1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   default:
836     result = Error(Lex.getLoc(), "unexpected summary kind");
837     break;
838   }
839   Lex.setIgnoreColonInIdentifiers(false);
840   return result;
841 }
842 
843 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
844   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
845          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
846 }
847 
848 // If there was an explicit dso_local, update GV. In the absence of an explicit
849 // dso_local we keep the default value.
850 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
851   if (DSOLocal)
852     GV.setDSOLocal(true);
853 }
854 
855 /// parseIndirectSymbol:
856 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
857 ///                     OptionalVisibility OptionalDLLStorageClass
858 ///                     OptionalThreadLocal OptionalUnnamedAddr
859 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
860 ///
861 /// IndirectSymbol
862 ///   ::= TypeAndValue
863 ///
864 /// IndirectSymbolAttr
865 ///   ::= ',' 'partition' StringConstant
866 ///
867 /// Everything through OptionalUnnamedAddr has already been parsed.
868 ///
869 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
870                                    unsigned L, unsigned Visibility,
871                                    unsigned DLLStorageClass, bool DSOLocal,
872                                    GlobalVariable::ThreadLocalMode TLM,
873                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
874   bool IsAlias;
875   if (Lex.getKind() == lltok::kw_alias)
876     IsAlias = true;
877   else if (Lex.getKind() == lltok::kw_ifunc)
878     IsAlias = false;
879   else
880     llvm_unreachable("Not an alias or ifunc!");
881   Lex.Lex();
882 
883   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
884 
885   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
886     return Error(NameLoc, "invalid linkage type for alias");
887 
888   if (!isValidVisibilityForLinkage(Visibility, L))
889     return Error(NameLoc,
890                  "symbol with local linkage must have default visibility");
891 
892   Type *Ty;
893   LocTy ExplicitTypeLoc = Lex.getLoc();
894   if (ParseType(Ty) ||
895       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
896     return true;
897 
898   Constant *Aliasee;
899   LocTy AliaseeLoc = Lex.getLoc();
900   if (Lex.getKind() != lltok::kw_bitcast &&
901       Lex.getKind() != lltok::kw_getelementptr &&
902       Lex.getKind() != lltok::kw_addrspacecast &&
903       Lex.getKind() != lltok::kw_inttoptr) {
904     if (ParseGlobalTypeAndValue(Aliasee))
905       return true;
906   } else {
907     // The bitcast dest type is not present, it is implied by the dest type.
908     ValID ID;
909     if (ParseValID(ID))
910       return true;
911     if (ID.Kind != ValID::t_Constant)
912       return Error(AliaseeLoc, "invalid aliasee");
913     Aliasee = ID.ConstantVal;
914   }
915 
916   Type *AliaseeType = Aliasee->getType();
917   auto *PTy = dyn_cast<PointerType>(AliaseeType);
918   if (!PTy)
919     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
920   unsigned AddrSpace = PTy->getAddressSpace();
921 
922   if (IsAlias && Ty != PTy->getElementType())
923     return Error(
924         ExplicitTypeLoc,
925         "explicit pointee type doesn't match operand's pointee type");
926 
927   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
928     return Error(
929         ExplicitTypeLoc,
930         "explicit pointee type should be a function type");
931 
932   GlobalValue *GVal = nullptr;
933 
934   // See if the alias was forward referenced, if so, prepare to replace the
935   // forward reference.
936   if (!Name.empty()) {
937     GVal = M->getNamedValue(Name);
938     if (GVal) {
939       if (!ForwardRefVals.erase(Name))
940         return Error(NameLoc, "redefinition of global '@" + Name + "'");
941     }
942   } else {
943     auto I = ForwardRefValIDs.find(NumberedVals.size());
944     if (I != ForwardRefValIDs.end()) {
945       GVal = I->second.first;
946       ForwardRefValIDs.erase(I);
947     }
948   }
949 
950   // Okay, create the alias but do not insert it into the module yet.
951   std::unique_ptr<GlobalIndirectSymbol> GA;
952   if (IsAlias)
953     GA.reset(GlobalAlias::create(Ty, AddrSpace,
954                                  (GlobalValue::LinkageTypes)Linkage, Name,
955                                  Aliasee, /*Parent*/ nullptr));
956   else
957     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
958                                  (GlobalValue::LinkageTypes)Linkage, Name,
959                                  Aliasee, /*Parent*/ nullptr));
960   GA->setThreadLocalMode(TLM);
961   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
962   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
963   GA->setUnnamedAddr(UnnamedAddr);
964   maybeSetDSOLocal(DSOLocal, *GA);
965 
966   // At this point we've parsed everything except for the IndirectSymbolAttrs.
967   // Now parse them if there are any.
968   while (Lex.getKind() == lltok::comma) {
969     Lex.Lex();
970 
971     if (Lex.getKind() == lltok::kw_partition) {
972       Lex.Lex();
973       GA->setPartition(Lex.getStrVal());
974       if (ParseToken(lltok::StringConstant, "expected partition string"))
975         return true;
976     } else {
977       return TokError("unknown alias or ifunc property!");
978     }
979   }
980 
981   if (Name.empty())
982     NumberedVals.push_back(GA.get());
983 
984   if (GVal) {
985     // Verify that types agree.
986     if (GVal->getType() != GA->getType())
987       return Error(
988           ExplicitTypeLoc,
989           "forward reference and definition of alias have different types");
990 
991     // If they agree, just RAUW the old value with the alias and remove the
992     // forward ref info.
993     GVal->replaceAllUsesWith(GA.get());
994     GVal->eraseFromParent();
995   }
996 
997   // Insert into the module, we know its name won't collide now.
998   if (IsAlias)
999     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1000   else
1001     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1002   assert(GA->getName() == Name && "Should not be a name conflict!");
1003 
1004   // The module owns this now
1005   GA.release();
1006 
1007   return false;
1008 }
1009 
1010 /// ParseGlobal
1011 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1012 ///       OptionalVisibility OptionalDLLStorageClass
1013 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1014 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1015 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1016 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1017 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1018 ///       Const OptionalAttrs
1019 ///
1020 /// Everything up to and including OptionalUnnamedAddr has been parsed
1021 /// already.
1022 ///
1023 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1024                            unsigned Linkage, bool HasLinkage,
1025                            unsigned Visibility, unsigned DLLStorageClass,
1026                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1027                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1028   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1029     return Error(NameLoc,
1030                  "symbol with local linkage must have default visibility");
1031 
1032   unsigned AddrSpace;
1033   bool IsConstant, IsExternallyInitialized;
1034   LocTy IsExternallyInitializedLoc;
1035   LocTy TyLoc;
1036 
1037   Type *Ty = nullptr;
1038   if (ParseOptionalAddrSpace(AddrSpace) ||
1039       ParseOptionalToken(lltok::kw_externally_initialized,
1040                          IsExternallyInitialized,
1041                          &IsExternallyInitializedLoc) ||
1042       ParseGlobalType(IsConstant) ||
1043       ParseType(Ty, TyLoc))
1044     return true;
1045 
1046   // If the linkage is specified and is external, then no initializer is
1047   // present.
1048   Constant *Init = nullptr;
1049   if (!HasLinkage ||
1050       !GlobalValue::isValidDeclarationLinkage(
1051           (GlobalValue::LinkageTypes)Linkage)) {
1052     if (ParseGlobalValue(Ty, Init))
1053       return true;
1054   }
1055 
1056   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1057     return Error(TyLoc, "invalid type for global variable");
1058 
1059   GlobalValue *GVal = nullptr;
1060 
1061   // See if the global was forward referenced, if so, use the global.
1062   if (!Name.empty()) {
1063     GVal = M->getNamedValue(Name);
1064     if (GVal) {
1065       if (!ForwardRefVals.erase(Name))
1066         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1067     }
1068   } else {
1069     auto I = ForwardRefValIDs.find(NumberedVals.size());
1070     if (I != ForwardRefValIDs.end()) {
1071       GVal = I->second.first;
1072       ForwardRefValIDs.erase(I);
1073     }
1074   }
1075 
1076   GlobalVariable *GV;
1077   if (!GVal) {
1078     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1079                             Name, nullptr, GlobalVariable::NotThreadLocal,
1080                             AddrSpace);
1081   } else {
1082     if (GVal->getValueType() != Ty)
1083       return Error(TyLoc,
1084             "forward reference and definition of global have different types");
1085 
1086     GV = cast<GlobalVariable>(GVal);
1087 
1088     // Move the forward-reference to the correct spot in the module.
1089     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1090   }
1091 
1092   if (Name.empty())
1093     NumberedVals.push_back(GV);
1094 
1095   // Set the parsed properties on the global.
1096   if (Init)
1097     GV->setInitializer(Init);
1098   GV->setConstant(IsConstant);
1099   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1100   maybeSetDSOLocal(DSOLocal, *GV);
1101   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1102   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1103   GV->setExternallyInitialized(IsExternallyInitialized);
1104   GV->setThreadLocalMode(TLM);
1105   GV->setUnnamedAddr(UnnamedAddr);
1106 
1107   // Parse attributes on the global.
1108   while (Lex.getKind() == lltok::comma) {
1109     Lex.Lex();
1110 
1111     if (Lex.getKind() == lltok::kw_section) {
1112       Lex.Lex();
1113       GV->setSection(Lex.getStrVal());
1114       if (ParseToken(lltok::StringConstant, "expected global section string"))
1115         return true;
1116     } else if (Lex.getKind() == lltok::kw_partition) {
1117       Lex.Lex();
1118       GV->setPartition(Lex.getStrVal());
1119       if (ParseToken(lltok::StringConstant, "expected partition string"))
1120         return true;
1121     } else if (Lex.getKind() == lltok::kw_align) {
1122       unsigned Alignment;
1123       if (ParseOptionalAlignment(Alignment)) return true;
1124       GV->setAlignment(Alignment);
1125     } else if (Lex.getKind() == lltok::MetadataVar) {
1126       if (ParseGlobalObjectMetadataAttachment(*GV))
1127         return true;
1128     } else {
1129       Comdat *C;
1130       if (parseOptionalComdat(Name, C))
1131         return true;
1132       if (C)
1133         GV->setComdat(C);
1134       else
1135         return TokError("unknown global variable property!");
1136     }
1137   }
1138 
1139   AttrBuilder Attrs;
1140   LocTy BuiltinLoc;
1141   std::vector<unsigned> FwdRefAttrGrps;
1142   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1143     return true;
1144   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1145     GV->setAttributes(AttributeSet::get(Context, Attrs));
1146     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1147   }
1148 
1149   return false;
1150 }
1151 
1152 /// ParseUnnamedAttrGrp
1153 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1154 bool LLParser::ParseUnnamedAttrGrp() {
1155   assert(Lex.getKind() == lltok::kw_attributes);
1156   LocTy AttrGrpLoc = Lex.getLoc();
1157   Lex.Lex();
1158 
1159   if (Lex.getKind() != lltok::AttrGrpID)
1160     return TokError("expected attribute group id");
1161 
1162   unsigned VarID = Lex.getUIntVal();
1163   std::vector<unsigned> unused;
1164   LocTy BuiltinLoc;
1165   Lex.Lex();
1166 
1167   if (ParseToken(lltok::equal, "expected '=' here") ||
1168       ParseToken(lltok::lbrace, "expected '{' here") ||
1169       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1170                                  BuiltinLoc) ||
1171       ParseToken(lltok::rbrace, "expected end of attribute group"))
1172     return true;
1173 
1174   if (!NumberedAttrBuilders[VarID].hasAttributes())
1175     return Error(AttrGrpLoc, "attribute group has no attributes");
1176 
1177   return false;
1178 }
1179 
1180 /// ParseFnAttributeValuePairs
1181 ///   ::= <attr> | <attr> '=' <value>
1182 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1183                                           std::vector<unsigned> &FwdRefAttrGrps,
1184                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1185   bool HaveError = false;
1186 
1187   B.clear();
1188 
1189   while (true) {
1190     lltok::Kind Token = Lex.getKind();
1191     if (Token == lltok::kw_builtin)
1192       BuiltinLoc = Lex.getLoc();
1193     switch (Token) {
1194     default:
1195       if (!inAttrGrp) return HaveError;
1196       return Error(Lex.getLoc(), "unterminated attribute group");
1197     case lltok::rbrace:
1198       // Finished.
1199       return false;
1200 
1201     case lltok::AttrGrpID: {
1202       // Allow a function to reference an attribute group:
1203       //
1204       //   define void @foo() #1 { ... }
1205       if (inAttrGrp)
1206         HaveError |=
1207           Error(Lex.getLoc(),
1208               "cannot have an attribute group reference in an attribute group");
1209 
1210       unsigned AttrGrpNum = Lex.getUIntVal();
1211       if (inAttrGrp) break;
1212 
1213       // Save the reference to the attribute group. We'll fill it in later.
1214       FwdRefAttrGrps.push_back(AttrGrpNum);
1215       break;
1216     }
1217     // Target-dependent attributes:
1218     case lltok::StringConstant: {
1219       if (ParseStringAttribute(B))
1220         return true;
1221       continue;
1222     }
1223 
1224     // Target-independent attributes:
1225     case lltok::kw_align: {
1226       // As a hack, we allow function alignment to be initially parsed as an
1227       // attribute on a function declaration/definition or added to an attribute
1228       // group and later moved to the alignment field.
1229       unsigned Alignment;
1230       if (inAttrGrp) {
1231         Lex.Lex();
1232         if (ParseToken(lltok::equal, "expected '=' here") ||
1233             ParseUInt32(Alignment))
1234           return true;
1235       } else {
1236         if (ParseOptionalAlignment(Alignment))
1237           return true;
1238       }
1239       B.addAlignmentAttr(Alignment);
1240       continue;
1241     }
1242     case lltok::kw_alignstack: {
1243       unsigned Alignment;
1244       if (inAttrGrp) {
1245         Lex.Lex();
1246         if (ParseToken(lltok::equal, "expected '=' here") ||
1247             ParseUInt32(Alignment))
1248           return true;
1249       } else {
1250         if (ParseOptionalStackAlignment(Alignment))
1251           return true;
1252       }
1253       B.addStackAlignmentAttr(Alignment);
1254       continue;
1255     }
1256     case lltok::kw_allocsize: {
1257       unsigned ElemSizeArg;
1258       Optional<unsigned> NumElemsArg;
1259       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1260       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1261         return true;
1262       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1263       continue;
1264     }
1265     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1266     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1267     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1268     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1269     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1270     case lltok::kw_inaccessiblememonly:
1271       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1272     case lltok::kw_inaccessiblemem_or_argmemonly:
1273       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1274     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1275     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1276     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1277     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1278     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1279     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1280     case lltok::kw_noimplicitfloat:
1281       B.addAttribute(Attribute::NoImplicitFloat); break;
1282     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1283     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1284     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1285     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1286     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1287     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1288     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1289     case lltok::kw_optforfuzzing:
1290       B.addAttribute(Attribute::OptForFuzzing); break;
1291     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1292     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1293     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1294     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1295     case lltok::kw_returns_twice:
1296       B.addAttribute(Attribute::ReturnsTwice); break;
1297     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1298     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1299     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1300     case lltok::kw_sspstrong:
1301       B.addAttribute(Attribute::StackProtectStrong); break;
1302     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1303     case lltok::kw_shadowcallstack:
1304       B.addAttribute(Attribute::ShadowCallStack); break;
1305     case lltok::kw_sanitize_address:
1306       B.addAttribute(Attribute::SanitizeAddress); break;
1307     case lltok::kw_sanitize_hwaddress:
1308       B.addAttribute(Attribute::SanitizeHWAddress); break;
1309     case lltok::kw_sanitize_thread:
1310       B.addAttribute(Attribute::SanitizeThread); break;
1311     case lltok::kw_sanitize_memory:
1312       B.addAttribute(Attribute::SanitizeMemory); break;
1313     case lltok::kw_speculative_load_hardening:
1314       B.addAttribute(Attribute::SpeculativeLoadHardening);
1315       break;
1316     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1317     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1318     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1319 
1320     // Error handling.
1321     case lltok::kw_inreg:
1322     case lltok::kw_signext:
1323     case lltok::kw_zeroext:
1324       HaveError |=
1325         Error(Lex.getLoc(),
1326               "invalid use of attribute on a function");
1327       break;
1328     case lltok::kw_byval:
1329     case lltok::kw_dereferenceable:
1330     case lltok::kw_dereferenceable_or_null:
1331     case lltok::kw_inalloca:
1332     case lltok::kw_nest:
1333     case lltok::kw_noalias:
1334     case lltok::kw_nocapture:
1335     case lltok::kw_nonnull:
1336     case lltok::kw_returned:
1337     case lltok::kw_sret:
1338     case lltok::kw_swifterror:
1339     case lltok::kw_swiftself:
1340     case lltok::kw_immarg:
1341       HaveError |=
1342         Error(Lex.getLoc(),
1343               "invalid use of parameter-only attribute on a function");
1344       break;
1345     }
1346 
1347     Lex.Lex();
1348   }
1349 }
1350 
1351 //===----------------------------------------------------------------------===//
1352 // GlobalValue Reference/Resolution Routines.
1353 //===----------------------------------------------------------------------===//
1354 
1355 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1356                                               const std::string &Name) {
1357   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1358     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1359                             PTy->getAddressSpace(), Name, M);
1360   else
1361     return new GlobalVariable(*M, PTy->getElementType(), false,
1362                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1363                               nullptr, GlobalVariable::NotThreadLocal,
1364                               PTy->getAddressSpace());
1365 }
1366 
1367 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1368                                         Value *Val, bool IsCall) {
1369   if (Val->getType() == Ty)
1370     return Val;
1371   // For calls we also accept variables in the program address space.
1372   Type *SuggestedTy = Ty;
1373   if (IsCall && isa<PointerType>(Ty)) {
1374     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1375         M->getDataLayout().getProgramAddressSpace());
1376     SuggestedTy = TyInProgAS;
1377     if (Val->getType() == TyInProgAS)
1378       return Val;
1379   }
1380   if (Ty->isLabelTy())
1381     Error(Loc, "'" + Name + "' is not a basic block");
1382   else
1383     Error(Loc, "'" + Name + "' defined with type '" +
1384                    getTypeString(Val->getType()) + "' but expected '" +
1385                    getTypeString(SuggestedTy) + "'");
1386   return nullptr;
1387 }
1388 
1389 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1390 /// forward reference record if needed.  This can return null if the value
1391 /// exists but does not have the right type.
1392 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1393                                     LocTy Loc, bool IsCall) {
1394   PointerType *PTy = dyn_cast<PointerType>(Ty);
1395   if (!PTy) {
1396     Error(Loc, "global variable reference must have pointer type");
1397     return nullptr;
1398   }
1399 
1400   // Look this name up in the normal function symbol table.
1401   GlobalValue *Val =
1402     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1403 
1404   // If this is a forward reference for the value, see if we already created a
1405   // forward ref record.
1406   if (!Val) {
1407     auto I = ForwardRefVals.find(Name);
1408     if (I != ForwardRefVals.end())
1409       Val = I->second.first;
1410   }
1411 
1412   // If we have the value in the symbol table or fwd-ref table, return it.
1413   if (Val)
1414     return cast_or_null<GlobalValue>(
1415         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1416 
1417   // Otherwise, create a new forward reference for this value and remember it.
1418   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1419   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1420   return FwdVal;
1421 }
1422 
1423 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1424                                     bool IsCall) {
1425   PointerType *PTy = dyn_cast<PointerType>(Ty);
1426   if (!PTy) {
1427     Error(Loc, "global variable reference must have pointer type");
1428     return nullptr;
1429   }
1430 
1431   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1432 
1433   // If this is a forward reference for the value, see if we already created a
1434   // forward ref record.
1435   if (!Val) {
1436     auto I = ForwardRefValIDs.find(ID);
1437     if (I != ForwardRefValIDs.end())
1438       Val = I->second.first;
1439   }
1440 
1441   // If we have the value in the symbol table or fwd-ref table, return it.
1442   if (Val)
1443     return cast_or_null<GlobalValue>(
1444         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1445 
1446   // Otherwise, create a new forward reference for this value and remember it.
1447   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1448   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1449   return FwdVal;
1450 }
1451 
1452 //===----------------------------------------------------------------------===//
1453 // Comdat Reference/Resolution Routines.
1454 //===----------------------------------------------------------------------===//
1455 
1456 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1457   // Look this name up in the comdat symbol table.
1458   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1459   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1460   if (I != ComdatSymTab.end())
1461     return &I->second;
1462 
1463   // Otherwise, create a new forward reference for this value and remember it.
1464   Comdat *C = M->getOrInsertComdat(Name);
1465   ForwardRefComdats[Name] = Loc;
1466   return C;
1467 }
1468 
1469 //===----------------------------------------------------------------------===//
1470 // Helper Routines.
1471 //===----------------------------------------------------------------------===//
1472 
1473 /// ParseToken - If the current token has the specified kind, eat it and return
1474 /// success.  Otherwise, emit the specified error and return failure.
1475 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1476   if (Lex.getKind() != T)
1477     return TokError(ErrMsg);
1478   Lex.Lex();
1479   return false;
1480 }
1481 
1482 /// ParseStringConstant
1483 ///   ::= StringConstant
1484 bool LLParser::ParseStringConstant(std::string &Result) {
1485   if (Lex.getKind() != lltok::StringConstant)
1486     return TokError("expected string constant");
1487   Result = Lex.getStrVal();
1488   Lex.Lex();
1489   return false;
1490 }
1491 
1492 /// ParseUInt32
1493 ///   ::= uint32
1494 bool LLParser::ParseUInt32(uint32_t &Val) {
1495   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1496     return TokError("expected integer");
1497   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1498   if (Val64 != unsigned(Val64))
1499     return TokError("expected 32-bit integer (too large)");
1500   Val = Val64;
1501   Lex.Lex();
1502   return false;
1503 }
1504 
1505 /// ParseUInt64
1506 ///   ::= uint64
1507 bool LLParser::ParseUInt64(uint64_t &Val) {
1508   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1509     return TokError("expected integer");
1510   Val = Lex.getAPSIntVal().getLimitedValue();
1511   Lex.Lex();
1512   return false;
1513 }
1514 
1515 /// ParseTLSModel
1516 ///   := 'localdynamic'
1517 ///   := 'initialexec'
1518 ///   := 'localexec'
1519 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1520   switch (Lex.getKind()) {
1521     default:
1522       return TokError("expected localdynamic, initialexec or localexec");
1523     case lltok::kw_localdynamic:
1524       TLM = GlobalVariable::LocalDynamicTLSModel;
1525       break;
1526     case lltok::kw_initialexec:
1527       TLM = GlobalVariable::InitialExecTLSModel;
1528       break;
1529     case lltok::kw_localexec:
1530       TLM = GlobalVariable::LocalExecTLSModel;
1531       break;
1532   }
1533 
1534   Lex.Lex();
1535   return false;
1536 }
1537 
1538 /// ParseOptionalThreadLocal
1539 ///   := /*empty*/
1540 ///   := 'thread_local'
1541 ///   := 'thread_local' '(' tlsmodel ')'
1542 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1543   TLM = GlobalVariable::NotThreadLocal;
1544   if (!EatIfPresent(lltok::kw_thread_local))
1545     return false;
1546 
1547   TLM = GlobalVariable::GeneralDynamicTLSModel;
1548   if (Lex.getKind() == lltok::lparen) {
1549     Lex.Lex();
1550     return ParseTLSModel(TLM) ||
1551       ParseToken(lltok::rparen, "expected ')' after thread local model");
1552   }
1553   return false;
1554 }
1555 
1556 /// ParseOptionalAddrSpace
1557 ///   := /*empty*/
1558 ///   := 'addrspace' '(' uint32 ')'
1559 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1560   AddrSpace = DefaultAS;
1561   if (!EatIfPresent(lltok::kw_addrspace))
1562     return false;
1563   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1564          ParseUInt32(AddrSpace) ||
1565          ParseToken(lltok::rparen, "expected ')' in address space");
1566 }
1567 
1568 /// ParseStringAttribute
1569 ///   := StringConstant
1570 ///   := StringConstant '=' StringConstant
1571 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1572   std::string Attr = Lex.getStrVal();
1573   Lex.Lex();
1574   std::string Val;
1575   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1576     return true;
1577   B.addAttribute(Attr, Val);
1578   return false;
1579 }
1580 
1581 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1582 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1583   bool HaveError = false;
1584 
1585   B.clear();
1586 
1587   while (true) {
1588     lltok::Kind Token = Lex.getKind();
1589     switch (Token) {
1590     default:  // End of attributes.
1591       return HaveError;
1592     case lltok::StringConstant: {
1593       if (ParseStringAttribute(B))
1594         return true;
1595       continue;
1596     }
1597     case lltok::kw_align: {
1598       unsigned Alignment;
1599       if (ParseOptionalAlignment(Alignment))
1600         return true;
1601       B.addAlignmentAttr(Alignment);
1602       continue;
1603     }
1604     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1605     case lltok::kw_dereferenceable: {
1606       uint64_t Bytes;
1607       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1608         return true;
1609       B.addDereferenceableAttr(Bytes);
1610       continue;
1611     }
1612     case lltok::kw_dereferenceable_or_null: {
1613       uint64_t Bytes;
1614       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1615         return true;
1616       B.addDereferenceableOrNullAttr(Bytes);
1617       continue;
1618     }
1619     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1620     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1621     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1622     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1623     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1624     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1625     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1626     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1627     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1628     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1629     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1630     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1631     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1632     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1633     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1634     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1635 
1636     case lltok::kw_alignstack:
1637     case lltok::kw_alwaysinline:
1638     case lltok::kw_argmemonly:
1639     case lltok::kw_builtin:
1640     case lltok::kw_inlinehint:
1641     case lltok::kw_jumptable:
1642     case lltok::kw_minsize:
1643     case lltok::kw_naked:
1644     case lltok::kw_nobuiltin:
1645     case lltok::kw_noduplicate:
1646     case lltok::kw_noimplicitfloat:
1647     case lltok::kw_noinline:
1648     case lltok::kw_nonlazybind:
1649     case lltok::kw_noredzone:
1650     case lltok::kw_noreturn:
1651     case lltok::kw_nocf_check:
1652     case lltok::kw_nounwind:
1653     case lltok::kw_optforfuzzing:
1654     case lltok::kw_optnone:
1655     case lltok::kw_optsize:
1656     case lltok::kw_returns_twice:
1657     case lltok::kw_sanitize_address:
1658     case lltok::kw_sanitize_hwaddress:
1659     case lltok::kw_sanitize_memory:
1660     case lltok::kw_sanitize_thread:
1661     case lltok::kw_speculative_load_hardening:
1662     case lltok::kw_ssp:
1663     case lltok::kw_sspreq:
1664     case lltok::kw_sspstrong:
1665     case lltok::kw_safestack:
1666     case lltok::kw_shadowcallstack:
1667     case lltok::kw_strictfp:
1668     case lltok::kw_uwtable:
1669       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1670       break;
1671     }
1672 
1673     Lex.Lex();
1674   }
1675 }
1676 
1677 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1678 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1679   bool HaveError = false;
1680 
1681   B.clear();
1682 
1683   while (true) {
1684     lltok::Kind Token = Lex.getKind();
1685     switch (Token) {
1686     default:  // End of attributes.
1687       return HaveError;
1688     case lltok::StringConstant: {
1689       if (ParseStringAttribute(B))
1690         return true;
1691       continue;
1692     }
1693     case lltok::kw_dereferenceable: {
1694       uint64_t Bytes;
1695       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1696         return true;
1697       B.addDereferenceableAttr(Bytes);
1698       continue;
1699     }
1700     case lltok::kw_dereferenceable_or_null: {
1701       uint64_t Bytes;
1702       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1703         return true;
1704       B.addDereferenceableOrNullAttr(Bytes);
1705       continue;
1706     }
1707     case lltok::kw_align: {
1708       unsigned Alignment;
1709       if (ParseOptionalAlignment(Alignment))
1710         return true;
1711       B.addAlignmentAttr(Alignment);
1712       continue;
1713     }
1714     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1715     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1716     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1717     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1718     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1719 
1720     // Error handling.
