1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/AsmParser/SlotMapping.h"
18 #include "llvm/IR/AutoUpgrade.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Dwarf.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/SaveAndRestore.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 static std::string getTypeString(Type *T) {
38   std::string Result;
39   raw_string_ostream Tmp(Result);
40   Tmp << *T;
41   return Tmp.str();
42 }
43 
44 /// Run: module ::= toplevelentity*
45 bool LLParser::Run() {
46   // Prime the lexer.
47   Lex.Lex();
48 
49   return ParseTopLevelEntities() ||
50          ValidateEndOfModule();
51 }
52 
53 bool LLParser::parseStandaloneConstantValue(Constant *&C,
54                                             const SlotMapping *Slots) {
55   restoreParsingState(Slots);
56   Lex.Lex();
57 
58   Type *Ty = nullptr;
59   if (ParseType(Ty) || parseConstantValue(Ty, C))
60     return true;
61   if (Lex.getKind() != lltok::Eof)
62     return Error(Lex.getLoc(), "expected end of string");
63   return false;
64 }
65 
66 void LLParser::restoreParsingState(const SlotMapping *Slots) {
67   if (!Slots)
68     return;
69   NumberedVals = Slots->GlobalValues;
70   NumberedMetadata = Slots->MetadataNodes;
71   for (const auto &I : Slots->NamedTypes)
72     NamedTypes.insert(
73         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
74   for (const auto &I : Slots->Types)
75     NumberedTypes.insert(
76         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
77 }
78 
79 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
80 /// module.
81 bool LLParser::ValidateEndOfModule() {
82   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
83     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
84 
85   // Handle any function attribute group forward references.
86   for (std::map<Value*, std::vector<unsigned> >::iterator
87          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
88          I != E; ++I) {
89     Value *V = I->first;
90     std::vector<unsigned> &Vec = I->second;
91     AttrBuilder B;
92 
93     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
94          VI != VE; ++VI)
95       B.merge(NumberedAttrBuilders[*VI]);
96 
97     if (Function *Fn = dyn_cast<Function>(V)) {
98       AttributeSet AS = Fn->getAttributes();
99       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
100       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
101                                AS.getFnAttributes());
102 
103       FnAttrs.merge(B);
104 
105       // If the alignment was parsed as an attribute, move to the alignment
106       // field.
107       if (FnAttrs.hasAlignmentAttr()) {
108         Fn->setAlignment(FnAttrs.getAlignment());
109         FnAttrs.removeAttribute(Attribute::Alignment);
110       }
111 
112       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
113                             AttributeSet::get(Context,
114                                               AttributeSet::FunctionIndex,
115                                               FnAttrs));
116       Fn->setAttributes(AS);
117     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
118       AttributeSet AS = CI->getAttributes();
119       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
120       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
121                                AS.getFnAttributes());
122       FnAttrs.merge(B);
123       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
124                             AttributeSet::get(Context,
125                                               AttributeSet::FunctionIndex,
126                                               FnAttrs));
127       CI->setAttributes(AS);
128     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
129       AttributeSet AS = II->getAttributes();
130       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
131       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
132                                AS.getFnAttributes());
133       FnAttrs.merge(B);
134       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
135                             AttributeSet::get(Context,
136                                               AttributeSet::FunctionIndex,
137                                               FnAttrs));
138       II->setAttributes(AS);
139     } else {
140       llvm_unreachable("invalid object with forward attribute group reference");
141     }
142   }
143 
144   // If there are entries in ForwardRefBlockAddresses at this point, the
145   // function was never defined.
146   if (!ForwardRefBlockAddresses.empty())
147     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
148                  "expected function name in blockaddress");
149 
150   for (const auto &NT : NumberedTypes)
151     if (NT.second.second.isValid())
152       return Error(NT.second.second,
153                    "use of undefined type '%" + Twine(NT.first) + "'");
154 
155   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157     if (I->second.second.isValid())
158       return Error(I->second.second,
159                    "use of undefined type named '" + I->getKey() + "'");
160 
161   if (!ForwardRefComdats.empty())
162     return Error(ForwardRefComdats.begin()->second,
163                  "use of undefined comdat '$" +
164                      ForwardRefComdats.begin()->first + "'");
165 
166   if (!ForwardRefVals.empty())
167     return Error(ForwardRefVals.begin()->second.second,
168                  "use of undefined value '@" + ForwardRefVals.begin()->first +
169                  "'");
170 
171   if (!ForwardRefValIDs.empty())
172     return Error(ForwardRefValIDs.begin()->second.second,
173                  "use of undefined value '@" +
174                  Twine(ForwardRefValIDs.begin()->first) + "'");
175 
176   if (!ForwardRefMDNodes.empty())
177     return Error(ForwardRefMDNodes.begin()->second.second,
178                  "use of undefined metadata '!" +
179                  Twine(ForwardRefMDNodes.begin()->first) + "'");
180 
181   // Resolve metadata cycles.
182   for (auto &N : NumberedMetadata) {
183     if (N.second && !N.second->isResolved())
184       N.second->resolveCycles();
185   }
186 
187   // Look for intrinsic functions and CallInst that need to be upgraded
188   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
189     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
190 
191   UpgradeDebugInfo(*M);
192 
193   if (!Slots)
194     return false;
195   // Initialize the slot mapping.
196   // Because by this point we've parsed and validated everything, we can "steal"
197   // the mapping from LLParser as it doesn't need it anymore.
198   Slots->GlobalValues = std::move(NumberedVals);
199   Slots->MetadataNodes = std::move(NumberedMetadata);
200   for (const auto &I : NamedTypes)
201     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
202   for (const auto &I : NumberedTypes)
203     Slots->Types.insert(std::make_pair(I.first, I.second.first));
204 
205   return false;
206 }
207 
208 //===----------------------------------------------------------------------===//
209 // Top-Level Entities
210 //===----------------------------------------------------------------------===//
211 
212 bool LLParser::ParseTopLevelEntities() {
213   while (1) {
214     switch (Lex.getKind()) {
215     default:         return TokError("expected top-level entity");
216     case lltok::Eof: return false;
217     case lltok::kw_declare: if (ParseDeclare()) return true; break;
218     case lltok::kw_define:  if (ParseDefine()) return true; break;
219     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
220     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
221     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
222     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
223     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
224     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
225     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
226     case lltok::ComdatVar:  if (parseComdat()) return true; break;
227     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
228     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
229 
230     // The Global variable production with no name can have many different
231     // optional leading prefixes, the production is:
232     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
233     //               OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
234     //               ('constant'|'global') ...
235     case lltok::kw_private:             // OptionalLinkage
236     case lltok::kw_internal:            // OptionalLinkage
237     case lltok::kw_weak:                // OptionalLinkage
238     case lltok::kw_weak_odr:            // OptionalLinkage
239     case lltok::kw_linkonce:            // OptionalLinkage
240     case lltok::kw_linkonce_odr:        // OptionalLinkage
241     case lltok::kw_appending:           // OptionalLinkage
242     case lltok::kw_common:              // OptionalLinkage
243     case lltok::kw_extern_weak:         // OptionalLinkage
244     case lltok::kw_external:            // OptionalLinkage
245     case lltok::kw_default:             // OptionalVisibility
246     case lltok::kw_hidden:              // OptionalVisibility
247     case lltok::kw_protected:           // OptionalVisibility
248     case lltok::kw_dllimport:           // OptionalDLLStorageClass
249     case lltok::kw_dllexport:           // OptionalDLLStorageClass
250     case lltok::kw_thread_local:        // OptionalThreadLocal
251     case lltok::kw_addrspace:           // OptionalAddrSpace
252     case lltok::kw_constant:            // GlobalType
253     case lltok::kw_global: {            // GlobalType
254       unsigned Linkage, Visibility, DLLStorageClass;
255       bool UnnamedAddr;
256       GlobalVariable::ThreadLocalMode TLM;
257       bool HasLinkage;
258       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
259           ParseOptionalVisibility(Visibility) ||
260           ParseOptionalDLLStorageClass(DLLStorageClass) ||
261           ParseOptionalThreadLocal(TLM) ||
262           parseOptionalUnnamedAddr(UnnamedAddr) ||
263           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
264                       DLLStorageClass, TLM, UnnamedAddr))
265         return true;
266       break;
267     }
268 
269     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
270     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
271     case lltok::kw_uselistorder_bb:
272                                  if (ParseUseListOrderBB()) return true; break;
273     }
274   }
275 }
276 
277 
278 /// toplevelentity
279 ///   ::= 'module' 'asm' STRINGCONSTANT
280 bool LLParser::ParseModuleAsm() {
281   assert(Lex.getKind() == lltok::kw_module);
282   Lex.Lex();
283 
284   std::string AsmStr;
285   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
286       ParseStringConstant(AsmStr)) return true;
287 
288   M->appendModuleInlineAsm(AsmStr);
289   return false;
290 }
291 
292 /// toplevelentity
293 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
294 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
295 bool LLParser::ParseTargetDefinition() {
296   assert(Lex.getKind() == lltok::kw_target);
297   std::string Str;
298   switch (Lex.Lex()) {
299   default: return TokError("unknown target property");
300   case lltok::kw_triple:
301     Lex.Lex();
302     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
303         ParseStringConstant(Str))
304       return true;
305     M->setTargetTriple(Str);
306     return false;
307   case lltok::kw_datalayout:
308     Lex.Lex();
309     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
310         ParseStringConstant(Str))
311       return true;
312     M->setDataLayout(Str);
313     return false;
314   }
315 }
316 
317 /// toplevelentity
318 ///   ::= 'deplibs' '=' '[' ']'
319 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
320 /// FIXME: Remove in 4.0. Currently parse, but ignore.
321 bool LLParser::ParseDepLibs() {
322   assert(Lex.getKind() == lltok::kw_deplibs);
323   Lex.Lex();
324   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
325       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
326     return true;
327 
328   if (EatIfPresent(lltok::rsquare))
329     return false;
330 
331   do {
332     std::string Str;
333     if (ParseStringConstant(Str)) return true;
334   } while (EatIfPresent(lltok::comma));
335 
336   return ParseToken(lltok::rsquare, "expected ']' at end of list");
337 }
338 
339 /// ParseUnnamedType:
340 ///   ::= LocalVarID '=' 'type' type
341 bool LLParser::ParseUnnamedType() {
342   LocTy TypeLoc = Lex.getLoc();
343   unsigned TypeID = Lex.getUIntVal();
344   Lex.Lex(); // eat LocalVarID;
345 
346   if (ParseToken(lltok::equal, "expected '=' after name") ||
347       ParseToken(lltok::kw_type, "expected 'type' after '='"))
348     return true;
349 
350   Type *Result = nullptr;
351   if (ParseStructDefinition(TypeLoc, "",
352                             NumberedTypes[TypeID], Result)) return true;
353 
354   if (!isa<StructType>(Result)) {
355     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
356     if (Entry.first)
357       return Error(TypeLoc, "non-struct types may not be recursive");
358     Entry.first = Result;
359     Entry.second = SMLoc();
360   }
361 
362   return false;
363 }
364 
365 
366 /// toplevelentity
367 ///   ::= LocalVar '=' 'type' type
368 bool LLParser::ParseNamedType() {
369   std::string Name = Lex.getStrVal();
370   LocTy NameLoc = Lex.getLoc();
371   Lex.Lex();  // eat LocalVar.
372 
373   if (ParseToken(lltok::equal, "expected '=' after name") ||
374       ParseToken(lltok::kw_type, "expected 'type' after name"))
375     return true;
376 
377   Type *Result = nullptr;
378   if (ParseStructDefinition(NameLoc, Name,
379                             NamedTypes[Name], Result)) return true;
380 
381   if (!isa<StructType>(Result)) {
382     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
383     if (Entry.first)
384       return Error(NameLoc, "non-struct types may not be recursive");
385     Entry.first = Result;
386     Entry.second = SMLoc();
387   }
388 
389   return false;
390 }
391 
392 
393 /// toplevelentity
394 ///   ::= 'declare' FunctionHeader
395 bool LLParser::ParseDeclare() {
396   assert(Lex.getKind() == lltok::kw_declare);
397   Lex.Lex();
398 
399   Function *F;
400   return ParseFunctionHeader(F, false);
401 }
402 
403 /// toplevelentity
404 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
405 bool LLParser::ParseDefine() {
406   assert(Lex.getKind() == lltok::kw_define);
407   Lex.Lex();
408 
409   Function *F;
410   return ParseFunctionHeader(F, true) ||
411          ParseOptionalFunctionMetadata(*F) ||
412          ParseFunctionBody(*F);
413 }
414 
415 /// ParseGlobalType
416 ///   ::= 'constant'
417 ///   ::= 'global'
418 bool LLParser::ParseGlobalType(bool &IsConstant) {
419   if (Lex.getKind() == lltok::kw_constant)
420     IsConstant = true;
421   else if (Lex.getKind() == lltok::kw_global)
422     IsConstant = false;
423   else {
424     IsConstant = false;
425     return TokError("expected 'global' or 'constant'");
426   }
427   Lex.Lex();
428   return false;
429 }
430 
431 /// ParseUnnamedGlobal:
432 ///   OptionalVisibility ALIAS ...
433 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
434 ///                                                     ...   -> global variable
435 ///   GlobalID '=' OptionalVisibility ALIAS ...
436 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
437 ///                                                     ...   -> global variable
438 bool LLParser::ParseUnnamedGlobal() {
439   unsigned VarID = NumberedVals.size();
440   std::string Name;
441   LocTy NameLoc = Lex.getLoc();
442 
443   // Handle the GlobalID form.
444   if (Lex.getKind() == lltok::GlobalID) {
445     if (Lex.getUIntVal() != VarID)
446       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
447                    Twine(VarID) + "'");
448     Lex.Lex(); // eat GlobalID;
449 
450     if (ParseToken(lltok::equal, "expected '=' after name"))
451       return true;
452   }
453 
454   bool HasLinkage;
455   unsigned Linkage, Visibility, DLLStorageClass;
456   GlobalVariable::ThreadLocalMode TLM;
457   bool UnnamedAddr;
458   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
459       ParseOptionalVisibility(Visibility) ||
460       ParseOptionalDLLStorageClass(DLLStorageClass) ||
461       ParseOptionalThreadLocal(TLM) ||
462       parseOptionalUnnamedAddr(UnnamedAddr))
463     return true;
464 
465   if (Lex.getKind() != lltok::kw_alias)
466     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
467                        DLLStorageClass, TLM, UnnamedAddr);
468   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
469                     UnnamedAddr);
470 }
471 
472 /// ParseNamedGlobal:
473 ///   GlobalVar '=' OptionalVisibility ALIAS ...
474 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
475 ///                                                     ...   -> global variable
476 bool LLParser::ParseNamedGlobal() {
477   assert(Lex.getKind() == lltok::GlobalVar);
478   LocTy NameLoc = Lex.getLoc();
479   std::string Name = Lex.getStrVal();
480   Lex.Lex();
481 
482   bool HasLinkage;
483   unsigned Linkage, Visibility, DLLStorageClass;
484   GlobalVariable::ThreadLocalMode TLM;
485   bool UnnamedAddr;
486   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487       ParseOptionalLinkage(Linkage, HasLinkage) ||
488       ParseOptionalVisibility(Visibility) ||
489       ParseOptionalDLLStorageClass(DLLStorageClass) ||
490       ParseOptionalThreadLocal(TLM) ||
491       parseOptionalUnnamedAddr(UnnamedAddr))
492     return true;
493 
494   if (Lex.getKind() != lltok::kw_alias)
495     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
496                        DLLStorageClass, TLM, UnnamedAddr);
497 
498   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
499                     UnnamedAddr);
500 }
501 
502 bool LLParser::parseComdat() {
503   assert(Lex.getKind() == lltok::ComdatVar);
504   std::string Name = Lex.getStrVal();
505   LocTy NameLoc = Lex.getLoc();
506   Lex.Lex();
507 
508   if (ParseToken(lltok::equal, "expected '=' here"))
509     return true;
510 
511   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
512     return TokError("expected comdat type");
513 
514   Comdat::SelectionKind SK;
515   switch (Lex.getKind()) {
516   default:
517     return TokError("unknown selection kind");
518   case lltok::kw_any:
519     SK = Comdat::Any;
520     break;
521   case lltok::kw_exactmatch:
522     SK = Comdat::ExactMatch;
523     break;
524   case lltok::kw_largest:
525     SK = Comdat::Largest;
526     break;
527   case lltok::kw_noduplicates:
528     SK = Comdat::NoDuplicates;
529     break;
530   case lltok::kw_samesize:
531     SK = Comdat::SameSize;
532     break;
533   }
534   Lex.Lex();
535 
536   // See if the comdat was forward referenced, if so, use the comdat.
537   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
538   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
539   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
540     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
541 
542   Comdat *C;
543   if (I != ComdatSymTab.end())
544     C = &I->second;
545   else
546     C = M->getOrInsertComdat(Name);
547   C->setSelectionKind(SK);
548 
549   return false;
550 }
551 
552 // MDString:
553 //   ::= '!' STRINGCONSTANT
554 bool LLParser::ParseMDString(MDString *&Result) {
555   std::string Str;
556   if (ParseStringConstant(Str)) return true;
557   llvm::UpgradeMDStringConstant(Str);
558   Result = MDString::get(Context, Str);
559   return false;
560 }
561 
562 // MDNode:
563 //   ::= '!' MDNodeNumber
564 bool LLParser::ParseMDNodeID(MDNode *&Result) {
565   // !{ ..., !42, ... }
566   unsigned MID = 0;
567   if (ParseUInt32(MID))
568     return true;
569 
570   // If not a forward reference, just return it now.
571   if (NumberedMetadata.count(MID)) {
572     Result = NumberedMetadata[MID];
573     return false;
574   }
575 
576   // Otherwise, create MDNode forward reference.
577   auto &FwdRef = ForwardRefMDNodes[MID];
578   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
579 
580   Result = FwdRef.first.get();
581   NumberedMetadata[MID].reset(Result);
582   return false;
583 }
584 
585 /// ParseNamedMetadata:
586 ///   !foo = !{ !1, !2 }
587 bool LLParser::ParseNamedMetadata() {
588   assert(Lex.getKind() == lltok::MetadataVar);
589   std::string Name = Lex.getStrVal();
590   Lex.Lex();
591 
592   if (ParseToken(lltok::equal, "expected '=' here") ||
593       ParseToken(lltok::exclaim, "Expected '!' here") ||
594       ParseToken(lltok::lbrace, "Expected '{' here"))
595     return true;
596 
597   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
598   if (Lex.getKind() != lltok::rbrace)
599     do {
600       if (ParseToken(lltok::exclaim, "Expected '!' here"))
601         return true;
602 
603       MDNode *N = nullptr;
604       if (ParseMDNodeID(N)) return true;
605       NMD->addOperand(N);
606     } while (EatIfPresent(lltok::comma));
607 
608   return ParseToken(lltok::rbrace, "expected end of metadata node");
609 }
610 
611 /// ParseStandaloneMetadata:
612 ///   !42 = !{...}
613 bool LLParser::ParseStandaloneMetadata() {
614   assert(Lex.getKind() == lltok::exclaim);
615   Lex.Lex();
616   unsigned MetadataID = 0;
617 
618   MDNode *Init;
619   if (ParseUInt32(MetadataID) ||
620       ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   // Detect common error, from old metadata syntax.
624   if (Lex.getKind() == lltok::Type)
625     return TokError("unexpected type in metadata definition");
626 
627   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
628   if (Lex.getKind() == lltok::MetadataVar) {
629     if (ParseSpecializedMDNode(Init, IsDistinct))
630       return true;
631   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
632              ParseMDTuple(Init, IsDistinct))
633     return true;
634 
635   // See if this was forward referenced, if so, handle it.
636   auto FI = ForwardRefMDNodes.find(MetadataID);
637   if (FI != ForwardRefMDNodes.end()) {
638     FI->second.first->replaceAllUsesWith(Init);
639     ForwardRefMDNodes.erase(FI);
640 
641     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
642   } else {
643     if (NumberedMetadata.count(MetadataID))
644       return TokError("Metadata id is already used");
645     NumberedMetadata[MetadataID].reset(Init);
646   }
647 
648   return false;
649 }
650 
651 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
652   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
653          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
654 }
655 
656 /// ParseAlias:
657 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
658 ///                     OptionalDLLStorageClass OptionalThreadLocal
659 ///                     OptionalUnnamedAddr 'alias' Aliasee
660 ///
661 /// Aliasee
662 ///   ::= TypeAndValue
663 ///
664 /// Everything through OptionalUnnamedAddr has already been parsed.
665 ///
666 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
667                           unsigned Visibility, unsigned DLLStorageClass,
668                           GlobalVariable::ThreadLocalMode TLM,
669                           bool UnnamedAddr) {
670   assert(Lex.getKind() == lltok::kw_alias);
671   Lex.Lex();
672 
673   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
674 
675   if(!GlobalAlias::isValidLinkage(Linkage))
676     return Error(NameLoc, "invalid linkage type for alias");
677 
678   if (!isValidVisibilityForLinkage(Visibility, L))
679     return Error(NameLoc,
680                  "symbol with local linkage must have default visibility");
681 
682   Type *Ty;
683   LocTy ExplicitTypeLoc = Lex.getLoc();
684   if (ParseType(Ty) ||
685       ParseToken(lltok::comma, "expected comma after alias's type"))
686     return true;
687 
688   Constant *Aliasee;
689   LocTy AliaseeLoc = Lex.getLoc();
690   if (Lex.getKind() != lltok::kw_bitcast &&
691       Lex.getKind() != lltok::kw_getelementptr &&
692       Lex.getKind() != lltok::kw_addrspacecast &&
693       Lex.getKind() != lltok::kw_inttoptr) {
694     if (ParseGlobalTypeAndValue(Aliasee))
695       return true;
696   } else {
697     // The bitcast dest type is not present, it is implied by the dest type.
698     ValID ID;
699     if (ParseValID(ID))
700       return true;
701     if (ID.Kind != ValID::t_Constant)
702       return Error(AliaseeLoc, "invalid aliasee");
703     Aliasee = ID.ConstantVal;
704   }
705 
706   Type *AliaseeType = Aliasee->getType();
707   auto *PTy = dyn_cast<PointerType>(AliaseeType);
708   if (!PTy)
709     return Error(AliaseeLoc, "An alias must have pointer type");
710   unsigned AddrSpace = PTy->getAddressSpace();
711 
712   if (Ty != PTy->getElementType())
713     return Error(
714         ExplicitTypeLoc,
715         "explicit pointee type doesn't match operand's pointee type");
716 
717   GlobalValue *GVal = nullptr;
718 
719   // See if the alias was forward referenced, if so, prepare to replace the
720   // forward reference.
721   if (!Name.empty()) {
722     GVal = M->getNamedValue(Name);
723     if (GVal) {
724       if (!ForwardRefVals.erase(Name))
725         return Error(NameLoc, "redefinition of global '@" + Name + "'");
726     }
727   } else {
728     auto I = ForwardRefValIDs.find(NumberedVals.size());
729     if (I != ForwardRefValIDs.end()) {
730       GVal = I->second.first;
731       ForwardRefValIDs.erase(I);
732     }
733   }
734 
735   // Okay, create the alias but do not insert it into the module yet.
736   std::unique_ptr<GlobalAlias> GA(
737       GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
738                           Name, Aliasee, /*Parent*/ nullptr));
739   GA->setThreadLocalMode(TLM);
740   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
741   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
742   GA->setUnnamedAddr(UnnamedAddr);
743 
744   if (Name.empty())
745     NumberedVals.push_back(GA.get());
746 
747   if (GVal) {
748     // Verify that types agree.
749     if (GVal->getType() != GA->getType())
750       return Error(
751           ExplicitTypeLoc,
752           "forward reference and definition of alias have different types");
753 
754     // If they agree, just RAUW the old value with the alias and remove the
755     // forward ref info.
756     GVal->replaceAllUsesWith(GA.get());
757     GVal->eraseFromParent();
758   }
759 
760   // Insert into the module, we know its name won't collide now.
761   M->getAliasList().push_back(GA.get());
762   assert(GA->getName() == Name && "Should not be a name conflict!");
763 
764   // The module owns this now
765   GA.release();
766 
767   return false;
768 }
769 
770 /// ParseGlobal
771 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
772 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
773 ///       OptionalExternallyInitialized GlobalType Type Const
774 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
775 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
776 ///       OptionalExternallyInitialized GlobalType Type Const
777 ///
778 /// Everything up to and including OptionalUnnamedAddr has been parsed
779 /// already.
