1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   UpgradeDebugInfo(*M);
241 
242   UpgradeModuleFlags(*M);
243 
244   if (!Slots)
245     return false;
246   // Initialize the slot mapping.
247   // Because by this point we've parsed and validated everything, we can "steal"
248   // the mapping from LLParser as it doesn't need it anymore.
249   Slots->GlobalValues = std::move(NumberedVals);
250   Slots->MetadataNodes = std::move(NumberedMetadata);
251   for (const auto &I : NamedTypes)
252     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
253   for (const auto &I : NumberedTypes)
254     Slots->Types.insert(std::make_pair(I.first, I.second.first));
255 
256   return false;
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Top-Level Entities
261 //===----------------------------------------------------------------------===//
262 
263 bool LLParser::ParseTopLevelEntities() {
264   while (true) {
265     switch (Lex.getKind()) {
266     default:         return TokError("expected top-level entity");
267     case lltok::Eof: return false;
268     case lltok::kw_declare: if (ParseDeclare()) return true; break;
269     case lltok::kw_define:  if (ParseDefine()) return true; break;
270     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
271     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
272     case lltok::kw_source_filename:
273       if (ParseSourceFileName())
274         return true;
275       break;
276     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
277     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
278     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
279     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
280     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
281     case lltok::ComdatVar:  if (parseComdat()) return true; break;
282     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
283     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
284     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
285     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
286     case lltok::kw_uselistorder_bb:
287       if (ParseUseListOrderBB())
288         return true;
289       break;
290     }
291   }
292 }
293 
294 /// toplevelentity
295 ///   ::= 'module' 'asm' STRINGCONSTANT
296 bool LLParser::ParseModuleAsm() {
297   assert(Lex.getKind() == lltok::kw_module);
298   Lex.Lex();
299 
300   std::string AsmStr;
301   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
302       ParseStringConstant(AsmStr)) return true;
303 
304   M->appendModuleInlineAsm(AsmStr);
305   return false;
306 }
307 
308 /// toplevelentity
309 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
310 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
311 bool LLParser::ParseTargetDefinition() {
312   assert(Lex.getKind() == lltok::kw_target);
313   std::string Str;
314   switch (Lex.Lex()) {
315   default: return TokError("unknown target property");
316   case lltok::kw_triple:
317     Lex.Lex();
318     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
319         ParseStringConstant(Str))
320       return true;
321     M->setTargetTriple(Str);
322     return false;
323   case lltok::kw_datalayout:
324     Lex.Lex();
325     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
326         ParseStringConstant(Str))
327       return true;
328     M->setDataLayout(Str);
329     return false;
330   }
331 }
332 
333 /// toplevelentity
334 ///   ::= 'source_filename' '=' STRINGCONSTANT
335 bool LLParser::ParseSourceFileName() {
336   assert(Lex.getKind() == lltok::kw_source_filename);
337   std::string Str;
338   Lex.Lex();
339   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
340       ParseStringConstant(Str))
341     return true;
342   M->setSourceFileName(Str);
343   return false;
344 }
345 
346 /// toplevelentity
347 ///   ::= 'deplibs' '=' '[' ']'
348 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
349 /// FIXME: Remove in 4.0. Currently parse, but ignore.
350 bool LLParser::ParseDepLibs() {
351   assert(Lex.getKind() == lltok::kw_deplibs);
352   Lex.Lex();
353   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
354       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
355     return true;
356 
357   if (EatIfPresent(lltok::rsquare))
358     return false;
359 
360   do {
361     std::string Str;
362     if (ParseStringConstant(Str)) return true;
363   } while (EatIfPresent(lltok::comma));
364 
365   return ParseToken(lltok::rsquare, "expected ']' at end of list");
366 }
367 
368 /// ParseUnnamedType:
369 ///   ::= LocalVarID '=' 'type' type
370 bool LLParser::ParseUnnamedType() {
371   LocTy TypeLoc = Lex.getLoc();
372   unsigned TypeID = Lex.getUIntVal();
373   Lex.Lex(); // eat LocalVarID;
374 
375   if (ParseToken(lltok::equal, "expected '=' after name") ||
376       ParseToken(lltok::kw_type, "expected 'type' after '='"))
377     return true;
378 
379   Type *Result = nullptr;
380   if (ParseStructDefinition(TypeLoc, "",
381                             NumberedTypes[TypeID], Result)) return true;
382 
383   if (!isa<StructType>(Result)) {
384     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
385     if (Entry.first)
386       return Error(TypeLoc, "non-struct types may not be recursive");
387     Entry.first = Result;
388     Entry.second = SMLoc();
389   }
390 
391   return false;
392 }
393 
394 /// toplevelentity
395 ///   ::= LocalVar '=' 'type' type
396 bool LLParser::ParseNamedType() {
397   std::string Name = Lex.getStrVal();
398   LocTy NameLoc = Lex.getLoc();
399   Lex.Lex();  // eat LocalVar.
400 
401   if (ParseToken(lltok::equal, "expected '=' after name") ||
402       ParseToken(lltok::kw_type, "expected 'type' after name"))
403     return true;
404 
405   Type *Result = nullptr;
406   if (ParseStructDefinition(NameLoc, Name,
407                             NamedTypes[Name], Result)) return true;
408 
409   if (!isa<StructType>(Result)) {
410     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
411     if (Entry.first)
412       return Error(NameLoc, "non-struct types may not be recursive");
413     Entry.first = Result;
414     Entry.second = SMLoc();
415   }
416 
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'declare' FunctionHeader
422 bool LLParser::ParseDeclare() {
423   assert(Lex.getKind() == lltok::kw_declare);
424   Lex.Lex();
425 
426   std::vector<std::pair<unsigned, MDNode *>> MDs;
427   while (Lex.getKind() == lltok::MetadataVar) {
428     unsigned MDK;
429     MDNode *N;
430     if (ParseMetadataAttachment(MDK, N))
431       return true;
432     MDs.push_back({MDK, N});
433   }
434 
435   Function *F;
436   if (ParseFunctionHeader(F, false))
437     return true;
438   for (auto &MD : MDs)
439     F->addMetadata(MD.first, *MD.second);
440   return false;
441 }
442 
443 /// toplevelentity
444 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
445 bool LLParser::ParseDefine() {
446   assert(Lex.getKind() == lltok::kw_define);
447   Lex.Lex();
448 
449   Function *F;
450   return ParseFunctionHeader(F, true) ||
451          ParseOptionalFunctionMetadata(*F) ||
452          ParseFunctionBody(*F);
453 }
454 
455 /// ParseGlobalType
456 ///   ::= 'constant'
457 ///   ::= 'global'
458 bool LLParser::ParseGlobalType(bool &IsConstant) {
459   if (Lex.getKind() == lltok::kw_constant)
460     IsConstant = true;
461   else if (Lex.getKind() == lltok::kw_global)
462     IsConstant = false;
463   else {
464     IsConstant = false;
465     return TokError("expected 'global' or 'constant'");
466   }
467   Lex.Lex();
468   return false;
469 }
470 
471 bool LLParser::ParseOptionalUnnamedAddr(
472     GlobalVariable::UnnamedAddr &UnnamedAddr) {
473   if (EatIfPresent(lltok::kw_unnamed_addr))
474     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
475   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
477   else
478     UnnamedAddr = GlobalValue::UnnamedAddr::None;
479   return false;
480 }
481 
482 /// ParseUnnamedGlobal:
483 ///   OptionalVisibility (ALIAS | IFUNC) ...
484 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
485 ///                                                     ...   -> global variable
486 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
487 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 bool LLParser::ParseUnnamedGlobal() {
490   unsigned VarID = NumberedVals.size();
491   std::string Name;
492   LocTy NameLoc = Lex.getLoc();
493 
494   // Handle the GlobalID form.
495   if (Lex.getKind() == lltok::GlobalID) {
496     if (Lex.getUIntVal() != VarID)
497       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
498                    Twine(VarID) + "'");
499     Lex.Lex(); // eat GlobalID;
500 
501     if (ParseToken(lltok::equal, "expected '=' after name"))
502       return true;
503   }
504 
505   bool HasLinkage;
506   unsigned Linkage, Visibility, DLLStorageClass;
507   GlobalVariable::ThreadLocalMode TLM;
508   GlobalVariable::UnnamedAddr UnnamedAddr;
509   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
510       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
511     return true;
512 
513   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
514     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
515                        DLLStorageClass, TLM, UnnamedAddr);
516 
517   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
518                              DLLStorageClass, TLM, UnnamedAddr);
519 }
520 
521 /// ParseNamedGlobal:
522 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
523 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
524 ///                                                     ...   -> global variable
525 bool LLParser::ParseNamedGlobal() {
526   assert(Lex.getKind() == lltok::GlobalVar);
527   LocTy NameLoc = Lex.getLoc();
528   std::string Name = Lex.getStrVal();
529   Lex.Lex();
530 
531   bool HasLinkage;
532   unsigned Linkage, Visibility, DLLStorageClass;
533   GlobalVariable::ThreadLocalMode TLM;
534   GlobalVariable::UnnamedAddr UnnamedAddr;
535   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
536       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
537       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
538     return true;
539 
540   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
541     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
542                        DLLStorageClass, TLM, UnnamedAddr);
543 
544   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
545                              DLLStorageClass, TLM, UnnamedAddr);
546 }
547 
548 bool LLParser::parseComdat() {
549   assert(Lex.getKind() == lltok::ComdatVar);
550   std::string Name = Lex.getStrVal();
551   LocTy NameLoc = Lex.getLoc();
552   Lex.Lex();
553 
554   if (ParseToken(lltok::equal, "expected '=' here"))
555     return true;
556 
557   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
558     return TokError("expected comdat type");
559 
560   Comdat::SelectionKind SK;
561   switch (Lex.getKind()) {
562   default:
563     return TokError("unknown selection kind");
564   case lltok::kw_any:
565     SK = Comdat::Any;
566     break;
567   case lltok::kw_exactmatch:
568     SK = Comdat::ExactMatch;
569     break;
570   case lltok::kw_largest:
571     SK = Comdat::Largest;
572     break;
573   case lltok::kw_noduplicates:
574     SK = Comdat::NoDuplicates;
575     break;
576   case lltok::kw_samesize:
577     SK = Comdat::SameSize;
578     break;
579   }
580   Lex.Lex();
581 
582   // See if the comdat was forward referenced, if so, use the comdat.
583   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
584   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
585   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
586     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
587 
588   Comdat *C;
589   if (I != ComdatSymTab.end())
590     C = &I->second;
591   else
592     C = M->getOrInsertComdat(Name);
593   C->setSelectionKind(SK);
594 
595   return false;
596 }
597 
598 // MDString:
599 //   ::= '!' STRINGCONSTANT
600 bool LLParser::ParseMDString(MDString *&Result) {
601   std::string Str;
602   if (ParseStringConstant(Str)) return true;
603   Result = MDString::get(Context, Str);
604   return false;
605 }
606 
607 // MDNode:
608 //   ::= '!' MDNodeNumber
609 bool LLParser::ParseMDNodeID(MDNode *&Result) {
610   // !{ ..., !42, ... }
611   LocTy IDLoc = Lex.getLoc();
612   unsigned MID = 0;
613   if (ParseUInt32(MID))
614     return true;
615 
616   // If not a forward reference, just return it now.
617   if (NumberedMetadata.count(MID)) {
618     Result = NumberedMetadata[MID];
619     return false;
620   }
621 
622   // Otherwise, create MDNode forward reference.
623   auto &FwdRef = ForwardRefMDNodes[MID];
624   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
625 
626   Result = FwdRef.first.get();
627   NumberedMetadata[MID].reset(Result);
628   return false;
629 }
630 
631 /// ParseNamedMetadata:
632 ///   !foo = !{ !1, !2 }
633 bool LLParser::ParseNamedMetadata() {
634   assert(Lex.getKind() == lltok::MetadataVar);
635   std::string Name = Lex.getStrVal();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here") ||
639       ParseToken(lltok::exclaim, "Expected '!' here") ||
640       ParseToken(lltok::lbrace, "Expected '{' here"))
641     return true;
642 
643   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
644   if (Lex.getKind() != lltok::rbrace)
645     do {
646       MDNode *N = nullptr;
647       // Parse DIExpressions inline as a special case. They are still MDNodes,
648       // so they can still appear in named metadata. Remove this logic if they
649       // become plain Metadata.
650       if (Lex.getKind() == lltok::MetadataVar &&
651           Lex.getStrVal() == "DIExpression") {
652         if (ParseDIExpression(N, /*IsDistinct=*/false))
653           return true;
654       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
655                  ParseMDNodeID(N)) {
656         return true;
657       }
658       NMD->addOperand(N);
659     } while (EatIfPresent(lltok::comma));
660 
661   return ParseToken(lltok::rbrace, "expected end of metadata node");
662 }
663 
664 /// ParseStandaloneMetadata:
665 ///   !42 = !{...}
666 bool LLParser::ParseStandaloneMetadata() {
667   assert(Lex.getKind() == lltok::exclaim);
668   Lex.Lex();
669   unsigned MetadataID = 0;
670 
671   MDNode *Init;
672   if (ParseUInt32(MetadataID) ||
673       ParseToken(lltok::equal, "expected '=' here"))
674     return true;
675 
676   // Detect common error, from old metadata syntax.
677   if (Lex.getKind() == lltok::Type)
678     return TokError("unexpected type in metadata definition");
679 
680   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
681   if (Lex.getKind() == lltok::MetadataVar) {
682     if (ParseSpecializedMDNode(Init, IsDistinct))
683       return true;
684   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
685              ParseMDTuple(Init, IsDistinct))
686     return true;
687 
688   // See if this was forward referenced, if so, handle it.
689   auto FI = ForwardRefMDNodes.find(MetadataID);
690   if (FI != ForwardRefMDNodes.end()) {
691     FI->second.first->replaceAllUsesWith(Init);
692     ForwardRefMDNodes.erase(FI);
693 
694     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
695   } else {
696     if (NumberedMetadata.count(MetadataID))
697       return TokError("Metadata id is already used");
698     NumberedMetadata[MetadataID].reset(Init);
699   }
700 
701   return false;
702 }
703 
704 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
705   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
706          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
707 }
708 
709 /// parseIndirectSymbol:
710 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
711 ///                     OptionalDLLStorageClass OptionalThreadLocal
712 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
713 ///
714 /// IndirectSymbol
715 ///   ::= TypeAndValue
716 ///
717 /// Everything through OptionalUnnamedAddr has already been parsed.
718 ///
719 bool LLParser::parseIndirectSymbol(
720     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
721     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
722     GlobalVariable::UnnamedAddr UnnamedAddr) {
723   bool IsAlias;
724   if (Lex.getKind() == lltok::kw_alias)
725     IsAlias = true;
726   else if (Lex.getKind() == lltok::kw_ifunc)
727     IsAlias = false;
728   else
729     llvm_unreachable("Not an alias or ifunc!");
730   Lex.Lex();
731 
732   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
733 
734   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
735     return Error(NameLoc, "invalid linkage type for alias");
736 
737   if (!isValidVisibilityForLinkage(Visibility, L))
738     return Error(NameLoc,
739                  "symbol with local linkage must have default visibility");
740 
741   Type *Ty;
742   LocTy ExplicitTypeLoc = Lex.getLoc();
743   if (ParseType(Ty) ||
744       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
745     return true;
746 
747   Constant *Aliasee;
748   LocTy AliaseeLoc = Lex.getLoc();
749   if (Lex.getKind() != lltok::kw_bitcast &&
750       Lex.getKind() != lltok::kw_getelementptr &&
751       Lex.getKind() != lltok::kw_addrspacecast &&
752       Lex.getKind() != lltok::kw_inttoptr) {
753     if (ParseGlobalTypeAndValue(Aliasee))
754       return true;
755   } else {
756     // The bitcast dest type is not present, it is implied by the dest type.
757     ValID ID;
758     if (ParseValID(ID))
759       return true;
760     if (ID.Kind != ValID::t_Constant)
761       return Error(AliaseeLoc, "invalid aliasee");
762     Aliasee = ID.ConstantVal;
763   }
764 
765   Type *AliaseeType = Aliasee->getType();
766   auto *PTy = dyn_cast<PointerType>(AliaseeType);
767   if (!PTy)
768     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
769   unsigned AddrSpace = PTy->getAddressSpace();
770 
771   if (IsAlias && Ty != PTy->getElementType())
772     return Error(
773         ExplicitTypeLoc,
774         "explicit pointee type doesn't match operand's pointee type");
775 
776   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
777     return Error(
778         ExplicitTypeLoc,
779         "explicit pointee type should be a function type");
780 
781   GlobalValue *GVal = nullptr;
782 
783   // See if the alias was forward referenced, if so, prepare to replace the
784   // forward reference.
785   if (!Name.empty()) {
786     GVal = M->getNamedValue(Name);
787     if (GVal) {
788       if (!ForwardRefVals.erase(Name))
789         return Error(NameLoc, "redefinition of global '@" + Name + "'");
790     }
791   } else {
792     auto I = ForwardRefValIDs.find(NumberedVals.size());
793     if (I != ForwardRefValIDs.end()) {
794       GVal = I->second.first;
795       ForwardRefValIDs.erase(I);
796     }
797   }
798 
799   // Okay, create the alias but do not insert it into the module yet.
800   std::unique_ptr<GlobalIndirectSymbol> GA;
801   if (IsAlias)
802     GA.reset(GlobalAlias::create(Ty, AddrSpace,
803                                  (GlobalValue::LinkageTypes)Linkage, Name,
804                                  Aliasee, /*Parent*/ nullptr));
805   else
806     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
807                                  (GlobalValue::LinkageTypes)Linkage, Name,
808                                  Aliasee, /*Parent*/ nullptr));
809   GA->setThreadLocalMode(TLM);
810   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
811   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
812   GA->setUnnamedAddr(UnnamedAddr);
813 
814   if (Name.empty())
815     NumberedVals.push_back(GA.get());
816 
817   if (GVal) {
818     // Verify that types agree.
819     if (GVal->getType() != GA->getType())
820       return Error(
821           ExplicitTypeLoc,
822           "forward reference and definition of alias have different types");
823 
824     // If they agree, just RAUW the old value with the alias and remove the
825     // forward ref info.
826     GVal->replaceAllUsesWith(GA.get());
827     GVal->eraseFromParent();
828   }
829 
830   // Insert into the module, we know its name won't collide now.
831   if (IsAlias)
832     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
833   else
834     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
835   assert(GA->getName() == Name && "Should not be a name conflict!");
836 
837   // The module owns this now
838   GA.release();
839 
840   return false;
841 }
842 
843 /// ParseGlobal
844 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
845 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
846 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
847 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
848 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
849 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
850 ///
851 /// Everything up to and including OptionalUnnamedAddr has been parsed
852 /// already.
853 ///
854 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
855                            unsigned Linkage, bool HasLinkage,
856                            unsigned Visibility, unsigned DLLStorageClass,
857                            GlobalVariable::ThreadLocalMode TLM,
858                            GlobalVariable::UnnamedAddr UnnamedAddr) {
859   if (!isValidVisibilityForLinkage(Visibility, Linkage))
860     return Error(NameLoc,
861                  "symbol with local linkage must have default visibility");
862 
863   unsigned AddrSpace;
864   bool IsConstant, IsExternallyInitialized;
865   LocTy IsExternallyInitializedLoc;
866   LocTy TyLoc;
867 
868   Type *Ty = nullptr;
869   if (ParseOptionalAddrSpace(AddrSpace) ||
870       ParseOptionalToken(lltok::kw_externally_initialized,
871                          IsExternallyInitialized,
872                          &IsExternallyInitializedLoc) ||
873       ParseGlobalType(IsConstant) ||
874       ParseType(Ty, TyLoc))
875     return true;
876 
877   // If the linkage is specified and is external, then no initializer is
878   // present.
879   Constant *Init = nullptr;
880   if (!HasLinkage ||
881       !GlobalValue::isValidDeclarationLinkage(
882           (GlobalValue::LinkageTypes)Linkage)) {
883     if (ParseGlobalValue(Ty, Init))
884       return true;
885   }
886 
887   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
888     return Error(TyLoc, "invalid type for global variable");
889 
890   GlobalValue *GVal = nullptr;
891 
892   // See if the global was forward referenced, if so, use the global.
893   if (!Name.empty()) {
894     GVal = M->getNamedValue(Name);
895     if (GVal) {
896       if (!ForwardRefVals.erase(Name))
897         return Error(NameLoc, "redefinition of global '@" + Name + "'");
898     }
899   } else {
900     auto I = ForwardRefValIDs.find(NumberedVals.size());
901     if (I != ForwardRefValIDs.end()) {
902       GVal = I->second.first;
903       ForwardRefValIDs.erase(I);
904     }
905   }
906 
907   GlobalVariable *GV;
908   if (!GVal) {
909     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
910                             Name, nullptr, GlobalVariable::NotThreadLocal,
911                             AddrSpace);
912   } else {
913     if (GVal->getValueType() != Ty)
914       return Error(TyLoc,
915             "forward reference and definition of global have different types");
916 
917     GV = cast<GlobalVariable>(GVal);
918 
919     // Move the forward-reference to the correct spot in the module.
920     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
921   }
922 
923   if (Name.empty())
924     NumberedVals.push_back(GV);
925 
926   // Set the parsed properties on the global.
927   if (Init)
928     GV->setInitializer(Init);
929   GV->setConstant(IsConstant);
930   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
931   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
932   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
933   GV->setExternallyInitialized(IsExternallyInitialized);
934   GV->setThreadLocalMode(TLM);
935   GV->setUnnamedAddr(UnnamedAddr);
936 
937   // Parse attributes on the global.
938   while (Lex.getKind() == lltok::comma) {
939     Lex.Lex();
940 
941     if (Lex.getKind() == lltok::kw_section) {
942       Lex.Lex();
943       GV->setSection(Lex.getStrVal());
944       if (ParseToken(lltok::StringConstant, "expected global section string"))
945         return true;
946     } else if (Lex.getKind() == lltok::kw_align) {
947       unsigned Alignment;
948       if (ParseOptionalAlignment(Alignment)) return true;
949       GV->setAlignment(Alignment);
950     } else if (Lex.getKind() == lltok::MetadataVar) {
951       if (ParseGlobalObjectMetadataAttachment(*GV))
952         return true;
953     } else {
954       Comdat *C;
955       if (parseOptionalComdat(Name, C))
956         return true;
957       if (C)
958         GV->setComdat(C);
959       else
960         return TokError("unknown global variable property!");
961     }
962   }
963 
964   AttrBuilder Attrs;
965   LocTy BuiltinLoc;
966   std::vector<unsigned> FwdRefAttrGrps;
967   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
968     return true;
969   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
970     GV->setAttributes(AttributeSet::get(Context, Attrs));
971     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
972   }
973 
974   return false;
975 }
976 
977 /// ParseUnnamedAttrGrp
978 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
979 bool LLParser::ParseUnnamedAttrGrp() {
980   assert(Lex.getKind() == lltok::kw_attributes);
981   LocTy AttrGrpLoc = Lex.getLoc();
982   Lex.Lex();
983 
984   if (Lex.getKind() != lltok::AttrGrpID)
985     return TokError("expected attribute group id");
986 
987   unsigned VarID = Lex.getUIntVal();
988   std::vector<unsigned> unused;
989   LocTy BuiltinLoc;
990   Lex.Lex();
991 
992   if (ParseToken(lltok::equal, "expected '=' here") ||
993       ParseToken(lltok::lbrace, "expected '{' here") ||
994       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
995                                  BuiltinLoc) ||
996       ParseToken(lltok::rbrace, "expected end of attribute group"))
997     return true;
998 
999   if (!NumberedAttrBuilders[VarID].hasAttributes())
1000     return Error(AttrGrpLoc, "attribute group has no attributes");
1001 
1002   return false;
1003 }
1004 
1005 /// ParseFnAttributeValuePairs
1006 ///   ::= <attr> | <attr> '=' <value>
1007 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1008                                           std::vector<unsigned> &FwdRefAttrGrps,
1009                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1010   bool HaveError = false;
1011 
1012   B.clear();
1013 
1014   while (true) {
1015     lltok::Kind Token = Lex.getKind();
1016     if (Token == lltok::kw_builtin)
1017       BuiltinLoc = Lex.getLoc();
1018     switch (Token) {
1019     default:
1020       if (!inAttrGrp) return HaveError;
1021       return Error(Lex.getLoc(), "unterminated attribute group");
1022     case lltok::rbrace:
1023       // Finished.
1024       return false;
1025 
1026     case lltok::AttrGrpID: {
1027       // Allow a function to reference an attribute group:
1028       //
1029       //   define void @foo() #1 { ... }
1030       if (inAttrGrp)
1031         HaveError |=
1032           Error(Lex.getLoc(),
1033               "cannot have an attribute group reference in an attribute group");
1034 
1035       unsigned AttrGrpNum = Lex.getUIntVal();
1036       if (inAttrGrp) break;
1037 
1038       // Save the reference to the attribute group. We'll fill it in later.