1721     case lltok::kw_byval:
1722     case lltok::kw_inalloca:
1723     case lltok::kw_nest:
1724     case lltok::kw_nocapture:
1725     case lltok::kw_returned:
1726     case lltok::kw_sret:
1727     case lltok::kw_swifterror:
1728     case lltok::kw_swiftself:
1729     case lltok::kw_immarg:
1730       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1731       break;
1732 
1733     case lltok::kw_alignstack:
1734     case lltok::kw_alwaysinline:
1735     case lltok::kw_argmemonly:
1736     case lltok::kw_builtin:
1737     case lltok::kw_cold:
1738     case lltok::kw_inlinehint:
1739     case lltok::kw_jumptable:
1740     case lltok::kw_minsize:
1741     case lltok::kw_naked:
1742     case lltok::kw_nobuiltin:
1743     case lltok::kw_noduplicate:
1744     case lltok::kw_noimplicitfloat:
1745     case lltok::kw_noinline:
1746     case lltok::kw_nonlazybind:
1747     case lltok::kw_noredzone:
1748     case lltok::kw_noreturn:
1749     case lltok::kw_nocf_check:
1750     case lltok::kw_nounwind:
1751     case lltok::kw_optforfuzzing:
1752     case lltok::kw_optnone:
1753     case lltok::kw_optsize:
1754     case lltok::kw_returns_twice:
1755     case lltok::kw_sanitize_address:
1756     case lltok::kw_sanitize_hwaddress:
1757     case lltok::kw_sanitize_memory:
1758     case lltok::kw_sanitize_thread:
1759     case lltok::kw_speculative_load_hardening:
1760     case lltok::kw_ssp:
1761     case lltok::kw_sspreq:
1762     case lltok::kw_sspstrong:
1763     case lltok::kw_safestack:
1764     case lltok::kw_shadowcallstack:
1765     case lltok::kw_strictfp:
1766     case lltok::kw_uwtable:
1767       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1768       break;
1769 
1770     case lltok::kw_readnone:
1771     case lltok::kw_readonly:
1772       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1773     }
1774 
1775     Lex.Lex();
1776   }
1777 }
1778 
1779 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1780   HasLinkage = true;
1781   switch (Kind) {
1782   default:
1783     HasLinkage = false;
1784     return GlobalValue::ExternalLinkage;
1785   case lltok::kw_private:
1786     return GlobalValue::PrivateLinkage;
1787   case lltok::kw_internal:
1788     return GlobalValue::InternalLinkage;
1789   case lltok::kw_weak:
1790     return GlobalValue::WeakAnyLinkage;
1791   case lltok::kw_weak_odr:
1792     return GlobalValue::WeakODRLinkage;
1793   case lltok::kw_linkonce:
1794     return GlobalValue::LinkOnceAnyLinkage;
1795   case lltok::kw_linkonce_odr:
1796     return GlobalValue::LinkOnceODRLinkage;
1797   case lltok::kw_available_externally:
1798     return GlobalValue::AvailableExternallyLinkage;
1799   case lltok::kw_appending:
1800     return GlobalValue::AppendingLinkage;
1801   case lltok::kw_common:
1802     return GlobalValue::CommonLinkage;
1803   case lltok::kw_extern_weak:
1804     return GlobalValue::ExternalWeakLinkage;
1805   case lltok::kw_external:
1806     return GlobalValue::ExternalLinkage;
1807   }
1808 }
1809 
1810 /// ParseOptionalLinkage
1811 ///   ::= /*empty*/
1812 ///   ::= 'private'
1813 ///   ::= 'internal'
1814 ///   ::= 'weak'
1815 ///   ::= 'weak_odr'
1816 ///   ::= 'linkonce'
1817 ///   ::= 'linkonce_odr'
1818 ///   ::= 'available_externally'
1819 ///   ::= 'appending'
1820 ///   ::= 'common'
1821 ///   ::= 'extern_weak'
1822 ///   ::= 'external'
1823 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1824                                     unsigned &Visibility,
1825                                     unsigned &DLLStorageClass,
1826                                     bool &DSOLocal) {
1827   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1828   if (HasLinkage)
1829     Lex.Lex();
1830   ParseOptionalDSOLocal(DSOLocal);
1831   ParseOptionalVisibility(Visibility);
1832   ParseOptionalDLLStorageClass(DLLStorageClass);
1833 
1834   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1835     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1836   }
1837 
1838   return false;
1839 }
1840 
1841 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1842   switch (Lex.getKind()) {
1843   default:
1844     DSOLocal = false;
1845     break;
1846   case lltok::kw_dso_local:
1847     DSOLocal = true;
1848     Lex.Lex();
1849     break;
1850   case lltok::kw_dso_preemptable:
1851     DSOLocal = false;
1852     Lex.Lex();
1853     break;
1854   }
1855 }
1856 
1857 /// ParseOptionalVisibility
1858 ///   ::= /*empty*/
1859 ///   ::= 'default'
1860 ///   ::= 'hidden'
1861 ///   ::= 'protected'
1862 ///
1863 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1864   switch (Lex.getKind()) {
1865   default:
1866     Res = GlobalValue::DefaultVisibility;
1867     return;
1868   case lltok::kw_default:
1869     Res = GlobalValue::DefaultVisibility;
1870     break;
1871   case lltok::kw_hidden:
1872     Res = GlobalValue::HiddenVisibility;
1873     break;
1874   case lltok::kw_protected:
1875     Res = GlobalValue::ProtectedVisibility;
1876     break;
1877   }
1878   Lex.Lex();
1879 }
1880 
1881 /// ParseOptionalDLLStorageClass
1882 ///   ::= /*empty*/
1883 ///   ::= 'dllimport'
1884 ///   ::= 'dllexport'
1885 ///
1886 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1887   switch (Lex.getKind()) {
1888   default:
1889     Res = GlobalValue::DefaultStorageClass;
1890     return;
1891   case lltok::kw_dllimport:
1892     Res = GlobalValue::DLLImportStorageClass;
1893     break;
1894   case lltok::kw_dllexport:
1895     Res = GlobalValue::DLLExportStorageClass;
1896     break;
1897   }
1898   Lex.Lex();
1899 }
1900 
1901 /// ParseOptionalCallingConv
1902 ///   ::= /*empty*/
1903 ///   ::= 'ccc'
1904 ///   ::= 'fastcc'
1905 ///   ::= 'intel_ocl_bicc'
1906 ///   ::= 'coldcc'
1907 ///   ::= 'x86_stdcallcc'
1908 ///   ::= 'x86_fastcallcc'
1909 ///   ::= 'x86_thiscallcc'
1910 ///   ::= 'x86_vectorcallcc'
1911 ///   ::= 'arm_apcscc'
1912 ///   ::= 'arm_aapcscc'
1913 ///   ::= 'arm_aapcs_vfpcc'
1914 ///   ::= 'aarch64_vector_pcs'
1915 ///   ::= 'msp430_intrcc'
1916 ///   ::= 'avr_intrcc'
1917 ///   ::= 'avr_signalcc'
1918 ///   ::= 'ptx_kernel'
1919 ///   ::= 'ptx_device'
1920 ///   ::= 'spir_func'
1921 ///   ::= 'spir_kernel'
1922 ///   ::= 'x86_64_sysvcc'
1923 ///   ::= 'win64cc'
1924 ///   ::= 'webkit_jscc'
1925 ///   ::= 'anyregcc'
1926 ///   ::= 'preserve_mostcc'
1927 ///   ::= 'preserve_allcc'
1928 ///   ::= 'ghccc'
1929 ///   ::= 'swiftcc'
1930 ///   ::= 'x86_intrcc'
1931 ///   ::= 'hhvmcc'
1932 ///   ::= 'hhvm_ccc'
1933 ///   ::= 'cxx_fast_tlscc'
1934 ///   ::= 'amdgpu_vs'
1935 ///   ::= 'amdgpu_ls'
1936 ///   ::= 'amdgpu_hs'
1937 ///   ::= 'amdgpu_es'
1938 ///   ::= 'amdgpu_gs'
1939 ///   ::= 'amdgpu_ps'
1940 ///   ::= 'amdgpu_cs'
1941 ///   ::= 'amdgpu_kernel'
1942 ///   ::= 'cc' UINT
1943 ///
1944 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1945   switch (Lex.getKind()) {
1946   default:                       CC = CallingConv::C; return false;
1947   case lltok::kw_ccc:            CC = CallingConv::C; break;
1948   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1949   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1950   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1951   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1952   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1953   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1954   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1955   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1956   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1957   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1958   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1959   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1960   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1961   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1962   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1963   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1964   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1965   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1966   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1967   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1968   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1969   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1970   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1971   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1972   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1973   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1974   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1975   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1976   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1977   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1978   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1979   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1980   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1981   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1982   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1983   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1984   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1985   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1986   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1987   case lltok::kw_cc: {
1988       Lex.Lex();
1989       return ParseUInt32(CC);
1990     }
1991   }
1992 
1993   Lex.Lex();
1994   return false;
1995 }
1996 
1997 /// ParseMetadataAttachment
1998 ///   ::= !dbg !42
1999 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2000   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2001 
2002   std::string Name = Lex.getStrVal();
2003   Kind = M->getMDKindID(Name);
2004   Lex.Lex();
2005 
2006   return ParseMDNode(MD);
2007 }
2008 
2009 /// ParseInstructionMetadata
2010 ///   ::= !dbg !42 (',' !dbg !57)*
2011 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2012   do {
2013     if (Lex.getKind() != lltok::MetadataVar)
2014       return TokError("expected metadata after comma");
2015 
2016     unsigned MDK;
2017     MDNode *N;
2018     if (ParseMetadataAttachment(MDK, N))
2019       return true;
2020 
2021     Inst.setMetadata(MDK, N);
2022     if (MDK == LLVMContext::MD_tbaa)
2023       InstsWithTBAATag.push_back(&Inst);
2024 
2025     // If this is the end of the list, we're done.
2026   } while (EatIfPresent(lltok::comma));
2027   return false;
2028 }
2029 
2030 /// ParseGlobalObjectMetadataAttachment
2031 ///   ::= !dbg !57
2032 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2033   unsigned MDK;
2034   MDNode *N;
2035   if (ParseMetadataAttachment(MDK, N))
2036     return true;
2037 
2038   GO.addMetadata(MDK, *N);
2039   return false;
2040 }
2041 
2042 /// ParseOptionalFunctionMetadata
2043 ///   ::= (!dbg !57)*
2044 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2045   while (Lex.getKind() == lltok::MetadataVar)
2046     if (ParseGlobalObjectMetadataAttachment(F))
2047       return true;
2048   return false;
2049 }
2050 
2051 /// ParseOptionalAlignment
2052 ///   ::= /* empty */
2053 ///   ::= 'align' 4
2054 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2055   Alignment = 0;
2056   if (!EatIfPresent(lltok::kw_align))
2057     return false;
2058   LocTy AlignLoc = Lex.getLoc();
2059   if (ParseUInt32(Alignment)) return true;
2060   if (!isPowerOf2_32(Alignment))
2061     return Error(AlignLoc, "alignment is not a power of two");
2062   if (Alignment > Value::MaximumAlignment)
2063     return Error(AlignLoc, "huge alignments are not supported yet");
2064   return false;
2065 }
2066 
2067 /// ParseOptionalDerefAttrBytes
2068 ///   ::= /* empty */
2069 ///   ::= AttrKind '(' 4 ')'
2070 ///
2071 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2072 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2073                                            uint64_t &Bytes) {
2074   assert((AttrKind == lltok::kw_dereferenceable ||
2075           AttrKind == lltok::kw_dereferenceable_or_null) &&
2076          "contract!");
2077 
2078   Bytes = 0;
2079   if (!EatIfPresent(AttrKind))
2080     return false;
2081   LocTy ParenLoc = Lex.getLoc();
2082   if (!EatIfPresent(lltok::lparen))
2083     return Error(ParenLoc, "expected '('");
2084   LocTy DerefLoc = Lex.getLoc();
2085   if (ParseUInt64(Bytes)) return true;
2086   ParenLoc = Lex.getLoc();
2087   if (!EatIfPresent(lltok::rparen))
2088     return Error(ParenLoc, "expected ')'");
2089   if (!Bytes)
2090     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2091   return false;
2092 }
2093 
2094 /// ParseOptionalCommaAlign
2095 ///   ::=
2096 ///   ::= ',' align 4
2097 ///
2098 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2099 /// end.
2100 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2101                                        bool &AteExtraComma) {
2102   AteExtraComma = false;
2103   while (EatIfPresent(lltok::comma)) {
2104     // Metadata at the end is an early exit.
2105     if (Lex.getKind() == lltok::MetadataVar) {
2106       AteExtraComma = true;
2107       return false;
2108     }
2109 
2110     if (Lex.getKind() != lltok::kw_align)
2111       return Error(Lex.getLoc(), "expected metadata or 'align'");
2112 
2113     if (ParseOptionalAlignment(Alignment)) return true;
2114   }
2115 
2116   return false;
2117 }
2118 
2119 /// ParseOptionalCommaAddrSpace
2120 ///   ::=
2121 ///   ::= ',' addrspace(1)
2122 ///
2123 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2124 /// end.
2125 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2126                                            LocTy &Loc,
2127                                            bool &AteExtraComma) {
2128   AteExtraComma = false;
2129   while (EatIfPresent(lltok::comma)) {
2130     // Metadata at the end is an early exit.
2131     if (Lex.getKind() == lltok::MetadataVar) {
2132       AteExtraComma = true;
2133       return false;
2134     }
2135 
2136     Loc = Lex.getLoc();
2137     if (Lex.getKind() != lltok::kw_addrspace)
2138       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2139 
2140     if (ParseOptionalAddrSpace(AddrSpace))
2141       return true;
2142   }
2143 
2144   return false;
2145 }
2146 
2147 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2148                                        Optional<unsigned> &HowManyArg) {
2149   Lex.Lex();
2150 
2151   auto StartParen = Lex.getLoc();
2152   if (!EatIfPresent(lltok::lparen))
2153     return Error(StartParen, "expected '('");
2154 
2155   if (ParseUInt32(BaseSizeArg))
2156     return true;
2157 
2158   if (EatIfPresent(lltok::comma)) {
2159     auto HowManyAt = Lex.getLoc();
2160     unsigned HowMany;
2161     if (ParseUInt32(HowMany))
2162       return true;
2163     if (HowMany == BaseSizeArg)
2164       return Error(HowManyAt,
2165                    "'allocsize' indices can't refer to the same parameter");
2166     HowManyArg = HowMany;
2167   } else
2168     HowManyArg = None;
2169 
2170   auto EndParen = Lex.getLoc();
2171   if (!EatIfPresent(lltok::rparen))
2172     return Error(EndParen, "expected ')'");
2173   return false;
2174 }
2175 
2176 /// ParseScopeAndOrdering
2177 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2178 ///   else: ::=
2179 ///
2180 /// This sets Scope and Ordering to the parsed values.
2181 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2182                                      AtomicOrdering &Ordering) {
2183   if (!isAtomic)
2184     return false;
2185 
2186   return ParseScope(SSID) || ParseOrdering(Ordering);
2187 }
2188 
2189 /// ParseScope
2190 ///   ::= syncscope("singlethread" | "<target scope>")?
2191 ///
2192 /// This sets synchronization scope ID to the ID of the parsed value.
2193 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2194   SSID = SyncScope::System;
2195   if (EatIfPresent(lltok::kw_syncscope)) {
2196     auto StartParenAt = Lex.getLoc();
2197     if (!EatIfPresent(lltok::lparen))
2198       return Error(StartParenAt, "Expected '(' in syncscope");
2199 
2200     std::string SSN;
2201     auto SSNAt = Lex.getLoc();
2202     if (ParseStringConstant(SSN))
2203       return Error(SSNAt, "Expected synchronization scope name");
2204 
2205     auto EndParenAt = Lex.getLoc();
2206     if (!EatIfPresent(lltok::rparen))
2207       return Error(EndParenAt, "Expected ')' in syncscope");
2208 
2209     SSID = Context.getOrInsertSyncScopeID(SSN);
2210   }
2211 
2212   return false;
2213 }
2214 
2215 /// ParseOrdering
2216 ///   ::= AtomicOrdering
2217 ///
2218 /// This sets Ordering to the parsed value.
2219 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2220   switch (Lex.getKind()) {
2221   default: return TokError("Expected ordering on atomic instruction");
2222   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2223   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2224   // Not specified yet:
2225   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2226   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2227   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2228   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2229   case lltok::kw_seq_cst:
2230     Ordering = AtomicOrdering::SequentiallyConsistent;
2231     break;
2232   }
2233   Lex.Lex();
2234   return false;
2235 }
2236 
2237 /// ParseOptionalStackAlignment
2238 ///   ::= /* empty */
2239 ///   ::= 'alignstack' '(' 4 ')'
2240 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2241   Alignment = 0;
2242   if (!EatIfPresent(lltok::kw_alignstack))
2243     return false;
2244   LocTy ParenLoc = Lex.getLoc();
2245   if (!EatIfPresent(lltok::lparen))
2246     return Error(ParenLoc, "expected '('");
2247   LocTy AlignLoc = Lex.getLoc();
2248   if (ParseUInt32(Alignment)) return true;
2249   ParenLoc = Lex.getLoc();
2250   if (!EatIfPresent(lltok::rparen))
2251     return Error(ParenLoc, "expected ')'");
2252   if (!isPowerOf2_32(Alignment))
2253     return Error(AlignLoc, "stack alignment is not a power of two");
2254   return false;
2255 }
2256 
2257 /// ParseIndexList - This parses the index list for an insert/extractvalue
2258 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2259 /// comma at the end of the line and find that it is followed by metadata.
2260 /// Clients that don't allow metadata can call the version of this function that
2261 /// only takes one argument.
2262 ///
2263 /// ParseIndexList
2264 ///    ::=  (',' uint32)+
2265 ///
2266 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2267                               bool &AteExtraComma) {
2268   AteExtraComma = false;
2269 
2270   if (Lex.getKind() != lltok::comma)
2271     return TokError("expected ',' as start of index list");
2272 
2273   while (EatIfPresent(lltok::comma)) {
2274     if (Lex.getKind() == lltok::MetadataVar) {
2275       if (Indices.empty()) return TokError("expected index");
2276       AteExtraComma = true;
2277       return false;
2278     }
2279     unsigned Idx = 0;
2280     if (ParseUInt32(Idx)) return true;
2281     Indices.push_back(Idx);
2282   }
2283 
2284   return false;
2285 }
2286 
2287 //===----------------------------------------------------------------------===//
2288 // Type Parsing.
2289 //===----------------------------------------------------------------------===//
2290 
2291 /// ParseType - Parse a type.
2292 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2293   SMLoc TypeLoc = Lex.getLoc();
2294   switch (Lex.getKind()) {
2295   default:
2296     return TokError(Msg);
2297   case lltok::Type:
2298     // Type ::= 'float' | 'void' (etc)
2299     Result = Lex.getTyVal();
2300     Lex.Lex();
2301     break;
2302   case lltok::lbrace:
2303     // Type ::= StructType
2304     if (ParseAnonStructType(Result, false))
2305       return true;
2306     break;
2307   case lltok::lsquare:
2308     // Type ::= '[' ... ']'
2309     Lex.Lex(); // eat the lsquare.
2310     if (ParseArrayVectorType(Result, false))
2311       return true;
2312     break;
2313   case lltok::less: // Either vector or packed struct.
2314     // Type ::= '<' ... '>'
2315     Lex.Lex();
2316     if (Lex.getKind() == lltok::lbrace) {
2317       if (ParseAnonStructType(Result, true) ||
2318           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2319         return true;
2320     } else if (ParseArrayVectorType(Result, true))
2321       return true;
2322     break;
2323   case lltok::LocalVar: {
2324     // Type ::= %foo
2325     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2326 
2327     // If the type hasn't been defined yet, create a forward definition and
2328     // remember where that forward def'n was seen (in case it never is defined).
2329     if (!Entry.first) {
2330       Entry.first = StructType::create(Context, Lex.getStrVal());
2331       Entry.second = Lex.getLoc();
2332     }
2333     Result = Entry.first;
2334     Lex.Lex();
2335     break;
2336   }
2337 
2338   case lltok::LocalVarID: {
2339     // Type ::= %4
2340     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2341 
2342     // If the type hasn't been defined yet, create a forward definition and
2343     // remember where that forward def'n was seen (in case it never is defined).
2344     if (!Entry.first) {
2345       Entry.first = StructType::create(Context);
2346       Entry.second = Lex.getLoc();
2347     }
2348     Result = Entry.first;
2349     Lex.Lex();
2350     break;
2351   }
2352   }
2353 
2354   // Parse the type suffixes.
2355   while (true) {
2356     switch (Lex.getKind()) {
2357     // End of type.
2358     default:
2359       if (!AllowVoid && Result->isVoidTy())
2360         return Error(TypeLoc, "void type only allowed for function results");
2361       return false;
2362 
2363     // Type ::= Type '*'
2364     case lltok::star:
2365       if (Result->isLabelTy())
2366         return TokError("basic block pointers are invalid");
2367       if (Result->isVoidTy())
2368         return TokError("pointers to void are invalid - use i8* instead");
2369       if (!PointerType::isValidElementType(Result))
2370         return TokError("pointer to this type is invalid");
2371       Result = PointerType::getUnqual(Result);
2372       Lex.Lex();
2373       break;
2374 
2375     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2376     case lltok::kw_addrspace: {
2377       if (Result->isLabelTy())
2378         return TokError("basic block pointers are invalid");
2379       if (Result->isVoidTy())
2380         return TokError("pointers to void are invalid; use i8* instead");
2381       if (!PointerType::isValidElementType(Result))
2382         return TokError("pointer to this type is invalid");
2383       unsigned AddrSpace;
2384       if (ParseOptionalAddrSpace(AddrSpace) ||
2385           ParseToken(lltok::star, "expected '*' in address space"))
2386         return true;
2387 
2388       Result = PointerType::get(Result, AddrSpace);
2389       break;
2390     }
2391 
2392     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2393     case lltok::lparen:
2394       if (ParseFunctionType(Result))
2395         return true;
2396       break;
2397     }
2398   }
2399 }
2400 
2401 /// ParseParameterList
2402 ///    ::= '(' ')'
2403 ///    ::= '(' Arg (',' Arg)* ')'
2404 ///  Arg
2405 ///    ::= Type OptionalAttributes Value OptionalAttributes
2406 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2407                                   PerFunctionState &PFS, bool IsMustTailCall,
2408                                   bool InVarArgsFunc) {
2409   if (ParseToken(lltok::lparen, "expected '(' in call"))
2410     return true;
2411 
2412   while (Lex.getKind() != lltok::rparen) {
2413     // If this isn't the first argument, we need a comma.
2414     if (!ArgList.empty() &&
2415         ParseToken(lltok::comma, "expected ',' in argument list"))
2416       return true;
2417 
2418     // Parse an ellipsis if this is a musttail call in a variadic function.
2419     if (Lex.getKind() == lltok::dotdotdot) {
2420       const char *Msg = "unexpected ellipsis in argument list for ";
2421       if (!IsMustTailCall)
2422         return TokError(Twine(Msg) + "non-musttail call");
2423       if (!InVarArgsFunc)
2424         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2425       Lex.Lex();  // Lex the '...', it is purely for readability.
2426       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2427     }
2428 
2429     // Parse the argument.
2430     LocTy ArgLoc;
2431     Type *ArgTy = nullptr;
2432     AttrBuilder ArgAttrs;
2433     Value *V;
2434     if (ParseType(ArgTy, ArgLoc))
2435       return true;
2436 
2437     if (ArgTy->isMetadataTy()) {
2438       if (ParseMetadataAsValue(V, PFS))
2439         return true;
2440     } else {
2441       // Otherwise, handle normal operands.
2442       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2443         return true;
2444     }
2445     ArgList.push_back(ParamInfo(
2446         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2447   }
2448 
2449   if (IsMustTailCall && InVarArgsFunc)
2450     return TokError("expected '...' at end of argument list for musttail call "
2451                     "in varargs function");
2452 
2453   Lex.Lex();  // Lex the ')'.
2454   return false;
2455 }
2456 
2457 /// ParseOptionalOperandBundles
2458 ///    ::= /*empty*/
2459 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2460 ///
2461 /// OperandBundle
2462 ///    ::= bundle-tag '(' ')'
2463 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2464 ///
2465 /// bundle-tag ::= String Constant
2466 bool LLParser::ParseOptionalOperandBundles(
2467     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2468   LocTy BeginLoc = Lex.getLoc();
2469   if (!EatIfPresent(lltok::lsquare))
2470     return false;
2471 
2472   while (Lex.getKind() != lltok::rsquare) {
2473     // If this isn't the first operand bundle, we need a comma.
2474     if (!BundleList.empty() &&
2475         ParseToken(lltok::comma, "expected ',' in input list"))
2476       return true;
2477 
2478     std::string Tag;
2479     if (ParseStringConstant(Tag))
2480       return true;
2481 
2482     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2483       return true;
2484 
2485     std::vector<Value *> Inputs;
2486     while (Lex.getKind() != lltok::rparen) {
2487       // If this isn't the first input, we need a comma.
2488       if (!Inputs.empty() &&
2489           ParseToken(lltok::comma, "expected ',' in input list"))
2490         return true;
2491 
2492       Type *Ty = nullptr;
2493       Value *Input = nullptr;
2494       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2495         return true;
2496       Inputs.push_back(Input);
2497     }
2498 
2499     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2500 
2501     Lex.Lex(); // Lex the ')'.
2502   }
2503 
2504   if (BundleList.empty())
2505     return Error(BeginLoc, "operand bundle set must not be empty");
2506 
2507   Lex.Lex(); // Lex the ']'.
2508   return false;
2509 }
2510 
2511 /// ParseArgumentList - Parse the argument list for a function type or function
2512 /// prototype.
2513 ///   ::= '(' ArgTypeListI ')'
2514 /// ArgTypeListI
2515 ///   ::= /*empty*/
2516 ///   ::= '...'
2517 ///   ::= ArgTypeList ',' '...'
2518 ///   ::= ArgType (',' ArgType)*
2519 ///
2520 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2521                                  bool &isVarArg){
2522   isVarArg = false;
2523   assert(Lex.getKind() == lltok::lparen);
2524   Lex.Lex(); // eat the (.
2525 
2526   if (Lex.getKind() == lltok::rparen) {
2527     // empty
2528   } else if (Lex.getKind() == lltok::dotdotdot) {
2529     isVarArg = true;
2530     Lex.Lex();
2531   } else {
2532     LocTy TypeLoc = Lex.getLoc();
2533     Type *ArgTy = nullptr;
2534     AttrBuilder Attrs;
2535     std::string Name;
2536 
2537     if (ParseType(ArgTy) ||
2538         ParseOptionalParamAttrs(Attrs)) return true;
2539 
2540     if (ArgTy->isVoidTy())
2541       return Error(TypeLoc, "argument can not have void type");
2542 
2543     if (Lex.getKind() == lltok::LocalVar) {
2544       Name = Lex.getStrVal();
2545       Lex.Lex();
2546     }
2547 
2548     if (!FunctionType::isValidArgumentType(ArgTy))
2549       return Error(TypeLoc, "invalid type for function argument");
2550 
2551     ArgList.emplace_back(TypeLoc, ArgTy,
2552                          AttributeSet::get(ArgTy->getContext(), Attrs),
2553                          std::move(Name));
2554 
2555     while (EatIfPresent(lltok::comma)) {
2556       // Handle ... at end of arg list.
2557       if (EatIfPresent(lltok::dotdotdot)) {
2558         isVarArg = true;
2559         break;
2560       }
2561 
2562       // Otherwise must be an argument type.
2563       TypeLoc = Lex.getLoc();
2564       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2565 
2566       if (ArgTy->isVoidTy())
2567         return Error(TypeLoc, "argument can not have void type");
2568 
2569       if (Lex.getKind() == lltok::LocalVar) {
2570         Name = Lex.getStrVal();
2571         Lex.Lex();
2572       } else {
2573         Name = "";
2574       }
2575 
2576       if (!ArgTy->isFirstClassType())
2577         return Error(TypeLoc, "invalid type for function argument");
2578 
2579       ArgList.emplace_back(TypeLoc, ArgTy,
2580                            AttributeSet::get(ArgTy->getContext(), Attrs),
2581                            std::move(Name));
2582     }
2583   }
2584 
2585   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2586 }
2587 
2588 /// ParseFunctionType
2589 ///  ::= Type ArgumentList OptionalAttrs
2590 bool LLParser::ParseFunctionType(Type *&Result) {
2591   assert(Lex.getKind() == lltok::lparen);
2592 
2593   if (!FunctionType::isValidReturnType(Result))
2594     return TokError("invalid function return type");
2595 
2596   SmallVector<ArgInfo, 8> ArgList;
2597   bool isVarArg;
2598   if (ParseArgumentList(ArgList, isVarArg))
2599     return true;
2600 
2601   // Reject names on the arguments lists.
2602   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2603     if (!ArgList[i].Name.empty())
2604       return Error(ArgList[i].Loc, "argument name invalid in function type");
2605     if (ArgList[i].Attrs.hasAttributes())
2606       return Error(ArgList[i].Loc,
2607                    "argument attributes invalid in function type");
2608   }
2609 
2610   SmallVector<Type*, 16> ArgListTy;
2611   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2612     ArgListTy.push_back(ArgList[i].Ty);
2613 
2614   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2615   return false;
2616 }
2617 
2618 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2619 /// other structs.
2620 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2621   SmallVector<Type*, 8> Elts;
2622   if (ParseStructBody(Elts)) return true;
2623 
2624   Result = StructType::get(Context, Elts, Packed);
2625   return false;
2626 }
2627 
2628 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2629 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2630                                      std::pair<Type*, LocTy> &Entry,
2631                                      Type *&ResultTy) {
2632   // If the type was already defined, diagnose the redefinition.
2633   if (Entry.first && !Entry.second.isValid())
2634     return Error(TypeLoc, "redefinition of type");
2635 
2636   // If we have opaque, just return without filling in the definition for the
2637   // struct.  This counts as a definition as far as the .ll file goes.
2638   if (EatIfPresent(lltok::kw_opaque)) {
2639     // This type is being defined, so clear the location to indicate this.
2640     Entry.second = SMLoc();
2641 
2642     // If this type number has never been uttered, create it.
2643     if (!Entry.first)
2644       Entry.first = StructType::create(Context, Name);
2645     ResultTy = Entry.first;
2646     return false;
2647   }
2648 
2649   // If the type starts with '<', then it is either a packed struct or a vector.
2650   bool isPacked = EatIfPresent(lltok::less);
2651 
2652   // If we don't have a struct, then we have a random type alias, which we
2653   // accept for compatibility with old files.  These types are not allowed to be
2654   // forward referenced and not allowed to be recursive.
2655   if (Lex.getKind() != lltok::lbrace) {
2656     if (Entry.first)
2657       return Error(TypeLoc, "forward references to non-struct type");
2658 
2659     ResultTy = nullptr;
2660     if (isPacked)
2661       return ParseArrayVectorType(ResultTy, true);
2662     return ParseType(ResultTy);
2663   }
2664 
2665   // This type is being defined, so clear the location to indicate this.
2666   Entry.second = SMLoc();
2667 
2668   // If this type number has never been uttered, create it.
2669   if (!Entry.first)
2670     Entry.first = StructType::create(Context, Name);
2671 
2672   StructType *STy = cast<StructType>(Entry.first);
2673 
2674   SmallVector<Type*, 8> Body;
2675   if (ParseStructBody(Body) ||
2676       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2677     return true;
2678 
2679   STy->setBody(Body, isPacked);
2680   ResultTy = STy;
2681   return false;
2682 }
2683 
2684 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2685 ///   StructType
2686 ///     ::= '{' '}'
2687 ///     ::= '{' Type (',' Type)* '}'
2688 ///     ::= '<' '{' '}' '>'
2689 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2690 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2691   assert(Lex.getKind() == lltok::lbrace);
2692   Lex.Lex(); // Consume the '{'
2693 
2694   // Handle the empty struct.
