1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (ParseTargetDefinitions())
75       return true;
76   }
77 
78   return ParseTopLevelEntities() || ValidateEndOfModule() ||
79          ValidateEndOfIndex();
80 }
81 
82 bool LLParser::parseStandaloneConstantValue(Constant *&C,
83                                             const SlotMapping *Slots) {
84   restoreParsingState(Slots);
85   Lex.Lex();
86 
87   Type *Ty = nullptr;
88   if (ParseType(Ty) || parseConstantValue(Ty, C))
89     return true;
90   if (Lex.getKind() != lltok::Eof)
91     return Error(Lex.getLoc(), "expected end of string");
92   return false;
93 }
94 
95 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
96                                     const SlotMapping *Slots) {
97   restoreParsingState(Slots);
98   Lex.Lex();
99 
100   Read = 0;
101   SMLoc Start = Lex.getLoc();
102   Ty = nullptr;
103   if (ParseType(Ty))
104     return true;
105   SMLoc End = Lex.getLoc();
106   Read = End.getPointer() - Start.getPointer();
107 
108   return false;
109 }
110 
111 void LLParser::restoreParsingState(const SlotMapping *Slots) {
112   if (!Slots)
113     return;
114   NumberedVals = Slots->GlobalValues;
115   NumberedMetadata = Slots->MetadataNodes;
116   for (const auto &I : Slots->NamedTypes)
117     NamedTypes.insert(
118         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
119   for (const auto &I : Slots->Types)
120     NumberedTypes.insert(
121         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
122 }
123 
124 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
125 /// module.
126 bool LLParser::ValidateEndOfModule() {
127   if (!M)
128     return false;
129   // Handle any function attribute group forward references.
130   for (const auto &RAG : ForwardRefAttrGroups) {
131     Value *V = RAG.first;
132     const std::vector<unsigned> &Attrs = RAG.second;
133     AttrBuilder B;
134 
135     for (const auto &Attr : Attrs)
136       B.merge(NumberedAttrBuilders[Attr]);
137 
138     if (Function *Fn = dyn_cast<Function>(V)) {
139       AttributeList AS = Fn->getAttributes();
140       AttrBuilder FnAttrs(AS.getFnAttributes());
141       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
142 
143       FnAttrs.merge(B);
144 
145       // If the alignment was parsed as an attribute, move to the alignment
146       // field.
147       if (FnAttrs.hasAlignmentAttr()) {
148         Fn->setAlignment(FnAttrs.getAlignment());
149         FnAttrs.removeAttribute(Attribute::Alignment);
150       }
151 
152       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
153                             AttributeSet::get(Context, FnAttrs));
154       Fn->setAttributes(AS);
155     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
156       AttributeList AS = CI->getAttributes();
157       AttrBuilder FnAttrs(AS.getFnAttributes());
158       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
159       FnAttrs.merge(B);
160       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
161                             AttributeSet::get(Context, FnAttrs));
162       CI->setAttributes(AS);
163     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
164       AttributeList AS = II->getAttributes();
165       AttrBuilder FnAttrs(AS.getFnAttributes());
166       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
167       FnAttrs.merge(B);
168       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
169                             AttributeSet::get(Context, FnAttrs));
170       II->setAttributes(AS);
171     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172       AttributeList AS = CBI->getAttributes();
173       AttrBuilder FnAttrs(AS.getFnAttributes());
174       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
175       FnAttrs.merge(B);
176       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
177                             AttributeSet::get(Context, FnAttrs));
178       CBI->setAttributes(AS);
179     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
180       AttrBuilder Attrs(GV->getAttributes());
181       Attrs.merge(B);
182       GV->setAttributes(AttributeSet::get(Context,Attrs));
183     } else {
184       llvm_unreachable("invalid object with forward attribute group reference");
185     }
186   }
187 
188   // If there are entries in ForwardRefBlockAddresses at this point, the
189   // function was never defined.
190   if (!ForwardRefBlockAddresses.empty())
191     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
192                  "expected function name in blockaddress");
193 
194   for (const auto &NT : NumberedTypes)
195     if (NT.second.second.isValid())
196       return Error(NT.second.second,
197                    "use of undefined type '%" + Twine(NT.first) + "'");
198 
199   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
200        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
201     if (I->second.second.isValid())
202       return Error(I->second.second,
203                    "use of undefined type named '" + I->getKey() + "'");
204 
205   if (!ForwardRefComdats.empty())
206     return Error(ForwardRefComdats.begin()->second,
207                  "use of undefined comdat '$" +
208                      ForwardRefComdats.begin()->first + "'");
209 
210   if (!ForwardRefVals.empty())
211     return Error(ForwardRefVals.begin()->second.second,
212                  "use of undefined value '@" + ForwardRefVals.begin()->first +
213                  "'");
214 
215   if (!ForwardRefValIDs.empty())
216     return Error(ForwardRefValIDs.begin()->second.second,
217                  "use of undefined value '@" +
218                  Twine(ForwardRefValIDs.begin()->first) + "'");
219 
220   if (!ForwardRefMDNodes.empty())
221     return Error(ForwardRefMDNodes.begin()->second.second,
222                  "use of undefined metadata '!" +
223                  Twine(ForwardRefMDNodes.begin()->first) + "'");
224 
225   // Resolve metadata cycles.
226   for (auto &N : NumberedMetadata) {
227     if (N.second && !N.second->isResolved())
228       N.second->resolveCycles();
229   }
230 
231   for (auto *Inst : InstsWithTBAATag) {
232     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
233     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
234     auto *UpgradedMD = UpgradeTBAANode(*MD);
235     if (MD != UpgradedMD)
236       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
237   }
238 
239   // Look for intrinsic functions and CallInst that need to be upgraded
240   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
241     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
242 
243   // Some types could be renamed during loading if several modules are
244   // loaded in the same LLVMContext (LTO scenario). In this case we should
245   // remangle intrinsics names as well.
246   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
247     Function *F = &*FI++;
248     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
249       F->replaceAllUsesWith(Remangled.getValue());
250       F->eraseFromParent();
251     }
252   }
253 
254   if (UpgradeDebugInfo)
255     llvm::UpgradeDebugInfo(*M);
256 
257   UpgradeModuleFlags(*M);
258   UpgradeSectionAttributes(*M);
259 
260   if (!Slots)
261     return false;
262   // Initialize the slot mapping.
263   // Because by this point we've parsed and validated everything, we can "steal"
264   // the mapping from LLParser as it doesn't need it anymore.
265   Slots->GlobalValues = std::move(NumberedVals);
266   Slots->MetadataNodes = std::move(NumberedMetadata);
267   for (const auto &I : NamedTypes)
268     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
269   for (const auto &I : NumberedTypes)
270     Slots->Types.insert(std::make_pair(I.first, I.second.first));
271 
272   return false;
273 }
274 
275 /// Do final validity and sanity checks at the end of the index.
276 bool LLParser::ValidateEndOfIndex() {
277   if (!Index)
278     return false;
279 
280   if (!ForwardRefValueInfos.empty())
281     return Error(ForwardRefValueInfos.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefValueInfos.begin()->first) + "'");
284 
285   if (!ForwardRefAliasees.empty())
286     return Error(ForwardRefAliasees.begin()->second.front().second,
287                  "use of undefined summary '^" +
288                      Twine(ForwardRefAliasees.begin()->first) + "'");
289 
290   if (!ForwardRefTypeIds.empty())
291     return Error(ForwardRefTypeIds.begin()->second.front().second,
292                  "use of undefined type id summary '^" +
293                      Twine(ForwardRefTypeIds.begin()->first) + "'");
294 
295   return false;
296 }
297 
298 //===----------------------------------------------------------------------===//
299 // Top-Level Entities
300 //===----------------------------------------------------------------------===//
301 
302 bool LLParser::ParseTargetDefinitions() {
303   while (true) {
304     switch (Lex.getKind()) {
305     case lltok::kw_target:
306       if (ParseTargetDefinition())
307         return true;
308       break;
309     case lltok::kw_source_filename:
310       if (ParseSourceFileName())
311         return true;
312       break;
313     default:
314       return false;
315     }
316   }
317 }
318 
319 bool LLParser::ParseTopLevelEntities() {
320   // If there is no Module, then parse just the summary index entries.
321   if (!M) {
322     while (true) {
323       switch (Lex.getKind()) {
324       case lltok::Eof:
325         return false;
326       case lltok::SummaryID:
327         if (ParseSummaryEntry())
328           return true;
329         break;
330       case lltok::kw_source_filename:
331         if (ParseSourceFileName())
332           return true;
333         break;
334       default:
335         // Skip everything else
336         Lex.Lex();
337       }
338     }
339   }
340   while (true) {
341     switch (Lex.getKind()) {
342     default:         return TokError("expected top-level entity");
343     case lltok::Eof: return false;
344     case lltok::kw_declare: if (ParseDeclare()) return true; break;
345     case lltok::kw_define:  if (ParseDefine()) return true; break;
346     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
347     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
348     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
349     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
350     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
351     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
352     case lltok::ComdatVar:  if (parseComdat()) return true; break;
353     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
354     case lltok::SummaryID:
355       if (ParseSummaryEntry())
356         return true;
357       break;
358     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
359     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
360     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
361     case lltok::kw_uselistorder_bb:
362       if (ParseUseListOrderBB())
363         return true;
364       break;
365     }
366   }
367 }
368 
369 /// toplevelentity
370 ///   ::= 'module' 'asm' STRINGCONSTANT
371 bool LLParser::ParseModuleAsm() {
372   assert(Lex.getKind() == lltok::kw_module);
373   Lex.Lex();
374 
375   std::string AsmStr;
376   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
377       ParseStringConstant(AsmStr)) return true;
378 
379   M->appendModuleInlineAsm(AsmStr);
380   return false;
381 }
382 
383 /// toplevelentity
384 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
385 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
386 bool LLParser::ParseTargetDefinition() {
387   assert(Lex.getKind() == lltok::kw_target);
388   std::string Str;
389   switch (Lex.Lex()) {
390   default: return TokError("unknown target property");
391   case lltok::kw_triple:
392     Lex.Lex();
393     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
394         ParseStringConstant(Str))
395       return true;
396     M->setTargetTriple(Str);
397     return false;
398   case lltok::kw_datalayout:
399     Lex.Lex();
400     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
401         ParseStringConstant(Str))
402       return true;
403     if (DataLayoutStr.empty())
404       M->setDataLayout(Str);
405     return false;
406   }
407 }
408 
409 /// toplevelentity
410 ///   ::= 'source_filename' '=' STRINGCONSTANT
411 bool LLParser::ParseSourceFileName() {
412   assert(Lex.getKind() == lltok::kw_source_filename);
413   Lex.Lex();
414   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
415       ParseStringConstant(SourceFileName))
416     return true;
417   if (M)
418     M->setSourceFileName(SourceFileName);
419   return false;
420 }
421 
422 /// toplevelentity
423 ///   ::= 'deplibs' '=' '[' ']'
424 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
425 /// FIXME: Remove in 4.0. Currently parse, but ignore.
426 bool LLParser::ParseDepLibs() {
427   assert(Lex.getKind() == lltok::kw_deplibs);
428   Lex.Lex();
429   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
430       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
431     return true;
432 
433   if (EatIfPresent(lltok::rsquare))
434     return false;
435 
436   do {
437     std::string Str;
438     if (ParseStringConstant(Str)) return true;
439   } while (EatIfPresent(lltok::comma));
440 
441   return ParseToken(lltok::rsquare, "expected ']' at end of list");
442 }
443 
444 /// ParseUnnamedType:
445 ///   ::= LocalVarID '=' 'type' type
446 bool LLParser::ParseUnnamedType() {
447   LocTy TypeLoc = Lex.getLoc();
448   unsigned TypeID = Lex.getUIntVal();
449   Lex.Lex(); // eat LocalVarID;
450 
451   if (ParseToken(lltok::equal, "expected '=' after name") ||
452       ParseToken(lltok::kw_type, "expected 'type' after '='"))
453     return true;
454 
455   Type *Result = nullptr;
456   if (ParseStructDefinition(TypeLoc, "",
457                             NumberedTypes[TypeID], Result)) return true;
458 
459   if (!isa<StructType>(Result)) {
460     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
461     if (Entry.first)
462       return Error(TypeLoc, "non-struct types may not be recursive");
463     Entry.first = Result;
464     Entry.second = SMLoc();
465   }
466 
467   return false;
468 }
469 
470 /// toplevelentity
471 ///   ::= LocalVar '=' 'type' type
472 bool LLParser::ParseNamedType() {
473   std::string Name = Lex.getStrVal();
474   LocTy NameLoc = Lex.getLoc();
475   Lex.Lex();  // eat LocalVar.
476 
477   if (ParseToken(lltok::equal, "expected '=' after name") ||
478       ParseToken(lltok::kw_type, "expected 'type' after name"))
479     return true;
480 
481   Type *Result = nullptr;
482   if (ParseStructDefinition(NameLoc, Name,
483                             NamedTypes[Name], Result)) return true;
484 
485   if (!isa<StructType>(Result)) {
486     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
487     if (Entry.first)
488       return Error(NameLoc, "non-struct types may not be recursive");
489     Entry.first = Result;
490     Entry.second = SMLoc();
491   }
492 
493   return false;
494 }
495 
496 /// toplevelentity
497 ///   ::= 'declare' FunctionHeader
498 bool LLParser::ParseDeclare() {
499   assert(Lex.getKind() == lltok::kw_declare);
500   Lex.Lex();
501 
502   std::vector<std::pair<unsigned, MDNode *>> MDs;
503   while (Lex.getKind() == lltok::MetadataVar) {
504     unsigned MDK;
505     MDNode *N;
506     if (ParseMetadataAttachment(MDK, N))
507       return true;
508     MDs.push_back({MDK, N});
509   }
510 
511   Function *F;
512   if (ParseFunctionHeader(F, false))
513     return true;
514   for (auto &MD : MDs)
515     F->addMetadata(MD.first, *MD.second);
516   return false;
517 }
518 
519 /// toplevelentity
520 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
521 bool LLParser::ParseDefine() {
522   assert(Lex.getKind() == lltok::kw_define);
523   Lex.Lex();
524 
525   Function *F;
526   return ParseFunctionHeader(F, true) ||
527          ParseOptionalFunctionMetadata(*F) ||
528          ParseFunctionBody(*F);
529 }
530 
531 /// ParseGlobalType
532 ///   ::= 'constant'
533 ///   ::= 'global'
534 bool LLParser::ParseGlobalType(bool &IsConstant) {
535   if (Lex.getKind() == lltok::kw_constant)
536     IsConstant = true;
537   else if (Lex.getKind() == lltok::kw_global)
538     IsConstant = false;
539   else {
540     IsConstant = false;
541     return TokError("expected 'global' or 'constant'");
542   }
543   Lex.Lex();
544   return false;
545 }
546 
547 bool LLParser::ParseOptionalUnnamedAddr(
548     GlobalVariable::UnnamedAddr &UnnamedAddr) {
549   if (EatIfPresent(lltok::kw_unnamed_addr))
550     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
551   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
552     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
553   else
554     UnnamedAddr = GlobalValue::UnnamedAddr::None;
555   return false;
556 }
557 
558 /// ParseUnnamedGlobal:
559 ///   OptionalVisibility (ALIAS | IFUNC) ...
560 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
561 ///   OptionalDLLStorageClass
562 ///                                                     ...   -> global variable
563 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
564 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
565 ///                OptionalDLLStorageClass
566 ///                                                     ...   -> global variable
567 bool LLParser::ParseUnnamedGlobal() {
568   unsigned VarID = NumberedVals.size();
569   std::string Name;
570   LocTy NameLoc = Lex.getLoc();
571 
572   // Handle the GlobalID form.
573   if (Lex.getKind() == lltok::GlobalID) {
574     if (Lex.getUIntVal() != VarID)
575       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
576                    Twine(VarID) + "'");
577     Lex.Lex(); // eat GlobalID;
578 
579     if (ParseToken(lltok::equal, "expected '=' after name"))
580       return true;
581   }
582 
583   bool HasLinkage;
584   unsigned Linkage, Visibility, DLLStorageClass;
585   bool DSOLocal;
586   GlobalVariable::ThreadLocalMode TLM;
587   GlobalVariable::UnnamedAddr UnnamedAddr;
588   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
589                            DSOLocal) ||
590       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
591     return true;
592 
593   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
594     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
595                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
596 
597   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
598                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
599 }
600 
601 /// ParseNamedGlobal:
602 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
603 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
604 ///                 OptionalVisibility OptionalDLLStorageClass
605 ///                                                     ...   -> global variable
606 bool LLParser::ParseNamedGlobal() {
607   assert(Lex.getKind() == lltok::GlobalVar);
608   LocTy NameLoc = Lex.getLoc();
609   std::string Name = Lex.getStrVal();
610   Lex.Lex();
611 
612   bool HasLinkage;
613   unsigned Linkage, Visibility, DLLStorageClass;
614   bool DSOLocal;
615   GlobalVariable::ThreadLocalMode TLM;
616   GlobalVariable::UnnamedAddr UnnamedAddr;
617   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
618       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
619                            DSOLocal) ||
620       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
621     return true;
622 
623   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
624     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
625                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
626 
627   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
628                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
629 }
630 
631 bool LLParser::parseComdat() {
632   assert(Lex.getKind() == lltok::ComdatVar);
633   std::string Name = Lex.getStrVal();
634   LocTy NameLoc = Lex.getLoc();
635   Lex.Lex();
636 
637   if (ParseToken(lltok::equal, "expected '=' here"))
638     return true;
639 
640   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
641     return TokError("expected comdat type");
642 
643   Comdat::SelectionKind SK;
644   switch (Lex.getKind()) {
645   default:
646     return TokError("unknown selection kind");
647   case lltok::kw_any:
648     SK = Comdat::Any;
649     break;
650   case lltok::kw_exactmatch:
651     SK = Comdat::ExactMatch;
652     break;
653   case lltok::kw_largest:
654     SK = Comdat::Largest;
655     break;
656   case lltok::kw_noduplicates:
657     SK = Comdat::NoDuplicates;
658     break;
659   case lltok::kw_samesize:
660     SK = Comdat::SameSize;
661     break;
662   }
663   Lex.Lex();
664 
665   // See if the comdat was forward referenced, if so, use the comdat.
666   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
667   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
668   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
669     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
670 
671   Comdat *C;
672   if (I != ComdatSymTab.end())
673     C = &I->second;
674   else
675     C = M->getOrInsertComdat(Name);
676   C->setSelectionKind(SK);
677 
678   return false;
679 }
680 
681 // MDString:
682 //   ::= '!' STRINGCONSTANT
683 bool LLParser::ParseMDString(MDString *&Result) {
684   std::string Str;
685   if (ParseStringConstant(Str)) return true;
686   Result = MDString::get(Context, Str);
687   return false;
688 }
689 
690 // MDNode:
691 //   ::= '!' MDNodeNumber
692 bool LLParser::ParseMDNodeID(MDNode *&Result) {
693   // !{ ..., !42, ... }
694   LocTy IDLoc = Lex.getLoc();
695   unsigned MID = 0;
696   if (ParseUInt32(MID))
697     return true;
698 
699   // If not a forward reference, just return it now.
700   if (NumberedMetadata.count(MID)) {
701     Result = NumberedMetadata[MID];
702     return false;
703   }
704 
705   // Otherwise, create MDNode forward reference.
706   auto &FwdRef = ForwardRefMDNodes[MID];
707   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
708 
709   Result = FwdRef.first.get();
710   NumberedMetadata[MID].reset(Result);
711   return false;
712 }
713 
714 /// ParseNamedMetadata:
715 ///   !foo = !{ !1, !2 }
716 bool LLParser::ParseNamedMetadata() {
717   assert(Lex.getKind() == lltok::MetadataVar);
718   std::string Name = Lex.getStrVal();
719   Lex.Lex();
720 
721   if (ParseToken(lltok::equal, "expected '=' here") ||
722       ParseToken(lltok::exclaim, "Expected '!' here") ||
723       ParseToken(lltok::lbrace, "Expected '{' here"))
724     return true;
725 
726   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
727   if (Lex.getKind() != lltok::rbrace)
728     do {
729       MDNode *N = nullptr;
730       // Parse DIExpressions inline as a special case. They are still MDNodes,
731       // so they can still appear in named metadata. Remove this logic if they
732       // become plain Metadata.
733       if (Lex.getKind() == lltok::MetadataVar &&
734           Lex.getStrVal() == "DIExpression") {
735         if (ParseDIExpression(N, /*IsDistinct=*/false))
736           return true;
737       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
738                  ParseMDNodeID(N)) {
739         return true;
740       }
741       NMD->addOperand(N);
742     } while (EatIfPresent(lltok::comma));
743 
744   return ParseToken(lltok::rbrace, "expected end of metadata node");
745 }
746 
747 /// ParseStandaloneMetadata:
748 ///   !42 = !{...}
749 bool LLParser::ParseStandaloneMetadata() {
750   assert(Lex.getKind() == lltok::exclaim);
751   Lex.Lex();
752   unsigned MetadataID = 0;
753 
754   MDNode *Init;
755   if (ParseUInt32(MetadataID) ||
756       ParseToken(lltok::equal, "expected '=' here"))
757     return true;
758 
759   // Detect common error, from old metadata syntax.
760   if (Lex.getKind() == lltok::Type)
761     return TokError("unexpected type in metadata definition");
762 
763   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
764   if (Lex.getKind() == lltok::MetadataVar) {
765     if (ParseSpecializedMDNode(Init, IsDistinct))
766       return true;
767   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
768              ParseMDTuple(Init, IsDistinct))
769     return true;
770 
771   // See if this was forward referenced, if so, handle it.
772   auto FI = ForwardRefMDNodes.find(MetadataID);
773   if (FI != ForwardRefMDNodes.end()) {
774     FI->second.first->replaceAllUsesWith(Init);
775     ForwardRefMDNodes.erase(FI);
776 
777     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
778   } else {
779     if (NumberedMetadata.count(MetadataID))
780       return TokError("Metadata id is already used");
781     NumberedMetadata[MetadataID].reset(Init);
782   }
783 
784   return false;
785 }
786 
787 // Skips a single module summary entry.
788 bool LLParser::SkipModuleSummaryEntry() {
789   // Each module summary entry consists of a tag for the entry
790   // type, followed by a colon, then the fields surrounded by nested sets of
791   // parentheses. The "tag:" looks like a Label. Once parsing support is
792   // in place we will look for the tokens corresponding to the expected tags.
793   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
794       Lex.getKind() != lltok::kw_typeid)
795     return TokError(
796         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
797   Lex.Lex();
798   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
799       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
800     return true;
801   // Now walk through the parenthesized entry, until the number of open
802   // parentheses goes back down to 0 (the first '(' was parsed above).
803   unsigned NumOpenParen = 1;
804   do {
805     switch (Lex.getKind()) {
806     case lltok::lparen:
807       NumOpenParen++;
808       break;
809     case lltok::rparen:
810       NumOpenParen--;
811       break;
812     case lltok::Eof:
813       return TokError("found end of file while parsing summary entry");
814     default:
815       // Skip everything in between parentheses.
816       break;
817     }
818     Lex.Lex();
819   } while (NumOpenParen > 0);
820   return false;
821 }
822 
823 /// SummaryEntry
824 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
825 bool LLParser::ParseSummaryEntry() {
826   assert(Lex.getKind() == lltok::SummaryID);
827   unsigned SummaryID = Lex.getUIntVal();
828 
829   // For summary entries, colons should be treated as distinct tokens,
830   // not an indication of the end of a label token.
831   Lex.setIgnoreColonInIdentifiers(true);
832 
833   Lex.Lex();
834   if (ParseToken(lltok::equal, "expected '=' here"))
835     return true;
836 
837   // If we don't have an index object, skip the summary entry.
838   if (!Index)
839     return SkipModuleSummaryEntry();
840 
841   bool result = false;
842   switch (Lex.getKind()) {
843   case lltok::kw_gv:
844     result = ParseGVEntry(SummaryID);
845     break;
846   case lltok::kw_module:
847     result = ParseModuleEntry(SummaryID);
848     break;
849   case lltok::kw_typeid:
850     result = ParseTypeIdEntry(SummaryID);
851     break;
852   case lltok::kw_typeidCompatibleVTable:
853     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
854     break;
855   case lltok::kw_flags:
856     result = ParseSummaryIndexFlags();
857     break;
858   default:
859     result = Error(Lex.getLoc(), "unexpected summary kind");
860     break;
861   }
862   Lex.setIgnoreColonInIdentifiers(false);
863   return result;
864 }
865 
866 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
867   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
868          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
869 }
870 
871 // If there was an explicit dso_local, update GV. In the absence of an explicit
872 // dso_local we keep the default value.
873 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
874   if (DSOLocal)
875     GV.setDSOLocal(true);
876 }
877 
878 /// parseIndirectSymbol:
879 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
880 ///                     OptionalVisibility OptionalDLLStorageClass
881 ///                     OptionalThreadLocal OptionalUnnamedAddr
882 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
883 ///
884 /// IndirectSymbol
885 ///   ::= TypeAndValue
886 ///
887 /// IndirectSymbolAttr
888 ///   ::= ',' 'partition' StringConstant
889 ///
890 /// Everything through OptionalUnnamedAddr has already been parsed.
891 ///
892 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
893                                    unsigned L, unsigned Visibility,
894                                    unsigned DLLStorageClass, bool DSOLocal,
895                                    GlobalVariable::ThreadLocalMode TLM,
896                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
897   bool IsAlias;
898   if (Lex.getKind() == lltok::kw_alias)
899     IsAlias = true;
900   else if (Lex.getKind() == lltok::kw_ifunc)
901     IsAlias = false;
902   else
903     llvm_unreachable("Not an alias or ifunc!");
904   Lex.Lex();
905 
906   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
907 
908   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
909     return Error(NameLoc, "invalid linkage type for alias");
910 
911   if (!isValidVisibilityForLinkage(Visibility, L))
912     return Error(NameLoc,
913                  "symbol with local linkage must have default visibility");
914 
915   Type *Ty;
916   LocTy ExplicitTypeLoc = Lex.getLoc();
917   if (ParseType(Ty) ||
918       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
919     return true;
920 
921   Constant *Aliasee;
922   LocTy AliaseeLoc = Lex.getLoc();
923   if (Lex.getKind() != lltok::kw_bitcast &&
924       Lex.getKind() != lltok::kw_getelementptr &&
925       Lex.getKind() != lltok::kw_addrspacecast &&
926       Lex.getKind() != lltok::kw_inttoptr) {
927     if (ParseGlobalTypeAndValue(Aliasee))
928       return true;
929   } else {
930     // The bitcast dest type is not present, it is implied by the dest type.
931     ValID ID;
932     if (ParseValID(ID))
933       return true;
934     if (ID.Kind != ValID::t_Constant)
935       return Error(AliaseeLoc, "invalid aliasee");
936     Aliasee = ID.ConstantVal;
937   }
938 
939   Type *AliaseeType = Aliasee->getType();
940   auto *PTy = dyn_cast<PointerType>(AliaseeType);
941   if (!PTy)
942     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
943   unsigned AddrSpace = PTy->getAddressSpace();
944 
945   if (IsAlias && Ty != PTy->getElementType())
946     return Error(
947         ExplicitTypeLoc,
948         "explicit pointee type doesn't match operand's pointee type");
949 
950   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
951     return Error(
952         ExplicitTypeLoc,
953         "explicit pointee type should be a function type");
954 
955   GlobalValue *GVal = nullptr;
956 
957   // See if the alias was forward referenced, if so, prepare to replace the
958   // forward reference.
959   if (!Name.empty()) {
960     GVal = M->getNamedValue(Name);
961     if (GVal) {
962       if (!ForwardRefVals.erase(Name))
963         return Error(NameLoc, "redefinition of global '@" + Name + "'");
964     }
965   } else {
966     auto I = ForwardRefValIDs.find(NumberedVals.size());
967     if (I != ForwardRefValIDs.end()) {
968       GVal = I->second.first;
969       ForwardRefValIDs.erase(I);
970     }
971   }
972 
973   // Okay, create the alias but do not insert it into the module yet.
974   std::unique_ptr<GlobalIndirectSymbol> GA;
975   if (IsAlias)
976     GA.reset(GlobalAlias::create(Ty, AddrSpace,
977                                  (GlobalValue::LinkageTypes)Linkage, Name,
978                                  Aliasee, /*Parent*/ nullptr));
979   else
980     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
981                                  (GlobalValue::LinkageTypes)Linkage, Name,
982                                  Aliasee, /*Parent*/ nullptr));
983   GA->setThreadLocalMode(TLM);
984   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
985   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
986   GA->setUnnamedAddr(UnnamedAddr);
987   maybeSetDSOLocal(DSOLocal, *GA);
988 
989   // At this point we've parsed everything except for the IndirectSymbolAttrs.
990   // Now parse them if there are any.
991   while (Lex.getKind() == lltok::comma) {
992     Lex.Lex();
993 
994     if (Lex.getKind() == lltok::kw_partition) {
995       Lex.Lex();
996       GA->setPartition(Lex.getStrVal());
997       if (ParseToken(lltok::StringConstant, "expected partition string"))
998         return true;
999     } else {
1000       return TokError("unknown alias or ifunc property!");
1001     }
1002   }
1003 
1004   if (Name.empty())
1005     NumberedVals.push_back(GA.get());
1006 
1007   if (GVal) {
1008     // Verify that types agree.
1009     if (GVal->getType() != GA->getType())
1010       return Error(
1011           ExplicitTypeLoc,
1012           "forward reference and definition of alias have different types");
1013 
1014     // If they agree, just RAUW the old value with the alias and remove the
1015     // forward ref info.
1016     GVal->replaceAllUsesWith(GA.get());
1017     GVal->eraseFromParent();
1018   }
1019 
1020   // Insert into the module, we know its name won't collide now.
1021   if (IsAlias)
1022     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1023   else
1024     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1025   assert(GA->getName() == Name && "Should not be a name conflict!");
1026 
1027   // The module owns this now
1028   GA.release();
1029 
1030   return false;
1031 }
1032 
1033 /// ParseGlobal
1034 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1035 ///       OptionalVisibility OptionalDLLStorageClass
1036 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1037 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1038 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1039 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1040 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1041 ///       Const OptionalAttrs
1042 ///
1043 /// Everything up to and including OptionalUnnamedAddr has been parsed
1044 /// already.
1045 ///
1046 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1047                            unsigned Linkage, bool HasLinkage,
1048                            unsigned Visibility, unsigned DLLStorageClass,
1049                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1050                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1051   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1052     return Error(NameLoc,
1053                  "symbol with local linkage must have default visibility");
1054 
1055   unsigned AddrSpace;
1056   bool IsConstant, IsExternallyInitialized;
1057   LocTy IsExternallyInitializedLoc;
1058   LocTy TyLoc;
1059 
1060   Type *Ty = nullptr;
1061   if (ParseOptionalAddrSpace(AddrSpace) ||
1062       ParseOptionalToken(lltok::kw_externally_initialized,
1063                          IsExternallyInitialized,
1064                          &IsExternallyInitializedLoc) ||
1065       ParseGlobalType(IsConstant) ||
1066       ParseType(Ty, TyLoc))
1067     return true;
1068 
1069   // If the linkage is specified and is external, then no initializer is
1070   // present.
1071   Constant *Init = nullptr;
1072   if (!HasLinkage ||
1073       !GlobalValue::isValidDeclarationLinkage(
1074           (GlobalValue::LinkageTypes)Linkage)) {
1075     if (ParseGlobalValue(Ty, Init))
1076       return true;
1077   }
1078 
1079   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1080     return Error(TyLoc, "invalid type for global variable");
1081 
1082   GlobalValue *GVal = nullptr;
1083 
1084   // See if the global was forward referenced, if so, use the global.
1085   if (!Name.empty()) {
1086     GVal = M->getNamedValue(Name);
1087     if (GVal) {
1088       if (!ForwardRefVals.erase(Name))
1089         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1090     }
1091   } else {
1092     auto I = ForwardRefValIDs.find(NumberedVals.size());
1093     if (I != ForwardRefValIDs.end()) {
1094       GVal = I->second.first;
1095       ForwardRefValIDs.erase(I);
1096     }
1097   }
1098 
1099   GlobalVariable *GV;
1100   if (!GVal) {
1101     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1102                             Name, nullptr, GlobalVariable::NotThreadLocal,
1103                             AddrSpace);
1104   } else {
1105     if (GVal->getValueType() != Ty)
1106       return Error(TyLoc,
1107             "forward reference and definition of global have different types");
1108 
1109     GV = cast<GlobalVariable>(GVal);
1110 
1111     // Move the forward-reference to the correct spot in the module.
1112     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1113   }
1114 
1115   if (Name.empty())
1116     NumberedVals.push_back(GV);
1117 
1118   // Set the parsed properties on the global.
1119   if (Init)
1120     GV->setInitializer(Init);
1121   GV->setConstant(IsConstant);
1122   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1123   maybeSetDSOLocal(DSOLocal, *GV);
1124   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1125   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1126   GV->setExternallyInitialized(IsExternallyInitialized);
1127   GV->setThreadLocalMode(TLM);
1128   GV->setUnnamedAddr(UnnamedAddr);
1129 
1130   // Parse attributes on the global.