1039       FwdRefAttrGrps.push_back(AttrGrpNum);
1040       break;
1041     }
1042     // Target-dependent attributes:
1043     case lltok::StringConstant: {
1044       if (ParseStringAttribute(B))
1045         return true;
1046       continue;
1047     }
1048 
1049     // Target-independent attributes:
1050     case lltok::kw_align: {
1051       // As a hack, we allow function alignment to be initially parsed as an
1052       // attribute on a function declaration/definition or added to an attribute
1053       // group and later moved to the alignment field.
1054       unsigned Alignment;
1055       if (inAttrGrp) {
1056         Lex.Lex();
1057         if (ParseToken(lltok::equal, "expected '=' here") ||
1058             ParseUInt32(Alignment))
1059           return true;
1060       } else {
1061         if (ParseOptionalAlignment(Alignment))
1062           return true;
1063       }
1064       B.addAlignmentAttr(Alignment);
1065       continue;
1066     }
1067     case lltok::kw_alignstack: {
1068       unsigned Alignment;
1069       if (inAttrGrp) {
1070         Lex.Lex();
1071         if (ParseToken(lltok::equal, "expected '=' here") ||
1072             ParseUInt32(Alignment))
1073           return true;
1074       } else {
1075         if (ParseOptionalStackAlignment(Alignment))
1076           return true;
1077       }
1078       B.addStackAlignmentAttr(Alignment);
1079       continue;
1080     }
1081     case lltok::kw_allocsize: {
1082       unsigned ElemSizeArg;
1083       Optional<unsigned> NumElemsArg;
1084       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1085       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1086         return true;
1087       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1088       continue;
1089     }
1090     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1091     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1092     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1093     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1094     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1095     case lltok::kw_inaccessiblememonly:
1096       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1097     case lltok::kw_inaccessiblemem_or_argmemonly:
1098       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1099     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1100     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1101     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1102     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1103     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1104     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1105     case lltok::kw_noimplicitfloat:
1106       B.addAttribute(Attribute::NoImplicitFloat); break;
1107     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1108     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1109     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1110     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1111     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1112     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1113     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1114     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1115     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1116     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1117     case lltok::kw_returns_twice:
1118       B.addAttribute(Attribute::ReturnsTwice); break;
1119     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1120     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1121     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1122     case lltok::kw_sspstrong:
1123       B.addAttribute(Attribute::StackProtectStrong); break;
1124     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1125     case lltok::kw_sanitize_address:
1126       B.addAttribute(Attribute::SanitizeAddress); break;
1127     case lltok::kw_sanitize_thread:
1128       B.addAttribute(Attribute::SanitizeThread); break;
1129     case lltok::kw_sanitize_memory:
1130       B.addAttribute(Attribute::SanitizeMemory); break;
1131     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1132     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1133     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1134 
1135     // Error handling.
1136     case lltok::kw_inreg:
1137     case lltok::kw_signext:
1138     case lltok::kw_zeroext:
1139       HaveError |=
1140         Error(Lex.getLoc(),
1141               "invalid use of attribute on a function");
1142       break;
1143     case lltok::kw_byval:
1144     case lltok::kw_dereferenceable:
1145     case lltok::kw_dereferenceable_or_null:
1146     case lltok::kw_inalloca:
1147     case lltok::kw_nest:
1148     case lltok::kw_noalias:
1149     case lltok::kw_nocapture:
1150     case lltok::kw_nonnull:
1151     case lltok::kw_returned:
1152     case lltok::kw_sret:
1153     case lltok::kw_swifterror:
1154     case lltok::kw_swiftself:
1155       HaveError |=
1156         Error(Lex.getLoc(),
1157               "invalid use of parameter-only attribute on a function");
1158       break;
1159     }
1160 
1161     Lex.Lex();
1162   }
1163 }
1164 
1165 //===----------------------------------------------------------------------===//
1166 // GlobalValue Reference/Resolution Routines.
1167 //===----------------------------------------------------------------------===//
1168 
1169 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1170                                               const std::string &Name) {
1171   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1172     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1173   else
1174     return new GlobalVariable(*M, PTy->getElementType(), false,
1175                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1176                               nullptr, GlobalVariable::NotThreadLocal,
1177                               PTy->getAddressSpace());
1178 }
1179 
1180 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1181 /// forward reference record if needed.  This can return null if the value
1182 /// exists but does not have the right type.
1183 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1184                                     LocTy Loc) {
1185   PointerType *PTy = dyn_cast<PointerType>(Ty);
1186   if (!PTy) {
1187     Error(Loc, "global variable reference must have pointer type");
1188     return nullptr;
1189   }
1190 
1191   // Look this name up in the normal function symbol table.
1192   GlobalValue *Val =
1193     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1194 
1195   // If this is a forward reference for the value, see if we already created a
1196   // forward ref record.
1197   if (!Val) {
1198     auto I = ForwardRefVals.find(Name);
1199     if (I != ForwardRefVals.end())
1200       Val = I->second.first;
1201   }
1202 
1203   // If we have the value in the symbol table or fwd-ref table, return it.
1204   if (Val) {
1205     if (Val->getType() == Ty) return Val;
1206     Error(Loc, "'@" + Name + "' defined with type '" +
1207           getTypeString(Val->getType()) + "'");
1208     return nullptr;
1209   }
1210 
1211   // Otherwise, create a new forward reference for this value and remember it.
1212   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1213   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1214   return FwdVal;
1215 }
1216 
1217 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1218   PointerType *PTy = dyn_cast<PointerType>(Ty);
1219   if (!PTy) {
1220     Error(Loc, "global variable reference must have pointer type");
1221     return nullptr;
1222   }
1223 
1224   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1225 
1226   // If this is a forward reference for the value, see if we already created a
1227   // forward ref record.
1228   if (!Val) {
1229     auto I = ForwardRefValIDs.find(ID);
1230     if (I != ForwardRefValIDs.end())
1231       Val = I->second.first;
1232   }
1233 
1234   // If we have the value in the symbol table or fwd-ref table, return it.
1235   if (Val) {
1236     if (Val->getType() == Ty) return Val;
1237     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1238           getTypeString(Val->getType()) + "'");
1239     return nullptr;
1240   }
1241 
1242   // Otherwise, create a new forward reference for this value and remember it.
1243   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1244   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1245   return FwdVal;
1246 }
1247 
1248 //===----------------------------------------------------------------------===//
1249 // Comdat Reference/Resolution Routines.
1250 //===----------------------------------------------------------------------===//
1251 
1252 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1253   // Look this name up in the comdat symbol table.
1254   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1255   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1256   if (I != ComdatSymTab.end())
1257     return &I->second;
1258 
1259   // Otherwise, create a new forward reference for this value and remember it.
1260   Comdat *C = M->getOrInsertComdat(Name);
1261   ForwardRefComdats[Name] = Loc;
1262   return C;
1263 }
1264 
1265 //===----------------------------------------------------------------------===//
1266 // Helper Routines.
1267 //===----------------------------------------------------------------------===//
1268 
1269 /// ParseToken - If the current token has the specified kind, eat it and return
1270 /// success.  Otherwise, emit the specified error and return failure.
1271 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1272   if (Lex.getKind() != T)
1273     return TokError(ErrMsg);
1274   Lex.Lex();
1275   return false;
1276 }
1277 
1278 /// ParseStringConstant
1279 ///   ::= StringConstant
1280 bool LLParser::ParseStringConstant(std::string &Result) {
1281   if (Lex.getKind() != lltok::StringConstant)
1282     return TokError("expected string constant");
1283   Result = Lex.getStrVal();
1284   Lex.Lex();
1285   return false;
1286 }
1287 
1288 /// ParseUInt32
1289 ///   ::= uint32
1290 bool LLParser::ParseUInt32(uint32_t &Val) {
1291   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1292     return TokError("expected integer");
1293   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1294   if (Val64 != unsigned(Val64))
1295     return TokError("expected 32-bit integer (too large)");
1296   Val = Val64;
1297   Lex.Lex();
1298   return false;
1299 }
1300 
1301 /// ParseUInt64
1302 ///   ::= uint64
1303 bool LLParser::ParseUInt64(uint64_t &Val) {
1304   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1305     return TokError("expected integer");
1306   Val = Lex.getAPSIntVal().getLimitedValue();
1307   Lex.Lex();
1308   return false;
1309 }
1310 
1311 /// ParseTLSModel
1312 ///   := 'localdynamic'
1313 ///   := 'initialexec'
1314 ///   := 'localexec'
1315 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1316   switch (Lex.getKind()) {
1317     default:
1318       return TokError("expected localdynamic, initialexec or localexec");
1319     case lltok::kw_localdynamic:
1320       TLM = GlobalVariable::LocalDynamicTLSModel;
1321       break;
1322     case lltok::kw_initialexec:
1323       TLM = GlobalVariable::InitialExecTLSModel;
1324       break;
1325     case lltok::kw_localexec:
1326       TLM = GlobalVariable::LocalExecTLSModel;
1327       break;
1328   }
1329 
1330   Lex.Lex();
1331   return false;
1332 }
1333 
1334 /// ParseOptionalThreadLocal
1335 ///   := /*empty*/
1336 ///   := 'thread_local'
1337 ///   := 'thread_local' '(' tlsmodel ')'
1338 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1339   TLM = GlobalVariable::NotThreadLocal;
1340   if (!EatIfPresent(lltok::kw_thread_local))
1341     return false;
1342 
1343   TLM = GlobalVariable::GeneralDynamicTLSModel;
1344   if (Lex.getKind() == lltok::lparen) {
1345     Lex.Lex();
1346     return ParseTLSModel(TLM) ||
1347       ParseToken(lltok::rparen, "expected ')' after thread local model");
1348   }
1349   return false;
1350 }
1351 
1352 /// ParseOptionalAddrSpace
1353 ///   := /*empty*/
1354 ///   := 'addrspace' '(' uint32 ')'
1355 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1356   AddrSpace = 0;
1357   if (!EatIfPresent(lltok::kw_addrspace))
1358     return false;
1359   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1360          ParseUInt32(AddrSpace) ||
1361          ParseToken(lltok::rparen, "expected ')' in address space");
1362 }
1363 
1364 /// ParseStringAttribute
1365 ///   := StringConstant
1366 ///   := StringConstant '=' StringConstant
1367 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1368   std::string Attr = Lex.getStrVal();
1369   Lex.Lex();
1370   std::string Val;
1371   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1372     return true;
1373   B.addAttribute(Attr, Val);
1374   return false;
1375 }
1376 
1377 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1378 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1379   bool HaveError = false;
1380 
1381   B.clear();
1382 
1383   while (true) {
1384     lltok::Kind Token = Lex.getKind();
1385     switch (Token) {
1386     default:  // End of attributes.
1387       return HaveError;
1388     case lltok::StringConstant: {
1389       if (ParseStringAttribute(B))
1390         return true;
1391       continue;
1392     }
1393     case lltok::kw_align: {
1394       unsigned Alignment;
1395       if (ParseOptionalAlignment(Alignment))
1396         return true;
1397       B.addAlignmentAttr(Alignment);
1398       continue;
1399     }
1400     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1401     case lltok::kw_dereferenceable: {
1402       uint64_t Bytes;
1403       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1404         return true;
1405       B.addDereferenceableAttr(Bytes);
1406       continue;
1407     }
1408     case lltok::kw_dereferenceable_or_null: {
1409       uint64_t Bytes;
1410       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1411         return true;
1412       B.addDereferenceableOrNullAttr(Bytes);
1413       continue;
1414     }
1415     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1416     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1417     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1418     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1419     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1420     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1421     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1422     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1423     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1424     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1425     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1426     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1427     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1428     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1429     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1430 
1431     case lltok::kw_alignstack:
1432     case lltok::kw_alwaysinline:
1433     case lltok::kw_argmemonly:
1434     case lltok::kw_builtin:
1435     case lltok::kw_inlinehint:
1436     case lltok::kw_jumptable:
1437     case lltok::kw_minsize:
1438     case lltok::kw_naked:
1439     case lltok::kw_nobuiltin:
1440     case lltok::kw_noduplicate:
1441     case lltok::kw_noimplicitfloat:
1442     case lltok::kw_noinline:
1443     case lltok::kw_nonlazybind:
1444     case lltok::kw_noredzone:
1445     case lltok::kw_noreturn:
1446     case lltok::kw_nounwind:
1447     case lltok::kw_optnone:
1448     case lltok::kw_optsize:
1449     case lltok::kw_returns_twice:
1450     case lltok::kw_sanitize_address:
1451     case lltok::kw_sanitize_memory:
1452     case lltok::kw_sanitize_thread:
1453     case lltok::kw_ssp:
1454     case lltok::kw_sspreq:
1455     case lltok::kw_sspstrong:
1456     case lltok::kw_safestack:
1457     case lltok::kw_strictfp:
1458     case lltok::kw_uwtable:
1459       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1460       break;
1461     }
1462 
1463     Lex.Lex();
1464   }
1465 }
1466 
1467 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1468 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1469   bool HaveError = false;
1470 
1471   B.clear();
1472 
1473   while (true) {
1474     lltok::Kind Token = Lex.getKind();
1475     switch (Token) {
1476     default:  // End of attributes.
1477       return HaveError;
1478     case lltok::StringConstant: {
1479       if (ParseStringAttribute(B))
1480         return true;
1481       continue;
1482     }
1483     case lltok::kw_dereferenceable: {
1484       uint64_t Bytes;
1485       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1486         return true;
1487       B.addDereferenceableAttr(Bytes);
1488       continue;
1489     }
1490     case lltok::kw_dereferenceable_or_null: {
1491       uint64_t Bytes;
1492       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1493         return true;
1494       B.addDereferenceableOrNullAttr(Bytes);
1495       continue;
1496     }
1497     case lltok::kw_align: {
1498       unsigned Alignment;
1499       if (ParseOptionalAlignment(Alignment))
1500         return true;
1501       B.addAlignmentAttr(Alignment);
1502       continue;
1503     }
1504     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1505     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1506     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1507     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1508     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1509 
1510     // Error handling.
1511     case lltok::kw_byval:
1512     case lltok::kw_inalloca:
1513     case lltok::kw_nest:
1514     case lltok::kw_nocapture:
1515     case lltok::kw_returned:
1516     case lltok::kw_sret:
1517     case lltok::kw_swifterror:
1518     case lltok::kw_swiftself:
1519       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1520       break;
1521 
1522     case lltok::kw_alignstack:
1523     case lltok::kw_alwaysinline:
1524     case lltok::kw_argmemonly:
1525     case lltok::kw_builtin:
1526     case lltok::kw_cold:
1527     case lltok::kw_inlinehint:
1528     case lltok::kw_jumptable:
1529     case lltok::kw_minsize:
1530     case lltok::kw_naked:
1531     case lltok::kw_nobuiltin:
1532     case lltok::kw_noduplicate:
1533     case lltok::kw_noimplicitfloat:
1534     case lltok::kw_noinline:
1535     case lltok::kw_nonlazybind:
1536     case lltok::kw_noredzone:
1537     case lltok::kw_noreturn:
1538     case lltok::kw_nounwind:
1539     case lltok::kw_optnone:
1540     case lltok::kw_optsize:
1541     case lltok::kw_returns_twice:
1542     case lltok::kw_sanitize_address:
1543     case lltok::kw_sanitize_memory:
1544     case lltok::kw_sanitize_thread:
1545     case lltok::kw_ssp:
1546     case lltok::kw_sspreq:
1547     case lltok::kw_sspstrong:
1548     case lltok::kw_safestack:
1549     case lltok::kw_strictfp:
1550     case lltok::kw_uwtable:
1551       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1552       break;
1553 
1554     case lltok::kw_readnone:
1555     case lltok::kw_readonly:
1556       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1557     }
1558 
1559     Lex.Lex();
1560   }
1561 }
1562 
1563 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1564   HasLinkage = true;
1565   switch (Kind) {
1566   default:
1567     HasLinkage = false;
1568     return GlobalValue::ExternalLinkage;
1569   case lltok::kw_private:
1570     return GlobalValue::PrivateLinkage;
1571   case lltok::kw_internal:
1572     return GlobalValue::InternalLinkage;
1573   case lltok::kw_weak:
1574     return GlobalValue::WeakAnyLinkage;
1575   case lltok::kw_weak_odr:
1576     return GlobalValue::WeakODRLinkage;
1577   case lltok::kw_linkonce:
1578     return GlobalValue::LinkOnceAnyLinkage;
1579   case lltok::kw_linkonce_odr:
1580     return GlobalValue::LinkOnceODRLinkage;
1581   case lltok::kw_available_externally:
1582     return GlobalValue::AvailableExternallyLinkage;
1583   case lltok::kw_appending:
1584     return GlobalValue::AppendingLinkage;
1585   case lltok::kw_common:
1586     return GlobalValue::CommonLinkage;
1587   case lltok::kw_extern_weak:
1588     return GlobalValue::ExternalWeakLinkage;
1589   case lltok::kw_external:
1590     return GlobalValue::ExternalLinkage;
1591   }
1592 }
1593 
1594 /// ParseOptionalLinkage
1595 ///   ::= /*empty*/
1596 ///   ::= 'private'
1597 ///   ::= 'internal'
1598 ///   ::= 'weak'
1599 ///   ::= 'weak_odr'
1600 ///   ::= 'linkonce'
1601 ///   ::= 'linkonce_odr'
1602 ///   ::= 'available_externally'
1603 ///   ::= 'appending'
1604 ///   ::= 'common'
1605 ///   ::= 'extern_weak'
1606 ///   ::= 'external'
1607 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1608                                     unsigned &Visibility,
1609                                     unsigned &DLLStorageClass) {
1610   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1611   if (HasLinkage)
1612     Lex.Lex();
1613   ParseOptionalVisibility(Visibility);
1614   ParseOptionalDLLStorageClass(DLLStorageClass);
1615   return false;
1616 }
1617 
1618 /// ParseOptionalVisibility
1619 ///   ::= /*empty*/
1620 ///   ::= 'default'
1621 ///   ::= 'hidden'
1622 ///   ::= 'protected'
1623 ///
1624 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1625   switch (Lex.getKind()) {
1626   default:
1627     Res = GlobalValue::DefaultVisibility;
1628     return;
1629   case lltok::kw_default:
1630     Res = GlobalValue::DefaultVisibility;
1631     break;
1632   case lltok::kw_hidden:
1633     Res = GlobalValue::HiddenVisibility;
1634     break;
1635   case lltok::kw_protected:
1636     Res = GlobalValue::ProtectedVisibility;
1637     break;
1638   }
1639   Lex.Lex();
1640 }
1641 
1642 /// ParseOptionalDLLStorageClass
1643 ///   ::= /*empty*/
1644 ///   ::= 'dllimport'
1645 ///   ::= 'dllexport'
1646 ///
1647 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1648   switch (Lex.getKind()) {
1649   default:
1650     Res = GlobalValue::DefaultStorageClass;
1651     return;
1652   case lltok::kw_dllimport:
1653     Res = GlobalValue::DLLImportStorageClass;
1654     break;
1655   case lltok::kw_dllexport:
1656     Res = GlobalValue::DLLExportStorageClass;
1657     break;
1658   }
1659   Lex.Lex();
1660 }
1661 
1662 /// ParseOptionalCallingConv
1663 ///   ::= /*empty*/
1664 ///   ::= 'ccc'
1665 ///   ::= 'fastcc'
1666 ///   ::= 'intel_ocl_bicc'
1667 ///   ::= 'coldcc'
1668 ///   ::= 'x86_stdcallcc'
1669 ///   ::= 'x86_fastcallcc'
1670 ///   ::= 'x86_thiscallcc'
1671 ///   ::= 'x86_vectorcallcc'
1672 ///   ::= 'arm_apcscc'
1673 ///   ::= 'arm_aapcscc'
1674 ///   ::= 'arm_aapcs_vfpcc'
1675 ///   ::= 'msp430_intrcc'
1676 ///   ::= 'avr_intrcc'
1677 ///   ::= 'avr_signalcc'
1678 ///   ::= 'ptx_kernel'
1679 ///   ::= 'ptx_device'
1680 ///   ::= 'spir_func'
1681 ///   ::= 'spir_kernel'
1682 ///   ::= 'x86_64_sysvcc'
1683 ///   ::= 'win64cc'
1684 ///   ::= 'webkit_jscc'
1685 ///   ::= 'anyregcc'
1686 ///   ::= 'preserve_mostcc'
1687 ///   ::= 'preserve_allcc'
1688 ///   ::= 'ghccc'
1689 ///   ::= 'swiftcc'
1690 ///   ::= 'x86_intrcc'
1691 ///   ::= 'hhvmcc'
1692 ///   ::= 'hhvm_ccc'
1693 ///   ::= 'cxx_fast_tlscc'
1694 ///   ::= 'amdgpu_vs'
1695 ///   ::= 'amdgpu_ls'
1696 ///   ::= 'amdgpu_hs'
1697 ///   ::= 'amdgpu_es'
1698 ///   ::= 'amdgpu_gs'
1699 ///   ::= 'amdgpu_ps'
1700 ///   ::= 'amdgpu_cs'
1701 ///   ::= 'amdgpu_kernel'
1702 ///   ::= 'cc' UINT
1703 ///
1704 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1705   switch (Lex.getKind()) {
1706   default:                       CC = CallingConv::C; return false;
1707   case lltok::kw_ccc:            CC = CallingConv::C; break;
1708   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1709   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1710   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1711   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1712   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1713   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1714   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1715   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1716   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1717   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1718   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1719   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1720   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1721   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1722   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1723   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1724   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1725   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1726   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1727   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1728   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1729   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1730   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1731   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1732   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1733   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1734   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1735   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1736   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1737   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1738   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1739   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1740   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1741   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1742   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1743   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1744   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1745   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1746   case lltok::kw_cc: {
1747       Lex.Lex();
1748       return ParseUInt32(CC);
1749     }
1750   }
1751 
1752   Lex.Lex();
1753   return false;
1754 }
1755 
1756 /// ParseMetadataAttachment
1757 ///   ::= !dbg !42
1758 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1759   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1760 
1761   std::string Name = Lex.getStrVal();
1762   Kind = M->getMDKindID(Name);
1763   Lex.Lex();
1764 
1765   return ParseMDNode(MD);
1766 }
1767 
1768 /// ParseInstructionMetadata
1769 ///   ::= !dbg !42 (',' !dbg !57)*
1770 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1771   do {
1772     if (Lex.getKind() != lltok::MetadataVar)
1773       return TokError("expected metadata after comma");
1774 
1775     unsigned MDK;
1776     MDNode *N;
1777     if (ParseMetadataAttachment(MDK, N))
1778       return true;
1779 
1780     Inst.setMetadata(MDK, N);
1781     if (MDK == LLVMContext::MD_tbaa)
1782       InstsWithTBAATag.push_back(&Inst);
1783 
1784     // If this is the end of the list, we're done.
1785   } while (EatIfPresent(lltok::comma));
1786   return false;
1787 }
1788 
1789 /// ParseGlobalObjectMetadataAttachment
1790 ///   ::= !dbg !57
1791 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1792   unsigned MDK;
1793   MDNode *N;
1794   if (ParseMetadataAttachment(MDK, N))
1795     return true;
1796 
1797   GO.addMetadata(MDK, *N);
1798   return false;
1799 }
1800 
1801 /// ParseOptionalFunctionMetadata
1802 ///   ::= (!dbg !57)*
1803 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1804   while (Lex.getKind() == lltok::MetadataVar)
1805     if (ParseGlobalObjectMetadataAttachment(F))
1806       return true;
1807   return false;
1808 }
1809 
1810 /// ParseOptionalAlignment
1811 ///   ::= /* empty */
1812 ///   ::= 'align' 4
1813 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1814   Alignment = 0;
1815   if (!EatIfPresent(lltok::kw_align))
1816     return false;
1817   LocTy AlignLoc = Lex.getLoc();
1818   if (ParseUInt32(Alignment)) return true;
1819   if (!isPowerOf2_32(Alignment))
1820     return Error(AlignLoc, "alignment is not a power of two");
1821   if (Alignment > Value::MaximumAlignment)
1822     return Error(AlignLoc, "huge alignments are not supported yet");
1823   return false;
1824 }
1825 
1826 /// ParseOptionalDerefAttrBytes
1827 ///   ::= /* empty */
1828 ///   ::= AttrKind '(' 4 ')'
1829 ///
1830 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1831 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1832                                            uint64_t &Bytes) {
1833   assert((AttrKind == lltok::kw_dereferenceable ||
1834           AttrKind == lltok::kw_dereferenceable_or_null) &&
1835          "contract!");
1836 
1837   Bytes = 0;
1838   if (!EatIfPresent(AttrKind))
1839     return false;
1840   LocTy ParenLoc = Lex.getLoc();
1841   if (!EatIfPresent(lltok::lparen))
1842     return Error(ParenLoc, "expected '('");
1843   LocTy DerefLoc = Lex.getLoc();
1844   if (ParseUInt64(Bytes)) return true;
1845   ParenLoc = Lex.getLoc();
1846   if (!EatIfPresent(lltok::rparen))
1847     return Error(ParenLoc, "expected ')'");
1848   if (!Bytes)
1849     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1850   return false;
1851 }
1852 
1853 /// ParseOptionalCommaAlign
1854 ///   ::=
1855 ///   ::= ',' align 4
1856 ///
1857 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1858 /// end.
