1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 UpgradeDebugInfo(*M); 241 242 UpgradeModuleFlags(*M); 243 244 if (!Slots) 245 return false; 246 // Initialize the slot mapping. 247 // Because by this point we've parsed and validated everything, we can "steal" 248 // the mapping from LLParser as it doesn't need it anymore. 249 Slots->GlobalValues = std::move(NumberedVals); 250 Slots->MetadataNodes = std::move(NumberedMetadata); 251 for (const auto &I : NamedTypes) 252 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 253 for (const auto &I : NumberedTypes) 254 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 255 256 return false; 257 } 258 259 //===----------------------------------------------------------------------===// 260 // Top-Level Entities 261 //===----------------------------------------------------------------------===// 262 263 bool LLParser::ParseTopLevelEntities() { 264 while (true) { 265 switch (Lex.getKind()) { 266 default: return TokError("expected top-level entity"); 267 case lltok::Eof: return false; 268 case lltok::kw_declare: if (ParseDeclare()) return true; break; 269 case lltok::kw_define: if (ParseDefine()) return true; break; 270 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 271 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 272 case lltok::kw_source_filename: 273 if (ParseSourceFileName()) 274 return true; 275 break; 276 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 277 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 278 case lltok::LocalVar: if (ParseNamedType()) return true; break; 279 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 280 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 281 case lltok::ComdatVar: if (parseComdat()) return true; break; 282 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 283 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 284 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 285 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 286 case lltok::kw_uselistorder_bb: 287 if (ParseUseListOrderBB()) 288 return true; 289 break; 290 } 291 } 292 } 293 294 /// toplevelentity 295 /// ::= 'module' 'asm' STRINGCONSTANT 296 bool LLParser::ParseModuleAsm() { 297 assert(Lex.getKind() == lltok::kw_module); 298 Lex.Lex(); 299 300 std::string AsmStr; 301 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 302 ParseStringConstant(AsmStr)) return true; 303 304 M->appendModuleInlineAsm(AsmStr); 305 return false; 306 } 307 308 /// toplevelentity 309 /// ::= 'target' 'triple' '=' STRINGCONSTANT 310 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 311 bool LLParser::ParseTargetDefinition() { 312 assert(Lex.getKind() == lltok::kw_target); 313 std::string Str; 314 switch (Lex.Lex()) { 315 default: return TokError("unknown target property"); 316 case lltok::kw_triple: 317 Lex.Lex(); 318 if (ParseToken(lltok::equal, "expected '=' after target triple") || 319 ParseStringConstant(Str)) 320 return true; 321 M->setTargetTriple(Str); 322 return false; 323 case lltok::kw_datalayout: 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 326 ParseStringConstant(Str)) 327 return true; 328 M->setDataLayout(Str); 329 return false; 330 } 331 } 332 333 /// toplevelentity 334 /// ::= 'source_filename' '=' STRINGCONSTANT 335 bool LLParser::ParseSourceFileName() { 336 assert(Lex.getKind() == lltok::kw_source_filename); 337 std::string Str; 338 Lex.Lex(); 339 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 340 ParseStringConstant(Str)) 341 return true; 342 M->setSourceFileName(Str); 343 return false; 344 } 345 346 /// toplevelentity 347 /// ::= 'deplibs' '=' '[' ']' 348 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 349 /// FIXME: Remove in 4.0. Currently parse, but ignore. 350 bool LLParser::ParseDepLibs() { 351 assert(Lex.getKind() == lltok::kw_deplibs); 352 Lex.Lex(); 353 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 354 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 355 return true; 356 357 if (EatIfPresent(lltok::rsquare)) 358 return false; 359 360 do { 361 std::string Str; 362 if (ParseStringConstant(Str)) return true; 363 } while (EatIfPresent(lltok::comma)); 364 365 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 366 } 367 368 /// ParseUnnamedType: 369 /// ::= LocalVarID '=' 'type' type 370 bool LLParser::ParseUnnamedType() { 371 LocTy TypeLoc = Lex.getLoc(); 372 unsigned TypeID = Lex.getUIntVal(); 373 Lex.Lex(); // eat LocalVarID; 374 375 if (ParseToken(lltok::equal, "expected '=' after name") || 376 ParseToken(lltok::kw_type, "expected 'type' after '='")) 377 return true; 378 379 Type *Result = nullptr; 380 if (ParseStructDefinition(TypeLoc, "", 381 NumberedTypes[TypeID], Result)) return true; 382 383 if (!isa<StructType>(Result)) { 384 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 385 if (Entry.first) 386 return Error(TypeLoc, "non-struct types may not be recursive"); 387 Entry.first = Result; 388 Entry.second = SMLoc(); 389 } 390 391 return false; 392 } 393 394 /// toplevelentity 395 /// ::= LocalVar '=' 'type' type 396 bool LLParser::ParseNamedType() { 397 std::string Name = Lex.getStrVal(); 398 LocTy NameLoc = Lex.getLoc(); 399 Lex.Lex(); // eat LocalVar. 400 401 if (ParseToken(lltok::equal, "expected '=' after name") || 402 ParseToken(lltok::kw_type, "expected 'type' after name")) 403 return true; 404 405 Type *Result = nullptr; 406 if (ParseStructDefinition(NameLoc, Name, 407 NamedTypes[Name], Result)) return true; 408 409 if (!isa<StructType>(Result)) { 410 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 411 if (Entry.first) 412 return Error(NameLoc, "non-struct types may not be recursive"); 413 Entry.first = Result; 414 Entry.second = SMLoc(); 415 } 416 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'declare' FunctionHeader 422 bool LLParser::ParseDeclare() { 423 assert(Lex.getKind() == lltok::kw_declare); 424 Lex.Lex(); 425 426 std::vector<std::pair<unsigned, MDNode *>> MDs; 427 while (Lex.getKind() == lltok::MetadataVar) { 428 unsigned MDK; 429 MDNode *N; 430 if (ParseMetadataAttachment(MDK, N)) 431 return true; 432 MDs.push_back({MDK, N}); 433 } 434 435 Function *F; 436 if (ParseFunctionHeader(F, false)) 437 return true; 438 for (auto &MD : MDs) 439 F->addMetadata(MD.first, *MD.second); 440 return false; 441 } 442 443 /// toplevelentity 444 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 445 bool LLParser::ParseDefine() { 446 assert(Lex.getKind() == lltok::kw_define); 447 Lex.Lex(); 448 449 Function *F; 450 return ParseFunctionHeader(F, true) || 451 ParseOptionalFunctionMetadata(*F) || 452 ParseFunctionBody(*F); 453 } 454 455 /// ParseGlobalType 456 /// ::= 'constant' 457 /// ::= 'global' 458 bool LLParser::ParseGlobalType(bool &IsConstant) { 459 if (Lex.getKind() == lltok::kw_constant) 460 IsConstant = true; 461 else if (Lex.getKind() == lltok::kw_global) 462 IsConstant = false; 463 else { 464 IsConstant = false; 465 return TokError("expected 'global' or 'constant'"); 466 } 467 Lex.Lex(); 468 return false; 469 } 470 471 bool LLParser::ParseOptionalUnnamedAddr( 472 GlobalVariable::UnnamedAddr &UnnamedAddr) { 473 if (EatIfPresent(lltok::kw_unnamed_addr)) 474 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 475 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 476 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 477 else 478 UnnamedAddr = GlobalValue::UnnamedAddr::None; 479 return false; 480 } 481 482 /// ParseUnnamedGlobal: 483 /// OptionalVisibility (ALIAS | IFUNC) ... 484 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 485 /// ... -> global variable 486 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 487 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 488 /// ... -> global variable 489 bool LLParser::ParseUnnamedGlobal() { 490 unsigned VarID = NumberedVals.size(); 491 std::string Name; 492 LocTy NameLoc = Lex.getLoc(); 493 494 // Handle the GlobalID form. 495 if (Lex.getKind() == lltok::GlobalID) { 496 if (Lex.getUIntVal() != VarID) 497 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 498 Twine(VarID) + "'"); 499 Lex.Lex(); // eat GlobalID; 500 501 if (ParseToken(lltok::equal, "expected '=' after name")) 502 return true; 503 } 504 505 bool HasLinkage; 506 unsigned Linkage, Visibility, DLLStorageClass; 507 GlobalVariable::ThreadLocalMode TLM; 508 GlobalVariable::UnnamedAddr UnnamedAddr; 509 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 510 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 511 return true; 512 513 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 514 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 515 DLLStorageClass, TLM, UnnamedAddr); 516 517 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 518 DLLStorageClass, TLM, UnnamedAddr); 519 } 520 521 /// ParseNamedGlobal: 522 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 523 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 524 /// ... -> global variable 525 bool LLParser::ParseNamedGlobal() { 526 assert(Lex.getKind() == lltok::GlobalVar); 527 LocTy NameLoc = Lex.getLoc(); 528 std::string Name = Lex.getStrVal(); 529 Lex.Lex(); 530 531 bool HasLinkage; 532 unsigned Linkage, Visibility, DLLStorageClass; 533 GlobalVariable::ThreadLocalMode TLM; 534 GlobalVariable::UnnamedAddr UnnamedAddr; 535 if (ParseToken(lltok::equal, "expected '=' in global variable") || 536 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 537 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 538 return true; 539 540 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 541 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 542 DLLStorageClass, TLM, UnnamedAddr); 543 544 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 545 DLLStorageClass, TLM, UnnamedAddr); 546 } 547 548 bool LLParser::parseComdat() { 549 assert(Lex.getKind() == lltok::ComdatVar); 550 std::string Name = Lex.getStrVal(); 551 LocTy NameLoc = Lex.getLoc(); 552 Lex.Lex(); 553 554 if (ParseToken(lltok::equal, "expected '=' here")) 555 return true; 556 557 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 558 return TokError("expected comdat type"); 559 560 Comdat::SelectionKind SK; 561 switch (Lex.getKind()) { 562 default: 563 return TokError("unknown selection kind"); 564 case lltok::kw_any: 565 SK = Comdat::Any; 566 break; 567 case lltok::kw_exactmatch: 568 SK = Comdat::ExactMatch; 569 break; 570 case lltok::kw_largest: 571 SK = Comdat::Largest; 572 break; 573 case lltok::kw_noduplicates: 574 SK = Comdat::NoDuplicates; 575 break; 576 case lltok::kw_samesize: 577 SK = Comdat::SameSize; 578 break; 579 } 580 Lex.Lex(); 581 582 // See if the comdat was forward referenced, if so, use the comdat. 583 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 584 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 585 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 586 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 587 588 Comdat *C; 589 if (I != ComdatSymTab.end()) 590 C = &I->second; 591 else 592 C = M->getOrInsertComdat(Name); 593 C->setSelectionKind(SK); 594 595 return false; 596 } 597 598 // MDString: 599 // ::= '!' STRINGCONSTANT 600 bool LLParser::ParseMDString(MDString *&Result) { 601 std::string Str; 602 if (ParseStringConstant(Str)) return true; 603 Result = MDString::get(Context, Str); 604 return false; 605 } 606 607 // MDNode: 608 // ::= '!' MDNodeNumber 609 bool LLParser::ParseMDNodeID(MDNode *&Result) { 610 // !{ ..., !42, ... } 611 LocTy IDLoc = Lex.getLoc(); 612 unsigned MID = 0; 613 if (ParseUInt32(MID)) 614 return true; 615 616 // If not a forward reference, just return it now. 617 if (NumberedMetadata.count(MID)) { 618 Result = NumberedMetadata[MID]; 619 return false; 620 } 621 622 // Otherwise, create MDNode forward reference. 623 auto &FwdRef = ForwardRefMDNodes[MID]; 624 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 625 626 Result = FwdRef.first.get(); 627 NumberedMetadata[MID].reset(Result); 628 return false; 629 } 630 631 /// ParseNamedMetadata: 632 /// !foo = !{ !1, !2 } 633 bool LLParser::ParseNamedMetadata() { 634 assert(Lex.getKind() == lltok::MetadataVar); 635 std::string Name = Lex.getStrVal(); 636 Lex.Lex(); 637 638 if (ParseToken(lltok::equal, "expected '=' here") || 639 ParseToken(lltok::exclaim, "Expected '!' here") || 640 ParseToken(lltok::lbrace, "Expected '{' here")) 641 return true; 642 643 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 644 if (Lex.getKind() != lltok::rbrace) 645 do { 646 MDNode *N = nullptr; 647 // Parse DIExpressions inline as a special case. They are still MDNodes, 648 // so they can still appear in named metadata. Remove this logic if they 649 // become plain Metadata. 650 if (Lex.getKind() == lltok::MetadataVar && 651 Lex.getStrVal() == "DIExpression") { 652 if (ParseDIExpression(N, /*IsDistinct=*/false)) 653 return true; 654 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 655 ParseMDNodeID(N)) { 656 return true; 657 } 658 NMD->addOperand(N); 659 } while (EatIfPresent(lltok::comma)); 660 661 return ParseToken(lltok::rbrace, "expected end of metadata node"); 662 } 663 664 /// ParseStandaloneMetadata: 665 /// !42 = !{...} 666 bool LLParser::ParseStandaloneMetadata() { 667 assert(Lex.getKind() == lltok::exclaim); 668 Lex.Lex(); 669 unsigned MetadataID = 0; 670 671 MDNode *Init; 672 if (ParseUInt32(MetadataID) || 673 ParseToken(lltok::equal, "expected '=' here")) 674 return true; 675 676 // Detect common error, from old metadata syntax. 677 if (Lex.getKind() == lltok::Type) 678 return TokError("unexpected type in metadata definition"); 679 680 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 681 if (Lex.getKind() == lltok::MetadataVar) { 682 if (ParseSpecializedMDNode(Init, IsDistinct)) 683 return true; 684 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 685 ParseMDTuple(Init, IsDistinct)) 686 return true; 687 688 // See if this was forward referenced, if so, handle it. 689 auto FI = ForwardRefMDNodes.find(MetadataID); 690 if (FI != ForwardRefMDNodes.end()) { 691 FI->second.first->replaceAllUsesWith(Init); 692 ForwardRefMDNodes.erase(FI); 693 694 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 695 } else { 696 if (NumberedMetadata.count(MetadataID)) 697 return TokError("Metadata id is already used"); 698 NumberedMetadata[MetadataID].reset(Init); 699 } 700 701 return false; 702 } 703 704 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 705 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 706 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 707 } 708 709 /// parseIndirectSymbol: 710 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 711 /// OptionalDLLStorageClass OptionalThreadLocal 712 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 713 /// 714 /// IndirectSymbol 715 /// ::= TypeAndValue 716 /// 717 /// Everything through OptionalUnnamedAddr has already been parsed. 718 /// 719 bool LLParser::parseIndirectSymbol( 720 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 721 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 722 GlobalVariable::UnnamedAddr UnnamedAddr) { 723 bool IsAlias; 724 if (Lex.getKind() == lltok::kw_alias) 725 IsAlias = true; 726 else if (Lex.getKind() == lltok::kw_ifunc) 727 IsAlias = false; 728 else 729 llvm_unreachable("Not an alias or ifunc!"); 730 Lex.Lex(); 731 732 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 733 734 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 735 return Error(NameLoc, "invalid linkage type for alias"); 736 737 if (!isValidVisibilityForLinkage(Visibility, L)) 738 return Error(NameLoc, 739 "symbol with local linkage must have default visibility"); 740 741 Type *Ty; 742 LocTy ExplicitTypeLoc = Lex.getLoc(); 743 if (ParseType(Ty) || 744 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 745 return true; 746 747 Constant *Aliasee; 748 LocTy AliaseeLoc = Lex.getLoc(); 749 if (Lex.getKind() != lltok::kw_bitcast && 750 Lex.getKind() != lltok::kw_getelementptr && 751 Lex.getKind() != lltok::kw_addrspacecast && 752 Lex.getKind() != lltok::kw_inttoptr) { 753 if (ParseGlobalTypeAndValue(Aliasee)) 754 return true; 755 } else { 756 // The bitcast dest type is not present, it is implied by the dest type. 757 ValID ID; 758 if (ParseValID(ID)) 759 return true; 760 if (ID.Kind != ValID::t_Constant) 761 return Error(AliaseeLoc, "invalid aliasee"); 762 Aliasee = ID.ConstantVal; 763 } 764 765 Type *AliaseeType = Aliasee->getType(); 766 auto *PTy = dyn_cast<PointerType>(AliaseeType); 767 if (!PTy) 768 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 769 unsigned AddrSpace = PTy->getAddressSpace(); 770 771 if (IsAlias && Ty != PTy->getElementType()) 772 return Error( 773 ExplicitTypeLoc, 774 "explicit pointee type doesn't match operand's pointee type"); 775 776 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 777 return Error( 778 ExplicitTypeLoc, 779 "explicit pointee type should be a function type"); 780 781 GlobalValue *GVal = nullptr; 782 783 // See if the alias was forward referenced, if so, prepare to replace the 784 // forward reference. 785 if (!Name.empty()) { 786 GVal = M->getNamedValue(Name); 787 if (GVal) { 788 if (!ForwardRefVals.erase(Name)) 789 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 790 } 791 } else { 792 auto I = ForwardRefValIDs.find(NumberedVals.size()); 793 if (I != ForwardRefValIDs.end()) { 794 GVal = I->second.first; 795 ForwardRefValIDs.erase(I); 796 } 797 } 798 799 // Okay, create the alias but do not insert it into the module yet. 800 std::unique_ptr<GlobalIndirectSymbol> GA; 801 if (IsAlias) 802 GA.reset(GlobalAlias::create(Ty, AddrSpace, 803 (GlobalValue::LinkageTypes)Linkage, Name, 804 Aliasee, /*Parent*/ nullptr)); 805 else 806 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 807 (GlobalValue::LinkageTypes)Linkage, Name, 808 Aliasee, /*Parent*/ nullptr)); 809 GA->setThreadLocalMode(TLM); 810 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 811 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 812 GA->setUnnamedAddr(UnnamedAddr); 813 814 if (Name.empty()) 815 NumberedVals.push_back(GA.get()); 816 817 if (GVal) { 818 // Verify that types agree. 819 if (GVal->getType() != GA->getType()) 820 return Error( 821 ExplicitTypeLoc, 822 "forward reference and definition of alias have different types"); 823 824 // If they agree, just RAUW the old value with the alias and remove the 825 // forward ref info. 826 GVal->replaceAllUsesWith(GA.get()); 827 GVal->eraseFromParent(); 828 } 829 830 // Insert into the module, we know its name won't collide now. 831 if (IsAlias) 832 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 833 else 834 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 835 assert(GA->getName() == Name && "Should not be a name conflict!"); 836 837 // The module owns this now 838 GA.release(); 839 840 return false; 841 } 842 843 /// ParseGlobal 844 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 845 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 846 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 847 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 848 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 849 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 850 /// 851 /// Everything up to and including OptionalUnnamedAddr has been parsed 852 /// already. 853 /// 854 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 855 unsigned Linkage, bool HasLinkage, 856 unsigned Visibility, unsigned DLLStorageClass, 857 GlobalVariable::ThreadLocalMode TLM, 858 GlobalVariable::UnnamedAddr UnnamedAddr) { 859 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 860 return Error(NameLoc, 861 "symbol with local linkage must have default visibility"); 862 863 unsigned AddrSpace; 864 bool IsConstant, IsExternallyInitialized; 865 LocTy IsExternallyInitializedLoc; 866 LocTy TyLoc; 867 868 Type *Ty = nullptr; 869 if (ParseOptionalAddrSpace(AddrSpace) || 870 ParseOptionalToken(lltok::kw_externally_initialized, 871 IsExternallyInitialized, 872 &IsExternallyInitializedLoc) || 873 ParseGlobalType(IsConstant) || 874 ParseType(Ty, TyLoc)) 875 return true; 876 877 // If the linkage is specified and is external, then no initializer is 878 // present. 879 Constant *Init = nullptr; 880 if (!HasLinkage || 881 !GlobalValue::isValidDeclarationLinkage( 882 (GlobalValue::LinkageTypes)Linkage)) { 883 if (ParseGlobalValue(Ty, Init)) 884 return true; 885 } 886 887 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 888 return Error(TyLoc, "invalid type for global variable"); 889 890 GlobalValue *GVal = nullptr; 891 892 // See if the global was forward referenced, if so, use the global. 893 if (!Name.empty()) { 894 GVal = M->getNamedValue(Name); 895 if (GVal) { 896 if (!ForwardRefVals.erase(Name)) 897 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 898 } 899 } else { 900 auto I = ForwardRefValIDs.find(NumberedVals.size()); 901 if (I != ForwardRefValIDs.end()) { 902 GVal = I->second.first; 903 ForwardRefValIDs.erase(I); 904 } 905 } 906 907 GlobalVariable *GV; 908 if (!GVal) { 909 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 910 Name, nullptr, GlobalVariable::NotThreadLocal, 911 AddrSpace); 912 } else { 913 if (GVal->getValueType() != Ty) 914 return Error(TyLoc, 915 "forward reference and definition of global have different types"); 916 917 GV = cast<GlobalVariable>(GVal); 918 919 // Move the forward-reference to the correct spot in the module. 920 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 921 } 922 923 if (Name.empty()) 924 NumberedVals.push_back(GV); 925 926 // Set the parsed properties on the global. 927 if (Init) 928 GV->setInitializer(Init); 929 GV->setConstant(IsConstant); 930 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 931 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 932 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 933 GV->setExternallyInitialized(IsExternallyInitialized); 934 GV->setThreadLocalMode(TLM); 935 GV->setUnnamedAddr(UnnamedAddr); 936 937 // Parse attributes on the global. 938 while (Lex.getKind() == lltok::comma) { 939 Lex.Lex(); 940 941 if (Lex.getKind() == lltok::kw_section) { 942 Lex.Lex(); 943 GV->setSection(Lex.getStrVal()); 944 if (ParseToken(lltok::StringConstant, "expected global section string")) 945 return true; 946 } else if (Lex.getKind() == lltok::kw_align) { 947 unsigned Alignment; 948 if (ParseOptionalAlignment(Alignment)) return true; 949 GV->setAlignment(Alignment); 950 } else if (Lex.getKind() == lltok::MetadataVar) { 951 if (ParseGlobalObjectMetadataAttachment(*GV)) 952 return true; 953 } else { 954 Comdat *C; 955 if (parseOptionalComdat(Name, C)) 956 return true; 957 if (C) 958 GV->setComdat(C); 959 else 960 return TokError("unknown global variable property!"); 961 } 962 } 963 964 AttrBuilder Attrs; 965 LocTy BuiltinLoc; 966 std::vector<unsigned> FwdRefAttrGrps; 967 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 968 return true; 969 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 970 GV->setAttributes(AttributeSet::get(Context, Attrs)); 971 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 972 } 973 974 return false; 975 } 976 977 /// ParseUnnamedAttrGrp 978 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 979 bool LLParser::ParseUnnamedAttrGrp() { 980 assert(Lex.getKind() == lltok::kw_attributes); 981 LocTy AttrGrpLoc = Lex.getLoc(); 982 Lex.Lex(); 983 984 if (Lex.getKind() != lltok::AttrGrpID) 985 return TokError("expected attribute group id"); 986 987 unsigned VarID = Lex.getUIntVal(); 988 std::vector<unsigned> unused; 989 LocTy BuiltinLoc; 990 Lex.Lex(); 991 992 if (ParseToken(lltok::equal, "expected '=' here") || 993 ParseToken(lltok::lbrace, "expected '{' here") || 994 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 995 BuiltinLoc) || 996 ParseToken(lltok::rbrace, "expected end of attribute group")) 997 return true; 998 999 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1000 return Error(AttrGrpLoc, "attribute group has no attributes"); 1001 1002 return false; 1003 } 1004 1005 /// ParseFnAttributeValuePairs 1006 /// ::= <attr> | <attr> '=' <value> 1007 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1008 std::vector<unsigned> &FwdRefAttrGrps, 1009 bool inAttrGrp, LocTy &BuiltinLoc) { 1010 bool HaveError = false; 1011 1012 B.clear(); 1013 1014 while (true) { 1015 lltok::Kind Token = Lex.getKind(); 1016 if (Token == lltok::kw_builtin) 1017 BuiltinLoc = Lex.getLoc(); 1018 switch (Token) { 1019 default: 1020 if (!inAttrGrp) return HaveError; 1021 return Error(Lex.getLoc(), "unterminated attribute group"); 1022 case lltok::rbrace: 1023 // Finished. 1024 return false; 1025 1026 case lltok::AttrGrpID: { 1027 // Allow a function to reference an attribute group: 1028 // 1029 // define void @foo() #1 { ... } 1030 if (inAttrGrp) 1031 HaveError |= 1032 Error(Lex.getLoc(), 1033 "cannot have an attribute group reference in an attribute group"); 1034 1035 unsigned AttrGrpNum = Lex.getUIntVal(); 1036 if (inAttrGrp) break; 1037 1038 // Save the reference to the attribute group. We'll fill it in later. 1039 FwdRefAttrGrps.push_back(AttrGrpNum); 1040 break; 1041 } 1042 // Target-dependent attributes: 1043 case lltok::StringConstant: { 1044 if (ParseStringAttribute(B)) 1045 return true; 1046 continue; 1047 } 1048 1049 // Target-independent attributes: 1050 case lltok::kw_align: { 1051 // As a hack, we allow function alignment to be initially parsed as an 1052 // attribute on a function declaration/definition or added to an attribute 1053 // group and later moved to the alignment field. 