1131   while (Lex.getKind() == lltok::comma) {
1132     Lex.Lex();
1133 
1134     if (Lex.getKind() == lltok::kw_section) {
1135       Lex.Lex();
1136       GV->setSection(Lex.getStrVal());
1137       if (ParseToken(lltok::StringConstant, "expected global section string"))
1138         return true;
1139     } else if (Lex.getKind() == lltok::kw_partition) {
1140       Lex.Lex();
1141       GV->setPartition(Lex.getStrVal());
1142       if (ParseToken(lltok::StringConstant, "expected partition string"))
1143         return true;
1144     } else if (Lex.getKind() == lltok::kw_align) {
1145       MaybeAlign Alignment;
1146       if (ParseOptionalAlignment(Alignment)) return true;
1147       GV->setAlignment(Alignment);
1148     } else if (Lex.getKind() == lltok::MetadataVar) {
1149       if (ParseGlobalObjectMetadataAttachment(*GV))
1150         return true;
1151     } else {
1152       Comdat *C;
1153       if (parseOptionalComdat(Name, C))
1154         return true;
1155       if (C)
1156         GV->setComdat(C);
1157       else
1158         return TokError("unknown global variable property!");
1159     }
1160   }
1161 
1162   AttrBuilder Attrs;
1163   LocTy BuiltinLoc;
1164   std::vector<unsigned> FwdRefAttrGrps;
1165   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1166     return true;
1167   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1168     GV->setAttributes(AttributeSet::get(Context, Attrs));
1169     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1170   }
1171 
1172   return false;
1173 }
1174 
1175 /// ParseUnnamedAttrGrp
1176 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1177 bool LLParser::ParseUnnamedAttrGrp() {
1178   assert(Lex.getKind() == lltok::kw_attributes);
1179   LocTy AttrGrpLoc = Lex.getLoc();
1180   Lex.Lex();
1181 
1182   if (Lex.getKind() != lltok::AttrGrpID)
1183     return TokError("expected attribute group id");
1184 
1185   unsigned VarID = Lex.getUIntVal();
1186   std::vector<unsigned> unused;
1187   LocTy BuiltinLoc;
1188   Lex.Lex();
1189 
1190   if (ParseToken(lltok::equal, "expected '=' here") ||
1191       ParseToken(lltok::lbrace, "expected '{' here") ||
1192       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1193                                  BuiltinLoc) ||
1194       ParseToken(lltok::rbrace, "expected end of attribute group"))
1195     return true;
1196 
1197   if (!NumberedAttrBuilders[VarID].hasAttributes())
1198     return Error(AttrGrpLoc, "attribute group has no attributes");
1199 
1200   return false;
1201 }
1202 
1203 /// ParseFnAttributeValuePairs
1204 ///   ::= <attr> | <attr> '=' <value>
1205 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1206                                           std::vector<unsigned> &FwdRefAttrGrps,
1207                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1208   bool HaveError = false;
1209 
1210   B.clear();
1211 
1212   while (true) {
1213     lltok::Kind Token = Lex.getKind();
1214     if (Token == lltok::kw_builtin)
1215       BuiltinLoc = Lex.getLoc();
1216     switch (Token) {
1217     default:
1218       if (!inAttrGrp) return HaveError;
1219       return Error(Lex.getLoc(), "unterminated attribute group");
1220     case lltok::rbrace:
1221       // Finished.
1222       return false;
1223 
1224     case lltok::AttrGrpID: {
1225       // Allow a function to reference an attribute group:
1226       //
1227       //   define void @foo() #1 { ... }
1228       if (inAttrGrp)
1229         HaveError |=
1230           Error(Lex.getLoc(),
1231               "cannot have an attribute group reference in an attribute group");
1232 
1233       unsigned AttrGrpNum = Lex.getUIntVal();
1234       if (inAttrGrp) break;
1235 
1236       // Save the reference to the attribute group. We'll fill it in later.
1237       FwdRefAttrGrps.push_back(AttrGrpNum);
1238       break;
1239     }
1240     // Target-dependent attributes:
1241     case lltok::StringConstant: {
1242       if (ParseStringAttribute(B))
1243         return true;
1244       continue;
1245     }
1246 
1247     // Target-independent attributes:
1248     case lltok::kw_align: {
1249       // As a hack, we allow function alignment to be initially parsed as an
1250       // attribute on a function declaration/definition or added to an attribute
1251       // group and later moved to the alignment field.
1252       MaybeAlign Alignment;
1253       if (inAttrGrp) {
1254         Lex.Lex();
1255         uint32_t Value = 0;
1256         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1257           return true;
1258         Alignment = Align(Value);
1259       } else {
1260         if (ParseOptionalAlignment(Alignment))
1261           return true;
1262       }
1263       B.addAlignmentAttr(Alignment);
1264       continue;
1265     }
1266     case lltok::kw_alignstack: {
1267       unsigned Alignment;
1268       if (inAttrGrp) {
1269         Lex.Lex();
1270         if (ParseToken(lltok::equal, "expected '=' here") ||
1271             ParseUInt32(Alignment))
1272           return true;
1273       } else {
1274         if (ParseOptionalStackAlignment(Alignment))
1275           return true;
1276       }
1277       B.addStackAlignmentAttr(Alignment);
1278       continue;
1279     }
1280     case lltok::kw_allocsize: {
1281       unsigned ElemSizeArg;
1282       Optional<unsigned> NumElemsArg;
1283       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1284       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1285         return true;
1286       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1287       continue;
1288     }
1289     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1290     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1291     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1292     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1293     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1294     case lltok::kw_inaccessiblememonly:
1295       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1296     case lltok::kw_inaccessiblemem_or_argmemonly:
1297       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1298     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1299     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1300     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1301     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1302     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1303     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1304     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1305     case lltok::kw_noimplicitfloat:
1306       B.addAttribute(Attribute::NoImplicitFloat); break;
1307     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1308     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1309     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1310     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1311     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1312     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1313     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1314     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1315     case lltok::kw_optforfuzzing:
1316       B.addAttribute(Attribute::OptForFuzzing); break;
1317     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1318     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1319     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1320     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1321     case lltok::kw_returns_twice:
1322       B.addAttribute(Attribute::ReturnsTwice); break;
1323     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1324     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1325     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1326     case lltok::kw_sspstrong:
1327       B.addAttribute(Attribute::StackProtectStrong); break;
1328     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1329     case lltok::kw_shadowcallstack:
1330       B.addAttribute(Attribute::ShadowCallStack); break;
1331     case lltok::kw_sanitize_address:
1332       B.addAttribute(Attribute::SanitizeAddress); break;
1333     case lltok::kw_sanitize_hwaddress:
1334       B.addAttribute(Attribute::SanitizeHWAddress); break;
1335     case lltok::kw_sanitize_memtag:
1336       B.addAttribute(Attribute::SanitizeMemTag); break;
1337     case lltok::kw_sanitize_thread:
1338       B.addAttribute(Attribute::SanitizeThread); break;
1339     case lltok::kw_sanitize_memory:
1340       B.addAttribute(Attribute::SanitizeMemory); break;
1341     case lltok::kw_speculative_load_hardening:
1342       B.addAttribute(Attribute::SpeculativeLoadHardening);
1343       break;
1344     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1345     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1346     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1347     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1348     case lltok::kw_preallocated: {
1349       Type *Ty;
1350       if (ParsePreallocated(Ty))
1351         return true;
1352       B.addPreallocatedAttr(Ty);
1353       break;
1354     }
1355 
1356     // Error handling.
1357     case lltok::kw_inreg:
1358     case lltok::kw_signext:
1359     case lltok::kw_zeroext:
1360       HaveError |=
1361         Error(Lex.getLoc(),
1362               "invalid use of attribute on a function");
1363       break;
1364     case lltok::kw_byval:
1365     case lltok::kw_dereferenceable:
1366     case lltok::kw_dereferenceable_or_null:
1367     case lltok::kw_inalloca:
1368     case lltok::kw_nest:
1369     case lltok::kw_noalias:
1370     case lltok::kw_nocapture:
1371     case lltok::kw_nonnull:
1372     case lltok::kw_returned:
1373     case lltok::kw_sret:
1374     case lltok::kw_swifterror:
1375     case lltok::kw_swiftself:
1376     case lltok::kw_immarg:
1377       HaveError |=
1378         Error(Lex.getLoc(),
1379               "invalid use of parameter-only attribute on a function");
1380       break;
1381     }
1382 
1383     // ParsePreallocated() consumes token
1384     if (Token != lltok::kw_preallocated)
1385       Lex.Lex();
1386   }
1387 }
1388 
1389 //===----------------------------------------------------------------------===//
1390 // GlobalValue Reference/Resolution Routines.
1391 //===----------------------------------------------------------------------===//
1392 
1393 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1394                                               const std::string &Name) {
1395   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1396     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1397                             PTy->getAddressSpace(), Name, M);
1398   else
1399     return new GlobalVariable(*M, PTy->getElementType(), false,
1400                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1401                               nullptr, GlobalVariable::NotThreadLocal,
1402                               PTy->getAddressSpace());
1403 }
1404 
1405 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1406                                         Value *Val, bool IsCall) {
1407   if (Val->getType() == Ty)
1408     return Val;
1409   // For calls we also accept variables in the program address space.
1410   Type *SuggestedTy = Ty;
1411   if (IsCall && isa<PointerType>(Ty)) {
1412     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1413         M->getDataLayout().getProgramAddressSpace());
1414     SuggestedTy = TyInProgAS;
1415     if (Val->getType() == TyInProgAS)
1416       return Val;
1417   }
1418   if (Ty->isLabelTy())
1419     Error(Loc, "'" + Name + "' is not a basic block");
1420   else
1421     Error(Loc, "'" + Name + "' defined with type '" +
1422                    getTypeString(Val->getType()) + "' but expected '" +
1423                    getTypeString(SuggestedTy) + "'");
1424   return nullptr;
1425 }
1426 
1427 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1428 /// forward reference record if needed.  This can return null if the value
1429 /// exists but does not have the right type.
1430 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1431                                     LocTy Loc, bool IsCall) {
1432   PointerType *PTy = dyn_cast<PointerType>(Ty);
1433   if (!PTy) {
1434     Error(Loc, "global variable reference must have pointer type");
1435     return nullptr;
1436   }
1437 
1438   // Look this name up in the normal function symbol table.
1439   GlobalValue *Val =
1440     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1441 
1442   // If this is a forward reference for the value, see if we already created a
1443   // forward ref record.
1444   if (!Val) {
1445     auto I = ForwardRefVals.find(Name);
1446     if (I != ForwardRefVals.end())
1447       Val = I->second.first;
1448   }
1449 
1450   // If we have the value in the symbol table or fwd-ref table, return it.
1451   if (Val)
1452     return cast_or_null<GlobalValue>(
1453         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1454 
1455   // Otherwise, create a new forward reference for this value and remember it.
1456   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1457   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1458   return FwdVal;
1459 }
1460 
1461 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1462                                     bool IsCall) {
1463   PointerType *PTy = dyn_cast<PointerType>(Ty);
1464   if (!PTy) {
1465     Error(Loc, "global variable reference must have pointer type");
1466     return nullptr;
1467   }
1468 
1469   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1470 
1471   // If this is a forward reference for the value, see if we already created a
1472   // forward ref record.
1473   if (!Val) {
1474     auto I = ForwardRefValIDs.find(ID);
1475     if (I != ForwardRefValIDs.end())
1476       Val = I->second.first;
1477   }
1478 
1479   // If we have the value in the symbol table or fwd-ref table, return it.
1480   if (Val)
1481     return cast_or_null<GlobalValue>(
1482         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1483 
1484   // Otherwise, create a new forward reference for this value and remember it.
1485   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1486   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1487   return FwdVal;
1488 }
1489 
1490 //===----------------------------------------------------------------------===//
1491 // Comdat Reference/Resolution Routines.
1492 //===----------------------------------------------------------------------===//
1493 
1494 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1495   // Look this name up in the comdat symbol table.
1496   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1497   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1498   if (I != ComdatSymTab.end())
1499     return &I->second;
1500 
1501   // Otherwise, create a new forward reference for this value and remember it.
1502   Comdat *C = M->getOrInsertComdat(Name);
1503   ForwardRefComdats[Name] = Loc;
1504   return C;
1505 }
1506 
1507 //===----------------------------------------------------------------------===//
1508 // Helper Routines.
1509 //===----------------------------------------------------------------------===//
1510 
1511 /// ParseToken - If the current token has the specified kind, eat it and return
1512 /// success.  Otherwise, emit the specified error and return failure.
1513 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1514   if (Lex.getKind() != T)
1515     return TokError(ErrMsg);
1516   Lex.Lex();
1517   return false;
1518 }
1519 
1520 /// ParseStringConstant
1521 ///   ::= StringConstant
1522 bool LLParser::ParseStringConstant(std::string &Result) {
1523   if (Lex.getKind() != lltok::StringConstant)
1524     return TokError("expected string constant");
1525   Result = Lex.getStrVal();
1526   Lex.Lex();
1527   return false;
1528 }
1529 
1530 /// ParseUInt32
1531 ///   ::= uint32
1532 bool LLParser::ParseUInt32(uint32_t &Val) {
1533   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1534     return TokError("expected integer");
1535   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1536   if (Val64 != unsigned(Val64))
1537     return TokError("expected 32-bit integer (too large)");
1538   Val = Val64;
1539   Lex.Lex();
1540   return false;
1541 }
1542 
1543 /// ParseUInt64
1544 ///   ::= uint64
1545 bool LLParser::ParseUInt64(uint64_t &Val) {
1546   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1547     return TokError("expected integer");
1548   Val = Lex.getAPSIntVal().getLimitedValue();
1549   Lex.Lex();
1550   return false;
1551 }
1552 
1553 /// ParseTLSModel
1554 ///   := 'localdynamic'
1555 ///   := 'initialexec'
1556 ///   := 'localexec'
1557 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1558   switch (Lex.getKind()) {
1559     default:
1560       return TokError("expected localdynamic, initialexec or localexec");
1561     case lltok::kw_localdynamic:
1562       TLM = GlobalVariable::LocalDynamicTLSModel;
1563       break;
1564     case lltok::kw_initialexec:
1565       TLM = GlobalVariable::InitialExecTLSModel;
1566       break;
1567     case lltok::kw_localexec:
1568       TLM = GlobalVariable::LocalExecTLSModel;
1569       break;
1570   }
1571 
1572   Lex.Lex();
1573   return false;
1574 }
1575 
1576 /// ParseOptionalThreadLocal
1577 ///   := /*empty*/
1578 ///   := 'thread_local'
1579 ///   := 'thread_local' '(' tlsmodel ')'
1580 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1581   TLM = GlobalVariable::NotThreadLocal;
1582   if (!EatIfPresent(lltok::kw_thread_local))
1583     return false;
1584 
1585   TLM = GlobalVariable::GeneralDynamicTLSModel;
1586   if (Lex.getKind() == lltok::lparen) {
1587     Lex.Lex();
1588     return ParseTLSModel(TLM) ||
1589       ParseToken(lltok::rparen, "expected ')' after thread local model");
1590   }
1591   return false;
1592 }
1593 
1594 /// ParseOptionalAddrSpace
1595 ///   := /*empty*/
1596 ///   := 'addrspace' '(' uint32 ')'
1597 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1598   AddrSpace = DefaultAS;
1599   if (!EatIfPresent(lltok::kw_addrspace))
1600     return false;
1601   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1602          ParseUInt32(AddrSpace) ||
1603          ParseToken(lltok::rparen, "expected ')' in address space");
1604 }
1605 
1606 /// ParseStringAttribute
1607 ///   := StringConstant
1608 ///   := StringConstant '=' StringConstant
1609 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1610   std::string Attr = Lex.getStrVal();
1611   Lex.Lex();
1612   std::string Val;
1613   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1614     return true;
1615   B.addAttribute(Attr, Val);
1616   return false;
1617 }
1618 
1619 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1620 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1621   bool HaveError = false;
1622 
1623   B.clear();
1624 
1625   while (true) {
1626     lltok::Kind Token = Lex.getKind();
1627     switch (Token) {
1628     default:  // End of attributes.
1629       return HaveError;
1630     case lltok::StringConstant: {
1631       if (ParseStringAttribute(B))
1632         return true;
1633       continue;
1634     }
1635     case lltok::kw_align: {
1636       MaybeAlign Alignment;
1637       if (ParseOptionalAlignment(Alignment))
1638         return true;
1639       B.addAlignmentAttr(Alignment);
1640       continue;
1641     }
1642     case lltok::kw_byval: {
1643       Type *Ty;
1644       if (ParseByValWithOptionalType(Ty))
1645         return true;
1646       B.addByValAttr(Ty);
1647       continue;
1648     }
1649     case lltok::kw_preallocated: {
1650       Type *Ty;
1651       if (ParsePreallocated(Ty))
1652         return true;
1653       B.addPreallocatedAttr(Ty);
1654       continue;
1655     }
1656     case lltok::kw_dereferenceable: {
1657       uint64_t Bytes;
1658       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1659         return true;
1660       B.addDereferenceableAttr(Bytes);
1661       continue;
1662     }
1663     case lltok::kw_dereferenceable_or_null: {
1664       uint64_t Bytes;
1665       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1666         return true;
1667       B.addDereferenceableOrNullAttr(Bytes);
1668       continue;
1669     }
1670     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1671     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1672     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1673     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1674     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1675     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1676     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1677     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1678     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1679     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1680     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1681     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1682     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1683     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1684     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1685     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1686     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1687 
1688     case lltok::kw_alignstack:
1689     case lltok::kw_alwaysinline:
1690     case lltok::kw_argmemonly:
1691     case lltok::kw_builtin:
1692     case lltok::kw_inlinehint:
1693     case lltok::kw_jumptable:
1694     case lltok::kw_minsize:
1695     case lltok::kw_naked:
1696     case lltok::kw_nobuiltin:
1697     case lltok::kw_noduplicate:
1698     case lltok::kw_noimplicitfloat:
1699     case lltok::kw_noinline:
1700     case lltok::kw_nonlazybind:
1701     case lltok::kw_noredzone:
1702     case lltok::kw_noreturn:
1703     case lltok::kw_nocf_check:
1704     case lltok::kw_nounwind:
1705     case lltok::kw_optforfuzzing:
1706     case lltok::kw_optnone:
1707     case lltok::kw_optsize:
1708     case lltok::kw_returns_twice:
1709     case lltok::kw_sanitize_address:
1710     case lltok::kw_sanitize_hwaddress:
1711     case lltok::kw_sanitize_memtag:
1712     case lltok::kw_sanitize_memory:
1713     case lltok::kw_sanitize_thread:
1714     case lltok::kw_speculative_load_hardening:
1715     case lltok::kw_ssp:
1716     case lltok::kw_sspreq:
1717     case lltok::kw_sspstrong:
1718     case lltok::kw_safestack:
1719     case lltok::kw_shadowcallstack:
1720     case lltok::kw_strictfp:
1721     case lltok::kw_uwtable:
1722       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1723       break;
1724     }
1725 
1726     Lex.Lex();
1727   }
1728 }
1729 
1730 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1731 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1732   bool HaveError = false;
1733 
1734   B.clear();
1735 
1736   while (true) {
1737     lltok::Kind Token = Lex.getKind();
1738     switch (Token) {
1739     default:  // End of attributes.
1740       return HaveError;
1741     case lltok::StringConstant: {
1742       if (ParseStringAttribute(B))
1743         return true;
1744       continue;
1745     }
1746     case lltok::kw_dereferenceable: {
1747       uint64_t Bytes;
1748       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1749         return true;
1750       B.addDereferenceableAttr(Bytes);
1751       continue;
1752     }
1753     case lltok::kw_dereferenceable_or_null: {
1754       uint64_t Bytes;
1755       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1756         return true;
1757       B.addDereferenceableOrNullAttr(Bytes);
1758       continue;
1759     }
1760     case lltok::kw_align: {
1761       MaybeAlign Alignment;
1762       if (ParseOptionalAlignment(Alignment))
1763         return true;
1764       B.addAlignmentAttr(Alignment);
1765       continue;
1766     }
1767     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1768     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1769     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1770     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1771     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1772 
1773     // Error handling.
1774     case lltok::kw_byval:
1775     case lltok::kw_inalloca:
1776     case lltok::kw_nest:
1777     case lltok::kw_nocapture:
1778     case lltok::kw_returned:
1779     case lltok::kw_sret:
1780     case lltok::kw_swifterror:
1781     case lltok::kw_swiftself:
1782     case lltok::kw_immarg:
1783       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1784       break;
1785 
1786     case lltok::kw_alignstack:
1787     case lltok::kw_alwaysinline:
1788     case lltok::kw_argmemonly:
1789     case lltok::kw_builtin:
1790     case lltok::kw_cold:
1791     case lltok::kw_inlinehint:
1792     case lltok::kw_jumptable:
1793     case lltok::kw_minsize:
1794     case lltok::kw_naked:
1795     case lltok::kw_nobuiltin:
1796     case lltok::kw_noduplicate:
1797     case lltok::kw_noimplicitfloat:
1798     case lltok::kw_noinline:
1799     case lltok::kw_nonlazybind:
1800     case lltok::kw_noredzone:
1801     case lltok::kw_noreturn:
1802     case lltok::kw_nocf_check:
1803     case lltok::kw_nounwind:
1804     case lltok::kw_optforfuzzing:
1805     case lltok::kw_optnone:
1806     case lltok::kw_optsize:
1807     case lltok::kw_returns_twice:
1808     case lltok::kw_sanitize_address:
1809     case lltok::kw_sanitize_hwaddress:
1810     case lltok::kw_sanitize_memtag:
1811     case lltok::kw_sanitize_memory:
1812     case lltok::kw_sanitize_thread:
1813     case lltok::kw_speculative_load_hardening:
1814     case lltok::kw_ssp:
1815     case lltok::kw_sspreq:
1816     case lltok::kw_sspstrong:
1817     case lltok::kw_safestack:
1818     case lltok::kw_shadowcallstack:
1819     case lltok::kw_strictfp:
1820     case lltok::kw_uwtable:
1821       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1822       break;
1823     case lltok::kw_readnone:
1824     case lltok::kw_readonly:
1825       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1826       break;
1827     case lltok::kw_preallocated:
1828       HaveError |=
1829           Error(Lex.getLoc(),
1830                 "invalid use of parameter-only/call site-only attribute");
1831       break;
1832     }
1833 
1834     Lex.Lex();
1835   }
1836 }
1837 
1838 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1839   HasLinkage = true;
1840   switch (Kind) {
1841   default:
1842     HasLinkage = false;
1843     return GlobalValue::ExternalLinkage;
1844   case lltok::kw_private:
1845     return GlobalValue::PrivateLinkage;
1846   case lltok::kw_internal:
1847     return GlobalValue::InternalLinkage;
1848   case lltok::kw_weak:
1849     return GlobalValue::WeakAnyLinkage;
1850   case lltok::kw_weak_odr:
1851     return GlobalValue::WeakODRLinkage;
1852   case lltok::kw_linkonce:
1853     return GlobalValue::LinkOnceAnyLinkage;
1854   case lltok::kw_linkonce_odr:
1855     return GlobalValue::LinkOnceODRLinkage;
1856   case lltok::kw_available_externally:
1857     return GlobalValue::AvailableExternallyLinkage;
1858   case lltok::kw_appending:
1859     return GlobalValue::AppendingLinkage;
1860   case lltok::kw_common:
1861     return GlobalValue::CommonLinkage;
1862   case lltok::kw_extern_weak:
1863     return GlobalValue::ExternalWeakLinkage;
1864   case lltok::kw_external:
1865     return GlobalValue::ExternalLinkage;
1866   }
1867 }
1868 
1869 /// ParseOptionalLinkage
1870 ///   ::= /*empty*/
1871 ///   ::= 'private'
1872 ///   ::= 'internal'
1873 ///   ::= 'weak'
1874 ///   ::= 'weak_odr'
1875 ///   ::= 'linkonce'
1876 ///   ::= 'linkonce_odr'
1877 ///   ::= 'available_externally'
1878 ///   ::= 'appending'
1879 ///   ::= 'common'
1880 ///   ::= 'extern_weak'
1881 ///   ::= 'external'
1882 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1883                                     unsigned &Visibility,
1884                                     unsigned &DLLStorageClass,
1885                                     bool &DSOLocal) {
1886   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1887   if (HasLinkage)
1888     Lex.Lex();
1889   ParseOptionalDSOLocal(DSOLocal);
1890   ParseOptionalVisibility(Visibility);
1891   ParseOptionalDLLStorageClass(DLLStorageClass);
1892 
1893   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1894     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1895   }
1896 
1897   return false;
1898 }
1899 
1900 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1901   switch (Lex.getKind()) {
1902   default:
1903     DSOLocal = false;
1904     break;
1905   case lltok::kw_dso_local:
1906     DSOLocal = true;
1907     Lex.Lex();
1908     break;
1909   case lltok::kw_dso_preemptable:
1910     DSOLocal = false;
1911     Lex.Lex();
1912     break;
1913   }
1914 }
1915 
1916 /// ParseOptionalVisibility
1917 ///   ::= /*empty*/
1918 ///   ::= 'default'
1919 ///   ::= 'hidden'
1920 ///   ::= 'protected'
1921 ///
1922 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1923   switch (Lex.getKind()) {
1924   default:
1925     Res = GlobalValue::DefaultVisibility;
1926     return;
1927   case lltok::kw_default:
1928     Res = GlobalValue::DefaultVisibility;
1929     break;
1930   case lltok::kw_hidden:
1931     Res = GlobalValue::HiddenVisibility;
1932     break;
1933   case lltok::kw_protected:
1934     Res = GlobalValue::ProtectedVisibility;
1935     break;
1936   }
1937   Lex.Lex();
1938 }
1939 
1940 /// ParseOptionalDLLStorageClass
1941 ///   ::= /*empty*/
1942 ///   ::= 'dllimport'
1943 ///   ::= 'dllexport'
1944 ///
1945 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1946   switch (Lex.getKind()) {
1947   default:
1948     Res = GlobalValue::DefaultStorageClass;
1949     return;
1950   case lltok::kw_dllimport:
1951     Res = GlobalValue::DLLImportStorageClass;
1952     break;
1953   case lltok::kw_dllexport:
1954     Res = GlobalValue::DLLExportStorageClass;
1955     break;
1956   }
1957   Lex.Lex();
1958 }
1959 
1960 /// ParseOptionalCallingConv
1961 ///   ::= /*empty*/
1962 ///   ::= 'ccc'
1963 ///   ::= 'fastcc'
1964 ///   ::= 'intel_ocl_bicc'
1965 ///   ::= 'coldcc'
1966 ///   ::= 'cfguard_checkcc'
1967 ///   ::= 'x86_stdcallcc'
1968 ///   ::= 'x86_fastcallcc'
1969 ///   ::= 'x86_thiscallcc'
1970 ///   ::= 'x86_vectorcallcc'
1971 ///   ::= 'arm_apcscc'
1972 ///   ::= 'arm_aapcscc'
1973 ///   ::= 'arm_aapcs_vfpcc'
1974 ///   ::= 'aarch64_vector_pcs'
1975 ///   ::= 'aarch64_sve_vector_pcs'
1976 ///   ::= 'msp430_intrcc'
1977 ///   ::= 'avr_intrcc'
1978 ///   ::= 'avr_signalcc'
1979 ///   ::= 'ptx_kernel'
1980 ///   ::= 'ptx_device'
1981 ///   ::= 'spir_func'
1982 ///   ::= 'spir_kernel'
1983 ///   ::= 'x86_64_sysvcc'
1984 ///   ::= 'win64cc'
1985 ///   ::= 'webkit_jscc'
1986 ///   ::= 'anyregcc'
1987 ///   ::= 'preserve_mostcc'
1988 ///   ::= 'preserve_allcc'
1989 ///   ::= 'ghccc'
1990 ///   ::= 'swiftcc'
1991 ///   ::= 'x86_intrcc'
1992 ///   ::= 'hhvmcc'
1993 ///   ::= 'hhvm_ccc'
1994 ///   ::= 'cxx_fast_tlscc'
1995 ///   ::= 'amdgpu_vs'
1996 ///   ::= 'amdgpu_ls'
1997 ///   ::= 'amdgpu_hs'
1998 ///   ::= 'amdgpu_es'
1999 ///   ::= 'amdgpu_gs'
2000 ///   ::= 'amdgpu_ps'
2001 ///   ::= 'amdgpu_cs'
2002 ///   ::= 'amdgpu_kernel'
2003 ///   ::= 'tailcc'
2004 ///   ::= 'cc' UINT
2005 ///
2006 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2007   switch (Lex.getKind()) {
2008   default:                       CC = CallingConv::C; return false;
2009   case lltok::kw_ccc:            CC = CallingConv::C; break;
2010   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2011   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2012   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2013   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2014   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2015   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2016   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2017   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2018   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2019   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2020   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2021   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2022   case lltok::kw_aarch64_sve_vector_pcs:
2023     CC = CallingConv::AArch64_SVE_VectorCall;
2024     break;
2025   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2026   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2027   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2028   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2029   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2030   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2031   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2032   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2033   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2034   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2035   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2036   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2037   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2038   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2039   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2040   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2041   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2042   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2043   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2044   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2045   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2046   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2047   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2048   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2049   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2050   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2051   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2052   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2053   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2054   case lltok::kw_cc: {
2055       Lex.Lex();
2056       return ParseUInt32(CC);
2057     }
2058   }
2059 
2060   Lex.Lex();
2061   return false;
2062 }
2063 
2064 /// ParseMetadataAttachment
2065 ///   ::= !dbg !42
2066 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2067   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2068 
2069   std::string Name = Lex.getStrVal();
2070   Kind = M->getMDKindID(Name);
2071   Lex.Lex();
2072 
2073   return ParseMDNode(MD);
2074 }
2075 
2076 /// ParseInstructionMetadata
2077 ///   ::= !dbg !42 (',' !dbg !57)*
2078 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2079   do {
2080     if (Lex.getKind() != lltok::MetadataVar)
2081       return TokError("expected metadata after comma");
2082 
2083     unsigned MDK;
2084     MDNode *N;
2085     if (ParseMetadataAttachment(MDK, N))
2086       return true;
2087 
2088     Inst.setMetadata(MDK, N);
2089     if (MDK == LLVMContext::MD_tbaa)
2090       InstsWithTBAATag.push_back(&Inst);
2091 
2092     // If this is the end of the list, we're done.
2093   } while (EatIfPresent(lltok::comma));
2094   return false;
2095 }
2096 
2097 /// ParseGlobalObjectMetadataAttachment
2098 ///   ::= !dbg !57
2099 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2100   unsigned MDK;
2101   MDNode *N;
2102   if (ParseMetadataAttachment(MDK, N))
2103     return true;
2104 
2105   GO.addMetadata(MDK, *N);
2106   return false;
2107 }
2108 
2109 /// ParseOptionalFunctionMetadata
2110 ///   ::= (!dbg !57)*
2111 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2112   while (Lex.getKind() == lltok::MetadataVar)
2113     if (ParseGlobalObjectMetadataAttachment(F))
2114       return true;
2115   return false;
2116 }
2117 
2118 /// ParseOptionalAlignment
2119 ///   ::= /* empty */
2120 ///   ::= 'align' 4
2121 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2122   Alignment = None;
2123   if (!EatIfPresent(lltok::kw_align))
2124     return false;
2125   LocTy AlignLoc = Lex.getLoc();
2126   uint32_t Value = 0;
2127   if (ParseUInt32(Value))
2128     return true;
2129   if (!isPowerOf2_32(Value))
2130     return Error(AlignLoc, "alignment is not a power of two");
2131   if (Value > Value::MaximumAlignment)
2132     return Error(AlignLoc, "huge alignments are not supported yet");
2133   Alignment = Align(Value);
2134   return false;
2135 }
2136 
2137 /// ParseOptionalDerefAttrBytes
2138 ///   ::= /* empty */
2139 ///   ::= AttrKind '(' 4 ')'
2140 ///
2141 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2142 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2143                                            uint64_t &Bytes) {
2144   assert((AttrKind == lltok::kw_dereferenceable ||
2145           AttrKind == lltok::kw_dereferenceable_or_null) &&
2146          "contract!");
2147 
2148   Bytes = 0;
2149   if (!EatIfPresent(AttrKind))
2150     return false;
2151   LocTy ParenLoc = Lex.getLoc();
2152   if (!EatIfPresent(lltok::lparen))
2153     return Error(ParenLoc, "expected '('");
2154   LocTy DerefLoc = Lex.getLoc();
2155   if (ParseUInt64(Bytes)) return true;
2156   ParenLoc = Lex.getLoc();
2157   if (!EatIfPresent(lltok::rparen))
2158     return Error(ParenLoc, "expected ')'");
2159   if (!Bytes)
2160     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2161   return false;
2162 }
2163 
2164 /// ParseOptionalCommaAlign
2165 ///   ::=
2166 ///   ::= ',' align 4
2167 ///
2168 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2169 /// end.
2170 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2171                                        bool &AteExtraComma) {
2172   AteExtraComma = false;
2173   while (EatIfPresent(lltok::comma)) {
2174     // Metadata at the end is an early exit.
2175     if (Lex.getKind() == lltok::MetadataVar) {
2176       AteExtraComma = true;
2177       return false;
2178     }
2179 
2180     if (Lex.getKind() != lltok::kw_align)
2181       return Error(Lex.getLoc(), "expected metadata or 'align'");
2182 
2183     if (ParseOptionalAlignment(Alignment)) return true;
2184   }
2185 
2186   return false;
2187 }
2188 
2189 /// ParseOptionalCommaAddrSpace
2190 ///   ::=
2191 ///   ::= ',' addrspace(1)
2192 ///
2193 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2194 /// end.
2195 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2196                                            LocTy &Loc,
2197                                            bool &AteExtraComma) {
2198   AteExtraComma = false;
2199   while (EatIfPresent(lltok::comma)) {
2200     // Metadata at the end is an early exit.
2201     if (Lex.getKind() == lltok::MetadataVar) {
2202       AteExtraComma = true;
2203       return false;
2204     }
2205 
2206     Loc = Lex.getLoc();
2207     if (Lex.getKind() != lltok::kw_addrspace)
2208       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2209 
2210     if (ParseOptionalAddrSpace(AddrSpace))
2211       return true;
2212   }
2213 
2214   return false;
2215 }
2216 
2217 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2218                                        Optional<unsigned> &HowManyArg) {
2219   Lex.Lex();
2220 
2221   auto StartParen = Lex.getLoc();
2222   if (!EatIfPresent(lltok::lparen))
2223     return Error(StartParen, "expected '('");
2224 
2225   if (ParseUInt32(BaseSizeArg))
2226     return true;
2227 
2228   if (EatIfPresent(lltok::comma)) {
2229     auto HowManyAt = Lex.getLoc();
2230     unsigned HowMany;
2231     if (ParseUInt32(HowMany))
2232       return true;
2233     if (HowMany == BaseSizeArg)
2234       return Error(HowManyAt,
2235                    "'allocsize' indices can't refer to the same parameter");
2236     HowManyArg = HowMany;
2237   } else
2238     HowManyArg = None;
2239 
2240   auto EndParen = Lex.getLoc();
2241   if (!EatIfPresent(lltok::rparen))
2242     return Error(EndParen, "expected ')'");
2243   return false;
2244 }
2245 
2246 /// ParseScopeAndOrdering
2247 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2248 ///   else: ::=
2249 ///
2250 /// This sets Scope and Ordering to the parsed values.
2251 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2252                                      AtomicOrdering &Ordering) {
2253   if (!isAtomic)
2254     return false;
2255 
2256   return ParseScope(SSID) || ParseOrdering(Ordering);
2257 }
2258 
2259 /// ParseScope
2260 ///   ::= syncscope("singlethread" | "<target scope>")?
2261 ///
2262 /// This sets synchronization scope ID to the ID of the parsed value.