1859 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1860                                        bool &AteExtraComma) {
1861   AteExtraComma = false;
1862   while (EatIfPresent(lltok::comma)) {
1863     // Metadata at the end is an early exit.
1864     if (Lex.getKind() == lltok::MetadataVar) {
1865       AteExtraComma = true;
1866       return false;
1867     }
1868 
1869     if (Lex.getKind() != lltok::kw_align)
1870       return Error(Lex.getLoc(), "expected metadata or 'align'");
1871 
1872     if (ParseOptionalAlignment(Alignment)) return true;
1873   }
1874 
1875   return false;
1876 }
1877 
1878 /// ParseOptionalCommaAddrSpace
1879 ///   ::=
1880 ///   ::= ',' addrspace(1)
1881 ///
1882 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1883 /// end.
1884 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1885                                            LocTy &Loc,
1886                                            bool &AteExtraComma) {
1887   AteExtraComma = false;
1888   while (EatIfPresent(lltok::comma)) {
1889     // Metadata at the end is an early exit.
1890     if (Lex.getKind() == lltok::MetadataVar) {
1891       AteExtraComma = true;
1892       return false;
1893     }
1894 
1895     Loc = Lex.getLoc();
1896     if (Lex.getKind() != lltok::kw_addrspace)
1897       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1898 
1899     if (ParseOptionalAddrSpace(AddrSpace))
1900       return true;
1901   }
1902 
1903   return false;
1904 }
1905 
1906 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1907                                        Optional<unsigned> &HowManyArg) {
1908   Lex.Lex();
1909 
1910   auto StartParen = Lex.getLoc();
1911   if (!EatIfPresent(lltok::lparen))
1912     return Error(StartParen, "expected '('");
1913 
1914   if (ParseUInt32(BaseSizeArg))
1915     return true;
1916 
1917   if (EatIfPresent(lltok::comma)) {
1918     auto HowManyAt = Lex.getLoc();
1919     unsigned HowMany;
1920     if (ParseUInt32(HowMany))
1921       return true;
1922     if (HowMany == BaseSizeArg)
1923       return Error(HowManyAt,
1924                    "'allocsize' indices can't refer to the same parameter");
1925     HowManyArg = HowMany;
1926   } else
1927     HowManyArg = None;
1928 
1929   auto EndParen = Lex.getLoc();
1930   if (!EatIfPresent(lltok::rparen))
1931     return Error(EndParen, "expected ')'");
1932   return false;
1933 }
1934 
1935 /// ParseScopeAndOrdering
1936 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1937 ///   else: ::=
1938 ///
1939 /// This sets Scope and Ordering to the parsed values.
1940 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1941                                      AtomicOrdering &Ordering) {
1942   if (!isAtomic)
1943     return false;
1944 
1945   return ParseScope(SSID) || ParseOrdering(Ordering);
1946 }
1947 
1948 /// ParseScope
1949 ///   ::= syncscope("singlethread" | "<target scope>")?
1950 ///
1951 /// This sets synchronization scope ID to the ID of the parsed value.
1952 bool LLParser::ParseScope(SyncScope::ID &SSID) {
1953   SSID = SyncScope::System;
1954   if (EatIfPresent(lltok::kw_syncscope)) {
1955     auto StartParenAt = Lex.getLoc();
1956     if (!EatIfPresent(lltok::lparen))
1957       return Error(StartParenAt, "Expected '(' in syncscope");
1958 
1959     std::string SSN;
1960     auto SSNAt = Lex.getLoc();
1961     if (ParseStringConstant(SSN))
1962       return Error(SSNAt, "Expected synchronization scope name");
1963 
1964     auto EndParenAt = Lex.getLoc();
1965     if (!EatIfPresent(lltok::rparen))
1966       return Error(EndParenAt, "Expected ')' in syncscope");
1967 
1968     SSID = Context.getOrInsertSyncScopeID(SSN);
1969   }
1970 
1971   return false;
1972 }
1973 
1974 /// ParseOrdering
1975 ///   ::= AtomicOrdering
1976 ///
1977 /// This sets Ordering to the parsed value.
1978 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1979   switch (Lex.getKind()) {
1980   default: return TokError("Expected ordering on atomic instruction");
1981   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1982   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1983   // Not specified yet:
1984   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1985   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1986   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1987   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1988   case lltok::kw_seq_cst:
1989     Ordering = AtomicOrdering::SequentiallyConsistent;
1990     break;
1991   }
1992   Lex.Lex();
1993   return false;
1994 }
1995 
1996 /// ParseOptionalStackAlignment
1997 ///   ::= /* empty */
1998 ///   ::= 'alignstack' '(' 4 ')'
1999 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2000   Alignment = 0;
2001   if (!EatIfPresent(lltok::kw_alignstack))
2002     return false;
2003   LocTy ParenLoc = Lex.getLoc();
2004   if (!EatIfPresent(lltok::lparen))
2005     return Error(ParenLoc, "expected '('");
2006   LocTy AlignLoc = Lex.getLoc();
2007   if (ParseUInt32(Alignment)) return true;
2008   ParenLoc = Lex.getLoc();
2009   if (!EatIfPresent(lltok::rparen))
2010     return Error(ParenLoc, "expected ')'");
2011   if (!isPowerOf2_32(Alignment))
2012     return Error(AlignLoc, "stack alignment is not a power of two");
2013   return false;
2014 }
2015 
2016 /// ParseIndexList - This parses the index list for an insert/extractvalue
2017 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2018 /// comma at the end of the line and find that it is followed by metadata.
2019 /// Clients that don't allow metadata can call the version of this function that
2020 /// only takes one argument.
2021 ///
2022 /// ParseIndexList
2023 ///    ::=  (',' uint32)+
2024 ///
2025 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2026                               bool &AteExtraComma) {
2027   AteExtraComma = false;
2028 
2029   if (Lex.getKind() != lltok::comma)
2030     return TokError("expected ',' as start of index list");
2031 
2032   while (EatIfPresent(lltok::comma)) {
2033     if (Lex.getKind() == lltok::MetadataVar) {
2034       if (Indices.empty()) return TokError("expected index");
2035       AteExtraComma = true;
2036       return false;
2037     }
2038     unsigned Idx = 0;
2039     if (ParseUInt32(Idx)) return true;
2040     Indices.push_back(Idx);
2041   }
2042 
2043   return false;
2044 }
2045 
2046 //===----------------------------------------------------------------------===//
2047 // Type Parsing.
2048 //===----------------------------------------------------------------------===//
2049 
2050 /// ParseType - Parse a type.
2051 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2052   SMLoc TypeLoc = Lex.getLoc();
2053   switch (Lex.getKind()) {
2054   default:
2055     return TokError(Msg);
2056   case lltok::Type:
2057     // Type ::= 'float' | 'void' (etc)
2058     Result = Lex.getTyVal();
2059     Lex.Lex();
2060     break;
2061   case lltok::lbrace:
2062     // Type ::= StructType
2063     if (ParseAnonStructType(Result, false))
2064       return true;
2065     break;
2066   case lltok::lsquare:
2067     // Type ::= '[' ... ']'
2068     Lex.Lex(); // eat the lsquare.
2069     if (ParseArrayVectorType(Result, false))
2070       return true;
2071     break;
2072   case lltok::less: // Either vector or packed struct.
2073     // Type ::= '<' ... '>'
2074     Lex.Lex();
2075     if (Lex.getKind() == lltok::lbrace) {
2076       if (ParseAnonStructType(Result, true) ||
2077           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2078         return true;
2079     } else if (ParseArrayVectorType(Result, true))
2080       return true;
2081     break;
2082   case lltok::LocalVar: {
2083     // Type ::= %foo
2084     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2085 
2086     // If the type hasn't been defined yet, create a forward definition and
2087     // remember where that forward def'n was seen (in case it never is defined).
2088     if (!Entry.first) {
2089       Entry.first = StructType::create(Context, Lex.getStrVal());
2090       Entry.second = Lex.getLoc();
2091     }
2092     Result = Entry.first;
2093     Lex.Lex();
2094     break;
2095   }
2096 
2097   case lltok::LocalVarID: {
2098     // Type ::= %4
2099     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2100 
2101     // If the type hasn't been defined yet, create a forward definition and
2102     // remember where that forward def'n was seen (in case it never is defined).
2103     if (!Entry.first) {
2104       Entry.first = StructType::create(Context);
2105       Entry.second = Lex.getLoc();
2106     }
2107     Result = Entry.first;
2108     Lex.Lex();
2109     break;
2110   }
2111   }
2112 
2113   // Parse the type suffixes.
2114   while (true) {
2115     switch (Lex.getKind()) {
2116     // End of type.
2117     default:
2118       if (!AllowVoid && Result->isVoidTy())
2119         return Error(TypeLoc, "void type only allowed for function results");
2120       return false;
2121 
2122     // Type ::= Type '*'
2123     case lltok::star:
2124       if (Result->isLabelTy())
2125         return TokError("basic block pointers are invalid");
2126       if (Result->isVoidTy())
2127         return TokError("pointers to void are invalid - use i8* instead");
2128       if (!PointerType::isValidElementType(Result))
2129         return TokError("pointer to this type is invalid");
2130       Result = PointerType::getUnqual(Result);
2131       Lex.Lex();
2132       break;
2133 
2134     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2135     case lltok::kw_addrspace: {
2136       if (Result->isLabelTy())
2137         return TokError("basic block pointers are invalid");
2138       if (Result->isVoidTy())
2139         return TokError("pointers to void are invalid; use i8* instead");
2140       if (!PointerType::isValidElementType(Result))
2141         return TokError("pointer to this type is invalid");
2142       unsigned AddrSpace;
2143       if (ParseOptionalAddrSpace(AddrSpace) ||
2144           ParseToken(lltok::star, "expected '*' in address space"))
2145         return true;
2146 
2147       Result = PointerType::get(Result, AddrSpace);
2148       break;
2149     }
2150 
2151     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2152     case lltok::lparen:
2153       if (ParseFunctionType(Result))
2154         return true;
2155       break;
2156     }
2157   }
2158 }
2159 
2160 /// ParseParameterList
2161 ///    ::= '(' ')'
2162 ///    ::= '(' Arg (',' Arg)* ')'
2163 ///  Arg
2164 ///    ::= Type OptionalAttributes Value OptionalAttributes
2165 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2166                                   PerFunctionState &PFS, bool IsMustTailCall,
2167                                   bool InVarArgsFunc) {
2168   if (ParseToken(lltok::lparen, "expected '(' in call"))
2169     return true;
2170 
2171   while (Lex.getKind() != lltok::rparen) {
2172     // If this isn't the first argument, we need a comma.
2173     if (!ArgList.empty() &&
2174         ParseToken(lltok::comma, "expected ',' in argument list"))
2175       return true;
2176 
2177     // Parse an ellipsis if this is a musttail call in a variadic function.
2178     if (Lex.getKind() == lltok::dotdotdot) {
2179       const char *Msg = "unexpected ellipsis in argument list for ";
2180       if (!IsMustTailCall)
2181         return TokError(Twine(Msg) + "non-musttail call");
2182       if (!InVarArgsFunc)
2183         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2184       Lex.Lex();  // Lex the '...', it is purely for readability.
2185       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2186     }
2187 
2188     // Parse the argument.
2189     LocTy ArgLoc;
2190     Type *ArgTy = nullptr;
2191     AttrBuilder ArgAttrs;
2192     Value *V;
2193     if (ParseType(ArgTy, ArgLoc))
2194       return true;
2195 
2196     if (ArgTy->isMetadataTy()) {
2197       if (ParseMetadataAsValue(V, PFS))
2198         return true;
2199     } else {
2200       // Otherwise, handle normal operands.
2201       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2202         return true;
2203     }
2204     ArgList.push_back(ParamInfo(
2205         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2206   }
2207 
2208   if (IsMustTailCall && InVarArgsFunc)
2209     return TokError("expected '...' at end of argument list for musttail call "
2210                     "in varargs function");
2211 
2212   Lex.Lex();  // Lex the ')'.
2213   return false;
2214 }
2215 
2216 /// ParseOptionalOperandBundles
2217 ///    ::= /*empty*/
2218 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2219 ///
2220 /// OperandBundle
2221 ///    ::= bundle-tag '(' ')'
2222 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2223 ///
2224 /// bundle-tag ::= String Constant
2225 bool LLParser::ParseOptionalOperandBundles(
2226     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2227   LocTy BeginLoc = Lex.getLoc();
2228   if (!EatIfPresent(lltok::lsquare))
2229     return false;
2230 
2231   while (Lex.getKind() != lltok::rsquare) {
2232     // If this isn't the first operand bundle, we need a comma.
2233     if (!BundleList.empty() &&
2234         ParseToken(lltok::comma, "expected ',' in input list"))
2235       return true;
2236 
2237     std::string Tag;
2238     if (ParseStringConstant(Tag))
2239       return true;
2240 
2241     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2242       return true;
2243 
2244     std::vector<Value *> Inputs;
2245     while (Lex.getKind() != lltok::rparen) {
2246       // If this isn't the first input, we need a comma.
2247       if (!Inputs.empty() &&
2248           ParseToken(lltok::comma, "expected ',' in input list"))
2249         return true;
2250 
2251       Type *Ty = nullptr;
2252       Value *Input = nullptr;
2253       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2254         return true;
2255       Inputs.push_back(Input);
2256     }
2257 
2258     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2259 
2260     Lex.Lex(); // Lex the ')'.
2261   }
2262 
2263   if (BundleList.empty())
2264     return Error(BeginLoc, "operand bundle set must not be empty");
2265 
2266   Lex.Lex(); // Lex the ']'.
2267   return false;
2268 }
2269 
2270 /// ParseArgumentList - Parse the argument list for a function type or function
2271 /// prototype.
2272 ///   ::= '(' ArgTypeListI ')'
2273 /// ArgTypeListI
2274 ///   ::= /*empty*/
2275 ///   ::= '...'
2276 ///   ::= ArgTypeList ',' '...'
2277 ///   ::= ArgType (',' ArgType)*
2278 ///
2279 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2280                                  bool &isVarArg){
2281   isVarArg = false;
2282   assert(Lex.getKind() == lltok::lparen);
2283   Lex.Lex(); // eat the (.
2284 
2285   if (Lex.getKind() == lltok::rparen) {
2286     // empty
2287   } else if (Lex.getKind() == lltok::dotdotdot) {
2288     isVarArg = true;
2289     Lex.Lex();
2290   } else {
2291     LocTy TypeLoc = Lex.getLoc();
2292     Type *ArgTy = nullptr;
2293     AttrBuilder Attrs;
2294     std::string Name;
2295 
2296     if (ParseType(ArgTy) ||
2297         ParseOptionalParamAttrs(Attrs)) return true;
2298 
2299     if (ArgTy->isVoidTy())
2300       return Error(TypeLoc, "argument can not have void type");
2301 
2302     if (Lex.getKind() == lltok::LocalVar) {
2303       Name = Lex.getStrVal();
2304       Lex.Lex();
2305     }
2306 
2307     if (!FunctionType::isValidArgumentType(ArgTy))
2308       return Error(TypeLoc, "invalid type for function argument");
2309 
2310     ArgList.emplace_back(TypeLoc, ArgTy,
2311                          AttributeSet::get(ArgTy->getContext(), Attrs),
2312                          std::move(Name));
2313 
2314     while (EatIfPresent(lltok::comma)) {
2315       // Handle ... at end of arg list.
2316       if (EatIfPresent(lltok::dotdotdot)) {
2317         isVarArg = true;
2318         break;
2319       }
2320 
2321       // Otherwise must be an argument type.
2322       TypeLoc = Lex.getLoc();
2323       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2324 
2325       if (ArgTy->isVoidTy())
2326         return Error(TypeLoc, "argument can not have void type");
2327 
2328       if (Lex.getKind() == lltok::LocalVar) {
2329         Name = Lex.getStrVal();
2330         Lex.Lex();
2331       } else {
2332         Name = "";
2333       }
2334 
2335       if (!ArgTy->isFirstClassType())
2336         return Error(TypeLoc, "invalid type for function argument");
2337 
2338       ArgList.emplace_back(TypeLoc, ArgTy,
2339                            AttributeSet::get(ArgTy->getContext(), Attrs),
2340                            std::move(Name));
2341     }
2342   }
2343 
2344   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2345 }
2346 
2347 /// ParseFunctionType
2348 ///  ::= Type ArgumentList OptionalAttrs
2349 bool LLParser::ParseFunctionType(Type *&Result) {
2350   assert(Lex.getKind() == lltok::lparen);
2351 
2352   if (!FunctionType::isValidReturnType(Result))
2353     return TokError("invalid function return type");
2354 
2355   SmallVector<ArgInfo, 8> ArgList;
2356   bool isVarArg;
2357   if (ParseArgumentList(ArgList, isVarArg))
2358     return true;
2359 
2360   // Reject names on the arguments lists.
2361   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2362     if (!ArgList[i].Name.empty())
2363       return Error(ArgList[i].Loc, "argument name invalid in function type");
2364     if (ArgList[i].Attrs.hasAttributes())
2365       return Error(ArgList[i].Loc,
2366                    "argument attributes invalid in function type");
2367   }
2368 
2369   SmallVector<Type*, 16> ArgListTy;
2370   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2371     ArgListTy.push_back(ArgList[i].Ty);
2372 
2373   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2374   return false;
2375 }
2376 
2377 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2378 /// other structs.
2379 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2380   SmallVector<Type*, 8> Elts;
2381   if (ParseStructBody(Elts)) return true;
2382 
2383   Result = StructType::get(Context, Elts, Packed);
2384   return false;
2385 }
2386 
2387 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2388 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2389                                      std::pair<Type*, LocTy> &Entry,
2390                                      Type *&ResultTy) {
2391   // If the type was already defined, diagnose the redefinition.
2392   if (Entry.first && !Entry.second.isValid())
2393     return Error(TypeLoc, "redefinition of type");
2394 
2395   // If we have opaque, just return without filling in the definition for the
2396   // struct.  This counts as a definition as far as the .ll file goes.
2397   if (EatIfPresent(lltok::kw_opaque)) {
2398     // This type is being defined, so clear the location to indicate this.
2399     Entry.second = SMLoc();
2400 
2401     // If this type number has never been uttered, create it.
2402     if (!Entry.first)
2403       Entry.first = StructType::create(Context, Name);
2404     ResultTy = Entry.first;
2405     return false;
2406   }
2407 
2408   // If the type starts with '<', then it is either a packed struct or a vector.
2409   bool isPacked = EatIfPresent(lltok::less);
2410 
2411   // If we don't have a struct, then we have a random type alias, which we
2412   // accept for compatibility with old files.  These types are not allowed to be
2413   // forward referenced and not allowed to be recursive.
2414   if (Lex.getKind() != lltok::lbrace) {
2415     if (Entry.first)
2416       return Error(TypeLoc, "forward references to non-struct type");
2417 
2418     ResultTy = nullptr;
2419     if (isPacked)
2420       return ParseArrayVectorType(ResultTy, true);
2421     return ParseType(ResultTy);
2422   }
2423 
2424   // This type is being defined, so clear the location to indicate this.
2425   Entry.second = SMLoc();
2426 
2427   // If this type number has never been uttered, create it.
2428   if (!Entry.first)
2429     Entry.first = StructType::create(Context, Name);
2430 
2431   StructType *STy = cast<StructType>(Entry.first);
2432 
2433   SmallVector<Type*, 8> Body;
2434   if (ParseStructBody(Body) ||
2435       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2436     return true;
2437 
2438   STy->setBody(Body, isPacked);
2439   ResultTy = STy;
2440   return false;
2441 }
2442 
2443 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2444 ///   StructType
2445 ///     ::= '{' '}'
2446 ///     ::= '{' Type (',' Type)* '}'
2447 ///     ::= '<' '{' '}' '>'
2448 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2449 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2450   assert(Lex.getKind() == lltok::lbrace);
2451   Lex.Lex(); // Consume the '{'
2452 
2453   // Handle the empty struct.
2454   if (EatIfPresent(lltok::rbrace))
2455     return false;
2456 
2457   LocTy EltTyLoc = Lex.getLoc();
2458   Type *Ty = nullptr;
2459   if (ParseType(Ty)) return true;
2460   Body.push_back(Ty);
2461 
2462   if (!StructType::isValidElementType(Ty))
2463     return Error(EltTyLoc, "invalid element type for struct");
2464 
2465   while (EatIfPresent(lltok::comma)) {
2466     EltTyLoc = Lex.getLoc();
2467     if (ParseType(Ty)) return true;
2468 
2469     if (!StructType::isValidElementType(Ty))
2470       return Error(EltTyLoc, "invalid element type for struct");
2471 
2472     Body.push_back(Ty);
2473   }
2474 
2475   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2476 }
2477 
2478 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2479 /// token has already been consumed.
2480 ///   Type
2481 ///     ::= '[' APSINTVAL 'x' Types ']'
2482 ///     ::= '<' APSINTVAL 'x' Types '>'
2483 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2484   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2485       Lex.getAPSIntVal().getBitWidth() > 64)
2486     return TokError("expected number in address space");
2487 
2488   LocTy SizeLoc = Lex.getLoc();
2489   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2490   Lex.Lex();
2491 
2492   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2493       return true;
2494 
2495   LocTy TypeLoc = Lex.getLoc();
2496   Type *EltTy = nullptr;
2497   if (ParseType(EltTy)) return true;
2498 
2499   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2500                  "expected end of sequential type"))
2501     return true;
2502 
2503   if (isVector) {
2504     if (Size == 0)
2505       return Error(SizeLoc, "zero element vector is illegal");
2506     if ((unsigned)Size != Size)
2507       return Error(SizeLoc, "size too large for vector");
2508     if (!VectorType::isValidElementType(EltTy))
2509       return Error(TypeLoc, "invalid vector element type");
2510     Result = VectorType::get(EltTy, unsigned(Size));
2511   } else {
2512     if (!ArrayType::isValidElementType(EltTy))
2513       return Error(TypeLoc, "invalid array element type");
2514     Result = ArrayType::get(EltTy, Size);
2515   }
2516   return false;
2517 }
2518 
2519 //===----------------------------------------------------------------------===//
2520 // Function Semantic Analysis.
2521 //===----------------------------------------------------------------------===//
2522 
2523 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2524                                              int functionNumber)
2525   : P(p), F(f), FunctionNumber(functionNumber) {
2526 
2527   // Insert unnamed arguments into the NumberedVals list.
2528   for (Argument &A : F.args())
2529     if (!A.hasName())
2530       NumberedVals.push_back(&A);
2531 }
2532 
2533 LLParser::PerFunctionState::~PerFunctionState() {
2534   // If there were any forward referenced non-basicblock values, delete them.
2535 
2536   for (const auto &P : ForwardRefVals) {
2537     if (isa<BasicBlock>(P.second.first))
2538       continue;
2539     P.second.first->replaceAllUsesWith(
2540         UndefValue::get(P.second.first->getType()));
2541     P.second.first->deleteValue();
2542   }
2543 
2544   for (const auto &P : ForwardRefValIDs) {
2545     if (isa<BasicBlock>(P.second.first))
2546       continue;
2547     P.second.first->replaceAllUsesWith(
2548         UndefValue::get(P.second.first->getType()));
2549     P.second.first->deleteValue();
2550   }
2551 }
2552 
2553 bool LLParser::PerFunctionState::FinishFunction() {
2554   if (!ForwardRefVals.empty())
2555     return P.Error(ForwardRefVals.begin()->second.second,
2556                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2557                    "'");
2558   if (!ForwardRefValIDs.empty())
2559     return P.Error(ForwardRefValIDs.begin()->second.second,
2560                    "use of undefined value '%" +
2561                    Twine(ForwardRefValIDs.begin()->first) + "'");
2562   return false;
2563 }
2564 
2565 /// GetVal - Get a value with the specified name or ID, creating a
2566 /// forward reference record if needed.  This can return null if the value
2567 /// exists but does not have the right type.
2568 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2569                                           LocTy Loc) {
2570   // Look this name up in the normal function symbol table.
2571   Value *Val = F.getValueSymbolTable()->lookup(Name);
2572 
2573   // If this is a forward reference for the value, see if we already created a
2574   // forward ref record.
2575   if (!Val) {
2576     auto I = ForwardRefVals.find(Name);
2577     if (I != ForwardRefVals.end())
2578       Val = I->second.first;
2579   }
2580 
2581   // If we have the value in the symbol table or fwd-ref table, return it.
2582   if (Val) {
2583     if (Val->getType() == Ty) return Val;
2584     if (Ty->isLabelTy())
2585       P.Error(Loc, "'%" + Name + "' is not a basic block");
2586     else
2587       P.Error(Loc, "'%" + Name + "' defined with type '" +
2588               getTypeString(Val->getType()) + "'");
2589     return nullptr;
2590   }
2591 
2592   // Don't make placeholders with invalid type.