780 ///
781 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
782                            unsigned Linkage, bool HasLinkage,
783                            unsigned Visibility, unsigned DLLStorageClass,
784                            GlobalVariable::ThreadLocalMode TLM,
785                            bool UnnamedAddr) {
786   if (!isValidVisibilityForLinkage(Visibility, Linkage))
787     return Error(NameLoc,
788                  "symbol with local linkage must have default visibility");
789 
790   unsigned AddrSpace;
791   bool IsConstant, IsExternallyInitialized;
792   LocTy IsExternallyInitializedLoc;
793   LocTy TyLoc;
794 
795   Type *Ty = nullptr;
796   if (ParseOptionalAddrSpace(AddrSpace) ||
797       ParseOptionalToken(lltok::kw_externally_initialized,
798                          IsExternallyInitialized,
799                          &IsExternallyInitializedLoc) ||
800       ParseGlobalType(IsConstant) ||
801       ParseType(Ty, TyLoc))
802     return true;
803 
804   // If the linkage is specified and is external, then no initializer is
805   // present.
806   Constant *Init = nullptr;
807   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
808                       Linkage != GlobalValue::ExternalLinkage)) {
809     if (ParseGlobalValue(Ty, Init))
810       return true;
811   }
812 
813   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
814     return Error(TyLoc, "invalid type for global variable");
815 
816   GlobalValue *GVal = nullptr;
817 
818   // See if the global was forward referenced, if so, use the global.
819   if (!Name.empty()) {
820     GVal = M->getNamedValue(Name);
821     if (GVal) {
822       if (!ForwardRefVals.erase(Name))
823         return Error(NameLoc, "redefinition of global '@" + Name + "'");
824     }
825   } else {
826     auto I = ForwardRefValIDs.find(NumberedVals.size());
827     if (I != ForwardRefValIDs.end()) {
828       GVal = I->second.first;
829       ForwardRefValIDs.erase(I);
830     }
831   }
832 
833   GlobalVariable *GV;
834   if (!GVal) {
835     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
836                             Name, nullptr, GlobalVariable::NotThreadLocal,
837                             AddrSpace);
838   } else {
839     if (GVal->getValueType() != Ty)
840       return Error(TyLoc,
841             "forward reference and definition of global have different types");
842 
843     GV = cast<GlobalVariable>(GVal);
844 
845     // Move the forward-reference to the correct spot in the module.
846     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
847   }
848 
849   if (Name.empty())
850     NumberedVals.push_back(GV);
851 
852   // Set the parsed properties on the global.
853   if (Init)
854     GV->setInitializer(Init);
855   GV->setConstant(IsConstant);
856   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
857   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
858   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
859   GV->setExternallyInitialized(IsExternallyInitialized);
860   GV->setThreadLocalMode(TLM);
861   GV->setUnnamedAddr(UnnamedAddr);
862 
863   // Parse attributes on the global.
864   while (Lex.getKind() == lltok::comma) {
865     Lex.Lex();
866 
867     if (Lex.getKind() == lltok::kw_section) {
868       Lex.Lex();
869       GV->setSection(Lex.getStrVal());
870       if (ParseToken(lltok::StringConstant, "expected global section string"))
871         return true;
872     } else if (Lex.getKind() == lltok::kw_align) {
873       unsigned Alignment;
874       if (ParseOptionalAlignment(Alignment)) return true;
875       GV->setAlignment(Alignment);
876     } else {
877       Comdat *C;
878       if (parseOptionalComdat(Name, C))
879         return true;
880       if (C)
881         GV->setComdat(C);
882       else
883         return TokError("unknown global variable property!");
884     }
885   }
886 
887   return false;
888 }
889 
890 /// ParseUnnamedAttrGrp
891 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
892 bool LLParser::ParseUnnamedAttrGrp() {
893   assert(Lex.getKind() == lltok::kw_attributes);
894   LocTy AttrGrpLoc = Lex.getLoc();
895   Lex.Lex();
896 
897   if (Lex.getKind() != lltok::AttrGrpID)
898     return TokError("expected attribute group id");
899 
900   unsigned VarID = Lex.getUIntVal();
901   std::vector<unsigned> unused;
902   LocTy BuiltinLoc;
903   Lex.Lex();
904 
905   if (ParseToken(lltok::equal, "expected '=' here") ||
906       ParseToken(lltok::lbrace, "expected '{' here") ||
907       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
908                                  BuiltinLoc) ||
909       ParseToken(lltok::rbrace, "expected end of attribute group"))
910     return true;
911 
912   if (!NumberedAttrBuilders[VarID].hasAttributes())
913     return Error(AttrGrpLoc, "attribute group has no attributes");
914 
915   return false;
916 }
917 
918 /// ParseFnAttributeValuePairs
919 ///   ::= <attr> | <attr> '=' <value>
920 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
921                                           std::vector<unsigned> &FwdRefAttrGrps,
922                                           bool inAttrGrp, LocTy &BuiltinLoc) {
923   bool HaveError = false;
924 
925   B.clear();
926 
927   while (true) {
928     lltok::Kind Token = Lex.getKind();
929     if (Token == lltok::kw_builtin)
930       BuiltinLoc = Lex.getLoc();
931     switch (Token) {
932     default:
933       if (!inAttrGrp) return HaveError;
934       return Error(Lex.getLoc(), "unterminated attribute group");
935     case lltok::rbrace:
936       // Finished.
937       return false;
938 
939     case lltok::AttrGrpID: {
940       // Allow a function to reference an attribute group:
941       //
942       //   define void @foo() #1 { ... }
943       if (inAttrGrp)
944         HaveError |=
945           Error(Lex.getLoc(),
946               "cannot have an attribute group reference in an attribute group");
947 
948       unsigned AttrGrpNum = Lex.getUIntVal();
949       if (inAttrGrp) break;
950 
951       // Save the reference to the attribute group. We'll fill it in later.
952       FwdRefAttrGrps.push_back(AttrGrpNum);
953       break;
954     }
955     // Target-dependent attributes:
956     case lltok::StringConstant: {
957       if (ParseStringAttribute(B))
958         return true;
959       continue;
960     }
961 
962     // Target-independent attributes:
963     case lltok::kw_align: {
964       // As a hack, we allow function alignment to be initially parsed as an
965       // attribute on a function declaration/definition or added to an attribute
966       // group and later moved to the alignment field.
967       unsigned Alignment;
968       if (inAttrGrp) {
969         Lex.Lex();
970         if (ParseToken(lltok::equal, "expected '=' here") ||
971             ParseUInt32(Alignment))
972           return true;
973       } else {
974         if (ParseOptionalAlignment(Alignment))
975           return true;
976       }
977       B.addAlignmentAttr(Alignment);
978       continue;
979     }
980     case lltok::kw_alignstack: {
981       unsigned Alignment;
982       if (inAttrGrp) {
983         Lex.Lex();
984         if (ParseToken(lltok::equal, "expected '=' here") ||
985             ParseUInt32(Alignment))
986           return true;
987       } else {
988         if (ParseOptionalStackAlignment(Alignment))
989           return true;
990       }
991       B.addStackAlignmentAttr(Alignment);
992       continue;
993     }
994     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
995     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
996     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
997     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
998     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
999     case lltok::kw_inaccessiblememonly:
1000       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1001     case lltok::kw_inaccessiblemem_or_argmemonly:
1002       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1003     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1004     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1005     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1006     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1007     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1008     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1009     case lltok::kw_noimplicitfloat:
1010       B.addAttribute(Attribute::NoImplicitFloat); break;
1011     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1012     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1013     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1014     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1015     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1016     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1017     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1018     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1019     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1020     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1021     case lltok::kw_returns_twice:
1022       B.addAttribute(Attribute::ReturnsTwice); break;
1023     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1024     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1025     case lltok::kw_sspstrong:
1026       B.addAttribute(Attribute::StackProtectStrong); break;
1027     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1028     case lltok::kw_sanitize_address:
1029       B.addAttribute(Attribute::SanitizeAddress); break;
1030     case lltok::kw_sanitize_thread:
1031       B.addAttribute(Attribute::SanitizeThread); break;
1032     case lltok::kw_sanitize_memory:
1033       B.addAttribute(Attribute::SanitizeMemory); break;
1034     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1035 
1036     // Error handling.
1037     case lltok::kw_inreg:
1038     case lltok::kw_signext:
1039     case lltok::kw_zeroext:
1040       HaveError |=
1041         Error(Lex.getLoc(),
1042               "invalid use of attribute on a function");
1043       break;
1044     case lltok::kw_byval:
1045     case lltok::kw_dereferenceable:
1046     case lltok::kw_dereferenceable_or_null:
1047     case lltok::kw_inalloca:
1048     case lltok::kw_nest:
1049     case lltok::kw_noalias:
1050     case lltok::kw_nocapture:
1051     case lltok::kw_nonnull:
1052     case lltok::kw_returned:
1053     case lltok::kw_sret:
1054       HaveError |=
1055         Error(Lex.getLoc(),
1056               "invalid use of parameter-only attribute on a function");
1057       break;
1058     }
1059 
1060     Lex.Lex();
1061   }
1062 }
1063 
1064 //===----------------------------------------------------------------------===//
1065 // GlobalValue Reference/Resolution Routines.
1066 //===----------------------------------------------------------------------===//
1067 
1068 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1069                                               const std::string &Name) {
1070   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1071     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1072   else
1073     return new GlobalVariable(*M, PTy->getElementType(), false,
1074                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1075                               nullptr, GlobalVariable::NotThreadLocal,
1076                               PTy->getAddressSpace());
1077 }
1078 
1079 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1080 /// forward reference record if needed.  This can return null if the value
1081 /// exists but does not have the right type.
1082 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1083                                     LocTy Loc) {
1084   PointerType *PTy = dyn_cast<PointerType>(Ty);
1085   if (!PTy) {
1086     Error(Loc, "global variable reference must have pointer type");
1087     return nullptr;
1088   }
1089 
1090   // Look this name up in the normal function symbol table.
1091   GlobalValue *Val =
1092     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1093 
1094   // If this is a forward reference for the value, see if we already created a
1095   // forward ref record.
1096   if (!Val) {
1097     auto I = ForwardRefVals.find(Name);
1098     if (I != ForwardRefVals.end())
1099       Val = I->second.first;
1100   }
1101 
1102   // If we have the value in the symbol table or fwd-ref table, return it.
1103   if (Val) {
1104     if (Val->getType() == Ty) return Val;
1105     Error(Loc, "'@" + Name + "' defined with type '" +
1106           getTypeString(Val->getType()) + "'");
1107     return nullptr;
1108   }
1109 
1110   // Otherwise, create a new forward reference for this value and remember it.
1111   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1112   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1113   return FwdVal;
1114 }
1115 
1116 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1117   PointerType *PTy = dyn_cast<PointerType>(Ty);
1118   if (!PTy) {
1119     Error(Loc, "global variable reference must have pointer type");
1120     return nullptr;
1121   }
1122 
1123   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1124 
1125   // If this is a forward reference for the value, see if we already created a
1126   // forward ref record.
1127   if (!Val) {
1128     auto I = ForwardRefValIDs.find(ID);
1129     if (I != ForwardRefValIDs.end())
1130       Val = I->second.first;
1131   }
1132 
1133   // If we have the value in the symbol table or fwd-ref table, return it.
1134   if (Val) {
1135     if (Val->getType() == Ty) return Val;
1136     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1137           getTypeString(Val->getType()) + "'");
1138     return nullptr;
1139   }
1140 
1141   // Otherwise, create a new forward reference for this value and remember it.
1142   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1143   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1144   return FwdVal;
1145 }
1146 
1147 
1148 //===----------------------------------------------------------------------===//
1149 // Comdat Reference/Resolution Routines.
1150 //===----------------------------------------------------------------------===//
1151 
1152 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1153   // Look this name up in the comdat symbol table.
1154   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1155   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1156   if (I != ComdatSymTab.end())
1157     return &I->second;
1158 
1159   // Otherwise, create a new forward reference for this value and remember it.
1160   Comdat *C = M->getOrInsertComdat(Name);
1161   ForwardRefComdats[Name] = Loc;
1162   return C;
1163 }
1164 
1165 
1166 //===----------------------------------------------------------------------===//
1167 // Helper Routines.
1168 //===----------------------------------------------------------------------===//
1169 
1170 /// ParseToken - If the current token has the specified kind, eat it and return
1171 /// success.  Otherwise, emit the specified error and return failure.
1172 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1173   if (Lex.getKind() != T)
1174     return TokError(ErrMsg);
1175   Lex.Lex();
1176   return false;
1177 }
1178 
1179 /// ParseStringConstant
1180 ///   ::= StringConstant
1181 bool LLParser::ParseStringConstant(std::string &Result) {
1182   if (Lex.getKind() != lltok::StringConstant)
1183     return TokError("expected string constant");
1184   Result = Lex.getStrVal();
1185   Lex.Lex();
1186   return false;
1187 }
1188 
1189 /// ParseUInt32
1190 ///   ::= uint32
1191 bool LLParser::ParseUInt32(unsigned &Val) {
1192   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1193     return TokError("expected integer");
1194   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1195   if (Val64 != unsigned(Val64))
1196     return TokError("expected 32-bit integer (too large)");
1197   Val = Val64;
1198   Lex.Lex();
1199   return false;
1200 }
1201 
1202 /// ParseUInt64
1203 ///   ::= uint64
1204 bool LLParser::ParseUInt64(uint64_t &Val) {
1205   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1206     return TokError("expected integer");
1207   Val = Lex.getAPSIntVal().getLimitedValue();
1208   Lex.Lex();
1209   return false;
1210 }
1211 
1212 /// ParseTLSModel
1213 ///   := 'localdynamic'
1214 ///   := 'initialexec'
1215 ///   := 'localexec'
1216 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1217   switch (Lex.getKind()) {
1218     default:
1219       return TokError("expected localdynamic, initialexec or localexec");
1220     case lltok::kw_localdynamic:
1221       TLM = GlobalVariable::LocalDynamicTLSModel;
1222       break;
1223     case lltok::kw_initialexec:
1224       TLM = GlobalVariable::InitialExecTLSModel;
1225       break;
1226     case lltok::kw_localexec:
1227       TLM = GlobalVariable::LocalExecTLSModel;
1228       break;
1229   }
1230 
1231   Lex.Lex();
1232   return false;
1233 }
1234 
1235 /// ParseOptionalThreadLocal
1236 ///   := /*empty*/
1237 ///   := 'thread_local'
1238 ///   := 'thread_local' '(' tlsmodel ')'
1239 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1240   TLM = GlobalVariable::NotThreadLocal;
1241   if (!EatIfPresent(lltok::kw_thread_local))
1242     return false;
1243 
1244   TLM = GlobalVariable::GeneralDynamicTLSModel;
1245   if (Lex.getKind() == lltok::lparen) {
1246     Lex.Lex();
1247     return ParseTLSModel(TLM) ||
1248       ParseToken(lltok::rparen, "expected ')' after thread local model");
1249   }
1250   return false;
1251 }
1252 
1253 /// ParseOptionalAddrSpace
1254 ///   := /*empty*/
1255 ///   := 'addrspace' '(' uint32 ')'
1256 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1257   AddrSpace = 0;
1258   if (!EatIfPresent(lltok::kw_addrspace))
1259     return false;
1260   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1261          ParseUInt32(AddrSpace) ||
1262          ParseToken(lltok::rparen, "expected ')' in address space");
1263 }
1264 
1265 /// ParseStringAttribute
1266 ///   := StringConstant
1267 ///   := StringConstant '=' StringConstant
1268 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1269   std::string Attr = Lex.getStrVal();
1270   Lex.Lex();
1271   std::string Val;
1272   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1273     return true;
1274   B.addAttribute(Attr, Val);
1275   return false;
1276 }
1277 
1278 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1279 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1280   bool HaveError = false;
1281 
1282   B.clear();
1283 
1284   while (1) {
1285     lltok::Kind Token = Lex.getKind();
1286     switch (Token) {
1287     default:  // End of attributes.
1288       return HaveError;
1289     case lltok::StringConstant: {
1290       if (ParseStringAttribute(B))
1291         return true;
1292       continue;
1293     }
1294     case lltok::kw_align: {
1295       unsigned Alignment;
1296       if (ParseOptionalAlignment(Alignment))
1297         return true;
1298       B.addAlignmentAttr(Alignment);
1299       continue;
1300     }
1301     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1302     case lltok::kw_dereferenceable: {
1303       uint64_t Bytes;
1304       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1305         return true;
1306       B.addDereferenceableAttr(Bytes);
1307       continue;
1308     }
1309     case lltok::kw_dereferenceable_or_null: {
1310       uint64_t Bytes;
1311       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1312         return true;
1313       B.addDereferenceableOrNullAttr(Bytes);
1314       continue;
1315     }
1316     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1317     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1318     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1319     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1320     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1321     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1322     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1323     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1324     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1325     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1326     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1327     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1328 
1329     case lltok::kw_alignstack:
1330     case lltok::kw_alwaysinline:
1331     case lltok::kw_argmemonly:
1332     case lltok::kw_builtin:
1333     case lltok::kw_inlinehint:
1334     case lltok::kw_jumptable:
1335     case lltok::kw_minsize:
1336     case lltok::kw_naked:
1337     case lltok::kw_nobuiltin:
1338     case lltok::kw_noduplicate:
1339     case lltok::kw_noimplicitfloat:
1340     case lltok::kw_noinline:
1341     case lltok::kw_nonlazybind:
1342     case lltok::kw_noredzone:
1343     case lltok::kw_noreturn:
1344     case lltok::kw_nounwind:
1345     case lltok::kw_optnone:
1346     case lltok::kw_optsize:
1347     case lltok::kw_returns_twice:
1348     case lltok::kw_sanitize_address:
1349     case lltok::kw_sanitize_memory:
1350     case lltok::kw_sanitize_thread:
1351     case lltok::kw_ssp:
1352     case lltok::kw_sspreq:
1353     case lltok::kw_sspstrong:
1354     case lltok::kw_safestack:
1355     case lltok::kw_uwtable:
1356       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1357       break;
1358     }
1359 
1360     Lex.Lex();
1361   }
1362 }
1363 
1364 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1365 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1366   bool HaveError = false;
1367 
1368   B.clear();
1369 
1370   while (1) {
1371     lltok::Kind Token = Lex.getKind();
1372     switch (Token) {
1373     default:  // End of attributes.
1374       return HaveError;
1375     case lltok::StringConstant: {
1376       if (ParseStringAttribute(B))
1377         return true;
1378       continue;
1379     }
1380     case lltok::kw_dereferenceable: {
1381       uint64_t Bytes;
1382       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1383         return true;
1384       B.addDereferenceableAttr(Bytes);
1385       continue;
1386     }
1387     case lltok::kw_dereferenceable_or_null: {
1388       uint64_t Bytes;
1389       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1390         return true;
1391       B.addDereferenceableOrNullAttr(Bytes);
1392       continue;
1393     }
1394     case lltok::kw_align: {
1395       unsigned Alignment;
1396       if (ParseOptionalAlignment(Alignment))
1397         return true;
1398       B.addAlignmentAttr(Alignment);
1399       continue;
1400     }
1401     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1402     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1403     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1404     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1405     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1406 
1407     // Error handling.
1408     case lltok::kw_byval:
1409     case lltok::kw_inalloca:
1410     case lltok::kw_nest:
1411     case lltok::kw_nocapture:
1412     case lltok::kw_returned:
1413     case lltok::kw_sret:
1414       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1415       break;
1416 
1417     case lltok::kw_alignstack:
1418     case lltok::kw_alwaysinline:
1419     case lltok::kw_argmemonly:
1420     case lltok::kw_builtin:
1421     case lltok::kw_cold:
1422     case lltok::kw_inlinehint:
1423     case lltok::kw_jumptable:
1424     case lltok::kw_minsize:
1425     case lltok::kw_naked:
1426     case lltok::kw_nobuiltin:
1427     case lltok::kw_noduplicate:
1428     case lltok::kw_noimplicitfloat:
1429     case lltok::kw_noinline:
1430     case lltok::kw_nonlazybind:
1431     case lltok::kw_noredzone:
1432     case lltok::kw_noreturn:
1433     case lltok::kw_nounwind:
1434     case lltok::kw_optnone:
1435     case lltok::kw_optsize:
1436     case lltok::kw_returns_twice:
1437     case lltok::kw_sanitize_address:
1438     case lltok::kw_sanitize_memory:
1439     case lltok::kw_sanitize_thread:
1440     case lltok::kw_ssp:
1441     case lltok::kw_sspreq:
1442     case lltok::kw_sspstrong:
1443     case lltok::kw_safestack:
1444     case lltok::kw_uwtable:
1445       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1446       break;
1447 
1448     case lltok::kw_readnone:
1449     case lltok::kw_readonly:
1450       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1451     }
1452 
1453     Lex.Lex();
1454   }
1455 }
1456 
1457 /// ParseOptionalLinkage
1458 ///   ::= /*empty*/
1459 ///   ::= 'private'
1460 ///   ::= 'internal'
1461 ///   ::= 'weak'
1462 ///   ::= 'weak_odr'
1463 ///   ::= 'linkonce'
1464 ///   ::= 'linkonce_odr'
1465 ///   ::= 'available_externally'
1466 ///   ::= 'appending'
1467 ///   ::= 'common'
1468 ///   ::= 'extern_weak'
1469 ///   ::= 'external'
1470 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1471   HasLinkage = false;
1472   switch (Lex.getKind()) {
1473   default:                       Res=GlobalValue::ExternalLinkage; return false;
1474   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1475   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1476   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1477   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1478   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1479   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1480   case lltok::kw_available_externally:
1481     Res = GlobalValue::AvailableExternallyLinkage;
1482     break;
1483   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1484   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1485   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1486   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1487   }
1488   Lex.Lex();
1489   HasLinkage = true;
1490   return false;
1491 }
1492 
1493 /// ParseOptionalVisibility
1494 ///   ::= /*empty*/
1495 ///   ::= 'default'
1496 ///   ::= 'hidden'
1497 ///   ::= 'protected'
1498 ///
1499 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1500   switch (Lex.getKind()) {
1501   default:                  Res = GlobalValue::DefaultVisibility; return false;
1502   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1503   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1504   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1505   }
1506   Lex.Lex();
1507   return false;
1508 }
1509 
1510 /// ParseOptionalDLLStorageClass
1511 ///   ::= /*empty*/
1512 ///   ::= 'dllimport'
1513 ///   ::= 'dllexport'
1514 ///
1515 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1516   switch (Lex.getKind()) {
1517   default:                  Res = GlobalValue::DefaultStorageClass; return false;
1518   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1519   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1520   }
1521   Lex.Lex();
1522   return false;
1523 }
1524 
1525 /// ParseOptionalCallingConv
1526 ///   ::= /*empty*/
1527 ///   ::= 'ccc'
1528 ///   ::= 'fastcc'
1529 ///   ::= 'intel_ocl_bicc'
1530 ///   ::= 'coldcc'
1531 ///   ::= 'x86_stdcallcc'
1532 ///   ::= 'x86_fastcallcc'
1533 ///   ::= 'x86_thiscallcc'
1534 ///   ::= 'x86_vectorcallcc'
1535 ///   ::= 'arm_apcscc'
1536 ///   ::= 'arm_aapcscc'
1537 ///   ::= 'arm_aapcs_vfpcc'
1538 ///   ::= 'msp430_intrcc'
1539 ///   ::= 'ptx_kernel'
1540 ///   ::= 'ptx_device'
1541 ///   ::= 'spir_func'
1542 ///   ::= 'spir_kernel'
1543 ///   ::= 'x86_64_sysvcc'
1544 ///   ::= 'x86_64_win64cc'
1545 ///   ::= 'webkit_jscc'
1546 ///   ::= 'anyregcc'
1547 ///   ::= 'preserve_mostcc'
1548 ///   ::= 'preserve_allcc'
1549 ///   ::= 'ghccc'
1550 ///   ::= 'x86_intrcc'
1551 ///   ::= 'hhvmcc'
1552 ///   ::= 'hhvm_ccc'
1553 ///   ::= 'cxx_fast_tlscc'
1554 ///   ::= 'cc' UINT
1555 ///
1556 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1557   switch (Lex.getKind()) {
1558   default:                       CC = CallingConv::C; return false;
1559   case lltok::kw_ccc:            CC = CallingConv::C; break;
1560   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1561   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1562   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1563   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1564   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1565   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1566   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1567   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1568   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1569   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1570   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1571   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1572   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1573   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1574   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1575   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1576   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1577   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1578   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1579   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1580   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1581   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1582   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1583   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1584   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1585   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1586   case lltok::kw_cc: {
1587       Lex.Lex();
1588       return ParseUInt32(CC);
1589     }
1590   }
1591 
1592   Lex.Lex();
1593   return false;
1594 }
1595 
1596 /// ParseMetadataAttachment
1597 ///   ::= !dbg !42
1598 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1599   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1600 
1601   std::string Name = Lex.getStrVal();
1602   Kind = M->getMDKindID(Name);
1603   Lex.Lex();
1604 
1605   return ParseMDNode(MD);
1606 }
1607 
1608 /// ParseInstructionMetadata
1609 ///   ::= !dbg !42 (',' !dbg !57)*
1610 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1611   do {
1612     if (Lex.getKind() != lltok::MetadataVar)
1613       return TokError("expected metadata after comma");
1614 
1615     unsigned MDK;
1616     MDNode *N;
1617     if (ParseMetadataAttachment(MDK, N))
1618       return true;
1619 
1620     Inst.setMetadata(MDK, N);
1621     if (MDK == LLVMContext::MD_tbaa)
1622       InstsWithTBAATag.push_back(&Inst);
1623 
1624     // If this is the end of the list, we're done.