2263 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2264   SSID = SyncScope::System;
2265   if (EatIfPresent(lltok::kw_syncscope)) {
2266     auto StartParenAt = Lex.getLoc();
2267     if (!EatIfPresent(lltok::lparen))
2268       return Error(StartParenAt, "Expected '(' in syncscope");
2269 
2270     std::string SSN;
2271     auto SSNAt = Lex.getLoc();
2272     if (ParseStringConstant(SSN))
2273       return Error(SSNAt, "Expected synchronization scope name");
2274 
2275     auto EndParenAt = Lex.getLoc();
2276     if (!EatIfPresent(lltok::rparen))
2277       return Error(EndParenAt, "Expected ')' in syncscope");
2278 
2279     SSID = Context.getOrInsertSyncScopeID(SSN);
2280   }
2281 
2282   return false;
2283 }
2284 
2285 /// ParseOrdering
2286 ///   ::= AtomicOrdering
2287 ///
2288 /// This sets Ordering to the parsed value.
2289 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2290   switch (Lex.getKind()) {
2291   default: return TokError("Expected ordering on atomic instruction");
2292   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2293   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2294   // Not specified yet:
2295   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2296   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2297   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2298   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2299   case lltok::kw_seq_cst:
2300     Ordering = AtomicOrdering::SequentiallyConsistent;
2301     break;
2302   }
2303   Lex.Lex();
2304   return false;
2305 }
2306 
2307 /// ParseOptionalStackAlignment
2308 ///   ::= /* empty */
2309 ///   ::= 'alignstack' '(' 4 ')'
2310 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2311   Alignment = 0;
2312   if (!EatIfPresent(lltok::kw_alignstack))
2313     return false;
2314   LocTy ParenLoc = Lex.getLoc();
2315   if (!EatIfPresent(lltok::lparen))
2316     return Error(ParenLoc, "expected '('");
2317   LocTy AlignLoc = Lex.getLoc();
2318   if (ParseUInt32(Alignment)) return true;
2319   ParenLoc = Lex.getLoc();
2320   if (!EatIfPresent(lltok::rparen))
2321     return Error(ParenLoc, "expected ')'");
2322   if (!isPowerOf2_32(Alignment))
2323     return Error(AlignLoc, "stack alignment is not a power of two");
2324   return false;
2325 }
2326 
2327 /// ParseIndexList - This parses the index list for an insert/extractvalue
2328 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2329 /// comma at the end of the line and find that it is followed by metadata.
2330 /// Clients that don't allow metadata can call the version of this function that
2331 /// only takes one argument.
2332 ///
2333 /// ParseIndexList
2334 ///    ::=  (',' uint32)+
2335 ///
2336 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2337                               bool &AteExtraComma) {
2338   AteExtraComma = false;
2339 
2340   if (Lex.getKind() != lltok::comma)
2341     return TokError("expected ',' as start of index list");
2342 
2343   while (EatIfPresent(lltok::comma)) {
2344     if (Lex.getKind() == lltok::MetadataVar) {
2345       if (Indices.empty()) return TokError("expected index");
2346       AteExtraComma = true;
2347       return false;
2348     }
2349     unsigned Idx = 0;
2350     if (ParseUInt32(Idx)) return true;
2351     Indices.push_back(Idx);
2352   }
2353 
2354   return false;
2355 }
2356 
2357 //===----------------------------------------------------------------------===//
2358 // Type Parsing.
2359 //===----------------------------------------------------------------------===//
2360 
2361 /// ParseType - Parse a type.
2362 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2363   SMLoc TypeLoc = Lex.getLoc();
2364   switch (Lex.getKind()) {
2365   default:
2366     return TokError(Msg);
2367   case lltok::Type:
2368     // Type ::= 'float' | 'void' (etc)
2369     Result = Lex.getTyVal();
2370     Lex.Lex();
2371     break;
2372   case lltok::lbrace:
2373     // Type ::= StructType
2374     if (ParseAnonStructType(Result, false))
2375       return true;
2376     break;
2377   case lltok::lsquare:
2378     // Type ::= '[' ... ']'
2379     Lex.Lex(); // eat the lsquare.
2380     if (ParseArrayVectorType(Result, false))
2381       return true;
2382     break;
2383   case lltok::less: // Either vector or packed struct.
2384     // Type ::= '<' ... '>'
2385     Lex.Lex();
2386     if (Lex.getKind() == lltok::lbrace) {
2387       if (ParseAnonStructType(Result, true) ||
2388           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2389         return true;
2390     } else if (ParseArrayVectorType(Result, true))
2391       return true;
2392     break;
2393   case lltok::LocalVar: {
2394     // Type ::= %foo
2395     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2396 
2397     // If the type hasn't been defined yet, create a forward definition and
2398     // remember where that forward def'n was seen (in case it never is defined).
2399     if (!Entry.first) {
2400       Entry.first = StructType::create(Context, Lex.getStrVal());
2401       Entry.second = Lex.getLoc();
2402     }
2403     Result = Entry.first;
2404     Lex.Lex();
2405     break;
2406   }
2407 
2408   case lltok::LocalVarID: {
2409     // Type ::= %4
2410     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2411 
2412     // If the type hasn't been defined yet, create a forward definition and
2413     // remember where that forward def'n was seen (in case it never is defined).
2414     if (!Entry.first) {
2415       Entry.first = StructType::create(Context);
2416       Entry.second = Lex.getLoc();
2417     }
2418     Result = Entry.first;
2419     Lex.Lex();
2420     break;
2421   }
2422   }
2423 
2424   // Parse the type suffixes.
2425   while (true) {
2426     switch (Lex.getKind()) {
2427     // End of type.
2428     default:
2429       if (!AllowVoid && Result->isVoidTy())
2430         return Error(TypeLoc, "void type only allowed for function results");
2431       return false;
2432 
2433     // Type ::= Type '*'
2434     case lltok::star:
2435       if (Result->isLabelTy())
2436         return TokError("basic block pointers are invalid");
2437       if (Result->isVoidTy())
2438         return TokError("pointers to void are invalid - use i8* instead");
2439       if (!PointerType::isValidElementType(Result))
2440         return TokError("pointer to this type is invalid");
2441       Result = PointerType::getUnqual(Result);
2442       Lex.Lex();
2443       break;
2444 
2445     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2446     case lltok::kw_addrspace: {
2447       if (Result->isLabelTy())
2448         return TokError("basic block pointers are invalid");
2449       if (Result->isVoidTy())
2450         return TokError("pointers to void are invalid; use i8* instead");
2451       if (!PointerType::isValidElementType(Result))
2452         return TokError("pointer to this type is invalid");
2453       unsigned AddrSpace;
2454       if (ParseOptionalAddrSpace(AddrSpace) ||
2455           ParseToken(lltok::star, "expected '*' in address space"))
2456         return true;
2457 
2458       Result = PointerType::get(Result, AddrSpace);
2459       break;
2460     }
2461 
2462     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2463     case lltok::lparen:
2464       if (ParseFunctionType(Result))
2465         return true;
2466       break;
2467     }
2468   }
2469 }
2470 
2471 /// ParseParameterList
2472 ///    ::= '(' ')'
2473 ///    ::= '(' Arg (',' Arg)* ')'
2474 ///  Arg
2475 ///    ::= Type OptionalAttributes Value OptionalAttributes
2476 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2477                                   PerFunctionState &PFS, bool IsMustTailCall,
2478                                   bool InVarArgsFunc) {
2479   if (ParseToken(lltok::lparen, "expected '(' in call"))
2480     return true;
2481 
2482   while (Lex.getKind() != lltok::rparen) {
2483     // If this isn't the first argument, we need a comma.
2484     if (!ArgList.empty() &&
2485         ParseToken(lltok::comma, "expected ',' in argument list"))
2486       return true;
2487 
2488     // Parse an ellipsis if this is a musttail call in a variadic function.
2489     if (Lex.getKind() == lltok::dotdotdot) {
2490       const char *Msg = "unexpected ellipsis in argument list for ";
2491       if (!IsMustTailCall)
2492         return TokError(Twine(Msg) + "non-musttail call");
2493       if (!InVarArgsFunc)
2494         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2495       Lex.Lex();  // Lex the '...', it is purely for readability.
2496       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2497     }
2498 
2499     // Parse the argument.
2500     LocTy ArgLoc;
2501     Type *ArgTy = nullptr;
2502     AttrBuilder ArgAttrs;
2503     Value *V;
2504     if (ParseType(ArgTy, ArgLoc))
2505       return true;
2506 
2507     if (ArgTy->isMetadataTy()) {
2508       if (ParseMetadataAsValue(V, PFS))
2509         return true;
2510     } else {
2511       // Otherwise, handle normal operands.
2512       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2513         return true;
2514     }
2515     ArgList.push_back(ParamInfo(
2516         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2517   }
2518 
2519   if (IsMustTailCall && InVarArgsFunc)
2520     return TokError("expected '...' at end of argument list for musttail call "
2521                     "in varargs function");
2522 
2523   Lex.Lex();  // Lex the ')'.
2524   return false;
2525 }
2526 
2527 /// ParseByValWithOptionalType
2528 ///   ::= byval
2529 ///   ::= byval(<ty>)
2530 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2531   Result = nullptr;
2532   if (!EatIfPresent(lltok::kw_byval))
2533     return true;
2534   if (!EatIfPresent(lltok::lparen))
2535     return false;
2536   if (ParseType(Result))
2537     return true;
2538   if (!EatIfPresent(lltok::rparen))
2539     return Error(Lex.getLoc(), "expected ')'");
2540   return false;
2541 }
2542 
2543 /// ParsePreallocated
2544 ///   ::= preallocated(<ty>)
2545 bool LLParser::ParsePreallocated(Type *&Result) {
2546   Result = nullptr;
2547   if (!EatIfPresent(lltok::kw_preallocated))
2548     return true;
2549   if (!EatIfPresent(lltok::lparen))
2550     return Error(Lex.getLoc(), "expected '('");
2551   if (ParseType(Result))
2552     return true;
2553   if (!EatIfPresent(lltok::rparen))
2554     return Error(Lex.getLoc(), "expected ')'");
2555   return false;
2556 }
2557 
2558 /// ParseOptionalOperandBundles
2559 ///    ::= /*empty*/
2560 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2561 ///
2562 /// OperandBundle
2563 ///    ::= bundle-tag '(' ')'
2564 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2565 ///
2566 /// bundle-tag ::= String Constant
2567 bool LLParser::ParseOptionalOperandBundles(
2568     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2569   LocTy BeginLoc = Lex.getLoc();
2570   if (!EatIfPresent(lltok::lsquare))
2571     return false;
2572 
2573   while (Lex.getKind() != lltok::rsquare) {
2574     // If this isn't the first operand bundle, we need a comma.
2575     if (!BundleList.empty() &&
2576         ParseToken(lltok::comma, "expected ',' in input list"))
2577       return true;
2578 
2579     std::string Tag;
2580     if (ParseStringConstant(Tag))
2581       return true;
2582 
2583     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2584       return true;
2585 
2586     std::vector<Value *> Inputs;
2587     while (Lex.getKind() != lltok::rparen) {
2588       // If this isn't the first input, we need a comma.
2589       if (!Inputs.empty() &&
2590           ParseToken(lltok::comma, "expected ',' in input list"))
2591         return true;
2592 
2593       Type *Ty = nullptr;
2594       Value *Input = nullptr;
2595       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2596         return true;
2597       Inputs.push_back(Input);
2598     }
2599 
2600     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2601 
2602     Lex.Lex(); // Lex the ')'.
2603   }
2604 
2605   if (BundleList.empty())
2606     return Error(BeginLoc, "operand bundle set must not be empty");
2607 
2608   Lex.Lex(); // Lex the ']'.
2609   return false;
2610 }
2611 
2612 /// ParseArgumentList - Parse the argument list for a function type or function
2613 /// prototype.
2614 ///   ::= '(' ArgTypeListI ')'
2615 /// ArgTypeListI
2616 ///   ::= /*empty*/
2617 ///   ::= '...'
2618 ///   ::= ArgTypeList ',' '...'
2619 ///   ::= ArgType (',' ArgType)*
2620 ///
2621 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2622                                  bool &isVarArg){
2623   unsigned CurValID = 0;
2624   isVarArg = false;
2625   assert(Lex.getKind() == lltok::lparen);
2626   Lex.Lex(); // eat the (.
2627 
2628   if (Lex.getKind() == lltok::rparen) {
2629     // empty
2630   } else if (Lex.getKind() == lltok::dotdotdot) {
2631     isVarArg = true;
2632     Lex.Lex();
2633   } else {
2634     LocTy TypeLoc = Lex.getLoc();
2635     Type *ArgTy = nullptr;
2636     AttrBuilder Attrs;
2637     std::string Name;
2638 
2639     if (ParseType(ArgTy) ||
2640         ParseOptionalParamAttrs(Attrs)) return true;
2641 
2642     if (ArgTy->isVoidTy())
2643       return Error(TypeLoc, "argument can not have void type");
2644 
2645     if (Lex.getKind() == lltok::LocalVar) {
2646       Name = Lex.getStrVal();
2647       Lex.Lex();
2648     } else if (Lex.getKind() == lltok::LocalVarID) {
2649       if (Lex.getUIntVal() != CurValID)
2650         return Error(TypeLoc, "argument expected to be numbered '%" +
2651                                   Twine(CurValID) + "'");
2652       ++CurValID;
2653       Lex.Lex();
2654     }
2655 
2656     if (!FunctionType::isValidArgumentType(ArgTy))
2657       return Error(TypeLoc, "invalid type for function argument");
2658 
2659     ArgList.emplace_back(TypeLoc, ArgTy,
2660                          AttributeSet::get(ArgTy->getContext(), Attrs),
2661                          std::move(Name));
2662 
2663     while (EatIfPresent(lltok::comma)) {
2664       // Handle ... at end of arg list.
2665       if (EatIfPresent(lltok::dotdotdot)) {
2666         isVarArg = true;
2667         break;
2668       }
2669 
2670       // Otherwise must be an argument type.
2671       TypeLoc = Lex.getLoc();
2672       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2673 
2674       if (ArgTy->isVoidTy())
2675         return Error(TypeLoc, "argument can not have void type");
2676 
2677       if (Lex.getKind() == lltok::LocalVar) {
2678         Name = Lex.getStrVal();
2679         Lex.Lex();
2680       } else {
2681         if (Lex.getKind() == lltok::LocalVarID) {
2682           if (Lex.getUIntVal() != CurValID)
2683             return Error(TypeLoc, "argument expected to be numbered '%" +
2684                                       Twine(CurValID) + "'");
2685           Lex.Lex();
2686         }
2687         ++CurValID;
2688         Name = "";
2689       }
2690 
2691       if (!ArgTy->isFirstClassType())
2692         return Error(TypeLoc, "invalid type for function argument");
2693 
2694       ArgList.emplace_back(TypeLoc, ArgTy,
2695                            AttributeSet::get(ArgTy->getContext(), Attrs),
2696                            std::move(Name));
2697     }
2698   }
2699 
2700   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2701 }
2702 
2703 /// ParseFunctionType
2704 ///  ::= Type ArgumentList OptionalAttrs
2705 bool LLParser::ParseFunctionType(Type *&Result) {
2706   assert(Lex.getKind() == lltok::lparen);
2707 
2708   if (!FunctionType::isValidReturnType(Result))
2709     return TokError("invalid function return type");
2710 
2711   SmallVector<ArgInfo, 8> ArgList;
2712   bool isVarArg;
2713   if (ParseArgumentList(ArgList, isVarArg))
2714     return true;
2715 
2716   // Reject names on the arguments lists.
2717   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2718     if (!ArgList[i].Name.empty())
2719       return Error(ArgList[i].Loc, "argument name invalid in function type");
2720     if (ArgList[i].Attrs.hasAttributes())
2721       return Error(ArgList[i].Loc,
2722                    "argument attributes invalid in function type");
2723   }
2724 
2725   SmallVector<Type*, 16> ArgListTy;
2726   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2727     ArgListTy.push_back(ArgList[i].Ty);
2728 
2729   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2730   return false;
2731 }
2732 
2733 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2734 /// other structs.
2735 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2736   SmallVector<Type*, 8> Elts;
2737   if (ParseStructBody(Elts)) return true;
2738 
2739   Result = StructType::get(Context, Elts, Packed);
2740   return false;
2741 }
2742 
2743 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2744 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2745                                      std::pair<Type*, LocTy> &Entry,
2746                                      Type *&ResultTy) {
2747   // If the type was already defined, diagnose the redefinition.
2748   if (Entry.first && !Entry.second.isValid())
2749     return Error(TypeLoc, "redefinition of type");
2750 
2751   // If we have opaque, just return without filling in the definition for the
2752   // struct.  This counts as a definition as far as the .ll file goes.
2753   if (EatIfPresent(lltok::kw_opaque)) {
2754     // This type is being defined, so clear the location to indicate this.
2755     Entry.second = SMLoc();
2756 
2757     // If this type number has never been uttered, create it.
2758     if (!Entry.first)
2759       Entry.first = StructType::create(Context, Name);
2760     ResultTy = Entry.first;
2761     return false;
2762   }
2763 
2764   // If the type starts with '<', then it is either a packed struct or a vector.
2765   bool isPacked = EatIfPresent(lltok::less);
2766 
2767   // If we don't have a struct, then we have a random type alias, which we
2768   // accept for compatibility with old files.  These types are not allowed to be
2769   // forward referenced and not allowed to be recursive.
2770   if (Lex.getKind() != lltok::lbrace) {
2771     if (Entry.first)
2772       return Error(TypeLoc, "forward references to non-struct type");
2773 
2774     ResultTy = nullptr;
2775     if (isPacked)
2776       return ParseArrayVectorType(ResultTy, true);
2777     return ParseType(ResultTy);
2778   }
2779 
2780   // This type is being defined, so clear the location to indicate this.
2781   Entry.second = SMLoc();
2782 
2783   // If this type number has never been uttered, create it.
2784   if (!Entry.first)
2785     Entry.first = StructType::create(Context, Name);
2786 
2787   StructType *STy = cast<StructType>(Entry.first);
2788 
2789   SmallVector<Type*, 8> Body;
2790   if (ParseStructBody(Body) ||
2791       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2792     return true;
2793 
2794   STy->setBody(Body, isPacked);
2795   ResultTy = STy;
2796   return false;
2797 }
2798 
2799 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2800 ///   StructType
2801 ///     ::= '{' '}'
2802 ///     ::= '{' Type (',' Type)* '}'
2803 ///     ::= '<' '{' '}' '>'
2804 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2805 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2806   assert(Lex.getKind() == lltok::lbrace);
2807   Lex.Lex(); // Consume the '{'
2808 
2809   // Handle the empty struct.
2810   if (EatIfPresent(lltok::rbrace))
2811     return false;
2812 
2813   LocTy EltTyLoc = Lex.getLoc();
2814   Type *Ty = nullptr;
2815   if (ParseType(Ty)) return true;
2816   Body.push_back(Ty);
2817 
2818   if (!StructType::isValidElementType(Ty))
2819     return Error(EltTyLoc, "invalid element type for struct");
2820 
2821   while (EatIfPresent(lltok::comma)) {
2822     EltTyLoc = Lex.getLoc();
2823     if (ParseType(Ty)) return true;
2824 
2825     if (!StructType::isValidElementType(Ty))
2826       return Error(EltTyLoc, "invalid element type for struct");
2827 
2828     Body.push_back(Ty);
2829   }
2830 
2831   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2832 }
2833 
2834 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2835 /// token has already been consumed.
2836 ///   Type
2837 ///     ::= '[' APSINTVAL 'x' Types ']'
2838 ///     ::= '<' APSINTVAL 'x' Types '>'
2839 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2840 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2841   bool Scalable = false;
2842 
2843   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2844     Lex.Lex(); // consume the 'vscale'
2845     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2846       return true;
2847 
2848     Scalable = true;
2849   }
2850 
2851   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2852       Lex.getAPSIntVal().getBitWidth() > 64)
2853     return TokError("expected number in address space");
2854 
2855   LocTy SizeLoc = Lex.getLoc();
2856   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2857   Lex.Lex();
2858 
2859   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2860       return true;
2861 
2862   LocTy TypeLoc = Lex.getLoc();
2863   Type *EltTy = nullptr;
2864   if (ParseType(EltTy)) return true;
2865 
2866   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2867                  "expected end of sequential type"))
2868     return true;
2869 
2870   if (isVector) {
2871     if (Size == 0)
2872       return Error(SizeLoc, "zero element vector is illegal");
2873     if ((unsigned)Size != Size)
2874       return Error(SizeLoc, "size too large for vector");
2875     if (!VectorType::isValidElementType(EltTy))
2876       return Error(TypeLoc, "invalid vector element type");
2877     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2878   } else {
2879     if (!ArrayType::isValidElementType(EltTy))
2880       return Error(TypeLoc, "invalid array element type");
2881     Result = ArrayType::get(EltTy, Size);
2882   }
2883   return false;
2884 }
2885 
2886 //===----------------------------------------------------------------------===//
2887 // Function Semantic Analysis.
2888 //===----------------------------------------------------------------------===//
2889 
2890 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2891                                              int functionNumber)
2892   : P(p), F(f), FunctionNumber(functionNumber) {
2893 
2894   // Insert unnamed arguments into the NumberedVals list.
2895   for (Argument &A : F.args())
2896     if (!A.hasName())
2897       NumberedVals.push_back(&A);
2898 }
2899 
2900 LLParser::PerFunctionState::~PerFunctionState() {
2901   // If there were any forward referenced non-basicblock values, delete them.
2902 
2903   for (const auto &P : ForwardRefVals) {
2904     if (isa<BasicBlock>(P.second.first))
2905       continue;
2906     P.second.first->replaceAllUsesWith(
2907         UndefValue::get(P.second.first->getType()));
2908     P.second.first->deleteValue();
2909   }
2910 
2911   for (const auto &P : ForwardRefValIDs) {
2912     if (isa<BasicBlock>(P.second.first))
2913       continue;
2914     P.second.first->replaceAllUsesWith(
2915         UndefValue::get(P.second.first->getType()));
2916     P.second.first->deleteValue();
2917   }
2918 }
2919 
2920 bool LLParser::PerFunctionState::FinishFunction() {
2921   if (!ForwardRefVals.empty())
2922     return P.Error(ForwardRefVals.begin()->second.second,
2923                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2924                    "'");
2925   if (!ForwardRefValIDs.empty())
2926     return P.Error(ForwardRefValIDs.begin()->second.second,
2927                    "use of undefined value '%" +
2928                    Twine(ForwardRefValIDs.begin()->first) + "'");
2929   return false;
2930 }
2931 
2932 /// GetVal - Get a value with the specified name or ID, creating a
2933 /// forward reference record if needed.  This can return null if the value
2934 /// exists but does not have the right type.
2935 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2936                                           LocTy Loc, bool IsCall) {
2937   // Look this name up in the normal function symbol table.
2938   Value *Val = F.getValueSymbolTable()->lookup(Name);
2939 
2940   // If this is a forward reference for the value, see if we already created a
2941   // forward ref record.
2942   if (!Val) {
2943     auto I = ForwardRefVals.find(Name);
2944     if (I != ForwardRefVals.end())
2945       Val = I->second.first;
2946   }
2947 
2948   // If we have the value in the symbol table or fwd-ref table, return it.
2949   if (Val)
2950     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2951 
2952   // Don't make placeholders with invalid type.
2953   if (!Ty->isFirstClassType()) {
2954     P.Error(Loc, "invalid use of a non-first-class type");
2955     return nullptr;
2956   }
2957 
2958   // Otherwise, create a new forward reference for this value and remember it.
2959   Value *FwdVal;
2960   if (Ty->isLabelTy()) {
2961     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2962   } else {
2963     FwdVal = new Argument(Ty, Name);
2964   }
2965 
2966   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2967   return FwdVal;
2968 }
2969 
2970 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2971                                           bool IsCall) {
2972   // Look this name up in the normal function symbol table.
2973   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2974 
2975   // If this is a forward reference for the value, see if we already created a
2976   // forward ref record.
2977   if (!Val) {
2978     auto I = ForwardRefValIDs.find(ID);
2979     if (I != ForwardRefValIDs.end())
2980       Val = I->second.first;
2981   }
2982 
2983   // If we have the value in the symbol table or fwd-ref table, return it.
2984   if (Val)
2985     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2986 
2987   if (!Ty->isFirstClassType()) {
2988     P.Error(Loc, "invalid use of a non-first-class type");
2989     return nullptr;
2990   }
2991 
2992   // Otherwise, create a new forward reference for this value and remember it.
2993   Value *FwdVal;
2994   if (Ty->isLabelTy()) {
2995     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2996   } else {
2997     FwdVal = new Argument(Ty);
2998   }
2999 
3000   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3001   return FwdVal;
3002 }
3003 
3004 /// SetInstName - After an instruction is parsed and inserted into its
3005 /// basic block, this installs its name.
3006 bool LLParser::PerFunctionState::SetInstName(int NameID,
3007                                              const std::string &NameStr,
3008                                              LocTy NameLoc, Instruction *Inst) {
3009   // If this instruction has void type, it cannot have a name or ID specified.
3010   if (Inst->getType()->isVoidTy()) {
3011     if (NameID != -1 || !NameStr.empty())
3012       return P.Error(NameLoc, "instructions returning void cannot have a name");
3013     return false;
3014   }
3015 
3016   // If this was a numbered instruction, verify that the instruction is the
3017   // expected value and resolve any forward references.
3018   if (NameStr.empty()) {
3019     // If neither a name nor an ID was specified, just use the next ID.
3020     if (NameID == -1)
3021       NameID = NumberedVals.size();
3022 
3023     if (unsigned(NameID) != NumberedVals.size())
3024       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3025                      Twine(NumberedVals.size()) + "'");
3026 
3027     auto FI = ForwardRefValIDs.find(NameID);
3028     if (FI != ForwardRefValIDs.end()) {
3029       Value *Sentinel = FI->second.first;
3030       if (Sentinel->getType() != Inst->getType())
3031         return P.Error(NameLoc, "instruction forward referenced with type '" +
3032                        getTypeString(FI->second.first->getType()) + "'");
3033 
3034       Sentinel->replaceAllUsesWith(Inst);
3035       Sentinel->deleteValue();
3036       ForwardRefValIDs.erase(FI);
3037     }
3038 
3039     NumberedVals.push_back(Inst);
3040     return false;
3041   }
3042 
3043   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3044   auto FI = ForwardRefVals.find(NameStr);
3045   if (FI != ForwardRefVals.end()) {
3046     Value *Sentinel = FI->second.first;
3047     if (Sentinel->getType() != Inst->getType())
3048       return P.Error(NameLoc, "instruction forward referenced with type '" +
3049                      getTypeString(FI->second.first->getType()) + "'");
3050 
3051     Sentinel->replaceAllUsesWith(Inst);
3052     Sentinel->deleteValue();
3053     ForwardRefVals.erase(FI);
3054   }
3055 
3056   // Set the name on the instruction.
3057   Inst->setName(NameStr);
3058 
3059   if (Inst->getName() != NameStr)
3060     return P.Error(NameLoc, "multiple definition of local value named '" +
3061                    NameStr + "'");
3062   return false;
3063 }
3064 
3065 /// GetBB - Get a basic block with the specified name or ID, creating a
3066 /// forward reference record if needed.
3067 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3068                                               LocTy Loc) {
3069   return dyn_cast_or_null<BasicBlock>(
3070       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3071 }
3072 
3073 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3074   return dyn_cast_or_null<BasicBlock>(
3075       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3076 }
3077 
3078 /// DefineBB - Define the specified basic block, which is either named or
3079 /// unnamed.  If there is an error, this returns null otherwise it returns
3080 /// the block being defined.
3081 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3082                                                  int NameID, LocTy Loc) {
3083   BasicBlock *BB;
3084   if (Name.empty()) {
3085     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3086       P.Error(Loc, "label expected to be numbered '" +
3087                        Twine(NumberedVals.size()) + "'");
3088       return nullptr;
3089     }
3090     BB = GetBB(NumberedVals.size(), Loc);
3091     if (!BB) {
3092       P.Error(Loc, "unable to create block numbered '" +
3093                        Twine(NumberedVals.size()) + "'");
3094       return nullptr;
3095     }
3096   } else {
3097     BB = GetBB(Name, Loc);
3098     if (!BB) {
3099       P.Error(Loc, "unable to create block named '" + Name + "'");
3100       return nullptr;
3101     }
3102   }
3103 
3104   // Move the block to the end of the function.  Forward ref'd blocks are
3105   // inserted wherever they happen to be referenced.
3106   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3107 
3108   // Remove the block from forward ref sets.
3109   if (Name.empty()) {
3110     ForwardRefValIDs.erase(NumberedVals.size());
3111     NumberedVals.push_back(BB);
3112   } else {
3113     // BB forward references are already in the function symbol table.
3114     ForwardRefVals.erase(Name);
3115   }
3116 
3117   return BB;
3118 }
3119 
3120 //===----------------------------------------------------------------------===//
3121 // Constants.
3122 //===----------------------------------------------------------------------===//
3123 
3124 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3125 /// type implied.  For example, if we parse "4" we don't know what integer type
3126 /// it has.  The value will later be combined with its type and checked for
3127 /// sanity.  PFS is used to convert function-local operands of metadata (since
3128 /// metadata operands are not just parsed here but also converted to values).
3129 /// PFS can be null when we are not parsing metadata values inside a function.
3130 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3131   ID.Loc = Lex.getLoc();
3132   switch (Lex.getKind()) {
3133   default: return TokError("expected value token");
3134   case lltok::GlobalID:  // @42
3135     ID.UIntVal = Lex.getUIntVal();
3136     ID.Kind = ValID::t_GlobalID;
3137     break;
3138   case lltok::GlobalVar:  // @foo
3139     ID.StrVal = Lex.getStrVal();
3140     ID.Kind = ValID::t_GlobalName;
3141     break;
3142   case lltok::LocalVarID:  // %42
3143     ID.UIntVal = Lex.getUIntVal();
3144     ID.Kind = ValID::t_LocalID;
3145     break;
3146   case lltok::LocalVar:  // %foo
3147     ID.StrVal = Lex.getStrVal();
3148     ID.Kind = ValID::t_LocalName;
3149     break;
3150   case lltok::APSInt:
3151     ID.APSIntVal = Lex.getAPSIntVal();
3152     ID.Kind = ValID::t_APSInt;
3153     break;
3154   case lltok::APFloat:
3155     ID.APFloatVal = Lex.getAPFloatVal();
3156     ID.Kind = ValID::t_APFloat;
3157     break;
3158   case lltok::kw_true:
3159     ID.ConstantVal = ConstantInt::getTrue(Context);
3160     ID.Kind = ValID::t_Constant;
3161     break;
3162   case lltok::kw_false:
3163     ID.ConstantVal = ConstantInt::getFalse(Context);
3164     ID.Kind = ValID::t_Constant;
3165     break;
3166   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3167   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3168   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3169   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3170 
3171   case lltok::lbrace: {
3172     // ValID ::= '{' ConstVector '}'
3173     Lex.Lex();
3174     SmallVector<Constant*, 16> Elts;
3175     if (ParseGlobalValueVector(Elts) ||
3176         ParseToken(lltok::rbrace, "expected end of struct constant"))
3177       return true;
3178 
3179     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3180     ID.UIntVal = Elts.size();
3181     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3182            Elts.size() * sizeof(Elts[0]));
3183     ID.Kind = ValID::t_ConstantStruct;
3184     return false;
3185   }
3186   case lltok::less: {
3187     // ValID ::= '<' ConstVector '>'         --> Vector.
3188     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3189     Lex.Lex();
3190     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3191 
3192     SmallVector<Constant*, 16> Elts;
3193     LocTy FirstEltLoc = Lex.getLoc();
3194     if (ParseGlobalValueVector(Elts) ||
3195         (isPackedStruct &&
3196          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3197         ParseToken(lltok::greater, "expected end of constant"))
3198       return true;
3199 
3200     if (isPackedStruct) {
3201       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3202       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3203              Elts.size() * sizeof(Elts[0]));
3204       ID.UIntVal = Elts.size();
3205       ID.Kind = ValID::t_PackedConstantStruct;
3206       return false;
3207     }
3208 
3209     if (Elts.empty())
3210       return Error(ID.Loc, "constant vector must not be empty");
3211 
3212     if (!Elts[0]->getType()->isIntegerTy() &&
3213         !Elts[0]->getType()->isFloatingPointTy() &&
3214         !Elts[0]->getType()->isPointerTy())
3215       return Error(FirstEltLoc,
3216             "vector elements must have integer, pointer or floating point type");
3217 
3218     // Verify that all the vector elements have the same type.
3219     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3220       if (Elts[i]->getType() != Elts[0]->getType())
3221         return Error(FirstEltLoc,
3222                      "vector element #" + Twine(i) +
3223                     " is not of type '" + getTypeString(Elts[0]->getType()));
3224 
3225     ID.ConstantVal = ConstantVector::get(Elts);
3226     ID.Kind = ValID::t_Constant;
3227     return false;
3228   }
3229   case lltok::lsquare: {   // Array Constant
3230     Lex.Lex();
3231     SmallVector<Constant*, 16> Elts;
3232     LocTy FirstEltLoc = Lex.getLoc();
3233     if (ParseGlobalValueVector(Elts) ||
3234         ParseToken(lltok::rsquare, "expected end of array constant"))
3235       return true;
3236 
3237     // Handle empty element.
3238     if (Elts.empty()) {
3239       // Use undef instead of an array because it's inconvenient to determine
3240       // the element type at this point, there being no elements to examine.
3241       ID.Kind = ValID::t_EmptyArray;
3242       return false;
3243     }
3244 
3245     if (!Elts[0]->getType()->isFirstClassType())
3246       return Error(FirstEltLoc, "invalid array element type: " +
3247                    getTypeString(Elts[0]->getType()));
3248 
3249     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3250 
3251     // Verify all elements are correct type!
3252     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3253       if (Elts[i]->getType() != Elts[0]->getType())
3254         return Error(FirstEltLoc,
3255                      "array element #" + Twine(i) +
3256                      " is not of type '" + getTypeString(Elts[0]->getType()));
3257     }
3258 
3259     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3260     ID.Kind = ValID::t_Constant;
3261     return false;
3262   }
3263   case lltok::kw_c:  // c "foo"
3264     Lex.Lex();
3265     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3266                                                   false);
3267     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3268     ID.Kind = ValID::t_Constant;
3269     return false;
3270 
3271   case lltok::kw_asm: {
3272     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3273     //             STRINGCONSTANT
3274     bool HasSideEffect, AlignStack, AsmDialect;
3275     Lex.Lex();
3276     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3277         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3278         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3279         ParseStringConstant(ID.StrVal) ||
3280         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3281         ParseToken(lltok::StringConstant, "expected constraint string"))
3282       return true;
3283     ID.StrVal2 = Lex.getStrVal();
3284     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3285       (unsigned(AsmDialect)<<2);
3286     ID.Kind = ValID::t_InlineAsm;
3287     return false;
3288   }
3289 
3290   case lltok::kw_blockaddress: {
3291     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3292     Lex.Lex();
3293 
3294     ValID Fn, Label;
3295 
3296     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3297         ParseValID(Fn) ||
3298         ParseToken(lltok::comma, "expected comma in block address expression")||
3299         ParseValID(Label) ||
3300         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3301       return true;
3302 
3303     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3304       return Error(Fn.Loc, "expected function name in blockaddress");
3305     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3306       return Error(Label.Loc, "expected basic block name in blockaddress");
3307 
3308     // Try to find the function (but skip it if it's forward-referenced).
