1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || ValidateEndOfModule() || 75 ValidateEndOfIndex(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 if (!M) 124 return false; 125 // Handle any function attribute group forward references. 126 for (const auto &RAG : ForwardRefAttrGroups) { 127 Value *V = RAG.first; 128 const std::vector<unsigned> &Attrs = RAG.second; 129 AttrBuilder B; 130 131 for (const auto &Attr : Attrs) 132 B.merge(NumberedAttrBuilders[Attr]); 133 134 if (Function *Fn = dyn_cast<Function>(V)) { 135 AttributeList AS = Fn->getAttributes(); 136 AttrBuilder FnAttrs(AS.getFnAttributes()); 137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 138 139 FnAttrs.merge(B); 140 141 // If the alignment was parsed as an attribute, move to the alignment 142 // field. 143 if (FnAttrs.hasAlignmentAttr()) { 144 Fn->setAlignment(FnAttrs.getAlignment()); 145 FnAttrs.removeAttribute(Attribute::Alignment); 146 } 147 148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 149 AttributeSet::get(Context, FnAttrs)); 150 Fn->setAttributes(AS); 151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 152 AttributeList AS = CI->getAttributes(); 153 AttrBuilder FnAttrs(AS.getFnAttributes()); 154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 155 FnAttrs.merge(B); 156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 157 AttributeSet::get(Context, FnAttrs)); 158 CI->setAttributes(AS); 159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 160 AttributeList AS = II->getAttributes(); 161 AttrBuilder FnAttrs(AS.getFnAttributes()); 162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 163 FnAttrs.merge(B); 164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 165 AttributeSet::get(Context, FnAttrs)); 166 II->setAttributes(AS); 167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 168 AttrBuilder Attrs(GV->getAttributes()); 169 Attrs.merge(B); 170 GV->setAttributes(AttributeSet::get(Context,Attrs)); 171 } else { 172 llvm_unreachable("invalid object with forward attribute group reference"); 173 } 174 } 175 176 // If there are entries in ForwardRefBlockAddresses at this point, the 177 // function was never defined. 178 if (!ForwardRefBlockAddresses.empty()) 179 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 180 "expected function name in blockaddress"); 181 182 for (const auto &NT : NumberedTypes) 183 if (NT.second.second.isValid()) 184 return Error(NT.second.second, 185 "use of undefined type '%" + Twine(NT.first) + "'"); 186 187 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 189 if (I->second.second.isValid()) 190 return Error(I->second.second, 191 "use of undefined type named '" + I->getKey() + "'"); 192 193 if (!ForwardRefComdats.empty()) 194 return Error(ForwardRefComdats.begin()->second, 195 "use of undefined comdat '$" + 196 ForwardRefComdats.begin()->first + "'"); 197 198 if (!ForwardRefVals.empty()) 199 return Error(ForwardRefVals.begin()->second.second, 200 "use of undefined value '@" + ForwardRefVals.begin()->first + 201 "'"); 202 203 if (!ForwardRefValIDs.empty()) 204 return Error(ForwardRefValIDs.begin()->second.second, 205 "use of undefined value '@" + 206 Twine(ForwardRefValIDs.begin()->first) + "'"); 207 208 if (!ForwardRefMDNodes.empty()) 209 return Error(ForwardRefMDNodes.begin()->second.second, 210 "use of undefined metadata '!" + 211 Twine(ForwardRefMDNodes.begin()->first) + "'"); 212 213 // Resolve metadata cycles. 214 for (auto &N : NumberedMetadata) { 215 if (N.second && !N.second->isResolved()) 216 N.second->resolveCycles(); 217 } 218 219 for (auto *Inst : InstsWithTBAATag) { 220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 222 auto *UpgradedMD = UpgradeTBAANode(*MD); 223 if (MD != UpgradedMD) 224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 225 } 226 227 // Look for intrinsic functions and CallInst that need to be upgraded 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 230 231 // Some types could be renamed during loading if several modules are 232 // loaded in the same LLVMContext (LTO scenario). In this case we should 233 // remangle intrinsics names as well. 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 235 Function *F = &*FI++; 236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 237 F->replaceAllUsesWith(Remangled.getValue()); 238 F->eraseFromParent(); 239 } 240 } 241 242 if (UpgradeDebugInfo) 243 llvm::UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 UpgradeSectionAttributes(*M); 247 248 if (!Slots) 249 return false; 250 // Initialize the slot mapping. 251 // Because by this point we've parsed and validated everything, we can "steal" 252 // the mapping from LLParser as it doesn't need it anymore. 253 Slots->GlobalValues = std::move(NumberedVals); 254 Slots->MetadataNodes = std::move(NumberedMetadata); 255 for (const auto &I : NamedTypes) 256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 257 for (const auto &I : NumberedTypes) 258 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 259 260 return false; 261 } 262 263 /// Do final validity and sanity checks at the end of the index. 264 bool LLParser::ValidateEndOfIndex() { 265 if (!Index) 266 return false; 267 268 if (!ForwardRefValueInfos.empty()) 269 return Error(ForwardRefValueInfos.begin()->second.front().second, 270 "use of undefined summary '^" + 271 Twine(ForwardRefValueInfos.begin()->first) + "'"); 272 273 if (!ForwardRefAliasees.empty()) 274 return Error(ForwardRefAliasees.begin()->second.front().second, 275 "use of undefined summary '^" + 276 Twine(ForwardRefAliasees.begin()->first) + "'"); 277 278 if (!ForwardRefTypeIds.empty()) 279 return Error(ForwardRefTypeIds.begin()->second.front().second, 280 "use of undefined type id summary '^" + 281 Twine(ForwardRefTypeIds.begin()->first) + "'"); 282 283 return false; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Top-Level Entities 288 //===----------------------------------------------------------------------===// 289 290 bool LLParser::ParseTopLevelEntities() { 291 // If there is no Module, then parse just the summary index entries. 292 if (!M) { 293 while (true) { 294 switch (Lex.getKind()) { 295 case lltok::Eof: 296 return false; 297 case lltok::SummaryID: 298 if (ParseSummaryEntry()) 299 return true; 300 break; 301 case lltok::kw_source_filename: 302 if (ParseSourceFileName()) 303 return true; 304 break; 305 default: 306 // Skip everything else 307 Lex.Lex(); 308 } 309 } 310 } 311 while (true) { 312 switch (Lex.getKind()) { 313 default: return TokError("expected top-level entity"); 314 case lltok::Eof: return false; 315 case lltok::kw_declare: if (ParseDeclare()) return true; break; 316 case lltok::kw_define: if (ParseDefine()) return true; break; 317 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 319 case lltok::kw_source_filename: 320 if (ParseSourceFileName()) 321 return true; 322 break; 323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 325 case lltok::LocalVar: if (ParseNamedType()) return true; break; 326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 328 case lltok::ComdatVar: if (parseComdat()) return true; break; 329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 330 case lltok::SummaryID: 331 if (ParseSummaryEntry()) 332 return true; 333 break; 334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 337 case lltok::kw_uselistorder_bb: 338 if (ParseUseListOrderBB()) 339 return true; 340 break; 341 } 342 } 343 } 344 345 /// toplevelentity 346 /// ::= 'module' 'asm' STRINGCONSTANT 347 bool LLParser::ParseModuleAsm() { 348 assert(Lex.getKind() == lltok::kw_module); 349 Lex.Lex(); 350 351 std::string AsmStr; 352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 353 ParseStringConstant(AsmStr)) return true; 354 355 M->appendModuleInlineAsm(AsmStr); 356 return false; 357 } 358 359 /// toplevelentity 360 /// ::= 'target' 'triple' '=' STRINGCONSTANT 361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 362 bool LLParser::ParseTargetDefinition() { 363 assert(Lex.getKind() == lltok::kw_target); 364 std::string Str; 365 switch (Lex.Lex()) { 366 default: return TokError("unknown target property"); 367 case lltok::kw_triple: 368 Lex.Lex(); 369 if (ParseToken(lltok::equal, "expected '=' after target triple") || 370 ParseStringConstant(Str)) 371 return true; 372 M->setTargetTriple(Str); 373 return false; 374 case lltok::kw_datalayout: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 377 ParseStringConstant(Str)) 378 return true; 379 if (DataLayoutStr.empty()) 380 M->setDataLayout(Str); 381 return false; 382 } 383 } 384 385 /// toplevelentity 386 /// ::= 'source_filename' '=' STRINGCONSTANT 387 bool LLParser::ParseSourceFileName() { 388 assert(Lex.getKind() == lltok::kw_source_filename); 389 Lex.Lex(); 390 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 391 ParseStringConstant(SourceFileName)) 392 return true; 393 if (M) 394 M->setSourceFileName(SourceFileName); 395 return false; 396 } 397 398 /// toplevelentity 399 /// ::= 'deplibs' '=' '[' ']' 400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 401 /// FIXME: Remove in 4.0. Currently parse, but ignore. 402 bool LLParser::ParseDepLibs() { 403 assert(Lex.getKind() == lltok::kw_deplibs); 404 Lex.Lex(); 405 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 406 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 407 return true; 408 409 if (EatIfPresent(lltok::rsquare)) 410 return false; 411 412 do { 413 std::string Str; 414 if (ParseStringConstant(Str)) return true; 415 } while (EatIfPresent(lltok::comma)); 416 417 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 418 } 419 420 /// ParseUnnamedType: 421 /// ::= LocalVarID '=' 'type' type 422 bool LLParser::ParseUnnamedType() { 423 LocTy TypeLoc = Lex.getLoc(); 424 unsigned TypeID = Lex.getUIntVal(); 425 Lex.Lex(); // eat LocalVarID; 426 427 if (ParseToken(lltok::equal, "expected '=' after name") || 428 ParseToken(lltok::kw_type, "expected 'type' after '='")) 429 return true; 430 431 Type *Result = nullptr; 432 if (ParseStructDefinition(TypeLoc, "", 433 NumberedTypes[TypeID], Result)) return true; 434 435 if (!isa<StructType>(Result)) { 436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 437 if (Entry.first) 438 return Error(TypeLoc, "non-struct types may not be recursive"); 439 Entry.first = Result; 440 Entry.second = SMLoc(); 441 } 442 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= LocalVar '=' 'type' type 448 bool LLParser::ParseNamedType() { 449 std::string Name = Lex.getStrVal(); 450 LocTy NameLoc = Lex.getLoc(); 451 Lex.Lex(); // eat LocalVar. 452 453 if (ParseToken(lltok::equal, "expected '=' after name") || 454 ParseToken(lltok::kw_type, "expected 'type' after name")) 455 return true; 456 457 Type *Result = nullptr; 458 if (ParseStructDefinition(NameLoc, Name, 459 NamedTypes[Name], Result)) return true; 460 461 if (!isa<StructType>(Result)) { 462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 463 if (Entry.first) 464 return Error(NameLoc, "non-struct types may not be recursive"); 465 Entry.first = Result; 466 Entry.second = SMLoc(); 467 } 468 469 return false; 470 } 471 472 /// toplevelentity 473 /// ::= 'declare' FunctionHeader 474 bool LLParser::ParseDeclare() { 475 assert(Lex.getKind() == lltok::kw_declare); 476 Lex.Lex(); 477 478 std::vector<std::pair<unsigned, MDNode *>> MDs; 479 while (Lex.getKind() == lltok::MetadataVar) { 480 unsigned MDK; 481 MDNode *N; 482 if (ParseMetadataAttachment(MDK, N)) 483 return true; 484 MDs.push_back({MDK, N}); 485 } 486 487 Function *F; 488 if (ParseFunctionHeader(F, false)) 489 return true; 490 for (auto &MD : MDs) 491 F->addMetadata(MD.first, *MD.second); 492 return false; 493 } 494 495 /// toplevelentity 496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 497 bool LLParser::ParseDefine() { 498 assert(Lex.getKind() == lltok::kw_define); 499 Lex.Lex(); 500 501 Function *F; 502 return ParseFunctionHeader(F, true) || 503 ParseOptionalFunctionMetadata(*F) || 504 ParseFunctionBody(*F); 505 } 506 507 /// ParseGlobalType 508 /// ::= 'constant' 509 /// ::= 'global' 510 bool LLParser::ParseGlobalType(bool &IsConstant) { 511 if (Lex.getKind() == lltok::kw_constant) 512 IsConstant = true; 513 else if (Lex.getKind() == lltok::kw_global) 514 IsConstant = false; 515 else { 516 IsConstant = false; 517 return TokError("expected 'global' or 'constant'"); 518 } 519 Lex.Lex(); 520 return false; 521 } 522 523 bool LLParser::ParseOptionalUnnamedAddr( 524 GlobalVariable::UnnamedAddr &UnnamedAddr) { 525 if (EatIfPresent(lltok::kw_unnamed_addr)) 526 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 527 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 528 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 529 else 530 UnnamedAddr = GlobalValue::UnnamedAddr::None; 531 return false; 532 } 533 534 /// ParseUnnamedGlobal: 535 /// OptionalVisibility (ALIAS | IFUNC) ... 536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 537 /// OptionalDLLStorageClass 538 /// ... -> global variable 539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 541 /// OptionalDLLStorageClass 542 /// ... -> global variable 543 bool LLParser::ParseUnnamedGlobal() { 544 unsigned VarID = NumberedVals.size(); 545 std::string Name; 546 LocTy NameLoc = Lex.getLoc(); 547 548 // Handle the GlobalID form. 549 if (Lex.getKind() == lltok::GlobalID) { 550 if (Lex.getUIntVal() != VarID) 551 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 552 Twine(VarID) + "'"); 553 Lex.Lex(); // eat GlobalID; 554 555 if (ParseToken(lltok::equal, "expected '=' after name")) 556 return true; 557 } 558 559 bool HasLinkage; 560 unsigned Linkage, Visibility, DLLStorageClass; 561 bool DSOLocal; 562 GlobalVariable::ThreadLocalMode TLM; 563 GlobalVariable::UnnamedAddr UnnamedAddr; 564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 565 DSOLocal) || 566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 567 return true; 568 569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 572 573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 575 } 576 577 /// ParseNamedGlobal: 578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 580 /// OptionalVisibility OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::ParseNamedGlobal() { 583 assert(Lex.getKind() == lltok::GlobalVar); 584 LocTy NameLoc = Lex.getLoc(); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 bool HasLinkage; 589 unsigned Linkage, Visibility, DLLStorageClass; 590 bool DSOLocal; 591 GlobalVariable::ThreadLocalMode TLM; 592 GlobalVariable::UnnamedAddr UnnamedAddr; 593 if (ParseToken(lltok::equal, "expected '=' in global variable") || 594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 595 DSOLocal) || 596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 597 return true; 598 599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 602 603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 605 } 606 607 bool LLParser::parseComdat() { 608 assert(Lex.getKind() == lltok::ComdatVar); 609 std::string Name = Lex.getStrVal(); 610 LocTy NameLoc = Lex.getLoc(); 611 Lex.Lex(); 612 613 if (ParseToken(lltok::equal, "expected '=' here")) 614 return true; 615 616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 617 return TokError("expected comdat type"); 618 619 Comdat::SelectionKind SK; 620 switch (Lex.getKind()) { 621 default: 622 return TokError("unknown selection kind"); 623 case lltok::kw_any: 624 SK = Comdat::Any; 625 break; 626 case lltok::kw_exactmatch: 627 SK = Comdat::ExactMatch; 628 break; 629 case lltok::kw_largest: 630 SK = Comdat::Largest; 631 break; 632 case lltok::kw_noduplicates: 633 SK = Comdat::NoDuplicates; 634 break; 635 case lltok::kw_samesize: 636 SK = Comdat::SameSize; 637 break; 638 } 639 Lex.Lex(); 640 641 // See if the comdat was forward referenced, if so, use the comdat. 642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 646 647 Comdat *C; 648 if (I != ComdatSymTab.end()) 649 C = &I->second; 650 else 651 C = M->getOrInsertComdat(Name); 652 C->setSelectionKind(SK); 653 654 return false; 655 } 656 657 // MDString: 658 // ::= '!' STRINGCONSTANT 659 bool LLParser::ParseMDString(MDString *&Result) { 660 std::string Str; 661 if (ParseStringConstant(Str)) return true; 662 Result = MDString::get(Context, Str); 663 return false; 664 } 665 666 // MDNode: 667 // ::= '!' MDNodeNumber 668 bool LLParser::ParseMDNodeID(MDNode *&Result) { 669 // !{ ..., !42, ... } 670 LocTy IDLoc = Lex.getLoc(); 671 unsigned MID = 0; 672 if (ParseUInt32(MID)) 673 return true; 674 675 // If not a forward reference, just return it now. 676 if (NumberedMetadata.count(MID)) { 677 Result = NumberedMetadata[MID]; 678 return false; 679 } 680 681 // Otherwise, create MDNode forward reference. 682 auto &FwdRef = ForwardRefMDNodes[MID]; 683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 684 685 Result = FwdRef.first.get(); 686 NumberedMetadata[MID].reset(Result); 687 return false; 688 } 689 690 /// ParseNamedMetadata: 691 /// !foo = !{ !1, !2 } 692 bool LLParser::ParseNamedMetadata() { 693 assert(Lex.getKind() == lltok::MetadataVar); 694 std::string Name = Lex.getStrVal(); 695 Lex.Lex(); 696 697 if (ParseToken(lltok::equal, "expected '=' here") || 698 ParseToken(lltok::exclaim, "Expected '!' here") || 699 ParseToken(lltok::lbrace, "Expected '{' here")) 700 return true; 701 702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 703 if (Lex.getKind() != lltok::rbrace) 704 do { 705 MDNode *N = nullptr; 706 // Parse DIExpressions inline as a special case. They are still MDNodes, 707 // so they can still appear in named metadata. Remove this logic if they 708 // become plain Metadata. 709 if (Lex.getKind() == lltok::MetadataVar && 710 Lex.getStrVal() == "DIExpression") { 711 if (ParseDIExpression(N, /*IsDistinct=*/false)) 712 return true; 713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 714 ParseMDNodeID(N)) { 715 return true; 716 } 717 NMD->addOperand(N); 718 } while (EatIfPresent(lltok::comma)); 719 720 return ParseToken(lltok::rbrace, "expected end of metadata node"); 721 } 722 723 /// ParseStandaloneMetadata: 724 /// !42 = !{...} 725 bool LLParser::ParseStandaloneMetadata() { 726 assert(Lex.getKind() == lltok::exclaim); 727 Lex.Lex(); 728 unsigned MetadataID = 0; 729 730 MDNode *Init; 731 if (ParseUInt32(MetadataID) || 732 ParseToken(lltok::equal, "expected '=' here")) 733 return true; 734 735 // Detect common error, from old metadata syntax. 736 if (Lex.getKind() == lltok::Type) 737 return TokError("unexpected type in metadata definition"); 738 739 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 740 if (Lex.getKind() == lltok::MetadataVar) { 741 if (ParseSpecializedMDNode(Init, IsDistinct)) 742 return true; 743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 744 ParseMDTuple(Init, IsDistinct)) 745 return true; 746 747 // See if this was forward referenced, if so, handle it. 748 auto FI = ForwardRefMDNodes.find(MetadataID); 749 if (FI != ForwardRefMDNodes.end()) { 750 FI->second.first->replaceAllUsesWith(Init); 751 ForwardRefMDNodes.erase(FI); 752 753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 754 } else { 755 if (NumberedMetadata.count(MetadataID)) 756 return TokError("Metadata id is already used"); 757 NumberedMetadata[MetadataID].reset(Init); 758 } 759 760 return false; 761 } 762 763 // Skips a single module summary entry. 764 bool LLParser::SkipModuleSummaryEntry() { 765 // Each module summary entry consists of a tag for the entry 766 // type, followed by a colon, then the fields surrounded by nested sets of 767 // parentheses. The "tag:" looks like a Label. Once parsing support is 768 // in place we will look for the tokens corresponding to the expected tags. 769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 770 Lex.getKind() != lltok::kw_typeid) 771 return TokError( 772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 773 Lex.Lex(); 774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 775 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 776 return true; 777 // Now walk through the parenthesized entry, until the number of open 778 // parentheses goes back down to 0 (the first '(' was parsed above). 779 unsigned NumOpenParen = 1; 780 do { 781 switch (Lex.getKind()) { 782 case lltok::lparen: 783 NumOpenParen++; 784 break; 785 case lltok::rparen: 786 NumOpenParen--; 787 break; 788 case lltok::Eof: 789 return TokError("found end of file while parsing summary entry"); 790 default: 791 // Skip everything in between parentheses. 792 break; 793 } 794 Lex.Lex(); 795 } while (NumOpenParen > 0); 796 return false; 797 } 798 799 /// SummaryEntry 800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 801 bool LLParser::ParseSummaryEntry() { 802 assert(Lex.getKind() == lltok::SummaryID); 803 unsigned SummaryID = Lex.getUIntVal(); 804 805 // For summary entries, colons should be treated as distinct tokens, 806 // not an indication of the end of a label token. 807 Lex.setIgnoreColonInIdentifiers(true); 808 809 Lex.Lex(); 810 if (ParseToken(lltok::equal, "expected '=' here")) 811 return true; 812 813 // If we don't have an index object, skip the summary entry. 814 if (!Index) 815 return SkipModuleSummaryEntry(); 816 817 switch (Lex.getKind()) { 818 case lltok::kw_gv: 819 return ParseGVEntry(SummaryID); 820 case lltok::kw_module: 821 return ParseModuleEntry(SummaryID); 822 case lltok::kw_typeid: 823 return ParseTypeIdEntry(SummaryID); 824 break; 825 default: 826 return Error(Lex.getLoc(), "unexpected summary kind"); 827 } 828 Lex.setIgnoreColonInIdentifiers(false); 829 return false; 830 } 831 832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 835 } 836 837 // If there was an explicit dso_local, update GV. In the absence of an explicit 838 // dso_local we keep the default value. 839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 840 if (DSOLocal) 841 GV.setDSOLocal(true); 842 } 843 844 /// parseIndirectSymbol: 845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 846 /// OptionalVisibility OptionalDLLStorageClass 847 /// OptionalThreadLocal OptionalUnnamedAddr 848 // 'alias|ifunc' IndirectSymbol 849 /// 850 /// IndirectSymbol 851 /// ::= TypeAndValue 852 /// 853 /// Everything through OptionalUnnamedAddr has already been parsed. 854 /// 855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 856 unsigned L, unsigned Visibility, 857 unsigned DLLStorageClass, bool DSOLocal, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 bool IsAlias; 861 if (Lex.getKind() == lltok::kw_alias) 862 IsAlias = true; 863 else if (Lex.getKind() == lltok::kw_ifunc) 864 IsAlias = false; 865 else 866 llvm_unreachable("Not an alias or ifunc!"); 867 Lex.Lex(); 868 869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 870 871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 872 return Error(NameLoc, "invalid linkage type for alias"); 873 874 if (!isValidVisibilityForLinkage(Visibility, L)) 875 return Error(NameLoc, 876 "symbol with local linkage must have default visibility"); 877 878 Type *Ty; 879 LocTy ExplicitTypeLoc = Lex.getLoc(); 880 if (ParseType(Ty) || 881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 882 return true; 883 884 Constant *Aliasee; 885 LocTy AliaseeLoc = Lex.getLoc(); 886 if (Lex.getKind() != lltok::kw_bitcast && 887 Lex.getKind() != lltok::kw_getelementptr && 888 Lex.getKind() != lltok::kw_addrspacecast && 889 Lex.getKind() != lltok::kw_inttoptr) { 890 if (ParseGlobalTypeAndValue(Aliasee)) 891 return true; 892 } else { 893 // The bitcast dest type is not present, it is implied by the dest type. 894 ValID ID; 895 if (ParseValID(ID)) 896 return true; 897 if (ID.Kind != ValID::t_Constant) 898 return Error(AliaseeLoc, "invalid aliasee"); 899 Aliasee = ID.ConstantVal; 900 } 901 902 Type *AliaseeType = Aliasee->getType(); 903 auto *PTy = dyn_cast<PointerType>(AliaseeType); 904 if (!PTy) 905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 906 unsigned AddrSpace = PTy->getAddressSpace(); 907 908 if (IsAlias && Ty != PTy->getElementType()) 909 return Error( 910 ExplicitTypeLoc, 911 "explicit pointee type doesn't match operand's pointee type"); 912 913 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 914 return Error( 915 ExplicitTypeLoc, 916 "explicit pointee type should be a function type"); 917 918 GlobalValue *GVal = nullptr; 919 920 // See if the alias was forward referenced, if so, prepare to replace the 921 // forward reference. 922 if (!Name.empty()) { 923 GVal = M->getNamedValue(Name); 924 if (GVal) { 925 if (!ForwardRefVals.erase(Name)) 926 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 927 } 928 } else { 929 auto I = ForwardRefValIDs.find(NumberedVals.size()); 930 if (I != ForwardRefValIDs.end()) { 931 GVal = I->second.first; 932 ForwardRefValIDs.erase(I); 933 } 934 } 935 936 // Okay, create the alias but do not insert it into the module yet. 937 std::unique_ptr<GlobalIndirectSymbol> GA; 938 if (IsAlias) 939 GA.reset(GlobalAlias::create(Ty, AddrSpace, 940 (GlobalValue::LinkageTypes)Linkage, Name, 941 Aliasee, /*Parent*/ nullptr)); 942 else 943 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 944 (GlobalValue::LinkageTypes)Linkage, Name, 945 Aliasee, /*Parent*/ nullptr)); 946 GA->setThreadLocalMode(TLM); 947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 949 GA->setUnnamedAddr(UnnamedAddr); 950 maybeSetDSOLocal(DSOLocal, *GA); 951 952 if (Name.empty()) 953 NumberedVals.push_back(GA.get()); 954 955 if (GVal) { 956 // Verify that types agree. 957 if (GVal->getType() != GA->getType()) 958 return Error( 959 ExplicitTypeLoc, 960 "forward reference and definition of alias have different types"); 961 962 // If they agree, just RAUW the old value with the alias and remove the 963 // forward ref info. 964 GVal->replaceAllUsesWith(GA.get()); 965 GVal->eraseFromParent(); 966 } 967 968 // Insert into the module, we know its name won't collide now. 969 if (IsAlias) 970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 971 else 972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 973 assert(GA->getName() == Name && "Should not be a name conflict!"); 974 975 // The module owns this now 976 GA.release(); 977 978 return false; 979 } 980 981 /// ParseGlobal 982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 983 /// OptionalVisibility OptionalDLLStorageClass 984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 989 /// Const OptionalAttrs 990 /// 991 /// Everything up to and including OptionalUnnamedAddr has been parsed 992 /// already. 993 /// 994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 995 unsigned Linkage, bool HasLinkage, 996 unsigned Visibility, unsigned DLLStorageClass, 997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 998 GlobalVariable::UnnamedAddr UnnamedAddr) { 999 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1000 return Error(NameLoc, 1001 "symbol with local linkage must have default visibility"); 1002 1003 unsigned AddrSpace; 1004 bool IsConstant, IsExternallyInitialized; 1005 LocTy IsExternallyInitializedLoc; 1006 LocTy TyLoc; 1007 1008 Type *Ty = nullptr; 1009 if (ParseOptionalAddrSpace(AddrSpace) || 1010 ParseOptionalToken(lltok::kw_externally_initialized, 1011 IsExternallyInitialized, 1012 &IsExternallyInitializedLoc) || 1013 ParseGlobalType(IsConstant) || 1014 ParseType(Ty, TyLoc)) 1015 return true; 1016 1017 // If the linkage is specified and is external, then no initializer is 1018 // present. 1019 Constant *Init = nullptr; 1020 if (!HasLinkage || 1021 !GlobalValue::isValidDeclarationLinkage( 1022 (GlobalValue::LinkageTypes)Linkage)) { 1023 if (ParseGlobalValue(Ty, Init)) 1024 return true; 1025 } 1026 1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1028 return Error(TyLoc, "invalid type for global variable"); 1029 1030 GlobalValue *GVal = nullptr; 1031 1032 // See if the global was forward referenced, if so, use the global. 1033 if (!Name.empty()) { 1034 GVal = M->getNamedValue(Name); 1035 if (GVal) { 1036 if (!ForwardRefVals.erase(Name)) 1037 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1038 } 1039 } else { 1040 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1041 if (I != ForwardRefValIDs.end()) { 1042 GVal = I->second.first; 1043 ForwardRefValIDs.erase(I); 1044 } 1045 } 1046 1047 GlobalVariable *GV; 1048 if (!GVal) { 1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1050 Name, nullptr, GlobalVariable::NotThreadLocal, 1051 AddrSpace); 1052 } else { 1053 if (GVal->getValueType() != Ty) 1054 return Error(TyLoc, 1055 "forward reference and definition of global have different types"); 1056 1057 GV = cast<GlobalVariable>(GVal); 1058 1059 // Move the forward-reference to the correct spot in the module. 1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1061 } 1062 1063 if (Name.empty()) 1064 NumberedVals.push_back(GV); 1065 1066 // Set the parsed properties on the global. 1067 if (Init) 1068 GV->setInitializer(Init); 1069 GV->setConstant(IsConstant); 1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1071 maybeSetDSOLocal(DSOLocal, *GV); 1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1074 GV->setExternallyInitialized(IsExternallyInitialized); 1075 GV->setThreadLocalMode(TLM); 1076 GV->setUnnamedAddr(UnnamedAddr); 1077 1078 // Parse attributes on the global. 1079 while (Lex.getKind() == lltok::comma) { 1080 Lex.Lex(); 1081 1082 if (Lex.getKind() == lltok::kw_section) { 1083 Lex.Lex(); 1084 GV->setSection(Lex.getStrVal()); 1085 if (ParseToken(lltok::StringConstant, "expected global section string")) 1086 return true; 1087 } else if (Lex.getKind() == lltok::kw_align) { 1088 unsigned Alignment; 1089 if (ParseOptionalAlignment(Alignment)) return true; 1090 GV->setAlignment(Alignment); 1091 } else if (Lex.getKind() == lltok::MetadataVar) { 1092 if (ParseGlobalObjectMetadataAttachment(*GV)) 1093 return true; 1094 } else { 1095 Comdat *C; 1096 if (parseOptionalComdat(Name, C)) 1097 return true; 1098 if (C) 1099 GV->setComdat(C); 1100 else 1101 return TokError("unknown global variable property!"); 1102 } 1103 } 1104 1105 AttrBuilder Attrs; 1106 LocTy BuiltinLoc; 1107 std::vector<unsigned> FwdRefAttrGrps; 1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1109 return true; 1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1111 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1113 } 1114 1115 return false; 1116 } 1117 1118 /// ParseUnnamedAttrGrp 1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1120 bool LLParser::ParseUnnamedAttrGrp() { 1121 assert(Lex.getKind() == lltok::kw_attributes); 1122 LocTy AttrGrpLoc = Lex.getLoc(); 1123 Lex.Lex(); 1124 1125 if (Lex.getKind() != lltok::AttrGrpID) 1126 return TokError("expected attribute group id"); 1127 1128 unsigned VarID = Lex.getUIntVal(); 1129 std::vector<unsigned> unused; 1130 LocTy BuiltinLoc; 1131 Lex.Lex(); 1132 1133 if (ParseToken(lltok::equal, "expected '=' here") || 1134 ParseToken(lltok::lbrace, "expected '{' here") || 1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1136 BuiltinLoc) || 1137 ParseToken(lltok::rbrace, "expected end of attribute group")) 1138 return true; 1139 1140 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1141 return Error(AttrGrpLoc, "attribute group has no attributes"); 1142 1143 return false; 1144 } 1145 1146 /// ParseFnAttributeValuePairs 1147 /// ::= <attr> | <attr> '=' <value> 1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1149 std::vector<unsigned> &FwdRefAttrGrps, 1150 bool inAttrGrp, LocTy &BuiltinLoc) { 1151 bool HaveError = false; 1152 1153 B.clear(); 1154 1155 while (true) { 1156 lltok::Kind Token = Lex.getKind(); 1157 if (Token == lltok::kw_builtin) 1158 BuiltinLoc = Lex.getLoc(); 1159 switch (Token) { 1160 default: 1161 if (!inAttrGrp) return HaveError; 1162 return Error(Lex.getLoc(), "unterminated attribute group"); 1163 case lltok::rbrace: 1164 // Finished. 1165 return false; 1166 1167 case lltok::AttrGrpID: { 1168 // Allow a function to reference an attribute group: 1169 // 1170 // define void @foo() #1 { ... } 1171 if (inAttrGrp) 1172 HaveError |= 1173 Error(Lex.getLoc(), 1174 "cannot have an attribute group reference in an attribute group"); 1175 1176 unsigned AttrGrpNum = Lex.getUIntVal(); 1177 if (inAttrGrp) break; 1178 1179 // Save the reference to the attribute group. We'll fill it in later. 1180 FwdRefAttrGrps.push_back(AttrGrpNum); 1181 break; 1182 } 1183 // Target-dependent attributes: 1184 case lltok::StringConstant: { 1185 if (ParseStringAttribute(B)) 1186 return true; 1187 continue; 1188 } 1189 1190 // Target-independent attributes: 1191 case lltok::kw_align: { 1192 // As a hack, we allow function alignment to be initially parsed as an 1193 // attribute on a function declaration/definition or added to an attribute 1194 // group and later moved to the alignment field. 