2695   if (EatIfPresent(lltok::rbrace))
2696     return false;
2697 
2698   LocTy EltTyLoc = Lex.getLoc();
2699   Type *Ty = nullptr;
2700   if (ParseType(Ty)) return true;
2701   Body.push_back(Ty);
2702 
2703   if (!StructType::isValidElementType(Ty))
2704     return Error(EltTyLoc, "invalid element type for struct");
2705 
2706   while (EatIfPresent(lltok::comma)) {
2707     EltTyLoc = Lex.getLoc();
2708     if (ParseType(Ty)) return true;
2709 
2710     if (!StructType::isValidElementType(Ty))
2711       return Error(EltTyLoc, "invalid element type for struct");
2712 
2713     Body.push_back(Ty);
2714   }
2715 
2716   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2717 }
2718 
2719 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2720 /// token has already been consumed.
2721 ///   Type
2722 ///     ::= '[' APSINTVAL 'x' Types ']'
2723 ///     ::= '<' APSINTVAL 'x' Types '>'
2724 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2725 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2726   bool Scalable = false;
2727 
2728   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2729     Lex.Lex(); // consume the 'vscale'
2730     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2731       return true;
2732 
2733     Scalable = true;
2734   }
2735 
2736   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2737       Lex.getAPSIntVal().getBitWidth() > 64)
2738     return TokError("expected number in address space");
2739 
2740   LocTy SizeLoc = Lex.getLoc();
2741   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2742   Lex.Lex();
2743 
2744   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2745       return true;
2746 
2747   LocTy TypeLoc = Lex.getLoc();
2748   Type *EltTy = nullptr;
2749   if (ParseType(EltTy)) return true;
2750 
2751   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2752                  "expected end of sequential type"))
2753     return true;
2754 
2755   if (isVector) {
2756     if (Size == 0)
2757       return Error(SizeLoc, "zero element vector is illegal");
2758     if ((unsigned)Size != Size)
2759       return Error(SizeLoc, "size too large for vector");
2760     if (!VectorType::isValidElementType(EltTy))
2761       return Error(TypeLoc, "invalid vector element type");
2762     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2763   } else {
2764     if (!ArrayType::isValidElementType(EltTy))
2765       return Error(TypeLoc, "invalid array element type");
2766     Result = ArrayType::get(EltTy, Size);
2767   }
2768   return false;
2769 }
2770 
2771 //===----------------------------------------------------------------------===//
2772 // Function Semantic Analysis.
2773 //===----------------------------------------------------------------------===//
2774 
2775 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2776                                              int functionNumber)
2777   : P(p), F(f), FunctionNumber(functionNumber) {
2778 
2779   // Insert unnamed arguments into the NumberedVals list.
2780   for (Argument &A : F.args())
2781     if (!A.hasName())
2782       NumberedVals.push_back(&A);
2783 }
2784 
2785 LLParser::PerFunctionState::~PerFunctionState() {
2786   // If there were any forward referenced non-basicblock values, delete them.
2787 
2788   for (const auto &P : ForwardRefVals) {
2789     if (isa<BasicBlock>(P.second.first))
2790       continue;
2791     P.second.first->replaceAllUsesWith(
2792         UndefValue::get(P.second.first->getType()));
2793     P.second.first->deleteValue();
2794   }
2795 
2796   for (const auto &P : ForwardRefValIDs) {
2797     if (isa<BasicBlock>(P.second.first))
2798       continue;
2799     P.second.first->replaceAllUsesWith(
2800         UndefValue::get(P.second.first->getType()));
2801     P.second.first->deleteValue();
2802   }
2803 }
2804 
2805 bool LLParser::PerFunctionState::FinishFunction() {
2806   if (!ForwardRefVals.empty())
2807     return P.Error(ForwardRefVals.begin()->second.second,
2808                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2809                    "'");
2810   if (!ForwardRefValIDs.empty())
2811     return P.Error(ForwardRefValIDs.begin()->second.second,
2812                    "use of undefined value '%" +
2813                    Twine(ForwardRefValIDs.begin()->first) + "'");
2814   return false;
2815 }
2816 
2817 /// GetVal - Get a value with the specified name or ID, creating a
2818 /// forward reference record if needed.  This can return null if the value
2819 /// exists but does not have the right type.
2820 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2821                                           LocTy Loc, bool IsCall) {
2822   // Look this name up in the normal function symbol table.
2823   Value *Val = F.getValueSymbolTable()->lookup(Name);
2824 
2825   // If this is a forward reference for the value, see if we already created a
2826   // forward ref record.
2827   if (!Val) {
2828     auto I = ForwardRefVals.find(Name);
2829     if (I != ForwardRefVals.end())
2830       Val = I->second.first;
2831   }
2832 
2833   // If we have the value in the symbol table or fwd-ref table, return it.
2834   if (Val)
2835     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2836 
2837   // Don't make placeholders with invalid type.
2838   if (!Ty->isFirstClassType()) {
2839     P.Error(Loc, "invalid use of a non-first-class type");
2840     return nullptr;
2841   }
2842 
2843   // Otherwise, create a new forward reference for this value and remember it.
2844   Value *FwdVal;
2845   if (Ty->isLabelTy()) {
2846     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2847   } else {
2848     FwdVal = new Argument(Ty, Name);
2849   }
2850 
2851   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2852   return FwdVal;
2853 }
2854 
2855 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2856                                           bool IsCall) {
2857   // Look this name up in the normal function symbol table.
2858   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2859 
2860   // If this is a forward reference for the value, see if we already created a
2861   // forward ref record.
2862   if (!Val) {
2863     auto I = ForwardRefValIDs.find(ID);
2864     if (I != ForwardRefValIDs.end())
2865       Val = I->second.first;
2866   }
2867 
2868   // If we have the value in the symbol table or fwd-ref table, return it.
2869   if (Val)
2870     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2871 
2872   if (!Ty->isFirstClassType()) {
2873     P.Error(Loc, "invalid use of a non-first-class type");
2874     return nullptr;
2875   }
2876 
2877   // Otherwise, create a new forward reference for this value and remember it.
2878   Value *FwdVal;
2879   if (Ty->isLabelTy()) {
2880     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2881   } else {
2882     FwdVal = new Argument(Ty);
2883   }
2884 
2885   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2886   return FwdVal;
2887 }
2888 
2889 /// SetInstName - After an instruction is parsed and inserted into its
2890 /// basic block, this installs its name.
2891 bool LLParser::PerFunctionState::SetInstName(int NameID,
2892                                              const std::string &NameStr,
2893                                              LocTy NameLoc, Instruction *Inst) {
2894   // If this instruction has void type, it cannot have a name or ID specified.
2895   if (Inst->getType()->isVoidTy()) {
2896     if (NameID != -1 || !NameStr.empty())
2897       return P.Error(NameLoc, "instructions returning void cannot have a name");
2898     return false;
2899   }
2900 
2901   // If this was a numbered instruction, verify that the instruction is the
2902   // expected value and resolve any forward references.
2903   if (NameStr.empty()) {
2904     // If neither a name nor an ID was specified, just use the next ID.
2905     if (NameID == -1)
2906       NameID = NumberedVals.size();
2907 
2908     if (unsigned(NameID) != NumberedVals.size())
2909       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2910                      Twine(NumberedVals.size()) + "'");
2911 
2912     auto FI = ForwardRefValIDs.find(NameID);
2913     if (FI != ForwardRefValIDs.end()) {
2914       Value *Sentinel = FI->second.first;
2915       if (Sentinel->getType() != Inst->getType())
2916         return P.Error(NameLoc, "instruction forward referenced with type '" +
2917                        getTypeString(FI->second.first->getType()) + "'");
2918 
2919       Sentinel->replaceAllUsesWith(Inst);
2920       Sentinel->deleteValue();
2921       ForwardRefValIDs.erase(FI);
2922     }
2923 
2924     NumberedVals.push_back(Inst);
2925     return false;
2926   }
2927 
2928   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2929   auto FI = ForwardRefVals.find(NameStr);
2930   if (FI != ForwardRefVals.end()) {
2931     Value *Sentinel = FI->second.first;
2932     if (Sentinel->getType() != Inst->getType())
2933       return P.Error(NameLoc, "instruction forward referenced with type '" +
2934                      getTypeString(FI->second.first->getType()) + "'");
2935 
2936     Sentinel->replaceAllUsesWith(Inst);
2937     Sentinel->deleteValue();
2938     ForwardRefVals.erase(FI);
2939   }
2940 
2941   // Set the name on the instruction.
2942   Inst->setName(NameStr);
2943 
2944   if (Inst->getName() != NameStr)
2945     return P.Error(NameLoc, "multiple definition of local value named '" +
2946                    NameStr + "'");
2947   return false;
2948 }
2949 
2950 /// GetBB - Get a basic block with the specified name or ID, creating a
2951 /// forward reference record if needed.
2952 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2953                                               LocTy Loc) {
2954   return dyn_cast_or_null<BasicBlock>(
2955       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2956 }
2957 
2958 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2959   return dyn_cast_or_null<BasicBlock>(
2960       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2961 }
2962 
2963 /// DefineBB - Define the specified basic block, which is either named or
2964 /// unnamed.  If there is an error, this returns null otherwise it returns
2965 /// the block being defined.
2966 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2967                                                  int NameID, LocTy Loc) {
2968   BasicBlock *BB;
2969   if (Name.empty()) {
2970     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2971       P.Error(Loc, "label expected to be numbered '" +
2972                        Twine(NumberedVals.size()) + "'");
2973       return nullptr;
2974     }
2975     BB = GetBB(NumberedVals.size(), Loc);
2976     if (!BB) {
2977       P.Error(Loc, "unable to create block numbered '" +
2978                        Twine(NumberedVals.size()) + "'");
2979       return nullptr;
2980     }
2981   } else {
2982     BB = GetBB(Name, Loc);
2983     if (!BB) {
2984       P.Error(Loc, "unable to create block named '" + Name + "'");
2985       return nullptr;
2986     }
2987   }
2988 
2989   // Move the block to the end of the function.  Forward ref'd blocks are
2990   // inserted wherever they happen to be referenced.
2991   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2992 
2993   // Remove the block from forward ref sets.
2994   if (Name.empty()) {
2995     ForwardRefValIDs.erase(NumberedVals.size());
2996     NumberedVals.push_back(BB);
2997   } else {
2998     // BB forward references are already in the function symbol table.
2999     ForwardRefVals.erase(Name);
3000   }
3001 
3002   return BB;
3003 }
3004 
3005 //===----------------------------------------------------------------------===//
3006 // Constants.
3007 //===----------------------------------------------------------------------===//
3008 
3009 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3010 /// type implied.  For example, if we parse "4" we don't know what integer type
3011 /// it has.  The value will later be combined with its type and checked for
3012 /// sanity.  PFS is used to convert function-local operands of metadata (since
3013 /// metadata operands are not just parsed here but also converted to values).
3014 /// PFS can be null when we are not parsing metadata values inside a function.
3015 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3016   ID.Loc = Lex.getLoc();
3017   switch (Lex.getKind()) {
3018   default: return TokError("expected value token");
3019   case lltok::GlobalID:  // @42
3020     ID.UIntVal = Lex.getUIntVal();
3021     ID.Kind = ValID::t_GlobalID;
3022     break;
3023   case lltok::GlobalVar:  // @foo
3024     ID.StrVal = Lex.getStrVal();
3025     ID.Kind = ValID::t_GlobalName;
3026     break;
3027   case lltok::LocalVarID:  // %42
3028     ID.UIntVal = Lex.getUIntVal();
3029     ID.Kind = ValID::t_LocalID;
3030     break;
3031   case lltok::LocalVar:  // %foo
3032     ID.StrVal = Lex.getStrVal();
3033     ID.Kind = ValID::t_LocalName;
3034     break;
3035   case lltok::APSInt:
3036     ID.APSIntVal = Lex.getAPSIntVal();
3037     ID.Kind = ValID::t_APSInt;
3038     break;
3039   case lltok::APFloat:
3040     ID.APFloatVal = Lex.getAPFloatVal();
3041     ID.Kind = ValID::t_APFloat;
3042     break;
3043   case lltok::kw_true:
3044     ID.ConstantVal = ConstantInt::getTrue(Context);
3045     ID.Kind = ValID::t_Constant;
3046     break;
3047   case lltok::kw_false:
3048     ID.ConstantVal = ConstantInt::getFalse(Context);
3049     ID.Kind = ValID::t_Constant;
3050     break;
3051   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3052   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3053   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3054   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3055 
3056   case lltok::lbrace: {
3057     // ValID ::= '{' ConstVector '}'
3058     Lex.Lex();
3059     SmallVector<Constant*, 16> Elts;
3060     if (ParseGlobalValueVector(Elts) ||
3061         ParseToken(lltok::rbrace, "expected end of struct constant"))
3062       return true;
3063 
3064     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3065     ID.UIntVal = Elts.size();
3066     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3067            Elts.size() * sizeof(Elts[0]));
3068     ID.Kind = ValID::t_ConstantStruct;
3069     return false;
3070   }
3071   case lltok::less: {
3072     // ValID ::= '<' ConstVector '>'         --> Vector.
3073     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3074     Lex.Lex();
3075     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3076 
3077     SmallVector<Constant*, 16> Elts;
3078     LocTy FirstEltLoc = Lex.getLoc();
3079     if (ParseGlobalValueVector(Elts) ||
3080         (isPackedStruct &&
3081          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3082         ParseToken(lltok::greater, "expected end of constant"))
3083       return true;
3084 
3085     if (isPackedStruct) {
3086       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3087       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3088              Elts.size() * sizeof(Elts[0]));
3089       ID.UIntVal = Elts.size();
3090       ID.Kind = ValID::t_PackedConstantStruct;
3091       return false;
3092     }
3093 
3094     if (Elts.empty())
3095       return Error(ID.Loc, "constant vector must not be empty");
3096 
3097     if (!Elts[0]->getType()->isIntegerTy() &&
3098         !Elts[0]->getType()->isFloatingPointTy() &&
3099         !Elts[0]->getType()->isPointerTy())
3100       return Error(FirstEltLoc,
3101             "vector elements must have integer, pointer or floating point type");
3102 
3103     // Verify that all the vector elements have the same type.
3104     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3105       if (Elts[i]->getType() != Elts[0]->getType())
3106         return Error(FirstEltLoc,
3107                      "vector element #" + Twine(i) +
3108                     " is not of type '" + getTypeString(Elts[0]->getType()));
3109 
3110     ID.ConstantVal = ConstantVector::get(Elts);
3111     ID.Kind = ValID::t_Constant;
3112     return false;
3113   }
3114   case lltok::lsquare: {   // Array Constant
3115     Lex.Lex();
3116     SmallVector<Constant*, 16> Elts;
3117     LocTy FirstEltLoc = Lex.getLoc();
3118     if (ParseGlobalValueVector(Elts) ||
3119         ParseToken(lltok::rsquare, "expected end of array constant"))
3120       return true;
3121 
3122     // Handle empty element.
3123     if (Elts.empty()) {
3124       // Use undef instead of an array because it's inconvenient to determine
3125       // the element type at this point, there being no elements to examine.
3126       ID.Kind = ValID::t_EmptyArray;
3127       return false;
3128     }
3129 
3130     if (!Elts[0]->getType()->isFirstClassType())
3131       return Error(FirstEltLoc, "invalid array element type: " +
3132                    getTypeString(Elts[0]->getType()));
3133 
3134     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3135 
3136     // Verify all elements are correct type!
3137     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3138       if (Elts[i]->getType() != Elts[0]->getType())
3139         return Error(FirstEltLoc,
3140                      "array element #" + Twine(i) +
3141                      " is not of type '" + getTypeString(Elts[0]->getType()));
3142     }
3143 
3144     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3145     ID.Kind = ValID::t_Constant;
3146     return false;
3147   }
3148   case lltok::kw_c:  // c "foo"
3149     Lex.Lex();
3150     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3151                                                   false);
3152     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3153     ID.Kind = ValID::t_Constant;
3154     return false;
3155 
3156   case lltok::kw_asm: {
3157     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3158     //             STRINGCONSTANT
3159     bool HasSideEffect, AlignStack, AsmDialect;
3160     Lex.Lex();
3161     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3162         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3163         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3164         ParseStringConstant(ID.StrVal) ||
3165         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3166         ParseToken(lltok::StringConstant, "expected constraint string"))
3167       return true;
3168     ID.StrVal2 = Lex.getStrVal();
3169     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3170       (unsigned(AsmDialect)<<2);
3171     ID.Kind = ValID::t_InlineAsm;
3172     return false;
3173   }
3174 
3175   case lltok::kw_blockaddress: {
3176     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3177     Lex.Lex();
3178 
3179     ValID Fn, Label;
3180 
3181     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3182         ParseValID(Fn) ||
3183         ParseToken(lltok::comma, "expected comma in block address expression")||
3184         ParseValID(Label) ||
3185         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3186       return true;
3187 
3188     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3189       return Error(Fn.Loc, "expected function name in blockaddress");
3190     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3191       return Error(Label.Loc, "expected basic block name in blockaddress");
3192 
3193     // Try to find the function (but skip it if it's forward-referenced).
3194     GlobalValue *GV = nullptr;
3195     if (Fn.Kind == ValID::t_GlobalID) {
3196       if (Fn.UIntVal < NumberedVals.size())
3197         GV = NumberedVals[Fn.UIntVal];
3198     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3199       GV = M->getNamedValue(Fn.StrVal);
3200     }
3201     Function *F = nullptr;
3202     if (GV) {
3203       // Confirm that it's actually a function with a definition.
3204       if (!isa<Function>(GV))
3205         return Error(Fn.Loc, "expected function name in blockaddress");
3206       F = cast<Function>(GV);
3207       if (F->isDeclaration())
3208         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3209     }
3210 
3211     if (!F) {
3212       // Make a global variable as a placeholder for this reference.
3213       GlobalValue *&FwdRef =
3214           ForwardRefBlockAddresses.insert(std::make_pair(
3215                                               std::move(Fn),
3216                                               std::map<ValID, GlobalValue *>()))
3217               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3218               .first->second;
3219       if (!FwdRef)
3220         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3221                                     GlobalValue::InternalLinkage, nullptr, "");
3222       ID.ConstantVal = FwdRef;
3223       ID.Kind = ValID::t_Constant;
3224       return false;
3225     }
3226 
3227     // We found the function; now find the basic block.  Don't use PFS, since we
3228     // might be inside a constant expression.
3229     BasicBlock *BB;
3230     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3231       if (Label.Kind == ValID::t_LocalID)
3232         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3233       else
3234         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3235       if (!BB)
3236         return Error(Label.Loc, "referenced value is not a basic block");
3237     } else {
3238       if (Label.Kind == ValID::t_LocalID)
3239         return Error(Label.Loc, "cannot take address of numeric label after "
3240                                 "the function is defined");
3241       BB = dyn_cast_or_null<BasicBlock>(
3242           F->getValueSymbolTable()->lookup(Label.StrVal));
3243       if (!BB)
3244         return Error(Label.Loc, "referenced value is not a basic block");
3245     }
3246 
3247     ID.ConstantVal = BlockAddress::get(F, BB);
3248     ID.Kind = ValID::t_Constant;
3249     return false;
3250   }
3251 
3252   case lltok::kw_trunc:
3253   case lltok::kw_zext:
3254   case lltok::kw_sext:
3255   case lltok::kw_fptrunc:
3256   case lltok::kw_fpext:
3257   case lltok::kw_bitcast:
3258   case lltok::kw_addrspacecast:
3259   case lltok::kw_uitofp:
3260   case lltok::kw_sitofp:
3261   case lltok::kw_fptoui:
3262   case lltok::kw_fptosi:
3263   case lltok::kw_inttoptr:
3264   case lltok::kw_ptrtoint: {
3265     unsigned Opc = Lex.getUIntVal();
3266     Type *DestTy = nullptr;
3267     Constant *SrcVal;
3268     Lex.Lex();
3269     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3270         ParseGlobalTypeAndValue(SrcVal) ||
3271         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3272         ParseType(DestTy) ||
3273         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3274       return true;
3275     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3276       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3277                    getTypeString(SrcVal->getType()) + "' to '" +
3278                    getTypeString(DestTy) + "'");
3279     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3280                                                  SrcVal, DestTy);
3281     ID.Kind = ValID::t_Constant;
3282     return false;
3283   }
3284   case lltok::kw_extractvalue: {
3285     Lex.Lex();
3286     Constant *Val;
3287     SmallVector<unsigned, 4> Indices;
3288     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3289         ParseGlobalTypeAndValue(Val) ||
3290         ParseIndexList(Indices) ||
3291         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3292       return true;
3293 
3294     if (!Val->getType()->isAggregateType())
3295       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3296     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3297       return Error(ID.Loc, "invalid indices for extractvalue");
3298     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3299     ID.Kind = ValID::t_Constant;
3300     return false;
3301   }
3302   case lltok::kw_insertvalue: {
3303     Lex.Lex();
3304     Constant *Val0, *Val1;
3305     SmallVector<unsigned, 4> Indices;
3306     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3307         ParseGlobalTypeAndValue(Val0) ||
3308         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3309         ParseGlobalTypeAndValue(Val1) ||
3310         ParseIndexList(Indices) ||
3311         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3312       return true;
3313     if (!Val0->getType()->isAggregateType())
3314       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3315     Type *IndexedType =
3316         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3317     if (!IndexedType)
3318       return Error(ID.Loc, "invalid indices for insertvalue");
3319     if (IndexedType != Val1->getType())
3320       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3321                                getTypeString(Val1->getType()) +
3322                                "' instead of '" + getTypeString(IndexedType) +
3323                                "'");
3324     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3325     ID.Kind = ValID::t_Constant;
3326     return false;
3327   }
3328   case lltok::kw_icmp:
3329   case lltok::kw_fcmp: {
3330     unsigned PredVal, Opc = Lex.getUIntVal();
3331     Constant *Val0, *Val1;
3332     Lex.Lex();
3333     if (ParseCmpPredicate(PredVal, Opc) ||
3334         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3335         ParseGlobalTypeAndValue(Val0) ||
3336         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3337         ParseGlobalTypeAndValue(Val1) ||
3338         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3339       return true;
3340 
3341     if (Val0->getType() != Val1->getType())
3342       return Error(ID.Loc, "compare operands must have the same type");
3343 
3344     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3345 
3346     if (Opc == Instruction::FCmp) {
3347       if (!Val0->getType()->isFPOrFPVectorTy())
3348         return Error(ID.Loc, "fcmp requires floating point operands");
3349       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3350     } else {
3351       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3352       if (!Val0->getType()->isIntOrIntVectorTy() &&
3353           !Val0->getType()->isPtrOrPtrVectorTy())
3354         return Error(ID.Loc, "icmp requires pointer or integer operands");
3355       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3356     }
3357     ID.Kind = ValID::t_Constant;
3358     return false;
3359   }
3360 
3361   // Unary Operators.
3362   case lltok::kw_fneg: {
3363     unsigned Opc = Lex.getUIntVal();
3364     Constant *Val;
3365     Lex.Lex();
3366     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3367         ParseGlobalTypeAndValue(Val) ||
3368         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3369       return true;
3370 
3371     // Check that the type is valid for the operator.
3372     switch (Opc) {
3373     case Instruction::FNeg:
3374       if (!Val->getType()->isFPOrFPVectorTy())
3375         return Error(ID.Loc, "constexpr requires fp operands");
3376       break;
3377     default: llvm_unreachable("Unknown unary operator!");
3378     }
3379     unsigned Flags = 0;
3380     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3381     ID.ConstantVal = C;
3382     ID.Kind = ValID::t_Constant;
3383     return false;
3384   }
3385   // Binary Operators.
3386   case lltok::kw_add:
3387   case lltok::kw_fadd:
3388   case lltok::kw_sub:
3389   case lltok::kw_fsub:
3390   case lltok::kw_mul:
3391   case lltok::kw_fmul:
3392   case lltok::kw_udiv:
3393   case lltok::kw_sdiv:
3394   case lltok::kw_fdiv:
3395   case lltok::kw_urem:
3396   case lltok::kw_srem:
3397   case lltok::kw_frem:
3398   case lltok::kw_shl:
3399   case lltok::kw_lshr:
3400   case lltok::kw_ashr: {
3401     bool NUW = false;
3402     bool NSW = false;
3403     bool Exact = false;
3404     unsigned Opc = Lex.getUIntVal();
3405     Constant *Val0, *Val1;
3406     Lex.Lex();
3407     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3408         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3409       if (EatIfPresent(lltok::kw_nuw))
3410         NUW = true;
3411       if (EatIfPresent(lltok::kw_nsw)) {
3412         NSW = true;
3413         if (EatIfPresent(lltok::kw_nuw))
3414           NUW = true;
3415       }
3416     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3417                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3418       if (EatIfPresent(lltok::kw_exact))
3419         Exact = true;
3420     }
3421     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3422         ParseGlobalTypeAndValue(Val0) ||
3423         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3424         ParseGlobalTypeAndValue(Val1) ||
3425         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3426       return true;
3427     if (Val0->getType() != Val1->getType())
3428       return Error(ID.Loc, "operands of constexpr must have same type");
3429     // Check that the type is valid for the operator.
3430     switch (Opc) {
3431     case Instruction::Add:
3432     case Instruction::Sub:
3433     case Instruction::Mul:
3434     case Instruction::UDiv:
3435     case Instruction::SDiv:
3436     case Instruction::URem:
3437     case Instruction::SRem:
3438     case Instruction::Shl:
3439     case Instruction::AShr:
3440     case Instruction::LShr:
3441       if (!Val0->getType()->isIntOrIntVectorTy())
3442         return Error(ID.Loc, "constexpr requires integer operands");
3443       break;
3444     case Instruction::FAdd:
3445     case Instruction::FSub:
3446     case Instruction::FMul:
3447     case Instruction::FDiv:
3448     case Instruction::FRem:
3449       if (!Val0->getType()->isFPOrFPVectorTy())
3450         return Error(ID.Loc, "constexpr requires fp operands");
3451       break;
3452     default: llvm_unreachable("Unknown binary operator!");
3453     }
3454     unsigned Flags = 0;
3455     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3456     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3457     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3458     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3459     ID.ConstantVal = C;
3460     ID.Kind = ValID::t_Constant;
3461     return false;
3462   }
3463 
3464   // Logical Operations
3465   case lltok::kw_and:
3466   case lltok::kw_or:
3467   case lltok::kw_xor: {
3468     unsigned Opc = Lex.getUIntVal();
3469     Constant *Val0, *Val1;
3470     Lex.Lex();
3471     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3472         ParseGlobalTypeAndValue(Val0) ||
3473         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3474         ParseGlobalTypeAndValue(Val1) ||
3475         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3476       return true;
3477     if (Val0->getType() != Val1->getType())
3478       return Error(ID.Loc, "operands of constexpr must have same type");
3479     if (!Val0->getType()->isIntOrIntVectorTy())
3480       return Error(ID.Loc,
3481                    "constexpr requires integer or integer vector operands");
3482     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3483     ID.Kind = ValID::t_Constant;
3484     return false;
3485   }
3486 
3487   case lltok::kw_getelementptr:
3488   case lltok::kw_shufflevector:
3489   case lltok::kw_insertelement:
3490   case lltok::kw_extractelement:
3491   case lltok::kw_select: {
3492     unsigned Opc = Lex.getUIntVal();
3493     SmallVector<Constant*, 16> Elts;
3494     bool InBounds = false;
3495     Type *Ty;
3496     Lex.Lex();
3497 
3498     if (Opc == Instruction::GetElementPtr)
3499       InBounds = EatIfPresent(lltok::kw_inbounds);
3500 
3501     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3502       return true;
3503 
3504     LocTy ExplicitTypeLoc = Lex.getLoc();
3505     if (Opc == Instruction::GetElementPtr) {
3506       if (ParseType(Ty) ||
3507           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3508         return true;
3509     }
3510 
3511     Optional<unsigned> InRangeOp;
3512     if (ParseGlobalValueVector(
3513             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3514         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3515       return true;
3516 
3517     if (Opc == Instruction::GetElementPtr) {
3518       if (Elts.size() == 0 ||
3519           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3520         return Error(ID.Loc, "base of getelementptr must be a pointer");
3521 
3522       Type *BaseType = Elts[0]->getType();
3523       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3524       if (Ty != BasePointerType->getElementType())
3525         return Error(
3526             ExplicitTypeLoc,
3527             "explicit pointee type doesn't match operand's pointee type");
3528 
3529       unsigned GEPWidth =
3530           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3531 
3532       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3533       for (Constant *Val : Indices) {
3534         Type *ValTy = Val->getType();
3535         if (!ValTy->isIntOrIntVectorTy())
3536           return Error(ID.Loc, "getelementptr index must be an integer");
3537         if (ValTy->isVectorTy()) {
3538           unsigned ValNumEl = ValTy->getVectorNumElements();
3539           if (GEPWidth && (ValNumEl != GEPWidth))
3540             return Error(
3541                 ID.Loc,
3542                 "getelementptr vector index has a wrong number of elements");
3543           // GEPWidth may have been unknown because the base is a scalar,
3544           // but it is known now.
3545           GEPWidth = ValNumEl;
3546         }
3547       }
3548 
3549       SmallPtrSet<Type*, 4> Visited;
3550       if (!Indices.empty() && !Ty->isSized(&Visited))
3551         return Error(ID.Loc, "base element of getelementptr must be sized");
3552 
3553       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3554         return Error(ID.Loc, "invalid getelementptr indices");
3555 
3556       if (InRangeOp) {
3557         if (*InRangeOp == 0)
3558           return Error(ID.Loc,
3559                        "inrange keyword may not appear on pointer operand");
3560         --*InRangeOp;
3561       }
3562 
3563       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3564                                                       InBounds, InRangeOp);
3565     } else if (Opc == Instruction::Select) {
3566       if (Elts.size() != 3)
3567         return Error(ID.Loc, "expected three operands to select");
3568       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3569                                                               Elts[2]))
3570         return Error(ID.Loc, Reason);
3571       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3572     } else if (Opc == Instruction::ShuffleVector) {
3573       if (Elts.size() != 3)
3574         return Error(ID.Loc, "expected three operands to shufflevector");
3575       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3576         return Error(ID.Loc, "invalid operands to shufflevector");
3577       ID.ConstantVal =
3578                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3579     } else if (Opc == Instruction::ExtractElement) {
3580       if (Elts.size() != 2)
3581         return Error(ID.Loc, "expected two operands to extractelement");
3582       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3583         return Error(ID.Loc, "invalid extractelement operands");
3584       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3585     } else {
3586       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3587       if (Elts.size() != 3)
3588       return Error(ID.Loc, "expected three operands to insertelement");
3589       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3590         return Error(ID.Loc, "invalid insertelement operands");
3591       ID.ConstantVal =
3592                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3593     }
3594 
3595     ID.Kind = ValID::t_Constant;
3596     return false;
3597   }
3598   }
3599 
3600   Lex.Lex();
3601   return false;
3602 }
3603 
3604 /// ParseGlobalValue - Parse a global value with the specified type.