3309     GlobalValue *GV = nullptr;
3310     if (Fn.Kind == ValID::t_GlobalID) {
3311       if (Fn.UIntVal < NumberedVals.size())
3312         GV = NumberedVals[Fn.UIntVal];
3313     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3314       GV = M->getNamedValue(Fn.StrVal);
3315     }
3316     Function *F = nullptr;
3317     if (GV) {
3318       // Confirm that it's actually a function with a definition.
3319       if (!isa<Function>(GV))
3320         return Error(Fn.Loc, "expected function name in blockaddress");
3321       F = cast<Function>(GV);
3322       if (F->isDeclaration())
3323         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3324     }
3325 
3326     if (!F) {
3327       // Make a global variable as a placeholder for this reference.
3328       GlobalValue *&FwdRef =
3329           ForwardRefBlockAddresses.insert(std::make_pair(
3330                                               std::move(Fn),
3331                                               std::map<ValID, GlobalValue *>()))
3332               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3333               .first->second;
3334       if (!FwdRef)
3335         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3336                                     GlobalValue::InternalLinkage, nullptr, "");
3337       ID.ConstantVal = FwdRef;
3338       ID.Kind = ValID::t_Constant;
3339       return false;
3340     }
3341 
3342     // We found the function; now find the basic block.  Don't use PFS, since we
3343     // might be inside a constant expression.
3344     BasicBlock *BB;
3345     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3346       if (Label.Kind == ValID::t_LocalID)
3347         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3348       else
3349         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3350       if (!BB)
3351         return Error(Label.Loc, "referenced value is not a basic block");
3352     } else {
3353       if (Label.Kind == ValID::t_LocalID)
3354         return Error(Label.Loc, "cannot take address of numeric label after "
3355                                 "the function is defined");
3356       BB = dyn_cast_or_null<BasicBlock>(
3357           F->getValueSymbolTable()->lookup(Label.StrVal));
3358       if (!BB)
3359         return Error(Label.Loc, "referenced value is not a basic block");
3360     }
3361 
3362     ID.ConstantVal = BlockAddress::get(F, BB);
3363     ID.Kind = ValID::t_Constant;
3364     return false;
3365   }
3366 
3367   case lltok::kw_trunc:
3368   case lltok::kw_zext:
3369   case lltok::kw_sext:
3370   case lltok::kw_fptrunc:
3371   case lltok::kw_fpext:
3372   case lltok::kw_bitcast:
3373   case lltok::kw_addrspacecast:
3374   case lltok::kw_uitofp:
3375   case lltok::kw_sitofp:
3376   case lltok::kw_fptoui:
3377   case lltok::kw_fptosi:
3378   case lltok::kw_inttoptr:
3379   case lltok::kw_ptrtoint: {
3380     unsigned Opc = Lex.getUIntVal();
3381     Type *DestTy = nullptr;
3382     Constant *SrcVal;
3383     Lex.Lex();
3384     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3385         ParseGlobalTypeAndValue(SrcVal) ||
3386         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3387         ParseType(DestTy) ||
3388         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3389       return true;
3390     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3391       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3392                    getTypeString(SrcVal->getType()) + "' to '" +
3393                    getTypeString(DestTy) + "'");
3394     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3395                                                  SrcVal, DestTy);
3396     ID.Kind = ValID::t_Constant;
3397     return false;
3398   }
3399   case lltok::kw_extractvalue: {
3400     Lex.Lex();
3401     Constant *Val;
3402     SmallVector<unsigned, 4> Indices;
3403     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3404         ParseGlobalTypeAndValue(Val) ||
3405         ParseIndexList(Indices) ||
3406         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3407       return true;
3408 
3409     if (!Val->getType()->isAggregateType())
3410       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3411     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3412       return Error(ID.Loc, "invalid indices for extractvalue");
3413     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3414     ID.Kind = ValID::t_Constant;
3415     return false;
3416   }
3417   case lltok::kw_insertvalue: {
3418     Lex.Lex();
3419     Constant *Val0, *Val1;
3420     SmallVector<unsigned, 4> Indices;
3421     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3422         ParseGlobalTypeAndValue(Val0) ||
3423         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3424         ParseGlobalTypeAndValue(Val1) ||
3425         ParseIndexList(Indices) ||
3426         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3427       return true;
3428     if (!Val0->getType()->isAggregateType())
3429       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3430     Type *IndexedType =
3431         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3432     if (!IndexedType)
3433       return Error(ID.Loc, "invalid indices for insertvalue");
3434     if (IndexedType != Val1->getType())
3435       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3436                                getTypeString(Val1->getType()) +
3437                                "' instead of '" + getTypeString(IndexedType) +
3438                                "'");
3439     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3440     ID.Kind = ValID::t_Constant;
3441     return false;
3442   }
3443   case lltok::kw_icmp:
3444   case lltok::kw_fcmp: {
3445     unsigned PredVal, Opc = Lex.getUIntVal();
3446     Constant *Val0, *Val1;
3447     Lex.Lex();
3448     if (ParseCmpPredicate(PredVal, Opc) ||
3449         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3450         ParseGlobalTypeAndValue(Val0) ||
3451         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3452         ParseGlobalTypeAndValue(Val1) ||
3453         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3454       return true;
3455 
3456     if (Val0->getType() != Val1->getType())
3457       return Error(ID.Loc, "compare operands must have the same type");
3458 
3459     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3460 
3461     if (Opc == Instruction::FCmp) {
3462       if (!Val0->getType()->isFPOrFPVectorTy())
3463         return Error(ID.Loc, "fcmp requires floating point operands");
3464       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3465     } else {
3466       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3467       if (!Val0->getType()->isIntOrIntVectorTy() &&
3468           !Val0->getType()->isPtrOrPtrVectorTy())
3469         return Error(ID.Loc, "icmp requires pointer or integer operands");
3470       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3471     }
3472     ID.Kind = ValID::t_Constant;
3473     return false;
3474   }
3475 
3476   // Unary Operators.
3477   case lltok::kw_fneg: {
3478     unsigned Opc = Lex.getUIntVal();
3479     Constant *Val;
3480     Lex.Lex();
3481     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3482         ParseGlobalTypeAndValue(Val) ||
3483         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3484       return true;
3485 
3486     // Check that the type is valid for the operator.
3487     switch (Opc) {
3488     case Instruction::FNeg:
3489       if (!Val->getType()->isFPOrFPVectorTy())
3490         return Error(ID.Loc, "constexpr requires fp operands");
3491       break;
3492     default: llvm_unreachable("Unknown unary operator!");
3493     }
3494     unsigned Flags = 0;
3495     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3496     ID.ConstantVal = C;
3497     ID.Kind = ValID::t_Constant;
3498     return false;
3499   }
3500   // Binary Operators.
3501   case lltok::kw_add:
3502   case lltok::kw_fadd:
3503   case lltok::kw_sub:
3504   case lltok::kw_fsub:
3505   case lltok::kw_mul:
3506   case lltok::kw_fmul:
3507   case lltok::kw_udiv:
3508   case lltok::kw_sdiv:
3509   case lltok::kw_fdiv:
3510   case lltok::kw_urem:
3511   case lltok::kw_srem:
3512   case lltok::kw_frem:
3513   case lltok::kw_shl:
3514   case lltok::kw_lshr:
3515   case lltok::kw_ashr: {
3516     bool NUW = false;
3517     bool NSW = false;
3518     bool Exact = false;
3519     unsigned Opc = Lex.getUIntVal();
3520     Constant *Val0, *Val1;
3521     Lex.Lex();
3522     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3523         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3524       if (EatIfPresent(lltok::kw_nuw))
3525         NUW = true;
3526       if (EatIfPresent(lltok::kw_nsw)) {
3527         NSW = true;
3528         if (EatIfPresent(lltok::kw_nuw))
3529           NUW = true;
3530       }
3531     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3532                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3533       if (EatIfPresent(lltok::kw_exact))
3534         Exact = true;
3535     }
3536     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3537         ParseGlobalTypeAndValue(Val0) ||
3538         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3539         ParseGlobalTypeAndValue(Val1) ||
3540         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3541       return true;
3542     if (Val0->getType() != Val1->getType())
3543       return Error(ID.Loc, "operands of constexpr must have same type");
3544     // Check that the type is valid for the operator.
3545     switch (Opc) {
3546     case Instruction::Add:
3547     case Instruction::Sub:
3548     case Instruction::Mul:
3549     case Instruction::UDiv:
3550     case Instruction::SDiv:
3551     case Instruction::URem:
3552     case Instruction::SRem:
3553     case Instruction::Shl:
3554     case Instruction::AShr:
3555     case Instruction::LShr:
3556       if (!Val0->getType()->isIntOrIntVectorTy())
3557         return Error(ID.Loc, "constexpr requires integer operands");
3558       break;
3559     case Instruction::FAdd:
3560     case Instruction::FSub:
3561     case Instruction::FMul:
3562     case Instruction::FDiv:
3563     case Instruction::FRem:
3564       if (!Val0->getType()->isFPOrFPVectorTy())
3565         return Error(ID.Loc, "constexpr requires fp operands");
3566       break;
3567     default: llvm_unreachable("Unknown binary operator!");
3568     }
3569     unsigned Flags = 0;
3570     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3571     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3572     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3573     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3574     ID.ConstantVal = C;
3575     ID.Kind = ValID::t_Constant;
3576     return false;
3577   }
3578 
3579   // Logical Operations
3580   case lltok::kw_and:
3581   case lltok::kw_or:
3582   case lltok::kw_xor: {
3583     unsigned Opc = Lex.getUIntVal();
3584     Constant *Val0, *Val1;
3585     Lex.Lex();
3586     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3587         ParseGlobalTypeAndValue(Val0) ||
3588         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3589         ParseGlobalTypeAndValue(Val1) ||
3590         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3591       return true;
3592     if (Val0->getType() != Val1->getType())
3593       return Error(ID.Loc, "operands of constexpr must have same type");
3594     if (!Val0->getType()->isIntOrIntVectorTy())
3595       return Error(ID.Loc,
3596                    "constexpr requires integer or integer vector operands");
3597     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3598     ID.Kind = ValID::t_Constant;
3599     return false;
3600   }
3601 
3602   case lltok::kw_getelementptr:
3603   case lltok::kw_shufflevector:
3604   case lltok::kw_insertelement:
3605   case lltok::kw_extractelement:
3606   case lltok::kw_select: {
3607     unsigned Opc = Lex.getUIntVal();
3608     SmallVector<Constant*, 16> Elts;
3609     bool InBounds = false;
3610     Type *Ty;
3611     Lex.Lex();
3612 
3613     if (Opc == Instruction::GetElementPtr)
3614       InBounds = EatIfPresent(lltok::kw_inbounds);
3615 
3616     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3617       return true;
3618 
3619     LocTy ExplicitTypeLoc = Lex.getLoc();
3620     if (Opc == Instruction::GetElementPtr) {
3621       if (ParseType(Ty) ||
3622           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3623         return true;
3624     }
3625 
3626     Optional<unsigned> InRangeOp;
3627     if (ParseGlobalValueVector(
3628             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3629         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3630       return true;
3631 
3632     if (Opc == Instruction::GetElementPtr) {
3633       if (Elts.size() == 0 ||
3634           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3635         return Error(ID.Loc, "base of getelementptr must be a pointer");
3636 
3637       Type *BaseType = Elts[0]->getType();
3638       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3639       if (Ty != BasePointerType->getElementType())
3640         return Error(
3641             ExplicitTypeLoc,
3642             "explicit pointee type doesn't match operand's pointee type");
3643 
3644       unsigned GEPWidth = BaseType->isVectorTy()
3645                               ? cast<VectorType>(BaseType)->getNumElements()
3646                               : 0;
3647 
3648       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3649       for (Constant *Val : Indices) {
3650         Type *ValTy = Val->getType();
3651         if (!ValTy->isIntOrIntVectorTy())
3652           return Error(ID.Loc, "getelementptr index must be an integer");
3653         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3654           unsigned ValNumEl = ValVTy->getNumElements();
3655           if (GEPWidth && (ValNumEl != GEPWidth))
3656             return Error(
3657                 ID.Loc,
3658                 "getelementptr vector index has a wrong number of elements");
3659           // GEPWidth may have been unknown because the base is a scalar,
3660           // but it is known now.
3661           GEPWidth = ValNumEl;
3662         }
3663       }
3664 
3665       SmallPtrSet<Type*, 4> Visited;
3666       if (!Indices.empty() && !Ty->isSized(&Visited))
3667         return Error(ID.Loc, "base element of getelementptr must be sized");
3668 
3669       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3670         return Error(ID.Loc, "invalid getelementptr indices");
3671 
3672       if (InRangeOp) {
3673         if (*InRangeOp == 0)
3674           return Error(ID.Loc,
3675                        "inrange keyword may not appear on pointer operand");
3676         --*InRangeOp;
3677       }
3678 
3679       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3680                                                       InBounds, InRangeOp);
3681     } else if (Opc == Instruction::Select) {
3682       if (Elts.size() != 3)
3683         return Error(ID.Loc, "expected three operands to select");
3684       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3685                                                               Elts[2]))
3686         return Error(ID.Loc, Reason);
3687       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3688     } else if (Opc == Instruction::ShuffleVector) {
3689       if (Elts.size() != 3)
3690         return Error(ID.Loc, "expected three operands to shufflevector");
3691       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3692         return Error(ID.Loc, "invalid operands to shufflevector");
3693       SmallVector<int, 16> Mask;
3694       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3695       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3696     } else if (Opc == Instruction::ExtractElement) {
3697       if (Elts.size() != 2)
3698         return Error(ID.Loc, "expected two operands to extractelement");
3699       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3700         return Error(ID.Loc, "invalid extractelement operands");
3701       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3702     } else {
3703       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3704       if (Elts.size() != 3)
3705       return Error(ID.Loc, "expected three operands to insertelement");
3706       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3707         return Error(ID.Loc, "invalid insertelement operands");
3708       ID.ConstantVal =
3709                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3710     }
3711 
3712     ID.Kind = ValID::t_Constant;
3713     return false;
3714   }
3715   }
3716 
3717   Lex.Lex();
3718   return false;
3719 }
3720 
3721 /// ParseGlobalValue - Parse a global value with the specified type.
3722 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3723   C = nullptr;
3724   ValID ID;
3725   Value *V = nullptr;
3726   bool Parsed = ParseValID(ID) ||
3727                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3728   if (V && !(C = dyn_cast<Constant>(V)))
3729     return Error(ID.Loc, "global values must be constants");
3730   return Parsed;
3731 }
3732 
3733 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3734   Type *Ty = nullptr;
3735   return ParseType(Ty) ||
3736          ParseGlobalValue(Ty, V);
3737 }
3738 
3739 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3740   C = nullptr;
3741 
3742   LocTy KwLoc = Lex.getLoc();
3743   if (!EatIfPresent(lltok::kw_comdat))
3744     return false;
3745 
3746   if (EatIfPresent(lltok::lparen)) {
3747     if (Lex.getKind() != lltok::ComdatVar)
3748       return TokError("expected comdat variable");
3749     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3750     Lex.Lex();
3751     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3752       return true;
3753   } else {
3754     if (GlobalName.empty())
3755       return TokError("comdat cannot be unnamed");
3756     C = getComdat(std::string(GlobalName), KwLoc);
3757   }
3758 
3759   return false;
3760 }
3761 
3762 /// ParseGlobalValueVector
3763 ///   ::= /*empty*/
3764 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3765 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3766                                       Optional<unsigned> *InRangeOp) {
3767   // Empty list.
3768   if (Lex.getKind() == lltok::rbrace ||
3769       Lex.getKind() == lltok::rsquare ||
3770       Lex.getKind() == lltok::greater ||
3771       Lex.getKind() == lltok::rparen)
3772     return false;
3773 
3774   do {
3775     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3776       *InRangeOp = Elts.size();
3777 
3778     Constant *C;
3779     if (ParseGlobalTypeAndValue(C)) return true;
3780     Elts.push_back(C);
3781   } while (EatIfPresent(lltok::comma));
3782 
3783   return false;
3784 }
3785 
3786 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3787   SmallVector<Metadata *, 16> Elts;
3788   if (ParseMDNodeVector(Elts))
3789     return true;
3790 
3791   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3792   return false;
3793 }
3794 
3795 /// MDNode:
3796 ///  ::= !{ ... }
3797 ///  ::= !7
3798 ///  ::= !DILocation(...)
3799 bool LLParser::ParseMDNode(MDNode *&N) {
3800   if (Lex.getKind() == lltok::MetadataVar)
3801     return ParseSpecializedMDNode(N);
3802 
3803   return ParseToken(lltok::exclaim, "expected '!' here") ||
3804          ParseMDNodeTail(N);
3805 }
3806 
3807 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3808   // !{ ... }
3809   if (Lex.getKind() == lltok::lbrace)
3810     return ParseMDTuple(N);
3811 
3812   // !42
3813   return ParseMDNodeID(N);
3814 }
3815 
3816 namespace {
3817 
3818 /// Structure to represent an optional metadata field.
3819 template <class FieldTy> struct MDFieldImpl {
3820   typedef MDFieldImpl ImplTy;
3821   FieldTy Val;
3822   bool Seen;
3823 
3824   void assign(FieldTy Val) {
3825     Seen = true;
3826     this->Val = std::move(Val);
3827   }
3828 
3829   explicit MDFieldImpl(FieldTy Default)
3830       : Val(std::move(Default)), Seen(false) {}
3831 };
3832 
3833 /// Structure to represent an optional metadata field that
3834 /// can be of either type (A or B) and encapsulates the
3835 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3836 /// to reimplement the specifics for representing each Field.
3837 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3838   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3839   FieldTypeA A;
3840   FieldTypeB B;
3841   bool Seen;
3842 
3843   enum {
3844     IsInvalid = 0,
3845     IsTypeA = 1,
3846     IsTypeB = 2
3847   } WhatIs;
3848 
3849   void assign(FieldTypeA A) {
3850     Seen = true;
3851     this->A = std::move(A);
3852     WhatIs = IsTypeA;
3853   }
3854 
3855   void assign(FieldTypeB B) {
3856     Seen = true;
3857     this->B = std::move(B);
3858     WhatIs = IsTypeB;
3859   }
3860 
3861   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3862       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3863         WhatIs(IsInvalid) {}
3864 };
3865 
3866 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3867   uint64_t Max;
3868 
3869   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3870       : ImplTy(Default), Max(Max) {}
3871 };
3872 
3873 struct LineField : public MDUnsignedField {
3874   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3875 };
3876 
3877 struct ColumnField : public MDUnsignedField {
3878   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3879 };
3880 
3881 struct DwarfTagField : public MDUnsignedField {
3882   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3883   DwarfTagField(dwarf::Tag DefaultTag)
3884       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3885 };
3886 
3887 struct DwarfMacinfoTypeField : public MDUnsignedField {
3888   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3889   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3890     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3891 };
3892 
3893 struct DwarfAttEncodingField : public MDUnsignedField {
3894   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3895 };
3896 
3897 struct DwarfVirtualityField : public MDUnsignedField {
3898   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3899 };
3900 
3901 struct DwarfLangField : public MDUnsignedField {
3902   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3903 };
3904 
3905 struct DwarfCCField : public MDUnsignedField {
3906   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3907 };
3908 
3909 struct EmissionKindField : public MDUnsignedField {
3910   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3911 };
3912 
3913 struct NameTableKindField : public MDUnsignedField {
3914   NameTableKindField()
3915       : MDUnsignedField(
3916             0, (unsigned)
3917                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3918 };
3919 
3920 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3921   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3922 };
3923 
3924 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3925   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3926 };
3927 
3928 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3929   MDAPSIntField() : ImplTy(APSInt()) {}
3930 };
3931 
3932 struct MDSignedField : public MDFieldImpl<int64_t> {
3933   int64_t Min;
3934   int64_t Max;
3935 
3936   MDSignedField(int64_t Default = 0)
3937       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3938   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3939       : ImplTy(Default), Min(Min), Max(Max) {}
3940 };
3941 
3942 struct MDBoolField : public MDFieldImpl<bool> {
3943   MDBoolField(bool Default = false) : ImplTy(Default) {}
3944 };
3945 
3946 struct MDField : public MDFieldImpl<Metadata *> {
3947   bool AllowNull;
3948 
3949   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3950 };
3951 
3952 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3953   MDConstant() : ImplTy(nullptr) {}
3954 };
3955 
3956 struct MDStringField : public MDFieldImpl<MDString *> {
3957   bool AllowEmpty;
3958   MDStringField(bool AllowEmpty = true)
3959       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3960 };
3961 
3962 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3963   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3964 };
3965 
3966 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3967   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3968 };
3969 
3970 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3971   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3972       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3973 
3974   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3975                     bool AllowNull = true)
3976       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3977 
3978   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3979   bool isMDField() const { return WhatIs == IsTypeB; }
3980   int64_t getMDSignedValue() const {
3981     assert(isMDSignedField() && "Wrong field type");
3982     return A.Val;
3983   }
3984   Metadata *getMDFieldValue() const {
3985     assert(isMDField() && "Wrong field type");
3986     return B.Val;
3987   }
3988 };
3989 
3990 struct MDSignedOrUnsignedField
3991     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3992   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3993 
3994   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3995   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3996   int64_t getMDSignedValue() const {
3997     assert(isMDSignedField() && "Wrong field type");
3998     return A.Val;
3999   }
4000   uint64_t getMDUnsignedValue() const {
4001     assert(isMDUnsignedField() && "Wrong field type");
4002     return B.Val;
4003   }
4004 };
4005 
4006 } // end anonymous namespace
4007 
4008 namespace llvm {
4009 
4010 template <>
4011 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4012   if (Lex.getKind() != lltok::APSInt)
4013     return TokError("expected integer");
4014 
4015   Result.assign(Lex.getAPSIntVal());
4016   Lex.Lex();
4017   return false;
4018 }
4019 
4020 template <>
4021 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4022                             MDUnsignedField &Result) {
4023   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4024     return TokError("expected unsigned integer");
4025 
4026   auto &U = Lex.getAPSIntVal();
4027   if (U.ugt(Result.Max))
4028     return TokError("value for '" + Name + "' too large, limit is " +
4029                     Twine(Result.Max));
4030   Result.assign(U.getZExtValue());
4031   assert(Result.Val <= Result.Max && "Expected value in range");
4032   Lex.Lex();
4033   return false;
4034 }
4035 
4036 template <>
4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4038   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4039 }
4040 template <>
4041 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4042   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4043 }
4044 
4045 template <>
4046 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4047   if (Lex.getKind() == lltok::APSInt)
4048     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4049 
4050   if (Lex.getKind() != lltok::DwarfTag)
4051     return TokError("expected DWARF tag");
4052 
4053   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4054   if (Tag == dwarf::DW_TAG_invalid)
4055     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4056   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4057 
4058   Result.assign(Tag);
4059   Lex.Lex();
4060   return false;
4061 }
4062 
4063 template <>
4064 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4065                             DwarfMacinfoTypeField &Result) {
4066   if (Lex.getKind() == lltok::APSInt)
4067     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4068 
4069   if (Lex.getKind() != lltok::DwarfMacinfo)
4070     return TokError("expected DWARF macinfo type");
4071 
4072   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4073   if (Macinfo == dwarf::DW_MACINFO_invalid)
4074     return TokError(
4075         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4076   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4077 
4078   Result.assign(Macinfo);
4079   Lex.Lex();
4080   return false;
4081 }
4082 
4083 template <>
4084 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4085                             DwarfVirtualityField &Result) {
4086   if (Lex.getKind() == lltok::APSInt)
4087     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4088 
4089   if (Lex.getKind() != lltok::DwarfVirtuality)
4090     return TokError("expected DWARF virtuality code");
4091 
4092   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4093   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4094     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4095                     Lex.getStrVal() + "'");
4096   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4097   Result.assign(Virtuality);
4098   Lex.Lex();
4099   return false;
4100 }
4101 
4102 template <>
4103 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4104   if (Lex.getKind() == lltok::APSInt)
4105     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4106 
4107   if (Lex.getKind() != lltok::DwarfLang)
4108     return TokError("expected DWARF language");
4109 
4110   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4111   if (!Lang)
4112     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4113                     "'");
4114   assert(Lang <= Result.Max && "Expected valid DWARF language");
4115   Result.assign(Lang);
4116   Lex.Lex();
4117   return false;
4118 }
4119 
4120 template <>
4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4122   if (Lex.getKind() == lltok::APSInt)
4123     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4124 
4125   if (Lex.getKind() != lltok::DwarfCC)
4126     return TokError("expected DWARF calling convention");
4127 
4128   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4129   if (!CC)
4130     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4131                     "'");
4132   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4133   Result.assign(CC);
4134   Lex.Lex();
4135   return false;
4136 }
4137 
4138 template <>
4139 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4140   if (Lex.getKind() == lltok::APSInt)
4141     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4142 
4143   if (Lex.getKind() != lltok::EmissionKind)
4144     return TokError("expected emission kind");
4145 
4146   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4147   if (!Kind)
4148     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4149                     "'");
4150   assert(*Kind <= Result.Max && "Expected valid emission kind");
4151   Result.assign(*Kind);
4152   Lex.Lex();
4153   return false;
4154 }
4155 
4156 template <>
4157 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4158                             NameTableKindField &Result) {
4159   if (Lex.getKind() == lltok::APSInt)
4160     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4161 
4162   if (Lex.getKind() != lltok::NameTableKind)
4163     return TokError("expected nameTable kind");
4164 
4165   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4166   if (!Kind)
4167     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4168                     "'");
4169   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4170   Result.assign((unsigned)*Kind);
4171   Lex.Lex();
4172   return false;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4177                             DwarfAttEncodingField &Result) {
4178   if (Lex.getKind() == lltok::APSInt)
4179     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4180 
4181   if (Lex.getKind() != lltok::DwarfAttEncoding)
4182     return TokError("expected DWARF type attribute encoding");
4183 
4184   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4185   if (!Encoding)
4186     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4187                     Lex.getStrVal() + "'");
4188   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4189   Result.assign(Encoding);
4190   Lex.Lex();
4191   return false;
4192 }
4193 
4194 /// DIFlagField
4195 ///  ::= uint32
4196 ///  ::= DIFlagVector
4197 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4198 template <>
4199 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4200 
4201   // Parser for a single flag.
4202   auto parseFlag = [&](DINode::DIFlags &Val) {
4203     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4204       uint32_t TempVal = static_cast<uint32_t>(Val);
4205       bool Res = ParseUInt32(TempVal);
4206       Val = static_cast<DINode::DIFlags>(TempVal);
4207       return Res;
4208     }
4209 
4210     if (Lex.getKind() != lltok::DIFlag)
4211       return TokError("expected debug info flag");
4212 
4213     Val = DINode::getFlag(Lex.getStrVal());
4214     if (!Val)
4215       return TokError(Twine("invalid debug info flag flag '") +
4216                       Lex.getStrVal() + "'");
4217     Lex.Lex();
4218     return false;
4219   };
4220 
4221   // Parse the flags and combine them together.
4222   DINode::DIFlags Combined = DINode::FlagZero;
4223   do {
4224     DINode::DIFlags Val;
4225     if (parseFlag(Val))
4226       return true;
4227     Combined |= Val;
4228   } while (EatIfPresent(lltok::bar));
4229 
4230   Result.assign(Combined);
4231   return false;
4232 }
4233 
4234 /// DISPFlagField
4235 ///  ::= uint32
4236 ///  ::= DISPFlagVector
4237 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4238 template <>
4239 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4240 
4241   // Parser for a single flag.
4242   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4243     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4244       uint32_t TempVal = static_cast<uint32_t>(Val);
4245       bool Res = ParseUInt32(TempVal);
4246       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4247       return Res;
4248     }
4249 
4250     if (Lex.getKind() != lltok::DISPFlag)
4251       return TokError("expected debug info flag");
4252 
4253     Val = DISubprogram::getFlag(Lex.getStrVal());
4254     if (!Val)
4255       return TokError(Twine("invalid subprogram debug info flag '") +
4256                       Lex.getStrVal() + "'");
4257     Lex.Lex();
4258     return false;
4259   };
4260 
4261   // Parse the flags and combine them together.
4262   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4263   do {
4264     DISubprogram::DISPFlags Val;
4265     if (parseFlag(Val))
4266       return true;
4267     Combined |= Val;
4268   } while (EatIfPresent(lltok::bar));
4269 
4270   Result.assign(Combined);
4271   return false;
4272 }
4273 
4274 template <>
4275 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4276                             MDSignedField &Result) {
4277   if (Lex.getKind() != lltok::APSInt)
4278     return TokError("expected signed integer");
4279 
4280   auto &S = Lex.getAPSIntVal();
4281   if (S < Result.Min)
4282     return TokError("value for '" + Name + "' too small, limit is " +
4283                     Twine(Result.Min));
4284   if (S > Result.Max)
4285     return TokError("value for '" + Name + "' too large, limit is " +
4286                     Twine(Result.Max));
4287   Result.assign(S.getExtValue());
4288   assert(Result.Val >= Result.Min && "Expected value in range");
4289   assert(Result.Val <= Result.Max && "Expected value in range");
4290   Lex.Lex();
4291   return false;
4292 }
4293 
4294 template <>
4295 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4296   switch (Lex.getKind()) {
4297   default:
4298     return TokError("expected 'true' or 'false'");
4299   case lltok::kw_true:
4300     Result.assign(true);
4301     break;
4302   case lltok::kw_false:
4303     Result.assign(false);
4304     break;
4305   }
4306   Lex.Lex();
4307   return false;
4308 }
4309 
4310 template <>
4311 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4312   if (Lex.getKind() == lltok::kw_null) {
4313     if (!Result.AllowNull)
4314       return TokError("'" + Name + "' cannot be null");
4315     Lex.Lex();
4316     Result.assign(nullptr);
4317     return false;
4318   }
4319 
4320   Metadata *MD;
4321   if (ParseMetadata(MD, nullptr))
4322     return true;
4323 
4324   Result.assign(MD);
4325   return false;
4326 }
4327 
4328 template <>
4329 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4330                             MDSignedOrMDField &Result) {
4331   // Try to parse a signed int.
4332   if (Lex.getKind() == lltok::APSInt) {
4333     MDSignedField Res = Result.A;
4334     if (!ParseMDField(Loc, Name, Res)) {
4335       Result.assign(Res);
4336       return false;
4337     }
4338     return true;
4339   }
4340 
4341   // Otherwise, try to parse as an MDField.
4342   MDField Res = Result.B;
4343   if (!ParseMDField(Loc, Name, Res)) {
4344     Result.assign(Res);
4345     return false;
4346   }
4347 
4348   return true;
4349 }
4350 
4351 template <>
4352 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4353   LocTy ValueLoc = Lex.getLoc();
4354   std::string S;
4355   if (ParseStringConstant(S))
4356     return true;
4357 
4358   if (!Result.AllowEmpty && S.empty())
4359     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4360 
4361   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4362   return false;
4363 }
4364 
4365 template <>
4366 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4367   SmallVector<Metadata *, 4> MDs;
4368   if (ParseMDNodeVector(MDs))
4369     return true;
4370 
4371   Result.assign(std::move(MDs));
4372   return false;
4373 }
4374 
4375 template <>
4376 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4377                             ChecksumKindField &Result) {
4378   Optional<DIFile::ChecksumKind> CSKind =
4379       DIFile::getChecksumKind(Lex.getStrVal());
4380 
4381   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4382     return TokError(
4383         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4384 
4385   Result.assign(*CSKind);
4386   Lex.Lex();
4387   return false;
4388 }
4389 
4390 } // end namespace llvm
4391 
4392 template <class ParserTy>
4393 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4394   do {
4395     if (Lex.getKind() != lltok::LabelStr)
4396       return TokError("expected field label here");
4397 
4398     if (parseField())
4399       return true;
4400   } while (EatIfPresent(lltok::comma));
4401 
4402   return false;
4403 }
4404 
4405 template <class ParserTy>
4406 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4407   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4408   Lex.Lex();
4409 
4410   if (ParseToken(lltok::lparen, "expected '(' here"))
4411     return true;
4412   if (Lex.getKind() != lltok::rparen)
4413     if (ParseMDFieldsImplBody(parseField))
4414       return true;
4415 
4416   ClosingLoc = Lex.getLoc();
4417   return ParseToken(lltok::rparen, "expected ')' here");
4418 }
4419 
4420 template <class FieldTy>
4421 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4422   if (Result.Seen)
4423     return TokError("field '" + Name + "' cannot be specified more than once");
4424 
4425   LocTy Loc = Lex.getLoc();
4426   Lex.Lex();
4427   return ParseMDField(Loc, Name, Result);
4428 }
4429 
4430 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4431   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4432 
4433 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4434   if (Lex.getStrVal() == #CLASS)                                               \
4435     return Parse##CLASS(N, IsDistinct);
4436 #include "llvm/IR/Metadata.def"
4437 
4438   return TokError("expected metadata type");
4439 }
4440 
4441 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4442 #define NOP_FIELD(NAME, TYPE, INIT)
4443 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4444   if (!NAME.Seen)                                                              \
4445     return Error(ClosingLoc, "missing required field '" #NAME "'");
4446 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4447   if (Lex.getStrVal() == #NAME)                                                \
4448     return ParseMDField(#NAME, NAME);
4449 #define PARSE_MD_FIELDS()                                                      \
4450   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4451   do {                                                                         \
4452     LocTy ClosingLoc;                                                          \
4453     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4454       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4455       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4456     }, ClosingLoc))                                                            \
4457       return true;                                                             \
4458     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4459   } while (false)
4460 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4461   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4462 
4463 /// ParseDILocationFields:
4464 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4465 ///   isImplicitCode: true)
4466 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4467 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4468   OPTIONAL(line, LineField, );                                                 \
4469   OPTIONAL(column, ColumnField, );                                             \
4470   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4471   OPTIONAL(inlinedAt, MDField, );                                              \
4472   OPTIONAL(isImplicitCode, MDBoolField, (false));
4473   PARSE_MD_FIELDS();
4474 #undef VISIT_MD_FIELDS
4475 
4476   Result =
4477       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4478                                    inlinedAt.Val, isImplicitCode.Val));
4479   return false;
4480 }
4481 
4482 /// ParseGenericDINode:
4483 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4484 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4485 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4486   REQUIRED(tag, DwarfTagField, );                                              \
4487   OPTIONAL(header, MDStringField, );                                           \
4488   OPTIONAL(operands, MDFieldList, );
4489   PARSE_MD_FIELDS();
4490 #undef VISIT_MD_FIELDS
4491 
4492   Result = GET_OR_DISTINCT(GenericDINode,
4493                            (Context, tag.Val, header.Val, operands.Val));
4494   return false;
4495 }
4496 
4497 /// ParseDISubrange:
4498 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4499 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4500 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4502   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4503   OPTIONAL(lowerBound, MDSignedField, );
4504   PARSE_MD_FIELDS();
4505 #undef VISIT_MD_FIELDS
4506 
4507   if (count.isMDSignedField())
4508     Result = GET_OR_DISTINCT(
4509         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4510   else if (count.isMDField())
4511     Result = GET_OR_DISTINCT(
4512         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4513   else
4514     return true;
4515 
4516   return false;
4517 }
4518 
4519 /// ParseDIEnumerator:
4520 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4521 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4522 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4523   REQUIRED(name, MDStringField, );                                             \
4524   REQUIRED(value, MDAPSIntField, );                                            \
4525   OPTIONAL(isUnsigned, MDBoolField, (false));
4526   PARSE_MD_FIELDS();
4527 #undef VISIT_MD_FIELDS
4528 
4529   if (isUnsigned.Val && value.Val.isNegative())
4530     return TokError("unsigned enumerator with negative value");
4531 
4532   APSInt Value(value.Val);
4533   // Add a leading zero so that unsigned values with the msb set are not
4534   // mistaken for negative values when used for signed enumerators.
