1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 // DIArgLists should only appear inline in a function, as they may 780 // contain LocalAsMetadata arguments which require a function context. 781 } else if (Lex.getKind() == lltok::MetadataVar && 782 Lex.getStrVal() == "DIArgList") { 783 return tokError("found DIArgList outside of function"); 784 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 785 parseMDNodeID(N)) { 786 return true; 787 } 788 NMD->addOperand(N); 789 } while (EatIfPresent(lltok::comma)); 790 791 return parseToken(lltok::rbrace, "expected end of metadata node"); 792 } 793 794 /// parseStandaloneMetadata: 795 /// !42 = !{...} 796 bool LLParser::parseStandaloneMetadata() { 797 assert(Lex.getKind() == lltok::exclaim); 798 Lex.Lex(); 799 unsigned MetadataID = 0; 800 801 MDNode *Init; 802 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 803 return true; 804 805 // Detect common error, from old metadata syntax. 806 if (Lex.getKind() == lltok::Type) 807 return tokError("unexpected type in metadata definition"); 808 809 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 810 if (Lex.getKind() == lltok::MetadataVar) { 811 if (parseSpecializedMDNode(Init, IsDistinct)) 812 return true; 813 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 814 parseMDTuple(Init, IsDistinct)) 815 return true; 816 817 // See if this was forward referenced, if so, handle it. 818 auto FI = ForwardRefMDNodes.find(MetadataID); 819 if (FI != ForwardRefMDNodes.end()) { 820 FI->second.first->replaceAllUsesWith(Init); 821 ForwardRefMDNodes.erase(FI); 822 823 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 824 } else { 825 if (NumberedMetadata.count(MetadataID)) 826 return tokError("Metadata id is already used"); 827 NumberedMetadata[MetadataID].reset(Init); 828 } 829 830 return false; 831 } 832 833 // Skips a single module summary entry. 834 bool LLParser::skipModuleSummaryEntry() { 835 // Each module summary entry consists of a tag for the entry 836 // type, followed by a colon, then the fields which may be surrounded by 837 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 838 // support is in place we will look for the tokens corresponding to the 839 // expected tags. 840 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 841 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 842 Lex.getKind() != lltok::kw_blockcount) 843 return tokError( 844 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 845 "start of summary entry"); 846 if (Lex.getKind() == lltok::kw_flags) 847 return parseSummaryIndexFlags(); 848 if (Lex.getKind() == lltok::kw_blockcount) 849 return parseBlockCount(); 850 Lex.Lex(); 851 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 852 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 853 return true; 854 // Now walk through the parenthesized entry, until the number of open 855 // parentheses goes back down to 0 (the first '(' was parsed above). 856 unsigned NumOpenParen = 1; 857 do { 858 switch (Lex.getKind()) { 859 case lltok::lparen: 860 NumOpenParen++; 861 break; 862 case lltok::rparen: 863 NumOpenParen--; 864 break; 865 case lltok::Eof: 866 return tokError("found end of file while parsing summary entry"); 867 default: 868 // Skip everything in between parentheses. 869 break; 870 } 871 Lex.Lex(); 872 } while (NumOpenParen > 0); 873 return false; 874 } 875 876 /// SummaryEntry 877 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 878 bool LLParser::parseSummaryEntry() { 879 assert(Lex.getKind() == lltok::SummaryID); 880 unsigned SummaryID = Lex.getUIntVal(); 881 882 // For summary entries, colons should be treated as distinct tokens, 883 // not an indication of the end of a label token. 884 Lex.setIgnoreColonInIdentifiers(true); 885 886 Lex.Lex(); 887 if (parseToken(lltok::equal, "expected '=' here")) 888 return true; 889 890 // If we don't have an index object, skip the summary entry. 891 if (!Index) 892 return skipModuleSummaryEntry(); 893 894 bool result = false; 895 switch (Lex.getKind()) { 896 case lltok::kw_gv: 897 result = parseGVEntry(SummaryID); 898 break; 899 case lltok::kw_module: 900 result = parseModuleEntry(SummaryID); 901 break; 902 case lltok::kw_typeid: 903 result = parseTypeIdEntry(SummaryID); 904 break; 905 case lltok::kw_typeidCompatibleVTable: 906 result = parseTypeIdCompatibleVtableEntry(SummaryID); 907 break; 908 case lltok::kw_flags: 909 result = parseSummaryIndexFlags(); 910 break; 911 case lltok::kw_blockcount: 912 result = parseBlockCount(); 913 break; 914 default: 915 result = error(Lex.getLoc(), "unexpected summary kind"); 916 break; 917 } 918 Lex.setIgnoreColonInIdentifiers(false); 919 return result; 920 } 921 922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 923 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 924 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 925 } 926 927 // If there was an explicit dso_local, update GV. In the absence of an explicit 928 // dso_local we keep the default value. 929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 930 if (DSOLocal) 931 GV.setDSOLocal(true); 932 } 933 934 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 935 Type *Ty2) { 936 std::string ErrString; 937 raw_string_ostream ErrOS(ErrString); 938 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 939 return ErrOS.str(); 940 } 941 942 /// parseIndirectSymbol: 943 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 944 /// OptionalVisibility OptionalDLLStorageClass 945 /// OptionalThreadLocal OptionalUnnamedAddr 946 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 947 /// 948 /// IndirectSymbol 949 /// ::= TypeAndValue 950 /// 951 /// IndirectSymbolAttr 952 /// ::= ',' 'partition' StringConstant 953 /// 954 /// Everything through OptionalUnnamedAddr has already been parsed. 955 /// 956 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 957 unsigned L, unsigned Visibility, 958 unsigned DLLStorageClass, bool DSOLocal, 959 GlobalVariable::ThreadLocalMode TLM, 960 GlobalVariable::UnnamedAddr UnnamedAddr) { 961 bool IsAlias; 962 if (Lex.getKind() == lltok::kw_alias) 963 IsAlias = true; 964 else if (Lex.getKind() == lltok::kw_ifunc) 965 IsAlias = false; 966 else 967 llvm_unreachable("Not an alias or ifunc!"); 968 Lex.Lex(); 969 970 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 971 972 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 973 return error(NameLoc, "invalid linkage type for alias"); 974 975 if (!isValidVisibilityForLinkage(Visibility, L)) 976 return error(NameLoc, 977 "symbol with local linkage must have default visibility"); 978 979 Type *Ty; 980 LocTy ExplicitTypeLoc = Lex.getLoc(); 981 if (parseType(Ty) || 982 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 983 return true; 984 985 Constant *Aliasee; 986 LocTy AliaseeLoc = Lex.getLoc(); 987 if (Lex.getKind() != lltok::kw_bitcast && 988 Lex.getKind() != lltok::kw_getelementptr && 989 Lex.getKind() != lltok::kw_addrspacecast && 990 Lex.getKind() != lltok::kw_inttoptr) { 991 if (parseGlobalTypeAndValue(Aliasee)) 992 return true; 993 } else { 994 // The bitcast dest type is not present, it is implied by the dest type. 995 ValID ID; 996 if (parseValID(ID)) 997 return true; 998 if (ID.Kind != ValID::t_Constant) 999 return error(AliaseeLoc, "invalid aliasee"); 1000 Aliasee = ID.ConstantVal; 1001 } 1002 1003 Type *AliaseeType = Aliasee->getType(); 1004 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1005 if (!PTy) 1006 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1007 unsigned AddrSpace = PTy->getAddressSpace(); 1008 1009 if (IsAlias && Ty != PTy->getElementType()) { 1010 return error( 1011 ExplicitTypeLoc, 1012 typeComparisonErrorMessage( 1013 "explicit pointee type doesn't match operand's pointee type", Ty, 1014 PTy->getElementType())); 1015 } 1016 1017 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 1018 return error(ExplicitTypeLoc, 1019 "explicit pointee type should be a function type"); 1020 } 1021 1022 GlobalValue *GVal = nullptr; 1023 1024 // See if the alias was forward referenced, if so, prepare to replace the 1025 // forward reference. 1026 if (!Name.empty()) { 1027 GVal = M->getNamedValue(Name); 1028 if (GVal) { 1029 if (!ForwardRefVals.erase(Name)) 1030 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1031 } 1032 } else { 1033 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1034 if (I != ForwardRefValIDs.end()) { 1035 GVal = I->second.first; 1036 ForwardRefValIDs.erase(I); 1037 } 1038 } 1039 1040 // Okay, create the alias but do not insert it into the module yet. 1041 std::unique_ptr<GlobalIndirectSymbol> GA; 1042 if (IsAlias) 1043 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1044 (GlobalValue::LinkageTypes)Linkage, Name, 1045 Aliasee, /*Parent*/ nullptr)); 1046 else 1047 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1048 (GlobalValue::LinkageTypes)Linkage, Name, 1049 Aliasee, /*Parent*/ nullptr)); 1050 GA->setThreadLocalMode(TLM); 1051 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1052 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1053 GA->setUnnamedAddr(UnnamedAddr); 1054 maybeSetDSOLocal(DSOLocal, *GA); 1055 1056 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1057 // Now parse them if there are any. 1058 while (Lex.getKind() == lltok::comma) { 1059 Lex.Lex(); 1060 1061 if (Lex.getKind() == lltok::kw_partition) { 1062 Lex.Lex(); 1063 GA->setPartition(Lex.getStrVal()); 1064 if (parseToken(lltok::StringConstant, "expected partition string")) 1065 return true; 1066 } else { 1067 return tokError("unknown alias or ifunc property!"); 1068 } 1069 } 1070 1071 if (Name.empty()) 1072 NumberedVals.push_back(GA.get()); 1073 1074 if (GVal) { 1075 // Verify that types agree. 1076 if (GVal->getType() != GA->getType()) 1077 return error( 1078 ExplicitTypeLoc, 1079 "forward reference and definition of alias have different types"); 1080 1081 // If they agree, just RAUW the old value with the alias and remove the 1082 // forward ref info. 1083 GVal->replaceAllUsesWith(GA.get()); 1084 GVal->eraseFromParent(); 1085 } 1086 1087 // Insert into the module, we know its name won't collide now. 1088 if (IsAlias) 1089 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1090 else 1091 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1092 assert(GA->getName() == Name && "Should not be a name conflict!"); 1093 1094 // The module owns this now 1095 GA.release(); 1096 1097 return false; 1098 } 1099 1100 /// parseGlobal 1101 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1102 /// OptionalVisibility OptionalDLLStorageClass 1103 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1104 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1105 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1106 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1107 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1108 /// Const OptionalAttrs 1109 /// 1110 /// Everything up to and including OptionalUnnamedAddr has been parsed 1111 /// already. 1112 /// 1113 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1114 unsigned Linkage, bool HasLinkage, 1115 unsigned Visibility, unsigned DLLStorageClass, 1116 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1117 GlobalVariable::UnnamedAddr UnnamedAddr) { 1118 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1119 return error(NameLoc, 1120 "symbol with local linkage must have default visibility"); 1121 1122 unsigned AddrSpace; 1123 bool IsConstant, IsExternallyInitialized; 1124 LocTy IsExternallyInitializedLoc; 1125 LocTy TyLoc; 1126 1127 Type *Ty = nullptr; 1128 if (parseOptionalAddrSpace(AddrSpace) || 1129 parseOptionalToken(lltok::kw_externally_initialized, 1130 IsExternallyInitialized, 1131 &IsExternallyInitializedLoc) || 1132 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1133 return true; 1134 1135 // If the linkage is specified and is external, then no initializer is 1136 // present. 1137 Constant *Init = nullptr; 1138 if (!HasLinkage || 1139 !GlobalValue::isValidDeclarationLinkage( 1140 (GlobalValue::LinkageTypes)Linkage)) { 1141 if (parseGlobalValue(Ty, Init)) 1142 return true; 1143 } 1144 1145 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1146 return error(TyLoc, "invalid type for global variable"); 1147 1148 GlobalValue *GVal = nullptr; 1149 1150 // See if the global was forward referenced, if so, use the global. 1151 if (!Name.empty()) { 1152 GVal = M->getNamedValue(Name); 1153 if (GVal) { 1154 if (!ForwardRefVals.erase(Name)) 1155 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1156 } 1157 } else { 1158 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1159 if (I != ForwardRefValIDs.end()) { 1160 GVal = I->second.first; 1161 ForwardRefValIDs.erase(I); 1162 } 1163 } 1164 1165 GlobalVariable *GV; 1166 if (!GVal) { 1167 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1168 Name, nullptr, GlobalVariable::NotThreadLocal, 1169 AddrSpace); 1170 } else { 1171 if (GVal->getValueType() != Ty) 1172 return error( 1173 TyLoc, 1174 "forward reference and definition of global have different types"); 1175 1176 GV = cast<GlobalVariable>(GVal); 1177 1178 // Move the forward-reference to the correct spot in the module. 1179 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1180 } 1181 1182 if (Name.empty()) 1183 NumberedVals.push_back(GV); 1184 1185 // Set the parsed properties on the global. 1186 if (Init) 1187 GV->setInitializer(Init); 1188 GV->setConstant(IsConstant); 1189 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1190 maybeSetDSOLocal(DSOLocal, *GV); 1191 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1192 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1193 GV->setExternallyInitialized(IsExternallyInitialized); 1194 GV->setThreadLocalMode(TLM); 1195 GV->setUnnamedAddr(UnnamedAddr); 1196 1197 // parse attributes on the global. 1198 while (Lex.getKind() == lltok::comma) { 1199 Lex.Lex(); 1200 1201 if (Lex.getKind() == lltok::kw_section) { 1202 Lex.Lex(); 1203 GV->setSection(Lex.getStrVal()); 1204 if (parseToken(lltok::StringConstant, "expected global section string")) 1205 return true; 1206 } else if (Lex.getKind() == lltok::kw_partition) { 1207 Lex.Lex(); 1208 GV->setPartition(Lex.getStrVal()); 1209 if (parseToken(lltok::StringConstant, "expected partition string")) 1210 return true; 1211 } else if (Lex.getKind() == lltok::kw_align) { 1212 MaybeAlign Alignment; 1213 if (parseOptionalAlignment(Alignment)) 1214 return true; 1215 GV->setAlignment(Alignment); 1216 } else if (Lex.getKind() == lltok::MetadataVar) { 1217 if (parseGlobalObjectMetadataAttachment(*GV)) 1218 return true; 1219 } else { 1220 Comdat *C; 1221 if (parseOptionalComdat(Name, C)) 1222 return true; 1223 if (C) 1224 GV->setComdat(C); 1225 else 1226 return tokError("unknown global variable property!"); 1227 } 1228 } 1229 1230 AttrBuilder Attrs; 1231 LocTy BuiltinLoc; 1232 std::vector<unsigned> FwdRefAttrGrps; 1233 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1234 return true; 1235 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1236 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1237 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1238 } 1239 1240 return false; 1241 } 1242 1243 /// parseUnnamedAttrGrp 1244 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1245 bool LLParser::parseUnnamedAttrGrp() { 1246 assert(Lex.getKind() == lltok::kw_attributes); 1247 LocTy AttrGrpLoc = Lex.getLoc(); 1248 Lex.Lex(); 1249 1250 if (Lex.getKind() != lltok::AttrGrpID) 1251 return tokError("expected attribute group id"); 1252 1253 unsigned VarID = Lex.getUIntVal(); 1254 std::vector<unsigned> unused; 1255 LocTy BuiltinLoc; 1256 Lex.Lex(); 1257 1258 if (parseToken(lltok::equal, "expected '=' here") || 1259 parseToken(lltok::lbrace, "expected '{' here") || 1260 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1261 BuiltinLoc) || 1262 parseToken(lltok::rbrace, "expected end of attribute group")) 1263 return true; 1264 1265 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1266 return error(AttrGrpLoc, "attribute group has no attributes"); 1267 1268 return false; 1269 } 1270 1271 /// parseFnAttributeValuePairs 1272 /// ::= <attr> | <attr> '=' <value> 1273 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1274 std::vector<unsigned> &FwdRefAttrGrps, 1275 bool inAttrGrp, LocTy &BuiltinLoc) { 1276 bool HaveError = false; 1277 1278 B.clear(); 1279 1280 while (true) { 1281 lltok::Kind Token = Lex.getKind(); 1282 if (Token == lltok::kw_builtin) 1283 BuiltinLoc = Lex.getLoc(); 1284 switch (Token) { 1285 default: 1286 if (!inAttrGrp) return HaveError; 1287 return error(Lex.getLoc(), "unterminated attribute group"); 1288 case lltok::rbrace: 1289 // Finished. 1290 return false; 1291 1292 case lltok::AttrGrpID: { 1293 // Allow a function to reference an attribute group: 1294 // 1295 // define void @foo() #1 { ... } 1296 if (inAttrGrp) 1297 HaveError |= error( 1298 Lex.getLoc(), 1299 "cannot have an attribute group reference in an attribute group"); 1300 1301 unsigned AttrGrpNum = Lex.getUIntVal(); 1302 if (inAttrGrp) break; 1303 1304 // Save the reference to the attribute group. We'll fill it in later. 1305 FwdRefAttrGrps.push_back(AttrGrpNum); 1306 break; 1307 } 1308 // Target-dependent attributes: 1309 case lltok::StringConstant: { 1310 if (parseStringAttribute(B)) 1311 return true; 1312 continue; 1313 } 1314 1315 // Target-independent attributes: 1316 case lltok::kw_align: { 1317 // As a hack, we allow function alignment to be initially parsed as an 1318 // attribute on a function declaration/definition or added to an attribute 1319 // group and later moved to the alignment field. 1320 MaybeAlign Alignment; 1321 if (inAttrGrp) { 1322 Lex.Lex(); 1323 uint32_t Value = 0; 1324 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1325 return true; 1326 Alignment = Align(Value); 1327 } else { 1328 if (parseOptionalAlignment(Alignment)) 1329 return true; 1330 } 1331 B.addAlignmentAttr(Alignment); 1332 continue; 1333 } 1334 case lltok::kw_alignstack: { 1335 unsigned Alignment; 1336 if (inAttrGrp) { 1337 Lex.Lex(); 1338 if (parseToken(lltok::equal, "expected '=' here") || 1339 parseUInt32(Alignment)) 1340 return true; 1341 } else { 1342 if (parseOptionalStackAlignment(Alignment)) 1343 return true; 1344 } 1345 B.addStackAlignmentAttr(Alignment); 1346 continue; 1347 } 1348 case lltok::kw_allocsize: { 1349 unsigned ElemSizeArg; 1350 Optional<unsigned> NumElemsArg; 1351 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1352 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1353 return true; 1354 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1355 continue; 1356 } 1357 case lltok::kw_vscale_range: { 1358 unsigned MinValue, MaxValue; 1359 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1360 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1361 return true; 1362 B.addVScaleRangeAttr(MinValue, MaxValue); 1363 continue; 1364 } 1365 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1366 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1367 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1368 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1369 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1370 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1371 case lltok::kw_inaccessiblememonly: 1372 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1373 case lltok::kw_inaccessiblemem_or_argmemonly: 1374 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1375 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1376 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1377 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1378 case lltok::kw_mustprogress: 1379 B.addAttribute(Attribute::MustProgress); 1380 break; 1381 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1382 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1383 case lltok::kw_nocallback: 1384 B.addAttribute(Attribute::NoCallback); 1385 break; 1386 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1387 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1388 case lltok::kw_noimplicitfloat: 1389 B.addAttribute(Attribute::NoImplicitFloat); break; 1390 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1391 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1392 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1393 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1394 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1395 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1396 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1397 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1398 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1399 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1400 case lltok::kw_null_pointer_is_valid: 1401 B.addAttribute(Attribute::NullPointerIsValid); break; 1402 case lltok::kw_optforfuzzing: 1403 B.addAttribute(Attribute::OptForFuzzing); break; 1404 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1405 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1406 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1407 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1408 case lltok::kw_returns_twice: 1409 B.addAttribute(Attribute::ReturnsTwice); break; 1410 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1411 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1412 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1413 case lltok::kw_sspstrong: 1414 B.addAttribute(Attribute::StackProtectStrong); break; 1415 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1416 case lltok::kw_shadowcallstack: 1417 B.addAttribute(Attribute::ShadowCallStack); break; 1418 case lltok::kw_sanitize_address: 1419 B.addAttribute(Attribute::SanitizeAddress); break; 1420 case lltok::kw_sanitize_hwaddress: 1421 B.addAttribute(Attribute::SanitizeHWAddress); break; 1422 case lltok::kw_sanitize_memtag: 1423 B.addAttribute(Attribute::SanitizeMemTag); break; 1424 case lltok::kw_sanitize_thread: 1425 B.addAttribute(Attribute::SanitizeThread); break; 1426 case lltok::kw_sanitize_memory: 1427 B.addAttribute(Attribute::SanitizeMemory); break; 1428 case lltok::kw_speculative_load_hardening: 1429 B.addAttribute(Attribute::SpeculativeLoadHardening); 1430 break; 1431 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1432 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1433 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1434 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1435 case lltok::kw_preallocated: { 1436 Type *Ty; 1437 if (parsePreallocated(Ty)) 1438 return true; 1439 B.addPreallocatedAttr(Ty); 1440 break; 1441 } 1442 1443 // error handling. 