versions.
4988   DISubprogram::DISPFlags SPFlags =
4989       spFlags.Seen ? spFlags.Val
4990                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4991                                              isOptimized.Val, virtuality.Val);
4992   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4993     return Lex.Error(
4994         Loc,
4995         "missing 'distinct', required for !DISubprogram that is a Definition");
4996   Result = GET_OR_DISTINCT(
4997       DISubprogram,
4998       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4999        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5000        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5001        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5002   return false;
5003 }
5004 
5005 /// parseDILexicalBlock:
5006 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5007 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5008 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5009   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5010   OPTIONAL(file, MDField, );                                                   \
5011   OPTIONAL(line, LineField, );                                                 \
5012   OPTIONAL(column, ColumnField, );
5013   PARSE_MD_FIELDS();
5014 #undef VISIT_MD_FIELDS
5015 
5016   Result = GET_OR_DISTINCT(
5017       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5018   return false;
5019 }
5020 
5021 /// parseDILexicalBlockFile:
5022 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5023 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5025   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5026   OPTIONAL(file, MDField, );                                                   \
5027   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5028   PARSE_MD_FIELDS();
5029 #undef VISIT_MD_FIELDS
5030 
5031   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5032                            (Context, scope.Val, file.Val, discriminator.Val));
5033   return false;
5034 }
5035 
5036 /// parseDICommonBlock:
5037 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5038 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5039 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5040   REQUIRED(scope, MDField, );                                                  \
5041   OPTIONAL(declaration, MDField, );                                            \
5042   OPTIONAL(name, MDStringField, );                                             \
5043   OPTIONAL(file, MDField, );                                                   \
5044   OPTIONAL(line, LineField, );
5045   PARSE_MD_FIELDS();
5046 #undef VISIT_MD_FIELDS
5047 
5048   Result = GET_OR_DISTINCT(DICommonBlock,
5049                            (Context, scope.Val, declaration.Val, name.Val,
5050                             file.Val, line.Val));
5051   return false;
5052 }
5053 
5054 /// parseDINamespace:
5055 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5056 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5057 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5058   REQUIRED(scope, MDField, );                                                  \
5059   OPTIONAL(name, MDStringField, );                                             \
5060   OPTIONAL(exportSymbols, MDBoolField, );
5061   PARSE_MD_FIELDS();
5062 #undef VISIT_MD_FIELDS
5063 
5064   Result = GET_OR_DISTINCT(DINamespace,
5065                            (Context, scope.Val, name.Val, exportSymbols.Val));
5066   return false;
5067 }
5068 
5069 /// parseDIMacro:
5070 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5071 ///   "SomeValue")
5072 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5073 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5074   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5075   OPTIONAL(line, LineField, );                                                 \
5076   REQUIRED(name, MDStringField, );                                             \
5077   OPTIONAL(value, MDStringField, );
5078   PARSE_MD_FIELDS();
5079 #undef VISIT_MD_FIELDS
5080 
5081   Result = GET_OR_DISTINCT(DIMacro,
5082                            (Context, type.Val, line.Val, name.Val, value.Val));
5083   return false;
5084 }
5085 
5086 /// parseDIMacroFile:
5087 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5088 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5089 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5090   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5091   OPTIONAL(line, LineField, );                                                 \
5092   REQUIRED(file, MDField, );                                                   \
5093   OPTIONAL(nodes, MDField, );
5094   PARSE_MD_FIELDS();
5095 #undef VISIT_MD_FIELDS
5096 
5097   Result = GET_OR_DISTINCT(DIMacroFile,
5098                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5099   return false;
5100 }
5101 
5102 /// parseDIModule:
5103 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5104 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5105 ///   file: !1, line: 4)
5106 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5107 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5108   REQUIRED(scope, MDField, );                                                  \
5109   REQUIRED(name, MDStringField, );                                             \
5110   OPTIONAL(configMacros, MDStringField, );                                     \
5111   OPTIONAL(includePath, MDStringField, );                                      \
5112   OPTIONAL(apinotes, MDStringField, );                                         \
5113   OPTIONAL(file, MDField, );                                                   \
5114   OPTIONAL(line, LineField, );
5115   PARSE_MD_FIELDS();
5116 #undef VISIT_MD_FIELDS
5117 
5118   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5119                                       configMacros.Val, includePath.Val,
5120                                       apinotes.Val, line.Val));
5121   return false;
5122 }
5123 
5124 /// parseDITemplateTypeParameter:
5125 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5126 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5128   OPTIONAL(name, MDStringField, );                                             \
5129   REQUIRED(type, MDField, );                                                   \
5130   OPTIONAL(defaulted, MDBoolField, );
5131   PARSE_MD_FIELDS();
5132 #undef VISIT_MD_FIELDS
5133 
5134   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5135                            (Context, name.Val, type.Val, defaulted.Val));
5136   return false;
5137 }
5138 
5139 /// parseDITemplateValueParameter:
5140 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5141 ///                                 name: "V", type: !1, defaulted: false,
5142 ///                                 value: i32 7)
5143 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5144 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5145   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5146   OPTIONAL(name, MDStringField, );                                             \
5147   OPTIONAL(type, MDField, );                                                   \
5148   OPTIONAL(defaulted, MDBoolField, );                                          \
5149   REQUIRED(value, MDField, );
5150 
5151   PARSE_MD_FIELDS();
5152 #undef VISIT_MD_FIELDS
5153 
5154   Result = GET_OR_DISTINCT(
5155       DITemplateValueParameter,
5156       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5157   return false;
5158 }
5159 
5160 /// parseDIGlobalVariable:
5161 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5162 ///                         file: !1, line: 7, type: !2, isLocal: false,
5163 ///                         isDefinition: true, templateParams: !3,
5164 ///                         declaration: !4, align: 8)
5165 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5166 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5167   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5168   OPTIONAL(scope, MDField, );                                                  \
5169   OPTIONAL(linkageName, MDStringField, );                                      \
5170   OPTIONAL(file, MDField, );                                                   \
5171   OPTIONAL(line, LineField, );                                                 \
5172   OPTIONAL(type, MDField, );                                                   \
5173   OPTIONAL(isLocal, MDBoolField, );                                            \
5174   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5175   OPTIONAL(templateParams, MDField, );                                         \
5176   OPTIONAL(declaration, MDField, );                                            \
5177   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5178   PARSE_MD_FIELDS();
5179 #undef VISIT_MD_FIELDS
5180 
5181   Result =
5182       GET_OR_DISTINCT(DIGlobalVariable,
5183                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5184                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5185                        declaration.Val, templateParams.Val, align.Val));
5186   return false;
5187 }
5188 
5189 /// parseDILocalVariable:
5190 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5191 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5192 ///                        align: 8)
5193 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5194 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5195 ///                        align: 8)
5196 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5197 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5198   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5199   OPTIONAL(name, MDStringField, );                                             \
5200   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5201   OPTIONAL(file, MDField, );                                                   \
5202   OPTIONAL(line, LineField, );                                                 \
5203   OPTIONAL(type, MDField, );                                                   \
5204   OPTIONAL(flags, DIFlagField, );                                              \
5205   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5206   PARSE_MD_FIELDS();
5207 #undef VISIT_MD_FIELDS
5208 
5209   Result = GET_OR_DISTINCT(DILocalVariable,
5210                            (Context, scope.Val, name.Val, file.Val, line.Val,
5211                             type.Val, arg.Val, flags.Val, align.Val));
5212   return false;
5213 }
5214 
5215 /// parseDILabel:
5216 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5217 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5218 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5219   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5220   REQUIRED(name, MDStringField, );                                             \
5221   REQUIRED(file, MDField, );                                                   \
5222   REQUIRED(line, LineField, );
5223   PARSE_MD_FIELDS();
5224 #undef VISIT_MD_FIELDS
5225 
5226   Result = GET_OR_DISTINCT(DILabel,
5227                            (Context, scope.Val, name.Val, file.Val, line.Val));
5228   return false;
5229 }
5230 
5231 /// parseDIExpression:
5232 ///   ::= !DIExpression(0, 7, -1)
5233 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5234   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5235   Lex.Lex();
5236 
5237   if (parseToken(lltok::lparen, "expected '(' here"))
5238     return true;
5239 
5240   SmallVector<uint64_t, 8> Elements;
5241   if (Lex.getKind() != lltok::rparen)
5242     do {
5243       if (Lex.getKind() == lltok::DwarfOp) {
5244         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5245           Lex.Lex();
5246           Elements.push_back(Op);
5247           continue;
5248         }
5249         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5250       }
5251 
5252       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5253         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5254           Lex.Lex();
5255           Elements.push_back(Op);
5256           continue;
5257         }
5258         return tokError(Twine("invalid DWARF attribute encoding '") +
5259                         Lex.getStrVal() + "'");
5260       }
5261 
5262       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5263         return tokError("expected unsigned integer");
5264 
5265       auto &U = Lex.getAPSIntVal();
5266       if (U.ugt(UINT64_MAX))
5267         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5268       Elements.push_back(U.getZExtValue());
5269       Lex.Lex();
5270     } while (EatIfPresent(lltok::comma));
5271 
5272   if (parseToken(lltok::rparen, "expected ')' here"))
5273     return true;
5274 
5275   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5276   return false;
5277 }
5278 
5279 /// parseDIGlobalVariableExpression:
5280 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5281 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5282                                                bool IsDistinct) {
5283 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5284   REQUIRED(var, MDField, );                                                    \
5285   REQUIRED(expr, MDField, );
5286   PARSE_MD_FIELDS();
5287 #undef VISIT_MD_FIELDS
5288 
5289   Result =
5290       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5291   return false;
5292 }
5293 
5294 /// parseDIObjCProperty:
5295 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5296 ///                       getter: "getFoo", attributes: 7, type: !2)
5297 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5298 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5299   OPTIONAL(name, MDStringField, );                                             \
5300   OPTIONAL(file, MDField, );                                                   \
5301   OPTIONAL(line, LineField, );                                                 \
5302   OPTIONAL(setter, MDStringField, );                                           \
5303   OPTIONAL(getter, MDStringField, );                                           \
5304   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5305   OPTIONAL(type, MDField, );
5306   PARSE_MD_FIELDS();
5307 #undef VISIT_MD_FIELDS
5308 
5309   Result = GET_OR_DISTINCT(DIObjCProperty,
5310                            (Context, name.Val, file.Val, line.Val, setter.Val,
5311                             getter.Val, attributes.Val, type.Val));
5312   return false;
5313 }
5314 
5315 /// parseDIImportedEntity:
5316 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5317 ///                         line: 7, name: "foo")
5318 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5319 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5320   REQUIRED(tag, DwarfTagField, );                                              \
5321   REQUIRED(scope, MDField, );                                                  \
5322   OPTIONAL(entity, MDField, );                                                 \
5323   OPTIONAL(file, MDField, );                                                   \
5324   OPTIONAL(line, LineField, );                                                 \
5325   OPTIONAL(name, MDStringField, );
5326   PARSE_MD_FIELDS();
5327 #undef VISIT_MD_FIELDS
5328 
5329   Result = GET_OR_DISTINCT(
5330       DIImportedEntity,
5331       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5332   return false;
5333 }
5334 
5335 #undef PARSE_MD_FIELD
5336 #undef NOP_FIELD
5337 #undef REQUIRE_FIELD
5338 #undef DECLARE_FIELD
5339 
5340 /// parseMetadataAsValue
5341 ///  ::= metadata i32 %local
5342 ///  ::= metadata i32 @global
5343 ///  ::= metadata i32 7
5344 ///  ::= metadata !0
5345 ///  ::= metadata !{...}
5346 ///  ::= metadata !"string"
5347 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5348   // Note: the type 'metadata' has already been parsed.
5349   Metadata *MD;
5350   if (parseMetadata(MD, &PFS))
5351     return true;
5352 
5353   V = MetadataAsValue::get(Context, MD);
5354   return false;
5355 }
5356 
5357 /// parseValueAsMetadata
5358 ///  ::= i32 %local
5359 ///  ::= i32 @global
5360 ///  ::= i32 7
5361 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5362                                     PerFunctionState *PFS) {
5363   Type *Ty;
5364   LocTy Loc;
5365   if (parseType(Ty, TypeMsg, Loc))
5366     return true;
5367   if (Ty->isMetadataTy())
5368     return error(Loc, "invalid metadata-value-metadata roundtrip");
5369 
5370   Value *V;
5371   if (parseValue(Ty, V, PFS))
5372     return true;
5373 
5374   MD = ValueAsMetadata::get(V);
5375   return false;
5376 }
5377 
5378 /// parseMetadata
5379 ///  ::= i32 %local
5380 ///  ::= i32 @global
5381 ///  ::= i32 7
5382 ///  ::= !42
5383 ///  ::= !{...}
5384 ///  ::= !"string"
5385 ///  ::= !DILocation(...)
5386 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5387   if (Lex.getKind() == lltok::MetadataVar) {
5388     MDNode *N;
5389     if (parseSpecializedMDNode(N))
5390       return true;
5391     MD = N;
5392     return false;
5393   }
5394 
5395   // ValueAsMetadata:
5396   // <type> <value>
5397   if (Lex.getKind() != lltok::exclaim)
5398     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5399 
5400   // '!'.
5401   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5402   Lex.Lex();
5403 
5404   // MDString:
5405   //   ::= '!' STRINGCONSTANT
5406   if (Lex.getKind() == lltok::StringConstant) {
5407     MDString *S;
5408     if (parseMDString(S))
5409       return true;
5410     MD = S;
5411     return false;
5412   }
5413 
5414   // MDNode:
5415   // !{ ... }
5416   // !7
5417   MDNode *N;
5418   if (parseMDNodeTail(N))
5419     return true;
5420   MD = N;
5421   return false;
5422 }
5423 
5424 //===----------------------------------------------------------------------===//
5425 // Function Parsing.
5426 //===----------------------------------------------------------------------===//
5427 
5428 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5429                                    PerFunctionState *PFS, bool IsCall) {
5430   if (Ty->isFunctionTy())
5431     return error(ID.Loc, "functions are not values, refer to them as pointers");
5432 
5433   switch (ID.Kind) {
5434   case ValID::t_LocalID:
5435     if (!PFS)
5436       return error(ID.Loc, "invalid use of function-local name");
5437     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5438     return V == nullptr;
5439   case ValID::t_LocalName:
5440     if (!PFS)
5441       return error(ID.Loc, "invalid use of function-local name");
5442     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5443     return V == nullptr;
5444   case ValID::t_InlineAsm: {
5445     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5446       return error(ID.Loc, "invalid type for inline asm constraint string");
5447     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5448                        (ID.UIntVal >> 1) & 1,
5449                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5450     return false;
5451   }
5452   case ValID::t_GlobalName:
5453     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5454     return V == nullptr;
5455   case ValID::t_GlobalID:
5456     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5457     return V == nullptr;
5458   case ValID::t_APSInt:
5459     if (!Ty->isIntegerTy())
5460       return error(ID.Loc, "integer constant must have integer type");
5461     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5462     V = ConstantInt::get(Context, ID.APSIntVal);
5463     return false;
5464   case ValID::t_APFloat:
5465     if (!Ty->isFloatingPointTy() ||
5466         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5467       return error(ID.Loc, "floating point constant invalid for type");
5468 
5469     // The lexer has no type info, so builds all half, bfloat, float, and double
5470     // FP constants as double.  Fix this here.  Long double does not need this.
5471     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5472       // Check for signaling before potentially converting and losing that info.
5473       bool IsSNAN = ID.APFloatVal.isSignaling();
5474       bool Ignored;
5475       if (Ty->isHalfTy())
5476         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5477                               &Ignored);
5478       else if (Ty->isBFloatTy())
5479         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5480                               &Ignored);
5481       else if (Ty->isFloatTy())
5482         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5483                               &Ignored);
5484       if (IsSNAN) {
5485         // The convert call above may quiet an SNaN, so manufacture another
5486         // SNaN. The bitcast works because the payload (significand) parameter
5487         // is truncated to fit.
5488         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5489         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5490                                          ID.APFloatVal.isNegative(), &Payload);
5491       }
5492     }
5493     V = ConstantFP::get(Context, ID.APFloatVal);
5494 
5495     if (V->getType() != Ty)
5496       return error(ID.Loc, "floating point constant does not have type '" +
5497                                getTypeString(Ty) + "'");
5498 
5499     return false;
5500   case ValID::t_Null:
5501     if (!Ty->isPointerTy())
5502       return error(ID.Loc, "null must be a pointer type");
5503     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5504     return false;
5505   case ValID::t_Undef:
5506     // FIXME: LabelTy should not be a first-class type.
5507     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5508       return error(ID.Loc, "invalid type for undef constant");
5509     V = UndefValue::get(Ty);
5510     return false;
5511   case ValID::t_EmptyArray:
5512     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5513       return error(ID.Loc, "invalid empty array initializer");
5514     V = UndefValue::get(Ty);
5515     return false;
5516   case ValID::t_Zero:
5517     // FIXME: LabelTy should not be a first-class type.
5518     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5519       return error(ID.Loc, "invalid type for null constant");
5520     V = Constant::getNullValue(Ty);
5521     return false;
5522   case ValID::t_None:
5523     if (!Ty->isTokenTy())
5524       return error(ID.Loc, "invalid type for none constant");
5525     V = Constant::getNullValue(Ty);
5526     return false;
5527   case ValID::t_Constant:
5528     if (ID.ConstantVal->getType() != Ty)
5529       return error(ID.Loc, "constant expression type mismatch");
5530 
5531     V = ID.ConstantVal;
5532     return false;
5533   case ValID::t_ConstantStruct:
5534   case ValID::t_PackedConstantStruct:
5535     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5536       if (ST->getNumElements() != ID.UIntVal)
5537         return error(ID.Loc,
5538                      "initializer with struct type has wrong # elements");
5539       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5540         return error(ID.Loc, "packed'ness of initializer and type don't match");
5541 
5542       // Verify that the elements are compatible with the structtype.