2593   if (!Ty->isFirstClassType()) {
2594     P.Error(Loc, "invalid use of a non-first-class type");
2595     return nullptr;
2596   }
2597 
2598   // Otherwise, create a new forward reference for this value and remember it.
2599   Value *FwdVal;
2600   if (Ty->isLabelTy()) {
2601     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2602   } else {
2603     FwdVal = new Argument(Ty, Name);
2604   }
2605 
2606   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2607   return FwdVal;
2608 }
2609 
2610 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2611   // Look this name up in the normal function symbol table.
2612   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2613 
2614   // If this is a forward reference for the value, see if we already created a
2615   // forward ref record.
2616   if (!Val) {
2617     auto I = ForwardRefValIDs.find(ID);
2618     if (I != ForwardRefValIDs.end())
2619       Val = I->second.first;
2620   }
2621 
2622   // If we have the value in the symbol table or fwd-ref table, return it.
2623   if (Val) {
2624     if (Val->getType() == Ty) return Val;
2625     if (Ty->isLabelTy())
2626       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2627     else
2628       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2629               getTypeString(Val->getType()) + "'");
2630     return nullptr;
2631   }
2632 
2633   if (!Ty->isFirstClassType()) {
2634     P.Error(Loc, "invalid use of a non-first-class type");
2635     return nullptr;
2636   }
2637 
2638   // Otherwise, create a new forward reference for this value and remember it.
2639   Value *FwdVal;
2640   if (Ty->isLabelTy()) {
2641     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2642   } else {
2643     FwdVal = new Argument(Ty);
2644   }
2645 
2646   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2647   return FwdVal;
2648 }
2649 
2650 /// SetInstName - After an instruction is parsed and inserted into its
2651 /// basic block, this installs its name.
2652 bool LLParser::PerFunctionState::SetInstName(int NameID,
2653                                              const std::string &NameStr,
2654                                              LocTy NameLoc, Instruction *Inst) {
2655   // If this instruction has void type, it cannot have a name or ID specified.
2656   if (Inst->getType()->isVoidTy()) {
2657     if (NameID != -1 || !NameStr.empty())
2658       return P.Error(NameLoc, "instructions returning void cannot have a name");
2659     return false;
2660   }
2661 
2662   // If this was a numbered instruction, verify that the instruction is the
2663   // expected value and resolve any forward references.
2664   if (NameStr.empty()) {
2665     // If neither a name nor an ID was specified, just use the next ID.
2666     if (NameID == -1)
2667       NameID = NumberedVals.size();
2668 
2669     if (unsigned(NameID) != NumberedVals.size())
2670       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2671                      Twine(NumberedVals.size()) + "'");
2672 
2673     auto FI = ForwardRefValIDs.find(NameID);
2674     if (FI != ForwardRefValIDs.end()) {
2675       Value *Sentinel = FI->second.first;
2676       if (Sentinel->getType() != Inst->getType())
2677         return P.Error(NameLoc, "instruction forward referenced with type '" +
2678                        getTypeString(FI->second.first->getType()) + "'");
2679 
2680       Sentinel->replaceAllUsesWith(Inst);
2681       Sentinel->deleteValue();
2682       ForwardRefValIDs.erase(FI);
2683     }
2684 
2685     NumberedVals.push_back(Inst);
2686     return false;
2687   }
2688 
2689   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2690   auto FI = ForwardRefVals.find(NameStr);
2691   if (FI != ForwardRefVals.end()) {
2692     Value *Sentinel = FI->second.first;
2693     if (Sentinel->getType() != Inst->getType())
2694       return P.Error(NameLoc, "instruction forward referenced with type '" +
2695                      getTypeString(FI->second.first->getType()) + "'");
2696 
2697     Sentinel->replaceAllUsesWith(Inst);
2698     Sentinel->deleteValue();
2699     ForwardRefVals.erase(FI);
2700   }
2701 
2702   // Set the name on the instruction.
2703   Inst->setName(NameStr);
2704 
2705   if (Inst->getName() != NameStr)
2706     return P.Error(NameLoc, "multiple definition of local value named '" +
2707                    NameStr + "'");
2708   return false;
2709 }
2710 
2711 /// GetBB - Get a basic block with the specified name or ID, creating a
2712 /// forward reference record if needed.
2713 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2714                                               LocTy Loc) {
2715   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2716                                       Type::getLabelTy(F.getContext()), Loc));
2717 }
2718 
2719 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2720   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2721                                       Type::getLabelTy(F.getContext()), Loc));
2722 }
2723 
2724 /// DefineBB - Define the specified basic block, which is either named or
2725 /// unnamed.  If there is an error, this returns null otherwise it returns
2726 /// the block being defined.
2727 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2728                                                  LocTy Loc) {
2729   BasicBlock *BB;
2730   if (Name.empty())
2731     BB = GetBB(NumberedVals.size(), Loc);
2732   else
2733     BB = GetBB(Name, Loc);
2734   if (!BB) return nullptr; // Already diagnosed error.
2735 
2736   // Move the block to the end of the function.  Forward ref'd blocks are
2737   // inserted wherever they happen to be referenced.
2738   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2739 
2740   // Remove the block from forward ref sets.
2741   if (Name.empty()) {
2742     ForwardRefValIDs.erase(NumberedVals.size());
2743     NumberedVals.push_back(BB);
2744   } else {
2745     // BB forward references are already in the function symbol table.
2746     ForwardRefVals.erase(Name);
2747   }
2748 
2749   return BB;
2750 }
2751 
2752 //===----------------------------------------------------------------------===//
2753 // Constants.
2754 //===----------------------------------------------------------------------===//
2755 
2756 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2757 /// type implied.  For example, if we parse "4" we don't know what integer type
2758 /// it has.  The value will later be combined with its type and checked for
2759 /// sanity.  PFS is used to convert function-local operands of metadata (since
2760 /// metadata operands are not just parsed here but also converted to values).
2761 /// PFS can be null when we are not parsing metadata values inside a function.
2762 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2763   ID.Loc = Lex.getLoc();
2764   switch (Lex.getKind()) {
2765   default: return TokError("expected value token");
2766   case lltok::GlobalID:  // @42
2767     ID.UIntVal = Lex.getUIntVal();
2768     ID.Kind = ValID::t_GlobalID;
2769     break;
2770   case lltok::GlobalVar:  // @foo
2771     ID.StrVal = Lex.getStrVal();
2772     ID.Kind = ValID::t_GlobalName;
2773     break;
2774   case lltok::LocalVarID:  // %42
2775     ID.UIntVal = Lex.getUIntVal();
2776     ID.Kind = ValID::t_LocalID;
2777     break;
2778   case lltok::LocalVar:  // %foo
2779     ID.StrVal = Lex.getStrVal();
2780     ID.Kind = ValID::t_LocalName;
2781     break;
2782   case lltok::APSInt:
2783     ID.APSIntVal = Lex.getAPSIntVal();
2784     ID.Kind = ValID::t_APSInt;
2785     break;
2786   case lltok::APFloat:
2787     ID.APFloatVal = Lex.getAPFloatVal();
2788     ID.Kind = ValID::t_APFloat;
2789     break;
2790   case lltok::kw_true:
2791     ID.ConstantVal = ConstantInt::getTrue(Context);
2792     ID.Kind = ValID::t_Constant;
2793     break;
2794   case lltok::kw_false:
2795     ID.ConstantVal = ConstantInt::getFalse(Context);
2796     ID.Kind = ValID::t_Constant;
2797     break;
2798   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2799   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2800   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2801   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2802 
2803   case lltok::lbrace: {
2804     // ValID ::= '{' ConstVector '}'
2805     Lex.Lex();
2806     SmallVector<Constant*, 16> Elts;
2807     if (ParseGlobalValueVector(Elts) ||
2808         ParseToken(lltok::rbrace, "expected end of struct constant"))
2809       return true;
2810 
2811     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2812     ID.UIntVal = Elts.size();
2813     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2814            Elts.size() * sizeof(Elts[0]));
2815     ID.Kind = ValID::t_ConstantStruct;
2816     return false;
2817   }
2818   case lltok::less: {
2819     // ValID ::= '<' ConstVector '>'         --> Vector.
2820     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2821     Lex.Lex();
2822     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2823 
2824     SmallVector<Constant*, 16> Elts;
2825     LocTy FirstEltLoc = Lex.getLoc();
2826     if (ParseGlobalValueVector(Elts) ||
2827         (isPackedStruct &&
2828          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2829         ParseToken(lltok::greater, "expected end of constant"))
2830       return true;
2831 
2832     if (isPackedStruct) {
2833       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2834       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2835              Elts.size() * sizeof(Elts[0]));
2836       ID.UIntVal = Elts.size();
2837       ID.Kind = ValID::t_PackedConstantStruct;
2838       return false;
2839     }
2840 
2841     if (Elts.empty())
2842       return Error(ID.Loc, "constant vector must not be empty");
2843 
2844     if (!Elts[0]->getType()->isIntegerTy() &&
2845         !Elts[0]->getType()->isFloatingPointTy() &&
2846         !Elts[0]->getType()->isPointerTy())
2847       return Error(FirstEltLoc,
2848             "vector elements must have integer, pointer or floating point type");
2849 
2850     // Verify that all the vector elements have the same type.
2851     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2852       if (Elts[i]->getType() != Elts[0]->getType())
2853         return Error(FirstEltLoc,
2854                      "vector element #" + Twine(i) +
2855                     " is not of type '" + getTypeString(Elts[0]->getType()));
2856 
2857     ID.ConstantVal = ConstantVector::get(Elts);
2858     ID.Kind = ValID::t_Constant;
2859     return false;
2860   }
2861   case lltok::lsquare: {   // Array Constant
2862     Lex.Lex();
2863     SmallVector<Constant*, 16> Elts;
2864     LocTy FirstEltLoc = Lex.getLoc();
2865     if (ParseGlobalValueVector(Elts) ||
2866         ParseToken(lltok::rsquare, "expected end of array constant"))
2867       return true;
2868 
2869     // Handle empty element.
2870     if (Elts.empty()) {
2871       // Use undef instead of an array because it's inconvenient to determine
2872       // the element type at this point, there being no elements to examine.
2873       ID.Kind = ValID::t_EmptyArray;
2874       return false;
2875     }
2876 
2877     if (!Elts[0]->getType()->isFirstClassType())
2878       return Error(FirstEltLoc, "invalid array element type: " +
2879                    getTypeString(Elts[0]->getType()));
2880 
2881     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2882 
2883     // Verify all elements are correct type!
2884     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2885       if (Elts[i]->getType() != Elts[0]->getType())
2886         return Error(FirstEltLoc,
2887                      "array element #" + Twine(i) +
2888                      " is not of type '" + getTypeString(Elts[0]->getType()));
2889     }
2890 
2891     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2892     ID.Kind = ValID::t_Constant;
2893     return false;
2894   }
2895   case lltok::kw_c:  // c "foo"
2896     Lex.Lex();
2897     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2898                                                   false);
2899     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2900     ID.Kind = ValID::t_Constant;
2901     return false;
2902 
2903   case lltok::kw_asm: {
2904     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2905     //             STRINGCONSTANT
2906     bool HasSideEffect, AlignStack, AsmDialect;
2907     Lex.Lex();
2908     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2909         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2910         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2911         ParseStringConstant(ID.StrVal) ||
2912         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2913         ParseToken(lltok::StringConstant, "expected constraint string"))
2914       return true;
2915     ID.StrVal2 = Lex.getStrVal();
2916     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2917       (unsigned(AsmDialect)<<2);
2918     ID.Kind = ValID::t_InlineAsm;
2919     return false;
2920   }
2921 
2922   case lltok::kw_blockaddress: {
2923     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2924     Lex.Lex();
2925 
2926     ValID Fn, Label;
2927 
2928     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2929         ParseValID(Fn) ||
2930         ParseToken(lltok::comma, "expected comma in block address expression")||
2931         ParseValID(Label) ||
2932         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2933       return true;
2934 
2935     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2936       return Error(Fn.Loc, "expected function name in blockaddress");
2937     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2938       return Error(Label.Loc, "expected basic block name in blockaddress");
2939 
2940     // Try to find the function (but skip it if it's forward-referenced).
2941     GlobalValue *GV = nullptr;
2942     if (Fn.Kind == ValID::t_GlobalID) {
2943       if (Fn.UIntVal < NumberedVals.size())
2944         GV = NumberedVals[Fn.UIntVal];
2945     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2946       GV = M->getNamedValue(Fn.StrVal);
2947     }
2948     Function *F = nullptr;
2949     if (GV) {
2950       // Confirm that it's actually a function with a definition.
2951       if (!isa<Function>(GV))
2952         return Error(Fn.Loc, "expected function name in blockaddress");
2953       F = cast<Function>(GV);
2954       if (F->isDeclaration())
2955         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2956     }
2957 
2958     if (!F) {
2959       // Make a global variable as a placeholder for this reference.
2960       GlobalValue *&FwdRef =
2961           ForwardRefBlockAddresses.insert(std::make_pair(
2962                                               std::move(Fn),
2963                                               std::map<ValID, GlobalValue *>()))
2964               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2965               .first->second;
2966       if (!FwdRef)
2967         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2968                                     GlobalValue::InternalLinkage, nullptr, "");
2969       ID.ConstantVal = FwdRef;
2970       ID.Kind = ValID::t_Constant;
2971       return false;
2972     }
2973 
2974     // We found the function; now find the basic block.  Don't use PFS, since we
2975     // might be inside a constant expression.
2976     BasicBlock *BB;
2977     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2978       if (Label.Kind == ValID::t_LocalID)
2979         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2980       else
2981         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2982       if (!BB)
2983         return Error(Label.Loc, "referenced value is not a basic block");
2984     } else {
2985       if (Label.Kind == ValID::t_LocalID)
2986         return Error(Label.Loc, "cannot take address of numeric label after "
2987                                 "the function is defined");
2988       BB = dyn_cast_or_null<BasicBlock>(
2989           F->getValueSymbolTable()->lookup(Label.StrVal));
2990       if (!BB)
2991         return Error(Label.Loc, "referenced value is not a basic block");
2992     }
2993 
2994     ID.ConstantVal = BlockAddress::get(F, BB);
2995     ID.Kind = ValID::t_Constant;
2996     return false;
2997   }
2998 
2999   case lltok::kw_trunc:
3000   case lltok::kw_zext:
3001   case lltok::kw_sext:
3002   case lltok::kw_fptrunc:
3003   case lltok::kw_fpext:
3004   case lltok::kw_bitcast:
3005   case lltok::kw_addrspacecast:
3006   case lltok::kw_uitofp:
3007   case lltok::kw_sitofp:
3008   case lltok::kw_fptoui:
3009   case lltok::kw_fptosi:
3010   case lltok::kw_inttoptr:
3011   case lltok::kw_ptrtoint: {
3012     unsigned Opc = Lex.getUIntVal();
3013     Type *DestTy = nullptr;
3014     Constant *SrcVal;
3015     Lex.Lex();
3016     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3017         ParseGlobalTypeAndValue(SrcVal) ||
3018         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3019         ParseType(DestTy) ||
3020         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3021       return true;
3022     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3023       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3024                    getTypeString(SrcVal->getType()) + "' to '" +
3025                    getTypeString(DestTy) + "'");
3026     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3027                                                  SrcVal, DestTy);
3028     ID.Kind = ValID::t_Constant;
3029     return false;
3030   }
3031   case lltok::kw_extractvalue: {
3032     Lex.Lex();
3033     Constant *Val;
3034     SmallVector<unsigned, 4> Indices;
3035     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3036         ParseGlobalTypeAndValue(Val) ||
3037         ParseIndexList(Indices) ||
3038         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3039       return true;
3040 
3041     if (!Val->getType()->isAggregateType())
3042       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3043     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3044       return Error(ID.Loc, "invalid indices for extractvalue");
3045     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3046     ID.Kind = ValID::t_Constant;
3047     return false;
3048   }
3049   case lltok::kw_insertvalue: {
3050     Lex.Lex();
3051     Constant *Val0, *Val1;
3052     SmallVector<unsigned, 4> Indices;
3053     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3054         ParseGlobalTypeAndValue(Val0) ||
3055         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3056         ParseGlobalTypeAndValue(Val1) ||
3057         ParseIndexList(Indices) ||
3058         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3059       return true;
3060     if (!Val0->getType()->isAggregateType())
3061       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3062     Type *IndexedType =
3063         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3064     if (!IndexedType)
3065       return Error(ID.Loc, "invalid indices for insertvalue");
3066     if (IndexedType != Val1->getType())
3067       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3068                                getTypeString(Val1->getType()) +
3069                                "' instead of '" + getTypeString(IndexedType) +
3070                                "'");
3071     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3072     ID.Kind = ValID::t_Constant;
3073     return false;
3074   }
3075   case lltok::kw_icmp:
3076   case lltok::kw_fcmp: {
3077     unsigned PredVal, Opc = Lex.getUIntVal();
3078     Constant *Val0, *Val1;
3079     Lex.Lex();
3080     if (ParseCmpPredicate(PredVal, Opc) ||
3081         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3082         ParseGlobalTypeAndValue(Val0) ||
3083         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3084         ParseGlobalTypeAndValue(Val1) ||
3085         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3086       return true;
3087 
3088     if (Val0->getType() != Val1->getType())
3089       return Error(ID.Loc, "compare operands must have the same type");
3090 
3091     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3092 
3093     if (Opc == Instruction::FCmp) {
3094       if (!Val0->getType()->isFPOrFPVectorTy())
3095         return Error(ID.Loc, "fcmp requires floating point operands");
3096       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3097     } else {
3098       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3099       if (!Val0->getType()->isIntOrIntVectorTy() &&
3100           !Val0->getType()->isPtrOrPtrVectorTy())
3101         return Error(ID.Loc, "icmp requires pointer or integer operands");
3102       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3103     }
3104     ID.Kind = ValID::t_Constant;
3105     return false;
3106   }
3107 
3108   // Binary Operators.
3109   case lltok::kw_add:
3110   case lltok::kw_fadd:
3111   case lltok::kw_sub:
3112   case lltok::kw_fsub:
3113   case lltok::kw_mul:
3114   case lltok::kw_fmul:
3115   case lltok::kw_udiv:
3116   case lltok::kw_sdiv:
3117   case lltok::kw_fdiv:
3118   case lltok::kw_urem:
3119   case lltok::kw_srem:
3120   case lltok::kw_frem:
3121   case lltok::kw_shl:
3122   case lltok::kw_lshr:
3123   case lltok::kw_ashr: {
3124     bool NUW = false;
3125     bool NSW = false;
3126     bool Exact = false;
3127     unsigned Opc = Lex.getUIntVal();
3128     Constant *Val0, *Val1;
3129     Lex.Lex();
3130     LocTy ModifierLoc = Lex.getLoc();
3131     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3132         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3133       if (EatIfPresent(lltok::kw_nuw))
3134         NUW = true;
3135       if (EatIfPresent(lltok::kw_nsw)) {
3136         NSW = true;
3137         if (EatIfPresent(lltok::kw_nuw))
3138           NUW = true;
3139       }
3140     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3141                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3142       if (EatIfPresent(lltok::kw_exact))
3143         Exact = true;
3144     }
3145     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3146         ParseGlobalTypeAndValue(Val0) ||
3147         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3148         ParseGlobalTypeAndValue(Val1) ||
3149         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3150       return true;
3151     if (Val0->getType() != Val1->getType())
3152       return Error(ID.Loc, "operands of constexpr must have same type");
3153     if (!Val0->getType()->isIntOrIntVectorTy()) {
3154       if (NUW)
3155         return Error(ModifierLoc, "nuw only applies to integer operations");
3156       if (NSW)
3157         return Error(ModifierLoc, "nsw only applies to integer operations");
3158     }
3159     // Check that the type is valid for the operator.
3160     switch (Opc) {
3161     case Instruction::Add:
3162     case Instruction::Sub:
3163     case Instruction::Mul:
3164     case Instruction::UDiv:
3165     case Instruction::SDiv:
3166     case Instruction::URem:
3167     case Instruction::SRem:
3168     case Instruction::Shl:
3169     case Instruction::AShr:
3170     case Instruction::LShr:
3171       if (!Val0->getType()->isIntOrIntVectorTy())
3172         return Error(ID.Loc, "constexpr requires integer operands");
3173       break;
3174     case Instruction::FAdd:
3175     case Instruction::FSub:
3176     case Instruction::FMul:
3177     case Instruction::FDiv:
3178     case Instruction::FRem:
3179       if (!Val0->getType()->isFPOrFPVectorTy())
3180         return Error(ID.Loc, "constexpr requires fp operands");
3181       break;
3182     default: llvm_unreachable("Unknown binary operator!");
3183     }
3184     unsigned Flags = 0;
3185     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3186     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3187     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3188     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3189     ID.ConstantVal = C;
3190     ID.Kind = ValID::t_Constant;
3191     return false;
3192   }
3193 
3194   // Logical Operations
3195   case lltok::kw_and:
3196   case lltok::kw_or:
3197   case lltok::kw_xor: {
3198     unsigned Opc = Lex.getUIntVal();
3199     Constant *Val0, *Val1;
3200     Lex.Lex();
3201     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3202         ParseGlobalTypeAndValue(Val0) ||
3203         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3204         ParseGlobalTypeAndValue(Val1) ||
3205         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3206       return true;
3207     if (Val0->getType() != Val1->getType())
3208       return Error(ID.Loc, "operands of constexpr must have same type");
3209     if (!Val0->getType()->isIntOrIntVectorTy())
3210       return Error(ID.Loc,
3211                    "constexpr requires integer or integer vector operands");
3212     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3213     ID.Kind = ValID::t_Constant;
3214     return false;
3215   }
3216 
3217   case lltok::kw_getelementptr:
3218   case lltok::kw_shufflevector:
3219   case lltok::kw_insertelement:
3220   case lltok::kw_extractelement:
3221   case lltok::kw_select: {
3222     unsigned Opc = Lex.getUIntVal();
3223     SmallVector<Constant*, 16> Elts;
3224     bool InBounds = false;
3225     Type *Ty;
3226     Lex.Lex();
3227 
3228     if (Opc == Instruction::GetElementPtr)
3229       InBounds = EatIfPresent(lltok::kw_inbounds);
3230 
3231     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3232       return true;
3233 
3234     LocTy ExplicitTypeLoc = Lex.getLoc();
3235     if (Opc == Instruction::GetElementPtr) {
3236       if (ParseType(Ty) ||
3237           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3238         return true;
3239     }
3240 
3241     Optional<unsigned> InRangeOp;
3242     if (ParseGlobalValueVector(
3243             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3244         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3245       return true;
3246 
3247     if (Opc == Instruction::GetElementPtr) {
3248       if (Elts.size() == 0 ||
3249           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3250         return Error(ID.Loc, "base of getelementptr must be a pointer");
3251 
3252       Type *BaseType = Elts[0]->getType();
3253       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3254       if (Ty != BasePointerType->getElementType())
3255         return Error(
3256             ExplicitTypeLoc,
3257             "explicit pointee type doesn't match operand's pointee type");
3258 
3259       unsigned GEPWidth =
3260           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3261 
3262       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3263       for (Constant *Val : Indices) {
3264         Type *ValTy = Val->getType();
3265         if (!ValTy->isIntOrIntVectorTy())
3266           return Error(ID.Loc, "getelementptr index must be an integer");
3267         if (ValTy->isVectorTy()) {
3268           unsigned ValNumEl = ValTy->getVectorNumElements();
3269           if (GEPWidth && (ValNumEl != GEPWidth))
3270             return Error(
3271                 ID.Loc,
3272                 "getelementptr vector index has a wrong number of elements");
3273           // GEPWidth may have been unknown because the base is a scalar,
3274           // but it is known now.
3275           GEPWidth = ValNumEl;
3276         }
3277       }
3278 
3279       SmallPtrSet<Type*, 4> Visited;
3280       if (!Indices.empty() && !Ty->isSized(&Visited))
3281         return Error(ID.Loc, "base element of getelementptr must be sized");
3282 
3283       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3284         return Error(ID.Loc, "invalid getelementptr indices");
3285 
3286       if (InRangeOp) {
3287         if (*InRangeOp == 0)
3288           return Error(ID.Loc,
3289                        "inrange keyword may not appear on pointer operand");
3290         --*InRangeOp;
3291       }
3292 
3293       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3294                                                       InBounds, InRangeOp);
3295     } else if (Opc == Instruction::Select) {
3296       if (Elts.size() != 3)
3297         return Error(ID.Loc, "expected three operands to select");
3298       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3299                                                               Elts[2]))
3300         return Error(ID.Loc, Reason);
3301       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3302     } else if (Opc == Instruction::ShuffleVector) {
3303       if (Elts.size() != 3)
3304         return Error(ID.Loc, "expected three operands to shufflevector");
3305       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3306         return Error(ID.Loc, "invalid operands to shufflevector");
3307       ID.ConstantVal =
3308                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3309     } else if (Opc == Instruction::ExtractElement) {
3310       if (Elts.size() != 2)
3311         return Error(ID.Loc, "expected two operands to extractelement");
3312       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3313         return Error(ID.Loc, "invalid extractelement operands");
3314       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3315     } else {
3316       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3317       if (Elts.size() != 3)
3318       return Error(ID.Loc, "expected three operands to insertelement");
3319       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3320         return Error(ID.Loc, "invalid insertelement operands");
3321       ID.ConstantVal =
3322                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3323     }
3324 
3325     ID.Kind = ValID::t_Constant;
3326     return false;
3327   }
3328   }
3329 
3330   Lex.Lex();
3331   return false;
3332 }
3333 
3334 /// ParseGlobalValue - Parse a global value with the specified type.
