1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and basic correctness checks at the
128 /// end of the module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B(Context);
137 
138     for (const auto &Attr : Attrs) {
139       auto R = NumberedAttrBuilders.find(Attr);
140       if (R != NumberedAttrBuilders.end())
141         B.merge(R->second);
142     }
143 
144     if (Function *Fn = dyn_cast<Function>(V)) {
145       AttributeList AS = Fn->getAttributes();
146       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
147       AS = AS.removeFnAttributes(Context);
148 
149       FnAttrs.merge(B);
150 
151       // If the alignment was parsed as an attribute, move to the alignment
152       // field.
153       if (FnAttrs.hasAlignmentAttr()) {
154         Fn->setAlignment(FnAttrs.getAlignment());
155         FnAttrs.removeAttribute(Attribute::Alignment);
156       }
157 
158       AS = AS.addFnAttributes(Context, FnAttrs);
159       Fn->setAttributes(AS);
160     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
161       AttributeList AS = CI->getAttributes();
162       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
163       AS = AS.removeFnAttributes(Context);
164       FnAttrs.merge(B);
165       AS = AS.addFnAttributes(Context, FnAttrs);
166       CI->setAttributes(AS);
167     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
168       AttributeList AS = II->getAttributes();
169       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
170       AS = AS.removeFnAttributes(Context);
171       FnAttrs.merge(B);
172       AS = AS.addFnAttributes(Context, FnAttrs);
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
177       AS = AS.removeFnAttributes(Context);
178       FnAttrs.merge(B);
179       AS = AS.addFnAttributes(Context, FnAttrs);
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
242   // make_early_inc_range here because we may remove some functions.
243   for (Function &F : llvm::make_early_inc_range(*M))
244     UpgradeCallsToIntrinsic(&F);
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Function &F : llvm::make_early_inc_range(*M)) {
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
251       F.replaceAllUsesWith(Remangled.getValue());
252       F.eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and basic correctness checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::LocalVarID:
360       if (parseUnnamedType())
361         return true;
362       break;
363     case lltok::LocalVar:
364       if (parseNamedType())
365         return true;
366       break;
367     case lltok::GlobalID:
368       if (parseUnnamedGlobal())
369         return true;
370       break;
371     case lltok::GlobalVar:
372       if (parseNamedGlobal())
373         return true;
374       break;
375     case lltok::ComdatVar:  if (parseComdat()) return true; break;
376     case lltok::exclaim:
377       if (parseStandaloneMetadata())
378         return true;
379       break;
380     case lltok::SummaryID:
381       if (parseSummaryEntry())
382         return true;
383       break;
384     case lltok::MetadataVar:
385       if (parseNamedMetadata())
386         return true;
387       break;
388     case lltok::kw_attributes:
389       if (parseUnnamedAttrGrp())
390         return true;
391       break;
392     case lltok::kw_uselistorder:
393       if (parseUseListOrder())
394         return true;
395       break;
396     case lltok::kw_uselistorder_bb:
397       if (parseUseListOrderBB())
398         return true;
399       break;
400     }
401   }
402 }
403 
404 /// toplevelentity
405 ///   ::= 'module' 'asm' STRINGCONSTANT
406 bool LLParser::parseModuleAsm() {
407   assert(Lex.getKind() == lltok::kw_module);
408   Lex.Lex();
409 
410   std::string AsmStr;
411   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
412       parseStringConstant(AsmStr))
413     return true;
414 
415   M->appendModuleInlineAsm(AsmStr);
416   return false;
417 }
418 
419 /// toplevelentity
420 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
421 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
422 bool LLParser::parseTargetDefinition() {
423   assert(Lex.getKind() == lltok::kw_target);
424   std::string Str;
425   switch (Lex.Lex()) {
426   default:
427     return tokError("unknown target property");
428   case lltok::kw_triple:
429     Lex.Lex();
430     if (parseToken(lltok::equal, "expected '=' after target triple") ||
431         parseStringConstant(Str))
432       return true;
433     M->setTargetTriple(Str);
434     return false;
435   case lltok::kw_datalayout:
436     Lex.Lex();
437     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
438         parseStringConstant(Str))
439       return true;
440     M->setDataLayout(Str);
441     return false;
442   }
443 }
444 
445 /// toplevelentity
446 ///   ::= 'source_filename' '=' STRINGCONSTANT
447 bool LLParser::parseSourceFileName() {
448   assert(Lex.getKind() == lltok::kw_source_filename);
449   Lex.Lex();
450   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
451       parseStringConstant(SourceFileName))
452     return true;
453   if (M)
454     M->setSourceFileName(SourceFileName);
455   return false;
456 }
457 
458 /// parseUnnamedType:
459 ///   ::= LocalVarID '=' 'type' type
460 bool LLParser::parseUnnamedType() {
461   LocTy TypeLoc = Lex.getLoc();
462   unsigned TypeID = Lex.getUIntVal();
463   Lex.Lex(); // eat LocalVarID;
464 
465   if (parseToken(lltok::equal, "expected '=' after name") ||
466       parseToken(lltok::kw_type, "expected 'type' after '='"))
467     return true;
468 
469   Type *Result = nullptr;
470   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
471     return true;
472 
473   if (!isa<StructType>(Result)) {
474     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
475     if (Entry.first)
476       return error(TypeLoc, "non-struct types may not be recursive");
477     Entry.first = Result;
478     Entry.second = SMLoc();
479   }
480 
481   return false;
482 }
483 
484 /// toplevelentity
485 ///   ::= LocalVar '=' 'type' type
486 bool LLParser::parseNamedType() {
487   std::string Name = Lex.getStrVal();
488   LocTy NameLoc = Lex.getLoc();
489   Lex.Lex();  // eat LocalVar.
490 
491   if (parseToken(lltok::equal, "expected '=' after name") ||
492       parseToken(lltok::kw_type, "expected 'type' after name"))
493     return true;
494 
495   Type *Result = nullptr;
496   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
497     return true;
498 
499   if (!isa<StructType>(Result)) {
500     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
501     if (Entry.first)
502       return error(NameLoc, "non-struct types may not be recursive");
503     Entry.first = Result;
504     Entry.second = SMLoc();
505   }
506 
507   return false;
508 }
509 
510 /// toplevelentity
511 ///   ::= 'declare' FunctionHeader
512 bool LLParser::parseDeclare() {
513   assert(Lex.getKind() == lltok::kw_declare);
514   Lex.Lex();
515 
516   std::vector<std::pair<unsigned, MDNode *>> MDs;
517   while (Lex.getKind() == lltok::MetadataVar) {
518     unsigned MDK;
519     MDNode *N;
520     if (parseMetadataAttachment(MDK, N))
521       return true;
522     MDs.push_back({MDK, N});
523   }
524 
525   Function *F;
526   if (parseFunctionHeader(F, false))
527     return true;
528   for (auto &MD : MDs)
529     F->addMetadata(MD.first, *MD.second);
530   return false;
531 }
532 
533 /// toplevelentity
534 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
535 bool LLParser::parseDefine() {
536   assert(Lex.getKind() == lltok::kw_define);
537   Lex.Lex();
538 
539   Function *F;
540   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
541          parseFunctionBody(*F);
542 }
543 
544 /// parseGlobalType
545 ///   ::= 'constant'
546 ///   ::= 'global'
547 bool LLParser::parseGlobalType(bool &IsConstant) {
548   if (Lex.getKind() == lltok::kw_constant)
549     IsConstant = true;
550   else if (Lex.getKind() == lltok::kw_global)
551     IsConstant = false;
552   else {
553     IsConstant = false;
554     return tokError("expected 'global' or 'constant'");
555   }
556   Lex.Lex();
557   return false;
558 }
559 
560 bool LLParser::parseOptionalUnnamedAddr(
561     GlobalVariable::UnnamedAddr &UnnamedAddr) {
562   if (EatIfPresent(lltok::kw_unnamed_addr))
563     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
564   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
565     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
566   else
567     UnnamedAddr = GlobalValue::UnnamedAddr::None;
568   return false;
569 }
570 
571 /// parseUnnamedGlobal:
572 ///   OptionalVisibility (ALIAS | IFUNC) ...
573 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
574 ///   OptionalDLLStorageClass
575 ///                                                     ...   -> global variable
576 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
577 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
578 ///   OptionalVisibility
579 ///                OptionalDLLStorageClass
580 ///                                                     ...   -> global variable
581 bool LLParser::parseUnnamedGlobal() {
582   unsigned VarID = NumberedVals.size();
583   std::string Name;
584   LocTy NameLoc = Lex.getLoc();
585 
586   // Handle the GlobalID form.
587   if (Lex.getKind() == lltok::GlobalID) {
588     if (Lex.getUIntVal() != VarID)
589       return error(Lex.getLoc(),
590                    "variable expected to be numbered '%" + Twine(VarID) + "'");
591     Lex.Lex(); // eat GlobalID;
592 
593     if (parseToken(lltok::equal, "expected '=' after name"))
594       return true;
595   }
596 
597   bool HasLinkage;
598   unsigned Linkage, Visibility, DLLStorageClass;
599   bool DSOLocal;
600   GlobalVariable::ThreadLocalMode TLM;
601   GlobalVariable::UnnamedAddr UnnamedAddr;
602   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
603                            DSOLocal) ||
604       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
605     return true;
606 
607   switch (Lex.getKind()) {
608   default:
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611   case lltok::kw_alias:
612   case lltok::kw_ifunc:
613     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
614                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
615   }
616 }
617 
618 /// parseNamedGlobal:
619 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
620 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
621 ///                 OptionalVisibility OptionalDLLStorageClass
622 ///                                                     ...   -> global variable
623 bool LLParser::parseNamedGlobal() {
624   assert(Lex.getKind() == lltok::GlobalVar);
625   LocTy NameLoc = Lex.getLoc();
626   std::string Name = Lex.getStrVal();
627   Lex.Lex();
628 
629   bool HasLinkage;
630   unsigned Linkage, Visibility, DLLStorageClass;
631   bool DSOLocal;
632   GlobalVariable::ThreadLocalMode TLM;
633   GlobalVariable::UnnamedAddr UnnamedAddr;
634   if (parseToken(lltok::equal, "expected '=' in global variable") ||
635       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
636                            DSOLocal) ||
637       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
638     return true;
639 
640   switch (Lex.getKind()) {
641   default:
642     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
643                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644   case lltok::kw_alias:
645   case lltok::kw_ifunc:
646     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
647                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
648   }
649 }
650 
651 bool LLParser::parseComdat() {
652   assert(Lex.getKind() == lltok::ComdatVar);
653   std::string Name = Lex.getStrVal();
654   LocTy NameLoc = Lex.getLoc();
655   Lex.Lex();
656 
657   if (parseToken(lltok::equal, "expected '=' here"))
658     return true;
659 
660   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
661     return tokError("expected comdat type");
662 
663   Comdat::SelectionKind SK;
664   switch (Lex.getKind()) {
665   default:
666     return tokError("unknown selection kind");
667   case lltok::kw_any:
668     SK = Comdat::Any;
669     break;
670   case lltok::kw_exactmatch:
671     SK = Comdat::ExactMatch;
672     break;
673   case lltok::kw_largest:
674     SK = Comdat::Largest;
675     break;
676   case lltok::kw_nodeduplicate:
677     SK = Comdat::NoDeduplicate;
678     break;
679   case lltok::kw_samesize:
680     SK = Comdat::SameSize;
681     break;
682   }
683   Lex.Lex();
684 
685   // See if the comdat was forward referenced, if so, use the comdat.
686   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
687   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
688   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
689     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
690 
691   Comdat *C;
692   if (I != ComdatSymTab.end())
693     C = &I->second;
694   else
695     C = M->getOrInsertComdat(Name);
696   C->setSelectionKind(SK);
697 
698   return false;
699 }
700 
701 // MDString:
702 //   ::= '!' STRINGCONSTANT
703 bool LLParser::parseMDString(MDString *&Result) {
704   std::string Str;
705   if (parseStringConstant(Str))
706     return true;
707   Result = MDString::get(Context, Str);
708   return false;
709 }
710 
711 // MDNode:
712 //   ::= '!' MDNodeNumber
713 bool LLParser::parseMDNodeID(MDNode *&Result) {
714   // !{ ..., !42, ... }
715   LocTy IDLoc = Lex.getLoc();
716   unsigned MID = 0;
717   if (parseUInt32(MID))
718     return true;
719 
720   // If not a forward reference, just return it now.
721   if (NumberedMetadata.count(MID)) {
722     Result = NumberedMetadata[MID];
723     return false;
724   }
725 
726   // Otherwise, create MDNode forward reference.
727   auto &FwdRef = ForwardRefMDNodes[MID];
728   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
729 
730   Result = FwdRef.first.get();
731   NumberedMetadata[MID].reset(Result);
732   return false;
733 }
734 
735 /// parseNamedMetadata:
736 ///   !foo = !{ !1, !2 }
737 bool LLParser::parseNamedMetadata() {
738   assert(Lex.getKind() == lltok::MetadataVar);
739   std::string Name = Lex.getStrVal();
740   Lex.Lex();
741 
742   if (parseToken(lltok::equal, "expected '=' here") ||
743       parseToken(lltok::exclaim, "Expected '!' here") ||
744       parseToken(lltok::lbrace, "Expected '{' here"))
745     return true;
746 
747   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
748   if (Lex.getKind() != lltok::rbrace)
749     do {
750       MDNode *N = nullptr;
751       // parse DIExpressions inline as a special case. They are still MDNodes,
752       // so they can still appear in named metadata. Remove this logic if they
753       // become plain Metadata.
754       if (Lex.getKind() == lltok::MetadataVar &&
755           Lex.getStrVal() == "DIExpression") {
756         if (parseDIExpression(N, /*IsDistinct=*/false))
757           return true;
758         // DIArgLists should only appear inline in a function, as they may
759         // contain LocalAsMetadata arguments which require a function context.
760       } else if (Lex.getKind() == lltok::MetadataVar &&
761                  Lex.getStrVal() == "DIArgList") {
762         return tokError("found DIArgList outside of function");
763       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
764                  parseMDNodeID(N)) {
765         return true;
766       }
767       NMD->addOperand(N);
768     } while (EatIfPresent(lltok::comma));
769 
770   return parseToken(lltok::rbrace, "expected end of metadata node");
771 }
772 
773 /// parseStandaloneMetadata:
774 ///   !42 = !{...}
775 bool LLParser::parseStandaloneMetadata() {
776   assert(Lex.getKind() == lltok::exclaim);
777   Lex.Lex();
778   unsigned MetadataID = 0;
779 
780   MDNode *Init;
781   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
782     return true;
783 
784   // Detect common error, from old metadata syntax.
785   if (Lex.getKind() == lltok::Type)
786     return tokError("unexpected type in metadata definition");
787 
788   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
789   if (Lex.getKind() == lltok::MetadataVar) {
790     if (parseSpecializedMDNode(Init, IsDistinct))
791       return true;
792   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
793              parseMDTuple(Init, IsDistinct))
794     return true;
795 
796   // See if this was forward referenced, if so, handle it.
797   auto FI = ForwardRefMDNodes.find(MetadataID);
798   if (FI != ForwardRefMDNodes.end()) {
799     FI->second.first->replaceAllUsesWith(Init);
800     ForwardRefMDNodes.erase(FI);
801 
802     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
803   } else {
804     if (NumberedMetadata.count(MetadataID))
805       return tokError("Metadata id is already used");
806     NumberedMetadata[MetadataID].reset(Init);
807   }
808 
809   return false;
810 }
811 
812 // Skips a single module summary entry.
813 bool LLParser::skipModuleSummaryEntry() {
814   // Each module summary entry consists of a tag for the entry
815   // type, followed by a colon, then the fields which may be surrounded by
816   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
817   // support is in place we will look for the tokens corresponding to the
818   // expected tags.
819   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
820       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
821       Lex.getKind() != lltok::kw_blockcount)
822     return tokError(
823         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
824         "start of summary entry");
825   if (Lex.getKind() == lltok::kw_flags)
826     return parseSummaryIndexFlags();
827   if (Lex.getKind() == lltok::kw_blockcount)
828     return parseBlockCount();
829   Lex.Lex();
830   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
831       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
832     return true;
833   // Now walk through the parenthesized entry, until the number of open
834   // parentheses goes back down to 0 (the first '(' was parsed above).
835   unsigned NumOpenParen = 1;
836   do {
837     switch (Lex.getKind()) {
838     case lltok::lparen:
839       NumOpenParen++;
840       break;
841     case lltok::rparen:
842       NumOpenParen--;
843       break;
844     case lltok::Eof:
845       return tokError("found end of file while parsing summary entry");
846     default:
847       // Skip everything in between parentheses.
848       break;
849     }
850     Lex.Lex();
851   } while (NumOpenParen > 0);
852   return false;
853 }
854 
855 /// SummaryEntry
856 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
857 bool LLParser::parseSummaryEntry() {
858   assert(Lex.getKind() == lltok::SummaryID);
859   unsigned SummaryID = Lex.getUIntVal();
860 
861   // For summary entries, colons should be treated as distinct tokens,
862   // not an indication of the end of a label token.
863   Lex.setIgnoreColonInIdentifiers(true);
864 
865   Lex.Lex();
866   if (parseToken(lltok::equal, "expected '=' here"))
867     return true;
868 
869   // If we don't have an index object, skip the summary entry.
870   if (!Index)
871     return skipModuleSummaryEntry();
872 
873   bool result = false;
874   switch (Lex.getKind()) {
875   case lltok::kw_gv:
876     result = parseGVEntry(SummaryID);
877     break;
878   case lltok::kw_module:
879     result = parseModuleEntry(SummaryID);
880     break;
881   case lltok::kw_typeid:
882     result = parseTypeIdEntry(SummaryID);
883     break;
884   case lltok::kw_typeidCompatibleVTable:
885     result = parseTypeIdCompatibleVtableEntry(SummaryID);
886     break;
887   case lltok::kw_flags:
888     result = parseSummaryIndexFlags();
889     break;
890   case lltok::kw_blockcount:
891     result = parseBlockCount();
892     break;
893   default:
894     result = error(Lex.getLoc(), "unexpected summary kind");
895     break;
896   }
897   Lex.setIgnoreColonInIdentifiers(false);
898   return result;
899 }
900 
901 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
902   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
903          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
904 }
905 
906 // If there was an explicit dso_local, update GV. In the absence of an explicit
907 // dso_local we keep the default value.
908 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
909   if (DSOLocal)
910     GV.setDSOLocal(true);
911 }
912 
913 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
914                                               Type *Ty2) {
915   std::string ErrString;
916   raw_string_ostream ErrOS(ErrString);
917   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
918   return ErrOS.str();
919 }
920 
921 /// parseAliasOrIFunc:
922 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
923 ///                     OptionalVisibility OptionalDLLStorageClass
924 ///                     OptionalThreadLocal OptionalUnnamedAddr
925 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
926 ///
927 /// AliaseeOrResolver
928 ///   ::= TypeAndValue
929 ///
930 /// SymbolAttrs
931 ///   ::= ',' 'partition' StringConstant
932 ///
933 /// Everything through OptionalUnnamedAddr has already been parsed.
934 ///
935 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
936                                  unsigned L, unsigned Visibility,
937                                  unsigned DLLStorageClass, bool DSOLocal,
938                                  GlobalVariable::ThreadLocalMode TLM,
939                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
940   bool IsAlias;
941   if (Lex.getKind() == lltok::kw_alias)
942     IsAlias = true;
943   else if (Lex.getKind() == lltok::kw_ifunc)
944     IsAlias = false;
945   else
946     llvm_unreachable("Not an alias or ifunc!");
947   Lex.Lex();
948 
949   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
950 
951   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
952     return error(NameLoc, "invalid linkage type for alias");
953 
954   if (!isValidVisibilityForLinkage(Visibility, L))
955     return error(NameLoc,
956                  "symbol with local linkage must have default visibility");
957 
958   Type *Ty;
959   LocTy ExplicitTypeLoc = Lex.getLoc();
960   if (parseType(Ty) ||
961       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
962     return true;
963 
964   Constant *Aliasee;
965   LocTy AliaseeLoc = Lex.getLoc();
966   if (Lex.getKind() != lltok::kw_bitcast &&
967       Lex.getKind() != lltok::kw_getelementptr &&
968       Lex.getKind() != lltok::kw_addrspacecast &&
969       Lex.getKind() != lltok::kw_inttoptr) {
970     if (parseGlobalTypeAndValue(Aliasee))
971       return true;
972   } else {
973     // The bitcast dest type is not present, it is implied by the dest type.
974     ValID ID;
975     if (parseValID(ID, /*PFS=*/nullptr))
976       return true;
977     if (ID.Kind != ValID::t_Constant)
978       return error(AliaseeLoc, "invalid aliasee");
979     Aliasee = ID.ConstantVal;
980   }
981 
982   Type *AliaseeType = Aliasee->getType();
983   auto *PTy = dyn_cast<PointerType>(AliaseeType);
984   if (!PTy)
985     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
986   unsigned AddrSpace = PTy->getAddressSpace();
987 
988   if (IsAlias) {
989     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
990       return error(
991           ExplicitTypeLoc,
992           typeComparisonErrorMessage(
993               "explicit pointee type doesn't match operand's pointee type", Ty,
994               PTy->getNonOpaquePointerElementType()));
995   } else {
996     if (!PTy->isOpaque() &&
997         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
998       return error(ExplicitTypeLoc,
999                    "explicit pointee type should be a function type");
1000   }
1001 
1002   GlobalValue *GVal = nullptr;
1003 
1004   // See if the alias was forward referenced, if so, prepare to replace the
1005   // forward reference.
1006   if (!Name.empty()) {
1007     auto I = ForwardRefVals.find(Name);
1008     if (I != ForwardRefVals.end()) {
1009       GVal = I->second.first;
1010       ForwardRefVals.erase(Name);
1011     } else if (M->getNamedValue(Name)) {
1012       return error(NameLoc, "redefinition of global '@" + Name + "'");
1013     }
1014   } else {
1015     auto I = ForwardRefValIDs.find(NumberedVals.size());
1016     if (I != ForwardRefValIDs.end()) {
1017       GVal = I->second.first;
1018       ForwardRefValIDs.erase(I);
1019     }
1020   }
1021 
1022   // Okay, create the alias/ifunc but do not insert it into the module yet.
1023   std::unique_ptr<GlobalAlias> GA;
1024   std::unique_ptr<GlobalIFunc> GI;
1025   GlobalValue *GV;
1026   if (IsAlias) {
1027     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1028                                  (GlobalValue::LinkageTypes)Linkage, Name,
1029                                  Aliasee, /*Parent*/ nullptr));
1030     GV = GA.get();
1031   } else {
1032     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1033                                  (GlobalValue::LinkageTypes)Linkage, Name,
1034                                  Aliasee, /*Parent*/ nullptr));
1035     GV = GI.get();
1036   }
1037   GV->setThreadLocalMode(TLM);
1038   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1039   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1040   GV->setUnnamedAddr(UnnamedAddr);
1041   maybeSetDSOLocal(DSOLocal, *GV);
1042 
1043   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1044   // Now parse them if there are any.
1045   while (Lex.getKind() == lltok::comma) {
1046     Lex.Lex();
1047 
1048     if (Lex.getKind() == lltok::kw_partition) {
1049       Lex.Lex();
1050       GV->setPartition(Lex.getStrVal());
1051       if (parseToken(lltok::StringConstant, "expected partition string"))
1052         return true;
1053     } else {
1054       return tokError("unknown alias or ifunc property!");
1055     }
1056   }
1057 
1058   if (Name.empty())
1059     NumberedVals.push_back(GV);
1060 
1061   if (GVal) {
1062     // Verify that types agree.
1063     if (GVal->getType() != GV->getType())
1064       return error(
1065           ExplicitTypeLoc,
1066           "forward reference and definition of alias have different types");
1067 
1068     // If they agree, just RAUW the old value with the alias and remove the
1069     // forward ref info.
1070     GVal->replaceAllUsesWith(GV);
1071     GVal->eraseFromParent();
1072   }
1073 
1074   // Insert into the module, we know its name won't collide now.
1075   if (IsAlias)
1076     M->getAliasList().push_back(GA.release());
1077   else
1078     M->getIFuncList().push_back(GI.release());
1079   assert(GV->getName() == Name && "Should not be a name conflict!");
1080 
1081   return false;
1082 }
1083 
1084 /// parseGlobal
1085 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1086 ///       OptionalVisibility OptionalDLLStorageClass
1087 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1088 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1089 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1090 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1091 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1092 ///       Const OptionalAttrs
1093 ///
1094 /// Everything up to and including OptionalUnnamedAddr has been parsed
1095 /// already.
1096 ///
1097 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1098                            unsigned Linkage, bool HasLinkage,
1099                            unsigned Visibility, unsigned DLLStorageClass,
1100                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1101                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1102   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1103     return error(NameLoc,
1104                  "symbol with local linkage must have default visibility");
1105 
1106   unsigned AddrSpace;
1107   bool IsConstant, IsExternallyInitialized;
1108   LocTy IsExternallyInitializedLoc;
1109   LocTy TyLoc;
1110 
1111   Type *Ty = nullptr;
1112   if (parseOptionalAddrSpace(AddrSpace) ||
1113       parseOptionalToken(lltok::kw_externally_initialized,
1114                          IsExternallyInitialized,
1115                          &IsExternallyInitializedLoc) ||
1116       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1117     return true;
1118 
1119   // If the linkage is specified and is external, then no initializer is
1120   // present.
1121   Constant *Init = nullptr;
1122   if (!HasLinkage ||
1123       !GlobalValue::isValidDeclarationLinkage(
1124           (GlobalValue::LinkageTypes)Linkage)) {
1125     if (parseGlobalValue(Ty, Init))
1126       return true;
1127   }
1128 
1129   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1130     return error(TyLoc, "invalid type for global variable");
1131 
1132   GlobalValue *GVal = nullptr;
1133 
1134   // See if the global was forward referenced, if so, use the global.
1135   if (!Name.empty()) {
1136     auto I = ForwardRefVals.find(Name);
1137     if (I != ForwardRefVals.end()) {
1138       GVal = I->second.first;
1139       ForwardRefVals.erase(I);
1140     } else if (M->getNamedValue(Name)) {
1141       return error(NameLoc, "redefinition of global '@" + Name + "'");
1142     }
1143   } else {
1144     auto I = ForwardRefValIDs.find(NumberedVals.size());
1145     if (I != ForwardRefValIDs.end()) {
1146       GVal = I->second.first;
1147       ForwardRefValIDs.erase(I);
1148     }
1149   }
1150 
1151   GlobalVariable *GV = new GlobalVariable(
1152       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1153       GlobalVariable::NotThreadLocal, AddrSpace);
1154 
1155   if (Name.empty())
1156     NumberedVals.push_back(GV);
1157 
1158   // Set the parsed properties on the global.
1159   if (Init)
1160     GV->setInitializer(Init);
1161   GV->setConstant(IsConstant);
1162   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1163   maybeSetDSOLocal(DSOLocal, *GV);
1164   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1165   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1166   GV->setExternallyInitialized(IsExternallyInitialized);
1167   GV->setThreadLocalMode(TLM);
1168   GV->setUnnamedAddr(UnnamedAddr);
1169 
1170   if (GVal) {
1171     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1172       return error(
1173           TyLoc,
1174           "forward reference and definition of global have different types");
1175 
1176     GVal->replaceAllUsesWith(GV);
1177     GVal->eraseFromParent();
1178   }
1179 
1180   // parse attributes on the global.
1181   while (Lex.getKind() == lltok::comma) {
1182     Lex.Lex();
1183 
1184     if (Lex.getKind() == lltok::kw_section) {
1185       Lex.Lex();
1186       GV->setSection(Lex.getStrVal());
1187       if (parseToken(lltok::StringConstant, "expected global section string"))
1188         return true;
1189     } else if (Lex.getKind() == lltok::kw_partition) {
1190       Lex.Lex();
1191       GV->setPartition(Lex.getStrVal());
1192       if (parseToken(lltok::StringConstant, "expected partition string"))
1193         return true;
1194     } else if (Lex.getKind() == lltok::kw_align) {
1195       MaybeAlign Alignment;
1196       if (parseOptionalAlignment(Alignment))
1197         return true;
1198       GV->setAlignment(Alignment);
1199     } else if (Lex.getKind() == lltok::MetadataVar) {
1200       if (parseGlobalObjectMetadataAttachment(*GV))
1201         return true;
1202     } else {
1203       Comdat *C;
1204       if (parseOptionalComdat(Name, C))
1205         return true;
1206       if (C)
1207         GV->setComdat(C);
1208       else
1209         return tokError("unknown global variable property!");
1210     }
1211   }
1212 
1213   AttrBuilder Attrs(M->getContext());
1214   LocTy BuiltinLoc;
1215   std::vector<unsigned> FwdRefAttrGrps;
1216   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1217     return true;
1218   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1219     GV->setAttributes(AttributeSet::get(Context, Attrs));
1220     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1221   }
1222 
1223   return false;
1224 }
1225 
1226 /// parseUnnamedAttrGrp
1227 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1228 bool LLParser::parseUnnamedAttrGrp() {
1229   assert(Lex.getKind() == lltok::kw_attributes);
1230   LocTy AttrGrpLoc = Lex.getLoc();
1231   Lex.Lex();
1232 
1233   if (Lex.getKind() != lltok::AttrGrpID)
1234     return tokError("expected attribute group id");
1235 
1236   unsigned VarID = Lex.getUIntVal();
1237   std::vector<unsigned> unused;
1238   LocTy BuiltinLoc;
1239   Lex.Lex();
1240 
1241   if (parseToken(lltok::equal, "expected '=' here") ||
1242       parseToken(lltok::lbrace, "expected '{' here"))
1243     return true;
1244 
1245   auto R = NumberedAttrBuilders.find(VarID);
1246   if (R == NumberedAttrBuilders.end())
1247     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1248 
1249   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1250       parseToken(lltok::rbrace, "expected end of attribute group"))
1251     return true;
1252 
1253   if (!R->second.hasAttributes())
1254     return error(AttrGrpLoc, "attribute group has no attributes");
1255 
1256   return false;
1257 }
1258 
1259 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1260   switch (Kind) {
1261 #define GET_ATTR_NAMES
1262 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1263   case lltok::kw_##DISPLAY_NAME: \
1264     return Attribute::ENUM_NAME;
1265 #include "llvm/IR/Attributes.inc"
1266   default:
1267     return Attribute::None;
1268   }
1269 }
1270 
1271 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1272                                   bool InAttrGroup) {
1273   if (Attribute::isTypeAttrKind(Attr))
1274     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1275 
1276   switch (Attr) {
1277   case Attribute::Alignment: {
1278     MaybeAlign Alignment;
1279     if (InAttrGroup) {
1280       uint32_t Value = 0;
1281       Lex.Lex();
1282       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1283         return true;
1284       Alignment = Align(Value);
1285     } else {
1286       if (parseOptionalAlignment(Alignment, true))
1287         return true;
1288     }
1289     B.addAlignmentAttr(Alignment);
1290     return false;
1291   }
1292   case Attribute::StackAlignment: {
1293     unsigned Alignment;
1294     if (InAttrGroup) {
1295       Lex.Lex();
1296       if (parseToken(lltok::equal, "expected '=' here") ||
1297           parseUInt32(Alignment))
1298         return true;
1299     } else {
1300       if (parseOptionalStackAlignment(Alignment))
1301         return true;
1302     }
1303     B.addStackAlignmentAttr(Alignment);
1304     return false;
1305   }
1306   case Attribute::AllocSize: {
1307     unsigned ElemSizeArg;
1308     Optional<unsigned> NumElemsArg;
1309     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1310       return true;
1311     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1312     return false;
1313   }
1314   case Attribute::VScaleRange: {
1315     unsigned MinValue, MaxValue;
1316     if (parseVScaleRangeArguments(MinValue, MaxValue))
1317       return true;
1318     B.addVScaleRangeAttr(MinValue,
1319                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1320     return false;
1321   }
1322   case Attribute::Dereferenceable: {
1323     uint64_t Bytes;
1324     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1325       return true;
1326     B.addDereferenceableAttr(Bytes);
1327     return false;
1328   }
1329   case Attribute::DereferenceableOrNull: {
1330     uint64_t Bytes;
1331     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1332       return true;
1333     B.addDereferenceableOrNullAttr(Bytes);
1334     return false;
1335   }
1336   case Attribute::UWTable: {
1337     UWTableKind Kind;
1338     if (parseOptionalUWTableKind(Kind))
1339       return true;
1340     B.addUWTableAttr(Kind);
1341     return false;
1342   }
1343   default:
1344     B.addAttribute(Attr);
1345     Lex.Lex();
1346     return false;
1347   }
1348 }
1349 
1350 /// parseFnAttributeValuePairs
1351 ///   ::= <attr> | <attr> '=' <value>
1352 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1353                                           std::vector<unsigned> &FwdRefAttrGrps,
1354                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1355   bool HaveError = false;
1356 
1357   B.clear();
1358 
1359   while (true) {
1360     lltok::Kind Token = Lex.getKind();
1361     if (Token == lltok::rbrace)
1362       return HaveError; // Finished.
1363 
1364     if (Token == lltok::StringConstant) {
1365       if (parseStringAttribute(B))
1366         return true;
1367       continue;
1368     }
1369 
1370     if (Token == lltok::AttrGrpID) {
1371       // Allow a function to reference an attribute group:
1372       //
1373       //   define void @foo() #1 { ... }
1374       if (InAttrGrp) {
1375         HaveError |= error(
1376             Lex.getLoc(),
1377             "cannot have an attribute group reference in an attribute group");
1378       } else {
1379         // Save the reference to the attribute group. We'll fill it in later.
1380         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1381       }
1382       Lex.Lex();
1383       continue;
1384     }
1385 
1386     SMLoc Loc = Lex.getLoc();
1387     if (Token == lltok::kw_builtin)
1388       BuiltinLoc = Loc;
1389 
1390     Attribute::AttrKind Attr = tokenToAttribute(Token);
1391     if (Attr == Attribute::None) {
1392       if (!InAttrGrp)
1393         return HaveError;
1394       return error(Lex.getLoc(), "unterminated attribute group");
1395     }
1396 
1397     if (parseEnumAttribute(Attr, B, InAttrGrp))
1398       return true;
1399 
1400     // As a hack, we allow function alignment to be initially parsed as an
1401     // attribute on a function declaration/definition or added to an attribute
1402     // group and later moved to the alignment field.
1403     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1404       HaveError |= error(Loc, "this attribute does not apply to functions");
1405   }
1406 }
1407 
1408 //===----------------------------------------------------------------------===//
1409 // GlobalValue Reference/Resolution Routines.
1410 //===----------------------------------------------------------------------===//
1411 
1412 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1413   // For opaque pointers, the used global type does not matter. We will later
1414   // RAUW it with a global/function of the correct type.
1415   if (PTy->isOpaque())
1416     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1417                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1418                               nullptr, GlobalVariable::NotThreadLocal,
1419                               PTy->getAddressSpace());
1420 
1421   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1422   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1423     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1424                             PTy->getAddressSpace(), "", M);
1425   else
1426     return new GlobalVariable(
1427         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1428         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1429 }
1430 
1431 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1432                                         Value *Val) {
1433   Type *ValTy = Val->getType();
1434   if (ValTy == Ty)
1435     return Val;
1436   if (Ty->isLabelTy())
1437     error(Loc, "'" + Name + "' is not a basic block");
1438   else
1439     error(Loc, "'" + Name + "' defined with type '" +
1440                    getTypeString(Val->getType()) + "' but expected '" +
1441                    getTypeString(Ty) + "'");
1442   return nullptr;
1443 }
1444 
1445 /// getGlobalVal - Get a value with the specified name or ID, creating a
1446 /// forward reference record if needed.  This can return null if the value
1447 /// exists but does not have the right type.