5543       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5544         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5545           return error(
5546               ID.Loc,
5547               "element " + Twine(i) +
5548                   " of struct initializer doesn't match struct element type");
5549 
5550       V = ConstantStruct::get(
5551           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5552     } else
5553       return error(ID.Loc, "constant expression type mismatch");
5554     return false;
5555   }
5556   llvm_unreachable("Invalid ValID");
5557 }
5558 
5559 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5560   C = nullptr;
5561   ValID ID;
5562   auto Loc = Lex.getLoc();
5563   if (parseValID(ID, /*PFS=*/nullptr))
5564     return true;
5565   switch (ID.Kind) {
5566   case ValID::t_APSInt:
5567   case ValID::t_APFloat:
5568   case ValID::t_Undef:
5569   case ValID::t_Constant:
5570   case ValID::t_ConstantStruct:
5571   case ValID::t_PackedConstantStruct: {
5572     Value *V;
5573     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5574       return true;
5575     assert(isa<Constant>(V) && "Expected a constant value");
5576     C = cast<Constant>(V);
5577     return false;
5578   }
5579   case ValID::t_Null:
5580     C = Constant::getNullValue(Ty);
5581     return false;
5582   default:
5583     return error(Loc, "expected a constant value");
5584   }
5585 }
5586 
5587 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5588   V = nullptr;
5589   ValID ID;
5590   return parseValID(ID, PFS) ||
5591          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5592 }
5593 
5594 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5595   Type *Ty = nullptr;
5596   return parseType(Ty) || parseValue(Ty, V, PFS);
5597 }
5598 
5599 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5600                                       PerFunctionState &PFS) {
5601   Value *V;
5602   Loc = Lex.getLoc();
5603   if (parseTypeAndValue(V, PFS))
5604     return true;
5605   if (!isa<BasicBlock>(V))
5606     return error(Loc, "expected a basic block");
5607   BB = cast<BasicBlock>(V);
5608   return false;
5609 }
5610 
5611 /// FunctionHeader
5612 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5613 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5614 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5615 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5616 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5617   // parse the linkage.
5618   LocTy LinkageLoc = Lex.getLoc();
5619   unsigned Linkage;
5620   unsigned Visibility;
5621   unsigned DLLStorageClass;
5622   bool DSOLocal;
5623   AttrBuilder RetAttrs;
5624   unsigned CC;
5625   bool HasLinkage;
5626   Type *RetType = nullptr;
5627   LocTy RetTypeLoc = Lex.getLoc();
5628   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5629                            DSOLocal) ||
5630       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5631       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5632     return true;
5633 
5634   // Verify that the linkage is ok.
5635   switch ((GlobalValue::LinkageTypes)Linkage) {
5636   case GlobalValue::ExternalLinkage:
5637     break; // always ok.
5638   case GlobalValue::ExternalWeakLinkage:
5639     if (IsDefine)
5640       return error(LinkageLoc, "invalid linkage for function definition");
5641     break;
5642   case GlobalValue::PrivateLinkage:
5643   case GlobalValue::InternalLinkage:
5644   case GlobalValue::AvailableExternallyLinkage:
5645   case GlobalValue::LinkOnceAnyLinkage:
5646   case GlobalValue::LinkOnceODRLinkage:
5647   case GlobalValue::WeakAnyLinkage:
5648   case GlobalValue::WeakODRLinkage:
5649     if (!IsDefine)
5650       return error(LinkageLoc, "invalid linkage for function declaration");
5651     break;
5652   case GlobalValue::AppendingLinkage:
5653   case GlobalValue::CommonLinkage:
5654     return error(LinkageLoc, "invalid function linkage type");
5655   }
5656 
5657   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5658     return error(LinkageLoc,
5659                  "symbol with local linkage must have default visibility");
5660 
5661   if (!FunctionType::isValidReturnType(RetType))
5662     return error(RetTypeLoc, "invalid function return type");
5663 
5664   LocTy NameLoc = Lex.getLoc();
5665 
5666   std::string FunctionName;
5667   if (Lex.getKind() == lltok::GlobalVar) {
5668     FunctionName = Lex.getStrVal();
5669   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5670     unsigned NameID = Lex.getUIntVal();
5671 
5672     if (NameID != NumberedVals.size())
5673       return tokError("function expected to be numbered '%" +
5674                       Twine(NumberedVals.size()) + "'");
5675   } else {
5676     return tokError("expected function name");
5677   }
5678 
5679   Lex.Lex();
5680 
5681   if (Lex.getKind() != lltok::lparen)
5682     return tokError("expected '(' in function argument list");
5683 
5684   SmallVector<ArgInfo, 8> ArgList;
5685   bool IsVarArg;
5686   AttrBuilder FuncAttrs;
5687   std::vector<unsigned> FwdRefAttrGrps;
5688   LocTy BuiltinLoc;
5689   std::string Section;
5690   std::string Partition;
5691   MaybeAlign Alignment;
5692   std::string GC;
5693   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5694   unsigned AddrSpace = 0;
5695   Constant *Prefix = nullptr;
5696   Constant *Prologue = nullptr;
5697   Constant *PersonalityFn = nullptr;
5698   Comdat *C;
5699 
5700   if (parseArgumentList(ArgList, IsVarArg) ||
5701       parseOptionalUnnamedAddr(UnnamedAddr) ||
5702       parseOptionalProgramAddrSpace(AddrSpace) ||
5703       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5704                                  BuiltinLoc) ||
5705       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5706       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5707       parseOptionalComdat(FunctionName, C) ||
5708       parseOptionalAlignment(Alignment) ||
5709       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5710       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5711       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5712       (EatIfPresent(lltok::kw_personality) &&
5713        parseGlobalTypeAndValue(PersonalityFn)))
5714     return true;
5715 
5716   if (FuncAttrs.contains(Attribute::Builtin))
5717     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5718 
5719   // If the alignment was parsed as an attribute, move to the alignment field.
5720   if (FuncAttrs.hasAlignmentAttr()) {
5721     Alignment = FuncAttrs.getAlignment();
5722     FuncAttrs.removeAttribute(Attribute::Alignment);
5723   }
5724 
5725   // Okay, if we got here, the function is syntactically valid.  Convert types
5726   // and do semantic checks.
5727   std::vector<Type*> ParamTypeList;
5728   SmallVector<AttributeSet, 8> Attrs;
5729 
5730   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5731     ParamTypeList.push_back(ArgList[i].Ty);
5732     Attrs.push_back(ArgList[i].Attrs);
5733   }
5734 
5735   AttributeList PAL =
5736       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5737                          AttributeSet::get(Context, RetAttrs), Attrs);
5738 
5739   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5740     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5741 
5742   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5743   PointerType *PFT = PointerType::get(FT, AddrSpace);
5744 
5745   Fn = nullptr;
5746   if (!FunctionName.empty()) {
5747     // If this was a definition of a forward reference, remove the definition
5748     // from the forward reference table and fill in the forward ref.
5749     auto FRVI = ForwardRefVals.find(FunctionName);
5750     if (FRVI != ForwardRefVals.end()) {
5751       Fn = M->getFunction(FunctionName);
5752       if (!Fn)
5753         return error(FRVI->second.second, "invalid forward reference to "
5754                                           "function as global value!");
5755       if (Fn->getType() != PFT)
5756         return error(FRVI->second.second,
5757                      "invalid forward reference to "
5758                      "function '" +
5759                          FunctionName +
5760                          "' with wrong type: "
5761                          "expected '" +
5762                          getTypeString(PFT) + "' but was '" +
5763                          getTypeString(Fn->getType()) + "'");
5764       ForwardRefVals.erase(FRVI);
5765     } else if ((Fn = M->getFunction(FunctionName))) {
5766       // Reject redefinitions.
5767       return error(NameLoc,
5768                    "invalid redefinition of function '" + FunctionName + "'");
5769     } else if (M->getNamedValue(FunctionName)) {
5770       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5771     }
5772 
5773   } else {
5774     // If this is a definition of a forward referenced function, make sure the
5775     // types agree.
5776     auto I = ForwardRefValIDs.find(NumberedVals.size());
5777     if (I != ForwardRefValIDs.end()) {
5778       Fn = cast<Function>(I->second.first);
5779       if (Fn->getType() != PFT)
5780         return error(NameLoc, "type of definition and forward reference of '@" +
5781                                   Twine(NumberedVals.size()) +
5782                                   "' disagree: "
5783                                   "expected '" +
5784                                   getTypeString(PFT) + "' but was '" +
5785                                   getTypeString(Fn->getType()) + "'");
5786       ForwardRefValIDs.erase(I);
5787     }
5788   }
5789 
5790   if (!Fn)
5791     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5792                           FunctionName, M);
5793   else // Move the forward-reference to the correct spot in the module.
5794     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5795 
5796   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5797 
5798   if (FunctionName.empty())
5799     NumberedVals.push_back(Fn);
5800 
5801   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5802   maybeSetDSOLocal(DSOLocal, *Fn);
5803   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5804   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5805   Fn->setCallingConv(CC);
5806   Fn->setAttributes(PAL);
5807   Fn->setUnnamedAddr(UnnamedAddr);
5808   Fn->setAlignment(MaybeAlign(Alignment));
5809   Fn->setSection(Section);
5810   Fn->setPartition(Partition);
5811   Fn->setComdat(C);
5812   Fn->setPersonalityFn(PersonalityFn);
5813   if (!GC.empty()) Fn->setGC(GC);
5814   Fn->setPrefixData(Prefix);
5815   Fn->setPrologueData(Prologue);
5816   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5817 
5818   // Add all of the arguments we parsed to the function.
5819   Function::arg_iterator ArgIt = Fn->arg_begin();
5820   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5821     // If the argument has a name, insert it into the argument symbol table.
5822     if (ArgList[i].Name.empty()) continue;
5823 
5824     // Set the name, if it conflicted, it will be auto-renamed.
5825     ArgIt->setName(ArgList[i].Name);
5826 
5827     if (ArgIt->getName() != ArgList[i].Name)
5828       return error(ArgList[i].Loc,
5829                    "redefinition of argument '%" + ArgList[i].Name + "'");
5830   }
5831 
5832   if (IsDefine)
5833     return false;
5834 
5835   // Check the declaration has no block address forward references.
5836   ValID ID;
5837   if (FunctionName.empty()) {
5838     ID.Kind = ValID::t_GlobalID;
5839     ID.UIntVal = NumberedVals.size() - 1;
5840   } else {
5841     ID.Kind = ValID::t_GlobalName;
5842     ID.StrVal = FunctionName;
5843   }
5844   auto Blocks = ForwardRefBlockAddresses.find(ID);
5845   if (Blocks != ForwardRefBlockAddresses.end())
5846     return error(Blocks->first.Loc,
5847                  "cannot take blockaddress inside a declaration");
5848   return false;
5849 }
5850 
5851 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5852   ValID ID;
5853   if (FunctionNumber == -1) {
5854     ID.Kind = ValID::t_GlobalName;
5855     ID.StrVal = std::string(F.getName());
5856   } else {
5857     ID.Kind = ValID::t_GlobalID;
5858     ID.UIntVal = FunctionNumber;
5859   }
5860 
5861   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5862   if (Blocks == P.ForwardRefBlockAddresses.end())
5863     return false;
5864 
5865   for (const auto &I : Blocks->second) {
5866     const ValID &BBID = I.first;
5867     GlobalValue *GV = I.second;
5868 
5869     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5870            "Expected local id or name");
5871     BasicBlock *BB;
5872     if (BBID.Kind == ValID::t_LocalName)
5873       BB = getBB(BBID.StrVal, BBID.Loc);
5874     else
5875       BB = getBB(BBID.UIntVal, BBID.Loc);
5876     if (!BB)
5877       return P.error(BBID.Loc, "referenced value is not a basic block");
5878 
5879     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5880     GV->eraseFromParent();
5881   }
5882 
5883   P.ForwardRefBlockAddresses.erase(Blocks);
5884   return false;
5885 }
5886 
5887 /// parseFunctionBody
5888 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5889 bool LLParser::parseFunctionBody(Function &Fn) {
5890   if (Lex.getKind() != lltok::lbrace)
5891     return tokError("expected '{' in function body");
5892   Lex.Lex();  // eat the {.
5893 
5894   int FunctionNumber = -1;
5895   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5896 
5897   PerFunctionState PFS(*this, Fn, FunctionNumber);
5898 
5899   // Resolve block addresses and allow basic blocks to be forward-declared
5900   // within this function.
5901   if (PFS.resolveForwardRefBlockAddresses())
5902     return true;
5903   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5904 
5905   // We need at least one basic block.
5906   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5907     return tokError("function body requires at least one basic block");
5908 
5909   while (Lex.getKind() != lltok::rbrace &&
5910          Lex.getKind() != lltok::kw_uselistorder)
5911     if (parseBasicBlock(PFS))
5912       return true;
5913 
5914   while (Lex.getKind() != lltok::rbrace)
5915     if (parseUseListOrder(&PFS))
5916       return true;
5917 
5918   // Eat the }.
5919   Lex.Lex();
5920 
5921   // Verify function is ok.
5922   return PFS.finishFunction();
5923 }
5924 
5925 /// parseBasicBlock
5926 ///   ::= (LabelStr|LabelID)? Instruction*
5927 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5928   // If this basic block starts out with a name, remember it.
5929   std::string Name;
5930   int NameID = -1;
5931   LocTy NameLoc = Lex.getLoc();
5932   if (Lex.getKind() == lltok::LabelStr) {
5933     Name = Lex.getStrVal();
5934     Lex.Lex();
5935   } else if (Lex.getKind() == lltok::LabelID) {
5936     NameID = Lex.getUIntVal();
5937     Lex.Lex();
5938   }
5939 
5940   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5941   if (!BB)
5942     return true;
5943 
5944   std::string NameStr;
5945 
5946   // parse the instructions in this block until we get a terminator.
5947   Instruction *Inst;
5948   do {
5949     // This instruction may have three possibilities for a name: a) none
5950     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5951     LocTy NameLoc = Lex.getLoc();
5952     int NameID = -1;
5953     NameStr = "";
5954 
5955     if (Lex.getKind() == lltok::LocalVarID) {
5956       NameID = Lex.getUIntVal();
5957       Lex.Lex();
5958       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5959         return true;
5960     } else if (Lex.getKind() == lltok::LocalVar) {
5961       NameStr = Lex.getStrVal();
5962       Lex.Lex();
5963       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5964         return true;
5965     }
5966 
5967     switch (parseInstruction(Inst, BB, PFS)) {
5968     default:
5969       llvm_unreachable("Unknown parseInstruction result!");
5970     case InstError: return true;
5971     case InstNormal:
5972       BB->getInstList().push_back(Inst);
5973 
5974       // With a normal result, we check to see if the instruction is followed by
5975       // a comma and metadata.
5976       if (EatIfPresent(lltok::comma))
5977         if (parseInstructionMetadata(*Inst))
5978           return true;
5979       break;
5980     case InstExtraComma:
5981       BB->getInstList().push_back(Inst);
5982 
5983       // If the instruction parser ate an extra comma at the end of it, it
5984       // *must* be followed by metadata.
5985       if (parseInstructionMetadata(*Inst))
5986         return true;
5987       break;
5988     }
5989 
5990     // Set the name on the instruction.
5991     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5992       return true;
5993   } while (!Inst->isTerminator());
5994 
5995   return false;
5996 }
5997 
5998 //===----------------------------------------------------------------------===//
5999 // Instruction Parsing.
6000 //===----------------------------------------------------------------------===//
6001 
6002 /// parseInstruction - parse one of the many different instructions.
6003 ///
6004 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6005                                PerFunctionState &PFS) {
6006   lltok::Kind Token = Lex.getKind();
6007   if (Token == lltok::Eof)
6008     return tokError("found end of file when expecting more instructions");
6009   LocTy Loc = Lex.getLoc();
6010   unsigned KeywordVal = Lex.getUIntVal();
6011   Lex.Lex();  // Eat the keyword.
6012 
6013   switch (Token) {
6014   default:
6015     return error(Loc, "expected instruction opcode");
6016   // Terminator Instructions.
6017   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6018   case lltok::kw_ret:
6019     return parseRet(Inst, BB, PFS);
6020   case lltok::kw_br:
6021     return parseBr(Inst, PFS);
6022   case lltok::kw_switch:
6023     return parseSwitch(Inst, PFS);
6024   case lltok::kw_indirectbr:
6025     return parseIndirectBr(Inst, PFS);
6026   case lltok::kw_invoke:
6027     return parseInvoke(Inst, PFS);
6028   case lltok::kw_resume:
6029     return parseResume(Inst, PFS);
6030   case lltok::kw_cleanupret:
6031     return parseCleanupRet(Inst, PFS);
6032   case lltok::kw_catchret:
6033     return parseCatchRet(Inst, PFS);
6034   case lltok::kw_catchswitch:
6035     return parseCatchSwitch(Inst, PFS);
6036   case lltok::kw_catchpad:
6037     return parseCatchPad(Inst, PFS);
6038   case lltok::kw_cleanuppad:
6039     return parseCleanupPad(Inst, PFS);
6040   case lltok::kw_callbr:
6041     return parseCallBr(Inst, PFS);
6042   // Unary Operators.
6043   case lltok::kw_fneg: {
6044     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6045     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6046     if (Res != 0)
6047       return Res;
6048     if (FMF.any())
6049       Inst->setFastMathFlags(FMF);
6050     return false;
6051   }
6052   // Binary Operators.