3605 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3606   C = nullptr;
3607   ValID ID;
3608   Value *V = nullptr;
3609   bool Parsed = ParseValID(ID) ||
3610                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3611   if (V && !(C = dyn_cast<Constant>(V)))
3612     return Error(ID.Loc, "global values must be constants");
3613   return Parsed;
3614 }
3615 
3616 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3617   Type *Ty = nullptr;
3618   return ParseType(Ty) ||
3619          ParseGlobalValue(Ty, V);
3620 }
3621 
3622 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3623   C = nullptr;
3624 
3625   LocTy KwLoc = Lex.getLoc();
3626   if (!EatIfPresent(lltok::kw_comdat))
3627     return false;
3628 
3629   if (EatIfPresent(lltok::lparen)) {
3630     if (Lex.getKind() != lltok::ComdatVar)
3631       return TokError("expected comdat variable");
3632     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3633     Lex.Lex();
3634     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3635       return true;
3636   } else {
3637     if (GlobalName.empty())
3638       return TokError("comdat cannot be unnamed");
3639     C = getComdat(GlobalName, KwLoc);
3640   }
3641 
3642   return false;
3643 }
3644 
3645 /// ParseGlobalValueVector
3646 ///   ::= /*empty*/
3647 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3648 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3649                                       Optional<unsigned> *InRangeOp) {
3650   // Empty list.
3651   if (Lex.getKind() == lltok::rbrace ||
3652       Lex.getKind() == lltok::rsquare ||
3653       Lex.getKind() == lltok::greater ||
3654       Lex.getKind() == lltok::rparen)
3655     return false;
3656 
3657   do {
3658     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3659       *InRangeOp = Elts.size();
3660 
3661     Constant *C;
3662     if (ParseGlobalTypeAndValue(C)) return true;
3663     Elts.push_back(C);
3664   } while (EatIfPresent(lltok::comma));
3665 
3666   return false;
3667 }
3668 
3669 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3670   SmallVector<Metadata *, 16> Elts;
3671   if (ParseMDNodeVector(Elts))
3672     return true;
3673 
3674   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3675   return false;
3676 }
3677 
3678 /// MDNode:
3679 ///  ::= !{ ... }
3680 ///  ::= !7
3681 ///  ::= !DILocation(...)
3682 bool LLParser::ParseMDNode(MDNode *&N) {
3683   if (Lex.getKind() == lltok::MetadataVar)
3684     return ParseSpecializedMDNode(N);
3685 
3686   return ParseToken(lltok::exclaim, "expected '!' here") ||
3687          ParseMDNodeTail(N);
3688 }
3689 
3690 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3691   // !{ ... }
3692   if (Lex.getKind() == lltok::lbrace)
3693     return ParseMDTuple(N);
3694 
3695   // !42
3696   return ParseMDNodeID(N);
3697 }
3698 
3699 namespace {
3700 
3701 /// Structure to represent an optional metadata field.
3702 template <class FieldTy> struct MDFieldImpl {
3703   typedef MDFieldImpl ImplTy;
3704   FieldTy Val;
3705   bool Seen;
3706 
3707   void assign(FieldTy Val) {
3708     Seen = true;
3709     this->Val = std::move(Val);
3710   }
3711 
3712   explicit MDFieldImpl(FieldTy Default)
3713       : Val(std::move(Default)), Seen(false) {}
3714 };
3715 
3716 /// Structure to represent an optional metadata field that
3717 /// can be of either type (A or B) and encapsulates the
3718 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3719 /// to reimplement the specifics for representing each Field.
3720 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3721   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3722   FieldTypeA A;
3723   FieldTypeB B;
3724   bool Seen;
3725 
3726   enum {
3727     IsInvalid = 0,
3728     IsTypeA = 1,
3729     IsTypeB = 2
3730   } WhatIs;
3731 
3732   void assign(FieldTypeA A) {
3733     Seen = true;
3734     this->A = std::move(A);
3735     WhatIs = IsTypeA;
3736   }
3737 
3738   void assign(FieldTypeB B) {
3739     Seen = true;
3740     this->B = std::move(B);
3741     WhatIs = IsTypeB;
3742   }
3743 
3744   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3745       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3746         WhatIs(IsInvalid) {}
3747 };
3748 
3749 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3750   uint64_t Max;
3751 
3752   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3753       : ImplTy(Default), Max(Max) {}
3754 };
3755 
3756 struct LineField : public MDUnsignedField {
3757   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3758 };
3759 
3760 struct ColumnField : public MDUnsignedField {
3761   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3762 };
3763 
3764 struct DwarfTagField : public MDUnsignedField {
3765   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3766   DwarfTagField(dwarf::Tag DefaultTag)
3767       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3768 };
3769 
3770 struct DwarfMacinfoTypeField : public MDUnsignedField {
3771   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3772   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3773     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3774 };
3775 
3776 struct DwarfAttEncodingField : public MDUnsignedField {
3777   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3778 };
3779 
3780 struct DwarfVirtualityField : public MDUnsignedField {
3781   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3782 };
3783 
3784 struct DwarfLangField : public MDUnsignedField {
3785   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3786 };
3787 
3788 struct DwarfCCField : public MDUnsignedField {
3789   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3790 };
3791 
3792 struct EmissionKindField : public MDUnsignedField {
3793   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3794 };
3795 
3796 struct NameTableKindField : public MDUnsignedField {
3797   NameTableKindField()
3798       : MDUnsignedField(
3799             0, (unsigned)
3800                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3801 };
3802 
3803 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3804   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3805 };
3806 
3807 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3808   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3809 };
3810 
3811 struct MDSignedField : public MDFieldImpl<int64_t> {
3812   int64_t Min;
3813   int64_t Max;
3814 
3815   MDSignedField(int64_t Default = 0)
3816       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3817   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3818       : ImplTy(Default), Min(Min), Max(Max) {}
3819 };
3820 
3821 struct MDBoolField : public MDFieldImpl<bool> {
3822   MDBoolField(bool Default = false) : ImplTy(Default) {}
3823 };
3824 
3825 struct MDField : public MDFieldImpl<Metadata *> {
3826   bool AllowNull;
3827 
3828   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3829 };
3830 
3831 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3832   MDConstant() : ImplTy(nullptr) {}
3833 };
3834 
3835 struct MDStringField : public MDFieldImpl<MDString *> {
3836   bool AllowEmpty;
3837   MDStringField(bool AllowEmpty = true)
3838       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3839 };
3840 
3841 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3842   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3843 };
3844 
3845 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3846   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3847 };
3848 
3849 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3850   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3851       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3852 
3853   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3854                     bool AllowNull = true)
3855       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3856 
3857   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3858   bool isMDField() const { return WhatIs == IsTypeB; }
3859   int64_t getMDSignedValue() const {
3860     assert(isMDSignedField() && "Wrong field type");
3861     return A.Val;
3862   }
3863   Metadata *getMDFieldValue() const {
3864     assert(isMDField() && "Wrong field type");
3865     return B.Val;
3866   }
3867 };
3868 
3869 struct MDSignedOrUnsignedField
3870     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3871   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3872 
3873   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3874   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3875   int64_t getMDSignedValue() const {
3876     assert(isMDSignedField() && "Wrong field type");
3877     return A.Val;
3878   }
3879   uint64_t getMDUnsignedValue() const {
3880     assert(isMDUnsignedField() && "Wrong field type");
3881     return B.Val;
3882   }
3883 };
3884 
3885 } // end anonymous namespace
3886 
3887 namespace llvm {
3888 
3889 template <>
3890 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3891                             MDUnsignedField &Result) {
3892   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3893     return TokError("expected unsigned integer");
3894 
3895   auto &U = Lex.getAPSIntVal();
3896   if (U.ugt(Result.Max))
3897     return TokError("value for '" + Name + "' too large, limit is " +
3898                     Twine(Result.Max));
3899   Result.assign(U.getZExtValue());
3900   assert(Result.Val <= Result.Max && "Expected value in range");
3901   Lex.Lex();
3902   return false;
3903 }
3904 
3905 template <>
3906 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3907   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3908 }
3909 template <>
3910 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3911   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3912 }
3913 
3914 template <>
3915 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3916   if (Lex.getKind() == lltok::APSInt)
3917     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3918 
3919   if (Lex.getKind() != lltok::DwarfTag)
3920     return TokError("expected DWARF tag");
3921 
3922   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3923   if (Tag == dwarf::DW_TAG_invalid)
3924     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3925   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3926 
3927   Result.assign(Tag);
3928   Lex.Lex();
3929   return false;
3930 }
3931 
3932 template <>
3933 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3934                             DwarfMacinfoTypeField &Result) {
3935   if (Lex.getKind() == lltok::APSInt)
3936     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3937 
3938   if (Lex.getKind() != lltok::DwarfMacinfo)
3939     return TokError("expected DWARF macinfo type");
3940 
3941   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3942   if (Macinfo == dwarf::DW_MACINFO_invalid)
3943     return TokError(
3944         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3945   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3946 
3947   Result.assign(Macinfo);
3948   Lex.Lex();
3949   return false;
3950 }
3951 
3952 template <>
3953 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3954                             DwarfVirtualityField &Result) {
3955   if (Lex.getKind() == lltok::APSInt)
3956     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3957 
3958   if (Lex.getKind() != lltok::DwarfVirtuality)
3959     return TokError("expected DWARF virtuality code");
3960 
3961   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3962   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3963     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3964                     Lex.getStrVal() + "'");
3965   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3966   Result.assign(Virtuality);
3967   Lex.Lex();
3968   return false;
3969 }
3970 
3971 template <>
3972 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3973   if (Lex.getKind() == lltok::APSInt)
3974     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3975 
3976   if (Lex.getKind() != lltok::DwarfLang)
3977     return TokError("expected DWARF language");
3978 
3979   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3980   if (!Lang)
3981     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3982                     "'");
3983   assert(Lang <= Result.Max && "Expected valid DWARF language");
3984   Result.assign(Lang);
3985   Lex.Lex();
3986   return false;
3987 }
3988 
3989 template <>
3990 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3991   if (Lex.getKind() == lltok::APSInt)
3992     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3993 
3994   if (Lex.getKind() != lltok::DwarfCC)
3995     return TokError("expected DWARF calling convention");
3996 
3997   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3998   if (!CC)
3999     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4000                     "'");
4001   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4002   Result.assign(CC);
4003   Lex.Lex();
4004   return false;
4005 }
4006 
4007 template <>
4008 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4009   if (Lex.getKind() == lltok::APSInt)
4010     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4011 
4012   if (Lex.getKind() != lltok::EmissionKind)
4013     return TokError("expected emission kind");
4014 
4015   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4016   if (!Kind)
4017     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4018                     "'");
4019   assert(*Kind <= Result.Max && "Expected valid emission kind");
4020   Result.assign(*Kind);
4021   Lex.Lex();
4022   return false;
4023 }
4024 
4025 template <>
4026 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4027                             NameTableKindField &Result) {
4028   if (Lex.getKind() == lltok::APSInt)
4029     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4030 
4031   if (Lex.getKind() != lltok::NameTableKind)
4032     return TokError("expected nameTable kind");
4033 
4034   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4035   if (!Kind)
4036     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4037                     "'");
4038   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4039   Result.assign((unsigned)*Kind);
4040   Lex.Lex();
4041   return false;
4042 }
4043 
4044 template <>
4045 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4046                             DwarfAttEncodingField &Result) {
4047   if (Lex.getKind() == lltok::APSInt)
4048     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4049 
4050   if (Lex.getKind() != lltok::DwarfAttEncoding)
4051     return TokError("expected DWARF type attribute encoding");
4052 
4053   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4054   if (!Encoding)
4055     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4056                     Lex.getStrVal() + "'");
4057   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4058   Result.assign(Encoding);
4059   Lex.Lex();
4060   return false;
4061 }
4062 
4063 /// DIFlagField
4064 ///  ::= uint32
4065 ///  ::= DIFlagVector
4066 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4067 template <>
4068 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4069 
4070   // Parser for a single flag.
4071   auto parseFlag = [&](DINode::DIFlags &Val) {
4072     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4073       uint32_t TempVal = static_cast<uint32_t>(Val);
4074       bool Res = ParseUInt32(TempVal);
4075       Val = static_cast<DINode::DIFlags>(TempVal);
4076       return Res;
4077     }
4078 
4079     if (Lex.getKind() != lltok::DIFlag)
4080       return TokError("expected debug info flag");
4081 
4082     Val = DINode::getFlag(Lex.getStrVal());
4083     if (!Val)
4084       return TokError(Twine("invalid debug info flag flag '") +
4085                       Lex.getStrVal() + "'");
4086     Lex.Lex();
4087     return false;
4088   };
4089 
4090   // Parse the flags and combine them together.
4091   DINode::DIFlags Combined = DINode::FlagZero;
4092   do {
4093     DINode::DIFlags Val;
4094     if (parseFlag(Val))
4095       return true;
4096     Combined |= Val;
4097   } while (EatIfPresent(lltok::bar));
4098 
4099   Result.assign(Combined);
4100   return false;
4101 }
4102 
4103 /// DISPFlagField
4104 ///  ::= uint32
4105 ///  ::= DISPFlagVector
4106 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4107 template <>
4108 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4109 
4110   // Parser for a single flag.
4111   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4112     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4113       uint32_t TempVal = static_cast<uint32_t>(Val);
4114       bool Res = ParseUInt32(TempVal);
4115       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4116       return Res;
4117     }
4118 
4119     if (Lex.getKind() != lltok::DISPFlag)
4120       return TokError("expected debug info flag");
4121 
4122     Val = DISubprogram::getFlag(Lex.getStrVal());
4123     if (!Val)
4124       return TokError(Twine("invalid subprogram debug info flag '") +
4125                       Lex.getStrVal() + "'");
4126     Lex.Lex();
4127     return false;
4128   };
4129 
4130   // Parse the flags and combine them together.
4131   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4132   do {
4133     DISubprogram::DISPFlags Val;
4134     if (parseFlag(Val))
4135       return true;
4136     Combined |= Val;
4137   } while (EatIfPresent(lltok::bar));
4138 
4139   Result.assign(Combined);
4140   return false;
4141 }
4142 
4143 template <>
4144 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4145                             MDSignedField &Result) {
4146   if (Lex.getKind() != lltok::APSInt)
4147     return TokError("expected signed integer");
4148 
4149   auto &S = Lex.getAPSIntVal();
4150   if (S < Result.Min)
4151     return TokError("value for '" + Name + "' too small, limit is " +
4152                     Twine(Result.Min));
4153   if (S > Result.Max)
4154     return TokError("value for '" + Name + "' too large, limit is " +
4155                     Twine(Result.Max));
4156   Result.assign(S.getExtValue());
4157   assert(Result.Val >= Result.Min && "Expected value in range");
4158   assert(Result.Val <= Result.Max && "Expected value in range");
4159   Lex.Lex();
4160   return false;
4161 }
4162 
4163 template <>
4164 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4165   switch (Lex.getKind()) {
4166   default:
4167     return TokError("expected 'true' or 'false'");
4168   case lltok::kw_true:
4169     Result.assign(true);
4170     break;
4171   case lltok::kw_false:
4172     Result.assign(false);
4173     break;
4174   }
4175   Lex.Lex();
4176   return false;
4177 }
4178 
4179 template <>
4180 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4181   if (Lex.getKind() == lltok::kw_null) {
4182     if (!Result.AllowNull)
4183       return TokError("'" + Name + "' cannot be null");
4184     Lex.Lex();
4185     Result.assign(nullptr);
4186     return false;
4187   }
4188 
4189   Metadata *MD;
4190   if (ParseMetadata(MD, nullptr))
4191     return true;
4192 
4193   Result.assign(MD);
4194   return false;
4195 }
4196 
4197 template <>
4198 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4199                             MDSignedOrMDField &Result) {
4200   // Try to parse a signed int.
4201   if (Lex.getKind() == lltok::APSInt) {
4202     MDSignedField Res = Result.A;
4203     if (!ParseMDField(Loc, Name, Res)) {
4204       Result.assign(Res);
4205       return false;
4206     }
4207     return true;
4208   }
4209 
4210   // Otherwise, try to parse as an MDField.
4211   MDField Res = Result.B;
4212   if (!ParseMDField(Loc, Name, Res)) {
4213     Result.assign(Res);
4214     return false;
4215   }
4216 
4217   return true;
4218 }
4219 
4220 template <>
4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4222                             MDSignedOrUnsignedField &Result) {
4223   if (Lex.getKind() != lltok::APSInt)
4224     return false;
4225 
4226   if (Lex.getAPSIntVal().isSigned()) {
4227     MDSignedField Res = Result.A;
4228     if (ParseMDField(Loc, Name, Res))
4229       return true;
4230     Result.assign(Res);
4231     return false;
4232   }
4233 
4234   MDUnsignedField Res = Result.B;
4235   if (ParseMDField(Loc, Name, Res))
4236     return true;
4237   Result.assign(Res);
4238   return false;
4239 }
4240 
4241 template <>
4242 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4243   LocTy ValueLoc = Lex.getLoc();
4244   std::string S;
4245   if (ParseStringConstant(S))
4246     return true;
4247 
4248   if (!Result.AllowEmpty && S.empty())
4249     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4250 
4251   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4252   return false;
4253 }
4254 
4255 template <>
4256 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4257   SmallVector<Metadata *, 4> MDs;
4258   if (ParseMDNodeVector(MDs))
4259     return true;
4260 
4261   Result.assign(std::move(MDs));
4262   return false;
4263 }
4264 
4265 template <>
4266 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4267                             ChecksumKindField &Result) {
4268   Optional<DIFile::ChecksumKind> CSKind =
4269       DIFile::getChecksumKind(Lex.getStrVal());
4270 
4271   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4272     return TokError(
4273         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4274 
4275   Result.assign(*CSKind);
4276   Lex.Lex();
4277   return false;
4278 }
4279 
4280 } // end namespace llvm
4281 
4282 template <class ParserTy>
4283 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4284   do {
4285     if (Lex.getKind() != lltok::LabelStr)
4286       return TokError("expected field label here");
4287 
4288     if (parseField())
4289       return true;
4290   } while (EatIfPresent(lltok::comma));
4291 
4292   return false;
4293 }
4294 
4295 template <class ParserTy>
4296 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4297   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4298   Lex.Lex();
4299 
4300   if (ParseToken(lltok::lparen, "expected '(' here"))
4301     return true;
4302   if (Lex.getKind() != lltok::rparen)
4303     if (ParseMDFieldsImplBody(parseField))
4304       return true;
4305 
4306   ClosingLoc = Lex.getLoc();
4307   return ParseToken(lltok::rparen, "expected ')' here");
4308 }
4309 
4310 template <class FieldTy>
4311 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4312   if (Result.Seen)
4313     return TokError("field '" + Name + "' cannot be specified more than once");
4314 
4315   LocTy Loc = Lex.getLoc();
4316   Lex.Lex();
4317   return ParseMDField(Loc, Name, Result);
4318 }
4319 
4320 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4321   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4322 
4323 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4324   if (Lex.getStrVal() == #CLASS)                                               \
4325     return Parse##CLASS(N, IsDistinct);
4326 #include "llvm/IR/Metadata.def"
4327 
4328   return TokError("expected metadata type");
4329 }
4330 
4331 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4332 #define NOP_FIELD(NAME, TYPE, INIT)
4333 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4334   if (!NAME.Seen)                                                              \
4335     return Error(ClosingLoc, "missing required field '" #NAME "'");
4336 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4337   if (Lex.getStrVal() == #NAME)                                                \
4338     return ParseMDField(#NAME, NAME);
4339 #define PARSE_MD_FIELDS()                                                      \
4340   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4341   do {                                                                         \
4342     LocTy ClosingLoc;                                                          \
4343     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4344       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4345       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4346     }, ClosingLoc))                                                            \
4347       return true;                                                             \
4348     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4349   } while (false)
4350 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4351   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4352 
4353 /// ParseDILocationFields:
4354 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4355 ///   isImplicitCode: true)
4356 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4357 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4358   OPTIONAL(line, LineField, );                                                 \
4359   OPTIONAL(column, ColumnField, );                                             \
4360   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4361   OPTIONAL(inlinedAt, MDField, );                                              \
4362   OPTIONAL(isImplicitCode, MDBoolField, (false));
4363   PARSE_MD_FIELDS();
4364 #undef VISIT_MD_FIELDS
4365 
4366   Result =
4367       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4368                                    inlinedAt.Val, isImplicitCode.Val));
4369   return false;
4370 }
4371 
4372 /// ParseGenericDINode:
4373 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4374 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4375 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4376   REQUIRED(tag, DwarfTagField, );                                              \
4377   OPTIONAL(header, MDStringField, );                                           \
4378   OPTIONAL(operands, MDFieldList, );
4379   PARSE_MD_FIELDS();
4380 #undef VISIT_MD_FIELDS
4381 
4382   Result = GET_OR_DISTINCT(GenericDINode,
4383                            (Context, tag.Val, header.Val, operands.Val));
4384   return false;
4385 }
4386 
4387 /// ParseDISubrange:
4388 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4389 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4390 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4392   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4393   OPTIONAL(lowerBound, MDSignedField, );
4394   PARSE_MD_FIELDS();
4395 #undef VISIT_MD_FIELDS
4396 
4397   if (count.isMDSignedField())
4398     Result = GET_OR_DISTINCT(
4399         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4400   else if (count.isMDField())
4401     Result = GET_OR_DISTINCT(
4402         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4403   else
4404     return true;
4405 
4406   return false;
4407 }
4408 
4409 /// ParseDIEnumerator:
4410 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4411 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4412 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4413   REQUIRED(name, MDStringField, );                                             \
4414   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4415   OPTIONAL(isUnsigned, MDBoolField, (false));
4416   PARSE_MD_FIELDS();
4417 #undef VISIT_MD_FIELDS
4418 
4419   if (isUnsigned.Val && value.isMDSignedField())
4420     return TokError("unsigned enumerator with negative value");
4421 
4422   int64_t Value = value.isMDSignedField()
4423                       ? value.getMDSignedValue()
4424                       : static_cast<int64_t>(value.getMDUnsignedValue());
4425   Result =
4426       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4427 
4428   return false;
4429 }
4430 
4431 /// ParseDIBasicType:
4432 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4433 ///                    encoding: DW_ATE_encoding, flags: 0)
4434 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4435 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4436   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4437   OPTIONAL(name, MDStringField, );                                             \
4438   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4439   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4440   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4441   OPTIONAL(flags, DIFlagField, );
4442   PARSE_MD_FIELDS();
4443 #undef VISIT_MD_FIELDS
4444 
4445   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4446                                          align.Val, encoding.Val, flags.Val));
4447   return false;
4448 }
4449 
4450 /// ParseDIDerivedType:
4451 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4452 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4453 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4454 ///                      dwarfAddressSpace: 3)
4455 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4456 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4457   REQUIRED(tag, DwarfTagField, );                                              \
4458   OPTIONAL(name, MDStringField, );                                             \
4459   OPTIONAL(file, MDField, );                                                   \
4460   OPTIONAL(line, LineField, );                                                 \
4461   OPTIONAL(scope, MDField, );                                                  \
4462   REQUIRED(baseType, MDField, );                                               \
4463   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4464   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4465   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4466   OPTIONAL(flags, DIFlagField, );                                              \
4467   OPTIONAL(extraData, MDField, );                                              \
4468   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4469   PARSE_MD_FIELDS();
4470 #undef VISIT_MD_FIELDS
4471 
4472   Optional<unsigned> DWARFAddressSpace;
4473   if (dwarfAddressSpace.Val != UINT32_MAX)
4474     DWARFAddressSpace = dwarfAddressSpace.Val;
4475 
4476   Result = GET_OR_DISTINCT(DIDerivedType,
4477                            (Context, tag.Val, name.Val, file.Val, line.Val,
4478                             scope.Val, baseType.Val, size.Val, align.Val,
4479                             offset.Val, DWARFAddressSpace, flags.Val,
4480                             extraData.Val));
4481   return false;
4482 }
4483 
4484 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4485 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4486   REQUIRED(tag, DwarfTagField, );                                              \
4487   OPTIONAL(name, MDStringField, );                                             \
4488   OPTIONAL(file, MDField, );                                                   \
4489   OPTIONAL(line, LineField, );                                                 \
4490   OPTIONAL(scope, MDField, );                                                  \
4491   OPTIONAL(baseType, MDField, );                                               \
4492   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4493   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4494   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4495   OPTIONAL(flags, DIFlagField, );                                              \
4496   OPTIONAL(elements, MDField, );                                               \
4497   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4498   OPTIONAL(vtableHolder, MDField, );                                           \
4499   OPTIONAL(templateParams, MDField, );                                         \
4500   OPTIONAL(identifier, MDStringField, );                                       \
4501   OPTIONAL(discriminator, MDField, );
4502   PARSE_MD_FIELDS();
4503 #undef VISIT_MD_FIELDS
4504 
4505   // If this has an identifier try to build an ODR type.
4506   if (identifier.Val)
4507     if (auto *CT = DICompositeType::buildODRType(
4508             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4509             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4510             elements.Val, runtimeLang.Val, vtableHolder.Val,
4511             templateParams.Val, discriminator.Val)) {
4512       Result = CT;
4513       return false;
4514     }
4515 
4516   // Create a new node, and save it in the context if it belongs in the type
4517   // map.
4518   Result = GET_OR_DISTINCT(
4519       DICompositeType,
4520       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4521        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4522        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4523        discriminator.Val));
4524   return false;
4525 }
4526 
4527 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4528 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4529   OPTIONAL(flags, DIFlagField, );                                              \
4530   OPTIONAL(cc, DwarfCCField, );                                                \
4531   REQUIRED(types, MDField, );
4532   PARSE_MD_FIELDS();
4533 #undef VISIT_MD_FIELDS
4534 
4535   Result = GET_OR_DISTINCT(DISubroutineType,
4536                            (Context, flags.Val, cc.Val, types.Val));
4537   return false;
4538 }
4539 
4540 /// ParseDIFileType:
4541 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4542 ///                   checksumkind: CSK_MD5,
4543 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4544 ///                   source: "source file contents")
4545 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4546   // The default constructed value for checksumkind is required, but will never
4547   // be used, as the parser checks if the field was actually Seen before using
4548   // the Val.
4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4550   REQUIRED(filename, MDStringField, );                                         \
4551   REQUIRED(directory, MDStringField, );                                        \
4552   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4553   OPTIONAL(checksum, MDStringField, );                                         \
4554   OPTIONAL(source, MDStringField, );
4555   PARSE_MD_FIELDS();
4556 #undef VISIT_MD_FIELDS
4557 
4558   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4559   if (checksumkind.Seen && checksum.Seen)
4560     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4561   else if (checksumkind.Seen || checksum.Seen)
4562     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4563 
4564   Optional<MDString *> OptSource;
4565   if (source.Seen)
4566     OptSource = source.Val;
4567   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4568                                     OptChecksum, OptSource));
4569   return false;
4570 }
4571 
4572 /// ParseDICompileUnit:
4573 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4574 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4575 ///                      splitDebugFilename: "abc.debug",
4576 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4577 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4578 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4579   if (!IsDistinct)
4580     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4581 
4582 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4583   REQUIRED(language, DwarfLangField, );                                        \
4584   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4585   OPTIONAL(producer, MDStringField, );                                         \
4586   OPTIONAL(isOptimized, MDBoolField, );                                        \
4587   OPTIONAL(flags, MDStringField, );                                            \
4588   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4589   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4590   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4591   OPTIONAL(enums, MDField, );                                                  \
4592   OPTIONAL(retainedTypes, MDField, );                                          \
4593   OPTIONAL(globals, MDField, );                                                \
4594   OPTIONAL(imports, MDField, );                                                \
4595   OPTIONAL(macros, MDField, );                                                 \
4596   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4597   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4598   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4599   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4600   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4601   PARSE_MD_FIELDS();
4602 #undef VISIT_MD_FIELDS
4603 
4604   Result = DICompileUnit::getDistinct(
4605       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4606       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4607       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4608       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4609       debugBaseAddress.Val);
4610   return false;
4611 }
4612 
4613 /// ParseDISubprogram:
4614 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4615 ///                     file: !1, line: 7, type: !2, isLocal: false,
4616 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4617 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4618 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4619 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4620 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4621 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4622   auto Loc = Lex.getLoc();
4623 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4624   OPTIONAL(scope, MDField, );                                                  \
4625   OPTIONAL(name, MDStringField, );                                             \
4626   OPTIONAL(linkageName, MDStringField, );                                      \
4627   OPTIONAL(file, MDField, );                                                   \
4628   OPTIONAL(line, LineField, );                                                 \
4629   OPTIONAL(type, MDField, );                                                   \
4630   OPTIONAL(isLocal, MDBoolField, );                                            \
4631   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4632   OPTIONAL(scopeLine, LineField, );                                            \
4633   OPTIONAL(containingType, MDField, );                                         \
4634   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4635   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4636   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4637   OPTIONAL(flags, DIFlagField, );                                              \
4638   OPTIONAL(spFlags, DISPFlagField, );                                          \
4639   OPTIONAL(isOptimized, MDBoolField, );                                        \
4640   OPTIONAL(unit, MDField, );                                                   \
4641   OPTIONAL(templateParams, MDField, );                                         \
4642   OPTIONAL(declaration, MDField, );                                            \
4643   OPTIONAL(retainedNodes, MDField, );                                          \
4644   OPTIONAL(thrownTypes, MDField, );
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   // An explicit spFlags field takes precedence over individual fields in
4649   // older IR versions.