1448 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1449                                     LocTy Loc) {
1450   PointerType *PTy = dyn_cast<PointerType>(Ty);
1451   if (!PTy) {
1452     error(Loc, "global variable reference must have pointer type");
1453     return nullptr;
1454   }
1455 
1456   // Look this name up in the normal function symbol table.
1457   GlobalValue *Val =
1458     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1459 
1460   // If this is a forward reference for the value, see if we already created a
1461   // forward ref record.
1462   if (!Val) {
1463     auto I = ForwardRefVals.find(Name);
1464     if (I != ForwardRefVals.end())
1465       Val = I->second.first;
1466   }
1467 
1468   // If we have the value in the symbol table or fwd-ref table, return it.
1469   if (Val)
1470     return cast_or_null<GlobalValue>(
1471         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1472 
1473   // Otherwise, create a new forward reference for this value and remember it.
1474   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1475   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1476   return FwdVal;
1477 }
1478 
1479 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1480   PointerType *PTy = dyn_cast<PointerType>(Ty);
1481   if (!PTy) {
1482     error(Loc, "global variable reference must have pointer type");
1483     return nullptr;
1484   }
1485 
1486   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1487 
1488   // If this is a forward reference for the value, see if we already created a
1489   // forward ref record.
1490   if (!Val) {
1491     auto I = ForwardRefValIDs.find(ID);
1492     if (I != ForwardRefValIDs.end())
1493       Val = I->second.first;
1494   }
1495 
1496   // If we have the value in the symbol table or fwd-ref table, return it.
1497   if (Val)
1498     return cast_or_null<GlobalValue>(
1499         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1500 
1501   // Otherwise, create a new forward reference for this value and remember it.
1502   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1503   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1504   return FwdVal;
1505 }
1506 
1507 //===----------------------------------------------------------------------===//
1508 // Comdat Reference/Resolution Routines.
1509 //===----------------------------------------------------------------------===//
1510 
1511 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1512   // Look this name up in the comdat symbol table.
1513   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1514   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1515   if (I != ComdatSymTab.end())
1516     return &I->second;
1517 
1518   // Otherwise, create a new forward reference for this value and remember it.
1519   Comdat *C = M->getOrInsertComdat(Name);
1520   ForwardRefComdats[Name] = Loc;
1521   return C;
1522 }
1523 
1524 //===----------------------------------------------------------------------===//
1525 // Helper Routines.
1526 //===----------------------------------------------------------------------===//
1527 
1528 /// parseToken - If the current token has the specified kind, eat it and return
1529 /// success.  Otherwise, emit the specified error and return failure.
1530 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1531   if (Lex.getKind() != T)
1532     return tokError(ErrMsg);
1533   Lex.Lex();
1534   return false;
1535 }
1536 
1537 /// parseStringConstant
1538 ///   ::= StringConstant
1539 bool LLParser::parseStringConstant(std::string &Result) {
1540   if (Lex.getKind() != lltok::StringConstant)
1541     return tokError("expected string constant");
1542   Result = Lex.getStrVal();
1543   Lex.Lex();
1544   return false;
1545 }
1546 
1547 /// parseUInt32
1548 ///   ::= uint32
1549 bool LLParser::parseUInt32(uint32_t &Val) {
1550   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1551     return tokError("expected integer");
1552   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1553   if (Val64 != unsigned(Val64))
1554     return tokError("expected 32-bit integer (too large)");
1555   Val = Val64;
1556   Lex.Lex();
1557   return false;
1558 }
1559 
1560 /// parseUInt64
1561 ///   ::= uint64
1562 bool LLParser::parseUInt64(uint64_t &Val) {
1563   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1564     return tokError("expected integer");
1565   Val = Lex.getAPSIntVal().getLimitedValue();
1566   Lex.Lex();
1567   return false;
1568 }
1569 
1570 /// parseTLSModel
1571 ///   := 'localdynamic'
1572 ///   := 'initialexec'
1573 ///   := 'localexec'
1574 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1575   switch (Lex.getKind()) {
1576     default:
1577       return tokError("expected localdynamic, initialexec or localexec");
1578     case lltok::kw_localdynamic:
1579       TLM = GlobalVariable::LocalDynamicTLSModel;
1580       break;
1581     case lltok::kw_initialexec:
1582       TLM = GlobalVariable::InitialExecTLSModel;
1583       break;
1584     case lltok::kw_localexec:
1585       TLM = GlobalVariable::LocalExecTLSModel;
1586       break;
1587   }
1588 
1589   Lex.Lex();
1590   return false;
1591 }
1592 
1593 /// parseOptionalThreadLocal
1594 ///   := /*empty*/
1595 ///   := 'thread_local'
1596 ///   := 'thread_local' '(' tlsmodel ')'
1597 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1598   TLM = GlobalVariable::NotThreadLocal;
1599   if (!EatIfPresent(lltok::kw_thread_local))
1600     return false;
1601 
1602   TLM = GlobalVariable::GeneralDynamicTLSModel;
1603   if (Lex.getKind() == lltok::lparen) {
1604     Lex.Lex();
1605     return parseTLSModel(TLM) ||
1606            parseToken(lltok::rparen, "expected ')' after thread local model");
1607   }
1608   return false;
1609 }
1610 
1611 /// parseOptionalAddrSpace
1612 ///   := /*empty*/
1613 ///   := 'addrspace' '(' uint32 ')'
1614 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1615   AddrSpace = DefaultAS;
1616   if (!EatIfPresent(lltok::kw_addrspace))
1617     return false;
1618   return parseToken(lltok::lparen, "expected '(' in address space") ||
1619          parseUInt32(AddrSpace) ||
1620          parseToken(lltok::rparen, "expected ')' in address space");
1621 }
1622 
1623 /// parseStringAttribute
1624 ///   := StringConstant
1625 ///   := StringConstant '=' StringConstant
1626 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1627   std::string Attr = Lex.getStrVal();
1628   Lex.Lex();
1629   std::string Val;
1630   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1631     return true;
1632   B.addAttribute(Attr, Val);
1633   return false;
1634 }
1635 
1636 /// Parse a potentially empty list of parameter or return attributes.
1637 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1638   bool HaveError = false;
1639 
1640   B.clear();
1641 
1642   while (true) {
1643     lltok::Kind Token = Lex.getKind();
1644     if (Token == lltok::StringConstant) {
1645       if (parseStringAttribute(B))
1646         return true;
1647       continue;
1648     }
1649 
1650     SMLoc Loc = Lex.getLoc();
1651     Attribute::AttrKind Attr = tokenToAttribute(Token);
1652     if (Attr == Attribute::None)
1653       return HaveError;
1654 
1655     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1656       return true;
1657 
1658     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1659       HaveError |= error(Loc, "this attribute does not apply to parameters");
1660     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1661       HaveError |= error(Loc, "this attribute does not apply to return values");
1662   }
1663 }
1664 
1665 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1666   HasLinkage = true;
1667   switch (Kind) {
1668   default:
1669     HasLinkage = false;
1670     return GlobalValue::ExternalLinkage;
1671   case lltok::kw_private:
1672     return GlobalValue::PrivateLinkage;
1673   case lltok::kw_internal:
1674     return GlobalValue::InternalLinkage;
1675   case lltok::kw_weak:
1676     return GlobalValue::WeakAnyLinkage;
1677   case lltok::kw_weak_odr:
1678     return GlobalValue::WeakODRLinkage;
1679   case lltok::kw_linkonce:
1680     return GlobalValue::LinkOnceAnyLinkage;
1681   case lltok::kw_linkonce_odr:
1682     return GlobalValue::LinkOnceODRLinkage;
1683   case lltok::kw_available_externally:
1684     return GlobalValue::AvailableExternallyLinkage;
1685   case lltok::kw_appending:
1686     return GlobalValue::AppendingLinkage;
1687   case lltok::kw_common:
1688     return GlobalValue::CommonLinkage;
1689   case lltok::kw_extern_weak:
1690     return GlobalValue::ExternalWeakLinkage;
1691   case lltok::kw_external:
1692     return GlobalValue::ExternalLinkage;
1693   }
1694 }
1695 
1696 /// parseOptionalLinkage
1697 ///   ::= /*empty*/
1698 ///   ::= 'private'
1699 ///   ::= 'internal'
1700 ///   ::= 'weak'
1701 ///   ::= 'weak_odr'
1702 ///   ::= 'linkonce'
1703 ///   ::= 'linkonce_odr'
1704 ///   ::= 'available_externally'
1705 ///   ::= 'appending'
1706 ///   ::= 'common'
1707 ///   ::= 'extern_weak'
1708 ///   ::= 'external'
1709 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1710                                     unsigned &Visibility,
1711                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1712   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1713   if (HasLinkage)
1714     Lex.Lex();
1715   parseOptionalDSOLocal(DSOLocal);
1716   parseOptionalVisibility(Visibility);
1717   parseOptionalDLLStorageClass(DLLStorageClass);
1718 
1719   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1720     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1721   }
1722 
1723   return false;
1724 }
1725 
1726 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1727   switch (Lex.getKind()) {
1728   default:
1729     DSOLocal = false;
1730     break;
1731   case lltok::kw_dso_local:
1732     DSOLocal = true;
1733     Lex.Lex();
1734     break;
1735   case lltok::kw_dso_preemptable:
1736     DSOLocal = false;
1737     Lex.Lex();
1738     break;
1739   }
1740 }
1741 
1742 /// parseOptionalVisibility
1743 ///   ::= /*empty*/
1744 ///   ::= 'default'
1745 ///   ::= 'hidden'
1746 ///   ::= 'protected'
1747 ///
1748 void LLParser::parseOptionalVisibility(unsigned &Res) {
1749   switch (Lex.getKind()) {
1750   default:
1751     Res = GlobalValue::DefaultVisibility;
1752     return;
1753   case lltok::kw_default:
1754     Res = GlobalValue::DefaultVisibility;
1755     break;
1756   case lltok::kw_hidden:
1757     Res = GlobalValue::HiddenVisibility;
1758     break;
1759   case lltok::kw_protected:
1760     Res = GlobalValue::ProtectedVisibility;
1761     break;
1762   }
1763   Lex.Lex();
1764 }
1765 
1766 /// parseOptionalDLLStorageClass
1767 ///   ::= /*empty*/
1768 ///   ::= 'dllimport'
1769 ///   ::= 'dllexport'
1770 ///
1771 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1772   switch (Lex.getKind()) {
1773   default:
1774     Res = GlobalValue::DefaultStorageClass;
1775     return;
1776   case lltok::kw_dllimport:
1777     Res = GlobalValue::DLLImportStorageClass;
1778     break;
1779   case lltok::kw_dllexport:
1780     Res = GlobalValue::DLLExportStorageClass;
1781     break;
1782   }
1783   Lex.Lex();
1784 }
1785 
1786 /// parseOptionalCallingConv
1787 ///   ::= /*empty*/
1788 ///   ::= 'ccc'
1789 ///   ::= 'fastcc'
1790 ///   ::= 'intel_ocl_bicc'
1791 ///   ::= 'coldcc'
1792 ///   ::= 'cfguard_checkcc'
1793 ///   ::= 'x86_stdcallcc'
1794 ///   ::= 'x86_fastcallcc'
1795 ///   ::= 'x86_thiscallcc'
1796 ///   ::= 'x86_vectorcallcc'
1797 ///   ::= 'arm_apcscc'
1798 ///   ::= 'arm_aapcscc'
1799 ///   ::= 'arm_aapcs_vfpcc'
1800 ///   ::= 'aarch64_vector_pcs'
1801 ///   ::= 'aarch64_sve_vector_pcs'
1802 ///   ::= 'msp430_intrcc'
1803 ///   ::= 'avr_intrcc'
1804 ///   ::= 'avr_signalcc'
1805 ///   ::= 'ptx_kernel'
1806 ///   ::= 'ptx_device'
1807 ///   ::= 'spir_func'
1808 ///   ::= 'spir_kernel'
1809 ///   ::= 'x86_64_sysvcc'
1810 ///   ::= 'win64cc'
1811 ///   ::= 'webkit_jscc'
1812 ///   ::= 'anyregcc'
1813 ///   ::= 'preserve_mostcc'
1814 ///   ::= 'preserve_allcc'
1815 ///   ::= 'ghccc'
1816 ///   ::= 'swiftcc'
1817 ///   ::= 'swifttailcc'
1818 ///   ::= 'x86_intrcc'
1819 ///   ::= 'hhvmcc'
1820 ///   ::= 'hhvm_ccc'
1821 ///   ::= 'cxx_fast_tlscc'
1822 ///   ::= 'amdgpu_vs'
1823 ///   ::= 'amdgpu_ls'
1824 ///   ::= 'amdgpu_hs'
1825 ///   ::= 'amdgpu_es'
1826 ///   ::= 'amdgpu_gs'
1827 ///   ::= 'amdgpu_ps'
1828 ///   ::= 'amdgpu_cs'
1829 ///   ::= 'amdgpu_kernel'
1830 ///   ::= 'tailcc'
1831 ///   ::= 'cc' UINT
1832 ///
1833 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1834   switch (Lex.getKind()) {
1835   default:                       CC = CallingConv::C; return false;
1836   case lltok::kw_ccc:            CC = CallingConv::C; break;
1837   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1838   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1839   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1840   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1841   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1842   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1843   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1844   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1845   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1846   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1847   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1848   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1849   case lltok::kw_aarch64_sve_vector_pcs:
1850     CC = CallingConv::AArch64_SVE_VectorCall;
1851     break;
1852   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1853   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1854   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1855   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1856   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1857   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1858   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1859   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1860   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1861   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1862   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1863   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1864   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1865   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1866   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1867   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1868   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1869   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1870   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1871   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1872   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1873   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1874   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1875   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1876   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1877   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1878   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1879   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1880   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1881   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1882   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1883   case lltok::kw_cc: {
1884       Lex.Lex();
1885       return parseUInt32(CC);
1886     }
1887   }
1888 
1889   Lex.Lex();
1890   return false;
1891 }
1892 
1893 /// parseMetadataAttachment
1894 ///   ::= !dbg !42
1895 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1896   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1897 
1898   std::string Name = Lex.getStrVal();
1899   Kind = M->getMDKindID(Name);
1900   Lex.Lex();
1901 
1902   return parseMDNode(MD);
1903 }
1904 
1905 /// parseInstructionMetadata
1906 ///   ::= !dbg !42 (',' !dbg !57)*
1907 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1908   do {
1909     if (Lex.getKind() != lltok::MetadataVar)
1910       return tokError("expected metadata after comma");
1911 
1912     unsigned MDK;
1913     MDNode *N;
1914     if (parseMetadataAttachment(MDK, N))
1915       return true;
1916 
1917     Inst.setMetadata(MDK, N);
1918     if (MDK == LLVMContext::MD_tbaa)
1919       InstsWithTBAATag.push_back(&Inst);
1920 
1921     // If this is the end of the list, we're done.
1922   } while (EatIfPresent(lltok::comma));
1923   return false;
1924 }
1925 
1926 /// parseGlobalObjectMetadataAttachment
1927 ///   ::= !dbg !57
1928 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1929   unsigned MDK;
1930   MDNode *N;
1931   if (parseMetadataAttachment(MDK, N))
1932     return true;
1933 
1934   GO.addMetadata(MDK, *N);
1935   return false;
1936 }
1937 
1938 /// parseOptionalFunctionMetadata
1939 ///   ::= (!dbg !57)*
1940 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1941   while (Lex.getKind() == lltok::MetadataVar)
1942     if (parseGlobalObjectMetadataAttachment(F))
1943       return true;
1944   return false;
1945 }
1946 
1947 /// parseOptionalAlignment
1948 ///   ::= /* empty */
1949 ///   ::= 'align' 4
1950 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1951   Alignment = None;
1952   if (!EatIfPresent(lltok::kw_align))
1953     return false;
1954   LocTy AlignLoc = Lex.getLoc();
1955   uint64_t Value = 0;
1956 
1957   LocTy ParenLoc = Lex.getLoc();
1958   bool HaveParens = false;
1959   if (AllowParens) {
1960     if (EatIfPresent(lltok::lparen))
1961       HaveParens = true;
1962   }
1963 
1964   if (parseUInt64(Value))
1965     return true;
1966 
1967   if (HaveParens && !EatIfPresent(lltok::rparen))
1968     return error(ParenLoc, "expected ')'");
1969 
1970   if (!isPowerOf2_64(Value))
1971     return error(AlignLoc, "alignment is not a power of two");
1972   if (Value > Value::MaximumAlignment)
1973     return error(AlignLoc, "huge alignments are not supported yet");
1974   Alignment = Align(Value);
1975   return false;
1976 }
1977 
1978 /// parseOptionalDerefAttrBytes
1979 ///   ::= /* empty */
1980 ///   ::= AttrKind '(' 4 ')'
1981 ///
1982 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1983 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1984                                            uint64_t &Bytes) {
1985   assert((AttrKind == lltok::kw_dereferenceable ||
1986           AttrKind == lltok::kw_dereferenceable_or_null) &&
1987          "contract!");
1988 
1989   Bytes = 0;
1990   if (!EatIfPresent(AttrKind))
1991     return false;
1992   LocTy ParenLoc = Lex.getLoc();
1993   if (!EatIfPresent(lltok::lparen))
1994     return error(ParenLoc, "expected '('");
1995   LocTy DerefLoc = Lex.getLoc();
1996   if (parseUInt64(Bytes))
1997     return true;
1998   ParenLoc = Lex.getLoc();
1999   if (!EatIfPresent(lltok::rparen))
2000     return error(ParenLoc, "expected ')'");
2001   if (!Bytes)
2002     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2003   return false;
2004 }
2005 
2006 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2007   Lex.Lex();
2008   Kind = UWTableKind::Default;
2009   if (!EatIfPresent(lltok::lparen))
2010     return false;
2011   LocTy KindLoc = Lex.getLoc();
2012   if (Lex.getKind() == lltok::kw_sync)
2013     Kind = UWTableKind::Sync;
2014   else if (Lex.getKind() == lltok::kw_async)
2015     Kind = UWTableKind::Async;
2016   else
2017     return error(KindLoc, "expected unwind table kind");
2018   Lex.Lex();
2019   return parseToken(lltok::rparen, "expected ')'");
2020 }
2021 
2022 /// parseOptionalCommaAlign
2023 ///   ::=
2024 ///   ::= ',' align 4
2025 ///
2026 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2027 /// end.
2028 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2029                                        bool &AteExtraComma) {
2030   AteExtraComma = false;
2031   while (EatIfPresent(lltok::comma)) {
2032     // Metadata at the end is an early exit.
2033     if (Lex.getKind() == lltok::MetadataVar) {
2034       AteExtraComma = true;
2035       return false;
2036     }
2037 
2038     if (Lex.getKind() != lltok::kw_align)
2039       return error(Lex.getLoc(), "expected metadata or 'align'");
2040 
2041     if (parseOptionalAlignment(Alignment))
2042       return true;
2043   }
2044 
2045   return false;
2046 }
2047 
2048 /// parseOptionalCommaAddrSpace
2049 ///   ::=
2050 ///   ::= ',' addrspace(1)
2051 ///
2052 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2053 /// end.
2054 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2055                                            bool &AteExtraComma) {
2056   AteExtraComma = false;
2057   while (EatIfPresent(lltok::comma)) {
2058     // Metadata at the end is an early exit.
2059     if (Lex.getKind() == lltok::MetadataVar) {
2060       AteExtraComma = true;
2061       return false;
2062     }
2063 
2064     Loc = Lex.getLoc();
2065     if (Lex.getKind() != lltok::kw_addrspace)
2066       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2067 
2068     if (parseOptionalAddrSpace(AddrSpace))
2069       return true;
2070   }
2071 
2072   return false;
2073 }
2074 
2075 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2076                                        Optional<unsigned> &HowManyArg) {
2077   Lex.Lex();
2078 
2079   auto StartParen = Lex.getLoc();
2080   if (!EatIfPresent(lltok::lparen))
2081     return error(StartParen, "expected '('");
2082 
2083   if (parseUInt32(BaseSizeArg))
2084     return true;
2085 
2086   if (EatIfPresent(lltok::comma)) {
2087     auto HowManyAt = Lex.getLoc();
2088     unsigned HowMany;
2089     if (parseUInt32(HowMany))
2090       return true;
2091     if (HowMany == BaseSizeArg)
2092       return error(HowManyAt,
2093                    "'allocsize' indices can't refer to the same parameter");
2094     HowManyArg = HowMany;
2095   } else
2096     HowManyArg = None;
2097 
2098   auto EndParen = Lex.getLoc();
2099   if (!EatIfPresent(lltok::rparen))
2100     return error(EndParen, "expected ')'");
2101   return false;
2102 }
2103 
2104 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2105                                          unsigned &MaxValue) {
2106   Lex.Lex();
2107 
2108   auto StartParen = Lex.getLoc();
2109   if (!EatIfPresent(lltok::lparen))
2110     return error(StartParen, "expected '('");
2111 
2112   if (parseUInt32(MinValue))
2113     return true;
2114 
2115   if (EatIfPresent(lltok::comma)) {
2116     if (parseUInt32(MaxValue))
2117       return true;
2118   } else
2119     MaxValue = MinValue;
2120 
2121   auto EndParen = Lex.getLoc();
2122   if (!EatIfPresent(lltok::rparen))
2123     return error(EndParen, "expected ')'");
2124   return false;
2125 }
2126 
2127 /// parseScopeAndOrdering
2128 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2129 ///   else: ::=
2130 ///
2131 /// This sets Scope and Ordering to the parsed values.
2132 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2133                                      AtomicOrdering &Ordering) {
2134   if (!IsAtomic)
2135     return false;
2136 
2137   return parseScope(SSID) || parseOrdering(Ordering);
2138 }
2139 
2140 /// parseScope
2141 ///   ::= syncscope("singlethread" | "<target scope>")?
2142 ///
2143 /// This sets synchronization scope ID to the ID of the parsed value.
2144 bool LLParser::parseScope(SyncScope::ID &SSID) {
2145   SSID = SyncScope::System;
2146   if (EatIfPresent(lltok::kw_syncscope)) {
2147     auto StartParenAt = Lex.getLoc();
2148     if (!EatIfPresent(lltok::lparen))
2149       return error(StartParenAt, "Expected '(' in syncscope");
2150 
2151     std::string SSN;
2152     auto SSNAt = Lex.getLoc();
2153     if (parseStringConstant(SSN))
2154       return error(SSNAt, "Expected synchronization scope name");
2155 
2156     auto EndParenAt = Lex.getLoc();
2157     if (!EatIfPresent(lltok::rparen))
2158       return error(EndParenAt, "Expected ')' in syncscope");
2159 
2160     SSID = Context.getOrInsertSyncScopeID(SSN);
2161   }
2162 
2163   return false;
2164 }
2165 
2166 /// parseOrdering
2167 ///   ::= AtomicOrdering
2168 ///
2169 /// This sets Ordering to the parsed value.
2170 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2171   switch (Lex.getKind()) {
2172   default:
2173     return tokError("Expected ordering on atomic instruction");
2174   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2175   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2176   // Not specified yet:
2177   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2178   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2179   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2180   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2181   case lltok::kw_seq_cst:
2182     Ordering = AtomicOrdering::SequentiallyConsistent;
2183     break;
2184   }
2185   Lex.Lex();
2186   return false;
2187 }
2188 
2189 /// parseOptionalStackAlignment
2190 ///   ::= /* empty */
2191 ///   ::= 'alignstack' '(' 4 ')'
2192 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2193   Alignment = 0;
2194   if (!EatIfPresent(lltok::kw_alignstack))
2195     return false;
2196   LocTy ParenLoc = Lex.getLoc();
2197   if (!EatIfPresent(lltok::lparen))
2198     return error(ParenLoc, "expected '('");
2199   LocTy AlignLoc = Lex.getLoc();
2200   if (parseUInt32(Alignment))
2201     return true;
2202   ParenLoc = Lex.getLoc();
2203   if (!EatIfPresent(lltok::rparen))
2204     return error(ParenLoc, "expected ')'");
2205   if (!isPowerOf2_32(Alignment))
2206     return error(AlignLoc, "stack alignment is not a power of two");
2207   return false;
2208 }
2209 
2210 /// parseIndexList - This parses the index list for an insert/extractvalue
2211 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2212 /// comma at the end of the line and find that it is followed by metadata.
2213 /// Clients that don't allow metadata can call the version of this function that
2214 /// only takes one argument.
2215 ///
2216 /// parseIndexList
2217 ///    ::=  (',' uint32)+
2218 ///
2219 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2220                               bool &AteExtraComma) {
2221   AteExtraComma = false;
2222 
2223   if (Lex.getKind() != lltok::comma)
2224     return tokError("expected ',' as start of index list");
2225 
2226   while (EatIfPresent(lltok::comma)) {
2227     if (Lex.getKind() == lltok::MetadataVar) {
2228       if (Indices.empty())
2229         return tokError("expected index");
2230       AteExtraComma = true;
2231       return false;
2232     }
2233     unsigned Idx = 0;
2234     if (parseUInt32(Idx))
2235       return true;
2236     Indices.push_back(Idx);
2237   }
2238 
2239   return false;
2240 }
2241 
2242 //===----------------------------------------------------------------------===//
2243 // Type Parsing.
2244 //===----------------------------------------------------------------------===//
2245 
2246 /// parseType - parse a type.
2247 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2248   SMLoc TypeLoc = Lex.getLoc();
2249   switch (Lex.getKind()) {
2250   default:
2251     return tokError(Msg);
2252   case lltok::Type:
2253     // Type ::= 'float' | 'void' (etc)
2254     Result = Lex.getTyVal();
2255     Lex.Lex();
2256 
2257     // Handle "ptr" opaque pointer type.
2258     //
2259     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2260     if (Result->isOpaquePointerTy()) {
2261       unsigned AddrSpace;
2262       if (parseOptionalAddrSpace(AddrSpace))
2263         return true;
2264       Result = PointerType::get(getContext(), AddrSpace);
2265 
2266       // Give a nice error for 'ptr*'.
2267       if (Lex.getKind() == lltok::star)
2268         return tokError("ptr* is invalid - use ptr instead");
2269 
2270       // Fall through to parsing the type suffixes only if this 'ptr' is a
2271       // function return. Otherwise, return success, implicitly rejecting other
2272       // suffixes.
2273       if (Lex.getKind() != lltok::lparen)
2274         return false;
2275     }
2276     break;
2277   case lltok::lbrace:
2278     // Type ::= StructType
2279     if (parseAnonStructType(Result, false))
2280       return true;
2281     break;
2282   case lltok::lsquare:
2283     // Type ::= '[' ... ']'
2284     Lex.Lex(); // eat the lsquare.
2285     if (parseArrayVectorType(Result, false))
2286       return true;
2287     break;
2288   case lltok::less: // Either vector or packed struct.
2289     // Type ::= '<' ... '>'
2290     Lex.Lex();
2291     if (Lex.getKind() == lltok::lbrace) {
2292       if (parseAnonStructType(Result, true) ||
2293           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2294         return true;
2295     } else if (parseArrayVectorType(Result, true))
2296       return true;
2297     break;
2298   case lltok::LocalVar: {
2299     // Type ::= %foo
2300     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2301 
2302     // If the type hasn't been defined yet, create a forward definition and
2303     // remember where that forward def'n was seen (in case it never is defined).
2304     if (!Entry.first) {
2305       Entry.first = StructType::create(Context, Lex.getStrVal());
2306       Entry.second = Lex.getLoc();
2307     }
2308     Result = Entry.first;
2309     Lex.Lex();
2310     break;
2311   }
2312 
2313   case lltok::LocalVarID: {
2314     // Type ::= %4
2315     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2316 
2317     // If the type hasn't been defined yet, create a forward definition and
2318     // remember where that forward def'n was seen (in case it never is defined).
2319     if (!Entry.first) {
2320       Entry.first = StructType::create(Context);
2321       Entry.second = Lex.getLoc();
2322     }
2323     Result = Entry.first;
2324     Lex.Lex();
2325     break;
2326   }
2327   }
2328 
2329   // parse the type suffixes.
2330   while (true) {
2331     switch (Lex.getKind()) {
2332     // End of type.
2333     default:
2334       if (!AllowVoid && Result->isVoidTy())
2335         return error(TypeLoc, "void type only allowed for function results");
2336       return false;
2337 
2338     // Type ::= Type '*'
2339     case lltok::star:
2340       if (Result->isLabelTy())
2341         return tokError("basic block pointers are invalid");
2342       if (Result->isVoidTy())
2343         return tokError("pointers to void are invalid - use i8* instead");
2344       if (!PointerType::isValidElementType(Result))
2345         return tokError("pointer to this type is invalid");
2346       Result = PointerType::getUnqual(Result);
2347       Lex.Lex();
2348       break;
2349 
2350     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2351     case lltok::kw_addrspace: {
2352       if (Result->isLabelTy())
2353         return tokError("basic block pointers are invalid");
2354       if (Result->isVoidTy())
2355         return tokError("pointers to void are invalid; use i8* instead");
2356       if (!PointerType::isValidElementType(Result))
2357         return tokError("pointer to this type is invalid");
2358       unsigned AddrSpace;
2359       if (parseOptionalAddrSpace(AddrSpace) ||
2360           parseToken(lltok::star, "expected '*' in address space"))
2361         return true;
2362 
2363       Result = PointerType::get(Result, AddrSpace);
2364       break;
2365     }
2366 
2367     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2368     case lltok::lparen:
2369       if (parseFunctionType(Result))
2370         return true;
2371       break;
2372     }
2373   }
2374 }
2375 
2376 /// parseParameterList
2377 ///    ::= '(' ')'
2378 ///    ::= '(' Arg (',' Arg)* ')'
2379 ///  Arg
2380 ///    ::= Type OptionalAttributes Value OptionalAttributes
2381 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2382                                   PerFunctionState &PFS, bool IsMustTailCall,
2383                                   bool InVarArgsFunc) {
2384   if (parseToken(lltok::lparen, "expected '(' in call"))
2385     return true;
2386 
2387   while (Lex.getKind() != lltok::rparen) {
2388     // If this isn't the first argument, we need a comma.
2389     if (!ArgList.empty() &&
2390         parseToken(lltok::comma, "expected ',' in argument list"))
2391       return true;
2392 
2393     // parse an ellipsis if this is a musttail call in a variadic function.
2394     if (Lex.getKind() == lltok::dotdotdot) {
2395       const char *Msg = "unexpected ellipsis in argument list for ";
2396       if (!IsMustTailCall)
2397         return tokError(Twine(Msg) + "non-musttail call");
2398       if (!InVarArgsFunc)
2399         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2400       Lex.Lex();  // Lex the '...', it is purely for readability.
2401       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2402     }
2403 
2404     // parse the argument.
2405     LocTy ArgLoc;
2406     Type *ArgTy = nullptr;
2407     Value *V;
2408     if (parseType(ArgTy, ArgLoc))
2409       return true;
2410 
2411     AttrBuilder ArgAttrs(M->getContext());
2412 
2413     if (ArgTy->isMetadataTy()) {
2414       if (parseMetadataAsValue(V, PFS))
2415         return true;
2416     } else {
2417       // Otherwise, handle normal operands.
2418       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2419         return true;
2420     }
2421     ArgList.push_back(ParamInfo(
2422         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2423   }
2424 
2425   if (IsMustTailCall && InVarArgsFunc)
2426     return tokError("expected '...' at end of argument list for musttail call "
2427                     "in varargs function");
2428 
2429   Lex.Lex();  // Lex the ')'.
2430   return false;
2431 }
2432 
2433 /// parseRequiredTypeAttr
2434 ///   ::= attrname(<ty>)
2435 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2436                                      Attribute::AttrKind AttrKind) {
2437   Type *Ty = nullptr;
2438   if (!EatIfPresent(AttrToken))
2439     return true;
2440   if (!EatIfPresent(lltok::lparen))
2441     return error(Lex.getLoc(), "expected '('");
2442   if (parseType(Ty))
2443     return true;
2444   if (!EatIfPresent(lltok::rparen))
2445     return error(Lex.getLoc(), "expected ')'");
2446 
2447   B.addTypeAttr(AttrKind, Ty);
2448   return false;
2449 }
2450 
2451 /// parseOptionalOperandBundles
2452 ///    ::= /*empty*/
2453 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2454 ///
2455 /// OperandBundle
2456 ///    ::= bundle-tag '(' ')'
2457 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2458 ///
2459 /// bundle-tag ::= String Constant
2460 bool LLParser::parseOptionalOperandBundles(
2461     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2462   LocTy BeginLoc = Lex.getLoc();
2463   if (!EatIfPresent(lltok::lsquare))
2464     return false;
2465 
2466   while (Lex.getKind() != lltok::rsquare) {
2467     // If this isn't the first operand bundle, we need a comma.
2468     if (!BundleList.empty() &&
2469         parseToken(lltok::comma, "expected ',' in input list"))
2470       return true;
2471 
2472     std::string Tag;
2473     if (parseStringConstant(Tag))
2474       return true;
2475 
2476     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2477       return true;
2478 
2479     std::vector<Value *> Inputs;
2480     while (Lex.getKind() != lltok::rparen) {
2481       // If this isn't the first input, we need a comma.
2482       if (!Inputs.empty() &&
2483           parseToken(lltok::comma, "expected ',' in input list"))
2484         return true;
2485 
2486       Type *Ty = nullptr;
2487       Value *Input = nullptr;
2488       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2489         return true;
2490       Inputs.push_back(Input);
2491     }
2492 
2493     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2494 
2495     Lex.Lex(); // Lex the ')'.
2496   }
2497 
2498   if (BundleList.empty())
2499     return error(BeginLoc, "operand bundle set must not be empty");
2500 
2501   Lex.Lex(); // Lex the ']'.
2502   return false;
2503 }
2504 
2505 /// parseArgumentList - parse the argument list for a function type or function
2506 /// prototype.
2507 ///   ::= '(' ArgTypeListI ')'
2508 /// ArgTypeListI
2509 ///   ::= /*empty*/
2510 ///   ::= '...'
2511 ///   ::= ArgTypeList ',' '...'
2512 ///   ::= ArgType (',' ArgType)*
2513 ///
2514 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2515                                  bool &IsVarArg) {
2516   unsigned CurValID = 0;
2517   IsVarArg = false;
2518   assert(Lex.getKind() == lltok::lparen);
2519   Lex.Lex(); // eat the (.
2520 
2521   if (Lex.getKind() == lltok::rparen) {
2522     // empty
2523   } else if (Lex.getKind() == lltok::dotdotdot) {
2524     IsVarArg = true;
2525     Lex.Lex();
2526   } else {
2527     LocTy TypeLoc = Lex.getLoc();
2528     Type *ArgTy = nullptr;
2529     AttrBuilder Attrs(M->getContext());
2530     std::string Name;
2531 
2532     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2533       return true;
2534 
2535     if (ArgTy->isVoidTy())
2536       return error(TypeLoc, "argument can not have void type");
2537 
2538     if (Lex.getKind() == lltok::LocalVar) {
2539       Name = Lex.getStrVal();
2540       Lex.Lex();
2541     } else if (Lex.getKind() == lltok::LocalVarID) {
2542       if (Lex.getUIntVal() != CurValID)
2543         return error(TypeLoc, "argument expected to be numbered '%" +
2544                                   Twine(CurValID) + "'");
2545       ++CurValID;
2546       Lex.Lex();
2547     }
2548 
2549     if (!FunctionType::isValidArgumentType(ArgTy))
2550       return error(TypeLoc, "invalid type for function argument");
2551 
2552     ArgList.emplace_back(TypeLoc, ArgTy,
2553                          AttributeSet::get(ArgTy->getContext(), Attrs),
2554                          std::move(Name));
2555 
2556     while (EatIfPresent(lltok::comma)) {
2557       // Handle ... at end of arg list.