6053   case lltok::kw_add:
6054   case lltok::kw_sub:
6055   case lltok::kw_mul:
6056   case lltok::kw_shl: {
6057     bool NUW = EatIfPresent(lltok::kw_nuw);
6058     bool NSW = EatIfPresent(lltok::kw_nsw);
6059     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6060 
6061     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6062       return true;
6063 
6064     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6065     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6066     return false;
6067   }
6068   case lltok::kw_fadd:
6069   case lltok::kw_fsub:
6070   case lltok::kw_fmul:
6071   case lltok::kw_fdiv:
6072   case lltok::kw_frem: {
6073     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6074     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6075     if (Res != 0)
6076       return Res;
6077     if (FMF.any())
6078       Inst->setFastMathFlags(FMF);
6079     return 0;
6080   }
6081 
6082   case lltok::kw_sdiv:
6083   case lltok::kw_udiv:
6084   case lltok::kw_lshr:
6085   case lltok::kw_ashr: {
6086     bool Exact = EatIfPresent(lltok::kw_exact);
6087 
6088     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6089       return true;
6090     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6091     return false;
6092   }
6093 
6094   case lltok::kw_urem:
6095   case lltok::kw_srem:
6096     return parseArithmetic(Inst, PFS, KeywordVal,
6097                            /*IsFP*/ false);
6098   case lltok::kw_and:
6099   case lltok::kw_or:
6100   case lltok::kw_xor:
6101     return parseLogical(Inst, PFS, KeywordVal);
6102   case lltok::kw_icmp:
6103     return parseCompare(Inst, PFS, KeywordVal);
6104   case lltok::kw_fcmp: {
6105     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6106     int Res = parseCompare(Inst, PFS, KeywordVal);
6107     if (Res != 0)
6108       return Res;
6109     if (FMF.any())
6110       Inst->setFastMathFlags(FMF);
6111     return 0;
6112   }
6113 
6114   // Casts.
6115   case lltok::kw_trunc:
6116   case lltok::kw_zext:
6117   case lltok::kw_sext:
6118   case lltok::kw_fptrunc:
6119   case lltok::kw_fpext:
6120   case lltok::kw_bitcast:
6121   case lltok::kw_addrspacecast:
6122   case lltok::kw_uitofp:
6123   case lltok::kw_sitofp:
6124   case lltok::kw_fptoui:
6125   case lltok::kw_fptosi:
6126   case lltok::kw_inttoptr:
6127   case lltok::kw_ptrtoint:
6128     return parseCast(Inst, PFS, KeywordVal);
6129   // Other.
6130   case lltok::kw_select: {
6131     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6132     int Res = parseSelect(Inst, PFS);
6133     if (Res != 0)
6134       return Res;
6135     if (FMF.any()) {
6136       if (!isa<FPMathOperator>(Inst))
6137         return error(Loc, "fast-math-flags specified for select without "
6138                           "floating-point scalar or vector return type");
6139       Inst->setFastMathFlags(FMF);
6140     }
6141     return 0;
6142   }
6143   case lltok::kw_va_arg:
6144     return parseVAArg(Inst, PFS);
6145   case lltok::kw_extractelement:
6146     return parseExtractElement(Inst, PFS);
6147   case lltok::kw_insertelement:
6148     return parseInsertElement(Inst, PFS);
6149   case lltok::kw_shufflevector:
6150     return parseShuffleVector(Inst, PFS);
6151   case lltok::kw_phi: {
6152     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6153     int Res = parsePHI(Inst, PFS);
6154     if (Res != 0)
6155       return Res;
6156     if (FMF.any()) {
6157       if (!isa<FPMathOperator>(Inst))
6158         return error(Loc, "fast-math-flags specified for phi without "
6159                           "floating-point scalar or vector return type");
6160       Inst->setFastMathFlags(FMF);
6161     }
6162     return 0;
6163   }
6164   case lltok::kw_landingpad:
6165     return parseLandingPad(Inst, PFS);
6166   case lltok::kw_freeze:
6167     return parseFreeze(Inst, PFS);
6168   // Call.
6169   case lltok::kw_call:
6170     return parseCall(Inst, PFS, CallInst::TCK_None);
6171   case lltok::kw_tail:
6172     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6173   case lltok::kw_musttail:
6174     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6175   case lltok::kw_notail:
6176     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6177   // Memory.
6178   case lltok::kw_alloca:
6179     return parseAlloc(Inst, PFS);
6180   case lltok::kw_load:
6181     return parseLoad(Inst, PFS);
6182   case lltok::kw_store:
6183     return parseStore(Inst, PFS);
6184   case lltok::kw_cmpxchg:
6185     return parseCmpXchg(Inst, PFS);
6186   case lltok::kw_atomicrmw:
6187     return parseAtomicRMW(Inst, PFS);
6188   case lltok::kw_fence:
6189     return parseFence(Inst, PFS);
6190   case lltok::kw_getelementptr:
6191     return parseGetElementPtr(Inst, PFS);
6192   case lltok::kw_extractvalue:
6193     return parseExtractValue(Inst, PFS);
6194   case lltok::kw_insertvalue:
6195     return parseInsertValue(Inst, PFS);
6196   }
6197 }
6198 
6199 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6200 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6201   if (Opc == Instruction::FCmp) {
6202     switch (Lex.getKind()) {
6203     default:
6204       return tokError("expected fcmp predicate (e.g. 'oeq')");
6205     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6206     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6207     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6208     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6209     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6210     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6211     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6212     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6213     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6214     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6215     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6216     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6217     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6218     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6219     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6220     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6221     }
6222   } else {
6223     switch (Lex.getKind()) {
6224     default:
6225       return tokError("expected icmp predicate (e.g. 'eq')");
6226     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6227     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6228     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6229     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6230     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6231     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6232     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6233     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6234     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6235     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6236     }
6237   }
6238   Lex.Lex();
6239   return false;
6240 }
6241 
6242 //===----------------------------------------------------------------------===//
6243 // Terminator Instructions.
6244 //===----------------------------------------------------------------------===//
6245 
6246 /// parseRet - parse a return instruction.
6247 ///   ::= 'ret' void (',' !dbg, !1)*
6248 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6249 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6250                         PerFunctionState &PFS) {
6251   SMLoc TypeLoc = Lex.getLoc();
6252   Type *Ty = nullptr;
6253   if (parseType(Ty, true /*void allowed*/))
6254     return true;
6255 
6256   Type *ResType = PFS.getFunction().getReturnType();
6257 
6258   if (Ty->isVoidTy()) {
6259     if (!ResType->isVoidTy())
6260       return error(TypeLoc, "value doesn't match function result type '" +
6261                                 getTypeString(ResType) + "'");
6262 
6263     Inst = ReturnInst::Create(Context);
6264     return false;
6265   }
6266 
6267   Value *RV;
6268   if (parseValue(Ty, RV, PFS))
6269     return true;
6270 
6271   if (ResType != RV->getType())
6272     return error(TypeLoc, "value doesn't match function result type '" +
6273                               getTypeString(ResType) + "'");
6274 
6275   Inst = ReturnInst::Create(Context, RV);
6276   return false;
6277 }
6278 
6279 /// parseBr
6280 ///   ::= 'br' TypeAndValue
6281 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6282 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6283   LocTy Loc, Loc2;
6284   Value *Op0;
6285   BasicBlock *Op1, *Op2;
6286   if (parseTypeAndValue(Op0, Loc, PFS))
6287     return true;
6288 
6289   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6290     Inst = BranchInst::Create(BB);
6291     return false;
6292   }
6293 
6294   if (Op0->getType() != Type::getInt1Ty(Context))
6295     return error(Loc, "branch condition must have 'i1' type");
6296 
6297   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6298       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6299       parseToken(lltok::comma, "expected ',' after true destination") ||
6300       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6301     return true;
6302 
6303   Inst = BranchInst::Create(Op1, Op2, Op0);
6304   return false;
6305 }
6306 
6307 /// parseSwitch
6308 ///  Instruction
6309 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6310 ///  JumpTable
6311 ///    ::= (TypeAndValue ',' TypeAndValue)*
6312 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6313   LocTy CondLoc, BBLoc;
6314   Value *Cond;
6315   BasicBlock *DefaultBB;
6316   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6317       parseToken(lltok::comma, "expected ',' after switch condition") ||
6318       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6319       parseToken(lltok::lsquare, "expected '[' with switch table"))
6320     return true;
6321 
6322   if (!Cond->getType()->isIntegerTy())
6323     return error(CondLoc, "switch condition must have integer type");
6324 
6325   // parse the jump table pairs.
6326   SmallPtrSet<Value*, 32> SeenCases;
6327   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6328   while (Lex.getKind() != lltok::rsquare) {
6329     Value *Constant;
6330     BasicBlock *DestBB;
6331 
6332     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6333         parseToken(lltok::comma, "expected ',' after case value") ||
6334         parseTypeAndBasicBlock(DestBB, PFS))
6335       return true;
6336 
6337     if (!SeenCases.insert(Constant).second)
6338       return error(CondLoc, "duplicate case value in switch");
6339     if (!isa<ConstantInt>(Constant))
6340       return error(CondLoc, "case value is not a constant integer");
6341 
6342     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6343   }
6344 
6345   Lex.Lex();  // Eat the ']'.
6346 
6347   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6348   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6349     SI->addCase(Table[i].first, Table[i].second);
6350   Inst = SI;
6351   return false;
6352 }
6353 
6354 /// parseIndirectBr
6355 ///  Instruction
6356 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6357 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6358   LocTy AddrLoc;
6359   Value *Address;
6360   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6361       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6362       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6363     return true;
6364 
6365   if (!Address->getType()->isPointerTy())
6366     return error(AddrLoc, "indirectbr address must have pointer type");
6367 
6368   // parse the destination list.
6369   SmallVector<BasicBlock*, 16> DestList;
6370 
6371   if (Lex.getKind() != lltok::rsquare) {
6372     BasicBlock *DestBB;
6373     if (parseTypeAndBasicBlock(DestBB, PFS))
6374       return true;
6375     DestList.push_back(DestBB);
6376 
6377     while (EatIfPresent(lltok::comma)) {
6378       if (parseTypeAndBasicBlock(DestBB, PFS))
6379         return true;
6380       DestList.push_back(DestBB);
6381     }
6382   }
6383 
6384   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6385     return true;
6386 
6387   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6388   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6389     IBI->addDestination(DestList[i]);
6390   Inst = IBI;
6391   return false;
6392 }
6393 
6394 /// parseInvoke
6395 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6396 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6397 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6398   LocTy CallLoc = Lex.getLoc();
6399   AttrBuilder RetAttrs, FnAttrs;
6400   std::vector<unsigned> FwdRefAttrGrps;
6401   LocTy NoBuiltinLoc;
6402   unsigned CC;
6403   unsigned InvokeAddrSpace;
6404   Type *RetType = nullptr;
6405   LocTy RetTypeLoc;
6406   ValID CalleeID;
6407   SmallVector<ParamInfo, 16> ArgList;
6408   SmallVector<OperandBundleDef, 2> BundleList;
6409 
6410   BasicBlock *NormalBB, *UnwindBB;
6411   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6412       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6413       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6414       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6415       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6416                                  NoBuiltinLoc) ||
6417       parseOptionalOperandBundles(BundleList, PFS) ||
6418       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6419       parseTypeAndBasicBlock(NormalBB, PFS) ||
6420       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6421       parseTypeAndBasicBlock(UnwindBB, PFS))
6422     return true;
6423 
6424   // If RetType is a non-function pointer type, then this is the short syntax
6425   // for the call, which means that RetType is just the return type.  Infer the
6426   // rest of the function argument types from the arguments that are present.
6427   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6428   if (!Ty) {
6429     // Pull out the types of all of the arguments...
6430     std::vector<Type*> ParamTypes;
6431     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6432       ParamTypes.push_back(ArgList[i].V->getType());
6433 
6434     if (!FunctionType::isValidReturnType(RetType))
6435       return error(RetTypeLoc, "Invalid result type for LLVM function");
6436 
6437     Ty = FunctionType::get(RetType, ParamTypes, false);
6438   }
6439 
6440   CalleeID.FTy = Ty;
6441 
6442   // Look up the callee.
6443   Value *Callee;
6444   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6445                           Callee, &PFS, /*IsCall=*/true))
6446     return true;
6447 
6448   // Set up the Attribute for the function.
6449   SmallVector<Value *, 8> Args;
6450   SmallVector<AttributeSet, 8> ArgAttrs;
6451 
6452   // Loop through FunctionType's arguments and ensure they are specified
6453   // correctly.  Also, gather any parameter attributes.
6454   FunctionType::param_iterator I = Ty->param_begin();
6455   FunctionType::param_iterator E = Ty->param_end();
6456   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6457     Type *ExpectedTy = nullptr;
6458     if (I != E) {
6459       ExpectedTy = *I++;
6460     } else if (!Ty->isVarArg()) {
6461       return error(ArgList[i].Loc, "too many arguments specified");
6462     }
6463 
6464     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6465       return error(ArgList[i].Loc, "argument is not of expected type '" +
6466                                        getTypeString(ExpectedTy) + "'");
6467     Args.push_back(ArgList[i].V);
6468     ArgAttrs.push_back(ArgList[i].Attrs);
6469   }
6470 
6471   if (I != E)
6472     return error(CallLoc, "not enough parameters specified for call");
6473 
6474   if (FnAttrs.hasAlignmentAttr())
6475     return error(CallLoc, "invoke instructions may not have an alignment");
6476 
6477   // Finish off the Attribute and check them
6478   AttributeList PAL =
6479       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6480                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6481 
6482   InvokeInst *II =
6483       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6484   II->setCallingConv(CC);
6485   II->setAttributes(PAL);
6486   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6487   Inst = II;
6488   return false;
6489 }
6490 
6491 /// parseResume
6492 ///   ::= 'resume' TypeAndValue
6493 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6494   Value *Exn; LocTy ExnLoc;
6495   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6496     return true;
6497 
6498   ResumeInst *RI = ResumeInst::Create(Exn);
6499   Inst = RI;
6500   return false;
6501 }
6502 
6503 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6504                                   PerFunctionState &PFS) {
6505   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6506     return true;
6507 
6508   while (Lex.getKind() != lltok::rsquare) {
6509     // If this isn't the first argument, we need a comma.
6510     if (!Args.empty() &&
6511         parseToken(lltok::comma, "expected ',' in argument list"))
6512       return true;
6513 
6514     // parse the argument.
6515     LocTy ArgLoc;
6516     Type *ArgTy = nullptr;
6517     if (parseType(ArgTy, ArgLoc))
6518       return true;
6519 
6520     Value *V;
6521     if (ArgTy->isMetadataTy()) {
6522       if (parseMetadataAsValue(V, PFS))
6523         return true;
6524     } else {
6525       if (parseValue(ArgTy, V, PFS))
6526         return true;
6527     }
6528     Args.push_back(V);
6529   }
6530 
6531   Lex.Lex();  // Lex the ']'.
6532   return false;
6533 }
6534 
6535 /// parseCleanupRet
6536 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6537 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6538   Value *CleanupPad = nullptr;
6539 
6540   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6541     return true;
6542 
6543   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6544     return true;
6545 
6546   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6547     return true;
6548 
6549   BasicBlock *UnwindBB = nullptr;
6550   if (Lex.getKind() == lltok::kw_to) {
6551     Lex.Lex();
6552     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6553       return true;
6554   } else {
6555     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6556       return true;
6557     }
6558   }
6559 
6560   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6561   return false;
6562 }
6563 
6564 /// parseCatchRet
6565 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6566 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6567   Value *CatchPad = nullptr;
6568 
6569   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6570     return true;
6571 
6572   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6573     return true;
6574 
6575   BasicBlock *BB;
6576   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6577       parseTypeAndBasicBlock(BB, PFS))
6578     return true;
6579 
6580   Inst = CatchReturnInst::Create(CatchPad, BB);
6581   return false;
6582 }
6583 
6584 /// parseCatchSwitch
6585 ///   ::= 'catchswitch' within Parent
6586 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6587   Value *ParentPad;
6588 
6589   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6590     return true;
6591 
6592   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6593       Lex.getKind() != lltok::LocalVarID)
6594     return tokError("expected scope value for catchswitch");
6595 
6596   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6597     return true;
6598 
6599   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6600     return true;
6601 
6602   SmallVector<BasicBlock *, 32> Table;
6603   do {
6604     BasicBlock *DestBB;
6605     if (parseTypeAndBasicBlock(DestBB, PFS))
6606       return true;
6607     Table.push_back(DestBB);
6608   } while (EatIfPresent(lltok::comma));
6609 
6610   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6611     return true;
6612 
6613   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6614     return true;
6615 
6616   BasicBlock *UnwindBB = nullptr;
6617   if (EatIfPresent(lltok::kw_to)) {
6618     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6619       return true;
6620   } else {
6621     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6622       return true;
6623   }
6624 
6625   auto *CatchSwitch =
6626       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6627   for (BasicBlock *DestBB : Table)
6628     CatchSwitch->addHandler(DestBB);
6629   Inst = CatchSwitch;
6630   return false;
6631 }
6632 
6633 /// parseCatchPad
6634 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6635 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6636   Value *CatchSwitch = nullptr;
6637 
6638   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6639     return true;
6640 
6641   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6642     return tokError("expected scope value for catchpad");
6643 
6644   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6645     return true;
6646 
6647   SmallVector<Value *, 8> Args;
6648   if (parseExceptionArgs(Args, PFS))
6649     return true;
6650 
6651   Inst = CatchPadInst::Create(CatchSwitch, Args);
6652   return false;
6653 }
6654 
6655 /// parseCleanupPad
6656 ///   ::= 'cleanuppad' within Parent ParamList
6657 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6658   Value *ParentPad = nullptr;
6659 
6660   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6661     return true;
6662 
6663   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6664       Lex.getKind() != lltok::LocalVarID)
6665     return tokError("expected scope value for cleanuppad");
6666 
6667   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6668     return true;
6669 
6670   SmallVector<Value *, 8> Args;
6671   if (parseExceptionArgs(Args, PFS))
6672     return true;
6673 
6674   Inst = CleanupPadInst::Create(ParentPad, Args);
6675   return false;
6676 }
6677 
6678 //===----------------------------------------------------------------------===//
6679 // Unary Operators.