3335 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3336   C = nullptr;
3337   ValID ID;
3338   Value *V = nullptr;
3339   bool Parsed = ParseValID(ID) ||
3340                 ConvertValIDToValue(Ty, ID, V, nullptr);
3341   if (V && !(C = dyn_cast<Constant>(V)))
3342     return Error(ID.Loc, "global values must be constants");
3343   return Parsed;
3344 }
3345 
3346 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3347   Type *Ty = nullptr;
3348   return ParseType(Ty) ||
3349          ParseGlobalValue(Ty, V);
3350 }
3351 
3352 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3353   C = nullptr;
3354 
3355   LocTy KwLoc = Lex.getLoc();
3356   if (!EatIfPresent(lltok::kw_comdat))
3357     return false;
3358 
3359   if (EatIfPresent(lltok::lparen)) {
3360     if (Lex.getKind() != lltok::ComdatVar)
3361       return TokError("expected comdat variable");
3362     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3363     Lex.Lex();
3364     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3365       return true;
3366   } else {
3367     if (GlobalName.empty())
3368       return TokError("comdat cannot be unnamed");
3369     C = getComdat(GlobalName, KwLoc);
3370   }
3371 
3372   return false;
3373 }
3374 
3375 /// ParseGlobalValueVector
3376 ///   ::= /*empty*/
3377 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3378 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3379                                       Optional<unsigned> *InRangeOp) {
3380   // Empty list.
3381   if (Lex.getKind() == lltok::rbrace ||
3382       Lex.getKind() == lltok::rsquare ||
3383       Lex.getKind() == lltok::greater ||
3384       Lex.getKind() == lltok::rparen)
3385     return false;
3386 
3387   do {
3388     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3389       *InRangeOp = Elts.size();
3390 
3391     Constant *C;
3392     if (ParseGlobalTypeAndValue(C)) return true;
3393     Elts.push_back(C);
3394   } while (EatIfPresent(lltok::comma));
3395 
3396   return false;
3397 }
3398 
3399 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3400   SmallVector<Metadata *, 16> Elts;
3401   if (ParseMDNodeVector(Elts))
3402     return true;
3403 
3404   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3405   return false;
3406 }
3407 
3408 /// MDNode:
3409 ///  ::= !{ ... }
3410 ///  ::= !7
3411 ///  ::= !DILocation(...)
3412 bool LLParser::ParseMDNode(MDNode *&N) {
3413   if (Lex.getKind() == lltok::MetadataVar)
3414     return ParseSpecializedMDNode(N);
3415 
3416   return ParseToken(lltok::exclaim, "expected '!' here") ||
3417          ParseMDNodeTail(N);
3418 }
3419 
3420 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3421   // !{ ... }
3422   if (Lex.getKind() == lltok::lbrace)
3423     return ParseMDTuple(N);
3424 
3425   // !42
3426   return ParseMDNodeID(N);
3427 }
3428 
3429 namespace {
3430 
3431 /// Structure to represent an optional metadata field.
3432 template <class FieldTy> struct MDFieldImpl {
3433   typedef MDFieldImpl ImplTy;
3434   FieldTy Val;
3435   bool Seen;
3436 
3437   void assign(FieldTy Val) {
3438     Seen = true;
3439     this->Val = std::move(Val);
3440   }
3441 
3442   explicit MDFieldImpl(FieldTy Default)
3443       : Val(std::move(Default)), Seen(false) {}
3444 };
3445 
3446 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3447   uint64_t Max;
3448 
3449   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3450       : ImplTy(Default), Max(Max) {}
3451 };
3452 
3453 struct LineField : public MDUnsignedField {
3454   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3455 };
3456 
3457 struct ColumnField : public MDUnsignedField {
3458   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3459 };
3460 
3461 struct DwarfTagField : public MDUnsignedField {
3462   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3463   DwarfTagField(dwarf::Tag DefaultTag)
3464       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3465 };
3466 
3467 struct DwarfMacinfoTypeField : public MDUnsignedField {
3468   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3469   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3470     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3471 };
3472 
3473 struct DwarfAttEncodingField : public MDUnsignedField {
3474   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3475 };
3476 
3477 struct DwarfVirtualityField : public MDUnsignedField {
3478   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3479 };
3480 
3481 struct DwarfLangField : public MDUnsignedField {
3482   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3483 };
3484 
3485 struct DwarfCCField : public MDUnsignedField {
3486   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3487 };
3488 
3489 struct EmissionKindField : public MDUnsignedField {
3490   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3491 };
3492 
3493 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3494   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3495 };
3496 
3497 struct MDSignedField : public MDFieldImpl<int64_t> {
3498   int64_t Min;
3499   int64_t Max;
3500 
3501   MDSignedField(int64_t Default = 0)
3502       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3503   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3504       : ImplTy(Default), Min(Min), Max(Max) {}
3505 };
3506 
3507 struct MDBoolField : public MDFieldImpl<bool> {
3508   MDBoolField(bool Default = false) : ImplTy(Default) {}
3509 };
3510 
3511 struct MDField : public MDFieldImpl<Metadata *> {
3512   bool AllowNull;
3513 
3514   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3515 };
3516 
3517 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3518   MDConstant() : ImplTy(nullptr) {}
3519 };
3520 
3521 struct MDStringField : public MDFieldImpl<MDString *> {
3522   bool AllowEmpty;
3523   MDStringField(bool AllowEmpty = true)
3524       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3525 };
3526 
3527 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3528   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3529 };
3530 
3531 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3532   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3533   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3534 };
3535 
3536 } // end anonymous namespace
3537 
3538 namespace llvm {
3539 
3540 template <>
3541 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3542                             MDUnsignedField &Result) {
3543   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3544     return TokError("expected unsigned integer");
3545 
3546   auto &U = Lex.getAPSIntVal();
3547   if (U.ugt(Result.Max))
3548     return TokError("value for '" + Name + "' too large, limit is " +
3549                     Twine(Result.Max));
3550   Result.assign(U.getZExtValue());
3551   assert(Result.Val <= Result.Max && "Expected value in range");
3552   Lex.Lex();
3553   return false;
3554 }
3555 
3556 template <>
3557 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3558   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3559 }
3560 template <>
3561 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3562   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3563 }
3564 
3565 template <>
3566 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3567   if (Lex.getKind() == lltok::APSInt)
3568     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3569 
3570   if (Lex.getKind() != lltok::DwarfTag)
3571     return TokError("expected DWARF tag");
3572 
3573   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3574   if (Tag == dwarf::DW_TAG_invalid)
3575     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3576   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3577 
3578   Result.assign(Tag);
3579   Lex.Lex();
3580   return false;
3581 }
3582 
3583 template <>
3584 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3585                             DwarfMacinfoTypeField &Result) {
3586   if (Lex.getKind() == lltok::APSInt)
3587     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3588 
3589   if (Lex.getKind() != lltok::DwarfMacinfo)
3590     return TokError("expected DWARF macinfo type");
3591 
3592   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3593   if (Macinfo == dwarf::DW_MACINFO_invalid)
3594     return TokError(
3595         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3596   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3597 
3598   Result.assign(Macinfo);
3599   Lex.Lex();
3600   return false;
3601 }
3602 
3603 template <>
3604 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3605                             DwarfVirtualityField &Result) {
3606   if (Lex.getKind() == lltok::APSInt)
3607     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3608 
3609   if (Lex.getKind() != lltok::DwarfVirtuality)
3610     return TokError("expected DWARF virtuality code");
3611 
3612   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3613   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3614     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3615                     Lex.getStrVal() + "'");
3616   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3617   Result.assign(Virtuality);
3618   Lex.Lex();
3619   return false;
3620 }
3621 
3622 template <>
3623 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3624   if (Lex.getKind() == lltok::APSInt)
3625     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3626 
3627   if (Lex.getKind() != lltok::DwarfLang)
3628     return TokError("expected DWARF language");
3629 
3630   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3631   if (!Lang)
3632     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3633                     "'");
3634   assert(Lang <= Result.Max && "Expected valid DWARF language");
3635   Result.assign(Lang);
3636   Lex.Lex();
3637   return false;
3638 }
3639 
3640 template <>
3641 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3642   if (Lex.getKind() == lltok::APSInt)
3643     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3644 
3645   if (Lex.getKind() != lltok::DwarfCC)
3646     return TokError("expected DWARF calling convention");
3647 
3648   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3649   if (!CC)
3650     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3651                     "'");
3652   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3653   Result.assign(CC);
3654   Lex.Lex();
3655   return false;
3656 }
3657 
3658 template <>
3659 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3660   if (Lex.getKind() == lltok::APSInt)
3661     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3662 
3663   if (Lex.getKind() != lltok::EmissionKind)
3664     return TokError("expected emission kind");
3665 
3666   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3667   if (!Kind)
3668     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3669                     "'");
3670   assert(*Kind <= Result.Max && "Expected valid emission kind");
3671   Result.assign(*Kind);
3672   Lex.Lex();
3673   return false;
3674 }
3675 
3676 template <>
3677 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3678                             DwarfAttEncodingField &Result) {
3679   if (Lex.getKind() == lltok::APSInt)
3680     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3681 
3682   if (Lex.getKind() != lltok::DwarfAttEncoding)
3683     return TokError("expected DWARF type attribute encoding");
3684 
3685   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3686   if (!Encoding)
3687     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3688                     Lex.getStrVal() + "'");
3689   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3690   Result.assign(Encoding);
3691   Lex.Lex();
3692   return false;
3693 }
3694 
3695 /// DIFlagField
3696 ///  ::= uint32
3697 ///  ::= DIFlagVector
3698 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3699 template <>
3700 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3701 
3702   // Parser for a single flag.
3703   auto parseFlag = [&](DINode::DIFlags &Val) {
3704     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3705       uint32_t TempVal = static_cast<uint32_t>(Val);
3706       bool Res = ParseUInt32(TempVal);
3707       Val = static_cast<DINode::DIFlags>(TempVal);
3708       return Res;
3709     }
3710 
3711     if (Lex.getKind() != lltok::DIFlag)
3712       return TokError("expected debug info flag");
3713 
3714     Val = DINode::getFlag(Lex.getStrVal());
3715     if (!Val)
3716       return TokError(Twine("invalid debug info flag flag '") +
3717                       Lex.getStrVal() + "'");
3718     Lex.Lex();
3719     return false;
3720   };
3721 
3722   // Parse the flags and combine them together.
3723   DINode::DIFlags Combined = DINode::FlagZero;
3724   do {
3725     DINode::DIFlags Val;
3726     if (parseFlag(Val))
3727       return true;
3728     Combined |= Val;
3729   } while (EatIfPresent(lltok::bar));
3730 
3731   Result.assign(Combined);
3732   return false;
3733 }
3734 
3735 template <>
3736 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3737                             MDSignedField &Result) {
3738   if (Lex.getKind() != lltok::APSInt)
3739     return TokError("expected signed integer");
3740 
3741   auto &S = Lex.getAPSIntVal();
3742   if (S < Result.Min)
3743     return TokError("value for '" + Name + "' too small, limit is " +
3744                     Twine(Result.Min));
3745   if (S > Result.Max)
3746     return TokError("value for '" + Name + "' too large, limit is " +
3747                     Twine(Result.Max));
3748   Result.assign(S.getExtValue());
3749   assert(Result.Val >= Result.Min && "Expected value in range");
3750   assert(Result.Val <= Result.Max && "Expected value in range");
3751   Lex.Lex();
3752   return false;
3753 }
3754 
3755 template <>
3756 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3757   switch (Lex.getKind()) {
3758   default:
3759     return TokError("expected 'true' or 'false'");
3760   case lltok::kw_true:
3761     Result.assign(true);
3762     break;
3763   case lltok::kw_false:
3764     Result.assign(false);
3765     break;
3766   }
3767   Lex.Lex();
3768   return false;
3769 }
3770 
3771 template <>
3772 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3773   if (Lex.getKind() == lltok::kw_null) {
3774     if (!Result.AllowNull)
3775       return TokError("'" + Name + "' cannot be null");
3776     Lex.Lex();
3777     Result.assign(nullptr);
3778     return false;
3779   }
3780 
3781   Metadata *MD;
3782   if (ParseMetadata(MD, nullptr))
3783     return true;
3784 
3785   Result.assign(MD);
3786   return false;
3787 }
3788 
3789 template <>
3790 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3791   LocTy ValueLoc = Lex.getLoc();
3792   std::string S;
3793   if (ParseStringConstant(S))
3794     return true;
3795 
3796   if (!Result.AllowEmpty && S.empty())
3797     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3798 
3799   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3800   return false;
3801 }
3802 
3803 template <>
3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3805   SmallVector<Metadata *, 4> MDs;
3806   if (ParseMDNodeVector(MDs))
3807     return true;
3808 
3809   Result.assign(std::move(MDs));
3810   return false;
3811 }
3812 
3813 template <>
3814 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3815                             ChecksumKindField &Result) {
3816   if (Lex.getKind() != lltok::ChecksumKind)
3817     return TokError(
3818         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3819 
3820   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3821 
3822   Result.assign(CSKind);
3823   Lex.Lex();
3824   return false;
3825 }
3826 
3827 } // end namespace llvm
3828 
3829 template <class ParserTy>
3830 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3831   do {
3832     if (Lex.getKind() != lltok::LabelStr)
3833       return TokError("expected field label here");
3834 
3835     if (parseField())
3836       return true;
3837   } while (EatIfPresent(lltok::comma));
3838 
3839   return false;
3840 }
3841 
3842 template <class ParserTy>
3843 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3844   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3845   Lex.Lex();
3846 
3847   if (ParseToken(lltok::lparen, "expected '(' here"))
3848     return true;
3849   if (Lex.getKind() != lltok::rparen)
3850     if (ParseMDFieldsImplBody(parseField))
3851       return true;
3852 
3853   ClosingLoc = Lex.getLoc();
3854   return ParseToken(lltok::rparen, "expected ')' here");
3855 }
3856 
3857 template <class FieldTy>
3858 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3859   if (Result.Seen)
3860     return TokError("field '" + Name + "' cannot be specified more than once");
3861 
3862   LocTy Loc = Lex.getLoc();
3863   Lex.Lex();
3864   return ParseMDField(Loc, Name, Result);
3865 }
3866 
3867 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3868   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3869 
3870 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3871   if (Lex.getStrVal() == #CLASS)                                               \
3872     return Parse##CLASS(N, IsDistinct);
3873 #include "llvm/IR/Metadata.def"
3874 
3875   return TokError("expected metadata type");
3876 }
3877 
3878 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3879 #define NOP_FIELD(NAME, TYPE, INIT)
3880 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3881   if (!NAME.Seen)                                                              \
3882     return Error(ClosingLoc, "missing required field '" #NAME "'");
3883 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3884   if (Lex.getStrVal() == #NAME)                                                \
3885     return ParseMDField(#NAME, NAME);
3886 #define PARSE_MD_FIELDS()                                                      \
3887   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3888   do {                                                                         \
3889     LocTy ClosingLoc;                                                          \
3890     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3891       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3892       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3893     }, ClosingLoc))                                                            \
3894       return true;                                                             \
3895     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3896   } while (false)
3897 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3898   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3899 
3900 /// ParseDILocationFields:
3901 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3902 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3904   OPTIONAL(line, LineField, );                                                 \
3905   OPTIONAL(column, ColumnField, );                                             \
3906   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3907   OPTIONAL(inlinedAt, MDField, );
3908   PARSE_MD_FIELDS();
3909 #undef VISIT_MD_FIELDS
3910 
3911   Result = GET_OR_DISTINCT(
3912       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3913   return false;
3914 }
3915 
3916 /// ParseGenericDINode:
3917 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3918 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3920   REQUIRED(tag, DwarfTagField, );                                              \
3921   OPTIONAL(header, MDStringField, );                                           \
3922   OPTIONAL(operands, MDFieldList, );
3923   PARSE_MD_FIELDS();
3924 #undef VISIT_MD_FIELDS
3925 
3926   Result = GET_OR_DISTINCT(GenericDINode,
3927                            (Context, tag.Val, header.Val, operands.Val));
3928   return false;
3929 }
3930 
3931 /// ParseDISubrange:
3932 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3933 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3935   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3936   OPTIONAL(lowerBound, MDSignedField, );
3937   PARSE_MD_FIELDS();
3938 #undef VISIT_MD_FIELDS
3939 
3940   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3941   return false;
3942 }
3943 
3944 /// ParseDIEnumerator:
3945 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3946 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3948   REQUIRED(name, MDStringField, );                                             \
3949   REQUIRED(value, MDSignedField, );
3950   PARSE_MD_FIELDS();
3951 #undef VISIT_MD_FIELDS
3952 
3953   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3954   return false;
3955 }
3956 
3957 /// ParseDIBasicType:
3958 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3959 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3960 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3961   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3962   OPTIONAL(name, MDStringField, );                                             \
3963   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3964   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3965   OPTIONAL(encoding, DwarfAttEncodingField, );
3966   PARSE_MD_FIELDS();
3967 #undef VISIT_MD_FIELDS
3968 
3969   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3970                                          align.Val, encoding.Val));
3971   return false;
3972 }
3973 
3974 /// ParseDIDerivedType:
3975 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3976 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3977 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
3978 ///                      dwarfAddressSpace: 3)
3979 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3981   REQUIRED(tag, DwarfTagField, );                                              \
3982   OPTIONAL(name, MDStringField, );                                             \
3983   OPTIONAL(file, MDField, );                                                   \
3984   OPTIONAL(line, LineField, );                                                 \
3985   OPTIONAL(scope, MDField, );                                                  \
3986   REQUIRED(baseType, MDField, );                                               \
3987   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3988   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3989   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3990   OPTIONAL(flags, DIFlagField, );                                              \
3991   OPTIONAL(extraData, MDField, );                                              \
3992   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3993   PARSE_MD_FIELDS();
3994 #undef VISIT_MD_FIELDS
3995 
3996   Optional<unsigned> DWARFAddressSpace;
3997   if (dwarfAddressSpace.Val != UINT32_MAX)
3998     DWARFAddressSpace = dwarfAddressSpace.Val;
3999 
4000   Result = GET_OR_DISTINCT(DIDerivedType,
4001                            (Context, tag.Val, name.Val, file.Val, line.Val,
4002                             scope.Val, baseType.Val, size.Val, align.Val,
4003                             offset.Val, DWARFAddressSpace, flags.Val,
4004                             extraData.Val));
4005   return false;
4006 }
4007 
4008 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4009 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4010   REQUIRED(tag, DwarfTagField, );                                              \
4011   OPTIONAL(name, MDStringField, );                                             \
4012   OPTIONAL(file, MDField, );                                                   \
4013   OPTIONAL(line, LineField, );                                                 \
4014   OPTIONAL(scope, MDField, );                                                  \
4015   OPTIONAL(baseType, MDField, );                                               \
4016   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4017   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4018   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4019   OPTIONAL(flags, DIFlagField, );                                              \
4020   OPTIONAL(elements, MDField, );                                               \
4021   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4022   OPTIONAL(vtableHolder, MDField, );                                           \
4023   OPTIONAL(templateParams, MDField, );                                         \
4024   OPTIONAL(identifier, MDStringField, );
4025   PARSE_MD_FIELDS();
4026 #undef VISIT_MD_FIELDS
4027 
4028   // If this has an identifier try to build an ODR type.
4029   if (identifier.Val)
4030     if (auto *CT = DICompositeType::buildODRType(
4031             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4032             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4033             elements.Val, runtimeLang.Val, vtableHolder.Val,
4034             templateParams.Val)) {
4035       Result = CT;
4036       return false;
4037     }
4038 
4039   // Create a new node, and save it in the context if it belongs in the type
4040   // map.