1444 case lltok::kw_inreg: 1445 case lltok::kw_signext: 1446 case lltok::kw_zeroext: 1447 HaveError |= 1448 error(Lex.getLoc(), "invalid use of attribute on a function"); 1449 break; 1450 case lltok::kw_byval: 1451 case lltok::kw_dereferenceable: 1452 case lltok::kw_dereferenceable_or_null: 1453 case lltok::kw_inalloca: 1454 case lltok::kw_nest: 1455 case lltok::kw_noalias: 1456 case lltok::kw_noundef: 1457 case lltok::kw_nocapture: 1458 case lltok::kw_nonnull: 1459 case lltok::kw_returned: 1460 case lltok::kw_sret: 1461 case lltok::kw_swifterror: 1462 case lltok::kw_swiftself: 1463 case lltok::kw_swiftasync: 1464 case lltok::kw_immarg: 1465 case lltok::kw_byref: 1466 HaveError |= 1467 error(Lex.getLoc(), 1468 "invalid use of parameter-only attribute on a function"); 1469 break; 1470 } 1471 1472 // parsePreallocated() consumes token 1473 if (Token != lltok::kw_preallocated) 1474 Lex.Lex(); 1475 } 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // GlobalValue Reference/Resolution Routines. 1480 //===----------------------------------------------------------------------===// 1481 1482 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1483 const std::string &Name) { 1484 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1485 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1486 PTy->getAddressSpace(), Name, M); 1487 else 1488 return new GlobalVariable(*M, PTy->getElementType(), false, 1489 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1490 nullptr, GlobalVariable::NotThreadLocal, 1491 PTy->getAddressSpace()); 1492 } 1493 1494 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1495 Value *Val, bool IsCall) { 1496 if (Val->getType() == Ty) 1497 return Val; 1498 // For calls we also accept variables in the program address space. 1499 Type *SuggestedTy = Ty; 1500 if (IsCall && isa<PointerType>(Ty)) { 1501 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1502 M->getDataLayout().getProgramAddressSpace()); 1503 SuggestedTy = TyInProgAS; 1504 if (Val->getType() == TyInProgAS) 1505 return Val; 1506 } 1507 if (Ty->isLabelTy()) 1508 error(Loc, "'" + Name + "' is not a basic block"); 1509 else 1510 error(Loc, "'" + Name + "' defined with type '" + 1511 getTypeString(Val->getType()) + "' but expected '" + 1512 getTypeString(SuggestedTy) + "'"); 1513 return nullptr; 1514 } 1515 1516 /// getGlobalVal - Get a value with the specified name or ID, creating a 1517 /// forward reference record if needed. This can return null if the value 1518 /// exists but does not have the right type. 1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1520 LocTy Loc, bool IsCall) { 1521 PointerType *PTy = dyn_cast<PointerType>(Ty); 1522 if (!PTy) { 1523 error(Loc, "global variable reference must have pointer type"); 1524 return nullptr; 1525 } 1526 1527 // Look this name up in the normal function symbol table. 1528 GlobalValue *Val = 1529 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefVals.find(Name); 1535 if (I != ForwardRefVals.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1546 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1551 bool IsCall) { 1552 PointerType *PTy = dyn_cast<PointerType>(Ty); 1553 if (!PTy) { 1554 error(Loc, "global variable reference must have pointer type"); 1555 return nullptr; 1556 } 1557 1558 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1559 1560 // If this is a forward reference for the value, see if we already created a 1561 // forward ref record. 1562 if (!Val) { 1563 auto I = ForwardRefValIDs.find(ID); 1564 if (I != ForwardRefValIDs.end()) 1565 Val = I->second.first; 1566 } 1567 1568 // If we have the value in the symbol table or fwd-ref table, return it. 1569 if (Val) 1570 return cast_or_null<GlobalValue>( 1571 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1572 1573 // Otherwise, create a new forward reference for this value and remember it. 1574 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1575 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1576 return FwdVal; 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // Comdat Reference/Resolution Routines. 1581 //===----------------------------------------------------------------------===// 1582 1583 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1584 // Look this name up in the comdat symbol table. 1585 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1586 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1587 if (I != ComdatSymTab.end()) 1588 return &I->second; 1589 1590 // Otherwise, create a new forward reference for this value and remember it. 1591 Comdat *C = M->getOrInsertComdat(Name); 1592 ForwardRefComdats[Name] = Loc; 1593 return C; 1594 } 1595 1596 //===----------------------------------------------------------------------===// 1597 // Helper Routines. 1598 //===----------------------------------------------------------------------===// 1599 1600 /// parseToken - If the current token has the specified kind, eat it and return 1601 /// success. Otherwise, emit the specified error and return failure. 1602 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1603 if (Lex.getKind() != T) 1604 return tokError(ErrMsg); 1605 Lex.Lex(); 1606 return false; 1607 } 1608 1609 /// parseStringConstant 1610 /// ::= StringConstant 1611 bool LLParser::parseStringConstant(std::string &Result) { 1612 if (Lex.getKind() != lltok::StringConstant) 1613 return tokError("expected string constant"); 1614 Result = Lex.getStrVal(); 1615 Lex.Lex(); 1616 return false; 1617 } 1618 1619 /// parseUInt32 1620 /// ::= uint32 1621 bool LLParser::parseUInt32(uint32_t &Val) { 1622 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1623 return tokError("expected integer"); 1624 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1625 if (Val64 != unsigned(Val64)) 1626 return tokError("expected 32-bit integer (too large)"); 1627 Val = Val64; 1628 Lex.Lex(); 1629 return false; 1630 } 1631 1632 /// parseUInt64 1633 /// ::= uint64 1634 bool LLParser::parseUInt64(uint64_t &Val) { 1635 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1636 return tokError("expected integer"); 1637 Val = Lex.getAPSIntVal().getLimitedValue(); 1638 Lex.Lex(); 1639 return false; 1640 } 1641 1642 /// parseTLSModel 1643 /// := 'localdynamic' 1644 /// := 'initialexec' 1645 /// := 'localexec' 1646 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1647 switch (Lex.getKind()) { 1648 default: 1649 return tokError("expected localdynamic, initialexec or localexec"); 1650 case lltok::kw_localdynamic: 1651 TLM = GlobalVariable::LocalDynamicTLSModel; 1652 break; 1653 case lltok::kw_initialexec: 1654 TLM = GlobalVariable::InitialExecTLSModel; 1655 break; 1656 case lltok::kw_localexec: 1657 TLM = GlobalVariable::LocalExecTLSModel; 1658 break; 1659 } 1660 1661 Lex.Lex(); 1662 return false; 1663 } 1664 1665 /// parseOptionalThreadLocal 1666 /// := /*empty*/ 1667 /// := 'thread_local' 1668 /// := 'thread_local' '(' tlsmodel ')' 1669 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1670 TLM = GlobalVariable::NotThreadLocal; 1671 if (!EatIfPresent(lltok::kw_thread_local)) 1672 return false; 1673 1674 TLM = GlobalVariable::GeneralDynamicTLSModel; 1675 if (Lex.getKind() == lltok::lparen) { 1676 Lex.Lex(); 1677 return parseTLSModel(TLM) || 1678 parseToken(lltok::rparen, "expected ')' after thread local model"); 1679 } 1680 return false; 1681 } 1682 1683 /// parseOptionalAddrSpace 1684 /// := /*empty*/ 1685 /// := 'addrspace' '(' uint32 ')' 1686 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1687 AddrSpace = DefaultAS; 1688 if (!EatIfPresent(lltok::kw_addrspace)) 1689 return false; 1690 return parseToken(lltok::lparen, "expected '(' in address space") || 1691 parseUInt32(AddrSpace) || 1692 parseToken(lltok::rparen, "expected ')' in address space"); 1693 } 1694 1695 /// parseStringAttribute 1696 /// := StringConstant 1697 /// := StringConstant '=' StringConstant 1698 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1699 std::string Attr = Lex.getStrVal(); 1700 Lex.Lex(); 1701 std::string Val; 1702 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1703 return true; 1704 B.addAttribute(Attr, Val); 1705 return false; 1706 } 1707 1708 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1709 /// attributes. 1710 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1711 bool HaveError = false; 1712 1713 B.clear(); 1714 1715 while (true) { 1716 lltok::Kind Token = Lex.getKind(); 1717 switch (Token) { 1718 default: // End of attributes. 1719 return HaveError; 1720 case lltok::StringConstant: { 1721 if (parseStringAttribute(B)) 1722 return true; 1723 continue; 1724 } 1725 case lltok::kw_align: { 1726 MaybeAlign Alignment; 1727 if (parseOptionalAlignment(Alignment, true)) 1728 return true; 1729 B.addAlignmentAttr(Alignment); 1730 continue; 1731 } 1732 case lltok::kw_alignstack: { 1733 unsigned Alignment; 1734 if (parseOptionalStackAlignment(Alignment)) 1735 return true; 1736 B.addStackAlignmentAttr(Alignment); 1737 continue; 1738 } 1739 case lltok::kw_byval: { 1740 Type *Ty; 1741 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1742 return true; 1743 B.addByValAttr(Ty); 1744 continue; 1745 } 1746 case lltok::kw_sret: { 1747 Type *Ty; 1748 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1749 return true; 1750 B.addStructRetAttr(Ty); 1751 continue; 1752 } 1753 case lltok::kw_preallocated: { 1754 Type *Ty; 1755 if (parsePreallocated(Ty)) 1756 return true; 1757 B.addPreallocatedAttr(Ty); 1758 continue; 1759 } 1760 case lltok::kw_inalloca: { 1761 Type *Ty; 1762 if (parseInalloca(Ty)) 1763 return true; 1764 B.addInAllocaAttr(Ty); 1765 continue; 1766 } 1767 case lltok::kw_dereferenceable: { 1768 uint64_t Bytes; 1769 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1770 return true; 1771 B.addDereferenceableAttr(Bytes); 1772 continue; 1773 } 1774 case lltok::kw_dereferenceable_or_null: { 1775 uint64_t Bytes; 1776 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1777 return true; 1778 B.addDereferenceableOrNullAttr(Bytes); 1779 continue; 1780 } 1781 case lltok::kw_byref: { 1782 Type *Ty; 1783 if (parseByRef(Ty)) 1784 return true; 1785 B.addByRefAttr(Ty); 1786 continue; 1787 } 1788 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1789 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1790 case lltok::kw_noundef: 1791 B.addAttribute(Attribute::NoUndef); 1792 break; 1793 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1794 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1795 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1796 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1797 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1798 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1799 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1800 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1801 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1802 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1803 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1804 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1805 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1806 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1807 1808 case lltok::kw_alwaysinline: 1809 case lltok::kw_argmemonly: 1810 case lltok::kw_builtin: 1811 case lltok::kw_inlinehint: 1812 case lltok::kw_jumptable: 1813 case lltok::kw_minsize: 1814 case lltok::kw_mustprogress: 1815 case lltok::kw_naked: 1816 case lltok::kw_nobuiltin: 1817 case lltok::kw_noduplicate: 1818 case lltok::kw_noimplicitfloat: 1819 case lltok::kw_noinline: 1820 case lltok::kw_nonlazybind: 1821 case lltok::kw_nomerge: 1822 case lltok::kw_noprofile: 1823 case lltok::kw_noredzone: 1824 case lltok::kw_noreturn: 1825 case lltok::kw_nocf_check: 1826 case lltok::kw_nounwind: 1827 case lltok::kw_optforfuzzing: 1828 case lltok::kw_optnone: 1829 case lltok::kw_optsize: 1830 case lltok::kw_returns_twice: 1831 case lltok::kw_sanitize_address: 1832 case lltok::kw_sanitize_hwaddress: 1833 case lltok::kw_sanitize_memtag: 1834 case lltok::kw_sanitize_memory: 1835 case lltok::kw_sanitize_thread: 1836 case lltok::kw_speculative_load_hardening: 1837 case lltok::kw_ssp: 1838 case lltok::kw_sspreq: 1839 case lltok::kw_sspstrong: 1840 case lltok::kw_safestack: 1841 case lltok::kw_shadowcallstack: 1842 case lltok::kw_strictfp: 1843 case lltok::kw_uwtable: 1844 case lltok::kw_vscale_range: 1845 HaveError |= 1846 error(Lex.getLoc(), "invalid use of function-only attribute"); 1847 break; 1848 } 1849 1850 Lex.Lex(); 1851 } 1852 } 1853 1854 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1855 /// attributes. 1856 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1857 bool HaveError = false; 1858 1859 B.clear(); 1860 1861 while (true) { 1862 lltok::Kind Token = Lex.getKind(); 1863 switch (Token) { 1864 default: // End of attributes. 1865 return HaveError; 1866 case lltok::StringConstant: { 1867 if (parseStringAttribute(B)) 1868 return true; 1869 continue; 1870 } 1871 case lltok::kw_dereferenceable: { 1872 uint64_t Bytes; 1873 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1874 return true; 1875 B.addDereferenceableAttr(Bytes); 1876 continue; 1877 } 1878 case lltok::kw_dereferenceable_or_null: { 1879 uint64_t Bytes; 1880 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1881 return true; 1882 B.addDereferenceableOrNullAttr(Bytes); 1883 continue; 1884 } 1885 case lltok::kw_align: { 1886 MaybeAlign Alignment; 1887 if (parseOptionalAlignment(Alignment)) 1888 return true; 1889 B.addAlignmentAttr(Alignment); 1890 continue; 1891 } 1892 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1893 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1894 case lltok::kw_noundef: 1895 B.addAttribute(Attribute::NoUndef); 1896 break; 1897 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1898 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1899 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1900 1901 // error handling. 1902 case lltok::kw_byval: 1903 case lltok::kw_inalloca: 1904 case lltok::kw_nest: 1905 case lltok::kw_nocapture: 1906 case lltok::kw_returned: 1907 case lltok::kw_sret: 1908 case lltok::kw_swifterror: 1909 case lltok::kw_swiftself: 1910 case lltok::kw_swiftasync: 1911 case lltok::kw_immarg: 1912 case lltok::kw_byref: 1913 HaveError |= 1914 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1915 break; 1916 1917 case lltok::kw_alignstack: 1918 case lltok::kw_alwaysinline: 1919 case lltok::kw_argmemonly: 1920 case lltok::kw_builtin: 1921 case lltok::kw_cold: 1922 case lltok::kw_inlinehint: 1923 case lltok::kw_jumptable: 1924 case lltok::kw_minsize: 1925 case lltok::kw_mustprogress: 1926 case lltok::kw_naked: 1927 case lltok::kw_nobuiltin: 1928 case lltok::kw_noduplicate: 1929 case lltok::kw_noimplicitfloat: 1930 case lltok::kw_noinline: 1931 case lltok::kw_nonlazybind: 1932 case lltok::kw_nomerge: 1933 case lltok::kw_noprofile: 1934 case lltok::kw_noredzone: 1935 case lltok::kw_noreturn: 1936 case lltok::kw_nocf_check: 1937 case lltok::kw_nounwind: 1938 case lltok::kw_optforfuzzing: 1939 case lltok::kw_optnone: 1940 case lltok::kw_optsize: 1941 case lltok::kw_returns_twice: 1942 case lltok::kw_sanitize_address: 1943 case lltok::kw_sanitize_hwaddress: 1944 case lltok::kw_sanitize_memtag: 1945 case lltok::kw_sanitize_memory: 1946 case lltok::kw_sanitize_thread: 1947 case lltok::kw_speculative_load_hardening: 1948 case lltok::kw_ssp: 1949 case lltok::kw_sspreq: 1950 case lltok::kw_sspstrong: 1951 case lltok::kw_safestack: 1952 case lltok::kw_shadowcallstack: 1953 case lltok::kw_strictfp: 1954 case lltok::kw_uwtable: 1955 case lltok::kw_vscale_range: 1956 HaveError |= 1957 error(Lex.getLoc(), "invalid use of function-only attribute"); 1958 break; 1959 case lltok::kw_readnone: 1960 case lltok::kw_readonly: 1961 HaveError |= 1962 error(Lex.getLoc(), "invalid use of attribute on return type"); 1963 break; 1964 case lltok::kw_preallocated: 1965 HaveError |= 1966 error(Lex.getLoc(), 1967 "invalid use of parameter-only/call site-only attribute"); 1968 break; 1969 } 1970 1971 Lex.Lex(); 1972 } 1973 } 1974 1975 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1976 HasLinkage = true; 1977 switch (Kind) { 1978 default: 1979 HasLinkage = false; 1980 return GlobalValue::ExternalLinkage; 1981 case lltok::kw_private: 1982 return GlobalValue::PrivateLinkage; 1983 case lltok::kw_internal: 1984 return GlobalValue::InternalLinkage; 1985 case lltok::kw_weak: 1986 return GlobalValue::WeakAnyLinkage; 1987 case lltok::kw_weak_odr: 1988 return GlobalValue::WeakODRLinkage; 1989 case lltok::kw_linkonce: 1990 return GlobalValue::LinkOnceAnyLinkage; 1991 case lltok::kw_linkonce_odr: 1992 return GlobalValue::LinkOnceODRLinkage; 1993 case lltok::kw_available_externally: 1994 return GlobalValue::AvailableExternallyLinkage; 1995 case lltok::kw_appending: 1996 return GlobalValue::AppendingLinkage; 1997 case lltok::kw_common: 1998 return GlobalValue::CommonLinkage; 1999 case lltok::kw_extern_weak: 2000 return GlobalValue::ExternalWeakLinkage; 2001 case lltok::kw_external: 2002 return GlobalValue::ExternalLinkage; 2003 } 2004 } 2005 2006 /// parseOptionalLinkage 2007 /// ::= /*empty*/ 2008 /// ::= 'private' 2009 /// ::= 'internal' 2010 /// ::= 'weak' 2011 /// ::= 'weak_odr' 2012 /// ::= 'linkonce' 2013 /// ::= 'linkonce_odr' 2014 /// ::= 'available_externally' 2015 /// ::= 'appending' 2016 /// ::= 'common' 2017 /// ::= 'extern_weak' 2018 /// ::= 'external' 2019 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2020 unsigned &Visibility, 2021 unsigned &DLLStorageClass, bool &DSOLocal) { 2022 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2023 if (HasLinkage) 2024 Lex.Lex(); 2025 parseOptionalDSOLocal(DSOLocal); 2026 parseOptionalVisibility(Visibility); 2027 parseOptionalDLLStorageClass(DLLStorageClass); 2028 2029 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2030 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2031 } 2032 2033 return false; 2034 } 2035 2036 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2037 switch (Lex.getKind()) { 2038 default: 2039 DSOLocal = false; 2040 break; 2041 case lltok::kw_dso_local: 2042 DSOLocal = true; 2043 Lex.Lex(); 2044 break; 2045 case lltok::kw_dso_preemptable: 2046 DSOLocal = false; 2047 Lex.Lex(); 2048 break; 2049 } 2050 } 2051 2052 /// parseOptionalVisibility 2053 /// ::= /*empty*/ 2054 /// ::= 'default' 2055 /// ::= 'hidden' 2056 /// ::= 'protected' 2057 /// 2058 void LLParser::parseOptionalVisibility(unsigned &Res) { 2059 switch (Lex.getKind()) { 2060 default: 2061 Res = GlobalValue::DefaultVisibility; 2062 return; 2063 case lltok::kw_default: 2064 Res = GlobalValue::DefaultVisibility; 2065 break; 2066 case lltok::kw_hidden: 2067 Res = GlobalValue::HiddenVisibility; 2068 break; 2069 case lltok::kw_protected: 2070 Res = GlobalValue::ProtectedVisibility; 2071 break; 2072 } 2073 Lex.Lex(); 2074 } 2075 2076 /// parseOptionalDLLStorageClass 2077 /// ::= /*empty*/ 2078 /// ::= 'dllimport' 2079 /// ::= 'dllexport' 2080 /// 2081 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2082 switch (Lex.getKind()) { 2083 default: 2084 Res = GlobalValue::DefaultStorageClass; 2085 return; 2086 case lltok::kw_dllimport: 2087 Res = GlobalValue::DLLImportStorageClass; 2088 break; 2089 case lltok::kw_dllexport: 2090 Res = GlobalValue::DLLExportStorageClass; 2091 break; 2092 } 2093 Lex.Lex(); 2094 } 2095 2096 /// parseOptionalCallingConv 2097 /// ::= /*empty*/ 2098 /// ::= 'ccc' 2099 /// ::= 'fastcc' 2100 /// ::= 'intel_ocl_bicc' 2101 /// ::= 'coldcc' 2102 /// ::= 'cfguard_checkcc' 2103 /// ::= 'x86_stdcallcc' 2104 /// ::= 'x86_fastcallcc' 2105 /// ::= 'x86_thiscallcc' 2106 /// ::= 'x86_vectorcallcc' 2107 /// ::= 'arm_apcscc' 2108 /// ::= 'arm_aapcscc' 2109 /// ::= 'arm_aapcs_vfpcc' 2110 /// ::= 'aarch64_vector_pcs' 2111 /// ::= 'aarch64_sve_vector_pcs' 2112 /// ::= 'msp430_intrcc' 2113 /// ::= 'avr_intrcc' 2114 /// ::= 'avr_signalcc' 2115 /// ::= 'ptx_kernel' 2116 /// ::= 'ptx_device' 2117 /// ::= 'spir_func' 2118 /// ::= 'spir_kernel' 2119 /// ::= 'x86_64_sysvcc' 2120 /// ::= 'win64cc' 2121 /// ::= 'webkit_jscc' 2122 /// ::= 'anyregcc' 2123 /// ::= 'preserve_mostcc' 2124 /// ::= 'preserve_allcc' 2125 /// ::= 'ghccc' 2126 /// ::= 'swiftcc' 2127 /// ::= 'swifttailcc' 2128 /// ::= 'x86_intrcc' 2129 /// ::= 'hhvmcc' 2130 /// ::= 'hhvm_ccc' 2131 /// ::= 'cxx_fast_tlscc' 2132 /// ::= 'amdgpu_vs' 2133 /// ::= 'amdgpu_ls' 2134 /// ::= 'amdgpu_hs' 2135 /// ::= 'amdgpu_es' 2136 /// ::= 'amdgpu_gs' 2137 /// ::= 'amdgpu_ps' 2138 /// ::= 'amdgpu_cs' 2139 /// ::= 'amdgpu_kernel' 2140 /// ::= 'tailcc' 2141 /// ::= 'cc' UINT 2142 /// 2143 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2144 switch (Lex.getKind()) { 2145 default: CC = CallingConv::C; return false; 2146 case lltok::kw_ccc: CC = CallingConv::C; break; 2147 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2148 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2149 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2150 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2151 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2152 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2153 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2154 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2155 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2156 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2157 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2158 