6680 //===----------------------------------------------------------------------===//
6681 
6682 /// parseUnaryOp
6683 ///  ::= UnaryOp TypeAndValue ',' Value
6684 ///
6685 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6686 /// operand is allowed.
6687 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6688                             unsigned Opc, bool IsFP) {
6689   LocTy Loc; Value *LHS;
6690   if (parseTypeAndValue(LHS, Loc, PFS))
6691     return true;
6692 
6693   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6694                     : LHS->getType()->isIntOrIntVectorTy();
6695 
6696   if (!Valid)
6697     return error(Loc, "invalid operand type for instruction");
6698 
6699   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6700   return false;
6701 }
6702 
6703 /// parseCallBr
6704 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6705 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6706 ///       '[' LabelList ']'
6707 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6708   LocTy CallLoc = Lex.getLoc();
6709   AttrBuilder RetAttrs, FnAttrs;
6710   std::vector<unsigned> FwdRefAttrGrps;
6711   LocTy NoBuiltinLoc;
6712   unsigned CC;
6713   Type *RetType = nullptr;
6714   LocTy RetTypeLoc;
6715   ValID CalleeID;
6716   SmallVector<ParamInfo, 16> ArgList;
6717   SmallVector<OperandBundleDef, 2> BundleList;
6718 
6719   BasicBlock *DefaultDest;
6720   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6721       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6722       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6723       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6724                                  NoBuiltinLoc) ||
6725       parseOptionalOperandBundles(BundleList, PFS) ||
6726       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6727       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6728       parseToken(lltok::lsquare, "expected '[' in callbr"))
6729     return true;
6730 
6731   // parse the destination list.
6732   SmallVector<BasicBlock *, 16> IndirectDests;
6733 
6734   if (Lex.getKind() != lltok::rsquare) {
6735     BasicBlock *DestBB;
6736     if (parseTypeAndBasicBlock(DestBB, PFS))
6737       return true;
6738     IndirectDests.push_back(DestBB);
6739 
6740     while (EatIfPresent(lltok::comma)) {
6741       if (parseTypeAndBasicBlock(DestBB, PFS))
6742         return true;
6743       IndirectDests.push_back(DestBB);
6744     }
6745   }
6746 
6747   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6748     return true;
6749 
6750   // If RetType is a non-function pointer type, then this is the short syntax
6751   // for the call, which means that RetType is just the return type.  Infer the
6752   // rest of the function argument types from the arguments that are present.
6753   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6754   if (!Ty) {
6755     // Pull out the types of all of the arguments...
6756     std::vector<Type *> ParamTypes;
6757     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6758       ParamTypes.push_back(ArgList[i].V->getType());
6759 
6760     if (!FunctionType::isValidReturnType(RetType))
6761       return error(RetTypeLoc, "Invalid result type for LLVM function");
6762 
6763     Ty = FunctionType::get(RetType, ParamTypes, false);
6764   }
6765 
6766   CalleeID.FTy = Ty;
6767 
6768   // Look up the callee.
6769   Value *Callee;
6770   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6771                           /*IsCall=*/true))
6772     return true;
6773 
6774   // Set up the Attribute for the function.
6775   SmallVector<Value *, 8> Args;
6776   SmallVector<AttributeSet, 8> ArgAttrs;
6777 
6778   // Loop through FunctionType's arguments and ensure they are specified
6779   // correctly.  Also, gather any parameter attributes.
6780   FunctionType::param_iterator I = Ty->param_begin();
6781   FunctionType::param_iterator E = Ty->param_end();
6782   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6783     Type *ExpectedTy = nullptr;
6784     if (I != E) {
6785       ExpectedTy = *I++;
6786     } else if (!Ty->isVarArg()) {
6787       return error(ArgList[i].Loc, "too many arguments specified");
6788     }
6789 
6790     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6791       return error(ArgList[i].Loc, "argument is not of expected type '" +
6792                                        getTypeString(ExpectedTy) + "'");
6793     Args.push_back(ArgList[i].V);
6794     ArgAttrs.push_back(ArgList[i].Attrs);
6795   }
6796 
6797   if (I != E)
6798     return error(CallLoc, "not enough parameters specified for call");
6799 
6800   if (FnAttrs.hasAlignmentAttr())
6801     return error(CallLoc, "callbr instructions may not have an alignment");
6802 
6803   // Finish off the Attribute and check them
6804   AttributeList PAL =
6805       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6806                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6807 
6808   CallBrInst *CBI =
6809       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6810                          BundleList);
6811   CBI->setCallingConv(CC);
6812   CBI->setAttributes(PAL);
6813   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6814   Inst = CBI;
6815   return false;
6816 }
6817 
6818 //===----------------------------------------------------------------------===//
6819 // Binary Operators.
6820 //===----------------------------------------------------------------------===//
6821 
6822 /// parseArithmetic
6823 ///  ::= ArithmeticOps TypeAndValue ',' Value
6824 ///
6825 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6826 /// operand is allowed.
6827 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6828                                unsigned Opc, bool IsFP) {
6829   LocTy Loc; Value *LHS, *RHS;
6830   if (parseTypeAndValue(LHS, Loc, PFS) ||
6831       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6832       parseValue(LHS->getType(), RHS, PFS))
6833     return true;
6834 
6835   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6836                     : LHS->getType()->isIntOrIntVectorTy();
6837 
6838   if (!Valid)
6839     return error(Loc, "invalid operand type for instruction");
6840 
6841   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6842   return false;
6843 }
6844 
6845 /// parseLogical
6846 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6847 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6848                             unsigned Opc) {
6849   LocTy Loc; Value *LHS, *RHS;
6850   if (parseTypeAndValue(LHS, Loc, PFS) ||
6851       parseToken(lltok::comma, "expected ',' in logical operation") ||
6852       parseValue(LHS->getType(), RHS, PFS))
6853     return true;
6854 
6855   if (!LHS->getType()->isIntOrIntVectorTy())
6856     return error(Loc,
6857                  "instruction requires integer or integer vector operands");
6858 
6859   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6860   return false;
6861 }
6862 
6863 /// parseCompare
6864 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6865 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6866 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6867                             unsigned Opc) {
6868   // parse the integer/fp comparison predicate.
6869   LocTy Loc;
6870   unsigned Pred;
6871   Value *LHS, *RHS;
6872   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6873       parseToken(lltok::comma, "expected ',' after compare value") ||
6874       parseValue(LHS->getType(), RHS, PFS))
6875     return true;
6876 
6877   if (Opc == Instruction::FCmp) {
6878     if (!LHS->getType()->isFPOrFPVectorTy())
6879       return error(Loc, "fcmp requires floating point operands");
6880     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6881   } else {
6882     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6883     if (!LHS->getType()->isIntOrIntVectorTy() &&
6884         !LHS->getType()->isPtrOrPtrVectorTy())
6885       return error(Loc, "icmp requires integer operands");
6886     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6887   }
6888   return false;
6889 }
6890 
6891 //===----------------------------------------------------------------------===//
6892 // Other Instructions.
6893 //===----------------------------------------------------------------------===//
6894 
6895 /// parseCast
6896 ///   ::= CastOpc TypeAndValue 'to' Type
6897 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6898                          unsigned Opc) {
6899   LocTy Loc;
6900   Value *Op;
6901   Type *DestTy = nullptr;
6902   if (parseTypeAndValue(Op, Loc, PFS) ||
6903       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6904       parseType(DestTy))
6905     return true;
6906 
6907   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6908     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6909     return error(Loc, "invalid cast opcode for cast from '" +
6910                           getTypeString(Op->getType()) + "' to '" +
6911                           getTypeString(DestTy) + "'");
6912   }
6913   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6914   return false;
6915 }
6916 
6917 /// parseSelect
6918 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6919 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6920   LocTy Loc;
6921   Value *Op0, *Op1, *Op2;
6922   if (parseTypeAndValue(Op0, Loc, PFS) ||
6923       parseToken(lltok::comma, "expected ',' after select condition") ||
6924       parseTypeAndValue(Op1, PFS) ||
6925       parseToken(lltok::comma, "expected ',' after select value") ||
6926       parseTypeAndValue(Op2, PFS))
6927     return true;
6928 
6929   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6930     return error(Loc, Reason);
6931 
6932   Inst = SelectInst::Create(Op0, Op1, Op2);
6933   return false;
6934 }
6935 
6936 /// parseVAArg
6937 ///   ::= 'va_arg' TypeAndValue ',' Type
6938 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6939   Value *Op;
6940   Type *EltTy = nullptr;
6941   LocTy TypeLoc;
6942   if (parseTypeAndValue(Op, PFS) ||
6943       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6944       parseType(EltTy, TypeLoc))
6945     return true;
6946 
6947   if (!EltTy->isFirstClassType())
6948     return error(TypeLoc, "va_arg requires operand with first class type");
6949 
6950   Inst = new VAArgInst(Op, EltTy);
6951   return false;
6952 }
6953 
6954 /// parseExtractElement
6955 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6956 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6957   LocTy Loc;
6958   Value *Op0, *Op1;
6959   if (parseTypeAndValue(Op0, Loc, PFS) ||
6960       parseToken(lltok::comma, "expected ',' after extract value") ||
6961       parseTypeAndValue(Op1, PFS))
6962     return true;
6963 
6964   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6965     return error(Loc, "invalid extractelement operands");
6966 
6967   Inst = ExtractElementInst::Create(Op0, Op1);
6968   return false;
6969 }
6970 
6971 /// parseInsertElement
6972 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6973 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6974   LocTy Loc;
6975   Value *Op0, *Op1, *Op2;
6976   if (parseTypeAndValue(Op0, Loc, PFS) ||
6977       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6978       parseTypeAndValue(Op1, PFS) ||
6979       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6980       parseTypeAndValue(Op2, PFS))
6981     return true;
6982 
6983   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6984     return error(Loc, "invalid insertelement operands");
6985 
6986   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6987   return false;
6988 }
6989 
6990 /// parseShuffleVector
6991 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6992 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6993   LocTy Loc;
6994   Value *Op0, *Op1, *Op2;
6995   if (parseTypeAndValue(Op0, Loc, PFS) ||
6996       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6997       parseTypeAndValue(Op1, PFS) ||
6998       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6999       parseTypeAndValue(Op2, PFS))
7000     return true;
7001 
7002   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7003     return error(Loc, "invalid shufflevector operands");
7004 
7005   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7006   return false;
7007 }
7008 
7009 /// parsePHI
7010 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7011 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7012   Type *Ty = nullptr;  LocTy TypeLoc;
7013   Value *Op0, *Op1;
7014 
7015   if (parseType(Ty, TypeLoc) ||
7016       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7017       parseValue(Ty, Op0, PFS) ||
7018       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7019       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7020       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7021     return true;
7022 
7023   bool AteExtraComma = false;
7024   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7025 
7026   while (true) {
7027     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7028 
7029     if (!EatIfPresent(lltok::comma))
7030       break;
7031 
7032     if (Lex.getKind() == lltok::MetadataVar) {
7033       AteExtraComma = true;
7034       break;
7035     }
7036 
7037     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7038         parseValue(Ty, Op0, PFS) ||
7039         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7040         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7041         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7042       return true;
7043   }
7044 
7045   if (!Ty->isFirstClassType())
7046     return error(TypeLoc, "phi node must have first class type");
7047 
7048   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7049   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7050     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7051   Inst = PN;
7052   return AteExtraComma ? InstExtraComma : InstNormal;
7053 }
7054 
7055 /// parseLandingPad
7056 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7057 /// Clause
7058 ///   ::= 'catch' TypeAndValue
7059 ///   ::= 'filter'
7060 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7061 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7062   Type *Ty = nullptr; LocTy TyLoc;
7063 
7064   if (parseType(Ty, TyLoc))
7065     return true;
7066 
7067   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7068   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7069 
7070   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7071     LandingPadInst::ClauseType CT;
7072     if (EatIfPresent(lltok::kw_catch))
7073       CT = LandingPadInst::Catch;
7074     else if (EatIfPresent(lltok::kw_filter))
7075       CT = LandingPadInst::Filter;
7076     else
7077       return tokError("expected 'catch' or 'filter' clause type");
7078 
7079     Value *V;
7080     LocTy VLoc;
7081     if (parseTypeAndValue(V, VLoc, PFS))
7082       return true;
7083 
7084     // A 'catch' type expects a non-array constant. A filter clause expects an
7085     // array constant.
7086     if (CT == LandingPadInst::Catch) {
7087       if (isa<ArrayType>(V->getType()))
7088         error(VLoc, "'catch' clause has an invalid type");
7089     } else {
7090       if (!isa<ArrayType>(V->getType()))
7091         error(VLoc, "'filter' clause has an invalid type");
7092     }
7093 
7094     Constant *CV = dyn_cast<Constant>(V);
7095     if (!CV)
7096       return error(VLoc, "clause argument must be a constant");
7097     LP->addClause(CV);
7098   }
7099 
7100   Inst = LP.release();
7101   return false;
7102 }
7103 
7104 /// parseFreeze
7105 ///   ::= 'freeze' Type Value
7106 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7107   LocTy Loc;
7108   Value *Op;
7109   if (parseTypeAndValue(Op, Loc, PFS))
7110     return true;
7111 
7112   Inst = new FreezeInst(Op);
7113   return false;
7114 }
7115 
7116 /// parseCall
7117 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7118 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7119 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7120 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7121 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7122 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7123 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7124 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7125 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7126                          CallInst::TailCallKind TCK) {
7127   AttrBuilder RetAttrs, FnAttrs;
7128   std::vector<unsigned> FwdRefAttrGrps;
7129   LocTy BuiltinLoc;
7130   unsigned CallAddrSpace;
7131   unsigned CC;
7132   Type *RetType = nullptr;
7133   LocTy RetTypeLoc;
7134   ValID CalleeID;
7135   SmallVector<ParamInfo, 16> ArgList;
7136   SmallVector<OperandBundleDef, 2> BundleList;
7137   LocTy CallLoc = Lex.getLoc();
7138 
7139   if (TCK != CallInst::TCK_None &&
7140       parseToken(lltok::kw_call,
7141                  "expected 'tail call', 'musttail call', or 'notail call'"))
7142     return true;
7143 
7144   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7145 
7146   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7147       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7148       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7149       parseValID(CalleeID) ||
7150       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7151                          PFS.getFunction().isVarArg()) ||
7152       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7153       parseOptionalOperandBundles(BundleList, PFS))
7154     return true;
7155 
7156   // If RetType is a non-function pointer type, then this is the short syntax
7157   // for the call, which means that RetType is just the return type.  Infer the
7158   // rest of the function argument types from the arguments that are present.
7159   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7160   if (!Ty) {
7161     // Pull out the types of all of the arguments...
7162     std::vector<Type*> ParamTypes;
7163     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7164       ParamTypes.push_back(ArgList[i].V->getType());
7165 
7166     if (!FunctionType::isValidReturnType(RetType))
7167       return error(RetTypeLoc, "Invalid result type for LLVM function");
7168 
7169     Ty = FunctionType::get(RetType, ParamTypes, false);
7170   }
7171 
7172   CalleeID.FTy = Ty;
7173 
7174   // Look up the callee.
7175   Value *Callee;
7176   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7177                           &PFS, /*IsCall=*/true))
7178     return true;
7179 
7180   // Set up the Attribute for the function.
7181   SmallVector<AttributeSet, 8> Attrs;
7182 
7183   SmallVector<Value*, 8> Args;
7184 
7185   // Loop through FunctionType's arguments and ensure they are specified
7186   // correctly.  Also, gather any parameter attributes.
7187   FunctionType::param_iterator I = Ty->param_begin();
7188   FunctionType::param_iterator E = Ty->param_end();
7189   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7190     Type *ExpectedTy = nullptr;
7191     if (I != E) {
7192       ExpectedTy = *I++;
7193     } else if (!Ty->isVarArg()) {
7194       return error(ArgList[i].Loc, "too many arguments specified");
7195     }
7196 
7197     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7198       return error(ArgList[i].Loc, "argument is not of expected type '" +
7199                                        getTypeString(ExpectedTy) + "'");
7200     Args.push_back(ArgList[i].V);
7201     Attrs.push_back(ArgList[i].Attrs);
7202   }
7203 
7204   if (I != E)
7205     return error(CallLoc, "not enough parameters specified for call");
7206 
7207   if (FnAttrs.hasAlignmentAttr())
7208     return error(CallLoc, "call instructions may not have an alignment");
7209 
7210   // Finish off the Attribute and check them
7211   AttributeList PAL =
7212       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7213                          AttributeSet::get(Context, RetAttrs), Attrs);
7214 
7215   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7216   CI->setTailCallKind(TCK);
7217   CI->setCallingConv(CC);
7218   if (FMF.any()) {
7219     if (!isa<FPMathOperator>(CI)) {
7220       CI->deleteValue();
7221       return error(CallLoc, "fast-math-flags specified for call without "
7222                             "floating-point scalar or vector return type");
7223     }
7224     CI->setFastMathFlags(FMF);
7225   }
7226   CI->setAttributes(PAL);
7227   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7228   Inst = CI;
7229   return false;
7230 }
7231 
7232 //===----------------------------------------------------------------------===//
7233 // Memory Instructions.