4041   Result = GET_OR_DISTINCT(
4042       DICompositeType,
4043       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4044        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4045        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4046   return false;
4047 }
4048 
4049 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4050 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4051   OPTIONAL(flags, DIFlagField, );                                              \
4052   OPTIONAL(cc, DwarfCCField, );                                                \
4053   REQUIRED(types, MDField, );
4054   PARSE_MD_FIELDS();
4055 #undef VISIT_MD_FIELDS
4056 
4057   Result = GET_OR_DISTINCT(DISubroutineType,
4058                            (Context, flags.Val, cc.Val, types.Val));
4059   return false;
4060 }
4061 
4062 /// ParseDIFileType:
4063 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4064 ///                   checksumkind: CSK_MD5,
4065 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4066 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4067 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4068   REQUIRED(filename, MDStringField, );                                         \
4069   REQUIRED(directory, MDStringField, );                                        \
4070   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4071   OPTIONAL(checksum, MDStringField, );
4072   PARSE_MD_FIELDS();
4073 #undef VISIT_MD_FIELDS
4074 
4075   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4076                                     checksumkind.Val, checksum.Val));
4077   return false;
4078 }
4079 
4080 /// ParseDICompileUnit:
4081 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4082 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4083 ///                      splitDebugFilename: "abc.debug",
4084 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4085 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4086 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4087   if (!IsDistinct)
4088     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4089 
4090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4091   REQUIRED(language, DwarfLangField, );                                        \
4092   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4093   OPTIONAL(producer, MDStringField, );                                         \
4094   OPTIONAL(isOptimized, MDBoolField, );                                        \
4095   OPTIONAL(flags, MDStringField, );                                            \
4096   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4097   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4098   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4099   OPTIONAL(enums, MDField, );                                                  \
4100   OPTIONAL(retainedTypes, MDField, );                                          \
4101   OPTIONAL(globals, MDField, );                                                \
4102   OPTIONAL(imports, MDField, );                                                \
4103   OPTIONAL(macros, MDField, );                                                 \
4104   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4105   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4106   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4107   OPTIONAL(gnuPubnames, MDBoolField, = false);
4108   PARSE_MD_FIELDS();
4109 #undef VISIT_MD_FIELDS
4110 
4111   Result = DICompileUnit::getDistinct(
4112       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4113       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4114       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4115       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4116   return false;
4117 }
4118 
4119 /// ParseDISubprogram:
4120 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4121 ///                     file: !1, line: 7, type: !2, isLocal: false,
4122 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4123 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4124 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4125 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4126 ///                     variables: !6, thrownTypes: !7)
4127 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4128   auto Loc = Lex.getLoc();
4129 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4130   OPTIONAL(scope, MDField, );                                                  \
4131   OPTIONAL(name, MDStringField, );                                             \
4132   OPTIONAL(linkageName, MDStringField, );                                      \
4133   OPTIONAL(file, MDField, );                                                   \
4134   OPTIONAL(line, LineField, );                                                 \
4135   OPTIONAL(type, MDField, );                                                   \
4136   OPTIONAL(isLocal, MDBoolField, );                                            \
4137   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4138   OPTIONAL(scopeLine, LineField, );                                            \
4139   OPTIONAL(containingType, MDField, );                                         \
4140   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4141   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4142   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4143   OPTIONAL(flags, DIFlagField, );                                              \
4144   OPTIONAL(isOptimized, MDBoolField, );                                        \
4145   OPTIONAL(unit, MDField, );                                                   \
4146   OPTIONAL(templateParams, MDField, );                                         \
4147   OPTIONAL(declaration, MDField, );                                            \
4148   OPTIONAL(variables, MDField, );                                              \
4149   OPTIONAL(thrownTypes, MDField, );
4150   PARSE_MD_FIELDS();
4151 #undef VISIT_MD_FIELDS
4152 
4153   if (isDefinition.Val && !IsDistinct)
4154     return Lex.Error(
4155         Loc,
4156         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4157 
4158   Result = GET_OR_DISTINCT(
4159       DISubprogram,
4160       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4161        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4162        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4163        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4164        declaration.Val, variables.Val, thrownTypes.Val));
4165   return false;
4166 }
4167 
4168 /// ParseDILexicalBlock:
4169 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4170 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4172   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4173   OPTIONAL(file, MDField, );                                                   \
4174   OPTIONAL(line, LineField, );                                                 \
4175   OPTIONAL(column, ColumnField, );
4176   PARSE_MD_FIELDS();
4177 #undef VISIT_MD_FIELDS
4178 
4179   Result = GET_OR_DISTINCT(
4180       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4181   return false;
4182 }
4183 
4184 /// ParseDILexicalBlockFile:
4185 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4186 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4187 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4188   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4189   OPTIONAL(file, MDField, );                                                   \
4190   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4191   PARSE_MD_FIELDS();
4192 #undef VISIT_MD_FIELDS
4193 
4194   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4195                            (Context, scope.Val, file.Val, discriminator.Val));
4196   return false;
4197 }
4198 
4199 /// ParseDINamespace:
4200 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4201 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4202 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4203   REQUIRED(scope, MDField, );                                                  \
4204   OPTIONAL(name, MDStringField, );                                             \
4205   OPTIONAL(exportSymbols, MDBoolField, );
4206   PARSE_MD_FIELDS();
4207 #undef VISIT_MD_FIELDS
4208 
4209   Result = GET_OR_DISTINCT(DINamespace,
4210                            (Context, scope.Val, name.Val, exportSymbols.Val));
4211   return false;
4212 }
4213 
4214 /// ParseDIMacro:
4215 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4216 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4218   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4219   OPTIONAL(line, LineField, );                                                 \
4220   REQUIRED(name, MDStringField, );                                             \
4221   OPTIONAL(value, MDStringField, );
4222   PARSE_MD_FIELDS();
4223 #undef VISIT_MD_FIELDS
4224 
4225   Result = GET_OR_DISTINCT(DIMacro,
4226                            (Context, type.Val, line.Val, name.Val, value.Val));
4227   return false;
4228 }
4229 
4230 /// ParseDIMacroFile:
4231 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4232 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4233 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4234   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4235   OPTIONAL(line, LineField, );                                                 \
4236   REQUIRED(file, MDField, );                                                   \
4237   OPTIONAL(nodes, MDField, );
4238   PARSE_MD_FIELDS();
4239 #undef VISIT_MD_FIELDS
4240 
4241   Result = GET_OR_DISTINCT(DIMacroFile,
4242                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4243   return false;
4244 }
4245 
4246 /// ParseDIModule:
4247 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4248 ///                 includePath: "/usr/include", isysroot: "/")
4249 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4250 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4251   REQUIRED(scope, MDField, );                                                  \
4252   REQUIRED(name, MDStringField, );                                             \
4253   OPTIONAL(configMacros, MDStringField, );                                     \
4254   OPTIONAL(includePath, MDStringField, );                                      \
4255   OPTIONAL(isysroot, MDStringField, );
4256   PARSE_MD_FIELDS();
4257 #undef VISIT_MD_FIELDS
4258 
4259   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4260                            configMacros.Val, includePath.Val, isysroot.Val));
4261   return false;
4262 }
4263 
4264 /// ParseDITemplateTypeParameter:
4265 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4266 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4267 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4268   OPTIONAL(name, MDStringField, );                                             \
4269   REQUIRED(type, MDField, );
4270   PARSE_MD_FIELDS();
4271 #undef VISIT_MD_FIELDS
4272 
4273   Result =
4274       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4275   return false;
4276 }
4277 
4278 /// ParseDITemplateValueParameter:
4279 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4280 ///                                 name: "V", type: !1, value: i32 7)
4281 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4283   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4284   OPTIONAL(name, MDStringField, );                                             \
4285   OPTIONAL(type, MDField, );                                                   \
4286   REQUIRED(value, MDField, );
4287   PARSE_MD_FIELDS();
4288 #undef VISIT_MD_FIELDS
4289 
4290   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4291                            (Context, tag.Val, name.Val, type.Val, value.Val));
4292   return false;
4293 }
4294 
4295 /// ParseDIGlobalVariable:
4296 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4297 ///                         file: !1, line: 7, type: !2, isLocal: false,
4298 ///                         isDefinition: true, declaration: !3, align: 8)
4299 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4300 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4301   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4302   OPTIONAL(scope, MDField, );                                                  \
4303   OPTIONAL(linkageName, MDStringField, );                                      \
4304   OPTIONAL(file, MDField, );                                                   \
4305   OPTIONAL(line, LineField, );                                                 \
4306   OPTIONAL(type, MDField, );                                                   \
4307   OPTIONAL(isLocal, MDBoolField, );                                            \
4308   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4309   OPTIONAL(declaration, MDField, );                                            \
4310   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4311   PARSE_MD_FIELDS();
4312 #undef VISIT_MD_FIELDS
4313 
4314   Result = GET_OR_DISTINCT(DIGlobalVariable,
4315                            (Context, scope.Val, name.Val, linkageName.Val,
4316                             file.Val, line.Val, type.Val, isLocal.Val,
4317                             isDefinition.Val, declaration.Val, align.Val));
4318   return false;
4319 }
4320 
4321 /// ParseDILocalVariable:
4322 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4323 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4324 ///                        align: 8)
4325 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4326 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4327 ///                        align: 8)
4328 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4329 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4330   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4331   OPTIONAL(name, MDStringField, );                                             \
4332   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4333   OPTIONAL(file, MDField, );                                                   \
4334   OPTIONAL(line, LineField, );                                                 \
4335   OPTIONAL(type, MDField, );                                                   \
4336   OPTIONAL(flags, DIFlagField, );                                              \
4337   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4338   PARSE_MD_FIELDS();
4339 #undef VISIT_MD_FIELDS
4340 
4341   Result = GET_OR_DISTINCT(DILocalVariable,
4342                            (Context, scope.Val, name.Val, file.Val, line.Val,
4343                             type.Val, arg.Val, flags.Val, align.Val));
4344   return false;
4345 }
4346 
4347 /// ParseDIExpression:
4348 ///   ::= !DIExpression(0, 7, -1)
4349 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4350   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4351   Lex.Lex();
4352 
4353   if (ParseToken(lltok::lparen, "expected '(' here"))
4354     return true;
4355 
4356   SmallVector<uint64_t, 8> Elements;
4357   if (Lex.getKind() != lltok::rparen)
4358     do {
4359       if (Lex.getKind() == lltok::DwarfOp) {
4360         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4361           Lex.Lex();
4362           Elements.push_back(Op);
4363           continue;
4364         }
4365         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4366       }
4367 
4368       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4369         return TokError("expected unsigned integer");
4370 
4371       auto &U = Lex.getAPSIntVal();
4372       if (U.ugt(UINT64_MAX))
4373         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4374       Elements.push_back(U.getZExtValue());
4375       Lex.Lex();
4376     } while (EatIfPresent(lltok::comma));
4377 
4378   if (ParseToken(lltok::rparen, "expected ')' here"))
4379     return true;
4380 
4381   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4382   return false;
4383 }
4384 
4385 /// ParseDIGlobalVariableExpression:
4386 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4387 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4388                                                bool IsDistinct) {
4389 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4390   REQUIRED(var, MDField, );                                                    \
4391   REQUIRED(expr, MDField, );
4392   PARSE_MD_FIELDS();
4393 #undef VISIT_MD_FIELDS
4394 
4395   Result =
4396       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4397   return false;
4398 }
4399 
4400 /// ParseDIObjCProperty:
4401 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4402 ///                       getter: "getFoo", attributes: 7, type: !2)
4403 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4405   OPTIONAL(name, MDStringField, );                                             \
4406   OPTIONAL(file, MDField, );                                                   \
4407   OPTIONAL(line, LineField, );                                                 \
4408   OPTIONAL(setter, MDStringField, );                                           \
4409   OPTIONAL(getter, MDStringField, );                                           \
4410   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4411   OPTIONAL(type, MDField, );
4412   PARSE_MD_FIELDS();
4413 #undef VISIT_MD_FIELDS
4414 
4415   Result = GET_OR_DISTINCT(DIObjCProperty,
4416                            (Context, name.Val, file.Val, line.Val, setter.Val,
4417                             getter.Val, attributes.Val, type.Val));
4418   return false;
4419 }
4420 
4421 /// ParseDIImportedEntity:
4422 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4423 ///                         line: 7, name: "foo")
4424 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4426   REQUIRED(tag, DwarfTagField, );                                              \
4427   REQUIRED(scope, MDField, );                                                  \
4428   OPTIONAL(entity, MDField, );                                                 \
4429   OPTIONAL(file, MDField, );                                                   \
4430   OPTIONAL(line, LineField, );                                                 \
4431   OPTIONAL(name, MDStringField, );
4432   PARSE_MD_FIELDS();
4433 #undef VISIT_MD_FIELDS
4434 
4435   Result = GET_OR_DISTINCT(
4436       DIImportedEntity,
4437       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4438   return false;
4439 }
4440 
4441 #undef PARSE_MD_FIELD
4442 #undef NOP_FIELD
4443 #undef REQUIRE_FIELD
4444 #undef DECLARE_FIELD
4445 
4446 /// ParseMetadataAsValue
4447 ///  ::= metadata i32 %local
4448 ///  ::= metadata i32 @global
4449 ///  ::= metadata i32 7
4450 ///  ::= metadata !0
4451 ///  ::= metadata !{...}
4452 ///  ::= metadata !"string"
4453 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4454   // Note: the type 'metadata' has already been parsed.
4455   Metadata *MD;
4456   if (ParseMetadata(MD, &PFS))
4457     return true;
4458 
4459   V = MetadataAsValue::get(Context, MD);
4460   return false;
4461 }
4462 
4463 /// ParseValueAsMetadata
4464 ///  ::= i32 %local
4465 ///  ::= i32 @global
4466 ///  ::= i32 7
4467 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4468                                     PerFunctionState *PFS) {
4469   Type *Ty;
4470   LocTy Loc;
4471   if (ParseType(Ty, TypeMsg, Loc))
4472     return true;
4473   if (Ty->isMetadataTy())
4474     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4475 
4476   Value *V;
4477   if (ParseValue(Ty, V, PFS))
4478     return true;
4479 
4480   MD = ValueAsMetadata::get(V);
4481   return false;
4482 }
4483 
4484 /// ParseMetadata
4485 ///  ::= i32 %local
4486 ///  ::= i32 @global
4487 ///  ::= i32 7
4488 ///  ::= !42
4489 ///  ::= !{...}
4490 ///  ::= !"string"
4491 ///  ::= !DILocation(...)
4492 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4493   if (Lex.getKind() == lltok::MetadataVar) {
4494     MDNode *N;
4495     if (ParseSpecializedMDNode(N))
4496       return true;
4497     MD = N;
4498     return false;
4499   }
4500 
4501   // ValueAsMetadata:
4502   // <type> <value>
4503   if (Lex.getKind() != lltok::exclaim)
4504     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4505 
4506   // '!'.
4507   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4508   Lex.Lex();
4509 
4510   // MDString:
4511   //   ::= '!' STRINGCONSTANT
4512   if (Lex.getKind() == lltok::StringConstant) {
4513     MDString *S;
4514     if (ParseMDString(S))
4515       return true;
4516     MD = S;
4517     return false;
4518   }
4519 
4520   // MDNode:
4521   // !{ ... }
4522   // !7
4523   MDNode *N;
4524   if (ParseMDNodeTail(N))
4525     return true;
4526   MD = N;
4527   return false;
4528 }
4529 
4530 //===----------------------------------------------------------------------===//
4531 // Function Parsing.
4532 //===----------------------------------------------------------------------===//
4533 
4534 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4535                                    PerFunctionState *PFS) {
4536   if (Ty->isFunctionTy())
4537     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4538 
4539   switch (ID.Kind) {
4540   case ValID::t_LocalID:
4541     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4542     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4543     return V == nullptr;
4544   case ValID::t_LocalName:
4545     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4546     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4547     return V == nullptr;
4548   case ValID::t_InlineAsm: {
4549     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4550       return Error(ID.Loc, "invalid type for inline asm constraint string");
4551     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4552                        (ID.UIntVal >> 1) & 1,
4553                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4554     return false;
4555   }
4556   case ValID::t_GlobalName:
4557     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4558     return V == nullptr;
4559   case ValID::t_GlobalID:
4560     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4561     return V == nullptr;
4562   case ValID::t_APSInt:
4563     if (!Ty->isIntegerTy())
4564       return Error(ID.Loc, "integer constant must have integer type");
4565     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4566     V = ConstantInt::get(Context, ID.APSIntVal);
4567     return false;
4568   case ValID::t_APFloat:
4569     if (!Ty->isFloatingPointTy() ||
4570         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4571       return Error(ID.Loc, "floating point constant invalid for type");
4572 
4573     // The lexer has no type info, so builds all half, float, and double FP
4574     // constants as double.  Fix this here.  Long double does not need this.
4575     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4576       bool Ignored;
4577       if (Ty->isHalfTy())
4578         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4579                               &Ignored);
4580       else if (Ty->isFloatTy())
4581         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4582                               &Ignored);
4583     }
4584     V = ConstantFP::get(Context, ID.APFloatVal);
4585 
4586     if (V->getType() != Ty)
4587       return Error(ID.Loc, "floating point constant does not have type '" +
4588                    getTypeString(Ty) + "'");
4589 
4590     return false;
4591   case ValID::t_Null:
4592     if (!Ty->isPointerTy())
4593       return Error(ID.Loc, "null must be a pointer type");
4594     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4595     return false;
4596   case ValID::t_Undef:
4597     // FIXME: LabelTy should not be a first-class type.
4598     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4599       return Error(ID.Loc, "invalid type for undef constant");
4600     V = UndefValue::get(Ty);
4601     return false;
4602   case ValID::t_EmptyArray:
4603     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4604       return Error(ID.Loc, "invalid empty array initializer");
4605     V = UndefValue::get(Ty);
4606     return false;
4607   case ValID::t_Zero:
4608     // FIXME: LabelTy should not be a first-class type.
4609     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4610       return Error(ID.Loc, "invalid type for null constant");
4611     V = Constant::getNullValue(Ty);
4612     return false;
4613   case ValID::t_None:
4614     if (!Ty->isTokenTy())
4615       return Error(ID.Loc, "invalid type for none constant");
4616     V = Constant::getNullValue(Ty);
4617     return false;
4618   case ValID::t_Constant:
4619     if (ID.ConstantVal->getType() != Ty)
4620       return Error(ID.Loc, "constant expression type mismatch");
4621 
4622     V = ID.ConstantVal;
4623     return false;
4624   case ValID::t_ConstantStruct:
4625   case ValID::t_PackedConstantStruct:
4626     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4627       if (ST->getNumElements() != ID.UIntVal)
4628         return Error(ID.Loc,
4629                      "initializer with struct type has wrong # elements");
4630       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4631         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4632 
4633       // Verify that the elements are compatible with the structtype.
4634       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4635         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4636           return Error(ID.Loc, "element " + Twine(i) +
4637                     " of struct initializer doesn't match struct element type");
4638 
4639       V = ConstantStruct::get(
4640           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4641     } else
4642       return Error(ID.Loc, "constant expression type mismatch");
4643     return false;
4644   }
4645   llvm_unreachable("Invalid ValID");
4646 }
4647 
4648 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4649   C = nullptr;
4650   ValID ID;
4651   auto Loc = Lex.getLoc();
4652   if (ParseValID(ID, /*PFS=*/nullptr))
4653     return true;
4654   switch (ID.Kind) {
4655   case ValID::t_APSInt:
4656   case ValID::t_APFloat:
4657   case ValID::t_Undef:
4658   case ValID::t_Constant:
4659   case ValID::t_ConstantStruct:
4660   case ValID::t_PackedConstantStruct: {
4661     Value *V;
4662     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4663       return true;
4664     assert(isa<Constant>(V) && "Expected a constant value");
4665     C = cast<Constant>(V);
4666     return false;
4667   }
4668   case ValID::t_Null:
4669     C = Constant::getNullValue(Ty);
4670     return false;
4671   default:
4672     return Error(Loc, "expected a constant value");
4673   }
4674 }
4675 
4676 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4677   V = nullptr;
4678   ValID ID;
4679   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4680 }
4681 
4682 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4683   Type *Ty = nullptr;
4684   return ParseType(Ty) ||
4685          ParseValue(Ty, V, PFS);
4686 }
4687 
4688 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4689                                       PerFunctionState &PFS) {
4690   Value *V;
4691   Loc = Lex.getLoc();
4692   if (ParseTypeAndValue(V, PFS)) return true;
4693   if (!isa<BasicBlock>(V))
4694     return Error(Loc, "expected a basic block");
4695   BB = cast<BasicBlock>(V);
4696   return false;
4697 }
4698 
4699 /// FunctionHeader
4700 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4701 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4702 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4703 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4704   // Parse the linkage.
4705   LocTy LinkageLoc = Lex.getLoc();
4706   unsigned Linkage;
4707 
4708   unsigned Visibility;
4709   unsigned DLLStorageClass;
4710   AttrBuilder RetAttrs;
4711   unsigned CC;
4712   bool HasLinkage;
4713   Type *RetType = nullptr;
4714   LocTy RetTypeLoc = Lex.getLoc();
4715   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4716       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4717       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4718     return true;
4719 
4720   // Verify that the linkage is ok.
4721   switch ((GlobalValue::LinkageTypes)Linkage) {
4722   case GlobalValue::ExternalLinkage:
4723     break; // always ok.
4724   case GlobalValue::ExternalWeakLinkage:
4725     if (isDefine)
4726       return Error(LinkageLoc, "invalid linkage for function definition");
4727     break;
4728   case GlobalValue::PrivateLinkage:
4729   case GlobalValue::InternalLinkage:
4730   case GlobalValue::AvailableExternallyLinkage:
4731   case GlobalValue::LinkOnceAnyLinkage:
4732   case GlobalValue::LinkOnceODRLinkage:
4733   case GlobalValue::WeakAnyLinkage:
4734   case GlobalValue::WeakODRLinkage:
4735     if (!isDefine)
4736       return Error(LinkageLoc, "invalid linkage for function declaration");
4737     break;
4738   case GlobalValue::AppendingLinkage:
4739   case GlobalValue::CommonLinkage:
4740     return Error(LinkageLoc, "invalid function linkage type");
4741   }
4742 
4743   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4744     return Error(LinkageLoc,
4745                  "symbol with local linkage must have default visibility");
4746 
4747   if (!FunctionType::isValidReturnType(RetType))
4748     return Error(RetTypeLoc, "invalid function return type");
4749 
4750   LocTy NameLoc = Lex.getLoc();
4751 
4752   std::string FunctionName;
4753   if (Lex.getKind() == lltok::GlobalVar) {
4754     FunctionName = Lex.getStrVal();
4755   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4756     unsigned NameID = Lex.getUIntVal();
4757 
4758     if (NameID != NumberedVals.size())
4759       return TokError("function expected to be numbered '%" +
4760                       Twine(NumberedVals.size()) + "'");
4761   } else {
4762     return TokError("expected function name");
4763   }
4764 
4765   Lex.Lex();
4766 
4767   if (Lex.getKind() != lltok::lparen)
4768     return TokError("expected '(' in function argument list");
4769 
4770   SmallVector<ArgInfo, 8> ArgList;
4771   bool isVarArg;
4772   AttrBuilder FuncAttrs;
4773   std::vector<unsigned> FwdRefAttrGrps;
4774   LocTy BuiltinLoc;
4775   std::string Section;
4776   unsigned Alignment;
4777   std::string GC;
4778   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4779   LocTy UnnamedAddrLoc;
4780   Constant *Prefix = nullptr;
4781   Constant *Prologue = nullptr;
4782   Constant *PersonalityFn = nullptr;
4783   Comdat *C;
4784 
4785   if (ParseArgumentList(ArgList, isVarArg) ||
4786       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4787       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4788                                  BuiltinLoc) ||
4789       (EatIfPresent(lltok::kw_section) &&
4790        ParseStringConstant(Section)) ||
4791       parseOptionalComdat(FunctionName, C) ||
4792       ParseOptionalAlignment(Alignment) ||
4793       (EatIfPresent(lltok::kw_gc) &&
4794        ParseStringConstant(GC)) ||
4795       (EatIfPresent(lltok::kw_prefix) &&
4796        ParseGlobalTypeAndValue(Prefix)) ||
4797       (EatIfPresent(lltok::kw_prologue) &&
4798        ParseGlobalTypeAndValue(Prologue)) ||
4799       (EatIfPresent(lltok::kw_personality) &&
4800        ParseGlobalTypeAndValue(PersonalityFn)))
4801     return true;
4802 
4803   if (FuncAttrs.contains(Attribute::Builtin))
4804     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4805 
4806   // If the alignment was parsed as an attribute, move to the alignment field.
4807   if (FuncAttrs.hasAlignmentAttr()) {
4808     Alignment = FuncAttrs.getAlignment();
4809     FuncAttrs.removeAttribute(Attribute::Alignment);
4810   }
4811 
4812   // Okay, if we got here, the function is syntactically valid.  Convert types
4813   // and do semantic checks.
4814   std::vector<Type*> ParamTypeList;
4815   SmallVector<AttributeSet, 8> Attrs;
4816 
4817   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4818     ParamTypeList.push_back(ArgList[i].Ty);
4819     Attrs.push_back(ArgList[i].Attrs);
4820   }
4821 
4822   AttributeList PAL =
4823       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4824                          AttributeSet::get(Context, RetAttrs), Attrs);
4825 
4826   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4827     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4828 
4829   FunctionType *FT =
4830     FunctionType::get(RetType, ParamTypeList, isVarArg);
4831   PointerType *PFT = PointerType::getUnqual(FT);
4832 
4833   Fn = nullptr;
4834   if (!FunctionName.empty()) {
4835     // If this was a definition of a forward reference, remove the definition
4836     // from the forward reference table and fill in the forward ref.
4837     auto FRVI = ForwardRefVals.find(FunctionName);
4838     if (FRVI != ForwardRefVals.end()) {
4839       Fn = M->getFunction(FunctionName);
4840       if (!Fn)
4841         return Error(FRVI->second.second, "invalid forward reference to "
4842                      "function as global value!");
4843       if (Fn->getType() != PFT)
4844         return Error(FRVI->second.second, "invalid forward reference to "
4845                      "function '" + FunctionName + "' with wrong type!");
4846 
4847       ForwardRefVals.erase(FRVI);
4848     } else if ((Fn = M->getFunction(FunctionName))) {
4849       // Reject redefinitions.
4850       return Error(NameLoc, "invalid redefinition of function '" +
4851                    FunctionName + "'");
4852     } else if (M->getNamedValue(FunctionName)) {
4853       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4854     }
4855 
4856   } else {
4857     // If this is a definition of a forward referenced function, make sure the
4858     // types agree.
4859     auto I = ForwardRefValIDs.find(NumberedVals.size());
4860     if (I != ForwardRefValIDs.end()) {
4861       Fn = cast<Function>(I->second.first);
4862       if (Fn->getType() != PFT)
4863         return Error(NameLoc, "type of definition and forward reference of '@" +
4864                      Twine(NumberedVals.size()) + "' disagree");
4865       ForwardRefValIDs.erase(I);
4866     }
4867   }
4868 
4869   if (!Fn)
4870     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4871   else // Move the forward-reference to the correct spot in the module.
4872     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4873 
4874   if (FunctionName.empty())
4875     NumberedVals.push_back(Fn);
4876 
4877   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4878   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4879   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4880   Fn->setCallingConv(CC);
4881   Fn->setAttributes(PAL);
4882   Fn->setUnnamedAddr(UnnamedAddr);
4883   Fn->setAlignment(Alignment);
4884   Fn->setSection(Section);
4885   Fn->setComdat(C);
4886   Fn->setPersonalityFn(PersonalityFn);
4887   if (!GC.empty()) Fn->setGC(GC);
4888   Fn->setPrefixData(Prefix);
4889   Fn->setPrologueData(Prologue);
4890   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4891 
4892   // Add all of the arguments we parsed to the function.
4893   Function::arg_iterator ArgIt = Fn->arg_begin();
4894   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4895     // If the argument has a name, insert it into the argument symbol table.
4896     if (ArgList[i].Name.empty()) continue;
4897 
4898     // Set the name, if it conflicted, it will be auto-renamed.
4899     ArgIt->setName(ArgList[i].Name);
4900 
4901     if (ArgIt->getName() != ArgList[i].Name)
4902       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4903                    ArgList[i].Name + "'");
4904   }
4905 
4906   if (isDefine)
4907     return false;
4908 
4909   // Check the declaration has no block address forward references.