4535   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4536     Value = Value.zext(Value.getBitWidth() + 1);
4537 
4538   Result =
4539       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4540 
4541   return false;
4542 }
4543 
4544 /// ParseDIBasicType:
4545 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4546 ///                    encoding: DW_ATE_encoding, flags: 0)
4547 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4549   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4550   OPTIONAL(name, MDStringField, );                                             \
4551   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4552   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4553   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4554   OPTIONAL(flags, DIFlagField, );
4555   PARSE_MD_FIELDS();
4556 #undef VISIT_MD_FIELDS
4557 
4558   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4559                                          align.Val, encoding.Val, flags.Val));
4560   return false;
4561 }
4562 
4563 /// ParseDIDerivedType:
4564 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4565 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4566 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4567 ///                      dwarfAddressSpace: 3)
4568 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4569 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4570   REQUIRED(tag, DwarfTagField, );                                              \
4571   OPTIONAL(name, MDStringField, );                                             \
4572   OPTIONAL(file, MDField, );                                                   \
4573   OPTIONAL(line, LineField, );                                                 \
4574   OPTIONAL(scope, MDField, );                                                  \
4575   REQUIRED(baseType, MDField, );                                               \
4576   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4577   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4578   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4579   OPTIONAL(flags, DIFlagField, );                                              \
4580   OPTIONAL(extraData, MDField, );                                              \
4581   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4582   PARSE_MD_FIELDS();
4583 #undef VISIT_MD_FIELDS
4584 
4585   Optional<unsigned> DWARFAddressSpace;
4586   if (dwarfAddressSpace.Val != UINT32_MAX)
4587     DWARFAddressSpace = dwarfAddressSpace.Val;
4588 
4589   Result = GET_OR_DISTINCT(DIDerivedType,
4590                            (Context, tag.Val, name.Val, file.Val, line.Val,
4591                             scope.Val, baseType.Val, size.Val, align.Val,
4592                             offset.Val, DWARFAddressSpace, flags.Val,
4593                             extraData.Val));
4594   return false;
4595 }
4596 
4597 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4598 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4599   REQUIRED(tag, DwarfTagField, );                                              \
4600   OPTIONAL(name, MDStringField, );                                             \
4601   OPTIONAL(file, MDField, );                                                   \
4602   OPTIONAL(line, LineField, );                                                 \
4603   OPTIONAL(scope, MDField, );                                                  \
4604   OPTIONAL(baseType, MDField, );                                               \
4605   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4606   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4607   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4608   OPTIONAL(flags, DIFlagField, );                                              \
4609   OPTIONAL(elements, MDField, );                                               \
4610   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4611   OPTIONAL(vtableHolder, MDField, );                                           \
4612   OPTIONAL(templateParams, MDField, );                                         \
4613   OPTIONAL(identifier, MDStringField, );                                       \
4614   OPTIONAL(discriminator, MDField, );
4615   PARSE_MD_FIELDS();
4616 #undef VISIT_MD_FIELDS
4617 
4618   // If this has an identifier try to build an ODR type.
4619   if (identifier.Val)
4620     if (auto *CT = DICompositeType::buildODRType(
4621             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4622             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4623             elements.Val, runtimeLang.Val, vtableHolder.Val,
4624             templateParams.Val, discriminator.Val)) {
4625       Result = CT;
4626       return false;
4627     }
4628 
4629   // Create a new node, and save it in the context if it belongs in the type
4630   // map.
4631   Result = GET_OR_DISTINCT(
4632       DICompositeType,
4633       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4634        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4635        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4636        discriminator.Val));
4637   return false;
4638 }
4639 
4640 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4642   OPTIONAL(flags, DIFlagField, );                                              \
4643   OPTIONAL(cc, DwarfCCField, );                                                \
4644   REQUIRED(types, MDField, );
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   Result = GET_OR_DISTINCT(DISubroutineType,
4649                            (Context, flags.Val, cc.Val, types.Val));
4650   return false;
4651 }
4652 
4653 /// ParseDIFileType:
4654 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4655 ///                   checksumkind: CSK_MD5,
4656 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4657 ///                   source: "source file contents")
4658 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4659   // The default constructed value for checksumkind is required, but will never
4660   // be used, as the parser checks if the field was actually Seen before using
4661   // the Val.
4662 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4663   REQUIRED(filename, MDStringField, );                                         \
4664   REQUIRED(directory, MDStringField, );                                        \
4665   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4666   OPTIONAL(checksum, MDStringField, );                                         \
4667   OPTIONAL(source, MDStringField, );
4668   PARSE_MD_FIELDS();
4669 #undef VISIT_MD_FIELDS
4670 
4671   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4672   if (checksumkind.Seen && checksum.Seen)
4673     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4674   else if (checksumkind.Seen || checksum.Seen)
4675     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4676 
4677   Optional<MDString *> OptSource;
4678   if (source.Seen)
4679     OptSource = source.Val;
4680   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4681                                     OptChecksum, OptSource));
4682   return false;
4683 }
4684 
4685 /// ParseDICompileUnit:
4686 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4687 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4688 ///                      splitDebugFilename: "abc.debug",
4689 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4690 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4691 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4692 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4693   if (!IsDistinct)
4694     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4695 
4696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4697   REQUIRED(language, DwarfLangField, );                                        \
4698   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4699   OPTIONAL(producer, MDStringField, );                                         \
4700   OPTIONAL(isOptimized, MDBoolField, );                                        \
4701   OPTIONAL(flags, MDStringField, );                                            \
4702   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4703   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4704   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4705   OPTIONAL(enums, MDField, );                                                  \
4706   OPTIONAL(retainedTypes, MDField, );                                          \
4707   OPTIONAL(globals, MDField, );                                                \
4708   OPTIONAL(imports, MDField, );                                                \
4709   OPTIONAL(macros, MDField, );                                                 \
4710   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4711   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4712   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4713   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4714   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4715   OPTIONAL(sysroot, MDStringField, );                                          \
4716   OPTIONAL(sdk, MDStringField, );
4717   PARSE_MD_FIELDS();
4718 #undef VISIT_MD_FIELDS
4719 
4720   Result = DICompileUnit::getDistinct(
4721       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4722       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4723       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4724       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4725       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4726   return false;
4727 }
4728 
4729 /// ParseDISubprogram:
4730 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4731 ///                     file: !1, line: 7, type: !2, isLocal: false,
4732 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4733 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4734 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4735 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4736 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4737 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4738   auto Loc = Lex.getLoc();
4739 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4740   OPTIONAL(scope, MDField, );                                                  \
4741   OPTIONAL(name, MDStringField, );                                             \
4742   OPTIONAL(linkageName, MDStringField, );                                      \
4743   OPTIONAL(file, MDField, );                                                   \
4744   OPTIONAL(line, LineField, );                                                 \
4745   OPTIONAL(type, MDField, );                                                   \
4746   OPTIONAL(isLocal, MDBoolField, );                                            \
4747   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4748   OPTIONAL(scopeLine, LineField, );                                            \
4749   OPTIONAL(containingType, MDField, );                                         \
4750   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4751   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4752   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4753   OPTIONAL(flags, DIFlagField, );                                              \
4754   OPTIONAL(spFlags, DISPFlagField, );                                          \
4755   OPTIONAL(isOptimized, MDBoolField, );                                        \
4756   OPTIONAL(unit, MDField, );                                                   \
4757   OPTIONAL(templateParams, MDField, );                                         \
4758   OPTIONAL(declaration, MDField, );                                            \
4759   OPTIONAL(retainedNodes, MDField, );                                          \
4760   OPTIONAL(thrownTypes, MDField, );
4761   PARSE_MD_FIELDS();
4762 #undef VISIT_MD_FIELDS
4763 
4764   // An explicit spFlags field takes precedence over individual fields in
4765   // older IR versions.
4766   DISubprogram::DISPFlags SPFlags =
4767       spFlags.Seen ? spFlags.Val
4768                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4769                                              isOptimized.Val, virtuality.Val);
4770   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4771     return Lex.Error(
4772         Loc,
4773         "missing 'distinct', required for !DISubprogram that is a Definition");
4774   Result = GET_OR_DISTINCT(
4775       DISubprogram,
4776       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4777        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4778        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4779        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4780   return false;
4781 }
4782 
4783 /// ParseDILexicalBlock:
4784 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4785 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4787   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4788   OPTIONAL(file, MDField, );                                                   \
4789   OPTIONAL(line, LineField, );                                                 \
4790   OPTIONAL(column, ColumnField, );
4791   PARSE_MD_FIELDS();
4792 #undef VISIT_MD_FIELDS
4793 
4794   Result = GET_OR_DISTINCT(
4795       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4796   return false;
4797 }
4798 
4799 /// ParseDILexicalBlockFile:
4800 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4801 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4802 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4803   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4804   OPTIONAL(file, MDField, );                                                   \
4805   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4806   PARSE_MD_FIELDS();
4807 #undef VISIT_MD_FIELDS
4808 
4809   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4810                            (Context, scope.Val, file.Val, discriminator.Val));
4811   return false;
4812 }
4813 
4814 /// ParseDICommonBlock:
4815 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4816 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4817 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4818   REQUIRED(scope, MDField, );                                                  \
4819   OPTIONAL(declaration, MDField, );                                            \
4820   OPTIONAL(name, MDStringField, );                                             \
4821   OPTIONAL(file, MDField, );                                                   \
4822   OPTIONAL(line, LineField, );
4823   PARSE_MD_FIELDS();
4824 #undef VISIT_MD_FIELDS
4825 
4826   Result = GET_OR_DISTINCT(DICommonBlock,
4827                            (Context, scope.Val, declaration.Val, name.Val,
4828                             file.Val, line.Val));
4829   return false;
4830 }
4831 
4832 /// ParseDINamespace:
4833 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4834 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4835 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4836   REQUIRED(scope, MDField, );                                                  \
4837   OPTIONAL(name, MDStringField, );                                             \
4838   OPTIONAL(exportSymbols, MDBoolField, );
4839   PARSE_MD_FIELDS();
4840 #undef VISIT_MD_FIELDS
4841 
4842   Result = GET_OR_DISTINCT(DINamespace,
4843                            (Context, scope.Val, name.Val, exportSymbols.Val));
4844   return false;
4845 }
4846 
4847 /// ParseDIMacro:
4848 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4849 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4851   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4852   OPTIONAL(line, LineField, );                                                 \
4853   REQUIRED(name, MDStringField, );                                             \
4854   OPTIONAL(value, MDStringField, );
4855   PARSE_MD_FIELDS();
4856 #undef VISIT_MD_FIELDS
4857 
4858   Result = GET_OR_DISTINCT(DIMacro,
4859                            (Context, type.Val, line.Val, name.Val, value.Val));
4860   return false;
4861 }
4862 
4863 /// ParseDIMacroFile:
4864 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4865 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4867   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4868   OPTIONAL(line, LineField, );                                                 \
4869   REQUIRED(file, MDField, );                                                   \
4870   OPTIONAL(nodes, MDField, );
4871   PARSE_MD_FIELDS();
4872 #undef VISIT_MD_FIELDS
4873 
4874   Result = GET_OR_DISTINCT(DIMacroFile,
4875                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4876   return false;
4877 }
4878 
4879 /// ParseDIModule:
4880 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4881 ///                 includePath: "/usr/include", apinotes: "module.apinotes")
4882 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4884   REQUIRED(scope, MDField, );                                                  \
4885   REQUIRED(name, MDStringField, );                                             \
4886   OPTIONAL(configMacros, MDStringField, );                                     \
4887   OPTIONAL(includePath, MDStringField, );                                      \
4888   OPTIONAL(apinotes, MDStringField, );
4889   PARSE_MD_FIELDS();
4890 #undef VISIT_MD_FIELDS
4891 
4892   Result =
4893       GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, configMacros.Val,
4894                                  includePath.Val, apinotes.Val));
4895   return false;
4896 }
4897 
4898 /// ParseDITemplateTypeParameter:
4899 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4900 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4902   OPTIONAL(name, MDStringField, );                                             \
4903   REQUIRED(type, MDField, );                                                   \
4904   OPTIONAL(defaulted, MDBoolField, );
4905   PARSE_MD_FIELDS();
4906 #undef VISIT_MD_FIELDS
4907 
4908   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4909                            (Context, name.Val, type.Val, defaulted.Val));
4910   return false;
4911 }
4912 
4913 /// ParseDITemplateValueParameter:
4914 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4915 ///                                 name: "V", type: !1, defaulted: false,
4916 ///                                 value: i32 7)
4917 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4919   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4920   OPTIONAL(name, MDStringField, );                                             \
4921   OPTIONAL(type, MDField, );                                                   \
4922   OPTIONAL(defaulted, MDBoolField, );                                          \
4923   REQUIRED(value, MDField, );
4924 
4925   PARSE_MD_FIELDS();
4926 #undef VISIT_MD_FIELDS
4927 
4928   Result = GET_OR_DISTINCT(
4929       DITemplateValueParameter,
4930       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4931   return false;
4932 }
4933 
4934 /// ParseDIGlobalVariable:
4935 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4936 ///                         file: !1, line: 7, type: !2, isLocal: false,
4937 ///                         isDefinition: true, templateParams: !3,
4938 ///                         declaration: !4, align: 8)
4939 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4940 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4941   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4942   OPTIONAL(scope, MDField, );                                                  \
4943   OPTIONAL(linkageName, MDStringField, );                                      \
4944   OPTIONAL(file, MDField, );                                                   \
4945   OPTIONAL(line, LineField, );                                                 \
4946   OPTIONAL(type, MDField, );                                                   \
4947   OPTIONAL(isLocal, MDBoolField, );                                            \
4948   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4949   OPTIONAL(templateParams, MDField, );                                         \
4950   OPTIONAL(declaration, MDField, );                                            \
4951   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4952   PARSE_MD_FIELDS();
4953 #undef VISIT_MD_FIELDS
4954 
4955   Result =
4956       GET_OR_DISTINCT(DIGlobalVariable,
4957                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4958                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4959                        declaration.Val, templateParams.Val, align.Val));
4960   return false;
4961 }
4962 
4963 /// ParseDILocalVariable:
4964 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4965 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4966 ///                        align: 8)
4967 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4968 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4969 ///                        align: 8)
4970 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4972   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4973   OPTIONAL(name, MDStringField, );                                             \
4974   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4975   OPTIONAL(file, MDField, );                                                   \
4976   OPTIONAL(line, LineField, );                                                 \
4977   OPTIONAL(type, MDField, );                                                   \
4978   OPTIONAL(flags, DIFlagField, );                                              \
4979   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4980   PARSE_MD_FIELDS();
4981 #undef VISIT_MD_FIELDS
4982 
4983   Result = GET_OR_DISTINCT(DILocalVariable,
4984                            (Context, scope.Val, name.Val, file.Val, line.Val,
4985                             type.Val, arg.Val, flags.Val, align.Val));
4986   return false;
4987 }
4988 
4989 /// ParseDILabel:
4990 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4991 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4993   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4994   REQUIRED(name, MDStringField, );                                             \
4995   REQUIRED(file, MDField, );                                                   \
4996   REQUIRED(line, LineField, );
4997   PARSE_MD_FIELDS();
4998 #undef VISIT_MD_FIELDS
4999 
5000   Result = GET_OR_DISTINCT(DILabel,
5001                            (Context, scope.Val, name.Val, file.Val, line.Val));
5002   return false;
5003 }
5004 
5005 /// ParseDIExpression:
5006 ///   ::= !DIExpression(0, 7, -1)
5007 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5008   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5009   Lex.Lex();
5010 
5011   if (ParseToken(lltok::lparen, "expected '(' here"))
5012     return true;
5013 
5014   SmallVector<uint64_t, 8> Elements;
5015   if (Lex.getKind() != lltok::rparen)
5016     do {
5017       if (Lex.getKind() == lltok::DwarfOp) {
5018         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5019           Lex.Lex();
5020           Elements.push_back(Op);
5021           continue;
5022         }
5023         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5024       }
5025 
5026       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5027         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5028           Lex.Lex();
5029           Elements.push_back(Op);
5030           continue;
5031         }
5032         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5033       }
5034 
5035       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5036         return TokError("expected unsigned integer");
5037 
5038       auto &U = Lex.getAPSIntVal();
5039       if (U.ugt(UINT64_MAX))
5040         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5041       Elements.push_back(U.getZExtValue());
5042       Lex.Lex();
5043     } while (EatIfPresent(lltok::comma));
5044 
5045   if (ParseToken(lltok::rparen, "expected ')' here"))
5046     return true;
5047 
5048   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5049   return false;
5050 }
5051 
5052 /// ParseDIGlobalVariableExpression:
5053 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5054 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5055                                                bool IsDistinct) {
5056 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5057   REQUIRED(var, MDField, );                                                    \
5058   REQUIRED(expr, MDField, );
5059   PARSE_MD_FIELDS();
5060 #undef VISIT_MD_FIELDS
5061 
5062   Result =
5063       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5064   return false;
5065 }
5066 
5067 /// ParseDIObjCProperty:
5068 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5069 ///                       getter: "getFoo", attributes: 7, type: !2)
5070 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5071 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5072   OPTIONAL(name, MDStringField, );                                             \
5073   OPTIONAL(file, MDField, );                                                   \
5074   OPTIONAL(line, LineField, );                                                 \
5075   OPTIONAL(setter, MDStringField, );                                           \
5076   OPTIONAL(getter, MDStringField, );                                           \
5077   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5078   OPTIONAL(type, MDField, );
5079   PARSE_MD_FIELDS();
5080 #undef VISIT_MD_FIELDS
5081 
5082   Result = GET_OR_DISTINCT(DIObjCProperty,
5083                            (Context, name.Val, file.Val, line.Val, setter.Val,
5084                             getter.Val, attributes.Val, type.Val));
5085   return false;
5086 }
5087 
5088 /// ParseDIImportedEntity:
5089 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5090 ///                         line: 7, name: "foo")
5091 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5092 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5093   REQUIRED(tag, DwarfTagField, );                                              \
5094   REQUIRED(scope, MDField, );                                                  \
5095   OPTIONAL(entity, MDField, );                                                 \
5096   OPTIONAL(file, MDField, );                                                   \
5097   OPTIONAL(line, LineField, );                                                 \
5098   OPTIONAL(name, MDStringField, );
5099   PARSE_MD_FIELDS();
5100 #undef VISIT_MD_FIELDS
5101 
5102   Result = GET_OR_DISTINCT(
5103       DIImportedEntity,
5104       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5105   return false;
5106 }
5107 
5108 #undef PARSE_MD_FIELD
5109 #undef NOP_FIELD
5110 #undef REQUIRE_FIELD
5111 #undef DECLARE_FIELD
5112 
5113 /// ParseMetadataAsValue
5114 ///  ::= metadata i32 %local
5115 ///  ::= metadata i32 @global
5116 ///  ::= metadata i32 7
5117 ///  ::= metadata !0
5118 ///  ::= metadata !{...}
5119 ///  ::= metadata !"string"
5120 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5121   // Note: the type 'metadata' has already been parsed.
5122   Metadata *MD;
5123   if (ParseMetadata(MD, &PFS))
5124     return true;
5125 
5126   V = MetadataAsValue::get(Context, MD);
5127   return false;
5128 }
5129 
5130 /// ParseValueAsMetadata
5131 ///  ::= i32 %local
5132 ///  ::= i32 @global
5133 ///  ::= i32 7
5134 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5135                                     PerFunctionState *PFS) {
5136   Type *Ty;
5137   LocTy Loc;
5138   if (ParseType(Ty, TypeMsg, Loc))
5139     return true;
5140   if (Ty->isMetadataTy())
5141     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5142 
5143   Value *V;
5144   if (ParseValue(Ty, V, PFS))
5145     return true;
5146 
5147   MD = ValueAsMetadata::get(V);
5148   return false;
5149 }
5150 
5151 /// ParseMetadata
5152 ///  ::= i32 %local
5153 ///  ::= i32 @global
5154 ///  ::= i32 7
5155 ///  ::= !42
5156 ///  ::= !{...}
5157 ///  ::= !"string"
5158 ///  ::= !DILocation(...)
5159 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5160   if (Lex.getKind() == lltok::MetadataVar) {
5161     MDNode *N;
5162     if (ParseSpecializedMDNode(N))
5163       return true;
5164     MD = N;
5165     return false;
5166   }
5167 
5168   // ValueAsMetadata:
5169   // <type> <value>
5170   if (Lex.getKind() != lltok::exclaim)
5171     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5172 
5173   // '!'.
5174   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5175   Lex.Lex();
5176 
5177   // MDString:
5178   //   ::= '!' STRINGCONSTANT
5179   if (Lex.getKind() == lltok::StringConstant) {
5180     MDString *S;
5181     if (ParseMDString(S))
5182       return true;
5183     MD = S;
5184     return false;
5185   }
5186 
5187   // MDNode:
5188   // !{ ... }
5189   // !7
5190   MDNode *N;
5191   if (ParseMDNodeTail(N))
5192     return true;
5193   MD = N;
5194   return false;
5195 }
5196 
5197 //===----------------------------------------------------------------------===//
5198 // Function Parsing.
5199 //===----------------------------------------------------------------------===//
5200 
5201 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5202                                    PerFunctionState *PFS, bool IsCall) {
5203   if (Ty->isFunctionTy())
5204     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5205 
5206   switch (ID.Kind) {
5207   case ValID::t_LocalID:
5208     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5209     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5210     return V == nullptr;
5211   case ValID::t_LocalName:
5212     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5213     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5214     return V == nullptr;
5215   case ValID::t_InlineAsm: {
5216     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5217       return Error(ID.Loc, "invalid type for inline asm constraint string");
5218     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5219                        (ID.UIntVal >> 1) & 1,
5220                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5221     return false;
5222   }
5223   case ValID::t_GlobalName:
5224     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5225     return V == nullptr;
5226   case ValID::t_GlobalID:
5227     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5228     return V == nullptr;
5229   case ValID::t_APSInt:
5230     if (!Ty->isIntegerTy())
5231       return Error(ID.Loc, "integer constant must have integer type");
5232     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5233     V = ConstantInt::get(Context, ID.APSIntVal);
5234     return false;
5235   case ValID::t_APFloat:
5236     if (!Ty->isFloatingPointTy() ||
5237         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5238       return Error(ID.Loc, "floating point constant invalid for type");
5239 
5240     // The lexer has no type info, so builds all half, float, and double FP
5241     // constants as double.  Fix this here.  Long double does not need this.
5242     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5243       bool Ignored;
5244       if (Ty->isHalfTy())
5245         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5246                               &Ignored);
5247       else if (Ty->isFloatTy())
5248         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5249                               &Ignored);
5250     }
5251     V = ConstantFP::get(Context, ID.APFloatVal);
5252 
5253     if (V->getType() != Ty)
5254       return Error(ID.Loc, "floating point constant does not have type '" +
5255                    getTypeString(Ty) + "'");
5256 
5257     return false;
5258   case ValID::t_Null:
5259     if (!Ty->isPointerTy())
5260       return Error(ID.Loc, "null must be a pointer type");
5261     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5262     return false;
5263   case ValID::t_Undef:
5264     // FIXME: LabelTy should not be a first-class type.
5265     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5266       return Error(ID.Loc, "invalid type for undef constant");
5267     V = UndefValue::get(Ty);
5268     return false;
5269   case ValID::t_EmptyArray:
5270     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5271       return Error(ID.Loc, "invalid empty array initializer");
5272     V = UndefValue::get(Ty);
5273     return false;
5274   case ValID::t_Zero:
5275     // FIXME: LabelTy should not be a first-class type.
5276     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5277       return Error(ID.Loc, "invalid type for null constant");
5278     V = Constant::getNullValue(Ty);
5279     return false;
5280   case ValID::t_None:
5281     if (!Ty->isTokenTy())
5282       return Error(ID.Loc, "invalid type for none constant");
5283     V = Constant::getNullValue(Ty);
5284     return false;
5285   case ValID::t_Constant:
5286     if (ID.ConstantVal->getType() != Ty)
5287       return Error(ID.Loc, "constant expression type mismatch");
5288 
5289     V = ID.ConstantVal;
5290     return false;
5291   case ValID::t_ConstantStruct:
5292   case ValID::t_PackedConstantStruct:
5293     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5294       if (ST->getNumElements() != ID.UIntVal)
5295         return Error(ID.Loc,
5296                      "initializer with struct type has wrong # elements");
5297       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5298         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5299 
5300       // Verify that the elements are compatible with the structtype.
5301       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5302         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5303           return Error(ID.Loc, "element " + Twine(i) +
5304                     " of struct initializer doesn't match struct element type");
5305 
5306       V = ConstantStruct::get(
5307           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5308     } else
5309       return Error(ID.Loc, "constant expression type mismatch");
5310     return false;
5311   }
5312   llvm_unreachable("Invalid ValID");
5313 }
5314 
5315 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5316   C = nullptr;
5317   ValID ID;
5318   auto Loc = Lex.getLoc();
5319   if (ParseValID(ID, /*PFS=*/nullptr))
5320     return true;
5321   switch (ID.Kind) {
5322   case ValID::t_APSInt:
5323   case ValID::t_APFloat:
5324   case ValID::t_Undef:
5325   case ValID::t_Constant:
5326   case ValID::t_ConstantStruct:
5327   case ValID::t_PackedConstantStruct: {
5328     Value *V;
5329     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5330       return true;
5331     assert(isa<Constant>(V) && "Expected a constant value");
5332     C = cast<Constant>(V);
5333     return false;
5334   }
5335   case ValID::t_Null:
5336     C = Constant::getNullValue(Ty);
5337     return false;
5338   default:
5339     return Error(Loc, "expected a constant value");
5340   }
5341 }
5342 
5343 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5344   V = nullptr;
5345   ValID ID;
5346   return ParseValID(ID, PFS) ||
5347          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5348 }
5349 
5350 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5351   Type *Ty = nullptr;
5352   return ParseType(Ty) ||
5353          ParseValue(Ty, V, PFS);
5354 }
5355 
5356 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5357                                       PerFunctionState &PFS) {
5358   Value *V;
5359   Loc = Lex.getLoc();
5360   if (ParseTypeAndValue(V, PFS)) return true;
5361   if (!isa<BasicBlock>(V))
5362     return Error(Loc, "expected a basic block");
5363   BB = cast<BasicBlock>(V);
5364   return false;
5365 }
5366 
5367 /// FunctionHeader
5368 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5369 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5370 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5371 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5372 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5373   // Parse the linkage.
5374   LocTy LinkageLoc = Lex.getLoc();
5375   unsigned Linkage;
5376   unsigned Visibility;
5377   unsigned DLLStorageClass;
5378   bool DSOLocal;
5379   AttrBuilder RetAttrs;
5380   unsigned CC;
5381   bool HasLinkage;
5382   Type *RetType = nullptr;
5383   LocTy RetTypeLoc = Lex.getLoc();
5384   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5385                            DSOLocal) ||
5386       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5387       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5388     return true;
5389 
5390   // Verify that the linkage is ok.
5391   switch ((GlobalValue::LinkageTypes)Linkage) {
5392   case GlobalValue::ExternalLinkage:
5393     break; // always ok.
5394   case GlobalValue::ExternalWeakLinkage:
5395     if (isDefine)
5396       return Error(LinkageLoc, "invalid linkage for function definition");
5397     break;
5398   case GlobalValue::PrivateLinkage:
5399   case GlobalValue::InternalLinkage:
5400   case GlobalValue::AvailableExternallyLinkage:
5401   case GlobalValue::LinkOnceAnyLinkage:
5402   case GlobalValue::LinkOnceODRLinkage:
5403   case GlobalValue::WeakAnyLinkage:
5404   case GlobalValue::WeakODRLinkage:
5405     if (!isDefine)
5406       return Error(LinkageLoc, "invalid linkage for function declaration");
5407     break;
5408   case GlobalValue::AppendingLinkage:
5409   case GlobalValue::CommonLinkage:
5410     return Error(LinkageLoc, "invalid function linkage type");
5411   }
5412 
5413   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5414     return Error(LinkageLoc,
5415                  "symbol with local linkage must have default visibility");
5416 
5417   if (!FunctionType::isValidReturnType(RetType))
5418     return Error(RetTypeLoc, "invalid function return type");
5419 
5420   LocTy NameLoc = Lex.getLoc();
5421 
5422   std::string FunctionName;
5423   if (Lex.getKind() == lltok::GlobalVar) {
5424     FunctionName = Lex.getStrVal();
5425   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5426     unsigned NameID = Lex.getUIntVal();
5427 
5428     if (NameID != NumberedVals.size())
5429       return TokError("function expected to be numbered '%" +
5430                       Twine(NumberedVals.size()) + "'");
5431   } else {
5432     return TokError("expected function name");
5433   }
5434 
5435   Lex.Lex();
5436 
5437   if (Lex.getKind() != lltok::lparen)
5438     return TokError("expected '(' in function argument list");
5439 
5440   SmallVector<ArgInfo, 8> ArgList;
5441   bool isVarArg;
5442   AttrBuilder FuncAttrs;
5443   std::vector<unsigned> FwdRefAttrGrps;
5444   LocTy BuiltinLoc;
5445   std::string Section;
5446   std::string Partition;
5447   MaybeAlign Alignment;
5448   std::string GC;
5449   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5450   unsigned AddrSpace = 0;
5451   Constant *Prefix = nullptr;
5452   Constant *Prologue = nullptr;
5453   Constant *PersonalityFn = nullptr;
5454   Comdat *C;
5455 
5456   if (ParseArgumentList(ArgList, isVarArg) ||
5457       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5458       ParseOptionalProgramAddrSpace(AddrSpace) ||
5459       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5460                                  BuiltinLoc) ||
5461       (EatIfPresent(lltok::kw_section) &&
5462        ParseStringConstant(Section)) ||
5463       (EatIfPresent(lltok::kw_partition) &&
5464        ParseStringConstant(Partition)) ||
5465       parseOptionalComdat(FunctionName, C) ||
5466       ParseOptionalAlignment(Alignment) ||
5467       (EatIfPresent(lltok::kw_gc) &&
5468        ParseStringConstant(GC)) ||
5469       (EatIfPresent(lltok::kw_prefix) &&
5470        ParseGlobalTypeAndValue(Prefix)) ||
5471       (EatIfPresent(lltok::kw_prologue) &&
5472        ParseGlobalTypeAndValue(Prologue)) ||
5473       (EatIfPresent(lltok::kw_personality) &&
5474        ParseGlobalTypeAndValue(PersonalityFn)))
5475     return true;
5476 
5477   if (FuncAttrs.contains(Attribute::Builtin))
5478     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5479 
5480   // If the alignment was parsed as an attribute, move to the alignment field.
5481   if (FuncAttrs.hasAlignmentAttr()) {
5482     Alignment = FuncAttrs.getAlignment();
5483     FuncAttrs.removeAttribute(Attribute::Alignment);
5484   }
5485 
5486   // Okay, if we got here, the function is syntactically valid.  Convert types
5487   // and do semantic checks.
5488   std::vector<Type*> ParamTypeList;
5489   SmallVector<AttributeSet, 8> Attrs;
5490 
5491   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5492     ParamTypeList.push_back(ArgList[i].Ty);
5493     Attrs.push_back(ArgList[i].Attrs);
5494   }
5495 
5496   AttributeList PAL =
5497       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5498                          AttributeSet::get(Context, RetAttrs), Attrs);
5499 
5500   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5501     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5502 
5503   FunctionType *FT =
5504     FunctionType::get(RetType, ParamTypeList, isVarArg);
5505   PointerType *PFT = PointerType::get(FT, AddrSpace);
5506 
5507   Fn = nullptr;
5508   if (!FunctionName.empty()) {
5509     // If this was a definition of a forward reference, remove the definition
5510     // from the forward reference table and fill in the forward ref.
5511     auto FRVI = ForwardRefVals.find(FunctionName);
5512     if (FRVI != ForwardRefVals.end()) {
5513       Fn = M->getFunction(FunctionName);
5514       if (!Fn)
5515         return Error(FRVI->second.second, "invalid forward reference to "
5516                      "function as global value!");
5517       if (Fn->getType() != PFT)
5518         return Error(FRVI->second.second, "invalid forward reference to "
5519                      "function '" + FunctionName + "' with wrong type: "
5520                      "expected '" + getTypeString(PFT) + "' but was '" +
5521                      getTypeString(Fn->getType()) + "'");
5522       ForwardRefVals.erase(FRVI);
5523     } else if ((Fn = M->getFunction(FunctionName))) {
5524       // Reject redefinitions.
5525       return Error(NameLoc, "invalid redefinition of function '" +
5526                    FunctionName + "'");
5527     } else if (M->getNamedValue(FunctionName)) {
5528       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5529     }
5530 
5531   } else {
5532     // If this is a definition of a forward referenced function, make sure the
5533     // types agree.
5534     auto I = ForwardRefValIDs.find(NumberedVals.size());
5535     if (I != ForwardRefValIDs.end()) {
5536       Fn = cast<Function>(I->second.first);
5537       if (Fn->getType() != PFT)
5538         return Error(NameLoc, "type of definition and forward reference of '@" +
5539                      Twine(NumberedVals.size()) + "' disagree: "
5540                      "expected '" + getTypeString(PFT) + "' but was '" +
5541                      getTypeString(Fn->getType()) + "'");
5542       ForwardRefValIDs.erase(I);
5543     }
5544   }
5545 
5546   if (!Fn)
5547     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5548                           FunctionName, M);
5549   else // Move the forward-reference to the correct spot in the module.