1625   } while (EatIfPresent(lltok::comma));
1626   return false;
1627 }
1628 
1629 /// ParseOptionalFunctionMetadata
1630 ///   ::= (!dbg !57)*
1631 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1632   while (Lex.getKind() == lltok::MetadataVar) {
1633     unsigned MDK;
1634     MDNode *N;
1635     if (ParseMetadataAttachment(MDK, N))
1636       return true;
1637 
1638     F.setMetadata(MDK, N);
1639   }
1640   return false;
1641 }
1642 
1643 /// ParseOptionalAlignment
1644 ///   ::= /* empty */
1645 ///   ::= 'align' 4
1646 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1647   Alignment = 0;
1648   if (!EatIfPresent(lltok::kw_align))
1649     return false;
1650   LocTy AlignLoc = Lex.getLoc();
1651   if (ParseUInt32(Alignment)) return true;
1652   if (!isPowerOf2_32(Alignment))
1653     return Error(AlignLoc, "alignment is not a power of two");
1654   if (Alignment > Value::MaximumAlignment)
1655     return Error(AlignLoc, "huge alignments are not supported yet");
1656   return false;
1657 }
1658 
1659 /// ParseOptionalDerefAttrBytes
1660 ///   ::= /* empty */
1661 ///   ::= AttrKind '(' 4 ')'
1662 ///
1663 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1664 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1665                                            uint64_t &Bytes) {
1666   assert((AttrKind == lltok::kw_dereferenceable ||
1667           AttrKind == lltok::kw_dereferenceable_or_null) &&
1668          "contract!");
1669 
1670   Bytes = 0;
1671   if (!EatIfPresent(AttrKind))
1672     return false;
1673   LocTy ParenLoc = Lex.getLoc();
1674   if (!EatIfPresent(lltok::lparen))
1675     return Error(ParenLoc, "expected '('");
1676   LocTy DerefLoc = Lex.getLoc();
1677   if (ParseUInt64(Bytes)) return true;
1678   ParenLoc = Lex.getLoc();
1679   if (!EatIfPresent(lltok::rparen))
1680     return Error(ParenLoc, "expected ')'");
1681   if (!Bytes)
1682     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1683   return false;
1684 }
1685 
1686 /// ParseOptionalCommaAlign
1687 ///   ::=
1688 ///   ::= ',' align 4
1689 ///
1690 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1691 /// end.
1692 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1693                                        bool &AteExtraComma) {
1694   AteExtraComma = false;
1695   while (EatIfPresent(lltok::comma)) {
1696     // Metadata at the end is an early exit.
1697     if (Lex.getKind() == lltok::MetadataVar) {
1698       AteExtraComma = true;
1699       return false;
1700     }
1701 
1702     if (Lex.getKind() != lltok::kw_align)
1703       return Error(Lex.getLoc(), "expected metadata or 'align'");
1704 
1705     if (ParseOptionalAlignment(Alignment)) return true;
1706   }
1707 
1708   return false;
1709 }
1710 
1711 /// ParseScopeAndOrdering
1712 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1713 ///   else: ::=
1714 ///
1715 /// This sets Scope and Ordering to the parsed values.
1716 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1717                                      AtomicOrdering &Ordering) {
1718   if (!isAtomic)
1719     return false;
1720 
1721   Scope = CrossThread;
1722   if (EatIfPresent(lltok::kw_singlethread))
1723     Scope = SingleThread;
1724 
1725   return ParseOrdering(Ordering);
1726 }
1727 
1728 /// ParseOrdering
1729 ///   ::= AtomicOrdering
1730 ///
1731 /// This sets Ordering to the parsed value.
1732 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1733   switch (Lex.getKind()) {
1734   default: return TokError("Expected ordering on atomic instruction");
1735   case lltok::kw_unordered: Ordering = Unordered; break;
1736   case lltok::kw_monotonic: Ordering = Monotonic; break;
1737   case lltok::kw_acquire: Ordering = Acquire; break;
1738   case lltok::kw_release: Ordering = Release; break;
1739   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1740   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1741   }
1742   Lex.Lex();
1743   return false;
1744 }
1745 
1746 /// ParseOptionalStackAlignment
1747 ///   ::= /* empty */
1748 ///   ::= 'alignstack' '(' 4 ')'
1749 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1750   Alignment = 0;
1751   if (!EatIfPresent(lltok::kw_alignstack))
1752     return false;
1753   LocTy ParenLoc = Lex.getLoc();
1754   if (!EatIfPresent(lltok::lparen))
1755     return Error(ParenLoc, "expected '('");
1756   LocTy AlignLoc = Lex.getLoc();
1757   if (ParseUInt32(Alignment)) return true;
1758   ParenLoc = Lex.getLoc();
1759   if (!EatIfPresent(lltok::rparen))
1760     return Error(ParenLoc, "expected ')'");
1761   if (!isPowerOf2_32(Alignment))
1762     return Error(AlignLoc, "stack alignment is not a power of two");
1763   return false;
1764 }
1765 
1766 /// ParseIndexList - This parses the index list for an insert/extractvalue
1767 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1768 /// comma at the end of the line and find that it is followed by metadata.
1769 /// Clients that don't allow metadata can call the version of this function that
1770 /// only takes one argument.
1771 ///
1772 /// ParseIndexList
1773 ///    ::=  (',' uint32)+
1774 ///
1775 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1776                               bool &AteExtraComma) {
1777   AteExtraComma = false;
1778 
1779   if (Lex.getKind() != lltok::comma)
1780     return TokError("expected ',' as start of index list");
1781 
1782   while (EatIfPresent(lltok::comma)) {
1783     if (Lex.getKind() == lltok::MetadataVar) {
1784       if (Indices.empty()) return TokError("expected index");
1785       AteExtraComma = true;
1786       return false;
1787     }
1788     unsigned Idx = 0;
1789     if (ParseUInt32(Idx)) return true;
1790     Indices.push_back(Idx);
1791   }
1792 
1793   return false;
1794 }
1795 
1796 //===----------------------------------------------------------------------===//
1797 // Type Parsing.
1798 //===----------------------------------------------------------------------===//
1799 
1800 /// ParseType - Parse a type.
1801 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1802   SMLoc TypeLoc = Lex.getLoc();
1803   switch (Lex.getKind()) {
1804   default:
1805     return TokError(Msg);
1806   case lltok::Type:
1807     // Type ::= 'float' | 'void' (etc)
1808     Result = Lex.getTyVal();
1809     Lex.Lex();
1810     break;
1811   case lltok::lbrace:
1812     // Type ::= StructType
1813     if (ParseAnonStructType(Result, false))
1814       return true;
1815     break;
1816   case lltok::lsquare:
1817     // Type ::= '[' ... ']'
1818     Lex.Lex(); // eat the lsquare.
1819     if (ParseArrayVectorType(Result, false))
1820       return true;
1821     break;
1822   case lltok::less: // Either vector or packed struct.
1823     // Type ::= '<' ... '>'
1824     Lex.Lex();
1825     if (Lex.getKind() == lltok::lbrace) {
1826       if (ParseAnonStructType(Result, true) ||
1827           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1828         return true;
1829     } else if (ParseArrayVectorType(Result, true))
1830       return true;
1831     break;
1832   case lltok::LocalVar: {
1833     // Type ::= %foo
1834     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1835 
1836     // If the type hasn't been defined yet, create a forward definition and
1837     // remember where that forward def'n was seen (in case it never is defined).
1838     if (!Entry.first) {
1839       Entry.first = StructType::create(Context, Lex.getStrVal());
1840       Entry.second = Lex.getLoc();
1841     }
1842     Result = Entry.first;
1843     Lex.Lex();
1844     break;
1845   }
1846 
1847   case lltok::LocalVarID: {
1848     // Type ::= %4
1849     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1850 
1851     // If the type hasn't been defined yet, create a forward definition and
1852     // remember where that forward def'n was seen (in case it never is defined).
1853     if (!Entry.first) {
1854       Entry.first = StructType::create(Context);
1855       Entry.second = Lex.getLoc();
1856     }
1857     Result = Entry.first;
1858     Lex.Lex();
1859     break;
1860   }
1861   }
1862 
1863   // Parse the type suffixes.
1864   while (1) {
1865     switch (Lex.getKind()) {
1866     // End of type.
1867     default:
1868       if (!AllowVoid && Result->isVoidTy())
1869         return Error(TypeLoc, "void type only allowed for function results");
1870       return false;
1871 
1872     // Type ::= Type '*'
1873     case lltok::star:
1874       if (Result->isLabelTy())
1875         return TokError("basic block pointers are invalid");
1876       if (Result->isVoidTy())
1877         return TokError("pointers to void are invalid - use i8* instead");
1878       if (!PointerType::isValidElementType(Result))
1879         return TokError("pointer to this type is invalid");
1880       Result = PointerType::getUnqual(Result);
1881       Lex.Lex();
1882       break;
1883 
1884     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1885     case lltok::kw_addrspace: {
1886       if (Result->isLabelTy())
1887         return TokError("basic block pointers are invalid");
1888       if (Result->isVoidTy())
1889         return TokError("pointers to void are invalid; use i8* instead");
1890       if (!PointerType::isValidElementType(Result))
1891         return TokError("pointer to this type is invalid");
1892       unsigned AddrSpace;
1893       if (ParseOptionalAddrSpace(AddrSpace) ||
1894           ParseToken(lltok::star, "expected '*' in address space"))
1895         return true;
1896 
1897       Result = PointerType::get(Result, AddrSpace);
1898       break;
1899     }
1900 
1901     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1902     case lltok::lparen:
1903       if (ParseFunctionType(Result))
1904         return true;
1905       break;
1906     }
1907   }
1908 }
1909 
1910 /// ParseParameterList
1911 ///    ::= '(' ')'
1912 ///    ::= '(' Arg (',' Arg)* ')'
1913 ///  Arg
1914 ///    ::= Type OptionalAttributes Value OptionalAttributes
1915 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1916                                   PerFunctionState &PFS, bool IsMustTailCall,
1917                                   bool InVarArgsFunc) {
1918   if (ParseToken(lltok::lparen, "expected '(' in call"))
1919     return true;
1920 
1921   unsigned AttrIndex = 1;
1922   while (Lex.getKind() != lltok::rparen) {
1923     // If this isn't the first argument, we need a comma.
1924     if (!ArgList.empty() &&
1925         ParseToken(lltok::comma, "expected ',' in argument list"))
1926       return true;
1927 
1928     // Parse an ellipsis if this is a musttail call in a variadic function.
1929     if (Lex.getKind() == lltok::dotdotdot) {
1930       const char *Msg = "unexpected ellipsis in argument list for ";
1931       if (!IsMustTailCall)
1932         return TokError(Twine(Msg) + "non-musttail call");
1933       if (!InVarArgsFunc)
1934         return TokError(Twine(Msg) + "musttail call in non-varargs function");
1935       Lex.Lex();  // Lex the '...', it is purely for readability.
1936       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1937     }
1938 
1939     // Parse the argument.
1940     LocTy ArgLoc;
1941     Type *ArgTy = nullptr;
1942     AttrBuilder ArgAttrs;
1943     Value *V;
1944     if (ParseType(ArgTy, ArgLoc))
1945       return true;
1946 
1947     if (ArgTy->isMetadataTy()) {
1948       if (ParseMetadataAsValue(V, PFS))
1949         return true;
1950     } else {
1951       // Otherwise, handle normal operands.
1952       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1953         return true;
1954     }
1955     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1956                                                              AttrIndex++,
1957                                                              ArgAttrs)));
1958   }
1959 
1960   if (IsMustTailCall && InVarArgsFunc)
1961     return TokError("expected '...' at end of argument list for musttail call "
1962                     "in varargs function");
1963 
1964   Lex.Lex();  // Lex the ')'.
1965   return false;
1966 }
1967 
1968 /// ParseOptionalOperandBundles
1969 ///    ::= /*empty*/
1970 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
1971 ///
1972 /// OperandBundle
1973 ///    ::= bundle-tag '(' ')'
1974 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
1975 ///
1976 /// bundle-tag ::= String Constant
1977 bool LLParser::ParseOptionalOperandBundles(
1978     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
1979   LocTy BeginLoc = Lex.getLoc();
1980   if (!EatIfPresent(lltok::lsquare))
1981     return false;
1982 
1983   while (Lex.getKind() != lltok::rsquare) {
1984     // If this isn't the first operand bundle, we need a comma.
1985     if (!BundleList.empty() &&
1986         ParseToken(lltok::comma, "expected ',' in input list"))
1987       return true;
1988 
1989     std::string Tag;
1990     if (ParseStringConstant(Tag))
1991       return true;
1992 
1993     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
1994       return true;
1995 
1996     std::vector<Value *> Inputs;
1997     while (Lex.getKind() != lltok::rparen) {
1998       // If this isn't the first input, we need a comma.
1999       if (!Inputs.empty() &&
2000           ParseToken(lltok::comma, "expected ',' in input list"))
2001         return true;
2002 
2003       Type *Ty = nullptr;
2004       Value *Input = nullptr;
2005       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2006         return true;
2007       Inputs.push_back(Input);
2008     }
2009 
2010     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2011 
2012     Lex.Lex(); // Lex the ')'.
2013   }
2014 
2015   if (BundleList.empty())
2016     return Error(BeginLoc, "operand bundle set must not be empty");
2017 
2018   Lex.Lex(); // Lex the ']'.
2019   return false;
2020 }
2021 
2022 /// ParseArgumentList - Parse the argument list for a function type or function
2023 /// prototype.
2024 ///   ::= '(' ArgTypeListI ')'
2025 /// ArgTypeListI
2026 ///   ::= /*empty*/
2027 ///   ::= '...'
2028 ///   ::= ArgTypeList ',' '...'
2029 ///   ::= ArgType (',' ArgType)*
2030 ///
2031 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2032                                  bool &isVarArg){
2033   isVarArg = false;
2034   assert(Lex.getKind() == lltok::lparen);
2035   Lex.Lex(); // eat the (.
2036 
2037   if (Lex.getKind() == lltok::rparen) {
2038     // empty
2039   } else if (Lex.getKind() == lltok::dotdotdot) {
2040     isVarArg = true;
2041     Lex.Lex();
2042   } else {
2043     LocTy TypeLoc = Lex.getLoc();
2044     Type *ArgTy = nullptr;
2045     AttrBuilder Attrs;
2046     std::string Name;
2047 
2048     if (ParseType(ArgTy) ||
2049         ParseOptionalParamAttrs(Attrs)) return true;
2050 
2051     if (ArgTy->isVoidTy())
2052       return Error(TypeLoc, "argument can not have void type");
2053 
2054     if (Lex.getKind() == lltok::LocalVar) {
2055       Name = Lex.getStrVal();
2056       Lex.Lex();
2057     }
2058 
2059     if (!FunctionType::isValidArgumentType(ArgTy))
2060       return Error(TypeLoc, "invalid type for function argument");
2061 
2062     unsigned AttrIndex = 1;
2063     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2064                                                            AttrIndex++, Attrs),
2065                          std::move(Name));
2066 
2067     while (EatIfPresent(lltok::comma)) {
2068       // Handle ... at end of arg list.
2069       if (EatIfPresent(lltok::dotdotdot)) {
2070         isVarArg = true;
2071         break;
2072       }
2073 
2074       // Otherwise must be an argument type.
2075       TypeLoc = Lex.getLoc();
2076       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2077 
2078       if (ArgTy->isVoidTy())
2079         return Error(TypeLoc, "argument can not have void type");
2080 
2081       if (Lex.getKind() == lltok::LocalVar) {
2082         Name = Lex.getStrVal();
2083         Lex.Lex();
2084       } else {
2085         Name = "";
2086       }
2087 
2088       if (!ArgTy->isFirstClassType())
2089         return Error(TypeLoc, "invalid type for function argument");
2090 
2091       ArgList.emplace_back(
2092           TypeLoc, ArgTy,
2093           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2094           std::move(Name));
2095     }
2096   }
2097 
2098   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2099 }
2100 
2101 /// ParseFunctionType
2102 ///  ::= Type ArgumentList OptionalAttrs
2103 bool LLParser::ParseFunctionType(Type *&Result) {
2104   assert(Lex.getKind() == lltok::lparen);
2105 
2106   if (!FunctionType::isValidReturnType(Result))
2107     return TokError("invalid function return type");
2108 
2109   SmallVector<ArgInfo, 8> ArgList;
2110   bool isVarArg;
2111   if (ParseArgumentList(ArgList, isVarArg))
2112     return true;
2113 
2114   // Reject names on the arguments lists.
2115   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2116     if (!ArgList[i].Name.empty())
2117       return Error(ArgList[i].Loc, "argument name invalid in function type");
2118     if (ArgList[i].Attrs.hasAttributes(i + 1))
2119       return Error(ArgList[i].Loc,
2120                    "argument attributes invalid in function type");
2121   }
2122 
2123   SmallVector<Type*, 16> ArgListTy;
2124   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2125     ArgListTy.push_back(ArgList[i].Ty);
2126 
2127   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2128   return false;
2129 }
2130 
2131 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2132 /// other structs.
2133 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2134   SmallVector<Type*, 8> Elts;
2135   if (ParseStructBody(Elts)) return true;
2136 
2137   Result = StructType::get(Context, Elts, Packed);
2138   return false;
2139 }
2140 
2141 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2142 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2143                                      std::pair<Type*, LocTy> &Entry,
2144                                      Type *&ResultTy) {
2145   // If the type was already defined, diagnose the redefinition.
2146   if (Entry.first && !Entry.second.isValid())
2147     return Error(TypeLoc, "redefinition of type");
2148 
2149   // If we have opaque, just return without filling in the definition for the
2150   // struct.  This counts as a definition as far as the .ll file goes.
2151   if (EatIfPresent(lltok::kw_opaque)) {
2152     // This type is being defined, so clear the location to indicate this.
2153     Entry.second = SMLoc();
2154 
2155     // If this type number has never been uttered, create it.
2156     if (!Entry.first)
2157       Entry.first = StructType::create(Context, Name);
2158     ResultTy = Entry.first;
2159     return false;
2160   }
2161 
2162   // If the type starts with '<', then it is either a packed struct or a vector.
2163   bool isPacked = EatIfPresent(lltok::less);
2164 
2165   // If we don't have a struct, then we have a random type alias, which we
2166   // accept for compatibility with old files.  These types are not allowed to be
2167   // forward referenced and not allowed to be recursive.
2168   if (Lex.getKind() != lltok::lbrace) {
2169     if (Entry.first)
2170       return Error(TypeLoc, "forward references to non-struct type");
2171 
2172     ResultTy = nullptr;
2173     if (isPacked)
2174       return ParseArrayVectorType(ResultTy, true);
2175     return ParseType(ResultTy);
2176   }
2177 
2178   // This type is being defined, so clear the location to indicate this.
2179   Entry.second = SMLoc();
2180 
2181   // If this type number has never been uttered, create it.
2182   if (!Entry.first)
2183     Entry.first = StructType::create(Context, Name);
2184 
2185   StructType *STy = cast<StructType>(Entry.first);
2186 
2187   SmallVector<Type*, 8> Body;
2188   if (ParseStructBody(Body) ||
2189       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2190     return true;
2191 
2192   STy->setBody(Body, isPacked);
2193   ResultTy = STy;
2194   return false;
2195 }
2196 
2197 
2198 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2199 ///   StructType
2200 ///     ::= '{' '}'
2201 ///     ::= '{' Type (',' Type)* '}'
2202 ///     ::= '<' '{' '}' '>'
2203 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2204 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2205   assert(Lex.getKind() == lltok::lbrace);
2206   Lex.Lex(); // Consume the '{'
2207 
2208   // Handle the empty struct.
2209   if (EatIfPresent(lltok::rbrace))
2210     return false;
2211 
2212   LocTy EltTyLoc = Lex.getLoc();
2213   Type *Ty = nullptr;
2214   if (ParseType(Ty)) return true;
2215   Body.push_back(Ty);
2216 
2217   if (!StructType::isValidElementType(Ty))
2218     return Error(EltTyLoc, "invalid element type for struct");
2219 
2220   while (EatIfPresent(lltok::comma)) {
2221     EltTyLoc = Lex.getLoc();
2222     if (ParseType(Ty)) return true;
2223 
2224     if (!StructType::isValidElementType(Ty))
2225       return Error(EltTyLoc, "invalid element type for struct");
2226 
2227     Body.push_back(Ty);
2228   }
2229 
2230   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2231 }
2232 
2233 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2234 /// token has already been consumed.
2235 ///   Type
2236 ///     ::= '[' APSINTVAL 'x' Types ']'
2237 ///     ::= '<' APSINTVAL 'x' Types '>'
2238 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2239   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2240       Lex.getAPSIntVal().getBitWidth() > 64)
2241     return TokError("expected number in address space");
2242 
2243   LocTy SizeLoc = Lex.getLoc();
2244   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2245   Lex.Lex();
2246 
2247   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2248       return true;
2249 
2250   LocTy TypeLoc = Lex.getLoc();
2251   Type *EltTy = nullptr;
2252   if (ParseType(EltTy)) return true;
2253 
2254   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2255                  "expected end of sequential type"))
2256     return true;
2257 
2258   if (isVector) {
2259     if (Size == 0)
2260       return Error(SizeLoc, "zero element vector is illegal");
2261     if ((unsigned)Size != Size)
2262       return Error(SizeLoc, "size too large for vector");
2263     if (!VectorType::isValidElementType(EltTy))
2264       return Error(TypeLoc, "invalid vector element type");
2265     Result = VectorType::get(EltTy, unsigned(Size));
2266   } else {
2267     if (!ArrayType::isValidElementType(EltTy))
2268       return Error(TypeLoc, "invalid array element type");
2269     Result = ArrayType::get(EltTy, Size);
2270   }
2271   return false;
2272 }
2273 
2274 //===----------------------------------------------------------------------===//
2275 // Function Semantic Analysis.
2276 //===----------------------------------------------------------------------===//
2277 
2278 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2279                                              int functionNumber)
2280   : P(p), F(f), FunctionNumber(functionNumber) {
2281 
2282   // Insert unnamed arguments into the NumberedVals list.
2283   for (Argument &A : F.args())
2284     if (!A.hasName())
2285       NumberedVals.push_back(&A);
2286 }
2287 
2288 LLParser::PerFunctionState::~PerFunctionState() {
2289   // If there were any forward referenced non-basicblock values, delete them.
2290 
2291   for (const auto &P : ForwardRefVals) {
2292     if (isa<BasicBlock>(P.second.first))
2293       continue;
2294     P.second.first->replaceAllUsesWith(
2295         UndefValue::get(P.second.first->getType()));
2296     delete P.second.first;
2297   }
2298 
2299   for (const auto &P : ForwardRefValIDs) {
2300     if (isa<BasicBlock>(P.second.first))
2301       continue;
2302     P.second.first->replaceAllUsesWith(
2303         UndefValue::get(P.second.first->getType()));
2304     delete P.second.first;
2305   }
2306 }
2307 
2308 bool LLParser::PerFunctionState::FinishFunction() {
2309   if (!ForwardRefVals.empty())
2310     return P.Error(ForwardRefVals.begin()->second.second,
2311                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2312                    "'");
2313   if (!ForwardRefValIDs.empty())
2314     return P.Error(ForwardRefValIDs.begin()->second.second,
2315                    "use of undefined value '%" +
2316                    Twine(ForwardRefValIDs.begin()->first) + "'");
2317   return false;
2318 }
2319 
2320 
2321 /// GetVal - Get a value with the specified name or ID, creating a
2322 /// forward reference record if needed.  This can return null if the value
2323 /// exists but does not have the right type.
2324 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2325                                           LocTy Loc) {
2326   // Look this name up in the normal function symbol table.