4910   ValID ID;
4911   if (FunctionName.empty()) {
4912     ID.Kind = ValID::t_GlobalID;
4913     ID.UIntVal = NumberedVals.size() - 1;
4914   } else {
4915     ID.Kind = ValID::t_GlobalName;
4916     ID.StrVal = FunctionName;
4917   }
4918   auto Blocks = ForwardRefBlockAddresses.find(ID);
4919   if (Blocks != ForwardRefBlockAddresses.end())
4920     return Error(Blocks->first.Loc,
4921                  "cannot take blockaddress inside a declaration");
4922   return false;
4923 }
4924 
4925 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4926   ValID ID;
4927   if (FunctionNumber == -1) {
4928     ID.Kind = ValID::t_GlobalName;
4929     ID.StrVal = F.getName();
4930   } else {
4931     ID.Kind = ValID::t_GlobalID;
4932     ID.UIntVal = FunctionNumber;
4933   }
4934 
4935   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4936   if (Blocks == P.ForwardRefBlockAddresses.end())
4937     return false;
4938 
4939   for (const auto &I : Blocks->second) {
4940     const ValID &BBID = I.first;
4941     GlobalValue *GV = I.second;
4942 
4943     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4944            "Expected local id or name");
4945     BasicBlock *BB;
4946     if (BBID.Kind == ValID::t_LocalName)
4947       BB = GetBB(BBID.StrVal, BBID.Loc);
4948     else
4949       BB = GetBB(BBID.UIntVal, BBID.Loc);
4950     if (!BB)
4951       return P.Error(BBID.Loc, "referenced value is not a basic block");
4952 
4953     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4954     GV->eraseFromParent();
4955   }
4956 
4957   P.ForwardRefBlockAddresses.erase(Blocks);
4958   return false;
4959 }
4960 
4961 /// ParseFunctionBody
4962 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4963 bool LLParser::ParseFunctionBody(Function &Fn) {
4964   if (Lex.getKind() != lltok::lbrace)
4965     return TokError("expected '{' in function body");
4966   Lex.Lex();  // eat the {.
4967 
4968   int FunctionNumber = -1;
4969   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4970 
4971   PerFunctionState PFS(*this, Fn, FunctionNumber);
4972 
4973   // Resolve block addresses and allow basic blocks to be forward-declared
4974   // within this function.
4975   if (PFS.resolveForwardRefBlockAddresses())
4976     return true;
4977   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4978 
4979   // We need at least one basic block.
4980   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4981     return TokError("function body requires at least one basic block");
4982 
4983   while (Lex.getKind() != lltok::rbrace &&
4984          Lex.getKind() != lltok::kw_uselistorder)
4985     if (ParseBasicBlock(PFS)) return true;
4986 
4987   while (Lex.getKind() != lltok::rbrace)
4988     if (ParseUseListOrder(&PFS))
4989       return true;
4990 
4991   // Eat the }.
4992   Lex.Lex();
4993 
4994   // Verify function is ok.
4995   return PFS.FinishFunction();
4996 }
4997 
4998 /// ParseBasicBlock
4999 ///   ::= LabelStr? Instruction*
5000 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5001   // If this basic block starts out with a name, remember it.
5002   std::string Name;
5003   LocTy NameLoc = Lex.getLoc();
5004   if (Lex.getKind() == lltok::LabelStr) {
5005     Name = Lex.getStrVal();
5006     Lex.Lex();
5007   }
5008 
5009   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5010   if (!BB)
5011     return Error(NameLoc,
5012                  "unable to create block named '" + Name + "'");
5013 
5014   std::string NameStr;
5015 
5016   // Parse the instructions in this block until we get a terminator.
5017   Instruction *Inst;
5018   do {
5019     // This instruction may have three possibilities for a name: a) none
5020     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5021     LocTy NameLoc = Lex.getLoc();
5022     int NameID = -1;
5023     NameStr = "";
5024 
5025     if (Lex.getKind() == lltok::LocalVarID) {
5026       NameID = Lex.getUIntVal();
5027       Lex.Lex();
5028       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5029         return true;
5030     } else if (Lex.getKind() == lltok::LocalVar) {
5031       NameStr = Lex.getStrVal();
5032       Lex.Lex();
5033       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5034         return true;
5035     }
5036 
5037     switch (ParseInstruction(Inst, BB, PFS)) {
5038     default: llvm_unreachable("Unknown ParseInstruction result!");
5039     case InstError: return true;
5040     case InstNormal:
5041       BB->getInstList().push_back(Inst);
5042 
5043       // With a normal result, we check to see if the instruction is followed by
5044       // a comma and metadata.
5045       if (EatIfPresent(lltok::comma))
5046         if (ParseInstructionMetadata(*Inst))
5047           return true;
5048       break;
5049     case InstExtraComma:
5050       BB->getInstList().push_back(Inst);
5051 
5052       // If the instruction parser ate an extra comma at the end of it, it
5053       // *must* be followed by metadata.
5054       if (ParseInstructionMetadata(*Inst))
5055         return true;
5056       break;
5057     }
5058 
5059     // Set the name on the instruction.
5060     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5061   } while (!isa<TerminatorInst>(Inst));
5062 
5063   return false;
5064 }
5065 
5066 //===----------------------------------------------------------------------===//
5067 // Instruction Parsing.
5068 //===----------------------------------------------------------------------===//
5069 
5070 /// ParseInstruction - Parse one of the many different instructions.
5071 ///
5072 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5073                                PerFunctionState &PFS) {
5074   lltok::Kind Token = Lex.getKind();
5075   if (Token == lltok::Eof)
5076     return TokError("found end of file when expecting more instructions");
5077   LocTy Loc = Lex.getLoc();
5078   unsigned KeywordVal = Lex.getUIntVal();
5079   Lex.Lex();  // Eat the keyword.
5080 
5081   switch (Token) {
5082   default:                    return Error(Loc, "expected instruction opcode");
5083   // Terminator Instructions.
5084   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5085   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5086   case lltok::kw_br:          return ParseBr(Inst, PFS);
5087   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5088   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5089   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5090   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5091   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5092   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5093   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5094   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5095   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5096   // Binary Operators.
5097   case lltok::kw_add:
5098   case lltok::kw_sub:
5099   case lltok::kw_mul:
5100   case lltok::kw_shl: {
5101     bool NUW = EatIfPresent(lltok::kw_nuw);
5102     bool NSW = EatIfPresent(lltok::kw_nsw);
5103     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5104 
5105     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5106 
5107     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5108     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5109     return false;
5110   }
5111   case lltok::kw_fadd:
5112   case lltok::kw_fsub:
5113   case lltok::kw_fmul:
5114   case lltok::kw_fdiv:
5115   case lltok::kw_frem: {
5116     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5117     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5118     if (Res != 0)
5119       return Res;
5120     if (FMF.any())
5121       Inst->setFastMathFlags(FMF);
5122     return 0;
5123   }
5124 
5125   case lltok::kw_sdiv:
5126   case lltok::kw_udiv:
5127   case lltok::kw_lshr:
5128   case lltok::kw_ashr: {
5129     bool Exact = EatIfPresent(lltok::kw_exact);
5130 
5131     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5132     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5133     return false;
5134   }
5135 
5136   case lltok::kw_urem:
5137   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5138   case lltok::kw_and:
5139   case lltok::kw_or:
5140   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5141   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5142   case lltok::kw_fcmp: {
5143     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5144     int Res = ParseCompare(Inst, PFS, KeywordVal);
5145     if (Res != 0)
5146       return Res;
5147     if (FMF.any())
5148       Inst->setFastMathFlags(FMF);
5149     return 0;
5150   }
5151 
5152   // Casts.
5153   case lltok::kw_trunc:
5154   case lltok::kw_zext:
5155   case lltok::kw_sext:
5156   case lltok::kw_fptrunc:
5157   case lltok::kw_fpext:
5158   case lltok::kw_bitcast:
5159   case lltok::kw_addrspacecast:
5160   case lltok::kw_uitofp:
5161   case lltok::kw_sitofp:
5162   case lltok::kw_fptoui:
5163   case lltok::kw_fptosi:
5164   case lltok::kw_inttoptr:
5165   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5166   // Other.
5167   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5168   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5169   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5170   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5171   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5172   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5173   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5174   // Call.
5175   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5176   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5177   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5178   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5179   // Memory.
5180   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5181   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5182   case lltok::kw_store:          return ParseStore(Inst, PFS);
5183   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5184   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5185   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5186   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5187   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5188   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5189   }
5190 }
5191 
5192 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5193 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5194   if (Opc == Instruction::FCmp) {
5195     switch (Lex.getKind()) {
5196     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5197     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5198     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5199     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5200     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5201     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5202     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5203     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5204     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5205     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5206     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5207     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5208     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5209     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5210     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5211     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5212     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5213     }
5214   } else {
5215     switch (Lex.getKind()) {
5216     default: return TokError("expected icmp predicate (e.g. 'eq')");
5217     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5218     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5219     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5220     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5221     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5222     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5223     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5224     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5225     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5226     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5227     }
5228   }
5229   Lex.Lex();
5230   return false;
5231 }
5232 
5233 //===----------------------------------------------------------------------===//
5234 // Terminator Instructions.
5235 //===----------------------------------------------------------------------===//
5236 
5237 /// ParseRet - Parse a return instruction.
5238 ///   ::= 'ret' void (',' !dbg, !1)*
5239 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5240 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5241                         PerFunctionState &PFS) {
5242   SMLoc TypeLoc = Lex.getLoc();
5243   Type *Ty = nullptr;
5244   if (ParseType(Ty, true /*void allowed*/)) return true;
5245 
5246   Type *ResType = PFS.getFunction().getReturnType();
5247 
5248   if (Ty->isVoidTy()) {
5249     if (!ResType->isVoidTy())
5250       return Error(TypeLoc, "value doesn't match function result type '" +
5251                    getTypeString(ResType) + "'");
5252 
5253     Inst = ReturnInst::Create(Context);
5254     return false;
5255   }
5256 
5257   Value *RV;
5258   if (ParseValue(Ty, RV, PFS)) return true;
5259 
5260   if (ResType != RV->getType())
5261     return Error(TypeLoc, "value doesn't match function result type '" +
5262                  getTypeString(ResType) + "'");
5263 
5264   Inst = ReturnInst::Create(Context, RV);
5265   return false;
5266 }
5267 
5268 /// ParseBr
5269 ///   ::= 'br' TypeAndValue
5270 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5271 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5272   LocTy Loc, Loc2;
5273   Value *Op0;
5274   BasicBlock *Op1, *Op2;
5275   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5276 
5277   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5278     Inst = BranchInst::Create(BB);
5279     return false;
5280   }
5281 
5282   if (Op0->getType() != Type::getInt1Ty(Context))
5283     return Error(Loc, "branch condition must have 'i1' type");
5284 
5285   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5286       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5287       ParseToken(lltok::comma, "expected ',' after true destination") ||
5288       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5289     return true;
5290 
5291   Inst = BranchInst::Create(Op1, Op2, Op0);
5292   return false;
5293 }
5294 
5295 /// ParseSwitch
5296 ///  Instruction
5297 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5298 ///  JumpTable
5299 ///    ::= (TypeAndValue ',' TypeAndValue)*
5300 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5301   LocTy CondLoc, BBLoc;
5302   Value *Cond;
5303   BasicBlock *DefaultBB;
5304   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5305       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5306       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5307       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5308     return true;
5309 
5310   if (!Cond->getType()->isIntegerTy())
5311     return Error(CondLoc, "switch condition must have integer type");
5312 
5313   // Parse the jump table pairs.
5314   SmallPtrSet<Value*, 32> SeenCases;
5315   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5316   while (Lex.getKind() != lltok::rsquare) {
5317     Value *Constant;
5318     BasicBlock *DestBB;
5319 
5320     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5321         ParseToken(lltok::comma, "expected ',' after case value") ||
5322         ParseTypeAndBasicBlock(DestBB, PFS))
5323       return true;
5324 
5325     if (!SeenCases.insert(Constant).second)
5326       return Error(CondLoc, "duplicate case value in switch");
5327     if (!isa<ConstantInt>(Constant))
5328       return Error(CondLoc, "case value is not a constant integer");
5329 
5330     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5331   }
5332 
5333   Lex.Lex();  // Eat the ']'.
5334 
5335   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5336   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5337     SI->addCase(Table[i].first, Table[i].second);
5338   Inst = SI;
5339   return false;
5340 }
5341 
5342 /// ParseIndirectBr
5343 ///  Instruction
5344 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5345 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5346   LocTy AddrLoc;
5347   Value *Address;
5348   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5349       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5350       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5351     return true;
5352 
5353   if (!Address->getType()->isPointerTy())
5354     return Error(AddrLoc, "indirectbr address must have pointer type");
5355 
5356   // Parse the destination list.
5357   SmallVector<BasicBlock*, 16> DestList;
5358 
5359   if (Lex.getKind() != lltok::rsquare) {
5360     BasicBlock *DestBB;
5361     if (ParseTypeAndBasicBlock(DestBB, PFS))
5362       return true;
5363     DestList.push_back(DestBB);
5364 
5365     while (EatIfPresent(lltok::comma)) {
5366       if (ParseTypeAndBasicBlock(DestBB, PFS))
5367         return true;
5368       DestList.push_back(DestBB);
5369     }
5370   }
5371 
5372   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5373     return true;
5374 
5375   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5376   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5377     IBI->addDestination(DestList[i]);
5378   Inst = IBI;
5379   return false;
5380 }
5381 
5382 /// ParseInvoke
5383 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5384 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5385 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5386   LocTy CallLoc = Lex.getLoc();
5387   AttrBuilder RetAttrs, FnAttrs;
5388   std::vector<unsigned> FwdRefAttrGrps;
5389   LocTy NoBuiltinLoc;
5390   unsigned CC;
5391   Type *RetType = nullptr;
5392   LocTy RetTypeLoc;
5393   ValID CalleeID;
5394   SmallVector<ParamInfo, 16> ArgList;
5395   SmallVector<OperandBundleDef, 2> BundleList;
5396 
5397   BasicBlock *NormalBB, *UnwindBB;
5398   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5399       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5400       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5401       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5402                                  NoBuiltinLoc) ||
5403       ParseOptionalOperandBundles(BundleList, PFS) ||
5404       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5405       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5406       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5407       ParseTypeAndBasicBlock(UnwindBB, PFS))
5408     return true;
5409 
5410   // If RetType is a non-function pointer type, then this is the short syntax
5411   // for the call, which means that RetType is just the return type.  Infer the
5412   // rest of the function argument types from the arguments that are present.
5413   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5414   if (!Ty) {
5415     // Pull out the types of all of the arguments...
5416     std::vector<Type*> ParamTypes;
5417     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5418       ParamTypes.push_back(ArgList[i].V->getType());
5419 
5420     if (!FunctionType::isValidReturnType(RetType))
5421       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5422 
5423     Ty = FunctionType::get(RetType, ParamTypes, false);
5424   }
5425 
5426   CalleeID.FTy = Ty;
5427 
5428   // Look up the callee.
5429   Value *Callee;
5430   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5431     return true;
5432 
5433   // Set up the Attribute for the function.
5434   SmallVector<Value *, 8> Args;
5435   SmallVector<AttributeSet, 8> ArgAttrs;
5436 
5437   // Loop through FunctionType's arguments and ensure they are specified
5438   // correctly.  Also, gather any parameter attributes.
5439   FunctionType::param_iterator I = Ty->param_begin();
5440   FunctionType::param_iterator E = Ty->param_end();
5441   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5442     Type *ExpectedTy = nullptr;
5443     if (I != E) {
5444       ExpectedTy = *I++;
5445     } else if (!Ty->isVarArg()) {
5446       return Error(ArgList[i].Loc, "too many arguments specified");
5447     }
5448 
5449     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5450       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5451                    getTypeString(ExpectedTy) + "'");
5452     Args.push_back(ArgList[i].V);
5453     ArgAttrs.push_back(ArgList[i].Attrs);
5454   }
5455 
5456   if (I != E)
5457     return Error(CallLoc, "not enough parameters specified for call");
5458 
5459   if (FnAttrs.hasAlignmentAttr())
5460     return Error(CallLoc, "invoke instructions may not have an alignment");
5461 
5462   // Finish off the Attribute and check them
5463   AttributeList PAL =
5464       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5465                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5466 
5467   InvokeInst *II =
5468       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5469   II->setCallingConv(CC);
5470   II->setAttributes(PAL);
5471   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5472   Inst = II;
5473   return false;
5474 }
5475 
5476 /// ParseResume
5477 ///   ::= 'resume' TypeAndValue
5478 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5479   Value *Exn; LocTy ExnLoc;
5480   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5481     return true;
5482 
5483   ResumeInst *RI = ResumeInst::Create(Exn);
5484   Inst = RI;
5485   return false;
5486 }
5487 
5488 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5489                                   PerFunctionState &PFS) {
5490   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5491     return true;
5492 
5493   while (Lex.getKind() != lltok::rsquare) {
5494     // If this isn't the first argument, we need a comma.
5495     if (!Args.empty() &&
5496         ParseToken(lltok::comma, "expected ',' in argument list"))
5497       return true;
5498 
5499     // Parse the argument.
5500     LocTy ArgLoc;
5501     Type *ArgTy = nullptr;
5502     if (ParseType(ArgTy, ArgLoc))
5503       return true;
5504 
5505     Value *V;
5506     if (ArgTy->isMetadataTy()) {
5507       if (ParseMetadataAsValue(V, PFS))
5508         return true;
5509     } else {
5510       if (ParseValue(ArgTy, V, PFS))
5511         return true;
5512     }
5513     Args.push_back(V);
5514   }
5515 
5516   Lex.Lex();  // Lex the ']'.
5517   return false;
5518 }
5519 
5520 /// ParseCleanupRet
5521 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5522 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5523   Value *CleanupPad = nullptr;
5524 
5525   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5526     return true;
5527 
5528   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5529     return true;
5530 
5531   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5532     return true;
5533 
5534   BasicBlock *UnwindBB = nullptr;
5535   if (Lex.getKind() == lltok::kw_to) {
5536     Lex.Lex();
5537     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5538       return true;
5539   } else {
5540     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5541       return true;
5542     }
5543   }
5544 
5545   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5546   return false;
5547 }
5548 
5549 /// ParseCatchRet
5550 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5551 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5552   Value *CatchPad = nullptr;
5553 
5554   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5555     return true;
5556 
5557   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5558     return true;
5559 
5560   BasicBlock *BB;
5561   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5562       ParseTypeAndBasicBlock(BB, PFS))
5563       return true;
5564 
5565   Inst = CatchReturnInst::Create(CatchPad, BB);
5566   return false;
5567 }
5568 
5569 /// ParseCatchSwitch
5570 ///   ::= 'catchswitch' within Parent
5571 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5572   Value *ParentPad;
5573   LocTy BBLoc;
5574 
5575   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5576     return true;
5577 
5578   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5579       Lex.getKind() != lltok::LocalVarID)
5580     return TokError("expected scope value for catchswitch");
5581 
5582   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5583     return true;
5584 
5585   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5586     return true;
5587 
5588   SmallVector<BasicBlock *, 32> Table;
5589   do {
5590     BasicBlock *DestBB;
5591     if (ParseTypeAndBasicBlock(DestBB, PFS))
5592       return true;
5593     Table.push_back(DestBB);
5594   } while (EatIfPresent(lltok::comma));
5595 
5596   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5597     return true;
5598 
5599   if (ParseToken(lltok::kw_unwind,
5600                  "expected 'unwind' after catchswitch scope"))
5601     return true;
5602 
5603   BasicBlock *UnwindBB = nullptr;
5604   if (EatIfPresent(lltok::kw_to)) {
5605     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5606       return true;
5607   } else {
5608     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5609       return true;
5610   }
5611 
5612   auto *CatchSwitch =
5613       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5614   for (BasicBlock *DestBB : Table)
5615     CatchSwitch->addHandler(DestBB);
5616   Inst = CatchSwitch;
5617   return false;
5618 }
5619 
5620 /// ParseCatchPad
5621 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5622 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5623   Value *CatchSwitch = nullptr;
5624 
5625   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5626     return true;
5627 
5628   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5629     return TokError("expected scope value for catchpad");
5630 
5631   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5632     return true;
5633 
5634   SmallVector<Value *, 8> Args;
5635   if (ParseExceptionArgs(Args, PFS))
5636     return true;
5637 
5638   Inst = CatchPadInst::Create(CatchSwitch, Args);
5639   return false;
5640 }
5641 
5642 /// ParseCleanupPad
5643 ///   ::= 'cleanuppad' within Parent ParamList
5644 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5645   Value *ParentPad = nullptr;
5646 
5647   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5648     return true;
5649 
5650   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5651       Lex.getKind() != lltok::LocalVarID)
5652     return TokError("expected scope value for cleanuppad");
5653 
5654   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5655     return true;
5656 
5657   SmallVector<Value *, 8> Args;
5658   if (ParseExceptionArgs(Args, PFS))
5659     return true;
5660 
5661   Inst = CleanupPadInst::Create(ParentPad, Args);
5662   return false;
5663 }
5664 
5665 //===----------------------------------------------------------------------===//
5666 // Binary Operators.
5667 //===----------------------------------------------------------------------===//
5668 
5669 /// ParseArithmetic
5670 ///  ::= ArithmeticOps TypeAndValue ',' Value
5671 ///
5672 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5673 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5674 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5675                                unsigned Opc, unsigned OperandType) {
5676   LocTy Loc; Value *LHS, *RHS;
5677   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5678       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5679       ParseValue(LHS->getType(), RHS, PFS))
5680     return true;
5681 
5682   bool Valid;
5683   switch (OperandType) {
5684   default: llvm_unreachable("Unknown operand type!");
5685   case 0: // int or FP.
5686     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5687             LHS->getType()->isFPOrFPVectorTy();
5688     break;
5689   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5690   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5691   }
5692 
5693   if (!Valid)
5694     return Error(Loc, "invalid operand type for instruction");
5695 
5696   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5697   return false;
5698 }
5699 
5700 /// ParseLogical
5701 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5702 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5703                             unsigned Opc) {
5704   LocTy Loc; Value *LHS, *RHS;
5705   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5706       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5707       ParseValue(LHS->getType(), RHS, PFS))
5708     return true;
5709 
5710   if (!LHS->getType()->isIntOrIntVectorTy())
5711     return Error(Loc,"instruction requires integer or integer vector operands");
5712 
5713   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5714   return false;
5715 }
5716 
5717 /// ParseCompare
5718 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5719 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5720 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5721                             unsigned Opc) {
5722   // Parse the integer/fp comparison predicate.
5723   LocTy Loc;
5724   unsigned Pred;
5725   Value *LHS, *RHS;
5726   if (ParseCmpPredicate(Pred, Opc) ||
5727       ParseTypeAndValue(LHS, Loc, PFS) ||
5728       ParseToken(lltok::comma, "expected ',' after compare value") ||
5729       ParseValue(LHS->getType(), RHS, PFS))
5730     return true;
5731 
5732   if (Opc == Instruction::FCmp) {
5733     if (!LHS->getType()->isFPOrFPVectorTy())
5734       return Error(Loc, "fcmp requires floating point operands");
5735     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5736   } else {
5737     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5738     if (!LHS->getType()->isIntOrIntVectorTy() &&
5739         !LHS->getType()->isPtrOrPtrVectorTy())
5740       return Error(Loc, "icmp requires integer operands");
5741     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5742   }
5743   return false;
5744 }
5745 
5746 //===----------------------------------------------------------------------===//
5747 // Other Instructions.