1054 unsigned Alignment; 1055 if (inAttrGrp) { 1056 Lex.Lex(); 1057 if (ParseToken(lltok::equal, "expected '=' here") || 1058 ParseUInt32(Alignment)) 1059 return true; 1060 } else { 1061 if (ParseOptionalAlignment(Alignment)) 1062 return true; 1063 } 1064 B.addAlignmentAttr(Alignment); 1065 continue; 1066 } 1067 case lltok::kw_alignstack: { 1068 unsigned Alignment; 1069 if (inAttrGrp) { 1070 Lex.Lex(); 1071 if (ParseToken(lltok::equal, "expected '=' here") || 1072 ParseUInt32(Alignment)) 1073 return true; 1074 } else { 1075 if (ParseOptionalStackAlignment(Alignment)) 1076 return true; 1077 } 1078 B.addStackAlignmentAttr(Alignment); 1079 continue; 1080 } 1081 case lltok::kw_allocsize: { 1082 unsigned ElemSizeArg; 1083 Optional<unsigned> NumElemsArg; 1084 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1085 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1086 return true; 1087 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1088 continue; 1089 } 1090 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1091 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1092 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1093 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1094 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1095 case lltok::kw_inaccessiblememonly: 1096 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1097 case lltok::kw_inaccessiblemem_or_argmemonly: 1098 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1099 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1100 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1101 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1102 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1103 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1104 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1105 case lltok::kw_noimplicitfloat: 1106 B.addAttribute(Attribute::NoImplicitFloat); break; 1107 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1108 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1109 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1110 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1111 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1112 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1113 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1114 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1115 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1116 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1117 case lltok::kw_returns_twice: 1118 B.addAttribute(Attribute::ReturnsTwice); break; 1119 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1120 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1121 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1122 case lltok::kw_sspstrong: 1123 B.addAttribute(Attribute::StackProtectStrong); break; 1124 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1125 case lltok::kw_sanitize_address: 1126 B.addAttribute(Attribute::SanitizeAddress); break; 1127 case lltok::kw_sanitize_thread: 1128 B.addAttribute(Attribute::SanitizeThread); break; 1129 case lltok::kw_sanitize_memory: 1130 B.addAttribute(Attribute::SanitizeMemory); break; 1131 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1132 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1133 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1134 1135 // Error handling. 1136 case lltok::kw_inreg: 1137 case lltok::kw_signext: 1138 case lltok::kw_zeroext: 1139 HaveError |= 1140 Error(Lex.getLoc(), 1141 "invalid use of attribute on a function"); 1142 break; 1143 case lltok::kw_byval: 1144 case lltok::kw_dereferenceable: 1145 case lltok::kw_dereferenceable_or_null: 1146 case lltok::kw_inalloca: 1147 case lltok::kw_nest: 1148 case lltok::kw_noalias: 1149 case lltok::kw_nocapture: 1150 case lltok::kw_nonnull: 1151 case lltok::kw_returned: 1152 case lltok::kw_sret: 1153 case lltok::kw_swifterror: 1154 case lltok::kw_swiftself: 1155 HaveError |= 1156 Error(Lex.getLoc(), 1157 "invalid use of parameter-only attribute on a function"); 1158 break; 1159 } 1160 1161 Lex.Lex(); 1162 } 1163 } 1164 1165 //===----------------------------------------------------------------------===// 1166 // GlobalValue Reference/Resolution Routines. 1167 //===----------------------------------------------------------------------===// 1168 1169 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1170 const std::string &Name) { 1171 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1172 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1173 else 1174 return new GlobalVariable(*M, PTy->getElementType(), false, 1175 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1176 nullptr, GlobalVariable::NotThreadLocal, 1177 PTy->getAddressSpace()); 1178 } 1179 1180 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1181 /// forward reference record if needed. This can return null if the value 1182 /// exists but does not have the right type. 1183 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1184 LocTy Loc) { 1185 PointerType *PTy = dyn_cast<PointerType>(Ty); 1186 if (!PTy) { 1187 Error(Loc, "global variable reference must have pointer type"); 1188 return nullptr; 1189 } 1190 1191 // Look this name up in the normal function symbol table. 1192 GlobalValue *Val = 1193 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1194 1195 // If this is a forward reference for the value, see if we already created a 1196 // forward ref record. 1197 if (!Val) { 1198 auto I = ForwardRefVals.find(Name); 1199 if (I != ForwardRefVals.end()) 1200 Val = I->second.first; 1201 } 1202 1203 // If we have the value in the symbol table or fwd-ref table, return it. 1204 if (Val) { 1205 if (Val->getType() == Ty) return Val; 1206 Error(Loc, "'@" + Name + "' defined with type '" + 1207 getTypeString(Val->getType()) + "'"); 1208 return nullptr; 1209 } 1210 1211 // Otherwise, create a new forward reference for this value and remember it. 1212 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1213 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1214 return FwdVal; 1215 } 1216 1217 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1218 PointerType *PTy = dyn_cast<PointerType>(Ty); 1219 if (!PTy) { 1220 Error(Loc, "global variable reference must have pointer type"); 1221 return nullptr; 1222 } 1223 1224 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1225 1226 // If this is a forward reference for the value, see if we already created a 1227 // forward ref record. 1228 if (!Val) { 1229 auto I = ForwardRefValIDs.find(ID); 1230 if (I != ForwardRefValIDs.end()) 1231 Val = I->second.first; 1232 } 1233 1234 // If we have the value in the symbol table or fwd-ref table, return it. 1235 if (Val) { 1236 if (Val->getType() == Ty) return Val; 1237 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1238 getTypeString(Val->getType()) + "'"); 1239 return nullptr; 1240 } 1241 1242 // Otherwise, create a new forward reference for this value and remember it. 1243 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1244 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1245 return FwdVal; 1246 } 1247 1248 //===----------------------------------------------------------------------===// 1249 // Comdat Reference/Resolution Routines. 1250 //===----------------------------------------------------------------------===// 1251 1252 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1253 // Look this name up in the comdat symbol table. 1254 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1255 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1256 if (I != ComdatSymTab.end()) 1257 return &I->second; 1258 1259 // Otherwise, create a new forward reference for this value and remember it. 1260 Comdat *C = M->getOrInsertComdat(Name); 1261 ForwardRefComdats[Name] = Loc; 1262 return C; 1263 } 1264 1265 //===----------------------------------------------------------------------===// 1266 // Helper Routines. 1267 //===----------------------------------------------------------------------===// 1268 1269 /// ParseToken - If the current token has the specified kind, eat it and return 1270 /// success. Otherwise, emit the specified error and return failure. 1271 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1272 if (Lex.getKind() != T) 1273 return TokError(ErrMsg); 1274 Lex.Lex(); 1275 return false; 1276 } 1277 1278 /// ParseStringConstant 1279 /// ::= StringConstant 1280 bool LLParser::ParseStringConstant(std::string &Result) { 1281 if (Lex.getKind() != lltok::StringConstant) 1282 return TokError("expected string constant"); 1283 Result = Lex.getStrVal(); 1284 Lex.Lex(); 1285 return false; 1286 } 1287 1288 /// ParseUInt32 1289 /// ::= uint32 1290 bool LLParser::ParseUInt32(uint32_t &Val) { 1291 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1292 return TokError("expected integer"); 1293 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1294 if (Val64 != unsigned(Val64)) 1295 return TokError("expected 32-bit integer (too large)"); 1296 Val = Val64; 1297 Lex.Lex(); 1298 return false; 1299 } 1300 1301 /// ParseUInt64 1302 /// ::= uint64 1303 bool LLParser::ParseUInt64(uint64_t &Val) { 1304 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1305 return TokError("expected integer"); 1306 Val = Lex.getAPSIntVal().getLimitedValue(); 1307 Lex.Lex(); 1308 return false; 1309 } 1310 1311 /// ParseTLSModel 1312 /// := 'localdynamic' 1313 /// := 'initialexec' 1314 /// := 'localexec' 1315 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1316 switch (Lex.getKind()) { 1317 default: 1318 return TokError("expected localdynamic, initialexec or localexec"); 1319 case lltok::kw_localdynamic: 1320 TLM = GlobalVariable::LocalDynamicTLSModel; 1321 break; 1322 case lltok::kw_initialexec: 1323 TLM = GlobalVariable::InitialExecTLSModel; 1324 break; 1325 case lltok::kw_localexec: 1326 TLM = GlobalVariable::LocalExecTLSModel; 1327 break; 1328 } 1329 1330 Lex.Lex(); 1331 return false; 1332 } 1333 1334 /// ParseOptionalThreadLocal 1335 /// := /*empty*/ 1336 /// := 'thread_local' 1337 /// := 'thread_local' '(' tlsmodel ')' 1338 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1339 TLM = GlobalVariable::NotThreadLocal; 1340 if (!EatIfPresent(lltok::kw_thread_local)) 1341 return false; 1342 1343 TLM = GlobalVariable::GeneralDynamicTLSModel; 1344 if (Lex.getKind() == lltok::lparen) { 1345 Lex.Lex(); 1346 return ParseTLSModel(TLM) || 1347 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1348 } 1349 return false; 1350 } 1351 1352 /// ParseOptionalAddrSpace 1353 /// := /*empty*/ 1354 /// := 'addrspace' '(' uint32 ')' 1355 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1356 AddrSpace = 0; 1357 if (!EatIfPresent(lltok::kw_addrspace)) 1358 return false; 1359 return ParseToken(lltok::lparen, "expected '(' in address space") || 1360 ParseUInt32(AddrSpace) || 1361 ParseToken(lltok::rparen, "expected ')' in address space"); 1362 } 1363 1364 /// ParseStringAttribute 1365 /// := StringConstant 1366 /// := StringConstant '=' StringConstant 1367 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1368 std::string Attr = Lex.getStrVal(); 1369 Lex.Lex(); 1370 std::string Val; 1371 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1372 return true; 1373 B.addAttribute(Attr, Val); 1374 return false; 1375 } 1376 1377 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1378 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1379 bool HaveError = false; 1380 1381 B.clear(); 1382 1383 while (true) { 1384 lltok::Kind Token = Lex.getKind(); 1385 switch (Token) { 1386 default: // End of attributes. 1387 return HaveError; 1388 case lltok::StringConstant: { 1389 if (ParseStringAttribute(B)) 1390 return true; 1391 continue; 1392 } 1393 case lltok::kw_align: { 1394 unsigned Alignment; 1395 if (ParseOptionalAlignment(Alignment)) 1396 return true; 1397 B.addAlignmentAttr(Alignment); 1398 continue; 1399 } 1400 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1401 case lltok::kw_dereferenceable: { 1402 uint64_t Bytes; 1403 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1404 return true; 1405 B.addDereferenceableAttr(Bytes); 1406 continue; 1407 } 1408 case lltok::kw_dereferenceable_or_null: { 1409 uint64_t Bytes; 1410 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1411 return true; 1412 B.addDereferenceableOrNullAttr(Bytes); 1413 continue; 1414 } 1415 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1416 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1417 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1418 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1419 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1420 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1421 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1422 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1423 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1424 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1425 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1426 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1427 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1428 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1429 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1430 1431 case lltok::kw_alignstack: 1432 case lltok::kw_alwaysinline: 1433 case lltok::kw_argmemonly: 1434 case lltok::kw_builtin: 1435 case lltok::kw_inlinehint: 1436 case lltok::kw_jumptable: 1437 case lltok::kw_minsize: 1438 case lltok::kw_naked: 1439 case lltok::kw_nobuiltin: 1440 case lltok::kw_noduplicate: 1441 case lltok::kw_noimplicitfloat: 1442 case lltok::kw_noinline: 1443 case lltok::kw_nonlazybind: 1444 case lltok::kw_noredzone: 1445 case lltok::kw_noreturn: 1446 case lltok::kw_nounwind: 1447 case lltok::kw_optnone: 1448 case lltok::kw_optsize: 1449 case lltok::kw_returns_twice: 1450 case lltok::kw_sanitize_address: 1451 case lltok::kw_sanitize_memory: 1452 case lltok::kw_sanitize_thread: 1453 case lltok::kw_ssp: 1454 case lltok::kw_sspreq: 1455 case lltok::kw_sspstrong: 1456 case lltok::kw_safestack: 1457 case lltok::kw_strictfp: 1458 case lltok::kw_uwtable: 1459 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1460 break; 1461 } 1462 1463 Lex.Lex(); 1464 } 1465 } 1466 1467 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1468 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1469 bool HaveError = false; 1470 1471 B.clear(); 1472 1473 while (true) { 1474 lltok::Kind Token = Lex.getKind(); 1475 switch (Token) { 1476 default: // End of attributes. 1477 return HaveError; 1478 case lltok::StringConstant: { 1479 if (ParseStringAttribute(B)) 1480 return true; 1481 continue; 1482 } 1483 case lltok::kw_dereferenceable: { 1484 uint64_t Bytes; 1485 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1486 return true; 1487 B.addDereferenceableAttr(Bytes); 1488 continue; 1489 } 1490 case lltok::kw_dereferenceable_or_null: { 1491 uint64_t Bytes; 1492 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1493 return true; 1494 B.addDereferenceableOrNullAttr(Bytes); 1495 continue; 1496 } 1497 case lltok::kw_align: { 1498 unsigned Alignment; 1499 if (ParseOptionalAlignment(Alignment)) 1500 return true; 1501 B.addAlignmentAttr(Alignment); 1502 continue; 1503 } 1504 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1505 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1506 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1507 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1508 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1509 1510 // Error handling. 1511 case lltok::kw_byval: 1512 case lltok::kw_inalloca: 1513 case lltok::kw_nest: 1514 case lltok::kw_nocapture: 1515 case lltok::kw_returned: 1516 case lltok::kw_sret: 1517 case lltok::kw_swifterror: 1518 case lltok::kw_swiftself: 1519 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1520 break; 1521 1522 case lltok::kw_alignstack: 1523 case lltok::kw_alwaysinline: 1524 case lltok::kw_argmemonly: 1525 case lltok::kw_builtin: 1526 case lltok::kw_cold: 1527 case lltok::kw_inlinehint: 1528 case lltok::kw_jumptable: 1529 case lltok::kw_minsize: 1530 case lltok::kw_naked: 1531 case lltok::kw_nobuiltin: 1532 case lltok::kw_noduplicate: 1533 case lltok::kw_noimplicitfloat: 1534 case lltok::kw_noinline: 1535 case lltok::kw_nonlazybind: 1536 case lltok::kw_noredzone: 1537 case lltok::kw_noreturn: 1538 case lltok::kw_nounwind: 1539 case lltok::kw_optnone: 1540 case lltok::kw_optsize: 1541 case lltok::kw_returns_twice: 1542 case lltok::kw_sanitize_address: 1543 case lltok::kw_sanitize_memory: 1544 case lltok::kw_sanitize_thread: 1545 case lltok::kw_ssp: 1546 case lltok::kw_sspreq: 1547 case lltok::kw_sspstrong: 1548 case lltok::kw_safestack: 1549 case lltok::kw_strictfp: 1550 case lltok::kw_uwtable: 1551 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1552 break; 1553 1554 case lltok::kw_readnone: 1555 case lltok::kw_readonly: 1556 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1557 } 1558 1559 Lex.Lex(); 1560 } 1561 } 1562 1563 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1564 HasLinkage = true; 1565 switch (Kind) { 1566 default: 1567 HasLinkage = false; 1568 return GlobalValue::ExternalLinkage; 1569 case lltok::kw_private: 1570 return GlobalValue::PrivateLinkage; 1571 case lltok::kw_internal: 1572 return GlobalValue::InternalLinkage; 1573 case lltok::kw_weak: 1574 return GlobalValue::WeakAnyLinkage; 1575 case lltok::kw_weak_odr: 1576 return GlobalValue::WeakODRLinkage; 1577 case lltok::kw_linkonce: 1578 return GlobalValue::LinkOnceAnyLinkage; 1579 case lltok::kw_linkonce_odr: 1580 return GlobalValue::LinkOnceODRLinkage; 1581 case lltok::kw_available_externally: 1582 return GlobalValue::AvailableExternallyLinkage; 1583 case lltok::kw_appending: 1584 return GlobalValue::AppendingLinkage; 1585 case lltok::kw_common: 1586 return GlobalValue::CommonLinkage; 1587 case lltok::kw_extern_weak: 1588 return GlobalValue::ExternalWeakLinkage; 1589 case lltok::kw_external: 1590 return GlobalValue::ExternalLinkage; 1591 } 1592 } 1593 1594 /// ParseOptionalLinkage 1595 /// ::= /*empty*/ 1596 /// ::= 'private' 1597 /// ::= 'internal' 1598 /// ::= 'weak' 1599 /// ::= 'weak_odr' 1600 /// ::= 'linkonce' 1601 /// ::= 'linkonce_odr' 1602 /// ::= 'available_externally' 1603 /// ::= 'appending' 1604 /// ::= 'common' 1605 /// ::= 'extern_weak' 1606 /// ::= 'external' 1607 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1608 unsigned &Visibility, 1609 unsigned &DLLStorageClass) { 1610 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1611 if (HasLinkage) 1612 Lex.Lex(); 1613 ParseOptionalVisibility(Visibility); 1614 ParseOptionalDLLStorageClass(DLLStorageClass); 1615 return false; 1616 } 1617 1618 /// ParseOptionalVisibility 1619 /// ::= /*empty*/ 1620 /// ::= 'default' 1621 /// ::= 'hidden' 1622 /// ::= 'protected' 1623 /// 1624 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1625 switch (Lex.getKind()) { 1626 default: 1627 Res = GlobalValue::DefaultVisibility; 1628 return; 1629 case lltok::kw_default: 1630 Res = GlobalValue::DefaultVisibility; 1631 break; 1632 case lltok::kw_hidden: 1633 Res = GlobalValue::HiddenVisibility; 1634 break; 1635 case lltok::kw_protected: 1636 Res = GlobalValue::ProtectedVisibility; 1637 break; 1638 } 1639 Lex.Lex(); 1640 } 1641 1642 /// ParseOptionalDLLStorageClass 1643 /// ::= /*empty*/ 1644 /// ::= 'dllimport' 1645 /// ::= 'dllexport' 1646 /// 1647 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1648 switch (Lex.getKind()) { 1649 default: 1650 Res = GlobalValue::DefaultStorageClass; 1651 return; 1652 case lltok::kw_dllimport: 1653 Res = GlobalValue::DLLImportStorageClass; 1654 break; 1655 case lltok::kw_dllexport: 1656 Res = GlobalValue::DLLExportStorageClass; 1657 break; 1658 } 1659 Lex.Lex(); 1660 } 1661 1662 /// ParseOptionalCallingConv 1663 /// ::= /*empty*/ 1664 /// ::= 'ccc' 1665 /// ::= 'fastcc' 1666 /// ::= 'intel_ocl_bicc' 1667 /// ::= 'coldcc' 1668 /// ::= 'x86_stdcallcc' 1669 /// ::= 'x86_fastcallcc' 1670 /// ::= 'x86_thiscallcc' 1671 /// ::= 'x86_vectorcallcc' 1672 /// ::= 'arm_apcscc' 1673 /// ::= 'arm_aapcscc' 1674 /// ::= 'arm_aapcs_vfpcc' 1675 /// ::= 'msp430_intrcc' 1676 /// ::= 'avr_intrcc' 1677 /// ::= 'avr_signalcc' 1678 /// ::= 'ptx_kernel' 1679 /// ::= 'ptx_device' 1680 /// ::= 'spir_func' 1681 /// ::= 'spir_kernel' 1682 /// ::= 'x86_64_sysvcc' 1683 /// ::= 'win64cc' 1684 /// ::= 'webkit_jscc' 1685 /// ::= 'anyregcc' 1686 /// ::= 'preserve_mostcc' 1687 /// ::= 'preserve_allcc' 1688 /// ::= 'ghccc' 1689 /// ::= 'swiftcc' 1690 /// ::= 'x86_intrcc' 1691 /// ::= 'hhvmcc' 1692 /// ::= 'hhvm_ccc' 1693 /// ::= 'cxx_fast_tlscc' 1694 /// ::= 'amdgpu_vs' 1695 /// ::= 'amdgpu_ls' 1696 /// ::= 'amdgpu_hs' 1697 /// ::= 'amdgpu_es' 1698 /// ::= 'amdgpu_gs' 1699 /// ::= 'amdgpu_ps' 1700 /// ::= 'amdgpu_cs' 1701 /// ::= 'amdgpu_kernel' 1702 /// ::= 'cc' UINT 1703 /// 1704 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1705 switch (Lex.getKind()) { 1706 default: CC = CallingConv::C; return false; 1707 case lltok::kw_ccc: CC = CallingConv::C; break; 1708 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1709 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1710 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1711 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1712 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1713 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1714 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1715 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1716 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1717 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1718 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1719 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1720 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1721 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1722 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1723 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1724 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1725 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1726 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1727 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1728 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1729 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1730 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1731 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1732 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1733 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1734 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1735 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1736 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1737 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1738 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1739 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1740 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1741 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1742 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1743 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1744 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1745 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1746 case lltok::kw_cc: { 1747 Lex.Lex(); 1748 return ParseUInt32(CC); 1749 } 1750 } 1751 1752 Lex.Lex(); 1753 return false; 1754 } 1755 1756 /// ParseMetadataAttachment 1757 /// ::= !dbg !42 1758 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1759 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1760 1761 std::string Name = Lex.getStrVal(); 1762 Kind = M->getMDKindID(Name); 1763 Lex.Lex(); 1764 1765 return ParseMDNode(MD); 1766 } 1767 1768 /// ParseInstructionMetadata 1769 /// ::= !dbg !42 (',' !dbg !57)* 1770 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1771 do { 1772 if (Lex.getKind() != lltok::MetadataVar) 1773 return TokError("expected metadata after comma"); 1774 1775 unsigned MDK; 1776 MDNode *N; 1777 if (ParseMetadataAttachment(MDK, N)) 1778 return true; 1779 1780 Inst.setMetadata(MDK, N); 1781 if (MDK == LLVMContext::MD_tbaa) 1782 InstsWithTBAATag.push_back(&Inst); 1783 1784 // If this is the end of the list, we're done. 1785 } while (EatIfPresent(lltok::comma)); 1786 return false; 1787 } 1788 1789 /// ParseGlobalObjectMetadataAttachment 1790 /// ::= !dbg !57 1791 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1792 unsigned MDK; 1793 MDNode *N; 1794 if (ParseMetadataAttachment(MDK, N)) 1795 return true; 1796 1797 GO.addMetadata(MDK, *N); 1798 return false; 1799 } 1800 1801 /// ParseOptionalFunctionMetadata 1802 /// ::= (!dbg !57)* 1803 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1804 while (Lex.getKind() == lltok::MetadataVar) 1805 if (ParseGlobalObjectMetadataAttachment(F)) 1806 return true; 1807 return false; 1808 } 1809 1810 /// ParseOptionalAlignment 1811 /// ::= /* empty */ 1812 /// ::= 'align' 4 1813 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1814 Alignment = 0; 1815 if (!EatIfPresent(lltok::kw_align)) 1816 return false; 1817 LocTy AlignLoc = Lex.getLoc(); 1818 if (ParseUInt32(Alignment)) return true; 1819 if (!isPowerOf2_32(Alignment)) 1820 return Error(AlignLoc, "alignment is not a power of two"); 1821 if (Alignment > Value::MaximumAlignment) 1822 return Error(AlignLoc, "huge alignments are not supported yet"); 1823 return false; 1824 } 1825 1826 /// ParseOptionalDerefAttrBytes 1827 /// ::= /* empty */ 1828 /// ::= AttrKind '(' 4 ')' 1829 /// 1830 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1831 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1832 uint64_t &Bytes) { 1833 assert((AttrKind == lltok::kw_dereferenceable || 1834 AttrKind == lltok::kw_dereferenceable_or_null) && 1835 "contract!"); 1836 1837 Bytes = 0; 1838 if (!EatIfPresent(AttrKind)) 1839 return false; 1840 LocTy ParenLoc = Lex.getLoc(); 1841 if (!EatIfPresent(lltok::lparen)) 1842 return Error(ParenLoc, "expected '('"); 1843 LocTy DerefLoc = Lex.getLoc(); 1844 if (ParseUInt64(Bytes)) return true; 1845 ParenLoc = Lex.getLoc(); 1846 if (!EatIfPresent(lltok::rparen)) 1847 return Error(ParenLoc, "expected ')'"); 1848 if (!Bytes) 1849 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1850 return false; 1851 } 1852 1853 /// ParseOptionalCommaAlign 1854 /// ::= 1855 /// ::= ',' align 4 1856 /// 1857 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1858 /// end. 1859 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1860 bool &AteExtraComma) { 1861 AteExtraComma = false; 1862 while (EatIfPresent(lltok::comma)) { 1863 // Metadata at the end is an early exit. 1864 if (Lex.getKind() == lltok::MetadataVar) { 1865 AteExtraComma = true; 1866 return false; 1867 } 1868 1869 if (Lex.getKind() != lltok::kw_align) 1870 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1871 1872 if (ParseOptionalAlignment(Alignment)) return true; 1873 } 1874 1875 return false; 1876 } 1877 1878 /// ParseOptionalCommaAddrSpace 1879 /// ::= 1880 /// ::= ',' addrspace(1) 1881 /// 1882 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1883 /// end. 1884 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1885 LocTy &Loc, 1886 bool &AteExtraComma) { 1887 AteExtraComma = false; 1888 while (EatIfPresent(lltok::comma)) { 1889 // Metadata at the end is an early exit. 1890 if (Lex.getKind() == lltok::MetadataVar) { 1891 AteExtraComma = true; 1892 return false; 1893 } 1894 1895 Loc = Lex.getLoc(); 1896 if (Lex.getKind() != lltok::kw_addrspace) 1897 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1898 1899 if (ParseOptionalAddrSpace(AddrSpace)) 1900 return true; 1901 } 1902 1903 return false; 1904 } 1905 1906 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1907 Optional<unsigned> &HowManyArg) { 1908 Lex.Lex(); 1909 1910 auto StartParen = Lex.getLoc(); 1911 if (!EatIfPresent(lltok::lparen)) 1912 return Error(StartParen, "expected '('"); 1913 1914 if (ParseUInt32(BaseSizeArg)) 1915 return true; 1916 1917 if (EatIfPresent(lltok::comma)) { 1918 auto HowManyAt = Lex.getLoc(); 1919 unsigned HowMany; 1920 if (ParseUInt32(HowMany)) 1921 return true; 1922 if (HowMany == BaseSizeArg) 1923 return Error(HowManyAt, 1924 "'allocsize' indices can't refer to the same parameter"); 1925 HowManyArg = HowMany; 1926 } else 1927 HowManyArg = None; 1928 1929 auto EndParen = Lex.getLoc(); 1930 if (!EatIfPresent(lltok::rparen)) 1931 return Error(EndParen, "expected ')'"); 1932 return false; 1933 } 1934 1935 /// ParseScopeAndOrdering 1936 /// if isAtomic: ::= SyncScope? AtomicOrdering 1937 /// else: ::= 1938 /// 1939 /// This sets Scope and Ordering to the parsed values. 