2558       if (EatIfPresent(lltok::dotdotdot)) {
2559         IsVarArg = true;
2560         break;
2561       }
2562 
2563       // Otherwise must be an argument type.
2564       TypeLoc = Lex.getLoc();
2565       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2566         return true;
2567 
2568       if (ArgTy->isVoidTy())
2569         return error(TypeLoc, "argument can not have void type");
2570 
2571       if (Lex.getKind() == lltok::LocalVar) {
2572         Name = Lex.getStrVal();
2573         Lex.Lex();
2574       } else {
2575         if (Lex.getKind() == lltok::LocalVarID) {
2576           if (Lex.getUIntVal() != CurValID)
2577             return error(TypeLoc, "argument expected to be numbered '%" +
2578                                       Twine(CurValID) + "'");
2579           Lex.Lex();
2580         }
2581         ++CurValID;
2582         Name = "";
2583       }
2584 
2585       if (!ArgTy->isFirstClassType())
2586         return error(TypeLoc, "invalid type for function argument");
2587 
2588       ArgList.emplace_back(TypeLoc, ArgTy,
2589                            AttributeSet::get(ArgTy->getContext(), Attrs),
2590                            std::move(Name));
2591     }
2592   }
2593 
2594   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2595 }
2596 
2597 /// parseFunctionType
2598 ///  ::= Type ArgumentList OptionalAttrs
2599 bool LLParser::parseFunctionType(Type *&Result) {
2600   assert(Lex.getKind() == lltok::lparen);
2601 
2602   if (!FunctionType::isValidReturnType(Result))
2603     return tokError("invalid function return type");
2604 
2605   SmallVector<ArgInfo, 8> ArgList;
2606   bool IsVarArg;
2607   if (parseArgumentList(ArgList, IsVarArg))
2608     return true;
2609 
2610   // Reject names on the arguments lists.
2611   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2612     if (!ArgList[i].Name.empty())
2613       return error(ArgList[i].Loc, "argument name invalid in function type");
2614     if (ArgList[i].Attrs.hasAttributes())
2615       return error(ArgList[i].Loc,
2616                    "argument attributes invalid in function type");
2617   }
2618 
2619   SmallVector<Type*, 16> ArgListTy;
2620   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2621     ArgListTy.push_back(ArgList[i].Ty);
2622 
2623   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2624   return false;
2625 }
2626 
2627 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2628 /// other structs.
2629 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2630   SmallVector<Type*, 8> Elts;
2631   if (parseStructBody(Elts))
2632     return true;
2633 
2634   Result = StructType::get(Context, Elts, Packed);
2635   return false;
2636 }
2637 
2638 /// parseStructDefinition - parse a struct in a 'type' definition.
2639 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2640                                      std::pair<Type *, LocTy> &Entry,
2641                                      Type *&ResultTy) {
2642   // If the type was already defined, diagnose the redefinition.
2643   if (Entry.first && !Entry.second.isValid())
2644     return error(TypeLoc, "redefinition of type");
2645 
2646   // If we have opaque, just return without filling in the definition for the
2647   // struct.  This counts as a definition as far as the .ll file goes.
2648   if (EatIfPresent(lltok::kw_opaque)) {
2649     // This type is being defined, so clear the location to indicate this.
2650     Entry.second = SMLoc();
2651 
2652     // If this type number has never been uttered, create it.
2653     if (!Entry.first)
2654       Entry.first = StructType::create(Context, Name);
2655     ResultTy = Entry.first;
2656     return false;
2657   }
2658 
2659   // If the type starts with '<', then it is either a packed struct or a vector.
2660   bool isPacked = EatIfPresent(lltok::less);
2661 
2662   // If we don't have a struct, then we have a random type alias, which we
2663   // accept for compatibility with old files.  These types are not allowed to be
2664   // forward referenced and not allowed to be recursive.
2665   if (Lex.getKind() != lltok::lbrace) {
2666     if (Entry.first)
2667       return error(TypeLoc, "forward references to non-struct type");
2668 
2669     ResultTy = nullptr;
2670     if (isPacked)
2671       return parseArrayVectorType(ResultTy, true);
2672     return parseType(ResultTy);
2673   }
2674 
2675   // This type is being defined, so clear the location to indicate this.
2676   Entry.second = SMLoc();
2677 
2678   // If this type number has never been uttered, create it.
2679   if (!Entry.first)
2680     Entry.first = StructType::create(Context, Name);
2681 
2682   StructType *STy = cast<StructType>(Entry.first);
2683 
2684   SmallVector<Type*, 8> Body;
2685   if (parseStructBody(Body) ||
2686       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2687     return true;
2688 
2689   STy->setBody(Body, isPacked);
2690   ResultTy = STy;
2691   return false;
2692 }
2693 
2694 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2695 ///   StructType
2696 ///     ::= '{' '}'
2697 ///     ::= '{' Type (',' Type)* '}'
2698 ///     ::= '<' '{' '}' '>'
2699 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2700 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2701   assert(Lex.getKind() == lltok::lbrace);
2702   Lex.Lex(); // Consume the '{'
2703 
2704   // Handle the empty struct.
2705   if (EatIfPresent(lltok::rbrace))
2706     return false;
2707 
2708   LocTy EltTyLoc = Lex.getLoc();
2709   Type *Ty = nullptr;
2710   if (parseType(Ty))
2711     return true;
2712   Body.push_back(Ty);
2713 
2714   if (!StructType::isValidElementType(Ty))
2715     return error(EltTyLoc, "invalid element type for struct");
2716 
2717   while (EatIfPresent(lltok::comma)) {
2718     EltTyLoc = Lex.getLoc();
2719     if (parseType(Ty))
2720       return true;
2721 
2722     if (!StructType::isValidElementType(Ty))
2723       return error(EltTyLoc, "invalid element type for struct");
2724 
2725     Body.push_back(Ty);
2726   }
2727 
2728   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2729 }
2730 
2731 /// parseArrayVectorType - parse an array or vector type, assuming the first
2732 /// token has already been consumed.
2733 ///   Type
2734 ///     ::= '[' APSINTVAL 'x' Types ']'
2735 ///     ::= '<' APSINTVAL 'x' Types '>'
2736 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2737 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2738   bool Scalable = false;
2739 
2740   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2741     Lex.Lex(); // consume the 'vscale'
2742     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2743       return true;
2744 
2745     Scalable = true;
2746   }
2747 
2748   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2749       Lex.getAPSIntVal().getBitWidth() > 64)
2750     return tokError("expected number in address space");
2751 
2752   LocTy SizeLoc = Lex.getLoc();
2753   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2754   Lex.Lex();
2755 
2756   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2757     return true;
2758 
2759   LocTy TypeLoc = Lex.getLoc();
2760   Type *EltTy = nullptr;
2761   if (parseType(EltTy))
2762     return true;
2763 
2764   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2765                  "expected end of sequential type"))
2766     return true;
2767 
2768   if (IsVector) {
2769     if (Size == 0)
2770       return error(SizeLoc, "zero element vector is illegal");
2771     if ((unsigned)Size != Size)
2772       return error(SizeLoc, "size too large for vector");
2773     if (!VectorType::isValidElementType(EltTy))
2774       return error(TypeLoc, "invalid vector element type");
2775     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2776   } else {
2777     if (!ArrayType::isValidElementType(EltTy))
2778       return error(TypeLoc, "invalid array element type");
2779     Result = ArrayType::get(EltTy, Size);
2780   }
2781   return false;
2782 }
2783 
2784 //===----------------------------------------------------------------------===//
2785 // Function Semantic Analysis.
2786 //===----------------------------------------------------------------------===//
2787 
2788 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2789                                              int functionNumber)
2790   : P(p), F(f), FunctionNumber(functionNumber) {
2791 
2792   // Insert unnamed arguments into the NumberedVals list.
2793   for (Argument &A : F.args())
2794     if (!A.hasName())
2795       NumberedVals.push_back(&A);
2796 }
2797 
2798 LLParser::PerFunctionState::~PerFunctionState() {
2799   // If there were any forward referenced non-basicblock values, delete them.
2800 
2801   for (const auto &P : ForwardRefVals) {
2802     if (isa<BasicBlock>(P.second.first))
2803       continue;
2804     P.second.first->replaceAllUsesWith(
2805         UndefValue::get(P.second.first->getType()));
2806     P.second.first->deleteValue();
2807   }
2808 
2809   for (const auto &P : ForwardRefValIDs) {
2810     if (isa<BasicBlock>(P.second.first))
2811       continue;
2812     P.second.first->replaceAllUsesWith(
2813         UndefValue::get(P.second.first->getType()));
2814     P.second.first->deleteValue();
2815   }
2816 }
2817 
2818 bool LLParser::PerFunctionState::finishFunction() {
2819   if (!ForwardRefVals.empty())
2820     return P.error(ForwardRefVals.begin()->second.second,
2821                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2822                        "'");
2823   if (!ForwardRefValIDs.empty())
2824     return P.error(ForwardRefValIDs.begin()->second.second,
2825                    "use of undefined value '%" +
2826                        Twine(ForwardRefValIDs.begin()->first) + "'");
2827   return false;
2828 }
2829 
2830 /// getVal - Get a value with the specified name or ID, creating a
2831 /// forward reference record if needed.  This can return null if the value
2832 /// exists but does not have the right type.
2833 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2834                                           LocTy Loc) {
2835   // Look this name up in the normal function symbol table.
2836   Value *Val = F.getValueSymbolTable()->lookup(Name);
2837 
2838   // If this is a forward reference for the value, see if we already created a
2839   // forward ref record.
2840   if (!Val) {
2841     auto I = ForwardRefVals.find(Name);
2842     if (I != ForwardRefVals.end())
2843       Val = I->second.first;
2844   }
2845 
2846   // If we have the value in the symbol table or fwd-ref table, return it.
2847   if (Val)
2848     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2849 
2850   // Don't make placeholders with invalid type.
2851   if (!Ty->isFirstClassType()) {
2852     P.error(Loc, "invalid use of a non-first-class type");
2853     return nullptr;
2854   }
2855 
2856   // Otherwise, create a new forward reference for this value and remember it.
2857   Value *FwdVal;
2858   if (Ty->isLabelTy()) {
2859     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2860   } else {
2861     FwdVal = new Argument(Ty, Name);
2862   }
2863 
2864   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2865   return FwdVal;
2866 }
2867 
2868 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2869   // Look this name up in the normal function symbol table.
2870   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2871 
2872   // If this is a forward reference for the value, see if we already created a
2873   // forward ref record.
2874   if (!Val) {
2875     auto I = ForwardRefValIDs.find(ID);
2876     if (I != ForwardRefValIDs.end())
2877       Val = I->second.first;
2878   }
2879 
2880   // If we have the value in the symbol table or fwd-ref table, return it.
2881   if (Val)
2882     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2883 
2884   if (!Ty->isFirstClassType()) {
2885     P.error(Loc, "invalid use of a non-first-class type");
2886     return nullptr;
2887   }
2888 
2889   // Otherwise, create a new forward reference for this value and remember it.
2890   Value *FwdVal;
2891   if (Ty->isLabelTy()) {
2892     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2893   } else {
2894     FwdVal = new Argument(Ty);
2895   }
2896 
2897   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2898   return FwdVal;
2899 }
2900 
2901 /// setInstName - After an instruction is parsed and inserted into its
2902 /// basic block, this installs its name.
2903 bool LLParser::PerFunctionState::setInstName(int NameID,
2904                                              const std::string &NameStr,
2905                                              LocTy NameLoc, Instruction *Inst) {
2906   // If this instruction has void type, it cannot have a name or ID specified.
2907   if (Inst->getType()->isVoidTy()) {
2908     if (NameID != -1 || !NameStr.empty())
2909       return P.error(NameLoc, "instructions returning void cannot have a name");
2910     return false;
2911   }
2912 
2913   // If this was a numbered instruction, verify that the instruction is the
2914   // expected value and resolve any forward references.
2915   if (NameStr.empty()) {
2916     // If neither a name nor an ID was specified, just use the next ID.
2917     if (NameID == -1)
2918       NameID = NumberedVals.size();
2919 
2920     if (unsigned(NameID) != NumberedVals.size())
2921       return P.error(NameLoc, "instruction expected to be numbered '%" +
2922                                   Twine(NumberedVals.size()) + "'");
2923 
2924     auto FI = ForwardRefValIDs.find(NameID);
2925     if (FI != ForwardRefValIDs.end()) {
2926       Value *Sentinel = FI->second.first;
2927       if (Sentinel->getType() != Inst->getType())
2928         return P.error(NameLoc, "instruction forward referenced with type '" +
2929                                     getTypeString(FI->second.first->getType()) +
2930                                     "'");
2931 
2932       Sentinel->replaceAllUsesWith(Inst);
2933       Sentinel->deleteValue();
2934       ForwardRefValIDs.erase(FI);
2935     }
2936 
2937     NumberedVals.push_back(Inst);
2938     return false;
2939   }
2940 
2941   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2942   auto FI = ForwardRefVals.find(NameStr);
2943   if (FI != ForwardRefVals.end()) {
2944     Value *Sentinel = FI->second.first;
2945     if (Sentinel->getType() != Inst->getType())
2946       return P.error(NameLoc, "instruction forward referenced with type '" +
2947                                   getTypeString(FI->second.first->getType()) +
2948                                   "'");
2949 
2950     Sentinel->replaceAllUsesWith(Inst);
2951     Sentinel->deleteValue();
2952     ForwardRefVals.erase(FI);
2953   }
2954 
2955   // Set the name on the instruction.
2956   Inst->setName(NameStr);
2957 
2958   if (Inst->getName() != NameStr)
2959     return P.error(NameLoc, "multiple definition of local value named '" +
2960                                 NameStr + "'");
2961   return false;
2962 }
2963 
2964 /// getBB - Get a basic block with the specified name or ID, creating a
2965 /// forward reference record if needed.
2966 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2967                                               LocTy Loc) {
2968   return dyn_cast_or_null<BasicBlock>(
2969       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2970 }
2971 
2972 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2973   return dyn_cast_or_null<BasicBlock>(
2974       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2975 }
2976 
2977 /// defineBB - Define the specified basic block, which is either named or
2978 /// unnamed.  If there is an error, this returns null otherwise it returns
2979 /// the block being defined.
2980 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2981                                                  int NameID, LocTy Loc) {
2982   BasicBlock *BB;
2983   if (Name.empty()) {
2984     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2985       P.error(Loc, "label expected to be numbered '" +
2986                        Twine(NumberedVals.size()) + "'");
2987       return nullptr;
2988     }
2989     BB = getBB(NumberedVals.size(), Loc);
2990     if (!BB) {
2991       P.error(Loc, "unable to create block numbered '" +
2992                        Twine(NumberedVals.size()) + "'");
2993       return nullptr;
2994     }
2995   } else {
2996     BB = getBB(Name, Loc);
2997     if (!BB) {
2998       P.error(Loc, "unable to create block named '" + Name + "'");
2999       return nullptr;
3000     }
3001   }
3002 
3003   // Move the block to the end of the function.  Forward ref'd blocks are
3004   // inserted wherever they happen to be referenced.
3005   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3006 
3007   // Remove the block from forward ref sets.
3008   if (Name.empty()) {
3009     ForwardRefValIDs.erase(NumberedVals.size());
3010     NumberedVals.push_back(BB);
3011   } else {
3012     // BB forward references are already in the function symbol table.
3013     ForwardRefVals.erase(Name);
3014   }
3015 
3016   return BB;
3017 }
3018 
3019 //===----------------------------------------------------------------------===//
3020 // Constants.
3021 //===----------------------------------------------------------------------===//
3022 
3023 /// parseValID - parse an abstract value that doesn't necessarily have a
3024 /// type implied.  For example, if we parse "4" we don't know what integer type
3025 /// it has.  The value will later be combined with its type and checked for
3026 /// basic correctness.  PFS is used to convert function-local operands of
3027 /// metadata (since metadata operands are not just parsed here but also
3028 /// converted to values). PFS can be null when we are not parsing metadata
3029 /// values inside a function.
3030 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3031   ID.Loc = Lex.getLoc();
3032   switch (Lex.getKind()) {
3033   default:
3034     return tokError("expected value token");
3035   case lltok::GlobalID:  // @42
3036     ID.UIntVal = Lex.getUIntVal();
3037     ID.Kind = ValID::t_GlobalID;
3038     break;
3039   case lltok::GlobalVar:  // @foo
3040     ID.StrVal = Lex.getStrVal();
3041     ID.Kind = ValID::t_GlobalName;
3042     break;
3043   case lltok::LocalVarID:  // %42
3044     ID.UIntVal = Lex.getUIntVal();
3045     ID.Kind = ValID::t_LocalID;
3046     break;
3047   case lltok::LocalVar:  // %foo
3048     ID.StrVal = Lex.getStrVal();
3049     ID.Kind = ValID::t_LocalName;
3050     break;
3051   case lltok::APSInt:
3052     ID.APSIntVal = Lex.getAPSIntVal();
3053     ID.Kind = ValID::t_APSInt;
3054     break;
3055   case lltok::APFloat:
3056     ID.APFloatVal = Lex.getAPFloatVal();
3057     ID.Kind = ValID::t_APFloat;
3058     break;
3059   case lltok::kw_true:
3060     ID.ConstantVal = ConstantInt::getTrue(Context);
3061     ID.Kind = ValID::t_Constant;
3062     break;
3063   case lltok::kw_false:
3064     ID.ConstantVal = ConstantInt::getFalse(Context);
3065     ID.Kind = ValID::t_Constant;
3066     break;
3067   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3068   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3069   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3070   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3071   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3072 
3073   case lltok::lbrace: {
3074     // ValID ::= '{' ConstVector '}'
3075     Lex.Lex();
3076     SmallVector<Constant*, 16> Elts;
3077     if (parseGlobalValueVector(Elts) ||
3078         parseToken(lltok::rbrace, "expected end of struct constant"))
3079       return true;
3080 
3081     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3082     ID.UIntVal = Elts.size();
3083     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3084            Elts.size() * sizeof(Elts[0]));
3085     ID.Kind = ValID::t_ConstantStruct;
3086     return false;
3087   }
3088   case lltok::less: {
3089     // ValID ::= '<' ConstVector '>'         --> Vector.
3090     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3091     Lex.Lex();
3092     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3093 
3094     SmallVector<Constant*, 16> Elts;
3095     LocTy FirstEltLoc = Lex.getLoc();
3096     if (parseGlobalValueVector(Elts) ||
3097         (isPackedStruct &&
3098          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3099         parseToken(lltok::greater, "expected end of constant"))
3100       return true;
3101 
3102     if (isPackedStruct) {
3103       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3104       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3105              Elts.size() * sizeof(Elts[0]));
3106       ID.UIntVal = Elts.size();
3107       ID.Kind = ValID::t_PackedConstantStruct;
3108       return false;
3109     }
3110 
3111     if (Elts.empty())
3112       return error(ID.Loc, "constant vector must not be empty");
3113 
3114     if (!Elts[0]->getType()->isIntegerTy() &&
3115         !Elts[0]->getType()->isFloatingPointTy() &&
3116         !Elts[0]->getType()->isPointerTy())
3117       return error(
3118           FirstEltLoc,
3119           "vector elements must have integer, pointer or floating point type");
3120 
3121     // Verify that all the vector elements have the same type.
3122     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3123       if (Elts[i]->getType() != Elts[0]->getType())
3124         return error(FirstEltLoc, "vector element #" + Twine(i) +
3125                                       " is not of type '" +
3126                                       getTypeString(Elts[0]->getType()));
3127 
3128     ID.ConstantVal = ConstantVector::get(Elts);
3129     ID.Kind = ValID::t_Constant;
3130     return false;
3131   }
3132   case lltok::lsquare: {   // Array Constant
3133     Lex.Lex();
3134     SmallVector<Constant*, 16> Elts;
3135     LocTy FirstEltLoc = Lex.getLoc();
3136     if (parseGlobalValueVector(Elts) ||
3137         parseToken(lltok::rsquare, "expected end of array constant"))
3138       return true;
3139 
3140     // Handle empty element.
3141     if (Elts.empty()) {
3142       // Use undef instead of an array because it's inconvenient to determine
3143       // the element type at this point, there being no elements to examine.
3144       ID.Kind = ValID::t_EmptyArray;
3145       return false;
3146     }
3147 
3148     if (!Elts[0]->getType()->isFirstClassType())
3149       return error(FirstEltLoc, "invalid array element type: " +
3150                                     getTypeString(Elts[0]->getType()));
3151 
3152     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3153 
3154     // Verify all elements are correct type!
3155     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3156       if (Elts[i]->getType() != Elts[0]->getType())
3157         return error(FirstEltLoc, "array element #" + Twine(i) +
3158                                       " is not of type '" +
3159                                       getTypeString(Elts[0]->getType()));
3160     }
3161 
3162     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3163     ID.Kind = ValID::t_Constant;
3164     return false;
3165   }
3166   case lltok::kw_c:  // c "foo"
3167     Lex.Lex();
3168     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3169                                                   false);
3170     if (parseToken(lltok::StringConstant, "expected string"))
3171       return true;
3172     ID.Kind = ValID::t_Constant;
3173     return false;
3174 
3175   case lltok::kw_asm: {
3176     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3177     //             STRINGCONSTANT
3178     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3179     Lex.Lex();
3180     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3181         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3182         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3183         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3184         parseStringConstant(ID.StrVal) ||
3185         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3186         parseToken(lltok::StringConstant, "expected constraint string"))
3187       return true;
3188     ID.StrVal2 = Lex.getStrVal();
3189     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3190                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3191     ID.Kind = ValID::t_InlineAsm;
3192     return false;
3193   }
3194 
3195   case lltok::kw_blockaddress: {
3196     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3197     Lex.Lex();
3198 
3199     ValID Fn, Label;
3200 
3201     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3202         parseValID(Fn, PFS) ||
3203         parseToken(lltok::comma,
3204                    "expected comma in block address expression") ||
3205         parseValID(Label, PFS) ||
3206         parseToken(lltok::rparen, "expected ')' in block address expression"))
3207       return true;
3208 
3209     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3210       return error(Fn.Loc, "expected function name in blockaddress");
3211     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3212       return error(Label.Loc, "expected basic block name in blockaddress");
3213 
3214     // Try to find the function (but skip it if it's forward-referenced).
3215     GlobalValue *GV = nullptr;
3216     if (Fn.Kind == ValID::t_GlobalID) {
3217       if (Fn.UIntVal < NumberedVals.size())
3218         GV = NumberedVals[Fn.UIntVal];
3219     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3220       GV = M->getNamedValue(Fn.StrVal);
3221     }
3222     Function *F = nullptr;
3223     if (GV) {
3224       // Confirm that it's actually a function with a definition.
3225       if (!isa<Function>(GV))
3226         return error(Fn.Loc, "expected function name in blockaddress");
3227       F = cast<Function>(GV);
3228       if (F->isDeclaration())
3229         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3230     }
3231 
3232     if (!F) {
3233       // Make a global variable as a placeholder for this reference.
3234       GlobalValue *&FwdRef =
3235           ForwardRefBlockAddresses.insert(std::make_pair(
3236                                               std::move(Fn),
3237                                               std::map<ValID, GlobalValue *>()))
3238               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3239               .first->second;
3240       if (!FwdRef) {
3241         unsigned FwdDeclAS;
3242         if (ExpectedTy) {
3243           // If we know the type that the blockaddress is being assigned to,
3244           // we can use the address space of that type.
3245           if (!ExpectedTy->isPointerTy())
3246             return error(ID.Loc,
3247                          "type of blockaddress must be a pointer and not '" +
3248                              getTypeString(ExpectedTy) + "'");
3249           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3250         } else if (PFS) {
3251           // Otherwise, we default the address space of the current function.
3252           FwdDeclAS = PFS->getFunction().getAddressSpace();
3253         } else {
3254           llvm_unreachable("Unknown address space for blockaddress");
3255         }
3256         FwdRef = new GlobalVariable(
3257             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3258             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3259       }
3260 
3261       ID.ConstantVal = FwdRef;
3262       ID.Kind = ValID::t_Constant;
3263       return false;
3264     }
3265 
3266     // We found the function; now find the basic block.  Don't use PFS, since we
3267     // might be inside a constant expression.
3268     BasicBlock *BB;
3269     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3270       if (Label.Kind == ValID::t_LocalID)
3271         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3272       else
3273         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3274       if (!BB)
3275         return error(Label.Loc, "referenced value is not a basic block");
3276     } else {
3277       if (Label.Kind == ValID::t_LocalID)
3278         return error(Label.Loc, "cannot take address of numeric label after "
3279                                 "the function is defined");
3280       BB = dyn_cast_or_null<BasicBlock>(
3281           F->getValueSymbolTable()->lookup(Label.StrVal));
3282       if (!BB)
3283         return error(Label.Loc, "referenced value is not a basic block");
3284     }
3285 
3286     ID.ConstantVal = BlockAddress::get(F, BB);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290 
3291   case lltok::kw_dso_local_equivalent: {
3292     // ValID ::= 'dso_local_equivalent' @foo
3293     Lex.Lex();
3294 
3295     ValID Fn;
3296 
3297     if (parseValID(Fn, PFS))
3298       return true;
3299 
3300     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3301       return error(Fn.Loc,
3302                    "expected global value name in dso_local_equivalent");
3303 
3304     // Try to find the function (but skip it if it's forward-referenced).
3305     GlobalValue *GV = nullptr;
3306     if (Fn.Kind == ValID::t_GlobalID) {
3307       if (Fn.UIntVal < NumberedVals.size())
3308         GV = NumberedVals[Fn.UIntVal];
3309     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3310       GV = M->getNamedValue(Fn.StrVal);
3311     }
3312 
3313     assert(GV && "Could not find a corresponding global variable");
3314 
3315     if (!GV->getValueType()->isFunctionTy())
3316       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3317                            "in dso_local_equivalent");
3318 
3319     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3320     ID.Kind = ValID::t_Constant;
3321     return false;
3322   }
3323 
3324   case lltok::kw_no_cfi: {
3325     // ValID ::= 'no_cfi' @foo
3326     Lex.Lex();
3327 
3328     if (parseValID(ID, PFS))
3329       return true;
3330 
3331     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3332       return error(ID.Loc, "expected global value name in no_cfi");
3333 
3334     ID.NoCFI = true;
3335     return false;
3336   }
3337 
3338   case lltok::kw_trunc:
3339   case lltok::kw_zext:
3340   case lltok::kw_sext:
3341   case lltok::kw_fptrunc:
3342   case lltok::kw_fpext:
3343   case lltok::kw_bitcast:
3344   case lltok::kw_addrspacecast:
3345   case lltok::kw_uitofp:
3346   case lltok::kw_sitofp:
3347   case lltok::kw_fptoui:
3348   case lltok::kw_fptosi:
3349   case lltok::kw_inttoptr:
3350   case lltok::kw_ptrtoint: {
3351     unsigned Opc = Lex.getUIntVal();
3352     Type *DestTy = nullptr;
3353     Constant *SrcVal;
3354     Lex.Lex();
3355     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3356         parseGlobalTypeAndValue(SrcVal) ||
3357         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3358         parseType(DestTy) ||
3359         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3360       return true;
3361     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3362       return error(ID.Loc, "invalid cast opcode for cast from '" +
3363                                getTypeString(SrcVal->getType()) + "' to '" +
3364                                getTypeString(DestTy) + "'");
3365     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3366                                                  SrcVal, DestTy);
3367     ID.Kind = ValID::t_Constant;
3368     return false;
3369   }
3370   case lltok::kw_extractvalue: {
3371     Lex.Lex();
3372     Constant *Val;
3373     SmallVector<unsigned, 4> Indices;
3374     if (parseToken(lltok::lparen,
3375                    "expected '(' in extractvalue constantexpr") ||
3376         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3377         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3378       return true;
3379 
3380     if (!Val->getType()->isAggregateType())
3381       return error(ID.Loc, "extractvalue operand must be aggregate type");
3382     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3383       return error(ID.Loc, "invalid indices for extractvalue");
3384     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3385     ID.Kind = ValID::t_Constant;
3386     return false;
3387   }
3388   case lltok::kw_insertvalue: {
3389     Lex.Lex();
3390     Constant *Val0, *Val1;
3391     SmallVector<unsigned, 4> Indices;
3392     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3393         parseGlobalTypeAndValue(Val0) ||
3394         parseToken(lltok::comma,
3395                    "expected comma in insertvalue constantexpr") ||
3396         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3397         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3398       return true;
3399     if (!Val0->getType()->isAggregateType())
3400       return error(ID.Loc, "insertvalue operand must be aggregate type");
3401     Type *IndexedType =
3402         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3403     if (!IndexedType)
3404       return error(ID.Loc, "invalid indices for insertvalue");
3405     if (IndexedType != Val1->getType())
3406       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3407                                getTypeString(Val1->getType()) +
3408                                "' instead of '" + getTypeString(IndexedType) +
3409                                "'");
3410     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3411     ID.Kind = ValID::t_Constant;
3412     return false;
3413   }
3414   case lltok::kw_icmp:
3415   case lltok::kw_fcmp: {
3416     unsigned PredVal, Opc = Lex.getUIntVal();
3417     Constant *Val0, *Val1;
3418     Lex.Lex();
3419     if (parseCmpPredicate(PredVal, Opc) ||
3420         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3421         parseGlobalTypeAndValue(Val0) ||
3422         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3423         parseGlobalTypeAndValue(Val1) ||
3424         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3425       return true;
3426 
3427     if (Val0->getType() != Val1->getType())
3428       return error(ID.Loc, "compare operands must have the same type");
3429 
3430     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3431 
3432     if (Opc == Instruction::FCmp) {
3433       if (!Val0->getType()->isFPOrFPVectorTy())
3434         return error(ID.Loc, "fcmp requires floating point operands");
3435       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3436     } else {
3437       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3438       if (!Val0->getType()->isIntOrIntVectorTy() &&
3439           !Val0->getType()->isPtrOrPtrVectorTy())
3440         return error(ID.Loc, "icmp requires pointer or integer operands");
3441       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3442     }
3443     ID.Kind = ValID::t_Constant;
3444     return false;
3445   }
3446 
3447   // Unary Operators.
3448   case lltok::kw_fneg: {
3449     unsigned Opc = Lex.getUIntVal();
3450     Constant *Val;
3451     Lex.Lex();
3452     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3453         parseGlobalTypeAndValue(Val) ||
3454         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3455       return true;
3456 
3457     // Check that the type is valid for the operator.
3458     switch (Opc) {
3459     case Instruction::FNeg:
3460       if (!Val->getType()->isFPOrFPVectorTy())
3461         return error(ID.Loc, "constexpr requires fp operands");
3462       break;
3463     default: llvm_unreachable("Unknown unary operator!");
3464     }
3465     unsigned Flags = 0;
3466     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3467     ID.ConstantVal = C;
3468     ID.Kind = ValID::t_Constant;
3469     return false;
3470   }
3471   // Binary Operators.
3472   case lltok::kw_add:
3473   case lltok::kw_fadd:
3474   case lltok::kw_sub:
3475   case lltok::kw_fsub:
3476   case lltok::kw_mul:
3477   case lltok::kw_fmul:
3478   case lltok::kw_udiv:
3479   case lltok::kw_sdiv:
3480   case lltok::kw_fdiv:
3481   case lltok::kw_urem:
3482   case lltok::kw_srem:
3483   case lltok::kw_frem:
3484   case lltok::kw_shl:
3485   case lltok::kw_lshr:
3486   case lltok::kw_ashr: {
3487     bool NUW = false;
3488     bool NSW = false;
3489     bool Exact = false;
3490     unsigned Opc = Lex.getUIntVal();
3491     Constant *Val0, *Val1;
3492     Lex.Lex();
3493     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3494         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3495       if (EatIfPresent(lltok::kw_nuw))
3496         NUW = true;
3497       if (EatIfPresent(lltok::kw_nsw)) {
3498         NSW = true;
3499         if (EatIfPresent(lltok::kw_nuw))
3500           NUW = true;
3501       }
3502     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3503                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3504       if (EatIfPresent(lltok::kw_exact))
3505         Exact = true;
3506     }
3507     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3508         parseGlobalTypeAndValue(Val0) ||
3509         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3510         parseGlobalTypeAndValue(Val1) ||
3511         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3512       return true;
3513     if (Val0->getType() != Val1->getType())
3514       return error(ID.Loc, "operands of constexpr must have same type");
3515     // Check that the type is valid for the operator.
3516     switch (Opc) {
3517     case Instruction::Add:
3518     case Instruction::Sub:
3519     case Instruction::Mul:
3520     case Instruction::UDiv:
3521     case Instruction::SDiv:
3522     case Instruction::URem:
3523     case Instruction::SRem:
3524     case Instruction::Shl:
3525     case Instruction::AShr:
3526     case Instruction::LShr:
3527       if (!Val0->getType()->isIntOrIntVectorTy())
3528         return error(ID.Loc, "constexpr requires integer operands");
3529       break;
3530     case Instruction::FAdd:
3531     case Instruction::FSub:
3532     case Instruction::FMul:
3533     case Instruction::FDiv:
3534     case Instruction::FRem:
3535       if (!Val0->getType()->isFPOrFPVectorTy())
3536         return error(ID.Loc, "constexpr requires fp operands");
3537       break;
3538     default: llvm_unreachable("Unknown binary operator!");
3539     }
3540     unsigned Flags = 0;
3541     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3542     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3543     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3544     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3545     ID.ConstantVal = C;
3546     ID.Kind = ValID::t_Constant;
3547     return false;
3548   }
3549 
3550   // Logical Operations
3551   case lltok::kw_and:
3552   case lltok::kw_or:
3553   case lltok::kw_xor: {
3554     unsigned Opc = Lex.getUIntVal();
3555     Constant *Val0, *Val1;
3556     Lex.Lex();
3557     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3558         parseGlobalTypeAndValue(Val0) ||
3559         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3560         parseGlobalTypeAndValue(Val1) ||
3561         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3562       return true;
3563     if (Val0->getType() != Val1->getType())
3564       return error(ID.Loc, "operands of constexpr must have same type");
3565     if (!Val0->getType()->isIntOrIntVectorTy())
3566       return error(ID.Loc,
3567                    "constexpr requires integer or integer vector operands");
3568     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3569     ID.Kind = ValID::t_Constant;
3570     return false;
3571   }
3572 
3573   case lltok::kw_getelementptr:
3574   case lltok::kw_shufflevector:
3575   case lltok::kw_insertelement:
3576   case lltok::kw_extractelement:
3577   case lltok::kw_select: {
3578     unsigned Opc = Lex.getUIntVal();
3579     SmallVector<Constant*, 16> Elts;
3580     bool InBounds = false;
3581     Type *Ty;
3582     Lex.Lex();
3583 
3584     if (Opc == Instruction::GetElementPtr)
3585       InBounds = EatIfPresent(lltok::kw_inbounds);
3586 
3587     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3588       return true;
3589 
3590     LocTy ExplicitTypeLoc = Lex.getLoc();
3591     if (Opc == Instruction::GetElementPtr) {
3592       if (parseType(Ty) ||
3593           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3594         return true;
3595     }
3596 
3597     Optional<unsigned> InRangeOp;
3598     if (parseGlobalValueVector(
3599             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3600         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3601       return true;
3602 
3603     if (Opc == Instruction::GetElementPtr) {
3604       if (Elts.size() == 0 ||
3605           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3606         return error(ID.Loc, "base of getelementptr must be a pointer");
3607 
3608       Type *BaseType = Elts[0]->getType();
3609       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3610       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3611         return error(
3612             ExplicitTypeLoc,
3613             typeComparisonErrorMessage(
3614                 "explicit pointee type doesn't match operand's pointee type",
3615                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3616       }
3617 
3618       unsigned GEPWidth =
3619           BaseType->isVectorTy()
3620               ? cast<FixedVectorType>(BaseType)->getNumElements()
3621               : 0;
3622 
3623       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3624       for (Constant *Val : Indices) {
3625         Type *ValTy = Val->getType();
3626         if (!ValTy->isIntOrIntVectorTy())
3627           return error(ID.Loc, "getelementptr index must be an integer");
3628         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3629           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3630           if (GEPWidth && (ValNumEl != GEPWidth))
3631             return error(
3632                 ID.Loc,
3633                 "getelementptr vector index has a wrong number of elements");
3634           // GEPWidth may have been unknown because the base is a scalar,
3635           // but it is known now.