4650   DISubprogram::DISPFlags SPFlags =
4651       spFlags.Seen ? spFlags.Val
4652                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4653                                              isOptimized.Val, virtuality.Val);
4654   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4655     return Lex.Error(
4656         Loc,
4657         "missing 'distinct', required for !DISubprogram that is a Definition");
4658   Result = GET_OR_DISTINCT(
4659       DISubprogram,
4660       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4661        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4662        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4663        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4664   return false;
4665 }
4666 
4667 /// ParseDILexicalBlock:
4668 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4669 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4671   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4672   OPTIONAL(file, MDField, );                                                   \
4673   OPTIONAL(line, LineField, );                                                 \
4674   OPTIONAL(column, ColumnField, );
4675   PARSE_MD_FIELDS();
4676 #undef VISIT_MD_FIELDS
4677 
4678   Result = GET_OR_DISTINCT(
4679       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4680   return false;
4681 }
4682 
4683 /// ParseDILexicalBlockFile:
4684 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4685 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4686 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4687   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4688   OPTIONAL(file, MDField, );                                                   \
4689   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4690   PARSE_MD_FIELDS();
4691 #undef VISIT_MD_FIELDS
4692 
4693   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4694                            (Context, scope.Val, file.Val, discriminator.Val));
4695   return false;
4696 }
4697 
4698 /// ParseDICommonBlock:
4699 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4700 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4702   REQUIRED(scope, MDField, );                                                  \
4703   OPTIONAL(declaration, MDField, );                                            \
4704   OPTIONAL(name, MDStringField, );                                             \
4705   OPTIONAL(file, MDField, );                                                   \
4706   OPTIONAL(line, LineField, );
4707   PARSE_MD_FIELDS();
4708 #undef VISIT_MD_FIELDS
4709 
4710   Result = GET_OR_DISTINCT(DICommonBlock,
4711                            (Context, scope.Val, declaration.Val, name.Val,
4712                             file.Val, line.Val));
4713   return false;
4714 }
4715 
4716 /// ParseDINamespace:
4717 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4718 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4720   REQUIRED(scope, MDField, );                                                  \
4721   OPTIONAL(name, MDStringField, );                                             \
4722   OPTIONAL(exportSymbols, MDBoolField, );
4723   PARSE_MD_FIELDS();
4724 #undef VISIT_MD_FIELDS
4725 
4726   Result = GET_OR_DISTINCT(DINamespace,
4727                            (Context, scope.Val, name.Val, exportSymbols.Val));
4728   return false;
4729 }
4730 
4731 /// ParseDIMacro:
4732 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4733 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4735   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4736   OPTIONAL(line, LineField, );                                                 \
4737   REQUIRED(name, MDStringField, );                                             \
4738   OPTIONAL(value, MDStringField, );
4739   PARSE_MD_FIELDS();
4740 #undef VISIT_MD_FIELDS
4741 
4742   Result = GET_OR_DISTINCT(DIMacro,
4743                            (Context, type.Val, line.Val, name.Val, value.Val));
4744   return false;
4745 }
4746 
4747 /// ParseDIMacroFile:
4748 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4749 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4751   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4752   OPTIONAL(line, LineField, );                                                 \
4753   REQUIRED(file, MDField, );                                                   \
4754   OPTIONAL(nodes, MDField, );
4755   PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4757 
4758   Result = GET_OR_DISTINCT(DIMacroFile,
4759                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4760   return false;
4761 }
4762 
4763 /// ParseDIModule:
4764 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4765 ///                 includePath: "/usr/include", isysroot: "/")
4766 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4768   REQUIRED(scope, MDField, );                                                  \
4769   REQUIRED(name, MDStringField, );                                             \
4770   OPTIONAL(configMacros, MDStringField, );                                     \
4771   OPTIONAL(includePath, MDStringField, );                                      \
4772   OPTIONAL(isysroot, MDStringField, );
4773   PARSE_MD_FIELDS();
4774 #undef VISIT_MD_FIELDS
4775 
4776   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4777                            configMacros.Val, includePath.Val, isysroot.Val));
4778   return false;
4779 }
4780 
4781 /// ParseDITemplateTypeParameter:
4782 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4783 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4784 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4785   OPTIONAL(name, MDStringField, );                                             \
4786   REQUIRED(type, MDField, );
4787   PARSE_MD_FIELDS();
4788 #undef VISIT_MD_FIELDS
4789 
4790   Result =
4791       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4792   return false;
4793 }
4794 
4795 /// ParseDITemplateValueParameter:
4796 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4797 ///                                 name: "V", type: !1, value: i32 7)
4798 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4800   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4801   OPTIONAL(name, MDStringField, );                                             \
4802   OPTIONAL(type, MDField, );                                                   \
4803   REQUIRED(value, MDField, );
4804   PARSE_MD_FIELDS();
4805 #undef VISIT_MD_FIELDS
4806 
4807   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4808                            (Context, tag.Val, name.Val, type.Val, value.Val));
4809   return false;
4810 }
4811 
4812 /// ParseDIGlobalVariable:
4813 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4814 ///                         file: !1, line: 7, type: !2, isLocal: false,
4815 ///                         isDefinition: true, templateParams: !3,
4816 ///                         declaration: !4, align: 8)
4817 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4819   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4820   OPTIONAL(scope, MDField, );                                                  \
4821   OPTIONAL(linkageName, MDStringField, );                                      \
4822   OPTIONAL(file, MDField, );                                                   \
4823   OPTIONAL(line, LineField, );                                                 \
4824   OPTIONAL(type, MDField, );                                                   \
4825   OPTIONAL(isLocal, MDBoolField, );                                            \
4826   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4827   OPTIONAL(templateParams, MDField, );                                         \
4828   OPTIONAL(declaration, MDField, );                                            \
4829   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4830   PARSE_MD_FIELDS();
4831 #undef VISIT_MD_FIELDS
4832 
4833   Result =
4834       GET_OR_DISTINCT(DIGlobalVariable,
4835                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4836                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4837                        declaration.Val, templateParams.Val, align.Val));
4838   return false;
4839 }
4840 
4841 /// ParseDILocalVariable:
4842 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4843 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4844 ///                        align: 8)
4845 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4846 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4847 ///                        align: 8)
4848 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4849 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4850   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4851   OPTIONAL(name, MDStringField, );                                             \
4852   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4853   OPTIONAL(file, MDField, );                                                   \
4854   OPTIONAL(line, LineField, );                                                 \
4855   OPTIONAL(type, MDField, );                                                   \
4856   OPTIONAL(flags, DIFlagField, );                                              \
4857   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4858   PARSE_MD_FIELDS();
4859 #undef VISIT_MD_FIELDS
4860 
4861   Result = GET_OR_DISTINCT(DILocalVariable,
4862                            (Context, scope.Val, name.Val, file.Val, line.Val,
4863                             type.Val, arg.Val, flags.Val, align.Val));
4864   return false;
4865 }
4866 
4867 /// ParseDILabel:
4868 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4869 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4870 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4871   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4872   REQUIRED(name, MDStringField, );                                             \
4873   REQUIRED(file, MDField, );                                                   \
4874   REQUIRED(line, LineField, );
4875   PARSE_MD_FIELDS();
4876 #undef VISIT_MD_FIELDS
4877 
4878   Result = GET_OR_DISTINCT(DILabel,
4879                            (Context, scope.Val, name.Val, file.Val, line.Val));
4880   return false;
4881 }
4882 
4883 /// ParseDIExpression:
4884 ///   ::= !DIExpression(0, 7, -1)
4885 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4886   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4887   Lex.Lex();
4888 
4889   if (ParseToken(lltok::lparen, "expected '(' here"))
4890     return true;
4891 
4892   SmallVector<uint64_t, 8> Elements;
4893   if (Lex.getKind() != lltok::rparen)
4894     do {
4895       if (Lex.getKind() == lltok::DwarfOp) {
4896         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4897           Lex.Lex();
4898           Elements.push_back(Op);
4899           continue;
4900         }
4901         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4902       }
4903 
4904       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4905         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4906           Lex.Lex();
4907           Elements.push_back(Op);
4908           continue;
4909         }
4910         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4911       }
4912 
4913       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4914         return TokError("expected unsigned integer");
4915 
4916       auto &U = Lex.getAPSIntVal();
4917       if (U.ugt(UINT64_MAX))
4918         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4919       Elements.push_back(U.getZExtValue());
4920       Lex.Lex();
4921     } while (EatIfPresent(lltok::comma));
4922 
4923   if (ParseToken(lltok::rparen, "expected ')' here"))
4924     return true;
4925 
4926   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4927   return false;
4928 }
4929 
4930 /// ParseDIGlobalVariableExpression:
4931 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4932 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4933                                                bool IsDistinct) {
4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4935   REQUIRED(var, MDField, );                                                    \
4936   REQUIRED(expr, MDField, );
4937   PARSE_MD_FIELDS();
4938 #undef VISIT_MD_FIELDS
4939 
4940   Result =
4941       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4942   return false;
4943 }
4944 
4945 /// ParseDIObjCProperty:
4946 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4947 ///                       getter: "getFoo", attributes: 7, type: !2)
4948 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4949 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4950   OPTIONAL(name, MDStringField, );                                             \
4951   OPTIONAL(file, MDField, );                                                   \
4952   OPTIONAL(line, LineField, );                                                 \
4953   OPTIONAL(setter, MDStringField, );                                           \
4954   OPTIONAL(getter, MDStringField, );                                           \
4955   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4956   OPTIONAL(type, MDField, );
4957   PARSE_MD_FIELDS();
4958 #undef VISIT_MD_FIELDS
4959 
4960   Result = GET_OR_DISTINCT(DIObjCProperty,
4961                            (Context, name.Val, file.Val, line.Val, setter.Val,
4962                             getter.Val, attributes.Val, type.Val));
4963   return false;
4964 }
4965 
4966 /// ParseDIImportedEntity:
4967 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4968 ///                         line: 7, name: "foo")
4969 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4970 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4971   REQUIRED(tag, DwarfTagField, );                                              \
4972   REQUIRED(scope, MDField, );                                                  \
4973   OPTIONAL(entity, MDField, );                                                 \
4974   OPTIONAL(file, MDField, );                                                   \
4975   OPTIONAL(line, LineField, );                                                 \
4976   OPTIONAL(name, MDStringField, );
4977   PARSE_MD_FIELDS();
4978 #undef VISIT_MD_FIELDS
4979 
4980   Result = GET_OR_DISTINCT(
4981       DIImportedEntity,
4982       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4983   return false;
4984 }
4985 
4986 #undef PARSE_MD_FIELD
4987 #undef NOP_FIELD
4988 #undef REQUIRE_FIELD
4989 #undef DECLARE_FIELD
4990 
4991 /// ParseMetadataAsValue
4992 ///  ::= metadata i32 %local
4993 ///  ::= metadata i32 @global
4994 ///  ::= metadata i32 7
4995 ///  ::= metadata !0
4996 ///  ::= metadata !{...}
4997 ///  ::= metadata !"string"
4998 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4999   // Note: the type 'metadata' has already been parsed.
5000   Metadata *MD;
5001   if (ParseMetadata(MD, &PFS))
5002     return true;
5003 
5004   V = MetadataAsValue::get(Context, MD);
5005   return false;
5006 }
5007 
5008 /// ParseValueAsMetadata
5009 ///  ::= i32 %local
5010 ///  ::= i32 @global
5011 ///  ::= i32 7
5012 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5013                                     PerFunctionState *PFS) {
5014   Type *Ty;
5015   LocTy Loc;
5016   if (ParseType(Ty, TypeMsg, Loc))
5017     return true;
5018   if (Ty->isMetadataTy())
5019     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5020 
5021   Value *V;
5022   if (ParseValue(Ty, V, PFS))
5023     return true;
5024 
5025   MD = ValueAsMetadata::get(V);
5026   return false;
5027 }
5028 
5029 /// ParseMetadata
5030 ///  ::= i32 %local
5031 ///  ::= i32 @global
5032 ///  ::= i32 7
5033 ///  ::= !42
5034 ///  ::= !{...}
5035 ///  ::= !"string"
5036 ///  ::= !DILocation(...)
5037 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5038   if (Lex.getKind() == lltok::MetadataVar) {
5039     MDNode *N;
5040     if (ParseSpecializedMDNode(N))
5041       return true;
5042     MD = N;
5043     return false;
5044   }
5045 
5046   // ValueAsMetadata:
5047   // <type> <value>
5048   if (Lex.getKind() != lltok::exclaim)
5049     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5050 
5051   // '!'.
5052   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5053   Lex.Lex();
5054 
5055   // MDString:
5056   //   ::= '!' STRINGCONSTANT
5057   if (Lex.getKind() == lltok::StringConstant) {
5058     MDString *S;
5059     if (ParseMDString(S))
5060       return true;
5061     MD = S;
5062     return false;
5063   }
5064 
5065   // MDNode:
5066   // !{ ... }
5067   // !7
5068   MDNode *N;
5069   if (ParseMDNodeTail(N))
5070     return true;
5071   MD = N;
5072   return false;
5073 }
5074 
5075 //===----------------------------------------------------------------------===//
5076 // Function Parsing.
5077 //===----------------------------------------------------------------------===//
5078 
5079 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5080                                    PerFunctionState *PFS, bool IsCall) {
5081   if (Ty->isFunctionTy())
5082     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5083 
5084   switch (ID.Kind) {
5085   case ValID::t_LocalID:
5086     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5087     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5088     return V == nullptr;
5089   case ValID::t_LocalName:
5090     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5091     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5092     return V == nullptr;
5093   case ValID::t_InlineAsm: {
5094     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5095       return Error(ID.Loc, "invalid type for inline asm constraint string");
5096     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5097                        (ID.UIntVal >> 1) & 1,
5098                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5099     return false;
5100   }
5101   case ValID::t_GlobalName:
5102     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5103     return V == nullptr;
5104   case ValID::t_GlobalID:
5105     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5106     return V == nullptr;
5107   case ValID::t_APSInt:
5108     if (!Ty->isIntegerTy())
5109       return Error(ID.Loc, "integer constant must have integer type");
5110     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5111     V = ConstantInt::get(Context, ID.APSIntVal);
5112     return false;
5113   case ValID::t_APFloat:
5114     if (!Ty->isFloatingPointTy() ||
5115         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5116       return Error(ID.Loc, "floating point constant invalid for type");
5117 
5118     // The lexer has no type info, so builds all half, float, and double FP
5119     // constants as double.  Fix this here.  Long double does not need this.
5120     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5121       bool Ignored;
5122       if (Ty->isHalfTy())
5123         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5124                               &Ignored);
5125       else if (Ty->isFloatTy())
5126         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5127                               &Ignored);
5128     }
5129     V = ConstantFP::get(Context, ID.APFloatVal);
5130 
5131     if (V->getType() != Ty)
5132       return Error(ID.Loc, "floating point constant does not have type '" +
5133                    getTypeString(Ty) + "'");
5134 
5135     return false;
5136   case ValID::t_Null:
5137     if (!Ty->isPointerTy())
5138       return Error(ID.Loc, "null must be a pointer type");
5139     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5140     return false;
5141   case ValID::t_Undef:
5142     // FIXME: LabelTy should not be a first-class type.
5143     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5144       return Error(ID.Loc, "invalid type for undef constant");
5145     V = UndefValue::get(Ty);
5146     return false;
5147   case ValID::t_EmptyArray:
5148     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5149       return Error(ID.Loc, "invalid empty array initializer");
5150     V = UndefValue::get(Ty);
5151     return false;
5152   case ValID::t_Zero:
5153     // FIXME: LabelTy should not be a first-class type.
5154     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5155       return Error(ID.Loc, "invalid type for null constant");
5156     V = Constant::getNullValue(Ty);
5157     return false;
5158   case ValID::t_None:
5159     if (!Ty->isTokenTy())
5160       return Error(ID.Loc, "invalid type for none constant");
5161     V = Constant::getNullValue(Ty);
5162     return false;
5163   case ValID::t_Constant:
5164     if (ID.ConstantVal->getType() != Ty)
5165       return Error(ID.Loc, "constant expression type mismatch");
5166 
5167     V = ID.ConstantVal;
5168     return false;
5169   case ValID::t_ConstantStruct:
5170   case ValID::t_PackedConstantStruct:
5171     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5172       if (ST->getNumElements() != ID.UIntVal)
5173         return Error(ID.Loc,
5174                      "initializer with struct type has wrong # elements");
5175       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5176         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5177 
5178       // Verify that the elements are compatible with the structtype.
5179       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5180         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5181           return Error(ID.Loc, "element " + Twine(i) +
5182                     " of struct initializer doesn't match struct element type");
5183 
5184       V = ConstantStruct::get(
5185           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5186     } else
5187       return Error(ID.Loc, "constant expression type mismatch");
5188     return false;
5189   }
5190   llvm_unreachable("Invalid ValID");
5191 }
5192 
5193 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5194   C = nullptr;
5195   ValID ID;
5196   auto Loc = Lex.getLoc();
5197   if (ParseValID(ID, /*PFS=*/nullptr))
5198     return true;
5199   switch (ID.Kind) {
5200   case ValID::t_APSInt:
5201   case ValID::t_APFloat:
5202   case ValID::t_Undef:
5203   case ValID::t_Constant:
5204   case ValID::t_ConstantStruct:
5205   case ValID::t_PackedConstantStruct: {
5206     Value *V;
5207     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5208       return true;
5209     assert(isa<Constant>(V) && "Expected a constant value");
5210     C = cast<Constant>(V);
5211     return false;
5212   }
5213   case ValID::t_Null:
5214     C = Constant::getNullValue(Ty);
5215     return false;
5216   default:
5217     return Error(Loc, "expected a constant value");
5218   }
5219 }
5220 
5221 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5222   V = nullptr;
5223   ValID ID;
5224   return ParseValID(ID, PFS) ||
5225          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5226 }
5227 
5228 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5229   Type *Ty = nullptr;
5230   return ParseType(Ty) ||
5231          ParseValue(Ty, V, PFS);
5232 }
5233 
5234 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5235                                       PerFunctionState &PFS) {
5236   Value *V;
5237   Loc = Lex.getLoc();
5238   if (ParseTypeAndValue(V, PFS)) return true;
5239   if (!isa<BasicBlock>(V))
5240     return Error(Loc, "expected a basic block");
5241   BB = cast<BasicBlock>(V);
5242   return false;
5243 }
5244 
5245 /// FunctionHeader
5246 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5247 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5248 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5249 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5250 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5251   // Parse the linkage.
5252   LocTy LinkageLoc = Lex.getLoc();
5253   unsigned Linkage;
5254   unsigned Visibility;
5255   unsigned DLLStorageClass;
5256   bool DSOLocal;
5257   AttrBuilder RetAttrs;
5258   unsigned CC;
5259   bool HasLinkage;
5260   Type *RetType = nullptr;
5261   LocTy RetTypeLoc = Lex.getLoc();
5262   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5263                            DSOLocal) ||
5264       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5265       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5266     return true;
5267 
5268   // Verify that the linkage is ok.
5269   switch ((GlobalValue::LinkageTypes)Linkage) {
5270   case GlobalValue::ExternalLinkage:
5271     break; // always ok.
5272   case GlobalValue::ExternalWeakLinkage:
5273     if (isDefine)
5274       return Error(LinkageLoc, "invalid linkage for function definition");
5275     break;
5276   case GlobalValue::PrivateLinkage:
5277   case GlobalValue::InternalLinkage:
5278   case GlobalValue::AvailableExternallyLinkage:
5279   case GlobalValue::LinkOnceAnyLinkage:
5280   case GlobalValue::LinkOnceODRLinkage:
5281   case GlobalValue::WeakAnyLinkage:
5282   case GlobalValue::WeakODRLinkage:
5283     if (!isDefine)
5284       return Error(LinkageLoc, "invalid linkage for function declaration");
5285     break;
5286   case GlobalValue::AppendingLinkage:
5287   case GlobalValue::CommonLinkage:
5288     return Error(LinkageLoc, "invalid function linkage type");
5289   }
5290 
5291   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5292     return Error(LinkageLoc,
5293                  "symbol with local linkage must have default visibility");
5294 
5295   if (!FunctionType::isValidReturnType(RetType))
5296     return Error(RetTypeLoc, "invalid function return type");
5297 
5298   LocTy NameLoc = Lex.getLoc();
5299 
5300   std::string FunctionName;
5301   if (Lex.getKind() == lltok::GlobalVar) {
5302     FunctionName = Lex.getStrVal();
5303   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5304     unsigned NameID = Lex.getUIntVal();
5305 
5306     if (NameID != NumberedVals.size())
5307       return TokError("function expected to be numbered '%" +
5308                       Twine(NumberedVals.size()) + "'");
5309   } else {
5310     return TokError("expected function name");
5311   }
5312 
5313   Lex.Lex();
5314 
5315   if (Lex.getKind() != lltok::lparen)
5316     return TokError("expected '(' in function argument list");
5317 
5318   SmallVector<ArgInfo, 8> ArgList;
5319   bool isVarArg;
5320   AttrBuilder FuncAttrs;
5321   std::vector<unsigned> FwdRefAttrGrps;
5322   LocTy BuiltinLoc;
5323   std::string Section;
5324   std::string Partition;
5325   unsigned Alignment;
5326   std::string GC;
5327   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5328   unsigned AddrSpace = 0;
5329   Constant *Prefix = nullptr;
5330   Constant *Prologue = nullptr;
5331   Constant *PersonalityFn = nullptr;
5332   Comdat *C;
5333 
5334   if (ParseArgumentList(ArgList, isVarArg) ||
5335       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5336       ParseOptionalProgramAddrSpace(AddrSpace) ||
5337       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5338                                  BuiltinLoc) ||
5339       (EatIfPresent(lltok::kw_section) &&
5340        ParseStringConstant(Section)) ||
5341       (EatIfPresent(lltok::kw_partition) &&
5342        ParseStringConstant(Partition)) ||
5343       parseOptionalComdat(FunctionName, C) ||
5344       ParseOptionalAlignment(Alignment) ||
5345       (EatIfPresent(lltok::kw_gc) &&
5346        ParseStringConstant(GC)) ||
5347       (EatIfPresent(lltok::kw_prefix) &&
5348        ParseGlobalTypeAndValue(Prefix)) ||
5349       (EatIfPresent(lltok::kw_prologue) &&
5350        ParseGlobalTypeAndValue(Prologue)) ||
5351       (EatIfPresent(lltok::kw_personality) &&
5352        ParseGlobalTypeAndValue(PersonalityFn)))
5353     return true;
5354 
5355   if (FuncAttrs.contains(Attribute::Builtin))
5356     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5357 
5358   // If the alignment was parsed as an attribute, move to the alignment field.
5359   if (FuncAttrs.hasAlignmentAttr()) {
5360     Alignment = FuncAttrs.getAlignment();
5361     FuncAttrs.removeAttribute(Attribute::Alignment);
5362   }
5363 
5364   // Okay, if we got here, the function is syntactically valid.  Convert types
5365   // and do semantic checks.
5366   std::vector<Type*> ParamTypeList;
5367   SmallVector<AttributeSet, 8> Attrs;
5368 
5369   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5370     ParamTypeList.push_back(ArgList[i].Ty);
5371     Attrs.push_back(ArgList[i].Attrs);
5372   }
5373 
5374   AttributeList PAL =
5375       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5376                          AttributeSet::get(Context, RetAttrs), Attrs);
5377 
5378   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5379     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5380 
5381   FunctionType *FT =
5382     FunctionType::get(RetType, ParamTypeList, isVarArg);
5383   PointerType *PFT = PointerType::get(FT, AddrSpace);
5384 
5385   Fn = nullptr;
5386   if (!FunctionName.empty()) {
5387     // If this was a definition of a forward reference, remove the definition
5388     // from the forward reference table and fill in the forward ref.
5389     auto FRVI = ForwardRefVals.find(FunctionName);
5390     if (FRVI != ForwardRefVals.end()) {
5391       Fn = M->getFunction(FunctionName);
5392       if (!Fn)
5393         return Error(FRVI->second.second, "invalid forward reference to "
5394                      "function as global value!");
5395       if (Fn->getType() != PFT)
5396         return Error(FRVI->second.second, "invalid forward reference to "
5397                      "function '" + FunctionName + "' with wrong type: "
5398                      "expected '" + getTypeString(PFT) + "' but was '" +
5399                      getTypeString(Fn->getType()) + "'");
5400       ForwardRefVals.erase(FRVI);
5401     } else if ((Fn = M->getFunction(FunctionName))) {
5402       // Reject redefinitions.
5403       return Error(NameLoc, "invalid redefinition of function '" +
5404                    FunctionName + "'");
5405     } else if (M->getNamedValue(FunctionName)) {
5406       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5407     }
5408 
5409   } else {
5410     // If this is a definition of a forward referenced function, make sure the
5411     // types agree.
5412     auto I = ForwardRefValIDs.find(NumberedVals.size());
5413     if (I != ForwardRefValIDs.end()) {
5414       Fn = cast<Function>(I->second.first);
5415       if (Fn->getType() != PFT)
5416         return Error(NameLoc, "type of definition and forward reference of '@" +
5417                      Twine(NumberedVals.size()) + "' disagree: "
5418                      "expected '" + getTypeString(PFT) + "' but was '" +
5419                      getTypeString(Fn->getType()) + "'");
5420       ForwardRefValIDs.erase(I);
5421     }
5422   }
5423 
5424   if (!Fn)
5425     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5426                           FunctionName, M);
5427   else // Move the forward-reference to the correct spot in the module.
5428     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5429 
5430   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5431 
5432   if (FunctionName.empty())
5433     NumberedVals.push_back(Fn);
5434 
5435   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5436   maybeSetDSOLocal(DSOLocal, *Fn);
5437   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5438   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5439   Fn->setCallingConv(CC);
5440   Fn->setAttributes(PAL);
5441   Fn->setUnnamedAddr(UnnamedAddr);
5442   Fn->setAlignment(Alignment);
5443   Fn->setSection(Section);
5444   Fn->setPartition(Partition);
5445   Fn->setComdat(C);
5446   Fn->setPersonalityFn(PersonalityFn);
5447   if (!GC.empty()) Fn->setGC(GC);
5448   Fn->setPrefixData(Prefix);
5449   Fn->setPrologueData(Prologue);
5450   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5451 
5452   // Add all of the arguments we parsed to the function.
5453   Function::arg_iterator ArgIt = Fn->arg_begin();
5454   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5455     // If the argument has a name, insert it into the argument symbol table.
5456     if (ArgList[i].Name.empty()) continue;
5457 
5458     // Set the name, if it conflicted, it will be auto-renamed.
5459     ArgIt->setName(ArgList[i].Name);
5460 
5461     if (ArgIt->getName() != ArgList[i].Name)
5462       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5463                    ArgList[i].Name + "'");
5464   }
5465 
5466   if (isDefine)
5467     return false;
5468 
5469   // Check the declaration has no block address forward references.
5470   ValID ID;
5471   if (FunctionName.empty()) {
5472     ID.Kind = ValID::t_GlobalID;
5473     ID.UIntVal = NumberedVals.size() - 1;
5474   } else {
5475     ID.Kind = ValID::t_GlobalName;
5476     ID.StrVal = FunctionName;
5477   }
5478   auto Blocks = ForwardRefBlockAddresses.find(ID);
5479   if (Blocks != ForwardRefBlockAddresses.end())
5480     return Error(Blocks->first.Loc,
5481                  "cannot take blockaddress inside a declaration");
5482   return false;
5483 }
5484 
5485 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5486   ValID ID;
5487   if (FunctionNumber == -1) {
5488     ID.Kind = ValID::t_GlobalName;
5489     ID.StrVal = F.getName();
5490   } else {
5491     ID.Kind = ValID::t_GlobalID;
5492     ID.UIntVal = FunctionNumber;
5493   }
5494 
5495   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5496   if (Blocks == P.ForwardRefBlockAddresses.end())
5497     return false;
5498 
5499   for (const auto &I : Blocks->second) {
5500     const ValID &BBID = I.first;
5501     GlobalValue *GV = I.second;
5502 
5503     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5504            "Expected local id or name");
5505     BasicBlock *BB;
5506     if (BBID.Kind == ValID::t_LocalName)
5507       BB = GetBB(BBID.StrVal, BBID.Loc);
5508     else
5509       BB = GetBB(BBID.UIntVal, BBID.Loc);
5510     if (!BB)
5511       return P.Error(BBID.Loc, "referenced value is not a basic block");
5512 
5513     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5514     GV->eraseFromParent();
5515   }
5516 
5517   P.ForwardRefBlockAddresses.erase(Blocks);
5518   return false;
5519 }
5520 
5521 /// ParseFunctionBody
5522 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5523 bool LLParser::ParseFunctionBody(Function &Fn) {
5524   if (Lex.getKind() != lltok::lbrace)
5525     return TokError("expected '{' in function body");
5526   Lex.Lex();  // eat the {.
5527 
5528   int FunctionNumber = -1;
5529   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5530 
5531   PerFunctionState PFS(*this, Fn, FunctionNumber);
5532 
5533   // Resolve block addresses and allow basic blocks to be forward-declared
5534   // within this function.
5535   if (PFS.resolveForwardRefBlockAddresses())
5536     return true;
5537   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5538 
5539   // We need at least one basic block.
5540   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5541     return TokError("function body requires at least one basic block");
5542 
5543   while (Lex.getKind() != lltok::rbrace &&
5544          Lex.getKind() != lltok::kw_uselistorder)
5545     if (ParseBasicBlock(PFS)) return true;
5546 
5547   while (Lex.getKind() != lltok::rbrace)
5548     if (ParseUseListOrder(&PFS))
5549       return true;
5550 
5551   // Eat the }.
5552   Lex.Lex();
5553 
5554   // Verify function is ok.
5555   return PFS.FinishFunction();
5556 }
5557 
5558 /// ParseBasicBlock
5559 ///   ::= (LabelStr|LabelID)? Instruction*
5560 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5561   // If this basic block starts out with a name, remember it.
5562   std::string Name;
5563   int NameID = -1;
5564   LocTy NameLoc = Lex.getLoc();
5565   if (Lex.getKind() == lltok::LabelStr) {
5566     Name = Lex.getStrVal();
5567     Lex.Lex();
5568   } else if (Lex.getKind() == lltok::LabelID) {
5569     NameID = Lex.getUIntVal();
5570     Lex.Lex();
5571   }
5572 
5573   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5574   if (!BB)
5575     return true;
5576 
5577   std::string NameStr;
5578 
5579   // Parse the instructions in this block until we get a terminator.