1195 unsigned Alignment; 1196 if (inAttrGrp) { 1197 Lex.Lex(); 1198 if (ParseToken(lltok::equal, "expected '=' here") || 1199 ParseUInt32(Alignment)) 1200 return true; 1201 } else { 1202 if (ParseOptionalAlignment(Alignment)) 1203 return true; 1204 } 1205 B.addAlignmentAttr(Alignment); 1206 continue; 1207 } 1208 case lltok::kw_alignstack: { 1209 unsigned Alignment; 1210 if (inAttrGrp) { 1211 Lex.Lex(); 1212 if (ParseToken(lltok::equal, "expected '=' here") || 1213 ParseUInt32(Alignment)) 1214 return true; 1215 } else { 1216 if (ParseOptionalStackAlignment(Alignment)) 1217 return true; 1218 } 1219 B.addStackAlignmentAttr(Alignment); 1220 continue; 1221 } 1222 case lltok::kw_allocsize: { 1223 unsigned ElemSizeArg; 1224 Optional<unsigned> NumElemsArg; 1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1227 return true; 1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1229 continue; 1230 } 1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1236 case lltok::kw_inaccessiblememonly: 1237 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1238 case lltok::kw_inaccessiblemem_or_argmemonly: 1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1246 case lltok::kw_noimplicitfloat: 1247 B.addAttribute(Attribute::NoImplicitFloat); break; 1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1255 case lltok::kw_optforfuzzing: 1256 B.addAttribute(Attribute::OptForFuzzing); break; 1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1261 case lltok::kw_returns_twice: 1262 B.addAttribute(Attribute::ReturnsTwice); break; 1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1266 case lltok::kw_sspstrong: 1267 B.addAttribute(Attribute::StackProtectStrong); break; 1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1269 case lltok::kw_shadowcallstack: 1270 B.addAttribute(Attribute::ShadowCallStack); break; 1271 case lltok::kw_sanitize_address: 1272 B.addAttribute(Attribute::SanitizeAddress); break; 1273 case lltok::kw_sanitize_hwaddress: 1274 B.addAttribute(Attribute::SanitizeHWAddress); break; 1275 case lltok::kw_sanitize_thread: 1276 B.addAttribute(Attribute::SanitizeThread); break; 1277 case lltok::kw_sanitize_memory: 1278 B.addAttribute(Attribute::SanitizeMemory); break; 1279 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1280 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1281 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1282 1283 // Error handling. 1284 case lltok::kw_inreg: 1285 case lltok::kw_signext: 1286 case lltok::kw_zeroext: 1287 HaveError |= 1288 Error(Lex.getLoc(), 1289 "invalid use of attribute on a function"); 1290 break; 1291 case lltok::kw_byval: 1292 case lltok::kw_dereferenceable: 1293 case lltok::kw_dereferenceable_or_null: 1294 case lltok::kw_inalloca: 1295 case lltok::kw_nest: 1296 case lltok::kw_noalias: 1297 case lltok::kw_nocapture: 1298 case lltok::kw_nonnull: 1299 case lltok::kw_returned: 1300 case lltok::kw_sret: 1301 case lltok::kw_swifterror: 1302 case lltok::kw_swiftself: 1303 HaveError |= 1304 Error(Lex.getLoc(), 1305 "invalid use of parameter-only attribute on a function"); 1306 break; 1307 } 1308 1309 Lex.Lex(); 1310 } 1311 } 1312 1313 //===----------------------------------------------------------------------===// 1314 // GlobalValue Reference/Resolution Routines. 1315 //===----------------------------------------------------------------------===// 1316 1317 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1318 const std::string &Name) { 1319 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1320 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1321 else 1322 return new GlobalVariable(*M, PTy->getElementType(), false, 1323 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1324 nullptr, GlobalVariable::NotThreadLocal, 1325 PTy->getAddressSpace()); 1326 } 1327 1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1329 /// forward reference record if needed. This can return null if the value 1330 /// exists but does not have the right type. 1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1332 LocTy Loc) { 1333 PointerType *PTy = dyn_cast<PointerType>(Ty); 1334 if (!PTy) { 1335 Error(Loc, "global variable reference must have pointer type"); 1336 return nullptr; 1337 } 1338 1339 // Look this name up in the normal function symbol table. 1340 GlobalValue *Val = 1341 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1342 1343 // If this is a forward reference for the value, see if we already created a 1344 // forward ref record. 1345 if (!Val) { 1346 auto I = ForwardRefVals.find(Name); 1347 if (I != ForwardRefVals.end()) 1348 Val = I->second.first; 1349 } 1350 1351 // If we have the value in the symbol table or fwd-ref table, return it. 1352 if (Val) { 1353 if (Val->getType() == Ty) return Val; 1354 Error(Loc, "'@" + Name + "' defined with type '" + 1355 getTypeString(Val->getType()) + "'"); 1356 return nullptr; 1357 } 1358 1359 // Otherwise, create a new forward reference for this value and remember it. 1360 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1361 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1362 return FwdVal; 1363 } 1364 1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1366 PointerType *PTy = dyn_cast<PointerType>(Ty); 1367 if (!PTy) { 1368 Error(Loc, "global variable reference must have pointer type"); 1369 return nullptr; 1370 } 1371 1372 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1373 1374 // If this is a forward reference for the value, see if we already created a 1375 // forward ref record. 1376 if (!Val) { 1377 auto I = ForwardRefValIDs.find(ID); 1378 if (I != ForwardRefValIDs.end()) 1379 Val = I->second.first; 1380 } 1381 1382 // If we have the value in the symbol table or fwd-ref table, return it. 1383 if (Val) { 1384 if (Val->getType() == Ty) return Val; 1385 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1386 getTypeString(Val->getType()) + "'"); 1387 return nullptr; 1388 } 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1392 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 //===----------------------------------------------------------------------===// 1397 // Comdat Reference/Resolution Routines. 1398 //===----------------------------------------------------------------------===// 1399 1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1401 // Look this name up in the comdat symbol table. 1402 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1403 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1404 if (I != ComdatSymTab.end()) 1405 return &I->second; 1406 1407 // Otherwise, create a new forward reference for this value and remember it. 1408 Comdat *C = M->getOrInsertComdat(Name); 1409 ForwardRefComdats[Name] = Loc; 1410 return C; 1411 } 1412 1413 //===----------------------------------------------------------------------===// 1414 // Helper Routines. 1415 //===----------------------------------------------------------------------===// 1416 1417 /// ParseToken - If the current token has the specified kind, eat it and return 1418 /// success. Otherwise, emit the specified error and return failure. 1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1420 if (Lex.getKind() != T) 1421 return TokError(ErrMsg); 1422 Lex.Lex(); 1423 return false; 1424 } 1425 1426 /// ParseStringConstant 1427 /// ::= StringConstant 1428 bool LLParser::ParseStringConstant(std::string &Result) { 1429 if (Lex.getKind() != lltok::StringConstant) 1430 return TokError("expected string constant"); 1431 Result = Lex.getStrVal(); 1432 Lex.Lex(); 1433 return false; 1434 } 1435 1436 /// ParseUInt32 1437 /// ::= uint32 1438 bool LLParser::ParseUInt32(uint32_t &Val) { 1439 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1440 return TokError("expected integer"); 1441 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1442 if (Val64 != unsigned(Val64)) 1443 return TokError("expected 32-bit integer (too large)"); 1444 Val = Val64; 1445 Lex.Lex(); 1446 return false; 1447 } 1448 1449 /// ParseUInt64 1450 /// ::= uint64 1451 bool LLParser::ParseUInt64(uint64_t &Val) { 1452 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1453 return TokError("expected integer"); 1454 Val = Lex.getAPSIntVal().getLimitedValue(); 1455 Lex.Lex(); 1456 return false; 1457 } 1458 1459 /// ParseTLSModel 1460 /// := 'localdynamic' 1461 /// := 'initialexec' 1462 /// := 'localexec' 1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1464 switch (Lex.getKind()) { 1465 default: 1466 return TokError("expected localdynamic, initialexec or localexec"); 1467 case lltok::kw_localdynamic: 1468 TLM = GlobalVariable::LocalDynamicTLSModel; 1469 break; 1470 case lltok::kw_initialexec: 1471 TLM = GlobalVariable::InitialExecTLSModel; 1472 break; 1473 case lltok::kw_localexec: 1474 TLM = GlobalVariable::LocalExecTLSModel; 1475 break; 1476 } 1477 1478 Lex.Lex(); 1479 return false; 1480 } 1481 1482 /// ParseOptionalThreadLocal 1483 /// := /*empty*/ 1484 /// := 'thread_local' 1485 /// := 'thread_local' '(' tlsmodel ')' 1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1487 TLM = GlobalVariable::NotThreadLocal; 1488 if (!EatIfPresent(lltok::kw_thread_local)) 1489 return false; 1490 1491 TLM = GlobalVariable::GeneralDynamicTLSModel; 1492 if (Lex.getKind() == lltok::lparen) { 1493 Lex.Lex(); 1494 return ParseTLSModel(TLM) || 1495 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1496 } 1497 return false; 1498 } 1499 1500 /// ParseOptionalAddrSpace 1501 /// := /*empty*/ 1502 /// := 'addrspace' '(' uint32 ')' 1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1504 AddrSpace = 0; 1505 if (!EatIfPresent(lltok::kw_addrspace)) 1506 return false; 1507 return ParseToken(lltok::lparen, "expected '(' in address space") || 1508 ParseUInt32(AddrSpace) || 1509 ParseToken(lltok::rparen, "expected ')' in address space"); 1510 } 1511 1512 /// ParseStringAttribute 1513 /// := StringConstant 1514 /// := StringConstant '=' StringConstant 1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1516 std::string Attr = Lex.getStrVal(); 1517 Lex.Lex(); 1518 std::string Val; 1519 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1520 return true; 1521 B.addAttribute(Attr, Val); 1522 return false; 1523 } 1524 1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1527 bool HaveError = false; 1528 1529 B.clear(); 1530 1531 while (true) { 1532 lltok::Kind Token = Lex.getKind(); 1533 switch (Token) { 1534 default: // End of attributes. 1535 return HaveError; 1536 case lltok::StringConstant: { 1537 if (ParseStringAttribute(B)) 1538 return true; 1539 continue; 1540 } 1541 case lltok::kw_align: { 1542 unsigned Alignment; 1543 if (ParseOptionalAlignment(Alignment)) 1544 return true; 1545 B.addAlignmentAttr(Alignment); 1546 continue; 1547 } 1548 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1549 case lltok::kw_dereferenceable: { 1550 uint64_t Bytes; 1551 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1552 return true; 1553 B.addDereferenceableAttr(Bytes); 1554 continue; 1555 } 1556 case lltok::kw_dereferenceable_or_null: { 1557 uint64_t Bytes; 1558 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1559 return true; 1560 B.addDereferenceableOrNullAttr(Bytes); 1561 continue; 1562 } 1563 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1564 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1565 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1566 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1567 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1568 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1569 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1570 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1571 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1572 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1573 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1574 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1575 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1576 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1577 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1578 1579 case lltok::kw_alignstack: 1580 case lltok::kw_alwaysinline: 1581 case lltok::kw_argmemonly: 1582 case lltok::kw_builtin: 1583 case lltok::kw_inlinehint: 1584 case lltok::kw_jumptable: 1585 case lltok::kw_minsize: 1586 case lltok::kw_naked: 1587 case lltok::kw_nobuiltin: 1588 case lltok::kw_noduplicate: 1589 case lltok::kw_noimplicitfloat: 1590 case lltok::kw_noinline: 1591 case lltok::kw_nonlazybind: 1592 case lltok::kw_noredzone: 1593 case lltok::kw_noreturn: 1594 case lltok::kw_nocf_check: 1595 case lltok::kw_nounwind: 1596 case lltok::kw_optforfuzzing: 1597 case lltok::kw_optnone: 1598 case lltok::kw_optsize: 1599 case lltok::kw_returns_twice: 1600 case lltok::kw_sanitize_address: 1601 case lltok::kw_sanitize_hwaddress: 1602 case lltok::kw_sanitize_memory: 1603 case lltok::kw_sanitize_thread: 1604 case lltok::kw_ssp: 1605 case lltok::kw_sspreq: 1606 case lltok::kw_sspstrong: 1607 case lltok::kw_safestack: 1608 case lltok::kw_shadowcallstack: 1609 case lltok::kw_strictfp: 1610 case lltok::kw_uwtable: 1611 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1612 break; 1613 } 1614 1615 Lex.Lex(); 1616 } 1617 } 1618 1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1621 bool HaveError = false; 1622 1623 B.clear(); 1624 1625 while (true) { 1626 lltok::Kind Token = Lex.getKind(); 1627 switch (Token) { 1628 default: // End of attributes. 1629 return HaveError; 1630 case lltok::StringConstant: { 1631 if (ParseStringAttribute(B)) 1632 return true; 1633 continue; 1634 } 1635 case lltok::kw_dereferenceable: { 1636 uint64_t Bytes; 1637 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1638 return true; 1639 B.addDereferenceableAttr(Bytes); 1640 continue; 1641 } 1642 case lltok::kw_dereferenceable_or_null: { 1643 uint64_t Bytes; 1644 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1645 return true; 1646 B.addDereferenceableOrNullAttr(Bytes); 1647 continue; 1648 } 1649 case lltok::kw_align: { 1650 unsigned Alignment; 1651 if (ParseOptionalAlignment(Alignment)) 1652 return true; 1653 B.addAlignmentAttr(Alignment); 1654 continue; 1655 } 1656 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1657 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1658 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1659 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1660 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1661 1662 // Error handling. 1663 case lltok::kw_byval: 1664 case lltok::kw_inalloca: 1665 case lltok::kw_nest: 1666 case lltok::kw_nocapture: 1667 case lltok::kw_returned: 1668 case lltok::kw_sret: 1669 case lltok::kw_swifterror: 1670 case lltok::kw_swiftself: 1671 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1672 break; 1673 1674 case lltok::kw_alignstack: 1675 case lltok::kw_alwaysinline: 1676 case lltok::kw_argmemonly: 1677 case lltok::kw_builtin: 1678 case lltok::kw_cold: 1679 case lltok::kw_inlinehint: 1680 case lltok::kw_jumptable: 1681 case lltok::kw_minsize: 1682 case lltok::kw_naked: 1683 case lltok::kw_nobuiltin: 1684 case lltok::kw_noduplicate: 1685 case lltok::kw_noimplicitfloat: 1686 case lltok::kw_noinline: 1687 case lltok::kw_nonlazybind: 1688 case lltok::kw_noredzone: 1689 case lltok::kw_noreturn: 1690 case lltok::kw_nocf_check: 1691 case lltok::kw_nounwind: 1692 case lltok::kw_optforfuzzing: 1693 case lltok::kw_optnone: 1694 case lltok::kw_optsize: 1695 case lltok::kw_returns_twice: 1696 case lltok::kw_sanitize_address: 1697 case lltok::kw_sanitize_hwaddress: 1698 case lltok::kw_sanitize_memory: 1699 case lltok::kw_sanitize_thread: 1700 case lltok::kw_ssp: 1701 case lltok::kw_sspreq: 1702 case lltok::kw_sspstrong: 1703 case lltok::kw_safestack: 1704 case lltok::kw_shadowcallstack: 1705 case lltok::kw_strictfp: 1706 case lltok::kw_uwtable: 1707 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1708 break; 1709 1710 case lltok::kw_readnone: 1711 case lltok::kw_readonly: 1712 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1713 } 1714 1715 Lex.Lex(); 1716 } 1717 } 1718 1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1720 HasLinkage = true; 1721 switch (Kind) { 1722 default: 1723 HasLinkage = false; 1724 return GlobalValue::ExternalLinkage; 1725 case lltok::kw_private: 1726 return GlobalValue::PrivateLinkage; 1727 case lltok::kw_internal: 1728 return GlobalValue::InternalLinkage; 1729 case lltok::kw_weak: 1730 return GlobalValue::WeakAnyLinkage; 1731 case lltok::kw_weak_odr: 1732 return GlobalValue::WeakODRLinkage; 1733 case lltok::kw_linkonce: 1734 return GlobalValue::LinkOnceAnyLinkage; 1735 case lltok::kw_linkonce_odr: 1736 return GlobalValue::LinkOnceODRLinkage; 1737 case lltok::kw_available_externally: 1738 return GlobalValue::AvailableExternallyLinkage; 1739 case lltok::kw_appending: 1740 return GlobalValue::AppendingLinkage; 1741 case lltok::kw_common: 1742 return GlobalValue::CommonLinkage; 1743 case lltok::kw_extern_weak: 1744 return GlobalValue::ExternalWeakLinkage; 1745 case lltok::kw_external: 1746 return GlobalValue::ExternalLinkage; 1747 } 1748 } 1749 1750 /// ParseOptionalLinkage 1751 /// ::= /*empty*/ 1752 /// ::= 'private' 1753 /// ::= 'internal' 1754 /// ::= 'weak' 1755 /// ::= 'weak_odr' 1756 /// ::= 'linkonce' 1757 /// ::= 'linkonce_odr' 1758 /// ::= 'available_externally' 1759 /// ::= 'appending' 1760 /// ::= 'common' 1761 /// ::= 'extern_weak' 1762 /// ::= 'external' 1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1764 unsigned &Visibility, 1765 unsigned &DLLStorageClass, 1766 bool &DSOLocal) { 1767 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1768 if (HasLinkage) 1769 Lex.Lex(); 1770 ParseOptionalDSOLocal(DSOLocal); 1771 ParseOptionalVisibility(Visibility); 1772 ParseOptionalDLLStorageClass(DLLStorageClass); 1773 1774 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1775 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1776 } 1777 1778 return false; 1779 } 1780 1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1782 switch (Lex.getKind()) { 1783 default: 1784 DSOLocal = false; 1785 break; 1786 case lltok::kw_dso_local: 1787 DSOLocal = true; 1788 Lex.Lex(); 1789 break; 1790 case lltok::kw_dso_preemptable: 1791 DSOLocal = false; 1792 Lex.Lex(); 1793 break; 1794 } 1795 } 1796 1797 /// ParseOptionalVisibility 1798 /// ::= /*empty*/ 1799 /// ::= 'default' 1800 /// ::= 'hidden' 1801 /// ::= 'protected' 1802 /// 1803 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1804 switch (Lex.getKind()) { 1805 default: 1806 Res = GlobalValue::DefaultVisibility; 1807 return; 1808 case lltok::kw_default: 1809 Res = GlobalValue::DefaultVisibility; 1810 break; 1811 case lltok::kw_hidden: 1812 Res = GlobalValue::HiddenVisibility; 1813 break; 1814 case lltok::kw_protected: 1815 Res = GlobalValue::ProtectedVisibility; 1816 break; 1817 } 1818 Lex.Lex(); 1819 } 1820 1821 /// ParseOptionalDLLStorageClass 1822 /// ::= /*empty*/ 1823 /// ::= 'dllimport' 1824 /// ::= 'dllexport' 1825 /// 1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1827 switch (Lex.getKind()) { 1828 default: 1829 Res = GlobalValue::DefaultStorageClass; 1830 return; 1831 case lltok::kw_dllimport: 1832 Res = GlobalValue::DLLImportStorageClass; 1833 break; 1834 case lltok::kw_dllexport: 1835 Res = GlobalValue::DLLExportStorageClass; 1836 break; 1837 } 1838 Lex.Lex(); 1839 } 1840 1841 /// ParseOptionalCallingConv 1842 /// ::= /*empty*/ 1843 /// ::= 'ccc' 1844 /// ::= 'fastcc' 1845 /// ::= 'intel_ocl_bicc' 1846 /// ::= 'coldcc' 1847 /// ::= 'x86_stdcallcc' 1848 /// ::= 'x86_fastcallcc' 1849 /// ::= 'x86_thiscallcc' 1850 /// ::= 'x86_vectorcallcc' 1851 /// ::= 'arm_apcscc' 1852 /// ::= 'arm_aapcscc' 1853 /// ::= 'arm_aapcs_vfpcc' 1854 /// ::= 'msp430_intrcc' 1855 /// ::= 'avr_intrcc' 1856 /// ::= 'avr_signalcc' 1857 /// ::= 'ptx_kernel' 1858 /// ::= 'ptx_device' 1859 /// ::= 'spir_func' 1860 /// ::= 'spir_kernel' 1861 /// ::= 'x86_64_sysvcc' 1862 /// ::= 'win64cc' 1863 /// ::= 'webkit_jscc' 1864 /// ::= 'anyregcc' 1865 /// ::= 'preserve_mostcc' 1866 /// ::= 'preserve_allcc' 1867 /// ::= 'ghccc' 1868 /// ::= 'swiftcc' 1869 /// ::= 'x86_intrcc' 1870 /// ::= 'hhvmcc' 1871 /// ::= 'hhvm_ccc' 1872 /// ::= 'cxx_fast_tlscc' 1873 /// ::= 'amdgpu_vs' 1874 /// ::= 'amdgpu_ls' 1875 /// ::= 'amdgpu_hs' 1876 /// ::= 'amdgpu_es' 1877 /// ::= 'amdgpu_gs' 1878 /// ::= 'amdgpu_ps' 1879 /// ::= 'amdgpu_cs' 1880 /// ::= 'amdgpu_kernel' 1881 /// ::= 'cc' UINT 1882 /// 1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1884 switch (Lex.getKind()) { 1885 default: CC = CallingConv::C; return false; 1886 case lltok::kw_ccc: CC = CallingConv::C; break; 1887 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1888 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1889 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1890 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1891 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1892 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1893 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1894 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1895 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1896 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1897 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1898 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1899 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1900 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1901 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1902 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1903 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1904 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1905 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1906 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1907 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1908 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1909 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1910 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1911 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1912 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1913 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1914 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1915 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1916 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1917 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1918 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1919 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1920 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1921 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1922 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1923 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1924 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1925 case lltok::kw_cc: { 1926 Lex.Lex(); 1927 return ParseUInt32(CC); 1928 } 1929 } 1930 1931 Lex.Lex(); 1932 return false; 1933 } 1934 1935 /// ParseMetadataAttachment 1936 /// ::= !dbg !42 1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1938 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1939 1940 std::string Name = Lex.getStrVal(); 1941 Kind = M->getMDKindID(Name); 1942 Lex.Lex(); 1943 1944 return ParseMDNode(MD); 1945 } 1946 1947 /// ParseInstructionMetadata 1948 /// ::= !dbg !42 (',' !dbg !57)* 1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1950 do { 1951 if (Lex.getKind() != lltok::MetadataVar) 1952 return TokError("expected metadata after comma"); 1953 1954 unsigned MDK; 1955 MDNode *N; 1956 if (ParseMetadataAttachment(MDK, N)) 1957 return true; 1958 1959 Inst.setMetadata(MDK, N); 1960 if (MDK == LLVMContext::MD_tbaa) 1961 InstsWithTBAATag.push_back(&Inst); 1962 1963 // If this is the end of the list, we're done. 1964 } while (EatIfPresent(lltok::comma)); 1965 return false; 1966 } 1967 1968 /// ParseGlobalObjectMetadataAttachment 1969 /// ::= !dbg !57 1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1971 unsigned MDK; 1972 MDNode *N; 1973 if (ParseMetadataAttachment(MDK, N)) 1974 return true; 1975 1976 GO.addMetadata(MDK, *N); 1977 return false; 1978 } 1979 1980 /// ParseOptionalFunctionMetadata 1981 /// ::= (!dbg !57)* 1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1983 while (Lex.getKind() == lltok::MetadataVar) 1984 if (ParseGlobalObjectMetadataAttachment(F)) 1985 return true; 1986 return false; 1987 } 1988 1989 /// ParseOptionalAlignment 1990 /// ::= /* empty */ 1991 /// ::= 'align' 4 1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1993 Alignment = 0; 1994 if (!EatIfPresent(lltok::kw_align)) 1995 return false; 1996 LocTy AlignLoc = Lex.getLoc(); 1997 if (ParseUInt32(Alignment)) return true; 1998 if (!isPowerOf2_32(Alignment)) 1999 return Error(AlignLoc, "alignment is not a power of two"); 2000 if (Alignment > Value::MaximumAlignment) 2001 return Error(AlignLoc, "huge alignments are not supported yet"); 2002 return false; 2003 } 2004 2005 /// ParseOptionalDerefAttrBytes 2006 /// ::= /* empty */ 2007 /// ::= AttrKind '(' 4 ')' 2008 /// 2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2011 uint64_t &Bytes) { 2012 assert((AttrKind == lltok::kw_dereferenceable || 2013 AttrKind == lltok::kw_dereferenceable_or_null) && 2014 "contract!"); 2015 2016 Bytes = 0; 2017 if (!EatIfPresent(AttrKind)) 2018 return false; 2019 LocTy ParenLoc = Lex.getLoc(); 2020 if (!EatIfPresent(lltok::lparen)) 2021 return Error(ParenLoc, "expected '('"); 2022 LocTy DerefLoc = Lex.getLoc(); 2023 if (ParseUInt64(Bytes)) return true; 2024 ParenLoc = Lex.getLoc(); 2025 if (!EatIfPresent(lltok::rparen)) 2026 return Error(ParenLoc, "expected ')'"); 2027 if (!Bytes) 2028 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2029 return false; 2030 } 2031 2032 /// ParseOptionalCommaAlign 2033 /// ::= 2034 /// ::= ',' align 4 2035 /// 2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2037 /// end. 2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2039 bool &AteExtraComma) { 2040 AteExtraComma = false; 2041 while (EatIfPresent(lltok::comma)) { 2042 // Metadata at the end is an early exit. 2043 if (Lex.getKind() == lltok::MetadataVar) { 2044 AteExtraComma = true; 2045 return false; 2046 } 2047 2048 if (Lex.getKind() != lltok::kw_align) 2049 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2050 2051 if (ParseOptionalAlignment(Alignment)) return true; 2052 } 2053 2054 return false; 2055 } 2056 2057 /// ParseOptionalCommaAddrSpace 2058 /// ::= 2059 /// ::= ',' addrspace(1) 2060 /// 2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2062 /// end. 2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2064 LocTy &Loc, 2065 bool &AteExtraComma) { 2066 AteExtraComma = false; 2067 while (EatIfPresent(lltok::comma)) { 2068 // Metadata at the end is an early exit. 2069 if (Lex.getKind() == lltok::MetadataVar) { 2070 AteExtraComma = true; 2071 return false; 2072 } 2073 2074 Loc = Lex.getLoc(); 2075 if (Lex.getKind() != lltok::kw_addrspace) 2076 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2077 2078 if (ParseOptionalAddrSpace(AddrSpace)) 2079 return true; 2080 } 2081 2082 return false; 2083 } 2084 2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2086 Optional<unsigned> &HowManyArg) { 2087 Lex.Lex(); 2088 2089 auto StartParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::lparen)) 2091 return Error(StartParen, "expected '('"); 2092 2093 if (ParseUInt32(BaseSizeArg)) 2094 return true; 2095 2096 if (EatIfPresent(lltok::comma)) { 2097 auto HowManyAt = Lex.getLoc(); 2098 unsigned HowMany; 2099 if (ParseUInt32(HowMany)) 2100 return true; 2101 if (HowMany == BaseSizeArg) 2102 return Error(HowManyAt, 2103 "'allocsize' indices can't refer to the same parameter"); 2104 HowManyArg = HowMany; 2105 } else 2106 HowManyArg = None; 2107 2108 auto EndParen = Lex.getLoc(); 2109 if (!EatIfPresent(lltok::rparen)) 2110 return Error(EndParen, "expected ')'"); 2111 return false; 2112 } 2113 2114 /// ParseScopeAndOrdering 2115 /// if isAtomic: ::= SyncScope? AtomicOrdering 2116 /// else: ::= 2117 /// 2118 /// This sets Scope and Ordering to the parsed values. 2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2120 AtomicOrdering &Ordering) { 2121 if (!isAtomic) 2122 return false; 2123 2124 return ParseScope(SSID) || ParseOrdering(Ordering); 2125 } 2126 2127 /// ParseScope 2128 /// ::= syncscope("singlethread" | "<target scope>")? 2129 /// 2130 /// This sets synchronization scope ID to the ID of the parsed value. 2131 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2132 SSID = SyncScope::System; 2133 if (EatIfPresent(lltok::kw_syncscope)) { 2134 auto StartParenAt = Lex.getLoc(); 2135 if (!EatIfPresent(lltok::lparen)) 2136 return Error(StartParenAt, "Expected '(' in syncscope"); 2137 2138 std::string SSN; 2139 auto SSNAt = Lex.getLoc(); 2140 if (ParseStringConstant(SSN)) 2141 return Error(SSNAt, "Expected synchronization scope name"); 2142 2143 auto EndParenAt = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParenAt, "Expected ')' in syncscope"); 2146 2147 SSID = Context.getOrInsertSyncScopeID(SSN); 2148 } 2149 2150 return false; 2151 } 2152 2153 /// ParseOrdering 2154 /// ::= AtomicOrdering 2155 /// 2156 /// This sets Ordering to the parsed value. 2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2158 switch (Lex.getKind()) { 2159 default: return TokError("Expected ordering on atomic instruction"); 2160 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2161 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2162 // Not specified yet: 2163 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2164 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2165 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2166 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2167 case lltok::kw_seq_cst: 2168 Ordering = AtomicOrdering::SequentiallyConsistent; 2169 break; 2170 } 2171 Lex.Lex(); 2172 return false; 2173 } 2174 2175 /// ParseOptionalStackAlignment 2176 /// ::= /* empty */ 2177 /// ::= 'alignstack' '(' 4 ')' 2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2179 Alignment = 0; 2180 if (!EatIfPresent(lltok::kw_alignstack)) 2181 return false; 2182 LocTy ParenLoc = Lex.getLoc(); 2183 if (!EatIfPresent(lltok::lparen)) 2184 return Error(ParenLoc, "expected '('"); 2185 LocTy AlignLoc = Lex.getLoc(); 2186 if (ParseUInt32(Alignment)) return true; 2187 ParenLoc = Lex.getLoc(); 2188 if (!EatIfPresent(lltok::rparen)) 2189 return Error(ParenLoc, "expected ')'"); 2190 if (!isPowerOf2_32(Alignment)) 2191 return Error(AlignLoc, "stack alignment is not a power of two"); 2192 return false; 2193 } 2194 2195 /// ParseIndexList - This parses the index list for an insert/extractvalue 2196 /// instruction. This sets AteExtraComma in the case where we eat an extra 2197 /// comma at the end of the line and find that it is followed by metadata. 2198 /// Clients that don't allow metadata can call the version of this function that 2199 /// only takes one argument. 2200 /// 2201 /// ParseIndexList 2202 /// ::= (',' uint32)+ 2203 /// 2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2205 bool &AteExtraComma) { 2206 AteExtraComma = false; 2207 2208 if (Lex.getKind() != lltok::comma) 2209 return TokError("expected ',' as start of index list"); 2210 2211 while (EatIfPresent(lltok::comma)) { 2212 if (Lex.getKind() == lltok::MetadataVar) { 2213 if (Indices.empty()) return TokError("expected index"); 2214 AteExtraComma = true; 2215 return false; 2216 } 2217 unsigned Idx = 0; 2218 if (ParseUInt32(Idx)) return true; 2219 Indices.push_back(Idx); 2220 } 2221 2222 return false; 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // Type Parsing. 2227 //===----------------------------------------------------------------------===// 2228 2229 /// ParseType - Parse a type. 2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2231 SMLoc TypeLoc = Lex.getLoc(); 2232 switch (Lex.getKind()) { 2233 default: 2234 return TokError(Msg); 2235 case lltok::Type: 2236 // Type ::= 'float' | 'void' (etc) 2237 Result = Lex.getTyVal(); 2238 Lex.Lex(); 2239 break; 2240 case lltok::lbrace: 2241 // Type ::= StructType 2242 if (ParseAnonStructType(Result, false)) 2243 return true; 2244 break; 2245 case lltok::lsquare: 2246 // Type ::= '[' ... ']' 2247 Lex.Lex(); // eat the lsquare. 2248 if (ParseArrayVectorType(Result, false)) 2249 return true; 2250 break; 2251 case lltok::less: // Either vector or packed struct. 2252 // Type ::= '<' ... '>' 2253 Lex.Lex(); 2254 if (Lex.getKind() == lltok::lbrace) { 2255 if (ParseAnonStructType(Result, true) || 2256 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2257 return true; 2258 } else if (ParseArrayVectorType(Result, true)) 2259 return true; 2260 break; 2261 case lltok::LocalVar: { 2262 // Type ::= %foo 2263 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context, Lex.getStrVal()); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 2276 case lltok::LocalVarID: { 2277 // Type ::= %4 2278 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2279 2280 // If the type hasn't been defined yet, create a forward definition and 2281 // remember where that forward def'n was seen (in case it never is defined). 