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2159 case lltok::kw_aarch64_sve_vector_pcs: 2160 CC = CallingConv::AArch64_SVE_VectorCall; 2161 break; 2162 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2163 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2164 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2165 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2166 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2167 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2168 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2169 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2170 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2171 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2172 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2173 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2174 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2175 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2176 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2177 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2178 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2179 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2180 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2181 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2182 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2183 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2184 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2185 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2186 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2187 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2188 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2189 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2190 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2191 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2192 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2193 case lltok::kw_cc: { 2194 Lex.Lex(); 2195 return parseUInt32(CC); 2196 } 2197 } 2198 2199 Lex.Lex(); 2200 return false; 2201 } 2202 2203 /// parseMetadataAttachment 2204 /// ::= !dbg !42 2205 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2206 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2207 2208 std::string Name = Lex.getStrVal(); 2209 Kind = M->getMDKindID(Name); 2210 Lex.Lex(); 2211 2212 return parseMDNode(MD); 2213 } 2214 2215 /// parseInstructionMetadata 2216 /// ::= !dbg !42 (',' !dbg !57)* 2217 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2218 do { 2219 if (Lex.getKind() != lltok::MetadataVar) 2220 return tokError("expected metadata after comma"); 2221 2222 unsigned MDK; 2223 MDNode *N; 2224 if (parseMetadataAttachment(MDK, N)) 2225 return true; 2226 2227 Inst.setMetadata(MDK, N); 2228 if (MDK == LLVMContext::MD_tbaa) 2229 InstsWithTBAATag.push_back(&Inst); 2230 2231 // If this is the end of the list, we're done. 2232 } while (EatIfPresent(lltok::comma)); 2233 return false; 2234 } 2235 2236 /// parseGlobalObjectMetadataAttachment 2237 /// ::= !dbg !57 2238 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2239 unsigned MDK; 2240 MDNode *N; 2241 if (parseMetadataAttachment(MDK, N)) 2242 return true; 2243 2244 GO.addMetadata(MDK, *N); 2245 return false; 2246 } 2247 2248 /// parseOptionalFunctionMetadata 2249 /// ::= (!dbg !57)* 2250 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2251 while (Lex.getKind() == lltok::MetadataVar) 2252 if (parseGlobalObjectMetadataAttachment(F)) 2253 return true; 2254 return false; 2255 } 2256 2257 /// parseOptionalAlignment 2258 /// ::= /* empty */ 2259 /// ::= 'align' 4 2260 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2261 Alignment = None; 2262 if (!EatIfPresent(lltok::kw_align)) 2263 return false; 2264 LocTy AlignLoc = Lex.getLoc(); 2265 uint32_t Value = 0; 2266 2267 LocTy ParenLoc = Lex.getLoc(); 2268 bool HaveParens = false; 2269 if (AllowParens) { 2270 if (EatIfPresent(lltok::lparen)) 2271 HaveParens = true; 2272 } 2273 2274 if (parseUInt32(Value)) 2275 return true; 2276 2277 if (HaveParens && !EatIfPresent(lltok::rparen)) 2278 return error(ParenLoc, "expected ')'"); 2279 2280 if (!isPowerOf2_32(Value)) 2281 return error(AlignLoc, "alignment is not a power of two"); 2282 if (Value > Value::MaximumAlignment) 2283 return error(AlignLoc, "huge alignments are not supported yet"); 2284 Alignment = Align(Value); 2285 return false; 2286 } 2287 2288 /// parseOptionalDerefAttrBytes 2289 /// ::= /* empty */ 2290 /// ::= AttrKind '(' 4 ')' 2291 /// 2292 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2293 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2294 uint64_t &Bytes) { 2295 assert((AttrKind == lltok::kw_dereferenceable || 2296 AttrKind == lltok::kw_dereferenceable_or_null) && 2297 "contract!"); 2298 2299 Bytes = 0; 2300 if (!EatIfPresent(AttrKind)) 2301 return false; 2302 LocTy ParenLoc = Lex.getLoc(); 2303 if (!EatIfPresent(lltok::lparen)) 2304 return error(ParenLoc, "expected '('"); 2305 LocTy DerefLoc = Lex.getLoc(); 2306 if (parseUInt64(Bytes)) 2307 return true; 2308 ParenLoc = Lex.getLoc(); 2309 if (!EatIfPresent(lltok::rparen)) 2310 return error(ParenLoc, "expected ')'"); 2311 if (!Bytes) 2312 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2313 return false; 2314 } 2315 2316 /// parseOptionalCommaAlign 2317 /// ::= 2318 /// ::= ',' align 4 2319 /// 2320 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2321 /// end. 2322 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2323 bool &AteExtraComma) { 2324 AteExtraComma = false; 2325 while (EatIfPresent(lltok::comma)) { 2326 // Metadata at the end is an early exit. 2327 if (Lex.getKind() == lltok::MetadataVar) { 2328 AteExtraComma = true; 2329 return false; 2330 } 2331 2332 if (Lex.getKind() != lltok::kw_align) 2333 return error(Lex.getLoc(), "expected metadata or 'align'"); 2334 2335 if (parseOptionalAlignment(Alignment)) 2336 return true; 2337 } 2338 2339 return false; 2340 } 2341 2342 /// parseOptionalCommaAddrSpace 2343 /// ::= 2344 /// ::= ',' addrspace(1) 2345 /// 2346 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2347 /// end. 2348 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2349 bool &AteExtraComma) { 2350 AteExtraComma = false; 2351 while (EatIfPresent(lltok::comma)) { 2352 // Metadata at the end is an early exit. 2353 if (Lex.getKind() == lltok::MetadataVar) { 2354 AteExtraComma = true; 2355 return false; 2356 } 2357 2358 Loc = Lex.getLoc(); 2359 if (Lex.getKind() != lltok::kw_addrspace) 2360 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2361 2362 if (parseOptionalAddrSpace(AddrSpace)) 2363 return true; 2364 } 2365 2366 return false; 2367 } 2368 2369 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2370 Optional<unsigned> &HowManyArg) { 2371 Lex.Lex(); 2372 2373 auto StartParen = Lex.getLoc(); 2374 if (!EatIfPresent(lltok::lparen)) 2375 return error(StartParen, "expected '('"); 2376 2377 if (parseUInt32(BaseSizeArg)) 2378 return true; 2379 2380 if (EatIfPresent(lltok::comma)) { 2381 auto HowManyAt = Lex.getLoc(); 2382 unsigned HowMany; 2383 if (parseUInt32(HowMany)) 2384 return true; 2385 if (HowMany == BaseSizeArg) 2386 return error(HowManyAt, 2387 "'allocsize' indices can't refer to the same parameter"); 2388 HowManyArg = HowMany; 2389 } else 2390 HowManyArg = None; 2391 2392 auto EndParen = Lex.getLoc(); 2393 if (!EatIfPresent(lltok::rparen)) 2394 return error(EndParen, "expected ')'"); 2395 return false; 2396 } 2397 2398 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2399 unsigned &MaxValue) { 2400 Lex.Lex(); 2401 2402 auto StartParen = Lex.getLoc(); 2403 if (!EatIfPresent(lltok::lparen)) 2404 return error(StartParen, "expected '('"); 2405 2406 if (parseUInt32(MinValue)) 2407 return true; 2408 2409 if (EatIfPresent(lltok::comma)) { 2410 if (parseUInt32(MaxValue)) 2411 return true; 2412 } else 2413 MaxValue = MinValue; 2414 2415 auto EndParen = Lex.getLoc(); 2416 if (!EatIfPresent(lltok::rparen)) 2417 return error(EndParen, "expected ')'"); 2418 return false; 2419 } 2420 2421 /// parseScopeAndOrdering 2422 /// if isAtomic: ::= SyncScope? AtomicOrdering 2423 /// else: ::= 2424 /// 2425 /// This sets Scope and Ordering to the parsed values. 2426 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2427 AtomicOrdering &Ordering) { 2428 if (!IsAtomic) 2429 return false; 2430 2431 return parseScope(SSID) || parseOrdering(Ordering); 2432 } 2433 2434 /// parseScope 2435 /// ::= syncscope("singlethread" | "<target scope>")? 2436 /// 2437 /// This sets synchronization scope ID to the ID of the parsed value. 2438 bool LLParser::parseScope(SyncScope::ID &SSID) { 2439 SSID = SyncScope::System; 2440 if (EatIfPresent(lltok::kw_syncscope)) { 2441 auto StartParenAt = Lex.getLoc(); 2442 if (!EatIfPresent(lltok::lparen)) 2443 return error(StartParenAt, "Expected '(' in syncscope"); 2444 2445 std::string SSN; 2446 auto SSNAt = Lex.getLoc(); 2447 if (parseStringConstant(SSN)) 2448 return error(SSNAt, "Expected synchronization scope name"); 2449 2450 auto EndParenAt = Lex.getLoc(); 2451 if (!EatIfPresent(lltok::rparen)) 2452 return error(EndParenAt, "Expected ')' in syncscope"); 2453 2454 SSID = Context.getOrInsertSyncScopeID(SSN); 2455 } 2456 2457 return false; 2458 } 2459 2460 /// parseOrdering 2461 /// ::= AtomicOrdering 2462 /// 2463 /// This sets Ordering to the parsed value. 2464 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2465 switch (Lex.getKind()) { 2466 default: 2467 return tokError("Expected ordering on atomic instruction"); 2468 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2469 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2470 // Not specified yet: 2471 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2472 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2473 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2474 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2475 case lltok::kw_seq_cst: 2476 Ordering = AtomicOrdering::SequentiallyConsistent; 2477 break; 2478 } 2479 Lex.Lex(); 2480 return false; 2481 } 2482 2483 /// parseOptionalStackAlignment 2484 /// ::= /* empty */ 2485 /// ::= 'alignstack' '(' 4 ')' 2486 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2487 Alignment = 0; 2488 if (!EatIfPresent(lltok::kw_alignstack)) 2489 return false; 2490 LocTy ParenLoc = Lex.getLoc(); 2491 if (!EatIfPresent(lltok::lparen)) 2492 return error(ParenLoc, "expected '('"); 2493 LocTy AlignLoc = Lex.getLoc(); 2494 if (parseUInt32(Alignment)) 2495 return true; 2496 ParenLoc = Lex.getLoc(); 2497 if (!EatIfPresent(lltok::rparen)) 2498 return error(ParenLoc, "expected ')'"); 2499 if (!isPowerOf2_32(Alignment)) 2500 return error(AlignLoc, "stack alignment is not a power of two"); 2501 return false; 2502 } 2503 2504 /// parseIndexList - This parses the index list for an insert/extractvalue 2505 /// instruction. This sets AteExtraComma in the case where we eat an extra 2506 /// comma at the end of the line and find that it is followed by metadata. 2507 /// Clients that don't allow metadata can call the version of this function that 2508 /// only takes one argument. 2509 /// 2510 /// parseIndexList 2511 /// ::= (',' uint32)+ 2512 /// 2513 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2514 bool &AteExtraComma) { 2515 AteExtraComma = false; 2516 2517 if (Lex.getKind() != lltok::comma) 2518 return tokError("expected ',' as start of index list"); 2519 2520 while (EatIfPresent(lltok::comma)) { 2521 if (Lex.getKind() == lltok::MetadataVar) { 2522 if (Indices.empty()) 2523 return tokError("expected index"); 2524 AteExtraComma = true; 2525 return false; 2526 } 2527 unsigned Idx = 0; 2528 if (parseUInt32(Idx)) 2529 return true; 2530 Indices.push_back(Idx); 2531 } 2532 2533 return false; 2534 } 2535 2536 //===----------------------------------------------------------------------===// 2537 // Type Parsing. 2538 //===----------------------------------------------------------------------===// 2539 2540 /// parseType - parse a type. 2541 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2542 SMLoc TypeLoc = Lex.getLoc(); 2543 switch (Lex.getKind()) { 2544 default: 2545 return tokError(Msg); 2546 case lltok::Type: 2547 // Type ::= 'float' | 'void' (etc) 2548 Result = Lex.getTyVal(); 2549 Lex.Lex(); 2550 break; 2551 case lltok::lbrace: 2552 // Type ::= StructType 2553 if (parseAnonStructType(Result, false)) 2554 return true; 2555 break; 2556 case lltok::lsquare: 2557 // Type ::= '[' ... ']' 2558 Lex.Lex(); // eat the lsquare. 2559 if (parseArrayVectorType(Result, false)) 2560 return true; 2561 break; 2562 case lltok::less: // Either vector or packed struct. 2563 // Type ::= '<' ... '>' 2564 Lex.Lex(); 2565 if (Lex.getKind() == lltok::lbrace) { 2566 if (parseAnonStructType(Result, true) || 2567 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2568 return true; 2569 } else if (parseArrayVectorType(Result, true)) 2570 return true; 2571 break; 2572 case lltok::LocalVar: { 2573 // Type ::= %foo 2574 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2575 2576 // If the type hasn't been defined yet, create a forward definition and 2577 // remember where that forward def'n was seen (in case it never is defined). 2578 if (!Entry.first) { 2579 Entry.first = StructType::create(Context, Lex.getStrVal()); 2580 Entry.second = Lex.getLoc(); 2581 } 2582 Result = Entry.first; 2583 Lex.Lex(); 2584 break; 2585 } 2586 2587 case lltok::LocalVarID: { 2588 // Type ::= %4 2589 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2590 2591 // If the type hasn't been defined yet, create a forward definition and 2592 // remember where that forward def'n was seen (in case it never is defined). 2593 if (!Entry.first) { 2594 Entry.first = StructType::create(Context); 2595 Entry.second = Lex.getLoc(); 2596 } 2597 Result = Entry.first; 2598 Lex.Lex(); 2599 break; 2600 } 2601 } 2602 2603 if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) { 2604 unsigned AddrSpace; 2605 if (parseOptionalAddrSpace(AddrSpace)) 2606 return true; 2607 Result = PointerType::get(getContext(), AddrSpace); 2608 } 2609 2610 // parse the type suffixes. 2611 while (true) { 2612 switch (Lex.getKind()) { 2613 // End of type. 2614 default: 2615 if (!AllowVoid && Result->isVoidTy()) 2616 return error(TypeLoc, "void type only allowed for function results"); 2617 return false; 2618 2619 // Type ::= Type '*' 2620 case lltok::star: 2621 if (Result->isLabelTy()) 2622 return tokError("basic block pointers are invalid"); 2623 if (Result->isVoidTy()) 2624 return tokError("pointers to void are invalid - use i8* instead"); 2625 if (!PointerType::isValidElementType(Result)) 2626 return tokError("pointer to this type is invalid"); 2627 Result = PointerType::getUnqual(Result); 2628 Lex.Lex(); 2629 break; 2630 2631 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2632 case lltok::kw_addrspace: { 2633 if (Result->isLabelTy()) 2634 return tokError("basic block pointers are invalid"); 2635 if (Result->isVoidTy()) 2636 return tokError("pointers to void are invalid; use i8* instead"); 2637 if (!PointerType::isValidElementType(Result)) 2638 return tokError("pointer to this type is invalid"); 2639 unsigned AddrSpace; 2640 if (parseOptionalAddrSpace(AddrSpace) || 2641 parseToken(lltok::star, "expected '*' in address space")) 2642 return true; 2643 2644 Result = PointerType::get(Result, AddrSpace); 2645 break; 2646 } 2647 2648 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2649 case lltok::lparen: 2650 if (parseFunctionType(Result)) 2651 return true; 2652 break; 2653 } 2654 } 2655 } 2656 2657 /// parseParameterList 2658 /// ::= '(' ')' 2659 /// ::= '(' Arg (',' Arg)* ')' 2660 /// Arg 2661 /// ::= Type OptionalAttributes Value OptionalAttributes 2662 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2663 PerFunctionState &PFS, bool IsMustTailCall, 2664 bool InVarArgsFunc) { 2665 if (parseToken(lltok::lparen, "expected '(' in call")) 2666 return true; 2667 2668 while (Lex.getKind() != lltok::rparen) { 2669 // If this isn't the first argument, we need a comma. 2670 if (!ArgList.empty() && 2671 parseToken(lltok::comma, "expected ',' in argument list")) 2672 return true; 2673 2674 // parse an ellipsis if this is a musttail call in a variadic function. 2675 if (Lex.getKind() == lltok::dotdotdot) { 2676 const char *Msg = "unexpected ellipsis in argument list for "; 2677 if (!IsMustTailCall) 2678 return tokError(Twine(Msg) + "non-musttail call"); 2679 if (!InVarArgsFunc) 2680 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2681 Lex.Lex(); // Lex the '...', it is purely for readability. 2682 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2683 } 2684 2685 // parse the argument. 2686 LocTy ArgLoc; 2687 Type *ArgTy = nullptr; 2688 AttrBuilder ArgAttrs; 2689 Value *V; 2690 if (parseType(ArgTy, ArgLoc)) 2691 return true; 2692 2693 if (ArgTy->isMetadataTy()) { 2694 if (parseMetadataAsValue(V, PFS)) 2695 return true; 2696 } else { 2697 // Otherwise, handle normal operands. 2698 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2699 return true; 2700 } 2701 ArgList.push_back(ParamInfo( 2702 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2703 } 2704 2705 if (IsMustTailCall && InVarArgsFunc) 2706 return tokError("expected '...' at end of argument list for musttail call " 2707 "in varargs function"); 2708 2709 Lex.Lex(); // Lex the ')'. 2710 return false; 2711 } 2712 2713 /// parseRequiredTypeAttr 2714 /// ::= attrname(<ty>) 2715 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2716 Result = nullptr; 2717 if (!EatIfPresent(AttrName)) 2718 return true; 2719 if (!EatIfPresent(lltok::lparen)) 2720 return error(Lex.getLoc(), "expected '('"); 2721 if (parseType(Result)) 2722 return true; 2723 if (!EatIfPresent(lltok::rparen)) 2724 return error(Lex.getLoc(), "expected ')'"); 2725 return false; 2726 } 2727 2728 /// parsePreallocated 2729 /// ::= preallocated(<ty>) 2730 bool LLParser::parsePreallocated(Type *&Result) { 2731 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2732 } 2733 2734 /// parseInalloca 2735 /// ::= inalloca(<ty>) 2736 bool LLParser::parseInalloca(Type *&Result) { 2737 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2738 } 2739 2740 /// parseByRef 2741 /// ::= byref(<type>) 2742 bool LLParser::parseByRef(Type *&Result) { 2743 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2744 } 2745 2746 /// parseOptionalOperandBundles 2747 /// ::= /*empty*/ 2748 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2749 /// 2750 /// OperandBundle 2751 /// ::= bundle-tag '(' ')' 2752 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2753 /// 2754 /// bundle-tag ::= String Constant 2755 bool LLParser::parseOptionalOperandBundles( 2756 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2757 LocTy BeginLoc = Lex.getLoc(); 2758 if (!EatIfPresent(lltok::lsquare)) 2759 return false; 2760 2761 while (Lex.getKind() != lltok::rsquare) { 2762 // If this isn't the first operand bundle, we need a comma. 2763 if (!BundleList.empty() && 2764 parseToken(lltok::comma, "expected ',' in input list")) 2765 return true; 2766 2767 std::string Tag; 2768 if (parseStringConstant(Tag)) 2769 return true; 2770 2771 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2772 return true; 2773 2774 std::vector<Value *> Inputs; 2775 while (Lex.getKind() != lltok::rparen) { 2776 // If this isn't the first input, we need a comma. 2777 if (!Inputs.empty() && 2778 parseToken(lltok::comma, "expected ',' in input list")) 2779 return true; 2780 2781 Type *Ty = nullptr; 2782 Value *Input = nullptr; 2783 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2784 return true; 2785 Inputs.push_back(Input); 2786 } 2787 2788 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2789 2790 Lex.Lex(); // Lex the ')'. 2791 } 2792 2793 if (BundleList.empty()) 2794 return error(BeginLoc, "operand bundle set must not be empty"); 2795 2796 Lex.Lex(); // Lex the ']'. 2797 return false; 2798 } 2799 2800 /// parseArgumentList - parse the argument list for a function type or function 2801 /// prototype. 2802 /// ::= '(' ArgTypeListI ')' 2803 /// ArgTypeListI 2804 /// ::= /*empty*/ 2805 /// ::= '...' 2806 /// ::= ArgTypeList ',' '...' 2807 /// ::= ArgType (',' ArgType)* 2808 /// 2809 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2810 bool &IsVarArg) { 2811 unsigned CurValID = 0; 2812 IsVarArg = false; 2813 assert(Lex.getKind() == lltok::lparen); 2814 Lex.Lex(); // eat the (. 2815 2816 if (Lex.getKind() == lltok::rparen) { 2817 // empty 2818 } else if (Lex.getKind() == lltok::dotdotdot) { 2819 IsVarArg = true; 2820 Lex.Lex(); 2821 } else { 2822 LocTy TypeLoc = Lex.getLoc(); 2823 Type *ArgTy = nullptr; 2824 AttrBuilder Attrs; 2825 std::string Name; 2826 2827 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2828 return true; 2829 2830 if (ArgTy->isVoidTy()) 2831 return error(TypeLoc, "argument can not have void type"); 2832 2833 if (Lex.getKind() == lltok::LocalVar) { 2834 Name = Lex.getStrVal(); 2835 Lex.Lex(); 2836 } else if (Lex.getKind() == lltok::LocalVarID) { 2837 if (Lex.getUIntVal() != CurValID) 2838 return error(TypeLoc, "argument expected to be numbered '%" + 2839 Twine(CurValID) + "'"); 2840 ++CurValID; 2841 Lex.Lex(); 2842 } 2843 2844 if (!FunctionType::isValidArgumentType(ArgTy)) 2845 return error(TypeLoc, "invalid type for function argument"); 2846 2847 ArgList.emplace_back(TypeLoc, ArgTy, 2848 AttributeSet::get(ArgTy->getContext(), Attrs), 2849 std::move(Name)); 2850 2851 while (EatIfPresent(lltok::comma)) { 2852 // Handle ... at end of arg list. 2853 if (EatIfPresent(lltok::dotdotdot)) { 2854 IsVarArg = true; 2855 break; 2856 } 2857 2858 // Otherwise must be an argument type. 2859 TypeLoc = Lex.getLoc(); 2860 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2861 return true; 2862 2863 if (ArgTy->isVoidTy()) 2864 return error(TypeLoc, "argument can not have void type"); 2865 2866 if (Lex.getKind() == lltok::LocalVar) { 2867 Name = Lex.getStrVal(); 2868 Lex.Lex(); 2869 } else { 2870 if (Lex.getKind() == lltok::LocalVarID) { 2871 if (Lex.getUIntVal() != CurValID) 2872 return error(TypeLoc, "argument expected to be numbered '%" + 2873 Twine(CurValID) + "'"); 2874 Lex.Lex(); 2875 } 2876 ++CurValID; 2877 Name = ""; 2878 } 2879 2880 if (!ArgTy->isFirstClassType()) 2881 return error(TypeLoc, "invalid type for function argument"); 2882 2883 ArgList.emplace_back(TypeLoc, ArgTy, 2884 AttributeSet::get(ArgTy->getContext(), Attrs), 2885 std::move(Name)); 2886 } 2887 } 2888 2889 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2890 } 2891 2892 /// parseFunctionType 2893 /// ::= Type ArgumentList OptionalAttrs 2894 bool LLParser::parseFunctionType(Type *&Result) { 2895 assert(Lex.getKind() == lltok::lparen); 2896 2897 if (!FunctionType::isValidReturnType(Result)) 2898 return tokError("invalid function return type"); 2899 2900 SmallVector<ArgInfo, 8> ArgList; 2901 bool IsVarArg; 2902 if (parseArgumentList(ArgList, IsVarArg)) 2903 return true; 2904 2905 // Reject names on the arguments lists. 