5580   Instruction *Inst;
5581   do {
5582     // This instruction may have three possibilities for a name: a) none
5583     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5584     LocTy NameLoc = Lex.getLoc();
5585     int NameID = -1;
5586     NameStr = "";
5587 
5588     if (Lex.getKind() == lltok::LocalVarID) {
5589       NameID = Lex.getUIntVal();
5590       Lex.Lex();
5591       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5592         return true;
5593     } else if (Lex.getKind() == lltok::LocalVar) {
5594       NameStr = Lex.getStrVal();
5595       Lex.Lex();
5596       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5597         return true;
5598     }
5599 
5600     switch (ParseInstruction(Inst, BB, PFS)) {
5601     default: llvm_unreachable("Unknown ParseInstruction result!");
5602     case InstError: return true;
5603     case InstNormal:
5604       BB->getInstList().push_back(Inst);
5605 
5606       // With a normal result, we check to see if the instruction is followed by
5607       // a comma and metadata.
5608       if (EatIfPresent(lltok::comma))
5609         if (ParseInstructionMetadata(*Inst))
5610           return true;
5611       break;
5612     case InstExtraComma:
5613       BB->getInstList().push_back(Inst);
5614 
5615       // If the instruction parser ate an extra comma at the end of it, it
5616       // *must* be followed by metadata.
5617       if (ParseInstructionMetadata(*Inst))
5618         return true;
5619       break;
5620     }
5621 
5622     // Set the name on the instruction.
5623     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5624   } while (!Inst->isTerminator());
5625 
5626   return false;
5627 }
5628 
5629 //===----------------------------------------------------------------------===//
5630 // Instruction Parsing.
5631 //===----------------------------------------------------------------------===//
5632 
5633 /// ParseInstruction - Parse one of the many different instructions.
5634 ///
5635 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5636                                PerFunctionState &PFS) {
5637   lltok::Kind Token = Lex.getKind();
5638   if (Token == lltok::Eof)
5639     return TokError("found end of file when expecting more instructions");
5640   LocTy Loc = Lex.getLoc();
5641   unsigned KeywordVal = Lex.getUIntVal();
5642   Lex.Lex();  // Eat the keyword.
5643 
5644   switch (Token) {
5645   default:                    return Error(Loc, "expected instruction opcode");
5646   // Terminator Instructions.
5647   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5648   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5649   case lltok::kw_br:          return ParseBr(Inst, PFS);
5650   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5651   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5652   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5653   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5654   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5655   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5656   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5657   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5658   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5659   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5660   // Unary Operators.
5661   case lltok::kw_fneg: {
5662     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5663     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5664     if (Res != 0)
5665       return Res;
5666     if (FMF.any())
5667       Inst->setFastMathFlags(FMF);
5668     return false;
5669   }
5670   // Binary Operators.
5671   case lltok::kw_add:
5672   case lltok::kw_sub:
5673   case lltok::kw_mul:
5674   case lltok::kw_shl: {
5675     bool NUW = EatIfPresent(lltok::kw_nuw);
5676     bool NSW = EatIfPresent(lltok::kw_nsw);
5677     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5678 
5679     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5680 
5681     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5682     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5683     return false;
5684   }
5685   case lltok::kw_fadd:
5686   case lltok::kw_fsub:
5687   case lltok::kw_fmul:
5688   case lltok::kw_fdiv:
5689   case lltok::kw_frem: {
5690     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5691     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5692     if (Res != 0)
5693       return Res;
5694     if (FMF.any())
5695       Inst->setFastMathFlags(FMF);
5696     return 0;
5697   }
5698 
5699   case lltok::kw_sdiv:
5700   case lltok::kw_udiv:
5701   case lltok::kw_lshr:
5702   case lltok::kw_ashr: {
5703     bool Exact = EatIfPresent(lltok::kw_exact);
5704 
5705     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5706     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5707     return false;
5708   }
5709 
5710   case lltok::kw_urem:
5711   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5712                                                 /*IsFP*/false);
5713   case lltok::kw_and:
5714   case lltok::kw_or:
5715   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5716   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5717   case lltok::kw_fcmp: {
5718     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5719     int Res = ParseCompare(Inst, PFS, KeywordVal);
5720     if (Res != 0)
5721       return Res;
5722     if (FMF.any())
5723       Inst->setFastMathFlags(FMF);
5724     return 0;
5725   }
5726 
5727   // Casts.
5728   case lltok::kw_trunc:
5729   case lltok::kw_zext:
5730   case lltok::kw_sext:
5731   case lltok::kw_fptrunc:
5732   case lltok::kw_fpext:
5733   case lltok::kw_bitcast:
5734   case lltok::kw_addrspacecast:
5735   case lltok::kw_uitofp:
5736   case lltok::kw_sitofp:
5737   case lltok::kw_fptoui:
5738   case lltok::kw_fptosi:
5739   case lltok::kw_inttoptr:
5740   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5741   // Other.
5742   case lltok::kw_select: {
5743     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5744     int Res = ParseSelect(Inst, PFS);
5745     if (Res != 0)
5746       return Res;
5747     if (FMF.any()) {
5748       if (!Inst->getType()->isFPOrFPVectorTy())
5749         return Error(Loc, "fast-math-flags specified for select without "
5750                           "floating-point scalar or vector return type");
5751       Inst->setFastMathFlags(FMF);
5752     }
5753     return 0;
5754   }
5755   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5756   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5757   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5758   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5759   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5760   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5761   // Call.
5762   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5763   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5764   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5765   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5766   // Memory.
5767   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5768   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5769   case lltok::kw_store:          return ParseStore(Inst, PFS);
5770   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5771   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5772   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5773   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5774   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5775   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5776   }
5777 }
5778 
5779 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5780 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5781   if (Opc == Instruction::FCmp) {
5782     switch (Lex.getKind()) {
5783     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5784     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5785     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5786     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5787     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5788     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5789     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5790     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5791     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5792     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5793     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5794     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5795     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5796     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5797     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5798     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5799     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5800     }
5801   } else {
5802     switch (Lex.getKind()) {
5803     default: return TokError("expected icmp predicate (e.g. 'eq')");
5804     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5805     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5806     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5807     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5808     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5809     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5810     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5811     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5812     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5813     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5814     }
5815   }
5816   Lex.Lex();
5817   return false;
5818 }
5819 
5820 //===----------------------------------------------------------------------===//
5821 // Terminator Instructions.
5822 //===----------------------------------------------------------------------===//
5823 
5824 /// ParseRet - Parse a return instruction.
5825 ///   ::= 'ret' void (',' !dbg, !1)*
5826 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5827 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5828                         PerFunctionState &PFS) {
5829   SMLoc TypeLoc = Lex.getLoc();
5830   Type *Ty = nullptr;
5831   if (ParseType(Ty, true /*void allowed*/)) return true;
5832 
5833   Type *ResType = PFS.getFunction().getReturnType();
5834 
5835   if (Ty->isVoidTy()) {
5836     if (!ResType->isVoidTy())
5837       return Error(TypeLoc, "value doesn't match function result type '" +
5838                    getTypeString(ResType) + "'");
5839 
5840     Inst = ReturnInst::Create(Context);
5841     return false;
5842   }
5843 
5844   Value *RV;
5845   if (ParseValue(Ty, RV, PFS)) return true;
5846 
5847   if (ResType != RV->getType())
5848     return Error(TypeLoc, "value doesn't match function result type '" +
5849                  getTypeString(ResType) + "'");
5850 
5851   Inst = ReturnInst::Create(Context, RV);
5852   return false;
5853 }
5854 
5855 /// ParseBr
5856 ///   ::= 'br' TypeAndValue
5857 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5858 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5859   LocTy Loc, Loc2;
5860   Value *Op0;
5861   BasicBlock *Op1, *Op2;
5862   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5863 
5864   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5865     Inst = BranchInst::Create(BB);
5866     return false;
5867   }
5868 
5869   if (Op0->getType() != Type::getInt1Ty(Context))
5870     return Error(Loc, "branch condition must have 'i1' type");
5871 
5872   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5873       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5874       ParseToken(lltok::comma, "expected ',' after true destination") ||
5875       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5876     return true;
5877 
5878   Inst = BranchInst::Create(Op1, Op2, Op0);
5879   return false;
5880 }
5881 
5882 /// ParseSwitch
5883 ///  Instruction
5884 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5885 ///  JumpTable
5886 ///    ::= (TypeAndValue ',' TypeAndValue)*
5887 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5888   LocTy CondLoc, BBLoc;
5889   Value *Cond;
5890   BasicBlock *DefaultBB;
5891   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5892       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5893       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5894       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5895     return true;
5896 
5897   if (!Cond->getType()->isIntegerTy())
5898     return Error(CondLoc, "switch condition must have integer type");
5899 
5900   // Parse the jump table pairs.
5901   SmallPtrSet<Value*, 32> SeenCases;
5902   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5903   while (Lex.getKind() != lltok::rsquare) {
5904     Value *Constant;
5905     BasicBlock *DestBB;
5906 
5907     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5908         ParseToken(lltok::comma, "expected ',' after case value") ||
5909         ParseTypeAndBasicBlock(DestBB, PFS))
5910       return true;
5911 
5912     if (!SeenCases.insert(Constant).second)
5913       return Error(CondLoc, "duplicate case value in switch");
5914     if (!isa<ConstantInt>(Constant))
5915       return Error(CondLoc, "case value is not a constant integer");
5916 
5917     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5918   }
5919 
5920   Lex.Lex();  // Eat the ']'.
5921 
5922   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5923   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5924     SI->addCase(Table[i].first, Table[i].second);
5925   Inst = SI;
5926   return false;
5927 }
5928 
5929 /// ParseIndirectBr
5930 ///  Instruction
5931 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5932 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5933   LocTy AddrLoc;
5934   Value *Address;
5935   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5936       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5937       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5938     return true;
5939 
5940   if (!Address->getType()->isPointerTy())
5941     return Error(AddrLoc, "indirectbr address must have pointer type");
5942 
5943   // Parse the destination list.
5944   SmallVector<BasicBlock*, 16> DestList;
5945 
5946   if (Lex.getKind() != lltok::rsquare) {
5947     BasicBlock *DestBB;
5948     if (ParseTypeAndBasicBlock(DestBB, PFS))
5949       return true;
5950     DestList.push_back(DestBB);
5951 
5952     while (EatIfPresent(lltok::comma)) {
5953       if (ParseTypeAndBasicBlock(DestBB, PFS))
5954         return true;
5955       DestList.push_back(DestBB);
5956     }
5957   }
5958 
5959   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5960     return true;
5961 
5962   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5963   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5964     IBI->addDestination(DestList[i]);
5965   Inst = IBI;
5966   return false;
5967 }
5968 
5969 /// ParseInvoke
5970 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5971 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5972 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5973   LocTy CallLoc = Lex.getLoc();
5974   AttrBuilder RetAttrs, FnAttrs;
5975   std::vector<unsigned> FwdRefAttrGrps;
5976   LocTy NoBuiltinLoc;
5977   unsigned CC;
5978   unsigned InvokeAddrSpace;
5979   Type *RetType = nullptr;
5980   LocTy RetTypeLoc;
5981   ValID CalleeID;
5982   SmallVector<ParamInfo, 16> ArgList;
5983   SmallVector<OperandBundleDef, 2> BundleList;
5984 
5985   BasicBlock *NormalBB, *UnwindBB;
5986   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5987       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5988       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5989       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5990       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5991                                  NoBuiltinLoc) ||
5992       ParseOptionalOperandBundles(BundleList, PFS) ||
5993       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5994       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5995       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5996       ParseTypeAndBasicBlock(UnwindBB, PFS))
5997     return true;
5998 
5999   // If RetType is a non-function pointer type, then this is the short syntax
6000   // for the call, which means that RetType is just the return type.  Infer the
6001   // rest of the function argument types from the arguments that are present.
6002   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6003   if (!Ty) {
6004     // Pull out the types of all of the arguments...
6005     std::vector<Type*> ParamTypes;
6006     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6007       ParamTypes.push_back(ArgList[i].V->getType());
6008 
6009     if (!FunctionType::isValidReturnType(RetType))
6010       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6011 
6012     Ty = FunctionType::get(RetType, ParamTypes, false);
6013   }
6014 
6015   CalleeID.FTy = Ty;
6016 
6017   // Look up the callee.
6018   Value *Callee;
6019   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6020                           Callee, &PFS, /*IsCall=*/true))
6021     return true;
6022 
6023   // Set up the Attribute for the function.
6024   SmallVector<Value *, 8> Args;
6025   SmallVector<AttributeSet, 8> ArgAttrs;
6026 
6027   // Loop through FunctionType's arguments and ensure they are specified
6028   // correctly.  Also, gather any parameter attributes.
6029   FunctionType::param_iterator I = Ty->param_begin();
6030   FunctionType::param_iterator E = Ty->param_end();
6031   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6032     Type *ExpectedTy = nullptr;
6033     if (I != E) {
6034       ExpectedTy = *I++;
6035     } else if (!Ty->isVarArg()) {
6036       return Error(ArgList[i].Loc, "too many arguments specified");
6037     }
6038 
6039     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6040       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6041                    getTypeString(ExpectedTy) + "'");
6042     Args.push_back(ArgList[i].V);
6043     ArgAttrs.push_back(ArgList[i].Attrs);
6044   }
6045 
6046   if (I != E)
6047     return Error(CallLoc, "not enough parameters specified for call");
6048 
6049   if (FnAttrs.hasAlignmentAttr())
6050     return Error(CallLoc, "invoke instructions may not have an alignment");
6051 
6052   // Finish off the Attribute and check them
6053   AttributeList PAL =
6054       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6055                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6056 
6057   InvokeInst *II =
6058       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6059   II->setCallingConv(CC);
6060   II->setAttributes(PAL);
6061   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6062   Inst = II;
6063   return false;
6064 }
6065 
6066 /// ParseResume
6067 ///   ::= 'resume' TypeAndValue
6068 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6069   Value *Exn; LocTy ExnLoc;
6070   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6071     return true;
6072 
6073   ResumeInst *RI = ResumeInst::Create(Exn);
6074   Inst = RI;
6075   return false;
6076 }
6077 
6078 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6079                                   PerFunctionState &PFS) {
6080   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6081     return true;
6082 
6083   while (Lex.getKind() != lltok::rsquare) {
6084     // If this isn't the first argument, we need a comma.
6085     if (!Args.empty() &&
6086         ParseToken(lltok::comma, "expected ',' in argument list"))
6087       return true;
6088 
6089     // Parse the argument.
6090     LocTy ArgLoc;
6091     Type *ArgTy = nullptr;
6092     if (ParseType(ArgTy, ArgLoc))
6093       return true;
6094 
6095     Value *V;
6096     if (ArgTy->isMetadataTy()) {
6097       if (ParseMetadataAsValue(V, PFS))
6098         return true;
6099     } else {
6100       if (ParseValue(ArgTy, V, PFS))
6101         return true;
6102     }
6103     Args.push_back(V);
6104   }
6105 
6106   Lex.Lex();  // Lex the ']'.
6107   return false;
6108 }
6109 
6110 /// ParseCleanupRet
6111 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6112 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6113   Value *CleanupPad = nullptr;
6114 
6115   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6116     return true;
6117 
6118   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6119     return true;
6120 
6121   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6122     return true;
6123 
6124   BasicBlock *UnwindBB = nullptr;
6125   if (Lex.getKind() == lltok::kw_to) {
6126     Lex.Lex();
6127     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6128       return true;
6129   } else {
6130     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6131       return true;
6132     }
6133   }
6134 
6135   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6136   return false;
6137 }
6138 
6139 /// ParseCatchRet
6140 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6141 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6142   Value *CatchPad = nullptr;
6143 
6144   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6145     return true;
6146 
6147   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6148     return true;
6149 
6150   BasicBlock *BB;
6151   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6152       ParseTypeAndBasicBlock(BB, PFS))
6153       return true;
6154 
6155   Inst = CatchReturnInst::Create(CatchPad, BB);
6156   return false;
6157 }
6158 
6159 /// ParseCatchSwitch
6160 ///   ::= 'catchswitch' within Parent
6161 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6162   Value *ParentPad;
6163 
6164   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6165     return true;
6166 
6167   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6168       Lex.getKind() != lltok::LocalVarID)
6169     return TokError("expected scope value for catchswitch");
6170 
6171   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6172     return true;
6173 
6174   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6175     return true;
6176 
6177   SmallVector<BasicBlock *, 32> Table;
6178   do {
6179     BasicBlock *DestBB;
6180     if (ParseTypeAndBasicBlock(DestBB, PFS))
6181       return true;
6182     Table.push_back(DestBB);
6183   } while (EatIfPresent(lltok::comma));
6184 
6185   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6186     return true;
6187 
6188   if (ParseToken(lltok::kw_unwind,
6189                  "expected 'unwind' after catchswitch scope"))
6190     return true;
6191 
6192   BasicBlock *UnwindBB = nullptr;
6193   if (EatIfPresent(lltok::kw_to)) {
6194     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6195       return true;
6196   } else {
6197     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6198       return true;
6199   }
6200 
6201   auto *CatchSwitch =
6202       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6203   for (BasicBlock *DestBB : Table)
6204     CatchSwitch->addHandler(DestBB);
6205   Inst = CatchSwitch;
6206   return false;
6207 }
6208 
6209 /// ParseCatchPad
6210 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6211 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6212   Value *CatchSwitch = nullptr;
6213 
6214   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6215     return true;
6216 
6217   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6218     return TokError("expected scope value for catchpad");
6219 
6220   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6221     return true;
6222 
6223   SmallVector<Value *, 8> Args;
6224   if (ParseExceptionArgs(Args, PFS))
6225     return true;
6226 
6227   Inst = CatchPadInst::Create(CatchSwitch, Args);
6228   return false;
6229 }
6230 
6231 /// ParseCleanupPad
6232 ///   ::= 'cleanuppad' within Parent ParamList
6233 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6234   Value *ParentPad = nullptr;
6235 
6236   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6237     return true;
6238 
6239   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6240       Lex.getKind() != lltok::LocalVarID)
6241     return TokError("expected scope value for cleanuppad");
6242 
6243   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6244     return true;
6245 
6246   SmallVector<Value *, 8> Args;
6247   if (ParseExceptionArgs(Args, PFS))
6248     return true;
6249 
6250   Inst = CleanupPadInst::Create(ParentPad, Args);
6251   return false;
6252 }
6253 
6254 //===----------------------------------------------------------------------===//
6255 // Unary Operators.
6256 //===----------------------------------------------------------------------===//
6257 
6258 /// ParseUnaryOp
6259 ///  ::= UnaryOp TypeAndValue ',' Value
6260 ///
6261 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6262 /// operand is allowed.
6263 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6264                             unsigned Opc, bool IsFP) {
6265   LocTy Loc; Value *LHS;
6266   if (ParseTypeAndValue(LHS, Loc, PFS))
6267     return true;
6268 
6269   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6270                     : LHS->getType()->isIntOrIntVectorTy();
6271 
6272   if (!Valid)
6273     return Error(Loc, "invalid operand type for instruction");
6274 
6275   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6276   return false;
6277 }
6278 
6279 /// ParseCallBr
6280 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6281 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6282 ///       '[' LabelList ']'
6283 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6284   LocTy CallLoc = Lex.getLoc();
6285   AttrBuilder RetAttrs, FnAttrs;
6286   std::vector<unsigned> FwdRefAttrGrps;
6287   LocTy NoBuiltinLoc;
6288   unsigned CC;
6289   Type *RetType = nullptr;
6290   LocTy RetTypeLoc;
6291   ValID CalleeID;
6292   SmallVector<ParamInfo, 16> ArgList;
6293   SmallVector<OperandBundleDef, 2> BundleList;
6294 
6295   BasicBlock *DefaultDest;
6296   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6297       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6298       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6299       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6300                                  NoBuiltinLoc) ||
6301       ParseOptionalOperandBundles(BundleList, PFS) ||
6302       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6303       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6304       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6305     return true;
6306 
6307   // Parse the destination list.
6308   SmallVector<BasicBlock *, 16> IndirectDests;
6309 
6310   if (Lex.getKind() != lltok::rsquare) {
6311     BasicBlock *DestBB;
6312     if (ParseTypeAndBasicBlock(DestBB, PFS))
6313       return true;
6314     IndirectDests.push_back(DestBB);
6315 
6316     while (EatIfPresent(lltok::comma)) {
6317       if (ParseTypeAndBasicBlock(DestBB, PFS))
6318         return true;
6319       IndirectDests.push_back(DestBB);
6320     }
6321   }
6322 
6323   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6324     return true;
6325 
6326   // If RetType is a non-function pointer type, then this is the short syntax
6327   // for the call, which means that RetType is just the return type.  Infer the
6328   // rest of the function argument types from the arguments that are present.
6329   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6330   if (!Ty) {
6331     // Pull out the types of all of the arguments...
6332     std::vector<Type *> ParamTypes;
6333     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6334       ParamTypes.push_back(ArgList[i].V->getType());
6335 
6336     if (!FunctionType::isValidReturnType(RetType))
6337       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6338 
6339     Ty = FunctionType::get(RetType, ParamTypes, false);
6340   }
6341 
6342   CalleeID.FTy = Ty;
6343 
6344   // Look up the callee.
6345   Value *Callee;
6346   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6347                           /*IsCall=*/true))
6348     return true;
6349 
6350   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6351     return Error(RetTypeLoc, "asm-goto outputs not supported");
6352 
6353   // Set up the Attribute for the function.
6354   SmallVector<Value *, 8> Args;
6355   SmallVector<AttributeSet, 8> ArgAttrs;
6356 
6357   // Loop through FunctionType's arguments and ensure they are specified
6358   // correctly.  Also, gather any parameter attributes.
6359   FunctionType::param_iterator I = Ty->param_begin();
6360   FunctionType::param_iterator E = Ty->param_end();
6361   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6362     Type *ExpectedTy = nullptr;
6363     if (I != E) {
6364       ExpectedTy = *I++;
6365     } else if (!Ty->isVarArg()) {
6366       return Error(ArgList[i].Loc, "too many arguments specified");
6367     }
6368 
6369     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6370       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6371                                        getTypeString(ExpectedTy) + "'");
6372     Args.push_back(ArgList[i].V);
6373     ArgAttrs.push_back(ArgList[i].Attrs);
6374   }
6375 
6376   if (I != E)
6377     return Error(CallLoc, "not enough parameters specified for call");
6378 
6379   if (FnAttrs.hasAlignmentAttr())
6380     return Error(CallLoc, "callbr instructions may not have an alignment");
6381 
6382   // Finish off the Attribute and check them
6383   AttributeList PAL =
6384       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6385                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6386 
6387   CallBrInst *CBI =
6388       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6389                          BundleList);
6390   CBI->setCallingConv(CC);
6391   CBI->setAttributes(PAL);
6392   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6393   Inst = CBI;
6394   return false;
6395 }
6396 
6397 //===----------------------------------------------------------------------===//
6398 // Binary Operators.
6399 //===----------------------------------------------------------------------===//
6400 
6401 /// ParseArithmetic
6402 ///  ::= ArithmeticOps TypeAndValue ',' Value
6403 ///
6404 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6405 /// operand is allowed.
6406 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6407                                unsigned Opc, bool IsFP) {
6408   LocTy Loc; Value *LHS, *RHS;
6409   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6410       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6411       ParseValue(LHS->getType(), RHS, PFS))
6412     return true;
6413 
6414   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6415                     : LHS->getType()->isIntOrIntVectorTy();
6416 
6417   if (!Valid)
6418     return Error(Loc, "invalid operand type for instruction");
6419 
6420   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6421   return false;
6422 }
6423 
6424 /// ParseLogical
6425 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6426 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6427                             unsigned Opc) {
6428   LocTy Loc; Value *LHS, *RHS;
6429   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6430       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6431       ParseValue(LHS->getType(), RHS, PFS))
6432     return true;
6433 
6434   if (!LHS->getType()->isIntOrIntVectorTy())
6435     return Error(Loc,"instruction requires integer or integer vector operands");
6436 
6437   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6438   return false;
6439 }
6440 
6441 /// ParseCompare
6442 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6443 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6444 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6445                             unsigned Opc) {
6446   // Parse the integer/fp comparison predicate.
6447   LocTy Loc;
6448   unsigned Pred;
6449   Value *LHS, *RHS;
6450   if (ParseCmpPredicate(Pred, Opc) ||
6451       ParseTypeAndValue(LHS, Loc, PFS) ||
6452       ParseToken(lltok::comma, "expected ',' after compare value") ||
6453       ParseValue(LHS->getType(), RHS, PFS))
6454     return true;
6455 
6456   if (Opc == Instruction::FCmp) {
6457     if (!LHS->getType()->isFPOrFPVectorTy())
6458       return Error(Loc, "fcmp requires floating point operands");
6459     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6460   } else {
6461     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6462     if (!LHS->getType()->isIntOrIntVectorTy() &&
6463         !LHS->getType()->isPtrOrPtrVectorTy())
6464       return Error(Loc, "icmp requires integer operands");
6465     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6466   }
6467   return false;
6468 }
6469 
6470 //===----------------------------------------------------------------------===//
6471 // Other Instructions.
6472 //===----------------------------------------------------------------------===//
6473 
6474 
6475 /// ParseCast
6476 ///   ::= CastOpc TypeAndValue 'to' Type
6477 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6478                          unsigned Opc) {
6479   LocTy Loc;
6480   Value *Op;
6481   Type *DestTy = nullptr;
6482   if (ParseTypeAndValue(Op, Loc, PFS) ||
6483       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6484       ParseType(DestTy))
6485     return true;
6486 
6487   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6488     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6489     return Error(Loc, "invalid cast opcode for cast from '" +
6490                  getTypeString(Op->getType()) + "' to '" +
6491                  getTypeString(DestTy) + "'");
6492   }
6493   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6494   return false;
6495 }
6496 
6497 /// ParseSelect
6498 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6499 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6500   LocTy Loc;
6501   Value *Op0, *Op1, *Op2;
6502   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6503       ParseToken(lltok::comma, "expected ',' after select condition") ||
6504       ParseTypeAndValue(Op1, PFS) ||
6505       ParseToken(lltok::comma, "expected ',' after select value") ||
6506       ParseTypeAndValue(Op2, PFS))
6507     return true;
6508 
6509   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6510     return Error(Loc, Reason);
6511 
6512   Inst = SelectInst::Create(Op0, Op1, Op2);
6513   return false;
6514 }
6515 
6516 /// ParseVA_Arg
6517 ///   ::= 'va_arg' TypeAndValue ',' Type
6518 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6519   Value *Op;
6520   Type *EltTy = nullptr;
6521   LocTy TypeLoc;
6522   if (ParseTypeAndValue(Op, PFS) ||
6523       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6524       ParseType(EltTy, TypeLoc))
6525     return true;
6526 
6527   if (!EltTy->isFirstClassType())
6528     return Error(TypeLoc, "va_arg requires operand with first class type");
6529 
6530   Inst = new VAArgInst(Op, EltTy);
6531   return false;
6532 }
6533 
6534 /// ParseExtractElement
6535 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6536 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6537   LocTy Loc;
6538   Value *Op0, *Op1;
6539   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6540       ParseToken(lltok::comma, "expected ',' after extract value") ||
6541       ParseTypeAndValue(Op1, PFS))
6542     return true;
6543 
6544   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6545     return Error(Loc, "invalid extractelement operands");
6546 
6547   Inst = ExtractElementInst::Create(Op0, Op1);
6548   return false;
6549 }
6550 
6551 /// ParseInsertElement
6552 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6553 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6554   LocTy Loc;
6555   Value *Op0, *Op1, *Op2;
6556   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6557       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6558       ParseTypeAndValue(Op1, PFS) ||
6559       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6560       ParseTypeAndValue(Op2, PFS))
6561     return true;
6562 
6563   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6564     return Error(Loc, "invalid insertelement operands");
6565 
6566   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6567   return false;
6568 }
6569 
6570 /// ParseShuffleVector
6571 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6572 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6573   LocTy Loc;
6574   Value *Op0, *Op1, *Op2;
6575   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6576       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6577       ParseTypeAndValue(Op1, PFS) ||
6578       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6579       ParseTypeAndValue(Op2, PFS))
6580     return true;
6581 
6582   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6583     return Error(Loc, "invalid shufflevector operands");
6584 
6585   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6586   return false;
6587 }
6588 
6589 /// ParsePHI
6590 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6591 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6592   Type *Ty = nullptr;  LocTy TypeLoc;
6593   Value *Op0, *Op1;
6594 
6595   if (ParseType(Ty, TypeLoc) ||
6596       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6597       ParseValue(Ty, Op0, PFS) ||
6598       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6599       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6600       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6601     return true;
6602 
6603   bool AteExtraComma = false;
6604   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6605 
6606   while (true) {
6607     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6608 
6609     if (!EatIfPresent(lltok::comma))
6610       break;
6611 
6612     if (Lex.getKind() == lltok::MetadataVar) {
6613       AteExtraComma = true;
6614       break;
6615     }
6616 
6617     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6618         ParseValue(Ty, Op0, PFS) ||
6619         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6620         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6621         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6622       return true;
6623   }
6624 
6625   if (!Ty->isFirstClassType())
6626     return Error(TypeLoc, "phi node must have first class type");
6627 
6628   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6629   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6630     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6631   Inst = PN;
6632   return AteExtraComma ? InstExtraComma : InstNormal;
6633 }
6634 
6635 /// ParseLandingPad
6636 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6637 /// Clause
6638 ///   ::= 'catch' TypeAndValue
6639 ///   ::= 'filter'
6640 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6641 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6642   Type *Ty = nullptr; LocTy TyLoc;
6643 
6644   if (ParseType(Ty, TyLoc))
6645     return true;
6646 
6647   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6648   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6649 
6650   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6651     LandingPadInst::ClauseType CT;
6652     if (EatIfPresent(lltok::kw_catch))
6653       CT = LandingPadInst::Catch;
6654     else if (EatIfPresent(lltok::kw_filter))
6655       CT = LandingPadInst::Filter;
6656     else
6657       return TokError("expected 'catch' or 'filter' clause type");
6658 
6659     Value *V;
6660     LocTy VLoc;
6661     if (ParseTypeAndValue(V, VLoc, PFS))
6662       return true;
6663 
6664     // A 'catch' type expects a non-array constant. A filter clause expects an
6665     // array constant.