3636           GEPWidth = ValNumEl;
3637         }
3638       }
3639 
3640       SmallPtrSet<Type*, 4> Visited;
3641       if (!Indices.empty() && !Ty->isSized(&Visited))
3642         return error(ID.Loc, "base element of getelementptr must be sized");
3643 
3644       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3645         return error(ID.Loc, "invalid getelementptr indices");
3646 
3647       if (InRangeOp) {
3648         if (*InRangeOp == 0)
3649           return error(ID.Loc,
3650                        "inrange keyword may not appear on pointer operand");
3651         --*InRangeOp;
3652       }
3653 
3654       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3655                                                       InBounds, InRangeOp);
3656     } else if (Opc == Instruction::Select) {
3657       if (Elts.size() != 3)
3658         return error(ID.Loc, "expected three operands to select");
3659       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3660                                                               Elts[2]))
3661         return error(ID.Loc, Reason);
3662       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3663     } else if (Opc == Instruction::ShuffleVector) {
3664       if (Elts.size() != 3)
3665         return error(ID.Loc, "expected three operands to shufflevector");
3666       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3667         return error(ID.Loc, "invalid operands to shufflevector");
3668       SmallVector<int, 16> Mask;
3669       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3670       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3671     } else if (Opc == Instruction::ExtractElement) {
3672       if (Elts.size() != 2)
3673         return error(ID.Loc, "expected two operands to extractelement");
3674       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3675         return error(ID.Loc, "invalid extractelement operands");
3676       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3677     } else {
3678       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3679       if (Elts.size() != 3)
3680         return error(ID.Loc, "expected three operands to insertelement");
3681       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3682         return error(ID.Loc, "invalid insertelement operands");
3683       ID.ConstantVal =
3684                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3685     }
3686 
3687     ID.Kind = ValID::t_Constant;
3688     return false;
3689   }
3690   }
3691 
3692   Lex.Lex();
3693   return false;
3694 }
3695 
3696 /// parseGlobalValue - parse a global value with the specified type.
3697 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3698   C = nullptr;
3699   ValID ID;
3700   Value *V = nullptr;
3701   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3702                 convertValIDToValue(Ty, ID, V, nullptr);
3703   if (V && !(C = dyn_cast<Constant>(V)))
3704     return error(ID.Loc, "global values must be constants");
3705   return Parsed;
3706 }
3707 
3708 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3709   Type *Ty = nullptr;
3710   return parseType(Ty) || parseGlobalValue(Ty, V);
3711 }
3712 
3713 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3714   C = nullptr;
3715 
3716   LocTy KwLoc = Lex.getLoc();
3717   if (!EatIfPresent(lltok::kw_comdat))
3718     return false;
3719 
3720   if (EatIfPresent(lltok::lparen)) {
3721     if (Lex.getKind() != lltok::ComdatVar)
3722       return tokError("expected comdat variable");
3723     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3724     Lex.Lex();
3725     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3726       return true;
3727   } else {
3728     if (GlobalName.empty())
3729       return tokError("comdat cannot be unnamed");
3730     C = getComdat(std::string(GlobalName), KwLoc);
3731   }
3732 
3733   return false;
3734 }
3735 
3736 /// parseGlobalValueVector
3737 ///   ::= /*empty*/
3738 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3739 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3740                                       Optional<unsigned> *InRangeOp) {
3741   // Empty list.
3742   if (Lex.getKind() == lltok::rbrace ||
3743       Lex.getKind() == lltok::rsquare ||
3744       Lex.getKind() == lltok::greater ||
3745       Lex.getKind() == lltok::rparen)
3746     return false;
3747 
3748   do {
3749     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3750       *InRangeOp = Elts.size();
3751 
3752     Constant *C;
3753     if (parseGlobalTypeAndValue(C))
3754       return true;
3755     Elts.push_back(C);
3756   } while (EatIfPresent(lltok::comma));
3757 
3758   return false;
3759 }
3760 
3761 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3762   SmallVector<Metadata *, 16> Elts;
3763   if (parseMDNodeVector(Elts))
3764     return true;
3765 
3766   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3767   return false;
3768 }
3769 
3770 /// MDNode:
3771 ///  ::= !{ ... }
3772 ///  ::= !7
3773 ///  ::= !DILocation(...)
3774 bool LLParser::parseMDNode(MDNode *&N) {
3775   if (Lex.getKind() == lltok::MetadataVar)
3776     return parseSpecializedMDNode(N);
3777 
3778   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3779 }
3780 
3781 bool LLParser::parseMDNodeTail(MDNode *&N) {
3782   // !{ ... }
3783   if (Lex.getKind() == lltok::lbrace)
3784     return parseMDTuple(N);
3785 
3786   // !42
3787   return parseMDNodeID(N);
3788 }
3789 
3790 namespace {
3791 
3792 /// Structure to represent an optional metadata field.
3793 template <class FieldTy> struct MDFieldImpl {
3794   typedef MDFieldImpl ImplTy;
3795   FieldTy Val;
3796   bool Seen;
3797 
3798   void assign(FieldTy Val) {
3799     Seen = true;
3800     this->Val = std::move(Val);
3801   }
3802 
3803   explicit MDFieldImpl(FieldTy Default)
3804       : Val(std::move(Default)), Seen(false) {}
3805 };
3806 
3807 /// Structure to represent an optional metadata field that
3808 /// can be of either type (A or B) and encapsulates the
3809 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3810 /// to reimplement the specifics for representing each Field.
3811 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3812   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3813   FieldTypeA A;
3814   FieldTypeB B;
3815   bool Seen;
3816 
3817   enum {
3818     IsInvalid = 0,
3819     IsTypeA = 1,
3820     IsTypeB = 2
3821   } WhatIs;
3822 
3823   void assign(FieldTypeA A) {
3824     Seen = true;
3825     this->A = std::move(A);
3826     WhatIs = IsTypeA;
3827   }
3828 
3829   void assign(FieldTypeB B) {
3830     Seen = true;
3831     this->B = std::move(B);
3832     WhatIs = IsTypeB;
3833   }
3834 
3835   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3836       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3837         WhatIs(IsInvalid) {}
3838 };
3839 
3840 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3841   uint64_t Max;
3842 
3843   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3844       : ImplTy(Default), Max(Max) {}
3845 };
3846 
3847 struct LineField : public MDUnsignedField {
3848   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3849 };
3850 
3851 struct ColumnField : public MDUnsignedField {
3852   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3853 };
3854 
3855 struct DwarfTagField : public MDUnsignedField {
3856   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3857   DwarfTagField(dwarf::Tag DefaultTag)
3858       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3859 };
3860 
3861 struct DwarfMacinfoTypeField : public MDUnsignedField {
3862   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3863   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3864     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3865 };
3866 
3867 struct DwarfAttEncodingField : public MDUnsignedField {
3868   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3869 };
3870 
3871 struct DwarfVirtualityField : public MDUnsignedField {
3872   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3873 };
3874 
3875 struct DwarfLangField : public MDUnsignedField {
3876   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3877 };
3878 
3879 struct DwarfCCField : public MDUnsignedField {
3880   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3881 };
3882 
3883 struct EmissionKindField : public MDUnsignedField {
3884   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3885 };
3886 
3887 struct NameTableKindField : public MDUnsignedField {
3888   NameTableKindField()
3889       : MDUnsignedField(
3890             0, (unsigned)
3891                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3892 };
3893 
3894 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3895   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3896 };
3897 
3898 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3899   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3900 };
3901 
3902 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3903   MDAPSIntField() : ImplTy(APSInt()) {}
3904 };
3905 
3906 struct MDSignedField : public MDFieldImpl<int64_t> {
3907   int64_t Min;
3908   int64_t Max;
3909 
3910   MDSignedField(int64_t Default = 0)
3911       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3912   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3913       : ImplTy(Default), Min(Min), Max(Max) {}
3914 };
3915 
3916 struct MDBoolField : public MDFieldImpl<bool> {
3917   MDBoolField(bool Default = false) : ImplTy(Default) {}
3918 };
3919 
3920 struct MDField : public MDFieldImpl<Metadata *> {
3921   bool AllowNull;
3922 
3923   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3924 };
3925 
3926 struct MDStringField : public MDFieldImpl<MDString *> {
3927   bool AllowEmpty;
3928   MDStringField(bool AllowEmpty = true)
3929       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3930 };
3931 
3932 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3933   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3934 };
3935 
3936 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3937   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3938 };
3939 
3940 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3941   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3942       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3943 
3944   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3945                     bool AllowNull = true)
3946       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3947 
3948   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3949   bool isMDField() const { return WhatIs == IsTypeB; }
3950   int64_t getMDSignedValue() const {
3951     assert(isMDSignedField() && "Wrong field type");
3952     return A.Val;
3953   }
3954   Metadata *getMDFieldValue() const {
3955     assert(isMDField() && "Wrong field type");
3956     return B.Val;
3957   }
3958 };
3959 
3960 } // end anonymous namespace
3961 
3962 namespace llvm {
3963 
3964 template <>
3965 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3966   if (Lex.getKind() != lltok::APSInt)
3967     return tokError("expected integer");
3968 
3969   Result.assign(Lex.getAPSIntVal());
3970   Lex.Lex();
3971   return false;
3972 }
3973 
3974 template <>
3975 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3976                             MDUnsignedField &Result) {
3977   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3978     return tokError("expected unsigned integer");
3979 
3980   auto &U = Lex.getAPSIntVal();
3981   if (U.ugt(Result.Max))
3982     return tokError("value for '" + Name + "' too large, limit is " +
3983                     Twine(Result.Max));
3984   Result.assign(U.getZExtValue());
3985   assert(Result.Val <= Result.Max && "Expected value in range");
3986   Lex.Lex();
3987   return false;
3988 }
3989 
3990 template <>
3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3992   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3993 }
3994 template <>
3995 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3996   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3997 }
3998 
3999 template <>
4000 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4001   if (Lex.getKind() == lltok::APSInt)
4002     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4003 
4004   if (Lex.getKind() != lltok::DwarfTag)
4005     return tokError("expected DWARF tag");
4006 
4007   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4008   if (Tag == dwarf::DW_TAG_invalid)
4009     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4010   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4011 
4012   Result.assign(Tag);
4013   Lex.Lex();
4014   return false;
4015 }
4016 
4017 template <>
4018 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4019                             DwarfMacinfoTypeField &Result) {
4020   if (Lex.getKind() == lltok::APSInt)
4021     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4022 
4023   if (Lex.getKind() != lltok::DwarfMacinfo)
4024     return tokError("expected DWARF macinfo type");
4025 
4026   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4027   if (Macinfo == dwarf::DW_MACINFO_invalid)
4028     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4029                     Lex.getStrVal() + "'");
4030   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4031 
4032   Result.assign(Macinfo);
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4039                             DwarfVirtualityField &Result) {
4040   if (Lex.getKind() == lltok::APSInt)
4041     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 
4043   if (Lex.getKind() != lltok::DwarfVirtuality)
4044     return tokError("expected DWARF virtuality code");
4045 
4046   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4047   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4048     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4049                     Lex.getStrVal() + "'");
4050   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4051   Result.assign(Virtuality);
4052   Lex.Lex();
4053   return false;
4054 }
4055 
4056 template <>
4057 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4058   if (Lex.getKind() == lltok::APSInt)
4059     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4060 
4061   if (Lex.getKind() != lltok::DwarfLang)
4062     return tokError("expected DWARF language");
4063 
4064   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4065   if (!Lang)
4066     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4067                     "'");
4068   assert(Lang <= Result.Max && "Expected valid DWARF language");
4069   Result.assign(Lang);
4070   Lex.Lex();
4071   return false;
4072 }
4073 
4074 template <>
4075 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::DwarfCC)
4080     return tokError("expected DWARF calling convention");
4081 
4082   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4083   if (!CC)
4084     return tokError("invalid DWARF calling convention" + Twine(" '") +
4085                     Lex.getStrVal() + "'");
4086   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4087   Result.assign(CC);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 template <>
4093 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4094                             EmissionKindField &Result) {
4095   if (Lex.getKind() == lltok::APSInt)
4096     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4097 
4098   if (Lex.getKind() != lltok::EmissionKind)
4099     return tokError("expected emission kind");
4100 
4101   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4102   if (!Kind)
4103     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4104                     "'");
4105   assert(*Kind <= Result.Max && "Expected valid emission kind");
4106   Result.assign(*Kind);
4107   Lex.Lex();
4108   return false;
4109 }
4110 
4111 template <>
4112 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4113                             NameTableKindField &Result) {
4114   if (Lex.getKind() == lltok::APSInt)
4115     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4116 
4117   if (Lex.getKind() != lltok::NameTableKind)
4118     return tokError("expected nameTable kind");
4119 
4120   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4121   if (!Kind)
4122     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4123                     "'");
4124   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4125   Result.assign((unsigned)*Kind);
4126   Lex.Lex();
4127   return false;
4128 }
4129 
4130 template <>
4131 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4132                             DwarfAttEncodingField &Result) {
4133   if (Lex.getKind() == lltok::APSInt)
4134     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4135 
4136   if (Lex.getKind() != lltok::DwarfAttEncoding)
4137     return tokError("expected DWARF type attribute encoding");
4138 
4139   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4140   if (!Encoding)
4141     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4142                     Lex.getStrVal() + "'");
4143   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4144   Result.assign(Encoding);
4145   Lex.Lex();
4146   return false;
4147 }
4148 
4149 /// DIFlagField
4150 ///  ::= uint32
4151 ///  ::= DIFlagVector
4152 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4153 template <>
4154 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4155 
4156   // parser for a single flag.
4157   auto parseFlag = [&](DINode::DIFlags &Val) {
4158     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4159       uint32_t TempVal = static_cast<uint32_t>(Val);
4160       bool Res = parseUInt32(TempVal);
4161       Val = static_cast<DINode::DIFlags>(TempVal);
4162       return Res;
4163     }
4164 
4165     if (Lex.getKind() != lltok::DIFlag)
4166       return tokError("expected debug info flag");
4167 
4168     Val = DINode::getFlag(Lex.getStrVal());
4169     if (!Val)
4170       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4171                       "'");
4172     Lex.Lex();
4173     return false;
4174   };
4175 
4176   // parse the flags and combine them together.
4177   DINode::DIFlags Combined = DINode::FlagZero;
4178   do {
4179     DINode::DIFlags Val;
4180     if (parseFlag(Val))
4181       return true;
4182     Combined |= Val;
4183   } while (EatIfPresent(lltok::bar));
4184 
4185   Result.assign(Combined);
4186   return false;
4187 }
4188 
4189 /// DISPFlagField
4190 ///  ::= uint32
4191 ///  ::= DISPFlagVector
4192 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4193 template <>
4194 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4195 
4196   // parser for a single flag.
4197   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4198     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4199       uint32_t TempVal = static_cast<uint32_t>(Val);
4200       bool Res = parseUInt32(TempVal);
4201       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4202       return Res;
4203     }
4204 
4205     if (Lex.getKind() != lltok::DISPFlag)
4206       return tokError("expected debug info flag");
4207 
4208     Val = DISubprogram::getFlag(Lex.getStrVal());
4209     if (!Val)
4210       return tokError(Twine("invalid subprogram debug info flag '") +
4211                       Lex.getStrVal() + "'");
4212     Lex.Lex();
4213     return false;
4214   };
4215 
4216   // parse the flags and combine them together.
4217   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4218   do {
4219     DISubprogram::DISPFlags Val;
4220     if (parseFlag(Val))
4221       return true;
4222     Combined |= Val;
4223   } while (EatIfPresent(lltok::bar));
4224 
4225   Result.assign(Combined);
4226   return false;
4227 }
4228 
4229 template <>
4230 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4231   if (Lex.getKind() != lltok::APSInt)
4232     return tokError("expected signed integer");
4233 
4234   auto &S = Lex.getAPSIntVal();
4235   if (S < Result.Min)
4236     return tokError("value for '" + Name + "' too small, limit is " +
4237                     Twine(Result.Min));
4238   if (S > Result.Max)
4239     return tokError("value for '" + Name + "' too large, limit is " +
4240                     Twine(Result.Max));
4241   Result.assign(S.getExtValue());
4242   assert(Result.Val >= Result.Min && "Expected value in range");
4243   assert(Result.Val <= Result.Max && "Expected value in range");
4244   Lex.Lex();
4245   return false;
4246 }
4247 
4248 template <>
4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4250   switch (Lex.getKind()) {
4251   default:
4252     return tokError("expected 'true' or 'false'");
4253   case lltok::kw_true:
4254     Result.assign(true);
4255     break;
4256   case lltok::kw_false:
4257     Result.assign(false);
4258     break;
4259   }
4260   Lex.Lex();
4261   return false;
4262 }
4263 
4264 template <>
4265 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4266   if (Lex.getKind() == lltok::kw_null) {
4267     if (!Result.AllowNull)
4268       return tokError("'" + Name + "' cannot be null");
4269     Lex.Lex();
4270     Result.assign(nullptr);
4271     return false;
4272   }
4273 
4274   Metadata *MD;
4275   if (parseMetadata(MD, nullptr))
4276     return true;
4277 
4278   Result.assign(MD);
4279   return false;
4280 }
4281 
4282 template <>
4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4284                             MDSignedOrMDField &Result) {
4285   // Try to parse a signed int.
4286   if (Lex.getKind() == lltok::APSInt) {
4287     MDSignedField Res = Result.A;
4288     if (!parseMDField(Loc, Name, Res)) {
4289       Result.assign(Res);
4290       return false;
4291     }
4292     return true;
4293   }
4294 
4295   // Otherwise, try to parse as an MDField.
4296   MDField Res = Result.B;
4297   if (!parseMDField(Loc, Name, Res)) {
4298     Result.assign(Res);
4299     return false;
4300   }
4301 
4302   return true;
4303 }
4304 
4305 template <>
4306 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4307   LocTy ValueLoc = Lex.getLoc();
4308   std::string S;
4309   if (parseStringConstant(S))
4310     return true;
4311 
4312   if (!Result.AllowEmpty && S.empty())
4313     return error(ValueLoc, "'" + Name + "' cannot be empty");
4314 
4315   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4316   return false;
4317 }
4318 
4319 template <>
4320 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4321   SmallVector<Metadata *, 4> MDs;
4322   if (parseMDNodeVector(MDs))
4323     return true;
4324 
4325   Result.assign(std::move(MDs));
4326   return false;
4327 }
4328 
4329 template <>
4330 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4331                             ChecksumKindField &Result) {
4332   Optional<DIFile::ChecksumKind> CSKind =
4333       DIFile::getChecksumKind(Lex.getStrVal());
4334 
4335   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4336     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4337                     "'");
4338 
4339   Result.assign(*CSKind);
4340   Lex.Lex();
4341   return false;
4342 }
4343 
4344 } // end namespace llvm
4345 
4346 template <class ParserTy>
4347 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4348   do {
4349     if (Lex.getKind() != lltok::LabelStr)
4350       return tokError("expected field label here");
4351 
4352     if (ParseField())
4353       return true;
4354   } while (EatIfPresent(lltok::comma));
4355 
4356   return false;
4357 }
4358 
4359 template <class ParserTy>
4360 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4361   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4362   Lex.Lex();
4363 
4364   if (parseToken(lltok::lparen, "expected '(' here"))
4365     return true;
4366   if (Lex.getKind() != lltok::rparen)
4367     if (parseMDFieldsImplBody(ParseField))
4368       return true;
4369 
4370   ClosingLoc = Lex.getLoc();
4371   return parseToken(lltok::rparen, "expected ')' here");
4372 }
4373 
4374 template <class FieldTy>
4375 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4376   if (Result.Seen)
4377     return tokError("field '" + Name + "' cannot be specified more than once");
4378 
4379   LocTy Loc = Lex.getLoc();
4380   Lex.Lex();
4381   return parseMDField(Loc, Name, Result);
4382 }
4383 
4384 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4385   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4386 
4387 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4388   if (Lex.getStrVal() == #CLASS)                                               \
4389     return parse##CLASS(N, IsDistinct);
4390 #include "llvm/IR/Metadata.def"
4391 
4392   return tokError("expected metadata type");
4393 }
4394 
4395 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4396 #define NOP_FIELD(NAME, TYPE, INIT)
4397 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4398   if (!NAME.Seen)                                                              \
4399     return error(ClosingLoc, "missing required field '" #NAME "'");
4400 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4401   if (Lex.getStrVal() == #NAME)                                                \
4402     return parseMDField(#NAME, NAME);
4403 #define PARSE_MD_FIELDS()                                                      \
4404   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4405   do {                                                                         \
4406     LocTy ClosingLoc;                                                          \
4407     if (parseMDFieldsImpl(                                                     \
4408             [&]() -> bool {                                                    \
4409               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4410               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4411                               "'");                                            \
4412             },                                                                 \
4413             ClosingLoc))                                                       \
4414       return true;                                                             \
4415     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4416   } while (false)
4417 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4418   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4419 
4420 /// parseDILocationFields:
4421 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4422 ///   isImplicitCode: true)
4423 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4424 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4425   OPTIONAL(line, LineField, );                                                 \
4426   OPTIONAL(column, ColumnField, );                                             \
4427   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4428   OPTIONAL(inlinedAt, MDField, );                                              \
4429   OPTIONAL(isImplicitCode, MDBoolField, (false));
4430   PARSE_MD_FIELDS();
4431 #undef VISIT_MD_FIELDS
4432 
4433   Result =
4434       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4435                                    inlinedAt.Val, isImplicitCode.Val));
4436   return false;
4437 }
4438 
4439 /// parseGenericDINode:
4440 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4441 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4442 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4443   REQUIRED(tag, DwarfTagField, );                                              \
4444   OPTIONAL(header, MDStringField, );                                           \
4445   OPTIONAL(operands, MDFieldList, );
4446   PARSE_MD_FIELDS();
4447 #undef VISIT_MD_FIELDS
4448 
4449   Result = GET_OR_DISTINCT(GenericDINode,
4450                            (Context, tag.Val, header.Val, operands.Val));
4451   return false;
4452 }
4453 
4454 /// parseDISubrange:
4455 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4456 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4457 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4458 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4459 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4460   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4461   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4462   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4463   OPTIONAL(stride, MDSignedOrMDField, );
4464   PARSE_MD_FIELDS();
4465 #undef VISIT_MD_FIELDS
4466 
4467   Metadata *Count = nullptr;
4468   Metadata *LowerBound = nullptr;
4469   Metadata *UpperBound = nullptr;
4470   Metadata *Stride = nullptr;
4471 
4472   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4473     if (Bound.isMDSignedField())
4474       return ConstantAsMetadata::get(ConstantInt::getSigned(
4475           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4476     if (Bound.isMDField())
4477       return Bound.getMDFieldValue();
4478     return nullptr;
4479   };
4480 
4481   Count = convToMetadata(count);
4482   LowerBound = convToMetadata(lowerBound);
4483   UpperBound = convToMetadata(upperBound);
4484   Stride = convToMetadata(stride);
4485 
4486   Result = GET_OR_DISTINCT(DISubrange,
4487                            (Context, Count, LowerBound, UpperBound, Stride));
4488 
4489   return false;
4490 }
4491 
4492 /// parseDIGenericSubrange:
4493 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4494 ///   !node3)
4495 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4496 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4497   OPTIONAL(count, MDSignedOrMDField, );                                        \
4498   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4499   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4500   OPTIONAL(stride, MDSignedOrMDField, );
4501   PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4505     if (Bound.isMDSignedField())
4506       return DIExpression::get(
4507           Context, {dwarf::DW_OP_consts,
4508                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4509     if (Bound.isMDField())
4510       return Bound.getMDFieldValue();
4511     return nullptr;
4512   };
4513 
4514   Metadata *Count = ConvToMetadata(count);
4515   Metadata *LowerBound = ConvToMetadata(lowerBound);
4516   Metadata *UpperBound = ConvToMetadata(upperBound);
4517   Metadata *Stride = ConvToMetadata(stride);
4518 
4519   Result = GET_OR_DISTINCT(DIGenericSubrange,
4520                            (Context, Count, LowerBound, UpperBound, Stride));
4521 
4522   return false;
4523 }
4524 
4525 /// parseDIEnumerator:
4526 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4527 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4528 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4529   REQUIRED(name, MDStringField, );                                             \
4530   REQUIRED(value, MDAPSIntField, );                                            \
4531   OPTIONAL(isUnsigned, MDBoolField, (false));
4532   PARSE_MD_FIELDS();
4533 #undef VISIT_MD_FIELDS
4534 
4535   if (isUnsigned.Val && value.Val.isNegative())
4536     return tokError("unsigned enumerator with negative value");
4537 
4538   APSInt Value(value.Val);
4539   // Add a leading zero so that unsigned values with the msb set are not
4540   // mistaken for negative values when used for signed enumerators.
4541   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4542     Value = Value.zext(Value.getBitWidth() + 1);
4543 
4544   Result =
4545       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4546 
4547   return false;
4548 }
4549 
4550 /// parseDIBasicType:
4551 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4552 ///                    encoding: DW_ATE_encoding, flags: 0)
4553 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4554 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4555   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4556   OPTIONAL(name, MDStringField, );                                             \
4557   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4558   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4559   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4560   OPTIONAL(flags, DIFlagField, );
4561   PARSE_MD_FIELDS();
4562 #undef VISIT_MD_FIELDS
4563 
4564   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4565                                          align.Val, encoding.Val, flags.Val));
4566   return false;
4567 }
4568 
4569 /// parseDIStringType:
4570 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4571 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4572 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4573   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4574   OPTIONAL(name, MDStringField, );                                             \
4575   OPTIONAL(stringLength, MDField, );                                           \
4576   OPTIONAL(stringLengthExpression, MDField, );                                 \
4577   OPTIONAL(stringLocationExpression, MDField, );                               \
4578   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4579   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4580   OPTIONAL(encoding, DwarfAttEncodingField, );
4581   PARSE_MD_FIELDS();
4582 #undef VISIT_MD_FIELDS
4583 
4584   Result = GET_OR_DISTINCT(
4585       DIStringType,
4586       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4587        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4588   return false;
4589 }
4590 
4591 /// parseDIDerivedType:
4592 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4593 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4594 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4595 ///                      dwarfAddressSpace: 3)
4596 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4598   REQUIRED(tag, DwarfTagField, );                                              \
4599   OPTIONAL(name, MDStringField, );                                             \
4600   OPTIONAL(file, MDField, );                                                   \
4601   OPTIONAL(line, LineField, );                                                 \
4602   OPTIONAL(scope, MDField, );                                                  \
4603   REQUIRED(baseType, MDField, );                                               \
4604   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4605   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4606   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4607   OPTIONAL(flags, DIFlagField, );                                              \
4608   OPTIONAL(extraData, MDField, );                                              \
4609   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4610   OPTIONAL(annotations, MDField, );
4611   PARSE_MD_FIELDS();
4612 #undef VISIT_MD_FIELDS
4613 
4614   Optional<unsigned> DWARFAddressSpace;
4615   if (dwarfAddressSpace.Val != UINT32_MAX)
4616     DWARFAddressSpace = dwarfAddressSpace.Val;
4617 
4618   Result = GET_OR_DISTINCT(DIDerivedType,
4619                            (Context, tag.Val, name.Val, file.Val, line.Val,
4620                             scope.Val, baseType.Val, size.Val, align.Val,
4621                             offset.Val, DWARFAddressSpace, flags.Val,
4622                             extraData.Val, annotations.Val));
4623   return false;
4624 }
4625 
4626 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4627 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4628   REQUIRED(tag, DwarfTagField, );                                              \
4629   OPTIONAL(name, MDStringField, );                                             \
4630   OPTIONAL(file, MDField, );                                                   \
4631   OPTIONAL(line, LineField, );                                                 \
4632   OPTIONAL(scope, MDField, );                                                  \
4633   OPTIONAL(baseType, MDField, );                                               \
4634   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4635   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4636   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4637   OPTIONAL(flags, DIFlagField, );                                              \
4638   OPTIONAL(elements, MDField, );                                               \
4639   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4640   OPTIONAL(vtableHolder, MDField, );                                           \
4641   OPTIONAL(templateParams, MDField, );                                         \
4642   OPTIONAL(identifier, MDStringField, );                                       \
4643   OPTIONAL(discriminator, MDField, );                                          \
4644   OPTIONAL(dataLocation, MDField, );                                           \
4645   OPTIONAL(associated, MDField, );                                             \
4646   OPTIONAL(allocated, MDField, );                                              \
4647   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4648   OPTIONAL(annotations, MDField, );
4649   PARSE_MD_FIELDS();
4650 #undef VISIT_MD_FIELDS
4651 
4652   Metadata *Rank = nullptr;
4653   if (rank.isMDSignedField())
4654     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4655         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4656   else if (rank.isMDField())
4657     Rank = rank.getMDFieldValue();
4658 
4659   // If this has an identifier try to build an ODR type.
4660   if (identifier.Val)
4661     if (auto *CT = DICompositeType::buildODRType(
4662             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4663             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4664             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4665             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4666             Rank, annotations.Val)) {
4667       Result = CT;
4668       return false;
4669     }
4670 
4671   // Create a new node, and save it in the context if it belongs in the type
4672   // map.
4673   Result = GET_OR_DISTINCT(
4674       DICompositeType,
4675       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4676        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4677        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4678        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4679        annotations.Val));
4680   return false;
4681 }
4682 
4683 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4685   OPTIONAL(flags, DIFlagField, );                                              \
4686   OPTIONAL(cc, DwarfCCField, );                                                \
4687   REQUIRED(types, MDField, );
4688   PARSE_MD_FIELDS();
4689 #undef VISIT_MD_FIELDS
4690 
4691   Result = GET_OR_DISTINCT(DISubroutineType,
4692                            (Context, flags.Val, cc.Val, types.Val));
4693   return false;
4694 }
4695 
4696 /// parseDIFileType:
4697 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4698 ///                   checksumkind: CSK_MD5,
4699 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4700 ///                   source: "source file contents")
4701 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4702   // The default constructed value for checksumkind is required, but will never
4703   // be used, as the parser checks if the field was actually Seen before using
4704   // the Val.
4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4706   REQUIRED(filename, MDStringField, );                                         \
4707   REQUIRED(directory, MDStringField, );                                        \
4708   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4709   OPTIONAL(checksum, MDStringField, );                                         \
4710   OPTIONAL(source, MDStringField, );
4711   PARSE_MD_FIELDS();
4712 #undef VISIT_MD_FIELDS
4713 
4714   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4715   if (checksumkind.Seen && checksum.Seen)
4716     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4717   else if (checksumkind.Seen || checksum.Seen)
4718     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4719 
4720   Optional<MDString *> OptSource;
4721   if (source.Seen)
4722     OptSource = source.Val;
4723   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4724                                     OptChecksum, OptSource));
4725   return false;
4726 }
4727 
4728 /// parseDICompileUnit:
4729 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4730 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4731 ///                      splitDebugFilename: "abc.debug",
4732 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4733 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4734 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4735 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4736   if (!IsDistinct)
4737     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4738 
4739 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4740   REQUIRED(language, DwarfLangField, );                                        \
4741   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4742   OPTIONAL(producer, MDStringField, );                                         \
4743   OPTIONAL(isOptimized, MDBoolField, );                                        \
4744   OPTIONAL(flags, MDStringField, );                                            \
4745   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4746   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4747   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4748   OPTIONAL(enums, MDField, );                                                  \
4749   OPTIONAL(retainedTypes, MDField, );                                          \
4750   OPTIONAL(globals, MDField, );                                                \
4751   OPTIONAL(imports, MDField, );                                                \
4752   OPTIONAL(macros, MDField, );                                                 \
4753   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4754   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4755   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4756   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4757   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4758   OPTIONAL(sysroot, MDStringField, );                                          \
4759   OPTIONAL(sdk, MDStringField, );
4760   PARSE_MD_FIELDS();
4761 #undef VISIT_MD_FIELDS
4762 
4763   Result = DICompileUnit::getDistinct(
4764       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4765       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4766       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4767       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4768       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4769   return false;
4770 }
4771 
4772 /// parseDISubprogram:
4773 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4774 ///                     file: !1, line: 7, type: !2, isLocal: false,
4775 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4776 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4777 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4778 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4779 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4780 ///                     annotations: !8)
4781 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4782   auto Loc = Lex.getLoc();
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4784   OPTIONAL(scope, MDField, );                                                  \
4785   OPTIONAL(name, MDStringField, );                                             \
4786   OPTIONAL(linkageName, MDStringField, );                                      \
4787   OPTIONAL(file, MDField, );                                                   \
4788   OPTIONAL(line, LineField, );                                                 \
4789   OPTIONAL(type, MDField, );                                                   \
4790   OPTIONAL(isLocal, MDBoolField, );                                            \
4791   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4792   OPTIONAL(scopeLine, LineField, );                                            \
4793   OPTIONAL(containingType, MDField, );                                         \
4794   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4795   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4796   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4797   OPTIONAL(flags, DIFlagField, );                                              \
4798   OPTIONAL(spFlags, DISPFlagField, );                                          \
4799   OPTIONAL(isOptimized, MDBoolField, );                                        \
4800   OPTIONAL(unit, MDField, );                                                   \
4801   OPTIONAL(templateParams, MDField, );                                         \
4802   OPTIONAL(declaration, MDField, );                                            \
4803   OPTIONAL(retainedNodes, MDField, );                                          \
4804   OPTIONAL(thrownTypes, MDField, );                                            \
4805   OPTIONAL(annotations, MDField, );
4806   PARSE_MD_FIELDS();
4807 #undef VISIT_MD_FIELDS
4808 
4809   // An explicit spFlags field takes precedence over individual fields in
4810   // older IR versions.