5550     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5551 
5552   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5553 
5554   if (FunctionName.empty())
5555     NumberedVals.push_back(Fn);
5556 
5557   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5558   maybeSetDSOLocal(DSOLocal, *Fn);
5559   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5560   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5561   Fn->setCallingConv(CC);
5562   Fn->setAttributes(PAL);
5563   Fn->setUnnamedAddr(UnnamedAddr);
5564   Fn->setAlignment(MaybeAlign(Alignment));
5565   Fn->setSection(Section);
5566   Fn->setPartition(Partition);
5567   Fn->setComdat(C);
5568   Fn->setPersonalityFn(PersonalityFn);
5569   if (!GC.empty()) Fn->setGC(GC);
5570   Fn->setPrefixData(Prefix);
5571   Fn->setPrologueData(Prologue);
5572   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5573 
5574   // Add all of the arguments we parsed to the function.
5575   Function::arg_iterator ArgIt = Fn->arg_begin();
5576   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5577     // If the argument has a name, insert it into the argument symbol table.
5578     if (ArgList[i].Name.empty()) continue;
5579 
5580     // Set the name, if it conflicted, it will be auto-renamed.
5581     ArgIt->setName(ArgList[i].Name);
5582 
5583     if (ArgIt->getName() != ArgList[i].Name)
5584       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5585                    ArgList[i].Name + "'");
5586   }
5587 
5588   if (isDefine)
5589     return false;
5590 
5591   // Check the declaration has no block address forward references.
5592   ValID ID;
5593   if (FunctionName.empty()) {
5594     ID.Kind = ValID::t_GlobalID;
5595     ID.UIntVal = NumberedVals.size() - 1;
5596   } else {
5597     ID.Kind = ValID::t_GlobalName;
5598     ID.StrVal = FunctionName;
5599   }
5600   auto Blocks = ForwardRefBlockAddresses.find(ID);
5601   if (Blocks != ForwardRefBlockAddresses.end())
5602     return Error(Blocks->first.Loc,
5603                  "cannot take blockaddress inside a declaration");
5604   return false;
5605 }
5606 
5607 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5608   ValID ID;
5609   if (FunctionNumber == -1) {
5610     ID.Kind = ValID::t_GlobalName;
5611     ID.StrVal = std::string(F.getName());
5612   } else {
5613     ID.Kind = ValID::t_GlobalID;
5614     ID.UIntVal = FunctionNumber;
5615   }
5616 
5617   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5618   if (Blocks == P.ForwardRefBlockAddresses.end())
5619     return false;
5620 
5621   for (const auto &I : Blocks->second) {
5622     const ValID &BBID = I.first;
5623     GlobalValue *GV = I.second;
5624 
5625     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5626            "Expected local id or name");
5627     BasicBlock *BB;
5628     if (BBID.Kind == ValID::t_LocalName)
5629       BB = GetBB(BBID.StrVal, BBID.Loc);
5630     else
5631       BB = GetBB(BBID.UIntVal, BBID.Loc);
5632     if (!BB)
5633       return P.Error(BBID.Loc, "referenced value is not a basic block");
5634 
5635     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5636     GV->eraseFromParent();
5637   }
5638 
5639   P.ForwardRefBlockAddresses.erase(Blocks);
5640   return false;
5641 }
5642 
5643 /// ParseFunctionBody
5644 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5645 bool LLParser::ParseFunctionBody(Function &Fn) {
5646   if (Lex.getKind() != lltok::lbrace)
5647     return TokError("expected '{' in function body");
5648   Lex.Lex();  // eat the {.
5649 
5650   int FunctionNumber = -1;
5651   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5652 
5653   PerFunctionState PFS(*this, Fn, FunctionNumber);
5654 
5655   // Resolve block addresses and allow basic blocks to be forward-declared
5656   // within this function.
5657   if (PFS.resolveForwardRefBlockAddresses())
5658     return true;
5659   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5660 
5661   // We need at least one basic block.
5662   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5663     return TokError("function body requires at least one basic block");
5664 
5665   while (Lex.getKind() != lltok::rbrace &&
5666          Lex.getKind() != lltok::kw_uselistorder)
5667     if (ParseBasicBlock(PFS)) return true;
5668 
5669   while (Lex.getKind() != lltok::rbrace)
5670     if (ParseUseListOrder(&PFS))
5671       return true;
5672 
5673   // Eat the }.
5674   Lex.Lex();
5675 
5676   // Verify function is ok.
5677   return PFS.FinishFunction();
5678 }
5679 
5680 /// ParseBasicBlock
5681 ///   ::= (LabelStr|LabelID)? Instruction*
5682 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5683   // If this basic block starts out with a name, remember it.
5684   std::string Name;
5685   int NameID = -1;
5686   LocTy NameLoc = Lex.getLoc();
5687   if (Lex.getKind() == lltok::LabelStr) {
5688     Name = Lex.getStrVal();
5689     Lex.Lex();
5690   } else if (Lex.getKind() == lltok::LabelID) {
5691     NameID = Lex.getUIntVal();
5692     Lex.Lex();
5693   }
5694 
5695   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5696   if (!BB)
5697     return true;
5698 
5699   std::string NameStr;
5700 
5701   // Parse the instructions in this block until we get a terminator.
5702   Instruction *Inst;
5703   do {
5704     // This instruction may have three possibilities for a name: a) none
5705     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5706     LocTy NameLoc = Lex.getLoc();
5707     int NameID = -1;
5708     NameStr = "";
5709 
5710     if (Lex.getKind() == lltok::LocalVarID) {
5711       NameID = Lex.getUIntVal();
5712       Lex.Lex();
5713       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5714         return true;
5715     } else if (Lex.getKind() == lltok::LocalVar) {
5716       NameStr = Lex.getStrVal();
5717       Lex.Lex();
5718       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5719         return true;
5720     }
5721 
5722     switch (ParseInstruction(Inst, BB, PFS)) {
5723     default: llvm_unreachable("Unknown ParseInstruction result!");
5724     case InstError: return true;
5725     case InstNormal:
5726       BB->getInstList().push_back(Inst);
5727 
5728       // With a normal result, we check to see if the instruction is followed by
5729       // a comma and metadata.
5730       if (EatIfPresent(lltok::comma))
5731         if (ParseInstructionMetadata(*Inst))
5732           return true;
5733       break;
5734     case InstExtraComma:
5735       BB->getInstList().push_back(Inst);
5736 
5737       // If the instruction parser ate an extra comma at the end of it, it
5738       // *must* be followed by metadata.
5739       if (ParseInstructionMetadata(*Inst))
5740         return true;
5741       break;
5742     }
5743 
5744     // Set the name on the instruction.
5745     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5746   } while (!Inst->isTerminator());
5747 
5748   return false;
5749 }
5750 
5751 //===----------------------------------------------------------------------===//
5752 // Instruction Parsing.
5753 //===----------------------------------------------------------------------===//
5754 
5755 /// ParseInstruction - Parse one of the many different instructions.
5756 ///
5757 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5758                                PerFunctionState &PFS) {
5759   lltok::Kind Token = Lex.getKind();
5760   if (Token == lltok::Eof)
5761     return TokError("found end of file when expecting more instructions");
5762   LocTy Loc = Lex.getLoc();
5763   unsigned KeywordVal = Lex.getUIntVal();
5764   Lex.Lex();  // Eat the keyword.
5765 
5766   switch (Token) {
5767   default:                    return Error(Loc, "expected instruction opcode");
5768   // Terminator Instructions.
5769   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5770   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5771   case lltok::kw_br:          return ParseBr(Inst, PFS);
5772   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5773   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5774   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5775   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5776   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5777   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5778   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5779   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5780   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5781   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5782   // Unary Operators.
5783   case lltok::kw_fneg: {
5784     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5785     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5786     if (Res != 0)
5787       return Res;
5788     if (FMF.any())
5789       Inst->setFastMathFlags(FMF);
5790     return false;
5791   }
5792   // Binary Operators.
5793   case lltok::kw_add:
5794   case lltok::kw_sub:
5795   case lltok::kw_mul:
5796   case lltok::kw_shl: {
5797     bool NUW = EatIfPresent(lltok::kw_nuw);
5798     bool NSW = EatIfPresent(lltok::kw_nsw);
5799     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5800 
5801     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5802 
5803     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5804     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5805     return false;
5806   }
5807   case lltok::kw_fadd:
5808   case lltok::kw_fsub:
5809   case lltok::kw_fmul:
5810   case lltok::kw_fdiv:
5811   case lltok::kw_frem: {
5812     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5813     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5814     if (Res != 0)
5815       return Res;
5816     if (FMF.any())
5817       Inst->setFastMathFlags(FMF);
5818     return 0;
5819   }
5820 
5821   case lltok::kw_sdiv:
5822   case lltok::kw_udiv:
5823   case lltok::kw_lshr:
5824   case lltok::kw_ashr: {
5825     bool Exact = EatIfPresent(lltok::kw_exact);
5826 
5827     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5828     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5829     return false;
5830   }
5831 
5832   case lltok::kw_urem:
5833   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5834                                                 /*IsFP*/false);
5835   case lltok::kw_and:
5836   case lltok::kw_or:
5837   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5838   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5839   case lltok::kw_fcmp: {
5840     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5841     int Res = ParseCompare(Inst, PFS, KeywordVal);
5842     if (Res != 0)
5843       return Res;
5844     if (FMF.any())
5845       Inst->setFastMathFlags(FMF);
5846     return 0;
5847   }
5848 
5849   // Casts.
5850   case lltok::kw_trunc:
5851   case lltok::kw_zext:
5852   case lltok::kw_sext:
5853   case lltok::kw_fptrunc:
5854   case lltok::kw_fpext:
5855   case lltok::kw_bitcast:
5856   case lltok::kw_addrspacecast:
5857   case lltok::kw_uitofp:
5858   case lltok::kw_sitofp:
5859   case lltok::kw_fptoui:
5860   case lltok::kw_fptosi:
5861   case lltok::kw_inttoptr:
5862   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5863   // Other.
5864   case lltok::kw_select: {
5865     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5866     int Res = ParseSelect(Inst, PFS);
5867     if (Res != 0)
5868       return Res;
5869     if (FMF.any()) {
5870       if (!isa<FPMathOperator>(Inst))
5871         return Error(Loc, "fast-math-flags specified for select without "
5872                           "floating-point scalar or vector return type");
5873       Inst->setFastMathFlags(FMF);
5874     }
5875     return 0;
5876   }
5877   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5878   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5879   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5880   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5881   case lltok::kw_phi: {
5882     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5883     int Res = ParsePHI(Inst, PFS);
5884     if (Res != 0)
5885       return Res;
5886     if (FMF.any()) {
5887       if (!isa<FPMathOperator>(Inst))
5888         return Error(Loc, "fast-math-flags specified for phi without "
5889                           "floating-point scalar or vector return type");
5890       Inst->setFastMathFlags(FMF);
5891     }
5892     return 0;
5893   }
5894   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5895   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5896   // Call.
5897   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5898   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5899   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5900   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5901   // Memory.
5902   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5903   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5904   case lltok::kw_store:          return ParseStore(Inst, PFS);
5905   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5906   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5907   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5908   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5909   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5910   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5911   }
5912 }
5913 
5914 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5915 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5916   if (Opc == Instruction::FCmp) {
5917     switch (Lex.getKind()) {
5918     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5919     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5920     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5921     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5922     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5923     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5924     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5925     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5926     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5927     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5928     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5929     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5930     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5931     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5932     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5933     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5934     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5935     }
5936   } else {
5937     switch (Lex.getKind()) {
5938     default: return TokError("expected icmp predicate (e.g. 'eq')");
5939     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5940     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5941     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5942     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5943     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5944     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5945     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5946     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5947     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5948     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5949     }
5950   }
5951   Lex.Lex();
5952   return false;
5953 }
5954 
5955 //===----------------------------------------------------------------------===//
5956 // Terminator Instructions.
5957 //===----------------------------------------------------------------------===//
5958 
5959 /// ParseRet - Parse a return instruction.
5960 ///   ::= 'ret' void (',' !dbg, !1)*
5961 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5962 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5963                         PerFunctionState &PFS) {
5964   SMLoc TypeLoc = Lex.getLoc();
5965   Type *Ty = nullptr;
5966   if (ParseType(Ty, true /*void allowed*/)) return true;
5967 
5968   Type *ResType = PFS.getFunction().getReturnType();
5969 
5970   if (Ty->isVoidTy()) {
5971     if (!ResType->isVoidTy())
5972       return Error(TypeLoc, "value doesn't match function result type '" +
5973                    getTypeString(ResType) + "'");
5974 
5975     Inst = ReturnInst::Create(Context);
5976     return false;
5977   }
5978 
5979   Value *RV;
5980   if (ParseValue(Ty, RV, PFS)) return true;
5981 
5982   if (ResType != RV->getType())
5983     return Error(TypeLoc, "value doesn't match function result type '" +
5984                  getTypeString(ResType) + "'");
5985 
5986   Inst = ReturnInst::Create(Context, RV);
5987   return false;
5988 }
5989 
5990 /// ParseBr
5991 ///   ::= 'br' TypeAndValue
5992 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5993 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5994   LocTy Loc, Loc2;
5995   Value *Op0;
5996   BasicBlock *Op1, *Op2;
5997   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5998 
5999   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6000     Inst = BranchInst::Create(BB);
6001     return false;
6002   }
6003 
6004   if (Op0->getType() != Type::getInt1Ty(Context))
6005     return Error(Loc, "branch condition must have 'i1' type");
6006 
6007   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6008       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6009       ParseToken(lltok::comma, "expected ',' after true destination") ||
6010       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6011     return true;
6012 
6013   Inst = BranchInst::Create(Op1, Op2, Op0);
6014   return false;
6015 }
6016 
6017 /// ParseSwitch
6018 ///  Instruction
6019 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6020 ///  JumpTable
6021 ///    ::= (TypeAndValue ',' TypeAndValue)*
6022 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6023   LocTy CondLoc, BBLoc;
6024   Value *Cond;
6025   BasicBlock *DefaultBB;
6026   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6027       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6028       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6029       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6030     return true;
6031 
6032   if (!Cond->getType()->isIntegerTy())
6033     return Error(CondLoc, "switch condition must have integer type");
6034 
6035   // Parse the jump table pairs.
6036   SmallPtrSet<Value*, 32> SeenCases;
6037   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6038   while (Lex.getKind() != lltok::rsquare) {
6039     Value *Constant;
6040     BasicBlock *DestBB;
6041 
6042     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6043         ParseToken(lltok::comma, "expected ',' after case value") ||
6044         ParseTypeAndBasicBlock(DestBB, PFS))
6045       return true;
6046 
6047     if (!SeenCases.insert(Constant).second)
6048       return Error(CondLoc, "duplicate case value in switch");
6049     if (!isa<ConstantInt>(Constant))
6050       return Error(CondLoc, "case value is not a constant integer");
6051 
6052     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6053   }
6054 
6055   Lex.Lex();  // Eat the ']'.
6056 
6057   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6058   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6059     SI->addCase(Table[i].first, Table[i].second);
6060   Inst = SI;
6061   return false;
6062 }
6063 
6064 /// ParseIndirectBr
6065 ///  Instruction
6066 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6067 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6068   LocTy AddrLoc;
6069   Value *Address;
6070   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6071       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6072       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6073     return true;
6074 
6075   if (!Address->getType()->isPointerTy())
6076     return Error(AddrLoc, "indirectbr address must have pointer type");
6077 
6078   // Parse the destination list.
6079   SmallVector<BasicBlock*, 16> DestList;
6080 
6081   if (Lex.getKind() != lltok::rsquare) {
6082     BasicBlock *DestBB;
6083     if (ParseTypeAndBasicBlock(DestBB, PFS))
6084       return true;
6085     DestList.push_back(DestBB);
6086 
6087     while (EatIfPresent(lltok::comma)) {
6088       if (ParseTypeAndBasicBlock(DestBB, PFS))
6089         return true;
6090       DestList.push_back(DestBB);
6091     }
6092   }
6093 
6094   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6095     return true;
6096 
6097   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6098   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6099     IBI->addDestination(DestList[i]);
6100   Inst = IBI;
6101   return false;
6102 }
6103 
6104 /// ParseInvoke
6105 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6106 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6107 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6108   LocTy CallLoc = Lex.getLoc();
6109   AttrBuilder RetAttrs, FnAttrs;
6110   std::vector<unsigned> FwdRefAttrGrps;
6111   LocTy NoBuiltinLoc;
6112   unsigned CC;
6113   unsigned InvokeAddrSpace;
6114   Type *RetType = nullptr;
6115   LocTy RetTypeLoc;
6116   ValID CalleeID;
6117   SmallVector<ParamInfo, 16> ArgList;
6118   SmallVector<OperandBundleDef, 2> BundleList;
6119 
6120   BasicBlock *NormalBB, *UnwindBB;
6121   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6122       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6123       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6124       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6125       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6126                                  NoBuiltinLoc) ||
6127       ParseOptionalOperandBundles(BundleList, PFS) ||
6128       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6129       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6130       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6131       ParseTypeAndBasicBlock(UnwindBB, PFS))
6132     return true;
6133 
6134   // If RetType is a non-function pointer type, then this is the short syntax
6135   // for the call, which means that RetType is just the return type.  Infer the
6136   // rest of the function argument types from the arguments that are present.
6137   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6138   if (!Ty) {
6139     // Pull out the types of all of the arguments...
6140     std::vector<Type*> ParamTypes;
6141     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6142       ParamTypes.push_back(ArgList[i].V->getType());
6143 
6144     if (!FunctionType::isValidReturnType(RetType))
6145       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6146 
6147     Ty = FunctionType::get(RetType, ParamTypes, false);
6148   }
6149 
6150   CalleeID.FTy = Ty;
6151 
6152   // Look up the callee.
6153   Value *Callee;
6154   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6155                           Callee, &PFS, /*IsCall=*/true))
6156     return true;
6157 
6158   // Set up the Attribute for the function.
6159   SmallVector<Value *, 8> Args;
6160   SmallVector<AttributeSet, 8> ArgAttrs;
6161 
6162   // Loop through FunctionType's arguments and ensure they are specified
6163   // correctly.  Also, gather any parameter attributes.
6164   FunctionType::param_iterator I = Ty->param_begin();
6165   FunctionType::param_iterator E = Ty->param_end();
6166   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6167     Type *ExpectedTy = nullptr;
6168     if (I != E) {
6169       ExpectedTy = *I++;
6170     } else if (!Ty->isVarArg()) {
6171       return Error(ArgList[i].Loc, "too many arguments specified");
6172     }
6173 
6174     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6175       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6176                    getTypeString(ExpectedTy) + "'");
6177     Args.push_back(ArgList[i].V);
6178     ArgAttrs.push_back(ArgList[i].Attrs);
6179   }
6180 
6181   if (I != E)
6182     return Error(CallLoc, "not enough parameters specified for call");
6183 
6184   if (FnAttrs.hasAlignmentAttr())
6185     return Error(CallLoc, "invoke instructions may not have an alignment");
6186 
6187   // Finish off the Attribute and check them
6188   AttributeList PAL =
6189       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6190                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6191 
6192   InvokeInst *II =
6193       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6194   II->setCallingConv(CC);
6195   II->setAttributes(PAL);
6196   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6197   Inst = II;
6198   return false;
6199 }
6200 
6201 /// ParseResume
6202 ///   ::= 'resume' TypeAndValue
6203 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6204   Value *Exn; LocTy ExnLoc;
6205   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6206     return true;
6207 
6208   ResumeInst *RI = ResumeInst::Create(Exn);
6209   Inst = RI;
6210   return false;
6211 }
6212 
6213 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6214                                   PerFunctionState &PFS) {
6215   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6216     return true;
6217 
6218   while (Lex.getKind() != lltok::rsquare) {
6219     // If this isn't the first argument, we need a comma.
6220     if (!Args.empty() &&
6221         ParseToken(lltok::comma, "expected ',' in argument list"))
6222       return true;
6223 
6224     // Parse the argument.
6225     LocTy ArgLoc;
6226     Type *ArgTy = nullptr;
6227     if (ParseType(ArgTy, ArgLoc))
6228       return true;
6229 
6230     Value *V;
6231     if (ArgTy->isMetadataTy()) {
6232       if (ParseMetadataAsValue(V, PFS))
6233         return true;
6234     } else {
6235       if (ParseValue(ArgTy, V, PFS))
6236         return true;
6237     }
6238     Args.push_back(V);
6239   }
6240 
6241   Lex.Lex();  // Lex the ']'.
6242   return false;
6243 }
6244 
6245 /// ParseCleanupRet
6246 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6247 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6248   Value *CleanupPad = nullptr;
6249 
6250   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6251     return true;
6252 
6253   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6254     return true;
6255 
6256   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6257     return true;
6258 
6259   BasicBlock *UnwindBB = nullptr;
6260   if (Lex.getKind() == lltok::kw_to) {
6261     Lex.Lex();
6262     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6263       return true;
6264   } else {
6265     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6266       return true;
6267     }
6268   }
6269 
6270   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6271   return false;
6272 }
6273 
6274 /// ParseCatchRet
6275 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6276 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6277   Value *CatchPad = nullptr;
6278 
6279   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6280     return true;
6281 
6282   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6283     return true;
6284 
6285   BasicBlock *BB;
6286   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6287       ParseTypeAndBasicBlock(BB, PFS))
6288       return true;
6289 
6290   Inst = CatchReturnInst::Create(CatchPad, BB);
6291   return false;
6292 }
6293 
6294 /// ParseCatchSwitch
6295 ///   ::= 'catchswitch' within Parent
6296 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6297   Value *ParentPad;
6298 
6299   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6300     return true;
6301 
6302   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6303       Lex.getKind() != lltok::LocalVarID)
6304     return TokError("expected scope value for catchswitch");
6305 
6306   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6307     return true;
6308 
6309   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6310     return true;
6311 
6312   SmallVector<BasicBlock *, 32> Table;
6313   do {
6314     BasicBlock *DestBB;
6315     if (ParseTypeAndBasicBlock(DestBB, PFS))
6316       return true;
6317     Table.push_back(DestBB);
6318   } while (EatIfPresent(lltok::comma));
6319 
6320   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6321     return true;
6322 
6323   if (ParseToken(lltok::kw_unwind,
6324                  "expected 'unwind' after catchswitch scope"))
6325     return true;
6326 
6327   BasicBlock *UnwindBB = nullptr;
6328   if (EatIfPresent(lltok::kw_to)) {
6329     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6330       return true;
6331   } else {
6332     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6333       return true;
6334   }
6335 
6336   auto *CatchSwitch =
6337       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6338   for (BasicBlock *DestBB : Table)
6339     CatchSwitch->addHandler(DestBB);
6340   Inst = CatchSwitch;
6341   return false;
6342 }
6343 
6344 /// ParseCatchPad
6345 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6346 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6347   Value *CatchSwitch = nullptr;
6348 
6349   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6350     return true;
6351 
6352   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6353     return TokError("expected scope value for catchpad");
6354 
6355   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6356     return true;
6357 
6358   SmallVector<Value *, 8> Args;
6359   if (ParseExceptionArgs(Args, PFS))
6360     return true;
6361 
6362   Inst = CatchPadInst::Create(CatchSwitch, Args);
6363   return false;
6364 }
6365 
6366 /// ParseCleanupPad
6367 ///   ::= 'cleanuppad' within Parent ParamList
6368 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6369   Value *ParentPad = nullptr;
6370 
6371   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6372     return true;
6373 
6374   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6375       Lex.getKind() != lltok::LocalVarID)
6376     return TokError("expected scope value for cleanuppad");
6377 
6378   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6379     return true;
6380 
6381   SmallVector<Value *, 8> Args;
6382   if (ParseExceptionArgs(Args, PFS))
6383     return true;
6384 
6385   Inst = CleanupPadInst::Create(ParentPad, Args);
6386   return false;
6387 }
6388 
6389 //===----------------------------------------------------------------------===//
6390 // Unary Operators.
6391 //===----------------------------------------------------------------------===//
6392 
6393 /// ParseUnaryOp
6394 ///  ::= UnaryOp TypeAndValue ',' Value
6395 ///
6396 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6397 /// operand is allowed.
6398 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6399                             unsigned Opc, bool IsFP) {
6400   LocTy Loc; Value *LHS;
6401   if (ParseTypeAndValue(LHS, Loc, PFS))
6402     return true;
6403 
6404   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6405                     : LHS->getType()->isIntOrIntVectorTy();
6406 
6407   if (!Valid)
6408     return Error(Loc, "invalid operand type for instruction");
6409 
6410   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6411   return false;
6412 }
6413 
6414 /// ParseCallBr
6415 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6416 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6417 ///       '[' LabelList ']'
6418 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6419   LocTy CallLoc = Lex.getLoc();
6420   AttrBuilder RetAttrs, FnAttrs;
6421   std::vector<unsigned> FwdRefAttrGrps;
6422   LocTy NoBuiltinLoc;
6423   unsigned CC;
6424   Type *RetType = nullptr;
6425   LocTy RetTypeLoc;
6426   ValID CalleeID;
6427   SmallVector<ParamInfo, 16> ArgList;
6428   SmallVector<OperandBundleDef, 2> BundleList;
6429 
6430   BasicBlock *DefaultDest;
6431   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6432       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6433       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6434       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6435                                  NoBuiltinLoc) ||
6436       ParseOptionalOperandBundles(BundleList, PFS) ||
6437       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6438       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6439       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6440     return true;
6441 
6442   // Parse the destination list.
6443   SmallVector<BasicBlock *, 16> IndirectDests;
6444 
6445   if (Lex.getKind() != lltok::rsquare) {
6446     BasicBlock *DestBB;
6447     if (ParseTypeAndBasicBlock(DestBB, PFS))
6448       return true;
6449     IndirectDests.push_back(DestBB);
6450 
6451     while (EatIfPresent(lltok::comma)) {
6452       if (ParseTypeAndBasicBlock(DestBB, PFS))
6453         return true;
6454       IndirectDests.push_back(DestBB);
6455     }
6456   }
6457 
6458   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6459     return true;
6460 
6461   // If RetType is a non-function pointer type, then this is the short syntax
6462   // for the call, which means that RetType is just the return type.  Infer the
6463   // rest of the function argument types from the arguments that are present.
6464   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6465   if (!Ty) {
6466     // Pull out the types of all of the arguments...
6467     std::vector<Type *> ParamTypes;
6468     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6469       ParamTypes.push_back(ArgList[i].V->getType());
6470 
6471     if (!FunctionType::isValidReturnType(RetType))
6472       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6473 
6474     Ty = FunctionType::get(RetType, ParamTypes, false);
6475   }
6476 
6477   CalleeID.FTy = Ty;
6478 
6479   // Look up the callee.
6480   Value *Callee;
6481   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6482                           /*IsCall=*/true))
6483     return true;
6484 
6485   // Set up the Attribute for the function.
6486   SmallVector<Value *, 8> Args;
6487   SmallVector<AttributeSet, 8> ArgAttrs;
6488 
6489   // Loop through FunctionType's arguments and ensure they are specified
6490   // correctly.  Also, gather any parameter attributes.
6491   FunctionType::param_iterator I = Ty->param_begin();
6492   FunctionType::param_iterator E = Ty->param_end();
6493   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6494     Type *ExpectedTy = nullptr;
6495     if (I != E) {
6496       ExpectedTy = *I++;
6497     } else if (!Ty->isVarArg()) {
6498       return Error(ArgList[i].Loc, "too many arguments specified");
6499     }
6500 
6501     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6502       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6503                                        getTypeString(ExpectedTy) + "'");
6504     Args.push_back(ArgList[i].V);
6505     ArgAttrs.push_back(ArgList[i].Attrs);
6506   }
6507 
6508   if (I != E)
6509     return Error(CallLoc, "not enough parameters specified for call");
6510 
6511   if (FnAttrs.hasAlignmentAttr())
6512     return Error(CallLoc, "callbr instructions may not have an alignment");
6513 
6514   // Finish off the Attribute and check them
6515   AttributeList PAL =
6516       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6517                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6518 
6519   CallBrInst *CBI =
6520       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6521                          BundleList);
6522   CBI->setCallingConv(CC);
6523   CBI->setAttributes(PAL);
6524   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6525   Inst = CBI;
6526   return false;
6527 }
6528 
6529 //===----------------------------------------------------------------------===//
6530 // Binary Operators.
6531 //===----------------------------------------------------------------------===//
6532 
6533 /// ParseArithmetic
6534 ///  ::= ArithmeticOps TypeAndValue ',' Value
6535 ///
6536 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6537 /// operand is allowed.
6538 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6539                                unsigned Opc, bool IsFP) {
6540   LocTy Loc; Value *LHS, *RHS;
6541   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6542       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6543       ParseValue(LHS->getType(), RHS, PFS))
6544     return true;
6545 
6546   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6547                     : LHS->getType()->isIntOrIntVectorTy();
6548 
6549   if (!Valid)
6550     return Error(Loc, "invalid operand type for instruction");
6551 
6552   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6553   return false;
6554 }
6555 
6556 /// ParseLogical
6557 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6558 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6559                             unsigned Opc) {
6560   LocTy Loc; Value *LHS, *RHS;
6561   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6562       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6563       ParseValue(LHS->getType(), RHS, PFS))
6564     return true;
6565 
6566   if (!LHS->getType()->isIntOrIntVectorTy())
6567     return Error(Loc,"instruction requires integer or integer vector operands");
6568 
6569   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6570   return false;
6571 }
6572 
6573 /// ParseCompare
6574 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6575 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6576 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6577                             unsigned Opc) {
6578   // Parse the integer/fp comparison predicate.
6579   LocTy Loc;
6580   unsigned Pred;
6581   Value *LHS, *RHS;
6582   if (ParseCmpPredicate(Pred, Opc) ||
6583       ParseTypeAndValue(LHS, Loc, PFS) ||
6584       ParseToken(lltok::comma, "expected ',' after compare value") ||
6585       ParseValue(LHS->getType(), RHS, PFS))
6586     return true;
6587 
6588   if (Opc == Instruction::FCmp) {
6589     if (!LHS->getType()->isFPOrFPVectorTy())
6590       return Error(Loc, "fcmp requires floating point operands");
6591     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6592   } else {
6593     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6594     if (!LHS->getType()->isIntOrIntVectorTy() &&
6595         !LHS->getType()->isPtrOrPtrVectorTy())
6596       return Error(Loc, "icmp requires integer operands");
6597     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6598   }
6599   return false;
6600 }
6601 
6602 //===----------------------------------------------------------------------===//
6603 // Other Instructions.
6604 //===----------------------------------------------------------------------===//
6605 
6606 
6607 /// ParseCast
6608 ///   ::= CastOpc TypeAndValue 'to' Type
6609 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6610                          unsigned Opc) {
6611   LocTy Loc;
6612   Value *Op;
6613   Type *DestTy = nullptr;
6614   if (ParseTypeAndValue(Op, Loc, PFS) ||
6615       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6616       ParseType(DestTy))
6617     return true;
6618 
6619   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6620     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6621     return Error(Loc, "invalid cast opcode for cast from '" +
6622                  getTypeString(Op->getType()) + "' to '" +
6623                  getTypeString(DestTy) + "'");
6624   }
6625   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6626   return false;
6627 }
6628 
6629 /// ParseSelect
6630 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6631 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6632   LocTy Loc;
6633   Value *Op0, *Op1, *Op2;
6634   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6635       ParseToken(lltok::comma, "expected ',' after select condition") ||
6636       ParseTypeAndValue(Op1, PFS) ||
6637       ParseToken(lltok::comma, "expected ',' after select value") ||
6638       ParseTypeAndValue(Op2, PFS))
6639     return true;
6640 
6641   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6642     return Error(Loc, Reason);
6643 
6644   Inst = SelectInst::Create(Op0, Op1, Op2);
6645   return false;
6646 }
6647 
6648 /// ParseVA_Arg
6649 ///   ::= 'va_arg' TypeAndValue ',' Type
6650 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6651   Value *Op;
6652   Type *EltTy = nullptr;
6653   LocTy TypeLoc;
6654   if (ParseTypeAndValue(Op, PFS) ||
6655       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6656       ParseType(EltTy, TypeLoc))
6657     return true;
6658 
6659   if (!EltTy->isFirstClassType())
6660     return Error(TypeLoc, "va_arg requires operand with first class type");
6661 
6662   Inst = new VAArgInst(Op, EltTy);
6663   return false;
6664 }
6665 
6666 /// ParseExtractElement
6667 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6668 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6669   LocTy Loc;
6670   Value *Op0, *Op1;
6671   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6672       ParseToken(lltok::comma, "expected ',' after extract value") ||
6673       ParseTypeAndValue(Op1, PFS))
6674     return true;
6675 
6676   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6677     return Error(Loc, "invalid extractelement operands");
6678 
6679   Inst = ExtractElementInst::Create(Op0, Op1);
6680   return false;
6681 }
6682 
6683 /// ParseInsertElement
6684 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6685 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6686   LocTy Loc;
6687   Value *Op0, *Op1, *Op2;
6688   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6689       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6690       ParseTypeAndValue(Op1, PFS) ||
6691       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6692       ParseTypeAndValue(Op2, PFS))
6693     return true;
6694 
6695   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6696     return Error(Loc, "invalid insertelement operands");
6697 
6698   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6699   return false;
6700 }
6701 
6702 /// ParseShuffleVector
6703 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6704 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6705   LocTy Loc;
6706   Value *Op0, *Op1, *Op2;
6707   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6708       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6709       ParseTypeAndValue(Op1, PFS) ||
6710       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6711       ParseTypeAndValue(Op2, PFS))
6712     return true;
6713 
6714   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6715     return Error(Loc, "invalid shufflevector operands");
6716 
6717   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6718   return false;
6719 }
6720 
6721 /// ParsePHI
6722 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6723 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6724   Type *Ty = nullptr;  LocTy TypeLoc;
6725   Value *Op0, *Op1;
6726 
6727   if (ParseType(Ty, TypeLoc) ||
6728       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6729       ParseValue(Ty, Op0, PFS) ||
6730       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6731       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6732       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6733     return true;
6734 
6735   bool AteExtraComma = false;
6736   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6737 
6738   while (true) {
6739     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6740 
6741     if (!EatIfPresent(lltok::comma))
6742       break;
6743 
6744     if (Lex.getKind() == lltok::MetadataVar) {
6745       AteExtraComma = true;
6746       break;
6747     }
6748 
6749     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6750         ParseValue(Ty, Op0, PFS) ||
6751         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6752         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6753         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6754       return true;
6755   }
6756 
6757   if (!Ty->isFirstClassType())
6758     return Error(TypeLoc, "phi node must have first class type");
6759 
6760   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6761   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6762     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6763   Inst = PN;
6764   return AteExtraComma ? InstExtraComma : InstNormal;
6765 }
6766 
6767 /// ParseLandingPad
6768 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6769 /// Clause
6770 ///   ::= 'catch' TypeAndValue
6771 ///   ::= 'filter'
6772 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6773 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6774   Type *Ty = nullptr; LocTy TyLoc;
6775 
6776   if (ParseType(Ty, TyLoc))
6777     return true;
6778 
6779   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6780   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6781 
6782   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6783     LandingPadInst::ClauseType CT;
6784     if (EatIfPresent(lltok::kw_catch))
6785       CT = LandingPadInst::Catch;
6786     else if (EatIfPresent(lltok::kw_filter))
6787       CT = LandingPadInst::Filter;
6788     else
6789       return TokError("expected 'catch' or 'filter' clause type");
6790 
6791     Value *V;
6792     LocTy VLoc;
6793     if (ParseTypeAndValue(V, VLoc, PFS))
6794       return true;
6795 
6796     // A 'catch' type expects a non-array constant. A filter clause expects an
6797     // array constant.