2327   Value *Val = F.getValueSymbolTable().lookup(Name);
2328 
2329   // If this is a forward reference for the value, see if we already created a
2330   // forward ref record.
2331   if (!Val) {
2332     auto I = ForwardRefVals.find(Name);
2333     if (I != ForwardRefVals.end())
2334       Val = I->second.first;
2335   }
2336 
2337   // If we have the value in the symbol table or fwd-ref table, return it.
2338   if (Val) {
2339     if (Val->getType() == Ty) return Val;
2340     if (Ty->isLabelTy())
2341       P.Error(Loc, "'%" + Name + "' is not a basic block");
2342     else
2343       P.Error(Loc, "'%" + Name + "' defined with type '" +
2344               getTypeString(Val->getType()) + "'");
2345     return nullptr;
2346   }
2347 
2348   // Don't make placeholders with invalid type.
2349   if (!Ty->isFirstClassType()) {
2350     P.Error(Loc, "invalid use of a non-first-class type");
2351     return nullptr;
2352   }
2353 
2354   // Otherwise, create a new forward reference for this value and remember it.
2355   Value *FwdVal;
2356   if (Ty->isLabelTy()) {
2357     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2358   } else {
2359     FwdVal = new Argument(Ty, Name);
2360   }
2361 
2362   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2363   return FwdVal;
2364 }
2365 
2366 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2367   // Look this name up in the normal function symbol table.
2368   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2369 
2370   // If this is a forward reference for the value, see if we already created a
2371   // forward ref record.
2372   if (!Val) {
2373     auto I = ForwardRefValIDs.find(ID);
2374     if (I != ForwardRefValIDs.end())
2375       Val = I->second.first;
2376   }
2377 
2378   // If we have the value in the symbol table or fwd-ref table, return it.
2379   if (Val) {
2380     if (Val->getType() == Ty) return Val;
2381     if (Ty->isLabelTy())
2382       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2383     else
2384       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2385               getTypeString(Val->getType()) + "'");
2386     return nullptr;
2387   }
2388 
2389   if (!Ty->isFirstClassType()) {
2390     P.Error(Loc, "invalid use of a non-first-class type");
2391     return nullptr;
2392   }
2393 
2394   // Otherwise, create a new forward reference for this value and remember it.
2395   Value *FwdVal;
2396   if (Ty->isLabelTy()) {
2397     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2398   } else {
2399     FwdVal = new Argument(Ty);
2400   }
2401 
2402   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2403   return FwdVal;
2404 }
2405 
2406 /// SetInstName - After an instruction is parsed and inserted into its
2407 /// basic block, this installs its name.
2408 bool LLParser::PerFunctionState::SetInstName(int NameID,
2409                                              const std::string &NameStr,
2410                                              LocTy NameLoc, Instruction *Inst) {
2411   // If this instruction has void type, it cannot have a name or ID specified.
2412   if (Inst->getType()->isVoidTy()) {
2413     if (NameID != -1 || !NameStr.empty())
2414       return P.Error(NameLoc, "instructions returning void cannot have a name");
2415     return false;
2416   }
2417 
2418   // If this was a numbered instruction, verify that the instruction is the
2419   // expected value and resolve any forward references.
2420   if (NameStr.empty()) {
2421     // If neither a name nor an ID was specified, just use the next ID.
2422     if (NameID == -1)
2423       NameID = NumberedVals.size();
2424 
2425     if (unsigned(NameID) != NumberedVals.size())
2426       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2427                      Twine(NumberedVals.size()) + "'");
2428 
2429     auto FI = ForwardRefValIDs.find(NameID);
2430     if (FI != ForwardRefValIDs.end()) {
2431       Value *Sentinel = FI->second.first;
2432       if (Sentinel->getType() != Inst->getType())
2433         return P.Error(NameLoc, "instruction forward referenced with type '" +
2434                        getTypeString(FI->second.first->getType()) + "'");
2435 
2436       Sentinel->replaceAllUsesWith(Inst);
2437       delete Sentinel;
2438       ForwardRefValIDs.erase(FI);
2439     }
2440 
2441     NumberedVals.push_back(Inst);
2442     return false;
2443   }
2444 
2445   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2446   auto FI = ForwardRefVals.find(NameStr);
2447   if (FI != ForwardRefVals.end()) {
2448     Value *Sentinel = FI->second.first;
2449     if (Sentinel->getType() != Inst->getType())
2450       return P.Error(NameLoc, "instruction forward referenced with type '" +
2451                      getTypeString(FI->second.first->getType()) + "'");
2452 
2453     Sentinel->replaceAllUsesWith(Inst);
2454     delete Sentinel;
2455     ForwardRefVals.erase(FI);
2456   }
2457 
2458   // Set the name on the instruction.
2459   Inst->setName(NameStr);
2460 
2461   if (Inst->getName() != NameStr)
2462     return P.Error(NameLoc, "multiple definition of local value named '" +
2463                    NameStr + "'");
2464   return false;
2465 }
2466 
2467 /// GetBB - Get a basic block with the specified name or ID, creating a
2468 /// forward reference record if needed.
2469 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2470                                               LocTy Loc) {
2471   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2472                                       Type::getLabelTy(F.getContext()), Loc));
2473 }
2474 
2475 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2476   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2477                                       Type::getLabelTy(F.getContext()), Loc));
2478 }
2479 
2480 /// DefineBB - Define the specified basic block, which is either named or
2481 /// unnamed.  If there is an error, this returns null otherwise it returns
2482 /// the block being defined.
2483 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2484                                                  LocTy Loc) {
2485   BasicBlock *BB;
2486   if (Name.empty())
2487     BB = GetBB(NumberedVals.size(), Loc);
2488   else
2489     BB = GetBB(Name, Loc);
2490   if (!BB) return nullptr; // Already diagnosed error.
2491 
2492   // Move the block to the end of the function.  Forward ref'd blocks are
2493   // inserted wherever they happen to be referenced.
2494   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2495 
2496   // Remove the block from forward ref sets.
2497   if (Name.empty()) {
2498     ForwardRefValIDs.erase(NumberedVals.size());
2499     NumberedVals.push_back(BB);
2500   } else {
2501     // BB forward references are already in the function symbol table.
2502     ForwardRefVals.erase(Name);
2503   }
2504 
2505   return BB;
2506 }
2507 
2508 //===----------------------------------------------------------------------===//
2509 // Constants.
2510 //===----------------------------------------------------------------------===//
2511 
2512 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2513 /// type implied.  For example, if we parse "4" we don't know what integer type
2514 /// it has.  The value will later be combined with its type and checked for
2515 /// sanity.  PFS is used to convert function-local operands of metadata (since
2516 /// metadata operands are not just parsed here but also converted to values).
2517 /// PFS can be null when we are not parsing metadata values inside a function.
2518 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2519   ID.Loc = Lex.getLoc();
2520   switch (Lex.getKind()) {
2521   default: return TokError("expected value token");
2522   case lltok::GlobalID:  // @42
2523     ID.UIntVal = Lex.getUIntVal();
2524     ID.Kind = ValID::t_GlobalID;
2525     break;
2526   case lltok::GlobalVar:  // @foo
2527     ID.StrVal = Lex.getStrVal();
2528     ID.Kind = ValID::t_GlobalName;
2529     break;
2530   case lltok::LocalVarID:  // %42
2531     ID.UIntVal = Lex.getUIntVal();
2532     ID.Kind = ValID::t_LocalID;
2533     break;
2534   case lltok::LocalVar:  // %foo
2535     ID.StrVal = Lex.getStrVal();
2536     ID.Kind = ValID::t_LocalName;
2537     break;
2538   case lltok::APSInt:
2539     ID.APSIntVal = Lex.getAPSIntVal();
2540     ID.Kind = ValID::t_APSInt;
2541     break;
2542   case lltok::APFloat:
2543     ID.APFloatVal = Lex.getAPFloatVal();
2544     ID.Kind = ValID::t_APFloat;
2545     break;
2546   case lltok::kw_true:
2547     ID.ConstantVal = ConstantInt::getTrue(Context);
2548     ID.Kind = ValID::t_Constant;
2549     break;
2550   case lltok::kw_false:
2551     ID.ConstantVal = ConstantInt::getFalse(Context);
2552     ID.Kind = ValID::t_Constant;
2553     break;
2554   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2555   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2556   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2557   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2558 
2559   case lltok::lbrace: {
2560     // ValID ::= '{' ConstVector '}'
2561     Lex.Lex();
2562     SmallVector<Constant*, 16> Elts;
2563     if (ParseGlobalValueVector(Elts) ||
2564         ParseToken(lltok::rbrace, "expected end of struct constant"))
2565       return true;
2566 
2567     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2568     ID.UIntVal = Elts.size();
2569     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2570            Elts.size() * sizeof(Elts[0]));
2571     ID.Kind = ValID::t_ConstantStruct;
2572     return false;
2573   }
2574   case lltok::less: {
2575     // ValID ::= '<' ConstVector '>'         --> Vector.
2576     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2577     Lex.Lex();
2578     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2579 
2580     SmallVector<Constant*, 16> Elts;
2581     LocTy FirstEltLoc = Lex.getLoc();
2582     if (ParseGlobalValueVector(Elts) ||
2583         (isPackedStruct &&
2584          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2585         ParseToken(lltok::greater, "expected end of constant"))
2586       return true;
2587 
2588     if (isPackedStruct) {
2589       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2590       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2591              Elts.size() * sizeof(Elts[0]));
2592       ID.UIntVal = Elts.size();
2593       ID.Kind = ValID::t_PackedConstantStruct;
2594       return false;
2595     }
2596 
2597     if (Elts.empty())
2598       return Error(ID.Loc, "constant vector must not be empty");
2599 
2600     if (!Elts[0]->getType()->isIntegerTy() &&
2601         !Elts[0]->getType()->isFloatingPointTy() &&
2602         !Elts[0]->getType()->isPointerTy())
2603       return Error(FirstEltLoc,
2604             "vector elements must have integer, pointer or floating point type");
2605 
2606     // Verify that all the vector elements have the same type.
2607     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2608       if (Elts[i]->getType() != Elts[0]->getType())
2609         return Error(FirstEltLoc,
2610                      "vector element #" + Twine(i) +
2611                     " is not of type '" + getTypeString(Elts[0]->getType()));
2612 
2613     ID.ConstantVal = ConstantVector::get(Elts);
2614     ID.Kind = ValID::t_Constant;
2615     return false;
2616   }
2617   case lltok::lsquare: {   // Array Constant
2618     Lex.Lex();
2619     SmallVector<Constant*, 16> Elts;
2620     LocTy FirstEltLoc = Lex.getLoc();
2621     if (ParseGlobalValueVector(Elts) ||
2622         ParseToken(lltok::rsquare, "expected end of array constant"))
2623       return true;
2624 
2625     // Handle empty element.
2626     if (Elts.empty()) {
2627       // Use undef instead of an array because it's inconvenient to determine
2628       // the element type at this point, there being no elements to examine.
2629       ID.Kind = ValID::t_EmptyArray;
2630       return false;
2631     }
2632 
2633     if (!Elts[0]->getType()->isFirstClassType())
2634       return Error(FirstEltLoc, "invalid array element type: " +
2635                    getTypeString(Elts[0]->getType()));
2636 
2637     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2638 
2639     // Verify all elements are correct type!
2640     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2641       if (Elts[i]->getType() != Elts[0]->getType())
2642         return Error(FirstEltLoc,
2643                      "array element #" + Twine(i) +
2644                      " is not of type '" + getTypeString(Elts[0]->getType()));
2645     }
2646 
2647     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2648     ID.Kind = ValID::t_Constant;
2649     return false;
2650   }
2651   case lltok::kw_c:  // c "foo"
2652     Lex.Lex();
2653     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2654                                                   false);
2655     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2656     ID.Kind = ValID::t_Constant;
2657     return false;
2658 
2659   case lltok::kw_asm: {
2660     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2661     //             STRINGCONSTANT
2662     bool HasSideEffect, AlignStack, AsmDialect;
2663     Lex.Lex();
2664     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2665         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2666         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2667         ParseStringConstant(ID.StrVal) ||
2668         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2669         ParseToken(lltok::StringConstant, "expected constraint string"))
2670       return true;
2671     ID.StrVal2 = Lex.getStrVal();
2672     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2673       (unsigned(AsmDialect)<<2);
2674     ID.Kind = ValID::t_InlineAsm;
2675     return false;
2676   }
2677 
2678   case lltok::kw_blockaddress: {
2679     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2680     Lex.Lex();
2681 
2682     ValID Fn, Label;
2683 
2684     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2685         ParseValID(Fn) ||
2686         ParseToken(lltok::comma, "expected comma in block address expression")||
2687         ParseValID(Label) ||
2688         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2689       return true;
2690 
2691     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2692       return Error(Fn.Loc, "expected function name in blockaddress");
2693     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2694       return Error(Label.Loc, "expected basic block name in blockaddress");
2695 
2696     // Try to find the function (but skip it if it's forward-referenced).
2697     GlobalValue *GV = nullptr;
2698     if (Fn.Kind == ValID::t_GlobalID) {
2699       if (Fn.UIntVal < NumberedVals.size())
2700         GV = NumberedVals[Fn.UIntVal];
2701     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2702       GV = M->getNamedValue(Fn.StrVal);
2703     }
2704     Function *F = nullptr;
2705     if (GV) {
2706       // Confirm that it's actually a function with a definition.
2707       if (!isa<Function>(GV))
2708         return Error(Fn.Loc, "expected function name in blockaddress");
2709       F = cast<Function>(GV);
2710       if (F->isDeclaration())
2711         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2712     }
2713 
2714     if (!F) {
2715       // Make a global variable as a placeholder for this reference.
2716       GlobalValue *&FwdRef =
2717           ForwardRefBlockAddresses.insert(std::make_pair(
2718                                               std::move(Fn),
2719                                               std::map<ValID, GlobalValue *>()))
2720               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2721               .first->second;
2722       if (!FwdRef)
2723         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2724                                     GlobalValue::InternalLinkage, nullptr, "");
2725       ID.ConstantVal = FwdRef;
2726       ID.Kind = ValID::t_Constant;
2727       return false;
2728     }
2729 
2730     // We found the function; now find the basic block.  Don't use PFS, since we
2731     // might be inside a constant expression.
2732     BasicBlock *BB;
2733     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2734       if (Label.Kind == ValID::t_LocalID)
2735         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2736       else
2737         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2738       if (!BB)
2739         return Error(Label.Loc, "referenced value is not a basic block");
2740     } else {
2741       if (Label.Kind == ValID::t_LocalID)
2742         return Error(Label.Loc, "cannot take address of numeric label after "
2743                                 "the function is defined");
2744       BB = dyn_cast_or_null<BasicBlock>(
2745           F->getValueSymbolTable().lookup(Label.StrVal));
2746       if (!BB)
2747         return Error(Label.Loc, "referenced value is not a basic block");
2748     }
2749 
2750     ID.ConstantVal = BlockAddress::get(F, BB);
2751     ID.Kind = ValID::t_Constant;
2752     return false;
2753   }
2754 
2755   case lltok::kw_trunc:
2756   case lltok::kw_zext:
2757   case lltok::kw_sext:
2758   case lltok::kw_fptrunc:
2759   case lltok::kw_fpext:
2760   case lltok::kw_bitcast:
2761   case lltok::kw_addrspacecast:
2762   case lltok::kw_uitofp:
2763   case lltok::kw_sitofp:
2764   case lltok::kw_fptoui:
2765   case lltok::kw_fptosi:
2766   case lltok::kw_inttoptr:
2767   case lltok::kw_ptrtoint: {
2768     unsigned Opc = Lex.getUIntVal();
2769     Type *DestTy = nullptr;
2770     Constant *SrcVal;
2771     Lex.Lex();
2772     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2773         ParseGlobalTypeAndValue(SrcVal) ||
2774         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2775         ParseType(DestTy) ||
2776         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2777       return true;
2778     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2779       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2780                    getTypeString(SrcVal->getType()) + "' to '" +
2781                    getTypeString(DestTy) + "'");
2782     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2783                                                  SrcVal, DestTy);
2784     ID.Kind = ValID::t_Constant;
2785     return false;
2786   }
2787   case lltok::kw_extractvalue: {
2788     Lex.Lex();
2789     Constant *Val;
2790     SmallVector<unsigned, 4> Indices;
2791     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2792         ParseGlobalTypeAndValue(Val) ||
2793         ParseIndexList(Indices) ||
2794         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2795       return true;
2796 
2797     if (!Val->getType()->isAggregateType())
2798       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2799     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2800       return Error(ID.Loc, "invalid indices for extractvalue");
2801     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2802     ID.Kind = ValID::t_Constant;
2803     return false;
2804   }
2805   case lltok::kw_insertvalue: {
2806     Lex.Lex();
2807     Constant *Val0, *Val1;
2808     SmallVector<unsigned, 4> Indices;
2809     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2810         ParseGlobalTypeAndValue(Val0) ||
2811         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2812         ParseGlobalTypeAndValue(Val1) ||
2813         ParseIndexList(Indices) ||
2814         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2815       return true;
2816     if (!Val0->getType()->isAggregateType())
2817       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2818     Type *IndexedType =
2819         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2820     if (!IndexedType)
2821       return Error(ID.Loc, "invalid indices for insertvalue");
2822     if (IndexedType != Val1->getType())
2823       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2824                                getTypeString(Val1->getType()) +
2825                                "' instead of '" + getTypeString(IndexedType) +
2826                                "'");
2827     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2828     ID.Kind = ValID::t_Constant;
2829     return false;
2830   }
2831   case lltok::kw_icmp:
2832   case lltok::kw_fcmp: {
2833     unsigned PredVal, Opc = Lex.getUIntVal();
2834     Constant *Val0, *Val1;
2835     Lex.Lex();
2836     if (ParseCmpPredicate(PredVal, Opc) ||
2837         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2838         ParseGlobalTypeAndValue(Val0) ||
2839         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2840         ParseGlobalTypeAndValue(Val1) ||
2841         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2842       return true;
2843 
2844     if (Val0->getType() != Val1->getType())
2845       return Error(ID.Loc, "compare operands must have the same type");
2846 
2847     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2848 
2849     if (Opc == Instruction::FCmp) {
2850       if (!Val0->getType()->isFPOrFPVectorTy())
2851         return Error(ID.Loc, "fcmp requires floating point operands");
2852       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2853     } else {
2854       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2855       if (!Val0->getType()->isIntOrIntVectorTy() &&
2856           !Val0->getType()->getScalarType()->isPointerTy())
2857         return Error(ID.Loc, "icmp requires pointer or integer operands");
2858       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2859     }
2860     ID.Kind = ValID::t_Constant;
2861     return false;
2862   }
2863 
2864   // Binary Operators.
2865   case lltok::kw_add:
2866   case lltok::kw_fadd:
2867   case lltok::kw_sub:
2868   case lltok::kw_fsub:
2869   case lltok::kw_mul:
2870   case lltok::kw_fmul:
2871   case lltok::kw_udiv:
2872   case lltok::kw_sdiv:
2873   case lltok::kw_fdiv:
2874   case lltok::kw_urem:
2875   case lltok::kw_srem:
2876   case lltok::kw_frem:
2877   case lltok::kw_shl:
2878   case lltok::kw_lshr:
2879   case lltok::kw_ashr: {
2880     bool NUW = false;
2881     bool NSW = false;
2882     bool Exact = false;
2883     unsigned Opc = Lex.getUIntVal();
2884     Constant *Val0, *Val1;
2885     Lex.Lex();
2886     LocTy ModifierLoc = Lex.getLoc();
2887     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2888         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2889       if (EatIfPresent(lltok::kw_nuw))
2890         NUW = true;
2891       if (EatIfPresent(lltok::kw_nsw)) {
2892         NSW = true;
2893         if (EatIfPresent(lltok::kw_nuw))
2894           NUW = true;
2895       }
2896     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2897                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2898       if (EatIfPresent(lltok::kw_exact))
2899         Exact = true;
2900     }
2901     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2902         ParseGlobalTypeAndValue(Val0) ||
2903         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2904         ParseGlobalTypeAndValue(Val1) ||
2905         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2906       return true;
2907     if (Val0->getType() != Val1->getType())
2908       return Error(ID.Loc, "operands of constexpr must have same type");
2909     if (!Val0->getType()->isIntOrIntVectorTy()) {
2910       if (NUW)
2911         return Error(ModifierLoc, "nuw only applies to integer operations");
2912       if (NSW)
2913         return Error(ModifierLoc, "nsw only applies to integer operations");
2914     }
2915     // Check that the type is valid for the operator.
2916     switch (Opc) {
2917     case Instruction::Add:
2918     case Instruction::Sub:
2919     case Instruction::Mul:
2920     case Instruction::UDiv:
2921     case Instruction::SDiv:
2922     case Instruction::URem:
2923     case Instruction::SRem:
2924     case Instruction::Shl:
2925     case Instruction::AShr:
2926     case Instruction::LShr:
2927       if (!Val0->getType()->isIntOrIntVectorTy())
2928         return Error(ID.Loc, "constexpr requires integer operands");
2929       break;
2930     case Instruction::FAdd:
2931     case Instruction::FSub:
2932     case Instruction::FMul:
2933     case Instruction::FDiv:
2934     case Instruction::FRem:
2935       if (!Val0->getType()->isFPOrFPVectorTy())
2936         return Error(ID.Loc, "constexpr requires fp operands");
2937       break;
2938     default: llvm_unreachable("Unknown binary operator!");
2939     }
2940     unsigned Flags = 0;
2941     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2942     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2943     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2944     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2945     ID.ConstantVal = C;
2946     ID.Kind = ValID::t_Constant;
2947     return false;
2948   }
2949 
2950   // Logical Operations
2951   case lltok::kw_and:
2952   case lltok::kw_or:
2953   case lltok::kw_xor: {
2954     unsigned Opc = Lex.getUIntVal();
2955     Constant *Val0, *Val1;
2956     Lex.Lex();
2957     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2958         ParseGlobalTypeAndValue(Val0) ||
2959         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2960         ParseGlobalTypeAndValue(Val1) ||
2961         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2962       return true;
2963     if (Val0->getType() != Val1->getType())
2964       return Error(ID.Loc, "operands of constexpr must have same type");
2965     if (!Val0->getType()->isIntOrIntVectorTy())
2966       return Error(ID.Loc,
2967                    "constexpr requires integer or integer vector operands");
2968     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2969     ID.Kind = ValID::t_Constant;
2970     return false;
2971   }
2972 
2973   case lltok::kw_getelementptr:
2974   case lltok::kw_shufflevector:
2975   case lltok::kw_insertelement:
2976   case lltok::kw_extractelement:
2977   case lltok::kw_select: {
2978     unsigned Opc = Lex.getUIntVal();
2979     SmallVector<Constant*, 16> Elts;
2980     bool InBounds = false;
2981     Type *Ty;
2982     Lex.Lex();
2983 
2984     if (Opc == Instruction::GetElementPtr)
2985       InBounds = EatIfPresent(lltok::kw_inbounds);
2986 
2987     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
2988       return true;
2989 
2990     LocTy ExplicitTypeLoc = Lex.getLoc();
2991     if (Opc == Instruction::GetElementPtr) {
2992       if (ParseType(Ty) ||
2993           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
2994         return true;
2995     }
2996 
2997     if (ParseGlobalValueVector(Elts) ||
2998         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2999       return true;
3000 
3001     if (Opc == Instruction::GetElementPtr) {
3002       if (Elts.size() == 0 ||
3003           !Elts[0]->getType()->getScalarType()->isPointerTy())
3004         return Error(ID.Loc, "base of getelementptr must be a pointer");
3005 
3006       Type *BaseType = Elts[0]->getType();
3007       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3008       if (Ty != BasePointerType->getElementType())
3009         return Error(
3010             ExplicitTypeLoc,
3011             "explicit pointee type doesn't match operand's pointee type");
3012 
3013       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3014       for (Constant *Val : Indices) {
3015         Type *ValTy = Val->getType();
3016         if (!ValTy->getScalarType()->isIntegerTy())
3017           return Error(ID.Loc, "getelementptr index must be an integer");
3018         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3019           return Error(ID.Loc, "getelementptr index type missmatch");
3020         if (ValTy->isVectorTy()) {
3021           unsigned ValNumEl = ValTy->getVectorNumElements();
3022           unsigned PtrNumEl = BaseType->getVectorNumElements();
3023           if (ValNumEl != PtrNumEl)
3024             return Error(
3025                 ID.Loc,
3026                 "getelementptr vector index has a wrong number of elements");
3027         }
3028       }
3029 
3030       SmallPtrSet<Type*, 4> Visited;
3031       if (!Indices.empty() && !Ty->isSized(&Visited))
3032         return Error(ID.Loc, "base element of getelementptr must be sized");
3033 
3034       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3035         return Error(ID.Loc, "invalid getelementptr indices");
3036       ID.ConstantVal =
3037           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3038     } else if (Opc == Instruction::Select) {
3039       if (Elts.size() != 3)
3040         return Error(ID.Loc, "expected three operands to select");
3041       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3042                                                               Elts[2]))
3043         return Error(ID.Loc, Reason);
3044       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3045     } else if (Opc == Instruction::ShuffleVector) {
3046       if (Elts.size() != 3)
3047         return Error(ID.Loc, "expected three operands to shufflevector");
3048       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3049         return Error(ID.Loc, "invalid operands to shufflevector");
3050       ID.ConstantVal =
3051                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3052     } else if (Opc == Instruction::ExtractElement) {
3053       if (Elts.size() != 2)
3054         return Error(ID.Loc, "expected two operands to extractelement");
3055       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3056         return Error(ID.Loc, "invalid extractelement operands");
3057       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3058     } else {
3059       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3060       if (Elts.size() != 3)
3061       return Error(ID.Loc, "expected three operands to insertelement");
3062       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3063         return Error(ID.Loc, "invalid insertelement operands");
3064       ID.ConstantVal =
3065                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3066     }
3067 
3068     ID.Kind = ValID::t_Constant;
3069     return false;
3070   }
3071   }
3072 
3073   Lex.Lex();
3074   return false;
3075 }
3076 
3077 /// ParseGlobalValue - Parse a global value with the specified type.