6666     if (CT == LandingPadInst::Catch) {
6667       if (isa<ArrayType>(V->getType()))
6668         Error(VLoc, "'catch' clause has an invalid type");
6669     } else {
6670       if (!isa<ArrayType>(V->getType()))
6671         Error(VLoc, "'filter' clause has an invalid type");
6672     }
6673 
6674     Constant *CV = dyn_cast<Constant>(V);
6675     if (!CV)
6676       return Error(VLoc, "clause argument must be a constant");
6677     LP->addClause(CV);
6678   }
6679 
6680   Inst = LP.release();
6681   return false;
6682 }
6683 
6684 /// ParseCall
6685 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6686 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6687 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6688 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6689 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6690 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6691 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6692 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6693 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6694                          CallInst::TailCallKind TCK) {
6695   AttrBuilder RetAttrs, FnAttrs;
6696   std::vector<unsigned> FwdRefAttrGrps;
6697   LocTy BuiltinLoc;
6698   unsigned CallAddrSpace;
6699   unsigned CC;
6700   Type *RetType = nullptr;
6701   LocTy RetTypeLoc;
6702   ValID CalleeID;
6703   SmallVector<ParamInfo, 16> ArgList;
6704   SmallVector<OperandBundleDef, 2> BundleList;
6705   LocTy CallLoc = Lex.getLoc();
6706 
6707   if (TCK != CallInst::TCK_None &&
6708       ParseToken(lltok::kw_call,
6709                  "expected 'tail call', 'musttail call', or 'notail call'"))
6710     return true;
6711 
6712   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6713 
6714   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6715       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6716       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6717       ParseValID(CalleeID) ||
6718       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6719                          PFS.getFunction().isVarArg()) ||
6720       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6721       ParseOptionalOperandBundles(BundleList, PFS))
6722     return true;
6723 
6724   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6725     return Error(CallLoc, "fast-math-flags specified for call without "
6726                           "floating-point scalar or vector return type");
6727 
6728   // If RetType is a non-function pointer type, then this is the short syntax
6729   // for the call, which means that RetType is just the return type.  Infer the
6730   // rest of the function argument types from the arguments that are present.
6731   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6732   if (!Ty) {
6733     // Pull out the types of all of the arguments...
6734     std::vector<Type*> ParamTypes;
6735     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6736       ParamTypes.push_back(ArgList[i].V->getType());
6737 
6738     if (!FunctionType::isValidReturnType(RetType))
6739       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6740 
6741     Ty = FunctionType::get(RetType, ParamTypes, false);
6742   }
6743 
6744   CalleeID.FTy = Ty;
6745 
6746   // Look up the callee.
6747   Value *Callee;
6748   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6749                           &PFS, /*IsCall=*/true))
6750     return true;
6751 
6752   // Set up the Attribute for the function.
6753   SmallVector<AttributeSet, 8> Attrs;
6754 
6755   SmallVector<Value*, 8> Args;
6756 
6757   // Loop through FunctionType's arguments and ensure they are specified
6758   // correctly.  Also, gather any parameter attributes.
6759   FunctionType::param_iterator I = Ty->param_begin();
6760   FunctionType::param_iterator E = Ty->param_end();
6761   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6762     Type *ExpectedTy = nullptr;
6763     if (I != E) {
6764       ExpectedTy = *I++;
6765     } else if (!Ty->isVarArg()) {
6766       return Error(ArgList[i].Loc, "too many arguments specified");
6767     }
6768 
6769     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6770       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6771                    getTypeString(ExpectedTy) + "'");
6772     Args.push_back(ArgList[i].V);
6773     Attrs.push_back(ArgList[i].Attrs);
6774   }
6775 
6776   if (I != E)
6777     return Error(CallLoc, "not enough parameters specified for call");
6778 
6779   if (FnAttrs.hasAlignmentAttr())
6780     return Error(CallLoc, "call instructions may not have an alignment");
6781 
6782   // Finish off the Attribute and check them
6783   AttributeList PAL =
6784       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6785                          AttributeSet::get(Context, RetAttrs), Attrs);
6786 
6787   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6788   CI->setTailCallKind(TCK);
6789   CI->setCallingConv(CC);
6790   if (FMF.any())
6791     CI->setFastMathFlags(FMF);
6792   CI->setAttributes(PAL);
6793   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6794   Inst = CI;
6795   return false;
6796 }
6797 
6798 //===----------------------------------------------------------------------===//
6799 // Memory Instructions.
6800 //===----------------------------------------------------------------------===//
6801 
6802 /// ParseAlloc
6803 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6804 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6805 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6806   Value *Size = nullptr;
6807   LocTy SizeLoc, TyLoc, ASLoc;
6808   unsigned Alignment = 0;
6809   unsigned AddrSpace = 0;
6810   Type *Ty = nullptr;
6811 
6812   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6813   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6814 
6815   if (ParseType(Ty, TyLoc)) return true;
6816 
6817   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6818     return Error(TyLoc, "invalid type for alloca");
6819 
6820   bool AteExtraComma = false;
6821   if (EatIfPresent(lltok::comma)) {
6822     if (Lex.getKind() == lltok::kw_align) {
6823       if (ParseOptionalAlignment(Alignment))
6824         return true;
6825       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6826         return true;
6827     } else if (Lex.getKind() == lltok::kw_addrspace) {
6828       ASLoc = Lex.getLoc();
6829       if (ParseOptionalAddrSpace(AddrSpace))
6830         return true;
6831     } else if (Lex.getKind() == lltok::MetadataVar) {
6832       AteExtraComma = true;
6833     } else {
6834       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6835         return true;
6836       if (EatIfPresent(lltok::comma)) {
6837         if (Lex.getKind() == lltok::kw_align) {
6838           if (ParseOptionalAlignment(Alignment))
6839             return true;
6840           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6841             return true;
6842         } else if (Lex.getKind() == lltok::kw_addrspace) {
6843           ASLoc = Lex.getLoc();
6844           if (ParseOptionalAddrSpace(AddrSpace))
6845             return true;
6846         } else if (Lex.getKind() == lltok::MetadataVar) {
6847           AteExtraComma = true;
6848         }
6849       }
6850     }
6851   }
6852 
6853   if (Size && !Size->getType()->isIntegerTy())
6854     return Error(SizeLoc, "element count must have integer type");
6855 
6856   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6857   AI->setUsedWithInAlloca(IsInAlloca);
6858   AI->setSwiftError(IsSwiftError);
6859   Inst = AI;
6860   return AteExtraComma ? InstExtraComma : InstNormal;
6861 }
6862 
6863 /// ParseLoad
6864 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6865 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6866 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6867 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6868   Value *Val; LocTy Loc;
6869   unsigned Alignment = 0;
6870   bool AteExtraComma = false;
6871   bool isAtomic = false;
6872   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6873   SyncScope::ID SSID = SyncScope::System;
6874 
6875   if (Lex.getKind() == lltok::kw_atomic) {
6876     isAtomic = true;
6877     Lex.Lex();
6878   }
6879 
6880   bool isVolatile = false;
6881   if (Lex.getKind() == lltok::kw_volatile) {
6882     isVolatile = true;
6883     Lex.Lex();
6884   }
6885 
6886   Type *Ty;
6887   LocTy ExplicitTypeLoc = Lex.getLoc();
6888   if (ParseType(Ty) ||
6889       ParseToken(lltok::comma, "expected comma after load's type") ||
6890       ParseTypeAndValue(Val, Loc, PFS) ||
6891       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6892       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6893     return true;
6894 
6895   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6896     return Error(Loc, "load operand must be a pointer to a first class type");
6897   if (isAtomic && !Alignment)
6898     return Error(Loc, "atomic load must have explicit non-zero alignment");
6899   if (Ordering == AtomicOrdering::Release ||
6900       Ordering == AtomicOrdering::AcquireRelease)
6901     return Error(Loc, "atomic load cannot use Release ordering");
6902 
6903   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6904     return Error(ExplicitTypeLoc,
6905                  "explicit pointee type doesn't match operand's pointee type");
6906 
6907   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6908   return AteExtraComma ? InstExtraComma : InstNormal;
6909 }
6910 
6911 /// ParseStore
6912 
6913 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6914 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6915 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6916 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6917   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6918   unsigned Alignment = 0;
6919   bool AteExtraComma = false;
6920   bool isAtomic = false;
6921   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6922   SyncScope::ID SSID = SyncScope::System;
6923 
6924   if (Lex.getKind() == lltok::kw_atomic) {
6925     isAtomic = true;
6926     Lex.Lex();
6927   }
6928 
6929   bool isVolatile = false;
6930   if (Lex.getKind() == lltok::kw_volatile) {
6931     isVolatile = true;
6932     Lex.Lex();
6933   }
6934 
6935   if (ParseTypeAndValue(Val, Loc, PFS) ||
6936       ParseToken(lltok::comma, "expected ',' after store operand") ||
6937       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6938       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6939       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6940     return true;
6941 
6942   if (!Ptr->getType()->isPointerTy())
6943     return Error(PtrLoc, "store operand must be a pointer");
6944   if (!Val->getType()->isFirstClassType())
6945     return Error(Loc, "store operand must be a first class value");
6946   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6947     return Error(Loc, "stored value and pointer type do not match");
6948   if (isAtomic && !Alignment)
6949     return Error(Loc, "atomic store must have explicit non-zero alignment");
6950   if (Ordering == AtomicOrdering::Acquire ||
6951       Ordering == AtomicOrdering::AcquireRelease)
6952     return Error(Loc, "atomic store cannot use Acquire ordering");
6953 
6954   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6955   return AteExtraComma ? InstExtraComma : InstNormal;
6956 }
6957 
6958 /// ParseCmpXchg
6959 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6960 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6961 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6962   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6963   bool AteExtraComma = false;
6964   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6965   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6966   SyncScope::ID SSID = SyncScope::System;
6967   bool isVolatile = false;
6968   bool isWeak = false;
6969 
6970   if (EatIfPresent(lltok::kw_weak))
6971     isWeak = true;
6972 
6973   if (EatIfPresent(lltok::kw_volatile))
6974     isVolatile = true;
6975 
6976   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6977       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6978       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6979       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6980       ParseTypeAndValue(New, NewLoc, PFS) ||
6981       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6982       ParseOrdering(FailureOrdering))
6983     return true;
6984 
6985   if (SuccessOrdering == AtomicOrdering::Unordered ||
6986       FailureOrdering == AtomicOrdering::Unordered)
6987     return TokError("cmpxchg cannot be unordered");
6988   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6989     return TokError("cmpxchg failure argument shall be no stronger than the "
6990                     "success argument");
6991   if (FailureOrdering == AtomicOrdering::Release ||
6992       FailureOrdering == AtomicOrdering::AcquireRelease)
6993     return TokError(
6994         "cmpxchg failure ordering cannot include release semantics");
6995   if (!Ptr->getType()->isPointerTy())
6996     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6997   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6998     return Error(CmpLoc, "compare value and pointer type do not match");
6999   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7000     return Error(NewLoc, "new value and pointer type do not match");
7001   if (!New->getType()->isFirstClassType())
7002     return Error(NewLoc, "cmpxchg operand must be a first class value");
7003   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7004       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7005   CXI->setVolatile(isVolatile);
7006   CXI->setWeak(isWeak);
7007   Inst = CXI;
7008   return AteExtraComma ? InstExtraComma : InstNormal;
7009 }
7010 
7011 /// ParseAtomicRMW
7012 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7013 ///       'singlethread'? AtomicOrdering
7014 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7015   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7016   bool AteExtraComma = false;
7017   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7018   SyncScope::ID SSID = SyncScope::System;
7019   bool isVolatile = false;
7020   bool IsFP = false;
7021   AtomicRMWInst::BinOp Operation;
7022 
7023   if (EatIfPresent(lltok::kw_volatile))
7024     isVolatile = true;
7025 
7026   switch (Lex.getKind()) {
7027   default: return TokError("expected binary operation in atomicrmw");
7028   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7029   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7030   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7031   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7032   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7033   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7034   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7035   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7036   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7037   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7038   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7039   case lltok::kw_fadd:
7040     Operation = AtomicRMWInst::FAdd;
7041     IsFP = true;
7042     break;
7043   case lltok::kw_fsub:
7044     Operation = AtomicRMWInst::FSub;
7045     IsFP = true;
7046     break;
7047   }
7048   Lex.Lex();  // Eat the operation.
7049 
7050   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7051       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7052       ParseTypeAndValue(Val, ValLoc, PFS) ||
7053       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7054     return true;
7055 
7056   if (Ordering == AtomicOrdering::Unordered)
7057     return TokError("atomicrmw cannot be unordered");
7058   if (!Ptr->getType()->isPointerTy())
7059     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7060   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7061     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7062 
7063   if (Operation == AtomicRMWInst::Xchg) {
7064     if (!Val->getType()->isIntegerTy() &&
7065         !Val->getType()->isFloatingPointTy()) {
7066       return Error(ValLoc, "atomicrmw " +
7067                    AtomicRMWInst::getOperationName(Operation) +
7068                    " operand must be an integer or floating point type");
7069     }
7070   } else if (IsFP) {
7071     if (!Val->getType()->isFloatingPointTy()) {
7072       return Error(ValLoc, "atomicrmw " +
7073                    AtomicRMWInst::getOperationName(Operation) +
7074                    " operand must be a floating point type");
7075     }
7076   } else {
7077     if (!Val->getType()->isIntegerTy()) {
7078       return Error(ValLoc, "atomicrmw " +
7079                    AtomicRMWInst::getOperationName(Operation) +
7080                    " operand must be an integer");
7081     }
7082   }
7083 
7084   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7085   if (Size < 8 || (Size & (Size - 1)))
7086     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7087                          " integer");
7088 
7089   AtomicRMWInst *RMWI =
7090     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7091   RMWI->setVolatile(isVolatile);
7092   Inst = RMWI;
7093   return AteExtraComma ? InstExtraComma : InstNormal;
7094 }
7095 
7096 /// ParseFence
7097 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7098 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7099   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7100   SyncScope::ID SSID = SyncScope::System;
7101   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7102     return true;
7103 
7104   if (Ordering == AtomicOrdering::Unordered)
7105     return TokError("fence cannot be unordered");
7106   if (Ordering == AtomicOrdering::Monotonic)
7107     return TokError("fence cannot be monotonic");
7108 
7109   Inst = new FenceInst(Context, Ordering, SSID);
7110   return InstNormal;
7111 }
7112 
7113 /// ParseGetElementPtr
7114 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7115 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7116   Value *Ptr = nullptr;
7117   Value *Val = nullptr;
7118   LocTy Loc, EltLoc;
7119 
7120   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7121 
7122   Type *Ty = nullptr;
7123   LocTy ExplicitTypeLoc = Lex.getLoc();
7124   if (ParseType(Ty) ||
7125       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7126       ParseTypeAndValue(Ptr, Loc, PFS))
7127     return true;
7128 
7129   Type *BaseType = Ptr->getType();
7130   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7131   if (!BasePointerType)
7132     return Error(Loc, "base of getelementptr must be a pointer");
7133 
7134   if (Ty != BasePointerType->getElementType())
7135     return Error(ExplicitTypeLoc,
7136                  "explicit pointee type doesn't match operand's pointee type");
7137 
7138   SmallVector<Value*, 16> Indices;
7139   bool AteExtraComma = false;
7140   // GEP returns a vector of pointers if at least one of parameters is a vector.
7141   // All vector parameters should have the same vector width.
7142   unsigned GEPWidth = BaseType->isVectorTy() ?
7143     BaseType->getVectorNumElements() : 0;
7144 
7145   while (EatIfPresent(lltok::comma)) {
7146     if (Lex.getKind() == lltok::MetadataVar) {
7147       AteExtraComma = true;
7148       break;
7149     }
7150     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7151     if (!Val->getType()->isIntOrIntVectorTy())
7152       return Error(EltLoc, "getelementptr index must be an integer");
7153 
7154     if (Val->getType()->isVectorTy()) {
7155       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7156       if (GEPWidth && GEPWidth != ValNumEl)
7157         return Error(EltLoc,
7158           "getelementptr vector index has a wrong number of elements");
7159       GEPWidth = ValNumEl;
7160     }
7161     Indices.push_back(Val);
7162   }
7163 
7164   SmallPtrSet<Type*, 4> Visited;
7165   if (!Indices.empty() && !Ty->isSized(&Visited))
7166     return Error(Loc, "base element of getelementptr must be sized");
7167 
7168   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7169     return Error(Loc, "invalid getelementptr indices");
7170   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7171   if (InBounds)
7172     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7173   return AteExtraComma ? InstExtraComma : InstNormal;
7174 }
7175 
7176 /// ParseExtractValue
7177 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7178 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7179   Value *Val; LocTy Loc;
7180   SmallVector<unsigned, 4> Indices;
7181   bool AteExtraComma;
7182   if (ParseTypeAndValue(Val, Loc, PFS) ||
7183       ParseIndexList(Indices, AteExtraComma))
7184     return true;
7185 
7186   if (!Val->getType()->isAggregateType())
7187     return Error(Loc, "extractvalue operand must be aggregate type");
7188 
7189   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7190     return Error(Loc, "invalid indices for extractvalue");
7191   Inst = ExtractValueInst::Create(Val, Indices);
7192   return AteExtraComma ? InstExtraComma : InstNormal;
7193 }
7194 
7195 /// ParseInsertValue
7196 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7197 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7198   Value *Val0, *Val1; LocTy Loc0, Loc1;
7199   SmallVector<unsigned, 4> Indices;
7200   bool AteExtraComma;
7201   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7202       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7203       ParseTypeAndValue(Val1, Loc1, PFS) ||
7204       ParseIndexList(Indices, AteExtraComma))
7205     return true;
7206 
7207   if (!Val0->getType()->isAggregateType())
7208     return Error(Loc0, "insertvalue operand must be aggregate type");
7209 
7210   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7211   if (!IndexedType)
7212     return Error(Loc0, "invalid indices for insertvalue");
7213   if (IndexedType != Val1->getType())
7214     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7215                            getTypeString(Val1->getType()) + "' instead of '" +
7216                            getTypeString(IndexedType) + "'");
7217   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7218   return AteExtraComma ? InstExtraComma : InstNormal;
7219 }
7220 
7221 //===----------------------------------------------------------------------===//
7222 // Embedded metadata.
7223 //===----------------------------------------------------------------------===//
7224 
7225 /// ParseMDNodeVector
7226 ///   ::= { Element (',' Element)* }
7227 /// Element
7228 ///   ::= 'null' | TypeAndValue
7229 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7230   if (ParseToken(lltok::lbrace, "expected '{' here"))
7231     return true;
7232 
7233   // Check for an empty list.
7234   if (EatIfPresent(lltok::rbrace))
7235     return false;
7236 
7237   do {
7238     // Null is a special case since it is typeless.
7239     if (EatIfPresent(lltok::kw_null)) {
7240       Elts.push_back(nullptr);
7241       continue;
7242     }
7243 
7244     Metadata *MD;
7245     if (ParseMetadata(MD, nullptr))
7246       return true;
7247     Elts.push_back(MD);
7248   } while (EatIfPresent(lltok::comma));
7249 
7250   return ParseToken(lltok::rbrace, "expected end of metadata node");
7251 }
7252 
7253 //===----------------------------------------------------------------------===//
7254 // Use-list order directives.
7255 //===----------------------------------------------------------------------===//
7256 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7257                                 SMLoc Loc) {
7258   if (V->use_empty())
7259     return Error(Loc, "value has no uses");
7260 
7261   unsigned NumUses = 0;
7262   SmallDenseMap<const Use *, unsigned, 16> Order;
7263   for (const Use &U : V->uses()) {
7264     if (++NumUses > Indexes.size())
7265       break;
7266     Order[&U] = Indexes[NumUses - 1];
7267   }
7268   if (NumUses < 2)
7269     return Error(Loc, "value only has one use");
7270   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7271     return Error(Loc,
7272                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7273 
7274   V->sortUseList([&](const Use &L, const Use &R) {
7275     return Order.lookup(&L) < Order.lookup(&R);
7276   });
7277   return false;
7278 }
7279 
7280 /// ParseUseListOrderIndexes
7281 ///   ::= '{' uint32 (',' uint32)+ '}'
7282 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7283   SMLoc Loc = Lex.getLoc();
7284   if (ParseToken(lltok::lbrace, "expected '{' here"))
7285     return true;
7286   if (Lex.getKind() == lltok::rbrace)
7287     return Lex.Error("expected non-empty list of uselistorder indexes");
7288 
7289   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7290   // indexes should be distinct numbers in the range [0, size-1], and should
7291   // not be in order.
7292   unsigned Offset = 0;
7293   unsigned Max = 0;
7294   bool IsOrdered = true;
7295   assert(Indexes.empty() && "Expected empty order vector");
7296   do {
7297     unsigned Index;
7298     if (ParseUInt32(Index))
7299       return true;
7300 
7301     // Update consistency checks.
7302     Offset += Index - Indexes.size();
7303     Max = std::max(Max, Index);
7304     IsOrdered &= Index == Indexes.size();
7305 
7306     Indexes.push_back(Index);
7307   } while (EatIfPresent(lltok::comma));
7308 
7309   if (ParseToken(lltok::rbrace, "expected '}' here"))
7310     return true;
7311 
7312   if (Indexes.size() < 2)
7313     return Error(Loc, "expected >= 2 uselistorder indexes");
7314   if (Offset != 0 || Max >= Indexes.size())
7315     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7316   if (IsOrdered)
7317     return Error(Loc, "expected uselistorder indexes to change the order");
7318 
7319   return false;
7320 }
7321 
7322 /// ParseUseListOrder
7323 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7324 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7325   SMLoc Loc = Lex.getLoc();
7326   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7327     return true;
7328 
7329   Value *V;
7330   SmallVector<unsigned, 16> Indexes;
7331   if (ParseTypeAndValue(V, PFS) ||
7332       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7333       ParseUseListOrderIndexes(Indexes))
7334     return true;
7335 
7336   return sortUseListOrder(V, Indexes, Loc);
7337 }
7338 
7339 /// ParseUseListOrderBB
7340 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7341 bool LLParser::ParseUseListOrderBB() {
7342   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7343   SMLoc Loc = Lex.getLoc();
7344   Lex.Lex();
7345 
7346   ValID Fn, Label;
7347   SmallVector<unsigned, 16> Indexes;
7348   if (ParseValID(Fn) ||
7349       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7350       ParseValID(Label) ||
7351       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7352       ParseUseListOrderIndexes(Indexes))
7353     return true;
7354 
7355   // Check the function.
7356   GlobalValue *GV;
7357   if (Fn.Kind == ValID::t_GlobalName)
7358     GV = M->getNamedValue(Fn.StrVal);
7359   else if (Fn.Kind == ValID::t_GlobalID)
7360     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7361   else
7362     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7363   if (!GV)
7364     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7365   auto *F = dyn_cast<Function>(GV);
7366   if (!F)
7367     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7368   if (F->isDeclaration())
7369     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7370 
7371   // Check the basic block.
7372   if (Label.Kind == ValID::t_LocalID)
7373     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7374   if (Label.Kind != ValID::t_LocalName)
7375     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7376   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7377   if (!V)
7378     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7379   if (!isa<BasicBlock>(V))
7380     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7381 
7382   return sortUseListOrder(V, Indexes, Loc);
7383 }
7384 
7385 /// ModuleEntry
7386 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7387 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7388 bool LLParser::ParseModuleEntry(unsigned ID) {
7389   assert(Lex.getKind() == lltok::kw_module);
7390   Lex.Lex();
7391 
7392   std::string Path;
7393   if (ParseToken(lltok::colon, "expected ':' here") ||
7394       ParseToken(lltok::lparen, "expected '(' here") ||
7395       ParseToken(lltok::kw_path, "expected 'path' here") ||
7396       ParseToken(lltok::colon, "expected ':' here") ||
7397       ParseStringConstant(Path) ||
7398       ParseToken(lltok::comma, "expected ',' here") ||
7399       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7400       ParseToken(lltok::colon, "expected ':' here") ||
7401       ParseToken(lltok::lparen, "expected '(' here"))
7402     return true;
7403 
7404   ModuleHash Hash;
7405   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7406       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7407       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7408       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7409       ParseUInt32(Hash[4]))
7410     return true;
7411 
7412   if (ParseToken(lltok::rparen, "expected ')' here") ||
7413       ParseToken(lltok::rparen, "expected ')' here"))
7414     return true;
7415 
7416   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7417   ModuleIdMap[ID] = ModuleEntry->first();
7418 
7419   return false;
7420 }
7421 
7422 /// TypeIdEntry
7423 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7424 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7425   assert(Lex.getKind() == lltok::kw_typeid);
7426   Lex.Lex();
7427 
7428   std::string Name;
7429   if (ParseToken(lltok::colon, "expected ':' here") ||
7430       ParseToken(lltok::lparen, "expected '(' here") ||
7431       ParseToken(lltok::kw_name, "expected 'name' here") ||
7432       ParseToken(lltok::colon, "expected ':' here") ||
7433       ParseStringConstant(Name))
7434     return true;
7435 
7436   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7437   if (ParseToken(lltok::comma, "expected ',' here") ||
7438       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7439     return true;
7440 
7441   // Check if this ID was forward referenced, and if so, update the
7442   // corresponding GUIDs.
7443   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7444   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7445     for (auto TIDRef : FwdRefTIDs->second) {
7446       assert(!*TIDRef.first &&
7447              "Forward referenced type id GUID expected to be 0");
7448       *TIDRef.first = GlobalValue::getGUID(Name);
7449     }
7450     ForwardRefTypeIds.erase(FwdRefTIDs);
7451   }
7452 
7453   return false;
7454 }
7455 
7456 /// TypeIdSummary
7457 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7458 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7459   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7460       ParseToken(lltok::colon, "expected ':' here") ||
7461       ParseToken(lltok::lparen, "expected '(' here") ||
7462       ParseTypeTestResolution(TIS.TTRes))
7463     return true;
7464 
7465   if (EatIfPresent(lltok::comma)) {
7466     // Expect optional wpdResolutions field
7467     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7468       return true;
7469   }
7470 
7471   if (ParseToken(lltok::rparen, "expected ')' here"))
7472     return true;
7473 
7474   return false;
7475 }
7476 
7477 /// TypeTestResolution
7478 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7479 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7480 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7481 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7482 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7483 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7484   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7485       ParseToken(lltok::colon, "expected ':' here") ||
7486       ParseToken(lltok::lparen, "expected '(' here") ||
7487       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7488       ParseToken(lltok::colon, "expected ':' here"))
7489     return true;
7490 
7491   switch (Lex.getKind()) {
7492   case lltok::kw_unsat:
7493     TTRes.TheKind = TypeTestResolution::Unsat;
7494     break;
7495   case lltok::kw_byteArray:
7496     TTRes.TheKind = TypeTestResolution::ByteArray;
7497     break;
7498   case lltok::kw_inline:
7499     TTRes.TheKind = TypeTestResolution::Inline;
7500     break;
7501   case lltok::kw_single:
7502     TTRes.TheKind = TypeTestResolution::Single;
7503     break;
7504   case lltok::kw_allOnes:
7505     TTRes.TheKind = TypeTestResolution::AllOnes;
7506     break;
7507   default:
7508     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7509   }
7510   Lex.Lex();
7511 
7512   if (ParseToken(lltok::comma, "expected ',' here") ||
7513       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7514       ParseToken(lltok::colon, "expected ':' here") ||
7515       ParseUInt32(TTRes.SizeM1BitWidth))
7516     return true;
7517 
7518   // Parse optional fields
7519   while (EatIfPresent(lltok::comma)) {
7520     switch (Lex.getKind()) {
7521     case lltok::kw_alignLog2:
7522       Lex.Lex();
7523       if (ParseToken(lltok::colon, "expected ':'") ||
7524           ParseUInt64(TTRes.AlignLog2))
7525         return true;
7526       break;
7527     case lltok::kw_sizeM1:
7528       Lex.Lex();
7529       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7530         return true;
7531       break;
7532     case lltok::kw_bitMask: {
7533       unsigned Val;
7534       Lex.Lex();
7535       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7536         return true;
7537       assert(Val <= 0xff);
7538       TTRes.BitMask = (uint8_t)Val;
7539       break;
7540     }
7541     case lltok::kw_inlineBits:
7542       Lex.Lex();
7543       if (ParseToken(lltok::colon, "expected ':'") ||
7544           ParseUInt64(TTRes.InlineBits))
7545         return true;
7546       break;
7547     default:
7548       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7549     }
7550   }
7551 
7552   if (ParseToken(lltok::rparen, "expected ')' here"))
7553     return true;
7554 
7555   return false;
7556 }
7557 
7558 /// OptionalWpdResolutions
7559 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7560 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7561 bool LLParser::ParseOptionalWpdResolutions(
7562     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7563   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7564       ParseToken(lltok::colon, "expected ':' here") ||
7565       ParseToken(lltok::lparen, "expected '(' here"))
7566     return true;
7567 
7568   do {
7569     uint64_t Offset;
7570     WholeProgramDevirtResolution WPDRes;
7571     if (ParseToken(lltok::lparen, "expected '(' here") ||
7572         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7573         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7574         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7575         ParseToken(lltok::rparen, "expected ')' here"))
7576       return true;
7577     WPDResMap[Offset] = WPDRes;
7578   } while (EatIfPresent(lltok::comma));
7579 
7580   if (ParseToken(lltok::rparen, "expected ')' here"))
7581     return true;
7582 
7583   return false;
7584 }
7585 
7586 /// WpdRes
7587 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7588 ///         [',' OptionalResByArg]? ')'
7589 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7590 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7591 ///         [',' OptionalResByArg]? ')'
7592 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7593 ///         [',' OptionalResByArg]? ')'
7594 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7595   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7596       ParseToken(lltok::colon, "expected ':' here") ||
7597       ParseToken(lltok::lparen, "expected '(' here") ||
7598       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7599       ParseToken(lltok::colon, "expected ':' here"))
7600     return true;
7601 
7602   switch (Lex.getKind()) {
7603   case lltok::kw_indir:
7604     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7605     break;
7606   case lltok::kw_singleImpl:
7607     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7608     break;
7609   case lltok::kw_branchFunnel:
7610     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7611     break;
7612   default:
7613     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7614   }
7615   Lex.Lex();
7616 
7617   // Parse optional fields
7618   while (EatIfPresent(lltok::comma)) {
7619     switch (Lex.getKind()) {
7620     case lltok::kw_singleImplName:
7621       Lex.Lex();
7622       if (ParseToken(lltok::colon, "expected ':' here") ||
7623           ParseStringConstant(WPDRes.SingleImplName))
7624         return true;
7625       break;
7626     case lltok::kw_resByArg:
7627       if (ParseOptionalResByArg(WPDRes.ResByArg))
7628         return true;
7629       break;
7630     default:
7631       return Error(Lex.getLoc(),
7632                    "expected optional WholeProgramDevirtResolution field");
7633     }
7634   }
7635 
7636   if (ParseToken(lltok::rparen, "expected ')' here"))
7637     return true;
7638 
7639   return false;
7640 }
7641 
7642 /// OptionalResByArg
7643 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7644 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7645 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7646 ///                  'virtualConstProp' )
7647 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7648 ///                [',' 'bit' ':' UInt32]? ')'
7649 bool LLParser::ParseOptionalResByArg(
7650     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7651         &ResByArg) {
7652   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7653       ParseToken(lltok::colon, "expected ':' here") ||
7654       ParseToken(lltok::lparen, "expected '(' here"))
7655     return true;
7656 
7657   do {
7658     std::vector<uint64_t> Args;
7659     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7660         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7661         ParseToken(lltok::colon, "expected ':' here") ||
7662         ParseToken(lltok::lparen, "expected '(' here") ||
7663         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7664         ParseToken(lltok::colon, "expected ':' here"))
7665       return true;
7666 
7667     WholeProgramDevirtResolution::ByArg ByArg;
7668     switch (Lex.getKind()) {
7669     case lltok::kw_indir:
7670       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7671       break;
7672     case lltok::kw_uniformRetVal:
7673       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7674       break;
7675     case lltok::kw_uniqueRetVal:
7676       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7677       break;
7678     case lltok::kw_virtualConstProp:
7679       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7680       break;
7681     default:
7682       return Error(Lex.getLoc(),
7683                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7684     }
7685     Lex.Lex();
7686 
7687     // Parse optional fields
7688     while (EatIfPresent(lltok::comma)) {
7689       switch (Lex.getKind()) {
7690       case lltok::kw_info:
7691         Lex.Lex();
7692         if (ParseToken(lltok::colon, "expected ':' here") ||
7693             ParseUInt64(ByArg.Info))
7694           return true;
7695         break;
7696       case lltok::kw_byte:
7697         Lex.Lex();
7698         if (ParseToken(lltok::colon, "expected ':' here") ||
7699             ParseUInt32(ByArg.Byte))
7700           return true;
7701         break;
7702       case lltok::kw_bit:
7703         Lex.Lex();
7704         if (ParseToken(lltok::colon, "expected ':' here") ||
7705             ParseUInt32(ByArg.Bit))
7706           return true;
7707         break;
7708       default:
7709         return Error(Lex.getLoc(),
7710                      "expected optional whole program devirt field");
7711       }
7712     }
7713 
7714     if (ParseToken(lltok::rparen, "expected ')' here"))
7715       return true;
7716 
7717     ResByArg[Args] = ByArg;
7718   } while (EatIfPresent(lltok::comma));
7719 
7720   if (ParseToken(lltok::rparen, "expected ')' here"))
7721     return true;
7722 
7723   return false;
7724 }
7725 
7726 /// OptionalResByArg
7727 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7728 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7729   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7730       ParseToken(lltok::colon, "expected ':' here") ||
7731       ParseToken(lltok::lparen, "expected '(' here"))
7732     return true;
7733 
7734   do {
7735     uint64_t Val;
7736     if (ParseUInt64(Val))
7737       return true;
7738     Args.push_back(Val);
7739   } while (EatIfPresent(lltok::comma));
7740 
7741   if (ParseToken(lltok::rparen, "expected ')' here"))
7742     return true;
7743 
7744   return false;
7745 }
7746 
7747 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7748 
7749 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7750   bool ReadOnly = Fwd->isReadOnly();
7751   *Fwd = Resolved;
7752   if (ReadOnly)
7753     Fwd->setReadOnly();
7754 }
7755 
7756 /// Stores the given Name/GUID and associated summary into the Index.