2282 if (!Entry.first) { 2283 Entry.first = StructType::create(Context); 2284 Entry.second = Lex.getLoc(); 2285 } 2286 Result = Entry.first; 2287 Lex.Lex(); 2288 break; 2289 } 2290 } 2291 2292 // Parse the type suffixes. 2293 while (true) { 2294 switch (Lex.getKind()) { 2295 // End of type. 2296 default: 2297 if (!AllowVoid && Result->isVoidTy()) 2298 return Error(TypeLoc, "void type only allowed for function results"); 2299 return false; 2300 2301 // Type ::= Type '*' 2302 case lltok::star: 2303 if (Result->isLabelTy()) 2304 return TokError("basic block pointers are invalid"); 2305 if (Result->isVoidTy()) 2306 return TokError("pointers to void are invalid - use i8* instead"); 2307 if (!PointerType::isValidElementType(Result)) 2308 return TokError("pointer to this type is invalid"); 2309 Result = PointerType::getUnqual(Result); 2310 Lex.Lex(); 2311 break; 2312 2313 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2314 case lltok::kw_addrspace: { 2315 if (Result->isLabelTy()) 2316 return TokError("basic block pointers are invalid"); 2317 if (Result->isVoidTy()) 2318 return TokError("pointers to void are invalid; use i8* instead"); 2319 if (!PointerType::isValidElementType(Result)) 2320 return TokError("pointer to this type is invalid"); 2321 unsigned AddrSpace; 2322 if (ParseOptionalAddrSpace(AddrSpace) || 2323 ParseToken(lltok::star, "expected '*' in address space")) 2324 return true; 2325 2326 Result = PointerType::get(Result, AddrSpace); 2327 break; 2328 } 2329 2330 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2331 case lltok::lparen: 2332 if (ParseFunctionType(Result)) 2333 return true; 2334 break; 2335 } 2336 } 2337 } 2338 2339 /// ParseParameterList 2340 /// ::= '(' ')' 2341 /// ::= '(' Arg (',' Arg)* ')' 2342 /// Arg 2343 /// ::= Type OptionalAttributes Value OptionalAttributes 2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2345 PerFunctionState &PFS, bool IsMustTailCall, 2346 bool InVarArgsFunc) { 2347 if (ParseToken(lltok::lparen, "expected '(' in call")) 2348 return true; 2349 2350 while (Lex.getKind() != lltok::rparen) { 2351 // If this isn't the first argument, we need a comma. 2352 if (!ArgList.empty() && 2353 ParseToken(lltok::comma, "expected ',' in argument list")) 2354 return true; 2355 2356 // Parse an ellipsis if this is a musttail call in a variadic function. 2357 if (Lex.getKind() == lltok::dotdotdot) { 2358 const char *Msg = "unexpected ellipsis in argument list for "; 2359 if (!IsMustTailCall) 2360 return TokError(Twine(Msg) + "non-musttail call"); 2361 if (!InVarArgsFunc) 2362 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2363 Lex.Lex(); // Lex the '...', it is purely for readability. 2364 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2365 } 2366 2367 // Parse the argument. 2368 LocTy ArgLoc; 2369 Type *ArgTy = nullptr; 2370 AttrBuilder ArgAttrs; 2371 Value *V; 2372 if (ParseType(ArgTy, ArgLoc)) 2373 return true; 2374 2375 if (ArgTy->isMetadataTy()) { 2376 if (ParseMetadataAsValue(V, PFS)) 2377 return true; 2378 } else { 2379 // Otherwise, handle normal operands. 2380 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2381 return true; 2382 } 2383 ArgList.push_back(ParamInfo( 2384 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2385 } 2386 2387 if (IsMustTailCall && InVarArgsFunc) 2388 return TokError("expected '...' at end of argument list for musttail call " 2389 "in varargs function"); 2390 2391 Lex.Lex(); // Lex the ')'. 2392 return false; 2393 } 2394 2395 /// ParseOptionalOperandBundles 2396 /// ::= /*empty*/ 2397 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2398 /// 2399 /// OperandBundle 2400 /// ::= bundle-tag '(' ')' 2401 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2402 /// 2403 /// bundle-tag ::= String Constant 2404 bool LLParser::ParseOptionalOperandBundles( 2405 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2406 LocTy BeginLoc = Lex.getLoc(); 2407 if (!EatIfPresent(lltok::lsquare)) 2408 return false; 2409 2410 while (Lex.getKind() != lltok::rsquare) { 2411 // If this isn't the first operand bundle, we need a comma. 2412 if (!BundleList.empty() && 2413 ParseToken(lltok::comma, "expected ',' in input list")) 2414 return true; 2415 2416 std::string Tag; 2417 if (ParseStringConstant(Tag)) 2418 return true; 2419 2420 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2421 return true; 2422 2423 std::vector<Value *> Inputs; 2424 while (Lex.getKind() != lltok::rparen) { 2425 // If this isn't the first input, we need a comma. 2426 if (!Inputs.empty() && 2427 ParseToken(lltok::comma, "expected ',' in input list")) 2428 return true; 2429 2430 Type *Ty = nullptr; 2431 Value *Input = nullptr; 2432 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2433 return true; 2434 Inputs.push_back(Input); 2435 } 2436 2437 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2438 2439 Lex.Lex(); // Lex the ')'. 2440 } 2441 2442 if (BundleList.empty()) 2443 return Error(BeginLoc, "operand bundle set must not be empty"); 2444 2445 Lex.Lex(); // Lex the ']'. 2446 return false; 2447 } 2448 2449 /// ParseArgumentList - Parse the argument list for a function type or function 2450 /// prototype. 2451 /// ::= '(' ArgTypeListI ')' 2452 /// ArgTypeListI 2453 /// ::= /*empty*/ 2454 /// ::= '...' 2455 /// ::= ArgTypeList ',' '...' 2456 /// ::= ArgType (',' ArgType)* 2457 /// 2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2459 bool &isVarArg){ 2460 isVarArg = false; 2461 assert(Lex.getKind() == lltok::lparen); 2462 Lex.Lex(); // eat the (. 2463 2464 if (Lex.getKind() == lltok::rparen) { 2465 // empty 2466 } else if (Lex.getKind() == lltok::dotdotdot) { 2467 isVarArg = true; 2468 Lex.Lex(); 2469 } else { 2470 LocTy TypeLoc = Lex.getLoc(); 2471 Type *ArgTy = nullptr; 2472 AttrBuilder Attrs; 2473 std::string Name; 2474 2475 if (ParseType(ArgTy) || 2476 ParseOptionalParamAttrs(Attrs)) return true; 2477 2478 if (ArgTy->isVoidTy()) 2479 return Error(TypeLoc, "argument can not have void type"); 2480 2481 if (Lex.getKind() == lltok::LocalVar) { 2482 Name = Lex.getStrVal(); 2483 Lex.Lex(); 2484 } 2485 2486 if (!FunctionType::isValidArgumentType(ArgTy)) 2487 return Error(TypeLoc, "invalid type for function argument"); 2488 2489 ArgList.emplace_back(TypeLoc, ArgTy, 2490 AttributeSet::get(ArgTy->getContext(), Attrs), 2491 std::move(Name)); 2492 2493 while (EatIfPresent(lltok::comma)) { 2494 // Handle ... at end of arg list. 2495 if (EatIfPresent(lltok::dotdotdot)) { 2496 isVarArg = true; 2497 break; 2498 } 2499 2500 // Otherwise must be an argument type. 2501 TypeLoc = Lex.getLoc(); 2502 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2503 2504 if (ArgTy->isVoidTy()) 2505 return Error(TypeLoc, "argument can not have void type"); 2506 2507 if (Lex.getKind() == lltok::LocalVar) { 2508 Name = Lex.getStrVal(); 2509 Lex.Lex(); 2510 } else { 2511 Name = ""; 2512 } 2513 2514 if (!ArgTy->isFirstClassType()) 2515 return Error(TypeLoc, "invalid type for function argument"); 2516 2517 ArgList.emplace_back(TypeLoc, ArgTy, 2518 AttributeSet::get(ArgTy->getContext(), Attrs), 2519 std::move(Name)); 2520 } 2521 } 2522 2523 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2524 } 2525 2526 /// ParseFunctionType 2527 /// ::= Type ArgumentList OptionalAttrs 2528 bool LLParser::ParseFunctionType(Type *&Result) { 2529 assert(Lex.getKind() == lltok::lparen); 2530 2531 if (!FunctionType::isValidReturnType(Result)) 2532 return TokError("invalid function return type"); 2533 2534 SmallVector<ArgInfo, 8> ArgList; 2535 bool isVarArg; 2536 if (ParseArgumentList(ArgList, isVarArg)) 2537 return true; 2538 2539 // Reject names on the arguments lists. 2540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2541 if (!ArgList[i].Name.empty()) 2542 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2543 if (ArgList[i].Attrs.hasAttributes()) 2544 return Error(ArgList[i].Loc, 2545 "argument attributes invalid in function type"); 2546 } 2547 2548 SmallVector<Type*, 16> ArgListTy; 2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2550 ArgListTy.push_back(ArgList[i].Ty); 2551 2552 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2553 return false; 2554 } 2555 2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2557 /// other structs. 2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2559 SmallVector<Type*, 8> Elts; 2560 if (ParseStructBody(Elts)) return true; 2561 2562 Result = StructType::get(Context, Elts, Packed); 2563 return false; 2564 } 2565 2566 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2568 std::pair<Type*, LocTy> &Entry, 2569 Type *&ResultTy) { 2570 // If the type was already defined, diagnose the redefinition. 2571 if (Entry.first && !Entry.second.isValid()) 2572 return Error(TypeLoc, "redefinition of type"); 2573 2574 // If we have opaque, just return without filling in the definition for the 2575 // struct. This counts as a definition as far as the .ll file goes. 2576 if (EatIfPresent(lltok::kw_opaque)) { 2577 // This type is being defined, so clear the location to indicate this. 2578 Entry.second = SMLoc(); 2579 2580 // If this type number has never been uttered, create it. 2581 if (!Entry.first) 2582 Entry.first = StructType::create(Context, Name); 2583 ResultTy = Entry.first; 2584 return false; 2585 } 2586 2587 // If the type starts with '<', then it is either a packed struct or a vector. 2588 bool isPacked = EatIfPresent(lltok::less); 2589 2590 // If we don't have a struct, then we have a random type alias, which we 2591 // accept for compatibility with old files. These types are not allowed to be 2592 // forward referenced and not allowed to be recursive. 2593 if (Lex.getKind() != lltok::lbrace) { 2594 if (Entry.first) 2595 return Error(TypeLoc, "forward references to non-struct type"); 2596 2597 ResultTy = nullptr; 2598 if (isPacked) 2599 return ParseArrayVectorType(ResultTy, true); 2600 return ParseType(ResultTy); 2601 } 2602 2603 // This type is being defined, so clear the location to indicate this. 2604 Entry.second = SMLoc(); 2605 2606 // If this type number has never been uttered, create it. 2607 if (!Entry.first) 2608 Entry.first = StructType::create(Context, Name); 2609 2610 StructType *STy = cast<StructType>(Entry.first); 2611 2612 SmallVector<Type*, 8> Body; 2613 if (ParseStructBody(Body) || 2614 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2615 return true; 2616 2617 STy->setBody(Body, isPacked); 2618 ResultTy = STy; 2619 return false; 2620 } 2621 2622 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2623 /// StructType 2624 /// ::= '{' '}' 2625 /// ::= '{' Type (',' Type)* '}' 2626 /// ::= '<' '{' '}' '>' 2627 /// ::= '<' '{' Type (',' Type)* '}' '>' 2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2629 assert(Lex.getKind() == lltok::lbrace); 2630 Lex.Lex(); // Consume the '{' 2631 2632 // Handle the empty struct. 2633 if (EatIfPresent(lltok::rbrace)) 2634 return false; 2635 2636 LocTy EltTyLoc = Lex.getLoc(); 2637 Type *Ty = nullptr; 2638 if (ParseType(Ty)) return true; 2639 Body.push_back(Ty); 2640 2641 if (!StructType::isValidElementType(Ty)) 2642 return Error(EltTyLoc, "invalid element type for struct"); 2643 2644 while (EatIfPresent(lltok::comma)) { 2645 EltTyLoc = Lex.getLoc(); 2646 if (ParseType(Ty)) return true; 2647 2648 if (!StructType::isValidElementType(Ty)) 2649 return Error(EltTyLoc, "invalid element type for struct"); 2650 2651 Body.push_back(Ty); 2652 } 2653 2654 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2655 } 2656 2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2658 /// token has already been consumed. 2659 /// Type 2660 /// ::= '[' APSINTVAL 'x' Types ']' 2661 /// ::= '<' APSINTVAL 'x' Types '>' 2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2663 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2664 Lex.getAPSIntVal().getBitWidth() > 64) 2665 return TokError("expected number in address space"); 2666 2667 LocTy SizeLoc = Lex.getLoc(); 2668 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2669 Lex.Lex(); 2670 2671 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2672 return true; 2673 2674 LocTy TypeLoc = Lex.getLoc(); 2675 Type *EltTy = nullptr; 2676 if (ParseType(EltTy)) return true; 2677 2678 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2679 "expected end of sequential type")) 2680 return true; 2681 2682 if (isVector) { 2683 if (Size == 0) 2684 return Error(SizeLoc, "zero element vector is illegal"); 2685 if ((unsigned)Size != Size) 2686 return Error(SizeLoc, "size too large for vector"); 2687 if (!VectorType::isValidElementType(EltTy)) 2688 return Error(TypeLoc, "invalid vector element type"); 2689 Result = VectorType::get(EltTy, unsigned(Size)); 2690 } else { 2691 if (!ArrayType::isValidElementType(EltTy)) 2692 return Error(TypeLoc, "invalid array element type"); 2693 Result = ArrayType::get(EltTy, Size); 2694 } 2695 return false; 2696 } 2697 2698 //===----------------------------------------------------------------------===// 2699 // Function Semantic Analysis. 2700 //===----------------------------------------------------------------------===// 2701 2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2703 int functionNumber) 2704 : P(p), F(f), FunctionNumber(functionNumber) { 2705 2706 // Insert unnamed arguments into the NumberedVals list. 2707 for (Argument &A : F.args()) 2708 if (!A.hasName()) 2709 NumberedVals.push_back(&A); 2710 } 2711 2712 LLParser::PerFunctionState::~PerFunctionState() { 2713 // If there were any forward referenced non-basicblock values, delete them. 2714 2715 for (const auto &P : ForwardRefVals) { 2716 if (isa<BasicBlock>(P.second.first)) 2717 continue; 2718 P.second.first->replaceAllUsesWith( 2719 UndefValue::get(P.second.first->getType())); 2720 P.second.first->deleteValue(); 2721 } 2722 2723 for (const auto &P : ForwardRefValIDs) { 2724 if (isa<BasicBlock>(P.second.first)) 2725 continue; 2726 P.second.first->replaceAllUsesWith( 2727 UndefValue::get(P.second.first->getType())); 2728 P.second.first->deleteValue(); 2729 } 2730 } 2731 2732 bool LLParser::PerFunctionState::FinishFunction() { 2733 if (!ForwardRefVals.empty()) 2734 return P.Error(ForwardRefVals.begin()->second.second, 2735 "use of undefined value '%" + ForwardRefVals.begin()->first + 2736 "'"); 2737 if (!ForwardRefValIDs.empty()) 2738 return P.Error(ForwardRefValIDs.begin()->second.second, 2739 "use of undefined value '%" + 2740 Twine(ForwardRefValIDs.begin()->first) + "'"); 2741 return false; 2742 } 2743 2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) { 2745 if (Val->getType() == Ty) 2746 return true; 2747 // For calls we also accept variables in the program address space 2748 if (IsCall && isa<PointerType>(Ty)) { 2749 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 2750 M->getDataLayout().getProgramAddressSpace()); 2751 if (Val->getType() == TyInProgAS) 2752 return true; 2753 } 2754 return false; 2755 } 2756 2757 /// GetVal - Get a value with the specified name or ID, creating a 2758 /// forward reference record if needed. This can return null if the value 2759 /// exists but does not have the right type. 2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2761 LocTy Loc, bool IsCall) { 2762 // Look this name up in the normal function symbol table. 2763 Value *Val = F.getValueSymbolTable()->lookup(Name); 2764 2765 // If this is a forward reference for the value, see if we already created a 2766 // forward ref record. 2767 if (!Val) { 2768 auto I = ForwardRefVals.find(Name); 2769 if (I != ForwardRefVals.end()) 2770 Val = I->second.first; 2771 } 2772 2773 // If we have the value in the symbol table or fwd-ref table, return it. 2774 if (Val) { 2775 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2776 return Val; 2777 if (Ty->isLabelTy()) 2778 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2779 else 2780 P.Error(Loc, "'%" + Name + "' defined with type '" + 2781 getTypeString(Val->getType()) + "'"); 2782 return nullptr; 2783 } 2784 2785 // Don't make placeholders with invalid type. 2786 if (!Ty->isFirstClassType()) { 2787 P.Error(Loc, "invalid use of a non-first-class type"); 2788 return nullptr; 2789 } 2790 2791 // Otherwise, create a new forward reference for this value and remember it. 2792 Value *FwdVal; 2793 if (Ty->isLabelTy()) { 2794 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2795 } else { 2796 FwdVal = new Argument(Ty, Name); 2797 } 2798 2799 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2800 return FwdVal; 2801 } 2802 2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2804 bool IsCall) { 2805 // Look this name up in the normal function symbol table. 2806 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2807 2808 // If this is a forward reference for the value, see if we already created a 2809 // forward ref record. 2810 if (!Val) { 2811 auto I = ForwardRefValIDs.find(ID); 2812 if (I != ForwardRefValIDs.end()) 2813 Val = I->second.first; 2814 } 2815 2816 // If we have the value in the symbol table or fwd-ref table, return it. 2817 if (Val) { 2818 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2819 return Val; 2820 if (Ty->isLabelTy()) 2821 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2822 else 2823 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2824 getTypeString(Val->getType()) + "'"); 2825 return nullptr; 2826 } 2827 2828 if (!Ty->isFirstClassType()) { 2829 P.Error(Loc, "invalid use of a non-first-class type"); 2830 return nullptr; 2831 } 2832 2833 // Otherwise, create a new forward reference for this value and remember it. 2834 Value *FwdVal; 2835 if (Ty->isLabelTy()) { 2836 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2837 } else { 2838 FwdVal = new Argument(Ty); 2839 } 2840 2841 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2842 return FwdVal; 2843 } 2844 2845 /// SetInstName - After an instruction is parsed and inserted into its 2846 /// basic block, this installs its name. 2847 bool LLParser::PerFunctionState::SetInstName(int NameID, 2848 const std::string &NameStr, 2849 LocTy NameLoc, Instruction *Inst) { 2850 // If this instruction has void type, it cannot have a name or ID specified. 2851 if (Inst->getType()->isVoidTy()) { 2852 if (NameID != -1 || !NameStr.empty()) 2853 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2854 return false; 2855 } 2856 2857 // If this was a numbered instruction, verify that the instruction is the 2858 // expected value and resolve any forward references. 2859 if (NameStr.empty()) { 2860 // If neither a name nor an ID was specified, just use the next ID. 2861 if (NameID == -1) 2862 NameID = NumberedVals.size(); 2863 2864 if (unsigned(NameID) != NumberedVals.size()) 2865 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2866 Twine(NumberedVals.size()) + "'"); 2867 2868 auto FI = ForwardRefValIDs.find(NameID); 2869 if (FI != ForwardRefValIDs.end()) { 2870 Value *Sentinel = FI->second.first; 2871 if (Sentinel->getType() != Inst->getType()) 2872 return P.Error(NameLoc, "instruction forward referenced with type '" + 2873 getTypeString(FI->second.first->getType()) + "'"); 2874 2875 Sentinel->replaceAllUsesWith(Inst); 2876 Sentinel->deleteValue(); 2877 ForwardRefValIDs.erase(FI); 2878 } 2879 2880 NumberedVals.push_back(Inst); 2881 return false; 2882 } 2883 2884 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2885 auto FI = ForwardRefVals.find(NameStr); 2886 if (FI != ForwardRefVals.end()) { 2887 Value *Sentinel = FI->second.first; 2888 if (Sentinel->getType() != Inst->getType()) 2889 return P.Error(NameLoc, "instruction forward referenced with type '" + 2890 getTypeString(FI->second.first->getType()) + "'"); 2891 2892 Sentinel->replaceAllUsesWith(Inst); 2893 Sentinel->deleteValue(); 2894 ForwardRefVals.erase(FI); 2895 } 2896 2897 // Set the name on the instruction. 2898 Inst->setName(NameStr); 2899 2900 if (Inst->getName() != NameStr) 2901 return P.Error(NameLoc, "multiple definition of local value named '" + 2902 NameStr + "'"); 2903 return false; 2904 } 2905 2906 /// GetBB - Get a basic block with the specified name or ID, creating a 2907 /// forward reference record if needed. 2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2909 LocTy Loc) { 2910 return dyn_cast_or_null<BasicBlock>( 2911 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2912 } 2913 2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2915 return dyn_cast_or_null<BasicBlock>( 2916 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2917 } 2918 2919 /// DefineBB - Define the specified basic block, which is either named or 2920 /// unnamed. If there is an error, this returns null otherwise it returns 2921 /// the block being defined. 2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2923 LocTy Loc) { 2924 BasicBlock *BB; 2925 if (Name.empty()) 2926 BB = GetBB(NumberedVals.size(), Loc); 2927 else 2928 BB = GetBB(Name, Loc); 2929 if (!BB) return nullptr; // Already diagnosed error. 2930 2931 // Move the block to the end of the function. Forward ref'd blocks are 2932 // inserted wherever they happen to be referenced. 2933 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2934 2935 // Remove the block from forward ref sets. 2936 if (Name.empty()) { 2937 ForwardRefValIDs.erase(NumberedVals.size()); 2938 NumberedVals.push_back(BB); 2939 } else { 2940 // BB forward references are already in the function symbol table. 2941 ForwardRefVals.erase(Name); 2942 } 2943 2944 return BB; 2945 } 2946 2947 //===----------------------------------------------------------------------===// 2948 // Constants. 2949 //===----------------------------------------------------------------------===// 2950 2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2952 /// type implied. For example, if we parse "4" we don't know what integer type 2953 /// it has. The value will later be combined with its type and checked for 2954 /// sanity. PFS is used to convert function-local operands of metadata (since 2955 /// metadata operands are not just parsed here but also converted to values). 2956 /// PFS can be null when we are not parsing metadata values inside a function. 2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2958 ID.Loc = Lex.getLoc(); 2959 switch (Lex.getKind()) { 2960 default: return TokError("expected value token"); 2961 case lltok::GlobalID: // @42 2962 ID.UIntVal = Lex.getUIntVal(); 2963 ID.Kind = ValID::t_GlobalID; 2964 break; 2965 case lltok::GlobalVar: // @foo 2966 ID.StrVal = Lex.getStrVal(); 2967 ID.Kind = ValID::t_GlobalName; 2968 break; 2969 case lltok::LocalVarID: // %42 2970 ID.UIntVal = Lex.getUIntVal(); 2971 ID.Kind = ValID::t_LocalID; 2972 break; 2973 case lltok::LocalVar: // %foo 2974 ID.StrVal = Lex.getStrVal(); 2975 ID.Kind = ValID::t_LocalName; 2976 break; 2977 case lltok::APSInt: 2978 ID.APSIntVal = Lex.getAPSIntVal(); 2979 ID.Kind = ValID::t_APSInt; 2980 break; 2981 case lltok::APFloat: 2982 ID.APFloatVal = Lex.getAPFloatVal(); 2983 ID.Kind = ValID::t_APFloat; 2984 break; 2985 case lltok::kw_true: 2986 ID.ConstantVal = ConstantInt::getTrue(Context); 2987 ID.Kind = ValID::t_Constant; 2988 break; 2989 case lltok::kw_false: 2990 ID.ConstantVal = ConstantInt::getFalse(Context); 2991 ID.Kind = ValID::t_Constant; 2992 break; 2993 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2994 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2995 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2996 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2997 2998 case lltok::lbrace: { 2999 // ValID ::= '{' ConstVector '}' 3000 Lex.Lex(); 3001 SmallVector<Constant*, 16> Elts; 3002 if (ParseGlobalValueVector(Elts) || 3003 ParseToken(lltok::rbrace, "expected end of struct constant")) 3004 return true; 3005 3006 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3007 ID.UIntVal = Elts.size(); 3008 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3009 Elts.size() * sizeof(Elts[0])); 3010 ID.Kind = ValID::t_ConstantStruct; 3011 return false; 3012 } 3013 case lltok::less: { 3014 // ValID ::= '<' ConstVector '>' --> Vector. 3015 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3016 Lex.Lex(); 3017 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3018 3019 SmallVector<Constant*, 16> Elts; 3020 LocTy FirstEltLoc = Lex.getLoc(); 3021 if (ParseGlobalValueVector(Elts) || 3022 (isPackedStruct && 3023 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3024 ParseToken(lltok::greater, "expected end of constant")) 3025 return true; 3026 3027 if (isPackedStruct) { 3028 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3029 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3030 Elts.size() * sizeof(Elts[0])); 3031 ID.UIntVal = Elts.size(); 3032 ID.Kind = ValID::t_PackedConstantStruct; 3033 return false; 3034 } 3035 3036 if (Elts.empty()) 3037 return Error(ID.Loc, "constant vector must not be empty"); 3038 3039 if (!Elts[0]->getType()->isIntegerTy() && 3040 !Elts[0]->getType()->isFloatingPointTy() && 3041 !Elts[0]->getType()->isPointerTy()) 3042 return Error(FirstEltLoc, 3043 "vector elements must have integer, pointer or floating point type"); 3044 3045 // Verify that all the vector elements have the same type. 3046 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3047 if (Elts[i]->getType() != Elts[0]->getType()) 3048 return Error(FirstEltLoc, 3049 "vector element #" + Twine(i) + 3050 " is not of type '" + getTypeString(Elts[0]->getType())); 3051 3052 ID.ConstantVal = ConstantVector::get(Elts); 3053 ID.Kind = ValID::t_Constant; 3054 return false; 3055 } 3056 case lltok::lsquare: { // Array Constant 3057 Lex.Lex(); 3058 SmallVector<Constant*, 16> Elts; 3059 LocTy FirstEltLoc = Lex.getLoc(); 3060 if (ParseGlobalValueVector(Elts) || 3061 ParseToken(lltok::rsquare, "expected end of array constant")) 3062 return true; 3063 3064 // Handle empty element. 3065 if (Elts.empty()) { 3066 // Use undef instead of an array because it's inconvenient to determine 3067 // the element type at this point, there being no elements to examine. 3068 ID.Kind = ValID::t_EmptyArray; 3069 return false; 3070 } 3071 3072 if (!Elts[0]->getType()->isFirstClassType()) 3073 return Error(FirstEltLoc, "invalid array element type: " + 3074 getTypeString(Elts[0]->getType())); 3075 3076 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3077 3078 // Verify all elements are correct type! 3079 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3080 if (Elts[i]->getType() != Elts[0]->getType()) 3081 return Error(FirstEltLoc, 3082 "array element #" + Twine(i) + 3083 " is not of type '" + getTypeString(Elts[0]->getType())); 3084 } 3085 3086 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3087 ID.Kind = ValID::t_Constant; 3088 return false; 3089 } 3090 case lltok::kw_c: // c "foo" 3091 Lex.Lex(); 3092 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3093 false); 3094 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3095 ID.Kind = ValID::t_Constant; 3096 return false; 3097 3098 case lltok::kw_asm: { 3099 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3100 // STRINGCONSTANT 3101 bool HasSideEffect, AlignStack, AsmDialect; 3102 Lex.Lex(); 3103 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3104 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3105 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3106 ParseStringConstant(ID.StrVal) || 3107 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3108 ParseToken(lltok::StringConstant, "expected constraint string")) 3109 return true; 3110 ID.StrVal2 = Lex.getStrVal(); 3111 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3112 (unsigned(AsmDialect)<<2); 3113 ID.Kind = ValID::t_InlineAsm; 3114 return false; 3115 } 3116 3117 case lltok::kw_blockaddress: { 3118 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3119 Lex.Lex(); 3120 3121 ValID Fn, Label; 3122 3123 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3124 ParseValID(Fn) || 3125 ParseToken(lltok::comma, "expected comma in block address expression")|| 3126 ParseValID(Label) || 3127 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3128 return true; 3129 3130 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3131 return Error(Fn.Loc, "expected function name in blockaddress"); 3132 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3133 return Error(Label.Loc, "expected basic block name in blockaddress"); 3134 3135 // Try to find the function (but skip it if it's forward-referenced). 3136 GlobalValue *GV = nullptr; 3137 if (Fn.Kind == ValID::t_GlobalID) { 3138 if (Fn.UIntVal < NumberedVals.size()) 3139 GV = NumberedVals[Fn.UIntVal]; 3140 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3141 GV = M->getNamedValue(Fn.StrVal); 3142 } 3143 Function *F = nullptr; 3144 if (GV) { 3145 // Confirm that it's actually a function with a definition. 3146 if (!isa<Function>(GV)) 3147 return Error(Fn.Loc, "expected function name in blockaddress"); 3148 F = cast<Function>(GV); 3149 if (F->isDeclaration()) 3150 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3151 } 3152 3153 if (!F) { 3154 // Make a global variable as a placeholder for this reference. 3155 GlobalValue *&FwdRef = 3156 ForwardRefBlockAddresses.insert(std::make_pair( 3157 std::move(Fn), 3158 std::map<ValID, GlobalValue *>())) 3159 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3160 .first->second; 3161 if (!FwdRef) 3162 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3163 GlobalValue::InternalLinkage, nullptr, ""); 3164 ID.ConstantVal = FwdRef; 3165 ID.Kind = ValID::t_Constant; 3166 return false; 3167 } 3168 3169 // We found the function; now find the basic block. Don't use PFS, since we 3170 // might be inside a constant expression. 3171 BasicBlock *BB; 3172 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3173 if (Label.Kind == ValID::t_LocalID) 3174 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3175 else 3176 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3177 if (!BB) 3178 return Error(Label.Loc, "referenced value is not a basic block"); 3179 } else { 3180 if (Label.Kind == ValID::t_LocalID) 3181 return Error(Label.Loc, "cannot take address of numeric label after " 3182 "the function is defined"); 3183 BB = dyn_cast_or_null<BasicBlock>( 3184 F->getValueSymbolTable()->lookup(Label.StrVal)); 3185 if (!BB) 3186 return Error(Label.Loc, "referenced value is not a basic block"); 3187 } 3188 3189 ID.ConstantVal = BlockAddress::get(F, BB); 3190 ID.Kind = ValID::t_Constant; 3191 return false; 3192 } 3193 3194 case lltok::kw_trunc: 3195 case lltok::kw_zext: 3196 case lltok::kw_sext: 3197 case lltok::kw_fptrunc: 3198 case lltok::kw_fpext: 3199 case lltok::kw_bitcast: 3200 case lltok::kw_addrspacecast: 3201 case lltok::kw_uitofp: 3202 case lltok::kw_sitofp: 3203 case lltok::kw_fptoui: 3204 case lltok::kw_fptosi: 3205 case lltok::kw_inttoptr: 3206 case lltok::kw_ptrtoint: { 3207 unsigned Opc = Lex.getUIntVal(); 3208 Type *DestTy = nullptr; 3209 Constant *SrcVal; 3210 Lex.Lex(); 3211 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3212 ParseGlobalTypeAndValue(SrcVal) || 3213 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3214 ParseType(DestTy) || 3215 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3216 return true; 3217 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3218 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3219 getTypeString(SrcVal->getType()) + "' to '" + 3220 getTypeString(DestTy) + "'"); 3221 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3222 SrcVal, DestTy); 3223 ID.Kind = ValID::t_Constant; 3224 return false; 3225 } 3226 case lltok::kw_extractvalue: { 3227 Lex.Lex(); 3228 Constant *Val; 3229 SmallVector<unsigned, 4> Indices; 3230 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3231 ParseGlobalTypeAndValue(Val) || 3232 ParseIndexList(Indices) || 3233 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3234 return true; 3235 3236 if (!Val->getType()->isAggregateType()) 3237 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3238 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3239 return Error(ID.Loc, "invalid indices for extractvalue"); 3240 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3241 ID.Kind = ValID::t_Constant; 3242 return false; 3243 } 3244 case lltok::kw_insertvalue: { 3245 Lex.Lex(); 3246 Constant *Val0, *Val1; 3247 SmallVector<unsigned, 4> Indices; 3248 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3249 ParseGlobalTypeAndValue(Val0) || 3250 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3251 ParseGlobalTypeAndValue(Val1) || 3252 ParseIndexList(Indices) || 3253 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3254 return true; 3255 if (!Val0->getType()->isAggregateType()) 3256 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3257 Type *IndexedType = 3258 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3259 if (!IndexedType) 3260 return Error(ID.Loc, "invalid indices for insertvalue"); 3261 if (IndexedType != Val1->getType()) 3262 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3263 getTypeString(Val1->getType()) + 3264 "' instead of '" + getTypeString(IndexedType) + 3265 "'"); 3266 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3267 ID.Kind = ValID::t_Constant; 3268 return false; 3269 } 3270 case lltok::kw_icmp: 3271 case lltok::kw_fcmp: { 3272 unsigned PredVal, Opc = Lex.getUIntVal(); 3273 Constant *Val0, *Val1; 3274 Lex.Lex(); 3275 if (ParseCmpPredicate(PredVal, Opc) || 3276 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3277 ParseGlobalTypeAndValue(Val0) || 3278 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3279 ParseGlobalTypeAndValue(Val1) || 3280 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3281 return true; 3282 3283 if (Val0->getType() != Val1->getType()) 3284 return Error(ID.Loc, "compare operands must have the same type"); 3285 3286 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3287 3288 if (Opc == Instruction::FCmp) { 3289 if (!Val0->getType()->isFPOrFPVectorTy()) 3290 return Error(ID.Loc, "fcmp requires floating point operands"); 3291 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3292 } else { 3293 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3294 if (!Val0->getType()->isIntOrIntVectorTy() && 3295 !Val0->getType()->isPtrOrPtrVectorTy()) 3296 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3297 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3298 } 3299 ID.Kind = ValID::t_Constant; 3300 return false; 3301 } 3302 3303 // Binary Operators. 