2906 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2907 if (!ArgList[i].Name.empty()) 2908 return error(ArgList[i].Loc, "argument name invalid in function type"); 2909 if (ArgList[i].Attrs.hasAttributes()) 2910 return error(ArgList[i].Loc, 2911 "argument attributes invalid in function type"); 2912 } 2913 2914 SmallVector<Type*, 16> ArgListTy; 2915 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2916 ArgListTy.push_back(ArgList[i].Ty); 2917 2918 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2919 return false; 2920 } 2921 2922 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2923 /// other structs. 2924 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2925 SmallVector<Type*, 8> Elts; 2926 if (parseStructBody(Elts)) 2927 return true; 2928 2929 Result = StructType::get(Context, Elts, Packed); 2930 return false; 2931 } 2932 2933 /// parseStructDefinition - parse a struct in a 'type' definition. 2934 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2935 std::pair<Type *, LocTy> &Entry, 2936 Type *&ResultTy) { 2937 // If the type was already defined, diagnose the redefinition. 2938 if (Entry.first && !Entry.second.isValid()) 2939 return error(TypeLoc, "redefinition of type"); 2940 2941 // If we have opaque, just return without filling in the definition for the 2942 // struct. This counts as a definition as far as the .ll file goes. 2943 if (EatIfPresent(lltok::kw_opaque)) { 2944 // This type is being defined, so clear the location to indicate this. 2945 Entry.second = SMLoc(); 2946 2947 // If this type number has never been uttered, create it. 2948 if (!Entry.first) 2949 Entry.first = StructType::create(Context, Name); 2950 ResultTy = Entry.first; 2951 return false; 2952 } 2953 2954 // If the type starts with '<', then it is either a packed struct or a vector. 2955 bool isPacked = EatIfPresent(lltok::less); 2956 2957 // If we don't have a struct, then we have a random type alias, which we 2958 // accept for compatibility with old files. These types are not allowed to be 2959 // forward referenced and not allowed to be recursive. 2960 if (Lex.getKind() != lltok::lbrace) { 2961 if (Entry.first) 2962 return error(TypeLoc, "forward references to non-struct type"); 2963 2964 ResultTy = nullptr; 2965 if (isPacked) 2966 return parseArrayVectorType(ResultTy, true); 2967 return parseType(ResultTy); 2968 } 2969 2970 // This type is being defined, so clear the location to indicate this. 2971 Entry.second = SMLoc(); 2972 2973 // If this type number has never been uttered, create it. 2974 if (!Entry.first) 2975 Entry.first = StructType::create(Context, Name); 2976 2977 StructType *STy = cast<StructType>(Entry.first); 2978 2979 SmallVector<Type*, 8> Body; 2980 if (parseStructBody(Body) || 2981 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2982 return true; 2983 2984 STy->setBody(Body, isPacked); 2985 ResultTy = STy; 2986 return false; 2987 } 2988 2989 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2990 /// StructType 2991 /// ::= '{' '}' 2992 /// ::= '{' Type (',' Type)* '}' 2993 /// ::= '<' '{' '}' '>' 2994 /// ::= '<' '{' Type (',' Type)* '}' '>' 2995 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2996 assert(Lex.getKind() == lltok::lbrace); 2997 Lex.Lex(); // Consume the '{' 2998 2999 // Handle the empty struct. 3000 if (EatIfPresent(lltok::rbrace)) 3001 return false; 3002 3003 LocTy EltTyLoc = Lex.getLoc(); 3004 Type *Ty = nullptr; 3005 if (parseType(Ty)) 3006 return true; 3007 Body.push_back(Ty); 3008 3009 if (!StructType::isValidElementType(Ty)) 3010 return error(EltTyLoc, "invalid element type for struct"); 3011 3012 while (EatIfPresent(lltok::comma)) { 3013 EltTyLoc = Lex.getLoc(); 3014 if (parseType(Ty)) 3015 return true; 3016 3017 if (!StructType::isValidElementType(Ty)) 3018 return error(EltTyLoc, "invalid element type for struct"); 3019 3020 Body.push_back(Ty); 3021 } 3022 3023 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3024 } 3025 3026 /// parseArrayVectorType - parse an array or vector type, assuming the first 3027 /// token has already been consumed. 3028 /// Type 3029 /// ::= '[' APSINTVAL 'x' Types ']' 3030 /// ::= '<' APSINTVAL 'x' Types '>' 3031 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3032 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3033 bool Scalable = false; 3034 3035 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3036 Lex.Lex(); // consume the 'vscale' 3037 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3038 return true; 3039 3040 Scalable = true; 3041 } 3042 3043 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3044 Lex.getAPSIntVal().getBitWidth() > 64) 3045 return tokError("expected number in address space"); 3046 3047 LocTy SizeLoc = Lex.getLoc(); 3048 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3049 Lex.Lex(); 3050 3051 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3052 return true; 3053 3054 LocTy TypeLoc = Lex.getLoc(); 3055 Type *EltTy = nullptr; 3056 if (parseType(EltTy)) 3057 return true; 3058 3059 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3060 "expected end of sequential type")) 3061 return true; 3062 3063 if (IsVector) { 3064 if (Size == 0) 3065 return error(SizeLoc, "zero element vector is illegal"); 3066 if ((unsigned)Size != Size) 3067 return error(SizeLoc, "size too large for vector"); 3068 if (!VectorType::isValidElementType(EltTy)) 3069 return error(TypeLoc, "invalid vector element type"); 3070 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3071 } else { 3072 if (!ArrayType::isValidElementType(EltTy)) 3073 return error(TypeLoc, "invalid array element type"); 3074 Result = ArrayType::get(EltTy, Size); 3075 } 3076 return false; 3077 } 3078 3079 //===----------------------------------------------------------------------===// 3080 // Function Semantic Analysis. 3081 //===----------------------------------------------------------------------===// 3082 3083 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3084 int functionNumber) 3085 : P(p), F(f), FunctionNumber(functionNumber) { 3086 3087 // Insert unnamed arguments into the NumberedVals list. 3088 for (Argument &A : F.args()) 3089 if (!A.hasName()) 3090 NumberedVals.push_back(&A); 3091 } 3092 3093 LLParser::PerFunctionState::~PerFunctionState() { 3094 // If there were any forward referenced non-basicblock values, delete them. 3095 3096 for (const auto &P : ForwardRefVals) { 3097 if (isa<BasicBlock>(P.second.first)) 3098 continue; 3099 P.second.first->replaceAllUsesWith( 3100 UndefValue::get(P.second.first->getType())); 3101 P.second.first->deleteValue(); 3102 } 3103 3104 for (const auto &P : ForwardRefValIDs) { 3105 if (isa<BasicBlock>(P.second.first)) 3106 continue; 3107 P.second.first->replaceAllUsesWith( 3108 UndefValue::get(P.second.first->getType())); 3109 P.second.first->deleteValue(); 3110 } 3111 } 3112 3113 bool LLParser::PerFunctionState::finishFunction() { 3114 if (!ForwardRefVals.empty()) 3115 return P.error(ForwardRefVals.begin()->second.second, 3116 "use of undefined value '%" + ForwardRefVals.begin()->first + 3117 "'"); 3118 if (!ForwardRefValIDs.empty()) 3119 return P.error(ForwardRefValIDs.begin()->second.second, 3120 "use of undefined value '%" + 3121 Twine(ForwardRefValIDs.begin()->first) + "'"); 3122 return false; 3123 } 3124 3125 /// getVal - Get a value with the specified name or ID, creating a 3126 /// forward reference record if needed. This can return null if the value 3127 /// exists but does not have the right type. 3128 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3129 LocTy Loc, bool IsCall) { 3130 // Look this name up in the normal function symbol table. 3131 Value *Val = F.getValueSymbolTable()->lookup(Name); 3132 3133 // If this is a forward reference for the value, see if we already created a 3134 // forward ref record. 3135 if (!Val) { 3136 auto I = ForwardRefVals.find(Name); 3137 if (I != ForwardRefVals.end()) 3138 Val = I->second.first; 3139 } 3140 3141 // If we have the value in the symbol table or fwd-ref table, return it. 3142 if (Val) 3143 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3144 3145 // Don't make placeholders with invalid type. 3146 if (!Ty->isFirstClassType()) { 3147 P.error(Loc, "invalid use of a non-first-class type"); 3148 return nullptr; 3149 } 3150 3151 // Otherwise, create a new forward reference for this value and remember it. 3152 Value *FwdVal; 3153 if (Ty->isLabelTy()) { 3154 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3155 } else { 3156 FwdVal = new Argument(Ty, Name); 3157 } 3158 3159 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3160 return FwdVal; 3161 } 3162 3163 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3164 bool IsCall) { 3165 // Look this name up in the normal function symbol table. 3166 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3167 3168 // If this is a forward reference for the value, see if we already created a 3169 // forward ref record. 3170 if (!Val) { 3171 auto I = ForwardRefValIDs.find(ID); 3172 if (I != ForwardRefValIDs.end()) 3173 Val = I->second.first; 3174 } 3175 3176 // If we have the value in the symbol table or fwd-ref table, return it. 3177 if (Val) 3178 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3179 3180 if (!Ty->isFirstClassType()) { 3181 P.error(Loc, "invalid use of a non-first-class type"); 3182 return nullptr; 3183 } 3184 3185 // Otherwise, create a new forward reference for this value and remember it. 3186 Value *FwdVal; 3187 if (Ty->isLabelTy()) { 3188 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3189 } else { 3190 FwdVal = new Argument(Ty); 3191 } 3192 3193 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3194 return FwdVal; 3195 } 3196 3197 /// setInstName - After an instruction is parsed and inserted into its 3198 /// basic block, this installs its name. 3199 bool LLParser::PerFunctionState::setInstName(int NameID, 3200 const std::string &NameStr, 3201 LocTy NameLoc, Instruction *Inst) { 3202 // If this instruction has void type, it cannot have a name or ID specified. 3203 if (Inst->getType()->isVoidTy()) { 3204 if (NameID != -1 || !NameStr.empty()) 3205 return P.error(NameLoc, "instructions returning void cannot have a name"); 3206 return false; 3207 } 3208 3209 // If this was a numbered instruction, verify that the instruction is the 3210 // expected value and resolve any forward references. 3211 if (NameStr.empty()) { 3212 // If neither a name nor an ID was specified, just use the next ID. 3213 if (NameID == -1) 3214 NameID = NumberedVals.size(); 3215 3216 if (unsigned(NameID) != NumberedVals.size()) 3217 return P.error(NameLoc, "instruction expected to be numbered '%" + 3218 Twine(NumberedVals.size()) + "'"); 3219 3220 auto FI = ForwardRefValIDs.find(NameID); 3221 if (FI != ForwardRefValIDs.end()) { 3222 Value *Sentinel = FI->second.first; 3223 if (Sentinel->getType() != Inst->getType()) 3224 return P.error(NameLoc, "instruction forward referenced with type '" + 3225 getTypeString(FI->second.first->getType()) + 3226 "'"); 3227 3228 Sentinel->replaceAllUsesWith(Inst); 3229 Sentinel->deleteValue(); 3230 ForwardRefValIDs.erase(FI); 3231 } 3232 3233 NumberedVals.push_back(Inst); 3234 return false; 3235 } 3236 3237 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3238 auto FI = ForwardRefVals.find(NameStr); 3239 if (FI != ForwardRefVals.end()) { 3240 Value *Sentinel = FI->second.first; 3241 if (Sentinel->getType() != Inst->getType()) 3242 return P.error(NameLoc, "instruction forward referenced with type '" + 3243 getTypeString(FI->second.first->getType()) + 3244 "'"); 3245 3246 Sentinel->replaceAllUsesWith(Inst); 3247 Sentinel->deleteValue(); 3248 ForwardRefVals.erase(FI); 3249 } 3250 3251 // Set the name on the instruction. 3252 Inst->setName(NameStr); 3253 3254 if (Inst->getName() != NameStr) 3255 return P.error(NameLoc, "multiple definition of local value named '" + 3256 NameStr + "'"); 3257 return false; 3258 } 3259 3260 /// getBB - Get a basic block with the specified name or ID, creating a 3261 /// forward reference record if needed. 3262 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3263 LocTy Loc) { 3264 return dyn_cast_or_null<BasicBlock>( 3265 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3266 } 3267 3268 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3269 return dyn_cast_or_null<BasicBlock>( 3270 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3271 } 3272 3273 /// defineBB - Define the specified basic block, which is either named or 3274 /// unnamed. If there is an error, this returns null otherwise it returns 3275 /// the block being defined. 3276 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3277 int NameID, LocTy Loc) { 3278 BasicBlock *BB; 3279 if (Name.empty()) { 3280 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3281 P.error(Loc, "label expected to be numbered '" + 3282 Twine(NumberedVals.size()) + "'"); 3283 return nullptr; 3284 } 3285 BB = getBB(NumberedVals.size(), Loc); 3286 if (!BB) { 3287 P.error(Loc, "unable to create block numbered '" + 3288 Twine(NumberedVals.size()) + "'"); 3289 return nullptr; 3290 } 3291 } else { 3292 BB = getBB(Name, Loc); 3293 if (!BB) { 3294 P.error(Loc, "unable to create block named '" + Name + "'"); 3295 return nullptr; 3296 } 3297 } 3298 3299 // Move the block to the end of the function. Forward ref'd blocks are 3300 // inserted wherever they happen to be referenced. 3301 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3302 3303 // Remove the block from forward ref sets. 3304 if (Name.empty()) { 3305 ForwardRefValIDs.erase(NumberedVals.size()); 3306 NumberedVals.push_back(BB); 3307 } else { 3308 // BB forward references are already in the function symbol table. 3309 ForwardRefVals.erase(Name); 3310 } 3311 3312 return BB; 3313 } 3314 3315 //===----------------------------------------------------------------------===// 3316 // Constants. 3317 //===----------------------------------------------------------------------===// 3318 3319 /// parseValID - parse an abstract value that doesn't necessarily have a 3320 /// type implied. For example, if we parse "4" we don't know what integer type 3321 /// it has. The value will later be combined with its type and checked for 3322 /// sanity. PFS is used to convert function-local operands of metadata (since 3323 /// metadata operands are not just parsed here but also converted to values). 3324 /// PFS can be null when we are not parsing metadata values inside a function. 3325 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3326 ID.Loc = Lex.getLoc(); 3327 switch (Lex.getKind()) { 3328 default: 3329 return tokError("expected value token"); 3330 case lltok::GlobalID: // @42 3331 ID.UIntVal = Lex.getUIntVal(); 3332 ID.Kind = ValID::t_GlobalID; 3333 break; 3334 case lltok::GlobalVar: // @foo 3335 ID.StrVal = Lex.getStrVal(); 3336 ID.Kind = ValID::t_GlobalName; 3337 break; 3338 case lltok::LocalVarID: // %42 3339 ID.UIntVal = Lex.getUIntVal(); 3340 ID.Kind = ValID::t_LocalID; 3341 break; 3342 case lltok::LocalVar: // %foo 3343 ID.StrVal = Lex.getStrVal(); 3344 ID.Kind = ValID::t_LocalName; 3345 break; 3346 case lltok::APSInt: 3347 ID.APSIntVal = Lex.getAPSIntVal(); 3348 ID.Kind = ValID::t_APSInt; 3349 break; 3350 case lltok::APFloat: 3351 ID.APFloatVal = Lex.getAPFloatVal(); 3352 ID.Kind = ValID::t_APFloat; 3353 break; 3354 case lltok::kw_true: 3355 ID.ConstantVal = ConstantInt::getTrue(Context); 3356 ID.Kind = ValID::t_Constant; 3357 break; 3358 case lltok::kw_false: 3359 ID.ConstantVal = ConstantInt::getFalse(Context); 3360 ID.Kind = ValID::t_Constant; 3361 break; 3362 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3363 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3364 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3365 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3366 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3367 3368 case lltok::lbrace: { 3369 // ValID ::= '{' ConstVector '}' 3370 Lex.Lex(); 3371 SmallVector<Constant*, 16> Elts; 3372 if (parseGlobalValueVector(Elts) || 3373 parseToken(lltok::rbrace, "expected end of struct constant")) 3374 return true; 3375 3376 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3377 ID.UIntVal = Elts.size(); 3378 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3379 Elts.size() * sizeof(Elts[0])); 3380 ID.Kind = ValID::t_ConstantStruct; 3381 return false; 3382 } 3383 case lltok::less: { 3384 // ValID ::= '<' ConstVector '>' --> Vector. 3385 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3386 Lex.Lex(); 3387 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3388 3389 SmallVector<Constant*, 16> Elts; 3390 LocTy FirstEltLoc = Lex.getLoc(); 3391 if (parseGlobalValueVector(Elts) || 3392 (isPackedStruct && 3393 parseToken(lltok::rbrace, "expected end of packed struct")) || 3394 parseToken(lltok::greater, "expected end of constant")) 3395 return true; 3396 3397 if (isPackedStruct) { 3398 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3399 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3400 Elts.size() * sizeof(Elts[0])); 3401 ID.UIntVal = Elts.size(); 3402 ID.Kind = ValID::t_PackedConstantStruct; 3403 return false; 3404 } 3405 3406 if (Elts.empty()) 3407 return error(ID.Loc, "constant vector must not be empty"); 3408 3409 if (!Elts[0]->getType()->isIntegerTy() && 3410 !Elts[0]->getType()->isFloatingPointTy() && 3411 !Elts[0]->getType()->isPointerTy()) 3412 return error( 3413 FirstEltLoc, 3414 "vector elements must have integer, pointer or floating point type"); 3415 3416 // Verify that all the vector elements have the same type. 3417 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3418 if (Elts[i]->getType() != Elts[0]->getType()) 3419 return error(FirstEltLoc, "vector element #" + Twine(i) + 3420 " is not of type '" + 3421 getTypeString(Elts[0]->getType())); 3422 3423 ID.ConstantVal = ConstantVector::get(Elts); 3424 ID.Kind = ValID::t_Constant; 3425 return false; 3426 } 3427 case lltok::lsquare: { // Array Constant 3428 Lex.Lex(); 3429 SmallVector<Constant*, 16> Elts; 3430 LocTy FirstEltLoc = Lex.getLoc(); 3431 if (parseGlobalValueVector(Elts) || 3432 parseToken(lltok::rsquare, "expected end of array constant")) 3433 return true; 3434 3435 // Handle empty element. 3436 if (Elts.empty()) { 3437 // Use undef instead of an array because it's inconvenient to determine 3438 // the element type at this point, there being no elements to examine. 3439 ID.Kind = ValID::t_EmptyArray; 3440 return false; 3441 } 3442 3443 if (!Elts[0]->getType()->isFirstClassType()) 3444 return error(FirstEltLoc, "invalid array element type: " + 3445 getTypeString(Elts[0]->getType())); 3446 3447 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3448 3449 // Verify all elements are correct type! 3450 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3451 if (Elts[i]->getType() != Elts[0]->getType()) 3452 return error(FirstEltLoc, "array element #" + Twine(i) + 3453 " is not of type '" + 3454 getTypeString(Elts[0]->getType())); 3455 } 3456 3457 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3458 ID.Kind = ValID::t_Constant; 3459 return false; 3460 } 3461 case lltok::kw_c: // c "foo" 3462 Lex.Lex(); 3463 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3464 false); 3465 if (parseToken(lltok::StringConstant, "expected string")) 3466 return true; 3467 ID.Kind = ValID::t_Constant; 3468 return false; 3469 3470 case lltok::kw_asm: { 3471 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3472 // STRINGCONSTANT 3473 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3474 Lex.Lex(); 3475 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3476 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3477 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3478 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3479 parseStringConstant(ID.StrVal) || 3480 parseToken(lltok::comma, "expected comma in inline asm expression") || 3481 parseToken(lltok::StringConstant, "expected constraint string")) 3482 return true; 3483 ID.StrVal2 = Lex.getStrVal(); 3484 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3485 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3486 ID.Kind = ValID::t_InlineAsm; 3487 return false; 3488 } 3489 3490 case lltok::kw_blockaddress: { 3491 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3492 Lex.Lex(); 3493 3494 ValID Fn, Label; 3495 3496 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3497 parseValID(Fn) || 3498 parseToken(lltok::comma, 3499 "expected comma in block address expression") || 3500 parseValID(Label) || 3501 parseToken(lltok::rparen, "expected ')' in block address expression")) 3502 return true; 3503 3504 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3505 return error(Fn.Loc, "expected function name in blockaddress"); 3506 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3507 return error(Label.Loc, "expected basic block name in blockaddress"); 3508 3509 // Try to find the function (but skip it if it's forward-referenced). 