3078 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3079   C = nullptr;
3080   ValID ID;
3081   Value *V = nullptr;
3082   bool Parsed = ParseValID(ID) ||
3083                 ConvertValIDToValue(Ty, ID, V, nullptr);
3084   if (V && !(C = dyn_cast<Constant>(V)))
3085     return Error(ID.Loc, "global values must be constants");
3086   return Parsed;
3087 }
3088 
3089 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3090   Type *Ty = nullptr;
3091   return ParseType(Ty) ||
3092          ParseGlobalValue(Ty, V);
3093 }
3094 
3095 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3096   C = nullptr;
3097 
3098   LocTy KwLoc = Lex.getLoc();
3099   if (!EatIfPresent(lltok::kw_comdat))
3100     return false;
3101 
3102   if (EatIfPresent(lltok::lparen)) {
3103     if (Lex.getKind() != lltok::ComdatVar)
3104       return TokError("expected comdat variable");
3105     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3106     Lex.Lex();
3107     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3108       return true;
3109   } else {
3110     if (GlobalName.empty())
3111       return TokError("comdat cannot be unnamed");
3112     C = getComdat(GlobalName, KwLoc);
3113   }
3114 
3115   return false;
3116 }
3117 
3118 /// ParseGlobalValueVector
3119 ///   ::= /*empty*/
3120 ///   ::= TypeAndValue (',' TypeAndValue)*
3121 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3122   // Empty list.
3123   if (Lex.getKind() == lltok::rbrace ||
3124       Lex.getKind() == lltok::rsquare ||
3125       Lex.getKind() == lltok::greater ||
3126       Lex.getKind() == lltok::rparen)
3127     return false;
3128 
3129   Constant *C;
3130   if (ParseGlobalTypeAndValue(C)) return true;
3131   Elts.push_back(C);
3132 
3133   while (EatIfPresent(lltok::comma)) {
3134     if (ParseGlobalTypeAndValue(C)) return true;
3135     Elts.push_back(C);
3136   }
3137 
3138   return false;
3139 }
3140 
3141 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3142   SmallVector<Metadata *, 16> Elts;
3143   if (ParseMDNodeVector(Elts))
3144     return true;
3145 
3146   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3147   return false;
3148 }
3149 
3150 /// MDNode:
3151 ///  ::= !{ ... }
3152 ///  ::= !7
3153 ///  ::= !DILocation(...)
3154 bool LLParser::ParseMDNode(MDNode *&N) {
3155   if (Lex.getKind() == lltok::MetadataVar)
3156     return ParseSpecializedMDNode(N);
3157 
3158   return ParseToken(lltok::exclaim, "expected '!' here") ||
3159          ParseMDNodeTail(N);
3160 }
3161 
3162 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3163   // !{ ... }
3164   if (Lex.getKind() == lltok::lbrace)
3165     return ParseMDTuple(N);
3166 
3167   // !42
3168   return ParseMDNodeID(N);
3169 }
3170 
3171 namespace {
3172 
3173 /// Structure to represent an optional metadata field.
3174 template <class FieldTy> struct MDFieldImpl {
3175   typedef MDFieldImpl ImplTy;
3176   FieldTy Val;
3177   bool Seen;
3178 
3179   void assign(FieldTy Val) {
3180     Seen = true;
3181     this->Val = std::move(Val);
3182   }
3183 
3184   explicit MDFieldImpl(FieldTy Default)
3185       : Val(std::move(Default)), Seen(false) {}
3186 };
3187 
3188 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3189   uint64_t Max;
3190 
3191   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3192       : ImplTy(Default), Max(Max) {}
3193 };
3194 struct LineField : public MDUnsignedField {
3195   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3196 };
3197 struct ColumnField : public MDUnsignedField {
3198   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3199 };
3200 struct DwarfTagField : public MDUnsignedField {
3201   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3202   DwarfTagField(dwarf::Tag DefaultTag)
3203       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3204 };
3205 struct DwarfMacinfoTypeField : public MDUnsignedField {
3206   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3207   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3208     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3209 };
3210 struct DwarfAttEncodingField : public MDUnsignedField {
3211   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3212 };
3213 struct DwarfVirtualityField : public MDUnsignedField {
3214   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3215 };
3216 struct DwarfLangField : public MDUnsignedField {
3217   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3218 };
3219 
3220 struct DIFlagField : public MDUnsignedField {
3221   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3222 };
3223 
3224 struct MDSignedField : public MDFieldImpl<int64_t> {
3225   int64_t Min;
3226   int64_t Max;
3227 
3228   MDSignedField(int64_t Default = 0)
3229       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3230   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3231       : ImplTy(Default), Min(Min), Max(Max) {}
3232 };
3233 
3234 struct MDBoolField : public MDFieldImpl<bool> {
3235   MDBoolField(bool Default = false) : ImplTy(Default) {}
3236 };
3237 struct MDField : public MDFieldImpl<Metadata *> {
3238   bool AllowNull;
3239 
3240   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3241 };
3242 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3243   MDConstant() : ImplTy(nullptr) {}
3244 };
3245 struct MDStringField : public MDFieldImpl<MDString *> {
3246   bool AllowEmpty;
3247   MDStringField(bool AllowEmpty = true)
3248       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3249 };
3250 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3251   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3252 };
3253 
3254 } // end namespace
3255 
3256 namespace llvm {
3257 
3258 template <>
3259 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3260                             MDUnsignedField &Result) {
3261   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3262     return TokError("expected unsigned integer");
3263 
3264   auto &U = Lex.getAPSIntVal();
3265   if (U.ugt(Result.Max))
3266     return TokError("value for '" + Name + "' too large, limit is " +
3267                     Twine(Result.Max));
3268   Result.assign(U.getZExtValue());
3269   assert(Result.Val <= Result.Max && "Expected value in range");
3270   Lex.Lex();
3271   return false;
3272 }
3273 
3274 template <>
3275 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3276   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3277 }
3278 template <>
3279 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3280   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3281 }
3282 
3283 template <>
3284 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3285   if (Lex.getKind() == lltok::APSInt)
3286     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3287 
3288   if (Lex.getKind() != lltok::DwarfTag)
3289     return TokError("expected DWARF tag");
3290 
3291   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3292   if (Tag == dwarf::DW_TAG_invalid)
3293     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3294   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3295 
3296   Result.assign(Tag);
3297   Lex.Lex();
3298   return false;
3299 }
3300 
3301 template <>
3302 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3303                             DwarfMacinfoTypeField &Result) {
3304   if (Lex.getKind() == lltok::APSInt)
3305     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3306 
3307   if (Lex.getKind() != lltok::DwarfMacinfo)
3308     return TokError("expected DWARF macinfo type");
3309 
3310   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3311   if (Macinfo == dwarf::DW_MACINFO_invalid)
3312     return TokError(
3313         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3314   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3315 
3316   Result.assign(Macinfo);
3317   Lex.Lex();
3318   return false;
3319 }
3320 
3321 template <>
3322 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3323                             DwarfVirtualityField &Result) {
3324   if (Lex.getKind() == lltok::APSInt)
3325     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3326 
3327   if (Lex.getKind() != lltok::DwarfVirtuality)
3328     return TokError("expected DWARF virtuality code");
3329 
3330   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3331   if (!Virtuality)
3332     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3333                     Lex.getStrVal() + "'");
3334   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3335   Result.assign(Virtuality);
3336   Lex.Lex();
3337   return false;
3338 }
3339 
3340 template <>
3341 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3342   if (Lex.getKind() == lltok::APSInt)
3343     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3344 
3345   if (Lex.getKind() != lltok::DwarfLang)
3346     return TokError("expected DWARF language");
3347 
3348   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3349   if (!Lang)
3350     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3351                     "'");
3352   assert(Lang <= Result.Max && "Expected valid DWARF language");
3353   Result.assign(Lang);
3354   Lex.Lex();
3355   return false;
3356 }
3357 
3358 template <>
3359 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3360                             DwarfAttEncodingField &Result) {
3361   if (Lex.getKind() == lltok::APSInt)
3362     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3363 
3364   if (Lex.getKind() != lltok::DwarfAttEncoding)
3365     return TokError("expected DWARF type attribute encoding");
3366 
3367   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3368   if (!Encoding)
3369     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3370                     Lex.getStrVal() + "'");
3371   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3372   Result.assign(Encoding);
3373   Lex.Lex();
3374   return false;
3375 }
3376 
3377 /// DIFlagField
3378 ///  ::= uint32
3379 ///  ::= DIFlagVector
3380 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3381 template <>
3382 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3383   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3384 
3385   // Parser for a single flag.
3386   auto parseFlag = [&](unsigned &Val) {
3387     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3388       return ParseUInt32(Val);
3389 
3390     if (Lex.getKind() != lltok::DIFlag)
3391       return TokError("expected debug info flag");
3392 
3393     Val = DINode::getFlag(Lex.getStrVal());
3394     if (!Val)
3395       return TokError(Twine("invalid debug info flag flag '") +
3396                       Lex.getStrVal() + "'");
3397     Lex.Lex();
3398     return false;
3399   };
3400 
3401   // Parse the flags and combine them together.
3402   unsigned Combined = 0;
3403   do {
3404     unsigned Val;
3405     if (parseFlag(Val))
3406       return true;
3407     Combined |= Val;
3408   } while (EatIfPresent(lltok::bar));
3409 
3410   Result.assign(Combined);
3411   return false;
3412 }
3413 
3414 template <>
3415 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3416                             MDSignedField &Result) {
3417   if (Lex.getKind() != lltok::APSInt)
3418     return TokError("expected signed integer");
3419 
3420   auto &S = Lex.getAPSIntVal();
3421   if (S < Result.Min)
3422     return TokError("value for '" + Name + "' too small, limit is " +
3423                     Twine(Result.Min));
3424   if (S > Result.Max)
3425     return TokError("value for '" + Name + "' too large, limit is " +
3426                     Twine(Result.Max));
3427   Result.assign(S.getExtValue());
3428   assert(Result.Val >= Result.Min && "Expected value in range");
3429   assert(Result.Val <= Result.Max && "Expected value in range");
3430   Lex.Lex();
3431   return false;
3432 }
3433 
3434 template <>
3435 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3436   switch (Lex.getKind()) {
3437   default:
3438     return TokError("expected 'true' or 'false'");
3439   case lltok::kw_true:
3440     Result.assign(true);
3441     break;
3442   case lltok::kw_false:
3443     Result.assign(false);
3444     break;
3445   }
3446   Lex.Lex();
3447   return false;
3448 }
3449 
3450 template <>
3451 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3452   if (Lex.getKind() == lltok::kw_null) {
3453     if (!Result.AllowNull)
3454       return TokError("'" + Name + "' cannot be null");
3455     Lex.Lex();
3456     Result.assign(nullptr);
3457     return false;
3458   }
3459 
3460   Metadata *MD;
3461   if (ParseMetadata(MD, nullptr))
3462     return true;
3463 
3464   Result.assign(MD);
3465   return false;
3466 }
3467 
3468 template <>
3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3470   Metadata *MD;
3471   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3472     return true;
3473 
3474   Result.assign(cast<ConstantAsMetadata>(MD));
3475   return false;
3476 }
3477 
3478 template <>
3479 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3480   LocTy ValueLoc = Lex.getLoc();
3481   std::string S;
3482   if (ParseStringConstant(S))
3483     return true;
3484 
3485   if (!Result.AllowEmpty && S.empty())
3486     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3487 
3488   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3489   return false;
3490 }
3491 
3492 template <>
3493 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3494   SmallVector<Metadata *, 4> MDs;
3495   if (ParseMDNodeVector(MDs))
3496     return true;
3497 
3498   Result.assign(std::move(MDs));
3499   return false;
3500 }
3501 
3502 } // end namespace llvm
3503 
3504 template <class ParserTy>
3505 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3506   do {
3507     if (Lex.getKind() != lltok::LabelStr)
3508       return TokError("expected field label here");
3509 
3510     if (parseField())
3511       return true;
3512   } while (EatIfPresent(lltok::comma));
3513 
3514   return false;
3515 }
3516 
3517 template <class ParserTy>
3518 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3519   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3520   Lex.Lex();
3521 
3522   if (ParseToken(lltok::lparen, "expected '(' here"))
3523     return true;
3524   if (Lex.getKind() != lltok::rparen)
3525     if (ParseMDFieldsImplBody(parseField))
3526       return true;
3527 
3528   ClosingLoc = Lex.getLoc();
3529   return ParseToken(lltok::rparen, "expected ')' here");
3530 }
3531 
3532 template <class FieldTy>
3533 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3534   if (Result.Seen)
3535     return TokError("field '" + Name + "' cannot be specified more than once");
3536 
3537   LocTy Loc = Lex.getLoc();
3538   Lex.Lex();
3539   return ParseMDField(Loc, Name, Result);
3540 }
3541 
3542 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3543   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3544 
3545 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3546   if (Lex.getStrVal() == #CLASS)                                               \
3547     return Parse##CLASS(N, IsDistinct);
3548 #include "llvm/IR/Metadata.def"
3549 
3550   return TokError("expected metadata type");
3551 }
3552 
3553 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3554 #define NOP_FIELD(NAME, TYPE, INIT)
3555 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3556   if (!NAME.Seen)                                                              \
3557     return Error(ClosingLoc, "missing required field '" #NAME "'");
3558 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3559   if (Lex.getStrVal() == #NAME)                                                \
3560     return ParseMDField(#NAME, NAME);
3561 #define PARSE_MD_FIELDS()                                                      \
3562   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3563   do {                                                                         \
3564     LocTy ClosingLoc;                                                          \
3565     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3566       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3567       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3568     }, ClosingLoc))                                                            \
3569       return true;                                                             \
3570     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3571   } while (false)
3572 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3573   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3574 
3575 /// ParseDILocationFields:
3576 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3577 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3579   OPTIONAL(line, LineField, );                                                 \
3580   OPTIONAL(column, ColumnField, );                                             \
3581   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3582   OPTIONAL(inlinedAt, MDField, );
3583   PARSE_MD_FIELDS();
3584 #undef VISIT_MD_FIELDS
3585 
3586   Result = GET_OR_DISTINCT(
3587       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3588   return false;
3589 }
3590 
3591 /// ParseGenericDINode:
3592 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3593 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3594 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3595   REQUIRED(tag, DwarfTagField, );                                              \
3596   OPTIONAL(header, MDStringField, );                                           \
3597   OPTIONAL(operands, MDFieldList, );
3598   PARSE_MD_FIELDS();
3599 #undef VISIT_MD_FIELDS
3600 
3601   Result = GET_OR_DISTINCT(GenericDINode,
3602                            (Context, tag.Val, header.Val, operands.Val));
3603   return false;
3604 }
3605 
3606 /// ParseDISubrange:
3607 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3608 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3610   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3611   OPTIONAL(lowerBound, MDSignedField, );
3612   PARSE_MD_FIELDS();
3613 #undef VISIT_MD_FIELDS
3614 
3615   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3616   return false;
3617 }
3618 
3619 /// ParseDIEnumerator:
3620 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3621 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3622 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3623   REQUIRED(name, MDStringField, );                                             \
3624   REQUIRED(value, MDSignedField, );
3625   PARSE_MD_FIELDS();
3626 #undef VISIT_MD_FIELDS
3627 
3628   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3629   return false;
3630 }
3631 
3632 /// ParseDIBasicType:
3633 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3634 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3635 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3636   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3637   OPTIONAL(name, MDStringField, );                                             \
3638   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3639   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3640   OPTIONAL(encoding, DwarfAttEncodingField, );
3641   PARSE_MD_FIELDS();
3642 #undef VISIT_MD_FIELDS
3643 
3644   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3645                                          align.Val, encoding.Val));
3646   return false;
3647 }
3648 
3649 /// ParseDIDerivedType:
3650 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3651 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3652 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3653 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3654 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3655   REQUIRED(tag, DwarfTagField, );                                              \
3656   OPTIONAL(name, MDStringField, );                                             \
3657   OPTIONAL(file, MDField, );                                                   \
3658   OPTIONAL(line, LineField, );                                                 \
3659   OPTIONAL(scope, MDField, );                                                  \
3660   REQUIRED(baseType, MDField, );                                               \
3661   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3662   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3663   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3664   OPTIONAL(flags, DIFlagField, );                                              \
3665   OPTIONAL(extraData, MDField, );
3666   PARSE_MD_FIELDS();
3667 #undef VISIT_MD_FIELDS
3668 
3669   Result = GET_OR_DISTINCT(DIDerivedType,
3670                            (Context, tag.Val, name.Val, file.Val, line.Val,
3671                             scope.Val, baseType.Val, size.Val, align.Val,
3672                             offset.Val, flags.Val, extraData.Val));
3673   return false;
3674 }
3675 
3676 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3678   REQUIRED(tag, DwarfTagField, );                                              \
3679   OPTIONAL(name, MDStringField, );                                             \
3680   OPTIONAL(file, MDField, );                                                   \
3681   OPTIONAL(line, LineField, );                                                 \
3682   OPTIONAL(scope, MDField, );                                                  \
3683   OPTIONAL(baseType, MDField, );                                               \
3684   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3685   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3686   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3687   OPTIONAL(flags, DIFlagField, );                                              \
3688   OPTIONAL(elements, MDField, );                                               \
3689   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3690   OPTIONAL(vtableHolder, MDField, );                                           \
3691   OPTIONAL(templateParams, MDField, );                                         \
3692   OPTIONAL(identifier, MDStringField, );
3693   PARSE_MD_FIELDS();
3694 #undef VISIT_MD_FIELDS
3695 
3696   Result = GET_OR_DISTINCT(
3697       DICompositeType,
3698       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3699        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3700        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3701   return false;
3702 }
3703 
3704 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3706   OPTIONAL(flags, DIFlagField, );                                              \
3707   REQUIRED(types, MDField, );
3708   PARSE_MD_FIELDS();
3709 #undef VISIT_MD_FIELDS
3710 
3711   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3712   return false;
3713 }
3714 
3715 /// ParseDIFileType:
3716 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3717 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3719   REQUIRED(filename, MDStringField, );                                         \
3720   REQUIRED(directory, MDStringField, );
3721   PARSE_MD_FIELDS();
3722 #undef VISIT_MD_FIELDS
3723 
3724   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3725   return false;
3726 }
3727 
3728 /// ParseDICompileUnit:
3729 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3730 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3731 ///                      splitDebugFilename: "abc.debug", emissionKind: 1,
3732 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
3733 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3734 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3735   if (!IsDistinct)
3736     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3737 
3738 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3739   REQUIRED(language, DwarfLangField, );                                        \
3740   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3741   OPTIONAL(producer, MDStringField, );                                         \
3742   OPTIONAL(isOptimized, MDBoolField, );                                        \
3743   OPTIONAL(flags, MDStringField, );                                            \
3744   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3745   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3746   OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX));                    \
3747   OPTIONAL(enums, MDField, );                                                  \
3748   OPTIONAL(retainedTypes, MDField, );                                          \
3749   OPTIONAL(subprograms, MDField, );                                            \
3750   OPTIONAL(globals, MDField, );                                                \
3751   OPTIONAL(imports, MDField, );                                                \
3752   OPTIONAL(macros, MDField, );                                                 \
3753   OPTIONAL(dwoId, MDUnsignedField, );
3754   PARSE_MD_FIELDS();
3755 #undef VISIT_MD_FIELDS
3756 
3757   Result = DICompileUnit::getDistinct(
3758       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3759       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3760       retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
3761       dwoId.Val);
3762   return false;
3763 }
3764 
3765 /// ParseDISubprogram:
3766 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3767 ///                     file: !1, line: 7, type: !2, isLocal: false,
3768 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3769 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3770 ///                     virtualIndex: 10, flags: 11,
3771 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3772 ///                     variables: !6)
3773 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3774   auto Loc = Lex.getLoc();
3775 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3776   OPTIONAL(scope, MDField, );                                                  \
3777   OPTIONAL(name, MDStringField, );                                             \
3778   OPTIONAL(linkageName, MDStringField, );                                      \
3779   OPTIONAL(file, MDField, );                                                   \
3780   OPTIONAL(line, LineField, );                                                 \
3781   OPTIONAL(type, MDField, );                                                   \
3782   OPTIONAL(isLocal, MDBoolField, );                                            \
3783   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3784   OPTIONAL(scopeLine, LineField, );                                            \
3785   OPTIONAL(containingType, MDField, );                                         \
3786   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3787   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3788   OPTIONAL(flags, DIFlagField, );                                              \
3789   OPTIONAL(isOptimized, MDBoolField, );                                        \
3790   OPTIONAL(templateParams, MDField, );                                         \
3791   OPTIONAL(declaration, MDField, );                                            \
3792   OPTIONAL(variables, MDField, );
3793   PARSE_MD_FIELDS();
3794 #undef VISIT_MD_FIELDS
3795 
3796   if (isDefinition.Val && !IsDistinct)
3797     return Lex.Error(
3798         Loc,
3799         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3800 
3801   Result = GET_OR_DISTINCT(
3802       DISubprogram,
3803       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
3804        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
3805        containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
3806        isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
3807   return false;
3808 }
3809 
3810 /// ParseDILexicalBlock:
3811 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3812 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3814   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3815   OPTIONAL(file, MDField, );                                                   \
3816   OPTIONAL(line, LineField, );                                                 \
3817   OPTIONAL(column, ColumnField, );
3818   PARSE_MD_FIELDS();
3819 #undef VISIT_MD_FIELDS
3820 
3821   Result = GET_OR_DISTINCT(
3822       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3823   return false;
3824 }
3825 
3826 /// ParseDILexicalBlockFile:
3827 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3828 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3829 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3830   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3831   OPTIONAL(file, MDField, );                                                   \
3832   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3833   PARSE_MD_FIELDS();
3834 #undef VISIT_MD_FIELDS
3835 
3836   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3837                            (Context, scope.Val, file.Val, discriminator.Val));
3838   return false;
3839 }
3840 
3841 /// ParseDINamespace:
3842 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3843 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3845   REQUIRED(scope, MDField, );                                                  \
3846   OPTIONAL(file, MDField, );                                                   \
3847   OPTIONAL(name, MDStringField, );                                             \
3848   OPTIONAL(line, LineField, );
3849   PARSE_MD_FIELDS();
3850 #undef VISIT_MD_FIELDS
3851 
3852   Result = GET_OR_DISTINCT(DINamespace,
3853                            (Context, scope.Val, file.Val, name.Val, line.Val));
3854   return false;
3855 }
3856 
3857 /// ParseDIMacro:
3858 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
3859 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
3860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3861   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
3862   REQUIRED(line, LineField, );                                                 \
3863   REQUIRED(name, MDStringField, );                                             \
3864   OPTIONAL(value, MDStringField, );
3865   PARSE_MD_FIELDS();
3866 #undef VISIT_MD_FIELDS
3867 
3868   Result = GET_OR_DISTINCT(DIMacro,
3869                            (Context, type.Val, line.Val, name.Val, value.Val));
3870   return false;
3871 }
3872 
3873 /// ParseDIMacroFile:
3874 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
3875 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
3876 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3877   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
3878   REQUIRED(line, LineField, );                                                 \
3879   REQUIRED(file, MDField, );                                                   \
3880   OPTIONAL(nodes, MDField, );
3881   PARSE_MD_FIELDS();
3882 #undef VISIT_MD_FIELDS
3883 
3884   Result = GET_OR_DISTINCT(DIMacroFile,
3885                            (Context, type.Val, line.Val, file.Val, nodes.Val));
3886   return false;
3887 }
3888 
3889 
3890 /// ParseDIModule:
3891 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
3892 ///                 includePath: "/usr/include", isysroot: "/")
3893 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
3894 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3895   REQUIRED(scope, MDField, );                                                  \
3896   REQUIRED(name, MDStringField, );                                             \
3897   OPTIONAL(configMacros, MDStringField, );                                     \
3898   OPTIONAL(includePath, MDStringField, );                                      \
3899   OPTIONAL(isysroot, MDStringField, );
3900   PARSE_MD_FIELDS();
3901 #undef VISIT_MD_FIELDS
3902 
3903   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
3904                            configMacros.Val, includePath.Val, isysroot.Val));
3905   return false;
3906 }
3907 
3908 /// ParseDITemplateTypeParameter:
3909 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
3910 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3911 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3912   OPTIONAL(name, MDStringField, );                                             \
3913   REQUIRED(type, MDField, );
3914   PARSE_MD_FIELDS();
3915 #undef VISIT_MD_FIELDS
3916 
3917   Result =
3918       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
3919   return false;
3920 }
3921 
3922 /// ParseDITemplateValueParameter:
3923 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
3924 ///                                 name: "V", type: !1, value: i32 7)
3925 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3926 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3927   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
3928   OPTIONAL(name, MDStringField, );                                             \
3929   OPTIONAL(type, MDField, );                                                   \
3930   REQUIRED(value, MDField, );
3931   PARSE_MD_FIELDS();
3932 #undef VISIT_MD_FIELDS
3933 
3934   Result = GET_OR_DISTINCT(DITemplateValueParameter,
3935                            (Context, tag.Val, name.Val, type.Val, value.Val));
3936   return false;
3937 }
3938 
3939 /// ParseDIGlobalVariable:
3940 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3941 ///                         file: !1, line: 7, type: !2, isLocal: false,
3942 ///                         isDefinition: true, variable: i32* @foo,
3943 ///                         declaration: !3)
3944 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
3945 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3946   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
3947   OPTIONAL(scope, MDField, );                                                  \
3948   OPTIONAL(linkageName, MDStringField, );                                      \
3949   OPTIONAL(file, MDField, );                                                   \
3950   OPTIONAL(line, LineField, );                                                 \
3951   OPTIONAL(type, MDField, );                                                   \
3952   OPTIONAL(isLocal, MDBoolField, );                                            \
3953   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3954   OPTIONAL(variable, MDConstant, );                                            \
3955   OPTIONAL(declaration, MDField, );
3956   PARSE_MD_FIELDS();
3957 #undef VISIT_MD_FIELDS
3958 
3959   Result = GET_OR_DISTINCT(DIGlobalVariable,
3960                            (Context, scope.Val, name.Val, linkageName.Val,
3961                             file.Val, line.Val, type.Val, isLocal.Val,
3962                             isDefinition.Val, variable.Val, declaration.Val));
3963   return false;
3964 }
3965 
3966 /// ParseDILocalVariable:
3967 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
3968 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3969 ///   ::= !DILocalVariable(scope: !0, name: "foo",
3970 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3971 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
3972 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3973   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3974   OPTIONAL(name, MDStringField, );                                             \
3975   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
3976   OPTIONAL(file, MDField, );                                                   \
3977   OPTIONAL(line, LineField, );                                                 \
3978   OPTIONAL(type, MDField, );                                                   \
3979   OPTIONAL(flags, DIFlagField, );
3980   PARSE_MD_FIELDS();
3981 #undef VISIT_MD_FIELDS
3982 
3983   Result = GET_OR_DISTINCT(DILocalVariable,
3984                            (Context, scope.Val, name.Val, file.Val, line.Val,
3985                             type.Val, arg.Val, flags.Val));
3986   return false;
3987 }
3988 
3989 /// ParseDIExpression:
3990 ///   ::= !DIExpression(0, 7, -1)
3991 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
3992   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3993   Lex.Lex();
3994 
3995   if (ParseToken(lltok::lparen, "expected '(' here"))
3996     return true;
3997 
3998   SmallVector<uint64_t, 8> Elements;
3999   if (Lex.getKind() != lltok::rparen)
4000     do {
4001       if (Lex.getKind() == lltok::DwarfOp) {
4002         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4003           Lex.Lex();
4004           Elements.push_back(Op);
4005           continue;
4006         }
4007         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4008       }
4009 
4010       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4011         return TokError("expected unsigned integer");
4012 
4013       auto &U = Lex.getAPSIntVal();
4014       if (U.ugt(UINT64_MAX))
4015         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4016       Elements.push_back(U.getZExtValue());
4017       Lex.Lex();
4018     } while (EatIfPresent(lltok::comma));
4019 
4020   if (ParseToken(lltok::rparen, "expected ')' here"))
4021     return true;
4022 
4023   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4024   return false;
4025 }
4026 
4027 /// ParseDIObjCProperty:
4028 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4029 ///                       getter: "getFoo", attributes: 7, type: !2)
4030 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4031 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4032   OPTIONAL(name, MDStringField, );                                             \
4033   OPTIONAL(file, MDField, );                                                   \
4034   OPTIONAL(line, LineField, );                                                 \
4035   OPTIONAL(setter, MDStringField, );                                           \
4036   OPTIONAL(getter, MDStringField, );                                           \
4037   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4038   OPTIONAL(type, MDField, );
4039   PARSE_MD_FIELDS();
4040 #undef VISIT_MD_FIELDS
4041 
4042   Result = GET_OR_DISTINCT(DIObjCProperty,
4043                            (Context, name.Val, file.Val, line.Val, setter.Val,
4044                             getter.Val, attributes.Val, type.Val));
4045   return false;
4046 }
4047 
4048 /// ParseDIImportedEntity:
4049 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4050 ///                         line: 7, name: "foo")
4051 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4053   REQUIRED(tag, DwarfTagField, );                                              \
4054   REQUIRED(scope, MDField, );                                                  \
4055   OPTIONAL(entity, MDField, );                                                 \
4056   OPTIONAL(line, LineField, );                                                 \
4057   OPTIONAL(name, MDStringField, );
4058   PARSE_MD_FIELDS();
4059 #undef VISIT_MD_FIELDS
4060 
4061   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4062                                               entity.Val, line.Val, name.Val));
4063   return false;
4064 }
4065 
4066 #undef PARSE_MD_FIELD
4067 #undef NOP_FIELD
4068 #undef REQUIRE_FIELD
4069 #undef DECLARE_FIELD
4070 
4071 /// ParseMetadataAsValue
4072 ///  ::= metadata i32 %local
4073 ///  ::= metadata i32 @global
4074 ///  ::= metadata i32 7
4075 ///  ::= metadata !0
4076 ///  ::= metadata !{...}
4077 ///  ::= metadata !"string"
4078 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4079   // Note: the type 'metadata' has already been parsed.