6798     if (CT == LandingPadInst::Catch) {
6799       if (isa<ArrayType>(V->getType()))
6800         Error(VLoc, "'catch' clause has an invalid type");
6801     } else {
6802       if (!isa<ArrayType>(V->getType()))
6803         Error(VLoc, "'filter' clause has an invalid type");
6804     }
6805 
6806     Constant *CV = dyn_cast<Constant>(V);
6807     if (!CV)
6808       return Error(VLoc, "clause argument must be a constant");
6809     LP->addClause(CV);
6810   }
6811 
6812   Inst = LP.release();
6813   return false;
6814 }
6815 
6816 /// ParseFreeze
6817 ///   ::= 'freeze' Type Value
6818 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6819   LocTy Loc;
6820   Value *Op;
6821   if (ParseTypeAndValue(Op, Loc, PFS))
6822     return true;
6823 
6824   Inst = new FreezeInst(Op);
6825   return false;
6826 }
6827 
6828 /// ParseCall
6829 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6830 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6831 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6832 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6833 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6834 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6835 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6836 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6837 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6838                          CallInst::TailCallKind TCK) {
6839   AttrBuilder RetAttrs, FnAttrs;
6840   std::vector<unsigned> FwdRefAttrGrps;
6841   LocTy BuiltinLoc;
6842   unsigned CallAddrSpace;
6843   unsigned CC;
6844   Type *RetType = nullptr;
6845   LocTy RetTypeLoc;
6846   ValID CalleeID;
6847   SmallVector<ParamInfo, 16> ArgList;
6848   SmallVector<OperandBundleDef, 2> BundleList;
6849   LocTy CallLoc = Lex.getLoc();
6850 
6851   if (TCK != CallInst::TCK_None &&
6852       ParseToken(lltok::kw_call,
6853                  "expected 'tail call', 'musttail call', or 'notail call'"))
6854     return true;
6855 
6856   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6857 
6858   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6859       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6860       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6861       ParseValID(CalleeID) ||
6862       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6863                          PFS.getFunction().isVarArg()) ||
6864       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6865       ParseOptionalOperandBundles(BundleList, PFS))
6866     return true;
6867 
6868   // If RetType is a non-function pointer type, then this is the short syntax
6869   // for the call, which means that RetType is just the return type.  Infer the
6870   // rest of the function argument types from the arguments that are present.
6871   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6872   if (!Ty) {
6873     // Pull out the types of all of the arguments...
6874     std::vector<Type*> ParamTypes;
6875     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6876       ParamTypes.push_back(ArgList[i].V->getType());
6877 
6878     if (!FunctionType::isValidReturnType(RetType))
6879       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6880 
6881     Ty = FunctionType::get(RetType, ParamTypes, false);
6882   }
6883 
6884   CalleeID.FTy = Ty;
6885 
6886   // Look up the callee.
6887   Value *Callee;
6888   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6889                           &PFS, /*IsCall=*/true))
6890     return true;
6891 
6892   // Set up the Attribute for the function.
6893   SmallVector<AttributeSet, 8> Attrs;
6894 
6895   SmallVector<Value*, 8> Args;
6896 
6897   // Loop through FunctionType's arguments and ensure they are specified
6898   // correctly.  Also, gather any parameter attributes.
6899   FunctionType::param_iterator I = Ty->param_begin();
6900   FunctionType::param_iterator E = Ty->param_end();
6901   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6902     Type *ExpectedTy = nullptr;
6903     if (I != E) {
6904       ExpectedTy = *I++;
6905     } else if (!Ty->isVarArg()) {
6906       return Error(ArgList[i].Loc, "too many arguments specified");
6907     }
6908 
6909     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6910       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6911                    getTypeString(ExpectedTy) + "'");
6912     Args.push_back(ArgList[i].V);
6913     Attrs.push_back(ArgList[i].Attrs);
6914   }
6915 
6916   if (I != E)
6917     return Error(CallLoc, "not enough parameters specified for call");
6918 
6919   if (FnAttrs.hasAlignmentAttr())
6920     return Error(CallLoc, "call instructions may not have an alignment");
6921 
6922   // Finish off the Attribute and check them
6923   AttributeList PAL =
6924       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6925                          AttributeSet::get(Context, RetAttrs), Attrs);
6926 
6927   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6928   CI->setTailCallKind(TCK);
6929   CI->setCallingConv(CC);
6930   if (FMF.any()) {
6931     if (!isa<FPMathOperator>(CI))
6932       return Error(CallLoc, "fast-math-flags specified for call without "
6933                    "floating-point scalar or vector return type");
6934     CI->setFastMathFlags(FMF);
6935   }
6936   CI->setAttributes(PAL);
6937   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6938   Inst = CI;
6939   return false;
6940 }
6941 
6942 //===----------------------------------------------------------------------===//
6943 // Memory Instructions.
6944 //===----------------------------------------------------------------------===//
6945 
6946 /// ParseAlloc
6947 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6948 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6949 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6950   Value *Size = nullptr;
6951   LocTy SizeLoc, TyLoc, ASLoc;
6952   MaybeAlign Alignment;
6953   unsigned AddrSpace = 0;
6954   Type *Ty = nullptr;
6955 
6956   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6957   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6958 
6959   if (ParseType(Ty, TyLoc)) return true;
6960 
6961   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6962     return Error(TyLoc, "invalid type for alloca");
6963 
6964   bool AteExtraComma = false;
6965   if (EatIfPresent(lltok::comma)) {
6966     if (Lex.getKind() == lltok::kw_align) {
6967       if (ParseOptionalAlignment(Alignment))
6968         return true;
6969       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6970         return true;
6971     } else if (Lex.getKind() == lltok::kw_addrspace) {
6972       ASLoc = Lex.getLoc();
6973       if (ParseOptionalAddrSpace(AddrSpace))
6974         return true;
6975     } else if (Lex.getKind() == lltok::MetadataVar) {
6976       AteExtraComma = true;
6977     } else {
6978       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6979         return true;
6980       if (EatIfPresent(lltok::comma)) {
6981         if (Lex.getKind() == lltok::kw_align) {
6982           if (ParseOptionalAlignment(Alignment))
6983             return true;
6984           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6985             return true;
6986         } else if (Lex.getKind() == lltok::kw_addrspace) {
6987           ASLoc = Lex.getLoc();
6988           if (ParseOptionalAddrSpace(AddrSpace))
6989             return true;
6990         } else if (Lex.getKind() == lltok::MetadataVar) {
6991           AteExtraComma = true;
6992         }
6993       }
6994     }
6995   }
6996 
6997   if (Size && !Size->getType()->isIntegerTy())
6998     return Error(SizeLoc, "element count must have integer type");
6999 
7000   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
7001   AI->setUsedWithInAlloca(IsInAlloca);
7002   AI->setSwiftError(IsSwiftError);
7003   Inst = AI;
7004   return AteExtraComma ? InstExtraComma : InstNormal;
7005 }
7006 
7007 /// ParseLoad
7008 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7009 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7010 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7011 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7012   Value *Val; LocTy Loc;
7013   MaybeAlign Alignment;
7014   bool AteExtraComma = false;
7015   bool isAtomic = false;
7016   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7017   SyncScope::ID SSID = SyncScope::System;
7018 
7019   if (Lex.getKind() == lltok::kw_atomic) {
7020     isAtomic = true;
7021     Lex.Lex();
7022   }
7023 
7024   bool isVolatile = false;
7025   if (Lex.getKind() == lltok::kw_volatile) {
7026     isVolatile = true;
7027     Lex.Lex();
7028   }
7029 
7030   Type *Ty;
7031   LocTy ExplicitTypeLoc = Lex.getLoc();
7032   if (ParseType(Ty) ||
7033       ParseToken(lltok::comma, "expected comma after load's type") ||
7034       ParseTypeAndValue(Val, Loc, PFS) ||
7035       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7036       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7037     return true;
7038 
7039   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7040     return Error(Loc, "load operand must be a pointer to a first class type");
7041   if (isAtomic && !Alignment)
7042     return Error(Loc, "atomic load must have explicit non-zero alignment");
7043   if (Ordering == AtomicOrdering::Release ||
7044       Ordering == AtomicOrdering::AcquireRelease)
7045     return Error(Loc, "atomic load cannot use Release ordering");
7046 
7047   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7048     return Error(ExplicitTypeLoc,
7049                  "explicit pointee type doesn't match operand's pointee type");
7050 
7051   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
7052   return AteExtraComma ? InstExtraComma : InstNormal;
7053 }
7054 
7055 /// ParseStore
7056 
7057 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7058 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7059 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7060 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7061   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7062   MaybeAlign Alignment;
7063   bool AteExtraComma = false;
7064   bool isAtomic = false;
7065   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7066   SyncScope::ID SSID = SyncScope::System;
7067 
7068   if (Lex.getKind() == lltok::kw_atomic) {
7069     isAtomic = true;
7070     Lex.Lex();
7071   }
7072 
7073   bool isVolatile = false;
7074   if (Lex.getKind() == lltok::kw_volatile) {
7075     isVolatile = true;
7076     Lex.Lex();
7077   }
7078 
7079   if (ParseTypeAndValue(Val, Loc, PFS) ||
7080       ParseToken(lltok::comma, "expected ',' after store operand") ||
7081       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7082       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7083       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7084     return true;
7085 
7086   if (!Ptr->getType()->isPointerTy())
7087     return Error(PtrLoc, "store operand must be a pointer");
7088   if (!Val->getType()->isFirstClassType())
7089     return Error(Loc, "store operand must be a first class value");
7090   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7091     return Error(Loc, "stored value and pointer type do not match");
7092   if (isAtomic && !Alignment)
7093     return Error(Loc, "atomic store must have explicit non-zero alignment");
7094   if (Ordering == AtomicOrdering::Acquire ||
7095       Ordering == AtomicOrdering::AcquireRelease)
7096     return Error(Loc, "atomic store cannot use Acquire ordering");
7097 
7098   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7099   return AteExtraComma ? InstExtraComma : InstNormal;
7100 }
7101 
7102 /// ParseCmpXchg
7103 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7104 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7105 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7106   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7107   bool AteExtraComma = false;
7108   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7109   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7110   SyncScope::ID SSID = SyncScope::System;
7111   bool isVolatile = false;
7112   bool isWeak = false;
7113 
7114   if (EatIfPresent(lltok::kw_weak))
7115     isWeak = true;
7116 
7117   if (EatIfPresent(lltok::kw_volatile))
7118     isVolatile = true;
7119 
7120   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7121       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7122       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7123       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7124       ParseTypeAndValue(New, NewLoc, PFS) ||
7125       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7126       ParseOrdering(FailureOrdering))
7127     return true;
7128 
7129   if (SuccessOrdering == AtomicOrdering::Unordered ||
7130       FailureOrdering == AtomicOrdering::Unordered)
7131     return TokError("cmpxchg cannot be unordered");
7132   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7133     return TokError("cmpxchg failure argument shall be no stronger than the "
7134                     "success argument");
7135   if (FailureOrdering == AtomicOrdering::Release ||
7136       FailureOrdering == AtomicOrdering::AcquireRelease)
7137     return TokError(
7138         "cmpxchg failure ordering cannot include release semantics");
7139   if (!Ptr->getType()->isPointerTy())
7140     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7141   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7142     return Error(CmpLoc, "compare value and pointer type do not match");
7143   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7144     return Error(NewLoc, "new value and pointer type do not match");
7145   if (!New->getType()->isFirstClassType())
7146     return Error(NewLoc, "cmpxchg operand must be a first class value");
7147   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7148       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7149   CXI->setVolatile(isVolatile);
7150   CXI->setWeak(isWeak);
7151   Inst = CXI;
7152   return AteExtraComma ? InstExtraComma : InstNormal;
7153 }
7154 
7155 /// ParseAtomicRMW
7156 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7157 ///       'singlethread'? AtomicOrdering
7158 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7159   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7160   bool AteExtraComma = false;
7161   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7162   SyncScope::ID SSID = SyncScope::System;
7163   bool isVolatile = false;
7164   bool IsFP = false;
7165   AtomicRMWInst::BinOp Operation;
7166 
7167   if (EatIfPresent(lltok::kw_volatile))
7168     isVolatile = true;
7169 
7170   switch (Lex.getKind()) {
7171   default: return TokError("expected binary operation in atomicrmw");
7172   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7173   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7174   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7175   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7176   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7177   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7178   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7179   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7180   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7181   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7182   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7183   case lltok::kw_fadd:
7184     Operation = AtomicRMWInst::FAdd;
7185     IsFP = true;
7186     break;
7187   case lltok::kw_fsub:
7188     Operation = AtomicRMWInst::FSub;
7189     IsFP = true;
7190     break;
7191   }
7192   Lex.Lex();  // Eat the operation.
7193 
7194   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7195       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7196       ParseTypeAndValue(Val, ValLoc, PFS) ||
7197       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7198     return true;
7199 
7200   if (Ordering == AtomicOrdering::Unordered)
7201     return TokError("atomicrmw cannot be unordered");
7202   if (!Ptr->getType()->isPointerTy())
7203     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7204   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7205     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7206 
7207   if (Operation == AtomicRMWInst::Xchg) {
7208     if (!Val->getType()->isIntegerTy() &&
7209         !Val->getType()->isFloatingPointTy()) {
7210       return Error(ValLoc, "atomicrmw " +
7211                    AtomicRMWInst::getOperationName(Operation) +
7212                    " operand must be an integer or floating point type");
7213     }
7214   } else if (IsFP) {
7215     if (!Val->getType()->isFloatingPointTy()) {
7216       return Error(ValLoc, "atomicrmw " +
7217                    AtomicRMWInst::getOperationName(Operation) +
7218                    " operand must be a floating point type");
7219     }
7220   } else {
7221     if (!Val->getType()->isIntegerTy()) {
7222       return Error(ValLoc, "atomicrmw " +
7223                    AtomicRMWInst::getOperationName(Operation) +
7224                    " operand must be an integer");
7225     }
7226   }
7227 
7228   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7229   if (Size < 8 || (Size & (Size - 1)))
7230     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7231                          " integer");
7232 
7233   AtomicRMWInst *RMWI =
7234     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7235   RMWI->setVolatile(isVolatile);
7236   Inst = RMWI;
7237   return AteExtraComma ? InstExtraComma : InstNormal;
7238 }
7239 
7240 /// ParseFence
7241 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7242 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7243   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7244   SyncScope::ID SSID = SyncScope::System;
7245   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7246     return true;
7247 
7248   if (Ordering == AtomicOrdering::Unordered)
7249     return TokError("fence cannot be unordered");
7250   if (Ordering == AtomicOrdering::Monotonic)
7251     return TokError("fence cannot be monotonic");
7252 
7253   Inst = new FenceInst(Context, Ordering, SSID);
7254   return InstNormal;
7255 }
7256 
7257 /// ParseGetElementPtr
7258 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7259 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7260   Value *Ptr = nullptr;
7261   Value *Val = nullptr;
7262   LocTy Loc, EltLoc;
7263 
7264   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7265 
7266   Type *Ty = nullptr;
7267   LocTy ExplicitTypeLoc = Lex.getLoc();
7268   if (ParseType(Ty) ||
7269       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7270       ParseTypeAndValue(Ptr, Loc, PFS))
7271     return true;
7272 
7273   Type *BaseType = Ptr->getType();
7274   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7275   if (!BasePointerType)
7276     return Error(Loc, "base of getelementptr must be a pointer");
7277 
7278   if (Ty != BasePointerType->getElementType())
7279     return Error(ExplicitTypeLoc,
7280                  "explicit pointee type doesn't match operand's pointee type");
7281 
7282   SmallVector<Value*, 16> Indices;
7283   bool AteExtraComma = false;
7284   // GEP returns a vector of pointers if at least one of parameters is a vector.
7285   // All vector parameters should have the same vector width.
7286   ElementCount GEPWidth = BaseType->isVectorTy()
7287                               ? cast<VectorType>(BaseType)->getElementCount()
7288                               : ElementCount(0, false);
7289 
7290   while (EatIfPresent(lltok::comma)) {
7291     if (Lex.getKind() == lltok::MetadataVar) {
7292       AteExtraComma = true;
7293       break;
7294     }
7295     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7296     if (!Val->getType()->isIntOrIntVectorTy())
7297       return Error(EltLoc, "getelementptr index must be an integer");
7298 
7299     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7300       ElementCount ValNumEl = ValVTy->getElementCount();
7301       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7302         return Error(EltLoc,
7303           "getelementptr vector index has a wrong number of elements");
7304       GEPWidth = ValNumEl;
7305     }
7306     Indices.push_back(Val);
7307   }
7308 
7309   SmallPtrSet<Type*, 4> Visited;
7310   if (!Indices.empty() && !Ty->isSized(&Visited))
7311     return Error(Loc, "base element of getelementptr must be sized");
7312 
7313   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7314     return Error(Loc, "invalid getelementptr indices");
7315   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7316   if (InBounds)
7317     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7318   return AteExtraComma ? InstExtraComma : InstNormal;
7319 }
7320 
7321 /// ParseExtractValue
7322 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7323 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7324   Value *Val; LocTy Loc;
7325   SmallVector<unsigned, 4> Indices;
7326   bool AteExtraComma;
7327   if (ParseTypeAndValue(Val, Loc, PFS) ||
7328       ParseIndexList(Indices, AteExtraComma))
7329     return true;
7330 
7331   if (!Val->getType()->isAggregateType())
7332     return Error(Loc, "extractvalue operand must be aggregate type");
7333 
7334   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7335     return Error(Loc, "invalid indices for extractvalue");
7336   Inst = ExtractValueInst::Create(Val, Indices);
7337   return AteExtraComma ? InstExtraComma : InstNormal;
7338 }
7339 
7340 /// ParseInsertValue
7341 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7342 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7343   Value *Val0, *Val1; LocTy Loc0, Loc1;
7344   SmallVector<unsigned, 4> Indices;
7345   bool AteExtraComma;
7346   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7347       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7348       ParseTypeAndValue(Val1, Loc1, PFS) ||
7349       ParseIndexList(Indices, AteExtraComma))
7350     return true;
7351 
7352   if (!Val0->getType()->isAggregateType())
7353     return Error(Loc0, "insertvalue operand must be aggregate type");
7354 
7355   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7356   if (!IndexedType)
7357     return Error(Loc0, "invalid indices for insertvalue");
7358   if (IndexedType != Val1->getType())
7359     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7360                            getTypeString(Val1->getType()) + "' instead of '" +
7361                            getTypeString(IndexedType) + "'");
7362   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7363   return AteExtraComma ? InstExtraComma : InstNormal;
7364 }
7365 
7366 //===----------------------------------------------------------------------===//
7367 // Embedded metadata.
7368 //===----------------------------------------------------------------------===//
7369 
7370 /// ParseMDNodeVector
7371 ///   ::= { Element (',' Element)* }
7372 /// Element
7373 ///   ::= 'null' | TypeAndValue
7374 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7375   if (ParseToken(lltok::lbrace, "expected '{' here"))
7376     return true;
7377 
7378   // Check for an empty list.
7379   if (EatIfPresent(lltok::rbrace))
7380     return false;
7381 
7382   do {
7383     // Null is a special case since it is typeless.
7384     if (EatIfPresent(lltok::kw_null)) {
7385       Elts.push_back(nullptr);
7386       continue;
7387     }
7388 
7389     Metadata *MD;
7390     if (ParseMetadata(MD, nullptr))
7391       return true;
7392     Elts.push_back(MD);
7393   } while (EatIfPresent(lltok::comma));
7394 
7395   return ParseToken(lltok::rbrace, "expected end of metadata node");
7396 }
7397 
7398 //===----------------------------------------------------------------------===//
7399 // Use-list order directives.
7400 //===----------------------------------------------------------------------===//
7401 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7402                                 SMLoc Loc) {
7403   if (V->use_empty())
7404     return Error(Loc, "value has no uses");
7405 
7406   unsigned NumUses = 0;
7407   SmallDenseMap<const Use *, unsigned, 16> Order;
7408   for (const Use &U : V->uses()) {
7409     if (++NumUses > Indexes.size())
7410       break;
7411     Order[&U] = Indexes[NumUses - 1];
7412   }
7413   if (NumUses < 2)
7414     return Error(Loc, "value only has one use");
7415   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7416     return Error(Loc,
7417                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7418 
7419   V->sortUseList([&](const Use &L, const Use &R) {
7420     return Order.lookup(&L) < Order.lookup(&R);
7421   });
7422   return false;
7423 }
7424 
7425 /// ParseUseListOrderIndexes
7426 ///   ::= '{' uint32 (',' uint32)+ '}'
7427 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7428   SMLoc Loc = Lex.getLoc();
7429   if (ParseToken(lltok::lbrace, "expected '{' here"))
7430     return true;
7431   if (Lex.getKind() == lltok::rbrace)
7432     return Lex.Error("expected non-empty list of uselistorder indexes");
7433 
7434   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7435   // indexes should be distinct numbers in the range [0, size-1], and should
7436   // not be in order.
7437   unsigned Offset = 0;
7438   unsigned Max = 0;
7439   bool IsOrdered = true;
7440   assert(Indexes.empty() && "Expected empty order vector");
7441   do {
7442     unsigned Index;
7443     if (ParseUInt32(Index))
7444       return true;
7445 
7446     // Update consistency checks.
7447     Offset += Index - Indexes.size();
7448     Max = std::max(Max, Index);
7449     IsOrdered &= Index == Indexes.size();
7450 
7451     Indexes.push_back(Index);
7452   } while (EatIfPresent(lltok::comma));
7453 
7454   if (ParseToken(lltok::rbrace, "expected '}' here"))
7455     return true;
7456 
7457   if (Indexes.size() < 2)
7458     return Error(Loc, "expected >= 2 uselistorder indexes");
7459   if (Offset != 0 || Max >= Indexes.size())
7460     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7461   if (IsOrdered)
7462     return Error(Loc, "expected uselistorder indexes to change the order");
7463 
7464   return false;
7465 }
7466 
7467 /// ParseUseListOrder
7468 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7469 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7470   SMLoc Loc = Lex.getLoc();
7471   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7472     return true;
7473 
7474   Value *V;
7475   SmallVector<unsigned, 16> Indexes;
7476   if (ParseTypeAndValue(V, PFS) ||
7477       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7478       ParseUseListOrderIndexes(Indexes))
7479     return true;
7480 
7481   return sortUseListOrder(V, Indexes, Loc);
7482 }
7483 
7484 /// ParseUseListOrderBB
7485 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7486 bool LLParser::ParseUseListOrderBB() {
7487   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7488   SMLoc Loc = Lex.getLoc();
7489   Lex.Lex();
7490 
7491   ValID Fn, Label;
7492   SmallVector<unsigned, 16> Indexes;
7493   if (ParseValID(Fn) ||
7494       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7495       ParseValID(Label) ||
7496       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7497       ParseUseListOrderIndexes(Indexes))
7498     return true;
7499 
7500   // Check the function.
7501   GlobalValue *GV;
7502   if (Fn.Kind == ValID::t_GlobalName)
7503     GV = M->getNamedValue(Fn.StrVal);
7504   else if (Fn.Kind == ValID::t_GlobalID)
7505     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7506   else
7507     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7508   if (!GV)
7509     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7510   auto *F = dyn_cast<Function>(GV);
7511   if (!F)
7512     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7513   if (F->isDeclaration())
7514     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7515 
7516   // Check the basic block.
7517   if (Label.Kind == ValID::t_LocalID)
7518     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7519   if (Label.Kind != ValID::t_LocalName)
7520     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7521   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7522   if (!V)
7523     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7524   if (!isa<BasicBlock>(V))
7525     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7526 
7527   return sortUseListOrder(V, Indexes, Loc);
7528 }
7529 
7530 /// ModuleEntry
7531 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7532 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7533 bool LLParser::ParseModuleEntry(unsigned ID) {
7534   assert(Lex.getKind() == lltok::kw_module);
7535   Lex.Lex();
7536 
7537   std::string Path;
7538   if (ParseToken(lltok::colon, "expected ':' here") ||
7539       ParseToken(lltok::lparen, "expected '(' here") ||
7540       ParseToken(lltok::kw_path, "expected 'path' here") ||
7541       ParseToken(lltok::colon, "expected ':' here") ||
7542       ParseStringConstant(Path) ||
7543       ParseToken(lltok::comma, "expected ',' here") ||
7544       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7545       ParseToken(lltok::colon, "expected ':' here") ||
7546       ParseToken(lltok::lparen, "expected '(' here"))
7547     return true;
7548 
7549   ModuleHash Hash;
7550   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7551       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7552       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7553       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7554       ParseUInt32(Hash[4]))
7555     return true;
7556 
7557   if (ParseToken(lltok::rparen, "expected ')' here") ||
7558       ParseToken(lltok::rparen, "expected ')' here"))
7559     return true;
7560 
7561   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7562   ModuleIdMap[ID] = ModuleEntry->first();
7563 
7564   return false;
7565 }
7566 
7567 /// TypeIdEntry
7568 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7569 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7570   assert(Lex.getKind() == lltok::kw_typeid);
7571   Lex.Lex();
7572 
7573   std::string Name;
7574   if (ParseToken(lltok::colon, "expected ':' here") ||
7575       ParseToken(lltok::lparen, "expected '(' here") ||
7576       ParseToken(lltok::kw_name, "expected 'name' here") ||
7577       ParseToken(lltok::colon, "expected ':' here") ||
7578       ParseStringConstant(Name))
7579     return true;
7580 
7581   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7582   if (ParseToken(lltok::comma, "expected ',' here") ||
7583       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7584     return true;
7585 
7586   // Check if this ID was forward referenced, and if so, update the
7587   // corresponding GUIDs.
7588   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7589   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7590     for (auto TIDRef : FwdRefTIDs->second) {
7591       assert(!*TIDRef.first &&
7592              "Forward referenced type id GUID expected to be 0");
7593       *TIDRef.first = GlobalValue::getGUID(Name);
7594     }
7595     ForwardRefTypeIds.erase(FwdRefTIDs);
7596   }
7597 
7598   return false;
7599 }
7600 
7601 /// TypeIdSummary
7602 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7603 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7604   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7605       ParseToken(lltok::colon, "expected ':' here") ||
7606       ParseToken(lltok::lparen, "expected '(' here") ||
7607       ParseTypeTestResolution(TIS.TTRes))
7608     return true;
7609 
7610   if (EatIfPresent(lltok::comma)) {
7611     // Expect optional wpdResolutions field
7612     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7613       return true;
7614   }
7615 
7616   if (ParseToken(lltok::rparen, "expected ')' here"))
7617     return true;
7618 
7619   return false;
7620 }
7621 
7622 static ValueInfo EmptyVI =
7623     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7624 
7625 /// TypeIdCompatibleVtableEntry
7626 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7627 ///   TypeIdCompatibleVtableInfo
7628 ///   ')'
7629 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7630   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7631   Lex.Lex();
7632 
7633   std::string Name;
7634   if (ParseToken(lltok::colon, "expected ':' here") ||
7635       ParseToken(lltok::lparen, "expected '(' here") ||
7636       ParseToken(lltok::kw_name, "expected 'name' here") ||
7637       ParseToken(lltok::colon, "expected ':' here") ||
7638       ParseStringConstant(Name))
7639     return true;
7640 
7641   TypeIdCompatibleVtableInfo &TI =
7642       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7643   if (ParseToken(lltok::comma, "expected ',' here") ||
7644       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7645       ParseToken(lltok::colon, "expected ':' here") ||
7646       ParseToken(lltok::lparen, "expected '(' here"))
7647     return true;
7648 
7649   IdToIndexMapType IdToIndexMap;
7650   // Parse each call edge
7651   do {
7652     uint64_t Offset;
7653     if (ParseToken(lltok::lparen, "expected '(' here") ||
7654         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7655         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7656         ParseToken(lltok::comma, "expected ',' here"))
7657       return true;
7658 
7659     LocTy Loc = Lex.getLoc();
7660     unsigned GVId;
7661     ValueInfo VI;
7662     if (ParseGVReference(VI, GVId))
7663       return true;
7664 
7665     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7666     // forward reference. We will save the location of the ValueInfo needing an
7667     // update, but can only do so once the std::vector is finalized.
7668     if (VI == EmptyVI)
7669       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7670     TI.push_back({Offset, VI});
7671 
7672     if (ParseToken(lltok::rparen, "expected ')' in call"))
7673       return true;
7674   } while (EatIfPresent(lltok::comma));
7675 
7676   // Now that the TI vector is finalized, it is safe to save the locations
7677   // of any forward GV references that need updating later.
7678   for (auto I : IdToIndexMap) {
7679     for (auto P : I.second) {
7680       assert(TI[P.first].VTableVI == EmptyVI &&
7681              "Forward referenced ValueInfo expected to be empty");
7682       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7683           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7684       FwdRef.first->second.push_back(
7685           std::make_pair(&TI[P.first].VTableVI, P.second));
7686     }
7687   }
7688 
7689   if (ParseToken(lltok::rparen, "expected ')' here") ||
7690       ParseToken(lltok::rparen, "expected ')' here"))
7691     return true;
7692 
7693   // Check if this ID was forward referenced, and if so, update the
7694   // corresponding GUIDs.
7695   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7696   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7697     for (auto TIDRef : FwdRefTIDs->second) {
7698       assert(!*TIDRef.first &&
7699              "Forward referenced type id GUID expected to be 0");
7700       *TIDRef.first = GlobalValue::getGUID(Name);
7701     }
7702     ForwardRefTypeIds.erase(FwdRefTIDs);
7703   }
7704 
7705   return false;
7706 }
7707 
7708 /// TypeTestResolution
7709 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7710 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7711 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7712 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7713 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7714 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7715   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7716       ParseToken(lltok::colon, "expected ':' here") ||
7717       ParseToken(lltok::lparen, "expected '(' here") ||
7718       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7719       ParseToken(lltok::colon, "expected ':' here"))
7720     return true;
7721 
7722   switch (Lex.getKind()) {
7723   case lltok::kw_unsat:
7724     TTRes.TheKind = TypeTestResolution::Unsat;
7725     break;
7726   case lltok::kw_byteArray:
7727     TTRes.TheKind = TypeTestResolution::ByteArray;
7728     break;
7729   case lltok::kw_inline:
7730     TTRes.TheKind = TypeTestResolution::Inline;
7731     break;
7732   case lltok::kw_single:
7733     TTRes.TheKind = TypeTestResolution::Single;
7734     break;
7735   case lltok::kw_allOnes:
7736     TTRes.TheKind = TypeTestResolution::AllOnes;
7737     break;
7738   default:
7739     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7740   }
7741   Lex.Lex();
7742 
7743   if (ParseToken(lltok::comma, "expected ',' here") ||
7744       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7745       ParseToken(lltok::colon, "expected ':' here") ||
7746       ParseUInt32(TTRes.SizeM1BitWidth))
7747     return true;
7748 
7749   // Parse optional fields
7750   while (EatIfPresent(lltok::comma)) {
7751     switch (Lex.getKind()) {
7752     case lltok::kw_alignLog2:
7753       Lex.Lex();
7754       if (ParseToken(lltok::colon, "expected ':'") ||
7755           ParseUInt64(TTRes.AlignLog2))
7756         return true;
7757       break;
7758     case lltok::kw_sizeM1:
7759       Lex.Lex();
7760       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7761         return true;
7762       break;
7763     case lltok::kw_bitMask: {
7764       unsigned Val;
7765       Lex.Lex();
7766       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7767         return true;
7768       assert(Val <= 0xff);
7769       TTRes.BitMask = (uint8_t)Val;
7770       break;
7771     }
7772     case lltok::kw_inlineBits:
7773       Lex.Lex();
7774       if (ParseToken(lltok::colon, "expected ':'") ||
7775           ParseUInt64(TTRes.InlineBits))
7776         return true;
7777       break;
7778     default:
7779       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7780     }
7781   }
7782 
7783   if (ParseToken(lltok::rparen, "expected ')' here"))
7784     return true;
7785 
7786   return false;
7787 }
7788 
7789 /// OptionalWpdResolutions
7790 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7791 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7792 bool LLParser::ParseOptionalWpdResolutions(
7793     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7794   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7795       ParseToken(lltok::colon, "expected ':' here") ||
7796       ParseToken(lltok::lparen, "expected '(' here"))
7797     return true;
7798 
7799   do {
7800     uint64_t Offset;
7801     WholeProgramDevirtResolution WPDRes;
7802     if (ParseToken(lltok::lparen, "expected '(' here") ||
7803         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7804         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7805         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7806         ParseToken(lltok::rparen, "expected ')' here"))
7807       return true;
7808     WPDResMap[Offset] = WPDRes;
7809   } while (EatIfPresent(lltok::comma));
7810 
7811   if (ParseToken(lltok::rparen, "expected ')' here"))
7812     return true;
7813 
7814   return false;
7815 }
7816 
7817 /// WpdRes
7818 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7819 ///         [',' OptionalResByArg]? ')'
7820 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7821 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7822 ///         [',' OptionalResByArg]? ')'
7823 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7824 ///         [',' OptionalResByArg]? ')'
7825 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7826   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7827       ParseToken(lltok::colon, "expected ':' here") ||
7828       ParseToken(lltok::lparen, "expected '(' here") ||
7829       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7830       ParseToken(lltok::colon, "expected ':' here"))
7831     return true;
7832 
7833   switch (Lex.getKind()) {
7834   case lltok::kw_indir:
7835     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7836     break;
7837   case lltok::kw_singleImpl:
7838     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7839     break;
7840   case lltok::kw_branchFunnel:
7841     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7842     break;
7843   default:
7844     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7845   }
7846   Lex.Lex();
7847 
7848   // Parse optional fields
7849   while (EatIfPresent(lltok::comma)) {
7850     switch (Lex.getKind()) {
7851     case lltok::kw_singleImplName:
7852       Lex.Lex();
7853       if (ParseToken(lltok::colon, "expected ':' here") ||
7854           ParseStringConstant(WPDRes.SingleImplName))
7855         return true;
7856       break;
7857     case lltok::kw_resByArg:
7858       if (ParseOptionalResByArg(WPDRes.ResByArg))
7859         return true;
7860       break;
7861     default:
7862       return Error(Lex.getLoc(),
7863                    "expected optional WholeProgramDevirtResolution field");
7864     }
7865   }
7866 
7867   if (ParseToken(lltok::rparen, "expected ')' here"))
7868     return true;
7869 
7870   return false;
7871 }
7872 
7873 /// OptionalResByArg
7874 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7875 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7876 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7877 ///                  'virtualConstProp' )
7878 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7879 ///                [',' 'bit' ':' UInt32]? ')'
7880 bool LLParser::ParseOptionalResByArg(
7881     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7882         &ResByArg) {
7883   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7884       ParseToken(lltok::colon, "expected ':' here") ||
7885       ParseToken(lltok::lparen, "expected '(' here"))
7886     return true;
7887 
7888   do {
7889     std::vector<uint64_t> Args;
7890     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7891         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7892         ParseToken(lltok::colon, "expected ':' here") ||
7893         ParseToken(lltok::lparen, "expected '(' here") ||
7894         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7895         ParseToken(lltok::colon, "expected ':' here"))
7896       return true;
7897 
7898     WholeProgramDevirtResolution::ByArg ByArg;
7899     switch (Lex.getKind()) {
7900     case lltok::kw_indir:
7901       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7902       break;
7903     case lltok::kw_uniformRetVal:
7904       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7905       break;
7906     case lltok::kw_uniqueRetVal:
7907       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7908       break;
7909     case lltok::kw_virtualConstProp:
7910       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7911       break;
7912     default:
7913       return Error(Lex.getLoc(),
7914                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7915     }
7916     Lex.Lex();
7917 
7918     // Parse optional fields
7919     while (EatIfPresent(lltok::comma)) {
7920       switch (Lex.getKind()) {
7921       case lltok::kw_info:
7922         Lex.Lex();
7923         if (ParseToken(lltok::colon, "expected ':' here") ||
7924             ParseUInt64(ByArg.Info))
7925           return true;
7926         break;
7927       case lltok::kw_byte:
7928         Lex.Lex();
7929         if (ParseToken(lltok::colon, "expected ':' here") ||
7930             ParseUInt32(ByArg.Byte))
7931           return true;
7932         break;
7933       case lltok::kw_bit:
7934         Lex.Lex();
7935         if (ParseToken(lltok::colon, "expected ':' here") ||
7936             ParseUInt32(ByArg.Bit))
7937           return true;
7938         break;
7939       default:
7940         return Error(Lex.getLoc(),
7941                      "expected optional whole program devirt field");
7942       }
7943     }
7944 
7945     if (ParseToken(lltok::rparen, "expected ')' here"))
7946       return true;
7947 
7948     ResByArg[Args] = ByArg;
7949   } while (EatIfPresent(lltok::comma));
7950 
7951   if (ParseToken(lltok::rparen, "expected ')' here"))
7952     return true;
7953 
7954   return false;
7955 }
7956 
7957 /// OptionalResByArg
7958 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7959 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7960   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7961       ParseToken(lltok::colon, "expected ':' here") ||
7962       ParseToken(lltok::lparen, "expected '(' here"))
7963     return true;
7964 
7965   do {
7966     uint64_t Val;
7967     if (ParseUInt64(Val))
7968       return true;
7969     Args.push_back(Val);
7970   } while (EatIfPresent(lltok::comma));
7971 
7972   if (ParseToken(lltok::rparen, "expected ')' here"))
7973     return true;
7974 
7975   return false;
7976 }
7977 
7978 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7979 
7980 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7981   bool ReadOnly = Fwd->isReadOnly();
7982   bool WriteOnly = Fwd->isWriteOnly();
7983   assert(!(ReadOnly && WriteOnly));
7984   *Fwd = Resolved;
7985   if (ReadOnly)
7986     Fwd->setReadOnly();
7987   if (WriteOnly)
7988     Fwd->setWriteOnly();
7989 }
7990 
7991 /// Stores the given Name/GUID and associated summary into the Index.