7757 /// Also updates any forward references to the associated entry ID.
7758 void LLParser::AddGlobalValueToIndex(
7759     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7760     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7761   // First create the ValueInfo utilizing the Name or GUID.
7762   ValueInfo VI;
7763   if (GUID != 0) {
7764     assert(Name.empty());
7765     VI = Index->getOrInsertValueInfo(GUID);
7766   } else {
7767     assert(!Name.empty());
7768     if (M) {
7769       auto *GV = M->getNamedValue(Name);
7770       assert(GV);
7771       VI = Index->getOrInsertValueInfo(GV);
7772     } else {
7773       assert(
7774           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7775           "Need a source_filename to compute GUID for local");
7776       GUID = GlobalValue::getGUID(
7777           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7778       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7779     }
7780   }
7781 
7782   // Resolve forward references from calls/refs
7783   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7784   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7785     for (auto VIRef : FwdRefVIs->second) {
7786       assert(VIRef.first->getRef() == FwdVIRef &&
7787              "Forward referenced ValueInfo expected to be empty");
7788       resolveFwdRef(VIRef.first, VI);
7789     }
7790     ForwardRefValueInfos.erase(FwdRefVIs);
7791   }
7792 
7793   // Resolve forward references from aliases
7794   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7795   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7796     for (auto AliaseeRef : FwdRefAliasees->second) {
7797       assert(!AliaseeRef.first->hasAliasee() &&
7798              "Forward referencing alias already has aliasee");
7799       assert(Summary && "Aliasee must be a definition");
7800       AliaseeRef.first->setAliasee(VI, Summary.get());
7801     }
7802     ForwardRefAliasees.erase(FwdRefAliasees);
7803   }
7804 
7805   // Add the summary if one was provided.
7806   if (Summary)
7807     Index->addGlobalValueSummary(VI, std::move(Summary));
7808 
7809   // Save the associated ValueInfo for use in later references by ID.
7810   if (ID == NumberedValueInfos.size())
7811     NumberedValueInfos.push_back(VI);
7812   else {
7813     // Handle non-continuous numbers (to make test simplification easier).
7814     if (ID > NumberedValueInfos.size())
7815       NumberedValueInfos.resize(ID + 1);
7816     NumberedValueInfos[ID] = VI;
7817   }
7818 }
7819 
7820 /// ParseGVEntry
7821 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7822 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7823 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7824 bool LLParser::ParseGVEntry(unsigned ID) {
7825   assert(Lex.getKind() == lltok::kw_gv);
7826   Lex.Lex();
7827 
7828   if (ParseToken(lltok::colon, "expected ':' here") ||
7829       ParseToken(lltok::lparen, "expected '(' here"))
7830     return true;
7831 
7832   std::string Name;
7833   GlobalValue::GUID GUID = 0;
7834   switch (Lex.getKind()) {
7835   case lltok::kw_name:
7836     Lex.Lex();
7837     if (ParseToken(lltok::colon, "expected ':' here") ||
7838         ParseStringConstant(Name))
7839       return true;
7840     // Can't create GUID/ValueInfo until we have the linkage.
7841     break;
7842   case lltok::kw_guid:
7843     Lex.Lex();
7844     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7845       return true;
7846     break;
7847   default:
7848     return Error(Lex.getLoc(), "expected name or guid tag");
7849   }
7850 
7851   if (!EatIfPresent(lltok::comma)) {
7852     // No summaries. Wrap up.
7853     if (ParseToken(lltok::rparen, "expected ')' here"))
7854       return true;
7855     // This was created for a call to an external or indirect target.
7856     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7857     // created for indirect calls with VP. A Name with no GUID came from
7858     // an external definition. We pass ExternalLinkage since that is only
7859     // used when the GUID must be computed from Name, and in that case
7860     // the symbol must have external linkage.
7861     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7862                           nullptr);
7863     return false;
7864   }
7865 
7866   // Have a list of summaries
7867   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7868       ParseToken(lltok::colon, "expected ':' here"))
7869     return true;
7870 
7871   do {
7872     if (ParseToken(lltok::lparen, "expected '(' here"))
7873       return true;
7874     switch (Lex.getKind()) {
7875     case lltok::kw_function:
7876       if (ParseFunctionSummary(Name, GUID, ID))
7877         return true;
7878       break;
7879     case lltok::kw_variable:
7880       if (ParseVariableSummary(Name, GUID, ID))
7881         return true;
7882       break;
7883     case lltok::kw_alias:
7884       if (ParseAliasSummary(Name, GUID, ID))
7885         return true;
7886       break;
7887     default:
7888       return Error(Lex.getLoc(), "expected summary type");
7889     }
7890     if (ParseToken(lltok::rparen, "expected ')' here"))
7891       return true;
7892   } while (EatIfPresent(lltok::comma));
7893 
7894   if (ParseToken(lltok::rparen, "expected ')' here"))
7895     return true;
7896 
7897   return false;
7898 }
7899 
7900 /// FunctionSummary
7901 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7902 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7903 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7904 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7905                                     unsigned ID) {
7906   assert(Lex.getKind() == lltok::kw_function);
7907   Lex.Lex();
7908 
7909   StringRef ModulePath;
7910   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7911       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7912       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7913   unsigned InstCount;
7914   std::vector<FunctionSummary::EdgeTy> Calls;
7915   FunctionSummary::TypeIdInfo TypeIdInfo;
7916   std::vector<ValueInfo> Refs;
7917   // Default is all-zeros (conservative values).
7918   FunctionSummary::FFlags FFlags = {};
7919   if (ParseToken(lltok::colon, "expected ':' here") ||
7920       ParseToken(lltok::lparen, "expected '(' here") ||
7921       ParseModuleReference(ModulePath) ||
7922       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7923       ParseToken(lltok::comma, "expected ',' here") ||
7924       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7925       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7926     return true;
7927 
7928   // Parse optional fields
7929   while (EatIfPresent(lltok::comma)) {
7930     switch (Lex.getKind()) {
7931     case lltok::kw_funcFlags:
7932       if (ParseOptionalFFlags(FFlags))
7933         return true;
7934       break;
7935     case lltok::kw_calls:
7936       if (ParseOptionalCalls(Calls))
7937         return true;
7938       break;
7939     case lltok::kw_typeIdInfo:
7940       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7941         return true;
7942       break;
7943     case lltok::kw_refs:
7944       if (ParseOptionalRefs(Refs))
7945         return true;
7946       break;
7947     default:
7948       return Error(Lex.getLoc(), "expected optional function summary field");
7949     }
7950   }
7951 
7952   if (ParseToken(lltok::rparen, "expected ')' here"))
7953     return true;
7954 
7955   auto FS = llvm::make_unique<FunctionSummary>(
7956       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7957       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7958       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7959       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7960       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7961       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7962 
7963   FS->setModulePath(ModulePath);
7964 
7965   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7966                         ID, std::move(FS));
7967 
7968   return false;
7969 }
7970 
7971 /// VariableSummary
7972 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7973 ///         [',' OptionalRefs]? ')'
7974 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7975                                     unsigned ID) {
7976   assert(Lex.getKind() == lltok::kw_variable);
7977   Lex.Lex();
7978 
7979   StringRef ModulePath;
7980   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7981       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7982       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7983   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7984   std::vector<ValueInfo> Refs;
7985   if (ParseToken(lltok::colon, "expected ':' here") ||
7986       ParseToken(lltok::lparen, "expected '(' here") ||
7987       ParseModuleReference(ModulePath) ||
7988       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7989       ParseToken(lltok::comma, "expected ',' here") ||
7990       ParseGVarFlags(GVarFlags))
7991     return true;
7992 
7993   // Parse optional refs field
7994   if (EatIfPresent(lltok::comma)) {
7995     if (ParseOptionalRefs(Refs))
7996       return true;
7997   }
7998 
7999   if (ParseToken(lltok::rparen, "expected ')' here"))
8000     return true;
8001 
8002   auto GS =
8003       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8004 
8005   GS->setModulePath(ModulePath);
8006 
8007   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8008                         ID, std::move(GS));
8009 
8010   return false;
8011 }
8012 
8013 /// AliasSummary
8014 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8015 ///         'aliasee' ':' GVReference ')'
8016 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8017                                  unsigned ID) {
8018   assert(Lex.getKind() == lltok::kw_alias);
8019   LocTy Loc = Lex.getLoc();
8020   Lex.Lex();
8021 
8022   StringRef ModulePath;
8023   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8024       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8025       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8026   if (ParseToken(lltok::colon, "expected ':' here") ||
8027       ParseToken(lltok::lparen, "expected '(' here") ||
8028       ParseModuleReference(ModulePath) ||
8029       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8030       ParseToken(lltok::comma, "expected ',' here") ||
8031       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8032       ParseToken(lltok::colon, "expected ':' here"))
8033     return true;
8034 
8035   ValueInfo AliaseeVI;
8036   unsigned GVId;
8037   if (ParseGVReference(AliaseeVI, GVId))
8038     return true;
8039 
8040   if (ParseToken(lltok::rparen, "expected ')' here"))
8041     return true;
8042 
8043   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8044 
8045   AS->setModulePath(ModulePath);
8046 
8047   // Record forward reference if the aliasee is not parsed yet.
8048   if (AliaseeVI.getRef() == FwdVIRef) {
8049     auto FwdRef = ForwardRefAliasees.insert(
8050         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8051     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8052   } else {
8053     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8054     assert(Summary && "Aliasee must be a definition");
8055     AS->setAliasee(AliaseeVI, Summary);
8056   }
8057 
8058   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8059                         ID, std::move(AS));
8060 
8061   return false;
8062 }
8063 
8064 /// Flag
8065 ///   ::= [0|1]
8066 bool LLParser::ParseFlag(unsigned &Val) {
8067   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8068     return TokError("expected integer");
8069   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8070   Lex.Lex();
8071   return false;
8072 }
8073 
8074 /// OptionalFFlags
8075 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8076 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8077 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8078 ///        [',' 'noInline' ':' Flag]? ')'
8079 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8080   assert(Lex.getKind() == lltok::kw_funcFlags);
8081   Lex.Lex();
8082 
8083   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8084       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8085     return true;
8086 
8087   do {
8088     unsigned Val = 0;
8089     switch (Lex.getKind()) {
8090     case lltok::kw_readNone:
8091       Lex.Lex();
8092       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8093         return true;
8094       FFlags.ReadNone = Val;
8095       break;
8096     case lltok::kw_readOnly:
8097       Lex.Lex();
8098       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8099         return true;
8100       FFlags.ReadOnly = Val;
8101       break;
8102     case lltok::kw_noRecurse:
8103       Lex.Lex();
8104       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8105         return true;
8106       FFlags.NoRecurse = Val;
8107       break;
8108     case lltok::kw_returnDoesNotAlias:
8109       Lex.Lex();
8110       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8111         return true;
8112       FFlags.ReturnDoesNotAlias = Val;
8113       break;
8114     case lltok::kw_noInline:
8115       Lex.Lex();
8116       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8117         return true;
8118       FFlags.NoInline = Val;
8119       break;
8120     default:
8121       return Error(Lex.getLoc(), "expected function flag type");
8122     }
8123   } while (EatIfPresent(lltok::comma));
8124 
8125   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8126     return true;
8127 
8128   return false;
8129 }
8130 
8131 /// OptionalCalls
8132 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8133 /// Call ::= '(' 'callee' ':' GVReference
8134 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8135 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8136   assert(Lex.getKind() == lltok::kw_calls);
8137   Lex.Lex();
8138 
8139   if (ParseToken(lltok::colon, "expected ':' in calls") |
8140       ParseToken(lltok::lparen, "expected '(' in calls"))
8141     return true;
8142 
8143   IdToIndexMapType IdToIndexMap;
8144   // Parse each call edge
8145   do {
8146     ValueInfo VI;
8147     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8148         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8149         ParseToken(lltok::colon, "expected ':'"))
8150       return true;
8151 
8152     LocTy Loc = Lex.getLoc();
8153     unsigned GVId;
8154     if (ParseGVReference(VI, GVId))
8155       return true;
8156 
8157     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8158     unsigned RelBF = 0;
8159     if (EatIfPresent(lltok::comma)) {
8160       // Expect either hotness or relbf
8161       if (EatIfPresent(lltok::kw_hotness)) {
8162         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8163           return true;
8164       } else {
8165         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8166             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8167           return true;
8168       }
8169     }
8170     // Keep track of the Call array index needing a forward reference.
8171     // We will save the location of the ValueInfo needing an update, but
8172     // can only do so once the std::vector is finalized.
8173     if (VI.getRef() == FwdVIRef)
8174       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8175     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8176 
8177     if (ParseToken(lltok::rparen, "expected ')' in call"))
8178       return true;
8179   } while (EatIfPresent(lltok::comma));
8180 
8181   // Now that the Calls vector is finalized, it is safe to save the locations
8182   // of any forward GV references that need updating later.
8183   for (auto I : IdToIndexMap) {
8184     for (auto P : I.second) {
8185       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8186              "Forward referenced ValueInfo expected to be empty");
8187       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8188           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8189       FwdRef.first->second.push_back(
8190           std::make_pair(&Calls[P.first].first, P.second));
8191     }
8192   }
8193 
8194   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8195     return true;
8196 
8197   return false;
8198 }
8199 
8200 /// Hotness
8201 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8202 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8203   switch (Lex.getKind()) {
8204   case lltok::kw_unknown:
8205     Hotness = CalleeInfo::HotnessType::Unknown;
8206     break;
8207   case lltok::kw_cold:
8208     Hotness = CalleeInfo::HotnessType::Cold;
8209     break;
8210   case lltok::kw_none:
8211     Hotness = CalleeInfo::HotnessType::None;
8212     break;
8213   case lltok::kw_hot:
8214     Hotness = CalleeInfo::HotnessType::Hot;
8215     break;
8216   case lltok::kw_critical:
8217     Hotness = CalleeInfo::HotnessType::Critical;
8218     break;
8219   default:
8220     return Error(Lex.getLoc(), "invalid call edge hotness");
8221   }
8222   Lex.Lex();
8223   return false;
8224 }
8225 
8226 /// OptionalRefs
8227 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8228 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8229   assert(Lex.getKind() == lltok::kw_refs);
8230   Lex.Lex();
8231 
8232   if (ParseToken(lltok::colon, "expected ':' in refs") |
8233       ParseToken(lltok::lparen, "expected '(' in refs"))
8234     return true;
8235 
8236   struct ValueContext {
8237     ValueInfo VI;
8238     unsigned GVId;
8239     LocTy Loc;
8240   };
8241   std::vector<ValueContext> VContexts;
8242   // Parse each ref edge
8243   do {
8244     ValueContext VC;
8245     VC.Loc = Lex.getLoc();
8246     if (ParseGVReference(VC.VI, VC.GVId))
8247       return true;
8248     VContexts.push_back(VC);
8249   } while (EatIfPresent(lltok::comma));
8250 
8251   // Sort value contexts so that ones with readonly ValueInfo are at the end
8252   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8253   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8254     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8255   });
8256 
8257   IdToIndexMapType IdToIndexMap;
8258   for (auto &VC : VContexts) {
8259     // Keep track of the Refs array index needing a forward reference.
8260     // We will save the location of the ValueInfo needing an update, but
8261     // can only do so once the std::vector is finalized.
8262     if (VC.VI.getRef() == FwdVIRef)
8263       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8264     Refs.push_back(VC.VI);
8265   }
8266 
8267   // Now that the Refs vector is finalized, it is safe to save the locations
8268   // of any forward GV references that need updating later.
8269   for (auto I : IdToIndexMap) {
8270     for (auto P : I.second) {
8271       assert(Refs[P.first].getRef() == FwdVIRef &&
8272              "Forward referenced ValueInfo expected to be empty");
8273       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8274           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8275       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8276     }
8277   }
8278 
8279   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8280     return true;
8281 
8282   return false;
8283 }
8284 
8285 /// OptionalTypeIdInfo
8286 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8287 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8288 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8289 bool LLParser::ParseOptionalTypeIdInfo(
8290     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8291   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8292   Lex.Lex();
8293 
8294   if (ParseToken(lltok::colon, "expected ':' here") ||
8295       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8296     return true;
8297 
8298   do {
8299     switch (Lex.getKind()) {
8300     case lltok::kw_typeTests:
8301       if (ParseTypeTests(TypeIdInfo.TypeTests))
8302         return true;
8303       break;
8304     case lltok::kw_typeTestAssumeVCalls:
8305       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8306                            TypeIdInfo.TypeTestAssumeVCalls))
8307         return true;
8308       break;
8309     case lltok::kw_typeCheckedLoadVCalls:
8310       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8311                            TypeIdInfo.TypeCheckedLoadVCalls))
8312         return true;
8313       break;
8314     case lltok::kw_typeTestAssumeConstVCalls:
8315       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8316                               TypeIdInfo.TypeTestAssumeConstVCalls))
8317         return true;
8318       break;
8319     case lltok::kw_typeCheckedLoadConstVCalls:
8320       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8321                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8322         return true;
8323       break;
8324     default:
8325       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8326     }
8327   } while (EatIfPresent(lltok::comma));
8328 
8329   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8330     return true;
8331 
8332   return false;
8333 }
8334 
8335 /// TypeTests
8336 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8337 ///         [',' (SummaryID | UInt64)]* ')'
8338 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8339   assert(Lex.getKind() == lltok::kw_typeTests);
8340   Lex.Lex();
8341 
8342   if (ParseToken(lltok::colon, "expected ':' here") ||
8343       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8344     return true;
8345 
8346   IdToIndexMapType IdToIndexMap;
8347   do {
8348     GlobalValue::GUID GUID = 0;
8349     if (Lex.getKind() == lltok::SummaryID) {
8350       unsigned ID = Lex.getUIntVal();
8351       LocTy Loc = Lex.getLoc();
8352       // Keep track of the TypeTests array index needing a forward reference.
8353       // We will save the location of the GUID needing an update, but
8354       // can only do so once the std::vector is finalized.
8355       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8356       Lex.Lex();
8357     } else if (ParseUInt64(GUID))
8358       return true;
8359     TypeTests.push_back(GUID);
8360   } while (EatIfPresent(lltok::comma));
8361 
8362   // Now that the TypeTests vector is finalized, it is safe to save the
8363   // locations of any forward GV references that need updating later.
8364   for (auto I : IdToIndexMap) {
8365     for (auto P : I.second) {
8366       assert(TypeTests[P.first] == 0 &&
8367              "Forward referenced type id GUID expected to be 0");
8368       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8369           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8370       FwdRef.first->second.push_back(
8371           std::make_pair(&TypeTests[P.first], P.second));
8372     }
8373   }
8374 
8375   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8376     return true;
8377 
8378   return false;
8379 }
8380 
8381 /// VFuncIdList
8382 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8383 bool LLParser::ParseVFuncIdList(
8384     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8385   assert(Lex.getKind() == Kind);
8386   Lex.Lex();
8387 
8388   if (ParseToken(lltok::colon, "expected ':' here") ||
8389       ParseToken(lltok::lparen, "expected '(' here"))
8390     return true;
8391 
8392   IdToIndexMapType IdToIndexMap;
8393   do {
8394     FunctionSummary::VFuncId VFuncId;
8395     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8396       return true;
8397     VFuncIdList.push_back(VFuncId);
8398   } while (EatIfPresent(lltok::comma));
8399 
8400   if (ParseToken(lltok::rparen, "expected ')' here"))
8401     return true;
8402 
8403   // Now that the VFuncIdList vector is finalized, it is safe to save the
8404   // locations of any forward GV references that need updating later.
8405   for (auto I : IdToIndexMap) {
8406     for (auto P : I.second) {
8407       assert(VFuncIdList[P.first].GUID == 0 &&
8408              "Forward referenced type id GUID expected to be 0");
8409       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8410           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8411       FwdRef.first->second.push_back(
8412           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8413     }
8414   }
8415 
8416   return false;
8417 }
8418 
8419 /// ConstVCallList
8420 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8421 bool LLParser::ParseConstVCallList(
8422     lltok::Kind Kind,
8423     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8424   assert(Lex.getKind() == Kind);
8425   Lex.Lex();
8426 
8427   if (ParseToken(lltok::colon, "expected ':' here") ||
8428       ParseToken(lltok::lparen, "expected '(' here"))
8429     return true;
8430 
8431   IdToIndexMapType IdToIndexMap;
8432   do {
8433     FunctionSummary::ConstVCall ConstVCall;
8434     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8435       return true;
8436     ConstVCallList.push_back(ConstVCall);
8437   } while (EatIfPresent(lltok::comma));
8438 
8439   if (ParseToken(lltok::rparen, "expected ')' here"))
8440     return true;
8441 
8442   // Now that the ConstVCallList vector is finalized, it is safe to save the
8443   // locations of any forward GV references that need updating later.
8444   for (auto I : IdToIndexMap) {
8445     for (auto P : I.second) {
8446       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8447              "Forward referenced type id GUID expected to be 0");
8448       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8449           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8450       FwdRef.first->second.push_back(
8451           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8452     }
8453   }
8454 
8455   return false;
8456 }
8457 
8458 /// ConstVCall
8459 ///   ::= '(' VFuncId ',' Args ')'
8460 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8461                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8462   if (ParseToken(lltok::lparen, "expected '(' here") ||
8463       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8464     return true;
8465 
8466   if (EatIfPresent(lltok::comma))
8467     if (ParseArgs(ConstVCall.Args))
8468       return true;
8469 
8470   if (ParseToken(lltok::rparen, "expected ')' here"))
8471     return true;
8472 
8473   return false;
8474 }
8475 
8476 /// VFuncId
8477 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8478 ///         'offset' ':' UInt64 ')'
8479 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8480                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8481   assert(Lex.getKind() == lltok::kw_vFuncId);
8482   Lex.Lex();
8483 
8484   if (ParseToken(lltok::colon, "expected ':' here") ||
8485       ParseToken(lltok::lparen, "expected '(' here"))
8486     return true;
8487 
8488   if (Lex.getKind() == lltok::SummaryID) {
8489     VFuncId.GUID = 0;
8490     unsigned ID = Lex.getUIntVal();
8491     LocTy Loc = Lex.getLoc();
8492     // Keep track of the array index needing a forward reference.
8493     // We will save the location of the GUID needing an update, but
8494     // can only do so once the caller's std::vector is finalized.
8495     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8496     Lex.Lex();
8497   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8498              ParseToken(lltok::colon, "expected ':' here") ||
8499              ParseUInt64(VFuncId.GUID))
8500     return true;
8501 
8502   if (ParseToken(lltok::comma, "expected ',' here") ||
8503       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8504       ParseToken(lltok::colon, "expected ':' here") ||
8505       ParseUInt64(VFuncId.Offset) ||
8506       ParseToken(lltok::rparen, "expected ')' here"))
8507     return true;
8508 
8509   return false;
8510 }
8511 
8512 /// GVFlags
8513 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8514 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8515 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8516 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8517   assert(Lex.getKind() == lltok::kw_flags);
8518   Lex.Lex();
8519 
8520   if (ParseToken(lltok::colon, "expected ':' here") ||
8521       ParseToken(lltok::lparen, "expected '(' here"))
8522     return true;
8523 
8524   do {
8525     unsigned Flag = 0;
8526     switch (Lex.getKind()) {
8527     case lltok::kw_linkage:
8528       Lex.Lex();
8529       if (ParseToken(lltok::colon, "expected ':'"))
8530         return true;
8531       bool HasLinkage;
8532       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8533       assert(HasLinkage && "Linkage not optional in summary entry");
8534       Lex.Lex();
8535       break;
8536     case lltok::kw_notEligibleToImport:
8537       Lex.Lex();
8538       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8539         return true;
8540       GVFlags.NotEligibleToImport = Flag;
8541       break;
8542     case lltok::kw_live:
8543       Lex.Lex();
8544       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8545         return true;
8546       GVFlags.Live = Flag;
8547       break;
8548     case lltok::kw_dsoLocal:
8549       Lex.Lex();
8550       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8551         return true;
8552       GVFlags.DSOLocal = Flag;
8553       break;
8554     case lltok::kw_canAutoHide:
8555       Lex.Lex();
8556       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8557         return true;
8558       GVFlags.CanAutoHide = Flag;
8559       break;
8560     default:
8561       return Error(Lex.getLoc(), "expected gv flag type");
8562     }
8563   } while (EatIfPresent(lltok::comma));
8564 
8565   if (ParseToken(lltok::rparen, "expected ')' here"))
8566     return true;
8567 
8568   return false;
8569 }
8570 
8571 /// GVarFlags
8572 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8573 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8574   assert(Lex.getKind() == lltok::kw_varFlags);
8575   Lex.Lex();
8576 
8577   unsigned Flag = 0;
8578   if (ParseToken(lltok::colon, "expected ':' here") ||
8579       ParseToken(lltok::lparen, "expected '(' here") ||
8580       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8581       ParseToken(lltok::colon, "expected ':' here"))
8582     return true;
8583 
8584   ParseFlag(Flag);
8585   GVarFlags.ReadOnly = Flag;
8586 
8587   if (ParseToken(lltok::rparen, "expected ')' here"))
8588     return true;
8589   return false;
8590 }
8591 
8592 /// ModuleReference
8593 ///   ::= 'module' ':' UInt
8594 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8595   // Parse module id.
8596   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8597       ParseToken(lltok::colon, "expected ':' here") ||
8598       ParseToken(lltok::SummaryID, "expected module ID"))
8599     return true;
8600 
8601   unsigned ModuleID = Lex.getUIntVal();
8602   auto I = ModuleIdMap.find(ModuleID);
8603   // We should have already parsed all module IDs
8604   assert(I != ModuleIdMap.end());
8605   ModulePath = I->second;
8606   return false;
8607 }
8608 
8609 /// GVReference
8610 ///   ::= SummaryID
8611 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8612   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8613   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8614     return true;
8615 
8616   GVId = Lex.getUIntVal();
8617   // Check if we already have a VI for this GV
8618   if (GVId < NumberedValueInfos.size()) {
8619     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8620     VI = NumberedValueInfos[GVId];
8621   } else
8622     // We will create a forward reference to the stored location.
8623     VI = ValueInfo(false, FwdVIRef);
8624 
8625   if (ReadOnly)
8626     VI.setReadOnly();
8627   return false;
8628 }
8629