1940 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1941 AtomicOrdering &Ordering) { 1942 if (!isAtomic) 1943 return false; 1944 1945 return ParseScope(SSID) || ParseOrdering(Ordering); 1946 } 1947 1948 /// ParseScope 1949 /// ::= syncscope("singlethread" | "<target scope>")? 1950 /// 1951 /// This sets synchronization scope ID to the ID of the parsed value. 1952 bool LLParser::ParseScope(SyncScope::ID &SSID) { 1953 SSID = SyncScope::System; 1954 if (EatIfPresent(lltok::kw_syncscope)) { 1955 auto StartParenAt = Lex.getLoc(); 1956 if (!EatIfPresent(lltok::lparen)) 1957 return Error(StartParenAt, "Expected '(' in syncscope"); 1958 1959 std::string SSN; 1960 auto SSNAt = Lex.getLoc(); 1961 if (ParseStringConstant(SSN)) 1962 return Error(SSNAt, "Expected synchronization scope name"); 1963 1964 auto EndParenAt = Lex.getLoc(); 1965 if (!EatIfPresent(lltok::rparen)) 1966 return Error(EndParenAt, "Expected ')' in syncscope"); 1967 1968 SSID = Context.getOrInsertSyncScopeID(SSN); 1969 } 1970 1971 return false; 1972 } 1973 1974 /// ParseOrdering 1975 /// ::= AtomicOrdering 1976 /// 1977 /// This sets Ordering to the parsed value. 1978 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1979 switch (Lex.getKind()) { 1980 default: return TokError("Expected ordering on atomic instruction"); 1981 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1982 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1983 // Not specified yet: 1984 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1985 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1986 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1987 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1988 case lltok::kw_seq_cst: 1989 Ordering = AtomicOrdering::SequentiallyConsistent; 1990 break; 1991 } 1992 Lex.Lex(); 1993 return false; 1994 } 1995 1996 /// ParseOptionalStackAlignment 1997 /// ::= /* empty */ 1998 /// ::= 'alignstack' '(' 4 ')' 1999 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2000 Alignment = 0; 2001 if (!EatIfPresent(lltok::kw_alignstack)) 2002 return false; 2003 LocTy ParenLoc = Lex.getLoc(); 2004 if (!EatIfPresent(lltok::lparen)) 2005 return Error(ParenLoc, "expected '('"); 2006 LocTy AlignLoc = Lex.getLoc(); 2007 if (ParseUInt32(Alignment)) return true; 2008 ParenLoc = Lex.getLoc(); 2009 if (!EatIfPresent(lltok::rparen)) 2010 return Error(ParenLoc, "expected ')'"); 2011 if (!isPowerOf2_32(Alignment)) 2012 return Error(AlignLoc, "stack alignment is not a power of two"); 2013 return false; 2014 } 2015 2016 /// ParseIndexList - This parses the index list for an insert/extractvalue 2017 /// instruction. This sets AteExtraComma in the case where we eat an extra 2018 /// comma at the end of the line and find that it is followed by metadata. 2019 /// Clients that don't allow metadata can call the version of this function that 2020 /// only takes one argument. 2021 /// 2022 /// ParseIndexList 2023 /// ::= (',' uint32)+ 2024 /// 2025 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2026 bool &AteExtraComma) { 2027 AteExtraComma = false; 2028 2029 if (Lex.getKind() != lltok::comma) 2030 return TokError("expected ',' as start of index list"); 2031 2032 while (EatIfPresent(lltok::comma)) { 2033 if (Lex.getKind() == lltok::MetadataVar) { 2034 if (Indices.empty()) return TokError("expected index"); 2035 AteExtraComma = true; 2036 return false; 2037 } 2038 unsigned Idx = 0; 2039 if (ParseUInt32(Idx)) return true; 2040 Indices.push_back(Idx); 2041 } 2042 2043 return false; 2044 } 2045 2046 //===----------------------------------------------------------------------===// 2047 // Type Parsing. 2048 //===----------------------------------------------------------------------===// 2049 2050 /// ParseType - Parse a type. 2051 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2052 SMLoc TypeLoc = Lex.getLoc(); 2053 switch (Lex.getKind()) { 2054 default: 2055 return TokError(Msg); 2056 case lltok::Type: 2057 // Type ::= 'float' | 'void' (etc) 2058 Result = Lex.getTyVal(); 2059 Lex.Lex(); 2060 break; 2061 case lltok::lbrace: 2062 // Type ::= StructType 2063 if (ParseAnonStructType(Result, false)) 2064 return true; 2065 break; 2066 case lltok::lsquare: 2067 // Type ::= '[' ... ']' 2068 Lex.Lex(); // eat the lsquare. 2069 if (ParseArrayVectorType(Result, false)) 2070 return true; 2071 break; 2072 case lltok::less: // Either vector or packed struct. 2073 // Type ::= '<' ... '>' 2074 Lex.Lex(); 2075 if (Lex.getKind() == lltok::lbrace) { 2076 if (ParseAnonStructType(Result, true) || 2077 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2078 return true; 2079 } else if (ParseArrayVectorType(Result, true)) 2080 return true; 2081 break; 2082 case lltok::LocalVar: { 2083 // Type ::= %foo 2084 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2085 2086 // If the type hasn't been defined yet, create a forward definition and 2087 // remember where that forward def'n was seen (in case it never is defined). 2088 if (!Entry.first) { 2089 Entry.first = StructType::create(Context, Lex.getStrVal()); 2090 Entry.second = Lex.getLoc(); 2091 } 2092 Result = Entry.first; 2093 Lex.Lex(); 2094 break; 2095 } 2096 2097 case lltok::LocalVarID: { 2098 // Type ::= %4 2099 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2100 2101 // If the type hasn't been defined yet, create a forward definition and 2102 // remember where that forward def'n was seen (in case it never is defined). 2103 if (!Entry.first) { 2104 Entry.first = StructType::create(Context); 2105 Entry.second = Lex.getLoc(); 2106 } 2107 Result = Entry.first; 2108 Lex.Lex(); 2109 break; 2110 } 2111 } 2112 2113 // Parse the type suffixes. 2114 while (true) { 2115 switch (Lex.getKind()) { 2116 // End of type. 2117 default: 2118 if (!AllowVoid && Result->isVoidTy()) 2119 return Error(TypeLoc, "void type only allowed for function results"); 2120 return false; 2121 2122 // Type ::= Type '*' 2123 case lltok::star: 2124 if (Result->isLabelTy()) 2125 return TokError("basic block pointers are invalid"); 2126 if (Result->isVoidTy()) 2127 return TokError("pointers to void are invalid - use i8* instead"); 2128 if (!PointerType::isValidElementType(Result)) 2129 return TokError("pointer to this type is invalid"); 2130 Result = PointerType::getUnqual(Result); 2131 Lex.Lex(); 2132 break; 2133 2134 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2135 case lltok::kw_addrspace: { 2136 if (Result->isLabelTy()) 2137 return TokError("basic block pointers are invalid"); 2138 if (Result->isVoidTy()) 2139 return TokError("pointers to void are invalid; use i8* instead"); 2140 if (!PointerType::isValidElementType(Result)) 2141 return TokError("pointer to this type is invalid"); 2142 unsigned AddrSpace; 2143 if (ParseOptionalAddrSpace(AddrSpace) || 2144 ParseToken(lltok::star, "expected '*' in address space")) 2145 return true; 2146 2147 Result = PointerType::get(Result, AddrSpace); 2148 break; 2149 } 2150 2151 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2152 case lltok::lparen: 2153 if (ParseFunctionType(Result)) 2154 return true; 2155 break; 2156 } 2157 } 2158 } 2159 2160 /// ParseParameterList 2161 /// ::= '(' ')' 2162 /// ::= '(' Arg (',' Arg)* ')' 2163 /// Arg 2164 /// ::= Type OptionalAttributes Value OptionalAttributes 2165 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2166 PerFunctionState &PFS, bool IsMustTailCall, 2167 bool InVarArgsFunc) { 2168 if (ParseToken(lltok::lparen, "expected '(' in call")) 2169 return true; 2170 2171 while (Lex.getKind() != lltok::rparen) { 2172 // If this isn't the first argument, we need a comma. 2173 if (!ArgList.empty() && 2174 ParseToken(lltok::comma, "expected ',' in argument list")) 2175 return true; 2176 2177 // Parse an ellipsis if this is a musttail call in a variadic function. 2178 if (Lex.getKind() == lltok::dotdotdot) { 2179 const char *Msg = "unexpected ellipsis in argument list for "; 2180 if (!IsMustTailCall) 2181 return TokError(Twine(Msg) + "non-musttail call"); 2182 if (!InVarArgsFunc) 2183 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2184 Lex.Lex(); // Lex the '...', it is purely for readability. 2185 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2186 } 2187 2188 // Parse the argument. 2189 LocTy ArgLoc; 2190 Type *ArgTy = nullptr; 2191 AttrBuilder ArgAttrs; 2192 Value *V; 2193 if (ParseType(ArgTy, ArgLoc)) 2194 return true; 2195 2196 if (ArgTy->isMetadataTy()) { 2197 if (ParseMetadataAsValue(V, PFS)) 2198 return true; 2199 } else { 2200 // Otherwise, handle normal operands. 2201 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2202 return true; 2203 } 2204 ArgList.push_back(ParamInfo( 2205 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2206 } 2207 2208 if (IsMustTailCall && InVarArgsFunc) 2209 return TokError("expected '...' at end of argument list for musttail call " 2210 "in varargs function"); 2211 2212 Lex.Lex(); // Lex the ')'. 2213 return false; 2214 } 2215 2216 /// ParseOptionalOperandBundles 2217 /// ::= /*empty*/ 2218 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2219 /// 2220 /// OperandBundle 2221 /// ::= bundle-tag '(' ')' 2222 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2223 /// 2224 /// bundle-tag ::= String Constant 2225 bool LLParser::ParseOptionalOperandBundles( 2226 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2227 LocTy BeginLoc = Lex.getLoc(); 2228 if (!EatIfPresent(lltok::lsquare)) 2229 return false; 2230 2231 while (Lex.getKind() != lltok::rsquare) { 2232 // If this isn't the first operand bundle, we need a comma. 2233 if (!BundleList.empty() && 2234 ParseToken(lltok::comma, "expected ',' in input list")) 2235 return true; 2236 2237 std::string Tag; 2238 if (ParseStringConstant(Tag)) 2239 return true; 2240 2241 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2242 return true; 2243 2244 std::vector<Value *> Inputs; 2245 while (Lex.getKind() != lltok::rparen) { 2246 // If this isn't the first input, we need a comma. 2247 if (!Inputs.empty() && 2248 ParseToken(lltok::comma, "expected ',' in input list")) 2249 return true; 2250 2251 Type *Ty = nullptr; 2252 Value *Input = nullptr; 2253 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2254 return true; 2255 Inputs.push_back(Input); 2256 } 2257 2258 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2259 2260 Lex.Lex(); // Lex the ')'. 2261 } 2262 2263 if (BundleList.empty()) 2264 return Error(BeginLoc, "operand bundle set must not be empty"); 2265 2266 Lex.Lex(); // Lex the ']'. 2267 return false; 2268 } 2269 2270 /// ParseArgumentList - Parse the argument list for a function type or function 2271 /// prototype. 2272 /// ::= '(' ArgTypeListI ')' 2273 /// ArgTypeListI 2274 /// ::= /*empty*/ 2275 /// ::= '...' 2276 /// ::= ArgTypeList ',' '...' 2277 /// ::= ArgType (',' ArgType)* 2278 /// 2279 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2280 bool &isVarArg){ 2281 isVarArg = false; 2282 assert(Lex.getKind() == lltok::lparen); 2283 Lex.Lex(); // eat the (. 2284 2285 if (Lex.getKind() == lltok::rparen) { 2286 // empty 2287 } else if (Lex.getKind() == lltok::dotdotdot) { 2288 isVarArg = true; 2289 Lex.Lex(); 2290 } else { 2291 LocTy TypeLoc = Lex.getLoc(); 2292 Type *ArgTy = nullptr; 2293 AttrBuilder Attrs; 2294 std::string Name; 2295 2296 if (ParseType(ArgTy) || 2297 ParseOptionalParamAttrs(Attrs)) return true; 2298 2299 if (ArgTy->isVoidTy()) 2300 return Error(TypeLoc, "argument can not have void type"); 2301 2302 if (Lex.getKind() == lltok::LocalVar) { 2303 Name = Lex.getStrVal(); 2304 Lex.Lex(); 2305 } 2306 2307 if (!FunctionType::isValidArgumentType(ArgTy)) 2308 return Error(TypeLoc, "invalid type for function argument"); 2309 2310 ArgList.emplace_back(TypeLoc, ArgTy, 2311 AttributeSet::get(ArgTy->getContext(), Attrs), 2312 std::move(Name)); 2313 2314 while (EatIfPresent(lltok::comma)) { 2315 // Handle ... at end of arg list. 2316 if (EatIfPresent(lltok::dotdotdot)) { 2317 isVarArg = true; 2318 break; 2319 } 2320 2321 // Otherwise must be an argument type. 2322 TypeLoc = Lex.getLoc(); 2323 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2324 2325 if (ArgTy->isVoidTy()) 2326 return Error(TypeLoc, "argument can not have void type"); 2327 2328 if (Lex.getKind() == lltok::LocalVar) { 2329 Name = Lex.getStrVal(); 2330 Lex.Lex(); 2331 } else { 2332 Name = ""; 2333 } 2334 2335 if (!ArgTy->isFirstClassType()) 2336 return Error(TypeLoc, "invalid type for function argument"); 2337 2338 ArgList.emplace_back(TypeLoc, ArgTy, 2339 AttributeSet::get(ArgTy->getContext(), Attrs), 2340 std::move(Name)); 2341 } 2342 } 2343 2344 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2345 } 2346 2347 /// ParseFunctionType 2348 /// ::= Type ArgumentList OptionalAttrs 2349 bool LLParser::ParseFunctionType(Type *&Result) { 2350 assert(Lex.getKind() == lltok::lparen); 2351 2352 if (!FunctionType::isValidReturnType(Result)) 2353 return TokError("invalid function return type"); 2354 2355 SmallVector<ArgInfo, 8> ArgList; 2356 bool isVarArg; 2357 if (ParseArgumentList(ArgList, isVarArg)) 2358 return true; 2359 2360 // Reject names on the arguments lists. 2361 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2362 if (!ArgList[i].Name.empty()) 2363 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2364 if (ArgList[i].Attrs.hasAttributes()) 2365 return Error(ArgList[i].Loc, 2366 "argument attributes invalid in function type"); 2367 } 2368 2369 SmallVector<Type*, 16> ArgListTy; 2370 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2371 ArgListTy.push_back(ArgList[i].Ty); 2372 2373 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2374 return false; 2375 } 2376 2377 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2378 /// other structs. 2379 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2380 SmallVector<Type*, 8> Elts; 2381 if (ParseStructBody(Elts)) return true; 2382 2383 Result = StructType::get(Context, Elts, Packed); 2384 return false; 2385 } 2386 2387 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2388 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2389 std::pair<Type*, LocTy> &Entry, 2390 Type *&ResultTy) { 2391 // If the type was already defined, diagnose the redefinition. 2392 if (Entry.first && !Entry.second.isValid()) 2393 return Error(TypeLoc, "redefinition of type"); 2394 2395 // If we have opaque, just return without filling in the definition for the 2396 // struct. This counts as a definition as far as the .ll file goes. 2397 if (EatIfPresent(lltok::kw_opaque)) { 2398 // This type is being defined, so clear the location to indicate this. 2399 Entry.second = SMLoc(); 2400 2401 // If this type number has never been uttered, create it. 2402 if (!Entry.first) 2403 Entry.first = StructType::create(Context, Name); 2404 ResultTy = Entry.first; 2405 return false; 2406 } 2407 2408 // If the type starts with '<', then it is either a packed struct or a vector. 2409 bool isPacked = EatIfPresent(lltok::less); 2410 2411 // If we don't have a struct, then we have a random type alias, which we 2412 // accept for compatibility with old files. These types are not allowed to be 2413 // forward referenced and not allowed to be recursive. 2414 if (Lex.getKind() != lltok::lbrace) { 2415 if (Entry.first) 2416 return Error(TypeLoc, "forward references to non-struct type"); 2417 2418 ResultTy = nullptr; 2419 if (isPacked) 2420 return ParseArrayVectorType(ResultTy, true); 2421 return ParseType(ResultTy); 2422 } 2423 2424 // This type is being defined, so clear the location to indicate this. 2425 Entry.second = SMLoc(); 2426 2427 // If this type number has never been uttered, create it. 2428 if (!Entry.first) 2429 Entry.first = StructType::create(Context, Name); 2430 2431 StructType *STy = cast<StructType>(Entry.first); 2432 2433 SmallVector<Type*, 8> Body; 2434 if (ParseStructBody(Body) || 2435 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2436 return true; 2437 2438 STy->setBody(Body, isPacked); 2439 ResultTy = STy; 2440 return false; 2441 } 2442 2443 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2444 /// StructType 2445 /// ::= '{' '}' 2446 /// ::= '{' Type (',' Type)* '}' 2447 /// ::= '<' '{' '}' '>' 2448 /// ::= '<' '{' Type (',' Type)* '}' '>' 2449 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2450 assert(Lex.getKind() == lltok::lbrace); 2451 Lex.Lex(); // Consume the '{' 2452 2453 // Handle the empty struct. 2454 if (EatIfPresent(lltok::rbrace)) 2455 return false; 2456 2457 LocTy EltTyLoc = Lex.getLoc(); 2458 Type *Ty = nullptr; 2459 if (ParseType(Ty)) return true; 2460 Body.push_back(Ty); 2461 2462 if (!StructType::isValidElementType(Ty)) 2463 return Error(EltTyLoc, "invalid element type for struct"); 2464 2465 while (EatIfPresent(lltok::comma)) { 2466 EltTyLoc = Lex.getLoc(); 2467 if (ParseType(Ty)) return true; 2468 2469 if (!StructType::isValidElementType(Ty)) 2470 return Error(EltTyLoc, "invalid element type for struct"); 2471 2472 Body.push_back(Ty); 2473 } 2474 2475 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2476 } 2477 2478 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2479 /// token has already been consumed. 2480 /// Type 2481 /// ::= '[' APSINTVAL 'x' Types ']' 2482 /// ::= '<' APSINTVAL 'x' Types '>' 2483 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2484 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2485 Lex.getAPSIntVal().getBitWidth() > 64) 2486 return TokError("expected number in address space"); 2487 2488 LocTy SizeLoc = Lex.getLoc(); 2489 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2490 Lex.Lex(); 2491 2492 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2493 return true; 2494 2495 LocTy TypeLoc = Lex.getLoc(); 2496 Type *EltTy = nullptr; 2497 if (ParseType(EltTy)) return true; 2498 2499 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2500 "expected end of sequential type")) 2501 return true; 2502 2503 if (isVector) { 2504 if (Size == 0) 2505 return Error(SizeLoc, "zero element vector is illegal"); 2506 if ((unsigned)Size != Size) 2507 return Error(SizeLoc, "size too large for vector"); 2508 if (!VectorType::isValidElementType(EltTy)) 2509 return Error(TypeLoc, "invalid vector element type"); 2510 Result = VectorType::get(EltTy, unsigned(Size)); 2511 } else { 2512 if (!ArrayType::isValidElementType(EltTy)) 2513 return Error(TypeLoc, "invalid array element type"); 2514 Result = ArrayType::get(EltTy, Size); 2515 } 2516 return false; 2517 } 2518 2519 //===----------------------------------------------------------------------===// 2520 // Function Semantic Analysis. 2521 //===----------------------------------------------------------------------===// 2522 2523 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2524 int functionNumber) 2525 : P(p), F(f), FunctionNumber(functionNumber) { 2526 2527 // Insert unnamed arguments into the NumberedVals list. 2528 for (Argument &A : F.args()) 2529 if (!A.hasName()) 2530 NumberedVals.push_back(&A); 2531 } 2532 2533 LLParser::PerFunctionState::~PerFunctionState() { 2534 // If there were any forward referenced non-basicblock values, delete them. 2535 2536 for (const auto &P : ForwardRefVals) { 2537 if (isa<BasicBlock>(P.second.first)) 2538 continue; 2539 P.second.first->replaceAllUsesWith( 2540 UndefValue::get(P.second.first->getType())); 2541 P.second.first->deleteValue(); 2542 } 2543 2544 for (const auto &P : ForwardRefValIDs) { 2545 if (isa<BasicBlock>(P.second.first)) 2546 continue; 2547 P.second.first->replaceAllUsesWith( 2548 UndefValue::get(P.second.first->getType())); 2549 P.second.first->deleteValue(); 2550 } 2551 } 2552 2553 bool LLParser::PerFunctionState::FinishFunction() { 2554 if (!ForwardRefVals.empty()) 2555 return P.Error(ForwardRefVals.begin()->second.second, 2556 "use of undefined value '%" + ForwardRefVals.begin()->first + 2557 "'"); 2558 if (!ForwardRefValIDs.empty()) 2559 return P.Error(ForwardRefValIDs.begin()->second.second, 2560 "use of undefined value '%" + 2561 Twine(ForwardRefValIDs.begin()->first) + "'"); 2562 return false; 2563 } 2564 2565 /// GetVal - Get a value with the specified name or ID, creating a 2566 /// forward reference record if needed. This can return null if the value 2567 /// exists but does not have the right type. 2568 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2569 LocTy Loc) { 2570 // Look this name up in the normal function symbol table. 2571 Value *Val = F.getValueSymbolTable()->lookup(Name); 2572 2573 // If this is a forward reference for the value, see if we already created a 2574 // forward ref record. 2575 if (!Val) { 2576 auto I = ForwardRefVals.find(Name); 2577 if (I != ForwardRefVals.end()) 2578 Val = I->second.first; 2579 } 2580 2581 // If we have the value in the symbol table or fwd-ref table, return it. 2582 if (Val) { 2583 if (Val->getType() == Ty) return Val; 2584 if (Ty->isLabelTy()) 2585 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2586 else 2587 P.Error(Loc, "'%" + Name + "' defined with type '" + 2588 getTypeString(Val->getType()) + "'"); 2589 return nullptr; 2590 } 2591 2592 // Don't make placeholders with invalid type. 2593 if (!Ty->isFirstClassType()) { 2594 P.Error(Loc, "invalid use of a non-first-class type"); 2595 return nullptr; 2596 } 2597 2598 // Otherwise, create a new forward reference for this value and remember it. 2599 Value *FwdVal; 2600 if (Ty->isLabelTy()) { 2601 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2602 } else { 2603 FwdVal = new Argument(Ty, Name); 2604 } 2605 2606 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2607 return FwdVal; 2608 } 2609 2610 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2611 // Look this name up in the normal function symbol table. 2612 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2613 2614 // If this is a forward reference for the value, see if we already created a 2615 // forward ref record. 2616 if (!Val) { 2617 auto I = ForwardRefValIDs.find(ID); 2618 if (I != ForwardRefValIDs.end()) 2619 Val = I->second.first; 2620 } 2621 2622 // If we have the value in the symbol table or fwd-ref table, return it. 2623 if (Val) { 2624 if (Val->getType() == Ty) return Val; 2625 if (Ty->isLabelTy()) 2626 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2627 else 2628 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2629 getTypeString(Val->getType()) + "'"); 2630 return nullptr; 2631 } 2632 2633 if (!Ty->isFirstClassType()) { 2634 P.Error(Loc, "invalid use of a non-first-class type"); 2635 return nullptr; 2636 } 2637 2638 // Otherwise, create a new forward reference for this value and remember it. 2639 Value *FwdVal; 2640 if (Ty->isLabelTy()) { 2641 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2642 } else { 2643 FwdVal = new Argument(Ty); 2644 } 2645 2646 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2647 return FwdVal; 2648 } 2649 2650 /// SetInstName - After an instruction is parsed and inserted into its 2651 /// basic block, this installs its name. 2652 bool LLParser::PerFunctionState::SetInstName(int NameID, 2653 const std::string &NameStr, 2654 LocTy NameLoc, Instruction *Inst) { 2655 // If this instruction has void type, it cannot have a name or ID specified. 2656 if (Inst->getType()->isVoidTy()) { 2657 if (NameID != -1 || !NameStr.empty()) 2658 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2659 return false; 2660 } 2661 2662 // If this was a numbered instruction, verify that the instruction is the 2663 // expected value and resolve any forward references. 2664 if (NameStr.empty()) { 2665 // If neither a name nor an ID was specified, just use the next ID. 2666 if (NameID == -1) 2667 NameID = NumberedVals.size(); 2668 2669 if (unsigned(NameID) != NumberedVals.size()) 2670 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2671 Twine(NumberedVals.size()) + "'"); 2672 2673 auto FI = ForwardRefValIDs.find(NameID); 2674 if (FI != ForwardRefValIDs.end()) { 2675 Value *Sentinel = FI->second.first; 2676 if (Sentinel->getType() != Inst->getType()) 2677 return P.Error(NameLoc, "instruction forward referenced with type '" + 2678 getTypeString(FI->second.first->getType()) + "'"); 2679 2680 Sentinel->replaceAllUsesWith(Inst); 2681 Sentinel->deleteValue(); 2682 ForwardRefValIDs.erase(FI); 2683 } 2684 2685 NumberedVals.push_back(Inst); 2686 return false; 2687 } 2688 2689 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2690 auto FI = ForwardRefVals.find(NameStr); 2691 if (FI != ForwardRefVals.end()) { 2692 Value *Sentinel = FI->second.first; 2693 if (Sentinel->getType() != Inst->getType()) 2694 return P.Error(NameLoc, "instruction forward referenced with type '" + 2695 getTypeString(FI->second.first->getType()) + "'"); 2696 2697 Sentinel->replaceAllUsesWith(Inst); 2698 Sentinel->deleteValue(); 2699 ForwardRefVals.erase(FI); 2700 } 2701 2702 // Set the name on the instruction. 2703 Inst->setName(NameStr); 2704 2705 if (Inst->getName() != NameStr) 2706 return P.Error(NameLoc, "multiple definition of local value named '" + 2707 NameStr + "'"); 2708 return false; 2709 } 2710 2711 /// GetBB - Get a basic block with the specified name or ID, creating a 2712 /// forward reference record if needed. 2713 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2714 LocTy Loc) { 2715 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2716 Type::getLabelTy(F.getContext()), Loc)); 2717 } 2718 2719 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2720 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2721 Type::getLabelTy(F.getContext()), Loc)); 2722 } 2723 2724 /// DefineBB - Define the specified basic block, which is either named or 2725 /// unnamed. If there is an error, this returns null otherwise it returns 2726 /// the block being defined. 