3510 GlobalValue *GV = nullptr; 3511 if (Fn.Kind == ValID::t_GlobalID) { 3512 if (Fn.UIntVal < NumberedVals.size()) 3513 GV = NumberedVals[Fn.UIntVal]; 3514 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3515 GV = M->getNamedValue(Fn.StrVal); 3516 } 3517 Function *F = nullptr; 3518 if (GV) { 3519 // Confirm that it's actually a function with a definition. 3520 if (!isa<Function>(GV)) 3521 return error(Fn.Loc, "expected function name in blockaddress"); 3522 F = cast<Function>(GV); 3523 if (F->isDeclaration()) 3524 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3525 } 3526 3527 if (!F) { 3528 // Make a global variable as a placeholder for this reference. 3529 GlobalValue *&FwdRef = 3530 ForwardRefBlockAddresses.insert(std::make_pair( 3531 std::move(Fn), 3532 std::map<ValID, GlobalValue *>())) 3533 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3534 .first->second; 3535 if (!FwdRef) 3536 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3537 GlobalValue::InternalLinkage, nullptr, ""); 3538 ID.ConstantVal = FwdRef; 3539 ID.Kind = ValID::t_Constant; 3540 return false; 3541 } 3542 3543 // We found the function; now find the basic block. Don't use PFS, since we 3544 // might be inside a constant expression. 3545 BasicBlock *BB; 3546 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3547 if (Label.Kind == ValID::t_LocalID) 3548 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3549 else 3550 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3551 if (!BB) 3552 return error(Label.Loc, "referenced value is not a basic block"); 3553 } else { 3554 if (Label.Kind == ValID::t_LocalID) 3555 return error(Label.Loc, "cannot take address of numeric label after " 3556 "the function is defined"); 3557 BB = dyn_cast_or_null<BasicBlock>( 3558 F->getValueSymbolTable()->lookup(Label.StrVal)); 3559 if (!BB) 3560 return error(Label.Loc, "referenced value is not a basic block"); 3561 } 3562 3563 ID.ConstantVal = BlockAddress::get(F, BB); 3564 ID.Kind = ValID::t_Constant; 3565 return false; 3566 } 3567 3568 case lltok::kw_dso_local_equivalent: { 3569 // ValID ::= 'dso_local_equivalent' @foo 3570 Lex.Lex(); 3571 3572 ValID Fn; 3573 3574 if (parseValID(Fn)) 3575 return true; 3576 3577 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3578 return error(Fn.Loc, 3579 "expected global value name in dso_local_equivalent"); 3580 3581 // Try to find the function (but skip it if it's forward-referenced). 3582 GlobalValue *GV = nullptr; 3583 if (Fn.Kind == ValID::t_GlobalID) { 3584 if (Fn.UIntVal < NumberedVals.size()) 3585 GV = NumberedVals[Fn.UIntVal]; 3586 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3587 GV = M->getNamedValue(Fn.StrVal); 3588 } 3589 3590 assert(GV && "Could not find a corresponding global variable"); 3591 3592 if (!GV->getValueType()->isFunctionTy()) 3593 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3594 "in dso_local_equivalent"); 3595 3596 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3597 ID.Kind = ValID::t_Constant; 3598 return false; 3599 } 3600 3601 case lltok::kw_trunc: 3602 case lltok::kw_zext: 3603 case lltok::kw_sext: 3604 case lltok::kw_fptrunc: 3605 case lltok::kw_fpext: 3606 case lltok::kw_bitcast: 3607 case lltok::kw_addrspacecast: 3608 case lltok::kw_uitofp: 3609 case lltok::kw_sitofp: 3610 case lltok::kw_fptoui: 3611 case lltok::kw_fptosi: 3612 case lltok::kw_inttoptr: 3613 case lltok::kw_ptrtoint: { 3614 unsigned Opc = Lex.getUIntVal(); 3615 Type *DestTy = nullptr; 3616 Constant *SrcVal; 3617 Lex.Lex(); 3618 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3619 parseGlobalTypeAndValue(SrcVal) || 3620 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3621 parseType(DestTy) || 3622 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3623 return true; 3624 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3625 return error(ID.Loc, "invalid cast opcode for cast from '" + 3626 getTypeString(SrcVal->getType()) + "' to '" + 3627 getTypeString(DestTy) + "'"); 3628 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3629 SrcVal, DestTy); 3630 ID.Kind = ValID::t_Constant; 3631 return false; 3632 } 3633 case lltok::kw_extractvalue: { 3634 Lex.Lex(); 3635 Constant *Val; 3636 SmallVector<unsigned, 4> Indices; 3637 if (parseToken(lltok::lparen, 3638 "expected '(' in extractvalue constantexpr") || 3639 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3640 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3641 return true; 3642 3643 if (!Val->getType()->isAggregateType()) 3644 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3645 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3646 return error(ID.Loc, "invalid indices for extractvalue"); 3647 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3648 ID.Kind = ValID::t_Constant; 3649 return false; 3650 } 3651 case lltok::kw_insertvalue: { 3652 Lex.Lex(); 3653 Constant *Val0, *Val1; 3654 SmallVector<unsigned, 4> Indices; 3655 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3656 parseGlobalTypeAndValue(Val0) || 3657 parseToken(lltok::comma, 3658 "expected comma in insertvalue constantexpr") || 3659 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3660 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3661 return true; 3662 if (!Val0->getType()->isAggregateType()) 3663 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3664 Type *IndexedType = 3665 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3666 if (!IndexedType) 3667 return error(ID.Loc, "invalid indices for insertvalue"); 3668 if (IndexedType != Val1->getType()) 3669 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3670 getTypeString(Val1->getType()) + 3671 "' instead of '" + getTypeString(IndexedType) + 3672 "'"); 3673 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3674 ID.Kind = ValID::t_Constant; 3675 return false; 3676 } 3677 case lltok::kw_icmp: 3678 case lltok::kw_fcmp: { 3679 unsigned PredVal, Opc = Lex.getUIntVal(); 3680 Constant *Val0, *Val1; 3681 Lex.Lex(); 3682 if (parseCmpPredicate(PredVal, Opc) || 3683 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3684 parseGlobalTypeAndValue(Val0) || 3685 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3686 parseGlobalTypeAndValue(Val1) || 3687 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3688 return true; 3689 3690 if (Val0->getType() != Val1->getType()) 3691 return error(ID.Loc, "compare operands must have the same type"); 3692 3693 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3694 3695 if (Opc == Instruction::FCmp) { 3696 if (!Val0->getType()->isFPOrFPVectorTy()) 3697 return error(ID.Loc, "fcmp requires floating point operands"); 3698 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3699 } else { 3700 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3701 if (!Val0->getType()->isIntOrIntVectorTy() && 3702 !Val0->getType()->isPtrOrPtrVectorTy()) 3703 return error(ID.Loc, "icmp requires pointer or integer operands"); 3704 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3705 } 3706 ID.Kind = ValID::t_Constant; 3707 return false; 3708 } 3709 3710 // Unary Operators. 3711 case lltok::kw_fneg: { 3712 unsigned Opc = Lex.getUIntVal(); 3713 Constant *Val; 3714 Lex.Lex(); 3715 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3716 parseGlobalTypeAndValue(Val) || 3717 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3718 return true; 3719 3720 // Check that the type is valid for the operator. 3721 switch (Opc) { 3722 case Instruction::FNeg: 3723 if (!Val->getType()->isFPOrFPVectorTy()) 3724 return error(ID.Loc, "constexpr requires fp operands"); 3725 break; 3726 default: llvm_unreachable("Unknown unary operator!"); 3727 } 3728 unsigned Flags = 0; 3729 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3730 ID.ConstantVal = C; 3731 ID.Kind = ValID::t_Constant; 3732 return false; 3733 } 3734 // Binary Operators. 3735 case lltok::kw_add: 3736 case lltok::kw_fadd: 3737 case lltok::kw_sub: 3738 case lltok::kw_fsub: 3739 case lltok::kw_mul: 3740 case lltok::kw_fmul: 3741 case lltok::kw_udiv: 3742 case lltok::kw_sdiv: 3743 case lltok::kw_fdiv: 3744 case lltok::kw_urem: 3745 case lltok::kw_srem: 3746 case lltok::kw_frem: 3747 case lltok::kw_shl: 3748 case lltok::kw_lshr: 3749 case lltok::kw_ashr: { 3750 bool NUW = false; 3751 bool NSW = false; 3752 bool Exact = false; 3753 unsigned Opc = Lex.getUIntVal(); 3754 Constant *Val0, *Val1; 3755 Lex.Lex(); 3756 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3757 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3758 if (EatIfPresent(lltok::kw_nuw)) 3759 NUW = true; 3760 if (EatIfPresent(lltok::kw_nsw)) { 3761 NSW = true; 3762 if (EatIfPresent(lltok::kw_nuw)) 3763 NUW = true; 3764 } 3765 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3766 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3767 if (EatIfPresent(lltok::kw_exact)) 3768 Exact = true; 3769 } 3770 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3771 parseGlobalTypeAndValue(Val0) || 3772 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3773 parseGlobalTypeAndValue(Val1) || 3774 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3775 return true; 3776 if (Val0->getType() != Val1->getType()) 3777 return error(ID.Loc, "operands of constexpr must have same type"); 3778 // Check that the type is valid for the operator. 3779 switch (Opc) { 3780 case Instruction::Add: 3781 case Instruction::Sub: 3782 case Instruction::Mul: 3783 case Instruction::UDiv: 3784 case Instruction::SDiv: 3785 case Instruction::URem: 3786 case Instruction::SRem: 3787 case Instruction::Shl: 3788 case Instruction::AShr: 3789 case Instruction::LShr: 3790 if (!Val0->getType()->isIntOrIntVectorTy()) 3791 return error(ID.Loc, "constexpr requires integer operands"); 3792 break; 3793 case Instruction::FAdd: 3794 case Instruction::FSub: 3795 case Instruction::FMul: 3796 case Instruction::FDiv: 3797 case Instruction::FRem: 3798 if (!Val0->getType()->isFPOrFPVectorTy()) 3799 return error(ID.Loc, "constexpr requires fp operands"); 3800 break; 3801 default: llvm_unreachable("Unknown binary operator!"); 3802 } 3803 unsigned Flags = 0; 3804 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3805 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3806 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3807 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3808 ID.ConstantVal = C; 3809 ID.Kind = ValID::t_Constant; 3810 return false; 3811 } 3812 3813 // Logical Operations 3814 case lltok::kw_and: 3815 case lltok::kw_or: 3816 case lltok::kw_xor: { 3817 unsigned Opc = Lex.getUIntVal(); 3818 Constant *Val0, *Val1; 3819 Lex.Lex(); 3820 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3821 parseGlobalTypeAndValue(Val0) || 3822 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3823 parseGlobalTypeAndValue(Val1) || 3824 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3825 return true; 3826 if (Val0->getType() != Val1->getType()) 3827 return error(ID.Loc, "operands of constexpr must have same type"); 3828 if (!Val0->getType()->isIntOrIntVectorTy()) 3829 return error(ID.Loc, 3830 "constexpr requires integer or integer vector operands"); 3831 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3832 ID.Kind = ValID::t_Constant; 3833 return false; 3834 } 3835 3836 case lltok::kw_getelementptr: 3837 case lltok::kw_shufflevector: 3838 case lltok::kw_insertelement: 3839 case lltok::kw_extractelement: 3840 case lltok::kw_select: { 3841 unsigned Opc = Lex.getUIntVal(); 3842 SmallVector<Constant*, 16> Elts; 3843 bool InBounds = false; 3844 Type *Ty; 3845 Lex.Lex(); 3846 3847 if (Opc == Instruction::GetElementPtr) 3848 InBounds = EatIfPresent(lltok::kw_inbounds); 3849 3850 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3851 return true; 3852 3853 LocTy ExplicitTypeLoc = Lex.getLoc(); 3854 if (Opc == Instruction::GetElementPtr) { 3855 if (parseType(Ty) || 3856 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3857 return true; 3858 } 3859 3860 Optional<unsigned> InRangeOp; 3861 if (parseGlobalValueVector( 3862 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3863 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3864 return true; 3865 3866 if (Opc == Instruction::GetElementPtr) { 3867 if (Elts.size() == 0 || 3868 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3869 return error(ID.Loc, "base of getelementptr must be a pointer"); 3870 3871 Type *BaseType = Elts[0]->getType(); 3872 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3873 if (Ty != BasePointerType->getElementType()) { 3874 return error( 3875 ExplicitTypeLoc, 3876 typeComparisonErrorMessage( 3877 "explicit pointee type doesn't match operand's pointee type", 3878 Ty, BasePointerType->getElementType())); 3879 } 3880 3881 unsigned GEPWidth = 3882 BaseType->isVectorTy() 3883 ? cast<FixedVectorType>(BaseType)->getNumElements() 3884 : 0; 3885 3886 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3887 for (Constant *Val : Indices) { 3888 Type *ValTy = Val->getType(); 3889 if (!ValTy->isIntOrIntVectorTy()) 3890 return error(ID.Loc, "getelementptr index must be an integer"); 3891 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3892 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3893 if (GEPWidth && (ValNumEl != GEPWidth)) 3894 return error( 3895 ID.Loc, 3896 "getelementptr vector index has a wrong number of elements"); 3897 // GEPWidth may have been unknown because the base is a scalar, 3898 // but it is known now. 3899 GEPWidth = ValNumEl; 3900 } 3901 } 3902 3903 SmallPtrSet<Type*, 4> Visited; 3904 if (!Indices.empty() && !Ty->isSized(&Visited)) 3905 return error(ID.Loc, "base element of getelementptr must be sized"); 3906 3907 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3908 return error(ID.Loc, "invalid getelementptr indices"); 3909 3910 if (InRangeOp) { 3911 if (*InRangeOp == 0) 3912 return error(ID.Loc, 3913 "inrange keyword may not appear on pointer operand"); 3914 --*InRangeOp; 3915 } 3916 3917 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3918 InBounds, InRangeOp); 3919 } else if (Opc == Instruction::Select) { 3920 if (Elts.size() != 3) 3921 return error(ID.Loc, "expected three operands to select"); 3922 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3923 Elts[2])) 3924 return error(ID.Loc, Reason); 3925 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3926 } else if (Opc == Instruction::ShuffleVector) { 3927 if (Elts.size() != 3) 3928 return error(ID.Loc, "expected three operands to shufflevector"); 3929 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3930 return error(ID.Loc, "invalid operands to shufflevector"); 3931 SmallVector<int, 16> Mask; 3932 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3933 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3934 } else if (Opc == Instruction::ExtractElement) { 3935 if (Elts.size() != 2) 3936 return error(ID.Loc, "expected two operands to extractelement"); 3937 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3938 return error(ID.Loc, "invalid extractelement operands"); 3939 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3940 } else { 3941 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3942 if (Elts.size() != 3) 3943 return error(ID.Loc, "expected three operands to insertelement"); 3944 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3945 return error(ID.Loc, "invalid insertelement operands"); 3946 ID.ConstantVal = 3947 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3948 } 3949 3950 ID.Kind = ValID::t_Constant; 3951 return false; 3952 } 3953 } 3954 3955 Lex.Lex(); 3956 return false; 3957 } 3958 3959 /// parseGlobalValue - parse a global value with the specified type. 3960 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3961 C = nullptr; 3962 ValID ID; 3963 Value *V = nullptr; 3964 bool Parsed = parseValID(ID) || 3965 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3966 if (V && !(C = dyn_cast<Constant>(V))) 3967 return error(ID.Loc, "global values must be constants"); 3968 return Parsed; 3969 } 3970 3971 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3972 Type *Ty = nullptr; 3973 return parseType(Ty) || parseGlobalValue(Ty, V); 3974 } 3975 3976 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3977 C = nullptr; 3978 3979 LocTy KwLoc = Lex.getLoc(); 3980 if (!EatIfPresent(lltok::kw_comdat)) 3981 return false; 3982 3983 if (EatIfPresent(lltok::lparen)) { 3984 if (Lex.getKind() != lltok::ComdatVar) 3985 return tokError("expected comdat variable"); 3986 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3987 Lex.Lex(); 3988 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3989 return true; 3990 } else { 3991 if (GlobalName.empty()) 3992 return tokError("comdat cannot be unnamed"); 3993 C = getComdat(std::string(GlobalName), KwLoc); 3994 } 3995 3996 return false; 3997 } 3998 3999 /// parseGlobalValueVector 4000 /// ::= /*empty*/ 4001 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4002 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4003 Optional<unsigned> *InRangeOp) { 4004 // Empty list. 4005 if (Lex.getKind() == lltok::rbrace || 4006 Lex.getKind() == lltok::rsquare || 4007 Lex.getKind() == lltok::greater || 4008 Lex.getKind() == lltok::rparen) 4009 return false; 4010 4011 do { 4012 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4013 *InRangeOp = Elts.size(); 4014 4015 Constant *C; 4016 if (parseGlobalTypeAndValue(C)) 4017 return true; 4018 Elts.push_back(C); 4019 } while (EatIfPresent(lltok::comma)); 4020 4021 return false; 4022 } 4023 4024 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4025 SmallVector<Metadata *, 16> Elts; 4026 if (parseMDNodeVector(Elts)) 4027 return true; 4028 4029 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4030 return false; 4031 } 4032 4033 /// MDNode: 4034 /// ::= !{ ... } 4035 /// ::= !7 4036 /// ::= !DILocation(...) 4037 bool LLParser::parseMDNode(MDNode *&N) { 4038 if (Lex.getKind() == lltok::MetadataVar) 4039 return parseSpecializedMDNode(N); 4040 4041 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4042 } 4043 4044 bool LLParser::parseMDNodeTail(MDNode *&N) { 4045 // !{ ... } 4046 if (Lex.getKind() == lltok::lbrace) 4047 return parseMDTuple(N); 4048 4049 // !42 4050 return parseMDNodeID(N); 4051 } 4052 4053 namespace { 4054 4055 /// Structure to represent an optional metadata field. 4056 template <class FieldTy> struct MDFieldImpl { 4057 typedef MDFieldImpl ImplTy; 4058 FieldTy Val; 4059 bool Seen; 4060 4061 void assign(FieldTy Val) { 4062 Seen = true; 4063 this->Val = std::move(Val); 4064 } 4065 4066 explicit MDFieldImpl(FieldTy Default) 4067 : Val(std::move(Default)), Seen(false) {} 4068 }; 4069 4070 /// Structure to represent an optional metadata field that 4071 /// can be of either type (A or B) and encapsulates the 4072 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4073 /// to reimplement the specifics for representing each Field. 4074 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4075 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4076 FieldTypeA A; 4077 FieldTypeB B; 4078 bool Seen; 4079 4080 enum { 4081 IsInvalid = 0, 4082 IsTypeA = 1, 4083 IsTypeB = 2 4084 } WhatIs; 4085 4086 void assign(FieldTypeA A) { 4087 Seen = true; 4088 this->A = std::move(A); 4089 WhatIs = IsTypeA; 4090 } 4091 4092 void assign(FieldTypeB B) { 4093 Seen = true; 4094 this->B = std::move(B); 4095 WhatIs = IsTypeB; 4096 } 4097 4098 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4099 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4100 WhatIs(IsInvalid) {} 4101 }; 4102 4103 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4104 uint64_t Max; 4105 4106 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4107 : ImplTy(Default), Max(Max) {} 4108 }; 4109 4110 struct LineField : public MDUnsignedField { 4111 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4112 }; 4113 4114 struct ColumnField : public MDUnsignedField { 4115 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4116 }; 4117 4118 struct DwarfTagField : public MDUnsignedField { 4119 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4120 DwarfTagField(dwarf::Tag DefaultTag) 4121 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4122 }; 4123 4124 struct DwarfMacinfoTypeField : public MDUnsignedField { 4125 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4126 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4127 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4128 }; 4129 4130 struct DwarfAttEncodingField : public MDUnsignedField { 4131 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4132 }; 4133 4134 struct DwarfVirtualityField : public MDUnsignedField { 4135 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4136 }; 4137 4138 struct DwarfLangField : public MDUnsignedField { 4139 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4140 }; 4141 4142 struct DwarfCCField : public MDUnsignedField { 4143 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4144 }; 4145 4146 struct EmissionKindField : public MDUnsignedField { 4147 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4148 }; 4149 4150 struct NameTableKindField : public MDUnsignedField { 4151 NameTableKindField() 4152 : MDUnsignedField( 4153 0, (unsigned) 4154 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4155 }; 4156 4157 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4158 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4159 }; 4160 4161 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4162 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4163 }; 4164 4165 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4166 MDAPSIntField() : ImplTy(APSInt()) {} 4167 }; 4168 4169 struct MDSignedField : public MDFieldImpl<int64_t> { 4170 int64_t Min; 4171 int64_t Max; 4172 4173 MDSignedField(int64_t Default = 0) 4174 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4175 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4176 : ImplTy(Default), Min(Min), Max(Max) {} 4177 }; 4178 4179 struct MDBoolField : public MDFieldImpl<bool> { 4180 MDBoolField(bool Default = false) : ImplTy(Default) {} 4181 }; 4182 4183 struct MDField : public MDFieldImpl<Metadata *> { 4184 bool AllowNull; 4185 4186 