7992 /// Also updates any forward references to the associated entry ID.
7993 void LLParser::AddGlobalValueToIndex(
7994     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7995     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7996   // First create the ValueInfo utilizing the Name or GUID.
7997   ValueInfo VI;
7998   if (GUID != 0) {
7999     assert(Name.empty());
8000     VI = Index->getOrInsertValueInfo(GUID);
8001   } else {
8002     assert(!Name.empty());
8003     if (M) {
8004       auto *GV = M->getNamedValue(Name);
8005       assert(GV);
8006       VI = Index->getOrInsertValueInfo(GV);
8007     } else {
8008       assert(
8009           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8010           "Need a source_filename to compute GUID for local");
8011       GUID = GlobalValue::getGUID(
8012           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8013       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8014     }
8015   }
8016 
8017   // Resolve forward references from calls/refs
8018   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8019   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8020     for (auto VIRef : FwdRefVIs->second) {
8021       assert(VIRef.first->getRef() == FwdVIRef &&
8022              "Forward referenced ValueInfo expected to be empty");
8023       resolveFwdRef(VIRef.first, VI);
8024     }
8025     ForwardRefValueInfos.erase(FwdRefVIs);
8026   }
8027 
8028   // Resolve forward references from aliases
8029   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8030   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8031     for (auto AliaseeRef : FwdRefAliasees->second) {
8032       assert(!AliaseeRef.first->hasAliasee() &&
8033              "Forward referencing alias already has aliasee");
8034       assert(Summary && "Aliasee must be a definition");
8035       AliaseeRef.first->setAliasee(VI, Summary.get());
8036     }
8037     ForwardRefAliasees.erase(FwdRefAliasees);
8038   }
8039 
8040   // Add the summary if one was provided.
8041   if (Summary)
8042     Index->addGlobalValueSummary(VI, std::move(Summary));
8043 
8044   // Save the associated ValueInfo for use in later references by ID.
8045   if (ID == NumberedValueInfos.size())
8046     NumberedValueInfos.push_back(VI);
8047   else {
8048     // Handle non-continuous numbers (to make test simplification easier).
8049     if (ID > NumberedValueInfos.size())
8050       NumberedValueInfos.resize(ID + 1);
8051     NumberedValueInfos[ID] = VI;
8052   }
8053 }
8054 
8055 /// ParseSummaryIndexFlags
8056 ///   ::= 'flags' ':' UInt64
8057 bool LLParser::ParseSummaryIndexFlags() {
8058   assert(Lex.getKind() == lltok::kw_flags);
8059   Lex.Lex();
8060 
8061   if (ParseToken(lltok::colon, "expected ':' here"))
8062     return true;
8063   uint64_t Flags;
8064   if (ParseUInt64(Flags))
8065     return true;
8066   Index->setFlags(Flags);
8067   return false;
8068 }
8069 
8070 /// ParseGVEntry
8071 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8072 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8073 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8074 bool LLParser::ParseGVEntry(unsigned ID) {
8075   assert(Lex.getKind() == lltok::kw_gv);
8076   Lex.Lex();
8077 
8078   if (ParseToken(lltok::colon, "expected ':' here") ||
8079       ParseToken(lltok::lparen, "expected '(' here"))
8080     return true;
8081 
8082   std::string Name;
8083   GlobalValue::GUID GUID = 0;
8084   switch (Lex.getKind()) {
8085   case lltok::kw_name:
8086     Lex.Lex();
8087     if (ParseToken(lltok::colon, "expected ':' here") ||
8088         ParseStringConstant(Name))
8089       return true;
8090     // Can't create GUID/ValueInfo until we have the linkage.
8091     break;
8092   case lltok::kw_guid:
8093     Lex.Lex();
8094     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8095       return true;
8096     break;
8097   default:
8098     return Error(Lex.getLoc(), "expected name or guid tag");
8099   }
8100 
8101   if (!EatIfPresent(lltok::comma)) {
8102     // No summaries. Wrap up.
8103     if (ParseToken(lltok::rparen, "expected ')' here"))
8104       return true;
8105     // This was created for a call to an external or indirect target.
8106     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8107     // created for indirect calls with VP. A Name with no GUID came from
8108     // an external definition. We pass ExternalLinkage since that is only
8109     // used when the GUID must be computed from Name, and in that case
8110     // the symbol must have external linkage.
8111     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8112                           nullptr);
8113     return false;
8114   }
8115 
8116   // Have a list of summaries
8117   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8118       ParseToken(lltok::colon, "expected ':' here") ||
8119       ParseToken(lltok::lparen, "expected '(' here"))
8120     return true;
8121   do {
8122     switch (Lex.getKind()) {
8123     case lltok::kw_function:
8124       if (ParseFunctionSummary(Name, GUID, ID))
8125         return true;
8126       break;
8127     case lltok::kw_variable:
8128       if (ParseVariableSummary(Name, GUID, ID))
8129         return true;
8130       break;
8131     case lltok::kw_alias:
8132       if (ParseAliasSummary(Name, GUID, ID))
8133         return true;
8134       break;
8135     default:
8136       return Error(Lex.getLoc(), "expected summary type");
8137     }
8138   } while (EatIfPresent(lltok::comma));
8139 
8140   if (ParseToken(lltok::rparen, "expected ')' here") ||
8141       ParseToken(lltok::rparen, "expected ')' here"))
8142     return true;
8143 
8144   return false;
8145 }
8146 
8147 /// FunctionSummary
8148 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8149 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8150 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8151 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8152                                     unsigned ID) {
8153   assert(Lex.getKind() == lltok::kw_function);
8154   Lex.Lex();
8155 
8156   StringRef ModulePath;
8157   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8158       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8159       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8160   unsigned InstCount;
8161   std::vector<FunctionSummary::EdgeTy> Calls;
8162   FunctionSummary::TypeIdInfo TypeIdInfo;
8163   std::vector<ValueInfo> Refs;
8164   // Default is all-zeros (conservative values).
8165   FunctionSummary::FFlags FFlags = {};
8166   if (ParseToken(lltok::colon, "expected ':' here") ||
8167       ParseToken(lltok::lparen, "expected '(' here") ||
8168       ParseModuleReference(ModulePath) ||
8169       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8170       ParseToken(lltok::comma, "expected ',' here") ||
8171       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8172       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8173     return true;
8174 
8175   // Parse optional fields
8176   while (EatIfPresent(lltok::comma)) {
8177     switch (Lex.getKind()) {
8178     case lltok::kw_funcFlags:
8179       if (ParseOptionalFFlags(FFlags))
8180         return true;
8181       break;
8182     case lltok::kw_calls:
8183       if (ParseOptionalCalls(Calls))
8184         return true;
8185       break;
8186     case lltok::kw_typeIdInfo:
8187       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8188         return true;
8189       break;
8190     case lltok::kw_refs:
8191       if (ParseOptionalRefs(Refs))
8192         return true;
8193       break;
8194     default:
8195       return Error(Lex.getLoc(), "expected optional function summary field");
8196     }
8197   }
8198 
8199   if (ParseToken(lltok::rparen, "expected ')' here"))
8200     return true;
8201 
8202   auto FS = std::make_unique<FunctionSummary>(
8203       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8204       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8205       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8206       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8207       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8208       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8209 
8210   FS->setModulePath(ModulePath);
8211 
8212   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8213                         ID, std::move(FS));
8214 
8215   return false;
8216 }
8217 
8218 /// VariableSummary
8219 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8220 ///         [',' OptionalRefs]? ')'
8221 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8222                                     unsigned ID) {
8223   assert(Lex.getKind() == lltok::kw_variable);
8224   Lex.Lex();
8225 
8226   StringRef ModulePath;
8227   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8228       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8229       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8230   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8231                                         /* WriteOnly */ false,
8232                                         /* Constant */ false,
8233                                         GlobalObject::VCallVisibilityPublic);
8234   std::vector<ValueInfo> Refs;
8235   VTableFuncList VTableFuncs;
8236   if (ParseToken(lltok::colon, "expected ':' here") ||
8237       ParseToken(lltok::lparen, "expected '(' here") ||
8238       ParseModuleReference(ModulePath) ||
8239       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8240       ParseToken(lltok::comma, "expected ',' here") ||
8241       ParseGVarFlags(GVarFlags))
8242     return true;
8243 
8244   // Parse optional fields
8245   while (EatIfPresent(lltok::comma)) {
8246     switch (Lex.getKind()) {
8247     case lltok::kw_vTableFuncs:
8248       if (ParseOptionalVTableFuncs(VTableFuncs))
8249         return true;
8250       break;
8251     case lltok::kw_refs:
8252       if (ParseOptionalRefs(Refs))
8253         return true;
8254       break;
8255     default:
8256       return Error(Lex.getLoc(), "expected optional variable summary field");
8257     }
8258   }
8259 
8260   if (ParseToken(lltok::rparen, "expected ')' here"))
8261     return true;
8262 
8263   auto GS =
8264       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8265 
8266   GS->setModulePath(ModulePath);
8267   GS->setVTableFuncs(std::move(VTableFuncs));
8268 
8269   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8270                         ID, std::move(GS));
8271 
8272   return false;
8273 }
8274 
8275 /// AliasSummary
8276 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8277 ///         'aliasee' ':' GVReference ')'
8278 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8279                                  unsigned ID) {
8280   assert(Lex.getKind() == lltok::kw_alias);
8281   LocTy Loc = Lex.getLoc();
8282   Lex.Lex();
8283 
8284   StringRef ModulePath;
8285   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8286       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8287       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8288   if (ParseToken(lltok::colon, "expected ':' here") ||
8289       ParseToken(lltok::lparen, "expected '(' here") ||
8290       ParseModuleReference(ModulePath) ||
8291       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8292       ParseToken(lltok::comma, "expected ',' here") ||
8293       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8294       ParseToken(lltok::colon, "expected ':' here"))
8295     return true;
8296 
8297   ValueInfo AliaseeVI;
8298   unsigned GVId;
8299   if (ParseGVReference(AliaseeVI, GVId))
8300     return true;
8301 
8302   if (ParseToken(lltok::rparen, "expected ')' here"))
8303     return true;
8304 
8305   auto AS = std::make_unique<AliasSummary>(GVFlags);
8306 
8307   AS->setModulePath(ModulePath);
8308 
8309   // Record forward reference if the aliasee is not parsed yet.
8310   if (AliaseeVI.getRef() == FwdVIRef) {
8311     auto FwdRef = ForwardRefAliasees.insert(
8312         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8313     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8314   } else {
8315     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8316     assert(Summary && "Aliasee must be a definition");
8317     AS->setAliasee(AliaseeVI, Summary);
8318   }
8319 
8320   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8321                         ID, std::move(AS));
8322 
8323   return false;
8324 }
8325 
8326 /// Flag
8327 ///   ::= [0|1]
8328 bool LLParser::ParseFlag(unsigned &Val) {
8329   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8330     return TokError("expected integer");
8331   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8332   Lex.Lex();
8333   return false;
8334 }
8335 
8336 /// OptionalFFlags
8337 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8338 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8339 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8340 ///        [',' 'noInline' ':' Flag]? ')'
8341 ///        [',' 'alwaysInline' ':' Flag]? ')'
8342 
8343 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8344   assert(Lex.getKind() == lltok::kw_funcFlags);
8345   Lex.Lex();
8346 
8347   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8348       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8349     return true;
8350 
8351   do {
8352     unsigned Val = 0;
8353     switch (Lex.getKind()) {
8354     case lltok::kw_readNone:
8355       Lex.Lex();
8356       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8357         return true;
8358       FFlags.ReadNone = Val;
8359       break;
8360     case lltok::kw_readOnly:
8361       Lex.Lex();
8362       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8363         return true;
8364       FFlags.ReadOnly = Val;
8365       break;
8366     case lltok::kw_noRecurse:
8367       Lex.Lex();
8368       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8369         return true;
8370       FFlags.NoRecurse = Val;
8371       break;
8372     case lltok::kw_returnDoesNotAlias:
8373       Lex.Lex();
8374       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8375         return true;
8376       FFlags.ReturnDoesNotAlias = Val;
8377       break;
8378     case lltok::kw_noInline:
8379       Lex.Lex();
8380       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8381         return true;
8382       FFlags.NoInline = Val;
8383       break;
8384     case lltok::kw_alwaysInline:
8385       Lex.Lex();
8386       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8387         return true;
8388       FFlags.AlwaysInline = Val;
8389       break;
8390     default:
8391       return Error(Lex.getLoc(), "expected function flag type");
8392     }
8393   } while (EatIfPresent(lltok::comma));
8394 
8395   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8396     return true;
8397 
8398   return false;
8399 }
8400 
8401 /// OptionalCalls
8402 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8403 /// Call ::= '(' 'callee' ':' GVReference
8404 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8405 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8406   assert(Lex.getKind() == lltok::kw_calls);
8407   Lex.Lex();
8408 
8409   if (ParseToken(lltok::colon, "expected ':' in calls") |
8410       ParseToken(lltok::lparen, "expected '(' in calls"))
8411     return true;
8412 
8413   IdToIndexMapType IdToIndexMap;
8414   // Parse each call edge
8415   do {
8416     ValueInfo VI;
8417     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8418         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8419         ParseToken(lltok::colon, "expected ':'"))
8420       return true;
8421 
8422     LocTy Loc = Lex.getLoc();
8423     unsigned GVId;
8424     if (ParseGVReference(VI, GVId))
8425       return true;
8426 
8427     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8428     unsigned RelBF = 0;
8429     if (EatIfPresent(lltok::comma)) {
8430       // Expect either hotness or relbf
8431       if (EatIfPresent(lltok::kw_hotness)) {
8432         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8433           return true;
8434       } else {
8435         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8436             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8437           return true;
8438       }
8439     }
8440     // Keep track of the Call array index needing a forward reference.
8441     // We will save the location of the ValueInfo needing an update, but
8442     // can only do so once the std::vector is finalized.
8443     if (VI.getRef() == FwdVIRef)
8444       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8445     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8446 
8447     if (ParseToken(lltok::rparen, "expected ')' in call"))
8448       return true;
8449   } while (EatIfPresent(lltok::comma));
8450 
8451   // Now that the Calls vector is finalized, it is safe to save the locations
8452   // of any forward GV references that need updating later.
8453   for (auto I : IdToIndexMap) {
8454     for (auto P : I.second) {
8455       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8456              "Forward referenced ValueInfo expected to be empty");
8457       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8458           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8459       FwdRef.first->second.push_back(
8460           std::make_pair(&Calls[P.first].first, P.second));
8461     }
8462   }
8463 
8464   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8465     return true;
8466 
8467   return false;
8468 }
8469 
8470 /// Hotness
8471 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8472 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8473   switch (Lex.getKind()) {
8474   case lltok::kw_unknown:
8475     Hotness = CalleeInfo::HotnessType::Unknown;
8476     break;
8477   case lltok::kw_cold:
8478     Hotness = CalleeInfo::HotnessType::Cold;
8479     break;
8480   case lltok::kw_none:
8481     Hotness = CalleeInfo::HotnessType::None;
8482     break;
8483   case lltok::kw_hot:
8484     Hotness = CalleeInfo::HotnessType::Hot;
8485     break;
8486   case lltok::kw_critical:
8487     Hotness = CalleeInfo::HotnessType::Critical;
8488     break;
8489   default:
8490     return Error(Lex.getLoc(), "invalid call edge hotness");
8491   }
8492   Lex.Lex();
8493   return false;
8494 }
8495 
8496 /// OptionalVTableFuncs
8497 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8498 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8499 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8500   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8501   Lex.Lex();
8502 
8503   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8504       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8505     return true;
8506 
8507   IdToIndexMapType IdToIndexMap;
8508   // Parse each virtual function pair
8509   do {
8510     ValueInfo VI;
8511     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8512         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8513         ParseToken(lltok::colon, "expected ':'"))
8514       return true;
8515 
8516     LocTy Loc = Lex.getLoc();
8517     unsigned GVId;
8518     if (ParseGVReference(VI, GVId))
8519       return true;
8520 
8521     uint64_t Offset;
8522     if (ParseToken(lltok::comma, "expected comma") ||
8523         ParseToken(lltok::kw_offset, "expected offset") ||
8524         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8525       return true;
8526 
8527     // Keep track of the VTableFuncs array index needing a forward reference.
8528     // We will save the location of the ValueInfo needing an update, but
8529     // can only do so once the std::vector is finalized.
8530     if (VI == EmptyVI)
8531       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8532     VTableFuncs.push_back({VI, Offset});
8533 
8534     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8535       return true;
8536   } while (EatIfPresent(lltok::comma));
8537 
8538   // Now that the VTableFuncs vector is finalized, it is safe to save the
8539   // locations of any forward GV references that need updating later.
8540   for (auto I : IdToIndexMap) {
8541     for (auto P : I.second) {
8542       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8543              "Forward referenced ValueInfo expected to be empty");
8544       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8545           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8546       FwdRef.first->second.push_back(
8547           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8548     }
8549   }
8550 
8551   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8552     return true;
8553 
8554   return false;
8555 }
8556 
8557 /// OptionalRefs
8558 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8559 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8560   assert(Lex.getKind() == lltok::kw_refs);
8561   Lex.Lex();
8562 
8563   if (ParseToken(lltok::colon, "expected ':' in refs") |
8564       ParseToken(lltok::lparen, "expected '(' in refs"))
8565     return true;
8566 
8567   struct ValueContext {
8568     ValueInfo VI;
8569     unsigned GVId;
8570     LocTy Loc;
8571   };
8572   std::vector<ValueContext> VContexts;
8573   // Parse each ref edge
8574   do {
8575     ValueContext VC;
8576     VC.Loc = Lex.getLoc();
8577     if (ParseGVReference(VC.VI, VC.GVId))
8578       return true;
8579     VContexts.push_back(VC);
8580   } while (EatIfPresent(lltok::comma));
8581 
8582   // Sort value contexts so that ones with writeonly
8583   // and readonly ValueInfo  are at the end of VContexts vector.
8584   // See FunctionSummary::specialRefCounts()
8585   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8586     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8587   });
8588 
8589   IdToIndexMapType IdToIndexMap;
8590   for (auto &VC : VContexts) {
8591     // Keep track of the Refs array index needing a forward reference.
8592     // We will save the location of the ValueInfo needing an update, but
8593     // can only do so once the std::vector is finalized.
8594     if (VC.VI.getRef() == FwdVIRef)
8595       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8596     Refs.push_back(VC.VI);
8597   }
8598 
8599   // Now that the Refs vector is finalized, it is safe to save the locations
8600   // of any forward GV references that need updating later.
8601   for (auto I : IdToIndexMap) {
8602     for (auto P : I.second) {
8603       assert(Refs[P.first].getRef() == FwdVIRef &&
8604              "Forward referenced ValueInfo expected to be empty");
8605       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8606           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8607       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8608     }
8609   }
8610 
8611   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8612     return true;
8613 
8614   return false;
8615 }
8616 
8617 /// OptionalTypeIdInfo
8618 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8619 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8620 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8621 bool LLParser::ParseOptionalTypeIdInfo(
8622     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8623   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8624   Lex.Lex();
8625 
8626   if (ParseToken(lltok::colon, "expected ':' here") ||
8627       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8628     return true;
8629 
8630   do {
8631     switch (Lex.getKind()) {
8632     case lltok::kw_typeTests:
8633       if (ParseTypeTests(TypeIdInfo.TypeTests))
8634         return true;
8635       break;
8636     case lltok::kw_typeTestAssumeVCalls:
8637       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8638                            TypeIdInfo.TypeTestAssumeVCalls))
8639         return true;
8640       break;
8641     case lltok::kw_typeCheckedLoadVCalls:
8642       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8643                            TypeIdInfo.TypeCheckedLoadVCalls))
8644         return true;
8645       break;
8646     case lltok::kw_typeTestAssumeConstVCalls:
8647       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8648                               TypeIdInfo.TypeTestAssumeConstVCalls))
8649         return true;
8650       break;
8651     case lltok::kw_typeCheckedLoadConstVCalls:
8652       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8653                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8654         return true;
8655       break;
8656     default:
8657       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8658     }
8659   } while (EatIfPresent(lltok::comma));
8660 
8661   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8662     return true;
8663 
8664   return false;
8665 }
8666 
8667 /// TypeTests
8668 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8669 ///         [',' (SummaryID | UInt64)]* ')'
8670 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8671   assert(Lex.getKind() == lltok::kw_typeTests);
8672   Lex.Lex();
8673 
8674   if (ParseToken(lltok::colon, "expected ':' here") ||
8675       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8676     return true;
8677 
8678   IdToIndexMapType IdToIndexMap;
8679   do {
8680     GlobalValue::GUID GUID = 0;
8681     if (Lex.getKind() == lltok::SummaryID) {
8682       unsigned ID = Lex.getUIntVal();
8683       LocTy Loc = Lex.getLoc();
8684       // Keep track of the TypeTests array index needing a forward reference.
8685       // We will save the location of the GUID needing an update, but
8686       // can only do so once the std::vector is finalized.
8687       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8688       Lex.Lex();
8689     } else if (ParseUInt64(GUID))
8690       return true;
8691     TypeTests.push_back(GUID);
8692   } while (EatIfPresent(lltok::comma));
8693 
8694   // Now that the TypeTests vector is finalized, it is safe to save the
8695   // locations of any forward GV references that need updating later.
8696   for (auto I : IdToIndexMap) {
8697     for (auto P : I.second) {
8698       assert(TypeTests[P.first] == 0 &&
8699              "Forward referenced type id GUID expected to be 0");
8700       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8701           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8702       FwdRef.first->second.push_back(
8703           std::make_pair(&TypeTests[P.first], P.second));
8704     }
8705   }
8706 
8707   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8708     return true;
8709 
8710   return false;
8711 }
8712 
8713 /// VFuncIdList
8714 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8715 bool LLParser::ParseVFuncIdList(
8716     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8717   assert(Lex.getKind() == Kind);
8718   Lex.Lex();
8719 
8720   if (ParseToken(lltok::colon, "expected ':' here") ||
8721       ParseToken(lltok::lparen, "expected '(' here"))
8722     return true;
8723 
8724   IdToIndexMapType IdToIndexMap;
8725   do {
8726     FunctionSummary::VFuncId VFuncId;
8727     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8728       return true;
8729     VFuncIdList.push_back(VFuncId);
8730   } while (EatIfPresent(lltok::comma));
8731 
8732   if (ParseToken(lltok::rparen, "expected ')' here"))
8733     return true;
8734 
8735   // Now that the VFuncIdList vector is finalized, it is safe to save the
8736   // locations of any forward GV references that need updating later.
8737   for (auto I : IdToIndexMap) {
8738     for (auto P : I.second) {
8739       assert(VFuncIdList[P.first].GUID == 0 &&
8740              "Forward referenced type id GUID expected to be 0");
8741       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8742           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8743       FwdRef.first->second.push_back(
8744           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8745     }
8746   }
8747 
8748   return false;
8749 }
8750 
8751 /// ConstVCallList
8752 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8753 bool LLParser::ParseConstVCallList(
8754     lltok::Kind Kind,
8755     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8756   assert(Lex.getKind() == Kind);
8757   Lex.Lex();
8758 
8759   if (ParseToken(lltok::colon, "expected ':' here") ||
8760       ParseToken(lltok::lparen, "expected '(' here"))
8761     return true;
8762 
8763   IdToIndexMapType IdToIndexMap;
8764   do {
8765     FunctionSummary::ConstVCall ConstVCall;
8766     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8767       return true;
8768     ConstVCallList.push_back(ConstVCall);
8769   } while (EatIfPresent(lltok::comma));
8770 
8771   if (ParseToken(lltok::rparen, "expected ')' here"))
8772     return true;
8773 
8774   // Now that the ConstVCallList vector is finalized, it is safe to save the
8775   // locations of any forward GV references that need updating later.
8776   for (auto I : IdToIndexMap) {
8777     for (auto P : I.second) {
8778       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8779              "Forward referenced type id GUID expected to be 0");
8780       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8781           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8782       FwdRef.first->second.push_back(
8783           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8784     }
8785   }
8786 
8787   return false;
8788 }
8789 
8790 /// ConstVCall
8791 ///   ::= '(' VFuncId ',' Args ')'
8792 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8793                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8794   if (ParseToken(lltok::lparen, "expected '(' here") ||
8795       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8796     return true;
8797 
8798   if (EatIfPresent(lltok::comma))
8799     if (ParseArgs(ConstVCall.Args))
8800       return true;
8801 
8802   if (ParseToken(lltok::rparen, "expected ')' here"))
8803     return true;
8804 
8805   return false;
8806 }
8807 
8808 /// VFuncId
8809 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8810 ///         'offset' ':' UInt64 ')'
8811 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8812                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8813   assert(Lex.getKind() == lltok::kw_vFuncId);
8814   Lex.Lex();
8815 
8816   if (ParseToken(lltok::colon, "expected ':' here") ||
8817       ParseToken(lltok::lparen, "expected '(' here"))
8818     return true;
8819 
8820   if (Lex.getKind() == lltok::SummaryID) {
8821     VFuncId.GUID = 0;
8822     unsigned ID = Lex.getUIntVal();
8823     LocTy Loc = Lex.getLoc();
8824     // Keep track of the array index needing a forward reference.
8825     // We will save the location of the GUID needing an update, but
8826     // can only do so once the caller's std::vector is finalized.
8827     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8828     Lex.Lex();
8829   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8830              ParseToken(lltok::colon, "expected ':' here") ||
8831              ParseUInt64(VFuncId.GUID))
8832     return true;
8833 
8834   if (ParseToken(lltok::comma, "expected ',' here") ||
8835       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8836       ParseToken(lltok::colon, "expected ':' here") ||
8837       ParseUInt64(VFuncId.Offset) ||
8838       ParseToken(lltok::rparen, "expected ')' here"))
8839     return true;
8840 
8841   return false;
8842 }
8843 
8844 /// GVFlags
8845 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8846 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8847 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8848 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8849   assert(Lex.getKind() == lltok::kw_flags);
8850   Lex.Lex();
8851 
8852   if (ParseToken(lltok::colon, "expected ':' here") ||
8853       ParseToken(lltok::lparen, "expected '(' here"))
8854     return true;
8855 
8856   do {
8857     unsigned Flag = 0;
8858     switch (Lex.getKind()) {
8859     case lltok::kw_linkage:
8860       Lex.Lex();
8861       if (ParseToken(lltok::colon, "expected ':'"))
8862         return true;
8863       bool HasLinkage;
8864       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8865       assert(HasLinkage && "Linkage not optional in summary entry");
8866       Lex.Lex();
8867       break;
8868     case lltok::kw_notEligibleToImport:
8869       Lex.Lex();
8870       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8871         return true;
8872       GVFlags.NotEligibleToImport = Flag;
8873       break;
8874     case lltok::kw_live:
8875       Lex.Lex();
8876       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8877         return true;
8878       GVFlags.Live = Flag;
8879       break;
8880     case lltok::kw_dsoLocal:
8881       Lex.Lex();
8882       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8883         return true;
8884       GVFlags.DSOLocal = Flag;
8885       break;
8886     case lltok::kw_canAutoHide:
8887       Lex.Lex();
8888       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8889         return true;
8890       GVFlags.CanAutoHide = Flag;
8891       break;
8892     default:
8893       return Error(Lex.getLoc(), "expected gv flag type");
8894     }
8895   } while (EatIfPresent(lltok::comma));
8896 
8897   if (ParseToken(lltok::rparen, "expected ')' here"))
8898     return true;
8899 
8900   return false;
8901 }
8902 
8903 /// GVarFlags
8904 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8905 ///                      ',' 'writeonly' ':' Flag
8906 ///                      ',' 'constant' ':' Flag ')'
8907 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8908   assert(Lex.getKind() == lltok::kw_varFlags);
8909   Lex.Lex();
8910 
8911   if (ParseToken(lltok::colon, "expected ':' here") ||
8912       ParseToken(lltok::lparen, "expected '(' here"))
8913     return true;
8914 
8915   auto ParseRest = [this](unsigned int &Val) {
8916     Lex.Lex();
8917     if (ParseToken(lltok::colon, "expected ':'"))
8918       return true;
8919     return ParseFlag(Val);
8920   };
8921 
8922   do {
8923     unsigned Flag = 0;
8924     switch (Lex.getKind()) {
8925     case lltok::kw_readonly:
8926       if (ParseRest(Flag))
8927         return true;
8928       GVarFlags.MaybeReadOnly = Flag;
8929       break;
8930     case lltok::kw_writeonly:
8931       if (ParseRest(Flag))
8932         return true;
8933       GVarFlags.MaybeWriteOnly = Flag;
8934       break;
8935     case lltok::kw_constant:
8936       if (ParseRest(Flag))
8937         return true;
8938       GVarFlags.Constant = Flag;
8939       break;
8940     case lltok::kw_vcall_visibility:
8941       if (ParseRest(Flag))
8942         return true;
8943       GVarFlags.VCallVisibility = Flag;
8944       break;
8945     default:
8946       return Error(Lex.getLoc(), "expected gvar flag type");
8947     }
8948   } while (EatIfPresent(lltok::comma));
8949   return ParseToken(lltok::rparen, "expected ')' here");
8950 }
8951 
8952 /// ModuleReference
8953 ///   ::= 'module' ':' UInt
8954 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8955   // Parse module id.
8956   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8957       ParseToken(lltok::colon, "expected ':' here") ||
8958       ParseToken(lltok::SummaryID, "expected module ID"))
8959     return true;
8960 
8961   unsigned ModuleID = Lex.getUIntVal();
8962   auto I = ModuleIdMap.find(ModuleID);
8963   // We should have already parsed all module IDs
8964   assert(I != ModuleIdMap.end());
8965   ModulePath = I->second;
8966   return false;
8967 }
8968 
8969 /// GVReference
8970 ///   ::= SummaryID
8971 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8972   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8973   if (!ReadOnly)
8974     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8975   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8976     return true;
8977 
8978   GVId = Lex.getUIntVal();
8979   // Check if we already have a VI for this GV
8980   if (GVId < NumberedValueInfos.size()) {
8981     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8982     VI = NumberedValueInfos[GVId];
8983   } else
8984     // We will create a forward reference to the stored location.
8985     VI = ValueInfo(false, FwdVIRef);
8986 
8987   if (ReadOnly)
8988     VI.setReadOnly();
8989   if (WriteOnly)
8990     VI.setWriteOnly();
8991   return false;
8992 }
8993