2727 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2728 LocTy Loc) { 2729 BasicBlock *BB; 2730 if (Name.empty()) 2731 BB = GetBB(NumberedVals.size(), Loc); 2732 else 2733 BB = GetBB(Name, Loc); 2734 if (!BB) return nullptr; // Already diagnosed error. 2735 2736 // Move the block to the end of the function. Forward ref'd blocks are 2737 // inserted wherever they happen to be referenced. 2738 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2739 2740 // Remove the block from forward ref sets. 2741 if (Name.empty()) { 2742 ForwardRefValIDs.erase(NumberedVals.size()); 2743 NumberedVals.push_back(BB); 2744 } else { 2745 // BB forward references are already in the function symbol table. 2746 ForwardRefVals.erase(Name); 2747 } 2748 2749 return BB; 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // Constants. 2754 //===----------------------------------------------------------------------===// 2755 2756 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2757 /// type implied. For example, if we parse "4" we don't know what integer type 2758 /// it has. The value will later be combined with its type and checked for 2759 /// sanity. PFS is used to convert function-local operands of metadata (since 2760 /// metadata operands are not just parsed here but also converted to values). 2761 /// PFS can be null when we are not parsing metadata values inside a function. 2762 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2763 ID.Loc = Lex.getLoc(); 2764 switch (Lex.getKind()) { 2765 default: return TokError("expected value token"); 2766 case lltok::GlobalID: // @42 2767 ID.UIntVal = Lex.getUIntVal(); 2768 ID.Kind = ValID::t_GlobalID; 2769 break; 2770 case lltok::GlobalVar: // @foo 2771 ID.StrVal = Lex.getStrVal(); 2772 ID.Kind = ValID::t_GlobalName; 2773 break; 2774 case lltok::LocalVarID: // %42 2775 ID.UIntVal = Lex.getUIntVal(); 2776 ID.Kind = ValID::t_LocalID; 2777 break; 2778 case lltok::LocalVar: // %foo 2779 ID.StrVal = Lex.getStrVal(); 2780 ID.Kind = ValID::t_LocalName; 2781 break; 2782 case lltok::APSInt: 2783 ID.APSIntVal = Lex.getAPSIntVal(); 2784 ID.Kind = ValID::t_APSInt; 2785 break; 2786 case lltok::APFloat: 2787 ID.APFloatVal = Lex.getAPFloatVal(); 2788 ID.Kind = ValID::t_APFloat; 2789 break; 2790 case lltok::kw_true: 2791 ID.ConstantVal = ConstantInt::getTrue(Context); 2792 ID.Kind = ValID::t_Constant; 2793 break; 2794 case lltok::kw_false: 2795 ID.ConstantVal = ConstantInt::getFalse(Context); 2796 ID.Kind = ValID::t_Constant; 2797 break; 2798 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2799 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2800 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2801 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2802 2803 case lltok::lbrace: { 2804 // ValID ::= '{' ConstVector '}' 2805 Lex.Lex(); 2806 SmallVector<Constant*, 16> Elts; 2807 if (ParseGlobalValueVector(Elts) || 2808 ParseToken(lltok::rbrace, "expected end of struct constant")) 2809 return true; 2810 2811 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2812 ID.UIntVal = Elts.size(); 2813 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2814 Elts.size() * sizeof(Elts[0])); 2815 ID.Kind = ValID::t_ConstantStruct; 2816 return false; 2817 } 2818 case lltok::less: { 2819 // ValID ::= '<' ConstVector '>' --> Vector. 2820 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2821 Lex.Lex(); 2822 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2823 2824 SmallVector<Constant*, 16> Elts; 2825 LocTy FirstEltLoc = Lex.getLoc(); 2826 if (ParseGlobalValueVector(Elts) || 2827 (isPackedStruct && 2828 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2829 ParseToken(lltok::greater, "expected end of constant")) 2830 return true; 2831 2832 if (isPackedStruct) { 2833 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2834 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2835 Elts.size() * sizeof(Elts[0])); 2836 ID.UIntVal = Elts.size(); 2837 ID.Kind = ValID::t_PackedConstantStruct; 2838 return false; 2839 } 2840 2841 if (Elts.empty()) 2842 return Error(ID.Loc, "constant vector must not be empty"); 2843 2844 if (!Elts[0]->getType()->isIntegerTy() && 2845 !Elts[0]->getType()->isFloatingPointTy() && 2846 !Elts[0]->getType()->isPointerTy()) 2847 return Error(FirstEltLoc, 2848 "vector elements must have integer, pointer or floating point type"); 2849 2850 // Verify that all the vector elements have the same type. 2851 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2852 if (Elts[i]->getType() != Elts[0]->getType()) 2853 return Error(FirstEltLoc, 2854 "vector element #" + Twine(i) + 2855 " is not of type '" + getTypeString(Elts[0]->getType())); 2856 2857 ID.ConstantVal = ConstantVector::get(Elts); 2858 ID.Kind = ValID::t_Constant; 2859 return false; 2860 } 2861 case lltok::lsquare: { // Array Constant 2862 Lex.Lex(); 2863 SmallVector<Constant*, 16> Elts; 2864 LocTy FirstEltLoc = Lex.getLoc(); 2865 if (ParseGlobalValueVector(Elts) || 2866 ParseToken(lltok::rsquare, "expected end of array constant")) 2867 return true; 2868 2869 // Handle empty element. 2870 if (Elts.empty()) { 2871 // Use undef instead of an array because it's inconvenient to determine 2872 // the element type at this point, there being no elements to examine. 2873 ID.Kind = ValID::t_EmptyArray; 2874 return false; 2875 } 2876 2877 if (!Elts[0]->getType()->isFirstClassType()) 2878 return Error(FirstEltLoc, "invalid array element type: " + 2879 getTypeString(Elts[0]->getType())); 2880 2881 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2882 2883 // Verify all elements are correct type! 2884 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2885 if (Elts[i]->getType() != Elts[0]->getType()) 2886 return Error(FirstEltLoc, 2887 "array element #" + Twine(i) + 2888 " is not of type '" + getTypeString(Elts[0]->getType())); 2889 } 2890 2891 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2892 ID.Kind = ValID::t_Constant; 2893 return false; 2894 } 2895 case lltok::kw_c: // c "foo" 2896 Lex.Lex(); 2897 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2898 false); 2899 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2900 ID.Kind = ValID::t_Constant; 2901 return false; 2902 2903 case lltok::kw_asm: { 2904 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2905 // STRINGCONSTANT 2906 bool HasSideEffect, AlignStack, AsmDialect; 2907 Lex.Lex(); 2908 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2909 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2910 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2911 ParseStringConstant(ID.StrVal) || 2912 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2913 ParseToken(lltok::StringConstant, "expected constraint string")) 2914 return true; 2915 ID.StrVal2 = Lex.getStrVal(); 2916 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2917 (unsigned(AsmDialect)<<2); 2918 ID.Kind = ValID::t_InlineAsm; 2919 return false; 2920 } 2921 2922 case lltok::kw_blockaddress: { 2923 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2924 Lex.Lex(); 2925 2926 ValID Fn, Label; 2927 2928 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2929 ParseValID(Fn) || 2930 ParseToken(lltok::comma, "expected comma in block address expression")|| 2931 ParseValID(Label) || 2932 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2933 return true; 2934 2935 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2936 return Error(Fn.Loc, "expected function name in blockaddress"); 2937 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2938 return Error(Label.Loc, "expected basic block name in blockaddress"); 2939 2940 // Try to find the function (but skip it if it's forward-referenced). 2941 GlobalValue *GV = nullptr; 2942 if (Fn.Kind == ValID::t_GlobalID) { 2943 if (Fn.UIntVal < NumberedVals.size()) 2944 GV = NumberedVals[Fn.UIntVal]; 2945 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2946 GV = M->getNamedValue(Fn.StrVal); 2947 } 2948 Function *F = nullptr; 2949 if (GV) { 2950 // Confirm that it's actually a function with a definition. 2951 if (!isa<Function>(GV)) 2952 return Error(Fn.Loc, "expected function name in blockaddress"); 2953 F = cast<Function>(GV); 2954 if (F->isDeclaration()) 2955 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2956 } 2957 2958 if (!F) { 2959 // Make a global variable as a placeholder for this reference. 2960 GlobalValue *&FwdRef = 2961 ForwardRefBlockAddresses.insert(std::make_pair( 2962 std::move(Fn), 2963 std::map<ValID, GlobalValue *>())) 2964 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2965 .first->second; 2966 if (!FwdRef) 2967 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2968 GlobalValue::InternalLinkage, nullptr, ""); 2969 ID.ConstantVal = FwdRef; 2970 ID.Kind = ValID::t_Constant; 2971 return false; 2972 } 2973 2974 // We found the function; now find the basic block. Don't use PFS, since we 2975 // might be inside a constant expression. 2976 BasicBlock *BB; 2977 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2978 if (Label.Kind == ValID::t_LocalID) 2979 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2980 else 2981 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2982 if (!BB) 2983 return Error(Label.Loc, "referenced value is not a basic block"); 2984 } else { 2985 if (Label.Kind == ValID::t_LocalID) 2986 return Error(Label.Loc, "cannot take address of numeric label after " 2987 "the function is defined"); 2988 BB = dyn_cast_or_null<BasicBlock>( 2989 F->getValueSymbolTable()->lookup(Label.StrVal)); 2990 if (!BB) 2991 return Error(Label.Loc, "referenced value is not a basic block"); 2992 } 2993 2994 ID.ConstantVal = BlockAddress::get(F, BB); 2995 ID.Kind = ValID::t_Constant; 2996 return false; 2997 } 2998 2999 case lltok::kw_trunc: 3000 case lltok::kw_zext: 3001 case lltok::kw_sext: 3002 case lltok::kw_fptrunc: 3003 case lltok::kw_fpext: 3004 case lltok::kw_bitcast: 3005 case lltok::kw_addrspacecast: 3006 case lltok::kw_uitofp: 3007 case lltok::kw_sitofp: 3008 case lltok::kw_fptoui: 3009 case lltok::kw_fptosi: 3010 case lltok::kw_inttoptr: 3011 case lltok::kw_ptrtoint: { 3012 unsigned Opc = Lex.getUIntVal(); 3013 Type *DestTy = nullptr; 3014 Constant *SrcVal; 3015 Lex.Lex(); 3016 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3017 ParseGlobalTypeAndValue(SrcVal) || 3018 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3019 ParseType(DestTy) || 3020 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3021 return true; 3022 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3023 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3024 getTypeString(SrcVal->getType()) + "' to '" + 3025 getTypeString(DestTy) + "'"); 3026 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3027 SrcVal, DestTy); 3028 ID.Kind = ValID::t_Constant; 3029 return false; 3030 } 3031 case lltok::kw_extractvalue: { 3032 Lex.Lex(); 3033 Constant *Val; 3034 SmallVector<unsigned, 4> Indices; 3035 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3036 ParseGlobalTypeAndValue(Val) || 3037 ParseIndexList(Indices) || 3038 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3039 return true; 3040 3041 if (!Val->getType()->isAggregateType()) 3042 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3043 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3044 return Error(ID.Loc, "invalid indices for extractvalue"); 3045 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3046 ID.Kind = ValID::t_Constant; 3047 return false; 3048 } 3049 case lltok::kw_insertvalue: { 3050 Lex.Lex(); 3051 Constant *Val0, *Val1; 3052 SmallVector<unsigned, 4> Indices; 3053 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3054 ParseGlobalTypeAndValue(Val0) || 3055 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3056 ParseGlobalTypeAndValue(Val1) || 3057 ParseIndexList(Indices) || 3058 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3059 return true; 3060 if (!Val0->getType()->isAggregateType()) 3061 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3062 Type *IndexedType = 3063 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3064 if (!IndexedType) 3065 return Error(ID.Loc, "invalid indices for insertvalue"); 3066 if (IndexedType != Val1->getType()) 3067 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3068 getTypeString(Val1->getType()) + 3069 "' instead of '" + getTypeString(IndexedType) + 3070 "'"); 3071 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3072 ID.Kind = ValID::t_Constant; 3073 return false; 3074 } 3075 case lltok::kw_icmp: 3076 case lltok::kw_fcmp: { 3077 unsigned PredVal, Opc = Lex.getUIntVal(); 3078 Constant *Val0, *Val1; 3079 Lex.Lex(); 3080 if (ParseCmpPredicate(PredVal, Opc) || 3081 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3082 ParseGlobalTypeAndValue(Val0) || 3083 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3084 ParseGlobalTypeAndValue(Val1) || 3085 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3086 return true; 3087 3088 if (Val0->getType() != Val1->getType()) 3089 return Error(ID.Loc, "compare operands must have the same type"); 3090 3091 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3092 3093 if (Opc == Instruction::FCmp) { 3094 if (!Val0->getType()->isFPOrFPVectorTy()) 3095 return Error(ID.Loc, "fcmp requires floating point operands"); 3096 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3097 } else { 3098 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3099 if (!Val0->getType()->isIntOrIntVectorTy() && 3100 !Val0->getType()->isPtrOrPtrVectorTy()) 3101 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3102 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3103 } 3104 ID.Kind = ValID::t_Constant; 3105 return false; 3106 } 3107 3108 // Binary Operators. 3109 case lltok::kw_add: 3110 case lltok::kw_fadd: 3111 case lltok::kw_sub: 3112 case lltok::kw_fsub: 3113 case lltok::kw_mul: 3114 case lltok::kw_fmul: 3115 case lltok::kw_udiv: 3116 case lltok::kw_sdiv: 3117 case lltok::kw_fdiv: 3118 case lltok::kw_urem: 3119 case lltok::kw_srem: 3120 case lltok::kw_frem: 3121 case lltok::kw_shl: 3122 case lltok::kw_lshr: 3123 case lltok::kw_ashr: { 3124 bool NUW = false; 3125 bool NSW = false; 3126 bool Exact = false; 3127 unsigned Opc = Lex.getUIntVal(); 3128 Constant *Val0, *Val1; 3129 Lex.Lex(); 3130 LocTy ModifierLoc = Lex.getLoc(); 3131 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3132 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3133 if (EatIfPresent(lltok::kw_nuw)) 3134 NUW = true; 3135 if (EatIfPresent(lltok::kw_nsw)) { 3136 NSW = true; 3137 if (EatIfPresent(lltok::kw_nuw)) 3138 NUW = true; 3139 } 3140 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3141 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3142 if (EatIfPresent(lltok::kw_exact)) 3143 Exact = true; 3144 } 3145 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3146 ParseGlobalTypeAndValue(Val0) || 3147 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3148 ParseGlobalTypeAndValue(Val1) || 3149 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3150 return true; 3151 if (Val0->getType() != Val1->getType()) 3152 return Error(ID.Loc, "operands of constexpr must have same type"); 3153 if (!Val0->getType()->isIntOrIntVectorTy()) { 3154 if (NUW) 3155 return Error(ModifierLoc, "nuw only applies to integer operations"); 3156 if (NSW) 3157 return Error(ModifierLoc, "nsw only applies to integer operations"); 3158 } 3159 // Check that the type is valid for the operator. 3160 switch (Opc) { 3161 case Instruction::Add: 3162 case Instruction::Sub: 3163 case Instruction::Mul: 3164 case Instruction::UDiv: 3165 case Instruction::SDiv: 3166 case Instruction::URem: 3167 case Instruction::SRem: 3168 case Instruction::Shl: 3169 case Instruction::AShr: 3170 case Instruction::LShr: 3171 if (!Val0->getType()->isIntOrIntVectorTy()) 3172 return Error(ID.Loc, "constexpr requires integer operands"); 3173 break; 3174 case Instruction::FAdd: 3175 case Instruction::FSub: 3176 case Instruction::FMul: 3177 case Instruction::FDiv: 3178 case Instruction::FRem: 3179 if (!Val0->getType()->isFPOrFPVectorTy()) 3180 return Error(ID.Loc, "constexpr requires fp operands"); 3181 break; 3182 default: llvm_unreachable("Unknown binary operator!"); 3183 } 3184 unsigned Flags = 0; 3185 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3186 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3187 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3188 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3189 ID.ConstantVal = C; 3190 ID.Kind = ValID::t_Constant; 3191 return false; 3192 } 3193 3194 // Logical Operations 3195 case lltok::kw_and: 3196 case lltok::kw_or: 3197 case lltok::kw_xor: { 3198 unsigned Opc = Lex.getUIntVal(); 3199 Constant *Val0, *Val1; 3200 Lex.Lex(); 3201 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3202 ParseGlobalTypeAndValue(Val0) || 3203 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3204 ParseGlobalTypeAndValue(Val1) || 3205 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3206 return true; 3207 if (Val0->getType() != Val1->getType()) 3208 return Error(ID.Loc, "operands of constexpr must have same type"); 3209 if (!Val0->getType()->isIntOrIntVectorTy()) 3210 return Error(ID.Loc, 3211 "constexpr requires integer or integer vector operands"); 3212 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3213 ID.Kind = ValID::t_Constant; 3214 return false; 3215 } 3216 3217 case lltok::kw_getelementptr: 3218 case lltok::kw_shufflevector: 3219 case lltok::kw_insertelement: 3220 case lltok::kw_extractelement: 3221 case lltok::kw_select: { 3222 unsigned Opc = Lex.getUIntVal(); 3223 SmallVector<Constant*, 16> Elts; 3224 bool InBounds = false; 3225 Type *Ty; 3226 Lex.Lex(); 3227 3228 if (Opc == Instruction::GetElementPtr) 3229 InBounds = EatIfPresent(lltok::kw_inbounds); 3230 3231 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3232 return true; 3233 3234 LocTy ExplicitTypeLoc = Lex.getLoc(); 3235 if (Opc == Instruction::GetElementPtr) { 3236 if (ParseType(Ty) || 3237 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3238 return true; 3239 } 3240 3241 Optional<unsigned> InRangeOp; 3242 if (ParseGlobalValueVector( 3243 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3244 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3245 return true; 3246 3247 if (Opc == Instruction::GetElementPtr) { 3248 if (Elts.size() == 0 || 3249 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3250 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3251 3252 Type *BaseType = Elts[0]->getType(); 3253 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3254 if (Ty != BasePointerType->getElementType()) 3255 return Error( 3256 ExplicitTypeLoc, 3257 "explicit pointee type doesn't match operand's pointee type"); 3258 3259 unsigned GEPWidth = 3260 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3261 3262 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3263 for (Constant *Val : Indices) { 3264 Type *ValTy = Val->getType(); 3265 if (!ValTy->isIntOrIntVectorTy()) 3266 return Error(ID.Loc, "getelementptr index must be an integer"); 3267 if (ValTy->isVectorTy()) { 3268 unsigned ValNumEl = ValTy->getVectorNumElements(); 3269 if (GEPWidth && (ValNumEl != GEPWidth)) 3270 return Error( 3271 ID.Loc, 3272 "getelementptr vector index has a wrong number of elements"); 3273 // GEPWidth may have been unknown because the base is a scalar, 3274 // but it is known now. 3275 GEPWidth = ValNumEl; 3276 } 3277 } 3278 3279 SmallPtrSet<Type*, 4> Visited; 3280 if (!Indices.empty() && !Ty->isSized(&Visited)) 3281 return Error(ID.Loc, "base element of getelementptr must be sized"); 3282 3283 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3284 return Error(ID.Loc, "invalid getelementptr indices"); 3285 3286 if (InRangeOp) { 3287 if (*InRangeOp == 0) 3288 return Error(ID.Loc, 3289 "inrange keyword may not appear on pointer operand"); 3290 --*InRangeOp; 3291 } 3292 3293 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3294 InBounds, InRangeOp); 3295 } else if (Opc == Instruction::Select) { 3296 if (Elts.size() != 3) 3297 return Error(ID.Loc, "expected three operands to select"); 3298 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3299 Elts[2])) 3300 return Error(ID.Loc, Reason); 3301 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3302 } else if (Opc == Instruction::ShuffleVector) { 3303 if (Elts.size() != 3) 3304 return Error(ID.Loc, "expected three operands to shufflevector"); 3305 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3306 return Error(ID.Loc, "invalid operands to shufflevector"); 3307 ID.ConstantVal = 3308 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3309 } else if (Opc == Instruction::ExtractElement) { 3310 if (Elts.size() != 2) 3311 return Error(ID.Loc, "expected two operands to extractelement"); 3312 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3313 return Error(ID.Loc, "invalid extractelement operands"); 3314 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3315 } else { 3316 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3317 if (Elts.size() != 3) 3318 return Error(ID.Loc, "expected three operands to insertelement"); 3319 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3320 return Error(ID.Loc, "invalid insertelement operands"); 3321 ID.ConstantVal = 3322 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3323 } 3324 3325 ID.Kind = ValID::t_Constant; 3326 return false; 3327 } 3328 } 3329 3330 Lex.Lex(); 3331 return false; 3332 } 3333 3334 /// ParseGlobalValue - Parse a global value with the specified type. 3335 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3336 C = nullptr; 3337 ValID ID; 3338 Value *V = nullptr; 3339 bool Parsed = ParseValID(ID) || 3340 ConvertValIDToValue(Ty, ID, V, nullptr); 3341 if (V && !(C = dyn_cast<Constant>(V))) 3342 return Error(ID.Loc, "global values must be constants"); 3343 return Parsed; 3344 } 3345 3346 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3347 Type *Ty = nullptr; 3348 return ParseType(Ty) || 3349 ParseGlobalValue(Ty, V); 3350 } 3351 3352 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3353 C = nullptr; 3354 3355 LocTy KwLoc = Lex.getLoc(); 3356 if (!EatIfPresent(lltok::kw_comdat)) 3357 return false; 3358 3359 if (EatIfPresent(lltok::lparen)) { 3360 if (Lex.getKind() != lltok::ComdatVar) 3361 return TokError("expected comdat variable"); 3362 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3363 Lex.Lex(); 3364 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3365 return true; 3366 } else { 3367 if (GlobalName.empty()) 3368 return TokError("comdat cannot be unnamed"); 3369 C = getComdat(GlobalName, KwLoc); 3370 } 3371 3372 return false; 3373 } 3374 3375 /// ParseGlobalValueVector 3376 /// ::= /*empty*/ 3377 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3378 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3379 Optional<unsigned> *InRangeOp) { 3380 // Empty list. 3381 if (Lex.getKind() == lltok::rbrace || 3382 Lex.getKind() == lltok::rsquare || 3383 Lex.getKind() == lltok::greater || 3384 Lex.getKind() == lltok::rparen) 3385 return false; 3386 3387 do { 3388 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3389 *InRangeOp = Elts.size(); 3390 3391 Constant *C; 3392 if (ParseGlobalTypeAndValue(C)) return true; 3393 Elts.push_back(C); 3394 } while (EatIfPresent(lltok::comma)); 3395 3396 return false; 3397 } 3398 3399 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3400 SmallVector<Metadata *, 16> Elts; 3401 if (ParseMDNodeVector(Elts)) 3402 return true; 3403 3404 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3405 return false; 3406 } 3407 3408 /// MDNode: 3409 /// ::= !{ ... } 3410 /// ::= !7 3411 /// ::= !DILocation(...) 3412 bool LLParser::ParseMDNode(MDNode *&N) { 3413 if (Lex.getKind() == lltok::MetadataVar) 3414 return ParseSpecializedMDNode(N); 3415 3416 return ParseToken(lltok::exclaim, "expected '!' here") || 3417 ParseMDNodeTail(N); 3418 } 3419 3420 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3421 // !{ ... } 3422 if (Lex.getKind() == lltok::lbrace) 3423 return ParseMDTuple(N); 3424 3425 // !42 3426 return ParseMDNodeID(N); 3427 } 3428 3429 namespace { 3430 3431 /// Structure to represent an optional metadata field. 