3304 case lltok::kw_add: 3305 case lltok::kw_fadd: 3306 case lltok::kw_sub: 3307 case lltok::kw_fsub: 3308 case lltok::kw_mul: 3309 case lltok::kw_fmul: 3310 case lltok::kw_udiv: 3311 case lltok::kw_sdiv: 3312 case lltok::kw_fdiv: 3313 case lltok::kw_urem: 3314 case lltok::kw_srem: 3315 case lltok::kw_frem: 3316 case lltok::kw_shl: 3317 case lltok::kw_lshr: 3318 case lltok::kw_ashr: { 3319 bool NUW = false; 3320 bool NSW = false; 3321 bool Exact = false; 3322 unsigned Opc = Lex.getUIntVal(); 3323 Constant *Val0, *Val1; 3324 Lex.Lex(); 3325 LocTy ModifierLoc = Lex.getLoc(); 3326 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3327 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3328 if (EatIfPresent(lltok::kw_nuw)) 3329 NUW = true; 3330 if (EatIfPresent(lltok::kw_nsw)) { 3331 NSW = true; 3332 if (EatIfPresent(lltok::kw_nuw)) 3333 NUW = true; 3334 } 3335 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3336 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3337 if (EatIfPresent(lltok::kw_exact)) 3338 Exact = true; 3339 } 3340 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3341 ParseGlobalTypeAndValue(Val0) || 3342 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3343 ParseGlobalTypeAndValue(Val1) || 3344 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3345 return true; 3346 if (Val0->getType() != Val1->getType()) 3347 return Error(ID.Loc, "operands of constexpr must have same type"); 3348 if (!Val0->getType()->isIntOrIntVectorTy()) { 3349 if (NUW) 3350 return Error(ModifierLoc, "nuw only applies to integer operations"); 3351 if (NSW) 3352 return Error(ModifierLoc, "nsw only applies to integer operations"); 3353 } 3354 // Check that the type is valid for the operator. 3355 switch (Opc) { 3356 case Instruction::Add: 3357 case Instruction::Sub: 3358 case Instruction::Mul: 3359 case Instruction::UDiv: 3360 case Instruction::SDiv: 3361 case Instruction::URem: 3362 case Instruction::SRem: 3363 case Instruction::Shl: 3364 case Instruction::AShr: 3365 case Instruction::LShr: 3366 if (!Val0->getType()->isIntOrIntVectorTy()) 3367 return Error(ID.Loc, "constexpr requires integer operands"); 3368 break; 3369 case Instruction::FAdd: 3370 case Instruction::FSub: 3371 case Instruction::FMul: 3372 case Instruction::FDiv: 3373 case Instruction::FRem: 3374 if (!Val0->getType()->isFPOrFPVectorTy()) 3375 return Error(ID.Loc, "constexpr requires fp operands"); 3376 break; 3377 default: llvm_unreachable("Unknown binary operator!"); 3378 } 3379 unsigned Flags = 0; 3380 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3381 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3382 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3383 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3384 ID.ConstantVal = C; 3385 ID.Kind = ValID::t_Constant; 3386 return false; 3387 } 3388 3389 // Logical Operations 3390 case lltok::kw_and: 3391 case lltok::kw_or: 3392 case lltok::kw_xor: { 3393 unsigned Opc = Lex.getUIntVal(); 3394 Constant *Val0, *Val1; 3395 Lex.Lex(); 3396 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3397 ParseGlobalTypeAndValue(Val0) || 3398 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3399 ParseGlobalTypeAndValue(Val1) || 3400 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3401 return true; 3402 if (Val0->getType() != Val1->getType()) 3403 return Error(ID.Loc, "operands of constexpr must have same type"); 3404 if (!Val0->getType()->isIntOrIntVectorTy()) 3405 return Error(ID.Loc, 3406 "constexpr requires integer or integer vector operands"); 3407 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3408 ID.Kind = ValID::t_Constant; 3409 return false; 3410 } 3411 3412 case lltok::kw_getelementptr: 3413 case lltok::kw_shufflevector: 3414 case lltok::kw_insertelement: 3415 case lltok::kw_extractelement: 3416 case lltok::kw_select: { 3417 unsigned Opc = Lex.getUIntVal(); 3418 SmallVector<Constant*, 16> Elts; 3419 bool InBounds = false; 3420 Type *Ty; 3421 Lex.Lex(); 3422 3423 if (Opc == Instruction::GetElementPtr) 3424 InBounds = EatIfPresent(lltok::kw_inbounds); 3425 3426 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3427 return true; 3428 3429 LocTy ExplicitTypeLoc = Lex.getLoc(); 3430 if (Opc == Instruction::GetElementPtr) { 3431 if (ParseType(Ty) || 3432 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3433 return true; 3434 } 3435 3436 Optional<unsigned> InRangeOp; 3437 if (ParseGlobalValueVector( 3438 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3439 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3440 return true; 3441 3442 if (Opc == Instruction::GetElementPtr) { 3443 if (Elts.size() == 0 || 3444 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3445 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3446 3447 Type *BaseType = Elts[0]->getType(); 3448 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3449 if (Ty != BasePointerType->getElementType()) 3450 return Error( 3451 ExplicitTypeLoc, 3452 "explicit pointee type doesn't match operand's pointee type"); 3453 3454 unsigned GEPWidth = 3455 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3456 3457 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3458 for (Constant *Val : Indices) { 3459 Type *ValTy = Val->getType(); 3460 if (!ValTy->isIntOrIntVectorTy()) 3461 return Error(ID.Loc, "getelementptr index must be an integer"); 3462 if (ValTy->isVectorTy()) { 3463 unsigned ValNumEl = ValTy->getVectorNumElements(); 3464 if (GEPWidth && (ValNumEl != GEPWidth)) 3465 return Error( 3466 ID.Loc, 3467 "getelementptr vector index has a wrong number of elements"); 3468 // GEPWidth may have been unknown because the base is a scalar, 3469 // but it is known now. 3470 GEPWidth = ValNumEl; 3471 } 3472 } 3473 3474 SmallPtrSet<Type*, 4> Visited; 3475 if (!Indices.empty() && !Ty->isSized(&Visited)) 3476 return Error(ID.Loc, "base element of getelementptr must be sized"); 3477 3478 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3479 return Error(ID.Loc, "invalid getelementptr indices"); 3480 3481 if (InRangeOp) { 3482 if (*InRangeOp == 0) 3483 return Error(ID.Loc, 3484 "inrange keyword may not appear on pointer operand"); 3485 --*InRangeOp; 3486 } 3487 3488 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3489 InBounds, InRangeOp); 3490 } else if (Opc == Instruction::Select) { 3491 if (Elts.size() != 3) 3492 return Error(ID.Loc, "expected three operands to select"); 3493 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3494 Elts[2])) 3495 return Error(ID.Loc, Reason); 3496 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3497 } else if (Opc == Instruction::ShuffleVector) { 3498 if (Elts.size() != 3) 3499 return Error(ID.Loc, "expected three operands to shufflevector"); 3500 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3501 return Error(ID.Loc, "invalid operands to shufflevector"); 3502 ID.ConstantVal = 3503 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3504 } else if (Opc == Instruction::ExtractElement) { 3505 if (Elts.size() != 2) 3506 return Error(ID.Loc, "expected two operands to extractelement"); 3507 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3508 return Error(ID.Loc, "invalid extractelement operands"); 3509 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3510 } else { 3511 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3512 if (Elts.size() != 3) 3513 return Error(ID.Loc, "expected three operands to insertelement"); 3514 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3515 return Error(ID.Loc, "invalid insertelement operands"); 3516 ID.ConstantVal = 3517 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3518 } 3519 3520 ID.Kind = ValID::t_Constant; 3521 return false; 3522 } 3523 } 3524 3525 Lex.Lex(); 3526 return false; 3527 } 3528 3529 /// ParseGlobalValue - Parse a global value with the specified type. 3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3531 C = nullptr; 3532 ValID ID; 3533 Value *V = nullptr; 3534 bool Parsed = ParseValID(ID) || 3535 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3536 if (V && !(C = dyn_cast<Constant>(V))) 3537 return Error(ID.Loc, "global values must be constants"); 3538 return Parsed; 3539 } 3540 3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3542 Type *Ty = nullptr; 3543 return ParseType(Ty) || 3544 ParseGlobalValue(Ty, V); 3545 } 3546 3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3548 C = nullptr; 3549 3550 LocTy KwLoc = Lex.getLoc(); 3551 if (!EatIfPresent(lltok::kw_comdat)) 3552 return false; 3553 3554 if (EatIfPresent(lltok::lparen)) { 3555 if (Lex.getKind() != lltok::ComdatVar) 3556 return TokError("expected comdat variable"); 3557 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3558 Lex.Lex(); 3559 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3560 return true; 3561 } else { 3562 if (GlobalName.empty()) 3563 return TokError("comdat cannot be unnamed"); 3564 C = getComdat(GlobalName, KwLoc); 3565 } 3566 3567 return false; 3568 } 3569 3570 /// ParseGlobalValueVector 3571 /// ::= /*empty*/ 3572 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3574 Optional<unsigned> *InRangeOp) { 3575 // Empty list. 3576 if (Lex.getKind() == lltok::rbrace || 3577 Lex.getKind() == lltok::rsquare || 3578 Lex.getKind() == lltok::greater || 3579 Lex.getKind() == lltok::rparen) 3580 return false; 3581 3582 do { 3583 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3584 *InRangeOp = Elts.size(); 3585 3586 Constant *C; 3587 if (ParseGlobalTypeAndValue(C)) return true; 3588 Elts.push_back(C); 3589 } while (EatIfPresent(lltok::comma)); 3590 3591 return false; 3592 } 3593 3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3595 SmallVector<Metadata *, 16> Elts; 3596 if (ParseMDNodeVector(Elts)) 3597 return true; 3598 3599 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3600 return false; 3601 } 3602 3603 /// MDNode: 3604 /// ::= !{ ... } 3605 /// ::= !7 3606 /// ::= !DILocation(...) 3607 bool LLParser::ParseMDNode(MDNode *&N) { 3608 if (Lex.getKind() == lltok::MetadataVar) 3609 return ParseSpecializedMDNode(N); 3610 3611 return ParseToken(lltok::exclaim, "expected '!' here") || 3612 ParseMDNodeTail(N); 3613 } 3614 3615 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3616 // !{ ... } 3617 if (Lex.getKind() == lltok::lbrace) 3618 return ParseMDTuple(N); 3619 3620 // !42 3621 return ParseMDNodeID(N); 3622 } 3623 3624 namespace { 3625 3626 /// Structure to represent an optional metadata field. 3627 template <class FieldTy> struct MDFieldImpl { 3628 typedef MDFieldImpl ImplTy; 3629 FieldTy Val; 3630 bool Seen; 3631 3632 void assign(FieldTy Val) { 3633 Seen = true; 3634 this->Val = std::move(Val); 3635 } 3636 3637 explicit MDFieldImpl(FieldTy Default) 3638 : Val(std::move(Default)), Seen(false) {} 3639 }; 3640 3641 /// Structure to represent an optional metadata field that 3642 /// can be of either type (A or B) and encapsulates the 3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3644 /// to reimplement the specifics for representing each Field. 3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3646 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3647 FieldTypeA A; 3648 FieldTypeB B; 3649 bool Seen; 3650 3651 enum { 3652 IsInvalid = 0, 3653 IsTypeA = 1, 3654 IsTypeB = 2 3655 } WhatIs; 3656 3657 void assign(FieldTypeA A) { 3658 Seen = true; 3659 this->A = std::move(A); 3660 WhatIs = IsTypeA; 3661 } 3662 3663 void assign(FieldTypeB B) { 3664 Seen = true; 3665 this->B = std::move(B); 3666 WhatIs = IsTypeB; 3667 } 3668 3669 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3670 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3671 WhatIs(IsInvalid) {} 3672 }; 3673 3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3675 uint64_t Max; 3676 3677 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3678 : ImplTy(Default), Max(Max) {} 3679 }; 3680 3681 struct LineField : public MDUnsignedField { 3682 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3683 }; 3684 3685 struct ColumnField : public MDUnsignedField { 3686 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3687 }; 3688 3689 struct DwarfTagField : public MDUnsignedField { 3690 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3691 DwarfTagField(dwarf::Tag DefaultTag) 3692 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3693 }; 3694 3695 struct DwarfMacinfoTypeField : public MDUnsignedField { 3696 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3697 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3698 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3699 }; 3700 3701 struct DwarfAttEncodingField : public MDUnsignedField { 3702 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3703 }; 3704 3705 struct DwarfVirtualityField : public MDUnsignedField { 3706 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3707 }; 3708 3709 struct DwarfLangField : public MDUnsignedField { 3710 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3711 }; 3712 3713 struct DwarfCCField : public MDUnsignedField { 3714 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3715 }; 3716 3717 struct EmissionKindField : public MDUnsignedField { 3718 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3719 }; 3720 3721 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3722 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3723 }; 3724 3725 struct MDSignedField : public MDFieldImpl<int64_t> { 3726 int64_t Min; 3727 int64_t Max; 3728 3729 MDSignedField(int64_t Default = 0) 3730 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3731 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3732 : ImplTy(Default), Min(Min), Max(Max) {} 3733 }; 3734 3735 struct MDBoolField : public MDFieldImpl<bool> { 3736 MDBoolField(bool Default = false) : ImplTy(Default) {} 3737 }; 3738 3739 struct MDField : public MDFieldImpl<Metadata *> { 3740 bool AllowNull; 3741 3742 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3743 }; 3744 3745 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3746 MDConstant() : ImplTy(nullptr) {} 3747 }; 3748 3749 struct MDStringField : public MDFieldImpl<MDString *> { 3750 bool AllowEmpty; 3751 MDStringField(bool AllowEmpty = true) 3752 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3753 }; 3754 3755 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3756 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3757 }; 3758 3759 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3760 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3761 }; 3762 3763 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3764 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3765 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3766 3767 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3768 bool AllowNull = true) 3769 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3770 3771 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3772 bool isMDField() const { return WhatIs == IsTypeB; } 3773 int64_t getMDSignedValue() const { 3774 assert(isMDSignedField() && "Wrong field type"); 3775 return A.Val; 3776 } 3777 Metadata *getMDFieldValue() const { 3778 assert(isMDField() && "Wrong field type"); 3779 return B.Val; 3780 } 3781 }; 3782 3783 struct MDSignedOrUnsignedField 3784 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3785 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3786 3787 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3788 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3789 int64_t getMDSignedValue() const { 3790 assert(isMDSignedField() && "Wrong field type"); 3791 return A.Val; 3792 } 3793 uint64_t getMDUnsignedValue() const { 3794 assert(isMDUnsignedField() && "Wrong field type"); 3795 return B.Val; 3796 } 3797 }; 3798 3799 } // end anonymous namespace 3800 3801 namespace llvm { 3802 3803 template <> 3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3805 MDUnsignedField &Result) { 3806 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3807 return TokError("expected unsigned integer"); 3808 3809 auto &U = Lex.getAPSIntVal(); 3810 if (U.ugt(Result.Max)) 3811 return TokError("value for '" + Name + "' too large, limit is " + 3812 Twine(Result.Max)); 3813 Result.assign(U.getZExtValue()); 3814 assert(Result.Val <= Result.Max && "Expected value in range"); 3815 Lex.Lex(); 3816 return false; 3817 } 3818 3819 template <> 3820 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3821 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3822 } 3823 template <> 3824 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3825 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3826 } 3827 3828 template <> 3829 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3830 if (Lex.getKind() == lltok::APSInt) 3831 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3832 3833 if (Lex.getKind() != lltok::DwarfTag) 3834 return TokError("expected DWARF tag"); 3835 3836 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3837 if (Tag == dwarf::DW_TAG_invalid) 3838 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3839 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3840 3841 Result.assign(Tag); 3842 Lex.Lex(); 3843 return false; 3844 } 3845 3846 template <> 3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3848 DwarfMacinfoTypeField &Result) { 3849 if (Lex.getKind() == lltok::APSInt) 3850 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3851 3852 if (Lex.getKind() != lltok::DwarfMacinfo) 3853 return TokError("expected DWARF macinfo type"); 3854 3855 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3856 if (Macinfo == dwarf::DW_MACINFO_invalid) 3857 return TokError( 3858 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3859 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3860 3861 Result.assign(Macinfo); 3862 Lex.Lex(); 3863 return false; 3864 } 3865 3866 template <> 3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3868 DwarfVirtualityField &Result) { 3869 if (Lex.getKind() == lltok::APSInt) 3870 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3871 3872 if (Lex.getKind() != lltok::DwarfVirtuality) 3873 return TokError("expected DWARF virtuality code"); 3874 3875 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3876 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3877 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3878 Lex.getStrVal() + "'"); 3879 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3880 Result.assign(Virtuality); 3881 Lex.Lex(); 3882 return false; 3883 } 3884 3885 template <> 3886 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3887 if (Lex.getKind() == lltok::APSInt) 3888 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3889 3890 if (Lex.getKind() != lltok::DwarfLang) 3891 return TokError("expected DWARF language"); 3892 3893 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3894 if (!Lang) 3895 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3896 "'"); 3897 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3898 Result.assign(Lang); 3899 Lex.Lex(); 3900 return false; 3901 } 3902 3903 template <> 3904 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3905 if (Lex.getKind() == lltok::APSInt) 3906 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3907 3908 if (Lex.getKind() != lltok::DwarfCC) 3909 return TokError("expected DWARF calling convention"); 3910 3911 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3912 if (!CC) 3913 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3914 "'"); 3915 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3916 Result.assign(CC); 3917 Lex.Lex(); 3918 return false; 3919 } 3920 3921 template <> 3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3923 if (Lex.getKind() == lltok::APSInt) 3924 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3925 3926 if (Lex.getKind() != lltok::EmissionKind) 3927 return TokError("expected emission kind"); 3928 3929 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3930 if (!Kind) 3931 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3932 "'"); 3933 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3934 Result.assign(*Kind); 3935 Lex.Lex(); 3936 return false; 3937 } 3938 3939 template <> 3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3941 DwarfAttEncodingField &Result) { 3942 if (Lex.getKind() == lltok::APSInt) 3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 3945 if (Lex.getKind() != lltok::DwarfAttEncoding) 3946 return TokError("expected DWARF type attribute encoding"); 3947 3948 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3949 if (!Encoding) 3950 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3951 Lex.getStrVal() + "'"); 3952 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3953 Result.assign(Encoding); 3954 Lex.Lex(); 3955 return false; 3956 } 3957 3958 /// DIFlagField 3959 /// ::= uint32 3960 /// ::= DIFlagVector 3961 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3962 template <> 3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3964 3965 // Parser for a single flag. 3966 auto parseFlag = [&](DINode::DIFlags &Val) { 3967 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3968 uint32_t TempVal = static_cast<uint32_t>(Val); 3969 bool Res = ParseUInt32(TempVal); 3970 Val = static_cast<DINode::DIFlags>(TempVal); 3971 return Res; 3972 } 3973 3974 if (Lex.getKind() != lltok::DIFlag) 3975 return TokError("expected debug info flag"); 3976 3977 Val = DINode::getFlag(Lex.getStrVal()); 3978 if (!Val) 3979 return TokError(Twine("invalid debug info flag flag '") + 3980 Lex.getStrVal() + "'"); 3981 Lex.Lex(); 3982 return false; 3983 }; 3984 3985 // Parse the flags and combine them together. 3986 DINode::DIFlags Combined = DINode::FlagZero; 3987 do { 3988 DINode::DIFlags Val; 3989 if (parseFlag(Val)) 3990 return true; 3991 Combined |= Val; 3992 } while (EatIfPresent(lltok::bar)); 3993 3994 Result.assign(Combined); 3995 return false; 3996 } 3997 3998 template <> 3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4000 MDSignedField &Result) { 4001 if (Lex.getKind() != lltok::APSInt) 4002 return TokError("expected signed integer"); 4003 4004 auto &S = Lex.getAPSIntVal(); 4005 if (S < Result.Min) 4006 return TokError("value for '" + Name + "' too small, limit is " + 4007 Twine(Result.Min)); 4008 if (S > Result.Max) 4009 return TokError("value for '" + Name + "' too large, limit is " + 4010 Twine(Result.Max)); 4011 Result.assign(S.getExtValue()); 4012 assert(Result.Val >= Result.Min && "Expected value in range"); 4013 assert(Result.Val <= Result.Max && "Expected value in range"); 4014 Lex.Lex(); 4015 return false; 4016 } 4017 4018 template <> 4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4020 switch (Lex.getKind()) { 4021 default: 4022 return TokError("expected 'true' or 'false'"); 4023 case lltok::kw_true: 4024 Result.assign(true); 4025 break; 4026 case lltok::kw_false: 4027 Result.assign(false); 4028 break; 4029 } 4030 Lex.Lex(); 4031 return false; 4032 } 4033 4034 template <> 4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4036 if (Lex.getKind() == lltok::kw_null) { 4037 if (!Result.AllowNull) 4038 return TokError("'" + Name + "' cannot be null"); 4039 Lex.Lex(); 4040 Result.assign(nullptr); 4041 return false; 4042 } 4043 4044 Metadata *MD; 4045 if (ParseMetadata(MD, nullptr)) 4046 return true; 4047 4048 Result.assign(MD); 4049 return false; 4050 } 4051 4052 template <> 4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4054 MDSignedOrMDField &Result) { 4055 // Try to parse a signed int. 4056 if (Lex.getKind() == lltok::APSInt) { 4057 MDSignedField Res = Result.A; 4058 if (!ParseMDField(Loc, Name, Res)) { 4059 Result.assign(Res); 4060 return false; 4061 } 4062 return true; 4063 } 4064 4065 // Otherwise, try to parse as an MDField. 4066 MDField Res = Result.B; 4067 if (!ParseMDField(Loc, Name, Res)) { 4068 Result.assign(Res); 4069 return false; 4070 } 4071 4072 return true; 4073 } 4074 4075 template <> 4076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4077 MDSignedOrUnsignedField &Result) { 4078 if (Lex.getKind() != lltok::APSInt) 4079 return false; 4080 4081 if (Lex.getAPSIntVal().isSigned()) { 4082 MDSignedField Res = Result.A; 4083 if (ParseMDField(Loc, Name, Res)) 4084 return true; 4085 Result.assign(Res); 4086 return false; 4087 } 4088 4089 MDUnsignedField Res = Result.B; 4090 if (ParseMDField(Loc, Name, Res)) 4091 return true; 4092 Result.assign(Res); 4093 return false; 4094 } 4095 4096 template <> 4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4098 LocTy ValueLoc = Lex.getLoc(); 4099 std::string S; 4100 if (ParseStringConstant(S)) 4101 return true; 4102 4103 if (!Result.AllowEmpty && S.empty()) 4104 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4105 4106 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4107 return false; 4108 } 4109 4110 template <> 4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4112 SmallVector<Metadata *, 4> MDs; 4113 if (ParseMDNodeVector(MDs)) 4114 return true; 4115 4116 Result.assign(std::move(MDs)); 4117 return false; 4118 } 4119 4120 template <> 4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4122 ChecksumKindField &Result) { 4123 Optional<DIFile::ChecksumKind> CSKind = 4124 DIFile::getChecksumKind(Lex.getStrVal()); 4125 4126 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4127 return TokError( 4128 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4129 4130 Result.assign(*CSKind); 4131 Lex.Lex(); 4132 return false; 4133 } 4134 4135 } // end namespace llvm 4136 4137 template <class ParserTy> 4138 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4139 do { 4140 if (Lex.getKind() != lltok::LabelStr) 4141 return TokError("expected field label here"); 4142 4143 if (parseField()) 4144 return true; 4145 } while (EatIfPresent(lltok::comma)); 4146 4147 return false; 4148 } 4149 4150 template <class ParserTy> 4151 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4152 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4153 Lex.Lex(); 4154 4155 if (ParseToken(lltok::lparen, "expected '(' here")) 4156 return true; 4157 if (Lex.getKind() != lltok::rparen) 4158 if (ParseMDFieldsImplBody(parseField)) 4159 return true; 4160 4161 ClosingLoc = Lex.getLoc(); 4162 return ParseToken(lltok::rparen, "expected ')' here"); 4163 } 4164 4165 template <class FieldTy> 4166 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4167 if (Result.Seen) 4168 return TokError("field '" + Name + "' cannot be specified more than once"); 4169 4170 LocTy Loc = Lex.getLoc(); 4171 Lex.Lex(); 4172 return ParseMDField(Loc, Name, Result); 4173 } 4174 4175 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4176 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4177 4178 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4179 if (Lex.getStrVal() == #CLASS) \ 4180 return Parse##CLASS(N, IsDistinct); 4181 #include "llvm/IR/Metadata.def" 4182 4183 return TokError("expected metadata type"); 4184 } 4185 4186 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4187 #define NOP_FIELD(NAME, TYPE, INIT) 4188 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4189 if (!NAME.Seen) \ 4190 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4191 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4192 if (Lex.getStrVal() == #NAME) \ 4193 return ParseMDField(#NAME, NAME); 4194 #define PARSE_MD_FIELDS() \ 4195 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4196 do { \ 4197 LocTy ClosingLoc; \ 4198 if (ParseMDFieldsImpl([&]() -> bool { \ 4199 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4200 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4201 }, ClosingLoc)) \ 4202 return true; \ 4203 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4204 } while (false) 4205 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4206 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4207 4208 /// ParseDILocationFields: 4209 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4210 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4211 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4212 OPTIONAL(line, LineField, ); \ 4213 OPTIONAL(column, ColumnField, ); \ 4214 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4215 OPTIONAL(inlinedAt, MDField, ); 4216 PARSE_MD_FIELDS(); 4217 #undef VISIT_MD_FIELDS 4218 4219 Result = GET_OR_DISTINCT( 4220 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4221 return false; 4222 } 4223 4224 /// ParseGenericDINode: 4225 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4226 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4228 REQUIRED(tag, DwarfTagField, ); \ 4229 OPTIONAL(header, MDStringField, ); \ 4230 OPTIONAL(operands, MDFieldList, ); 4231 PARSE_MD_FIELDS(); 4232 #undef VISIT_MD_FIELDS 4233 4234 Result = GET_OR_DISTINCT(GenericDINode, 4235 (Context, tag.Val, header.Val, operands.Val)); 4236 return false; 4237 } 4238 4239 /// ParseDISubrange: 4240 /// ::= !DISubrange(count: 30, lowerBound: 2) 4241 /// ::= !DISubrange(count: !node, lowerBound: 2) 4242 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4244 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4245 OPTIONAL(lowerBound, MDSignedField, ); 4246 PARSE_MD_FIELDS(); 4247 #undef VISIT_MD_FIELDS 4248 4249 if (count.isMDSignedField()) 4250 Result = GET_OR_DISTINCT( 4251 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4252 else if (count.isMDField()) 4253 Result = GET_OR_DISTINCT( 4254 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4255 else 4256 return true; 4257 4258 return false; 4259 } 4260 4261 /// ParseDIEnumerator: 4262 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4263 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4265 REQUIRED(name, MDStringField, ); \ 4266 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4267 OPTIONAL(isUnsigned, MDBoolField, (false)); 4268 PARSE_MD_FIELDS(); 4269 #undef VISIT_MD_FIELDS 4270 4271 if (isUnsigned.Val && value.isMDSignedField()) 4272 return TokError("unsigned enumerator with negative value"); 4273 4274 int64_t Value = value.isMDSignedField() 4275 ? value.getMDSignedValue() 4276 : static_cast<int64_t>(value.getMDUnsignedValue()); 4277 Result = 4278 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4279 4280 return false; 4281 } 4282 4283 /// ParseDIBasicType: 4284 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4285 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4287 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4288 OPTIONAL(name, MDStringField, ); \ 4289 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4290 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4291 OPTIONAL(encoding, DwarfAttEncodingField, ); 4292 PARSE_MD_FIELDS(); 4293 #undef VISIT_MD_FIELDS 4294 4295 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4296 align.Val, encoding.Val)); 4297 return false; 4298 } 4299 4300 /// ParseDIDerivedType: 4301 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4302 /// line: 7, scope: !1, baseType: !2, size: 32, 4303 /// align: 32, offset: 0, flags: 0, extraData: !3, 4304 /// dwarfAddressSpace: 3) 4305 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4307 REQUIRED(tag, DwarfTagField, ); \ 