4811   DISubprogram::DISPFlags SPFlags =
4812       spFlags.Seen ? spFlags.Val
4813                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4814                                              isOptimized.Val, virtuality.Val);
4815   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4816     return Lex.Error(
4817         Loc,
4818         "missing 'distinct', required for !DISubprogram that is a Definition");
4819   Result = GET_OR_DISTINCT(
4820       DISubprogram,
4821       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4822        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4823        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4824        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4825   return false;
4826 }
4827 
4828 /// parseDILexicalBlock:
4829 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4830 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4832   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4833   OPTIONAL(file, MDField, );                                                   \
4834   OPTIONAL(line, LineField, );                                                 \
4835   OPTIONAL(column, ColumnField, );
4836   PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4839   Result = GET_OR_DISTINCT(
4840       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4841   return false;
4842 }
4843 
4844 /// parseDILexicalBlockFile:
4845 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4846 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4848   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4849   OPTIONAL(file, MDField, );                                                   \
4850   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4851   PARSE_MD_FIELDS();
4852 #undef VISIT_MD_FIELDS
4853 
4854   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4855                            (Context, scope.Val, file.Val, discriminator.Val));
4856   return false;
4857 }
4858 
4859 /// parseDICommonBlock:
4860 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4861 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4863   REQUIRED(scope, MDField, );                                                  \
4864   OPTIONAL(declaration, MDField, );                                            \
4865   OPTIONAL(name, MDStringField, );                                             \
4866   OPTIONAL(file, MDField, );                                                   \
4867   OPTIONAL(line, LineField, );
4868   PARSE_MD_FIELDS();
4869 #undef VISIT_MD_FIELDS
4870 
4871   Result = GET_OR_DISTINCT(DICommonBlock,
4872                            (Context, scope.Val, declaration.Val, name.Val,
4873                             file.Val, line.Val));
4874   return false;
4875 }
4876 
4877 /// parseDINamespace:
4878 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4879 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4881   REQUIRED(scope, MDField, );                                                  \
4882   OPTIONAL(name, MDStringField, );                                             \
4883   OPTIONAL(exportSymbols, MDBoolField, );
4884   PARSE_MD_FIELDS();
4885 #undef VISIT_MD_FIELDS
4886 
4887   Result = GET_OR_DISTINCT(DINamespace,
4888                            (Context, scope.Val, name.Val, exportSymbols.Val));
4889   return false;
4890 }
4891 
4892 /// parseDIMacro:
4893 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4894 ///   "SomeValue")
4895 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4897   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4898   OPTIONAL(line, LineField, );                                                 \
4899   REQUIRED(name, MDStringField, );                                             \
4900   OPTIONAL(value, MDStringField, );
4901   PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4903 
4904   Result = GET_OR_DISTINCT(DIMacro,
4905                            (Context, type.Val, line.Val, name.Val, value.Val));
4906   return false;
4907 }
4908 
4909 /// parseDIMacroFile:
4910 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4911 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4913   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4914   OPTIONAL(line, LineField, );                                                 \
4915   REQUIRED(file, MDField, );                                                   \
4916   OPTIONAL(nodes, MDField, );
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(DIMacroFile,
4921                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4922   return false;
4923 }
4924 
4925 /// parseDIModule:
4926 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4927 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4928 ///   file: !1, line: 4, isDecl: false)
4929 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4931   REQUIRED(scope, MDField, );                                                  \
4932   REQUIRED(name, MDStringField, );                                             \
4933   OPTIONAL(configMacros, MDStringField, );                                     \
4934   OPTIONAL(includePath, MDStringField, );                                      \
4935   OPTIONAL(apinotes, MDStringField, );                                         \
4936   OPTIONAL(file, MDField, );                                                   \
4937   OPTIONAL(line, LineField, );                                                 \
4938   OPTIONAL(isDecl, MDBoolField, );
4939   PARSE_MD_FIELDS();
4940 #undef VISIT_MD_FIELDS
4941 
4942   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4943                                       configMacros.Val, includePath.Val,
4944                                       apinotes.Val, line.Val, isDecl.Val));
4945   return false;
4946 }
4947 
4948 /// parseDITemplateTypeParameter:
4949 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4950 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4952   OPTIONAL(name, MDStringField, );                                             \
4953   REQUIRED(type, MDField, );                                                   \
4954   OPTIONAL(defaulted, MDBoolField, );
4955   PARSE_MD_FIELDS();
4956 #undef VISIT_MD_FIELDS
4957 
4958   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4959                            (Context, name.Val, type.Val, defaulted.Val));
4960   return false;
4961 }
4962 
4963 /// parseDITemplateValueParameter:
4964 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4965 ///                                 name: "V", type: !1, defaulted: false,
4966 ///                                 value: i32 7)
4967 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4969   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4970   OPTIONAL(name, MDStringField, );                                             \
4971   OPTIONAL(type, MDField, );                                                   \
4972   OPTIONAL(defaulted, MDBoolField, );                                          \
4973   REQUIRED(value, MDField, );
4974 
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Result = GET_OR_DISTINCT(
4979       DITemplateValueParameter,
4980       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4981   return false;
4982 }
4983 
4984 /// parseDIGlobalVariable:
4985 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4986 ///                         file: !1, line: 7, type: !2, isLocal: false,
4987 ///                         isDefinition: true, templateParams: !3,
4988 ///                         declaration: !4, align: 8)
4989 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4990 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4991   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4992   OPTIONAL(scope, MDField, );                                                  \
4993   OPTIONAL(linkageName, MDStringField, );                                      \
4994   OPTIONAL(file, MDField, );                                                   \
4995   OPTIONAL(line, LineField, );                                                 \
4996   OPTIONAL(type, MDField, );                                                   \
4997   OPTIONAL(isLocal, MDBoolField, );                                            \
4998   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4999   OPTIONAL(templateParams, MDField, );                                         \
5000   OPTIONAL(declaration, MDField, );                                            \
5001   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5002   OPTIONAL(annotations, MDField, );
5003   PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5005 
5006   Result =
5007       GET_OR_DISTINCT(DIGlobalVariable,
5008                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5009                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5010                        declaration.Val, templateParams.Val, align.Val,
5011                        annotations.Val));
5012   return false;
5013 }
5014 
5015 /// parseDILocalVariable:
5016 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5017 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5018 ///                        align: 8)
5019 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5020 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5021 ///                        align: 8)
5022 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5024   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5025   OPTIONAL(name, MDStringField, );                                             \
5026   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5027   OPTIONAL(file, MDField, );                                                   \
5028   OPTIONAL(line, LineField, );                                                 \
5029   OPTIONAL(type, MDField, );                                                   \
5030   OPTIONAL(flags, DIFlagField, );                                              \
5031   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5032   OPTIONAL(annotations, MDField, );
5033   PARSE_MD_FIELDS();
5034 #undef VISIT_MD_FIELDS
5035 
5036   Result = GET_OR_DISTINCT(DILocalVariable,
5037                            (Context, scope.Val, name.Val, file.Val, line.Val,
5038                             type.Val, arg.Val, flags.Val, align.Val,
5039                             annotations.Val));
5040   return false;
5041 }
5042 
5043 /// parseDILabel:
5044 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5045 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5047   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5048   REQUIRED(name, MDStringField, );                                             \
5049   REQUIRED(file, MDField, );                                                   \
5050   REQUIRED(line, LineField, );
5051   PARSE_MD_FIELDS();
5052 #undef VISIT_MD_FIELDS
5053 
5054   Result = GET_OR_DISTINCT(DILabel,
5055                            (Context, scope.Val, name.Val, file.Val, line.Val));
5056   return false;
5057 }
5058 
5059 /// parseDIExpression:
5060 ///   ::= !DIExpression(0, 7, -1)
5061 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5062   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5063   Lex.Lex();
5064 
5065   if (parseToken(lltok::lparen, "expected '(' here"))
5066     return true;
5067 
5068   SmallVector<uint64_t, 8> Elements;
5069   if (Lex.getKind() != lltok::rparen)
5070     do {
5071       if (Lex.getKind() == lltok::DwarfOp) {
5072         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5073           Lex.Lex();
5074           Elements.push_back(Op);
5075           continue;
5076         }
5077         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5078       }
5079 
5080       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5081         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5082           Lex.Lex();
5083           Elements.push_back(Op);
5084           continue;
5085         }
5086         return tokError(Twine("invalid DWARF attribute encoding '") +
5087                         Lex.getStrVal() + "'");
5088       }
5089 
5090       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5091         return tokError("expected unsigned integer");
5092 
5093       auto &U = Lex.getAPSIntVal();
5094       if (U.ugt(UINT64_MAX))
5095         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5096       Elements.push_back(U.getZExtValue());
5097       Lex.Lex();
5098     } while (EatIfPresent(lltok::comma));
5099 
5100   if (parseToken(lltok::rparen, "expected ')' here"))
5101     return true;
5102 
5103   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5104   return false;
5105 }
5106 
5107 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5108   return parseDIArgList(Result, IsDistinct, nullptr);
5109 }
5110 /// ParseDIArgList:
5111 ///   ::= !DIArgList(i32 7, i64 %0)
5112 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5113                               PerFunctionState *PFS) {
5114   assert(PFS && "Expected valid function state");
5115   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5116   Lex.Lex();
5117 
5118   if (parseToken(lltok::lparen, "expected '(' here"))
5119     return true;
5120 
5121   SmallVector<ValueAsMetadata *, 4> Args;
5122   if (Lex.getKind() != lltok::rparen)
5123     do {
5124       Metadata *MD;
5125       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5126         return true;
5127       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5128     } while (EatIfPresent(lltok::comma));
5129 
5130   if (parseToken(lltok::rparen, "expected ')' here"))
5131     return true;
5132 
5133   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5134   return false;
5135 }
5136 
5137 /// parseDIGlobalVariableExpression:
5138 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5139 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5140                                                bool IsDistinct) {
5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5142   REQUIRED(var, MDField, );                                                    \
5143   REQUIRED(expr, MDField, );
5144   PARSE_MD_FIELDS();
5145 #undef VISIT_MD_FIELDS
5146 
5147   Result =
5148       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5149   return false;
5150 }
5151 
5152 /// parseDIObjCProperty:
5153 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5154 ///                       getter: "getFoo", attributes: 7, type: !2)
5155 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5157   OPTIONAL(name, MDStringField, );                                             \
5158   OPTIONAL(file, MDField, );                                                   \
5159   OPTIONAL(line, LineField, );                                                 \
5160   OPTIONAL(setter, MDStringField, );                                           \
5161   OPTIONAL(getter, MDStringField, );                                           \
5162   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5163   OPTIONAL(type, MDField, );
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result = GET_OR_DISTINCT(DIObjCProperty,
5168                            (Context, name.Val, file.Val, line.Val, setter.Val,
5169                             getter.Val, attributes.Val, type.Val));
5170   return false;
5171 }
5172 
5173 /// parseDIImportedEntity:
5174 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5175 ///                         line: 7, name: "foo", elements: !2)
5176 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5178   REQUIRED(tag, DwarfTagField, );                                              \
5179   REQUIRED(scope, MDField, );                                                  \
5180   OPTIONAL(entity, MDField, );                                                 \
5181   OPTIONAL(file, MDField, );                                                   \
5182   OPTIONAL(line, LineField, );                                                 \
5183   OPTIONAL(name, MDStringField, );                                             \
5184   OPTIONAL(elements, MDField, );
5185   PARSE_MD_FIELDS();
5186 #undef VISIT_MD_FIELDS
5187 
5188   Result = GET_OR_DISTINCT(DIImportedEntity,
5189                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5190                             line.Val, name.Val, elements.Val));
5191   return false;
5192 }
5193 
5194 #undef PARSE_MD_FIELD
5195 #undef NOP_FIELD
5196 #undef REQUIRE_FIELD
5197 #undef DECLARE_FIELD
5198 
5199 /// parseMetadataAsValue
5200 ///  ::= metadata i32 %local
5201 ///  ::= metadata i32 @global
5202 ///  ::= metadata i32 7
5203 ///  ::= metadata !0
5204 ///  ::= metadata !{...}
5205 ///  ::= metadata !"string"
5206 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5207   // Note: the type 'metadata' has already been parsed.
5208   Metadata *MD;
5209   if (parseMetadata(MD, &PFS))
5210     return true;
5211 
5212   V = MetadataAsValue::get(Context, MD);
5213   return false;
5214 }
5215 
5216 /// parseValueAsMetadata
5217 ///  ::= i32 %local
5218 ///  ::= i32 @global
5219 ///  ::= i32 7
5220 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5221                                     PerFunctionState *PFS) {
5222   Type *Ty;
5223   LocTy Loc;
5224   if (parseType(Ty, TypeMsg, Loc))
5225     return true;
5226   if (Ty->isMetadataTy())
5227     return error(Loc, "invalid metadata-value-metadata roundtrip");
5228 
5229   Value *V;
5230   if (parseValue(Ty, V, PFS))
5231     return true;
5232 
5233   MD = ValueAsMetadata::get(V);
5234   return false;
5235 }
5236 
5237 /// parseMetadata
5238 ///  ::= i32 %local
5239 ///  ::= i32 @global
5240 ///  ::= i32 7
5241 ///  ::= !42
5242 ///  ::= !{...}
5243 ///  ::= !"string"
5244 ///  ::= !DILocation(...)
5245 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5246   if (Lex.getKind() == lltok::MetadataVar) {
5247     MDNode *N;
5248     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5249     // so parsing this requires a Function State.
5250     if (Lex.getStrVal() == "DIArgList") {
5251       if (parseDIArgList(N, false, PFS))
5252         return true;
5253     } else if (parseSpecializedMDNode(N)) {
5254       return true;
5255     }
5256     MD = N;
5257     return false;
5258   }
5259 
5260   // ValueAsMetadata:
5261   // <type> <value>
5262   if (Lex.getKind() != lltok::exclaim)
5263     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5264 
5265   // '!'.
5266   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5267   Lex.Lex();
5268 
5269   // MDString:
5270   //   ::= '!' STRINGCONSTANT
5271   if (Lex.getKind() == lltok::StringConstant) {
5272     MDString *S;
5273     if (parseMDString(S))
5274       return true;
5275     MD = S;
5276     return false;
5277   }
5278 
5279   // MDNode:
5280   // !{ ... }
5281   // !7
5282   MDNode *N;
5283   if (parseMDNodeTail(N))
5284     return true;
5285   MD = N;
5286   return false;
5287 }
5288 
5289 //===----------------------------------------------------------------------===//
5290 // Function Parsing.
5291 //===----------------------------------------------------------------------===//
5292 
5293 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5294                                    PerFunctionState *PFS) {
5295   if (Ty->isFunctionTy())
5296     return error(ID.Loc, "functions are not values, refer to them as pointers");
5297 
5298   switch (ID.Kind) {
5299   case ValID::t_LocalID:
5300     if (!PFS)
5301       return error(ID.Loc, "invalid use of function-local name");
5302     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5303     return V == nullptr;
5304   case ValID::t_LocalName:
5305     if (!PFS)
5306       return error(ID.Loc, "invalid use of function-local name");
5307     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5308     return V == nullptr;
5309   case ValID::t_InlineAsm: {
5310     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5311       return error(ID.Loc, "invalid type for inline asm constraint string");
5312     V = InlineAsm::get(
5313         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5314         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5315     return false;
5316   }
5317   case ValID::t_GlobalName:
5318     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5319     if (V && ID.NoCFI)
5320       V = NoCFIValue::get(cast<GlobalValue>(V));
5321     return V == nullptr;
5322   case ValID::t_GlobalID:
5323     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5324     if (V && ID.NoCFI)
5325       V = NoCFIValue::get(cast<GlobalValue>(V));
5326     return V == nullptr;
5327   case ValID::t_APSInt:
5328     if (!Ty->isIntegerTy())
5329       return error(ID.Loc, "integer constant must have integer type");
5330     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5331     V = ConstantInt::get(Context, ID.APSIntVal);
5332     return false;
5333   case ValID::t_APFloat:
5334     if (!Ty->isFloatingPointTy() ||
5335         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5336       return error(ID.Loc, "floating point constant invalid for type");
5337 
5338     // The lexer has no type info, so builds all half, bfloat, float, and double
5339     // FP constants as double.  Fix this here.  Long double does not need this.
5340     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5341       // Check for signaling before potentially converting and losing that info.
5342       bool IsSNAN = ID.APFloatVal.isSignaling();
5343       bool Ignored;
5344       if (Ty->isHalfTy())
5345         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5346                               &Ignored);
5347       else if (Ty->isBFloatTy())
5348         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5349                               &Ignored);
5350       else if (Ty->isFloatTy())
5351         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5352                               &Ignored);
5353       if (IsSNAN) {
5354         // The convert call above may quiet an SNaN, so manufacture another
5355         // SNaN. The bitcast works because the payload (significand) parameter
5356         // is truncated to fit.
5357         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5358         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5359                                          ID.APFloatVal.isNegative(), &Payload);
5360       }
5361     }
5362     V = ConstantFP::get(Context, ID.APFloatVal);
5363 
5364     if (V->getType() != Ty)
5365       return error(ID.Loc, "floating point constant does not have type '" +
5366                                getTypeString(Ty) + "'");
5367 
5368     return false;
5369   case ValID::t_Null:
5370     if (!Ty->isPointerTy())
5371       return error(ID.Loc, "null must be a pointer type");
5372     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5373     return false;
5374   case ValID::t_Undef:
5375     // FIXME: LabelTy should not be a first-class type.
5376     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5377       return error(ID.Loc, "invalid type for undef constant");
5378     V = UndefValue::get(Ty);
5379     return false;
5380   case ValID::t_EmptyArray:
5381     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5382       return error(ID.Loc, "invalid empty array initializer");
5383     V = UndefValue::get(Ty);
5384     return false;
5385   case ValID::t_Zero:
5386     // FIXME: LabelTy should not be a first-class type.
5387     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5388       return error(ID.Loc, "invalid type for null constant");
5389     V = Constant::getNullValue(Ty);
5390     return false;
5391   case ValID::t_None:
5392     if (!Ty->isTokenTy())
5393       return error(ID.Loc, "invalid type for none constant");
5394     V = Constant::getNullValue(Ty);
5395     return false;
5396   case ValID::t_Poison:
5397     // FIXME: LabelTy should not be a first-class type.
5398     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5399       return error(ID.Loc, "invalid type for poison constant");
5400     V = PoisonValue::get(Ty);
5401     return false;
5402   case ValID::t_Constant:
5403     if (ID.ConstantVal->getType() != Ty)
5404       return error(ID.Loc, "constant expression type mismatch: got type '" +
5405                                getTypeString(ID.ConstantVal->getType()) +
5406                                "' but expected '" + getTypeString(Ty) + "'");
5407     V = ID.ConstantVal;
5408     return false;
5409   case ValID::t_ConstantStruct:
5410   case ValID::t_PackedConstantStruct:
5411     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5412       if (ST->getNumElements() != ID.UIntVal)
5413         return error(ID.Loc,
5414                      "initializer with struct type has wrong # elements");
5415       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5416         return error(ID.Loc, "packed'ness of initializer and type don't match");
5417 
5418       // Verify that the elements are compatible with the structtype.
5419       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5420         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5421           return error(
5422               ID.Loc,
5423               "element " + Twine(i) +
5424                   " of struct initializer doesn't match struct element type");
5425 
5426       V = ConstantStruct::get(
5427           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5428     } else
5429       return error(ID.Loc, "constant expression type mismatch");
5430     return false;
5431   }
5432   llvm_unreachable("Invalid ValID");
5433 }
5434 
5435 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5436   C = nullptr;
5437   ValID ID;
5438   auto Loc = Lex.getLoc();
5439   if (parseValID(ID, /*PFS=*/nullptr))
5440     return true;
5441   switch (ID.Kind) {
5442   case ValID::t_APSInt:
5443   case ValID::t_APFloat:
5444   case ValID::t_Undef:
5445   case ValID::t_Constant:
5446   case ValID::t_ConstantStruct:
5447   case ValID::t_PackedConstantStruct: {
5448     Value *V;
5449     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5450       return true;
5451     assert(isa<Constant>(V) && "Expected a constant value");
5452     C = cast<Constant>(V);
5453     return false;
5454   }
5455   case ValID::t_Null:
5456     C = Constant::getNullValue(Ty);
5457     return false;
5458   default:
5459     return error(Loc, "expected a constant value");
5460   }
5461 }
5462 
5463 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5464   V = nullptr;
5465   ValID ID;
5466   return parseValID(ID, PFS, Ty) ||
5467          convertValIDToValue(Ty, ID, V, PFS);
5468 }
5469 
5470 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5471   Type *Ty = nullptr;
5472   return parseType(Ty) || parseValue(Ty, V, PFS);
5473 }
5474 
5475 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5476                                       PerFunctionState &PFS) {
5477   Value *V;
5478   Loc = Lex.getLoc();
5479   if (parseTypeAndValue(V, PFS))
5480     return true;
5481   if (!isa<BasicBlock>(V))
5482     return error(Loc, "expected a basic block");
5483   BB = cast<BasicBlock>(V);
5484   return false;
5485 }
5486 
5487 /// FunctionHeader
5488 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5489 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5490 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5491 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5492 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5493   // parse the linkage.
5494   LocTy LinkageLoc = Lex.getLoc();
5495   unsigned Linkage;
5496   unsigned Visibility;
5497   unsigned DLLStorageClass;
5498   bool DSOLocal;
5499   AttrBuilder RetAttrs(M->getContext());
5500   unsigned CC;
5501   bool HasLinkage;
5502   Type *RetType = nullptr;
5503   LocTy RetTypeLoc = Lex.getLoc();
5504   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5505                            DSOLocal) ||
5506       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5507       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5508     return true;
5509 
5510   // Verify that the linkage is ok.
5511   switch ((GlobalValue::LinkageTypes)Linkage) {
5512   case GlobalValue::ExternalLinkage:
5513     break; // always ok.
5514   case GlobalValue::ExternalWeakLinkage:
5515     if (IsDefine)
5516       return error(LinkageLoc, "invalid linkage for function definition");
5517     break;
5518   case GlobalValue::PrivateLinkage:
5519   case GlobalValue::InternalLinkage:
5520   case GlobalValue::AvailableExternallyLinkage:
5521   case GlobalValue::LinkOnceAnyLinkage:
5522   case GlobalValue::LinkOnceODRLinkage:
5523   case GlobalValue::WeakAnyLinkage:
5524   case GlobalValue::WeakODRLinkage:
5525     if (!IsDefine)
5526       return error(LinkageLoc, "invalid linkage for function declaration");
5527     break;
5528   case GlobalValue::AppendingLinkage:
5529   case GlobalValue::CommonLinkage:
5530     return error(LinkageLoc, "invalid function linkage type");
5531   }
5532 
5533   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5534     return error(LinkageLoc,
5535                  "symbol with local linkage must have default visibility");
5536 
5537   if (!FunctionType::isValidReturnType(RetType))
5538     return error(RetTypeLoc, "invalid function return type");
5539 
5540   LocTy NameLoc = Lex.getLoc();
5541 
5542   std::string FunctionName;
5543   if (Lex.getKind() == lltok::GlobalVar) {
5544     FunctionName = Lex.getStrVal();
5545   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5546     unsigned NameID = Lex.getUIntVal();
5547 
5548     if (NameID != NumberedVals.size())
5549       return tokError("function expected to be numbered '%" +
5550                       Twine(NumberedVals.size()) + "'");
5551   } else {
5552     return tokError("expected function name");
5553   }
5554 
5555   Lex.Lex();
5556 
5557   if (Lex.getKind() != lltok::lparen)
5558     return tokError("expected '(' in function argument list");
5559 
5560   SmallVector<ArgInfo, 8> ArgList;
5561   bool IsVarArg;
5562   AttrBuilder FuncAttrs(M->getContext());
5563   std::vector<unsigned> FwdRefAttrGrps;
5564   LocTy BuiltinLoc;
5565   std::string Section;
5566   std::string Partition;
5567   MaybeAlign Alignment;
5568   std::string GC;
5569   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5570   unsigned AddrSpace = 0;
5571   Constant *Prefix = nullptr;
5572   Constant *Prologue = nullptr;
5573   Constant *PersonalityFn = nullptr;
5574   Comdat *C;
5575 
5576   if (parseArgumentList(ArgList, IsVarArg) ||
5577       parseOptionalUnnamedAddr(UnnamedAddr) ||
5578       parseOptionalProgramAddrSpace(AddrSpace) ||
5579       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5580                                  BuiltinLoc) ||
5581       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5582       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5583       parseOptionalComdat(FunctionName, C) ||
5584       parseOptionalAlignment(Alignment) ||
5585       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5586       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5587       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5588       (EatIfPresent(lltok::kw_personality) &&
5589        parseGlobalTypeAndValue(PersonalityFn)))
5590     return true;
5591 
5592   if (FuncAttrs.contains(Attribute::Builtin))
5593     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5594 
5595   // If the alignment was parsed as an attribute, move to the alignment field.
5596   if (FuncAttrs.hasAlignmentAttr()) {
5597     Alignment = FuncAttrs.getAlignment();
5598     FuncAttrs.removeAttribute(Attribute::Alignment);
5599   }
5600 
5601   // Okay, if we got here, the function is syntactically valid.  Convert types
5602   // and do semantic checks.
5603   std::vector<Type*> ParamTypeList;
5604   SmallVector<AttributeSet, 8> Attrs;
5605 
5606   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5607     ParamTypeList.push_back(ArgList[i].Ty);
5608     Attrs.push_back(ArgList[i].Attrs);
5609   }
5610 
5611   AttributeList PAL =
5612       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5613                          AttributeSet::get(Context, RetAttrs), Attrs);
5614 
5615   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5616     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5617 
5618   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5619   PointerType *PFT = PointerType::get(FT, AddrSpace);
5620 
5621   Fn = nullptr;
5622   GlobalValue *FwdFn = nullptr;
5623   if (!FunctionName.empty()) {
5624     // If this was a definition of a forward reference, remove the definition
5625     // from the forward reference table and fill in the forward ref.
5626     auto FRVI = ForwardRefVals.find(FunctionName);
5627     if (FRVI != ForwardRefVals.end()) {
5628       FwdFn = FRVI->second.first;
5629       if (!FwdFn->getType()->isOpaque() &&
5630           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5631         return error(FRVI->second.second, "invalid forward reference to "
5632                                           "function as global value!");
5633       if (FwdFn->getType() != PFT)
5634         return error(FRVI->second.second,
5635                      "invalid forward reference to "
5636                      "function '" +
5637                          FunctionName +
5638                          "' with wrong type: "
5639                          "expected '" +
5640                          getTypeString(PFT) + "' but was '" +
5641                          getTypeString(FwdFn->getType()) + "'");
5642       ForwardRefVals.erase(FRVI);
5643     } else if ((Fn = M->getFunction(FunctionName))) {
5644       // Reject redefinitions.
5645       return error(NameLoc,
5646                    "invalid redefinition of function '" + FunctionName + "'");
5647     } else if (M->getNamedValue(FunctionName)) {
5648       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5649     }
5650 
5651   } else {
5652     // If this is a definition of a forward referenced function, make sure the
5653     // types agree.
5654     auto I = ForwardRefValIDs.find(NumberedVals.size());
5655     if (I != ForwardRefValIDs.end()) {
5656       FwdFn = I->second.first;
5657       if (FwdFn->getType() != PFT)
5658         return error(NameLoc, "type of definition and forward reference of '@" +
5659                                   Twine(NumberedVals.size()) +
5660                                   "' disagree: "
5661                                   "expected '" +
5662                                   getTypeString(PFT) + "' but was '" +
5663                                   getTypeString(FwdFn->getType()) + "'");
5664       ForwardRefValIDs.erase(I);
5665     }
5666   }
5667 
5668   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5669                         FunctionName, M);
5670 
5671   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5672 
5673   if (FunctionName.empty())
5674     NumberedVals.push_back(Fn);
5675 
5676   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5677   maybeSetDSOLocal(DSOLocal, *Fn);
5678   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5679   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5680   Fn->setCallingConv(CC);
5681   Fn->setAttributes(PAL);
5682   Fn->setUnnamedAddr(UnnamedAddr);
5683   Fn->setAlignment(MaybeAlign(Alignment));
5684   Fn->setSection(Section);
5685   Fn->setPartition(Partition);
5686   Fn->setComdat(C);
5687   Fn->setPersonalityFn(PersonalityFn);
5688   if (!GC.empty()) Fn->setGC(GC);
5689   Fn->setPrefixData(Prefix);
5690   Fn->setPrologueData(Prologue);
5691   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5692 
5693   // Add all of the arguments we parsed to the function.
5694   Function::arg_iterator ArgIt = Fn->arg_begin();
5695   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5696     // If the argument has a name, insert it into the argument symbol table.
5697     if (ArgList[i].Name.empty()) continue;
5698 
5699     // Set the name, if it conflicted, it will be auto-renamed.
5700     ArgIt->setName(ArgList[i].Name);
5701 
5702     if (ArgIt->getName() != ArgList[i].Name)
5703       return error(ArgList[i].Loc,
5704                    "redefinition of argument '%" + ArgList[i].Name + "'");
5705   }
5706 
5707   if (FwdFn) {
5708     FwdFn->replaceAllUsesWith(Fn);
5709     FwdFn->eraseFromParent();
5710   }
5711 
5712   if (IsDefine)
5713     return false;
5714 
5715   // Check the declaration has no block address forward references.
5716   ValID ID;
5717   if (FunctionName.empty()) {
5718     ID.Kind = ValID::t_GlobalID;
5719     ID.UIntVal = NumberedVals.size() - 1;
5720   } else {
5721     ID.Kind = ValID::t_GlobalName;
5722     ID.StrVal = FunctionName;
5723   }
5724   auto Blocks = ForwardRefBlockAddresses.find(ID);
5725   if (Blocks != ForwardRefBlockAddresses.end())
5726     return error(Blocks->first.Loc,
5727                  "cannot take blockaddress inside a declaration");
5728   return false;
5729 }
5730 
5731 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5732   ValID ID;
5733   if (FunctionNumber == -1) {
5734     ID.Kind = ValID::t_GlobalName;
5735     ID.StrVal = std::string(F.getName());
5736   } else {
5737     ID.Kind = ValID::t_GlobalID;
5738     ID.UIntVal = FunctionNumber;
5739   }
5740 
5741   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5742   if (Blocks == P.ForwardRefBlockAddresses.end())
5743     return false;
5744 
5745   for (const auto &I : Blocks->second) {
5746     const ValID &BBID = I.first;
5747     GlobalValue *GV = I.second;
5748 
5749     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5750            "Expected local id or name");
5751     BasicBlock *BB;
5752     if (BBID.Kind == ValID::t_LocalName)
5753       BB = getBB(BBID.StrVal, BBID.Loc);
5754     else
5755       BB = getBB(BBID.UIntVal, BBID.Loc);
5756     if (!BB)
5757       return P.error(BBID.Loc, "referenced value is not a basic block");
5758 
5759     Value *ResolvedVal = BlockAddress::get(&F, BB);
5760     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5761                                            ResolvedVal);
5762     if (!ResolvedVal)
5763       return true;
5764     GV->replaceAllUsesWith(ResolvedVal);
5765     GV->eraseFromParent();
5766   }
5767 
5768   P.ForwardRefBlockAddresses.erase(Blocks);
5769   return false;
5770 }
5771 
5772 /// parseFunctionBody
5773 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5774 bool LLParser::parseFunctionBody(Function &Fn) {
5775   if (Lex.getKind() != lltok::lbrace)
5776     return tokError("expected '{' in function body");
5777   Lex.Lex();  // eat the {.
5778 
5779   int FunctionNumber = -1;
5780   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5781 
5782   PerFunctionState PFS(*this, Fn, FunctionNumber);
5783 
5784   // Resolve block addresses and allow basic blocks to be forward-declared
5785   // within this function.
5786   if (PFS.resolveForwardRefBlockAddresses())
5787     return true;
5788   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5789 
5790   // We need at least one basic block.
5791   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5792     return tokError("function body requires at least one basic block");
5793 
5794   while (Lex.getKind() != lltok::rbrace &&
5795          Lex.getKind() != lltok::kw_uselistorder)
5796     if (parseBasicBlock(PFS))
5797       return true;
5798 
5799   while (Lex.getKind() != lltok::rbrace)
5800     if (parseUseListOrder(&PFS))
5801       return true;
5802 
5803   // Eat the }.
5804   Lex.Lex();
5805 
5806   // Verify function is ok.
5807   return PFS.finishFunction();
5808 }
5809 
5810 /// parseBasicBlock
5811 ///   ::= (LabelStr|LabelID)? Instruction*
5812 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5813   // If this basic block starts out with a name, remember it.
5814   std::string Name;
5815   int NameID = -1;
5816   LocTy NameLoc = Lex.getLoc();
5817   if (Lex.getKind() == lltok::LabelStr) {
5818     Name = Lex.getStrVal();
5819     Lex.Lex();
5820   } else if (Lex.getKind() == lltok::LabelID) {
5821     NameID = Lex.getUIntVal();
5822     Lex.Lex();
5823   }
5824 
5825   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5826   if (!BB)
5827     return true;
5828 
5829   std::string NameStr;
5830 
5831   // parse the instructions in this block until we get a terminator.
5832   Instruction *Inst;
5833   do {
5834     // This instruction may have three possibilities for a name: a) none
5835     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5836     LocTy NameLoc = Lex.getLoc();
5837     int NameID = -1;
5838     NameStr = "";
5839 
5840     if (Lex.getKind() == lltok::LocalVarID) {
5841       NameID = Lex.getUIntVal();
5842       Lex.Lex();
5843       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5844         return true;
5845     } else if (Lex.getKind() == lltok::LocalVar) {
5846       NameStr = Lex.getStrVal();
5847       Lex.Lex();
5848       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5849         return true;
5850     }
5851 
5852     switch (parseInstruction(Inst, BB, PFS)) {
5853     default:
5854       llvm_unreachable("Unknown parseInstruction result!");
5855     case InstError: return true;
5856     case InstNormal:
5857       BB->getInstList().push_back(Inst);
5858 
5859       // With a normal result, we check to see if the instruction is followed by
5860       // a comma and metadata.
5861       if (EatIfPresent(lltok::comma))
5862         if (parseInstructionMetadata(*Inst))
5863           return true;
5864       break;
5865     case InstExtraComma:
5866       BB->getInstList().push_back(Inst);
5867 
5868       // If the instruction parser ate an extra comma at the end of it, it
5869       // *must* be followed by metadata.
5870       if (parseInstructionMetadata(*Inst))
5871         return true;
5872       break;
5873     }
5874 
5875     // Set the name on the instruction.
5876     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5877       return true;
5878   } while (!Inst->isTerminator());
5879 
5880   return false;
5881 }
5882 
5883 //===----------------------------------------------------------------------===//
5884 // Instruction Parsing.
5885 //===----------------------------------------------------------------------===//
5886 
5887 /// parseInstruction - parse one of the many different instructions.
5888 ///
5889 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5890                                PerFunctionState &PFS) {
5891   lltok::Kind Token = Lex.getKind();
5892   if (Token == lltok::Eof)
5893     return tokError("found end of file when expecting more instructions");
5894   LocTy Loc = Lex.getLoc();
5895   unsigned KeywordVal = Lex.getUIntVal();
5896   Lex.Lex();  // Eat the keyword.
5897 
5898   switch (Token) {
5899   default:
5900     return error(Loc, "expected instruction opcode");
5901   // Terminator Instructions.
5902   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5903   case lltok::kw_ret:
5904     return parseRet(Inst, BB, PFS);
5905   case lltok::kw_br:
5906     return parseBr(Inst, PFS);
5907   case lltok::kw_switch:
5908     return parseSwitch(Inst, PFS);
5909   case lltok::kw_indirectbr:
5910     return parseIndirectBr(Inst, PFS);
5911   case lltok::kw_invoke:
5912     return parseInvoke(Inst, PFS);
5913   case lltok::kw_resume:
5914     return parseResume(Inst, PFS);
5915   case lltok::kw_cleanupret:
5916     return parseCleanupRet(Inst, PFS);
5917   case lltok::kw_catchret:
5918     return parseCatchRet(Inst, PFS);
5919   case lltok::kw_catchswitch:
5920     return parseCatchSwitch(Inst, PFS);
5921   case lltok::kw_catchpad:
5922     return parseCatchPad(Inst, PFS);
5923   case lltok::kw_cleanuppad:
5924     return parseCleanupPad(Inst, PFS);
5925   case lltok::kw_callbr:
5926     return parseCallBr(Inst, PFS);
5927   // Unary Operators.
5928   case lltok::kw_fneg: {
5929     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5930     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5931     if (Res != 0)
5932       return Res;
5933     if (FMF.any())
5934       Inst->setFastMathFlags(FMF);
5935     return false;
5936   }
5937   // Binary Operators.