5748 //===----------------------------------------------------------------------===//
5749 
5750 
5751 /// ParseCast
5752 ///   ::= CastOpc TypeAndValue 'to' Type
5753 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5754                          unsigned Opc) {
5755   LocTy Loc;
5756   Value *Op;
5757   Type *DestTy = nullptr;
5758   if (ParseTypeAndValue(Op, Loc, PFS) ||
5759       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5760       ParseType(DestTy))
5761     return true;
5762 
5763   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5764     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5765     return Error(Loc, "invalid cast opcode for cast from '" +
5766                  getTypeString(Op->getType()) + "' to '" +
5767                  getTypeString(DestTy) + "'");
5768   }
5769   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5770   return false;
5771 }
5772 
5773 /// ParseSelect
5774 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5775 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5776   LocTy Loc;
5777   Value *Op0, *Op1, *Op2;
5778   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5779       ParseToken(lltok::comma, "expected ',' after select condition") ||
5780       ParseTypeAndValue(Op1, PFS) ||
5781       ParseToken(lltok::comma, "expected ',' after select value") ||
5782       ParseTypeAndValue(Op2, PFS))
5783     return true;
5784 
5785   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5786     return Error(Loc, Reason);
5787 
5788   Inst = SelectInst::Create(Op0, Op1, Op2);
5789   return false;
5790 }
5791 
5792 /// ParseVA_Arg
5793 ///   ::= 'va_arg' TypeAndValue ',' Type
5794 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5795   Value *Op;
5796   Type *EltTy = nullptr;
5797   LocTy TypeLoc;
5798   if (ParseTypeAndValue(Op, PFS) ||
5799       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5800       ParseType(EltTy, TypeLoc))
5801     return true;
5802 
5803   if (!EltTy->isFirstClassType())
5804     return Error(TypeLoc, "va_arg requires operand with first class type");
5805 
5806   Inst = new VAArgInst(Op, EltTy);
5807   return false;
5808 }
5809 
5810 /// ParseExtractElement
5811 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5812 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5813   LocTy Loc;
5814   Value *Op0, *Op1;
5815   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5816       ParseToken(lltok::comma, "expected ',' after extract value") ||
5817       ParseTypeAndValue(Op1, PFS))
5818     return true;
5819 
5820   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5821     return Error(Loc, "invalid extractelement operands");
5822 
5823   Inst = ExtractElementInst::Create(Op0, Op1);
5824   return false;
5825 }
5826 
5827 /// ParseInsertElement
5828 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5829 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5830   LocTy Loc;
5831   Value *Op0, *Op1, *Op2;
5832   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5833       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5834       ParseTypeAndValue(Op1, PFS) ||
5835       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5836       ParseTypeAndValue(Op2, PFS))
5837     return true;
5838 
5839   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5840     return Error(Loc, "invalid insertelement operands");
5841 
5842   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5843   return false;
5844 }
5845 
5846 /// ParseShuffleVector
5847 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5848 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5849   LocTy Loc;
5850   Value *Op0, *Op1, *Op2;
5851   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5852       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5853       ParseTypeAndValue(Op1, PFS) ||
5854       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5855       ParseTypeAndValue(Op2, PFS))
5856     return true;
5857 
5858   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5859     return Error(Loc, "invalid shufflevector operands");
5860 
5861   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5862   return false;
5863 }
5864 
5865 /// ParsePHI
5866 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5867 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5868   Type *Ty = nullptr;  LocTy TypeLoc;
5869   Value *Op0, *Op1;
5870 
5871   if (ParseType(Ty, TypeLoc) ||
5872       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5873       ParseValue(Ty, Op0, PFS) ||
5874       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5875       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5876       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5877     return true;
5878 
5879   bool AteExtraComma = false;
5880   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5881 
5882   while (true) {
5883     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5884 
5885     if (!EatIfPresent(lltok::comma))
5886       break;
5887 
5888     if (Lex.getKind() == lltok::MetadataVar) {
5889       AteExtraComma = true;
5890       break;
5891     }
5892 
5893     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5894         ParseValue(Ty, Op0, PFS) ||
5895         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5896         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5897         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5898       return true;
5899   }
5900 
5901   if (!Ty->isFirstClassType())
5902     return Error(TypeLoc, "phi node must have first class type");
5903 
5904   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5905   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5906     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5907   Inst = PN;
5908   return AteExtraComma ? InstExtraComma : InstNormal;
5909 }
5910 
5911 /// ParseLandingPad
5912 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5913 /// Clause
5914 ///   ::= 'catch' TypeAndValue
5915 ///   ::= 'filter'
5916 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5917 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5918   Type *Ty = nullptr; LocTy TyLoc;
5919 
5920   if (ParseType(Ty, TyLoc))
5921     return true;
5922 
5923   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5924   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5925 
5926   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5927     LandingPadInst::ClauseType CT;
5928     if (EatIfPresent(lltok::kw_catch))
5929       CT = LandingPadInst::Catch;
5930     else if (EatIfPresent(lltok::kw_filter))
5931       CT = LandingPadInst::Filter;
5932     else
5933       return TokError("expected 'catch' or 'filter' clause type");
5934 
5935     Value *V;
5936     LocTy VLoc;
5937     if (ParseTypeAndValue(V, VLoc, PFS))
5938       return true;
5939 
5940     // A 'catch' type expects a non-array constant. A filter clause expects an
5941     // array constant.
5942     if (CT == LandingPadInst::Catch) {
5943       if (isa<ArrayType>(V->getType()))
5944         Error(VLoc, "'catch' clause has an invalid type");
5945     } else {
5946       if (!isa<ArrayType>(V->getType()))
5947         Error(VLoc, "'filter' clause has an invalid type");
5948     }
5949 
5950     Constant *CV = dyn_cast<Constant>(V);
5951     if (!CV)
5952       return Error(VLoc, "clause argument must be a constant");
5953     LP->addClause(CV);
5954   }
5955 
5956   Inst = LP.release();
5957   return false;
5958 }
5959 
5960 /// ParseCall
5961 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5962 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5963 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5964 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5965 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5966 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5967 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5968 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5969 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5970                          CallInst::TailCallKind TCK) {
5971   AttrBuilder RetAttrs, FnAttrs;
5972   std::vector<unsigned> FwdRefAttrGrps;
5973   LocTy BuiltinLoc;
5974   unsigned CC;
5975   Type *RetType = nullptr;
5976   LocTy RetTypeLoc;
5977   ValID CalleeID;
5978   SmallVector<ParamInfo, 16> ArgList;
5979   SmallVector<OperandBundleDef, 2> BundleList;
5980   LocTy CallLoc = Lex.getLoc();
5981 
5982   if (TCK != CallInst::TCK_None &&
5983       ParseToken(lltok::kw_call,
5984                  "expected 'tail call', 'musttail call', or 'notail call'"))
5985     return true;
5986 
5987   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5988 
5989   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5990       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5991       ParseValID(CalleeID) ||
5992       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5993                          PFS.getFunction().isVarArg()) ||
5994       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5995       ParseOptionalOperandBundles(BundleList, PFS))
5996     return true;
5997 
5998   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5999     return Error(CallLoc, "fast-math-flags specified for call without "
6000                           "floating-point scalar or vector return type");
6001 
6002   // If RetType is a non-function pointer type, then this is the short syntax
6003   // for the call, which means that RetType is just the return type.  Infer the
6004   // rest of the function argument types from the arguments that are present.
6005   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6006   if (!Ty) {
6007     // Pull out the types of all of the arguments...
6008     std::vector<Type*> ParamTypes;
6009     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6010       ParamTypes.push_back(ArgList[i].V->getType());
6011 
6012     if (!FunctionType::isValidReturnType(RetType))
6013       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6014 
6015     Ty = FunctionType::get(RetType, ParamTypes, false);
6016   }
6017 
6018   CalleeID.FTy = Ty;
6019 
6020   // Look up the callee.
6021   Value *Callee;
6022   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6023     return true;
6024 
6025   // Set up the Attribute for the function.
6026   SmallVector<AttributeSet, 8> Attrs;
6027 
6028   SmallVector<Value*, 8> Args;
6029 
6030   // Loop through FunctionType's arguments and ensure they are specified
6031   // correctly.  Also, gather any parameter attributes.
6032   FunctionType::param_iterator I = Ty->param_begin();
6033   FunctionType::param_iterator E = Ty->param_end();
6034   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6035     Type *ExpectedTy = nullptr;
6036     if (I != E) {
6037       ExpectedTy = *I++;
6038     } else if (!Ty->isVarArg()) {
6039       return Error(ArgList[i].Loc, "too many arguments specified");
6040     }
6041 
6042     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6043       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6044                    getTypeString(ExpectedTy) + "'");
6045     Args.push_back(ArgList[i].V);
6046     Attrs.push_back(ArgList[i].Attrs);
6047   }
6048 
6049   if (I != E)
6050     return Error(CallLoc, "not enough parameters specified for call");
6051 
6052   if (FnAttrs.hasAlignmentAttr())
6053     return Error(CallLoc, "call instructions may not have an alignment");
6054 
6055   // Finish off the Attribute and check them
6056   AttributeList PAL =
6057       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6058                          AttributeSet::get(Context, RetAttrs), Attrs);
6059 
6060   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6061   CI->setTailCallKind(TCK);
6062   CI->setCallingConv(CC);
6063   if (FMF.any())
6064     CI->setFastMathFlags(FMF);
6065   CI->setAttributes(PAL);
6066   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6067   Inst = CI;
6068   return false;
6069 }
6070 
6071 //===----------------------------------------------------------------------===//
6072 // Memory Instructions.
6073 //===----------------------------------------------------------------------===//
6074 
6075 /// ParseAlloc
6076 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6077 ///       (',' 'align' i32)?
6078 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6079   Value *Size = nullptr;
6080   LocTy SizeLoc, TyLoc, ASLoc;
6081   unsigned Alignment = 0;
6082   unsigned AddrSpace = 0;
6083   Type *Ty = nullptr;
6084 
6085   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6086   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6087 
6088   if (ParseType(Ty, TyLoc)) return true;
6089 
6090   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6091     return Error(TyLoc, "invalid type for alloca");
6092 
6093   bool AteExtraComma = false;
6094   if (EatIfPresent(lltok::comma)) {
6095     if (Lex.getKind() == lltok::kw_align) {
6096       if (ParseOptionalAlignment(Alignment))
6097         return true;
6098       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6099         return true;
6100     } else if (Lex.getKind() == lltok::kw_addrspace) {
6101       ASLoc = Lex.getLoc();
6102       if (ParseOptionalAddrSpace(AddrSpace))
6103         return true;
6104     } else if (Lex.getKind() == lltok::MetadataVar) {
6105       AteExtraComma = true;
6106     } else {
6107       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6108           ParseOptionalCommaAlign(Alignment, AteExtraComma) ||
6109           (!AteExtraComma &&
6110            ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)))
6111         return true;
6112     }
6113   }
6114 
6115   if (Size && !Size->getType()->isIntegerTy())
6116     return Error(SizeLoc, "element count must have integer type");
6117 
6118   const DataLayout &DL = M->getDataLayout();
6119   unsigned AS = DL.getAllocaAddrSpace();
6120   if (AS != AddrSpace) {
6121     // TODO: In the future it should be possible to specify addrspace per-alloca.
6122     return Error(ASLoc, "address space must match datalayout");
6123   }
6124 
6125   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6126   AI->setUsedWithInAlloca(IsInAlloca);
6127   AI->setSwiftError(IsSwiftError);
6128   Inst = AI;
6129   return AteExtraComma ? InstExtraComma : InstNormal;
6130 }
6131 
6132 /// ParseLoad
6133 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6134 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6135 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6136 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6137   Value *Val; LocTy Loc;
6138   unsigned Alignment = 0;
6139   bool AteExtraComma = false;
6140   bool isAtomic = false;
6141   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6142   SyncScope::ID SSID = SyncScope::System;
6143 
6144   if (Lex.getKind() == lltok::kw_atomic) {
6145     isAtomic = true;
6146     Lex.Lex();
6147   }
6148 
6149   bool isVolatile = false;
6150   if (Lex.getKind() == lltok::kw_volatile) {
6151     isVolatile = true;
6152     Lex.Lex();
6153   }
6154 
6155   Type *Ty;
6156   LocTy ExplicitTypeLoc = Lex.getLoc();
6157   if (ParseType(Ty) ||
6158       ParseToken(lltok::comma, "expected comma after load's type") ||
6159       ParseTypeAndValue(Val, Loc, PFS) ||
6160       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6161       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6162     return true;
6163 
6164   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6165     return Error(Loc, "load operand must be a pointer to a first class type");
6166   if (isAtomic && !Alignment)
6167     return Error(Loc, "atomic load must have explicit non-zero alignment");
6168   if (Ordering == AtomicOrdering::Release ||
6169       Ordering == AtomicOrdering::AcquireRelease)
6170     return Error(Loc, "atomic load cannot use Release ordering");
6171 
6172   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6173     return Error(ExplicitTypeLoc,
6174                  "explicit pointee type doesn't match operand's pointee type");
6175 
6176   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6177   return AteExtraComma ? InstExtraComma : InstNormal;
6178 }
6179 
6180 /// ParseStore
6181 
6182 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6183 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6184 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6185 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6186   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6187   unsigned Alignment = 0;
6188   bool AteExtraComma = false;
6189   bool isAtomic = false;
6190   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6191   SyncScope::ID SSID = SyncScope::System;
6192 
6193   if (Lex.getKind() == lltok::kw_atomic) {
6194     isAtomic = true;
6195     Lex.Lex();
6196   }
6197 
6198   bool isVolatile = false;
6199   if (Lex.getKind() == lltok::kw_volatile) {
6200     isVolatile = true;
6201     Lex.Lex();
6202   }
6203 
6204   if (ParseTypeAndValue(Val, Loc, PFS) ||
6205       ParseToken(lltok::comma, "expected ',' after store operand") ||
6206       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6207       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6208       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6209     return true;
6210 
6211   if (!Ptr->getType()->isPointerTy())
6212     return Error(PtrLoc, "store operand must be a pointer");
6213   if (!Val->getType()->isFirstClassType())
6214     return Error(Loc, "store operand must be a first class value");
6215   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6216     return Error(Loc, "stored value and pointer type do not match");
6217   if (isAtomic && !Alignment)
6218     return Error(Loc, "atomic store must have explicit non-zero alignment");
6219   if (Ordering == AtomicOrdering::Acquire ||
6220       Ordering == AtomicOrdering::AcquireRelease)
6221     return Error(Loc, "atomic store cannot use Acquire ordering");
6222 
6223   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6224   return AteExtraComma ? InstExtraComma : InstNormal;
6225 }
6226 
6227 /// ParseCmpXchg
6228 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6229 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6230 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6231   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6232   bool AteExtraComma = false;
6233   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6234   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6235   SyncScope::ID SSID = SyncScope::System;
6236   bool isVolatile = false;
6237   bool isWeak = false;
6238 
6239   if (EatIfPresent(lltok::kw_weak))
6240     isWeak = true;
6241 
6242   if (EatIfPresent(lltok::kw_volatile))
6243     isVolatile = true;
6244 
6245   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6246       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6247       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6248       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6249       ParseTypeAndValue(New, NewLoc, PFS) ||
6250       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6251       ParseOrdering(FailureOrdering))
6252     return true;
6253 
6254   if (SuccessOrdering == AtomicOrdering::Unordered ||
6255       FailureOrdering == AtomicOrdering::Unordered)
6256     return TokError("cmpxchg cannot be unordered");
6257   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6258     return TokError("cmpxchg failure argument shall be no stronger than the "
6259                     "success argument");
6260   if (FailureOrdering == AtomicOrdering::Release ||
6261       FailureOrdering == AtomicOrdering::AcquireRelease)
6262     return TokError(
6263         "cmpxchg failure ordering cannot include release semantics");
6264   if (!Ptr->getType()->isPointerTy())
6265     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6266   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6267     return Error(CmpLoc, "compare value and pointer type do not match");
6268   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6269     return Error(NewLoc, "new value and pointer type do not match");
6270   if (!New->getType()->isFirstClassType())
6271     return Error(NewLoc, "cmpxchg operand must be a first class value");
6272   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6273       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6274   CXI->setVolatile(isVolatile);
6275   CXI->setWeak(isWeak);
6276   Inst = CXI;
6277   return AteExtraComma ? InstExtraComma : InstNormal;
6278 }
6279 
6280 /// ParseAtomicRMW
6281 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6282 ///       'singlethread'? AtomicOrdering
6283 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6284   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6285   bool AteExtraComma = false;
6286   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6287   SyncScope::ID SSID = SyncScope::System;
6288   bool isVolatile = false;
6289   AtomicRMWInst::BinOp Operation;
6290 
6291   if (EatIfPresent(lltok::kw_volatile))
6292     isVolatile = true;
6293 
6294   switch (Lex.getKind()) {
6295   default: return TokError("expected binary operation in atomicrmw");
6296   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6297   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6298   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6299   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6300   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6301   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6302   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6303   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6304   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6305   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6306   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6307   }
6308   Lex.Lex();  // Eat the operation.
6309 
6310   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6311       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6312       ParseTypeAndValue(Val, ValLoc, PFS) ||
6313       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6314     return true;
6315 
6316   if (Ordering == AtomicOrdering::Unordered)
6317     return TokError("atomicrmw cannot be unordered");
6318   if (!Ptr->getType()->isPointerTy())
6319     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6320   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6321     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6322   if (!Val->getType()->isIntegerTy())
6323     return Error(ValLoc, "atomicrmw operand must be an integer");
6324   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6325   if (Size < 8 || (Size & (Size - 1)))
6326     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6327                          " integer");
6328 
6329   AtomicRMWInst *RMWI =
6330     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6331   RMWI->setVolatile(isVolatile);
6332   Inst = RMWI;
6333   return AteExtraComma ? InstExtraComma : InstNormal;
6334 }
6335 
6336 /// ParseFence
6337 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6338 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6339   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6340   SyncScope::ID SSID = SyncScope::System;
6341   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6342     return true;
6343 
6344   if (Ordering == AtomicOrdering::Unordered)
6345     return TokError("fence cannot be unordered");
6346   if (Ordering == AtomicOrdering::Monotonic)
6347     return TokError("fence cannot be monotonic");
6348 
6349   Inst = new FenceInst(Context, Ordering, SSID);
6350   return InstNormal;
6351 }
6352 
6353 /// ParseGetElementPtr
6354 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6355 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6356   Value *Ptr = nullptr;
6357   Value *Val = nullptr;
6358   LocTy Loc, EltLoc;
6359 
6360   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6361 
6362   Type *Ty = nullptr;
6363   LocTy ExplicitTypeLoc = Lex.getLoc();
6364   if (ParseType(Ty) ||
6365       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6366       ParseTypeAndValue(Ptr, Loc, PFS))
6367     return true;
6368 
6369   Type *BaseType = Ptr->getType();
6370   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6371   if (!BasePointerType)
6372     return Error(Loc, "base of getelementptr must be a pointer");
6373 
6374   if (Ty != BasePointerType->getElementType())
6375     return Error(ExplicitTypeLoc,
6376                  "explicit pointee type doesn't match operand's pointee type");
6377 
6378   SmallVector<Value*, 16> Indices;
6379   bool AteExtraComma = false;
6380   // GEP returns a vector of pointers if at least one of parameters is a vector.
6381   // All vector parameters should have the same vector width.
6382   unsigned GEPWidth = BaseType->isVectorTy() ?
6383     BaseType->getVectorNumElements() : 0;
6384 
6385   while (EatIfPresent(lltok::comma)) {
6386     if (Lex.getKind() == lltok::MetadataVar) {
6387       AteExtraComma = true;
6388       break;
6389     }
6390     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6391     if (!Val->getType()->isIntOrIntVectorTy())
6392       return Error(EltLoc, "getelementptr index must be an integer");
6393 
6394     if (Val->getType()->isVectorTy()) {
6395       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6396       if (GEPWidth && GEPWidth != ValNumEl)
6397         return Error(EltLoc,
6398           "getelementptr vector index has a wrong number of elements");
6399       GEPWidth = ValNumEl;
6400     }
6401     Indices.push_back(Val);
6402   }
6403 
6404   SmallPtrSet<Type*, 4> Visited;
6405   if (!Indices.empty() && !Ty->isSized(&Visited))
6406     return Error(Loc, "base element of getelementptr must be sized");
6407 
6408   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6409     return Error(Loc, "invalid getelementptr indices");
6410   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6411   if (InBounds)
6412     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6413   return AteExtraComma ? InstExtraComma : InstNormal;
6414 }
6415 
6416 /// ParseExtractValue
6417 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6418 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6419   Value *Val; LocTy Loc;
6420   SmallVector<unsigned, 4> Indices;
6421   bool AteExtraComma;
6422   if (ParseTypeAndValue(Val, Loc, PFS) ||
6423       ParseIndexList(Indices, AteExtraComma))
6424     return true;
6425 
6426   if (!Val->getType()->isAggregateType())
6427     return Error(Loc, "extractvalue operand must be aggregate type");
6428 
6429   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6430     return Error(Loc, "invalid indices for extractvalue");
6431   Inst = ExtractValueInst::Create(Val, Indices);
6432   return AteExtraComma ? InstExtraComma : InstNormal;
6433 }
6434 
6435 /// ParseInsertValue
6436 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6437 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6438   Value *Val0, *Val1; LocTy Loc0, Loc1;
6439   SmallVector<unsigned, 4> Indices;
6440   bool AteExtraComma;
6441   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6442       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6443       ParseTypeAndValue(Val1, Loc1, PFS) ||
6444       ParseIndexList(Indices, AteExtraComma))
6445     return true;
6446 
6447   if (!Val0->getType()->isAggregateType())
6448     return Error(Loc0, "insertvalue operand must be aggregate type");
6449 
6450   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6451   if (!IndexedType)
6452     return Error(Loc0, "invalid indices for insertvalue");
6453   if (IndexedType != Val1->getType())
6454     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6455                            getTypeString(Val1->getType()) + "' instead of '" +
6456                            getTypeString(IndexedType) + "'");
6457   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6458   return AteExtraComma ? InstExtraComma : InstNormal;
6459 }
6460 
6461 //===----------------------------------------------------------------------===//
6462 // Embedded metadata.
6463 //===----------------------------------------------------------------------===//
6464 
6465 /// ParseMDNodeVector
6466 ///   ::= { Element (',' Element)* }
6467 /// Element
6468 ///   ::= 'null' | TypeAndValue
6469 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6470   if (ParseToken(lltok::lbrace, "expected '{' here"))
6471     return true;
6472 
6473   // Check for an empty list.
6474   if (EatIfPresent(lltok::rbrace))
6475     return false;
6476 
6477   do {
6478     // Null is a special case since it is typeless.
6479     if (EatIfPresent(lltok::kw_null)) {
6480       Elts.push_back(nullptr);
6481       continue;
6482     }
6483 
6484     Metadata *MD;
6485     if (ParseMetadata(MD, nullptr))
6486       return true;
6487     Elts.push_back(MD);
6488   } while (EatIfPresent(lltok::comma));
6489 
6490   return ParseToken(lltok::rbrace, "expected end of metadata node");
6491 }
6492 
6493 //===----------------------------------------------------------------------===//
6494 // Use-list order directives.
6495 //===----------------------------------------------------------------------===//
6496 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6497                                 SMLoc Loc) {
6498   if (V->use_empty())
6499     return Error(Loc, "value has no uses");
6500 
6501   unsigned NumUses = 0;
6502   SmallDenseMap<const Use *, unsigned, 16> Order;
6503   for (const Use &U : V->uses()) {
6504     if (++NumUses > Indexes.size())
6505       break;
6506     Order[&U] = Indexes[NumUses - 1];
6507   }
6508   if (NumUses < 2)
6509     return Error(Loc, "value only has one use");
6510   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6511     return Error(Loc, "wrong number of indexes, expected " +
6512                           Twine(std::distance(V->use_begin(), V->use_end())));
6513 
6514   V->sortUseList([&](const Use &L, const Use &R) {
6515     return Order.lookup(&L) < Order.lookup(&R);
6516   });
6517   return false;
6518 }
6519 
6520 /// ParseUseListOrderIndexes
6521 ///   ::= '{' uint32 (',' uint32)+ '}'
6522 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6523   SMLoc Loc = Lex.getLoc();
6524   if (ParseToken(lltok::lbrace, "expected '{' here"))
6525     return true;
6526   if (Lex.getKind() == lltok::rbrace)
6527     return Lex.Error("expected non-empty list of uselistorder indexes");
6528 
6529   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6530   // indexes should be distinct numbers in the range [0, size-1], and should
6531   // not be in order.
6532   unsigned Offset = 0;
6533   unsigned Max = 0;
6534   bool IsOrdered = true;
6535   assert(Indexes.empty() && "Expected empty order vector");
6536   do {
6537     unsigned Index;
6538     if (ParseUInt32(Index))
6539       return true;
6540 
6541     // Update consistency checks.
6542     Offset += Index - Indexes.size();
6543     Max = std::max(Max, Index);
6544     IsOrdered &= Index == Indexes.size();
6545 
6546     Indexes.push_back(Index);
6547   } while (EatIfPresent(lltok::comma));
6548 
6549   if (ParseToken(lltok::rbrace, "expected '}' here"))
6550     return true;
6551 
6552   if (Indexes.size() < 2)
6553     return Error(Loc, "expected >= 2 uselistorder indexes");
6554   if (Offset != 0 || Max >= Indexes.size())
6555     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6556   if (IsOrdered)
6557     return Error(Loc, "expected uselistorder indexes to change the order");
6558 
6559   return false;
6560 }
6561 
6562 /// ParseUseListOrder
6563 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6564 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6565   SMLoc Loc = Lex.getLoc();
6566   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6567     return true;
6568 
6569   Value *V;
6570   SmallVector<unsigned, 16> Indexes;
6571   if (ParseTypeAndValue(V, PFS) ||
6572       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6573       ParseUseListOrderIndexes(Indexes))
6574     return true;
6575 
6576   return sortUseListOrder(V, Indexes, Loc);
6577 }
6578 
6579 /// ParseUseListOrderBB
6580 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6581 bool LLParser::ParseUseListOrderBB() {
6582   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6583   SMLoc Loc = Lex.getLoc();
6584   Lex.Lex();
6585 
6586   ValID Fn, Label;
6587   SmallVector<unsigned, 16> Indexes;
6588   if (ParseValID(Fn) ||
6589       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6590       ParseValID(Label) ||
6591       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6592       ParseUseListOrderIndexes(Indexes))
6593     return true;
6594 
6595   // Check the function.
6596   GlobalValue *GV;
6597   if (Fn.Kind == ValID::t_GlobalName)
6598     GV = M->getNamedValue(Fn.StrVal);
6599   else if (Fn.Kind == ValID::t_GlobalID)
6600     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6601   else
6602     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6603   if (!GV)
6604     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6605   auto *F = dyn_cast<Function>(GV);
6606   if (!F)
6607     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6608   if (F->isDeclaration())
6609     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6610 
6611   // Check the basic block.
6612   if (Label.Kind == ValID::t_LocalID)
6613     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6614   if (Label.Kind != ValID::t_LocalName)
6615     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6616   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6617   if (!V)
6618     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6619   if (!isa<BasicBlock>(V))
6620     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6621 
6622   return sortUseListOrder(V, Indexes, Loc);
6623 }
6624