4308 OPTIONAL(name, MDStringField, ); \ 4309 OPTIONAL(file, MDField, ); \ 4310 OPTIONAL(line, LineField, ); \ 4311 OPTIONAL(scope, MDField, ); \ 4312 REQUIRED(baseType, MDField, ); \ 4313 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4314 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4315 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4316 OPTIONAL(flags, DIFlagField, ); \ 4317 OPTIONAL(extraData, MDField, ); \ 4318 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4319 PARSE_MD_FIELDS(); 4320 #undef VISIT_MD_FIELDS 4321 4322 Optional<unsigned> DWARFAddressSpace; 4323 if (dwarfAddressSpace.Val != UINT32_MAX) 4324 DWARFAddressSpace = dwarfAddressSpace.Val; 4325 4326 Result = GET_OR_DISTINCT(DIDerivedType, 4327 (Context, tag.Val, name.Val, file.Val, line.Val, 4328 scope.Val, baseType.Val, size.Val, align.Val, 4329 offset.Val, DWARFAddressSpace, flags.Val, 4330 extraData.Val)); 4331 return false; 4332 } 4333 4334 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4336 REQUIRED(tag, DwarfTagField, ); \ 4337 OPTIONAL(name, MDStringField, ); \ 4338 OPTIONAL(file, MDField, ); \ 4339 OPTIONAL(line, LineField, ); \ 4340 OPTIONAL(scope, MDField, ); \ 4341 OPTIONAL(baseType, MDField, ); \ 4342 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4343 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4344 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4345 OPTIONAL(flags, DIFlagField, ); \ 4346 OPTIONAL(elements, MDField, ); \ 4347 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4348 OPTIONAL(vtableHolder, MDField, ); \ 4349 OPTIONAL(templateParams, MDField, ); \ 4350 OPTIONAL(identifier, MDStringField, ); \ 4351 OPTIONAL(discriminator, MDField, ); 4352 PARSE_MD_FIELDS(); 4353 #undef VISIT_MD_FIELDS 4354 4355 // If this has an identifier try to build an ODR type. 4356 if (identifier.Val) 4357 if (auto *CT = DICompositeType::buildODRType( 4358 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4359 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4360 elements.Val, runtimeLang.Val, vtableHolder.Val, 4361 templateParams.Val, discriminator.Val)) { 4362 Result = CT; 4363 return false; 4364 } 4365 4366 // Create a new node, and save it in the context if it belongs in the type 4367 // map. 4368 Result = GET_OR_DISTINCT( 4369 DICompositeType, 4370 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4371 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4372 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4373 discriminator.Val)); 4374 return false; 4375 } 4376 4377 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4379 OPTIONAL(flags, DIFlagField, ); \ 4380 OPTIONAL(cc, DwarfCCField, ); \ 4381 REQUIRED(types, MDField, ); 4382 PARSE_MD_FIELDS(); 4383 #undef VISIT_MD_FIELDS 4384 4385 Result = GET_OR_DISTINCT(DISubroutineType, 4386 (Context, flags.Val, cc.Val, types.Val)); 4387 return false; 4388 } 4389 4390 /// ParseDIFileType: 4391 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4392 /// checksumkind: CSK_MD5, 4393 /// checksum: "000102030405060708090a0b0c0d0e0f", 4394 /// source: "source file contents") 4395 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4396 // The default constructed value for checksumkind is required, but will never 4397 // be used, as the parser checks if the field was actually Seen before using 4398 // the Val. 4399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4400 REQUIRED(filename, MDStringField, ); \ 4401 REQUIRED(directory, MDStringField, ); \ 4402 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4403 OPTIONAL(checksum, MDStringField, ); \ 4404 OPTIONAL(source, MDStringField, ); 4405 PARSE_MD_FIELDS(); 4406 #undef VISIT_MD_FIELDS 4407 4408 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4409 if (checksumkind.Seen && checksum.Seen) 4410 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4411 else if (checksumkind.Seen || checksum.Seen) 4412 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4413 4414 Optional<MDString *> OptSource; 4415 if (source.Seen) 4416 OptSource = source.Val; 4417 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4418 OptChecksum, OptSource)); 4419 return false; 4420 } 4421 4422 /// ParseDICompileUnit: 4423 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4424 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4425 /// splitDebugFilename: "abc.debug", 4426 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4427 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4428 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4429 if (!IsDistinct) 4430 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4431 4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4433 REQUIRED(language, DwarfLangField, ); \ 4434 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4435 OPTIONAL(producer, MDStringField, ); \ 4436 OPTIONAL(isOptimized, MDBoolField, ); \ 4437 OPTIONAL(flags, MDStringField, ); \ 4438 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4439 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4440 OPTIONAL(emissionKind, EmissionKindField, ); \ 4441 OPTIONAL(enums, MDField, ); \ 4442 OPTIONAL(retainedTypes, MDField, ); \ 4443 OPTIONAL(globals, MDField, ); \ 4444 OPTIONAL(imports, MDField, ); \ 4445 OPTIONAL(macros, MDField, ); \ 4446 OPTIONAL(dwoId, MDUnsignedField, ); \ 4447 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4448 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4449 OPTIONAL(gnuPubnames, MDBoolField, = false); 4450 PARSE_MD_FIELDS(); 4451 #undef VISIT_MD_FIELDS 4452 4453 Result = DICompileUnit::getDistinct( 4454 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4455 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4456 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4457 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4458 return false; 4459 } 4460 4461 /// ParseDISubprogram: 4462 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4463 /// file: !1, line: 7, type: !2, isLocal: false, 4464 /// isDefinition: true, scopeLine: 8, containingType: !3, 4465 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4466 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4467 /// isOptimized: false, templateParams: !4, declaration: !5, 4468 /// retainedNodes: !6, thrownTypes: !7) 4469 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4470 auto Loc = Lex.getLoc(); 4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4472 OPTIONAL(scope, MDField, ); \ 4473 OPTIONAL(name, MDStringField, ); \ 4474 OPTIONAL(linkageName, MDStringField, ); \ 4475 OPTIONAL(file, MDField, ); \ 4476 OPTIONAL(line, LineField, ); \ 4477 OPTIONAL(type, MDField, ); \ 4478 OPTIONAL(isLocal, MDBoolField, ); \ 4479 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4480 OPTIONAL(scopeLine, LineField, ); \ 4481 OPTIONAL(containingType, MDField, ); \ 4482 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4483 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4484 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4485 OPTIONAL(flags, DIFlagField, ); \ 4486 OPTIONAL(isOptimized, MDBoolField, ); \ 4487 OPTIONAL(unit, MDField, ); \ 4488 OPTIONAL(templateParams, MDField, ); \ 4489 OPTIONAL(declaration, MDField, ); \ 4490 OPTIONAL(retainedNodes, MDField, ); \ 4491 OPTIONAL(thrownTypes, MDField, ); 4492 PARSE_MD_FIELDS(); 4493 #undef VISIT_MD_FIELDS 4494 4495 if (isDefinition.Val && !IsDistinct) 4496 return Lex.Error( 4497 Loc, 4498 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4499 4500 Result = GET_OR_DISTINCT( 4501 DISubprogram, 4502 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4503 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4504 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4505 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4506 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4507 return false; 4508 } 4509 4510 /// ParseDILexicalBlock: 4511 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4512 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4514 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4515 OPTIONAL(file, MDField, ); \ 4516 OPTIONAL(line, LineField, ); \ 4517 OPTIONAL(column, ColumnField, ); 4518 PARSE_MD_FIELDS(); 4519 #undef VISIT_MD_FIELDS 4520 4521 Result = GET_OR_DISTINCT( 4522 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4523 return false; 4524 } 4525 4526 /// ParseDILexicalBlockFile: 4527 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4528 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4530 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4531 OPTIONAL(file, MDField, ); \ 4532 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4533 PARSE_MD_FIELDS(); 4534 #undef VISIT_MD_FIELDS 4535 4536 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4537 (Context, scope.Val, file.Val, discriminator.Val)); 4538 return false; 4539 } 4540 4541 /// ParseDINamespace: 4542 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4543 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4545 REQUIRED(scope, MDField, ); \ 4546 OPTIONAL(name, MDStringField, ); \ 4547 OPTIONAL(exportSymbols, MDBoolField, ); 4548 PARSE_MD_FIELDS(); 4549 #undef VISIT_MD_FIELDS 4550 4551 Result = GET_OR_DISTINCT(DINamespace, 4552 (Context, scope.Val, name.Val, exportSymbols.Val)); 4553 return false; 4554 } 4555 4556 /// ParseDIMacro: 4557 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4558 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4560 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4561 OPTIONAL(line, LineField, ); \ 4562 REQUIRED(name, MDStringField, ); \ 4563 OPTIONAL(value, MDStringField, ); 4564 PARSE_MD_FIELDS(); 4565 #undef VISIT_MD_FIELDS 4566 4567 Result = GET_OR_DISTINCT(DIMacro, 4568 (Context, type.Val, line.Val, name.Val, value.Val)); 4569 return false; 4570 } 4571 4572 /// ParseDIMacroFile: 4573 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4574 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4576 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4577 OPTIONAL(line, LineField, ); \ 4578 REQUIRED(file, MDField, ); \ 4579 OPTIONAL(nodes, MDField, ); 4580 PARSE_MD_FIELDS(); 4581 #undef VISIT_MD_FIELDS 4582 4583 Result = GET_OR_DISTINCT(DIMacroFile, 4584 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4585 return false; 4586 } 4587 4588 /// ParseDIModule: 4589 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4590 /// includePath: "/usr/include", isysroot: "/") 4591 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4593 REQUIRED(scope, MDField, ); \ 4594 REQUIRED(name, MDStringField, ); \ 4595 OPTIONAL(configMacros, MDStringField, ); \ 4596 OPTIONAL(includePath, MDStringField, ); \ 4597 OPTIONAL(isysroot, MDStringField, ); 4598 PARSE_MD_FIELDS(); 4599 #undef VISIT_MD_FIELDS 4600 4601 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4602 configMacros.Val, includePath.Val, isysroot.Val)); 4603 return false; 4604 } 4605 4606 /// ParseDITemplateTypeParameter: 4607 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4608 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4610 OPTIONAL(name, MDStringField, ); \ 4611 REQUIRED(type, MDField, ); 4612 PARSE_MD_FIELDS(); 4613 #undef VISIT_MD_FIELDS 4614 4615 Result = 4616 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4617 return false; 4618 } 4619 4620 /// ParseDITemplateValueParameter: 4621 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4622 /// name: "V", type: !1, value: i32 7) 4623 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4624 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4625 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4626 OPTIONAL(name, MDStringField, ); \ 4627 OPTIONAL(type, MDField, ); \ 4628 REQUIRED(value, MDField, ); 4629 PARSE_MD_FIELDS(); 4630 #undef VISIT_MD_FIELDS 4631 4632 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4633 (Context, tag.Val, name.Val, type.Val, value.Val)); 4634 return false; 4635 } 4636 4637 /// ParseDIGlobalVariable: 4638 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4639 /// file: !1, line: 7, type: !2, isLocal: false, 4640 /// isDefinition: true, declaration: !3, align: 8) 4641 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4643 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4644 OPTIONAL(scope, MDField, ); \ 4645 OPTIONAL(linkageName, MDStringField, ); \ 4646 OPTIONAL(file, MDField, ); \ 4647 OPTIONAL(line, LineField, ); \ 4648 OPTIONAL(type, MDField, ); \ 4649 OPTIONAL(isLocal, MDBoolField, ); \ 4650 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4651 OPTIONAL(declaration, MDField, ); \ 4652 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4653 PARSE_MD_FIELDS(); 4654 #undef VISIT_MD_FIELDS 4655 4656 Result = GET_OR_DISTINCT(DIGlobalVariable, 4657 (Context, scope.Val, name.Val, linkageName.Val, 4658 file.Val, line.Val, type.Val, isLocal.Val, 4659 isDefinition.Val, declaration.Val, align.Val)); 4660 return false; 4661 } 4662 4663 /// ParseDILocalVariable: 4664 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4665 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4666 /// align: 8) 4667 /// ::= !DILocalVariable(scope: !0, name: "foo", 4668 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4669 /// align: 8) 4670 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4672 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4673 OPTIONAL(name, MDStringField, ); \ 4674 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4675 OPTIONAL(file, MDField, ); \ 4676 OPTIONAL(line, LineField, ); \ 4677 OPTIONAL(type, MDField, ); \ 4678 OPTIONAL(flags, DIFlagField, ); \ 4679 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4680 PARSE_MD_FIELDS(); 4681 #undef VISIT_MD_FIELDS 4682 4683 Result = GET_OR_DISTINCT(DILocalVariable, 4684 (Context, scope.Val, name.Val, file.Val, line.Val, 4685 type.Val, arg.Val, flags.Val, align.Val)); 4686 return false; 4687 } 4688 4689 /// ParseDILabel: 4690 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4691 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4693 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4694 REQUIRED(name, MDStringField, ); \ 4695 REQUIRED(file, MDField, ); \ 4696 REQUIRED(line, LineField, ); 4697 PARSE_MD_FIELDS(); 4698 #undef VISIT_MD_FIELDS 4699 4700 Result = GET_OR_DISTINCT(DILabel, 4701 (Context, scope.Val, name.Val, file.Val, line.Val)); 4702 return false; 4703 } 4704 4705 /// ParseDIExpression: 4706 /// ::= !DIExpression(0, 7, -1) 4707 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4708 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4709 Lex.Lex(); 4710 4711 if (ParseToken(lltok::lparen, "expected '(' here")) 4712 return true; 4713 4714 SmallVector<uint64_t, 8> Elements; 4715 if (Lex.getKind() != lltok::rparen) 4716 do { 4717 if (Lex.getKind() == lltok::DwarfOp) { 4718 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4719 Lex.Lex(); 4720 Elements.push_back(Op); 4721 continue; 4722 } 4723 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4724 } 4725 4726 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4727 return TokError("expected unsigned integer"); 4728 4729 auto &U = Lex.getAPSIntVal(); 4730 if (U.ugt(UINT64_MAX)) 4731 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4732 Elements.push_back(U.getZExtValue()); 4733 Lex.Lex(); 4734 } while (EatIfPresent(lltok::comma)); 4735 4736 if (ParseToken(lltok::rparen, "expected ')' here")) 4737 return true; 4738 4739 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4740 return false; 4741 } 4742 4743 /// ParseDIGlobalVariableExpression: 4744 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4745 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4746 bool IsDistinct) { 4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4748 REQUIRED(var, MDField, ); \ 4749 REQUIRED(expr, MDField, ); 4750 PARSE_MD_FIELDS(); 4751 #undef VISIT_MD_FIELDS 4752 4753 Result = 4754 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4755 return false; 4756 } 4757 4758 /// ParseDIObjCProperty: 4759 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4760 /// getter: "getFoo", attributes: 7, type: !2) 4761 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4763 OPTIONAL(name, MDStringField, ); \ 4764 OPTIONAL(file, MDField, ); \ 4765 OPTIONAL(line, LineField, ); \ 4766 OPTIONAL(setter, MDStringField, ); \ 4767 OPTIONAL(getter, MDStringField, ); \ 4768 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4769 OPTIONAL(type, MDField, ); 4770 PARSE_MD_FIELDS(); 4771 #undef VISIT_MD_FIELDS 4772 4773 Result = GET_OR_DISTINCT(DIObjCProperty, 4774 (Context, name.Val, file.Val, line.Val, setter.Val, 4775 getter.Val, attributes.Val, type.Val)); 4776 return false; 4777 } 4778 4779 /// ParseDIImportedEntity: 4780 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4781 /// line: 7, name: "foo") 4782 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4784 REQUIRED(tag, DwarfTagField, ); \ 4785 REQUIRED(scope, MDField, ); \ 4786 OPTIONAL(entity, MDField, ); \ 4787 OPTIONAL(file, MDField, ); \ 4788 OPTIONAL(line, LineField, ); \ 4789 OPTIONAL(name, MDStringField, ); 4790 PARSE_MD_FIELDS(); 4791 #undef VISIT_MD_FIELDS 4792 4793 Result = GET_OR_DISTINCT( 4794 DIImportedEntity, 4795 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4796 return false; 4797 } 4798 4799 #undef PARSE_MD_FIELD 4800 #undef NOP_FIELD 4801 #undef REQUIRE_FIELD 4802 #undef DECLARE_FIELD 4803 4804 /// ParseMetadataAsValue 4805 /// ::= metadata i32 %local 4806 /// ::= metadata i32 @global 4807 /// ::= metadata i32 7 4808 /// ::= metadata !0 4809 /// ::= metadata !{...} 4810 /// ::= metadata !"string" 4811 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4812 // Note: the type 'metadata' has already been parsed. 4813 Metadata *MD; 4814 if (ParseMetadata(MD, &PFS)) 4815 return true; 4816 4817 V = MetadataAsValue::get(Context, MD); 4818 return false; 4819 } 4820 4821 /// ParseValueAsMetadata 4822 /// ::= i32 %local 4823 /// ::= i32 @global 4824 /// ::= i32 7 4825 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4826 PerFunctionState *PFS) { 4827 Type *Ty; 4828 LocTy Loc; 4829 if (ParseType(Ty, TypeMsg, Loc)) 4830 return true; 4831 if (Ty->isMetadataTy()) 4832 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4833 4834 Value *V; 4835 if (ParseValue(Ty, V, PFS)) 4836 return true; 4837 4838 MD = ValueAsMetadata::get(V); 4839 return false; 4840 } 4841 4842 /// ParseMetadata 4843 /// ::= i32 %local 4844 /// ::= i32 @global 4845 /// ::= i32 7 4846 /// ::= !42 4847 /// ::= !{...} 4848 /// ::= !"string" 4849 /// ::= !DILocation(...) 4850 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4851 if (Lex.getKind() == lltok::MetadataVar) { 4852 MDNode *N; 4853 if (ParseSpecializedMDNode(N)) 4854 return true; 4855 MD = N; 4856 return false; 4857 } 4858 4859 // ValueAsMetadata: 4860 // <type> <value> 4861 if (Lex.getKind() != lltok::exclaim) 4862 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4863 4864 // '!'. 4865 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4866 Lex.Lex(); 4867 4868 // MDString: 4869 // ::= '!' STRINGCONSTANT 4870 if (Lex.getKind() == lltok::StringConstant) { 4871 MDString *S; 4872 if (ParseMDString(S)) 4873 return true; 4874 MD = S; 4875 return false; 4876 } 4877 4878 // MDNode: 4879 // !{ ... } 4880 // !7 4881 MDNode *N; 4882 if (ParseMDNodeTail(N)) 4883 return true; 4884 MD = N; 4885 return false; 4886 } 4887 4888 //===----------------------------------------------------------------------===// 4889 // Function Parsing. 4890 //===----------------------------------------------------------------------===// 4891 4892 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4893 PerFunctionState *PFS, bool IsCall) { 4894 if (Ty->isFunctionTy()) 4895 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4896 4897 switch (ID.Kind) { 4898 case ValID::t_LocalID: 4899 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4900 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4901 return V == nullptr; 4902 case ValID::t_LocalName: 4903 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4904 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4905 return V == nullptr; 4906 case ValID::t_InlineAsm: { 4907 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4908 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4909 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4910 (ID.UIntVal >> 1) & 1, 4911 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4912 return false; 4913 } 4914 case ValID::t_GlobalName: 4915 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4916 return V == nullptr; 4917 case ValID::t_GlobalID: 4918 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4919 return V == nullptr; 4920 case ValID::t_APSInt: 4921 if (!Ty->isIntegerTy()) 4922 return Error(ID.Loc, "integer constant must have integer type"); 4923 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4924 V = ConstantInt::get(Context, ID.APSIntVal); 4925 return false; 4926 case ValID::t_APFloat: 4927 if (!Ty->isFloatingPointTy() || 4928 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4929 return Error(ID.Loc, "floating point constant invalid for type"); 4930 4931 // The lexer has no type info, so builds all half, float, and double FP 4932 // constants as double. Fix this here. Long double does not need this. 4933 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4934 bool Ignored; 4935 if (Ty->isHalfTy()) 4936 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4937 &Ignored); 4938 else if (Ty->isFloatTy()) 4939 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4940 &Ignored); 4941 } 4942 V = ConstantFP::get(Context, ID.APFloatVal); 4943 4944 if (V->getType() != Ty) 4945 return Error(ID.Loc, "floating point constant does not have type '" + 4946 getTypeString(Ty) + "'"); 4947 4948 return false; 4949 case ValID::t_Null: 4950 if (!Ty->isPointerTy()) 4951 return Error(ID.Loc, "null must be a pointer type"); 4952 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4953 return false; 4954 case ValID::t_Undef: 4955 // FIXME: LabelTy should not be a first-class type. 4956 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4957 return Error(ID.Loc, "invalid type for undef constant"); 4958 V = UndefValue::get(Ty); 4959 return false; 4960 case ValID::t_EmptyArray: 4961 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4962 return Error(ID.Loc, "invalid empty array initializer"); 4963 V = UndefValue::get(Ty); 4964 return false; 4965 case ValID::t_Zero: 4966 // FIXME: LabelTy should not be a first-class type. 4967 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4968 return Error(ID.Loc, "invalid type for null constant"); 4969 V = Constant::getNullValue(Ty); 4970 return false; 4971 case ValID::t_None: 4972 if (!Ty->isTokenTy()) 4973 return Error(ID.Loc, "invalid type for none constant"); 4974 V = Constant::getNullValue(Ty); 4975 return false; 4976 case ValID::t_Constant: 4977 if (ID.ConstantVal->getType() != Ty) 4978 return Error(ID.Loc, "constant expression type mismatch"); 4979 4980 V = ID.ConstantVal; 4981 return false; 4982 case ValID::t_ConstantStruct: 4983 case ValID::t_PackedConstantStruct: 4984 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4985 if (ST->getNumElements() != ID.UIntVal) 4986 return Error(ID.Loc, 4987 "initializer with struct type has wrong # elements"); 4988 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4989 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4990 4991 // Verify that the elements are compatible with the structtype. 4992 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4993 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4994 return Error(ID.Loc, "element " + Twine(i) + 4995 " of struct initializer doesn't match struct element type"); 4996 4997 V = ConstantStruct::get( 4998 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4999 } else 5000 return Error(ID.Loc, "constant expression type mismatch"); 5001 return false; 5002 } 5003 llvm_unreachable("Invalid ValID"); 5004 } 5005 5006 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5007 C = nullptr; 5008 ValID ID; 5009 auto Loc = Lex.getLoc(); 5010 if (ParseValID(ID, /*PFS=*/nullptr)) 5011 return true; 5012 switch (ID.Kind) { 5013 case ValID::t_APSInt: 5014 case ValID::t_APFloat: 5015 case ValID::t_Undef: 5016 case ValID::t_Constant: 5017 case ValID::t_ConstantStruct: 5018 case ValID::t_PackedConstantStruct: { 5019 Value *V; 5020 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5021 return true; 5022 assert(isa<Constant>(V) && "Expected a constant value"); 5023 C = cast<Constant>(V); 5024 return false; 5025 } 5026 case ValID::t_Null: 5027 C = Constant::getNullValue(Ty); 5028 return false; 5029 default: 5030 return Error(Loc, "expected a constant value"); 5031 } 5032 } 5033 5034 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5035 V = nullptr; 5036 ValID ID; 5037 return ParseValID(ID, PFS) || 5038 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5039 } 5040 5041 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5042 Type *Ty = nullptr; 5043 return ParseType(Ty) || 5044 ParseValue(Ty, V, PFS); 5045 } 5046 5047 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5048 PerFunctionState &PFS) { 5049 Value *V; 5050 Loc = Lex.getLoc(); 5051 if (ParseTypeAndValue(V, PFS)) return true; 5052 if (!isa<BasicBlock>(V)) 5053 return Error(Loc, "expected a basic block"); 5054 BB = cast<BasicBlock>(V); 5055 return false; 5056 } 5057 5058 /// FunctionHeader 5059 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5060 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5061 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 5062 /// OptionalPrefix OptionalPrologue OptPersonalityFn 5063 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5064 // Parse the linkage. 5065 LocTy LinkageLoc = Lex.getLoc(); 5066 unsigned Linkage; 5067 unsigned Visibility; 5068 unsigned DLLStorageClass; 5069 bool DSOLocal; 5070 AttrBuilder RetAttrs; 5071 unsigned CC; 5072 bool HasLinkage; 5073 Type *RetType = nullptr; 5074 LocTy RetTypeLoc = Lex.getLoc(); 5075 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5076 DSOLocal) || 5077 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5078 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5079 return true; 5080 5081 // Verify that the linkage is ok. 5082 switch ((GlobalValue::LinkageTypes)Linkage) { 5083 case GlobalValue::ExternalLinkage: 5084 break; // always ok. 5085 case GlobalValue::ExternalWeakLinkage: 5086 if (isDefine) 5087 return Error(LinkageLoc, "invalid linkage for function definition"); 5088 break; 5089 case GlobalValue::PrivateLinkage: 5090 case GlobalValue::InternalLinkage: 5091 case GlobalValue::AvailableExternallyLinkage: 5092 case GlobalValue::LinkOnceAnyLinkage: 5093 case GlobalValue::LinkOnceODRLinkage: 5094 case GlobalValue::WeakAnyLinkage: 5095 case GlobalValue::WeakODRLinkage: 5096 if (!isDefine) 5097 return Error(LinkageLoc, "invalid linkage for function declaration"); 5098 break; 5099 case GlobalValue::AppendingLinkage: 5100 case GlobalValue::CommonLinkage: 5101 return Error(LinkageLoc, "invalid function linkage type"); 5102 } 5103 5104 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5105 return Error(LinkageLoc, 5106 "symbol with local linkage must have default visibility"); 5107 5108 if (!FunctionType::isValidReturnType(RetType)) 5109 return Error(RetTypeLoc, "invalid function return type"); 5110 5111 LocTy NameLoc = Lex.getLoc(); 5112 5113 std::string FunctionName; 5114 if (Lex.getKind() == lltok::GlobalVar) { 5115 FunctionName = Lex.getStrVal(); 5116 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5117 unsigned NameID = Lex.getUIntVal(); 5118 5119 if (NameID != NumberedVals.size()) 5120 return TokError("function expected to be numbered '%" + 5121 Twine(NumberedVals.size()) + "'"); 5122 } else { 5123 return TokError("expected function name"); 5124 } 5125 5126 Lex.Lex(); 5127 5128 if (Lex.getKind() != lltok::lparen) 5129 return TokError("expected '(' in function argument list"); 5130 5131 SmallVector<ArgInfo, 8> ArgList; 5132 bool isVarArg; 5133 AttrBuilder FuncAttrs; 5134 std::vector<unsigned> FwdRefAttrGrps; 5135 LocTy BuiltinLoc; 5136 std::string Section; 5137 unsigned Alignment; 5138 std::string GC; 5139 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5140 Constant *Prefix = nullptr; 5141 Constant *Prologue = nullptr; 5142 Constant *PersonalityFn = nullptr; 5143 Comdat *C; 5144 5145 if (ParseArgumentList(ArgList, isVarArg) || 5146 ParseOptionalUnnamedAddr(UnnamedAddr) || 5147 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5148 BuiltinLoc) || 5149 (EatIfPresent(lltok::kw_section) && 5150 ParseStringConstant(Section)) || 5151 parseOptionalComdat(FunctionName, C) || 5152 ParseOptionalAlignment(Alignment) || 5153 (EatIfPresent(lltok::kw_gc) && 5154 ParseStringConstant(GC)) || 5155 (EatIfPresent(lltok::kw_prefix) && 5156 ParseGlobalTypeAndValue(Prefix)) || 5157 (EatIfPresent(lltok::kw_prologue) && 5158 ParseGlobalTypeAndValue(Prologue)) || 5159 (EatIfPresent(lltok::kw_personality) && 5160 ParseGlobalTypeAndValue(PersonalityFn))) 5161 return true; 5162 5163 if (FuncAttrs.contains(Attribute::Builtin)) 5164 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5165 5166 // If the alignment was parsed as an attribute, move to the alignment field. 5167 if (FuncAttrs.hasAlignmentAttr()) { 5168 Alignment = FuncAttrs.getAlignment(); 5169 FuncAttrs.removeAttribute(Attribute::Alignment); 5170 } 5171 5172 // Okay, if we got here, the function is syntactically valid. Convert types 5173 // and do semantic checks. 5174 std::vector<Type*> ParamTypeList; 5175 SmallVector<AttributeSet, 8> Attrs; 5176 5177 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5178 ParamTypeList.push_back(ArgList[i].Ty); 5179 Attrs.push_back(ArgList[i].Attrs); 5180 } 5181 5182 AttributeList PAL = 5183 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5184 AttributeSet::get(Context, RetAttrs), Attrs); 5185 5186 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5187 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5188 5189 FunctionType *FT = 5190 FunctionType::get(RetType, ParamTypeList, isVarArg); 5191 PointerType *PFT = PointerType::getUnqual(FT); 5192 5193 Fn = nullptr; 5194 if (!FunctionName.empty()) { 5195 // If this was a definition of a forward reference, remove the definition 5196 // from the forward reference table and fill in the forward ref. 5197 auto FRVI = ForwardRefVals.find(FunctionName); 5198 if (FRVI != ForwardRefVals.end()) { 5199 Fn = M->getFunction(FunctionName); 5200 if (!Fn) 5201 return Error(FRVI->second.second, "invalid forward reference to " 5202 "function as global value!"); 5203 if (Fn->getType() != PFT) 5204 return Error(FRVI->second.second, "invalid forward reference to " 5205 "function '" + FunctionName + "' with wrong type!"); 5206 5207 ForwardRefVals.erase(FRVI); 5208 } else if ((Fn = M->getFunction(FunctionName))) { 5209 // Reject redefinitions. 5210 return Error(NameLoc, "invalid redefinition of function '" + 5211 FunctionName + "'"); 5212 } else if (M->getNamedValue(FunctionName)) { 5213 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5214 } 5215 5216 } else { 5217 // If this is a definition of a forward referenced function, make sure the 5218 // types agree. 5219 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5220 if (I != ForwardRefValIDs.end()) { 5221 Fn = cast<Function>(I->second.first); 5222 if (Fn->getType() != PFT) 5223 return Error(NameLoc, "type of definition and forward reference of '@" + 5224 Twine(NumberedVals.size()) + "' disagree"); 5225 ForwardRefValIDs.erase(I); 5226 } 5227 } 5228 5229 if (!Fn) 5230 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5231 else // Move the forward-reference to the correct spot in the module. 5232 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5233 5234 if (FunctionName.empty()) 5235 NumberedVals.push_back(Fn); 5236 5237 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5238 maybeSetDSOLocal(DSOLocal, *Fn); 5239 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5240 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5241 Fn->setCallingConv(CC); 5242 Fn->setAttributes(PAL); 5243 Fn->setUnnamedAddr(UnnamedAddr); 5244 Fn->setAlignment(Alignment); 5245 Fn->setSection(Section); 5246 Fn->setComdat(C); 5247 Fn->setPersonalityFn(PersonalityFn); 5248 if (!GC.empty()) Fn->setGC(GC); 5249 Fn->setPrefixData(Prefix); 5250 Fn->setPrologueData(Prologue); 5251 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5252 5253 // Add all of the arguments we parsed to the function. 5254 Function::arg_iterator ArgIt = Fn->arg_begin(); 5255 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5256 // If the argument has a name, insert it into the argument symbol table. 5257 if (ArgList[i].Name.empty()) continue; 5258 5259 // Set the name, if it conflicted, it will be auto-renamed. 