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4187 }; 4188 4189 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4190 MDConstant() : ImplTy(nullptr) {} 4191 }; 4192 4193 struct MDStringField : public MDFieldImpl<MDString *> { 4194 bool AllowEmpty; 4195 MDStringField(bool AllowEmpty = true) 4196 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4197 }; 4198 4199 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4200 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4201 }; 4202 4203 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4204 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4205 }; 4206 4207 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4208 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4209 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4210 4211 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4212 bool AllowNull = true) 4213 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4214 4215 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4216 bool isMDField() const { return WhatIs == IsTypeB; } 4217 int64_t getMDSignedValue() const { 4218 assert(isMDSignedField() && "Wrong field type"); 4219 return A.Val; 4220 } 4221 Metadata *getMDFieldValue() const { 4222 assert(isMDField() && "Wrong field type"); 4223 return B.Val; 4224 } 4225 }; 4226 4227 struct MDSignedOrUnsignedField 4228 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4229 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4230 4231 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4232 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4233 int64_t getMDSignedValue() const { 4234 assert(isMDSignedField() && "Wrong field type"); 4235 return A.Val; 4236 } 4237 uint64_t getMDUnsignedValue() const { 4238 assert(isMDUnsignedField() && "Wrong field type"); 4239 return B.Val; 4240 } 4241 }; 4242 4243 } // end anonymous namespace 4244 4245 namespace llvm { 4246 4247 template <> 4248 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4249 if (Lex.getKind() != lltok::APSInt) 4250 return tokError("expected integer"); 4251 4252 Result.assign(Lex.getAPSIntVal()); 4253 Lex.Lex(); 4254 return false; 4255 } 4256 4257 template <> 4258 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4259 MDUnsignedField &Result) { 4260 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4261 return tokError("expected unsigned integer"); 4262 4263 auto &U = Lex.getAPSIntVal(); 4264 if (U.ugt(Result.Max)) 4265 return tokError("value for '" + Name + "' too large, limit is " + 4266 Twine(Result.Max)); 4267 Result.assign(U.getZExtValue()); 4268 assert(Result.Val <= Result.Max && "Expected value in range"); 4269 Lex.Lex(); 4270 return false; 4271 } 4272 4273 template <> 4274 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4275 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4276 } 4277 template <> 4278 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4279 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4280 } 4281 4282 template <> 4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4284 if (Lex.getKind() == lltok::APSInt) 4285 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4286 4287 if (Lex.getKind() != lltok::DwarfTag) 4288 return tokError("expected DWARF tag"); 4289 4290 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4291 if (Tag == dwarf::DW_TAG_invalid) 4292 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4293 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4294 4295 Result.assign(Tag); 4296 Lex.Lex(); 4297 return false; 4298 } 4299 4300 template <> 4301 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4302 DwarfMacinfoTypeField &Result) { 4303 if (Lex.getKind() == lltok::APSInt) 4304 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4305 4306 if (Lex.getKind() != lltok::DwarfMacinfo) 4307 return tokError("expected DWARF macinfo type"); 4308 4309 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4310 if (Macinfo == dwarf::DW_MACINFO_invalid) 4311 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4312 Lex.getStrVal() + "'"); 4313 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4314 4315 Result.assign(Macinfo); 4316 Lex.Lex(); 4317 return false; 4318 } 4319 4320 template <> 4321 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4322 DwarfVirtualityField &Result) { 4323 if (Lex.getKind() == lltok::APSInt) 4324 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4325 4326 if (Lex.getKind() != lltok::DwarfVirtuality) 4327 return tokError("expected DWARF virtuality code"); 4328 4329 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4330 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4331 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4332 Lex.getStrVal() + "'"); 4333 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4334 Result.assign(Virtuality); 4335 Lex.Lex(); 4336 return false; 4337 } 4338 4339 template <> 4340 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4341 if (Lex.getKind() == lltok::APSInt) 4342 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4343 4344 if (Lex.getKind() != lltok::DwarfLang) 4345 return tokError("expected DWARF language"); 4346 4347 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4348 if (!Lang) 4349 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4350 "'"); 4351 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4352 Result.assign(Lang); 4353 Lex.Lex(); 4354 return false; 4355 } 4356 4357 template <> 4358 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4359 if (Lex.getKind() == lltok::APSInt) 4360 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4361 4362 if (Lex.getKind() != lltok::DwarfCC) 4363 return tokError("expected DWARF calling convention"); 4364 4365 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4366 if (!CC) 4367 return tokError("invalid DWARF calling convention" + Twine(" '") + 4368 Lex.getStrVal() + "'"); 4369 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4370 Result.assign(CC); 4371 Lex.Lex(); 4372 return false; 4373 } 4374 4375 template <> 4376 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4377 EmissionKindField &Result) { 4378 if (Lex.getKind() == lltok::APSInt) 4379 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4380 4381 if (Lex.getKind() != lltok::EmissionKind) 4382 return tokError("expected emission kind"); 4383 4384 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4385 if (!Kind) 4386 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4387 "'"); 4388 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4389 Result.assign(*Kind); 4390 Lex.Lex(); 4391 return false; 4392 } 4393 4394 template <> 4395 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4396 NameTableKindField &Result) { 4397 if (Lex.getKind() == lltok::APSInt) 4398 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4399 4400 if (Lex.getKind() != lltok::NameTableKind) 4401 return tokError("expected nameTable kind"); 4402 4403 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4404 if (!Kind) 4405 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4406 "'"); 4407 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4408 Result.assign((unsigned)*Kind); 4409 Lex.Lex(); 4410 return false; 4411 } 4412 4413 template <> 4414 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4415 DwarfAttEncodingField &Result) { 4416 if (Lex.getKind() == lltok::APSInt) 4417 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4418 4419 if (Lex.getKind() != lltok::DwarfAttEncoding) 4420 return tokError("expected DWARF type attribute encoding"); 4421 4422 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4423 if (!Encoding) 4424 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4425 Lex.getStrVal() + "'"); 4426 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4427 Result.assign(Encoding); 4428 Lex.Lex(); 4429 return false; 4430 } 4431 4432 /// DIFlagField 4433 /// ::= uint32 4434 /// ::= DIFlagVector 4435 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4436 template <> 4437 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4438 4439 // parser for a single flag. 4440 auto parseFlag = [&](DINode::DIFlags &Val) { 4441 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4442 uint32_t TempVal = static_cast<uint32_t>(Val); 4443 bool Res = parseUInt32(TempVal); 4444 Val = static_cast<DINode::DIFlags>(TempVal); 4445 return Res; 4446 } 4447 4448 if (Lex.getKind() != lltok::DIFlag) 4449 return tokError("expected debug info flag"); 4450 4451 Val = DINode::getFlag(Lex.getStrVal()); 4452 if (!Val) 4453 return tokError(Twine("invalid debug info flag flag '") + 4454 Lex.getStrVal() + "'"); 4455 Lex.Lex(); 4456 return false; 4457 }; 4458 4459 // parse the flags and combine them together. 4460 DINode::DIFlags Combined = DINode::FlagZero; 4461 do { 4462 DINode::DIFlags Val; 4463 if (parseFlag(Val)) 4464 return true; 4465 Combined |= Val; 4466 } while (EatIfPresent(lltok::bar)); 4467 4468 Result.assign(Combined); 4469 return false; 4470 } 4471 4472 /// DISPFlagField 4473 /// ::= uint32 4474 /// ::= DISPFlagVector 4475 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4476 template <> 4477 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4478 4479 // parser for a single flag. 4480 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4481 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4482 uint32_t TempVal = static_cast<uint32_t>(Val); 4483 bool Res = parseUInt32(TempVal); 4484 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4485 return Res; 4486 } 4487 4488 if (Lex.getKind() != lltok::DISPFlag) 4489 return tokError("expected debug info flag"); 4490 4491 Val = DISubprogram::getFlag(Lex.getStrVal()); 4492 if (!Val) 4493 return tokError(Twine("invalid subprogram debug info flag '") + 4494 Lex.getStrVal() + "'"); 4495 Lex.Lex(); 4496 return false; 4497 }; 4498 4499 // parse the flags and combine them together. 4500 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4501 do { 4502 DISubprogram::DISPFlags Val; 4503 if (parseFlag(Val)) 4504 return true; 4505 Combined |= Val; 4506 } while (EatIfPresent(lltok::bar)); 4507 4508 Result.assign(Combined); 4509 return false; 4510 } 4511 4512 template <> 4513 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4514 if (Lex.getKind() != lltok::APSInt) 4515 return tokError("expected signed integer"); 4516 4517 auto &S = Lex.getAPSIntVal(); 4518 if (S < Result.Min) 4519 return tokError("value for '" + Name + "' too small, limit is " + 4520 Twine(Result.Min)); 4521 if (S > Result.Max) 4522 return tokError("value for '" + Name + "' too large, limit is " + 4523 Twine(Result.Max)); 4524 Result.assign(S.getExtValue()); 4525 assert(Result.Val >= Result.Min && "Expected value in range"); 4526 assert(Result.Val <= Result.Max && "Expected value in range"); 4527 Lex.Lex(); 4528 return false; 4529 } 4530 4531 template <> 4532 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4533 switch (Lex.getKind()) { 4534 default: 4535 return tokError("expected 'true' or 'false'"); 4536 case lltok::kw_true: 4537 Result.assign(true); 4538 break; 4539 case lltok::kw_false: 4540 Result.assign(false); 4541 break; 4542 } 4543 Lex.Lex(); 4544 return false; 4545 } 4546 4547 template <> 4548 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4549 if (Lex.getKind() == lltok::kw_null) { 4550 if (!Result.AllowNull) 4551 return tokError("'" + Name + "' cannot be null"); 4552 Lex.Lex(); 4553 Result.assign(nullptr); 4554 return false; 4555 } 4556 4557 Metadata *MD; 4558 if (parseMetadata(MD, nullptr)) 4559 return true; 4560 4561 Result.assign(MD); 4562 return false; 4563 } 4564 4565 template <> 4566 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4567 MDSignedOrMDField &Result) { 4568 // Try to parse a signed int. 4569 if (Lex.getKind() == lltok::APSInt) { 4570 MDSignedField Res = Result.A; 4571 if (!parseMDField(Loc, Name, Res)) { 4572 Result.assign(Res); 4573 return false; 4574 } 4575 return true; 4576 } 4577 4578 // Otherwise, try to parse as an MDField. 4579 MDField Res = Result.B; 4580 if (!parseMDField(Loc, Name, Res)) { 4581 Result.assign(Res); 4582 return false; 4583 } 4584 4585 return true; 4586 } 4587 4588 template <> 4589 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4590 LocTy ValueLoc = Lex.getLoc(); 4591 std::string S; 4592 if (parseStringConstant(S)) 4593 return true; 4594 4595 if (!Result.AllowEmpty && S.empty()) 4596 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4597 4598 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4599 return false; 4600 } 4601 4602 template <> 4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4604 SmallVector<Metadata *, 4> MDs; 4605 if (parseMDNodeVector(MDs)) 4606 return true; 4607 4608 Result.assign(std::move(MDs)); 4609 return false; 4610 } 4611 4612 template <> 4613 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4614 ChecksumKindField &Result) { 4615 Optional<DIFile::ChecksumKind> CSKind = 4616 DIFile::getChecksumKind(Lex.getStrVal()); 4617 4618 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4619 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4620 "'"); 4621 4622 Result.assign(*CSKind); 4623 Lex.Lex(); 4624 return false; 4625 } 4626 4627 } // end namespace llvm 4628 4629 template <class ParserTy> 4630 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4631 do { 4632 if (Lex.getKind() != lltok::LabelStr) 4633 return tokError("expected field label here"); 4634 4635 if (ParseField()) 4636 return true; 4637 } while (EatIfPresent(lltok::comma)); 4638 4639 return false; 4640 } 4641 4642 template <class ParserTy> 4643 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4644 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4645 Lex.Lex(); 4646 4647 if (parseToken(lltok::lparen, "expected '(' here")) 4648 return true; 4649 if (Lex.getKind() != lltok::rparen) 4650 if (parseMDFieldsImplBody(ParseField)) 4651 return true; 4652 4653 ClosingLoc = Lex.getLoc(); 4654 return parseToken(lltok::rparen, "expected ')' here"); 4655 } 4656 4657 template <class FieldTy> 4658 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4659 if (Result.Seen) 4660 return tokError("field '" + Name + "' cannot be specified more than once"); 4661 4662 LocTy Loc = Lex.getLoc(); 4663 Lex.Lex(); 4664 return parseMDField(Loc, Name, Result); 4665 } 4666 4667 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4668 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4669 4670 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4671 if (Lex.getStrVal() == #CLASS) \ 4672 return parse##CLASS(N, IsDistinct); 4673 #include "llvm/IR/Metadata.def" 4674 4675 return tokError("expected metadata type"); 4676 } 4677 4678 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4679 #define NOP_FIELD(NAME, TYPE, INIT) 4680 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4681 if (!NAME.Seen) \ 4682 return error(ClosingLoc, "missing required field '" #NAME "'"); 4683 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4684 if (Lex.getStrVal() == #NAME) \ 4685 return parseMDField(#NAME, NAME); 4686 #define PARSE_MD_FIELDS() \ 4687 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4688 do { \ 4689 LocTy ClosingLoc; \ 4690 if (parseMDFieldsImpl( \ 4691 [&]() -> bool { \ 4692 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4693 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4694 "'"); \ 4695 }, \ 4696 ClosingLoc)) \ 4697 return true; \ 4698 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4699 } while (false) 4700 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4701 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4702 4703 /// parseDILocationFields: 4704 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4705 /// isImplicitCode: true) 4706 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4707 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4708 OPTIONAL(line, LineField, ); \ 4709 OPTIONAL(column, ColumnField, ); \ 4710 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4711 OPTIONAL(inlinedAt, MDField, ); \ 4712 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4713 PARSE_MD_FIELDS(); 4714 #undef VISIT_MD_FIELDS 4715 4716 Result = 4717 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4718 inlinedAt.Val, isImplicitCode.Val)); 4719 return false; 4720 } 4721 4722 /// parseGenericDINode: 4723 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4724 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4726 REQUIRED(tag, DwarfTagField, ); \ 4727 OPTIONAL(header, MDStringField, ); \ 4728 OPTIONAL(operands, MDFieldList, ); 4729 PARSE_MD_FIELDS(); 4730 #undef VISIT_MD_FIELDS 4731 4732 Result = GET_OR_DISTINCT(GenericDINode, 4733 (Context, tag.Val, header.Val, operands.Val)); 4734 return false; 4735 } 4736 4737 /// parseDISubrange: 4738 /// ::= !DISubrange(count: 30, lowerBound: 2) 4739 /// ::= !DISubrange(count: !node, lowerBound: 2) 4740 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4741 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4742 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4743 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4744 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4745 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4746 OPTIONAL(stride, MDSignedOrMDField, ); 4747 PARSE_MD_FIELDS(); 4748 #undef VISIT_MD_FIELDS 4749 4750 Metadata *Count = nullptr; 4751 Metadata *LowerBound = nullptr; 4752 Metadata *UpperBound = nullptr; 4753 Metadata *Stride = nullptr; 4754 4755 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4756 if (Bound.isMDSignedField()) 4757 return ConstantAsMetadata::get(ConstantInt::getSigned( 4758 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4759 if (Bound.isMDField()) 4760 return Bound.getMDFieldValue(); 4761 return nullptr; 4762 }; 4763 4764 Count = convToMetadata(count); 4765 LowerBound = convToMetadata(lowerBound); 4766 UpperBound = convToMetadata(upperBound); 4767 Stride = convToMetadata(stride); 4768 4769 Result = GET_OR_DISTINCT(DISubrange, 4770 (Context, Count, LowerBound, UpperBound, Stride)); 4771 4772 return false; 4773 } 4774 4775 /// parseDIGenericSubrange: 4776 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4777 /// !node3) 4778 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4780 OPTIONAL(count, MDSignedOrMDField, ); \ 4781 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4782 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4783 OPTIONAL(stride, MDSignedOrMDField, ); 4784 PARSE_MD_FIELDS(); 4785 #undef VISIT_MD_FIELDS 4786 4787 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4788 if (Bound.isMDSignedField()) 4789 return DIExpression::get( 4790 Context, {dwarf::DW_OP_consts, 4791 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4792 if (Bound.isMDField()) 4793 return Bound.getMDFieldValue(); 4794 return nullptr; 4795 }; 4796 4797 Metadata *Count = ConvToMetadata(count); 4798 Metadata *LowerBound = ConvToMetadata(lowerBound); 4799 Metadata *UpperBound = ConvToMetadata(upperBound); 4800 Metadata *Stride = ConvToMetadata(stride); 4801 4802 Result = GET_OR_DISTINCT(DIGenericSubrange, 4803 (Context, Count, LowerBound, UpperBound, Stride)); 4804 4805 return false; 4806 } 4807 4808 /// parseDIEnumerator: 4809 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4810 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4812 REQUIRED(name, MDStringField, ); \ 4813 REQUIRED(value, MDAPSIntField, ); \ 4814 OPTIONAL(isUnsigned, MDBoolField, (false)); 4815 PARSE_MD_FIELDS(); 4816 #undef VISIT_MD_FIELDS 4817 4818 if (isUnsigned.Val && value.Val.isNegative()) 4819 return tokError("unsigned enumerator with negative value"); 4820 4821 APSInt Value(value.Val); 4822 // Add a leading zero so that unsigned values with the msb set are not 4823 // mistaken for negative values when used for signed enumerators. 