7234 //===----------------------------------------------------------------------===//
7235 
7236 /// parseAlloc
7237 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7238 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7239 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7240   Value *Size = nullptr;
7241   LocTy SizeLoc, TyLoc, ASLoc;
7242   MaybeAlign Alignment;
7243   unsigned AddrSpace = 0;
7244   Type *Ty = nullptr;
7245 
7246   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7247   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7248 
7249   if (parseType(Ty, TyLoc))
7250     return true;
7251 
7252   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7253     return error(TyLoc, "invalid type for alloca");
7254 
7255   bool AteExtraComma = false;
7256   if (EatIfPresent(lltok::comma)) {
7257     if (Lex.getKind() == lltok::kw_align) {
7258       if (parseOptionalAlignment(Alignment))
7259         return true;
7260       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7261         return true;
7262     } else if (Lex.getKind() == lltok::kw_addrspace) {
7263       ASLoc = Lex.getLoc();
7264       if (parseOptionalAddrSpace(AddrSpace))
7265         return true;
7266     } else if (Lex.getKind() == lltok::MetadataVar) {
7267       AteExtraComma = true;
7268     } else {
7269       if (parseTypeAndValue(Size, SizeLoc, PFS))
7270         return true;
7271       if (EatIfPresent(lltok::comma)) {
7272         if (Lex.getKind() == lltok::kw_align) {
7273           if (parseOptionalAlignment(Alignment))
7274             return true;
7275           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7276             return true;
7277         } else if (Lex.getKind() == lltok::kw_addrspace) {
7278           ASLoc = Lex.getLoc();
7279           if (parseOptionalAddrSpace(AddrSpace))
7280             return true;
7281         } else if (Lex.getKind() == lltok::MetadataVar) {
7282           AteExtraComma = true;
7283         }
7284       }
7285     }
7286   }
7287 
7288   if (Size && !Size->getType()->isIntegerTy())
7289     return error(SizeLoc, "element count must have integer type");
7290 
7291   SmallPtrSet<Type *, 4> Visited;
7292   if (!Alignment && !Ty->isSized(&Visited))
7293     return error(TyLoc, "Cannot allocate unsized type");
7294   if (!Alignment)
7295     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7296   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7297   AI->setUsedWithInAlloca(IsInAlloca);
7298   AI->setSwiftError(IsSwiftError);
7299   Inst = AI;
7300   return AteExtraComma ? InstExtraComma : InstNormal;
7301 }
7302 
7303 /// parseLoad
7304 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7305 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7306 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7307 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7308   Value *Val; LocTy Loc;
7309   MaybeAlign Alignment;
7310   bool AteExtraComma = false;
7311   bool isAtomic = false;
7312   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7313   SyncScope::ID SSID = SyncScope::System;
7314 
7315   if (Lex.getKind() == lltok::kw_atomic) {
7316     isAtomic = true;
7317     Lex.Lex();
7318   }
7319 
7320   bool isVolatile = false;
7321   if (Lex.getKind() == lltok::kw_volatile) {
7322     isVolatile = true;
7323     Lex.Lex();
7324   }
7325 
7326   Type *Ty;
7327   LocTy ExplicitTypeLoc = Lex.getLoc();
7328   if (parseType(Ty) ||
7329       parseToken(lltok::comma, "expected comma after load's type") ||
7330       parseTypeAndValue(Val, Loc, PFS) ||
7331       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7332       parseOptionalCommaAlign(Alignment, AteExtraComma))
7333     return true;
7334 
7335   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7336     return error(Loc, "load operand must be a pointer to a first class type");
7337   if (isAtomic && !Alignment)
7338     return error(Loc, "atomic load must have explicit non-zero alignment");
7339   if (Ordering == AtomicOrdering::Release ||
7340       Ordering == AtomicOrdering::AcquireRelease)
7341     return error(Loc, "atomic load cannot use Release ordering");
7342 
7343   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7344     return error(ExplicitTypeLoc,
7345                  "explicit pointee type doesn't match operand's pointee type");
7346   SmallPtrSet<Type *, 4> Visited;
7347   if (!Alignment && !Ty->isSized(&Visited))
7348     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7349   if (!Alignment)
7350     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7351   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7352   return AteExtraComma ? InstExtraComma : InstNormal;
7353 }
7354 
7355 /// parseStore
7356 
7357 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7358 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7359 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7360 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7361   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7362   MaybeAlign Alignment;
7363   bool AteExtraComma = false;
7364   bool isAtomic = false;
7365   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7366   SyncScope::ID SSID = SyncScope::System;
7367 
7368   if (Lex.getKind() == lltok::kw_atomic) {
7369     isAtomic = true;
7370     Lex.Lex();
7371   }
7372 
7373   bool isVolatile = false;
7374   if (Lex.getKind() == lltok::kw_volatile) {
7375     isVolatile = true;
7376     Lex.Lex();
7377   }
7378 
7379   if (parseTypeAndValue(Val, Loc, PFS) ||
7380       parseToken(lltok::comma, "expected ',' after store operand") ||
7381       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7382       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7383       parseOptionalCommaAlign(Alignment, AteExtraComma))
7384     return true;
7385 
7386   if (!Ptr->getType()->isPointerTy())
7387     return error(PtrLoc, "store operand must be a pointer");
7388   if (!Val->getType()->isFirstClassType())
7389     return error(Loc, "store operand must be a first class value");
7390   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7391     return error(Loc, "stored value and pointer type do not match");
7392   if (isAtomic && !Alignment)
7393     return error(Loc, "atomic store must have explicit non-zero alignment");
7394   if (Ordering == AtomicOrdering::Acquire ||
7395       Ordering == AtomicOrdering::AcquireRelease)
7396     return error(Loc, "atomic store cannot use Acquire ordering");
7397   SmallPtrSet<Type *, 4> Visited;
7398   if (!Alignment && !Val->getType()->isSized(&Visited))
7399     return error(Loc, "storing unsized types is not allowed");
7400   if (!Alignment)
7401     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7402 
7403   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7404   return AteExtraComma ? InstExtraComma : InstNormal;
7405 }
7406 
7407 /// parseCmpXchg
7408 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7409 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7410 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7411   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7412   bool AteExtraComma = false;
7413   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7414   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7415   SyncScope::ID SSID = SyncScope::System;
7416   bool isVolatile = false;
7417   bool isWeak = false;
7418 
7419   if (EatIfPresent(lltok::kw_weak))
7420     isWeak = true;
7421 
7422   if (EatIfPresent(lltok::kw_volatile))
7423     isVolatile = true;
7424 
7425   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7426       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7427       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7428       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7429       parseTypeAndValue(New, NewLoc, PFS) ||
7430       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7431       parseOrdering(FailureOrdering))
7432     return true;
7433 
7434   if (SuccessOrdering == AtomicOrdering::Unordered ||
7435       FailureOrdering == AtomicOrdering::Unordered)
7436     return tokError("cmpxchg cannot be unordered");
7437   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7438     return tokError("cmpxchg failure argument shall be no stronger than the "
7439                     "success argument");
7440   if (FailureOrdering == AtomicOrdering::Release ||
7441       FailureOrdering == AtomicOrdering::AcquireRelease)
7442     return tokError(
7443         "cmpxchg failure ordering cannot include release semantics");
7444   if (!Ptr->getType()->isPointerTy())
7445     return error(PtrLoc, "cmpxchg operand must be a pointer");
7446   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7447     return error(CmpLoc, "compare value and pointer type do not match");
7448   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7449     return error(NewLoc, "new value and pointer type do not match");
7450   if (!New->getType()->isFirstClassType())
7451     return error(NewLoc, "cmpxchg operand must be a first class value");
7452 
7453   Align Alignment(
7454       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7455           Cmp->getType()));
7456 
7457   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7458       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7459   CXI->setVolatile(isVolatile);
7460   CXI->setWeak(isWeak);
7461   Inst = CXI;
7462   return AteExtraComma ? InstExtraComma : InstNormal;
7463 }
7464 
7465 /// parseAtomicRMW
7466 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7467 ///       'singlethread'? AtomicOrdering
7468 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7469   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7470   bool AteExtraComma = false;
7471   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7472   SyncScope::ID SSID = SyncScope::System;
7473   bool isVolatile = false;
7474   bool IsFP = false;
7475   AtomicRMWInst::BinOp Operation;
7476 
7477   if (EatIfPresent(lltok::kw_volatile))
7478     isVolatile = true;
7479 
7480   switch (Lex.getKind()) {
7481   default:
7482     return tokError("expected binary operation in atomicrmw");
7483   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7484   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7485   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7486   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7487   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7488   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7489   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7490   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7491   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7492   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7493   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7494   case lltok::kw_fadd:
7495     Operation = AtomicRMWInst::FAdd;
7496     IsFP = true;
7497     break;
7498   case lltok::kw_fsub:
7499     Operation = AtomicRMWInst::FSub;
7500     IsFP = true;
7501     break;
7502   }
7503   Lex.Lex();  // Eat the operation.
7504 
7505   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7506       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7507       parseTypeAndValue(Val, ValLoc, PFS) ||
7508       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7509     return true;
7510 
7511   if (Ordering == AtomicOrdering::Unordered)
7512     return tokError("atomicrmw cannot be unordered");
7513   if (!Ptr->getType()->isPointerTy())
7514     return error(PtrLoc, "atomicrmw operand must be a pointer");
7515   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7516     return error(ValLoc, "atomicrmw value and pointer type do not match");
7517 
7518   if (Operation == AtomicRMWInst::Xchg) {
7519     if (!Val->getType()->isIntegerTy() &&
7520         !Val->getType()->isFloatingPointTy()) {
7521       return error(ValLoc,
7522                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7523                        " operand must be an integer or floating point type");
7524     }
7525   } else if (IsFP) {
7526     if (!Val->getType()->isFloatingPointTy()) {
7527       return error(ValLoc, "atomicrmw " +
7528                                AtomicRMWInst::getOperationName(Operation) +
7529                                " operand must be a floating point type");
7530     }
7531   } else {
7532     if (!Val->getType()->isIntegerTy()) {
7533       return error(ValLoc, "atomicrmw " +
7534                                AtomicRMWInst::getOperationName(Operation) +
7535                                " operand must be an integer");
7536     }
7537   }
7538 
7539   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7540   if (Size < 8 || (Size & (Size - 1)))
7541     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7542                          " integer");
7543   Align Alignment(
7544       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7545           Val->getType()));
7546   AtomicRMWInst *RMWI =
7547       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7548   RMWI->setVolatile(isVolatile);
7549   Inst = RMWI;
7550   return AteExtraComma ? InstExtraComma : InstNormal;
7551 }
7552 
7553 /// parseFence
7554 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7555 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7556   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7557   SyncScope::ID SSID = SyncScope::System;
7558   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7559     return true;
7560 
7561   if (Ordering == AtomicOrdering::Unordered)
7562     return tokError("fence cannot be unordered");
7563   if (Ordering == AtomicOrdering::Monotonic)
7564     return tokError("fence cannot be monotonic");
7565 
7566   Inst = new FenceInst(Context, Ordering, SSID);
7567   return InstNormal;
7568 }
7569 
7570 /// parseGetElementPtr
7571 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7572 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7573   Value *Ptr = nullptr;
7574   Value *Val = nullptr;
7575   LocTy Loc, EltLoc;
7576 
7577   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7578 
7579   Type *Ty = nullptr;
7580   LocTy ExplicitTypeLoc = Lex.getLoc();
7581   if (parseType(Ty) ||
7582       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7583       parseTypeAndValue(Ptr, Loc, PFS))
7584     return true;
7585 
7586   Type *BaseType = Ptr->getType();
7587   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7588   if (!BasePointerType)
7589     return error(Loc, "base of getelementptr must be a pointer");
7590 
7591   if (Ty != BasePointerType->getElementType())
7592     return error(ExplicitTypeLoc,
7593                  "explicit pointee type doesn't match operand's pointee type");
7594 
7595   SmallVector<Value*, 16> Indices;
7596   bool AteExtraComma = false;
7597   // GEP returns a vector of pointers if at least one of parameters is a vector.
7598   // All vector parameters should have the same vector width.
7599   ElementCount GEPWidth = BaseType->isVectorTy()
7600                               ? cast<VectorType>(BaseType)->getElementCount()
7601                               : ElementCount::getFixed(0);
7602 
7603   while (EatIfPresent(lltok::comma)) {
7604     if (Lex.getKind() == lltok::MetadataVar) {
7605       AteExtraComma = true;
7606       break;
7607     }
7608     if (parseTypeAndValue(Val, EltLoc, PFS))
7609       return true;
7610     if (!Val->getType()->isIntOrIntVectorTy())
7611       return error(EltLoc, "getelementptr index must be an integer");
7612 
7613     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7614       ElementCount ValNumEl = ValVTy->getElementCount();
7615       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7616         return error(
7617             EltLoc,
7618             "getelementptr vector index has a wrong number of elements");
7619       GEPWidth = ValNumEl;
7620     }
7621     Indices.push_back(Val);
7622   }
7623 
7624   SmallPtrSet<Type*, 4> Visited;
7625   if (!Indices.empty() && !Ty->isSized(&Visited))
7626     return error(Loc, "base element of getelementptr must be sized");
7627 
7628   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7629     return error(Loc, "invalid getelementptr indices");
7630   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7631   if (InBounds)
7632     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7633   return AteExtraComma ? InstExtraComma : InstNormal;
7634 }
7635 
7636 /// parseExtractValue
7637 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7638 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7639   Value *Val; LocTy Loc;
7640   SmallVector<unsigned, 4> Indices;
7641   bool AteExtraComma;
7642   if (parseTypeAndValue(Val, Loc, PFS) ||
7643       parseIndexList(Indices, AteExtraComma))
7644     return true;
7645 
7646   if (!Val->getType()->isAggregateType())
7647     return error(Loc, "extractvalue operand must be aggregate type");
7648 
7649   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7650     return error(Loc, "invalid indices for extractvalue");
7651   Inst = ExtractValueInst::Create(Val, Indices);
7652   return AteExtraComma ? InstExtraComma : InstNormal;
7653 }
7654 
7655 /// parseInsertValue
7656 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7657 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7658   Value *Val0, *Val1; LocTy Loc0, Loc1;
7659   SmallVector<unsigned, 4> Indices;
7660   bool AteExtraComma;
7661   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7662       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7663       parseTypeAndValue(Val1, Loc1, PFS) ||
7664       parseIndexList(Indices, AteExtraComma))
7665     return true;
7666 
7667   if (!Val0->getType()->isAggregateType())
7668     return error(Loc0, "insertvalue operand must be aggregate type");
7669 
7670   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7671   if (!IndexedType)
7672     return error(Loc0, "invalid indices for insertvalue");
7673   if (IndexedType != Val1->getType())
7674     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7675                            getTypeString(Val1->getType()) + "' instead of '" +
7676                            getTypeString(IndexedType) + "'");
7677   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7678   return AteExtraComma ? InstExtraComma : InstNormal;
7679 }
7680 
7681 //===----------------------------------------------------------------------===//
7682 // Embedded metadata.
7683 //===----------------------------------------------------------------------===//
7684 
7685 /// parseMDNodeVector
7686 ///   ::= { Element (',' Element)* }
7687 /// Element
7688 ///   ::= 'null' | TypeAndValue
7689 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7690   if (parseToken(lltok::lbrace, "expected '{' here"))
7691     return true;
7692 
7693   // Check for an empty list.
7694   if (EatIfPresent(lltok::rbrace))
7695     return false;
7696 
7697   do {
7698     // Null is a special case since it is typeless.
7699     if (EatIfPresent(lltok::kw_null)) {
7700       Elts.push_back(nullptr);
7701       continue;
7702     }
7703 
7704     Metadata *MD;
7705     if (parseMetadata(MD, nullptr))
7706       return true;
7707     Elts.push_back(MD);
7708   } while (EatIfPresent(lltok::comma));
7709 
7710   return parseToken(lltok::rbrace, "expected end of metadata node");
7711 }
7712 
7713 //===----------------------------------------------------------------------===//
7714 // Use-list order directives.
7715 //===----------------------------------------------------------------------===//
7716 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7717                                 SMLoc Loc) {
7718   if (V->use_empty())
7719     return error(Loc, "value has no uses");
7720 
7721   unsigned NumUses = 0;
7722   SmallDenseMap<const Use *, unsigned, 16> Order;
7723   for (const Use &U : V->uses()) {
7724     if (++NumUses > Indexes.size())
7725       break;
7726     Order[&U] = Indexes[NumUses - 1];
7727   }
7728   if (NumUses < 2)
7729     return error(Loc, "value only has one use");
7730   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7731     return error(Loc,
7732                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7733 
7734   V->sortUseList([&](const Use &L, const Use &R) {
7735     return Order.lookup(&L) < Order.lookup(&R);
7736   });
7737   return false;
7738 }
7739 
7740 /// parseUseListOrderIndexes
7741 ///   ::= '{' uint32 (',' uint32)+ '}'
7742 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7743   SMLoc Loc = Lex.getLoc();
7744   if (parseToken(lltok::lbrace, "expected '{' here"))
7745     return true;
7746   if (Lex.getKind() == lltok::rbrace)
7747     return Lex.Error("expected non-empty list of uselistorder indexes");
7748 
7749   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7750   // indexes should be distinct numbers in the range [0, size-1], and should
7751   // not be in order.
7752   unsigned Offset = 0;
7753   unsigned Max = 0;
7754   bool IsOrdered = true;
7755   assert(Indexes.empty() && "Expected empty order vector");
7756   do {
7757     unsigned Index;
7758     if (parseUInt32(Index))
7759       return true;
7760 
7761     // Update consistency checks.