5260 ArgIt->setName(ArgList[i].Name); 5261 5262 if (ArgIt->getName() != ArgList[i].Name) 5263 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5264 ArgList[i].Name + "'"); 5265 } 5266 5267 if (isDefine) 5268 return false; 5269 5270 // Check the declaration has no block address forward references. 5271 ValID ID; 5272 if (FunctionName.empty()) { 5273 ID.Kind = ValID::t_GlobalID; 5274 ID.UIntVal = NumberedVals.size() - 1; 5275 } else { 5276 ID.Kind = ValID::t_GlobalName; 5277 ID.StrVal = FunctionName; 5278 } 5279 auto Blocks = ForwardRefBlockAddresses.find(ID); 5280 if (Blocks != ForwardRefBlockAddresses.end()) 5281 return Error(Blocks->first.Loc, 5282 "cannot take blockaddress inside a declaration"); 5283 return false; 5284 } 5285 5286 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5287 ValID ID; 5288 if (FunctionNumber == -1) { 5289 ID.Kind = ValID::t_GlobalName; 5290 ID.StrVal = F.getName(); 5291 } else { 5292 ID.Kind = ValID::t_GlobalID; 5293 ID.UIntVal = FunctionNumber; 5294 } 5295 5296 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5297 if (Blocks == P.ForwardRefBlockAddresses.end()) 5298 return false; 5299 5300 for (const auto &I : Blocks->second) { 5301 const ValID &BBID = I.first; 5302 GlobalValue *GV = I.second; 5303 5304 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5305 "Expected local id or name"); 5306 BasicBlock *BB; 5307 if (BBID.Kind == ValID::t_LocalName) 5308 BB = GetBB(BBID.StrVal, BBID.Loc); 5309 else 5310 BB = GetBB(BBID.UIntVal, BBID.Loc); 5311 if (!BB) 5312 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5313 5314 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5315 GV->eraseFromParent(); 5316 } 5317 5318 P.ForwardRefBlockAddresses.erase(Blocks); 5319 return false; 5320 } 5321 5322 /// ParseFunctionBody 5323 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5324 bool LLParser::ParseFunctionBody(Function &Fn) { 5325 if (Lex.getKind() != lltok::lbrace) 5326 return TokError("expected '{' in function body"); 5327 Lex.Lex(); // eat the {. 5328 5329 int FunctionNumber = -1; 5330 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5331 5332 PerFunctionState PFS(*this, Fn, FunctionNumber); 5333 5334 // Resolve block addresses and allow basic blocks to be forward-declared 5335 // within this function. 5336 if (PFS.resolveForwardRefBlockAddresses()) 5337 return true; 5338 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5339 5340 // We need at least one basic block. 5341 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5342 return TokError("function body requires at least one basic block"); 5343 5344 while (Lex.getKind() != lltok::rbrace && 5345 Lex.getKind() != lltok::kw_uselistorder) 5346 if (ParseBasicBlock(PFS)) return true; 5347 5348 while (Lex.getKind() != lltok::rbrace) 5349 if (ParseUseListOrder(&PFS)) 5350 return true; 5351 5352 // Eat the }. 5353 Lex.Lex(); 5354 5355 // Verify function is ok. 5356 return PFS.FinishFunction(); 5357 } 5358 5359 /// ParseBasicBlock 5360 /// ::= LabelStr? Instruction* 5361 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5362 // If this basic block starts out with a name, remember it. 5363 std::string Name; 5364 LocTy NameLoc = Lex.getLoc(); 5365 if (Lex.getKind() == lltok::LabelStr) { 5366 Name = Lex.getStrVal(); 5367 Lex.Lex(); 5368 } 5369 5370 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5371 if (!BB) 5372 return Error(NameLoc, 5373 "unable to create block named '" + Name + "'"); 5374 5375 std::string NameStr; 5376 5377 // Parse the instructions in this block until we get a terminator. 5378 Instruction *Inst; 5379 do { 5380 // This instruction may have three possibilities for a name: a) none 5381 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5382 LocTy NameLoc = Lex.getLoc(); 5383 int NameID = -1; 5384 NameStr = ""; 5385 5386 if (Lex.getKind() == lltok::LocalVarID) { 5387 NameID = Lex.getUIntVal(); 5388 Lex.Lex(); 5389 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5390 return true; 5391 } else if (Lex.getKind() == lltok::LocalVar) { 5392 NameStr = Lex.getStrVal(); 5393 Lex.Lex(); 5394 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5395 return true; 5396 } 5397 5398 switch (ParseInstruction(Inst, BB, PFS)) { 5399 default: llvm_unreachable("Unknown ParseInstruction result!"); 5400 case InstError: return true; 5401 case InstNormal: 5402 BB->getInstList().push_back(Inst); 5403 5404 // With a normal result, we check to see if the instruction is followed by 5405 // a comma and metadata. 5406 if (EatIfPresent(lltok::comma)) 5407 if (ParseInstructionMetadata(*Inst)) 5408 return true; 5409 break; 5410 case InstExtraComma: 5411 BB->getInstList().push_back(Inst); 5412 5413 // If the instruction parser ate an extra comma at the end of it, it 5414 // *must* be followed by metadata. 5415 if (ParseInstructionMetadata(*Inst)) 5416 return true; 5417 break; 5418 } 5419 5420 // Set the name on the instruction. 5421 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5422 } while (!isa<TerminatorInst>(Inst)); 5423 5424 return false; 5425 } 5426 5427 //===----------------------------------------------------------------------===// 5428 // Instruction Parsing. 5429 //===----------------------------------------------------------------------===// 5430 5431 /// ParseInstruction - Parse one of the many different instructions. 5432 /// 5433 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5434 PerFunctionState &PFS) { 5435 lltok::Kind Token = Lex.getKind(); 5436 if (Token == lltok::Eof) 5437 return TokError("found end of file when expecting more instructions"); 5438 LocTy Loc = Lex.getLoc(); 5439 unsigned KeywordVal = Lex.getUIntVal(); 5440 Lex.Lex(); // Eat the keyword. 5441 5442 switch (Token) { 5443 default: return Error(Loc, "expected instruction opcode"); 5444 // Terminator Instructions. 5445 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5446 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5447 case lltok::kw_br: return ParseBr(Inst, PFS); 5448 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5449 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5450 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5451 case lltok::kw_resume: return ParseResume(Inst, PFS); 5452 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5453 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5454 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5455 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5456 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5457 // Binary Operators. 5458 case lltok::kw_add: 5459 case lltok::kw_sub: 5460 case lltok::kw_mul: 5461 case lltok::kw_shl: { 5462 bool NUW = EatIfPresent(lltok::kw_nuw); 5463 bool NSW = EatIfPresent(lltok::kw_nsw); 5464 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5465 5466 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5467 5468 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5469 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5470 return false; 5471 } 5472 case lltok::kw_fadd: 5473 case lltok::kw_fsub: 5474 case lltok::kw_fmul: 5475 case lltok::kw_fdiv: 5476 case lltok::kw_frem: { 5477 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5478 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5479 if (Res != 0) 5480 return Res; 5481 if (FMF.any()) 5482 Inst->setFastMathFlags(FMF); 5483 return 0; 5484 } 5485 5486 case lltok::kw_sdiv: 5487 case lltok::kw_udiv: 5488 case lltok::kw_lshr: 5489 case lltok::kw_ashr: { 5490 bool Exact = EatIfPresent(lltok::kw_exact); 5491 5492 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5493 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5494 return false; 5495 } 5496 5497 case lltok::kw_urem: 5498 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5499 case lltok::kw_and: 5500 case lltok::kw_or: 5501 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5502 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5503 case lltok::kw_fcmp: { 5504 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5505 int Res = ParseCompare(Inst, PFS, KeywordVal); 5506 if (Res != 0) 5507 return Res; 5508 if (FMF.any()) 5509 Inst->setFastMathFlags(FMF); 5510 return 0; 5511 } 5512 5513 // Casts. 5514 case lltok::kw_trunc: 5515 case lltok::kw_zext: 5516 case lltok::kw_sext: 5517 case lltok::kw_fptrunc: 5518 case lltok::kw_fpext: 5519 case lltok::kw_bitcast: 5520 case lltok::kw_addrspacecast: 5521 case lltok::kw_uitofp: 5522 case lltok::kw_sitofp: 5523 case lltok::kw_fptoui: 5524 case lltok::kw_fptosi: 5525 case lltok::kw_inttoptr: 5526 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5527 // Other. 5528 case lltok::kw_select: return ParseSelect(Inst, PFS); 5529 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5530 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5531 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5532 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5533 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5534 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5535 // Call. 5536 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5537 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5538 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5539 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5540 // Memory. 5541 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5542 case lltok::kw_load: return ParseLoad(Inst, PFS); 5543 case lltok::kw_store: return ParseStore(Inst, PFS); 5544 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5545 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5546 case lltok::kw_fence: return ParseFence(Inst, PFS); 5547 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5548 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5549 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5550 } 5551 } 5552 5553 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5554 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5555 if (Opc == Instruction::FCmp) { 5556 switch (Lex.getKind()) { 5557 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5558 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5559 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5560 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5561 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5562 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5563 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5564 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5565 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5566 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5567 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5568 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5569 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5570 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5571 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5572 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5573 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5574 } 5575 } else { 5576 switch (Lex.getKind()) { 5577 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5578 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5579 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5580 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5581 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5582 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5583 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5584 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5585 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5586 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5587 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5588 } 5589 } 5590 Lex.Lex(); 5591 return false; 5592 } 5593 5594 //===----------------------------------------------------------------------===// 5595 // Terminator Instructions. 5596 //===----------------------------------------------------------------------===// 5597 5598 /// ParseRet - Parse a return instruction. 5599 /// ::= 'ret' void (',' !dbg, !1)* 5600 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5601 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5602 PerFunctionState &PFS) { 5603 SMLoc TypeLoc = Lex.getLoc(); 5604 Type *Ty = nullptr; 5605 if (ParseType(Ty, true /*void allowed*/)) return true; 5606 5607 Type *ResType = PFS.getFunction().getReturnType(); 5608 5609 if (Ty->isVoidTy()) { 5610 if (!ResType->isVoidTy()) 5611 return Error(TypeLoc, "value doesn't match function result type '" + 5612 getTypeString(ResType) + "'"); 5613 5614 Inst = ReturnInst::Create(Context); 5615 return false; 5616 } 5617 5618 Value *RV; 5619 if (ParseValue(Ty, RV, PFS)) return true; 5620 5621 if (ResType != RV->getType()) 5622 return Error(TypeLoc, "value doesn't match function result type '" + 5623 getTypeString(ResType) + "'"); 5624 5625 Inst = ReturnInst::Create(Context, RV); 5626 return false; 5627 } 5628 5629 /// ParseBr 5630 /// ::= 'br' TypeAndValue 5631 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5632 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5633 LocTy Loc, Loc2; 5634 Value *Op0; 5635 BasicBlock *Op1, *Op2; 5636 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5637 5638 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5639 Inst = BranchInst::Create(BB); 5640 return false; 5641 } 5642 5643 if (Op0->getType() != Type::getInt1Ty(Context)) 5644 return Error(Loc, "branch condition must have 'i1' type"); 5645 5646 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5647 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5648 ParseToken(lltok::comma, "expected ',' after true destination") || 5649 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5650 return true; 5651 5652 Inst = BranchInst::Create(Op1, Op2, Op0); 5653 return false; 5654 } 5655 5656 /// ParseSwitch 5657 /// Instruction 5658 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5659 /// JumpTable 5660 /// ::= (TypeAndValue ',' TypeAndValue)* 5661 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5662 LocTy CondLoc, BBLoc; 5663 Value *Cond; 5664 BasicBlock *DefaultBB; 5665 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5666 ParseToken(lltok::comma, "expected ',' after switch condition") || 5667 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5668 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5669 return true; 5670 5671 if (!Cond->getType()->isIntegerTy()) 5672 return Error(CondLoc, "switch condition must have integer type"); 5673 5674 // Parse the jump table pairs. 5675 SmallPtrSet<Value*, 32> SeenCases; 5676 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5677 while (Lex.getKind() != lltok::rsquare) { 5678 Value *Constant; 5679 BasicBlock *DestBB; 5680 5681 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5682 ParseToken(lltok::comma, "expected ',' after case value") || 5683 ParseTypeAndBasicBlock(DestBB, PFS)) 5684 return true; 5685 5686 if (!SeenCases.insert(Constant).second) 5687 return Error(CondLoc, "duplicate case value in switch"); 5688 if (!isa<ConstantInt>(Constant)) 5689 return Error(CondLoc, "case value is not a constant integer"); 5690 5691 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5692 } 5693 5694 Lex.Lex(); // Eat the ']'. 5695 5696 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5697 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5698 SI->addCase(Table[i].first, Table[i].second); 5699 Inst = SI; 5700 return false; 5701 } 5702 5703 /// ParseIndirectBr 5704 /// Instruction 5705 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5706 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5707 LocTy AddrLoc; 5708 Value *Address; 5709 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5710 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5711 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5712 return true; 5713 5714 if (!Address->getType()->isPointerTy()) 5715 return Error(AddrLoc, "indirectbr address must have pointer type"); 5716 5717 // Parse the destination list. 5718 SmallVector<BasicBlock*, 16> DestList; 5719 5720 if (Lex.getKind() != lltok::rsquare) { 5721 BasicBlock *DestBB; 5722 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5723 return true; 5724 DestList.push_back(DestBB); 5725 5726 while (EatIfPresent(lltok::comma)) { 5727 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5728 return true; 5729 DestList.push_back(DestBB); 5730 } 5731 } 5732 5733 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5734 return true; 5735 5736 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5737 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5738 IBI->addDestination(DestList[i]); 5739 Inst = IBI; 5740 return false; 5741 } 5742 5743 /// ParseInvoke 5744 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5745 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5746 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5747 LocTy CallLoc = Lex.getLoc(); 5748 AttrBuilder RetAttrs, FnAttrs; 5749 std::vector<unsigned> FwdRefAttrGrps; 5750 LocTy NoBuiltinLoc; 5751 unsigned CC; 5752 Type *RetType = nullptr; 5753 LocTy RetTypeLoc; 5754 ValID CalleeID; 5755 SmallVector<ParamInfo, 16> ArgList; 5756 SmallVector<OperandBundleDef, 2> BundleList; 5757 5758 BasicBlock *NormalBB, *UnwindBB; 5759 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5760 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5761 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5762 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5763 NoBuiltinLoc) || 5764 ParseOptionalOperandBundles(BundleList, PFS) || 5765 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5766 ParseTypeAndBasicBlock(NormalBB, PFS) || 5767 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5768 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5769 return true; 5770 5771 // If RetType is a non-function pointer type, then this is the short syntax 5772 // for the call, which means that RetType is just the return type. Infer the 5773 // rest of the function argument types from the arguments that are present. 5774 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5775 if (!Ty) { 5776 // Pull out the types of all of the arguments... 5777 std::vector<Type*> ParamTypes; 5778 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5779 ParamTypes.push_back(ArgList[i].V->getType()); 5780 5781 if (!FunctionType::isValidReturnType(RetType)) 5782 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5783 5784 Ty = FunctionType::get(RetType, ParamTypes, false); 5785 } 5786 5787 CalleeID.FTy = Ty; 5788 5789 // Look up the callee. 5790 Value *Callee; 5791 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 5792 /*IsCall=*/true)) 5793 return true; 5794 5795 // Set up the Attribute for the function. 5796 SmallVector<Value *, 8> Args; 5797 SmallVector<AttributeSet, 8> ArgAttrs; 5798 5799 // Loop through FunctionType's arguments and ensure they are specified 5800 // correctly. Also, gather any parameter attributes. 5801 FunctionType::param_iterator I = Ty->param_begin(); 5802 FunctionType::param_iterator E = Ty->param_end(); 5803 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5804 Type *ExpectedTy = nullptr; 5805 if (I != E) { 5806 ExpectedTy = *I++; 5807 } else if (!Ty->isVarArg()) { 5808 return Error(ArgList[i].Loc, "too many arguments specified"); 5809 } 5810 5811 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5812 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5813 getTypeString(ExpectedTy) + "'"); 5814 Args.push_back(ArgList[i].V); 5815 ArgAttrs.push_back(ArgList[i].Attrs); 5816 } 5817 5818 if (I != E) 5819 return Error(CallLoc, "not enough parameters specified for call"); 5820 5821 if (FnAttrs.hasAlignmentAttr()) 5822 return Error(CallLoc, "invoke instructions may not have an alignment"); 5823 5824 // Finish off the Attribute and check them 5825 AttributeList PAL = 5826 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5827 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5828 5829 InvokeInst *II = 5830 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5831 II->setCallingConv(CC); 5832 II->setAttributes(PAL); 5833 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5834 Inst = II; 5835 return false; 5836 } 5837 5838 /// ParseResume 5839 /// ::= 'resume' TypeAndValue 5840 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5841 Value *Exn; LocTy ExnLoc; 5842 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5843 return true; 5844 5845 ResumeInst *RI = ResumeInst::Create(Exn); 5846 Inst = RI; 5847 return false; 5848 } 5849 5850 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5851 PerFunctionState &PFS) { 5852 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5853 return true; 5854 5855 while (Lex.getKind() != lltok::rsquare) { 5856 // If this isn't the first argument, we need a comma. 5857 if (!Args.empty() && 5858 ParseToken(lltok::comma, "expected ',' in argument list")) 5859 return true; 5860 5861 // Parse the argument. 5862 LocTy ArgLoc; 5863 Type *ArgTy = nullptr; 5864 if (ParseType(ArgTy, ArgLoc)) 5865 return true; 5866 5867 Value *V; 5868 if (ArgTy->isMetadataTy()) { 5869 if (ParseMetadataAsValue(V, PFS)) 5870 return true; 5871 } else { 5872 if (ParseValue(ArgTy, V, PFS)) 5873 return true; 5874 } 5875 Args.push_back(V); 5876 } 5877 5878 Lex.Lex(); // Lex the ']'. 5879 return false; 5880 } 5881 5882 /// ParseCleanupRet 5883 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5884 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5885 Value *CleanupPad = nullptr; 5886 5887 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5888 return true; 5889 5890 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5891 return true; 5892 5893 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5894 return true; 5895 5896 BasicBlock *UnwindBB = nullptr; 5897 if (Lex.getKind() == lltok::kw_to) { 5898 Lex.Lex(); 5899 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5900 return true; 5901 } else { 5902 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5903 return true; 5904 } 5905 } 5906 5907 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5908 return false; 5909 } 5910 5911 /// ParseCatchRet 5912 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5913 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5914 Value *CatchPad = nullptr; 5915 5916 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5917 return true; 5918 5919 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5920 return true; 5921 5922 BasicBlock *BB; 5923 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5924 ParseTypeAndBasicBlock(BB, PFS)) 5925 return true; 5926 5927 Inst = CatchReturnInst::Create(CatchPad, BB); 5928 return false; 5929 } 5930 5931 /// ParseCatchSwitch 5932 /// ::= 'catchswitch' within Parent 5933 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5934 Value *ParentPad; 5935 5936 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5937 return true; 5938 5939 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5940 Lex.getKind() != lltok::LocalVarID) 5941 return TokError("expected scope value for catchswitch"); 5942 5943 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5944 return true; 5945 5946 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5947 return true; 5948 5949 SmallVector<BasicBlock *, 32> Table; 5950 do { 5951 BasicBlock *DestBB; 5952 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5953 return true; 5954 Table.push_back(DestBB); 5955 } while (EatIfPresent(lltok::comma)); 5956 5957 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5958 return true; 5959 5960 if (ParseToken(lltok::kw_unwind, 5961 "expected 'unwind' after catchswitch scope")) 5962 return true; 5963 5964 BasicBlock *UnwindBB = nullptr; 5965 if (EatIfPresent(lltok::kw_to)) { 5966 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5967 return true; 5968 } else { 5969 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5970 return true; 5971 } 5972 5973 auto *CatchSwitch = 5974 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5975 for (BasicBlock *DestBB : Table) 5976 CatchSwitch->addHandler(DestBB); 5977 Inst = CatchSwitch; 5978 return false; 5979 } 5980 5981 /// ParseCatchPad 5982 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5983 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5984 Value *CatchSwitch = nullptr; 5985 5986 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5987 return true; 5988 5989 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5990 return TokError("expected scope value for catchpad"); 5991 5992 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5993 return true; 5994 5995 SmallVector<Value *, 8> Args; 5996 if (ParseExceptionArgs(Args, PFS)) 5997 return true; 5998 5999 Inst = CatchPadInst::Create(CatchSwitch, Args); 6000 return false; 6001 } 6002 6003 /// ParseCleanupPad 6004 /// ::= 'cleanuppad' within Parent ParamList 6005 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6006 Value *ParentPad = nullptr; 6007 6008 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6009 return true; 6010 6011 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6012 Lex.getKind() != lltok::LocalVarID) 6013 return TokError("expected scope value for cleanuppad"); 6014 6015 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6016 return true; 6017 6018 SmallVector<Value *, 8> Args; 6019 if (ParseExceptionArgs(Args, PFS)) 6020 return true; 6021 6022 Inst = CleanupPadInst::Create(ParentPad, Args); 6023 return false; 6024 } 6025 6026 //===----------------------------------------------------------------------===// 6027 // Binary Operators. 6028 //===----------------------------------------------------------------------===// 6029 6030 /// ParseArithmetic 6031 /// ::= ArithmeticOps TypeAndValue ',' Value 6032 /// 6033 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6034 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6035 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6036 unsigned Opc, unsigned OperandType) { 6037 LocTy Loc; Value *LHS, *RHS; 6038 if (ParseTypeAndValue(LHS, Loc, PFS) || 6039 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6040 ParseValue(LHS->getType(), RHS, PFS)) 6041 return true; 6042 6043 bool Valid; 6044 switch (OperandType) { 6045 default: llvm_unreachable("Unknown operand type!"); 6046 case 0: // int or FP. 6047 Valid = LHS->getType()->isIntOrIntVectorTy() || 6048 LHS->getType()->isFPOrFPVectorTy(); 6049 break; 6050 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6051 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6052 } 6053 6054 if (!Valid) 6055 return Error(Loc, "invalid operand type for instruction"); 6056 6057 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6058 return false; 6059 } 6060 6061 /// ParseLogical 6062 /// ::= ArithmeticOps TypeAndValue ',' Value { 6063 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6064 unsigned Opc) { 6065 LocTy Loc; Value *LHS, *RHS; 6066 if (ParseTypeAndValue(LHS, Loc, PFS) || 6067 ParseToken(lltok::comma, "expected ',' in logical operation") || 6068 ParseValue(LHS->getType(), RHS, PFS)) 6069 return true; 6070 6071 if (!LHS->getType()->isIntOrIntVectorTy()) 6072 return Error(Loc,"instruction requires integer or integer vector operands"); 6073 6074 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6075 return false; 6076 } 6077 6078 /// ParseCompare 6079 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6080 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6081 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6082 unsigned Opc) { 6083 // Parse the integer/fp comparison predicate. 6084 LocTy Loc; 6085 unsigned Pred; 6086 Value *LHS, *RHS; 6087 if (ParseCmpPredicate(Pred, Opc) || 6088 ParseTypeAndValue(LHS, Loc, PFS) || 6089 ParseToken(lltok::comma, "expected ',' after compare value") || 6090 ParseValue(LHS->getType(), RHS, PFS)) 6091 return true; 6092 6093 if (Opc == Instruction::FCmp) { 6094 if (!LHS->getType()->isFPOrFPVectorTy()) 6095 return Error(Loc, "fcmp requires floating point operands"); 6096 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6097 } else { 6098 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6099 if (!LHS->getType()->isIntOrIntVectorTy() && 6100 !LHS->getType()->isPtrOrPtrVectorTy()) 6101 return Error(Loc, "icmp requires integer operands"); 6102 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6103 } 6104 return false; 6105 } 6106 6107 //===----------------------------------------------------------------------===// 6108 // Other Instructions. 6109 //===----------------------------------------------------------------------===// 6110 6111 6112 /// ParseCast 6113 /// ::= CastOpc TypeAndValue 'to' Type 6114 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6115 unsigned Opc) { 6116 LocTy Loc; 6117 Value *Op; 6118 Type *DestTy = nullptr; 6119 if (ParseTypeAndValue(Op, Loc, PFS) || 6120 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6121 ParseType(DestTy)) 6122 return true; 6123 6124 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6125 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6126 return Error(Loc, "invalid cast opcode for cast from '" + 6127 getTypeString(Op->getType()) + "' to '" + 6128 getTypeString(DestTy) + "'"); 6129 } 6130 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6131 return false; 6132 } 6133 6134 /// ParseSelect 6135 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6136 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6137 LocTy Loc; 6138 Value *Op0, *Op1, *Op2; 6139 if (ParseTypeAndValue(Op0, Loc, PFS) || 6140 ParseToken(lltok::comma, "expected ',' after select condition") || 6141 ParseTypeAndValue(Op1, PFS) || 6142 ParseToken(lltok::comma, "expected ',' after select value") || 6143 ParseTypeAndValue(Op2, PFS)) 6144 return true; 6145 6146 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6147 return Error(Loc, Reason); 6148 6149 Inst = SelectInst::Create(Op0, Op1, Op2); 6150 return false; 6151 } 6152 6153 /// ParseVA_Arg 6154 /// ::= 'va_arg' TypeAndValue ',' Type 6155 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6156 Value *Op; 6157 Type *EltTy = nullptr; 6158 LocTy TypeLoc; 6159 if (ParseTypeAndValue(Op, PFS) || 6160 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6161 ParseType(EltTy, TypeLoc)) 6162 return true; 6163 6164 if (!EltTy->isFirstClassType()) 6165 return Error(TypeLoc, "va_arg requires operand with first class type"); 6166 6167 Inst = new VAArgInst(Op, EltTy); 6168 return false; 6169 } 6170 6171 /// ParseExtractElement 6172 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6173 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6174 LocTy Loc; 6175 Value *Op0, *Op1; 6176 if (ParseTypeAndValue(Op0, Loc, PFS) || 6177 ParseToken(lltok::comma, "expected ',' after extract value") || 6178 ParseTypeAndValue(Op1, PFS)) 6179 return true; 6180 6181 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6182 return Error(Loc, "invalid extractelement operands"); 6183 6184 Inst = ExtractElementInst::Create(Op0, Op1); 6185 return false; 6186 } 6187 6188 /// ParseInsertElement 6189 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6190 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6191 LocTy Loc; 6192 Value *Op0, *Op1, *Op2; 6193 if (ParseTypeAndValue(Op0, Loc, PFS) || 6194 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6195 ParseTypeAndValue(Op1, PFS) || 6196 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6197 ParseTypeAndValue(Op2, PFS)) 6198 return true; 6199 6200 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6201 return Error(Loc, "invalid insertelement operands"); 6202 6203 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6204 return false; 6205 } 6206 6207 /// ParseShuffleVector 6208 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6209 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6210 LocTy Loc; 6211 Value *Op0, *Op1, *Op2; 6212 if (ParseTypeAndValue(Op0, Loc, PFS) || 6213 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6214 ParseTypeAndValue(Op1, PFS) || 6215 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6216 ParseTypeAndValue(Op2, PFS)) 6217 return true; 6218 6219 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6220 return Error(Loc, "invalid shufflevector operands"); 6221 6222 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6223 return false; 6224 } 6225 6226 /// ParsePHI 6227 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6228 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6229 Type *Ty = nullptr; LocTy TypeLoc; 6230 Value *Op0, *Op1; 6231 6232 if (ParseType(Ty, TypeLoc) || 6233 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6234 ParseValue(Ty, Op0, PFS) || 6235 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6236 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6237 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6238 return true; 6239 6240 bool AteExtraComma = false; 6241 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6242 6243 while (true) { 6244 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6245 6246 if (!EatIfPresent(lltok::comma)) 6247 break; 6248 6249 if (Lex.getKind() == lltok::MetadataVar) { 6250 AteExtraComma = true; 6251 break; 6252 } 6253 6254 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6255 ParseValue(Ty, Op0, PFS) || 6256 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6257 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6258 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6259 return true; 6260 } 6261 6262 if (!Ty->isFirstClassType()) 6263 return Error(TypeLoc, "phi node must have first class type"); 6264 6265 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6266 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6267 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6268 Inst = PN; 6269 return AteExtraComma ? InstExtraComma : InstNormal; 6270 } 6271 6272 /// ParseLandingPad 6273 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6274 /// Clause 6275 /// ::= 'catch' TypeAndValue 6276 /// ::= 'filter' 6277 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6278 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6279 Type *Ty = nullptr; LocTy TyLoc; 6280 6281 if (ParseType(Ty, TyLoc)) 6282 return true; 6283 6284 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6285 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6286 6287 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6288 LandingPadInst::ClauseType CT; 6289 if (EatIfPresent(lltok::kw_catch)) 6290 CT = LandingPadInst::Catch; 6291 else if (EatIfPresent(lltok::kw_filter)) 6292 CT = LandingPadInst::Filter; 6293 else 6294 return TokError("expected 'catch' or 'filter' clause type"); 6295 6296 Value *V; 6297 LocTy VLoc; 6298 if (ParseTypeAndValue(V, VLoc, PFS)) 6299 return true; 6300 6301 // A 'catch' type expects a non-array constant. A filter clause expects an 6302 // array constant. 