5938   case lltok::kw_add:
5939   case lltok::kw_sub:
5940   case lltok::kw_mul:
5941   case lltok::kw_shl: {
5942     bool NUW = EatIfPresent(lltok::kw_nuw);
5943     bool NSW = EatIfPresent(lltok::kw_nsw);
5944     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5945 
5946     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5947       return true;
5948 
5949     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5950     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5951     return false;
5952   }
5953   case lltok::kw_fadd:
5954   case lltok::kw_fsub:
5955   case lltok::kw_fmul:
5956   case lltok::kw_fdiv:
5957   case lltok::kw_frem: {
5958     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5959     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5960     if (Res != 0)
5961       return Res;
5962     if (FMF.any())
5963       Inst->setFastMathFlags(FMF);
5964     return 0;
5965   }
5966 
5967   case lltok::kw_sdiv:
5968   case lltok::kw_udiv:
5969   case lltok::kw_lshr:
5970   case lltok::kw_ashr: {
5971     bool Exact = EatIfPresent(lltok::kw_exact);
5972 
5973     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5974       return true;
5975     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5976     return false;
5977   }
5978 
5979   case lltok::kw_urem:
5980   case lltok::kw_srem:
5981     return parseArithmetic(Inst, PFS, KeywordVal,
5982                            /*IsFP*/ false);
5983   case lltok::kw_and:
5984   case lltok::kw_or:
5985   case lltok::kw_xor:
5986     return parseLogical(Inst, PFS, KeywordVal);
5987   case lltok::kw_icmp:
5988     return parseCompare(Inst, PFS, KeywordVal);
5989   case lltok::kw_fcmp: {
5990     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5991     int Res = parseCompare(Inst, PFS, KeywordVal);
5992     if (Res != 0)
5993       return Res;
5994     if (FMF.any())
5995       Inst->setFastMathFlags(FMF);
5996     return 0;
5997   }
5998 
5999   // Casts.
6000   case lltok::kw_trunc:
6001   case lltok::kw_zext:
6002   case lltok::kw_sext:
6003   case lltok::kw_fptrunc:
6004   case lltok::kw_fpext:
6005   case lltok::kw_bitcast:
6006   case lltok::kw_addrspacecast:
6007   case lltok::kw_uitofp:
6008   case lltok::kw_sitofp:
6009   case lltok::kw_fptoui:
6010   case lltok::kw_fptosi:
6011   case lltok::kw_inttoptr:
6012   case lltok::kw_ptrtoint:
6013     return parseCast(Inst, PFS, KeywordVal);
6014   // Other.
6015   case lltok::kw_select: {
6016     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6017     int Res = parseSelect(Inst, PFS);
6018     if (Res != 0)
6019       return Res;
6020     if (FMF.any()) {
6021       if (!isa<FPMathOperator>(Inst))
6022         return error(Loc, "fast-math-flags specified for select without "
6023                           "floating-point scalar or vector return type");
6024       Inst->setFastMathFlags(FMF);
6025     }
6026     return 0;
6027   }
6028   case lltok::kw_va_arg:
6029     return parseVAArg(Inst, PFS);
6030   case lltok::kw_extractelement:
6031     return parseExtractElement(Inst, PFS);
6032   case lltok::kw_insertelement:
6033     return parseInsertElement(Inst, PFS);
6034   case lltok::kw_shufflevector:
6035     return parseShuffleVector(Inst, PFS);
6036   case lltok::kw_phi: {
6037     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6038     int Res = parsePHI(Inst, PFS);
6039     if (Res != 0)
6040       return Res;
6041     if (FMF.any()) {
6042       if (!isa<FPMathOperator>(Inst))
6043         return error(Loc, "fast-math-flags specified for phi without "
6044                           "floating-point scalar or vector return type");
6045       Inst->setFastMathFlags(FMF);
6046     }
6047     return 0;
6048   }
6049   case lltok::kw_landingpad:
6050     return parseLandingPad(Inst, PFS);
6051   case lltok::kw_freeze:
6052     return parseFreeze(Inst, PFS);
6053   // Call.
6054   case lltok::kw_call:
6055     return parseCall(Inst, PFS, CallInst::TCK_None);
6056   case lltok::kw_tail:
6057     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6058   case lltok::kw_musttail:
6059     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6060   case lltok::kw_notail:
6061     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6062   // Memory.
6063   case lltok::kw_alloca:
6064     return parseAlloc(Inst, PFS);
6065   case lltok::kw_load:
6066     return parseLoad(Inst, PFS);
6067   case lltok::kw_store:
6068     return parseStore(Inst, PFS);
6069   case lltok::kw_cmpxchg:
6070     return parseCmpXchg(Inst, PFS);
6071   case lltok::kw_atomicrmw:
6072     return parseAtomicRMW(Inst, PFS);
6073   case lltok::kw_fence:
6074     return parseFence(Inst, PFS);
6075   case lltok::kw_getelementptr:
6076     return parseGetElementPtr(Inst, PFS);
6077   case lltok::kw_extractvalue:
6078     return parseExtractValue(Inst, PFS);
6079   case lltok::kw_insertvalue:
6080     return parseInsertValue(Inst, PFS);
6081   }
6082 }
6083 
6084 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6085 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6086   if (Opc == Instruction::FCmp) {
6087     switch (Lex.getKind()) {
6088     default:
6089       return tokError("expected fcmp predicate (e.g. 'oeq')");
6090     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6091     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6092     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6093     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6094     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6095     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6096     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6097     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6098     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6099     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6100     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6101     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6102     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6103     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6104     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6105     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6106     }
6107   } else {
6108     switch (Lex.getKind()) {
6109     default:
6110       return tokError("expected icmp predicate (e.g. 'eq')");
6111     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6112     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6113     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6114     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6115     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6116     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6117     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6118     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6119     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6120     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6121     }
6122   }
6123   Lex.Lex();
6124   return false;
6125 }
6126 
6127 //===----------------------------------------------------------------------===//
6128 // Terminator Instructions.
6129 //===----------------------------------------------------------------------===//
6130 
6131 /// parseRet - parse a return instruction.
6132 ///   ::= 'ret' void (',' !dbg, !1)*
6133 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6134 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6135                         PerFunctionState &PFS) {
6136   SMLoc TypeLoc = Lex.getLoc();
6137   Type *Ty = nullptr;
6138   if (parseType(Ty, true /*void allowed*/))
6139     return true;
6140 
6141   Type *ResType = PFS.getFunction().getReturnType();
6142 
6143   if (Ty->isVoidTy()) {
6144     if (!ResType->isVoidTy())
6145       return error(TypeLoc, "value doesn't match function result type '" +
6146                                 getTypeString(ResType) + "'");
6147 
6148     Inst = ReturnInst::Create(Context);
6149     return false;
6150   }
6151 
6152   Value *RV;
6153   if (parseValue(Ty, RV, PFS))
6154     return true;
6155 
6156   if (ResType != RV->getType())
6157     return error(TypeLoc, "value doesn't match function result type '" +
6158                               getTypeString(ResType) + "'");
6159 
6160   Inst = ReturnInst::Create(Context, RV);
6161   return false;
6162 }
6163 
6164 /// parseBr
6165 ///   ::= 'br' TypeAndValue
6166 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6167 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6168   LocTy Loc, Loc2;
6169   Value *Op0;
6170   BasicBlock *Op1, *Op2;
6171   if (parseTypeAndValue(Op0, Loc, PFS))
6172     return true;
6173 
6174   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6175     Inst = BranchInst::Create(BB);
6176     return false;
6177   }
6178 
6179   if (Op0->getType() != Type::getInt1Ty(Context))
6180     return error(Loc, "branch condition must have 'i1' type");
6181 
6182   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6183       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6184       parseToken(lltok::comma, "expected ',' after true destination") ||
6185       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6186     return true;
6187 
6188   Inst = BranchInst::Create(Op1, Op2, Op0);
6189   return false;
6190 }
6191 
6192 /// parseSwitch
6193 ///  Instruction
6194 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6195 ///  JumpTable
6196 ///    ::= (TypeAndValue ',' TypeAndValue)*
6197 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6198   LocTy CondLoc, BBLoc;
6199   Value *Cond;
6200   BasicBlock *DefaultBB;
6201   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6202       parseToken(lltok::comma, "expected ',' after switch condition") ||
6203       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6204       parseToken(lltok::lsquare, "expected '[' with switch table"))
6205     return true;
6206 
6207   if (!Cond->getType()->isIntegerTy())
6208     return error(CondLoc, "switch condition must have integer type");
6209 
6210   // parse the jump table pairs.
6211   SmallPtrSet<Value*, 32> SeenCases;
6212   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6213   while (Lex.getKind() != lltok::rsquare) {
6214     Value *Constant;
6215     BasicBlock *DestBB;
6216 
6217     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6218         parseToken(lltok::comma, "expected ',' after case value") ||
6219         parseTypeAndBasicBlock(DestBB, PFS))
6220       return true;
6221 
6222     if (!SeenCases.insert(Constant).second)
6223       return error(CondLoc, "duplicate case value in switch");
6224     if (!isa<ConstantInt>(Constant))
6225       return error(CondLoc, "case value is not a constant integer");
6226 
6227     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6228   }
6229 
6230   Lex.Lex();  // Eat the ']'.
6231 
6232   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6233   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6234     SI->addCase(Table[i].first, Table[i].second);
6235   Inst = SI;
6236   return false;
6237 }
6238 
6239 /// parseIndirectBr
6240 ///  Instruction
6241 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6242 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6243   LocTy AddrLoc;
6244   Value *Address;
6245   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6246       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6247       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6248     return true;
6249 
6250   if (!Address->getType()->isPointerTy())
6251     return error(AddrLoc, "indirectbr address must have pointer type");
6252 
6253   // parse the destination list.
6254   SmallVector<BasicBlock*, 16> DestList;
6255 
6256   if (Lex.getKind() != lltok::rsquare) {
6257     BasicBlock *DestBB;
6258     if (parseTypeAndBasicBlock(DestBB, PFS))
6259       return true;
6260     DestList.push_back(DestBB);
6261 
6262     while (EatIfPresent(lltok::comma)) {
6263       if (parseTypeAndBasicBlock(DestBB, PFS))
6264         return true;
6265       DestList.push_back(DestBB);
6266     }
6267   }
6268 
6269   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6270     return true;
6271 
6272   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6273   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6274     IBI->addDestination(DestList[i]);
6275   Inst = IBI;
6276   return false;
6277 }
6278 
6279 /// parseInvoke
6280 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6281 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6282 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6283   LocTy CallLoc = Lex.getLoc();
6284   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6285   std::vector<unsigned> FwdRefAttrGrps;
6286   LocTy NoBuiltinLoc;
6287   unsigned CC;
6288   unsigned InvokeAddrSpace;
6289   Type *RetType = nullptr;
6290   LocTy RetTypeLoc;
6291   ValID CalleeID;
6292   SmallVector<ParamInfo, 16> ArgList;
6293   SmallVector<OperandBundleDef, 2> BundleList;
6294 
6295   BasicBlock *NormalBB, *UnwindBB;
6296   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6297       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6298       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6299       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6300       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6301                                  NoBuiltinLoc) ||
6302       parseOptionalOperandBundles(BundleList, PFS) ||
6303       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6304       parseTypeAndBasicBlock(NormalBB, PFS) ||
6305       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6306       parseTypeAndBasicBlock(UnwindBB, PFS))
6307     return true;
6308 
6309   // If RetType is a non-function pointer type, then this is the short syntax
6310   // for the call, which means that RetType is just the return type.  Infer the
6311   // rest of the function argument types from the arguments that are present.
6312   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6313   if (!Ty) {
6314     // Pull out the types of all of the arguments...
6315     std::vector<Type*> ParamTypes;
6316     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6317       ParamTypes.push_back(ArgList[i].V->getType());
6318 
6319     if (!FunctionType::isValidReturnType(RetType))
6320       return error(RetTypeLoc, "Invalid result type for LLVM function");
6321 
6322     Ty = FunctionType::get(RetType, ParamTypes, false);
6323   }
6324 
6325   CalleeID.FTy = Ty;
6326 
6327   // Look up the callee.
6328   Value *Callee;
6329   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6330                           Callee, &PFS))
6331     return true;
6332 
6333   // Set up the Attribute for the function.
6334   SmallVector<Value *, 8> Args;
6335   SmallVector<AttributeSet, 8> ArgAttrs;
6336 
6337   // Loop through FunctionType's arguments and ensure they are specified
6338   // correctly.  Also, gather any parameter attributes.
6339   FunctionType::param_iterator I = Ty->param_begin();
6340   FunctionType::param_iterator E = Ty->param_end();
6341   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6342     Type *ExpectedTy = nullptr;
6343     if (I != E) {
6344       ExpectedTy = *I++;
6345     } else if (!Ty->isVarArg()) {
6346       return error(ArgList[i].Loc, "too many arguments specified");
6347     }
6348 
6349     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6350       return error(ArgList[i].Loc, "argument is not of expected type '" +
6351                                        getTypeString(ExpectedTy) + "'");
6352     Args.push_back(ArgList[i].V);
6353     ArgAttrs.push_back(ArgList[i].Attrs);
6354   }
6355 
6356   if (I != E)
6357     return error(CallLoc, "not enough parameters specified for call");
6358 
6359   if (FnAttrs.hasAlignmentAttr())
6360     return error(CallLoc, "invoke instructions may not have an alignment");
6361 
6362   // Finish off the Attribute and check them
6363   AttributeList PAL =
6364       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6365                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6366 
6367   InvokeInst *II =
6368       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6369   II->setCallingConv(CC);
6370   II->setAttributes(PAL);
6371   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6372   Inst = II;
6373   return false;
6374 }
6375 
6376 /// parseResume
6377 ///   ::= 'resume' TypeAndValue
6378 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6379   Value *Exn; LocTy ExnLoc;
6380   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6381     return true;
6382 
6383   ResumeInst *RI = ResumeInst::Create(Exn);
6384   Inst = RI;
6385   return false;
6386 }
6387 
6388 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6389                                   PerFunctionState &PFS) {
6390   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6391     return true;
6392 
6393   while (Lex.getKind() != lltok::rsquare) {
6394     // If this isn't the first argument, we need a comma.
6395     if (!Args.empty() &&
6396         parseToken(lltok::comma, "expected ',' in argument list"))
6397       return true;
6398 
6399     // parse the argument.
6400     LocTy ArgLoc;
6401     Type *ArgTy = nullptr;
6402     if (parseType(ArgTy, ArgLoc))
6403       return true;
6404 
6405     Value *V;
6406     if (ArgTy->isMetadataTy()) {
6407       if (parseMetadataAsValue(V, PFS))
6408         return true;
6409     } else {
6410       if (parseValue(ArgTy, V, PFS))
6411         return true;
6412     }
6413     Args.push_back(V);
6414   }
6415 
6416   Lex.Lex();  // Lex the ']'.
6417   return false;
6418 }
6419 
6420 /// parseCleanupRet
6421 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6422 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6423   Value *CleanupPad = nullptr;
6424 
6425   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6426     return true;
6427 
6428   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6429     return true;
6430 
6431   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6432     return true;
6433 
6434   BasicBlock *UnwindBB = nullptr;
6435   if (Lex.getKind() == lltok::kw_to) {
6436     Lex.Lex();
6437     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6438       return true;
6439   } else {
6440     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6441       return true;
6442     }
6443   }
6444 
6445   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6446   return false;
6447 }
6448 
6449 /// parseCatchRet
6450 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6451 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6452   Value *CatchPad = nullptr;
6453 
6454   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6455     return true;
6456 
6457   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6458     return true;
6459 
6460   BasicBlock *BB;
6461   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6462       parseTypeAndBasicBlock(BB, PFS))
6463     return true;
6464 
6465   Inst = CatchReturnInst::Create(CatchPad, BB);
6466   return false;
6467 }
6468 
6469 /// parseCatchSwitch
6470 ///   ::= 'catchswitch' within Parent
6471 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6472   Value *ParentPad;
6473 
6474   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6475     return true;
6476 
6477   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6478       Lex.getKind() != lltok::LocalVarID)
6479     return tokError("expected scope value for catchswitch");
6480 
6481   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6482     return true;
6483 
6484   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6485     return true;
6486 
6487   SmallVector<BasicBlock *, 32> Table;
6488   do {
6489     BasicBlock *DestBB;
6490     if (parseTypeAndBasicBlock(DestBB, PFS))
6491       return true;
6492     Table.push_back(DestBB);
6493   } while (EatIfPresent(lltok::comma));
6494 
6495   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6496     return true;
6497 
6498   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6499     return true;
6500 
6501   BasicBlock *UnwindBB = nullptr;
6502   if (EatIfPresent(lltok::kw_to)) {
6503     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6504       return true;
6505   } else {
6506     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6507       return true;
6508   }
6509 
6510   auto *CatchSwitch =
6511       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6512   for (BasicBlock *DestBB : Table)
6513     CatchSwitch->addHandler(DestBB);
6514   Inst = CatchSwitch;
6515   return false;
6516 }
6517 
6518 /// parseCatchPad
6519 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6520 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6521   Value *CatchSwitch = nullptr;
6522 
6523   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6524     return true;
6525 
6526   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6527     return tokError("expected scope value for catchpad");
6528 
6529   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6530     return true;
6531 
6532   SmallVector<Value *, 8> Args;
6533   if (parseExceptionArgs(Args, PFS))
6534     return true;
6535 
6536   Inst = CatchPadInst::Create(CatchSwitch, Args);
6537   return false;
6538 }
6539 
6540 /// parseCleanupPad
6541 ///   ::= 'cleanuppad' within Parent ParamList
6542 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6543   Value *ParentPad = nullptr;
6544 
6545   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6546     return true;
6547 
6548   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6549       Lex.getKind() != lltok::LocalVarID)
6550     return tokError("expected scope value for cleanuppad");
6551 
6552   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6553     return true;
6554 
6555   SmallVector<Value *, 8> Args;
6556   if (parseExceptionArgs(Args, PFS))
6557     return true;
6558 
6559   Inst = CleanupPadInst::Create(ParentPad, Args);
6560   return false;
6561 }
6562 
6563 //===----------------------------------------------------------------------===//
6564 // Unary Operators.
6565 //===----------------------------------------------------------------------===//
6566 
6567 /// parseUnaryOp
6568 ///  ::= UnaryOp TypeAndValue ',' Value
6569 ///
6570 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6571 /// operand is allowed.
6572 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6573                             unsigned Opc, bool IsFP) {
6574   LocTy Loc; Value *LHS;
6575   if (parseTypeAndValue(LHS, Loc, PFS))
6576     return true;
6577 
6578   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6579                     : LHS->getType()->isIntOrIntVectorTy();
6580 
6581   if (!Valid)
6582     return error(Loc, "invalid operand type for instruction");
6583 
6584   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6585   return false;
6586 }
6587 
6588 /// parseCallBr
6589 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6590 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6591 ///       '[' LabelList ']'
6592 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6593   LocTy CallLoc = Lex.getLoc();
6594   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6595   std::vector<unsigned> FwdRefAttrGrps;
6596   LocTy NoBuiltinLoc;
6597   unsigned CC;
6598   Type *RetType = nullptr;
6599   LocTy RetTypeLoc;
6600   ValID CalleeID;
6601   SmallVector<ParamInfo, 16> ArgList;
6602   SmallVector<OperandBundleDef, 2> BundleList;
6603 
6604   BasicBlock *DefaultDest;
6605   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6606       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6607       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6608       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6609                                  NoBuiltinLoc) ||
6610       parseOptionalOperandBundles(BundleList, PFS) ||
6611       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6612       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6613       parseToken(lltok::lsquare, "expected '[' in callbr"))
6614     return true;
6615 
6616   // parse the destination list.
6617   SmallVector<BasicBlock *, 16> IndirectDests;
6618 
6619   if (Lex.getKind() != lltok::rsquare) {
6620     BasicBlock *DestBB;
6621     if (parseTypeAndBasicBlock(DestBB, PFS))
6622       return true;
6623     IndirectDests.push_back(DestBB);
6624 
6625     while (EatIfPresent(lltok::comma)) {
6626       if (parseTypeAndBasicBlock(DestBB, PFS))
6627         return true;
6628       IndirectDests.push_back(DestBB);
6629     }
6630   }
6631 
6632   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6633     return true;
6634 
6635   // If RetType is a non-function pointer type, then this is the short syntax
6636   // for the call, which means that RetType is just the return type.  Infer the
6637   // rest of the function argument types from the arguments that are present.
6638   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6639   if (!Ty) {
6640     // Pull out the types of all of the arguments...
6641     std::vector<Type *> ParamTypes;
6642     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6643       ParamTypes.push_back(ArgList[i].V->getType());
6644 
6645     if (!FunctionType::isValidReturnType(RetType))
6646       return error(RetTypeLoc, "Invalid result type for LLVM function");
6647 
6648     Ty = FunctionType::get(RetType, ParamTypes, false);
6649   }
6650 
6651   CalleeID.FTy = Ty;
6652 
6653   // Look up the callee.
6654   Value *Callee;
6655   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6656     return true;
6657 
6658   // Set up the Attribute for the function.
6659   SmallVector<Value *, 8> Args;
6660   SmallVector<AttributeSet, 8> ArgAttrs;
6661 
6662   // Loop through FunctionType's arguments and ensure they are specified
6663   // correctly.  Also, gather any parameter attributes.
6664   FunctionType::param_iterator I = Ty->param_begin();
6665   FunctionType::param_iterator E = Ty->param_end();
6666   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6667     Type *ExpectedTy = nullptr;
6668     if (I != E) {
6669       ExpectedTy = *I++;
6670     } else if (!Ty->isVarArg()) {
6671       return error(ArgList[i].Loc, "too many arguments specified");
6672     }
6673 
6674     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6675       return error(ArgList[i].Loc, "argument is not of expected type '" +
6676                                        getTypeString(ExpectedTy) + "'");
6677     Args.push_back(ArgList[i].V);
6678     ArgAttrs.push_back(ArgList[i].Attrs);
6679   }
6680 
6681   if (I != E)
6682     return error(CallLoc, "not enough parameters specified for call");
6683 
6684   if (FnAttrs.hasAlignmentAttr())
6685     return error(CallLoc, "callbr instructions may not have an alignment");
6686 
6687   // Finish off the Attribute and check them
6688   AttributeList PAL =
6689       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6690                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6691 
6692   CallBrInst *CBI =
6693       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6694                          BundleList);
6695   CBI->setCallingConv(CC);
6696   CBI->setAttributes(PAL);
6697   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6698   Inst = CBI;
6699   return false;
6700 }
6701 
6702 //===----------------------------------------------------------------------===//
6703 // Binary Operators.
6704 //===----------------------------------------------------------------------===//
6705 
6706 /// parseArithmetic
6707 ///  ::= ArithmeticOps TypeAndValue ',' Value
6708 ///
6709 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6710 /// operand is allowed.
6711 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6712                                unsigned Opc, bool IsFP) {
6713   LocTy Loc; Value *LHS, *RHS;
6714   if (parseTypeAndValue(LHS, Loc, PFS) ||
6715       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6716       parseValue(LHS->getType(), RHS, PFS))
6717     return true;
6718 
6719   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6720                     : LHS->getType()->isIntOrIntVectorTy();
6721 
6722   if (!Valid)
6723     return error(Loc, "invalid operand type for instruction");
6724 
6725   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6726   return false;
6727 }
6728 
6729 /// parseLogical
6730 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6731 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6732                             unsigned Opc) {
6733   LocTy Loc; Value *LHS, *RHS;
6734   if (parseTypeAndValue(LHS, Loc, PFS) ||
6735       parseToken(lltok::comma, "expected ',' in logical operation") ||
6736       parseValue(LHS->getType(), RHS, PFS))
6737     return true;
6738 
6739   if (!LHS->getType()->isIntOrIntVectorTy())
6740     return error(Loc,
6741                  "instruction requires integer or integer vector operands");
6742 
6743   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6744   return false;
6745 }
6746 
6747 /// parseCompare
6748 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6749 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6750 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6751                             unsigned Opc) {
6752   // parse the integer/fp comparison predicate.
6753   LocTy Loc;
6754   unsigned Pred;
6755   Value *LHS, *RHS;
6756   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6757       parseToken(lltok::comma, "expected ',' after compare value") ||
6758       parseValue(LHS->getType(), RHS, PFS))
6759     return true;
6760 
6761   if (Opc == Instruction::FCmp) {
6762     if (!LHS->getType()->isFPOrFPVectorTy())
6763       return error(Loc, "fcmp requires floating point operands");
6764     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6765   } else {
6766     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6767     if (!LHS->getType()->isIntOrIntVectorTy() &&
6768         !LHS->getType()->isPtrOrPtrVectorTy())
6769       return error(Loc, "icmp requires integer operands");
6770     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6771   }
6772   return false;
6773 }
6774 
6775 //===----------------------------------------------------------------------===//
6776 // Other Instructions.
6777 //===----------------------------------------------------------------------===//
6778 
6779 /// parseCast
6780 ///   ::= CastOpc TypeAndValue 'to' Type
6781 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6782                          unsigned Opc) {
6783   LocTy Loc;
6784   Value *Op;
6785   Type *DestTy = nullptr;
6786   if (parseTypeAndValue(Op, Loc, PFS) ||
6787       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6788       parseType(DestTy))
6789     return true;
6790 
6791   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6792     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6793     return error(Loc, "invalid cast opcode for cast from '" +
6794                           getTypeString(Op->getType()) + "' to '" +
6795                           getTypeString(DestTy) + "'");
6796   }
6797   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6798   return false;
6799 }
6800 
6801 /// parseSelect
6802 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6803 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6804   LocTy Loc;
6805   Value *Op0, *Op1, *Op2;
6806   if (parseTypeAndValue(Op0, Loc, PFS) ||
6807       parseToken(lltok::comma, "expected ',' after select condition") ||
6808       parseTypeAndValue(Op1, PFS) ||
6809       parseToken(lltok::comma, "expected ',' after select value") ||
6810       parseTypeAndValue(Op2, PFS))
6811     return true;
6812 
6813   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6814     return error(Loc, Reason);
6815 
6816   Inst = SelectInst::Create(Op0, Op1, Op2);
6817   return false;
6818 }
6819 
6820 /// parseVAArg
6821 ///   ::= 'va_arg' TypeAndValue ',' Type
6822 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6823   Value *Op;
6824   Type *EltTy = nullptr;
6825   LocTy TypeLoc;
6826   if (parseTypeAndValue(Op, PFS) ||
6827       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6828       parseType(EltTy, TypeLoc))
6829     return true;
6830 
6831   if (!EltTy->isFirstClassType())
6832     return error(TypeLoc, "va_arg requires operand with first class type");
6833 
6834   Inst = new VAArgInst(Op, EltTy);
6835   return false;
6836 }
6837 
6838 /// parseExtractElement
6839 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6840 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6841   LocTy Loc;
6842   Value *Op0, *Op1;
6843   if (parseTypeAndValue(Op0, Loc, PFS) ||
6844       parseToken(lltok::comma, "expected ',' after extract value") ||
6845       parseTypeAndValue(Op1, PFS))
6846     return true;
6847 
6848   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6849     return error(Loc, "invalid extractelement operands");
6850 
6851   Inst = ExtractElementInst::Create(Op0, Op1);
6852   return false;
6853 }
6854 
6855 /// parseInsertElement
6856 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6857 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6858   LocTy Loc;
6859   Value *Op0, *Op1, *Op2;
6860   if (parseTypeAndValue(Op0, Loc, PFS) ||
6861       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6862       parseTypeAndValue(Op1, PFS) ||
6863       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6864       parseTypeAndValue(Op2, PFS))
6865     return true;
6866 
6867   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6868     return error(Loc, "invalid insertelement operands");
6869 
6870   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6871   return false;
6872 }
6873 
6874 /// parseShuffleVector
6875 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6876 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6877   LocTy Loc;
6878   Value *Op0, *Op1, *Op2;
6879   if (parseTypeAndValue(Op0, Loc, PFS) ||
6880       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6881       parseTypeAndValue(Op1, PFS) ||
6882       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6883       parseTypeAndValue(Op2, PFS))
6884     return true;
6885 
6886   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6887     return error(Loc, "invalid shufflevector operands");
6888 
6889   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6890   return false;
6891 }
6892 
6893 /// parsePHI
6894 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6895 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6896   Type *Ty = nullptr;  LocTy TypeLoc;
6897   Value *Op0, *Op1;
6898 
6899   if (parseType(Ty, TypeLoc) ||
6900       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6901       parseValue(Ty, Op0, PFS) ||
6902       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6903       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6904       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6905     return true;
6906 
6907   bool AteExtraComma = false;
6908   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6909 
6910   while (true) {
6911     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6912 
6913     if (!EatIfPresent(lltok::comma))
6914       break;
6915 
6916     if (Lex.getKind() == lltok::MetadataVar) {
6917       AteExtraComma = true;
6918       break;
6919     }
6920 
6921     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6922         parseValue(Ty, Op0, PFS) ||
6923         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6924         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6925         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6926       return true;
6927   }
6928 
6929   if (!Ty->isFirstClassType())
6930     return error(TypeLoc, "phi node must have first class type");
6931 
6932   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6933   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6934     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6935   Inst = PN;
6936   return AteExtraComma ? InstExtraComma : InstNormal;
6937 }
6938 
6939 /// parseLandingPad
6940 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6941 /// Clause
6942 ///   ::= 'catch' TypeAndValue
6943 ///   ::= 'filter'
6944 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6945 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6946   Type *Ty = nullptr; LocTy TyLoc;
6947 
6948   if (parseType(Ty, TyLoc))
6949     return true;
6950 
6951   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6952   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6953 
6954   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6955     LandingPadInst::ClauseType CT;
6956     if (EatIfPresent(lltok::kw_catch))
6957       CT = LandingPadInst::Catch;
6958     else if (EatIfPresent(lltok::kw_filter))
6959       CT = LandingPadInst::Filter;
6960     else
6961       return tokError("expected 'catch' or 'filter' clause type");
6962 
6963     Value *V;
6964     LocTy VLoc;
6965     if (parseTypeAndValue(V, VLoc, PFS))
6966       return true;
6967 
6968     // A 'catch' type expects a non-array constant. A filter clause expects an
6969     // array constant.
6970     if (CT == LandingPadInst::Catch) {
6971       if (isa<ArrayType>(V->getType()))
6972         error(VLoc, "'catch' clause has an invalid type");
6973     } else {
6974       if (!isa<ArrayType>(V->getType()))
6975         error(VLoc, "'filter' clause has an invalid type");
6976     }
6977 
6978     Constant *CV = dyn_cast<Constant>(V);
6979     if (!CV)
6980       return error(VLoc, "clause argument must be a constant");
6981     LP->addClause(CV);
6982   }
6983 
6984   Inst = LP.release();
6985   return false;
6986 }
6987 
6988 /// parseFreeze
6989 ///   ::= 'freeze' Type Value
6990 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6991   LocTy Loc;
6992   Value *Op;
6993   if (parseTypeAndValue(Op, Loc, PFS))
6994     return true;
6995 
6996   Inst = new FreezeInst(Op);
6997   return false;
6998 }
6999 
7000 /// parseCall
7001 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7002 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7003 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7004 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7005 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7006 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7007 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7008 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7009 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7010                          CallInst::TailCallKind TCK) {
7011   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7012   std::vector<unsigned> FwdRefAttrGrps;
7013   LocTy BuiltinLoc;
7014   unsigned CallAddrSpace;
7015   unsigned CC;
7016   Type *RetType = nullptr;
7017   LocTy RetTypeLoc;
7018   ValID CalleeID;
7019   SmallVector<ParamInfo, 16> ArgList;
7020   SmallVector<OperandBundleDef, 2> BundleList;
7021   LocTy CallLoc = Lex.getLoc();
7022 
7023   if (TCK != CallInst::TCK_None &&
7024       parseToken(lltok::kw_call,
7025                  "expected 'tail call', 'musttail call', or 'notail call'"))
7026     return true;
7027 
7028   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7029 
7030   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7031       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7032       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7033       parseValID(CalleeID, &PFS) ||
7034       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7035                          PFS.getFunction().isVarArg()) ||
7036       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7037       parseOptionalOperandBundles(BundleList, PFS))
7038     return true;
7039 
7040   // If RetType is a non-function pointer type, then this is the short syntax
7041   // for the call, which means that RetType is just the return type.  Infer the
7042   // rest of the function argument types from the arguments that are present.
7043   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7044   if (!Ty) {
7045     // Pull out the types of all of the arguments...
7046     std::vector<Type*> ParamTypes;
7047     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7048       ParamTypes.push_back(ArgList[i].V->getType());
7049 
7050     if (!FunctionType::isValidReturnType(RetType))
7051       return error(RetTypeLoc, "Invalid result type for LLVM function");
7052 
7053     Ty = FunctionType::get(RetType, ParamTypes, false);
7054   }
7055 
7056   CalleeID.FTy = Ty;
7057 
7058   // Look up the callee.
7059   Value *Callee;
7060   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7061                           &PFS))
7062     return true;
7063 
7064   // Set up the Attribute for the function.
7065   SmallVector<AttributeSet, 8> Attrs;
7066 
7067   SmallVector<Value*, 8> Args;
7068 
7069   // Loop through FunctionType's arguments and ensure they are specified
7070   // correctly.  Also, gather any parameter attributes.
7071   FunctionType::param_iterator I = Ty->param_begin();
7072   FunctionType::param_iterator E = Ty->param_end();
7073   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7074     Type *ExpectedTy = nullptr;
7075     if (I != E) {
7076       ExpectedTy = *I++;
7077     } else if (!Ty->isVarArg()) {
7078       return error(ArgList[i].Loc, "too many arguments specified");
7079     }
7080 
7081     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7082       return error(ArgList[i].Loc, "argument is not of expected type '" +
7083                                        getTypeString(ExpectedTy) + "'");
7084     Args.push_back(ArgList[i].V);
7085     Attrs.push_back(ArgList[i].Attrs);
7086   }
7087 
7088   if (I != E)
7089     return error(CallLoc, "not enough parameters specified for call");
7090 
7091   if (FnAttrs.hasAlignmentAttr())
7092     return error(CallLoc, "call instructions may not have an alignment");
7093 
7094   // Finish off the Attribute and check them
7095   AttributeList PAL =
7096       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7097                          AttributeSet::get(Context, RetAttrs), Attrs);
7098 
7099   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7100   CI->setTailCallKind(TCK);
7101   CI->setCallingConv(CC);
7102   if (FMF.any()) {
7103     if (!isa<FPMathOperator>(CI)) {
7104       CI->deleteValue();
7105       return error(CallLoc, "fast-math-flags specified for call without "
7106                             "floating-point scalar or vector return type");
7107     }
7108     CI->setFastMathFlags(FMF);
7109   }
7110   CI->setAttributes(PAL);
7111   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7112   Inst = CI;
7113   return false;
7114 }
7115 
7116 //===----------------------------------------------------------------------===//
7117 // Memory Instructions.