4080   Metadata *MD;
4081   if (ParseMetadata(MD, &PFS))
4082     return true;
4083 
4084   V = MetadataAsValue::get(Context, MD);
4085   return false;
4086 }
4087 
4088 /// ParseValueAsMetadata
4089 ///  ::= i32 %local
4090 ///  ::= i32 @global
4091 ///  ::= i32 7
4092 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4093                                     PerFunctionState *PFS) {
4094   Type *Ty;
4095   LocTy Loc;
4096   if (ParseType(Ty, TypeMsg, Loc))
4097     return true;
4098   if (Ty->isMetadataTy())
4099     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4100 
4101   Value *V;
4102   if (ParseValue(Ty, V, PFS))
4103     return true;
4104 
4105   MD = ValueAsMetadata::get(V);
4106   return false;
4107 }
4108 
4109 /// ParseMetadata
4110 ///  ::= i32 %local
4111 ///  ::= i32 @global
4112 ///  ::= i32 7
4113 ///  ::= !42
4114 ///  ::= !{...}
4115 ///  ::= !"string"
4116 ///  ::= !DILocation(...)
4117 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4118   if (Lex.getKind() == lltok::MetadataVar) {
4119     MDNode *N;
4120     if (ParseSpecializedMDNode(N))
4121       return true;
4122     MD = N;
4123     return false;
4124   }
4125 
4126   // ValueAsMetadata:
4127   // <type> <value>
4128   if (Lex.getKind() != lltok::exclaim)
4129     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4130 
4131   // '!'.
4132   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4133   Lex.Lex();
4134 
4135   // MDString:
4136   //   ::= '!' STRINGCONSTANT
4137   if (Lex.getKind() == lltok::StringConstant) {
4138     MDString *S;
4139     if (ParseMDString(S))
4140       return true;
4141     MD = S;
4142     return false;
4143   }
4144 
4145   // MDNode:
4146   // !{ ... }
4147   // !7
4148   MDNode *N;
4149   if (ParseMDNodeTail(N))
4150     return true;
4151   MD = N;
4152   return false;
4153 }
4154 
4155 
4156 //===----------------------------------------------------------------------===//
4157 // Function Parsing.
4158 //===----------------------------------------------------------------------===//
4159 
4160 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4161                                    PerFunctionState *PFS) {
4162   if (Ty->isFunctionTy())
4163     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4164 
4165   switch (ID.Kind) {
4166   case ValID::t_LocalID:
4167     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4168     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4169     return V == nullptr;
4170   case ValID::t_LocalName:
4171     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4172     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4173     return V == nullptr;
4174   case ValID::t_InlineAsm: {
4175     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4176       return Error(ID.Loc, "invalid type for inline asm constraint string");
4177     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4178                        (ID.UIntVal >> 1) & 1,
4179                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4180     return false;
4181   }
4182   case ValID::t_GlobalName:
4183     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4184     return V == nullptr;
4185   case ValID::t_GlobalID:
4186     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4187     return V == nullptr;
4188   case ValID::t_APSInt:
4189     if (!Ty->isIntegerTy())
4190       return Error(ID.Loc, "integer constant must have integer type");
4191     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4192     V = ConstantInt::get(Context, ID.APSIntVal);
4193     return false;
4194   case ValID::t_APFloat:
4195     if (!Ty->isFloatingPointTy() ||
4196         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4197       return Error(ID.Loc, "floating point constant invalid for type");
4198 
4199     // The lexer has no type info, so builds all half, float, and double FP
4200     // constants as double.  Fix this here.  Long double does not need this.
4201     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4202       bool Ignored;
4203       if (Ty->isHalfTy())
4204         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4205                               &Ignored);
4206       else if (Ty->isFloatTy())
4207         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4208                               &Ignored);
4209     }
4210     V = ConstantFP::get(Context, ID.APFloatVal);
4211 
4212     if (V->getType() != Ty)
4213       return Error(ID.Loc, "floating point constant does not have type '" +
4214                    getTypeString(Ty) + "'");
4215 
4216     return false;
4217   case ValID::t_Null:
4218     if (!Ty->isPointerTy())
4219       return Error(ID.Loc, "null must be a pointer type");
4220     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4221     return false;
4222   case ValID::t_Undef:
4223     // FIXME: LabelTy should not be a first-class type.
4224     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4225       return Error(ID.Loc, "invalid type for undef constant");
4226     V = UndefValue::get(Ty);
4227     return false;
4228   case ValID::t_EmptyArray:
4229     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4230       return Error(ID.Loc, "invalid empty array initializer");
4231     V = UndefValue::get(Ty);
4232     return false;
4233   case ValID::t_Zero:
4234     // FIXME: LabelTy should not be a first-class type.
4235     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4236       return Error(ID.Loc, "invalid type for null constant");
4237     V = Constant::getNullValue(Ty);
4238     return false;
4239   case ValID::t_None:
4240     if (!Ty->isTokenTy())
4241       return Error(ID.Loc, "invalid type for none constant");
4242     V = Constant::getNullValue(Ty);
4243     return false;
4244   case ValID::t_Constant:
4245     if (ID.ConstantVal->getType() != Ty)
4246       return Error(ID.Loc, "constant expression type mismatch");
4247 
4248     V = ID.ConstantVal;
4249     return false;
4250   case ValID::t_ConstantStruct:
4251   case ValID::t_PackedConstantStruct:
4252     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4253       if (ST->getNumElements() != ID.UIntVal)
4254         return Error(ID.Loc,
4255                      "initializer with struct type has wrong # elements");
4256       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4257         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4258 
4259       // Verify that the elements are compatible with the structtype.
4260       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4261         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4262           return Error(ID.Loc, "element " + Twine(i) +
4263                     " of struct initializer doesn't match struct element type");
4264 
4265       V = ConstantStruct::get(
4266           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4267     } else
4268       return Error(ID.Loc, "constant expression type mismatch");
4269     return false;
4270   }
4271   llvm_unreachable("Invalid ValID");
4272 }
4273 
4274 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4275   C = nullptr;
4276   ValID ID;
4277   auto Loc = Lex.getLoc();
4278   if (ParseValID(ID, /*PFS=*/nullptr))
4279     return true;
4280   switch (ID.Kind) {
4281   case ValID::t_APSInt:
4282   case ValID::t_APFloat:
4283   case ValID::t_Undef:
4284   case ValID::t_Constant:
4285   case ValID::t_ConstantStruct:
4286   case ValID::t_PackedConstantStruct: {
4287     Value *V;
4288     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4289       return true;
4290     assert(isa<Constant>(V) && "Expected a constant value");
4291     C = cast<Constant>(V);
4292     return false;
4293   }
4294   default:
4295     return Error(Loc, "expected a constant value");
4296   }
4297 }
4298 
4299 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4300   V = nullptr;
4301   ValID ID;
4302   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4303 }
4304 
4305 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4306   Type *Ty = nullptr;
4307   return ParseType(Ty) ||
4308          ParseValue(Ty, V, PFS);
4309 }
4310 
4311 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4312                                       PerFunctionState &PFS) {
4313   Value *V;
4314   Loc = Lex.getLoc();
4315   if (ParseTypeAndValue(V, PFS)) return true;
4316   if (!isa<BasicBlock>(V))
4317     return Error(Loc, "expected a basic block");
4318   BB = cast<BasicBlock>(V);
4319   return false;
4320 }
4321 
4322 
4323 /// FunctionHeader
4324 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4325 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4326 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4327 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4328   // Parse the linkage.
4329   LocTy LinkageLoc = Lex.getLoc();
4330   unsigned Linkage;
4331 
4332   unsigned Visibility;
4333   unsigned DLLStorageClass;
4334   AttrBuilder RetAttrs;
4335   unsigned CC;
4336   Type *RetType = nullptr;
4337   LocTy RetTypeLoc = Lex.getLoc();
4338   if (ParseOptionalLinkage(Linkage) ||
4339       ParseOptionalVisibility(Visibility) ||
4340       ParseOptionalDLLStorageClass(DLLStorageClass) ||
4341       ParseOptionalCallingConv(CC) ||
4342       ParseOptionalReturnAttrs(RetAttrs) ||
4343       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4344     return true;
4345 
4346   // Verify that the linkage is ok.
4347   switch ((GlobalValue::LinkageTypes)Linkage) {
4348   case GlobalValue::ExternalLinkage:
4349     break; // always ok.
4350   case GlobalValue::ExternalWeakLinkage:
4351     if (isDefine)
4352       return Error(LinkageLoc, "invalid linkage for function definition");
4353     break;
4354   case GlobalValue::PrivateLinkage:
4355   case GlobalValue::InternalLinkage:
4356   case GlobalValue::AvailableExternallyLinkage:
4357   case GlobalValue::LinkOnceAnyLinkage:
4358   case GlobalValue::LinkOnceODRLinkage:
4359   case GlobalValue::WeakAnyLinkage:
4360   case GlobalValue::WeakODRLinkage:
4361     if (!isDefine)
4362       return Error(LinkageLoc, "invalid linkage for function declaration");
4363     break;
4364   case GlobalValue::AppendingLinkage:
4365   case GlobalValue::CommonLinkage:
4366     return Error(LinkageLoc, "invalid function linkage type");
4367   }
4368 
4369   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4370     return Error(LinkageLoc,
4371                  "symbol with local linkage must have default visibility");
4372 
4373   if (!FunctionType::isValidReturnType(RetType))
4374     return Error(RetTypeLoc, "invalid function return type");
4375 
4376   LocTy NameLoc = Lex.getLoc();
4377 
4378   std::string FunctionName;
4379   if (Lex.getKind() == lltok::GlobalVar) {
4380     FunctionName = Lex.getStrVal();
4381   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4382     unsigned NameID = Lex.getUIntVal();
4383 
4384     if (NameID != NumberedVals.size())
4385       return TokError("function expected to be numbered '%" +
4386                       Twine(NumberedVals.size()) + "'");
4387   } else {
4388     return TokError("expected function name");
4389   }
4390 
4391   Lex.Lex();
4392 
4393   if (Lex.getKind() != lltok::lparen)
4394     return TokError("expected '(' in function argument list");
4395 
4396   SmallVector<ArgInfo, 8> ArgList;
4397   bool isVarArg;
4398   AttrBuilder FuncAttrs;
4399   std::vector<unsigned> FwdRefAttrGrps;
4400   LocTy BuiltinLoc;
4401   std::string Section;
4402   unsigned Alignment;
4403   std::string GC;
4404   bool UnnamedAddr;
4405   LocTy UnnamedAddrLoc;
4406   Constant *Prefix = nullptr;
4407   Constant *Prologue = nullptr;
4408   Constant *PersonalityFn = nullptr;
4409   Comdat *C;
4410 
4411   if (ParseArgumentList(ArgList, isVarArg) ||
4412       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4413                          &UnnamedAddrLoc) ||
4414       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4415                                  BuiltinLoc) ||
4416       (EatIfPresent(lltok::kw_section) &&
4417        ParseStringConstant(Section)) ||
4418       parseOptionalComdat(FunctionName, C) ||
4419       ParseOptionalAlignment(Alignment) ||
4420       (EatIfPresent(lltok::kw_gc) &&
4421        ParseStringConstant(GC)) ||
4422       (EatIfPresent(lltok::kw_prefix) &&
4423        ParseGlobalTypeAndValue(Prefix)) ||
4424       (EatIfPresent(lltok::kw_prologue) &&
4425        ParseGlobalTypeAndValue(Prologue)) ||
4426       (EatIfPresent(lltok::kw_personality) &&
4427        ParseGlobalTypeAndValue(PersonalityFn)))
4428     return true;
4429 
4430   if (FuncAttrs.contains(Attribute::Builtin))
4431     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4432 
4433   // If the alignment was parsed as an attribute, move to the alignment field.
4434   if (FuncAttrs.hasAlignmentAttr()) {
4435     Alignment = FuncAttrs.getAlignment();
4436     FuncAttrs.removeAttribute(Attribute::Alignment);
4437   }
4438 
4439   // Okay, if we got here, the function is syntactically valid.  Convert types
4440   // and do semantic checks.
4441   std::vector<Type*> ParamTypeList;
4442   SmallVector<AttributeSet, 8> Attrs;
4443 
4444   if (RetAttrs.hasAttributes())
4445     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4446                                       AttributeSet::ReturnIndex,
4447                                       RetAttrs));
4448 
4449   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4450     ParamTypeList.push_back(ArgList[i].Ty);
4451     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4452       AttrBuilder B(ArgList[i].Attrs, i + 1);
4453       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4454     }
4455   }
4456 
4457   if (FuncAttrs.hasAttributes())
4458     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4459                                       AttributeSet::FunctionIndex,
4460                                       FuncAttrs));
4461 
4462   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4463 
4464   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4465     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4466 
4467   FunctionType *FT =
4468     FunctionType::get(RetType, ParamTypeList, isVarArg);
4469   PointerType *PFT = PointerType::getUnqual(FT);
4470 
4471   Fn = nullptr;
4472   if (!FunctionName.empty()) {
4473     // If this was a definition of a forward reference, remove the definition
4474     // from the forward reference table and fill in the forward ref.
4475     auto FRVI = ForwardRefVals.find(FunctionName);
4476     if (FRVI != ForwardRefVals.end()) {
4477       Fn = M->getFunction(FunctionName);
4478       if (!Fn)
4479         return Error(FRVI->second.second, "invalid forward reference to "
4480                      "function as global value!");
4481       if (Fn->getType() != PFT)
4482         return Error(FRVI->second.second, "invalid forward reference to "
4483                      "function '" + FunctionName + "' with wrong type!");
4484 
4485       ForwardRefVals.erase(FRVI);
4486     } else if ((Fn = M->getFunction(FunctionName))) {
4487       // Reject redefinitions.
4488       return Error(NameLoc, "invalid redefinition of function '" +
4489                    FunctionName + "'");
4490     } else if (M->getNamedValue(FunctionName)) {
4491       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4492     }
4493 
4494   } else {
4495     // If this is a definition of a forward referenced function, make sure the
4496     // types agree.
4497     auto I = ForwardRefValIDs.find(NumberedVals.size());
4498     if (I != ForwardRefValIDs.end()) {
4499       Fn = cast<Function>(I->second.first);
4500       if (Fn->getType() != PFT)
4501         return Error(NameLoc, "type of definition and forward reference of '@" +
4502                      Twine(NumberedVals.size()) + "' disagree");
4503       ForwardRefValIDs.erase(I);
4504     }
4505   }
4506 
4507   if (!Fn)
4508     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4509   else // Move the forward-reference to the correct spot in the module.
4510     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4511 
4512   if (FunctionName.empty())
4513     NumberedVals.push_back(Fn);
4514 
4515   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4516   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4517   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4518   Fn->setCallingConv(CC);
4519   Fn->setAttributes(PAL);
4520   Fn->setUnnamedAddr(UnnamedAddr);
4521   Fn->setAlignment(Alignment);
4522   Fn->setSection(Section);
4523   Fn->setComdat(C);
4524   Fn->setPersonalityFn(PersonalityFn);
4525   if (!GC.empty()) Fn->setGC(GC.c_str());
4526   Fn->setPrefixData(Prefix);
4527   Fn->setPrologueData(Prologue);
4528   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4529 
4530   // Add all of the arguments we parsed to the function.
4531   Function::arg_iterator ArgIt = Fn->arg_begin();
4532   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4533     // If the argument has a name, insert it into the argument symbol table.
4534     if (ArgList[i].Name.empty()) continue;
4535 
4536     // Set the name, if it conflicted, it will be auto-renamed.
4537     ArgIt->setName(ArgList[i].Name);
4538 
4539     if (ArgIt->getName() != ArgList[i].Name)
4540       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4541                    ArgList[i].Name + "'");
4542   }
4543 
4544   if (isDefine)
4545     return false;
4546 
4547   // Check the declaration has no block address forward references.
4548   ValID ID;
4549   if (FunctionName.empty()) {
4550     ID.Kind = ValID::t_GlobalID;
4551     ID.UIntVal = NumberedVals.size() - 1;
4552   } else {
4553     ID.Kind = ValID::t_GlobalName;
4554     ID.StrVal = FunctionName;
4555   }
4556   auto Blocks = ForwardRefBlockAddresses.find(ID);
4557   if (Blocks != ForwardRefBlockAddresses.end())
4558     return Error(Blocks->first.Loc,
4559                  "cannot take blockaddress inside a declaration");
4560   return false;
4561 }
4562 
4563 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4564   ValID ID;
4565   if (FunctionNumber == -1) {
4566     ID.Kind = ValID::t_GlobalName;
4567     ID.StrVal = F.getName();
4568   } else {
4569     ID.Kind = ValID::t_GlobalID;
4570     ID.UIntVal = FunctionNumber;
4571   }
4572 
4573   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4574   if (Blocks == P.ForwardRefBlockAddresses.end())
4575     return false;
4576 
4577   for (const auto &I : Blocks->second) {
4578     const ValID &BBID = I.first;
4579     GlobalValue *GV = I.second;
4580 
4581     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4582            "Expected local id or name");
4583     BasicBlock *BB;
4584     if (BBID.Kind == ValID::t_LocalName)
4585       BB = GetBB(BBID.StrVal, BBID.Loc);
4586     else
4587       BB = GetBB(BBID.UIntVal, BBID.Loc);
4588     if (!BB)
4589       return P.Error(BBID.Loc, "referenced value is not a basic block");
4590 
4591     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4592     GV->eraseFromParent();
4593   }
4594 
4595   P.ForwardRefBlockAddresses.erase(Blocks);
4596   return false;
4597 }
4598 
4599 /// ParseFunctionBody
4600 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4601 bool LLParser::ParseFunctionBody(Function &Fn) {
4602   if (Lex.getKind() != lltok::lbrace)
4603     return TokError("expected '{' in function body");
4604   Lex.Lex();  // eat the {.
4605 
4606   int FunctionNumber = -1;
4607   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4608 
4609   PerFunctionState PFS(*this, Fn, FunctionNumber);
4610 
4611   // Resolve block addresses and allow basic blocks to be forward-declared
4612   // within this function.