4824 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4825 Value = Value.zext(Value.getBitWidth() + 1); 4826 4827 Result = 4828 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4829 4830 return false; 4831 } 4832 4833 /// parseDIBasicType: 4834 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4835 /// encoding: DW_ATE_encoding, flags: 0) 4836 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4837 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4838 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4839 OPTIONAL(name, MDStringField, ); \ 4840 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4841 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4842 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4843 OPTIONAL(flags, DIFlagField, ); 4844 PARSE_MD_FIELDS(); 4845 #undef VISIT_MD_FIELDS 4846 4847 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4848 align.Val, encoding.Val, flags.Val)); 4849 return false; 4850 } 4851 4852 /// parseDIStringType: 4853 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4854 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4856 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4857 OPTIONAL(name, MDStringField, ); \ 4858 OPTIONAL(stringLength, MDField, ); \ 4859 OPTIONAL(stringLengthExpression, MDField, ); \ 4860 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4861 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4862 OPTIONAL(encoding, DwarfAttEncodingField, ); 4863 PARSE_MD_FIELDS(); 4864 #undef VISIT_MD_FIELDS 4865 4866 Result = GET_OR_DISTINCT(DIStringType, 4867 (Context, tag.Val, name.Val, stringLength.Val, 4868 stringLengthExpression.Val, size.Val, align.Val, 4869 encoding.Val)); 4870 return false; 4871 } 4872 4873 /// parseDIDerivedType: 4874 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4875 /// line: 7, scope: !1, baseType: !2, size: 32, 4876 /// align: 32, offset: 0, flags: 0, extraData: !3, 4877 /// dwarfAddressSpace: 3) 4878 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4880 REQUIRED(tag, DwarfTagField, ); \ 4881 OPTIONAL(name, MDStringField, ); \ 4882 OPTIONAL(file, MDField, ); \ 4883 OPTIONAL(line, LineField, ); \ 4884 OPTIONAL(scope, MDField, ); \ 4885 REQUIRED(baseType, MDField, ); \ 4886 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4887 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4888 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4889 OPTIONAL(flags, DIFlagField, ); \ 4890 OPTIONAL(extraData, MDField, ); \ 4891 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4892 PARSE_MD_FIELDS(); 4893 #undef VISIT_MD_FIELDS 4894 4895 Optional<unsigned> DWARFAddressSpace; 4896 if (dwarfAddressSpace.Val != UINT32_MAX) 4897 DWARFAddressSpace = dwarfAddressSpace.Val; 4898 4899 Result = GET_OR_DISTINCT(DIDerivedType, 4900 (Context, tag.Val, name.Val, file.Val, line.Val, 4901 scope.Val, baseType.Val, size.Val, align.Val, 4902 offset.Val, DWARFAddressSpace, flags.Val, 4903 extraData.Val)); 4904 return false; 4905 } 4906 4907 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4908 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4909 REQUIRED(tag, DwarfTagField, ); \ 4910 OPTIONAL(name, MDStringField, ); \ 4911 OPTIONAL(file, MDField, ); \ 4912 OPTIONAL(line, LineField, ); \ 4913 OPTIONAL(scope, MDField, ); \ 4914 OPTIONAL(baseType, MDField, ); \ 4915 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4916 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4917 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4918 OPTIONAL(flags, DIFlagField, ); \ 4919 OPTIONAL(elements, MDField, ); \ 4920 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4921 OPTIONAL(vtableHolder, MDField, ); \ 4922 OPTIONAL(templateParams, MDField, ); \ 4923 OPTIONAL(identifier, MDStringField, ); \ 4924 OPTIONAL(discriminator, MDField, ); \ 4925 OPTIONAL(dataLocation, MDField, ); \ 4926 OPTIONAL(associated, MDField, ); \ 4927 OPTIONAL(allocated, MDField, ); \ 4928 OPTIONAL(rank, MDSignedOrMDField, ); 4929 PARSE_MD_FIELDS(); 4930 #undef VISIT_MD_FIELDS 4931 4932 Metadata *Rank = nullptr; 4933 if (rank.isMDSignedField()) 4934 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4935 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4936 else if (rank.isMDField()) 4937 Rank = rank.getMDFieldValue(); 4938 4939 // If this has an identifier try to build an ODR type. 4940 if (identifier.Val) 4941 if (auto *CT = DICompositeType::buildODRType( 4942 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4943 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4944 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4945 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4946 Rank)) { 4947 Result = CT; 4948 return false; 4949 } 4950 4951 // Create a new node, and save it in the context if it belongs in the type 4952 // map. 4953 Result = GET_OR_DISTINCT( 4954 DICompositeType, 4955 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4956 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4957 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4958 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4959 Rank)); 4960 return false; 4961 } 4962 4963 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4964 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4965 OPTIONAL(flags, DIFlagField, ); \ 4966 OPTIONAL(cc, DwarfCCField, ); \ 4967 REQUIRED(types, MDField, ); 4968 PARSE_MD_FIELDS(); 4969 #undef VISIT_MD_FIELDS 4970 4971 Result = GET_OR_DISTINCT(DISubroutineType, 4972 (Context, flags.Val, cc.Val, types.Val)); 4973 return false; 4974 } 4975 4976 /// parseDIFileType: 4977 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4978 /// checksumkind: CSK_MD5, 4979 /// checksum: "000102030405060708090a0b0c0d0e0f", 4980 /// source: "source file contents") 4981 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4982 // The default constructed value for checksumkind is required, but will never 4983 // be used, as the parser checks if the field was actually Seen before using 4984 // the Val. 4985 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4986 REQUIRED(filename, MDStringField, ); \ 4987 REQUIRED(directory, MDStringField, ); \ 4988 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4989 OPTIONAL(checksum, MDStringField, ); \ 4990 OPTIONAL(source, MDStringField, ); 4991 PARSE_MD_FIELDS(); 4992 #undef VISIT_MD_FIELDS 4993 4994 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4995 if (checksumkind.Seen && checksum.Seen) 4996 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4997 else if (checksumkind.Seen || checksum.Seen) 4998 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4999 5000 Optional<MDString *> OptSource; 5001 if (source.Seen) 5002 OptSource = source.Val; 5003 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 5004 OptChecksum, OptSource)); 5005 return false; 5006 } 5007 5008 /// parseDICompileUnit: 5009 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5010 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5011 /// splitDebugFilename: "abc.debug", 5012 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5013 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5014 /// sysroot: "/", sdk: "MacOSX.sdk") 5015 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5016 if (!IsDistinct) 5017 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5018 5019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5020 REQUIRED(language, DwarfLangField, ); \ 5021 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5022 OPTIONAL(producer, MDStringField, ); \ 5023 OPTIONAL(isOptimized, MDBoolField, ); \ 5024 OPTIONAL(flags, MDStringField, ); \ 5025 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5026 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5027 OPTIONAL(emissionKind, EmissionKindField, ); \ 5028 OPTIONAL(enums, MDField, ); \ 5029 OPTIONAL(retainedTypes, MDField, ); \ 5030 OPTIONAL(globals, MDField, ); \ 5031 OPTIONAL(imports, MDField, ); \ 5032 OPTIONAL(macros, MDField, ); \ 5033 OPTIONAL(dwoId, MDUnsignedField, ); \ 5034 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5035 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5036 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5037 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5038 OPTIONAL(sysroot, MDStringField, ); \ 5039 OPTIONAL(sdk, MDStringField, ); 5040 PARSE_MD_FIELDS(); 5041 #undef VISIT_MD_FIELDS 5042 5043 Result = DICompileUnit::getDistinct( 5044 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5045 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5046 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5047 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5048 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5049 return false; 5050 } 5051 5052 /// parseDISubprogram: 5053 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5054 /// file: !1, line: 7, type: !2, isLocal: false, 5055 /// isDefinition: true, scopeLine: 8, containingType: !3, 5056 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5057 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5058 /// spFlags: 10, isOptimized: false, templateParams: !4, 5059 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5060 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5061 auto Loc = Lex.getLoc(); 5062 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5063 OPTIONAL(scope, MDField, ); \ 5064 OPTIONAL(name, MDStringField, ); \ 5065 OPTIONAL(linkageName, MDStringField, ); \ 5066 OPTIONAL(file, MDField, ); \ 5067 OPTIONAL(line, LineField, ); \ 5068 OPTIONAL(type, MDField, ); \ 5069 OPTIONAL(isLocal, MDBoolField, ); \ 5070 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5071 OPTIONAL(scopeLine, LineField, ); \ 5072 OPTIONAL(containingType, MDField, ); \ 5073 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5074 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5075 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5076 OPTIONAL(flags, DIFlagField, ); \ 5077 OPTIONAL(spFlags, DISPFlagField, ); \ 5078 OPTIONAL(isOptimized, MDBoolField, ); \ 5079 OPTIONAL(unit, MDField, ); \ 5080 OPTIONAL(templateParams, MDField, ); \ 5081 OPTIONAL(declaration, MDField, ); \ 5082 OPTIONAL(retainedNodes, MDField, ); \ 5083 OPTIONAL(thrownTypes, MDField, ); 5084 PARSE_MD_FIELDS(); 5085 #undef VISIT_MD_FIELDS 5086 5087 // An explicit spFlags field takes precedence over individual fields in 5088 // older IR versions. 5089 DISubprogram::DISPFlags SPFlags = 5090 spFlags.Seen ? spFlags.Val 5091 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5092 isOptimized.Val, virtuality.Val); 5093 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5094 return Lex.Error( 5095 Loc, 5096 "missing 'distinct', required for !DISubprogram that is a Definition"); 5097 Result = GET_OR_DISTINCT( 5098 DISubprogram, 5099 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5100 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5101 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5102 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5103 return false; 5104 } 5105 5106 /// parseDILexicalBlock: 5107 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5108 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5110 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5111 OPTIONAL(file, MDField, ); \ 5112 OPTIONAL(line, LineField, ); \ 5113 OPTIONAL(column, ColumnField, ); 5114 PARSE_MD_FIELDS(); 5115 #undef VISIT_MD_FIELDS 5116 5117 Result = GET_OR_DISTINCT( 5118 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5119 return false; 5120 } 5121 5122 /// parseDILexicalBlockFile: 5123 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5124 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5126 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5127 OPTIONAL(file, MDField, ); \ 5128 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5129 PARSE_MD_FIELDS(); 5130 #undef VISIT_MD_FIELDS 5131 5132 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5133 (Context, scope.Val, file.Val, discriminator.Val)); 5134 return false; 5135 } 5136 5137 /// parseDICommonBlock: 5138 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5139 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5140 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5141 REQUIRED(scope, MDField, ); \ 5142 OPTIONAL(declaration, MDField, ); \ 5143 OPTIONAL(name, MDStringField, ); \ 5144 OPTIONAL(file, MDField, ); \ 5145 OPTIONAL(line, LineField, ); 5146 PARSE_MD_FIELDS(); 5147 #undef VISIT_MD_FIELDS 5148 5149 Result = GET_OR_DISTINCT(DICommonBlock, 5150 (Context, scope.Val, declaration.Val, name.Val, 5151 file.Val, line.Val)); 5152 return false; 5153 } 5154 5155 /// parseDINamespace: 5156 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5157 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5158 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5159 REQUIRED(scope, MDField, ); \ 5160 OPTIONAL(name, MDStringField, ); \ 5161 OPTIONAL(exportSymbols, MDBoolField, ); 5162 PARSE_MD_FIELDS(); 5163 #undef VISIT_MD_FIELDS 5164 5165 Result = GET_OR_DISTINCT(DINamespace, 5166 (Context, scope.Val, name.Val, exportSymbols.Val)); 5167 return false; 5168 } 5169 5170 /// parseDIMacro: 5171 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5172 /// "SomeValue") 5173 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5174 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5175 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5176 OPTIONAL(line, LineField, ); \ 5177 REQUIRED(name, MDStringField, ); \ 5178 OPTIONAL(value, MDStringField, ); 5179 PARSE_MD_FIELDS(); 5180 #undef VISIT_MD_FIELDS 5181 5182 Result = GET_OR_DISTINCT(DIMacro, 5183 (Context, type.Val, line.Val, name.Val, value.Val)); 5184 return false; 5185 } 5186 5187 /// parseDIMacroFile: 5188 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5189 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5190 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5191 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5192 OPTIONAL(line, LineField, ); \ 5193 REQUIRED(file, MDField, ); \ 5194 OPTIONAL(nodes, MDField, ); 5195 PARSE_MD_FIELDS(); 5196 #undef VISIT_MD_FIELDS 5197 5198 Result = GET_OR_DISTINCT(DIMacroFile, 5199 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5200 return false; 5201 } 5202 5203 /// parseDIModule: 5204 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5205 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5206 /// file: !1, line: 4, isDecl: false) 5207 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5208 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5209 REQUIRED(scope, MDField, ); \ 5210 REQUIRED(name, MDStringField, ); \ 5211 OPTIONAL(configMacros, MDStringField, ); \ 5212 OPTIONAL(includePath, MDStringField, ); \ 5213 OPTIONAL(apinotes, MDStringField, ); \ 5214 OPTIONAL(file, MDField, ); \ 5215 OPTIONAL(line, LineField, ); \ 5216 OPTIONAL(isDecl, MDBoolField, ); 5217 PARSE_MD_FIELDS(); 5218 #undef VISIT_MD_FIELDS 5219 5220 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5221 configMacros.Val, includePath.Val, 5222 apinotes.Val, line.Val, isDecl.Val)); 5223 return false; 5224 } 5225 5226 /// parseDITemplateTypeParameter: 5227 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5228 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5229 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5230 OPTIONAL(name, MDStringField, ); \ 5231 REQUIRED(type, MDField, ); \ 5232 OPTIONAL(defaulted, MDBoolField, ); 5233 PARSE_MD_FIELDS(); 5234 #undef VISIT_MD_FIELDS 5235 5236 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5237 (Context, name.Val, type.Val, defaulted.Val)); 5238 return false; 5239 } 5240 5241 /// parseDITemplateValueParameter: 5242 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5243 /// name: "V", type: !1, defaulted: false, 5244 /// value: i32 7) 5245 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5246 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5247 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5248 OPTIONAL(name, MDStringField, ); \ 5249 OPTIONAL(type, MDField, ); \ 5250 OPTIONAL(defaulted, MDBoolField, ); \ 5251 REQUIRED(value, MDField, ); 5252 5253 PARSE_MD_FIELDS(); 5254 #undef VISIT_MD_FIELDS 5255 5256 Result = GET_OR_DISTINCT( 5257 DITemplateValueParameter, 5258 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5259 return false; 5260 } 5261 5262 /// parseDIGlobalVariable: 5263 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5264 /// file: !1, line: 7, type: !2, isLocal: false, 5265 /// isDefinition: true, templateParams: !3, 5266 /// declaration: !4, align: 8) 5267 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5268 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5269 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5270 OPTIONAL(scope, MDField, ); \ 5271 OPTIONAL(linkageName, MDStringField, ); \ 5272 OPTIONAL(file, MDField, ); \ 5273 OPTIONAL(line, LineField, ); \ 5274 OPTIONAL(type, MDField, ); \ 5275 OPTIONAL(isLocal, MDBoolField, ); \ 5276 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5277 OPTIONAL(templateParams, MDField, ); \ 5278 OPTIONAL(declaration, MDField, ); \ 5279 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5280 PARSE_MD_FIELDS(); 5281 #undef VISIT_MD_FIELDS 5282 5283 Result = 5284 GET_OR_DISTINCT(DIGlobalVariable, 5285 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5286 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5287 declaration.Val, templateParams.Val, align.Val)); 5288 return false; 5289 } 5290 5291 /// parseDILocalVariable: 5292 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5293 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5294 /// align: 8) 5295 /// ::= !DILocalVariable(scope: !0, name: "foo", 5296 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5297 /// align: 8) 5298 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5299 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5300 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5301 OPTIONAL(name, MDStringField, ); \ 5302 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5303 OPTIONAL(file, MDField, ); \ 5304 OPTIONAL(line, LineField, ); \ 5305 OPTIONAL(type, MDField, ); \ 5306 OPTIONAL(flags, DIFlagField, ); \ 5307 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5308 PARSE_MD_FIELDS(); 5309 #undef VISIT_MD_FIELDS 5310 5311 Result = GET_OR_DISTINCT(DILocalVariable, 5312 (Context, scope.Val, name.Val, file.Val, line.Val, 5313 type.Val, arg.Val, flags.Val, align.Val)); 5314 return false; 5315 } 5316 5317 /// parseDILabel: 5318 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5319 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5320 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5321 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5322 REQUIRED(name, MDStringField, ); \ 5323 REQUIRED(file, MDField, ); \ 5324 REQUIRED(line, LineField, ); 5325 PARSE_MD_FIELDS(); 5326 #undef VISIT_MD_FIELDS 5327 5328 Result = GET_OR_DISTINCT(DILabel, 5329 (Context, scope.Val, name.Val, file.Val, line.Val)); 5330 return false; 5331 } 5332 5333 /// parseDIExpression: 5334 /// ::= !DIExpression(0, 7, -1) 5335 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5336 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5337 Lex.Lex(); 5338 5339 if (parseToken(lltok::lparen, "expected '(' here")) 5340 return true; 5341 5342 SmallVector<uint64_t, 8> Elements; 5343 if (Lex.getKind() != lltok::rparen) 5344 do { 5345 if (Lex.getKind() == lltok::DwarfOp) { 5346 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5347 Lex.Lex(); 5348 Elements.push_back(Op); 5349 continue; 5350 } 5351 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5352 } 5353 5354 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5355 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5356 Lex.Lex(); 5357 Elements.push_back(Op); 5358 continue; 5359 } 5360 return tokError(Twine("invalid DWARF attribute encoding '") + 5361 Lex.getStrVal() + "'"); 5362 } 5363 5364 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5365 return tokError("expected unsigned integer"); 5366 5367 auto &U = Lex.getAPSIntVal(); 5368 if (U.ugt(UINT64_MAX)) 5369 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5370 Elements.push_back(U.getZExtValue()); 5371 Lex.Lex(); 5372 } while (EatIfPresent(lltok::comma)); 5373 5374 if (parseToken(lltok::rparen, "expected ')' here")) 5375 return true; 5376 5377 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5378 return false; 5379 } 5380 5381 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5382 return parseDIArgList(Result, IsDistinct, nullptr); 5383 } 5384 /// ParseDIArgList: 5385 /// ::= !DIArgList(i32 7, i64 %0) 5386 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5387 PerFunctionState *PFS) { 5388 assert(PFS && "Expected valid function state"); 5389 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5390 Lex.Lex(); 5391 5392 if (parseToken(lltok::lparen, "expected '(' here")) 5393 return true; 5394 5395 SmallVector<ValueAsMetadata *, 4> Args; 5396 if (Lex.getKind() != lltok::rparen) 5397 do { 5398 Metadata *MD; 5399 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5400 return true; 5401 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5402 } while (EatIfPresent(lltok::comma)); 5403 5404 if (parseToken(lltok::rparen, "expected ')' here")) 5405 return true; 5406 5407 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5408 return false; 5409 } 5410 5411 /// parseDIGlobalVariableExpression: 5412 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5413 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5414 bool IsDistinct) { 5415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5416 REQUIRED(var, MDField, ); \ 5417 REQUIRED(expr, MDField, ); 5418 PARSE_MD_FIELDS(); 5419 #undef VISIT_MD_FIELDS 5420 5421 Result = 5422 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5423 return false; 5424 } 5425 5426 /// parseDIObjCProperty: 5427 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5428 /// getter: "getFoo", attributes: 7, type: !2) 5429 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5431 OPTIONAL(name, MDStringField, ); \ 5432 OPTIONAL(file, MDField, ); \ 5433 OPTIONAL(line, LineField, ); \ 5434 OPTIONAL(setter, MDStringField, ); \ 5435 OPTIONAL(getter, MDStringField, ); \ 5436 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5437 OPTIONAL(type, MDField, ); 5438 PARSE_MD_FIELDS(); 5439 #undef VISIT_MD_FIELDS 5440 5441 Result = GET_OR_DISTINCT(DIObjCProperty, 5442 (Context, name.Val, file.Val, line.Val, setter.Val, 5443 getter.Val, attributes.Val, type.Val)); 5444 return false; 5445 } 5446 5447 /// parseDIImportedEntity: 5448 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5449 /// line: 7, name: "foo") 5450 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5451 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5452 REQUIRED(tag, DwarfTagField, ); \ 5453 REQUIRED(scope, MDField, ); \ 5454 OPTIONAL(entity, MDField, ); \ 5455 OPTIONAL(file, MDField, ); \ 5456 OPTIONAL(line, LineField, ); \ 5457 OPTIONAL(name, MDStringField, ); 5458 PARSE_MD_FIELDS(); 5459 #undef VISIT_MD_FIELDS 5460 5461 Result = GET_OR_DISTINCT( 5462 DIImportedEntity, 5463 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5464 return false; 5465 } 5466 5467 #undef PARSE_MD_FIELD 5468 #undef NOP_FIELD 5469 #undef REQUIRE_FIELD 5470 #undef DECLARE_FIELD 5471 5472 /// parseMetadataAsValue 5473 /// ::= metadata i32 %local 5474 /// ::= metadata i32 @global 5475 /// ::= metadata i32 7 5476 /// ::= metadata !0 5477 /// ::= metadata !{...} 5478 /// ::= metadata !"string" 5479 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5480 // Note: the type 'metadata' has already been parsed. 5481 Metadata *MD; 5482 if (parseMetadata(MD, &PFS)) 5483 return true; 5484 5485 V = MetadataAsValue::get(Context, MD); 5486 return false; 5487 } 5488 5489 /// parseValueAsMetadata 5490 /// ::= i32 %local 5491 /// ::= i32 @global 5492 /// ::= i32 7 5493 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5494 PerFunctionState *PFS) { 5495 Type *Ty; 5496 LocTy Loc; 5497 if (parseType(Ty, TypeMsg, Loc)) 5498 return true; 5499 if (Ty->isMetadataTy()) 5500 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5501 5502 Value *V; 5503 if (parseValue(Ty, V, PFS)) 5504 return true; 5505 5506 MD = ValueAsMetadata::get(V); 5507 return false; 5508 } 5509 5510 /// parseMetadata 5511 /// ::= i32 %local 5512 /// ::= i32 @global 5513 /// ::= i32 7 5514 /// ::= !42 5515 /// ::= !