7118 //===----------------------------------------------------------------------===//
7119 
7120 /// parseAlloc
7121 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7122 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7123 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7124   Value *Size = nullptr;
7125   LocTy SizeLoc, TyLoc, ASLoc;
7126   MaybeAlign Alignment;
7127   unsigned AddrSpace = 0;
7128   Type *Ty = nullptr;
7129 
7130   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7131   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7132 
7133   if (parseType(Ty, TyLoc))
7134     return true;
7135 
7136   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7137     return error(TyLoc, "invalid type for alloca");
7138 
7139   bool AteExtraComma = false;
7140   if (EatIfPresent(lltok::comma)) {
7141     if (Lex.getKind() == lltok::kw_align) {
7142       if (parseOptionalAlignment(Alignment))
7143         return true;
7144       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7145         return true;
7146     } else if (Lex.getKind() == lltok::kw_addrspace) {
7147       ASLoc = Lex.getLoc();
7148       if (parseOptionalAddrSpace(AddrSpace))
7149         return true;
7150     } else if (Lex.getKind() == lltok::MetadataVar) {
7151       AteExtraComma = true;
7152     } else {
7153       if (parseTypeAndValue(Size, SizeLoc, PFS))
7154         return true;
7155       if (EatIfPresent(lltok::comma)) {
7156         if (Lex.getKind() == lltok::kw_align) {
7157           if (parseOptionalAlignment(Alignment))
7158             return true;
7159           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7160             return true;
7161         } else if (Lex.getKind() == lltok::kw_addrspace) {
7162           ASLoc = Lex.getLoc();
7163           if (parseOptionalAddrSpace(AddrSpace))
7164             return true;
7165         } else if (Lex.getKind() == lltok::MetadataVar) {
7166           AteExtraComma = true;
7167         }
7168       }
7169     }
7170   }
7171 
7172   if (Size && !Size->getType()->isIntegerTy())
7173     return error(SizeLoc, "element count must have integer type");
7174 
7175   SmallPtrSet<Type *, 4> Visited;
7176   if (!Alignment && !Ty->isSized(&Visited))
7177     return error(TyLoc, "Cannot allocate unsized type");
7178   if (!Alignment)
7179     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7180   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7181   AI->setUsedWithInAlloca(IsInAlloca);
7182   AI->setSwiftError(IsSwiftError);
7183   Inst = AI;
7184   return AteExtraComma ? InstExtraComma : InstNormal;
7185 }
7186 
7187 /// parseLoad
7188 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7189 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7190 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7191 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7192   Value *Val; LocTy Loc;
7193   MaybeAlign Alignment;
7194   bool AteExtraComma = false;
7195   bool isAtomic = false;
7196   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7197   SyncScope::ID SSID = SyncScope::System;
7198 
7199   if (Lex.getKind() == lltok::kw_atomic) {
7200     isAtomic = true;
7201     Lex.Lex();
7202   }
7203 
7204   bool isVolatile = false;
7205   if (Lex.getKind() == lltok::kw_volatile) {
7206     isVolatile = true;
7207     Lex.Lex();
7208   }
7209 
7210   Type *Ty;
7211   LocTy ExplicitTypeLoc = Lex.getLoc();
7212   if (parseType(Ty) ||
7213       parseToken(lltok::comma, "expected comma after load's type") ||
7214       parseTypeAndValue(Val, Loc, PFS) ||
7215       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7216       parseOptionalCommaAlign(Alignment, AteExtraComma))
7217     return true;
7218 
7219   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7220     return error(Loc, "load operand must be a pointer to a first class type");
7221   if (isAtomic && !Alignment)
7222     return error(Loc, "atomic load must have explicit non-zero alignment");
7223   if (Ordering == AtomicOrdering::Release ||
7224       Ordering == AtomicOrdering::AcquireRelease)
7225     return error(Loc, "atomic load cannot use Release ordering");
7226 
7227   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7228     return error(
7229         ExplicitTypeLoc,
7230         typeComparisonErrorMessage(
7231             "explicit pointee type doesn't match operand's pointee type", Ty,
7232             Val->getType()->getNonOpaquePointerElementType()));
7233   }
7234   SmallPtrSet<Type *, 4> Visited;
7235   if (!Alignment && !Ty->isSized(&Visited))
7236     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7237   if (!Alignment)
7238     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7239   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7240   return AteExtraComma ? InstExtraComma : InstNormal;
7241 }
7242 
7243 /// parseStore
7244 
7245 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7246 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7247 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7248 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7249   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7250   MaybeAlign Alignment;
7251   bool AteExtraComma = false;
7252   bool isAtomic = false;
7253   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7254   SyncScope::ID SSID = SyncScope::System;
7255 
7256   if (Lex.getKind() == lltok::kw_atomic) {
7257     isAtomic = true;
7258     Lex.Lex();
7259   }
7260 
7261   bool isVolatile = false;
7262   if (Lex.getKind() == lltok::kw_volatile) {
7263     isVolatile = true;
7264     Lex.Lex();
7265   }
7266 
7267   if (parseTypeAndValue(Val, Loc, PFS) ||
7268       parseToken(lltok::comma, "expected ',' after store operand") ||
7269       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7270       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7271       parseOptionalCommaAlign(Alignment, AteExtraComma))
7272     return true;
7273 
7274   if (!Ptr->getType()->isPointerTy())
7275     return error(PtrLoc, "store operand must be a pointer");
7276   if (!Val->getType()->isFirstClassType())
7277     return error(Loc, "store operand must be a first class value");
7278   if (!cast<PointerType>(Ptr->getType())
7279            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7280     return error(Loc, "stored value and pointer type do not match");
7281   if (isAtomic && !Alignment)
7282     return error(Loc, "atomic store must have explicit non-zero alignment");
7283   if (Ordering == AtomicOrdering::Acquire ||
7284       Ordering == AtomicOrdering::AcquireRelease)
7285     return error(Loc, "atomic store cannot use Acquire ordering");
7286   SmallPtrSet<Type *, 4> Visited;
7287   if (!Alignment && !Val->getType()->isSized(&Visited))
7288     return error(Loc, "storing unsized types is not allowed");
7289   if (!Alignment)
7290     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7291 
7292   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7293   return AteExtraComma ? InstExtraComma : InstNormal;
7294 }
7295 
7296 /// parseCmpXchg
7297 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7298 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7299 ///       'Align'?
7300 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7301   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7302   bool AteExtraComma = false;
7303   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7304   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7305   SyncScope::ID SSID = SyncScope::System;
7306   bool isVolatile = false;
7307   bool isWeak = false;
7308   MaybeAlign Alignment;
7309 
7310   if (EatIfPresent(lltok::kw_weak))
7311     isWeak = true;
7312 
7313   if (EatIfPresent(lltok::kw_volatile))
7314     isVolatile = true;
7315 
7316   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7317       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7318       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7319       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7320       parseTypeAndValue(New, NewLoc, PFS) ||
7321       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7322       parseOrdering(FailureOrdering) ||
7323       parseOptionalCommaAlign(Alignment, AteExtraComma))
7324     return true;
7325 
7326   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7327     return tokError("invalid cmpxchg success ordering");
7328   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7329     return tokError("invalid cmpxchg failure ordering");
7330   if (!Ptr->getType()->isPointerTy())
7331     return error(PtrLoc, "cmpxchg operand must be a pointer");
7332   if (!cast<PointerType>(Ptr->getType())
7333            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7334     return error(CmpLoc, "compare value and pointer type do not match");
7335   if (!cast<PointerType>(Ptr->getType())
7336            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7337     return error(NewLoc, "new value and pointer type do not match");
7338   if (Cmp->getType() != New->getType())
7339     return error(NewLoc, "compare value and new value type do not match");
7340   if (!New->getType()->isFirstClassType())
7341     return error(NewLoc, "cmpxchg operand must be a first class value");
7342 
7343   const Align DefaultAlignment(
7344       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7345           Cmp->getType()));
7346 
7347   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7348       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7349       FailureOrdering, SSID);
7350   CXI->setVolatile(isVolatile);
7351   CXI->setWeak(isWeak);
7352 
7353   Inst = CXI;
7354   return AteExtraComma ? InstExtraComma : InstNormal;
7355 }
7356 
7357 /// parseAtomicRMW
7358 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7359 ///       'singlethread'? AtomicOrdering
7360 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7361   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7362   bool AteExtraComma = false;
7363   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7364   SyncScope::ID SSID = SyncScope::System;
7365   bool isVolatile = false;
7366   bool IsFP = false;
7367   AtomicRMWInst::BinOp Operation;
7368   MaybeAlign Alignment;
7369 
7370   if (EatIfPresent(lltok::kw_volatile))
7371     isVolatile = true;
7372 
7373   switch (Lex.getKind()) {
7374   default:
7375     return tokError("expected binary operation in atomicrmw");
7376   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7377   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7378   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7379   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7380   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7381   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7382   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7383   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7384   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7385   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7386   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7387   case lltok::kw_fadd:
7388     Operation = AtomicRMWInst::FAdd;
7389     IsFP = true;
7390     break;
7391   case lltok::kw_fsub:
7392     Operation = AtomicRMWInst::FSub;
7393     IsFP = true;
7394     break;
7395   }
7396   Lex.Lex();  // Eat the operation.
7397 
7398   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7399       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7400       parseTypeAndValue(Val, ValLoc, PFS) ||
7401       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7402       parseOptionalCommaAlign(Alignment, AteExtraComma))
7403     return true;
7404 
7405   if (Ordering == AtomicOrdering::Unordered)
7406     return tokError("atomicrmw cannot be unordered");
7407   if (!Ptr->getType()->isPointerTy())
7408     return error(PtrLoc, "atomicrmw operand must be a pointer");
7409   if (!cast<PointerType>(Ptr->getType())
7410            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7411     return error(ValLoc, "atomicrmw value and pointer type do not match");
7412 
7413   if (Operation == AtomicRMWInst::Xchg) {
7414     if (!Val->getType()->isIntegerTy() &&
7415         !Val->getType()->isFloatingPointTy()) {
7416       return error(ValLoc,
7417                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7418                        " operand must be an integer or floating point type");
7419     }
7420   } else if (IsFP) {
7421     if (!Val->getType()->isFloatingPointTy()) {
7422       return error(ValLoc, "atomicrmw " +
7423                                AtomicRMWInst::getOperationName(Operation) +
7424                                " operand must be a floating point type");
7425     }
7426   } else {
7427     if (!Val->getType()->isIntegerTy()) {
7428       return error(ValLoc, "atomicrmw " +
7429                                AtomicRMWInst::getOperationName(Operation) +
7430                                " operand must be an integer");
7431     }
7432   }
7433 
7434   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7435   if (Size < 8 || (Size & (Size - 1)))
7436     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7437                          " integer");
7438   const Align DefaultAlignment(
7439       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7440           Val->getType()));
7441   AtomicRMWInst *RMWI =
7442       new AtomicRMWInst(Operation, Ptr, Val,
7443                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7444   RMWI->setVolatile(isVolatile);
7445   Inst = RMWI;
7446   return AteExtraComma ? InstExtraComma : InstNormal;
7447 }
7448 
7449 /// parseFence
7450 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7451 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7452   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7453   SyncScope::ID SSID = SyncScope::System;
7454   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7455     return true;
7456 
7457   if (Ordering == AtomicOrdering::Unordered)
7458     return tokError("fence cannot be unordered");
7459   if (Ordering == AtomicOrdering::Monotonic)
7460     return tokError("fence cannot be monotonic");
7461 
7462   Inst = new FenceInst(Context, Ordering, SSID);
7463   return InstNormal;
7464 }
7465 
7466 /// parseGetElementPtr
7467 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7468 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7469   Value *Ptr = nullptr;
7470   Value *Val = nullptr;
7471   LocTy Loc, EltLoc;
7472 
7473   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7474 
7475   Type *Ty = nullptr;
7476   LocTy ExplicitTypeLoc = Lex.getLoc();
7477   if (parseType(Ty) ||
7478       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7479       parseTypeAndValue(Ptr, Loc, PFS))
7480     return true;
7481 
7482   Type *BaseType = Ptr->getType();
7483   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7484   if (!BasePointerType)
7485     return error(Loc, "base of getelementptr must be a pointer");
7486 
7487   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7488     return error(
7489         ExplicitTypeLoc,
7490         typeComparisonErrorMessage(
7491             "explicit pointee type doesn't match operand's pointee type", Ty,
7492             BasePointerType->getNonOpaquePointerElementType()));
7493   }
7494 
7495   SmallVector<Value*, 16> Indices;
7496   bool AteExtraComma = false;
7497   // GEP returns a vector of pointers if at least one of parameters is a vector.
7498   // All vector parameters should have the same vector width.
7499   ElementCount GEPWidth = BaseType->isVectorTy()
7500                               ? cast<VectorType>(BaseType)->getElementCount()
7501                               : ElementCount::getFixed(0);
7502 
7503   while (EatIfPresent(lltok::comma)) {
7504     if (Lex.getKind() == lltok::MetadataVar) {
7505       AteExtraComma = true;
7506       break;
7507     }
7508     if (parseTypeAndValue(Val, EltLoc, PFS))
7509       return true;
7510     if (!Val->getType()->isIntOrIntVectorTy())
7511       return error(EltLoc, "getelementptr index must be an integer");
7512 
7513     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7514       ElementCount ValNumEl = ValVTy->getElementCount();
7515       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7516         return error(
7517             EltLoc,
7518             "getelementptr vector index has a wrong number of elements");
7519       GEPWidth = ValNumEl;
7520     }
7521     Indices.push_back(Val);
7522   }
7523 
7524   SmallPtrSet<Type*, 4> Visited;
7525   if (!Indices.empty() && !Ty->isSized(&Visited))
7526     return error(Loc, "base element of getelementptr must be sized");
7527 
7528   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7529     return error(Loc, "invalid getelementptr indices");
7530   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7531   if (InBounds)
7532     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7533   return AteExtraComma ? InstExtraComma : InstNormal;
7534 }
7535 
7536 /// parseExtractValue
7537 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7538 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7539   Value *Val; LocTy Loc;
7540   SmallVector<unsigned, 4> Indices;
7541   bool AteExtraComma;
7542   if (parseTypeAndValue(Val, Loc, PFS) ||
7543       parseIndexList(Indices, AteExtraComma))
7544     return true;
7545 
7546   if (!Val->getType()->isAggregateType())
7547     return error(Loc, "extractvalue operand must be aggregate type");
7548 
7549   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7550     return error(Loc, "invalid indices for extractvalue");
7551   Inst = ExtractValueInst::Create(Val, Indices);
7552   return AteExtraComma ? InstExtraComma : InstNormal;
7553 }
7554 
7555 /// parseInsertValue
7556 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7557 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7558   Value *Val0, *Val1; LocTy Loc0, Loc1;
7559   SmallVector<unsigned, 4> Indices;
7560   bool AteExtraComma;
7561   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7562       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7563       parseTypeAndValue(Val1, Loc1, PFS) ||
7564       parseIndexList(Indices, AteExtraComma))
7565     return true;
7566 
7567   if (!Val0->getType()->isAggregateType())
7568     return error(Loc0, "insertvalue operand must be aggregate type");
7569 
7570   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7571   if (!IndexedType)
7572     return error(Loc0, "invalid indices for insertvalue");
7573   if (IndexedType != Val1->getType())
7574     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7575                            getTypeString(Val1->getType()) + "' instead of '" +
7576                            getTypeString(IndexedType) + "'");
7577   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7578   return AteExtraComma ? InstExtraComma : InstNormal;
7579 }
7580 
7581 //===----------------------------------------------------------------------===//
7582 // Embedded metadata.
7583 //===----------------------------------------------------------------------===//
7584 
7585 /// parseMDNodeVector
7586 ///   ::= { Element (',' Element)* }
7587 /// Element
7588 ///   ::= 'null' | TypeAndValue
7589 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7590   if (parseToken(lltok::lbrace, "expected '{' here"))
7591     return true;
7592 
7593   // Check for an empty list.
7594   if (EatIfPresent(lltok::rbrace))
7595     return false;
7596 
7597   do {
7598     // Null is a special case since it is typeless.
7599     if (EatIfPresent(lltok::kw_null)) {
7600       Elts.push_back(nullptr);
7601       continue;
7602     }
7603 
7604     Metadata *MD;
7605     if (parseMetadata(MD, nullptr))
7606       return true;
7607     Elts.push_back(MD);
7608   } while (EatIfPresent(lltok::comma));
7609 
7610   return parseToken(lltok::rbrace, "expected end of metadata node");
7611 }
7612 
7613 //===----------------------------------------------------------------------===//
7614 // Use-list order directives.
7615 //===----------------------------------------------------------------------===//
7616 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7617                                 SMLoc Loc) {
7618   if (V->use_empty())
7619     return error(Loc, "value has no uses");
7620 
7621   unsigned NumUses = 0;
7622   SmallDenseMap<const Use *, unsigned, 16> Order;
7623   for (const Use &U : V->uses()) {
7624     if (++NumUses > Indexes.size())
7625       break;
7626     Order[&U] = Indexes[NumUses - 1];
7627   }
7628   if (NumUses < 2)
7629     return error(Loc, "value only has one use");
7630   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7631     return error(Loc,
7632                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7633 
7634   V->sortUseList([&](const Use &L, const Use &R) {
7635     return Order.lookup(&L) < Order.lookup(&R);
7636   });
7637   return false;
7638 }
7639 
7640 /// parseUseListOrderIndexes
7641 ///   ::= '{' uint32 (',' uint32)+ '}'
7642 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7643   SMLoc Loc = Lex.getLoc();
7644   if (parseToken(lltok::lbrace, "expected '{' here"))
7645     return true;
7646   if (Lex.getKind() == lltok::rbrace)
7647     return Lex.Error("expected non-empty list of uselistorder indexes");
7648 
7649   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7650   // indexes should be distinct numbers in the range [0, size-1], and should
7651   // not be in order.
7652   unsigned Offset = 0;
7653   unsigned Max = 0;
7654   bool IsOrdered = true;
7655   assert(Indexes.empty() && "Expected empty order vector");
7656   do {
7657     unsigned Index;
7658     if (parseUInt32(Index))
7659       return true;
7660 
7661     // Update consistency checks.
7662     Offset += Index - Indexes.size();
7663     Max = std::max(Max, Index);
7664     IsOrdered &= Index == Indexes.size();
7665 
7666     Indexes.push_back(Index);
7667   } while (EatIfPresent(lltok::comma));
7668 
7669   if (parseToken(lltok::rbrace, "expected '}' here"))
7670     return true;
7671 
7672   if (Indexes.size() < 2)
7673     return error(Loc, "expected >= 2 uselistorder indexes");
7674   if (Offset != 0 || Max >= Indexes.size())
7675     return error(Loc,
7676                  "expected distinct uselistorder indexes in range [0, size)");
7677   if (IsOrdered)
7678     return error(Loc, "expected uselistorder indexes to change the order");
7679 
7680   return false;
7681 }
7682 
7683 /// parseUseListOrder
7684 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7685 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7686   SMLoc Loc = Lex.getLoc();
7687   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7688     return true;
7689 
7690   Value *V;
7691   SmallVector<unsigned, 16> Indexes;
7692   if (parseTypeAndValue(V, PFS) ||
7693       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7694       parseUseListOrderIndexes(Indexes))
7695     return true;
7696 
7697   return sortUseListOrder(V, Indexes, Loc);
7698 }
7699 
7700 /// parseUseListOrderBB
7701 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7702 bool LLParser::parseUseListOrderBB() {
7703   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7704   SMLoc Loc = Lex.getLoc();
7705   Lex.Lex();
7706 
7707   ValID Fn, Label;
7708   SmallVector<unsigned, 16> Indexes;
7709   if (parseValID(Fn, /*PFS=*/nullptr) ||
7710       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7711       parseValID(Label, /*PFS=*/nullptr) ||
7712       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7713       parseUseListOrderIndexes(Indexes))
7714     return true;
7715 
7716   // Check the function.
7717   GlobalValue *GV;
7718   if (Fn.Kind == ValID::t_GlobalName)
7719     GV = M->getNamedValue(Fn.StrVal);
7720   else if (Fn.Kind == ValID::t_GlobalID)
7721     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7722   else
7723     return error(Fn.Loc, "expected function name in uselistorder_bb");
7724   if (!GV)
7725     return error(Fn.Loc,
7726                  "invalid function forward reference in uselistorder_bb");
7727   auto *F = dyn_cast<Function>(GV);
7728   if (!F)
7729     return error(Fn.Loc, "expected function name in uselistorder_bb");
7730   if (F->isDeclaration())
7731     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7732 
7733   // Check the basic block.
7734   if (Label.Kind == ValID::t_LocalID)
7735     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7736   if (Label.Kind != ValID::t_LocalName)
7737     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7738   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7739   if (!V)
7740     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7741   if (!isa<BasicBlock>(V))
7742     return error(Label.Loc, "expected basic block in uselistorder_bb");
7743 
7744   return sortUseListOrder(V, Indexes, Loc);
7745 }
7746 
7747 /// ModuleEntry
7748 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7749 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7750 bool LLParser::parseModuleEntry(unsigned ID) {
7751   assert(Lex.getKind() == lltok::kw_module);
7752   Lex.Lex();
7753 
7754   std::string Path;
7755   if (parseToken(lltok::colon, "expected ':' here") ||
7756       parseToken(lltok::lparen, "expected '(' here") ||
7757       parseToken(lltok::kw_path, "expected 'path' here") ||
7758       parseToken(lltok::colon, "expected ':' here") ||
7759       parseStringConstant(Path) ||
7760       parseToken(lltok::comma, "expected ',' here") ||
7761       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7762       parseToken(lltok::colon, "expected ':' here") ||
7763       parseToken(lltok::lparen, "expected '(' here"))
7764     return true;
7765 
7766   ModuleHash Hash;
7767   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7768       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7769       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7770       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7771       parseUInt32(Hash[4]))
7772     return true;
7773 
7774   if (parseToken(lltok::rparen, "expected ')' here") ||
7775       parseToken(lltok::rparen, "expected ')' here"))
7776     return true;
7777 
7778   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7779   ModuleIdMap[ID] = ModuleEntry->first();
7780 
7781   return false;
7782 }
7783 
7784 /// TypeIdEntry
7785 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7786 bool LLParser::parseTypeIdEntry(unsigned ID) {
7787   assert(Lex.getKind() == lltok::kw_typeid);
7788   Lex.Lex();
7789 
7790   std::string Name;
7791   if (parseToken(lltok::colon, "expected ':' here") ||
7792       parseToken(lltok::lparen, "expected '(' here") ||
7793       parseToken(lltok::kw_name, "expected 'name' here") ||
7794       parseToken(lltok::colon, "expected ':' here") ||
7795       parseStringConstant(Name))
7796     return true;
7797 
7798   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7799   if (parseToken(lltok::comma, "expected ',' here") ||
7800       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7801     return true;
7802 
7803   // Check if this ID was forward referenced, and if so, update the
7804   // corresponding GUIDs.
7805   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7806   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7807     for (auto TIDRef : FwdRefTIDs->second) {
7808       assert(!*TIDRef.first &&
7809              "Forward referenced type id GUID expected to be 0");
7810       *TIDRef.first = GlobalValue::getGUID(Name);
7811     }
7812     ForwardRefTypeIds.erase(FwdRefTIDs);
7813   }
7814 
7815   return false;
7816 }
7817 
7818 /// TypeIdSummary
7819 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7820 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7821   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7822       parseToken(lltok::colon, "expected ':' here") ||
7823       parseToken(lltok::lparen, "expected '(' here") ||
7824       parseTypeTestResolution(TIS.TTRes))
7825     return true;
7826 
7827   if (EatIfPresent(lltok::comma)) {
7828     // Expect optional wpdResolutions field
7829     if (parseOptionalWpdResolutions(TIS.WPDRes))
7830       return true;
7831   }
7832 
7833   if (parseToken(lltok::rparen, "expected ')' here"))
7834     return true;
7835 
7836   return false;
7837 }
7838 
7839 static ValueInfo EmptyVI =
7840     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7841 
7842 /// TypeIdCompatibleVtableEntry
7843 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7844 ///   TypeIdCompatibleVtableInfo
7845 ///   ')'
7846 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7847   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7848   Lex.Lex();
7849 
7850   std::string Name;
7851   if (parseToken(lltok::colon, "expected ':' here") ||
7852       parseToken(lltok::lparen, "expected '(' here") ||
7853       parseToken(lltok::kw_name, "expected 'name' here") ||
7854       parseToken(lltok::colon, "expected ':' here") ||
7855       parseStringConstant(Name))
7856     return true;
7857 
7858   TypeIdCompatibleVtableInfo &TI =
7859       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7860   if (parseToken(lltok::comma, "expected ',' here") ||
7861       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7862       parseToken(lltok::colon, "expected ':' here") ||
7863       parseToken(lltok::lparen, "expected '(' here"))
7864     return true;
7865 
7866   IdToIndexMapType IdToIndexMap;
7867   // parse each call edge
7868   do {
7869     uint64_t Offset;
7870     if (parseToken(lltok::lparen, "expected '(' here") ||
7871         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7872         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7873         parseToken(lltok::comma, "expected ',' here"))
7874       return true;
7875 
7876     LocTy Loc = Lex.getLoc();
7877     unsigned GVId;
7878     ValueInfo VI;
7879     if (parseGVReference(VI, GVId))
7880       return true;
7881 
7882     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7883     // forward reference. We will save the location of the ValueInfo needing an
7884     // update, but can only do so once the std::vector is finalized.
7885     if (VI == EmptyVI)
7886       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7887     TI.push_back({Offset, VI});
7888 
7889     if (parseToken(lltok::rparen, "expected ')' in call"))
7890       return true;
7891   } while (EatIfPresent(lltok::comma));
7892 
7893   // Now that the TI vector is finalized, it is safe to save the locations
7894   // of any forward GV references that need updating later.
7895   for (auto I : IdToIndexMap) {
7896     auto &Infos = ForwardRefValueInfos[I.first];
7897     for (auto P : I.second) {
7898       assert(TI[P.first].VTableVI == EmptyVI &&
7899              "Forward referenced ValueInfo expected to be empty");
7900       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7901     }
7902   }
7903 
7904   if (parseToken(lltok::rparen, "expected ')' here") ||
7905       parseToken(lltok::rparen, "expected ')' here"))
7906     return true;
7907 
7908   // Check if this ID was forward referenced, and if so, update the
7909   // corresponding GUIDs.
7910   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7911   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7912     for (auto TIDRef : FwdRefTIDs->second) {
7913       assert(!*TIDRef.first &&
7914              "Forward referenced type id GUID expected to be 0");
7915       *TIDRef.first = GlobalValue::getGUID(Name);
7916     }
7917     ForwardRefTypeIds.erase(FwdRefTIDs);
7918   }
7919 
7920   return false;
7921 }
7922 
7923 /// TypeTestResolution
7924 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7925 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7926 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7927 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7928 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7929 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7930   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7931       parseToken(lltok::colon, "expected ':' here") ||
7932       parseToken(lltok::lparen, "expected '(' here") ||
7933       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7934       parseToken(lltok::colon, "expected ':' here"))
7935     return true;
7936 
7937   switch (Lex.getKind()) {
7938   case lltok::kw_unknown:
7939     TTRes.TheKind = TypeTestResolution::Unknown;
7940     break;
7941   case lltok::kw_unsat:
7942     TTRes.TheKind = TypeTestResolution::Unsat;
7943     break;
7944   case lltok::kw_byteArray:
7945     TTRes.TheKind = TypeTestResolution::ByteArray;
7946     break;
7947   case lltok::kw_inline:
7948     TTRes.TheKind = TypeTestResolution::Inline;
7949     break;
7950   case lltok::kw_single:
7951     TTRes.TheKind = TypeTestResolution::Single;
7952     break;
7953   case lltok::kw_allOnes:
7954     TTRes.TheKind = TypeTestResolution::AllOnes;
7955     break;
7956   default:
7957     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7958   }
7959   Lex.Lex();
7960 
7961   if (parseToken(lltok::comma, "expected ',' here") ||
7962       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7963       parseToken(lltok::colon, "expected ':' here") ||
7964       parseUInt32(TTRes.SizeM1BitWidth))
7965     return true;
7966 
7967   // parse optional fields
7968   while (EatIfPresent(lltok::comma)) {
7969     switch (Lex.getKind()) {
7970     case lltok::kw_alignLog2:
7971       Lex.Lex();
7972       if (parseToken(lltok::colon, "expected ':'") ||
7973           parseUInt64(TTRes.AlignLog2))
7974         return true;
7975       break;
7976     case lltok::kw_sizeM1:
7977       Lex.Lex();
7978       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7979         return true;
7980       break;
7981     case lltok::kw_bitMask: {
7982       unsigned Val;
7983       Lex.Lex();
7984       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7985         return true;
7986       assert(Val <= 0xff);
7987       TTRes.BitMask = (uint8_t)Val;
7988       break;
7989     }
7990     case lltok::kw_inlineBits:
7991       Lex.Lex();
7992       if (parseToken(lltok::colon, "expected ':'") ||
7993           parseUInt64(TTRes.InlineBits))
7994         return true;
7995       break;
7996     default:
7997       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7998     }
7999   }
8000 
8001   if (parseToken(lltok::rparen, "expected ')' here"))
8002     return true;
8003 
8004   return false;
8005 }
8006 
8007 /// OptionalWpdResolutions
8008 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8009 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8010 bool LLParser::parseOptionalWpdResolutions(
8011     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8012   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8013       parseToken(lltok::colon, "expected ':' here") ||
8014       parseToken(lltok::lparen, "expected '(' here"))
8015     return true;
8016 
8017   do {
8018     uint64_t Offset;
8019     WholeProgramDevirtResolution WPDRes;
8020     if (parseToken(lltok::lparen, "expected '(' here") ||
8021         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8022         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8023         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8024         parseToken(lltok::rparen, "expected ')' here"))
8025       return true;
8026     WPDResMap[Offset] = WPDRes;
8027   } while (EatIfPresent(lltok::comma));
8028 
8029   if (parseToken(lltok::rparen, "expected ')' here"))
8030     return true;
8031 
8032   return false;
8033 }
8034 
8035 /// WpdRes
8036 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8037 ///         [',' OptionalResByArg]? ')'
8038 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8039 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8040 ///         [',' OptionalResByArg]? ')'
8041 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8042 ///         [',' OptionalResByArg]? ')'
8043 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8044   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8045       parseToken(lltok::colon, "expected ':' here") ||
8046       parseToken(lltok::lparen, "expected '(' here") ||
8047       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8048       parseToken(lltok::colon, "expected ':' here"))
8049     return true;
8050 
8051   switch (Lex.getKind()) {
8052   case lltok::kw_indir:
8053     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8054     break;
8055   case lltok::kw_singleImpl:
8056     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8057     break;
8058   case lltok::kw_branchFunnel:
8059     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8060     break;
8061   default:
8062     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8063   }
8064   Lex.Lex();
8065 
8066   // parse optional fields
8067   while (EatIfPresent(lltok::comma)) {
8068     switch (Lex.getKind()) {
8069     case lltok::kw_singleImplName:
8070       Lex.Lex();
8071       if (parseToken(lltok::colon, "expected ':' here") ||
8072           parseStringConstant(WPDRes.SingleImplName))
8073         return true;
8074       break;
8075     case lltok::kw_resByArg:
8076       if (parseOptionalResByArg(WPDRes.ResByArg))
8077         return true;
8078       break;
8079     default:
8080       return error(Lex.getLoc(),
8081                    "expected optional WholeProgramDevirtResolution field");
8082     }
8083   }
8084 
8085   if (parseToken(lltok::rparen, "expected ')' here"))
8086     return true;
8087 
8088   return false;
8089 }
8090 
8091 /// OptionalResByArg
8092 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8093 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8094 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8095 ///                  'virtualConstProp' )
8096 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8097 ///                [',' 'bit' ':' UInt32]? ')'
8098 bool LLParser::parseOptionalResByArg(
8099     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8100         &ResByArg) {
8101   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8102       parseToken(lltok::colon, "expected ':' here") ||
8103       parseToken(lltok::lparen, "expected '(' here"))
8104     return true;
8105 
8106   do {
8107     std::vector<uint64_t> Args;
8108     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8109         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8110         parseToken(lltok::colon, "expected ':' here") ||
8111         parseToken(lltok::lparen, "expected '(' here") ||
8112         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8113         parseToken(lltok::colon, "expected ':' here"))
8114       return true;
8115 
8116     WholeProgramDevirtResolution::ByArg ByArg;
8117     switch (Lex.getKind()) {
8118     case lltok::kw_indir:
8119       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8120       break;
8121     case lltok::kw_uniformRetVal:
8122       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8123       break;
8124     case lltok::kw_uniqueRetVal:
8125       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8126       break;
8127     case lltok::kw_virtualConstProp:
8128       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8129       break;
8130     default:
8131       return error(Lex.getLoc(),
8132                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8133     }
8134     Lex.Lex();
8135 
8136     // parse optional fields
8137     while (EatIfPresent(lltok::comma)) {
8138       switch (Lex.getKind()) {
8139       case lltok::kw_info:
8140         Lex.Lex();
8141         if (parseToken(lltok::colon, "expected ':' here") ||
8142             parseUInt64(ByArg.Info))
8143           return true;
8144         break;
8145       case lltok::kw_byte:
8146         Lex.Lex();
8147         if (parseToken(lltok::colon, "expected ':' here") ||
8148             parseUInt32(ByArg.Byte))
8149           return true;
8150         break;
8151       case lltok::kw_bit:
8152         Lex.Lex();
8153         if (parseToken(lltok::colon, "expected ':' here") ||
8154             parseUInt32(ByArg.Bit))
8155           return true;
8156         break;
8157       default:
8158         return error(Lex.getLoc(),
8159                      "expected optional whole program devirt field");
8160       }
8161     }
8162 
8163     if (parseToken(lltok::rparen, "expected ')' here"))
8164       return true;
8165 
8166     ResByArg[Args] = ByArg;
8167   } while (EatIfPresent(lltok::comma));
8168 
8169   if (parseToken(lltok::rparen, "expected ')' here"))
8170     return true;
8171 
8172   return false;
8173 }
8174 
8175 /// OptionalResByArg
8176 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8177 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8178   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8179       parseToken(lltok::colon, "expected ':' here") ||
8180       parseToken(lltok::lparen, "expected '(' here"))
8181     return true;
8182 
8183   do {
8184     uint64_t Val;
8185     if (parseUInt64(Val))
8186       return true;
8187     Args.push_back(Val);
8188   } while (EatIfPresent(lltok::comma));
8189 
8190   if (parseToken(lltok::rparen, "expected ')' here"))
8191     return true;
8192 
8193   return false;
8194 }
8195 
8196 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8197 
8198 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8199   bool ReadOnly = Fwd->isReadOnly();
8200   bool WriteOnly = Fwd->isWriteOnly();
8201   assert(!(ReadOnly && WriteOnly));
8202   *Fwd = Resolved;
8203   if (ReadOnly)
8204     Fwd->setReadOnly();
8205   if (WriteOnly)
8206     Fwd->setWriteOnly();
8207 }
8208 
8209 /// Stores the given Name/GUID and associated summary into the Index.
8210 /// Also updates any forward references to the associated entry ID.
8211 void LLParser::addGlobalValueToIndex(
8212     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8213     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8214   // First create the ValueInfo utilizing the Name or GUID.
8215   ValueInfo VI;
8216   if (GUID != 0) {
8217     assert(Name.empty());
8218     VI = Index->getOrInsertValueInfo(GUID);
8219   } else {
8220     assert(!Name.empty());
8221     if (M) {
8222       auto *GV = M->getNamedValue(Name);
8223       assert(GV);
8224       VI = Index->getOrInsertValueInfo(GV);
8225     } else {
8226       assert(
8227           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8228           "Need a source_filename to compute GUID for local");
8229       GUID = GlobalValue::getGUID(
8230           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8231       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8232     }
8233   }
8234 
8235   // Resolve forward references from calls/refs
8236   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8237   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8238     for (auto VIRef : FwdRefVIs->second) {
8239       assert(VIRef.first->getRef() == FwdVIRef &&
8240              "Forward referenced ValueInfo expected to be empty");
8241       resolveFwdRef(VIRef.first, VI);
8242     }
8243     ForwardRefValueInfos.erase(FwdRefVIs);
8244   }
8245 
8246   // Resolve forward references from aliases
8247   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8248   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8249     for (auto AliaseeRef : FwdRefAliasees->second) {
8250       assert(!AliaseeRef.first->hasAliasee() &&
8251              "Forward referencing alias already has aliasee");
8252       assert(Summary && "Aliasee must be a definition");
8253       AliaseeRef.first->setAliasee(VI, Summary.get());
8254     }
8255     ForwardRefAliasees.erase(FwdRefAliasees);
8256   }
8257 
8258   // Add the summary if one was provided.