6303 if (CT == LandingPadInst::Catch) { 6304 if (isa<ArrayType>(V->getType())) 6305 Error(VLoc, "'catch' clause has an invalid type"); 6306 } else { 6307 if (!isa<ArrayType>(V->getType())) 6308 Error(VLoc, "'filter' clause has an invalid type"); 6309 } 6310 6311 Constant *CV = dyn_cast<Constant>(V); 6312 if (!CV) 6313 return Error(VLoc, "clause argument must be a constant"); 6314 LP->addClause(CV); 6315 } 6316 6317 Inst = LP.release(); 6318 return false; 6319 } 6320 6321 /// ParseCall 6322 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6323 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6324 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6325 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6326 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6327 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6328 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6329 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6330 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6331 CallInst::TailCallKind TCK) { 6332 AttrBuilder RetAttrs, FnAttrs; 6333 std::vector<unsigned> FwdRefAttrGrps; 6334 LocTy BuiltinLoc; 6335 unsigned CC; 6336 Type *RetType = nullptr; 6337 LocTy RetTypeLoc; 6338 ValID CalleeID; 6339 SmallVector<ParamInfo, 16> ArgList; 6340 SmallVector<OperandBundleDef, 2> BundleList; 6341 LocTy CallLoc = Lex.getLoc(); 6342 6343 if (TCK != CallInst::TCK_None && 6344 ParseToken(lltok::kw_call, 6345 "expected 'tail call', 'musttail call', or 'notail call'")) 6346 return true; 6347 6348 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6349 6350 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6351 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6352 ParseValID(CalleeID) || 6353 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6354 PFS.getFunction().isVarArg()) || 6355 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6356 ParseOptionalOperandBundles(BundleList, PFS)) 6357 return true; 6358 6359 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6360 return Error(CallLoc, "fast-math-flags specified for call without " 6361 "floating-point scalar or vector return type"); 6362 6363 // If RetType is a non-function pointer type, then this is the short syntax 6364 // for the call, which means that RetType is just the return type. Infer the 6365 // rest of the function argument types from the arguments that are present. 6366 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6367 if (!Ty) { 6368 // Pull out the types of all of the arguments... 6369 std::vector<Type*> ParamTypes; 6370 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6371 ParamTypes.push_back(ArgList[i].V->getType()); 6372 6373 if (!FunctionType::isValidReturnType(RetType)) 6374 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6375 6376 Ty = FunctionType::get(RetType, ParamTypes, false); 6377 } 6378 6379 CalleeID.FTy = Ty; 6380 6381 // Look up the callee. 6382 Value *Callee; 6383 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6384 /*IsCall=*/true)) 6385 return true; 6386 6387 // Set up the Attribute for the function. 6388 SmallVector<AttributeSet, 8> Attrs; 6389 6390 SmallVector<Value*, 8> Args; 6391 6392 // Loop through FunctionType's arguments and ensure they are specified 6393 // correctly. Also, gather any parameter attributes. 6394 FunctionType::param_iterator I = Ty->param_begin(); 6395 FunctionType::param_iterator E = Ty->param_end(); 6396 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6397 Type *ExpectedTy = nullptr; 6398 if (I != E) { 6399 ExpectedTy = *I++; 6400 } else if (!Ty->isVarArg()) { 6401 return Error(ArgList[i].Loc, "too many arguments specified"); 6402 } 6403 6404 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6405 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6406 getTypeString(ExpectedTy) + "'"); 6407 Args.push_back(ArgList[i].V); 6408 Attrs.push_back(ArgList[i].Attrs); 6409 } 6410 6411 if (I != E) 6412 return Error(CallLoc, "not enough parameters specified for call"); 6413 6414 if (FnAttrs.hasAlignmentAttr()) 6415 return Error(CallLoc, "call instructions may not have an alignment"); 6416 6417 // Finish off the Attribute and check them 6418 AttributeList PAL = 6419 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6420 AttributeSet::get(Context, RetAttrs), Attrs); 6421 6422 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6423 CI->setTailCallKind(TCK); 6424 CI->setCallingConv(CC); 6425 if (FMF.any()) 6426 CI->setFastMathFlags(FMF); 6427 CI->setAttributes(PAL); 6428 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6429 Inst = CI; 6430 return false; 6431 } 6432 6433 //===----------------------------------------------------------------------===// 6434 // Memory Instructions. 6435 //===----------------------------------------------------------------------===// 6436 6437 /// ParseAlloc 6438 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6439 /// (',' 'align' i32)? (',', 'addrspace(n))? 6440 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6441 Value *Size = nullptr; 6442 LocTy SizeLoc, TyLoc, ASLoc; 6443 unsigned Alignment = 0; 6444 unsigned AddrSpace = 0; 6445 Type *Ty = nullptr; 6446 6447 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6448 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6449 6450 if (ParseType(Ty, TyLoc)) return true; 6451 6452 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6453 return Error(TyLoc, "invalid type for alloca"); 6454 6455 bool AteExtraComma = false; 6456 if (EatIfPresent(lltok::comma)) { 6457 if (Lex.getKind() == lltok::kw_align) { 6458 if (ParseOptionalAlignment(Alignment)) 6459 return true; 6460 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6461 return true; 6462 } else if (Lex.getKind() == lltok::kw_addrspace) { 6463 ASLoc = Lex.getLoc(); 6464 if (ParseOptionalAddrSpace(AddrSpace)) 6465 return true; 6466 } else if (Lex.getKind() == lltok::MetadataVar) { 6467 AteExtraComma = true; 6468 } else { 6469 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6470 return true; 6471 if (EatIfPresent(lltok::comma)) { 6472 if (Lex.getKind() == lltok::kw_align) { 6473 if (ParseOptionalAlignment(Alignment)) 6474 return true; 6475 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6476 return true; 6477 } else if (Lex.getKind() == lltok::kw_addrspace) { 6478 ASLoc = Lex.getLoc(); 6479 if (ParseOptionalAddrSpace(AddrSpace)) 6480 return true; 6481 } else if (Lex.getKind() == lltok::MetadataVar) { 6482 AteExtraComma = true; 6483 } 6484 } 6485 } 6486 } 6487 6488 if (Size && !Size->getType()->isIntegerTy()) 6489 return Error(SizeLoc, "element count must have integer type"); 6490 6491 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6492 AI->setUsedWithInAlloca(IsInAlloca); 6493 AI->setSwiftError(IsSwiftError); 6494 Inst = AI; 6495 return AteExtraComma ? InstExtraComma : InstNormal; 6496 } 6497 6498 /// ParseLoad 6499 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6500 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6501 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6502 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6503 Value *Val; LocTy Loc; 6504 unsigned Alignment = 0; 6505 bool AteExtraComma = false; 6506 bool isAtomic = false; 6507 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6508 SyncScope::ID SSID = SyncScope::System; 6509 6510 if (Lex.getKind() == lltok::kw_atomic) { 6511 isAtomic = true; 6512 Lex.Lex(); 6513 } 6514 6515 bool isVolatile = false; 6516 if (Lex.getKind() == lltok::kw_volatile) { 6517 isVolatile = true; 6518 Lex.Lex(); 6519 } 6520 6521 Type *Ty; 6522 LocTy ExplicitTypeLoc = Lex.getLoc(); 6523 if (ParseType(Ty) || 6524 ParseToken(lltok::comma, "expected comma after load's type") || 6525 ParseTypeAndValue(Val, Loc, PFS) || 6526 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6527 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6528 return true; 6529 6530 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6531 return Error(Loc, "load operand must be a pointer to a first class type"); 6532 if (isAtomic && !Alignment) 6533 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6534 if (Ordering == AtomicOrdering::Release || 6535 Ordering == AtomicOrdering::AcquireRelease) 6536 return Error(Loc, "atomic load cannot use Release ordering"); 6537 6538 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6539 return Error(ExplicitTypeLoc, 6540 "explicit pointee type doesn't match operand's pointee type"); 6541 6542 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6543 return AteExtraComma ? InstExtraComma : InstNormal; 6544 } 6545 6546 /// ParseStore 6547 6548 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6549 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6550 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6551 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6552 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6553 unsigned Alignment = 0; 6554 bool AteExtraComma = false; 6555 bool isAtomic = false; 6556 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6557 SyncScope::ID SSID = SyncScope::System; 6558 6559 if (Lex.getKind() == lltok::kw_atomic) { 6560 isAtomic = true; 6561 Lex.Lex(); 6562 } 6563 6564 bool isVolatile = false; 6565 if (Lex.getKind() == lltok::kw_volatile) { 6566 isVolatile = true; 6567 Lex.Lex(); 6568 } 6569 6570 if (ParseTypeAndValue(Val, Loc, PFS) || 6571 ParseToken(lltok::comma, "expected ',' after store operand") || 6572 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6573 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6574 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6575 return true; 6576 6577 if (!Ptr->getType()->isPointerTy()) 6578 return Error(PtrLoc, "store operand must be a pointer"); 6579 if (!Val->getType()->isFirstClassType()) 6580 return Error(Loc, "store operand must be a first class value"); 6581 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6582 return Error(Loc, "stored value and pointer type do not match"); 6583 if (isAtomic && !Alignment) 6584 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6585 if (Ordering == AtomicOrdering::Acquire || 6586 Ordering == AtomicOrdering::AcquireRelease) 6587 return Error(Loc, "atomic store cannot use Acquire ordering"); 6588 6589 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6590 return AteExtraComma ? InstExtraComma : InstNormal; 6591 } 6592 6593 /// ParseCmpXchg 6594 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6595 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6596 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6597 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6598 bool AteExtraComma = false; 6599 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6600 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6601 SyncScope::ID SSID = SyncScope::System; 6602 bool isVolatile = false; 6603 bool isWeak = false; 6604 6605 if (EatIfPresent(lltok::kw_weak)) 6606 isWeak = true; 6607 6608 if (EatIfPresent(lltok::kw_volatile)) 6609 isVolatile = true; 6610 6611 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6612 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6613 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6614 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6615 ParseTypeAndValue(New, NewLoc, PFS) || 6616 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6617 ParseOrdering(FailureOrdering)) 6618 return true; 6619 6620 if (SuccessOrdering == AtomicOrdering::Unordered || 6621 FailureOrdering == AtomicOrdering::Unordered) 6622 return TokError("cmpxchg cannot be unordered"); 6623 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6624 return TokError("cmpxchg failure argument shall be no stronger than the " 6625 "success argument"); 6626 if (FailureOrdering == AtomicOrdering::Release || 6627 FailureOrdering == AtomicOrdering::AcquireRelease) 6628 return TokError( 6629 "cmpxchg failure ordering cannot include release semantics"); 6630 if (!Ptr->getType()->isPointerTy()) 6631 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6632 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6633 return Error(CmpLoc, "compare value and pointer type do not match"); 6634 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6635 return Error(NewLoc, "new value and pointer type do not match"); 6636 if (!New->getType()->isFirstClassType()) 6637 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6638 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6639 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6640 CXI->setVolatile(isVolatile); 6641 CXI->setWeak(isWeak); 6642 Inst = CXI; 6643 return AteExtraComma ? InstExtraComma : InstNormal; 6644 } 6645 6646 /// ParseAtomicRMW 6647 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6648 /// 'singlethread'? AtomicOrdering 6649 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6650 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6651 bool AteExtraComma = false; 6652 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6653 SyncScope::ID SSID = SyncScope::System; 6654 bool isVolatile = false; 6655 AtomicRMWInst::BinOp Operation; 6656 6657 if (EatIfPresent(lltok::kw_volatile)) 6658 isVolatile = true; 6659 6660 switch (Lex.getKind()) { 6661 default: return TokError("expected binary operation in atomicrmw"); 6662 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6663 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6664 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6665 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6666 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6667 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6668 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6669 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6670 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6671 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6672 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6673 } 6674 Lex.Lex(); // Eat the operation. 6675 6676 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6677 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6678 ParseTypeAndValue(Val, ValLoc, PFS) || 6679 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6680 return true; 6681 6682 if (Ordering == AtomicOrdering::Unordered) 6683 return TokError("atomicrmw cannot be unordered"); 6684 if (!Ptr->getType()->isPointerTy()) 6685 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6686 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6687 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6688 if (!Val->getType()->isIntegerTy()) 6689 return Error(ValLoc, "atomicrmw operand must be an integer"); 6690 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6691 if (Size < 8 || (Size & (Size - 1))) 6692 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6693 " integer"); 6694 6695 AtomicRMWInst *RMWI = 6696 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6697 RMWI->setVolatile(isVolatile); 6698 Inst = RMWI; 6699 return AteExtraComma ? InstExtraComma : InstNormal; 6700 } 6701 6702 /// ParseFence 6703 /// ::= 'fence' 'singlethread'? AtomicOrdering 6704 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6705 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6706 SyncScope::ID SSID = SyncScope::System; 6707 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6708 return true; 6709 6710 if (Ordering == AtomicOrdering::Unordered) 6711 return TokError("fence cannot be unordered"); 6712 if (Ordering == AtomicOrdering::Monotonic) 6713 return TokError("fence cannot be monotonic"); 6714 6715 Inst = new FenceInst(Context, Ordering, SSID); 6716 return InstNormal; 6717 } 6718 6719 /// ParseGetElementPtr 6720 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6721 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6722 Value *Ptr = nullptr; 6723 Value *Val = nullptr; 6724 LocTy Loc, EltLoc; 6725 6726 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6727 6728 Type *Ty = nullptr; 6729 LocTy ExplicitTypeLoc = Lex.getLoc(); 6730 if (ParseType(Ty) || 6731 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6732 ParseTypeAndValue(Ptr, Loc, PFS)) 6733 return true; 6734 6735 Type *BaseType = Ptr->getType(); 6736 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6737 if (!BasePointerType) 6738 return Error(Loc, "base of getelementptr must be a pointer"); 6739 6740 if (Ty != BasePointerType->getElementType()) 6741 return Error(ExplicitTypeLoc, 6742 "explicit pointee type doesn't match operand's pointee type"); 6743 6744 SmallVector<Value*, 16> Indices; 6745 bool AteExtraComma = false; 6746 // GEP returns a vector of pointers if at least one of parameters is a vector. 6747 // All vector parameters should have the same vector width. 6748 unsigned GEPWidth = BaseType->isVectorTy() ? 6749 BaseType->getVectorNumElements() : 0; 6750 6751 while (EatIfPresent(lltok::comma)) { 6752 if (Lex.getKind() == lltok::MetadataVar) { 6753 AteExtraComma = true; 6754 break; 6755 } 6756 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6757 if (!Val->getType()->isIntOrIntVectorTy()) 6758 return Error(EltLoc, "getelementptr index must be an integer"); 6759 6760 if (Val->getType()->isVectorTy()) { 6761 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6762 if (GEPWidth && GEPWidth != ValNumEl) 6763 return Error(EltLoc, 6764 "getelementptr vector index has a wrong number of elements"); 6765 GEPWidth = ValNumEl; 6766 } 6767 Indices.push_back(Val); 6768 } 6769 6770 SmallPtrSet<Type*, 4> Visited; 6771 if (!Indices.empty() && !Ty->isSized(&Visited)) 6772 return Error(Loc, "base element of getelementptr must be sized"); 6773 6774 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6775 return Error(Loc, "invalid getelementptr indices"); 6776 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6777 if (InBounds) 6778 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6779 return AteExtraComma ? InstExtraComma : InstNormal; 6780 } 6781 6782 /// ParseExtractValue 6783 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6784 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6785 Value *Val; LocTy Loc; 6786 SmallVector<unsigned, 4> Indices; 6787 bool AteExtraComma; 6788 if (ParseTypeAndValue(Val, Loc, PFS) || 6789 ParseIndexList(Indices, AteExtraComma)) 6790 return true; 6791 6792 if (!Val->getType()->isAggregateType()) 6793 return Error(Loc, "extractvalue operand must be aggregate type"); 6794 6795 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6796 return Error(Loc, "invalid indices for extractvalue"); 6797 Inst = ExtractValueInst::Create(Val, Indices); 6798 return AteExtraComma ? InstExtraComma : InstNormal; 6799 } 6800 6801 /// ParseInsertValue 6802 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6803 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6804 Value *Val0, *Val1; LocTy Loc0, Loc1; 6805 SmallVector<unsigned, 4> Indices; 6806 bool AteExtraComma; 6807 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6808 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6809 ParseTypeAndValue(Val1, Loc1, PFS) || 6810 ParseIndexList(Indices, AteExtraComma)) 6811 return true; 6812 6813 if (!Val0->getType()->isAggregateType()) 6814 return Error(Loc0, "insertvalue operand must be aggregate type"); 6815 6816 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6817 if (!IndexedType) 6818 return Error(Loc0, "invalid indices for insertvalue"); 6819 if (IndexedType != Val1->getType()) 6820 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6821 getTypeString(Val1->getType()) + "' instead of '" + 6822 getTypeString(IndexedType) + "'"); 6823 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6824 return AteExtraComma ? InstExtraComma : InstNormal; 6825 } 6826 6827 //===----------------------------------------------------------------------===// 6828 // Embedded metadata. 6829 //===----------------------------------------------------------------------===// 6830 6831 /// ParseMDNodeVector 6832 /// ::= { Element (',' Element)* } 6833 /// Element 6834 /// ::= 'null' | TypeAndValue 6835 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6836 if (ParseToken(lltok::lbrace, "expected '{' here")) 6837 return true; 6838 6839 // Check for an empty list. 6840 if (EatIfPresent(lltok::rbrace)) 6841 return false; 6842 6843 do { 6844 // Null is a special case since it is typeless. 6845 if (EatIfPresent(lltok::kw_null)) { 6846 Elts.push_back(nullptr); 6847 continue; 6848 } 6849 6850 Metadata *MD; 6851 if (ParseMetadata(MD, nullptr)) 6852 return true; 6853 Elts.push_back(MD); 6854 } while (EatIfPresent(lltok::comma)); 6855 6856 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6857 } 6858 6859 //===----------------------------------------------------------------------===// 6860 // Use-list order directives. 6861 //===----------------------------------------------------------------------===// 6862 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6863 SMLoc Loc) { 6864 if (V->use_empty()) 6865 return Error(Loc, "value has no uses"); 6866 6867 unsigned NumUses = 0; 6868 SmallDenseMap<const Use *, unsigned, 16> Order; 6869 for (const Use &U : V->uses()) { 6870 if (++NumUses > Indexes.size()) 6871 break; 6872 Order[&U] = Indexes[NumUses - 1]; 6873 } 6874 if (NumUses < 2) 6875 return Error(Loc, "value only has one use"); 6876 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6877 return Error(Loc, 6878 "wrong number of indexes, expected " + Twine(V->getNumUses())); 6879 6880 V->sortUseList([&](const Use &L, const Use &R) { 6881 return Order.lookup(&L) < Order.lookup(&R); 6882 }); 6883 return false; 6884 } 6885 6886 /// ParseUseListOrderIndexes 6887 /// ::= '{' uint32 (',' uint32)+ '}' 6888 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6889 SMLoc Loc = Lex.getLoc(); 6890 if (ParseToken(lltok::lbrace, "expected '{' here")) 6891 return true; 6892 if (Lex.getKind() == lltok::rbrace) 6893 return Lex.Error("expected non-empty list of uselistorder indexes"); 6894 6895 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6896 // indexes should be distinct numbers in the range [0, size-1], and should 6897 // not be in order. 6898 unsigned Offset = 0; 6899 unsigned Max = 0; 6900 bool IsOrdered = true; 6901 assert(Indexes.empty() && "Expected empty order vector"); 6902 do { 6903 unsigned Index; 6904 if (ParseUInt32(Index)) 6905 return true; 6906 6907 // Update consistency checks. 6908 Offset += Index - Indexes.size(); 6909 Max = std::max(Max, Index); 6910 IsOrdered &= Index == Indexes.size(); 6911 6912 Indexes.push_back(Index); 6913 } while (EatIfPresent(lltok::comma)); 6914 6915 if (ParseToken(lltok::rbrace, "expected '}' here")) 6916 return true; 6917 6918 if (Indexes.size() < 2) 6919 return Error(Loc, "expected >= 2 uselistorder indexes"); 6920 if (Offset != 0 || Max >= Indexes.size()) 6921 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6922 if (IsOrdered) 6923 return Error(Loc, "expected uselistorder indexes to change the order"); 6924 6925 return false; 6926 } 6927 6928 /// ParseUseListOrder 6929 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6930 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6931 SMLoc Loc = Lex.getLoc(); 6932 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6933 return true; 6934 6935 Value *V; 6936 SmallVector<unsigned, 16> Indexes; 6937 if (ParseTypeAndValue(V, PFS) || 6938 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6939 ParseUseListOrderIndexes(Indexes)) 6940 return true; 6941 6942 return sortUseListOrder(V, Indexes, Loc); 6943 } 6944 6945 /// ParseUseListOrderBB 6946 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6947 bool LLParser::ParseUseListOrderBB() { 6948 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6949 SMLoc Loc = Lex.getLoc(); 6950 Lex.Lex(); 6951 6952 ValID Fn, Label; 6953 SmallVector<unsigned, 16> Indexes; 6954 if (ParseValID(Fn) || 6955 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6956 ParseValID(Label) || 6957 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6958 ParseUseListOrderIndexes(Indexes)) 6959 return true; 6960 6961 // Check the function. 6962 GlobalValue *GV; 6963 if (Fn.Kind == ValID::t_GlobalName) 6964 GV = M->getNamedValue(Fn.StrVal); 6965 else if (Fn.Kind == ValID::t_GlobalID) 6966 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6967 else 6968 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6969 if (!GV) 6970 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6971 auto *F = dyn_cast<Function>(GV); 6972 if (!F) 6973 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6974 if (F->isDeclaration()) 6975 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6976 6977 // Check the basic block. 6978 if (Label.Kind == ValID::t_LocalID) 6979 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6980 if (Label.Kind != ValID::t_LocalName) 6981 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6982 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6983 if (!V) 6984 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6985 if (!isa<BasicBlock>(V)) 6986 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6987 6988 return sortUseListOrder(V, Indexes, Loc); 6989 } 6990 6991 /// ModuleEntry 6992 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 6993 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 6994 bool LLParser::ParseModuleEntry(unsigned ID) { 6995 assert(Lex.getKind() == lltok::kw_module); 6996 Lex.Lex(); 6997 6998 std::string Path; 6999 if (ParseToken(lltok::colon, "expected ':' here") || 7000 ParseToken(lltok::lparen, "expected '(' here") || 7001 ParseToken(lltok::kw_path, "expected 'path' here") || 7002 ParseToken(lltok::colon, "expected ':' here") || 7003 ParseStringConstant(Path) || 7004 ParseToken(lltok::comma, "expected ',' here") || 7005 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7006 ParseToken(lltok::colon, "expected ':' here") || 7007 ParseToken(lltok::lparen, "expected '(' here")) 7008 return true; 7009 7010 ModuleHash Hash; 7011 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7012 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7013 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7014 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7015 ParseUInt32(Hash[4])) 7016 return true; 7017 7018 if (ParseToken(lltok::rparen, "expected ')' here") || 7019 ParseToken(lltok::rparen, "expected ')' here")) 7020 return true; 7021 7022 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7023 ModuleIdMap[ID] = ModuleEntry->first(); 7024 7025 return false; 7026 } 7027 7028 /// TypeIdEntry 7029 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7030 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7031 assert(Lex.getKind() == lltok::kw_typeid); 7032 Lex.Lex(); 7033 7034 std::string Name; 7035 if (ParseToken(lltok::colon, "expected ':' here") || 7036 ParseToken(lltok::lparen, "expected '(' here") || 7037 ParseToken(lltok::kw_name, "expected 'name' here") || 7038 ParseToken(lltok::colon, "expected ':' here") || 7039 ParseStringConstant(Name)) 7040 return true; 7041 7042 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7043 if (ParseToken(lltok::comma, "expected ',' here") || 7044 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7045 return true; 7046 7047 // Check if this ID was forward referenced, and if so, update the 7048 // corresponding GUIDs. 7049 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7050 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7051 for (auto TIDRef : FwdRefTIDs->second) { 7052 assert(!