7762     Offset += Index - Indexes.size();
7763     Max = std::max(Max, Index);
7764     IsOrdered &= Index == Indexes.size();
7765 
7766     Indexes.push_back(Index);
7767   } while (EatIfPresent(lltok::comma));
7768 
7769   if (parseToken(lltok::rbrace, "expected '}' here"))
7770     return true;
7771 
7772   if (Indexes.size() < 2)
7773     return error(Loc, "expected >= 2 uselistorder indexes");
7774   if (Offset != 0 || Max >= Indexes.size())
7775     return error(Loc,
7776                  "expected distinct uselistorder indexes in range [0, size)");
7777   if (IsOrdered)
7778     return error(Loc, "expected uselistorder indexes to change the order");
7779 
7780   return false;
7781 }
7782 
7783 /// parseUseListOrder
7784 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7785 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7786   SMLoc Loc = Lex.getLoc();
7787   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7788     return true;
7789 
7790   Value *V;
7791   SmallVector<unsigned, 16> Indexes;
7792   if (parseTypeAndValue(V, PFS) ||
7793       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7794       parseUseListOrderIndexes(Indexes))
7795     return true;
7796 
7797   return sortUseListOrder(V, Indexes, Loc);
7798 }
7799 
7800 /// parseUseListOrderBB
7801 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7802 bool LLParser::parseUseListOrderBB() {
7803   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7804   SMLoc Loc = Lex.getLoc();
7805   Lex.Lex();
7806 
7807   ValID Fn, Label;
7808   SmallVector<unsigned, 16> Indexes;
7809   if (parseValID(Fn) ||
7810       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7811       parseValID(Label) ||
7812       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7813       parseUseListOrderIndexes(Indexes))
7814     return true;
7815 
7816   // Check the function.
7817   GlobalValue *GV;
7818   if (Fn.Kind == ValID::t_GlobalName)
7819     GV = M->getNamedValue(Fn.StrVal);
7820   else if (Fn.Kind == ValID::t_GlobalID)
7821     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7822   else
7823     return error(Fn.Loc, "expected function name in uselistorder_bb");
7824   if (!GV)
7825     return error(Fn.Loc,
7826                  "invalid function forward reference in uselistorder_bb");
7827   auto *F = dyn_cast<Function>(GV);
7828   if (!F)
7829     return error(Fn.Loc, "expected function name in uselistorder_bb");
7830   if (F->isDeclaration())
7831     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7832 
7833   // Check the basic block.
7834   if (Label.Kind == ValID::t_LocalID)
7835     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7836   if (Label.Kind != ValID::t_LocalName)
7837     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7838   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7839   if (!V)
7840     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7841   if (!isa<BasicBlock>(V))
7842     return error(Label.Loc, "expected basic block in uselistorder_bb");
7843 
7844   return sortUseListOrder(V, Indexes, Loc);
7845 }
7846 
7847 /// ModuleEntry
7848 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7849 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7850 bool LLParser::parseModuleEntry(unsigned ID) {
7851   assert(Lex.getKind() == lltok::kw_module);
7852   Lex.Lex();
7853 
7854   std::string Path;
7855   if (parseToken(lltok::colon, "expected ':' here") ||
7856       parseToken(lltok::lparen, "expected '(' here") ||
7857       parseToken(lltok::kw_path, "expected 'path' here") ||
7858       parseToken(lltok::colon, "expected ':' here") ||
7859       parseStringConstant(Path) ||
7860       parseToken(lltok::comma, "expected ',' here") ||
7861       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7862       parseToken(lltok::colon, "expected ':' here") ||
7863       parseToken(lltok::lparen, "expected '(' here"))
7864     return true;
7865 
7866   ModuleHash Hash;
7867   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7868       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7869       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7870       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7871       parseUInt32(Hash[4]))
7872     return true;
7873 
7874   if (parseToken(lltok::rparen, "expected ')' here") ||
7875       parseToken(lltok::rparen, "expected ')' here"))
7876     return true;
7877 
7878   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7879   ModuleIdMap[ID] = ModuleEntry->first();
7880 
7881   return false;
7882 }
7883 
7884 /// TypeIdEntry
7885 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7886 bool LLParser::parseTypeIdEntry(unsigned ID) {
7887   assert(Lex.getKind() == lltok::kw_typeid);
7888   Lex.Lex();
7889 
7890   std::string Name;
7891   if (parseToken(lltok::colon, "expected ':' here") ||
7892       parseToken(lltok::lparen, "expected '(' here") ||
7893       parseToken(lltok::kw_name, "expected 'name' here") ||
7894       parseToken(lltok::colon, "expected ':' here") ||
7895       parseStringConstant(Name))
7896     return true;
7897 
7898   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7899   if (parseToken(lltok::comma, "expected ',' here") ||
7900       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7901     return true;
7902 
7903   // Check if this ID was forward referenced, and if so, update the
7904   // corresponding GUIDs.
7905   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7906   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7907     for (auto TIDRef : FwdRefTIDs->second) {
7908       assert(!*TIDRef.first &&
7909              "Forward referenced type id GUID expected to be 0");
7910       *TIDRef.first = GlobalValue::getGUID(Name);
7911     }
7912     ForwardRefTypeIds.erase(FwdRefTIDs);
7913   }
7914 
7915   return false;
7916 }
7917 
7918 /// TypeIdSummary
7919 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7920 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7921   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7922       parseToken(lltok::colon, "expected ':' here") ||
7923       parseToken(lltok::lparen, "expected '(' here") ||
7924       parseTypeTestResolution(TIS.TTRes))
7925     return true;
7926 
7927   if (EatIfPresent(lltok::comma)) {
7928     // Expect optional wpdResolutions field
7929     if (parseOptionalWpdResolutions(TIS.WPDRes))
7930       return true;
7931   }
7932 
7933   if (parseToken(lltok::rparen, "expected ')' here"))
7934     return true;
7935 
7936   return false;
7937 }
7938 
7939 static ValueInfo EmptyVI =
7940     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7941 
7942 /// TypeIdCompatibleVtableEntry
7943 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7944 ///   TypeIdCompatibleVtableInfo
7945 ///   ')'
7946 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7947   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7948   Lex.Lex();
7949 
7950   std::string Name;
7951   if (parseToken(lltok::colon, "expected ':' here") ||
7952       parseToken(lltok::lparen, "expected '(' here") ||
7953       parseToken(lltok::kw_name, "expected 'name' here") ||
7954       parseToken(lltok::colon, "expected ':' here") ||
7955       parseStringConstant(Name))
7956     return true;
7957 
7958   TypeIdCompatibleVtableInfo &TI =
7959       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7960   if (parseToken(lltok::comma, "expected ',' here") ||
7961       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7962       parseToken(lltok::colon, "expected ':' here") ||
7963       parseToken(lltok::lparen, "expected '(' here"))
7964     return true;
7965 
7966   IdToIndexMapType IdToIndexMap;
7967   // parse each call edge
7968   do {
7969     uint64_t Offset;
7970     if (parseToken(lltok::lparen, "expected '(' here") ||
7971         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7972         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7973         parseToken(lltok::comma, "expected ',' here"))
7974       return true;
7975 
7976     LocTy Loc = Lex.getLoc();
7977     unsigned GVId;
7978     ValueInfo VI;
7979     if (parseGVReference(VI, GVId))
7980       return true;
7981 
7982     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7983     // forward reference. We will save the location of the ValueInfo needing an
7984     // update, but can only do so once the std::vector is finalized.
7985     if (VI == EmptyVI)
7986       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7987     TI.push_back({Offset, VI});
7988 
7989     if (parseToken(lltok::rparen, "expected ')' in call"))
7990       return true;
7991   } while (EatIfPresent(lltok::comma));
7992 
7993   // Now that the TI vector is finalized, it is safe to save the locations
7994   // of any forward GV references that need updating later.
7995   for (auto I : IdToIndexMap) {
7996     auto &Infos = ForwardRefValueInfos[I.first];
7997     for (auto P : I.second) {
7998       assert(TI[P.first].VTableVI == EmptyVI &&
7999              "Forward referenced ValueInfo expected to be empty");
8000       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8001     }
8002   }
8003 
8004   if (parseToken(lltok::rparen, "expected ')' here") ||
8005       parseToken(lltok::rparen, "expected ')' here"))
8006     return true;
8007 
8008   // Check if this ID was forward referenced, and if so, update the
8009   // corresponding GUIDs.
8010   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8011   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8012     for (auto TIDRef : FwdRefTIDs->second) {
8013       assert(!*TIDRef.first &&
8014              "Forward referenced type id GUID expected to be 0");
8015       *TIDRef.first = GlobalValue::getGUID(Name);
8016     }
8017     ForwardRefTypeIds.erase(FwdRefTIDs);
8018   }
8019 
8020   return false;
8021 }
8022 
8023 /// TypeTestResolution
8024 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8025 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8026 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8027 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8028 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8029 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8030   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8031       parseToken(lltok::colon, "expected ':' here") ||
8032       parseToken(lltok::lparen, "expected '(' here") ||
8033       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8034       parseToken(lltok::colon, "expected ':' here"))
8035     return true;
8036 
8037   switch (Lex.getKind()) {
8038   case lltok::kw_unknown:
8039     TTRes.TheKind = TypeTestResolution::Unknown;
8040     break;
8041   case lltok::kw_unsat:
8042     TTRes.TheKind = TypeTestResolution::Unsat;
8043     break;
8044   case lltok::kw_byteArray:
8045     TTRes.TheKind = TypeTestResolution::ByteArray;
8046     break;
8047   case lltok::kw_inline:
8048     TTRes.TheKind = TypeTestResolution::Inline;
8049     break;
8050   case lltok::kw_single:
8051     TTRes.TheKind = TypeTestResolution::Single;
8052     break;
8053   case lltok::kw_allOnes:
8054     TTRes.TheKind = TypeTestResolution::AllOnes;
8055     break;
8056   default:
8057     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8058   }
8059   Lex.Lex();
8060 
8061   if (parseToken(lltok::comma, "expected ',' here") ||
8062       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8063       parseToken(lltok::colon, "expected ':' here") ||
8064       parseUInt32(TTRes.SizeM1BitWidth))
8065     return true;
8066 
8067   // parse optional fields
8068   while (EatIfPresent(lltok::comma)) {
8069     switch (Lex.getKind()) {
8070     case lltok::kw_alignLog2:
8071       Lex.Lex();
8072       if (parseToken(lltok::colon, "expected ':'") ||
8073           parseUInt64(TTRes.AlignLog2))
8074         return true;
8075       break;
8076     case lltok::kw_sizeM1:
8077       Lex.Lex();
8078       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8079         return true;
8080       break;
8081     case lltok::kw_bitMask: {
8082       unsigned Val;
8083       Lex.Lex();
8084       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8085         return true;
8086       assert(Val <= 0xff);
8087       TTRes.BitMask = (uint8_t)Val;
8088       break;
8089     }
8090     case lltok::kw_inlineBits:
8091       Lex.Lex();
8092       if (parseToken(lltok::colon, "expected ':'") ||
8093           parseUInt64(TTRes.InlineBits))
8094         return true;
8095       break;
8096     default:
8097       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8098     }
8099   }
8100 
8101   if (parseToken(lltok::rparen, "expected ')' here"))
8102     return true;
8103 
8104   return false;
8105 }
8106 
8107 /// OptionalWpdResolutions
8108 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8109 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8110 bool LLParser::parseOptionalWpdResolutions(
8111     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8112   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8113       parseToken(lltok::colon, "expected ':' here") ||
8114       parseToken(lltok::lparen, "expected '(' here"))
8115     return true;
8116 
8117   do {
8118     uint64_t Offset;
8119     WholeProgramDevirtResolution WPDRes;
8120     if (parseToken(lltok::lparen, "expected '(' here") ||
8121         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8122         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8123         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8124         parseToken(lltok::rparen, "expected ')' here"))
8125       return true;
8126     WPDResMap[Offset] = WPDRes;
8127   } while (EatIfPresent(lltok::comma));
8128 
8129   if (parseToken(lltok::rparen, "expected ')' here"))
8130     return true;
8131 
8132   return false;
8133 }
8134 
8135 /// WpdRes
8136 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8137 ///         [',' OptionalResByArg]? ')'
8138 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8139 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8140 ///         [',' OptionalResByArg]? ')'
8141 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8142 ///         [',' OptionalResByArg]? ')'
8143 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8144   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8145       parseToken(lltok::colon, "expected ':' here") ||
8146       parseToken(lltok::lparen, "expected '(' here") ||
8147       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8148       parseToken(lltok::colon, "expected ':' here"))
8149     return true;
8150 
8151   switch (Lex.getKind()) {
8152   case lltok::kw_indir:
8153     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8154     break;
8155   case lltok::kw_singleImpl:
8156     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8157     break;
8158   case lltok::kw_branchFunnel:
8159     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8160     break;
8161   default:
8162     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8163   }
8164   Lex.Lex();
8165 
8166   // parse optional fields
8167   while (EatIfPresent(lltok::comma)) {
8168     switch (Lex.getKind()) {
8169     case lltok::kw_singleImplName:
8170       Lex.Lex();
8171       if (parseToken(lltok::colon, "expected ':' here") ||
8172           parseStringConstant(WPDRes.SingleImplName))
8173         return true;
8174       break;
8175     case lltok::kw_resByArg:
8176       if (parseOptionalResByArg(WPDRes.ResByArg))
8177         return true;
8178       break;
8179     default:
8180       return error(Lex.getLoc(),
8181                    "expected optional WholeProgramDevirtResolution field");
8182     }
8183   }
8184 
8185   if (parseToken(lltok::rparen, "expected ')' here"))
8186     return true;
8187 
8188   return false;
8189 }
8190 
8191 /// OptionalResByArg
8192 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8193 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8194 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8195 ///                  'virtualConstProp' )
8196 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8197 ///                [',' 'bit' ':' UInt32]? ')'
8198 bool LLParser::parseOptionalResByArg(
8199     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8200         &ResByArg) {
8201   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8202       parseToken(lltok::colon, "expected ':' here") ||
8203       parseToken(lltok::lparen, "expected '(' here"))
8204     return true;
8205 
8206   do {
8207     std::vector<uint64_t> Args;
8208     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8209         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8210         parseToken(lltok::colon, "expected ':' here") ||
8211         parseToken(lltok::lparen, "expected '(' here") ||
8212         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8213         parseToken(lltok::colon, "expected ':' here"))
8214       return true;
8215 
8216     WholeProgramDevirtResolution::ByArg ByArg;
8217     switch (Lex.getKind()) {
8218     case lltok::kw_indir:
8219       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8220       break;
8221     case lltok::kw_uniformRetVal:
8222       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8223       break;
8224     case lltok::kw_uniqueRetVal:
8225       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8226       break;
8227     case lltok::kw_virtualConstProp:
8228       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8229       break;
8230     default:
8231       return error(Lex.getLoc(),
8232                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8233     }
8234     Lex.Lex();
8235 
8236     // parse optional fields
8237     while (EatIfPresent(lltok::comma)) {
8238       switch (Lex.getKind()) {
8239       case lltok::kw_info:
8240         Lex.Lex();
8241         if (parseToken(lltok::colon, "expected ':' here") ||
8242             parseUInt64(ByArg.Info))
8243           return true;
8244         break;
8245       case lltok::kw_byte:
8246         Lex.Lex();
8247         if (parseToken(lltok::colon, "expected ':' here") ||
8248             parseUInt32(ByArg.Byte))
8249           return true;
8250         break;
8251       case lltok::kw_bit:
8252         Lex.Lex();
8253         if (parseToken(lltok::colon, "expected ':' here") ||
8254             parseUInt32(ByArg.Bit))
8255           return true;
8256         break;
8257       default:
8258         return error(Lex.getLoc(),
8259                      "expected optional whole program devirt field");
8260       }
8261     }
8262 
8263     if (parseToken(lltok::rparen, "expected ')' here"))
8264       return true;
8265 
8266     ResByArg[Args] = ByArg;
8267   } while (EatIfPresent(lltok::comma));
8268 
8269   if (parseToken(lltok::rparen, "expected ')' here"))
8270     return true;
8271 
8272   return false;
8273 }
8274 
8275 /// OptionalResByArg
8276 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8277 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8278   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8279       parseToken(lltok::colon, "expected ':' here") ||
8280       parseToken(lltok::lparen, "expected '(' here"))
8281     return true;
8282 
8283   do {
8284     uint64_t Val;
8285     if (parseUInt64(Val))
8286       return true;
8287     Args.push_back(Val);
8288   } while (EatIfPresent(lltok::comma));
8289 
8290   if (parseToken(lltok::rparen, "expected ')' here"))
8291     return true;
8292 
8293   return false;
8294 }
8295 
8296 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8297 
8298 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8299   bool ReadOnly = Fwd->isReadOnly();
8300   bool WriteOnly = Fwd->isWriteOnly();
8301   assert(!(ReadOnly && WriteOnly));
8302   *Fwd = Resolved;
8303   if (ReadOnly)
8304     Fwd->setReadOnly();
8305   if (WriteOnly)
8306     Fwd->setWriteOnly();
8307 }
8308 
8309 /// Stores the given Name/GUID and associated summary into the Index.
8310 /// Also updates any forward references to the associated entry ID.
8311 void LLParser::addGlobalValueToIndex(
8312     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8313     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8314   // First create the ValueInfo utilizing the Name or GUID.