3432 template <class FieldTy> struct MDFieldImpl { 3433 typedef MDFieldImpl ImplTy; 3434 FieldTy Val; 3435 bool Seen; 3436 3437 void assign(FieldTy Val) { 3438 Seen = true; 3439 this->Val = std::move(Val); 3440 } 3441 3442 explicit MDFieldImpl(FieldTy Default) 3443 : Val(std::move(Default)), Seen(false) {} 3444 }; 3445 3446 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3447 uint64_t Max; 3448 3449 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3450 : ImplTy(Default), Max(Max) {} 3451 }; 3452 3453 struct LineField : public MDUnsignedField { 3454 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3455 }; 3456 3457 struct ColumnField : public MDUnsignedField { 3458 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3459 }; 3460 3461 struct DwarfTagField : public MDUnsignedField { 3462 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3463 DwarfTagField(dwarf::Tag DefaultTag) 3464 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3465 }; 3466 3467 struct DwarfMacinfoTypeField : public MDUnsignedField { 3468 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3469 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3470 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3471 }; 3472 3473 struct DwarfAttEncodingField : public MDUnsignedField { 3474 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3475 }; 3476 3477 struct DwarfVirtualityField : public MDUnsignedField { 3478 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3479 }; 3480 3481 struct DwarfLangField : public MDUnsignedField { 3482 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3483 }; 3484 3485 struct DwarfCCField : public MDUnsignedField { 3486 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3487 }; 3488 3489 struct EmissionKindField : public MDUnsignedField { 3490 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3491 }; 3492 3493 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3494 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3495 }; 3496 3497 struct MDSignedField : public MDFieldImpl<int64_t> { 3498 int64_t Min; 3499 int64_t Max; 3500 3501 MDSignedField(int64_t Default = 0) 3502 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3503 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3504 : ImplTy(Default), Min(Min), Max(Max) {} 3505 }; 3506 3507 struct MDBoolField : public MDFieldImpl<bool> { 3508 MDBoolField(bool Default = false) : ImplTy(Default) {} 3509 }; 3510 3511 struct MDField : public MDFieldImpl<Metadata *> { 3512 bool AllowNull; 3513 3514 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3515 }; 3516 3517 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3518 MDConstant() : ImplTy(nullptr) {} 3519 }; 3520 3521 struct MDStringField : public MDFieldImpl<MDString *> { 3522 bool AllowEmpty; 3523 MDStringField(bool AllowEmpty = true) 3524 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3525 }; 3526 3527 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3528 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3529 }; 3530 3531 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3532 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3533 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3534 }; 3535 3536 } // end anonymous namespace 3537 3538 namespace llvm { 3539 3540 template <> 3541 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3542 MDUnsignedField &Result) { 3543 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3544 return TokError("expected unsigned integer"); 3545 3546 auto &U = Lex.getAPSIntVal(); 3547 if (U.ugt(Result.Max)) 3548 return TokError("value for '" + Name + "' too large, limit is " + 3549 Twine(Result.Max)); 3550 Result.assign(U.getZExtValue()); 3551 assert(Result.Val <= Result.Max && "Expected value in range"); 3552 Lex.Lex(); 3553 return false; 3554 } 3555 3556 template <> 3557 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3558 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3559 } 3560 template <> 3561 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3562 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3563 } 3564 3565 template <> 3566 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3567 if (Lex.getKind() == lltok::APSInt) 3568 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3569 3570 if (Lex.getKind() != lltok::DwarfTag) 3571 return TokError("expected DWARF tag"); 3572 3573 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3574 if (Tag == dwarf::DW_TAG_invalid) 3575 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3576 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3577 3578 Result.assign(Tag); 3579 Lex.Lex(); 3580 return false; 3581 } 3582 3583 template <> 3584 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3585 DwarfMacinfoTypeField &Result) { 3586 if (Lex.getKind() == lltok::APSInt) 3587 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3588 3589 if (Lex.getKind() != lltok::DwarfMacinfo) 3590 return TokError("expected DWARF macinfo type"); 3591 3592 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3593 if (Macinfo == dwarf::DW_MACINFO_invalid) 3594 return TokError( 3595 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3596 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3597 3598 Result.assign(Macinfo); 3599 Lex.Lex(); 3600 return false; 3601 } 3602 3603 template <> 3604 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3605 DwarfVirtualityField &Result) { 3606 if (Lex.getKind() == lltok::APSInt) 3607 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3608 3609 if (Lex.getKind() != lltok::DwarfVirtuality) 3610 return TokError("expected DWARF virtuality code"); 3611 3612 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3613 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3614 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3615 Lex.getStrVal() + "'"); 3616 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3617 Result.assign(Virtuality); 3618 Lex.Lex(); 3619 return false; 3620 } 3621 3622 template <> 3623 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3624 if (Lex.getKind() == lltok::APSInt) 3625 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3626 3627 if (Lex.getKind() != lltok::DwarfLang) 3628 return TokError("expected DWARF language"); 3629 3630 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3631 if (!Lang) 3632 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3633 "'"); 3634 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3635 Result.assign(Lang); 3636 Lex.Lex(); 3637 return false; 3638 } 3639 3640 template <> 3641 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3642 if (Lex.getKind() == lltok::APSInt) 3643 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3644 3645 if (Lex.getKind() != lltok::DwarfCC) 3646 return TokError("expected DWARF calling convention"); 3647 3648 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3649 if (!CC) 3650 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3651 "'"); 3652 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3653 Result.assign(CC); 3654 Lex.Lex(); 3655 return false; 3656 } 3657 3658 template <> 3659 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3660 if (Lex.getKind() == lltok::APSInt) 3661 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3662 3663 if (Lex.getKind() != lltok::EmissionKind) 3664 return TokError("expected emission kind"); 3665 3666 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3667 if (!Kind) 3668 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3669 "'"); 3670 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3671 Result.assign(*Kind); 3672 Lex.Lex(); 3673 return false; 3674 } 3675 3676 template <> 3677 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3678 DwarfAttEncodingField &Result) { 3679 if (Lex.getKind() == lltok::APSInt) 3680 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3681 3682 if (Lex.getKind() != lltok::DwarfAttEncoding) 3683 return TokError("expected DWARF type attribute encoding"); 3684 3685 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3686 if (!Encoding) 3687 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3688 Lex.getStrVal() + "'"); 3689 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3690 Result.assign(Encoding); 3691 Lex.Lex(); 3692 return false; 3693 } 3694 3695 /// DIFlagField 3696 /// ::= uint32 3697 /// ::= DIFlagVector 3698 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3699 template <> 3700 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3701 3702 // Parser for a single flag. 3703 auto parseFlag = [&](DINode::DIFlags &Val) { 3704 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3705 uint32_t TempVal = static_cast<uint32_t>(Val); 3706 bool Res = ParseUInt32(TempVal); 3707 Val = static_cast<DINode::DIFlags>(TempVal); 3708 return Res; 3709 } 3710 3711 if (Lex.getKind() != lltok::DIFlag) 3712 return TokError("expected debug info flag"); 3713 3714 Val = DINode::getFlag(Lex.getStrVal()); 3715 if (!Val) 3716 return TokError(Twine("invalid debug info flag flag '") + 3717 Lex.getStrVal() + "'"); 3718 Lex.Lex(); 3719 return false; 3720 }; 3721 3722 // Parse the flags and combine them together. 3723 DINode::DIFlags Combined = DINode::FlagZero; 3724 do { 3725 DINode::DIFlags Val; 3726 if (parseFlag(Val)) 3727 return true; 3728 Combined |= Val; 3729 } while (EatIfPresent(lltok::bar)); 3730 3731 Result.assign(Combined); 3732 return false; 3733 } 3734 3735 template <> 3736 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3737 MDSignedField &Result) { 3738 if (Lex.getKind() != lltok::APSInt) 3739 return TokError("expected signed integer"); 3740 3741 auto &S = Lex.getAPSIntVal(); 3742 if (S < Result.Min) 3743 return TokError("value for '" + Name + "' too small, limit is " + 3744 Twine(Result.Min)); 3745 if (S > Result.Max) 3746 return TokError("value for '" + Name + "' too large, limit is " + 3747 Twine(Result.Max)); 3748 Result.assign(S.getExtValue()); 3749 assert(Result.Val >= Result.Min && "Expected value in range"); 3750 assert(Result.Val <= Result.Max && "Expected value in range"); 3751 Lex.Lex(); 3752 return false; 3753 } 3754 3755 template <> 3756 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3757 switch (Lex.getKind()) { 3758 default: 3759 return TokError("expected 'true' or 'false'"); 3760 case lltok::kw_true: 3761 Result.assign(true); 3762 break; 3763 case lltok::kw_false: 3764 Result.assign(false); 3765 break; 3766 } 3767 Lex.Lex(); 3768 return false; 3769 } 3770 3771 template <> 3772 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3773 if (Lex.getKind() == lltok::kw_null) { 3774 if (!Result.AllowNull) 3775 return TokError("'" + Name + "' cannot be null"); 3776 Lex.Lex(); 3777 Result.assign(nullptr); 3778 return false; 3779 } 3780 3781 Metadata *MD; 3782 if (ParseMetadata(MD, nullptr)) 3783 return true; 3784 3785 Result.assign(MD); 3786 return false; 3787 } 3788 3789 template <> 3790 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3791 LocTy ValueLoc = Lex.getLoc(); 3792 std::string S; 3793 if (ParseStringConstant(S)) 3794 return true; 3795 3796 if (!Result.AllowEmpty && S.empty()) 3797 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3798 3799 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3800 return false; 3801 } 3802 3803 template <> 3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3805 SmallVector<Metadata *, 4> MDs; 3806 if (ParseMDNodeVector(MDs)) 3807 return true; 3808 3809 Result.assign(std::move(MDs)); 3810 return false; 3811 } 3812 3813 template <> 3814 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3815 ChecksumKindField &Result) { 3816 if (Lex.getKind() != lltok::ChecksumKind) 3817 return TokError( 3818 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3819 3820 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3821 3822 Result.assign(CSKind); 3823 Lex.Lex(); 3824 return false; 3825 } 3826 3827 } // end namespace llvm 3828 3829 template <class ParserTy> 3830 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3831 do { 3832 if (Lex.getKind() != lltok::LabelStr) 3833 return TokError("expected field label here"); 3834 3835 if (parseField()) 3836 return true; 3837 } while (EatIfPresent(lltok::comma)); 3838 3839 return false; 3840 } 3841 3842 template <class ParserTy> 3843 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3844 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3845 Lex.Lex(); 3846 3847 if (ParseToken(lltok::lparen, "expected '(' here")) 3848 return true; 3849 if (Lex.getKind() != lltok::rparen) 3850 if (ParseMDFieldsImplBody(parseField)) 3851 return true; 3852 3853 ClosingLoc = Lex.getLoc(); 3854 return ParseToken(lltok::rparen, "expected ')' here"); 3855 } 3856 3857 template <class FieldTy> 3858 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3859 if (Result.Seen) 3860 return TokError("field '" + Name + "' cannot be specified more than once"); 3861 3862 LocTy Loc = Lex.getLoc(); 3863 Lex.Lex(); 3864 return ParseMDField(Loc, Name, Result); 3865 } 3866 3867 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3868 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3869 3870 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3871 if (Lex.getStrVal() == #CLASS) \ 3872 return Parse##CLASS(N, IsDistinct); 3873 #include "llvm/IR/Metadata.def" 3874 3875 return TokError("expected metadata type"); 3876 } 3877 3878 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3879 #define NOP_FIELD(NAME, TYPE, INIT) 3880 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3881 if (!NAME.Seen) \ 3882 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3883 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3884 if (Lex.getStrVal() == #NAME) \ 3885 return ParseMDField(#NAME, NAME); 3886 #define PARSE_MD_FIELDS() \ 3887 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3888 do { \ 3889 LocTy ClosingLoc; \ 3890 if (ParseMDFieldsImpl([&]() -> bool { \ 3891 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3892 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3893 }, ClosingLoc)) \ 3894 return true; \ 3895 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3896 } while (false) 3897 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3898 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3899 3900 /// ParseDILocationFields: 3901 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3902 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3904 OPTIONAL(line, LineField, ); \ 3905 OPTIONAL(column, ColumnField, ); \ 3906 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3907 OPTIONAL(inlinedAt, MDField, ); 3908 PARSE_MD_FIELDS(); 3909 #undef VISIT_MD_FIELDS 3910 3911 Result = GET_OR_DISTINCT( 3912 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3913 return false; 3914 } 3915 3916 /// ParseGenericDINode: 3917 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3918 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3920 REQUIRED(tag, DwarfTagField, ); \ 3921 OPTIONAL(header, MDStringField, ); \ 3922 OPTIONAL(operands, MDFieldList, ); 3923 PARSE_MD_FIELDS(); 3924 #undef VISIT_MD_FIELDS 3925 3926 Result = GET_OR_DISTINCT(GenericDINode, 3927 (Context, tag.Val, header.Val, operands.Val)); 3928 return false; 3929 } 3930 3931 /// ParseDISubrange: 3932 /// ::= !DISubrange(count: 30, lowerBound: 2) 3933 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3935 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3936 OPTIONAL(lowerBound, MDSignedField, ); 3937 PARSE_MD_FIELDS(); 3938 #undef VISIT_MD_FIELDS 3939 3940 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3941 return false; 3942 } 3943 3944 /// ParseDIEnumerator: 3945 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3946 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3948 REQUIRED(name, MDStringField, ); \ 3949 REQUIRED(value, MDSignedField, ); 3950 PARSE_MD_FIELDS(); 3951 #undef VISIT_MD_FIELDS 3952 3953 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3954 return false; 3955 } 3956 3957 /// ParseDIBasicType: 3958 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3959 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3960 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3961 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3962 OPTIONAL(name, MDStringField, ); \ 3963 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3964 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3965 OPTIONAL(encoding, DwarfAttEncodingField, ); 3966 PARSE_MD_FIELDS(); 3967 #undef VISIT_MD_FIELDS 3968 3969 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3970 align.Val, encoding.Val)); 3971 return false; 3972 } 3973 3974 /// ParseDIDerivedType: 3975 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3976 /// line: 7, scope: !1, baseType: !2, size: 32, 3977 /// align: 32, offset: 0, flags: 0, extraData: !3, 3978 /// dwarfAddressSpace: 3) 3979 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3981 REQUIRED(tag, DwarfTagField, ); \ 3982 OPTIONAL(name, MDStringField, ); \ 3983 OPTIONAL(file, MDField, ); \ 3984 OPTIONAL(line, LineField, ); \ 3985 OPTIONAL(scope, MDField, ); \ 3986 REQUIRED(baseType, MDField, ); \ 3987 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3988 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3989 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3990 OPTIONAL(flags, DIFlagField, ); \ 3991 OPTIONAL(extraData, MDField, ); \ 3992 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 3993 PARSE_MD_FIELDS(); 3994 #undef VISIT_MD_FIELDS 3995 3996 Optional<unsigned> DWARFAddressSpace; 3997 if (dwarfAddressSpace.Val != UINT32_MAX) 3998 DWARFAddressSpace = dwarfAddressSpace.Val; 3999 4000 Result = GET_OR_DISTINCT(DIDerivedType, 4001 (Context, tag.Val, name.Val, file.Val, line.Val, 4002 scope.Val, baseType.Val, size.Val, align.Val, 4003 offset.Val, DWARFAddressSpace, flags.Val, 4004 extraData.Val)); 4005 return false; 4006 } 4007 4008 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4009 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4010 REQUIRED(tag, DwarfTagField, ); \ 4011 OPTIONAL(name, MDStringField, ); \ 4012 OPTIONAL(file, MDField, ); \ 4013 OPTIONAL(line, LineField, ); \ 4014 OPTIONAL(scope, MDField, ); \ 4015 OPTIONAL(baseType, MDField, ); \ 4016 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4017 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4018 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4019 OPTIONAL(flags, DIFlagField, ); \ 4020 OPTIONAL(elements, MDField, ); \ 4021 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4022 OPTIONAL(vtableHolder, MDField, ); \ 4023 OPTIONAL(templateParams, MDField, ); \ 4024 OPTIONAL(identifier, MDStringField, ); 4025 PARSE_MD_FIELDS(); 4026 #undef VISIT_MD_FIELDS 4027 4028 // If this has an identifier try to build an ODR type. 4029 if (identifier.Val) 4030 if (auto *CT = DICompositeType::buildODRType( 4031 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4032 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4033 elements.Val, runtimeLang.Val, vtableHolder.Val, 4034 templateParams.Val)) { 4035 Result = CT; 4036 return false; 4037 } 4038 4039 // Create a new node, and save it in the context if it belongs in the type 4040 // map. 4041 Result = GET_OR_DISTINCT( 4042 DICompositeType, 4043 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4044 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4045 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 4046 return false; 4047 } 4048 4049 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4050 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4051 OPTIONAL(flags, DIFlagField, ); \ 4052 OPTIONAL(cc, DwarfCCField, ); \ 4053 REQUIRED(types, MDField, ); 4054 PARSE_MD_FIELDS(); 4055 #undef VISIT_MD_FIELDS 4056 4057 Result = GET_OR_DISTINCT(DISubroutineType, 4058 (Context, flags.Val, cc.Val, types.Val)); 4059 return false; 4060 } 4061 4062 /// ParseDIFileType: 4063 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4064 /// checksumkind: CSK_MD5, 4065 /// checksum: "000102030405060708090a0b0c0d0e0f") 4066 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4067 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4068 REQUIRED(filename, MDStringField, ); \ 4069 REQUIRED(directory, MDStringField, ); \ 4070 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4071 OPTIONAL(checksum, MDStringField, ); 4072 PARSE_MD_FIELDS(); 4073 #undef VISIT_MD_FIELDS 4074 4075 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4076 checksumkind.Val, checksum.Val)); 4077 return false; 4078 } 4079 4080 /// ParseDICompileUnit: 4081 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4082 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4083 /// splitDebugFilename: "abc.debug", 4084 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4085 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4086 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4087 if (!IsDistinct) 4088 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4089 4090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4091 REQUIRED(language, DwarfLangField, ); \ 4092 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4093 OPTIONAL(producer, MDStringField, ); \ 4094 OPTIONAL(isOptimized, MDBoolField, ); \ 4095 OPTIONAL(flags, MDStringField, ); \ 4096 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4097 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4098 OPTIONAL(emissionKind, EmissionKindField, ); \ 4099 OPTIONAL(enums, MDField, ); \ 4100 OPTIONAL(retainedTypes, MDField, ); \ 4101 OPTIONAL(globals, MDField, ); \ 4102 OPTIONAL(imports, MDField, ); \ 4103 OPTIONAL(macros, MDField, ); \ 4104 OPTIONAL(dwoId, MDUnsignedField, ); \ 4105 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4106 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4107 OPTIONAL(gnuPubnames, MDBoolField, = false); 4108 PARSE_MD_FIELDS(); 4109 #undef VISIT_MD_FIELDS 4110 4111 Result = DICompileUnit::getDistinct( 4112 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4113 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4114 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4115 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4116 return false; 4117 } 4118 4119 /// ParseDISubprogram: 4120 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4121 /// file: !1, line: 7, type: !2, isLocal: false, 4122 /// isDefinition: true, scopeLine: 8, containingType: !3, 4123 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4124 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4125 /// isOptimized: false, templateParams: !4, declaration: !5, 4126 /// variables: !6, thrownTypes: !7) 4127 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4128 auto Loc = Lex.getLoc(); 4129 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4130 OPTIONAL(scope, MDField, ); \ 4131 OPTIONAL(name, MDStringField, ); \ 4132 OPTIONAL(linkageName, MDStringField, ); \ 4133 OPTIONAL(file, MDField, ); \ 4134 OPTIONAL(line, LineField, ); \ 4135 OPTIONAL(type, MDField, ); \ 4136 OPTIONAL(isLocal, MDBoolField, ); \ 4137 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4138 OPTIONAL(scopeLine, LineField, ); \ 4139 OPTIONAL(containingType, MDField, ); \ 4140 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4141 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4142 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4143 OPTIONAL(flags, DIFlagField, ); \ 4144 OPTIONAL(isOptimized, MDBoolField, ); \ 4145 OPTIONAL(unit, MDField, ); \ 4146 OPTIONAL(templateParams, MDField, ); \ 4147 OPTIONAL(declaration, MDField, ); \ 4148 OPTIONAL(variables, MDField, ); \ 4149 OPTIONAL(thrownTypes, MDField, ); 4150 PARSE_MD_FIELDS(); 4151 #undef VISIT_MD_FIELDS 4152 4153 if (isDefinition.Val && !IsDistinct) 4154 return Lex.Error( 4155 Loc, 4156 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4157 4158 Result = GET_OR_DISTINCT( 4159 DISubprogram, 4160 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4161 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4162 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4163 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4164 declaration.Val, variables.Val, thrownTypes.Val)); 4165 return false; 4166 } 4167 4168 /// ParseDILexicalBlock: 4169 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4170 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4172 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4173 OPTIONAL(file, MDField, ); \ 4174 OPTIONAL(line, LineField, ); \ 4175 OPTIONAL(column, ColumnField, ); 4176 PARSE_MD_FIELDS(); 4177 #undef VISIT_MD_FIELDS 4178 4179 Result = GET_OR_DISTINCT( 4180 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4181 return false; 4182 } 4183 4184 /// ParseDILexicalBlockFile: 4185 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4186 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4187 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4188 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4189 OPTIONAL(file, MDField, ); \ 4190 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4191 PARSE_MD_FIELDS(); 4192 #undef VISIT_MD_FIELDS 4193 4194 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4195 (Context, scope.Val, file.Val, discriminator.Val)); 4196 return false; 4197 } 4198 4199 /// ParseDINamespace: 4200 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4201 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4202 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4203 REQUIRED(scope, MDField, ); \ 4204 OPTIONAL(name, MDStringField, ); \ 4205 OPTIONAL(exportSymbols, MDBoolField, ); 4206 PARSE_MD_FIELDS(); 4207 #undef VISIT_MD_FIELDS 4208 4209 Result = GET_OR_DISTINCT(DINamespace, 4210 (Context, scope.Val, name.Val, exportSymbols.Val)); 4211 return false; 4212 } 4213 4214 /// ParseDIMacro: 4215 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4216 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4218 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4219 OPTIONAL(line, LineField, ); \ 4220 REQUIRED(name, MDStringField, ); \ 4221 OPTIONAL(value, MDStringField, ); 4222 PARSE_MD_FIELDS(); 4223 #undef VISIT_MD_FIELDS 4224 4225 Result = GET_OR_DISTINCT(DIMacro, 4226 (Context, type.Val, line.Val, name.Val, value.Val)); 4227 return false; 4228 } 4229 4230 /// ParseDIMacroFile: 4231 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4232 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4233 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4234 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4235 OPTIONAL(line, LineField, ); \ 4236 REQUIRED(file, MDField, ); \ 4237 OPTIONAL(nodes, MDField, ); 4238 PARSE_MD_FIELDS(); 4239 #undef VISIT_MD_FIELDS 4240 4241 Result = GET_OR_DISTINCT(DIMacroFile, 4242 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4243 return false; 4244 } 4245 4246 /// ParseDIModule: 4247 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4248 /// includePath: "/usr/include", isysroot: "/") 4249 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4250 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4251 REQUIRED(scope, MDField, ); \ 4252 REQUIRED(name, MDStringField, ); \ 4253 OPTIONAL(configMacros, MDStringField, ); \ 4254 OPTIONAL(includePath, MDStringField, ); \ 4255 OPTIONAL(isysroot, MDStringField, ); 4256 PARSE_MD_FIELDS(); 4257 #undef VISIT_MD_FIELDS 4258 4259 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4260 configMacros.Val, includePath.Val, isysroot.Val)); 4261 return false; 4262 } 4263 4264 /// ParseDITemplateTypeParameter: 4265 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4266 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4267 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4268 OPTIONAL(name, MDStringField, ); \ 4269 REQUIRED(type, MDField, ); 4270 PARSE_MD_FIELDS(); 4271 #undef VISIT_MD_FIELDS 4272 4273 Result = 4274 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4275 return false; 4276 } 4277 4278 /// ParseDITemplateValueParameter: 4279 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4280 /// name: "V", type: !1, value: i32 7) 4281 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4283 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4284 OPTIONAL(name, MDStringField, ); \ 4285 OPTIONAL(type, MDField, ); \ 4286 REQUIRED(value, MDField, ); 4287 PARSE_MD_FIELDS(); 4288 #undef VISIT_MD_FIELDS 4289 4290 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4291 (Context, tag.Val, name.Val, type.Val, value.Val)); 4292 return false; 4293 } 4294 4295 /// ParseDIGlobalVariable: 4296 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4297 /// file: !1, line: 7, type: !2, isLocal: false, 4298 /// isDefinition: true, declaration: !3, align: 8) 4299 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4300 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4301 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4302 OPTIONAL(scope, MDField, ); \ 4303 OPTIONAL(linkageName, MDStringField, ); \ 4304 OPTIONAL(file, MDField, ); \ 4305 