*TIDRef.first && 7053 "Forward referenced type id GUID expected to be 0"); 7054 *TIDRef.first = GlobalValue::getGUID(Name); 7055 } 7056 ForwardRefTypeIds.erase(FwdRefTIDs); 7057 } 7058 7059 return false; 7060 } 7061 7062 /// TypeIdSummary 7063 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7064 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7065 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7066 ParseToken(lltok::colon, "expected ':' here") || 7067 ParseToken(lltok::lparen, "expected '(' here") || 7068 ParseTypeTestResolution(TIS.TTRes)) 7069 return true; 7070 7071 if (EatIfPresent(lltok::comma)) { 7072 // Expect optional wpdResolutions field 7073 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7074 return true; 7075 } 7076 7077 if (ParseToken(lltok::rparen, "expected ')' here")) 7078 return true; 7079 7080 return false; 7081 } 7082 7083 /// TypeTestResolution 7084 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7085 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7086 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7087 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7088 /// [',' 'inlinesBits' ':' UInt64]? ')' 7089 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7090 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7091 ParseToken(lltok::colon, "expected ':' here") || 7092 ParseToken(lltok::lparen, "expected '(' here") || 7093 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7094 ParseToken(lltok::colon, "expected ':' here")) 7095 return true; 7096 7097 switch (Lex.getKind()) { 7098 case lltok::kw_unsat: 7099 TTRes.TheKind = TypeTestResolution::Unsat; 7100 break; 7101 case lltok::kw_byteArray: 7102 TTRes.TheKind = TypeTestResolution::ByteArray; 7103 break; 7104 case lltok::kw_inline: 7105 TTRes.TheKind = TypeTestResolution::Inline; 7106 break; 7107 case lltok::kw_single: 7108 TTRes.TheKind = TypeTestResolution::Single; 7109 break; 7110 case lltok::kw_allOnes: 7111 TTRes.TheKind = TypeTestResolution::AllOnes; 7112 break; 7113 default: 7114 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7115 } 7116 Lex.Lex(); 7117 7118 if (ParseToken(lltok::comma, "expected ',' here") || 7119 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7120 ParseToken(lltok::colon, "expected ':' here") || 7121 ParseUInt32(TTRes.SizeM1BitWidth)) 7122 return true; 7123 7124 // Parse optional fields 7125 while (EatIfPresent(lltok::comma)) { 7126 switch (Lex.getKind()) { 7127 case lltok::kw_alignLog2: 7128 Lex.Lex(); 7129 if (ParseToken(lltok::colon, "expected ':'") || 7130 ParseUInt64(TTRes.AlignLog2)) 7131 return true; 7132 break; 7133 case lltok::kw_sizeM1: 7134 Lex.Lex(); 7135 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7136 return true; 7137 break; 7138 case lltok::kw_bitMask: { 7139 unsigned Val; 7140 Lex.Lex(); 7141 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7142 return true; 7143 assert(Val <= 0xff); 7144 TTRes.BitMask = (uint8_t)Val; 7145 break; 7146 } 7147 case lltok::kw_inlineBits: 7148 Lex.Lex(); 7149 if (ParseToken(lltok::colon, "expected ':'") || 7150 ParseUInt64(TTRes.InlineBits)) 7151 return true; 7152 break; 7153 default: 7154 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7155 } 7156 } 7157 7158 if (ParseToken(lltok::rparen, "expected ')' here")) 7159 return true; 7160 7161 return false; 7162 } 7163 7164 /// OptionalWpdResolutions 7165 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7166 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7167 bool LLParser::ParseOptionalWpdResolutions( 7168 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7169 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7170 ParseToken(lltok::colon, "expected ':' here") || 7171 ParseToken(lltok::lparen, "expected '(' here")) 7172 return true; 7173 7174 do { 7175 uint64_t Offset; 7176 WholeProgramDevirtResolution WPDRes; 7177 if (ParseToken(lltok::lparen, "expected '(' here") || 7178 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7179 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7180 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7181 ParseToken(lltok::rparen, "expected ')' here")) 7182 return true; 7183 WPDResMap[Offset] = WPDRes; 7184 } while (EatIfPresent(lltok::comma)); 7185 7186 if (ParseToken(lltok::rparen, "expected ')' here")) 7187 return true; 7188 7189 return false; 7190 } 7191 7192 /// WpdRes 7193 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7194 /// [',' OptionalResByArg]? ')' 7195 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7196 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7197 /// [',' OptionalResByArg]? ')' 7198 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7199 /// [',' OptionalResByArg]? ')' 7200 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7201 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7202 ParseToken(lltok::colon, "expected ':' here") || 7203 ParseToken(lltok::lparen, "expected '(' here") || 7204 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7205 ParseToken(lltok::colon, "expected ':' here")) 7206 return true; 7207 7208 switch (Lex.getKind()) { 7209 case lltok::kw_indir: 7210 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7211 break; 7212 case lltok::kw_singleImpl: 7213 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7214 break; 7215 case lltok::kw_branchFunnel: 7216 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7217 break; 7218 default: 7219 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7220 } 7221 Lex.Lex(); 7222 7223 // Parse optional fields 7224 while (EatIfPresent(lltok::comma)) { 7225 switch (Lex.getKind()) { 7226 case lltok::kw_singleImplName: 7227 Lex.Lex(); 7228 if (ParseToken(lltok::colon, "expected ':' here") || 7229 ParseStringConstant(WPDRes.SingleImplName)) 7230 return true; 7231 break; 7232 case lltok::kw_resByArg: 7233 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7234 return true; 7235 break; 7236 default: 7237 return Error(Lex.getLoc(), 7238 "expected optional WholeProgramDevirtResolution field"); 7239 } 7240 } 7241 7242 if (ParseToken(lltok::rparen, "expected ')' here")) 7243 return true; 7244 7245 return false; 7246 } 7247 7248 /// OptionalResByArg 7249 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7250 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7251 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7252 /// 'virtualConstProp' ) 7253 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7254 /// [',' 'bit' ':' UInt32]? ')' 7255 bool LLParser::ParseOptionalResByArg( 7256 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7257 &ResByArg) { 7258 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7259 ParseToken(lltok::colon, "expected ':' here") || 7260 ParseToken(lltok::lparen, "expected '(' here")) 7261 return true; 7262 7263 do { 7264 std::vector<uint64_t> Args; 7265 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7266 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7267 ParseToken(lltok::colon, "expected ':' here") || 7268 ParseToken(lltok::lparen, "expected '(' here") || 7269 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7270 ParseToken(lltok::colon, "expected ':' here")) 7271 return true; 7272 7273 WholeProgramDevirtResolution::ByArg ByArg; 7274 switch (Lex.getKind()) { 7275 case lltok::kw_indir: 7276 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7277 break; 7278 case lltok::kw_uniformRetVal: 7279 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7280 break; 7281 case lltok::kw_uniqueRetVal: 7282 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7283 break; 7284 case lltok::kw_virtualConstProp: 7285 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7286 break; 7287 default: 7288 return Error(Lex.getLoc(), 7289 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7290 } 7291 Lex.Lex(); 7292 7293 // Parse optional fields 7294 while (EatIfPresent(lltok::comma)) { 7295 switch (Lex.getKind()) { 7296 case lltok::kw_info: 7297 Lex.Lex(); 7298 if (ParseToken(lltok::colon, "expected ':' here") || 7299 ParseUInt64(ByArg.Info)) 7300 return true; 7301 break; 7302 case lltok::kw_byte: 7303 Lex.Lex(); 7304 if (ParseToken(lltok::colon, "expected ':' here") || 7305 ParseUInt32(ByArg.Byte)) 7306 return true; 7307 break; 7308 case lltok::kw_bit: 7309 Lex.Lex(); 7310 if (ParseToken(lltok::colon, "expected ':' here") || 7311 ParseUInt32(ByArg.Bit)) 7312 return true; 7313 break; 7314 default: 7315 return Error(Lex.getLoc(), 7316 "expected optional whole program devirt field"); 7317 } 7318 } 7319 7320 if (ParseToken(lltok::rparen, "expected ')' here")) 7321 return true; 7322 7323 ResByArg[Args] = ByArg; 7324 } while (EatIfPresent(lltok::comma)); 7325 7326 if (ParseToken(lltok::rparen, "expected ')' here")) 7327 return true; 7328 7329 return false; 7330 } 7331 7332 /// OptionalResByArg 7333 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7334 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7335 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7336 ParseToken(lltok::colon, "expected ':' here") || 7337 ParseToken(lltok::lparen, "expected '(' here")) 7338 return true; 7339 7340 do { 7341 uint64_t Val; 7342 if (ParseUInt64(Val)) 7343 return true; 7344 Args.push_back(Val); 7345 } while (EatIfPresent(lltok::comma)); 7346 7347 if (ParseToken(lltok::rparen, "expected ')' here")) 7348 return true; 7349 7350 return false; 7351 } 7352 7353 static ValueInfo EmptyVI = 7354 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7355 7356 /// Stores the given Name/GUID and associated summary into the Index. 7357 /// Also updates any forward references to the associated entry ID. 7358 void LLParser::AddGlobalValueToIndex( 7359 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7360 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7361 // First create the ValueInfo utilizing the Name or GUID. 7362 ValueInfo VI; 7363 if (GUID != 0) { 7364 assert(Name.empty()); 7365 VI = Index->getOrInsertValueInfo(GUID); 7366 } else { 7367 assert(!Name.empty()); 7368 if (M) { 7369 auto *GV = M->getNamedValue(Name); 7370 assert(GV); 7371 VI = Index->getOrInsertValueInfo(GV); 7372 } else { 7373 assert( 7374 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7375 "Need a source_filename to compute GUID for local"); 7376 GUID = GlobalValue::getGUID( 7377 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7378 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7379 } 7380 } 7381 7382 // Add the summary if one was provided. 7383 if (Summary) 7384 Index->addGlobalValueSummary(VI, std::move(Summary)); 7385 7386 // Resolve forward references from calls/refs 7387 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7388 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7389 for (auto VIRef : FwdRefVIs->second) { 7390 assert(*VIRef.first == EmptyVI && 7391 "Forward referenced ValueInfo expected to be empty"); 7392 *VIRef.first = VI; 7393 } 7394 ForwardRefValueInfos.erase(FwdRefVIs); 7395 } 7396 7397 // Resolve forward references from aliases 7398 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7399 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7400 for (auto AliaseeRef : FwdRefAliasees->second) { 7401 assert(!AliaseeRef.first->hasAliasee() && 7402 "Forward referencing alias already has aliasee"); 7403 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7404 } 7405 ForwardRefAliasees.erase(FwdRefAliasees); 7406 } 7407 7408 // Save the associated ValueInfo for use in later references by ID. 7409 if (ID == NumberedValueInfos.size()) 7410 NumberedValueInfos.push_back(VI); 7411 else { 7412 // Handle non-continuous numbers (to make test simplification easier). 7413 if (ID > NumberedValueInfos.size()) 7414 NumberedValueInfos.resize(ID + 1); 7415 NumberedValueInfos[ID] = VI; 7416 } 7417 } 7418 7419 /// ParseGVEntry 7420 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7421 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7422 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7423 bool LLParser::ParseGVEntry(unsigned ID) { 7424 assert(Lex.getKind() == lltok::kw_gv); 7425 Lex.Lex(); 7426 7427 if (ParseToken(lltok::colon, "expected ':' here") || 7428 ParseToken(lltok::lparen, "expected '(' here")) 7429 return true; 7430 7431 std::string Name; 7432 GlobalValue::GUID GUID = 0; 7433 switch (Lex.getKind()) { 7434 case lltok::kw_name: 7435 Lex.Lex(); 7436 if (ParseToken(lltok::colon, "expected ':' here") || 7437 ParseStringConstant(Name)) 7438 return true; 7439 // Can't create GUID/ValueInfo until we have the linkage. 7440 break; 7441 case lltok::kw_guid: 7442 Lex.Lex(); 7443 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7444 return true; 7445 break; 7446 default: 7447 return Error(Lex.getLoc(), "expected name or guid tag"); 7448 } 7449 7450 if (!EatIfPresent(lltok::comma)) { 7451 // No summaries. Wrap up. 7452 if (ParseToken(lltok::rparen, "expected ')' here")) 7453 return true; 7454 // This was created for a call to an external or indirect target. 7455 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7456 // created for indirect calls with VP. A Name with no GUID came from 7457 // an external definition. We pass ExternalLinkage since that is only 7458 // used when the GUID must be computed from Name, and in that case 7459 // the symbol must have external linkage. 7460 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7461 nullptr); 7462 return false; 7463 } 7464 7465 // Have a list of summaries 7466 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7467 ParseToken(lltok::colon, "expected ':' here")) 7468 return true; 7469 7470 do { 7471 if (ParseToken(lltok::lparen, "expected '(' here")) 7472 return true; 7473 switch (Lex.getKind()) { 7474 case lltok::kw_function: 7475 if (ParseFunctionSummary(Name, GUID, ID)) 7476 return true; 7477 break; 7478 case lltok::kw_variable: 7479 if (ParseVariableSummary(Name, GUID, ID)) 7480 return true; 7481 break; 7482 case lltok::kw_alias: 7483 if (ParseAliasSummary(Name, GUID, ID)) 7484 return true; 7485 break; 7486 default: 7487 return Error(Lex.getLoc(), "expected summary type"); 7488 } 7489 if (ParseToken(lltok::rparen, "expected ')' here")) 7490 return true; 7491 } while (EatIfPresent(lltok::comma)); 7492 7493 if (ParseToken(lltok::rparen, "expected ')' here")) 7494 return true; 7495 7496 return false; 7497 } 7498 7499 /// FunctionSummary 7500 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7501 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7502 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7503 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7504 unsigned ID) { 7505 assert(Lex.getKind() == lltok::kw_function); 7506 Lex.Lex(); 7507 7508 StringRef ModulePath; 7509 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7510 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7511 /*Live=*/false, /*IsLocal=*/false); 7512 unsigned InstCount; 7513 std::vector<FunctionSummary::EdgeTy> Calls; 7514 FunctionSummary::TypeIdInfo TypeIdInfo; 7515 std::vector<ValueInfo> Refs; 7516 // Default is all-zeros (conservative values). 7517 FunctionSummary::FFlags FFlags = {}; 7518 if (ParseToken(lltok::colon, "expected ':' here") || 7519 ParseToken(lltok::lparen, "expected '(' here") || 7520 ParseModuleReference(ModulePath) || 7521 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7522 ParseToken(lltok::comma, "expected ',' here") || 7523 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7524 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7525 return true; 7526 7527 // Parse optional fields 7528 while (EatIfPresent(lltok::comma)) { 7529 switch (Lex.getKind()) { 7530 case lltok::kw_funcFlags: 7531 if (ParseOptionalFFlags(FFlags)) 7532 return true; 7533 break; 7534 case lltok::kw_calls: 7535 if (ParseOptionalCalls(Calls)) 7536 return true; 7537 break; 7538 case lltok::kw_typeIdInfo: 7539 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7540 return true; 7541 break; 7542 case lltok::kw_refs: 7543 if (ParseOptionalRefs(Refs)) 7544 return true; 7545 break; 7546 default: 7547 return Error(Lex.getLoc(), "expected optional function summary field"); 7548 } 7549 } 7550 7551 if (ParseToken(lltok::rparen, "expected ')' here")) 7552 return true; 7553 7554 auto FS = llvm::make_unique<FunctionSummary>( 7555 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), 7556 std::move(TypeIdInfo.TypeTests), 7557 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7558 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7559 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7560 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7561 7562 FS->setModulePath(ModulePath); 7563 7564 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7565 ID, std::move(FS)); 7566 7567 return false; 7568 } 7569 7570 /// VariableSummary 7571 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7572 /// [',' OptionalRefs]? ')' 7573 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7574 unsigned ID) { 7575 assert(Lex.getKind() == lltok::kw_variable); 7576 Lex.Lex(); 7577 7578 StringRef ModulePath; 7579 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7580 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7581 /*Live=*/false, /*IsLocal=*/false); 7582 std::vector<ValueInfo> Refs; 7583 if (ParseToken(lltok::colon, "expected ':' here") || 7584 ParseToken(lltok::lparen, "expected '(' here") || 7585 ParseModuleReference(ModulePath) || 7586 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags)) 7587 return true; 7588 7589 // Parse optional refs field 7590 if (EatIfPresent(lltok::comma)) { 7591 if (ParseOptionalRefs(Refs)) 7592 return true; 7593 } 7594 7595 if (ParseToken(lltok::rparen, "expected ')' here")) 7596 return true; 7597 7598 auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs)); 7599 7600 GS->setModulePath(ModulePath); 7601 7602 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7603 ID, std::move(GS)); 7604 7605 return false; 7606 } 7607 7608 /// AliasSummary 7609 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7610 /// 'aliasee' ':' GVReference ')' 7611 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7612 unsigned ID) { 7613 assert(Lex.getKind() == lltok::kw_alias); 7614 LocTy Loc = Lex.getLoc(); 7615 Lex.Lex(); 7616 7617 StringRef ModulePath; 7618 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7619 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7620 /*Live=*/false, /*IsLocal=*/false); 7621 if (ParseToken(lltok::colon, "expected ':' here") || 7622 ParseToken(lltok::lparen, "expected '(' here") || 7623 ParseModuleReference(ModulePath) || 7624 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7625 ParseToken(lltok::comma, "expected ',' here") || 7626 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7627 ParseToken(lltok::colon, "expected ':' here")) 7628 return true; 7629 7630 ValueInfo AliaseeVI; 7631 unsigned GVId; 7632 if (ParseGVReference(AliaseeVI, GVId)) 7633 return true; 7634 7635 if (ParseToken(lltok::rparen, "expected ')' here")) 7636 return true; 7637 7638 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7639 7640 AS->setModulePath(ModulePath); 7641 7642 // Record forward reference if the aliasee is not parsed yet. 7643 if (AliaseeVI == EmptyVI) { 7644 auto FwdRef = ForwardRefAliasees.insert( 7645 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7646 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7647 } else 7648 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7649 7650 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7651 ID, std::move(AS)); 7652 7653 return false; 7654 } 7655 7656 /// Flag 7657 /// ::= [0|1] 7658 bool LLParser::ParseFlag(unsigned &Val) { 7659 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7660 return TokError("expected integer"); 7661 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7662 Lex.Lex(); 7663 return false; 7664 } 7665 7666 /// OptionalFFlags 7667 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7668 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7669 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7670 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7671 assert(Lex.getKind() == lltok::kw_funcFlags); 7672 Lex.Lex(); 7673 7674 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7675 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7676 return true; 7677 7678 do { 7679 unsigned Val; 7680 switch (Lex.getKind()) { 7681 case lltok::kw_readNone: 7682 Lex.Lex(); 7683 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7684 return true; 7685 FFlags.ReadNone = Val; 7686 break; 7687 case lltok::kw_readOnly: 7688 Lex.Lex(); 7689 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7690 return true; 7691 FFlags.ReadOnly = Val; 7692 break; 7693 case lltok::kw_noRecurse: 7694 Lex.Lex(); 7695 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7696 return true; 7697 FFlags.NoRecurse = Val; 7698 break; 7699 case lltok::kw_returnDoesNotAlias: 7700 Lex.Lex(); 7701 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7702 return true; 7703 FFlags.ReturnDoesNotAlias = Val; 7704 break; 7705 default: 7706 return Error(Lex.getLoc(), "expected function flag type"); 7707 } 7708 } while (EatIfPresent(lltok::comma)); 7709 7710 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7711 return true; 7712 7713 return false; 7714 } 7715 7716 /// OptionalCalls 7717 /// := 'calls' ':' '(' Call [',' Call]* ')' 7718 /// Call ::= '(' 'callee' ':' GVReference 7719 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7720 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7721 assert(Lex.getKind() == lltok::kw_calls); 7722 Lex.Lex(); 7723 7724 if (ParseToken(lltok::colon, "expected ':' in calls") | 7725 ParseToken(lltok::lparen, "expected '(' in calls")) 7726 return true; 7727 7728 IdToIndexMapType IdToIndexMap; 7729 // Parse each call edge 7730 do { 7731 ValueInfo VI; 7732 if (ParseToken(lltok::lparen, "expected '(' in call") || 7733 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7734 ParseToken(lltok::colon, "expected ':'")) 7735 return true; 7736 7737 LocTy Loc = Lex.getLoc(); 7738 unsigned GVId; 7739 if (ParseGVReference(VI, GVId)) 7740 return true; 7741 7742 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7743 unsigned RelBF = 0; 7744 if (EatIfPresent(lltok::comma)) { 7745 // Expect either hotness or relbf 7746 if (EatIfPresent(lltok::kw_hotness)) { 7747 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7748 return true; 7749 } else { 7750 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7751 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7752 return true; 7753 } 7754 } 7755 // Keep track of the Call array index needing a forward reference. 7756 // We will save the location of the ValueInfo needing an update, but 7757 // can only do so once the std::vector is finalized. 7758 if (VI == EmptyVI) 7759 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7760 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7761 7762 if (ParseToken(lltok::rparen, "expected ')' in call")) 7763 return true; 7764 } while (EatIfPresent(lltok::comma)); 7765 7766 // Now that the Calls vector is finalized, it is safe to save the locations 7767 // of any forward GV references that need updating later. 7768 for (auto I : IdToIndexMap) { 7769 for (auto P : I.second) { 7770 assert(Calls[P.first].first == EmptyVI && 7771 "Forward referenced ValueInfo expected to be empty"); 7772 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7773 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7774 FwdRef.first->second.push_back( 7775 std::make_pair(&Calls[P.first].first, P.second)); 7776 } 7777 } 7778 7779 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7780 return true; 7781 7782 return false; 7783 } 7784 7785 /// Hotness 7786 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7787 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7788 switch (Lex.getKind()) { 7789 case lltok::kw_unknown: 7790 Hotness = CalleeInfo::HotnessType::Unknown; 7791 break; 7792 case lltok::kw_cold: 7793 Hotness = CalleeInfo::HotnessType::Cold; 7794 break; 7795 case lltok::kw_none: 7796 Hotness = CalleeInfo::HotnessType::None; 7797 break; 7798 case lltok::kw_hot: 7799 Hotness = CalleeInfo::HotnessType::Hot; 7800 break; 7801 case lltok::kw_critical: 7802 Hotness = CalleeInfo::HotnessType::Critical; 7803 break; 7804 default: 7805 return Error(Lex.getLoc(), "invalid call edge hotness"); 7806 } 7807 Lex.Lex(); 7808 return false; 7809 } 7810 7811 /// OptionalRefs 7812 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 7813 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 7814 assert(Lex.getKind() == lltok::kw_refs); 7815 Lex.Lex(); 7816 7817 if (ParseToken(lltok::colon, "expected ':' in refs") | 7818 ParseToken(lltok::lparen, "expected '(' in refs")) 7819 return true; 7820 7821 IdToIndexMapType IdToIndexMap; 7822 // Parse each ref edge 7823 do { 7824 ValueInfo VI; 7825 LocTy Loc = Lex.getLoc(); 7826 unsigned GVId; 7827 if (ParseGVReference(VI, GVId)) 7828 return true; 7829 7830 // Keep track of the Refs array index needing a forward reference. 7831 // We will save the location of the ValueInfo needing an update, but 7832 // can only do so once the std::vector is finalized. 7833 if (VI == EmptyVI) 7834 IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc)); 7835 Refs.push_back(VI); 7836 } while (EatIfPresent(lltok::comma)); 7837 7838 // Now that the Refs vector is finalized, it is safe to save the locations 7839 // of any forward GV references that need updating later. 7840 for (auto I : IdToIndexMap) { 7841 for (auto P : I.second) { 7842 assert(Refs[P.first] == EmptyVI && 7843 "Forward referenced ValueInfo expected to be empty"); 7844 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7845 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7846 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 7847 } 7848 } 7849 7850 if (ParseToken(lltok::rparen, "expected ')' in refs")) 7851 return true; 7852 7853 return false; 7854 } 7855 7856 /// OptionalTypeIdInfo 7857 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 7858 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 7859 /// [',' TypeCheckedLoadConstVCalls]? ')' 7860 bool LLParser::ParseOptionalTypeIdInfo( 7861 FunctionSummary::TypeIdInfo &TypeIdInfo) { 7862 assert(Lex.getKind() == lltok::kw_typeIdInfo); 7863 Lex.Lex(); 7864 7865 if (ParseToken(lltok::colon, "expected ':' here") || 7866 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7867 return true; 7868 7869 do { 7870 switch (Lex.getKind()) { 7871 case lltok::kw_typeTests: 7872 if (ParseTypeTests(TypeIdInfo.TypeTests)) 7873 return true; 7874 break; 7875 case lltok::kw_typeTestAssumeVCalls: 7876 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 7877 TypeIdInfo.TypeTestAssumeVCalls)) 7878 return true; 7879 break; 7880 case lltok::kw_typeCheckedLoadVCalls: 7881 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 7882 TypeIdInfo.TypeCheckedLoadVCalls)) 7883 return true; 7884 break; 7885 case lltok::kw_typeTestAssumeConstVCalls: 7886 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 7887 TypeIdInfo.TypeTestAssumeConstVCalls)) 7888 return true; 7889 break; 7890 case lltok::kw_typeCheckedLoadConstVCalls: 7891 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 7892 TypeIdInfo.TypeCheckedLoadConstVCalls)) 7893 return true; 7894 break; 7895 default: 7896 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 7897 } 7898 } while (EatIfPresent(lltok::comma)); 7899 7900 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7901 return true; 7902 7903 return false; 7904 } 7905 7906 /// TypeTests 7907 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 7908 /// [',' (SummaryID | UInt64)]* ')' 7909 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 7910 assert(Lex.getKind() == lltok::kw_typeTests); 7911 Lex.Lex(); 7912 7913 if (ParseToken(lltok::colon, "expected ':' here") || 7914 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7915 return true; 7916 7917 IdToIndexMapType IdToIndexMap; 7918 do { 7919 GlobalValue::GUID GUID = 0; 7920 if (Lex.getKind() == lltok::SummaryID) { 7921 unsigned ID = Lex.getUIntVal(); 7922 LocTy Loc = Lex.getLoc(); 7923 // Keep track of the TypeTests array index needing a forward reference. 7924 // We will save the location of the GUID needing an update, but 7925 // can only do so once the std::vector is finalized. 7926 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 7927 Lex.Lex(); 7928 } else if (ParseUInt64(GUID)) 7929 return true; 7930 TypeTests.push_back(GUID); 7931 } while (EatIfPresent(lltok::comma)); 7932 7933 // Now that the TypeTests vector is finalized, it is safe to save the 7934 // locations of any forward GV references that need updating later. 7935 for (auto I : IdToIndexMap) { 7936 for (auto P : I.second) { 7937 assert(TypeTests[P.first] == 0 && 7938 "Forward referenced type id GUID expected to be 0"); 7939 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7940 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7941 FwdRef.first->second.push_back( 7942 std::make_pair(&TypeTests[P.first], P.second)); 7943 } 7944 } 7945 7946 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7947 return true; 7948 7949 return false; 7950 } 7951 7952 /// VFuncIdList 7953 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 7954 bool LLParser::ParseVFuncIdList( 7955 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 7956 assert(Lex.getKind() == Kind); 7957 Lex.Lex(); 7958 7959 if (ParseToken(lltok::colon, "expected ':' here") || 7960 ParseToken(lltok::lparen, "expected '(' here")) 7961 return true; 7962 7963 IdToIndexMapType IdToIndexMap; 7964 do { 7965 FunctionSummary::VFuncId VFuncId; 7966 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 7967 return true; 7968 VFuncIdList.push_back(VFuncId); 7969 } while (EatIfPresent(lltok::comma)); 7970 7971 if (ParseToken(lltok::rparen, "expected ')' here")) 7972 return true; 7973 7974 // Now that the VFuncIdList vector is finalized, it is safe to save the 7975 // locations of any forward GV references that need updating later. 7976 for (auto I : IdToIndexMap) { 7977 for (auto P : I.second) { 7978 assert(VFuncIdList[P.first].GUID == 0 && 7979 "Forward referenced type id GUID expected to be 0"); 7980 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7981 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7982 FwdRef.first->second.push_back( 7983 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 7984 } 7985 } 7986 7987 return false; 7988 } 7989 7990 /// ConstVCallList 7991 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 7992 bool LLParser::ParseConstVCallList( 7993 lltok::Kind Kind, 7994 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 7995 assert(Lex.getKind() == Kind); 7996 Lex.Lex(); 7997 7998 if (ParseToken(lltok::colon, "expected ':' here") || 7999 ParseToken(lltok::lparen, "expected '(' here")) 8000 return true; 8001 8002 IdToIndexMapType IdToIndexMap; 8003 do { 8004 FunctionSummary::ConstVCall ConstVCall; 8005 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8006 return true; 8007 ConstVCallList.push_back(ConstVCall); 8008 } while (EatIfPresent(lltok::comma)); 8009 8010 if (ParseToken(lltok::rparen, "expected ')' here")) 8011 return true; 8012 8013 // Now that the ConstVCallList vector is finalized, it is safe to save the 8014 // locations of any forward GV references that need updating later. 8015 for (auto I : IdToIndexMap) { 8016 for (auto P : I.second) { 8017 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8018 "Forward referenced type id GUID expected to be 0"); 8019 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8020 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8021 FwdRef.first->second.push_back( 8022 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8023 } 8024 } 8025 8026 return false; 8027 } 8028 8029 /// ConstVCall 8030 /// ::= VFuncId, Args 8031 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8032 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8033 if (ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index) || 8034 ParseToken(lltok::comma, "expected ',' here") || 8035 ParseArgs(ConstVCall.Args)) 8036 return true; 8037 8038 return false; 8039 } 8040 8041 /// VFuncId 8042 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8043 /// 'offset' ':' UInt64 ')' 8044 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8045 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8046 assert(Lex.getKind() == lltok::kw_vFuncId); 8047 Lex.Lex(); 8048 8049 if (ParseToken(lltok::colon, "expected ':' here") || 8050 ParseToken(lltok::lparen, "expected '(' here")) 8051 return true; 8052 8053 if (Lex.getKind() == lltok::SummaryID) { 8054 VFuncId.GUID = 0; 8055 unsigned ID = Lex.getUIntVal(); 8056 LocTy Loc = Lex.getLoc(); 8057 // Keep track of the array index needing a forward reference. 8058 // We will save the location of the GUID needing an update, but 8059 // can only do so once the caller's std::vector is finalized. 8060 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8061 Lex.Lex(); 8062 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8063 ParseToken(lltok::colon, "expected ':' here") || 8064 ParseUInt64(VFuncId.GUID)) 8065 return true; 8066 8067 if (ParseToken(lltok::comma, "expected ',' here") || 8068 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8069 ParseToken(lltok::colon, "expected ':' here") || 8070 ParseUInt64(VFuncId.Offset) || 8071 ParseToken(lltok::rparen, "expected ')' here")) 8072 return true; 8073 8074 return false; 8075 } 8076 8077 /// GVFlags 8078 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8079 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8080 /// 'dsoLocal' ':' Flag ')' 8081 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8082 assert(Lex.getKind() == lltok::kw_flags); 8083 Lex.Lex(); 8084 8085 bool HasLinkage; 8086 if (ParseToken(lltok::colon, "expected ':' here") || 8087 ParseToken(lltok::lparen, "expected '(' here") || 8088 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8089 ParseToken(lltok::colon, "expected ':' here")) 8090 return true; 8091 8092 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8093 assert(HasLinkage && "Linkage not optional in summary entry"); 8094 Lex.Lex(); 8095 8096 unsigned Flag; 8097 if (ParseToken(lltok::comma, "expected ',' here") || 8098 ParseToken(lltok::kw_notEligibleToImport, 8099 "expected 'notEligibleToImport' here") || 8100 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8101 return true; 8102 GVFlags.NotEligibleToImport = Flag; 8103 8104 if (ParseToken(lltok::comma, "expected ',' here") || 8105 ParseToken(lltok::kw_live, "expected 'live' here") || 8106 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8107 return true; 8108 GVFlags.Live = Flag; 8109 8110 if (ParseToken(lltok::comma, "expected ',' here") || 8111 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8112 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8113 return true; 8114 GVFlags.DSOLocal = Flag; 8115 8116 if (ParseToken(lltok::rparen, "expected ')' here")) 8117 return true; 8118 8119 return false; 8120 } 8121 8122 /// ModuleReference 8123 /// ::= 'module' ':' UInt 8124 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8125 // Parse module id. 8126 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8127 ParseToken(lltok::colon, "expected ':' here") || 8128 ParseToken(lltok::SummaryID, "expected module ID")) 8129 return true; 8130 8131 unsigned ModuleID = Lex.getUIntVal(); 8132 auto I = ModuleIdMap.find(ModuleID); 8133 // We should have already parsed all module IDs 8134 assert(I != ModuleIdMap.end()); 8135 ModulePath = I->second; 8136 return false; 8137 } 8138 8139 /// GVReference 8140 /// ::= SummaryID 8141 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8142 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8143 return true; 8144 8145 GVId = Lex.getUIntVal(); 8146 8147 // Check if we already have a VI for this GV 8148 if (GVId < NumberedValueInfos.size()) { 8149 assert(NumberedValueInfos[GVId] != EmptyVI); 8150 VI = NumberedValueInfos[GVId]; 8151 } else 8152 // We will create a forward reference to the stored location. 8153 VI = EmptyVI; 8154 8155 return false; 8156 } 8157