4613   if (PFS.resolveForwardRefBlockAddresses())
4614     return true;
4615   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4616 
4617   // We need at least one basic block.
4618   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4619     return TokError("function body requires at least one basic block");
4620 
4621   while (Lex.getKind() != lltok::rbrace &&
4622          Lex.getKind() != lltok::kw_uselistorder)
4623     if (ParseBasicBlock(PFS)) return true;
4624 
4625   while (Lex.getKind() != lltok::rbrace)
4626     if (ParseUseListOrder(&PFS))
4627       return true;
4628 
4629   // Eat the }.
4630   Lex.Lex();
4631 
4632   // Verify function is ok.
4633   return PFS.FinishFunction();
4634 }
4635 
4636 /// ParseBasicBlock
4637 ///   ::= LabelStr? Instruction*
4638 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4639   // If this basic block starts out with a name, remember it.
4640   std::string Name;
4641   LocTy NameLoc = Lex.getLoc();
4642   if (Lex.getKind() == lltok::LabelStr) {
4643     Name = Lex.getStrVal();
4644     Lex.Lex();
4645   }
4646 
4647   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4648   if (!BB)
4649     return Error(NameLoc,
4650                  "unable to create block named '" + Name + "'");
4651 
4652   std::string NameStr;
4653 
4654   // Parse the instructions in this block until we get a terminator.
4655   Instruction *Inst;
4656   do {
4657     // This instruction may have three possibilities for a name: a) none
4658     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4659     LocTy NameLoc = Lex.getLoc();
4660     int NameID = -1;
4661     NameStr = "";
4662 
4663     if (Lex.getKind() == lltok::LocalVarID) {
4664       NameID = Lex.getUIntVal();
4665       Lex.Lex();
4666       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4667         return true;
4668     } else if (Lex.getKind() == lltok::LocalVar) {
4669       NameStr = Lex.getStrVal();
4670       Lex.Lex();
4671       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4672         return true;
4673     }
4674 
4675     switch (ParseInstruction(Inst, BB, PFS)) {
4676     default: llvm_unreachable("Unknown ParseInstruction result!");
4677     case InstError: return true;
4678     case InstNormal:
4679       BB->getInstList().push_back(Inst);
4680 
4681       // With a normal result, we check to see if the instruction is followed by
4682       // a comma and metadata.
4683       if (EatIfPresent(lltok::comma))
4684         if (ParseInstructionMetadata(*Inst))
4685           return true;
4686       break;
4687     case InstExtraComma:
4688       BB->getInstList().push_back(Inst);
4689 
4690       // If the instruction parser ate an extra comma at the end of it, it
4691       // *must* be followed by metadata.
4692       if (ParseInstructionMetadata(*Inst))
4693         return true;
4694       break;
4695     }
4696 
4697     // Set the name on the instruction.
4698     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4699   } while (!isa<TerminatorInst>(Inst));
4700 
4701   return false;
4702 }
4703 
4704 //===----------------------------------------------------------------------===//
4705 // Instruction Parsing.
4706 //===----------------------------------------------------------------------===//
4707 
4708 /// ParseInstruction - Parse one of the many different instructions.
4709 ///
4710 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4711                                PerFunctionState &PFS) {
4712   lltok::Kind Token = Lex.getKind();
4713   if (Token == lltok::Eof)
4714     return TokError("found end of file when expecting more instructions");
4715   LocTy Loc = Lex.getLoc();
4716   unsigned KeywordVal = Lex.getUIntVal();
4717   Lex.Lex();  // Eat the keyword.
4718 
4719   switch (Token) {
4720   default:                    return Error(Loc, "expected instruction opcode");
4721   // Terminator Instructions.
4722   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4723   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4724   case lltok::kw_br:          return ParseBr(Inst, PFS);
4725   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4726   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4727   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4728   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4729   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4730   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4731   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4732   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4733   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4734   // Binary Operators.
4735   case lltok::kw_add:
4736   case lltok::kw_sub:
4737   case lltok::kw_mul:
4738   case lltok::kw_shl: {
4739     bool NUW = EatIfPresent(lltok::kw_nuw);
4740     bool NSW = EatIfPresent(lltok::kw_nsw);
4741     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4742 
4743     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4744 
4745     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4746     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4747     return false;
4748   }
4749   case lltok::kw_fadd:
4750   case lltok::kw_fsub:
4751   case lltok::kw_fmul:
4752   case lltok::kw_fdiv:
4753   case lltok::kw_frem: {
4754     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4755     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4756     if (Res != 0)
4757       return Res;
4758     if (FMF.any())
4759       Inst->setFastMathFlags(FMF);
4760     return 0;
4761   }
4762 
4763   case lltok::kw_sdiv:
4764   case lltok::kw_udiv:
4765   case lltok::kw_lshr:
4766   case lltok::kw_ashr: {
4767     bool Exact = EatIfPresent(lltok::kw_exact);
4768 
4769     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4770     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4771     return false;
4772   }
4773 
4774   case lltok::kw_urem:
4775   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4776   case lltok::kw_and:
4777   case lltok::kw_or:
4778   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4779   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4780   case lltok::kw_fcmp: {
4781     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4782     int Res = ParseCompare(Inst, PFS, KeywordVal);
4783     if (Res != 0)
4784       return Res;
4785     if (FMF.any())
4786       Inst->setFastMathFlags(FMF);
4787     return 0;
4788   }
4789 
4790   // Casts.
4791   case lltok::kw_trunc:
4792   case lltok::kw_zext:
4793   case lltok::kw_sext:
4794   case lltok::kw_fptrunc:
4795   case lltok::kw_fpext:
4796   case lltok::kw_bitcast:
4797   case lltok::kw_addrspacecast:
4798   case lltok::kw_uitofp:
4799   case lltok::kw_sitofp:
4800   case lltok::kw_fptoui:
4801   case lltok::kw_fptosi:
4802   case lltok::kw_inttoptr:
4803   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4804   // Other.
4805   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4806   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4807   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4808   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4809   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4810   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4811   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4812   // Call.
4813   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4814   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4815   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4816   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4817   // Memory.
4818   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4819   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4820   case lltok::kw_store:          return ParseStore(Inst, PFS);
4821   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4822   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4823   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4824   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4825   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4826   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4827   }
4828 }
4829 
4830 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4831 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4832   if (Opc == Instruction::FCmp) {
4833     switch (Lex.getKind()) {
4834     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4835     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4836     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4837     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4838     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4839     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4840     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4841     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4842     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4843     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4844     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4845     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4846     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4847     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4848     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4849     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4850     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4851     }
4852   } else {
4853     switch (Lex.getKind()) {
4854     default: return TokError("expected icmp predicate (e.g. 'eq')");
4855     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
4856     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
4857     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4858     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4859     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4860     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4861     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4862     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4863     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4864     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4865     }
4866   }
4867   Lex.Lex();
4868   return false;
4869 }
4870 
4871 //===----------------------------------------------------------------------===//
4872 // Terminator Instructions.
4873 //===----------------------------------------------------------------------===//
4874 
4875 /// ParseRet - Parse a return instruction.
4876 ///   ::= 'ret' void (',' !dbg, !1)*
4877 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
4878 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4879                         PerFunctionState &PFS) {
4880   SMLoc TypeLoc = Lex.getLoc();
4881   Type *Ty = nullptr;
4882   if (ParseType(Ty, true /*void allowed*/)) return true;
4883 
4884   Type *ResType = PFS.getFunction().getReturnType();
4885 
4886   if (Ty->isVoidTy()) {
4887     if (!ResType->isVoidTy())
4888       return Error(TypeLoc, "value doesn't match function result type '" +
4889                    getTypeString(ResType) + "'");
4890 
4891     Inst = ReturnInst::Create(Context);
4892     return false;
4893   }
4894 
4895   Value *RV;
4896   if (ParseValue(Ty, RV, PFS)) return true;
4897 
4898   if (ResType != RV->getType())
4899     return Error(TypeLoc, "value doesn't match function result type '" +
4900                  getTypeString(ResType) + "'");
4901 
4902   Inst = ReturnInst::Create(Context, RV);
4903   return false;
4904 }
4905 
4906 
4907 /// ParseBr
4908 ///   ::= 'br' TypeAndValue
4909 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4910 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4911   LocTy Loc, Loc2;
4912   Value *Op0;
4913   BasicBlock *Op1, *Op2;
4914   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4915 
4916   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4917     Inst = BranchInst::Create(BB);
4918     return false;
4919   }
4920 
4921   if (Op0->getType() != Type::getInt1Ty(Context))
4922     return Error(Loc, "branch condition must have 'i1' type");
4923 
4924   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4925       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4926       ParseToken(lltok::comma, "expected ',' after true destination") ||
4927       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4928     return true;
4929 
4930   Inst = BranchInst::Create(Op1, Op2, Op0);
4931   return false;
4932 }
4933 
4934 /// ParseSwitch
4935 ///  Instruction
4936 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4937 ///  JumpTable
4938 ///    ::= (TypeAndValue ',' TypeAndValue)*
4939 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4940   LocTy CondLoc, BBLoc;
4941   Value *Cond;
4942   BasicBlock *DefaultBB;
4943   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4944       ParseToken(lltok::comma, "expected ',' after switch condition") ||
4945       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4946       ParseToken(lltok::lsquare, "expected '[' with switch table"))
4947     return true;
4948 
4949   if (!Cond->getType()->isIntegerTy())
4950     return Error(CondLoc, "switch condition must have integer type");
4951 
4952   // Parse the jump table pairs.
4953   SmallPtrSet<Value*, 32> SeenCases;
4954   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4955   while (Lex.getKind() != lltok::rsquare) {
4956     Value *Constant;
4957     BasicBlock *DestBB;
4958 
4959     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4960         ParseToken(lltok::comma, "expected ',' after case value") ||
4961         ParseTypeAndBasicBlock(DestBB, PFS))
4962       return true;
4963 
4964     if (!SeenCases.insert(Constant).second)
4965       return Error(CondLoc, "duplicate case value in switch");
4966     if (!isa<ConstantInt>(Constant))
4967       return Error(CondLoc, "case value is not a constant integer");
4968 
4969     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4970   }
4971 
4972   Lex.Lex();  // Eat the ']'.
4973 
4974   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4975   for (unsigned i = 0, e = Table.size(); i != e; ++i)
4976     SI->addCase(Table[i].first, Table[i].second);
4977   Inst = SI;
4978   return false;
4979 }
4980 
4981 /// ParseIndirectBr
4982 ///  Instruction
4983 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
4984 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4985   LocTy AddrLoc;
4986   Value *Address;
4987   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4988       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4989       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4990     return true;
4991 
4992   if (!Address->getType()->isPointerTy())
4993     return Error(AddrLoc, "indirectbr address must have pointer type");
4994 
4995   // Parse the destination list.
4996   SmallVector<BasicBlock*, 16> DestList;
4997 
4998   if (Lex.getKind() != lltok::rsquare) {
4999     BasicBlock *DestBB;
5000     if (ParseTypeAndBasicBlock(DestBB, PFS))
5001       return true;
5002     DestList.push_back(DestBB);
5003 
5004     while (EatIfPresent(lltok::comma)) {
5005       if (ParseTypeAndBasicBlock(DestBB, PFS))
5006         return true;
5007       DestList.push_back(DestBB);
5008     }
5009   }
5010 
5011   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5012     return true;
5013 
5014   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5015   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5016     IBI->addDestination(DestList[i]);
5017   Inst = IBI;
5018   return false;
5019 }
5020 
5021 
5022 /// ParseInvoke
5023 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5024 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5025 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5026   LocTy CallLoc = Lex.getLoc();
5027   AttrBuilder RetAttrs, FnAttrs;
5028   std::vector<unsigned> FwdRefAttrGrps;
5029   LocTy NoBuiltinLoc;
5030   unsigned CC;
5031   Type *RetType = nullptr;
5032   LocTy RetTypeLoc;
5033   ValID CalleeID;
5034   SmallVector<ParamInfo, 16> ArgList;
5035   SmallVector<OperandBundleDef, 2> BundleList;
5036 
5037   BasicBlock *NormalBB, *UnwindBB;
5038   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5039       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5040       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5041       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5042                                  NoBuiltinLoc) ||
5043       ParseOptionalOperandBundles(BundleList, PFS) ||
5044       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5045       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5046       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5047       ParseTypeAndBasicBlock(UnwindBB, PFS))
5048     return true;
5049 
5050   // If RetType is a non-function pointer type, then this is the short syntax
5051   // for the call, which means that RetType is just the return type.  Infer the
5052   // rest of the function argument types from the arguments that are present.
5053   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5054   if (!Ty) {
5055     // Pull out the types of all of the arguments...
5056     std::vector<Type*> ParamTypes;
5057     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5058       ParamTypes.push_back(ArgList[i].V->getType());
5059 
5060     if (!FunctionType::isValidReturnType(RetType))
5061       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5062 
5063     Ty = FunctionType::get(RetType, ParamTypes, false);
5064   }
5065 
5066   CalleeID.FTy = Ty;
5067 
5068   // Look up the callee.
5069   Value *Callee;
5070   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5071     return true;
5072 
5073   // Set up the Attribute for the function.
5074   SmallVector<AttributeSet, 8> Attrs;
5075   if (RetAttrs.hasAttributes())
5076     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5077                                       AttributeSet::ReturnIndex,
5078                                       RetAttrs));
5079 
5080   SmallVector<Value*, 8> Args;
5081 
5082   // Loop through FunctionType's arguments and ensure they are specified
5083   // correctly.  Also, gather any parameter attributes.
5084   FunctionType::param_iterator I = Ty->param_begin();
5085   FunctionType::param_iterator E = Ty->param_end();
5086   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5087     Type *ExpectedTy = nullptr;
5088     if (I != E) {
5089       ExpectedTy = *I++;
5090     } else if (!Ty->isVarArg()) {
5091       return Error(ArgList[i].Loc, "too many arguments specified");
5092     }
5093 
5094     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5095       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5096                    getTypeString(ExpectedTy) + "'");
5097     Args.push_back(ArgList[i].V);
5098     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5099       AttrBuilder B(ArgList[i].Attrs, i + 1);
5100       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5101     }
5102   }
5103 
5104   if (I != E)
5105     return Error(CallLoc, "not enough parameters specified for call");
5106 
5107   if (FnAttrs.hasAttributes()) {
5108     if (FnAttrs.hasAlignmentAttr())
5109       return Error(CallLoc, "invoke instructions may not have an alignment");
5110 
5111     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5112                                       AttributeSet::FunctionIndex,
5113                                       FnAttrs));
5114   }
5115 
5116   // Finish off the Attribute and check them
5117   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5118 
5119   InvokeInst *II =
5120       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5121   II->setCallingConv(CC);
5122   II->setAttributes(PAL);
5123   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5124   Inst = II;
5125   return false;
5126 }
5127 
5128 /// ParseResume
5129 ///   ::= 'resume' TypeAndValue
5130 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5131   Value *Exn; LocTy ExnLoc;
5132   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5133     return true;
5134 
5135   ResumeInst *RI = ResumeInst::Create(Exn);
5136   Inst = RI;
5137   return false;
5138 }
5139 
5140 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5141                                   PerFunctionState &PFS) {
5142   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5143     return true;
5144 
5145   while (Lex.getKind() != lltok::rsquare) {
5146     // If this isn't the first argument, we need a comma.
5147     if (!Args.empty() &&
5148         ParseToken(lltok::comma, "expected ',' in argument list"))
5149       return true;
5150 
5151     // Parse the argument.
5152     LocTy ArgLoc;
5153     Type *ArgTy = nullptr;
5154     if (ParseType(ArgTy, ArgLoc))
5155       return true;
5156 
5157     Value *V;
5158     if (ArgTy->isMetadataTy()) {
5159       if (ParseMetadataAsValue(V, PFS))
5160         return true;
5161     } else {
5162       if (ParseValue(ArgTy, V, PFS))
5163         return true;
5164     }
5165     Args.push_back(V);
5166   }
5167 
5168   Lex.Lex();  // Lex the ']'.
5169   return false;
5170 }
5171 
5172 /// ParseCleanupRet
5173 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5174 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5175   Value *CleanupPad = nullptr;
5176 
5177   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5178     return true;
5179 
5180   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5181     return true;
5182 
5183   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5184     return true;
5185 
5186   BasicBlock *UnwindBB = nullptr;
5187   if (Lex.getKind() == lltok::kw_to) {
5188     Lex.Lex();
5189     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5190       return true;
5191   } else {
5192     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5193       return true;
5194     }
5195   }
5196 
5197   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5198   return false;
5199 }
5200 
5201 /// ParseCatchRet
5202 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5203 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5204   Value *CatchPad = nullptr;
5205 
5206   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5207     return true;
5208 
5209   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5210     return true;
5211 
5212   BasicBlock *BB;
5213   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5214       ParseTypeAndBasicBlock(BB, PFS))
5215       return true;
5216 
5217   Inst = CatchReturnInst::Create(CatchPad, BB);
5218   return false;
5219 }
5220 
5221 /// ParseCatchSwitch
5222 ///   ::= 'catchswitch' within Parent
5223 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5224   Value *ParentPad;
5225   LocTy BBLoc;
5226 
5227   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5228     return true;
5229 
5230   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5231       Lex.getKind() != lltok::LocalVarID)
5232     return TokError("expected scope value for catchswitch");
5233 
5234   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5235     return true;
5236 
5237   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5238     return true;
5239 
5240   SmallVector<BasicBlock *, 32> Table;
5241   do {
5242     BasicBlock *DestBB;
5243     if (ParseTypeAndBasicBlock(DestBB, PFS))
5244       return true;
5245     Table.push_back(DestBB);
5246   } while (EatIfPresent(lltok::comma));
5247 
5248   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5249     return true;
5250 
5251   if (ParseToken(lltok::kw_unwind,
5252                  "expected 'unwind' after catchswitch scope"))
5253     return true;
5254 
5255   BasicBlock *UnwindBB = nullptr;
5256   if (EatIfPresent(lltok::kw_to)) {
5257     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5258       return true;
5259   } else {
5260     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5261       return true;
5262   }
5263 
5264   auto *CatchSwitch =
5265       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5266   for (BasicBlock *DestBB : Table)
5267     CatchSwitch->addHandler(DestBB);
5268   Inst = CatchSwitch;
5269   return false;
5270 }
5271 
5272 /// ParseCatchPad
5273 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5274 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5275   Value *CatchSwitch = nullptr;
5276 
5277   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5278     return true;
5279 
5280   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5281     return TokError("expected scope value for catchpad");
5282 
5283   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5284     return true;
5285 
5286   SmallVector<Value *, 8> Args;
5287   if (ParseExceptionArgs(Args, PFS))
5288     return true;
5289 
5290   Inst = CatchPadInst::Create(CatchSwitch, Args);
5291   return false;
5292 }
5293 
5294 /// ParseCleanupPad
5295 ///   ::= 'cleanuppad' within Parent ParamList
5296 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5297   Value *ParentPad = nullptr;
5298 
5299   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5300     return true;
5301 
5302   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5303       Lex.getKind() != lltok::LocalVarID)
5304     return TokError("expected scope value for cleanuppad");
5305 
5306   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5307     return true;
5308 
5309   SmallVector<Value *, 8> Args;
5310   if (ParseExceptionArgs(Args, PFS))
5311     return true;
5312 
5313   Inst = CleanupPadInst::Create(ParentPad, Args);
5314   return false;
5315 }
5316 
5317 //===----------------------------------------------------------------------===//
5318 // Binary Operators.
5319 //===----------------------------------------------------------------------===//
5320 
5321 /// ParseArithmetic
5322 ///  ::= ArithmeticOps TypeAndValue ',' Value
5323 ///
5324 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5325 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5326 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5327                                unsigned Opc, unsigned OperandType) {
5328   LocTy Loc; Value *LHS, *RHS;
5329   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5330       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5331       ParseValue(LHS->getType(), RHS, PFS))
5332     return true;
5333 
5334   bool Valid;
5335   switch (OperandType) {
5336   default: llvm_unreachable("Unknown operand type!");
5337   case 0: // int or FP.
5338     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5339             LHS->getType()->isFPOrFPVectorTy();
5340     break;
5341   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5342   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5343   }
5344 
5345   if (!Valid)
5346     return Error(Loc, "invalid operand type for instruction");
5347 
5348   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5349   return false;
5350 }
5351 
5352 /// ParseLogical
5353 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5354 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5355                             unsigned Opc) {
5356   LocTy Loc; Value *LHS, *RHS;
5357   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5358       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5359       ParseValue(LHS->getType(), RHS, PFS))
5360     return true;
5361 
5362   if (!LHS->getType()->isIntOrIntVectorTy())
5363     return Error(Loc,"instruction requires integer or integer vector operands");
5364 
5365   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5366   return false;
5367 }
5368 
5369 
5370 /// ParseCompare
5371 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5372 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5373 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5374                             unsigned Opc) {
5375   // Parse the integer/fp comparison predicate.
5376   LocTy Loc;
5377   unsigned Pred;
5378   Value *LHS, *RHS;
5379   if (ParseCmpPredicate(Pred, Opc) ||
5380       ParseTypeAndValue(LHS, Loc, PFS) ||
5381       ParseToken(lltok::comma, "expected ',' after compare value") ||
5382       ParseValue(LHS->getType(), RHS, PFS))
5383     return true;
5384 
5385   if (Opc == Instruction::FCmp) {
5386     if (!LHS->getType()->isFPOrFPVectorTy())
5387       return Error(Loc, "fcmp requires floating point operands");
5388     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5389   } else {
5390     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5391     if (!LHS->getType()->isIntOrIntVectorTy() &&
5392         !LHS->getType()->getScalarType()->isPointerTy())
5393       return Error(Loc, "icmp requires integer operands");
5394     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5395   }
5396   return false;
5397 }
5398 
5399 //===----------------------------------------------------------------------===//
5400 // Other Instructions.