OPTIONAL(line, LineField, ); \ 4306 OPTIONAL(type, MDField, ); \ 4307 OPTIONAL(isLocal, MDBoolField, ); \ 4308 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4309 OPTIONAL(declaration, MDField, ); \ 4310 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4311 PARSE_MD_FIELDS(); 4312 #undef VISIT_MD_FIELDS 4313 4314 Result = GET_OR_DISTINCT(DIGlobalVariable, 4315 (Context, scope.Val, name.Val, linkageName.Val, 4316 file.Val, line.Val, type.Val, isLocal.Val, 4317 isDefinition.Val, declaration.Val, align.Val)); 4318 return false; 4319 } 4320 4321 /// ParseDILocalVariable: 4322 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4323 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4324 /// align: 8) 4325 /// ::= !DILocalVariable(scope: !0, name: "foo", 4326 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4327 /// align: 8) 4328 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4329 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4330 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4331 OPTIONAL(name, MDStringField, ); \ 4332 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4333 OPTIONAL(file, MDField, ); \ 4334 OPTIONAL(line, LineField, ); \ 4335 OPTIONAL(type, MDField, ); \ 4336 OPTIONAL(flags, DIFlagField, ); \ 4337 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4338 PARSE_MD_FIELDS(); 4339 #undef VISIT_MD_FIELDS 4340 4341 Result = GET_OR_DISTINCT(DILocalVariable, 4342 (Context, scope.Val, name.Val, file.Val, line.Val, 4343 type.Val, arg.Val, flags.Val, align.Val)); 4344 return false; 4345 } 4346 4347 /// ParseDIExpression: 4348 /// ::= !DIExpression(0, 7, -1) 4349 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4350 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4351 Lex.Lex(); 4352 4353 if (ParseToken(lltok::lparen, "expected '(' here")) 4354 return true; 4355 4356 SmallVector<uint64_t, 8> Elements; 4357 if (Lex.getKind() != lltok::rparen) 4358 do { 4359 if (Lex.getKind() == lltok::DwarfOp) { 4360 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4361 Lex.Lex(); 4362 Elements.push_back(Op); 4363 continue; 4364 } 4365 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4366 } 4367 4368 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4369 return TokError("expected unsigned integer"); 4370 4371 auto &U = Lex.getAPSIntVal(); 4372 if (U.ugt(UINT64_MAX)) 4373 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4374 Elements.push_back(U.getZExtValue()); 4375 Lex.Lex(); 4376 } while (EatIfPresent(lltok::comma)); 4377 4378 if (ParseToken(lltok::rparen, "expected ')' here")) 4379 return true; 4380 4381 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4382 return false; 4383 } 4384 4385 /// ParseDIGlobalVariableExpression: 4386 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4387 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4388 bool IsDistinct) { 4389 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4390 REQUIRED(var, MDField, ); \ 4391 REQUIRED(expr, MDField, ); 4392 PARSE_MD_FIELDS(); 4393 #undef VISIT_MD_FIELDS 4394 4395 Result = 4396 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4397 return false; 4398 } 4399 4400 /// ParseDIObjCProperty: 4401 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4402 /// getter: "getFoo", attributes: 7, type: !2) 4403 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4405 OPTIONAL(name, MDStringField, ); \ 4406 OPTIONAL(file, MDField, ); \ 4407 OPTIONAL(line, LineField, ); \ 4408 OPTIONAL(setter, MDStringField, ); \ 4409 OPTIONAL(getter, MDStringField, ); \ 4410 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4411 OPTIONAL(type, MDField, ); 4412 PARSE_MD_FIELDS(); 4413 #undef VISIT_MD_FIELDS 4414 4415 Result = GET_OR_DISTINCT(DIObjCProperty, 4416 (Context, name.Val, file.Val, line.Val, setter.Val, 4417 getter.Val, attributes.Val, type.Val)); 4418 return false; 4419 } 4420 4421 /// ParseDIImportedEntity: 4422 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4423 /// line: 7, name: "foo") 4424 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4426 REQUIRED(tag, DwarfTagField, ); \ 4427 REQUIRED(scope, MDField, ); \ 4428 OPTIONAL(entity, MDField, ); \ 4429 OPTIONAL(file, MDField, ); \ 4430 OPTIONAL(line, LineField, ); \ 4431 OPTIONAL(name, MDStringField, ); 4432 PARSE_MD_FIELDS(); 4433 #undef VISIT_MD_FIELDS 4434 4435 Result = GET_OR_DISTINCT( 4436 DIImportedEntity, 4437 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4438 return false; 4439 } 4440 4441 #undef PARSE_MD_FIELD 4442 #undef NOP_FIELD 4443 #undef REQUIRE_FIELD 4444 #undef DECLARE_FIELD 4445 4446 /// ParseMetadataAsValue 4447 /// ::= metadata i32 %local 4448 /// ::= metadata i32 @global 4449 /// ::= metadata i32 7 4450 /// ::= metadata !0 4451 /// ::= metadata !{...} 4452 /// ::= metadata !"string" 4453 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4454 // Note: the type 'metadata' has already been parsed. 4455 Metadata *MD; 4456 if (ParseMetadata(MD, &PFS)) 4457 return true; 4458 4459 V = MetadataAsValue::get(Context, MD); 4460 return false; 4461 } 4462 4463 /// ParseValueAsMetadata 4464 /// ::= i32 %local 4465 /// ::= i32 @global 4466 /// ::= i32 7 4467 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4468 PerFunctionState *PFS) { 4469 Type *Ty; 4470 LocTy Loc; 4471 if (ParseType(Ty, TypeMsg, Loc)) 4472 return true; 4473 if (Ty->isMetadataTy()) 4474 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4475 4476 Value *V; 4477 if (ParseValue(Ty, V, PFS)) 4478 return true; 4479 4480 MD = ValueAsMetadata::get(V); 4481 return false; 4482 } 4483 4484 /// ParseMetadata 4485 /// ::= i32 %local 4486 /// ::= i32 @global 4487 /// ::= i32 7 4488 /// ::= !42 4489 /// ::= !{...} 4490 /// ::= !"string" 4491 /// ::= !DILocation(...) 4492 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4493 if (Lex.getKind() == lltok::MetadataVar) { 4494 MDNode *N; 4495 if (ParseSpecializedMDNode(N)) 4496 return true; 4497 MD = N; 4498 return false; 4499 } 4500 4501 // ValueAsMetadata: 4502 // <type> <value> 4503 if (Lex.getKind() != lltok::exclaim) 4504 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4505 4506 // '!'. 4507 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4508 Lex.Lex(); 4509 4510 // MDString: 4511 // ::= '!' STRINGCONSTANT 4512 if (Lex.getKind() == lltok::StringConstant) { 4513 MDString *S; 4514 if (ParseMDString(S)) 4515 return true; 4516 MD = S; 4517 return false; 4518 } 4519 4520 // MDNode: 4521 // !{ ... } 4522 // !7 4523 MDNode *N; 4524 if (ParseMDNodeTail(N)) 4525 return true; 4526 MD = N; 4527 return false; 4528 } 4529 4530 //===----------------------------------------------------------------------===// 4531 // Function Parsing. 4532 //===----------------------------------------------------------------------===// 4533 4534 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4535 PerFunctionState *PFS) { 4536 if (Ty->isFunctionTy()) 4537 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4538 4539 switch (ID.Kind) { 4540 case ValID::t_LocalID: 4541 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4542 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4543 return V == nullptr; 4544 case ValID::t_LocalName: 4545 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4546 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4547 return V == nullptr; 4548 case ValID::t_InlineAsm: { 4549 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4550 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4551 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4552 (ID.UIntVal >> 1) & 1, 4553 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4554 return false; 4555 } 4556 case ValID::t_GlobalName: 4557 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4558 return V == nullptr; 4559 case ValID::t_GlobalID: 4560 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4561 return V == nullptr; 4562 case ValID::t_APSInt: 4563 if (!Ty->isIntegerTy()) 4564 return Error(ID.Loc, "integer constant must have integer type"); 4565 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4566 V = ConstantInt::get(Context, ID.APSIntVal); 4567 return false; 4568 case ValID::t_APFloat: 4569 if (!Ty->isFloatingPointTy() || 4570 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4571 return Error(ID.Loc, "floating point constant invalid for type"); 4572 4573 // The lexer has no type info, so builds all half, float, and double FP 4574 // constants as double. Fix this here. Long double does not need this. 4575 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4576 bool Ignored; 4577 if (Ty->isHalfTy()) 4578 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4579 &Ignored); 4580 else if (Ty->isFloatTy()) 4581 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4582 &Ignored); 4583 } 4584 V = ConstantFP::get(Context, ID.APFloatVal); 4585 4586 if (V->getType() != Ty) 4587 return Error(ID.Loc, "floating point constant does not have type '" + 4588 getTypeString(Ty) + "'"); 4589 4590 return false; 4591 case ValID::t_Null: 4592 if (!Ty->isPointerTy()) 4593 return Error(ID.Loc, "null must be a pointer type"); 4594 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4595 return false; 4596 case ValID::t_Undef: 4597 // FIXME: LabelTy should not be a first-class type. 4598 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4599 return Error(ID.Loc, "invalid type for undef constant"); 4600 V = UndefValue::get(Ty); 4601 return false; 4602 case ValID::t_EmptyArray: 4603 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4604 return Error(ID.Loc, "invalid empty array initializer"); 4605 V = UndefValue::get(Ty); 4606 return false; 4607 case ValID::t_Zero: 4608 // FIXME: LabelTy should not be a first-class type. 4609 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4610 return Error(ID.Loc, "invalid type for null constant"); 4611 V = Constant::getNullValue(Ty); 4612 return false; 4613 case ValID::t_None: 4614 if (!Ty->isTokenTy()) 4615 return Error(ID.Loc, "invalid type for none constant"); 4616 V = Constant::getNullValue(Ty); 4617 return false; 4618 case ValID::t_Constant: 4619 if (ID.ConstantVal->getType() != Ty) 4620 return Error(ID.Loc, "constant expression type mismatch"); 4621 4622 V = ID.ConstantVal; 4623 return false; 4624 case ValID::t_ConstantStruct: 4625 case ValID::t_PackedConstantStruct: 4626 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4627 if (ST->getNumElements() != ID.UIntVal) 4628 return Error(ID.Loc, 4629 "initializer with struct type has wrong # elements"); 4630 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4631 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4632 4633 // Verify that the elements are compatible with the structtype. 4634 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4635 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4636 return Error(ID.Loc, "element " + Twine(i) + 4637 " of struct initializer doesn't match struct element type"); 4638 4639 V = ConstantStruct::get( 4640 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4641 } else 4642 return Error(ID.Loc, "constant expression type mismatch"); 4643 return false; 4644 } 4645 llvm_unreachable("Invalid ValID"); 4646 } 4647 4648 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4649 C = nullptr; 4650 ValID ID; 4651 auto Loc = Lex.getLoc(); 4652 if (ParseValID(ID, /*PFS=*/nullptr)) 4653 return true; 4654 switch (ID.Kind) { 4655 case ValID::t_APSInt: 4656 case ValID::t_APFloat: 4657 case ValID::t_Undef: 4658 case ValID::t_Constant: 4659 case ValID::t_ConstantStruct: 4660 case ValID::t_PackedConstantStruct: { 4661 Value *V; 4662 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4663 return true; 4664 assert(isa<Constant>(V) && "Expected a constant value"); 4665 C = cast<Constant>(V); 4666 return false; 4667 } 4668 case ValID::t_Null: 4669 C = Constant::getNullValue(Ty); 4670 return false; 4671 default: 4672 return Error(Loc, "expected a constant value"); 4673 } 4674 } 4675 4676 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4677 V = nullptr; 4678 ValID ID; 4679 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4680 } 4681 4682 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4683 Type *Ty = nullptr; 4684 return ParseType(Ty) || 4685 ParseValue(Ty, V, PFS); 4686 } 4687 4688 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4689 PerFunctionState &PFS) { 4690 Value *V; 4691 Loc = Lex.getLoc(); 4692 if (ParseTypeAndValue(V, PFS)) return true; 4693 if (!isa<BasicBlock>(V)) 4694 return Error(Loc, "expected a basic block"); 4695 BB = cast<BasicBlock>(V); 4696 return false; 4697 } 4698 4699 /// FunctionHeader 4700 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4701 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4702 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4703 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4704 // Parse the linkage. 4705 LocTy LinkageLoc = Lex.getLoc(); 4706 unsigned Linkage; 4707 4708 unsigned Visibility; 4709 unsigned DLLStorageClass; 4710 AttrBuilder RetAttrs; 4711 unsigned CC; 4712 bool HasLinkage; 4713 Type *RetType = nullptr; 4714 LocTy RetTypeLoc = Lex.getLoc(); 4715 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4716 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4717 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4718 return true; 4719 4720 // Verify that the linkage is ok. 4721 switch ((GlobalValue::LinkageTypes)Linkage) { 4722 case GlobalValue::ExternalLinkage: 4723 break; // always ok. 4724 case GlobalValue::ExternalWeakLinkage: 4725 if (isDefine) 4726 return Error(LinkageLoc, "invalid linkage for function definition"); 4727 break; 4728 case GlobalValue::PrivateLinkage: 4729 case GlobalValue::InternalLinkage: 4730 case GlobalValue::AvailableExternallyLinkage: 4731 case GlobalValue::LinkOnceAnyLinkage: 4732 case GlobalValue::LinkOnceODRLinkage: 4733 case GlobalValue::WeakAnyLinkage: 4734 case GlobalValue::WeakODRLinkage: 4735 if (!isDefine) 4736 return Error(LinkageLoc, "invalid linkage for function declaration"); 4737 break; 4738 case GlobalValue::AppendingLinkage: 4739 case GlobalValue::CommonLinkage: 4740 return Error(LinkageLoc, "invalid function linkage type"); 4741 } 4742 4743 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4744 return Error(LinkageLoc, 4745 "symbol with local linkage must have default visibility"); 4746 4747 if (!FunctionType::isValidReturnType(RetType)) 4748 return Error(RetTypeLoc, "invalid function return type"); 4749 4750 LocTy NameLoc = Lex.getLoc(); 4751 4752 std::string FunctionName; 4753 if (Lex.getKind() == lltok::GlobalVar) { 4754 FunctionName = Lex.getStrVal(); 4755 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4756 unsigned NameID = Lex.getUIntVal(); 4757 4758 if (NameID != NumberedVals.size()) 4759 return TokError("function expected to be numbered '%" + 4760 Twine(NumberedVals.size()) + "'"); 4761 } else { 4762 return TokError("expected function name"); 4763 } 4764 4765 Lex.Lex(); 4766 4767 if (Lex.getKind() != lltok::lparen) 4768 return TokError("expected '(' in function argument list"); 4769 4770 SmallVector<ArgInfo, 8> ArgList; 4771 bool isVarArg; 4772 AttrBuilder FuncAttrs; 4773 std::vector<unsigned> FwdRefAttrGrps; 4774 LocTy BuiltinLoc; 4775 std::string Section; 4776 unsigned Alignment; 4777 std::string GC; 4778 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4779 LocTy UnnamedAddrLoc; 4780 Constant *Prefix = nullptr; 4781 Constant *Prologue = nullptr; 4782 Constant *PersonalityFn = nullptr; 4783 Comdat *C; 4784 4785 if (ParseArgumentList(ArgList, isVarArg) || 4786 ParseOptionalUnnamedAddr(UnnamedAddr) || 4787 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4788 BuiltinLoc) || 4789 (EatIfPresent(lltok::kw_section) && 4790 ParseStringConstant(Section)) || 4791 parseOptionalComdat(FunctionName, C) || 4792 ParseOptionalAlignment(Alignment) || 4793 (EatIfPresent(lltok::kw_gc) && 4794 ParseStringConstant(GC)) || 4795 (EatIfPresent(lltok::kw_prefix) && 4796 ParseGlobalTypeAndValue(Prefix)) || 4797 (EatIfPresent(lltok::kw_prologue) && 4798 ParseGlobalTypeAndValue(Prologue)) || 4799 (EatIfPresent(lltok::kw_personality) && 4800 ParseGlobalTypeAndValue(PersonalityFn))) 4801 return true; 4802 4803 if (FuncAttrs.contains(Attribute::Builtin)) 4804 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4805 4806 // If the alignment was parsed as an attribute, move to the alignment field. 4807 if (FuncAttrs.hasAlignmentAttr()) { 4808 Alignment = FuncAttrs.getAlignment(); 4809 FuncAttrs.removeAttribute(Attribute::Alignment); 4810 } 4811 4812 // Okay, if we got here, the function is syntactically valid. Convert types 4813 // and do semantic checks. 4814 std::vector<Type*> ParamTypeList; 4815 SmallVector<AttributeSet, 8> Attrs; 4816 4817 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4818 ParamTypeList.push_back(ArgList[i].Ty); 4819 Attrs.push_back(ArgList[i].Attrs); 4820 } 4821 4822 AttributeList PAL = 4823 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4824 AttributeSet::get(Context, RetAttrs), Attrs); 4825 4826 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4827 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4828 4829 FunctionType *FT = 4830 FunctionType::get(RetType, ParamTypeList, isVarArg); 4831 PointerType *PFT = PointerType::getUnqual(FT); 4832 4833 Fn = nullptr; 4834 if (!FunctionName.empty()) { 4835 // If this was a definition of a forward reference, remove the definition 4836 // from the forward reference table and fill in the forward ref. 4837 auto FRVI = ForwardRefVals.find(FunctionName); 4838 if (FRVI != ForwardRefVals.end()) { 4839 Fn = M->getFunction(FunctionName); 4840 if (!Fn) 4841 return Error(FRVI->second.second, "invalid forward reference to " 4842 "function as global value!"); 4843 if (Fn->getType() != PFT) 4844 return Error(FRVI->second.second, "invalid forward reference to " 4845 "function '" + FunctionName + "' with wrong type!"); 4846 4847 ForwardRefVals.erase(FRVI); 4848 } else if ((Fn = M->getFunction(FunctionName))) { 4849 // Reject redefinitions. 4850 return Error(NameLoc, "invalid redefinition of function '" + 4851 FunctionName + "'"); 4852 } else if (M->getNamedValue(FunctionName)) { 4853 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4854 } 4855 4856 } else { 4857 // If this is a definition of a forward referenced function, make sure the 4858 // types agree. 4859 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4860 if (I != ForwardRefValIDs.end()) { 4861 Fn = cast<Function>(I->second.first); 4862 if (Fn->getType() != PFT) 4863 return Error(NameLoc, "type of definition and forward reference of '@" + 4864 Twine(NumberedVals.size()) + "' disagree"); 4865 ForwardRefValIDs.erase(I); 4866 } 4867 } 4868 4869 if (!Fn) 4870 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4871 else // Move the forward-reference to the correct spot in the module. 4872 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4873 4874 if (FunctionName.empty()) 4875 NumberedVals.push_back(Fn); 4876 4877 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4878 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4879 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4880 Fn->setCallingConv(CC); 4881 Fn->setAttributes(PAL); 4882 Fn->setUnnamedAddr(UnnamedAddr); 4883 Fn->setAlignment(Alignment); 4884 Fn->setSection(Section); 4885 Fn->setComdat(C); 4886 Fn->setPersonalityFn(PersonalityFn); 4887 if (!GC.empty()) Fn->setGC(GC); 4888 Fn->setPrefixData(Prefix); 4889 Fn->setPrologueData(Prologue); 4890 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4891 4892 // Add all of the arguments we parsed to the function. 4893 Function::arg_iterator ArgIt = Fn->arg_begin(); 4894 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4895 // If the argument has a name, insert it into the argument symbol table. 4896 if (ArgList[i].Name.empty()) continue; 4897 4898 // Set the name, if it conflicted, it will be auto-renamed. 4899 ArgIt->setName(ArgList[i].Name); 4900 4901 if (ArgIt->getName() != ArgList[i].Name) 4902 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4903 ArgList[i].Name + "'"); 4904 } 4905 4906 if (isDefine) 4907 return false; 4908 4909 // Check the declaration has no block address forward references. 4910 ValID ID; 4911 if (FunctionName.empty()) { 4912 ID.Kind = ValID::t_GlobalID; 4913 ID.UIntVal = NumberedVals.size() - 1; 4914 } else { 4915 ID.Kind = ValID::t_GlobalName; 4916 ID.StrVal = FunctionName; 4917 } 4918 auto Blocks = ForwardRefBlockAddresses.find(ID); 4919 if (Blocks != ForwardRefBlockAddresses.end()) 4920 return Error(Blocks->first.Loc, 4921 "cannot take blockaddress inside a declaration"); 4922 return false; 4923 } 4924 4925 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4926 ValID ID; 4927 if (FunctionNumber == -1) { 4928 ID.Kind = ValID::t_GlobalName; 4929 ID.StrVal = F.getName(); 4930 } else { 4931 ID.Kind = ValID::t_GlobalID; 4932 ID.UIntVal = FunctionNumber; 4933 } 4934 4935 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4936 if (Blocks == P.ForwardRefBlockAddresses.end()) 4937 return false; 4938 4939 for (const auto &I : Blocks->second) { 4940 const ValID &BBID = I.first; 4941 GlobalValue *GV = I.second; 4942 4943 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4944 "Expected local id or name"); 4945 BasicBlock *BB; 4946 if (BBID.Kind == ValID::t_LocalName) 4947 BB = GetBB(BBID.StrVal, BBID.Loc); 4948 else 4949 BB = GetBB(BBID.UIntVal, BBID.Loc); 4950 if (!BB) 4951 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4952 4953 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4954 GV->eraseFromParent(); 4955 } 4956 4957 P.ForwardRefBlockAddresses.erase(Blocks); 4958 return false; 4959 } 4960 4961 /// ParseFunctionBody 4962 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4963 bool LLParser::ParseFunctionBody(Function &Fn) { 4964 if (Lex.getKind() != lltok::lbrace) 4965 return TokError("expected '{' in function body"); 4966 Lex.Lex(); // eat the {. 4967 4968 int FunctionNumber = -1; 4969 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4970 4971 PerFunctionState PFS(*this, Fn, FunctionNumber); 4972 4973 // Resolve block addresses and allow basic blocks to be forward-declared 4974 // within this function. 4975 if (PFS.resolveForwardRefBlockAddresses()) 4976 return true; 4977 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4978 4979 // We need at least one basic block. 4980 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4981 return TokError("function body requires at least one basic block"); 4982 4983 while (Lex.getKind() != lltok::rbrace && 4984 Lex.getKind() != lltok::kw_uselistorder) 4985 if (ParseBasicBlock(PFS)) return true; 4986 4987 while (Lex.getKind() != lltok::rbrace) 4988 if (ParseUseListOrder(&PFS)) 4989 return true; 4990 4991 // Eat the }. 4992 Lex.Lex(); 4993 4994 // Verify function is ok. 4995 return PFS.FinishFunction(); 4996 } 4997 4998 /// ParseBasicBlock 4999 /// ::= LabelStr? Instruction* 5000 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5001 // If this basic block starts out with a name, remember it. 5002 std::string Name; 5003 LocTy NameLoc = Lex.getLoc(); 5004 if (Lex.getKind() == lltok::LabelStr) { 5005 Name = Lex.getStrVal(); 5006 Lex.Lex(); 5007 } 5008 5009 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5010 if (!BB) 5011 return Error(NameLoc, 5012 "unable to create block named '" + Name + "'"); 5013 5014 std::string NameStr; 5015 5016 // Parse the instructions in this block until we get a terminator. 5017 Instruction *Inst; 5018 do { 5019 // This instruction may have three possibilities for a name: a) none 5020 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5021 LocTy NameLoc = Lex.getLoc(); 5022 int NameID = -1; 5023 NameStr = ""; 5024 5025 if (Lex.getKind() == lltok::LocalVarID) { 5026 NameID = Lex.getUIntVal(); 5027 Lex.Lex(); 5028 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5029 return true; 5030 } else if (Lex.getKind() == lltok::LocalVar) { 5031 NameStr = Lex.getStrVal(); 5032 Lex.Lex(); 5033 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5034 return true; 5035 } 5036 5037 switch (ParseInstruction(Inst, BB, PFS)) { 5038 default: llvm_unreachable("Unknown ParseInstruction result!"); 5039 case InstError: return true; 5040 case InstNormal: 5041 BB->getInstList().push_back(Inst); 5042 5043 // With a normal result, we check to see if the instruction is followed by 5044 // a comma and metadata. 5045 if (EatIfPresent(lltok::comma)) 5046 if (ParseInstructionMetadata(*Inst)) 5047 return true; 5048 break; 5049 case InstExtraComma: 5050 BB->getInstList().push_back(Inst); 5051 5052 // If the instruction parser ate an extra comma at the end of it, it 5053 // *must* be followed by metadata. 5054 if (ParseInstructionMetadata(*Inst)) 5055 return true; 5056 break; 5057 } 5058 5059 // Set the name on the instruction. 5060 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5061 } while (!isa<TerminatorInst>(Inst)); 5062 5063 return false; 5064 } 5065 5066 //===----------------------------------------------------------------------===// 5067 // Instruction Parsing. 5068 //===----------------------------------------------------------------------===// 5069 5070 /// ParseInstruction - Parse one of the many different instructions. 5071 /// 5072 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5073 PerFunctionState &PFS) { 5074 lltok::Kind Token = Lex.getKind(); 5075 if (Token == lltok::Eof) 5076 return TokError("found end of file when expecting more instructions"); 5077 LocTy Loc = Lex.getLoc(); 5078 unsigned KeywordVal = Lex.getUIntVal(); 5079 Lex.Lex(); // Eat the keyword. 5080 5081 switch (Token) { 5082 default: return Error(Loc, "expected instruction opcode"); 5083 // Terminator Instructions. 5084 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5085 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5086 case lltok::kw_br: return ParseBr(Inst, PFS); 5087 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5088 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5089 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5090 case lltok::kw_resume: return ParseResume(Inst, PFS); 5091 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5092 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5093 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5094 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5095 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5096 // Binary Operators. 