8259   if (Summary)
8260     Index->addGlobalValueSummary(VI, std::move(Summary));
8261 
8262   // Save the associated ValueInfo for use in later references by ID.
8263   if (ID == NumberedValueInfos.size())
8264     NumberedValueInfos.push_back(VI);
8265   else {
8266     // Handle non-continuous numbers (to make test simplification easier).
8267     if (ID > NumberedValueInfos.size())
8268       NumberedValueInfos.resize(ID + 1);
8269     NumberedValueInfos[ID] = VI;
8270   }
8271 }
8272 
8273 /// parseSummaryIndexFlags
8274 ///   ::= 'flags' ':' UInt64
8275 bool LLParser::parseSummaryIndexFlags() {
8276   assert(Lex.getKind() == lltok::kw_flags);
8277   Lex.Lex();
8278 
8279   if (parseToken(lltok::colon, "expected ':' here"))
8280     return true;
8281   uint64_t Flags;
8282   if (parseUInt64(Flags))
8283     return true;
8284   if (Index)
8285     Index->setFlags(Flags);
8286   return false;
8287 }
8288 
8289 /// parseBlockCount
8290 ///   ::= 'blockcount' ':' UInt64
8291 bool LLParser::parseBlockCount() {
8292   assert(Lex.getKind() == lltok::kw_blockcount);
8293   Lex.Lex();
8294 
8295   if (parseToken(lltok::colon, "expected ':' here"))
8296     return true;
8297   uint64_t BlockCount;
8298   if (parseUInt64(BlockCount))
8299     return true;
8300   if (Index)
8301     Index->setBlockCount(BlockCount);
8302   return false;
8303 }
8304 
8305 /// parseGVEntry
8306 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8307 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8308 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8309 bool LLParser::parseGVEntry(unsigned ID) {
8310   assert(Lex.getKind() == lltok::kw_gv);
8311   Lex.Lex();
8312 
8313   if (parseToken(lltok::colon, "expected ':' here") ||
8314       parseToken(lltok::lparen, "expected '(' here"))
8315     return true;
8316 
8317   std::string Name;
8318   GlobalValue::GUID GUID = 0;
8319   switch (Lex.getKind()) {
8320   case lltok::kw_name:
8321     Lex.Lex();
8322     if (parseToken(lltok::colon, "expected ':' here") ||
8323         parseStringConstant(Name))
8324       return true;
8325     // Can't create GUID/ValueInfo until we have the linkage.
8326     break;
8327   case lltok::kw_guid:
8328     Lex.Lex();
8329     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8330       return true;
8331     break;
8332   default:
8333     return error(Lex.getLoc(), "expected name or guid tag");
8334   }
8335 
8336   if (!EatIfPresent(lltok::comma)) {
8337     // No summaries. Wrap up.
8338     if (parseToken(lltok::rparen, "expected ')' here"))
8339       return true;
8340     // This was created for a call to an external or indirect target.
8341     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8342     // created for indirect calls with VP. A Name with no GUID came from
8343     // an external definition. We pass ExternalLinkage since that is only
8344     // used when the GUID must be computed from Name, and in that case
8345     // the symbol must have external linkage.
8346     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8347                           nullptr);
8348     return false;
8349   }
8350 
8351   // Have a list of summaries
8352   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8353       parseToken(lltok::colon, "expected ':' here") ||
8354       parseToken(lltok::lparen, "expected '(' here"))
8355     return true;
8356   do {
8357     switch (Lex.getKind()) {
8358     case lltok::kw_function:
8359       if (parseFunctionSummary(Name, GUID, ID))
8360         return true;
8361       break;
8362     case lltok::kw_variable:
8363       if (parseVariableSummary(Name, GUID, ID))
8364         return true;
8365       break;
8366     case lltok::kw_alias:
8367       if (parseAliasSummary(Name, GUID, ID))
8368         return true;
8369       break;
8370     default:
8371       return error(Lex.getLoc(), "expected summary type");
8372     }
8373   } while (EatIfPresent(lltok::comma));
8374 
8375   if (parseToken(lltok::rparen, "expected ')' here") ||
8376       parseToken(lltok::rparen, "expected ')' here"))
8377     return true;
8378 
8379   return false;
8380 }
8381 
8382 /// FunctionSummary
8383 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8384 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8385 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8386 ///         [',' OptionalRefs]? ')'
8387 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8388                                     unsigned ID) {
8389   assert(Lex.getKind() == lltok::kw_function);
8390   Lex.Lex();
8391 
8392   StringRef ModulePath;
8393   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8394       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8395       /*NotEligibleToImport=*/false,
8396       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8397   unsigned InstCount;
8398   std::vector<FunctionSummary::EdgeTy> Calls;
8399   FunctionSummary::TypeIdInfo TypeIdInfo;
8400   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8401   std::vector<ValueInfo> Refs;
8402   // Default is all-zeros (conservative values).
8403   FunctionSummary::FFlags FFlags = {};
8404   if (parseToken(lltok::colon, "expected ':' here") ||
8405       parseToken(lltok::lparen, "expected '(' here") ||
8406       parseModuleReference(ModulePath) ||
8407       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8408       parseToken(lltok::comma, "expected ',' here") ||
8409       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8410       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8411     return true;
8412 
8413   // parse optional fields
8414   while (EatIfPresent(lltok::comma)) {
8415     switch (Lex.getKind()) {
8416     case lltok::kw_funcFlags:
8417       if (parseOptionalFFlags(FFlags))
8418         return true;
8419       break;
8420     case lltok::kw_calls:
8421       if (parseOptionalCalls(Calls))
8422         return true;
8423       break;
8424     case lltok::kw_typeIdInfo:
8425       if (parseOptionalTypeIdInfo(TypeIdInfo))
8426         return true;
8427       break;
8428     case lltok::kw_refs:
8429       if (parseOptionalRefs(Refs))
8430         return true;
8431       break;
8432     case lltok::kw_params:
8433       if (parseOptionalParamAccesses(ParamAccesses))
8434         return true;
8435       break;
8436     default:
8437       return error(Lex.getLoc(), "expected optional function summary field");
8438     }
8439   }
8440 
8441   if (parseToken(lltok::rparen, "expected ')' here"))
8442     return true;
8443 
8444   auto FS = std::make_unique<FunctionSummary>(
8445       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8446       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8447       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8448       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8449       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8450       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8451       std::move(ParamAccesses));
8452 
8453   FS->setModulePath(ModulePath);
8454 
8455   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8456                         ID, std::move(FS));
8457 
8458   return false;
8459 }
8460 
8461 /// VariableSummary
8462 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8463 ///         [',' OptionalRefs]? ')'
8464 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8465                                     unsigned ID) {
8466   assert(Lex.getKind() == lltok::kw_variable);
8467   Lex.Lex();
8468 
8469   StringRef ModulePath;
8470   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8471       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8472       /*NotEligibleToImport=*/false,
8473       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8474   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8475                                         /* WriteOnly */ false,
8476                                         /* Constant */ false,
8477                                         GlobalObject::VCallVisibilityPublic);
8478   std::vector<ValueInfo> Refs;
8479   VTableFuncList VTableFuncs;
8480   if (parseToken(lltok::colon, "expected ':' here") ||
8481       parseToken(lltok::lparen, "expected '(' here") ||
8482       parseModuleReference(ModulePath) ||
8483       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8484       parseToken(lltok::comma, "expected ',' here") ||
8485       parseGVarFlags(GVarFlags))
8486     return true;
8487 
8488   // parse optional fields
8489   while (EatIfPresent(lltok::comma)) {
8490     switch (Lex.getKind()) {
8491     case lltok::kw_vTableFuncs:
8492       if (parseOptionalVTableFuncs(VTableFuncs))
8493         return true;
8494       break;
8495     case lltok::kw_refs:
8496       if (parseOptionalRefs(Refs))
8497         return true;
8498       break;
8499     default:
8500       return error(Lex.getLoc(), "expected optional variable summary field");
8501     }
8502   }
8503 
8504   if (parseToken(lltok::rparen, "expected ')' here"))
8505     return true;
8506 
8507   auto GS =
8508       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8509 
8510   GS->setModulePath(ModulePath);
8511   GS->setVTableFuncs(std::move(VTableFuncs));
8512 
8513   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8514                         ID, std::move(GS));
8515 
8516   return false;
8517 }
8518 
8519 /// AliasSummary
8520 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8521 ///         'aliasee' ':' GVReference ')'
8522 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8523                                  unsigned ID) {
8524   assert(Lex.getKind() == lltok::kw_alias);
8525   LocTy Loc = Lex.getLoc();
8526   Lex.Lex();
8527 
8528   StringRef ModulePath;
8529   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8530       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8531       /*NotEligibleToImport=*/false,
8532       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8533   if (parseToken(lltok::colon, "expected ':' here") ||
8534       parseToken(lltok::lparen, "expected '(' here") ||
8535       parseModuleReference(ModulePath) ||
8536       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8537       parseToken(lltok::comma, "expected ',' here") ||
8538       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8539       parseToken(lltok::colon, "expected ':' here"))
8540     return true;
8541 
8542   ValueInfo AliaseeVI;
8543   unsigned GVId;
8544   if (parseGVReference(AliaseeVI, GVId))
8545     return true;
8546 
8547   if (parseToken(lltok::rparen, "expected ')' here"))
8548     return true;
8549 
8550   auto AS = std::make_unique<AliasSummary>(GVFlags);
8551 
8552   AS->setModulePath(ModulePath);
8553 
8554   // Record forward reference if the aliasee is not parsed yet.
8555   if (AliaseeVI.getRef() == FwdVIRef) {
8556     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8557   } else {
8558     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8559     assert(Summary && "Aliasee must be a definition");
8560     AS->setAliasee(AliaseeVI, Summary);
8561   }
8562 
8563   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8564                         ID, std::move(AS));
8565 
8566   return false;
8567 }
8568 
8569 /// Flag
8570 ///   ::= [0|1]
8571 bool LLParser::parseFlag(unsigned &Val) {
8572   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8573     return tokError("expected integer");
8574   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8575   Lex.Lex();
8576   return false;
8577 }
8578 
8579 /// OptionalFFlags
8580 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8581 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8582 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8583 ///        [',' 'noInline' ':' Flag]? ')'
8584 ///        [',' 'alwaysInline' ':' Flag]? ')'
8585 ///        [',' 'noUnwind' ':' Flag]? ')'
8586 ///        [',' 'mayThrow' ':' Flag]? ')'
8587 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8588 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8589 
8590 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8591   assert(Lex.getKind() == lltok::kw_funcFlags);
8592   Lex.Lex();
8593 
8594   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8595       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8596     return true;
8597 
8598   do {
8599     unsigned Val = 0;
8600     switch (Lex.getKind()) {
8601     case lltok::kw_readNone:
8602       Lex.Lex();
8603       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8604         return true;
8605       FFlags.ReadNone = Val;
8606       break;
8607     case lltok::kw_readOnly:
8608       Lex.Lex();
8609       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8610         return true;
8611       FFlags.ReadOnly = Val;
8612       break;
8613     case lltok::kw_noRecurse:
8614       Lex.Lex();
8615       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8616         return true;
8617       FFlags.NoRecurse = Val;
8618       break;
8619     case lltok::kw_returnDoesNotAlias:
8620       Lex.Lex();
8621       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8622         return true;
8623       FFlags.ReturnDoesNotAlias = Val;
8624       break;
8625     case lltok::kw_noInline:
8626       Lex.Lex();
8627       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8628         return true;
8629       FFlags.NoInline = Val;
8630       break;
8631     case lltok::kw_alwaysInline:
8632       Lex.Lex();
8633       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8634         return true;
8635       FFlags.AlwaysInline = Val;
8636       break;
8637     case lltok::kw_noUnwind:
8638       Lex.Lex();
8639       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8640         return true;
8641       FFlags.NoUnwind = Val;
8642       break;
8643     case lltok::kw_mayThrow:
8644       Lex.Lex();
8645       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8646         return true;
8647       FFlags.MayThrow = Val;
8648       break;
8649     case lltok::kw_hasUnknownCall:
8650       Lex.Lex();
8651       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8652         return true;
8653       FFlags.HasUnknownCall = Val;
8654       break;
8655     case lltok::kw_mustBeUnreachable:
8656       Lex.Lex();
8657       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8658         return true;
8659       FFlags.MustBeUnreachable = Val;
8660       break;
8661     default:
8662       return error(Lex.getLoc(), "expected function flag type");
8663     }
8664   } while (EatIfPresent(lltok::comma));
8665 
8666   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8667     return true;
8668 
8669   return false;
8670 }
8671 
8672 /// OptionalCalls
8673 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8674 /// Call ::= '(' 'callee' ':' GVReference
8675 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8676 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8677   assert(Lex.getKind() == lltok::kw_calls);
8678   Lex.Lex();
8679 
8680   if (parseToken(lltok::colon, "expected ':' in calls") ||
8681       parseToken(lltok::lparen, "expected '(' in calls"))
8682     return true;
8683 
8684   IdToIndexMapType IdToIndexMap;
8685   // parse each call edge
8686   do {
8687     ValueInfo VI;
8688     if (parseToken(lltok::lparen, "expected '(' in call") ||
8689         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8690         parseToken(lltok::colon, "expected ':'"))
8691       return true;
8692 
8693     LocTy Loc = Lex.getLoc();
8694     unsigned GVId;
8695     if (parseGVReference(VI, GVId))
8696       return true;
8697 
8698     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8699     unsigned RelBF = 0;
8700     if (EatIfPresent(lltok::comma)) {
8701       // Expect either hotness or relbf
8702       if (EatIfPresent(lltok::kw_hotness)) {
8703         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8704           return true;
8705       } else {
8706         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8707             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8708           return true;
8709       }
8710     }
8711     // Keep track of the Call array index needing a forward reference.
8712     // We will save the location of the ValueInfo needing an update, but
8713     // can only do so once the std::vector is finalized.
8714     if (VI.getRef() == FwdVIRef)
8715       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8716     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8717 
8718     if (parseToken(lltok::rparen, "expected ')' in call"))
8719       return true;
8720   } while (EatIfPresent(lltok::comma));
8721 
8722   // Now that the Calls vector is finalized, it is safe to save the locations
8723   // of any forward GV references that need updating later.
8724   for (auto I : IdToIndexMap) {
8725     auto &Infos = ForwardRefValueInfos[I.first];
8726     for (auto P : I.second) {
8727       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8728              "Forward referenced ValueInfo expected to be empty");
8729       Infos.emplace_back(&Calls[P.first].first, P.second);
8730     }
8731   }
8732 
8733   if (parseToken(lltok::rparen, "expected ')' in calls"))
8734     return true;
8735 
8736   return false;
8737 }
8738 
8739 /// Hotness
8740 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8741 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8742   switch (Lex.getKind()) {
8743   case lltok::kw_unknown:
8744     Hotness = CalleeInfo::HotnessType::Unknown;
8745     break;
8746   case lltok::kw_cold:
8747     Hotness = CalleeInfo::HotnessType::Cold;
8748     break;
8749   case lltok::kw_none:
8750     Hotness = CalleeInfo::HotnessType::None;
8751     break;
8752   case lltok::kw_hot:
8753     Hotness = CalleeInfo::HotnessType::Hot;
8754     break;
8755   case lltok::kw_critical:
8756     Hotness = CalleeInfo::HotnessType::Critical;
8757     break;
8758   default:
8759     return error(Lex.getLoc(), "invalid call edge hotness");
8760   }
8761   Lex.Lex();
8762   return false;
8763 }
8764 
8765 /// OptionalVTableFuncs
8766 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8767 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8768 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8769   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8770   Lex.Lex();
8771 
8772   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8773       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8774     return true;
8775 
8776   IdToIndexMapType IdToIndexMap;
8777   // parse each virtual function pair
8778   do {
8779     ValueInfo VI;
8780     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8781         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8782         parseToken(lltok::colon, "expected ':'"))
8783       return true;
8784 
8785     LocTy Loc = Lex.getLoc();
8786     unsigned GVId;
8787     if (parseGVReference(VI, GVId))
8788       return true;
8789 
8790     uint64_t Offset;
8791     if (parseToken(lltok::comma, "expected comma") ||
8792         parseToken(lltok::kw_offset, "expected offset") ||
8793         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8794       return true;
8795 
8796     // Keep track of the VTableFuncs array index needing a forward reference.
8797     // We will save the location of the ValueInfo needing an update, but
8798     // can only do so once the std::vector is finalized.
8799     if (VI == EmptyVI)
8800       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8801     VTableFuncs.push_back({VI, Offset});
8802 
8803     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8804       return true;
8805   } while (EatIfPresent(lltok::comma));
8806 
8807   // Now that the VTableFuncs vector is finalized, it is safe to save the
8808   // locations of any forward GV references that need updating later.
8809   for (auto I : IdToIndexMap) {
8810     auto &Infos = ForwardRefValueInfos[I.first];
8811     for (auto P : I.second) {
8812       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8813              "Forward referenced ValueInfo expected to be empty");
8814       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8815     }
8816   }
8817 
8818   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8819     return true;
8820 
8821   return false;
8822 }
8823 
8824 /// ParamNo := 'param' ':' UInt64
8825 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8826   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8827       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8828     return true;
8829   return false;
8830 }
8831 
8832 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8833 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8834   APSInt Lower;
8835   APSInt Upper;
8836   auto ParseAPSInt = [&](APSInt &Val) {
8837     if (Lex.getKind() != lltok::APSInt)
8838       return tokError("expected integer");
8839     Val = Lex.getAPSIntVal();
8840     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8841     Val.setIsSigned(true);
8842     Lex.Lex();
8843     return false;
8844   };
8845   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8846       parseToken(lltok::colon, "expected ':' here") ||
8847       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8848       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8849       parseToken(lltok::rsquare, "expected ']' here"))
8850     return true;
8851 
8852   ++Upper;
8853   Range =
8854       (Lower == Upper && !Lower.isMaxValue())
8855           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8856           : ConstantRange(Lower, Upper);
8857 
8858   return false;
8859 }
8860 
8861 /// ParamAccessCall
8862 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8863 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8864                                     IdLocListType &IdLocList) {
8865   if (parseToken(lltok::lparen, "expected '(' here") ||
8866       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8867       parseToken(lltok::colon, "expected ':' here"))
8868     return true;
8869 
8870   unsigned GVId;
8871   ValueInfo VI;
8872   LocTy Loc = Lex.getLoc();
8873   if (parseGVReference(VI, GVId))
8874     return true;
8875 
8876   Call.Callee = VI;
8877   IdLocList.emplace_back(GVId, Loc);
8878 
8879   if (parseToken(lltok::comma, "expected ',' here") ||
8880       parseParamNo(Call.ParamNo) ||
8881       parseToken(lltok::comma, "expected ',' here") ||
8882       parseParamAccessOffset(Call.Offsets))
8883     return true;
8884 
8885   if (parseToken(lltok::rparen, "expected ')' here"))
8886     return true;
8887 
8888   return false;
8889 }
8890 
8891 /// ParamAccess
8892 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8893 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8894 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8895                                 IdLocListType &IdLocList) {
8896   if (parseToken(lltok::lparen, "expected '(' here") ||
8897       parseParamNo(Param.ParamNo) ||
8898       parseToken(lltok::comma, "expected ',' here") ||
8899       parseParamAccessOffset(Param.Use))
8900     return true;
8901 
8902   if (EatIfPresent(lltok::comma)) {
8903     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8904         parseToken(lltok::colon, "expected ':' here") ||
8905         parseToken(lltok::lparen, "expected '(' here"))
8906       return true;
8907     do {
8908       FunctionSummary::ParamAccess::Call Call;
8909       if (parseParamAccessCall(Call, IdLocList))
8910         return true;
8911       Param.Calls.push_back(Call);
8912     } while (EatIfPresent(lltok::comma));
8913 
8914     if (parseToken(lltok::rparen, "expected ')' here"))
8915       return true;
8916   }
8917 
8918   if (parseToken(lltok::rparen, "expected ')' here"))
8919     return true;
8920 
8921   return false;
8922 }
8923 
8924 /// OptionalParamAccesses
8925 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8926 bool LLParser::parseOptionalParamAccesses(
8927     std::vector<FunctionSummary::ParamAccess> &Params) {
8928   assert(Lex.getKind() == lltok::kw_params);
8929   Lex.Lex();
8930 
8931   if (parseToken(lltok::colon, "expected ':' here") ||
8932       parseToken(lltok::lparen, "expected '(' here"))
8933     return true;
8934 
8935   IdLocListType VContexts;
8936   size_t CallsNum = 0;
8937   do {
8938     FunctionSummary::ParamAccess ParamAccess;
8939     if (parseParamAccess(ParamAccess, VContexts))
8940       return true;
8941     CallsNum += ParamAccess.Calls.size();
8942     assert(VContexts.size() == CallsNum);
8943     (void)CallsNum;
8944     Params.emplace_back(std::move(ParamAccess));
8945   } while (EatIfPresent(lltok::comma));
8946 
8947   if (parseToken(lltok::rparen, "expected ')' here"))
8948     return true;
8949 
8950   // Now that the Params is finalized, it is safe to save the locations
8951   // of any forward GV references that need updating later.
8952   IdLocListType::const_iterator ItContext = VContexts.begin();
8953   for (auto &PA : Params) {
8954     for (auto &C : PA.Calls) {
8955       if (C.Callee.getRef() == FwdVIRef)
8956         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8957                                                             ItContext->second);
8958       ++ItContext;
8959     }
8960   }
8961   assert(ItContext == VContexts.end());
8962 
8963   return false;
8964 }
8965 
8966 /// OptionalRefs
8967 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8968 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8969   assert(Lex.getKind() == lltok::kw_refs);
8970   Lex.Lex();
8971 
8972   if (parseToken(lltok::colon, "expected ':' in refs") ||
8973       parseToken(lltok::lparen, "expected '(' in refs"))
8974     return true;
8975 
8976   struct ValueContext {
8977     ValueInfo VI;
8978     unsigned GVId;
8979     LocTy Loc;
8980   };
8981   std::vector<ValueContext> VContexts;
8982   // parse each ref edge
8983   do {
8984     ValueContext VC;
8985     VC.Loc = Lex.getLoc();
8986     if (parseGVReference(VC.VI, VC.GVId))
8987       return true;
8988     VContexts.push_back(VC);
8989   } while (EatIfPresent(lltok::comma));
8990 
8991   // Sort value contexts so that ones with writeonly
8992   // and readonly ValueInfo  are at the end of VContexts vector.
8993   // See FunctionSummary::specialRefCounts()
8994   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8995     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8996   });
8997 
8998   IdToIndexMapType IdToIndexMap;
8999   for (auto &VC : VContexts) {
9000     // Keep track of the Refs array index needing a forward reference.
9001     // We will save the location of the ValueInfo needing an update, but
9002     // can only do so once the std::vector is finalized.
9003     if (VC.VI.getRef() == FwdVIRef)
9004       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9005     Refs.push_back(VC.VI);
9006   }
9007 
9008   // Now that the Refs vector is finalized, it is safe to save the locations
9009   // of any forward GV references that need updating later.
9010   for (auto I : IdToIndexMap) {
9011     auto &Infos = ForwardRefValueInfos[I.first];
9012     for (auto P : I.second) {
9013       assert(Refs[P.first].getRef() == FwdVIRef &&
9014              "Forward referenced ValueInfo expected to be empty");
9015       Infos.emplace_back(&Refs[P.first], P.second);
9016     }
9017   }
9018 
9019   if (parseToken(lltok::rparen, "expected ')' in refs"))
9020     return true;
9021 
9022   return false;
9023 }
9024 
9025 /// OptionalTypeIdInfo
9026 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9027 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9028 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9029 bool LLParser::parseOptionalTypeIdInfo(
9030     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9031   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9032   Lex.Lex();
9033 
9034   if (parseToken(lltok::colon, "expected ':' here") ||
9035       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9036     return true;
9037 
9038   do {
9039     switch (Lex.getKind()) {
9040     case lltok::kw_typeTests:
9041       if (parseTypeTests(TypeIdInfo.TypeTests))
9042         return true;
9043       break;
9044     case lltok::kw_typeTestAssumeVCalls:
9045       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9046                            TypeIdInfo.TypeTestAssumeVCalls))
9047         return true;
9048       break;
9049     case lltok::kw_typeCheckedLoadVCalls:
9050       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9051                            TypeIdInfo.TypeCheckedLoadVCalls))
9052         return true;
9053       break;
9054     case lltok::kw_typeTestAssumeConstVCalls:
9055       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9056                               TypeIdInfo.TypeTestAssumeConstVCalls))
9057         return true;
9058       break;
9059     case lltok::kw_typeCheckedLoadConstVCalls:
9060       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9061                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9062         return true;
9063       break;
9064     default:
9065       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9066     }
9067   } while (EatIfPresent(lltok::comma));
9068 
9069   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9070     return true;
9071 
9072   return false;
9073 }
9074 
9075 /// TypeTests
9076 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9077 ///         [',' (SummaryID | UInt64)]* ')'
9078 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9079   assert(Lex.getKind() == lltok::kw_typeTests);
9080   Lex.Lex();
9081 
9082   if (parseToken(lltok::colon, "expected ':' here") ||
9083       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9084     return true;
9085 
9086   IdToIndexMapType IdToIndexMap;
9087   do {
9088     GlobalValue::GUID GUID = 0;
9089     if (Lex.getKind() == lltok::SummaryID) {
9090       unsigned ID = Lex.getUIntVal();
9091       LocTy Loc = Lex.getLoc();
9092       // Keep track of the TypeTests array index needing a forward reference.
9093       // We will save the location of the GUID needing an update, but
9094       // can only do so once the std::vector is finalized.
9095       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9096       Lex.Lex();
9097     } else if (parseUInt64(GUID))
9098       return true;
9099     TypeTests.push_back(GUID);
9100   } while (EatIfPresent(lltok::comma));
9101 
9102   // Now that the TypeTests vector is finalized, it is safe to save the
9103   // locations of any forward GV references that need updating later.
9104   for (auto I : IdToIndexMap) {
9105     auto &Ids = ForwardRefTypeIds[I.first];
9106     for (auto P : I.second) {
9107       assert(TypeTests[P.first] == 0 &&
9108              "Forward referenced type id GUID expected to be 0");
9109       Ids.emplace_back(&TypeTests[P.first], P.second);
9110     }
9111   }
9112 
9113   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9114     return true;
9115 
9116   return false;
9117 }
9118 
9119 /// VFuncIdList
9120 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9121 bool LLParser::parseVFuncIdList(
9122     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9123   assert(Lex.getKind() == Kind);
9124   Lex.Lex();
9125 
9126   if (parseToken(lltok::colon, "expected ':' here") ||
9127       parseToken(lltok::lparen, "expected '(' here"))
9128     return true;
9129 
9130   IdToIndexMapType IdToIndexMap;
9131   do {
9132     FunctionSummary::VFuncId VFuncId;
9133     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9134       return true;
9135     VFuncIdList.push_back(VFuncId);
9136   } while (EatIfPresent(lltok::comma));
9137 
9138   if (parseToken(lltok::rparen, "expected ')' here"))
9139     return true;
9140 
9141   // Now that the VFuncIdList vector is finalized, it is safe to save the
9142   // locations of any forward GV references that need updating later.
9143   for (auto I : IdToIndexMap) {
9144     auto &Ids = ForwardRefTypeIds[I.first];
9145     for (auto P : I.second) {
9146       assert(VFuncIdList[P.first].GUID == 0 &&
9147              "Forward referenced type id GUID expected to be 0");
9148       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9149     }
9150   }
9151 
9152   return false;
9153 }
9154 
9155 /// ConstVCallList
9156 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9157 bool LLParser::parseConstVCallList(
9158     lltok::Kind Kind,
9159     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9160   assert(Lex.getKind() == Kind);
9161   Lex.Lex();
9162 
9163   if (parseToken(lltok::colon, "expected ':' here") ||
9164       parseToken(lltok::lparen, "expected '(' here"))
9165     return true;
9166 
9167   IdToIndexMapType IdToIndexMap;
9168   do {
9169     FunctionSummary::ConstVCall ConstVCall;
9170     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9171       return true;
9172     ConstVCallList.push_back(ConstVCall);
9173   } while (EatIfPresent(lltok::comma));
9174 
9175   if (parseToken(lltok::rparen, "expected ')' here"))
9176     return true;
9177 
9178   // Now that the ConstVCallList vector is finalized, it is safe to save the
9179   // locations of any forward GV references that need updating later.
9180   for (auto I : IdToIndexMap) {
9181     auto &Ids = ForwardRefTypeIds[I.first];
9182     for (auto P : I.second) {
9183       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9184              "Forward referenced type id GUID expected to be 0");
9185       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9186     }
9187   }
9188 
9189   return false;
9190 }
9191 
9192 /// ConstVCall
9193 ///   ::= '(' VFuncId ',' Args ')'
9194 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9195                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9196   if (parseToken(lltok::lparen, "expected '(' here") ||
9197       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9198     return true;
9199 
9200   if (EatIfPresent(lltok::comma))
9201     if (parseArgs(ConstVCall.Args))
9202       return true;
9203 
9204   if (parseToken(lltok::rparen, "expected ')' here"))
9205     return true;
9206 
9207   return false;
9208 }
9209 
9210 /// VFuncId
9211 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9212 ///         'offset' ':' UInt64 ')'
9213 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9214                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9215   assert(Lex.getKind() == lltok::kw_vFuncId);
9216   Lex.Lex();
9217 
9218   if (parseToken(lltok::colon, "expected ':' here") ||
9219       parseToken(lltok::lparen, "expected '(' here"))
9220     return true;
9221 
9222   if (Lex.getKind() == lltok::SummaryID) {
9223     VFuncId.GUID = 0;
9224     unsigned ID = Lex.getUIntVal();
9225     LocTy Loc = Lex.getLoc();
9226     // Keep track of the array index needing a forward reference.
9227     // We will save the location of the GUID needing an update, but
9228     // can only do so once the caller's std::vector is finalized.
9229     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9230     Lex.Lex();
9231   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9232              parseToken(lltok::colon, "expected ':' here") ||
9233              parseUInt64(VFuncId.GUID))
9234     return true;
9235 
9236   if (parseToken(lltok::comma, "expected ',' here") ||
9237       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9238       parseToken(lltok::colon, "expected ':' here") ||
9239       parseUInt64(VFuncId.Offset) ||
9240       parseToken(lltok::rparen, "expected ')' here"))
9241     return true;
9242 
9243   return false;
9244 }
9245 
9246 /// GVFlags
9247 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9248 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9249 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9250 ///         'canAutoHide' ':' Flag ',' ')'
9251 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9252   assert(Lex.getKind() == lltok::kw_flags);
9253   Lex.Lex();
9254 
9255   if (parseToken(lltok::colon, "expected ':' here") ||
9256       parseToken(lltok::lparen, "expected '(' here"))
9257     return true;
9258 
9259   do {
9260     unsigned Flag = 0;
9261     switch (Lex.getKind()) {
9262     case lltok::kw_linkage:
9263       Lex.Lex();
9264       if (parseToken(lltok::colon, "expected ':'"))
9265         return true;
9266       bool HasLinkage;
9267       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9268       assert(HasLinkage && "Linkage not optional in summary entry");
9269       Lex.Lex();
9270       break;
9271     case lltok::kw_visibility:
9272       Lex.Lex();
9273       if (parseToken(lltok::colon, "expected ':'"))
9274         return true;
9275       parseOptionalVisibility(Flag);
9276       GVFlags.Visibility = Flag;
9277       break;
9278     case lltok::kw_notEligibleToImport:
9279       Lex.Lex();
9280       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9281         return true;
9282       GVFlags.NotEligibleToImport = Flag;
9283       break;
9284     case lltok::kw_live:
9285       Lex.Lex();
9286       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9287         return true;
9288       GVFlags.Live = Flag;
9289       break;
9290     case lltok::kw_dsoLocal:
9291       Lex.Lex();
9292       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9293         return true;
9294       GVFlags.DSOLocal = Flag;
9295       break;
9296     case lltok::kw_canAutoHide:
9297       Lex.Lex();
9298       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9299         return true;
9300       GVFlags.CanAutoHide = Flag;
9301       break;
9302     default:
9303       return error(Lex.getLoc(), "expected gv flag type");
9304     }
9305   } while (EatIfPresent(lltok::comma));
9306 
9307   if (parseToken(lltok::rparen, "expected ')' here"))
9308     return true;
9309 
9310   return false;
9311 }
9312 
9313 /// GVarFlags
9314 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9315 ///                      ',' 'writeonly' ':' Flag
9316 ///                      ',' 'constant' ':' Flag ')'
9317 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9318   assert(Lex.getKind() == lltok::kw_varFlags);
9319   Lex.Lex();
9320 
9321   if (parseToken(lltok::colon, "expected ':' here") ||
9322       parseToken(lltok::lparen, "expected '(' here"))
9323     return true;
9324 
9325   auto ParseRest = [this](unsigned int &Val) {
9326     Lex.Lex();
9327     if (parseToken(lltok::colon, "expected ':'"))
9328       return true;
9329     return parseFlag(Val);
9330   };
9331 
9332   do {
9333     unsigned Flag = 0;
9334     switch (Lex.getKind()) {
9335     case lltok::kw_readonly:
9336       if (ParseRest(Flag))
9337         return true;
9338       GVarFlags.MaybeReadOnly = Flag;
9339       break;
9340     case lltok::kw_writeonly:
9341       if (ParseRest(Flag))
9342         return true;
9343       GVarFlags.MaybeWriteOnly = Flag;
9344       break;
9345     case lltok::kw_constant:
9346       if (ParseRest(Flag))
9347         return true;
9348       GVarFlags.Constant = Flag;
9349       break;
9350     case lltok::kw_vcall_visibility:
9351       if (ParseRest(Flag))
9352         return true;
9353       GVarFlags.VCallVisibility = Flag;
9354       break;
9355     default:
9356       return error(Lex.getLoc(), "expected gvar flag type");
9357     }
9358   } while (EatIfPresent(lltok::comma));
9359   return parseToken(lltok::rparen, "expected ')' here");
9360 }
9361 
9362 /// ModuleReference
9363 ///   ::= 'module' ':' UInt
9364 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9365   // parse module id.
9366   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9367       parseToken(lltok::colon, "expected ':' here") ||
9368       parseToken(lltok::SummaryID, "expected module ID"))
9369     return true;
9370 
9371   unsigned ModuleID = Lex.getUIntVal();
9372   auto I = ModuleIdMap.find(ModuleID);
9373   // We should have already parsed all module IDs
9374   assert(I != ModuleIdMap.end());
9375   ModulePath = I->second;
9376   return false;
9377 }
9378 
9379 /// GVReference
9380 ///   ::= SummaryID
9381 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9382   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9383   if (!ReadOnly)
9384     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9385   if (parseToken(lltok::SummaryID, "expected GV ID"))
9386     return true;
9387 
9388   GVId = Lex.getUIntVal();
9389   // Check if we already have a VI for this GV
9390   if (GVId < NumberedValueInfos.size()) {
9391     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9392     VI = NumberedValueInfos[GVId];
9393   } else
9394     // We will create a forward reference to the stored location.
9395     VI = ValueInfo(false, FwdVIRef);
9396 
9397   if (ReadOnly)
9398     VI.setReadOnly();
9399   if (WriteOnly)
9400     VI.setWriteOnly();
9401   return false;
9402 }
9403