8315   ValueInfo VI;
8316   if (GUID != 0) {
8317     assert(Name.empty());
8318     VI = Index->getOrInsertValueInfo(GUID);
8319   } else {
8320     assert(!Name.empty());
8321     if (M) {
8322       auto *GV = M->getNamedValue(Name);
8323       assert(GV);
8324       VI = Index->getOrInsertValueInfo(GV);
8325     } else {
8326       assert(
8327           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8328           "Need a source_filename to compute GUID for local");
8329       GUID = GlobalValue::getGUID(
8330           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8331       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8332     }
8333   }
8334 
8335   // Resolve forward references from calls/refs
8336   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8337   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8338     for (auto VIRef : FwdRefVIs->second) {
8339       assert(VIRef.first->getRef() == FwdVIRef &&
8340              "Forward referenced ValueInfo expected to be empty");
8341       resolveFwdRef(VIRef.first, VI);
8342     }
8343     ForwardRefValueInfos.erase(FwdRefVIs);
8344   }
8345 
8346   // Resolve forward references from aliases
8347   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8348   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8349     for (auto AliaseeRef : FwdRefAliasees->second) {
8350       assert(!AliaseeRef.first->hasAliasee() &&
8351              "Forward referencing alias already has aliasee");
8352       assert(Summary && "Aliasee must be a definition");
8353       AliaseeRef.first->setAliasee(VI, Summary.get());
8354     }
8355     ForwardRefAliasees.erase(FwdRefAliasees);
8356   }
8357 
8358   // Add the summary if one was provided.
8359   if (Summary)
8360     Index->addGlobalValueSummary(VI, std::move(Summary));
8361 
8362   // Save the associated ValueInfo for use in later references by ID.
8363   if (ID == NumberedValueInfos.size())
8364     NumberedValueInfos.push_back(VI);
8365   else {
8366     // Handle non-continuous numbers (to make test simplification easier).
8367     if (ID > NumberedValueInfos.size())
8368       NumberedValueInfos.resize(ID + 1);
8369     NumberedValueInfos[ID] = VI;
8370   }
8371 }
8372 
8373 /// parseSummaryIndexFlags
8374 ///   ::= 'flags' ':' UInt64
8375 bool LLParser::parseSummaryIndexFlags() {
8376   assert(Lex.getKind() == lltok::kw_flags);
8377   Lex.Lex();
8378 
8379   if (parseToken(lltok::colon, "expected ':' here"))
8380     return true;
8381   uint64_t Flags;
8382   if (parseUInt64(Flags))
8383     return true;
8384   if (Index)
8385     Index->setFlags(Flags);
8386   return false;
8387 }
8388 
8389 /// parseBlockCount
8390 ///   ::= 'blockcount' ':' UInt64
8391 bool LLParser::parseBlockCount() {
8392   assert(Lex.getKind() == lltok::kw_blockcount);
8393   Lex.Lex();
8394 
8395   if (parseToken(lltok::colon, "expected ':' here"))
8396     return true;
8397   uint64_t BlockCount;
8398   if (parseUInt64(BlockCount))
8399     return true;
8400   if (Index)
8401     Index->setBlockCount(BlockCount);
8402   return false;
8403 }
8404 
8405 /// parseGVEntry
8406 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8407 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8408 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8409 bool LLParser::parseGVEntry(unsigned ID) {
8410   assert(Lex.getKind() == lltok::kw_gv);
8411   Lex.Lex();
8412 
8413   if (parseToken(lltok::colon, "expected ':' here") ||
8414       parseToken(lltok::lparen, "expected '(' here"))
8415     return true;
8416 
8417   std::string Name;
8418   GlobalValue::GUID GUID = 0;
8419   switch (Lex.getKind()) {
8420   case lltok::kw_name:
8421     Lex.Lex();
8422     if (parseToken(lltok::colon, "expected ':' here") ||
8423         parseStringConstant(Name))
8424       return true;
8425     // Can't create GUID/ValueInfo until we have the linkage.
8426     break;
8427   case lltok::kw_guid:
8428     Lex.Lex();
8429     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8430       return true;
8431     break;
8432   default:
8433     return error(Lex.getLoc(), "expected name or guid tag");
8434   }
8435 
8436   if (!EatIfPresent(lltok::comma)) {
8437     // No summaries. Wrap up.
8438     if (parseToken(lltok::rparen, "expected ')' here"))
8439       return true;
8440     // This was created for a call to an external or indirect target.
8441     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8442     // created for indirect calls with VP. A Name with no GUID came from
8443     // an external definition. We pass ExternalLinkage since that is only
8444     // used when the GUID must be computed from Name, and in that case
8445     // the symbol must have external linkage.
8446     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8447                           nullptr);
8448     return false;
8449   }
8450 
8451   // Have a list of summaries
8452   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8453       parseToken(lltok::colon, "expected ':' here") ||
8454       parseToken(lltok::lparen, "expected '(' here"))
8455     return true;
8456   do {
8457     switch (Lex.getKind()) {
8458     case lltok::kw_function:
8459       if (parseFunctionSummary(Name, GUID, ID))
8460         return true;
8461       break;
8462     case lltok::kw_variable:
8463       if (parseVariableSummary(Name, GUID, ID))
8464         return true;
8465       break;
8466     case lltok::kw_alias:
8467       if (parseAliasSummary(Name, GUID, ID))
8468         return true;
8469       break;
8470     default:
8471       return error(Lex.getLoc(), "expected summary type");
8472     }
8473   } while (EatIfPresent(lltok::comma));
8474 
8475   if (parseToken(lltok::rparen, "expected ')' here") ||
8476       parseToken(lltok::rparen, "expected ')' here"))
8477     return true;
8478 
8479   return false;
8480 }
8481 
8482 /// FunctionSummary
8483 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8484 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8485 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8486 ///         [',' OptionalRefs]? ')'
8487 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8488                                     unsigned ID) {
8489   assert(Lex.getKind() == lltok::kw_function);
8490   Lex.Lex();
8491 
8492   StringRef ModulePath;
8493   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8494       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8495       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8496   unsigned InstCount;
8497   std::vector<FunctionSummary::EdgeTy> Calls;
8498   FunctionSummary::TypeIdInfo TypeIdInfo;
8499   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8500   std::vector<ValueInfo> Refs;
8501   // Default is all-zeros (conservative values).
8502   FunctionSummary::FFlags FFlags = {};
8503   if (parseToken(lltok::colon, "expected ':' here") ||
8504       parseToken(lltok::lparen, "expected '(' here") ||
8505       parseModuleReference(ModulePath) ||
8506       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8507       parseToken(lltok::comma, "expected ',' here") ||
8508       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8509       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8510     return true;
8511 
8512   // parse optional fields
8513   while (EatIfPresent(lltok::comma)) {
8514     switch (Lex.getKind()) {
8515     case lltok::kw_funcFlags:
8516       if (parseOptionalFFlags(FFlags))
8517         return true;
8518       break;
8519     case lltok::kw_calls:
8520       if (parseOptionalCalls(Calls))
8521         return true;
8522       break;
8523     case lltok::kw_typeIdInfo:
8524       if (parseOptionalTypeIdInfo(TypeIdInfo))
8525         return true;
8526       break;
8527     case lltok::kw_refs:
8528       if (parseOptionalRefs(Refs))
8529         return true;
8530       break;
8531     case lltok::kw_params:
8532       if (parseOptionalParamAccesses(ParamAccesses))
8533         return true;
8534       break;
8535     default:
8536       return error(Lex.getLoc(), "expected optional function summary field");
8537     }
8538   }
8539 
8540   if (parseToken(lltok::rparen, "expected ')' here"))
8541     return true;
8542 
8543   auto FS = std::make_unique<FunctionSummary>(
8544       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8545       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8546       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8547       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8548       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8549       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8550       std::move(ParamAccesses));
8551 
8552   FS->setModulePath(ModulePath);
8553 
8554   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8555                         ID, std::move(FS));
8556 
8557   return false;
8558 }
8559 
8560 /// VariableSummary
8561 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8562 ///         [',' OptionalRefs]? ')'
8563 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8564                                     unsigned ID) {
8565   assert(Lex.getKind() == lltok::kw_variable);
8566   Lex.Lex();
8567 
8568   StringRef ModulePath;
8569   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8570       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8571       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8572   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8573                                         /* WriteOnly */ false,
8574                                         /* Constant */ false,
8575                                         GlobalObject::VCallVisibilityPublic);
8576   std::vector<ValueInfo> Refs;
8577   VTableFuncList VTableFuncs;
8578   if (parseToken(lltok::colon, "expected ':' here") ||
8579       parseToken(lltok::lparen, "expected '(' here") ||
8580       parseModuleReference(ModulePath) ||
8581       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8582       parseToken(lltok::comma, "expected ',' here") ||
8583       parseGVarFlags(GVarFlags))
8584     return true;
8585 
8586   // parse optional fields
8587   while (EatIfPresent(lltok::comma)) {
8588     switch (Lex.getKind()) {
8589     case lltok::kw_vTableFuncs:
8590       if (parseOptionalVTableFuncs(VTableFuncs))
8591         return true;
8592       break;
8593     case lltok::kw_refs:
8594       if (parseOptionalRefs(Refs))
8595         return true;
8596       break;
8597     default:
8598       return error(Lex.getLoc(), "expected optional variable summary field");
8599     }
8600   }
8601 
8602   if (parseToken(lltok::rparen, "expected ')' here"))
8603     return true;
8604 
8605   auto GS =
8606       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8607 
8608   GS->setModulePath(ModulePath);
8609   GS->setVTableFuncs(std::move(VTableFuncs));
8610 
8611   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8612                         ID, std::move(GS));
8613 
8614   return false;
8615 }
8616 
8617 /// AliasSummary
8618 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8619 ///         'aliasee' ':' GVReference ')'
8620 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8621                                  unsigned ID) {
8622   assert(Lex.getKind() == lltok::kw_alias);
8623   LocTy Loc = Lex.getLoc();
8624   Lex.Lex();
8625 
8626   StringRef ModulePath;
8627   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8628       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8629       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8630   if (parseToken(lltok::colon, "expected ':' here") ||
8631       parseToken(lltok::lparen, "expected '(' here") ||
8632       parseModuleReference(ModulePath) ||
8633       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8634       parseToken(lltok::comma, "expected ',' here") ||
8635       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8636       parseToken(lltok::colon, "expected ':' here"))
8637     return true;
8638 
8639   ValueInfo AliaseeVI;
8640   unsigned GVId;
8641   if (parseGVReference(AliaseeVI, GVId))
8642     return true;
8643 
8644   if (parseToken(lltok::rparen, "expected ')' here"))
8645     return true;
8646 
8647   auto AS = std::make_unique<AliasSummary>(GVFlags);
8648 
8649   AS->setModulePath(ModulePath);
8650 
8651   // Record forward reference if the aliasee is not parsed yet.
8652   if (AliaseeVI.getRef() == FwdVIRef) {
8653     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8654   } else {
8655     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8656     assert(Summary && "Aliasee must be a definition");
8657     AS->setAliasee(AliaseeVI, Summary);
8658   }
8659 
8660   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8661                         ID, std::move(AS));
8662 
8663   return false;
8664 }
8665 
8666 /// Flag
8667 ///   ::= [0|1]
8668 bool LLParser::parseFlag(unsigned &Val) {
8669   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8670     return tokError("expected integer");
8671   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8672   Lex.Lex();
8673   return false;
8674 }
8675 
8676 /// OptionalFFlags
8677 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8678 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8679 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8680 ///        [',' 'noInline' ':' Flag]? ')'
8681 ///        [',' 'alwaysInline' ':' Flag]? ')'
8682 
8683 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8684   assert(Lex.getKind() == lltok::kw_funcFlags);
8685   Lex.Lex();
8686 
8687   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8688       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8689     return true;
8690 
8691   do {
8692     unsigned Val = 0;
8693     switch (Lex.getKind()) {
8694     case lltok::kw_readNone:
8695       Lex.Lex();
8696       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8697         return true;
8698       FFlags.ReadNone = Val;
8699       break;
8700     case lltok::kw_readOnly:
8701       Lex.Lex();
8702       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8703         return true;
8704       FFlags.ReadOnly = Val;
8705       break;
8706     case lltok::kw_noRecurse:
8707       Lex.Lex();
8708       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8709         return true;
8710       FFlags.NoRecurse = Val;
8711       break;
8712     case lltok::kw_returnDoesNotAlias:
8713       Lex.Lex();
8714       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8715         return true;
8716       FFlags.ReturnDoesNotAlias = Val;
8717       break;
8718     case lltok::kw_noInline:
8719       Lex.Lex();
8720       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8721         return true;
8722       FFlags.NoInline = Val;
8723       break;
8724     case lltok::kw_alwaysInline:
8725       Lex.Lex();
8726       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8727         return true;
8728       FFlags.AlwaysInline = Val;
8729       break;
8730     default:
8731       return error(Lex.getLoc(), "expected function flag type");
8732     }
8733   } while (EatIfPresent(lltok::comma));
8734 
8735   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8736     return true;
8737 
8738   return false;
8739 }
8740 
8741 /// OptionalCalls
8742 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8743 /// Call ::= '(' 'callee' ':' GVReference
8744 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8745 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8746   assert(Lex.getKind() == lltok::kw_calls);
8747   Lex.Lex();
8748 
8749   if (parseToken(lltok::colon, "expected ':' in calls") |
8750       parseToken(lltok::lparen, "expected '(' in calls"))
8751     return true;
8752 
8753   IdToIndexMapType IdToIndexMap;
8754   // parse each call edge
8755   do {
8756     ValueInfo VI;
8757     if (parseToken(lltok::lparen, "expected '(' in call") ||
8758         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8759         parseToken(lltok::colon, "expected ':'"))
8760       return true;
8761 
8762     LocTy Loc = Lex.getLoc();
8763     unsigned GVId;
8764     if (parseGVReference(VI, GVId))
8765       return true;
8766 
8767     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8768     unsigned RelBF = 0;
8769     if (EatIfPresent(lltok::comma)) {
8770       // Expect either hotness or relbf
8771       if (EatIfPresent(lltok::kw_hotness)) {
8772         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8773           return true;
8774       } else {
8775         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8776             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8777           return true;
8778       }
8779     }
8780     // Keep track of the Call array index needing a forward reference.
8781     // We will save the location of the ValueInfo needing an update, but
8782     // can only do so once the std::vector is finalized.
8783     if (VI.getRef() == FwdVIRef)
8784       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8785     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8786 
8787     if (parseToken(lltok::rparen, "expected ')' in call"))
8788       return true;
8789   } while (EatIfPresent(lltok::comma));
8790 
8791   // Now that the Calls vector is finalized, it is safe to save the locations
8792   // of any forward GV references that need updating later.
8793   for (auto I : IdToIndexMap) {
8794     auto &Infos = ForwardRefValueInfos[I.first];
8795     for (auto P : I.second) {
8796       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8797              "Forward referenced ValueInfo expected to be empty");
8798       Infos.emplace_back(&Calls[P.first].first, P.second);
8799     }
8800   }
8801 
8802   if (parseToken(lltok::rparen, "expected ')' in calls"))
8803     return true;
8804 
8805   return false;
8806 }
8807 
8808 /// Hotness
8809 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8810 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8811   switch (Lex.getKind()) {
8812   case lltok::kw_unknown:
8813     Hotness = CalleeInfo::HotnessType::Unknown;
8814     break;
8815   case lltok::kw_cold:
8816     Hotness = CalleeInfo::HotnessType::Cold;
8817     break;
8818   case lltok::kw_none:
8819     Hotness = CalleeInfo::HotnessType::None;
8820     break;
8821   case lltok::kw_hot:
8822     Hotness = CalleeInfo::HotnessType::Hot;
8823     break;
8824   case lltok::kw_critical:
8825     Hotness = CalleeInfo::HotnessType::Critical;
8826     break;
8827   default:
8828     return error(Lex.getLoc(), "invalid call edge hotness");
8829   }
8830   Lex.Lex();
8831   return false;
8832 }
8833 
8834 /// OptionalVTableFuncs
8835 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8836 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8837 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8838   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8839   Lex.Lex();
8840 
8841   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8842       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8843     return true;
8844 
8845   IdToIndexMapType IdToIndexMap;
8846   // parse each virtual function pair
8847   do {
8848     ValueInfo VI;
8849     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8850         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8851         parseToken(lltok::colon, "expected ':'"))
8852       return true;
8853 
8854     LocTy Loc = Lex.getLoc();
8855     unsigned GVId;
8856     if (parseGVReference(VI, GVId))
8857       return true;
8858 
8859     uint64_t Offset;
8860     if (parseToken(lltok::comma, "expected comma") ||
8861         parseToken(lltok::kw_offset, "expected offset") ||
8862         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8863       return true;
8864 
8865     // Keep track of the VTableFuncs array index needing a forward reference.
8866     // We will save the location of the ValueInfo needing an update, but
8867     // can only do so once the std::vector is finalized.
8868     if (VI == EmptyVI)
8869       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8870     VTableFuncs.push_back({VI, Offset});
8871 
8872     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8873       return true;
8874   } while (EatIfPresent(lltok::comma));
8875 
8876   // Now that the VTableFuncs vector is finalized, it is safe to save the
8877   // locations of any forward GV references that need updating later.