5097 case lltok::kw_add: 5098 case lltok::kw_sub: 5099 case lltok::kw_mul: 5100 case lltok::kw_shl: { 5101 bool NUW = EatIfPresent(lltok::kw_nuw); 5102 bool NSW = EatIfPresent(lltok::kw_nsw); 5103 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5104 5105 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5106 5107 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5108 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5109 return false; 5110 } 5111 case lltok::kw_fadd: 5112 case lltok::kw_fsub: 5113 case lltok::kw_fmul: 5114 case lltok::kw_fdiv: 5115 case lltok::kw_frem: { 5116 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5117 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5118 if (Res != 0) 5119 return Res; 5120 if (FMF.any()) 5121 Inst->setFastMathFlags(FMF); 5122 return 0; 5123 } 5124 5125 case lltok::kw_sdiv: 5126 case lltok::kw_udiv: 5127 case lltok::kw_lshr: 5128 case lltok::kw_ashr: { 5129 bool Exact = EatIfPresent(lltok::kw_exact); 5130 5131 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5132 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5133 return false; 5134 } 5135 5136 case lltok::kw_urem: 5137 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5138 case lltok::kw_and: 5139 case lltok::kw_or: 5140 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5141 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5142 case lltok::kw_fcmp: { 5143 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5144 int Res = ParseCompare(Inst, PFS, KeywordVal); 5145 if (Res != 0) 5146 return Res; 5147 if (FMF.any()) 5148 Inst->setFastMathFlags(FMF); 5149 return 0; 5150 } 5151 5152 // Casts. 5153 case lltok::kw_trunc: 5154 case lltok::kw_zext: 5155 case lltok::kw_sext: 5156 case lltok::kw_fptrunc: 5157 case lltok::kw_fpext: 5158 case lltok::kw_bitcast: 5159 case lltok::kw_addrspacecast: 5160 case lltok::kw_uitofp: 5161 case lltok::kw_sitofp: 5162 case lltok::kw_fptoui: 5163 case lltok::kw_fptosi: 5164 case lltok::kw_inttoptr: 5165 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5166 // Other. 5167 case lltok::kw_select: return ParseSelect(Inst, PFS); 5168 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5169 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5170 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5171 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5172 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5173 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5174 // Call. 5175 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5176 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5177 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5178 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5179 // Memory. 5180 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5181 case lltok::kw_load: return ParseLoad(Inst, PFS); 5182 case lltok::kw_store: return ParseStore(Inst, PFS); 5183 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5184 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5185 case lltok::kw_fence: return ParseFence(Inst, PFS); 5186 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5187 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5188 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5189 } 5190 } 5191 5192 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5193 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5194 if (Opc == Instruction::FCmp) { 5195 switch (Lex.getKind()) { 5196 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5197 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5198 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5199 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5200 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5201 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5202 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5203 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5204 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5205 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5206 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5207 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5208 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5209 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5210 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5211 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5212 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5213 } 5214 } else { 5215 switch (Lex.getKind()) { 5216 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5217 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5218 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5219 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5220 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5221 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5222 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5223 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5224 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5225 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5226 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5227 } 5228 } 5229 Lex.Lex(); 5230 return false; 5231 } 5232 5233 //===----------------------------------------------------------------------===// 5234 // Terminator Instructions. 5235 //===----------------------------------------------------------------------===// 5236 5237 /// ParseRet - Parse a return instruction. 5238 /// ::= 'ret' void (',' !dbg, !1)* 5239 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5240 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5241 PerFunctionState &PFS) { 5242 SMLoc TypeLoc = Lex.getLoc(); 5243 Type *Ty = nullptr; 5244 if (ParseType(Ty, true /*void allowed*/)) return true; 5245 5246 Type *ResType = PFS.getFunction().getReturnType(); 5247 5248 if (Ty->isVoidTy()) { 5249 if (!ResType->isVoidTy()) 5250 return Error(TypeLoc, "value doesn't match function result type '" + 5251 getTypeString(ResType) + "'"); 5252 5253 Inst = ReturnInst::Create(Context); 5254 return false; 5255 } 5256 5257 Value *RV; 5258 if (ParseValue(Ty, RV, PFS)) return true; 5259 5260 if (ResType != RV->getType()) 5261 return Error(TypeLoc, "value doesn't match function result type '" + 5262 getTypeString(ResType) + "'"); 5263 5264 Inst = ReturnInst::Create(Context, RV); 5265 return false; 5266 } 5267 5268 /// ParseBr 5269 /// ::= 'br' TypeAndValue 5270 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5271 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5272 LocTy Loc, Loc2; 5273 Value *Op0; 5274 BasicBlock *Op1, *Op2; 5275 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5276 5277 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5278 Inst = BranchInst::Create(BB); 5279 return false; 5280 } 5281 5282 if (Op0->getType() != Type::getInt1Ty(Context)) 5283 return Error(Loc, "branch condition must have 'i1' type"); 5284 5285 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5286 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5287 ParseToken(lltok::comma, "expected ',' after true destination") || 5288 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5289 return true; 5290 5291 Inst = BranchInst::Create(Op1, Op2, Op0); 5292 return false; 5293 } 5294 5295 /// ParseSwitch 5296 /// Instruction 5297 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5298 /// JumpTable 5299 /// ::= (TypeAndValue ',' TypeAndValue)* 5300 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5301 LocTy CondLoc, BBLoc; 5302 Value *Cond; 5303 BasicBlock *DefaultBB; 5304 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5305 ParseToken(lltok::comma, "expected ',' after switch condition") || 5306 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5307 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5308 return true; 5309 5310 if (!Cond->getType()->isIntegerTy()) 5311 return Error(CondLoc, "switch condition must have integer type"); 5312 5313 // Parse the jump table pairs. 5314 SmallPtrSet<Value*, 32> SeenCases; 5315 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5316 while (Lex.getKind() != lltok::rsquare) { 5317 Value *Constant; 5318 BasicBlock *DestBB; 5319 5320 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5321 ParseToken(lltok::comma, "expected ',' after case value") || 5322 ParseTypeAndBasicBlock(DestBB, PFS)) 5323 return true; 5324 5325 if (!SeenCases.insert(Constant).second) 5326 return Error(CondLoc, "duplicate case value in switch"); 5327 if (!isa<ConstantInt>(Constant)) 5328 return Error(CondLoc, "case value is not a constant integer"); 5329 5330 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5331 } 5332 5333 Lex.Lex(); // Eat the ']'. 5334 5335 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5336 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5337 SI->addCase(Table[i].first, Table[i].second); 5338 Inst = SI; 5339 return false; 5340 } 5341 5342 /// ParseIndirectBr 5343 /// Instruction 5344 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5345 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5346 LocTy AddrLoc; 5347 Value *Address; 5348 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5349 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5350 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5351 return true; 5352 5353 if (!Address->getType()->isPointerTy()) 5354 return Error(AddrLoc, "indirectbr address must have pointer type"); 5355 5356 // Parse the destination list. 5357 SmallVector<BasicBlock*, 16> DestList; 5358 5359 if (Lex.getKind() != lltok::rsquare) { 5360 BasicBlock *DestBB; 5361 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5362 return true; 5363 DestList.push_back(DestBB); 5364 5365 while (EatIfPresent(lltok::comma)) { 5366 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5367 return true; 5368 DestList.push_back(DestBB); 5369 } 5370 } 5371 5372 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5373 return true; 5374 5375 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5376 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5377 IBI->addDestination(DestList[i]); 5378 Inst = IBI; 5379 return false; 5380 } 5381 5382 /// ParseInvoke 5383 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5384 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5385 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5386 LocTy CallLoc = Lex.getLoc(); 5387 AttrBuilder RetAttrs, FnAttrs; 5388 std::vector<unsigned> FwdRefAttrGrps; 5389 LocTy NoBuiltinLoc; 5390 unsigned CC; 5391 Type *RetType = nullptr; 5392 LocTy RetTypeLoc; 5393 ValID CalleeID; 5394 SmallVector<ParamInfo, 16> ArgList; 5395 SmallVector<OperandBundleDef, 2> BundleList; 5396 5397 BasicBlock *NormalBB, *UnwindBB; 5398 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5399 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5400 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5401 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5402 NoBuiltinLoc) || 5403 ParseOptionalOperandBundles(BundleList, PFS) || 5404 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5405 ParseTypeAndBasicBlock(NormalBB, PFS) || 5406 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5407 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5408 return true; 5409 5410 // If RetType is a non-function pointer type, then this is the short syntax 5411 // for the call, which means that RetType is just the return type. Infer the 5412 // rest of the function argument types from the arguments that are present. 5413 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5414 if (!Ty) { 5415 // Pull out the types of all of the arguments... 5416 std::vector<Type*> ParamTypes; 5417 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5418 ParamTypes.push_back(ArgList[i].V->getType()); 5419 5420 if (!FunctionType::isValidReturnType(RetType)) 5421 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5422 5423 Ty = FunctionType::get(RetType, ParamTypes, false); 5424 } 5425 5426 CalleeID.FTy = Ty; 5427 5428 // Look up the callee. 5429 Value *Callee; 5430 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5431 return true; 5432 5433 // Set up the Attribute for the function. 5434 SmallVector<Value *, 8> Args; 5435 SmallVector<AttributeSet, 8> ArgAttrs; 5436 5437 // Loop through FunctionType's arguments and ensure they are specified 5438 // correctly. Also, gather any parameter attributes. 5439 FunctionType::param_iterator I = Ty->param_begin(); 5440 FunctionType::param_iterator E = Ty->param_end(); 5441 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5442 Type *ExpectedTy = nullptr; 5443 if (I != E) { 5444 ExpectedTy = *I++; 5445 } else if (!Ty->isVarArg()) { 5446 return Error(ArgList[i].Loc, "too many arguments specified"); 5447 } 5448 5449 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5450 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5451 getTypeString(ExpectedTy) + "'"); 5452 Args.push_back(ArgList[i].V); 5453 ArgAttrs.push_back(ArgList[i].Attrs); 5454 } 5455 5456 if (I != E) 5457 return Error(CallLoc, "not enough parameters specified for call"); 5458 5459 if (FnAttrs.hasAlignmentAttr()) 5460 return Error(CallLoc, "invoke instructions may not have an alignment"); 5461 5462 // Finish off the Attribute and check them 5463 AttributeList PAL = 5464 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5465 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5466 5467 InvokeInst *II = 5468 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5469 II->setCallingConv(CC); 5470 II->setAttributes(PAL); 5471 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5472 Inst = II; 5473 return false; 5474 } 5475 5476 /// ParseResume 5477 /// ::= 'resume' TypeAndValue 5478 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5479 Value *Exn; LocTy ExnLoc; 5480 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5481 return true; 5482 5483 ResumeInst *RI = ResumeInst::Create(Exn); 5484 Inst = RI; 5485 return false; 5486 } 5487 5488 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5489 PerFunctionState &PFS) { 5490 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5491 return true; 5492 5493 while (Lex.getKind() != lltok::rsquare) { 5494 // If this isn't the first argument, we need a comma. 5495 if (!Args.empty() && 5496 ParseToken(lltok::comma, "expected ',' in argument list")) 5497 return true; 5498 5499 // Parse the argument. 5500 LocTy ArgLoc; 5501 Type *ArgTy = nullptr; 5502 if (ParseType(ArgTy, ArgLoc)) 5503 return true; 5504 5505 Value *V; 5506 if (ArgTy->isMetadataTy()) { 5507 if (ParseMetadataAsValue(V, PFS)) 5508 return true; 5509 } else { 5510 if (ParseValue(ArgTy, V, PFS)) 5511 return true; 5512 } 5513 Args.push_back(V); 5514 } 5515 5516 Lex.Lex(); // Lex the ']'. 5517 return false; 5518 } 5519 5520 /// ParseCleanupRet 5521 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5522 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5523 Value *CleanupPad = nullptr; 5524 5525 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5526 return true; 5527 5528 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5529 return true; 5530 5531 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5532 return true; 5533 5534 BasicBlock *UnwindBB = nullptr; 5535 if (Lex.getKind() == lltok::kw_to) { 5536 Lex.Lex(); 5537 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5538 return true; 5539 } else { 5540 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5541 return true; 5542 } 5543 } 5544 5545 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5546 return false; 5547 } 5548 5549 /// ParseCatchRet 5550 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5551 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5552 Value *CatchPad = nullptr; 5553 5554 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5555 return true; 5556 5557 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5558 return true; 5559 5560 BasicBlock *BB; 5561 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5562 ParseTypeAndBasicBlock(BB, PFS)) 5563 return true; 5564 5565 Inst = CatchReturnInst::Create(CatchPad, BB); 5566 return false; 5567 } 5568 5569 /// ParseCatchSwitch 5570 /// ::= 'catchswitch' within Parent 5571 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5572 Value *ParentPad; 5573 LocTy BBLoc; 5574 5575 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5576 return true; 5577 5578 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5579 Lex.getKind() != lltok::LocalVarID) 5580 return TokError("expected scope value for catchswitch"); 5581 5582 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5583 return true; 5584 5585 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5586 return true; 5587 5588 SmallVector<BasicBlock *, 32> Table; 5589 do { 5590 BasicBlock *DestBB; 5591 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5592 return true; 5593 Table.push_back(DestBB); 5594 } while (EatIfPresent(lltok::comma)); 5595 5596 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5597 return true; 5598 5599 if (ParseToken(lltok::kw_unwind, 5600 "expected 'unwind' after catchswitch scope")) 5601 return true; 5602 5603 BasicBlock *UnwindBB = nullptr; 5604 if (EatIfPresent(lltok::kw_to)) { 5605 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5606 return true; 5607 } else { 5608 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5609 return true; 5610 } 5611 5612 auto *CatchSwitch = 5613 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5614 for (BasicBlock *DestBB : Table) 5615 CatchSwitch->addHandler(DestBB); 5616 Inst = CatchSwitch; 5617 return false; 5618 } 5619 5620 /// ParseCatchPad 5621 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5622 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5623 Value *CatchSwitch = nullptr; 5624 5625 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5626 return true; 5627 5628 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5629 return TokError("expected scope value for catchpad"); 5630 5631 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5632 return true; 5633 5634 SmallVector<Value *, 8> Args; 5635 if (ParseExceptionArgs(Args, PFS)) 5636 return true; 5637 5638 Inst = CatchPadInst::Create(CatchSwitch, Args); 5639 return false; 5640 } 5641 5642 /// ParseCleanupPad 5643 /// ::= 'cleanuppad' within Parent ParamList 5644 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5645 Value *ParentPad = nullptr; 5646 5647 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5648 return true; 5649 5650 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5651 Lex.getKind() != lltok::LocalVarID) 5652 return TokError("expected scope value for cleanuppad"); 5653 5654 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5655 return true; 5656 5657 SmallVector<Value *, 8> Args; 5658 if (ParseExceptionArgs(Args, PFS)) 5659 return true; 5660 5661 Inst = CleanupPadInst::Create(ParentPad, Args); 5662 return false; 5663 } 5664 5665 //===----------------------------------------------------------------------===// 5666 // Binary Operators. 5667 //===----------------------------------------------------------------------===// 5668 5669 /// ParseArithmetic 5670 /// ::= ArithmeticOps TypeAndValue ',' Value 5671 /// 5672 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5673 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5674 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5675 unsigned Opc, unsigned OperandType) { 5676 LocTy Loc; Value *LHS, *RHS; 5677 if (ParseTypeAndValue(LHS, Loc, PFS) || 5678 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5679 ParseValue(LHS->getType(), RHS, PFS)) 5680 return true; 5681 5682 bool Valid; 5683 switch (OperandType) { 5684 default: llvm_unreachable("Unknown operand type!"); 5685 case 0: // int or FP. 5686 Valid = LHS->getType()->isIntOrIntVectorTy() || 5687 LHS->getType()->isFPOrFPVectorTy(); 5688 break; 5689 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5690 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5691 } 5692 5693 if (!Valid) 5694 return Error(Loc, "invalid operand type for instruction"); 5695 5696 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5697 return false; 5698 } 5699 5700 /// ParseLogical 5701 /// ::= ArithmeticOps TypeAndValue ',' Value { 5702 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5703 unsigned Opc) { 5704 LocTy Loc; Value *LHS, *RHS; 5705 if (ParseTypeAndValue(LHS, Loc, PFS) || 5706 ParseToken(lltok::comma, "expected ',' in logical operation") || 5707 ParseValue(LHS->getType(), RHS, PFS)) 5708 return true; 5709 5710 if (!LHS->getType()->isIntOrIntVectorTy()) 5711 return Error(Loc,"instruction requires integer or integer vector operands"); 5712 5713 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5714 return false; 5715 } 5716 5717 /// ParseCompare 5718 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5719 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5720 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5721 unsigned Opc) { 5722 // Parse the integer/fp comparison predicate. 5723 LocTy Loc; 5724 unsigned Pred; 5725 Value *LHS, *RHS; 5726 if (ParseCmpPredicate(Pred, Opc) || 5727 ParseTypeAndValue(LHS, Loc, PFS) || 5728 ParseToken(lltok::comma, "expected ',' after compare value") || 5729 ParseValue(LHS->getType(), RHS, PFS)) 5730 return true; 5731 5732 if (Opc == Instruction::FCmp) { 5733 if (!LHS->getType()->isFPOrFPVectorTy()) 5734 return Error(Loc, "fcmp requires floating point operands"); 5735 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5736 } else { 5737 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5738 if (!LHS->getType()->isIntOrIntVectorTy() && 5739 !LHS->getType()->isPtrOrPtrVectorTy()) 5740 return Error(Loc, "icmp requires integer operands"); 5741 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5742 } 5743 return false; 5744 } 5745 5746 //===----------------------------------------------------------------------===// 5747 // Other Instructions. 5748 //===----------------------------------------------------------------------===// 5749 5750 5751 /// ParseCast 5752 /// ::= CastOpc TypeAndValue 'to' Type 5753 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5754 unsigned Opc) { 5755 LocTy Loc; 5756 Value *Op; 5757 Type *DestTy = nullptr; 5758 if (ParseTypeAndValue(Op, Loc, PFS) || 5759 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5760 ParseType(DestTy)) 5761 return true; 5762 5763 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5764 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5765 return Error(Loc, "invalid cast opcode for cast from '" + 5766 getTypeString(Op->getType()) + "' to '" + 5767 getTypeString(DestTy) + "'"); 5768 } 5769 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5770 return false; 5771 } 5772 5773 /// ParseSelect 5774 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5775 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5776 LocTy Loc; 5777 Value *Op0, *Op1, *Op2; 5778 if (ParseTypeAndValue(Op0, Loc, PFS) || 5779 ParseToken(lltok::comma, "expected ',' after select condition") || 5780 ParseTypeAndValue(Op1, PFS) || 5781 ParseToken(lltok::comma, "expected ',' after select value") || 5782 ParseTypeAndValue(Op2, PFS)) 5783 return true; 5784 5785 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5786 return Error(Loc, Reason); 5787 5788 Inst = SelectInst::Create(Op0, Op1, Op2); 5789 return false; 5790 } 5791 5792 /// ParseVA_Arg 5793 /// ::= 'va_arg' TypeAndValue ',' Type 5794 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5795 Value *Op; 5796 Type *EltTy = nullptr; 5797 LocTy TypeLoc; 5798 if (ParseTypeAndValue(Op, PFS) || 5799 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5800 ParseType(EltTy, TypeLoc)) 5801 return true; 5802 5803 if (!EltTy->isFirstClassType()) 5804 return Error(TypeLoc, "va_arg requires operand with first class type"); 5805 5806 Inst = new VAArgInst(Op, EltTy); 5807 return false; 5808 } 5809 5810 /// ParseExtractElement 5811 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5812 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5813 LocTy Loc; 5814 Value *Op0, *Op1; 5815 if (ParseTypeAndValue(Op0, Loc, PFS) || 5816 ParseToken(lltok::comma, "expected ',' after extract value") || 5817 ParseTypeAndValue(Op1, PFS)) 5818 return true; 5819 5820 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5821 return Error(Loc, "invalid extractelement operands"); 5822 5823 Inst = ExtractElementInst::Create(Op0, Op1); 5824 return false; 5825 } 5826 5827 /// ParseInsertElement 5828 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5829 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5830 LocTy Loc; 5831 Value *Op0, *Op1, *Op2; 5832 if (ParseTypeAndValue(Op0, Loc, PFS) || 5833 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5834 ParseTypeAndValue(Op1, PFS) || 5835 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5836 ParseTypeAndValue(Op2, PFS)) 5837 return true; 5838 5839 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5840 return Error(Loc, "invalid insertelement operands"); 5841 5842 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5843 return false; 5844 } 5845 5846 /// ParseShuffleVector 5847 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5848 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5849 LocTy Loc; 5850 Value *Op0, *Op1, *Op2; 5851 if (ParseTypeAndValue(Op0, Loc, PFS) || 5852 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5853 ParseTypeAndValue(Op1, PFS) || 5854 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5855 ParseTypeAndValue(Op2, PFS)) 5856 return true; 5857 5858 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5859 return Error(Loc, "invalid shufflevector operands"); 5860 5861 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5862 return false; 5863 } 5864 5865 /// ParsePHI 5866 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5867 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5868 Type *Ty = nullptr; LocTy TypeLoc; 5869 Value *Op0, *Op1; 5870 5871 if (ParseType(Ty, TypeLoc) || 5872 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5873 ParseValue(Ty, Op0, PFS) || 5874 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5875 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5876 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5877 return true; 5878 5879 bool AteExtraComma = false; 5880 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5881 5882 while (true) { 5883 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5884 5885 if (!EatIfPresent(lltok::comma)) 5886 break; 5887 5888 if (Lex.getKind() == lltok::MetadataVar) { 5889 AteExtraComma = true; 5890 break; 5891 } 5892 5893 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5894 ParseValue(Ty, Op0, PFS) || 5895 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5896 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5897 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5898 return true; 5899 } 5900 5901 if (!Ty->isFirstClassType()) 5902 return Error(TypeLoc, "phi node must have first class type"); 5903 5904 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5905 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5906 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5907 Inst = PN; 5908 return AteExtraComma ? InstExtraComma : InstNormal; 5909 } 5910 5911 /// ParseLandingPad 5912 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5913 /// Clause 5914 /// ::= 'catch' TypeAndValue 5915 /// ::= 'filter' 5916 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5917 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5918 Type *Ty = nullptr; LocTy TyLoc; 5919 5920 if (ParseType(Ty, TyLoc)) 5921 return true; 5922 5923 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5924 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5925 5926 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5927 LandingPadInst::ClauseType CT; 5928 if (EatIfPresent(lltok::kw_catch)) 5929 CT = LandingPadInst::Catch; 5930 else if (EatIfPresent(lltok::kw_filter)) 5931 CT = LandingPadInst::Filter; 5932 else 5933 return TokError("expected 'catch' or 'filter' clause type"); 5934 5935 Value *V; 5936 LocTy VLoc; 5937 if (ParseTypeAndValue(V, VLoc, PFS)) 5938 return true; 5939 5940 // A 'catch' type expects a non-array constant. A filter clause expects an 5941 // array constant. 