5401 //===----------------------------------------------------------------------===//
5402 
5403 
5404 /// ParseCast
5405 ///   ::= CastOpc TypeAndValue 'to' Type
5406 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5407                          unsigned Opc) {
5408   LocTy Loc;
5409   Value *Op;
5410   Type *DestTy = nullptr;
5411   if (ParseTypeAndValue(Op, Loc, PFS) ||
5412       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5413       ParseType(DestTy))
5414     return true;
5415 
5416   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5417     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5418     return Error(Loc, "invalid cast opcode for cast from '" +
5419                  getTypeString(Op->getType()) + "' to '" +
5420                  getTypeString(DestTy) + "'");
5421   }
5422   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5423   return false;
5424 }
5425 
5426 /// ParseSelect
5427 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5428 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5429   LocTy Loc;
5430   Value *Op0, *Op1, *Op2;
5431   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5432       ParseToken(lltok::comma, "expected ',' after select condition") ||
5433       ParseTypeAndValue(Op1, PFS) ||
5434       ParseToken(lltok::comma, "expected ',' after select value") ||
5435       ParseTypeAndValue(Op2, PFS))
5436     return true;
5437 
5438   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5439     return Error(Loc, Reason);
5440 
5441   Inst = SelectInst::Create(Op0, Op1, Op2);
5442   return false;
5443 }
5444 
5445 /// ParseVA_Arg
5446 ///   ::= 'va_arg' TypeAndValue ',' Type
5447 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5448   Value *Op;
5449   Type *EltTy = nullptr;
5450   LocTy TypeLoc;
5451   if (ParseTypeAndValue(Op, PFS) ||
5452       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5453       ParseType(EltTy, TypeLoc))
5454     return true;
5455 
5456   if (!EltTy->isFirstClassType())
5457     return Error(TypeLoc, "va_arg requires operand with first class type");
5458 
5459   Inst = new VAArgInst(Op, EltTy);
5460   return false;
5461 }
5462 
5463 /// ParseExtractElement
5464 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5465 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5466   LocTy Loc;
5467   Value *Op0, *Op1;
5468   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5469       ParseToken(lltok::comma, "expected ',' after extract value") ||
5470       ParseTypeAndValue(Op1, PFS))
5471     return true;
5472 
5473   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5474     return Error(Loc, "invalid extractelement operands");
5475 
5476   Inst = ExtractElementInst::Create(Op0, Op1);
5477   return false;
5478 }
5479 
5480 /// ParseInsertElement
5481 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5482 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5483   LocTy Loc;
5484   Value *Op0, *Op1, *Op2;
5485   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5486       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5487       ParseTypeAndValue(Op1, PFS) ||
5488       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5489       ParseTypeAndValue(Op2, PFS))
5490     return true;
5491 
5492   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5493     return Error(Loc, "invalid insertelement operands");
5494 
5495   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5496   return false;
5497 }
5498 
5499 /// ParseShuffleVector
5500 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5501 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5502   LocTy Loc;
5503   Value *Op0, *Op1, *Op2;
5504   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5505       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5506       ParseTypeAndValue(Op1, PFS) ||
5507       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5508       ParseTypeAndValue(Op2, PFS))
5509     return true;
5510 
5511   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5512     return Error(Loc, "invalid shufflevector operands");
5513 
5514   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5515   return false;
5516 }
5517 
5518 /// ParsePHI
5519 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5520 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5521   Type *Ty = nullptr;  LocTy TypeLoc;
5522   Value *Op0, *Op1;
5523 
5524   if (ParseType(Ty, TypeLoc) ||
5525       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5526       ParseValue(Ty, Op0, PFS) ||
5527       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5528       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5529       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5530     return true;
5531 
5532   bool AteExtraComma = false;
5533   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5534   while (1) {
5535     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5536 
5537     if (!EatIfPresent(lltok::comma))
5538       break;
5539 
5540     if (Lex.getKind() == lltok::MetadataVar) {
5541       AteExtraComma = true;
5542       break;
5543     }
5544 
5545     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5546         ParseValue(Ty, Op0, PFS) ||
5547         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5548         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5549         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5550       return true;
5551   }
5552 
5553   if (!Ty->isFirstClassType())
5554     return Error(TypeLoc, "phi node must have first class type");
5555 
5556   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5557   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5558     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5559   Inst = PN;
5560   return AteExtraComma ? InstExtraComma : InstNormal;
5561 }
5562 
5563 /// ParseLandingPad
5564 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5565 /// Clause
5566 ///   ::= 'catch' TypeAndValue
5567 ///   ::= 'filter'
5568 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5569 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5570   Type *Ty = nullptr; LocTy TyLoc;
5571 
5572   if (ParseType(Ty, TyLoc))
5573     return true;
5574 
5575   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5576   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5577 
5578   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5579     LandingPadInst::ClauseType CT;
5580     if (EatIfPresent(lltok::kw_catch))
5581       CT = LandingPadInst::Catch;
5582     else if (EatIfPresent(lltok::kw_filter))
5583       CT = LandingPadInst::Filter;
5584     else
5585       return TokError("expected 'catch' or 'filter' clause type");
5586 
5587     Value *V;
5588     LocTy VLoc;
5589     if (ParseTypeAndValue(V, VLoc, PFS))
5590       return true;
5591 
5592     // A 'catch' type expects a non-array constant. A filter clause expects an
5593     // array constant.
5594     if (CT == LandingPadInst::Catch) {
5595       if (isa<ArrayType>(V->getType()))
5596         Error(VLoc, "'catch' clause has an invalid type");
5597     } else {
5598       if (!isa<ArrayType>(V->getType()))
5599         Error(VLoc, "'filter' clause has an invalid type");
5600     }
5601 
5602     Constant *CV = dyn_cast<Constant>(V);
5603     if (!CV)
5604       return Error(VLoc, "clause argument must be a constant");
5605     LP->addClause(CV);
5606   }
5607 
5608   Inst = LP.release();
5609   return false;
5610 }
5611 
5612 /// ParseCall
5613 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5614 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5615 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5616 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5617 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5618 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5619 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5620 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5621 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5622                          CallInst::TailCallKind TCK) {
5623   AttrBuilder RetAttrs, FnAttrs;
5624   std::vector<unsigned> FwdRefAttrGrps;
5625   LocTy BuiltinLoc;
5626   unsigned CC;
5627   Type *RetType = nullptr;
5628   LocTy RetTypeLoc;
5629   ValID CalleeID;
5630   SmallVector<ParamInfo, 16> ArgList;
5631   SmallVector<OperandBundleDef, 2> BundleList;
5632   LocTy CallLoc = Lex.getLoc();
5633 
5634   if (TCK != CallInst::TCK_None &&
5635       ParseToken(lltok::kw_call,
5636                  "expected 'tail call', 'musttail call', or 'notail call'"))
5637     return true;
5638 
5639   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5640 
5641   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5642       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5643       ParseValID(CalleeID) ||
5644       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5645                          PFS.getFunction().isVarArg()) ||
5646       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5647       ParseOptionalOperandBundles(BundleList, PFS))
5648     return true;
5649 
5650   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5651     return Error(CallLoc, "fast-math-flags specified for call without "
5652                           "floating-point scalar or vector return type");
5653 
5654   // If RetType is a non-function pointer type, then this is the short syntax
5655   // for the call, which means that RetType is just the return type.  Infer the
5656   // rest of the function argument types from the arguments that are present.
5657   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5658   if (!Ty) {
5659     // Pull out the types of all of the arguments...
5660     std::vector<Type*> ParamTypes;
5661     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5662       ParamTypes.push_back(ArgList[i].V->getType());
5663 
5664     if (!FunctionType::isValidReturnType(RetType))
5665       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5666 
5667     Ty = FunctionType::get(RetType, ParamTypes, false);
5668   }
5669 
5670   CalleeID.FTy = Ty;
5671 
5672   // Look up the callee.
5673   Value *Callee;
5674   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5675     return true;
5676 
5677   // Set up the Attribute for the function.
5678   SmallVector<AttributeSet, 8> Attrs;
5679   if (RetAttrs.hasAttributes())
5680     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5681                                       AttributeSet::ReturnIndex,
5682                                       RetAttrs));
5683 
5684   SmallVector<Value*, 8> Args;
5685 
5686   // Loop through FunctionType's arguments and ensure they are specified
5687   // correctly.  Also, gather any parameter attributes.
5688   FunctionType::param_iterator I = Ty->param_begin();
5689   FunctionType::param_iterator E = Ty->param_end();
5690   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5691     Type *ExpectedTy = nullptr;
5692     if (I != E) {
5693       ExpectedTy = *I++;
5694     } else if (!Ty->isVarArg()) {
5695       return Error(ArgList[i].Loc, "too many arguments specified");
5696     }
5697 
5698     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5699       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5700                    getTypeString(ExpectedTy) + "'");
5701     Args.push_back(ArgList[i].V);
5702     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5703       AttrBuilder B(ArgList[i].Attrs, i + 1);
5704       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5705     }
5706   }
5707 
5708   if (I != E)
5709     return Error(CallLoc, "not enough parameters specified for call");
5710 
5711   if (FnAttrs.hasAttributes()) {
5712     if (FnAttrs.hasAlignmentAttr())
5713       return Error(CallLoc, "call instructions may not have an alignment");
5714 
5715     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5716                                       AttributeSet::FunctionIndex,
5717                                       FnAttrs));
5718   }
5719 
5720   // Finish off the Attribute and check them
5721   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5722 
5723   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5724   CI->setTailCallKind(TCK);
5725   CI->setCallingConv(CC);
5726   if (FMF.any())
5727     CI->setFastMathFlags(FMF);
5728   CI->setAttributes(PAL);
5729   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5730   Inst = CI;
5731   return false;
5732 }
5733 
5734 //===----------------------------------------------------------------------===//
5735 // Memory Instructions.
5736 //===----------------------------------------------------------------------===//
5737 
5738 /// ParseAlloc
5739 ///   ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
5740 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5741   Value *Size = nullptr;
5742   LocTy SizeLoc, TyLoc;
5743   unsigned Alignment = 0;
5744   Type *Ty = nullptr;
5745 
5746   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5747 
5748   if (ParseType(Ty, TyLoc)) return true;
5749 
5750   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5751     return Error(TyLoc, "invalid type for alloca");
5752 
5753   bool AteExtraComma = false;
5754   if (EatIfPresent(lltok::comma)) {
5755     if (Lex.getKind() == lltok::kw_align) {
5756       if (ParseOptionalAlignment(Alignment)) return true;
5757     } else if (Lex.getKind() == lltok::MetadataVar) {
5758       AteExtraComma = true;
5759     } else {
5760       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5761           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5762         return true;
5763     }
5764   }
5765 
5766   if (Size && !Size->getType()->isIntegerTy())
5767     return Error(SizeLoc, "element count must have integer type");
5768 
5769   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5770   AI->setUsedWithInAlloca(IsInAlloca);
5771   Inst = AI;
5772   return AteExtraComma ? InstExtraComma : InstNormal;
5773 }
5774 
5775 /// ParseLoad
5776 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5777 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5778 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5779 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5780   Value *Val; LocTy Loc;
5781   unsigned Alignment = 0;
5782   bool AteExtraComma = false;
5783   bool isAtomic = false;
5784   AtomicOrdering Ordering = NotAtomic;
5785   SynchronizationScope Scope = CrossThread;
5786 
5787   if (Lex.getKind() == lltok::kw_atomic) {
5788     isAtomic = true;
5789     Lex.Lex();
5790   }
5791 
5792   bool isVolatile = false;
5793   if (Lex.getKind() == lltok::kw_volatile) {
5794     isVolatile = true;
5795     Lex.Lex();
5796   }
5797 
5798   Type *Ty;
5799   LocTy ExplicitTypeLoc = Lex.getLoc();
5800   if (ParseType(Ty) ||
5801       ParseToken(lltok::comma, "expected comma after load's type") ||
5802       ParseTypeAndValue(Val, Loc, PFS) ||
5803       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5804       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5805     return true;
5806 
5807   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5808     return Error(Loc, "load operand must be a pointer to a first class type");
5809   if (isAtomic && !Alignment)
5810     return Error(Loc, "atomic load must have explicit non-zero alignment");
5811   if (Ordering == Release || Ordering == AcquireRelease)
5812     return Error(Loc, "atomic load cannot use Release ordering");
5813 
5814   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5815     return Error(ExplicitTypeLoc,
5816                  "explicit pointee type doesn't match operand's pointee type");
5817 
5818   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5819   return AteExtraComma ? InstExtraComma : InstNormal;
5820 }
5821 
5822 /// ParseStore
5823 
5824 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5825 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5826 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5827 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5828   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5829   unsigned Alignment = 0;
5830   bool AteExtraComma = false;
5831   bool isAtomic = false;
5832   AtomicOrdering Ordering = NotAtomic;
5833   SynchronizationScope Scope = CrossThread;
5834 
5835   if (Lex.getKind() == lltok::kw_atomic) {
5836     isAtomic = true;
5837     Lex.Lex();
5838   }
5839 
5840   bool isVolatile = false;
5841   if (Lex.getKind() == lltok::kw_volatile) {
5842     isVolatile = true;
5843     Lex.Lex();
5844   }
5845 
5846   if (ParseTypeAndValue(Val, Loc, PFS) ||
5847       ParseToken(lltok::comma, "expected ',' after store operand") ||
5848       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5849       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5850       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5851     return true;
5852 
5853   if (!Ptr->getType()->isPointerTy())
5854     return Error(PtrLoc, "store operand must be a pointer");
5855   if (!Val->getType()->isFirstClassType())
5856     return Error(Loc, "store operand must be a first class value");
5857   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5858     return Error(Loc, "stored value and pointer type do not match");
5859   if (isAtomic && !Alignment)
5860     return Error(Loc, "atomic store must have explicit non-zero alignment");
5861   if (Ordering == Acquire || Ordering == AcquireRelease)
5862     return Error(Loc, "atomic store cannot use Acquire ordering");
5863 
5864   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5865   return AteExtraComma ? InstExtraComma : InstNormal;
5866 }
5867 
5868 /// ParseCmpXchg
5869 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5870 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5871 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5872   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5873   bool AteExtraComma = false;
5874   AtomicOrdering SuccessOrdering = NotAtomic;
5875   AtomicOrdering FailureOrdering = NotAtomic;
5876   SynchronizationScope Scope = CrossThread;
5877   bool isVolatile = false;
5878   bool isWeak = false;
5879 
5880   if (EatIfPresent(lltok::kw_weak))
5881     isWeak = true;
5882 
5883   if (EatIfPresent(lltok::kw_volatile))
5884     isVolatile = true;
5885 
5886   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5887       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5888       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5889       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5890       ParseTypeAndValue(New, NewLoc, PFS) ||
5891       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5892       ParseOrdering(FailureOrdering))
5893     return true;
5894 
5895   if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5896     return TokError("cmpxchg cannot be unordered");
5897   if (SuccessOrdering < FailureOrdering)
5898     return TokError("cmpxchg must be at least as ordered on success as failure");
5899   if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5900     return TokError("cmpxchg failure ordering cannot include release semantics");
5901   if (!Ptr->getType()->isPointerTy())
5902     return Error(PtrLoc, "cmpxchg operand must be a pointer");
5903   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5904     return Error(CmpLoc, "compare value and pointer type do not match");
5905   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5906     return Error(NewLoc, "new value and pointer type do not match");
5907   if (!New->getType()->isFirstClassType())
5908     return Error(NewLoc, "cmpxchg operand must be a first class value");
5909   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5910       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5911   CXI->setVolatile(isVolatile);
5912   CXI->setWeak(isWeak);
5913   Inst = CXI;
5914   return AteExtraComma ? InstExtraComma : InstNormal;
5915 }
5916 
5917 /// ParseAtomicRMW
5918 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5919 ///       'singlethread'? AtomicOrdering
5920 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5921   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5922   bool AteExtraComma = false;
5923   AtomicOrdering Ordering = NotAtomic;
5924   SynchronizationScope Scope = CrossThread;
5925   bool isVolatile = false;
5926   AtomicRMWInst::BinOp Operation;
5927 
5928   if (EatIfPresent(lltok::kw_volatile))
5929     isVolatile = true;
5930 
5931   switch (Lex.getKind()) {
5932   default: return TokError("expected binary operation in atomicrmw");
5933   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5934   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5935   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5936   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5937   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5938   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5939   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5940   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5941   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5942   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5943   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5944   }
5945   Lex.Lex();  // Eat the operation.
5946 
5947   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5948       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5949       ParseTypeAndValue(Val, ValLoc, PFS) ||
5950       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5951     return true;
5952 
5953   if (Ordering == Unordered)
5954     return TokError("atomicrmw cannot be unordered");
5955   if (!Ptr->getType()->isPointerTy())
5956     return Error(PtrLoc, "atomicrmw operand must be a pointer");
5957   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5958     return Error(ValLoc, "atomicrmw value and pointer type do not match");
5959   if (!Val->getType()->isIntegerTy())
5960     return Error(ValLoc, "atomicrmw operand must be an integer");
5961   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5962   if (Size < 8 || (Size & (Size - 1)))
5963     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5964                          " integer");
5965 
5966   AtomicRMWInst *RMWI =
5967     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5968   RMWI->setVolatile(isVolatile);
5969   Inst = RMWI;
5970   return AteExtraComma ? InstExtraComma : InstNormal;
5971 }
5972 
5973 /// ParseFence
5974 ///   ::= 'fence' 'singlethread'? AtomicOrdering
5975 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5976   AtomicOrdering Ordering = NotAtomic;
5977   SynchronizationScope Scope = CrossThread;
5978   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5979     return true;
5980 
5981   if (Ordering == Unordered)
5982     return TokError("fence cannot be unordered");
5983   if (Ordering == Monotonic)
5984     return TokError("fence cannot be monotonic");
5985 
5986   Inst = new FenceInst(Context, Ordering, Scope);
5987   return InstNormal;
5988 }
5989 
5990 /// ParseGetElementPtr
5991 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
5992 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5993   Value *Ptr = nullptr;
5994   Value *Val = nullptr;
5995   LocTy Loc, EltLoc;
5996 
5997   bool InBounds = EatIfPresent(lltok::kw_inbounds);
5998 
5999   Type *Ty = nullptr;
6000   LocTy ExplicitTypeLoc = Lex.getLoc();
6001   if (ParseType(Ty) ||
6002       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6003       ParseTypeAndValue(Ptr, Loc, PFS))
6004     return true;
6005 
6006   Type *BaseType = Ptr->getType();
6007   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6008   if (!BasePointerType)
6009     return Error(Loc, "base of getelementptr must be a pointer");
6010 
6011   if (Ty != BasePointerType->getElementType())
6012     return Error(ExplicitTypeLoc,
6013                  "explicit pointee type doesn't match operand's pointee type");
6014 
6015   SmallVector<Value*, 16> Indices;
6016   bool AteExtraComma = false;
6017   // GEP returns a vector of pointers if at least one of parameters is a vector.
6018   // All vector parameters should have the same vector width.
6019   unsigned GEPWidth = BaseType->isVectorTy() ?
6020     BaseType->getVectorNumElements() : 0;
6021 
6022   while (EatIfPresent(lltok::comma)) {
6023     if (Lex.getKind() == lltok::MetadataVar) {
6024       AteExtraComma = true;
6025       break;
6026     }
6027     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6028     if (!Val->getType()->getScalarType()->isIntegerTy())
6029       return Error(EltLoc, "getelementptr index must be an integer");
6030 
6031     if (Val->getType()->isVectorTy()) {
6032       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6033       if (GEPWidth && GEPWidth != ValNumEl)
6034         return Error(EltLoc,
6035           "getelementptr vector index has a wrong number of elements");
6036       GEPWidth = ValNumEl;
6037     }
6038     Indices.push_back(Val);
6039   }
6040 
6041   SmallPtrSet<Type*, 4> Visited;
6042   if (!Indices.empty() && !Ty->isSized(&Visited))
6043     return Error(Loc, "base element of getelementptr must be sized");
6044 
6045   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6046     return Error(Loc, "invalid getelementptr indices");
6047   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6048   if (InBounds)
6049     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6050   return AteExtraComma ? InstExtraComma : InstNormal;
6051 }
6052 
6053 /// ParseExtractValue
6054 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6055 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6056   Value *Val; LocTy Loc;
6057   SmallVector<unsigned, 4> Indices;
6058   bool AteExtraComma;
6059   if (ParseTypeAndValue(Val, Loc, PFS) ||
6060       ParseIndexList(Indices, AteExtraComma))
6061     return true;
6062 
6063   if (!Val->getType()->isAggregateType())
6064     return Error(Loc, "extractvalue operand must be aggregate type");
6065 
6066   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6067     return Error(Loc, "invalid indices for extractvalue");
6068   Inst = ExtractValueInst::Create(Val, Indices);
6069   return AteExtraComma ? InstExtraComma : InstNormal;
6070 }
6071 
6072 /// ParseInsertValue
6073 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6074 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6075   Value *Val0, *Val1; LocTy Loc0, Loc1;
6076   SmallVector<unsigned, 4> Indices;
6077   bool AteExtraComma;
6078   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6079       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6080       ParseTypeAndValue(Val1, Loc1, PFS) ||
6081       ParseIndexList(Indices, AteExtraComma))
6082     return true;
6083 
6084   if (!Val0->getType()->isAggregateType())
6085     return Error(Loc0, "insertvalue operand must be aggregate type");
6086 
6087   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6088   if (!IndexedType)
6089     return Error(Loc0, "invalid indices for insertvalue");
6090   if (IndexedType != Val1->getType())
6091     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6092                            getTypeString(Val1->getType()) + "' instead of '" +
6093                            getTypeString(IndexedType) + "'");
6094   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6095   return AteExtraComma ? InstExtraComma : InstNormal;
6096 }
6097 
6098 //===----------------------------------------------------------------------===//
6099 // Embedded metadata.
6100 //===----------------------------------------------------------------------===//
6101 
6102 /// ParseMDNodeVector
6103 ///   ::= { Element (',' Element)* }
6104 /// Element
6105 ///   ::= 'null' | TypeAndValue
6106 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6107   if (ParseToken(lltok::lbrace, "expected '{' here"))
6108     return true;
6109 
6110   // Check for an empty list.
6111   if (EatIfPresent(lltok::rbrace))
6112     return false;
6113 
6114   do {
6115     // Null is a special case since it is typeless.
6116     if (EatIfPresent(lltok::kw_null)) {
6117       Elts.push_back(nullptr);
6118       continue;
6119     }
6120 
6121     Metadata *MD;
6122     if (ParseMetadata(MD, nullptr))
6123       return true;
6124     Elts.push_back(MD);
6125   } while (EatIfPresent(lltok::comma));
6126 
6127   return ParseToken(lltok::rbrace, "expected end of metadata node");
6128 }
6129 
6130 //===----------------------------------------------------------------------===//
6131 // Use-list order directives.
6132 //===----------------------------------------------------------------------===//
6133 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6134                                 SMLoc Loc) {
6135   if (V->use_empty())
6136     return Error(Loc, "value has no uses");
6137 
6138   unsigned NumUses = 0;
6139   SmallDenseMap<const Use *, unsigned, 16> Order;
6140   for (const Use &U : V->uses()) {
6141     if (++NumUses > Indexes.size())
6142       break;
6143     Order[&U] = Indexes[NumUses - 1];
6144   }
6145   if (NumUses < 2)
6146     return Error(Loc, "value only has one use");
6147   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6148     return Error(Loc, "wrong number of indexes, expected " +
6149                           Twine(std::distance(V->use_begin(), V->use_end())));
6150 
6151   V->sortUseList([&](const Use &L, const Use &R) {
6152     return Order.lookup(&L) < Order.lookup(&R);
6153   });
6154   return false;
6155 }
6156 
6157 /// ParseUseListOrderIndexes
6158 ///   ::= '{' uint32 (',' uint32)+ '}'
6159 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6160   SMLoc Loc = Lex.getLoc();
6161   if (ParseToken(lltok::lbrace, "expected '{' here"))
6162     return true;
6163   if (Lex.getKind() == lltok::rbrace)
6164     return Lex.Error("expected non-empty list of uselistorder indexes");
6165 
6166   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6167   // indexes should be distinct numbers in the range [0, size-1], and should
6168   // not be in order.
6169   unsigned Offset = 0;
6170   unsigned Max = 0;
6171   bool IsOrdered = true;
6172   assert(Indexes.empty() && "Expected empty order vector");
6173   do {
6174     unsigned Index;
6175     if (ParseUInt32(Index))
6176       return true;
6177 
6178     // Update consistency checks.
6179     Offset += Index - Indexes.size();
6180     Max = std::max(Max, Index);
6181     IsOrdered &= Index == Indexes.size();
6182 
6183     Indexes.push_back(Index);
6184   } while (EatIfPresent(lltok::comma));
6185 
6186   if (ParseToken(lltok::rbrace, "expected '}' here"))
6187     return true;
6188 
6189   if (Indexes.size() < 2)
6190     return Error(Loc, "expected >= 2 uselistorder indexes");
6191   if (Offset != 0 || Max >= Indexes.size())
6192     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6193   if (IsOrdered)
6194     return Error(Loc, "expected uselistorder indexes to change the order");
6195 
6196   return false;
6197 }
6198 
6199 /// ParseUseListOrder
6200 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6201 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6202   SMLoc Loc = Lex.getLoc();
6203   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6204     return true;
6205 
6206   Value *V;
6207   SmallVector<unsigned, 16> Indexes;
6208   if (ParseTypeAndValue(V, PFS) ||
6209       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6210       ParseUseListOrderIndexes(Indexes))
6211     return true;
6212 
6213   return sortUseListOrder(V, Indexes, Loc);
6214 }
6215 
6216 /// ParseUseListOrderBB
6217 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6218 bool LLParser::ParseUseListOrderBB() {
6219   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6220   SMLoc Loc = Lex.getLoc();
6221   Lex.Lex();
6222 
6223   ValID Fn, Label;
6224   SmallVector<unsigned, 16> Indexes;
6225   if (ParseValID(Fn) ||
6226       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6227       ParseValID(Label) ||
6228       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6229       ParseUseListOrderIndexes(Indexes))
6230     return true;
6231 
6232   // Check the function.
6233   GlobalValue *GV;
6234   if (Fn.Kind == ValID::t_GlobalName)
6235     GV = M->getNamedValue(Fn.StrVal);
6236   else if (Fn.Kind == ValID::t_GlobalID)
6237     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6238   else
6239     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6240   if (!GV)
6241     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6242   auto *F = dyn_cast<Function>(GV);
6243   if (!F)
6244     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6245   if (F->isDeclaration())
6246     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6247 
6248   // Check the basic block.
6249   if (Label.Kind == ValID::t_LocalID)
6250     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6251   if (Label.Kind != ValID::t_LocalName)
6252     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6253   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6254   if (!V)
6255     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6256   if (!isa<BasicBlock>(V))
6257     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6258 
6259   return sortUseListOrder(V, Indexes, Loc);
6260 }
6261