8878   for (auto I : IdToIndexMap) {
8879     auto &Infos = ForwardRefValueInfos[I.first];
8880     for (auto P : I.second) {
8881       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8882              "Forward referenced ValueInfo expected to be empty");
8883       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8884     }
8885   }
8886 
8887   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8888     return true;
8889 
8890   return false;
8891 }
8892 
8893 /// ParamNo := 'param' ':' UInt64
8894 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8895   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8896       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8897     return true;
8898   return false;
8899 }
8900 
8901 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8902 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8903   APSInt Lower;
8904   APSInt Upper;
8905   auto ParseAPSInt = [&](APSInt &Val) {
8906     if (Lex.getKind() != lltok::APSInt)
8907       return tokError("expected integer");
8908     Val = Lex.getAPSIntVal();
8909     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8910     Val.setIsSigned(true);
8911     Lex.Lex();
8912     return false;
8913   };
8914   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8915       parseToken(lltok::colon, "expected ':' here") ||
8916       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8917       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8918       parseToken(lltok::rsquare, "expected ']' here"))
8919     return true;
8920 
8921   ++Upper;
8922   Range =
8923       (Lower == Upper && !Lower.isMaxValue())
8924           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8925           : ConstantRange(Lower, Upper);
8926 
8927   return false;
8928 }
8929 
8930 /// ParamAccessCall
8931 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8932 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8933                                     IdLocListType &IdLocList) {
8934   if (parseToken(lltok::lparen, "expected '(' here") ||
8935       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8936       parseToken(lltok::colon, "expected ':' here"))
8937     return true;
8938 
8939   unsigned GVId;
8940   ValueInfo VI;
8941   LocTy Loc = Lex.getLoc();
8942   if (parseGVReference(VI, GVId))
8943     return true;
8944 
8945   Call.Callee = VI;
8946   IdLocList.emplace_back(GVId, Loc);
8947 
8948   if (parseToken(lltok::comma, "expected ',' here") ||
8949       parseParamNo(Call.ParamNo) ||
8950       parseToken(lltok::comma, "expected ',' here") ||
8951       parseParamAccessOffset(Call.Offsets))
8952     return true;
8953 
8954   if (parseToken(lltok::rparen, "expected ')' here"))
8955     return true;
8956 
8957   return false;
8958 }
8959 
8960 /// ParamAccess
8961 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8962 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8963 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8964                                 IdLocListType &IdLocList) {
8965   if (parseToken(lltok::lparen, "expected '(' here") ||
8966       parseParamNo(Param.ParamNo) ||
8967       parseToken(lltok::comma, "expected ',' here") ||
8968       parseParamAccessOffset(Param.Use))
8969     return true;
8970 
8971   if (EatIfPresent(lltok::comma)) {
8972     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8973         parseToken(lltok::colon, "expected ':' here") ||
8974         parseToken(lltok::lparen, "expected '(' here"))
8975       return true;
8976     do {
8977       FunctionSummary::ParamAccess::Call Call;
8978       if (parseParamAccessCall(Call, IdLocList))
8979         return true;
8980       Param.Calls.push_back(Call);
8981     } while (EatIfPresent(lltok::comma));
8982 
8983     if (parseToken(lltok::rparen, "expected ')' here"))
8984       return true;
8985   }
8986 
8987   if (parseToken(lltok::rparen, "expected ')' here"))
8988     return true;
8989 
8990   return false;
8991 }
8992 
8993 /// OptionalParamAccesses
8994 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8995 bool LLParser::parseOptionalParamAccesses(
8996     std::vector<FunctionSummary::ParamAccess> &Params) {
8997   assert(Lex.getKind() == lltok::kw_params);
8998   Lex.Lex();
8999 
9000   if (parseToken(lltok::colon, "expected ':' here") ||
9001       parseToken(lltok::lparen, "expected '(' here"))
9002     return true;
9003 
9004   IdLocListType VContexts;
9005   size_t CallsNum = 0;
9006   do {
9007     FunctionSummary::ParamAccess ParamAccess;
9008     if (parseParamAccess(ParamAccess, VContexts))
9009       return true;
9010     CallsNum += ParamAccess.Calls.size();
9011     assert(VContexts.size() == CallsNum);
9012     Params.emplace_back(std::move(ParamAccess));
9013   } while (EatIfPresent(lltok::comma));
9014 
9015   if (parseToken(lltok::rparen, "expected ')' here"))
9016     return true;
9017 
9018   // Now that the Params is finalized, it is safe to save the locations
9019   // of any forward GV references that need updating later.
9020   IdLocListType::const_iterator ItContext = VContexts.begin();
9021   for (auto &PA : Params) {
9022     for (auto &C : PA.Calls) {
9023       if (C.Callee.getRef() == FwdVIRef)
9024         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9025                                                             ItContext->second);
9026       ++ItContext;
9027     }
9028   }
9029   assert(ItContext == VContexts.end());
9030 
9031   return false;
9032 }
9033 
9034 /// OptionalRefs
9035 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9036 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9037   assert(Lex.getKind() == lltok::kw_refs);
9038   Lex.Lex();
9039 
9040   if (parseToken(lltok::colon, "expected ':' in refs") ||
9041       parseToken(lltok::lparen, "expected '(' in refs"))
9042     return true;
9043 
9044   struct ValueContext {
9045     ValueInfo VI;
9046     unsigned GVId;
9047     LocTy Loc;
9048   };
9049   std::vector<ValueContext> VContexts;
9050   // parse each ref edge
9051   do {
9052     ValueContext VC;
9053     VC.Loc = Lex.getLoc();
9054     if (parseGVReference(VC.VI, VC.GVId))
9055       return true;
9056     VContexts.push_back(VC);
9057   } while (EatIfPresent(lltok::comma));
9058 
9059   // Sort value contexts so that ones with writeonly
9060   // and readonly ValueInfo  are at the end of VContexts vector.
9061   // See FunctionSummary::specialRefCounts()
9062   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9063     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9064   });
9065 
9066   IdToIndexMapType IdToIndexMap;
9067   for (auto &VC : VContexts) {
9068     // Keep track of the Refs array index needing a forward reference.
9069     // We will save the location of the ValueInfo needing an update, but
9070     // can only do so once the std::vector is finalized.
9071     if (VC.VI.getRef() == FwdVIRef)
9072       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9073     Refs.push_back(VC.VI);
9074   }
9075 
9076   // Now that the Refs vector is finalized, it is safe to save the locations
9077   // of any forward GV references that need updating later.
9078   for (auto I : IdToIndexMap) {
9079     auto &Infos = ForwardRefValueInfos[I.first];
9080     for (auto P : I.second) {
9081       assert(Refs[P.first].getRef() == FwdVIRef &&
9082              "Forward referenced ValueInfo expected to be empty");
9083       Infos.emplace_back(&Refs[P.first], P.second);
9084     }
9085   }
9086 
9087   if (parseToken(lltok::rparen, "expected ')' in refs"))
9088     return true;
9089 
9090   return false;
9091 }
9092 
9093 /// OptionalTypeIdInfo
9094 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9095 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9096 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9097 bool LLParser::parseOptionalTypeIdInfo(
9098     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9099   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9100   Lex.Lex();
9101 
9102   if (parseToken(lltok::colon, "expected ':' here") ||
9103       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9104     return true;
9105 
9106   do {
9107     switch (Lex.getKind()) {
9108     case lltok::kw_typeTests:
9109       if (parseTypeTests(TypeIdInfo.TypeTests))
9110         return true;
9111       break;
9112     case lltok::kw_typeTestAssumeVCalls:
9113       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9114                            TypeIdInfo.TypeTestAssumeVCalls))
9115         return true;
9116       break;
9117     case lltok::kw_typeCheckedLoadVCalls:
9118       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9119                            TypeIdInfo.TypeCheckedLoadVCalls))
9120         return true;
9121       break;
9122     case lltok::kw_typeTestAssumeConstVCalls:
9123       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9124                               TypeIdInfo.TypeTestAssumeConstVCalls))
9125         return true;
9126       break;
9127     case lltok::kw_typeCheckedLoadConstVCalls:
9128       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9129                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9130         return true;
9131       break;
9132     default:
9133       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9134     }
9135   } while (EatIfPresent(lltok::comma));
9136 
9137   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9138     return true;
9139 
9140   return false;
9141 }
9142 
9143 /// TypeTests
9144 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9145 ///         [',' (SummaryID | UInt64)]* ')'
9146 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9147   assert(Lex.getKind() == lltok::kw_typeTests);
9148   Lex.Lex();
9149 
9150   if (parseToken(lltok::colon, "expected ':' here") ||
9151       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9152     return true;
9153 
9154   IdToIndexMapType IdToIndexMap;
9155   do {
9156     GlobalValue::GUID GUID = 0;
9157     if (Lex.getKind() == lltok::SummaryID) {
9158       unsigned ID = Lex.getUIntVal();
9159       LocTy Loc = Lex.getLoc();
9160       // Keep track of the TypeTests array index needing a forward reference.
9161       // We will save the location of the GUID needing an update, but
9162       // can only do so once the std::vector is finalized.
9163       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9164       Lex.Lex();
9165     } else if (parseUInt64(GUID))
9166       return true;
9167     TypeTests.push_back(GUID);
9168   } while (EatIfPresent(lltok::comma));
9169 
9170   // Now that the TypeTests vector is finalized, it is safe to save the
9171   // locations of any forward GV references that need updating later.
9172   for (auto I : IdToIndexMap) {
9173     auto &Ids = ForwardRefTypeIds[I.first];
9174     for (auto P : I.second) {
9175       assert(TypeTests[P.first] == 0 &&
9176              "Forward referenced type id GUID expected to be 0");
9177       Ids.emplace_back(&TypeTests[P.first], P.second);
9178     }
9179   }
9180 
9181   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9182     return true;
9183 
9184   return false;
9185 }
9186 
9187 /// VFuncIdList
9188 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9189 bool LLParser::parseVFuncIdList(
9190     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9191   assert(Lex.getKind() == Kind);
9192   Lex.Lex();
9193 
9194   if (parseToken(lltok::colon, "expected ':' here") ||
9195       parseToken(lltok::lparen, "expected '(' here"))
9196     return true;
9197 
9198   IdToIndexMapType IdToIndexMap;
9199   do {
9200     FunctionSummary::VFuncId VFuncId;
9201     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9202       return true;
9203     VFuncIdList.push_back(VFuncId);
9204   } while (EatIfPresent(lltok::comma));
9205 
9206   if (parseToken(lltok::rparen, "expected ')' here"))
9207     return true;
9208 
9209   // Now that the VFuncIdList vector is finalized, it is safe to save the
9210   // locations of any forward GV references that need updating later.
9211   for (auto I : IdToIndexMap) {
9212     auto &Ids = ForwardRefTypeIds[I.first];
9213     for (auto P : I.second) {
9214       assert(VFuncIdList[P.first].GUID == 0 &&
9215              "Forward referenced type id GUID expected to be 0");
9216       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9217     }
9218   }
9219 
9220   return false;
9221 }
9222 
9223 /// ConstVCallList
9224 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9225 bool LLParser::parseConstVCallList(
9226     lltok::Kind Kind,
9227     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9228   assert(Lex.getKind() == Kind);
9229   Lex.Lex();
9230 
9231   if (parseToken(lltok::colon, "expected ':' here") ||
9232       parseToken(lltok::lparen, "expected '(' here"))
9233     return true;
9234 
9235   IdToIndexMapType IdToIndexMap;
9236   do {
9237     FunctionSummary::ConstVCall ConstVCall;
9238     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9239       return true;
9240     ConstVCallList.push_back(ConstVCall);
9241   } while (EatIfPresent(lltok::comma));
9242 
9243   if (parseToken(lltok::rparen, "expected ')' here"))
9244     return true;
9245 
9246   // Now that the ConstVCallList vector is finalized, it is safe to save the
9247   // locations of any forward GV references that need updating later.
9248   for (auto I : IdToIndexMap) {
9249     auto &Ids = ForwardRefTypeIds[I.first];
9250     for (auto P : I.second) {
9251       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9252              "Forward referenced type id GUID expected to be 0");
9253       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9254     }
9255   }
9256 
9257   return false;
9258 }
9259 
9260 /// ConstVCall
9261 ///   ::= '(' VFuncId ',' Args ')'
9262 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9263                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9264   if (parseToken(lltok::lparen, "expected '(' here") ||
9265       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9266     return true;
9267 
9268   if (EatIfPresent(lltok::comma))
9269     if (parseArgs(ConstVCall.Args))
9270       return true;
9271 
9272   if (parseToken(lltok::rparen, "expected ')' here"))
9273     return true;
9274 
9275   return false;
9276 }
9277 
9278 /// VFuncId
9279 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9280 ///         'offset' ':' UInt64 ')'
9281 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9282                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9283   assert(Lex.getKind() == lltok::kw_vFuncId);
9284   Lex.Lex();
9285 
9286   if (parseToken(lltok::colon, "expected ':' here") ||
9287       parseToken(lltok::lparen, "expected '(' here"))
9288     return true;
9289 
9290   if (Lex.getKind() == lltok::SummaryID) {
9291     VFuncId.GUID = 0;
9292     unsigned ID = Lex.getUIntVal();
9293     LocTy Loc = Lex.getLoc();
9294     // Keep track of the array index needing a forward reference.
9295     // We will save the location of the GUID needing an update, but
9296     // can only do so once the caller's std::vector is finalized.
9297     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9298     Lex.Lex();
9299   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9300              parseToken(lltok::colon, "expected ':' here") ||
9301              parseUInt64(VFuncId.GUID))
9302     return true;
9303 
9304   if (parseToken(lltok::comma, "expected ',' here") ||
9305       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9306       parseToken(lltok::colon, "expected ':' here") ||
9307       parseUInt64(VFuncId.Offset) ||
9308       parseToken(lltok::rparen, "expected ')' here"))
9309     return true;
9310 
9311   return false;
9312 }
9313 
9314 /// GVFlags
9315 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9316 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9317 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9318 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9319   assert(Lex.getKind() == lltok::kw_flags);
9320   Lex.Lex();
9321 
9322   if (parseToken(lltok::colon, "expected ':' here") ||
9323       parseToken(lltok::lparen, "expected '(' here"))
9324     return true;
9325 
9326   do {
9327     unsigned Flag = 0;
9328     switch (Lex.getKind()) {
9329     case lltok::kw_linkage:
9330       Lex.Lex();
9331       if (parseToken(lltok::colon, "expected ':'"))
9332         return true;
9333       bool HasLinkage;
9334       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9335       assert(HasLinkage && "Linkage not optional in summary entry");
9336       Lex.Lex();
9337       break;
9338     case lltok::kw_notEligibleToImport:
9339       Lex.Lex();
9340       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9341         return true;
9342       GVFlags.NotEligibleToImport = Flag;
9343       break;
9344     case lltok::kw_live:
9345       Lex.Lex();
9346       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9347         return true;
9348       GVFlags.Live = Flag;
9349       break;
9350     case lltok::kw_dsoLocal:
9351       Lex.Lex();
9352       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9353         return true;
9354       GVFlags.DSOLocal = Flag;
9355       break;
9356     case lltok::kw_canAutoHide:
9357       Lex.Lex();
9358       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9359         return true;
9360       GVFlags.CanAutoHide = Flag;
9361       break;
9362     default:
9363       return error(Lex.getLoc(), "expected gv flag type");
9364     }
9365   } while (EatIfPresent(lltok::comma));
9366 
9367   if (parseToken(lltok::rparen, "expected ')' here"))
9368     return true;
9369 
9370   return false;
9371 }
9372 
9373 /// GVarFlags
9374 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9375 ///                      ',' 'writeonly' ':' Flag
9376 ///                      ',' 'constant' ':' Flag ')'
9377 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9378   assert(Lex.getKind() == lltok::kw_varFlags);
9379   Lex.Lex();
9380 
9381   if (parseToken(lltok::colon, "expected ':' here") ||
9382       parseToken(lltok::lparen, "expected '(' here"))
9383     return true;
9384 
9385   auto ParseRest = [this](unsigned int &Val) {
9386     Lex.Lex();
9387     if (parseToken(lltok::colon, "expected ':'"))
9388       return true;
9389     return parseFlag(Val);
9390   };
9391 
9392   do {
9393     unsigned Flag = 0;
9394     switch (Lex.getKind()) {
9395     case lltok::kw_readonly:
9396       if (ParseRest(Flag))
9397         return true;
9398       GVarFlags.MaybeReadOnly = Flag;
9399       break;
9400     case lltok::kw_writeonly:
9401       if (ParseRest(Flag))
9402         return true;
9403       GVarFlags.MaybeWriteOnly = Flag;
9404       break;
9405     case lltok::kw_constant:
9406       if (ParseRest(Flag))
9407         return true;
9408       GVarFlags.Constant = Flag;
9409       break;
9410     case lltok::kw_vcall_visibility:
9411       if (ParseRest(Flag))
9412         return true;
9413       GVarFlags.VCallVisibility = Flag;
9414       break;
9415     default:
9416       return error(Lex.getLoc(), "expected gvar flag type");
9417     }
9418   } while (EatIfPresent(lltok::comma));
9419   return parseToken(lltok::rparen, "expected ')' here");
9420 }
9421 
9422 /// ModuleReference
9423 ///   ::= 'module' ':' UInt
9424 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9425   // parse module id.
9426   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9427       parseToken(lltok::colon, "expected ':' here") ||
9428       parseToken(lltok::SummaryID, "expected module ID"))
9429     return true;
9430 
9431   unsigned ModuleID = Lex.getUIntVal();
9432   auto I = ModuleIdMap.find(ModuleID);
9433   // We should have already parsed all module IDs
9434   assert(I != ModuleIdMap.end());
9435   ModulePath = I->second;
9436   return false;
9437 }
9438 
9439 /// GVReference
9440 ///   ::= SummaryID
9441 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9442   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9443   if (!ReadOnly)
9444     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9445   if (parseToken(lltok::SummaryID, "expected GV ID"))
9446     return true;
9447 
9448   GVId = Lex.getUIntVal();
9449   // Check if we already have a VI for this GV
9450   if (GVId < NumberedValueInfos.size()) {
9451     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9452     VI = NumberedValueInfos[GVId];
9453   } else
9454     // We will create a forward reference to the stored location.
9455     VI = ValueInfo(false, FwdVIRef);
9456 
9457   if (ReadOnly)
9458     VI.setReadOnly();
9459   if (WriteOnly)
9460     VI.setWriteOnly();
9461   return false;
9462 }
9463