5942 if (CT == LandingPadInst::Catch) { 5943 if (isa<ArrayType>(V->getType())) 5944 Error(VLoc, "'catch' clause has an invalid type"); 5945 } else { 5946 if (!isa<ArrayType>(V->getType())) 5947 Error(VLoc, "'filter' clause has an invalid type"); 5948 } 5949 5950 Constant *CV = dyn_cast<Constant>(V); 5951 if (!CV) 5952 return Error(VLoc, "clause argument must be a constant"); 5953 LP->addClause(CV); 5954 } 5955 5956 Inst = LP.release(); 5957 return false; 5958 } 5959 5960 /// ParseCall 5961 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5962 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5963 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5964 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5965 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5966 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5967 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5968 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5969 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5970 CallInst::TailCallKind TCK) { 5971 AttrBuilder RetAttrs, FnAttrs; 5972 std::vector<unsigned> FwdRefAttrGrps; 5973 LocTy BuiltinLoc; 5974 unsigned CC; 5975 Type *RetType = nullptr; 5976 LocTy RetTypeLoc; 5977 ValID CalleeID; 5978 SmallVector<ParamInfo, 16> ArgList; 5979 SmallVector<OperandBundleDef, 2> BundleList; 5980 LocTy CallLoc = Lex.getLoc(); 5981 5982 if (TCK != CallInst::TCK_None && 5983 ParseToken(lltok::kw_call, 5984 "expected 'tail call', 'musttail call', or 'notail call'")) 5985 return true; 5986 5987 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5988 5989 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5990 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5991 ParseValID(CalleeID) || 5992 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5993 PFS.getFunction().isVarArg()) || 5994 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5995 ParseOptionalOperandBundles(BundleList, PFS)) 5996 return true; 5997 5998 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5999 return Error(CallLoc, "fast-math-flags specified for call without " 6000 "floating-point scalar or vector return type"); 6001 6002 // If RetType is a non-function pointer type, then this is the short syntax 6003 // for the call, which means that RetType is just the return type. Infer the 6004 // rest of the function argument types from the arguments that are present. 6005 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6006 if (!Ty) { 6007 // Pull out the types of all of the arguments... 6008 std::vector<Type*> ParamTypes; 6009 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6010 ParamTypes.push_back(ArgList[i].V->getType()); 6011 6012 if (!FunctionType::isValidReturnType(RetType)) 6013 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6014 6015 Ty = FunctionType::get(RetType, ParamTypes, false); 6016 } 6017 6018 CalleeID.FTy = Ty; 6019 6020 // Look up the callee. 6021 Value *Callee; 6022 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6023 return true; 6024 6025 // Set up the Attribute for the function. 6026 SmallVector<AttributeSet, 8> Attrs; 6027 6028 SmallVector<Value*, 8> Args; 6029 6030 // Loop through FunctionType's arguments and ensure they are specified 6031 // correctly. Also, gather any parameter attributes. 6032 FunctionType::param_iterator I = Ty->param_begin(); 6033 FunctionType::param_iterator E = Ty->param_end(); 6034 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6035 Type *ExpectedTy = nullptr; 6036 if (I != E) { 6037 ExpectedTy = *I++; 6038 } else if (!Ty->isVarArg()) { 6039 return Error(ArgList[i].Loc, "too many arguments specified"); 6040 } 6041 6042 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6043 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6044 getTypeString(ExpectedTy) + "'"); 6045 Args.push_back(ArgList[i].V); 6046 Attrs.push_back(ArgList[i].Attrs); 6047 } 6048 6049 if (I != E) 6050 return Error(CallLoc, "not enough parameters specified for call"); 6051 6052 if (FnAttrs.hasAlignmentAttr()) 6053 return Error(CallLoc, "call instructions may not have an alignment"); 6054 6055 // Finish off the Attribute and check them 6056 AttributeList PAL = 6057 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6058 AttributeSet::get(Context, RetAttrs), Attrs); 6059 6060 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6061 CI->setTailCallKind(TCK); 6062 CI->setCallingConv(CC); 6063 if (FMF.any()) 6064 CI->setFastMathFlags(FMF); 6065 CI->setAttributes(PAL); 6066 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6067 Inst = CI; 6068 return false; 6069 } 6070 6071 //===----------------------------------------------------------------------===// 6072 // Memory Instructions. 6073 //===----------------------------------------------------------------------===// 6074 6075 /// ParseAlloc 6076 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6077 /// (',' 'align' i32)? 6078 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6079 Value *Size = nullptr; 6080 LocTy SizeLoc, TyLoc, ASLoc; 6081 unsigned Alignment = 0; 6082 unsigned AddrSpace = 0; 6083 Type *Ty = nullptr; 6084 6085 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6086 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6087 6088 if (ParseType(Ty, TyLoc)) return true; 6089 6090 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6091 return Error(TyLoc, "invalid type for alloca"); 6092 6093 bool AteExtraComma = false; 6094 if (EatIfPresent(lltok::comma)) { 6095 if (Lex.getKind() == lltok::kw_align) { 6096 if (ParseOptionalAlignment(Alignment)) 6097 return true; 6098 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6099 return true; 6100 } else if (Lex.getKind() == lltok::kw_addrspace) { 6101 ASLoc = Lex.getLoc(); 6102 if (ParseOptionalAddrSpace(AddrSpace)) 6103 return true; 6104 } else if (Lex.getKind() == lltok::MetadataVar) { 6105 AteExtraComma = true; 6106 } else { 6107 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6108 ParseOptionalCommaAlign(Alignment, AteExtraComma) || 6109 (!AteExtraComma && 6110 ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))) 6111 return true; 6112 } 6113 } 6114 6115 if (Size && !Size->getType()->isIntegerTy()) 6116 return Error(SizeLoc, "element count must have integer type"); 6117 6118 const DataLayout &DL = M->getDataLayout(); 6119 unsigned AS = DL.getAllocaAddrSpace(); 6120 if (AS != AddrSpace) { 6121 // TODO: In the future it should be possible to specify addrspace per-alloca. 6122 return Error(ASLoc, "address space must match datalayout"); 6123 } 6124 6125 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment); 6126 AI->setUsedWithInAlloca(IsInAlloca); 6127 AI->setSwiftError(IsSwiftError); 6128 Inst = AI; 6129 return AteExtraComma ? InstExtraComma : InstNormal; 6130 } 6131 6132 /// ParseLoad 6133 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6134 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6135 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6136 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6137 Value *Val; LocTy Loc; 6138 unsigned Alignment = 0; 6139 bool AteExtraComma = false; 6140 bool isAtomic = false; 6141 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6142 SyncScope::ID SSID = SyncScope::System; 6143 6144 if (Lex.getKind() == lltok::kw_atomic) { 6145 isAtomic = true; 6146 Lex.Lex(); 6147 } 6148 6149 bool isVolatile = false; 6150 if (Lex.getKind() == lltok::kw_volatile) { 6151 isVolatile = true; 6152 Lex.Lex(); 6153 } 6154 6155 Type *Ty; 6156 LocTy ExplicitTypeLoc = Lex.getLoc(); 6157 if (ParseType(Ty) || 6158 ParseToken(lltok::comma, "expected comma after load's type") || 6159 ParseTypeAndValue(Val, Loc, PFS) || 6160 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6161 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6162 return true; 6163 6164 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6165 return Error(Loc, "load operand must be a pointer to a first class type"); 6166 if (isAtomic && !Alignment) 6167 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6168 if (Ordering == AtomicOrdering::Release || 6169 Ordering == AtomicOrdering::AcquireRelease) 6170 return Error(Loc, "atomic load cannot use Release ordering"); 6171 6172 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6173 return Error(ExplicitTypeLoc, 6174 "explicit pointee type doesn't match operand's pointee type"); 6175 6176 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6177 return AteExtraComma ? InstExtraComma : InstNormal; 6178 } 6179 6180 /// ParseStore 6181 6182 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6183 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6184 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6185 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6186 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6187 unsigned Alignment = 0; 6188 bool AteExtraComma = false; 6189 bool isAtomic = false; 6190 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6191 SyncScope::ID SSID = SyncScope::System; 6192 6193 if (Lex.getKind() == lltok::kw_atomic) { 6194 isAtomic = true; 6195 Lex.Lex(); 6196 } 6197 6198 bool isVolatile = false; 6199 if (Lex.getKind() == lltok::kw_volatile) { 6200 isVolatile = true; 6201 Lex.Lex(); 6202 } 6203 6204 if (ParseTypeAndValue(Val, Loc, PFS) || 6205 ParseToken(lltok::comma, "expected ',' after store operand") || 6206 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6207 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6208 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6209 return true; 6210 6211 if (!Ptr->getType()->isPointerTy()) 6212 return Error(PtrLoc, "store operand must be a pointer"); 6213 if (!Val->getType()->isFirstClassType()) 6214 return Error(Loc, "store operand must be a first class value"); 6215 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6216 return Error(Loc, "stored value and pointer type do not match"); 6217 if (isAtomic && !Alignment) 6218 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6219 if (Ordering == AtomicOrdering::Acquire || 6220 Ordering == AtomicOrdering::AcquireRelease) 6221 return Error(Loc, "atomic store cannot use Acquire ordering"); 6222 6223 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6224 return AteExtraComma ? InstExtraComma : InstNormal; 6225 } 6226 6227 /// ParseCmpXchg 6228 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6229 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6230 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6231 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6232 bool AteExtraComma = false; 6233 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6234 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6235 SyncScope::ID SSID = SyncScope::System; 6236 bool isVolatile = false; 6237 bool isWeak = false; 6238 6239 if (EatIfPresent(lltok::kw_weak)) 6240 isWeak = true; 6241 6242 if (EatIfPresent(lltok::kw_volatile)) 6243 isVolatile = true; 6244 6245 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6246 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6247 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6248 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6249 ParseTypeAndValue(New, NewLoc, PFS) || 6250 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6251 ParseOrdering(FailureOrdering)) 6252 return true; 6253 6254 if (SuccessOrdering == AtomicOrdering::Unordered || 6255 FailureOrdering == AtomicOrdering::Unordered) 6256 return TokError("cmpxchg cannot be unordered"); 6257 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6258 return TokError("cmpxchg failure argument shall be no stronger than the " 6259 "success argument"); 6260 if (FailureOrdering == AtomicOrdering::Release || 6261 FailureOrdering == AtomicOrdering::AcquireRelease) 6262 return TokError( 6263 "cmpxchg failure ordering cannot include release semantics"); 6264 if (!Ptr->getType()->isPointerTy()) 6265 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6266 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6267 return Error(CmpLoc, "compare value and pointer type do not match"); 6268 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6269 return Error(NewLoc, "new value and pointer type do not match"); 6270 if (!New->getType()->isFirstClassType()) 6271 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6272 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6273 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6274 CXI->setVolatile(isVolatile); 6275 CXI->setWeak(isWeak); 6276 Inst = CXI; 6277 return AteExtraComma ? InstExtraComma : InstNormal; 6278 } 6279 6280 /// ParseAtomicRMW 6281 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6282 /// 'singlethread'? AtomicOrdering 6283 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6284 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6285 bool AteExtraComma = false; 6286 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6287 SyncScope::ID SSID = SyncScope::System; 6288 bool isVolatile = false; 6289 AtomicRMWInst::BinOp Operation; 6290 6291 if (EatIfPresent(lltok::kw_volatile)) 6292 isVolatile = true; 6293 6294 switch (Lex.getKind()) { 6295 default: return TokError("expected binary operation in atomicrmw"); 6296 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6297 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6298 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6299 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6300 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6301 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6302 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6303 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6304 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6305 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6306 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6307 } 6308 Lex.Lex(); // Eat the operation. 6309 6310 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6311 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6312 ParseTypeAndValue(Val, ValLoc, PFS) || 6313 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6314 return true; 6315 6316 if (Ordering == AtomicOrdering::Unordered) 6317 return TokError("atomicrmw cannot be unordered"); 6318 if (!Ptr->getType()->isPointerTy()) 6319 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6320 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6321 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6322 if (!Val->getType()->isIntegerTy()) 6323 return Error(ValLoc, "atomicrmw operand must be an integer"); 6324 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6325 if (Size < 8 || (Size & (Size - 1))) 6326 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6327 " integer"); 6328 6329 AtomicRMWInst *RMWI = 6330 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6331 RMWI->setVolatile(isVolatile); 6332 Inst = RMWI; 6333 return AteExtraComma ? InstExtraComma : InstNormal; 6334 } 6335 6336 /// ParseFence 6337 /// ::= 'fence' 'singlethread'? AtomicOrdering 6338 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6339 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6340 SyncScope::ID SSID = SyncScope::System; 6341 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6342 return true; 6343 6344 if (Ordering == AtomicOrdering::Unordered) 6345 return TokError("fence cannot be unordered"); 6346 if (Ordering == AtomicOrdering::Monotonic) 6347 return TokError("fence cannot be monotonic"); 6348 6349 Inst = new FenceInst(Context, Ordering, SSID); 6350 return InstNormal; 6351 } 6352 6353 /// ParseGetElementPtr 6354 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6355 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6356 Value *Ptr = nullptr; 6357 Value *Val = nullptr; 6358 LocTy Loc, EltLoc; 6359 6360 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6361 6362 Type *Ty = nullptr; 6363 LocTy ExplicitTypeLoc = Lex.getLoc(); 6364 if (ParseType(Ty) || 6365 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6366 ParseTypeAndValue(Ptr, Loc, PFS)) 6367 return true; 6368 6369 Type *BaseType = Ptr->getType(); 6370 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6371 if (!BasePointerType) 6372 return Error(Loc, "base of getelementptr must be a pointer"); 6373 6374 if (Ty != BasePointerType->getElementType()) 6375 return Error(ExplicitTypeLoc, 6376 "explicit pointee type doesn't match operand's pointee type"); 6377 6378 SmallVector<Value*, 16> Indices; 6379 bool AteExtraComma = false; 6380 // GEP returns a vector of pointers if at least one of parameters is a vector. 6381 // All vector parameters should have the same vector width. 6382 unsigned GEPWidth = BaseType->isVectorTy() ? 6383 BaseType->getVectorNumElements() : 0; 6384 6385 while (EatIfPresent(lltok::comma)) { 6386 if (Lex.getKind() == lltok::MetadataVar) { 6387 AteExtraComma = true; 6388 break; 6389 } 6390 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6391 if (!Val->getType()->isIntOrIntVectorTy()) 6392 return Error(EltLoc, "getelementptr index must be an integer"); 6393 6394 if (Val->getType()->isVectorTy()) { 6395 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6396 if (GEPWidth && GEPWidth != ValNumEl) 6397 return Error(EltLoc, 6398 "getelementptr vector index has a wrong number of elements"); 6399 GEPWidth = ValNumEl; 6400 } 6401 Indices.push_back(Val); 6402 } 6403 6404 SmallPtrSet<Type*, 4> Visited; 6405 if (!Indices.empty() && !Ty->isSized(&Visited)) 6406 return Error(Loc, "base element of getelementptr must be sized"); 6407 6408 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6409 return Error(Loc, "invalid getelementptr indices"); 6410 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6411 if (InBounds) 6412 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6413 return AteExtraComma ? InstExtraComma : InstNormal; 6414 } 6415 6416 /// ParseExtractValue 6417 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6418 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6419 Value *Val; LocTy Loc; 6420 SmallVector<unsigned, 4> Indices; 6421 bool AteExtraComma; 6422 if (ParseTypeAndValue(Val, Loc, PFS) || 6423 ParseIndexList(Indices, AteExtraComma)) 6424 return true; 6425 6426 if (!Val->getType()->isAggregateType()) 6427 return Error(Loc, "extractvalue operand must be aggregate type"); 6428 6429 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6430 return Error(Loc, "invalid indices for extractvalue"); 6431 Inst = ExtractValueInst::Create(Val, Indices); 6432 return AteExtraComma ? InstExtraComma : InstNormal; 6433 } 6434 6435 /// ParseInsertValue 6436 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6437 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6438 Value *Val0, *Val1; LocTy Loc0, Loc1; 6439 SmallVector<unsigned, 4> Indices; 6440 bool AteExtraComma; 6441 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6442 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6443 ParseTypeAndValue(Val1, Loc1, PFS) || 6444 ParseIndexList(Indices, AteExtraComma)) 6445 return true; 6446 6447 if (!Val0->getType()->isAggregateType()) 6448 return Error(Loc0, "insertvalue operand must be aggregate type"); 6449 6450 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6451 if (!IndexedType) 6452 return Error(Loc0, "invalid indices for insertvalue"); 6453 if (IndexedType != Val1->getType()) 6454 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6455 getTypeString(Val1->getType()) + "' instead of '" + 6456 getTypeString(IndexedType) + "'"); 6457 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6458 return AteExtraComma ? InstExtraComma : InstNormal; 6459 } 6460 6461 //===----------------------------------------------------------------------===// 6462 // Embedded metadata. 6463 //===----------------------------------------------------------------------===// 6464 6465 /// ParseMDNodeVector 6466 /// ::= { Element (',' Element)* } 6467 /// Element 6468 /// ::= 'null' | TypeAndValue 6469 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6470 if (ParseToken(lltok::lbrace, "expected '{' here")) 6471 return true; 6472 6473 // Check for an empty list. 6474 if (EatIfPresent(lltok::rbrace)) 6475 return false; 6476 6477 do { 6478 // Null is a special case since it is typeless. 6479 if (EatIfPresent(lltok::kw_null)) { 6480 Elts.push_back(nullptr); 6481 continue; 6482 } 6483 6484 Metadata *MD; 6485 if (ParseMetadata(MD, nullptr)) 6486 return true; 6487 Elts.push_back(MD); 6488 } while (EatIfPresent(lltok::comma)); 6489 6490 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6491 } 6492 6493 //===----------------------------------------------------------------------===// 6494 // Use-list order directives. 6495 //===----------------------------------------------------------------------===// 6496 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6497 SMLoc Loc) { 6498 if (V->use_empty()) 6499 return Error(Loc, "value has no uses"); 6500 6501 unsigned NumUses = 0; 6502 SmallDenseMap<const Use *, unsigned, 16> Order; 6503 for (const Use &U : V->uses()) { 6504 if (++NumUses > Indexes.size()) 6505 break; 6506 Order[&U] = Indexes[NumUses - 1]; 6507 } 6508 if (NumUses < 2) 6509 return Error(Loc, "value only has one use"); 6510 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6511 return Error(Loc, "wrong number of indexes, expected " + 6512 Twine(std::distance(V->use_begin(), V->use_end()))); 6513 6514 V->sortUseList([&](const Use &L, const Use &R) { 6515 return Order.lookup(&L) < Order.lookup(&R); 6516 }); 6517 return false; 6518 } 6519 6520 /// ParseUseListOrderIndexes 6521 /// ::= '{' uint32 (',' uint32)+ '}' 6522 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6523 SMLoc Loc = Lex.getLoc(); 6524 if (ParseToken(lltok::lbrace, "expected '{' here")) 6525 return true; 6526 if (Lex.getKind() == lltok::rbrace) 6527 return Lex.Error("expected non-empty list of uselistorder indexes"); 6528 6529 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6530 // indexes should be distinct numbers in the range [0, size-1], and should 6531 // not be in order. 6532 unsigned Offset = 0; 6533 unsigned Max = 0; 6534 bool IsOrdered = true; 6535 assert(Indexes.empty() && "Expected empty order vector"); 6536 do { 6537 unsigned Index; 6538 if (ParseUInt32(Index)) 6539 return true; 6540 6541 // Update consistency checks. 6542 Offset += Index - Indexes.size(); 6543 Max = std::max(Max, Index); 6544 IsOrdered &= Index == Indexes.size(); 6545 6546 Indexes.push_back(Index); 6547 } while (EatIfPresent(lltok::comma)); 6548 6549 if (ParseToken(lltok::rbrace, "expected '}' here")) 6550 return true; 6551 6552 if (Indexes.size() < 2) 6553 return Error(Loc, "expected >= 2 uselistorder indexes"); 6554 if (Offset != 0 || Max >= Indexes.size()) 6555 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6556 if (IsOrdered) 6557 return Error(Loc, "expected uselistorder indexes to change the order"); 6558 6559 return false; 6560 } 6561 6562 /// ParseUseListOrder 6563 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6564 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6565 SMLoc Loc = Lex.getLoc(); 6566 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6567 return true; 6568 6569 Value *V; 6570 SmallVector<unsigned, 16> Indexes; 6571 if (ParseTypeAndValue(V, PFS) || 6572 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6573 ParseUseListOrderIndexes(Indexes)) 6574 return true; 6575 6576 return sortUseListOrder(V, Indexes, Loc); 6577 } 6578 6579 /// ParseUseListOrderBB 6580 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6581 bool LLParser::ParseUseListOrderBB() { 6582 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6583 SMLoc Loc = Lex.getLoc(); 6584 Lex.Lex(); 6585 6586 ValID Fn, Label; 6587 SmallVector<unsigned, 16> Indexes; 6588 if (ParseValID(Fn) || 6589 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6590 ParseValID(Label) || 6591 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6592 ParseUseListOrderIndexes(Indexes)) 6593 return true; 6594 6595 // Check the function. 6596 GlobalValue *GV; 6597 if (Fn.Kind == ValID::t_GlobalName) 6598 GV = M->getNamedValue(Fn.StrVal); 6599 else if (Fn.Kind == ValID::t_GlobalID) 6600 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6601 else 6602 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6603 if (!GV) 6604 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6605 auto *F = dyn_cast<Function>(GV); 6606 if (!F) 6607 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6608 if (F->isDeclaration()) 6609 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6610 6611 // Check the basic block. 6612 if (Label.Kind == ValID::t_LocalID) 6613 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6614 if (Label.Kind != ValID::t_LocalName) 6615 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6616 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6617 if (!V) 6618 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6619 if (!isa<BasicBlock>(V)) 6620 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6621 6622 return sortUseListOrder(V, Indexes, Loc); 6623 } 6624