{...} 5516 /// ::= !"string" 5517 /// ::= !DILocation(...) 5518 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5519 if (Lex.getKind() == lltok::MetadataVar) { 5520 MDNode *N; 5521 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5522 // so parsing this requires a Function State. 5523 if (Lex.getStrVal() == "DIArgList") { 5524 if (parseDIArgList(N, false, PFS)) 5525 return true; 5526 } else if (parseSpecializedMDNode(N)) { 5527 return true; 5528 } 5529 MD = N; 5530 return false; 5531 } 5532 5533 // ValueAsMetadata: 5534 // <type> <value> 5535 if (Lex.getKind() != lltok::exclaim) 5536 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5537 5538 // '!'. 5539 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5540 Lex.Lex(); 5541 5542 // MDString: 5543 // ::= '!' STRINGCONSTANT 5544 if (Lex.getKind() == lltok::StringConstant) { 5545 MDString *S; 5546 if (parseMDString(S)) 5547 return true; 5548 MD = S; 5549 return false; 5550 } 5551 5552 // MDNode: 5553 // !{ ... } 5554 // !7 5555 MDNode *N; 5556 if (parseMDNodeTail(N)) 5557 return true; 5558 MD = N; 5559 return false; 5560 } 5561 5562 //===----------------------------------------------------------------------===// 5563 // Function Parsing. 5564 //===----------------------------------------------------------------------===// 5565 5566 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5567 PerFunctionState *PFS, bool IsCall) { 5568 if (Ty->isFunctionTy()) 5569 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5570 5571 switch (ID.Kind) { 5572 case ValID::t_LocalID: 5573 if (!PFS) 5574 return error(ID.Loc, "invalid use of function-local name"); 5575 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5576 return V == nullptr; 5577 case ValID::t_LocalName: 5578 if (!PFS) 5579 return error(ID.Loc, "invalid use of function-local name"); 5580 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5581 return V == nullptr; 5582 case ValID::t_InlineAsm: { 5583 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5584 return error(ID.Loc, "invalid type for inline asm constraint string"); 5585 V = InlineAsm::get( 5586 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5587 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5588 return false; 5589 } 5590 case ValID::t_GlobalName: 5591 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5592 return V == nullptr; 5593 case ValID::t_GlobalID: 5594 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5595 return V == nullptr; 5596 case ValID::t_APSInt: 5597 if (!Ty->isIntegerTy()) 5598 return error(ID.Loc, "integer constant must have integer type"); 5599 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5600 V = ConstantInt::get(Context, ID.APSIntVal); 5601 return false; 5602 case ValID::t_APFloat: 5603 if (!Ty->isFloatingPointTy() || 5604 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5605 return error(ID.Loc, "floating point constant invalid for type"); 5606 5607 // The lexer has no type info, so builds all half, bfloat, float, and double 5608 // FP constants as double. Fix this here. Long double does not need this. 5609 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5610 // Check for signaling before potentially converting and losing that info. 5611 bool IsSNAN = ID.APFloatVal.isSignaling(); 5612 bool Ignored; 5613 if (Ty->isHalfTy()) 5614 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5615 &Ignored); 5616 else if (Ty->isBFloatTy()) 5617 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5618 &Ignored); 5619 else if (Ty->isFloatTy()) 5620 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5621 &Ignored); 5622 if (IsSNAN) { 5623 // The convert call above may quiet an SNaN, so manufacture another 5624 // SNaN. The bitcast works because the payload (significand) parameter 5625 // is truncated to fit. 5626 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5627 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5628 ID.APFloatVal.isNegative(), &Payload); 5629 } 5630 } 5631 V = ConstantFP::get(Context, ID.APFloatVal); 5632 5633 if (V->getType() != Ty) 5634 return error(ID.Loc, "floating point constant does not have type '" + 5635 getTypeString(Ty) + "'"); 5636 5637 return false; 5638 case ValID::t_Null: 5639 if (!Ty->isPointerTy()) 5640 return error(ID.Loc, "null must be a pointer type"); 5641 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5642 return false; 5643 case ValID::t_Undef: 5644 // FIXME: LabelTy should not be a first-class type. 5645 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5646 return error(ID.Loc, "invalid type for undef constant"); 5647 V = UndefValue::get(Ty); 5648 return false; 5649 case ValID::t_EmptyArray: 5650 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5651 return error(ID.Loc, "invalid empty array initializer"); 5652 V = UndefValue::get(Ty); 5653 return false; 5654 case ValID::t_Zero: 5655 // FIXME: LabelTy should not be a first-class type. 5656 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5657 return error(ID.Loc, "invalid type for null constant"); 5658 V = Constant::getNullValue(Ty); 5659 return false; 5660 case ValID::t_None: 5661 if (!Ty->isTokenTy()) 5662 return error(ID.Loc, "invalid type for none constant"); 5663 V = Constant::getNullValue(Ty); 5664 return false; 5665 case ValID::t_Poison: 5666 // FIXME: LabelTy should not be a first-class type. 5667 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5668 return error(ID.Loc, "invalid type for poison constant"); 5669 V = PoisonValue::get(Ty); 5670 return false; 5671 case ValID::t_Constant: 5672 if (ID.ConstantVal->getType() != Ty) 5673 return error(ID.Loc, "constant expression type mismatch"); 5674 V = ID.ConstantVal; 5675 return false; 5676 case ValID::t_ConstantStruct: 5677 case ValID::t_PackedConstantStruct: 5678 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5679 if (ST->getNumElements() != ID.UIntVal) 5680 return error(ID.Loc, 5681 "initializer with struct type has wrong # elements"); 5682 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5683 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5684 5685 // Verify that the elements are compatible with the structtype. 5686 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5687 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5688 return error( 5689 ID.Loc, 5690 "element " + Twine(i) + 5691 " of struct initializer doesn't match struct element type"); 5692 5693 V = ConstantStruct::get( 5694 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5695 } else 5696 return error(ID.Loc, "constant expression type mismatch"); 5697 return false; 5698 } 5699 llvm_unreachable("Invalid ValID"); 5700 } 5701 5702 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5703 C = nullptr; 5704 ValID ID; 5705 auto Loc = Lex.getLoc(); 5706 if (parseValID(ID, /*PFS=*/nullptr)) 5707 return true; 5708 switch (ID.Kind) { 5709 case ValID::t_APSInt: 5710 case ValID::t_APFloat: 5711 case ValID::t_Undef: 5712 case ValID::t_Constant: 5713 case ValID::t_ConstantStruct: 5714 case ValID::t_PackedConstantStruct: { 5715 Value *V; 5716 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5717 return true; 5718 assert(isa<Constant>(V) && "Expected a constant value"); 5719 C = cast<Constant>(V); 5720 return false; 5721 } 5722 case ValID::t_Null: 5723 C = Constant::getNullValue(Ty); 5724 return false; 5725 default: 5726 return error(Loc, "expected a constant value"); 5727 } 5728 } 5729 5730 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5731 V = nullptr; 5732 ValID ID; 5733 return parseValID(ID, PFS) || 5734 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5735 } 5736 5737 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5738 Type *Ty = nullptr; 5739 return parseType(Ty) || parseValue(Ty, V, PFS); 5740 } 5741 5742 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5743 PerFunctionState &PFS) { 5744 Value *V; 5745 Loc = Lex.getLoc(); 5746 if (parseTypeAndValue(V, PFS)) 5747 return true; 5748 if (!isa<BasicBlock>(V)) 5749 return error(Loc, "expected a basic block"); 5750 BB = cast<BasicBlock>(V); 5751 return false; 5752 } 5753 5754 /// FunctionHeader 5755 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5756 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5757 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5758 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5759 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5760 // parse the linkage. 5761 LocTy LinkageLoc = Lex.getLoc(); 5762 unsigned Linkage; 5763 unsigned Visibility; 5764 unsigned DLLStorageClass; 5765 bool DSOLocal; 5766 AttrBuilder RetAttrs; 5767 unsigned CC; 5768 bool HasLinkage; 5769 Type *RetType = nullptr; 5770 LocTy RetTypeLoc = Lex.getLoc(); 5771 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5772 DSOLocal) || 5773 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5774 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5775 return true; 5776 5777 // Verify that the linkage is ok. 5778 switch ((GlobalValue::LinkageTypes)Linkage) { 5779 case GlobalValue::ExternalLinkage: 5780 break; // always ok. 5781 case GlobalValue::ExternalWeakLinkage: 5782 if (IsDefine) 5783 return error(LinkageLoc, "invalid linkage for function definition"); 5784 break; 5785 case GlobalValue::PrivateLinkage: 5786 case GlobalValue::InternalLinkage: 5787 case GlobalValue::AvailableExternallyLinkage: 5788 case GlobalValue::LinkOnceAnyLinkage: 5789 case GlobalValue::LinkOnceODRLinkage: 5790 case GlobalValue::WeakAnyLinkage: 5791 case GlobalValue::WeakODRLinkage: 5792 if (!IsDefine) 5793 return error(LinkageLoc, "invalid linkage for function declaration"); 5794 break; 5795 case GlobalValue::AppendingLinkage: 5796 case GlobalValue::CommonLinkage: 5797 return error(LinkageLoc, "invalid function linkage type"); 5798 } 5799 5800 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5801 return error(LinkageLoc, 5802 "symbol with local linkage must have default visibility"); 5803 5804 if (!FunctionType::isValidReturnType(RetType)) 5805 return error(RetTypeLoc, "invalid function return type"); 5806 5807 LocTy NameLoc = Lex.getLoc(); 5808 5809 std::string FunctionName; 5810 if (Lex.getKind() == lltok::GlobalVar) { 5811 FunctionName = Lex.getStrVal(); 5812 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5813 unsigned NameID = Lex.getUIntVal(); 5814 5815 if (NameID != NumberedVals.size()) 5816 return tokError("function expected to be numbered '%" + 5817 Twine(NumberedVals.size()) + "'"); 5818 } else { 5819 return tokError("expected function name"); 5820 } 5821 5822 Lex.Lex(); 5823 5824 if (Lex.getKind() != lltok::lparen) 5825 return tokError("expected '(' in function argument list"); 5826 5827 SmallVector<ArgInfo, 8> ArgList; 5828 bool IsVarArg; 5829 AttrBuilder FuncAttrs; 5830 std::vector<unsigned> FwdRefAttrGrps; 5831 LocTy BuiltinLoc; 5832 std::string Section; 5833 std::string Partition; 5834 MaybeAlign Alignment; 5835 std::string GC; 5836 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5837 unsigned AddrSpace = 0; 5838 Constant *Prefix = nullptr; 5839 Constant *Prologue = nullptr; 5840 Constant *PersonalityFn = nullptr; 5841 Comdat *C; 5842 5843 if (parseArgumentList(ArgList, IsVarArg) || 5844 parseOptionalUnnamedAddr(UnnamedAddr) || 5845 parseOptionalProgramAddrSpace(AddrSpace) || 5846 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5847 BuiltinLoc) || 5848 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5849 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5850 parseOptionalComdat(FunctionName, C) || 5851 parseOptionalAlignment(Alignment) || 5852 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5853 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5854 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5855 (EatIfPresent(lltok::kw_personality) && 5856 parseGlobalTypeAndValue(PersonalityFn))) 5857 return true; 5858 5859 if (FuncAttrs.contains(Attribute::Builtin)) 5860 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5861 5862 // If the alignment was parsed as an attribute, move to the alignment field. 5863 if (FuncAttrs.hasAlignmentAttr()) { 5864 Alignment = FuncAttrs.getAlignment(); 5865 FuncAttrs.removeAttribute(Attribute::Alignment); 5866 } 5867 5868 // Okay, if we got here, the function is syntactically valid. Convert types 5869 // and do semantic checks. 5870 std::vector<Type*> ParamTypeList; 5871 SmallVector<AttributeSet, 8> Attrs; 5872 5873 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5874 ParamTypeList.push_back(ArgList[i].Ty); 5875 Attrs.push_back(ArgList[i].Attrs); 5876 } 5877 5878 AttributeList PAL = 5879 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5880 AttributeSet::get(Context, RetAttrs), Attrs); 5881 5882 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5883 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5884 5885 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5886 PointerType *PFT = PointerType::get(FT, AddrSpace); 5887 5888 Fn = nullptr; 5889 if (!FunctionName.empty()) { 5890 // If this was a definition of a forward reference, remove the definition 5891 // from the forward reference table and fill in the forward ref. 5892 auto FRVI = ForwardRefVals.find(FunctionName); 5893 if (FRVI != ForwardRefVals.end()) { 5894 Fn = M->getFunction(FunctionName); 5895 if (!Fn) 5896 return error(FRVI->second.second, "invalid forward reference to " 5897 "function as global value!"); 5898 if (Fn->getType() != PFT) 5899 return error(FRVI->second.second, 5900 "invalid forward reference to " 5901 "function '" + 5902 FunctionName + 5903 "' with wrong type: " 5904 "expected '" + 5905 getTypeString(PFT) + "' but was '" + 5906 getTypeString(Fn->getType()) + "'"); 5907 ForwardRefVals.erase(FRVI); 5908 } else if ((Fn = M->getFunction(FunctionName))) { 5909 // Reject redefinitions. 5910 return error(NameLoc, 5911 "invalid redefinition of function '" + FunctionName + "'"); 5912 } else if (M->getNamedValue(FunctionName)) { 5913 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5914 } 5915 5916 } else { 5917 // If this is a definition of a forward referenced function, make sure the 5918 // types agree. 5919 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5920 if (I != ForwardRefValIDs.end()) { 5921 Fn = cast<Function>(I->second.first); 5922 if (Fn->getType() != PFT) 5923 return error(NameLoc, "type of definition and forward reference of '@" + 5924 Twine(NumberedVals.size()) + 5925 "' disagree: " 5926 "expected '" + 5927 getTypeString(PFT) + "' but was '" + 5928 getTypeString(Fn->getType()) + "'"); 5929 ForwardRefValIDs.erase(I); 5930 } 5931 } 5932 5933 if (!Fn) 5934 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5935 FunctionName, M); 5936 else // Move the forward-reference to the correct spot in the module. 5937 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5938 5939 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5940 5941 if (FunctionName.empty()) 5942 NumberedVals.push_back(Fn); 5943 5944 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5945 maybeSetDSOLocal(DSOLocal, *Fn); 5946 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5947 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5948 Fn->setCallingConv(CC); 5949 Fn->setAttributes(PAL); 5950 Fn->setUnnamedAddr(UnnamedAddr); 5951 Fn->setAlignment(MaybeAlign(Alignment)); 5952 Fn->setSection(Section); 5953 Fn->setPartition(Partition); 5954 Fn->setComdat(C); 5955 Fn->setPersonalityFn(PersonalityFn); 5956 if (!GC.empty()) Fn->setGC(GC); 5957 Fn->setPrefixData(Prefix); 5958 Fn->setPrologueData(Prologue); 5959 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5960 5961 // Add all of the arguments we parsed to the function. 5962 Function::arg_iterator ArgIt = Fn->arg_begin(); 5963 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5964 // If the argument has a name, insert it into the argument symbol table. 5965 if (ArgList[i].Name.empty()) continue; 5966 5967 // Set the name, if it conflicted, it will be auto-renamed. 5968 ArgIt->setName(ArgList[i].Name); 5969 5970 if (ArgIt->getName() != ArgList[i].Name) 5971 return error(ArgList[i].Loc, 5972 "redefinition of argument '%" + ArgList[i].Name + "'"); 5973 } 5974 5975 if (IsDefine) 5976 return false; 5977 5978 // Check the declaration has no block address forward references. 5979 ValID ID; 5980 if (FunctionName.empty()) { 5981 ID.Kind = ValID::t_GlobalID; 5982 ID.UIntVal = NumberedVals.size() - 1; 5983 } else { 5984 ID.Kind = ValID::t_GlobalName; 5985 ID.StrVal = FunctionName; 5986 } 5987 auto Blocks = ForwardRefBlockAddresses.find(ID); 5988 if (Blocks != ForwardRefBlockAddresses.end()) 5989 return error(Blocks->first.Loc, 5990 "cannot take blockaddress inside a declaration"); 5991 return false; 5992 } 5993 5994 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5995 ValID ID; 5996 if (FunctionNumber == -1) { 5997 ID.Kind = ValID::t_GlobalName; 5998 ID.StrVal = std::string(F.getName()); 5999 } else { 6000 ID.Kind = ValID::t_GlobalID; 6001 ID.UIntVal = FunctionNumber; 6002 } 6003 6004 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6005 if (Blocks == P.ForwardRefBlockAddresses.end()) 6006 return false; 6007 6008 for (const auto &I : Blocks->second) { 6009 const ValID &BBID = I.first; 6010 GlobalValue *GV = I.second; 6011 6012 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6013 "Expected local id or name"); 6014 BasicBlock *BB; 6015 if (BBID.Kind == ValID::t_LocalName) 6016 BB = getBB(BBID.StrVal, BBID.Loc); 6017 else 6018 BB = getBB(BBID.UIntVal, BBID.Loc); 6019 if (!BB) 6020 return P.error(BBID.Loc, "referenced value is not a basic block"); 6021 6022 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6023 GV->eraseFromParent(); 6024 } 6025 6026 P.ForwardRefBlockAddresses.erase(Blocks); 6027 return false; 6028 } 6029 6030 /// parseFunctionBody 6031 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6032 bool LLParser::parseFunctionBody(Function &Fn) { 6033 if (Lex.getKind() != lltok::lbrace) 6034 return tokError("expected '{' in function body"); 6035 Lex.Lex(); // eat the {. 6036 6037 int FunctionNumber = -1; 6038 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6039 6040 PerFunctionState PFS(*this, Fn, FunctionNumber); 6041 6042 // Resolve block addresses and allow basic blocks to be forward-declared 6043 // within this function. 6044 if (PFS.resolveForwardRefBlockAddresses()) 6045 return true; 6046 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6047 6048 // We need at least one basic block. 6049 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6050 return tokError("function body requires at least one basic block"); 6051 6052 while (Lex.getKind() != lltok::rbrace && 6053 Lex.getKind() != lltok::kw_uselistorder) 6054 if (parseBasicBlock(PFS)) 6055 return true; 6056 6057 while (Lex.getKind() != lltok::rbrace) 6058 if (parseUseListOrder(&PFS)) 6059 return true; 6060 6061 // Eat the }. 6062 Lex.Lex(); 6063 6064 // Verify function is ok. 6065 return PFS.finishFunction(); 6066 } 6067 6068 /// parseBasicBlock 6069 /// ::= (LabelStr|LabelID)? Instruction* 6070 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6071 // If this basic block starts out with a name, remember it. 6072 std::string Name; 6073 int NameID = -1; 6074 LocTy NameLoc = Lex.getLoc(); 6075 if (Lex.getKind() == lltok::LabelStr) { 6076 Name = Lex.getStrVal(); 6077 Lex.Lex(); 6078 } else if (Lex.getKind() == lltok::LabelID) { 6079 NameID = Lex.getUIntVal(); 6080 Lex.Lex(); 6081 } 6082 6083 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6084 if (!BB) 6085 return true; 6086 6087 std::string NameStr; 6088 6089 // parse the instructions in this block until we get a terminator. 6090 Instruction *Inst; 6091 do { 6092 // This instruction may have three possibilities for a name: a) none 6093 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6094 LocTy NameLoc = Lex.getLoc(); 6095 int NameID = -1; 6096 NameStr = ""; 6097 6098 if (Lex.getKind() == lltok::LocalVarID) { 6099 NameID = Lex.getUIntVal(); 6100 Lex.Lex(); 6101 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6102 return true; 6103 } else if (Lex.getKind() == lltok::LocalVar) { 6104 NameStr = Lex.getStrVal(); 6105 Lex.Lex(); 6106 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6107 return true; 6108 } 6109 6110 switch (parseInstruction(Inst, BB, PFS)) { 6111 default: 6112 llvm_unreachable("Unknown parseInstruction result!"); 6113 case InstError: return true; 6114 case InstNormal: 6115 BB->getInstList().push_back(Inst); 6116 6117 // With a normal result, we check to see if the instruction is followed by 6118 // a comma and metadata. 6119 if (EatIfPresent(lltok::comma)) 6120 if (parseInstructionMetadata(*Inst)) 6121 return true; 6122 break; 6123 case InstExtraComma: 6124 BB->getInstList().push_back(Inst); 6125 6126 // If the instruction parser ate an extra comma at the end of it, it 6127 // *must* be followed by metadata. 6128 if (parseInstructionMetadata(*Inst)) 6129 return true; 6130 break; 6131 } 6132 6133 // Set the name on the instruction. 6134 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6135 return true; 6136 } while (!Inst->isTerminator()); 6137 6138 return false; 6139 } 6140 6141 //===----------------------------------------------------------------------===// 6142 // Instruction Parsing. 6143 //===----------------------------------------------------------------------===// 6144 6145 /// parseInstruction - parse one of the many different instructions. 6146 /// 6147 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6148 PerFunctionState &PFS) { 6149 lltok::Kind Token = Lex.getKind(); 6150 if (Token == lltok::Eof) 6151 return tokError("found end of file when expecting more instructions"); 6152 LocTy Loc = Lex.getLoc(); 6153 unsigned KeywordVal = Lex.getUIntVal(); 6154 Lex.Lex(); // Eat the keyword. 6155 6156 switch (Token) { 6157 default: 6158 return error(Loc, "expected instruction opcode"); 6159 // Terminator Instructions. 6160 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6161 case lltok::kw_ret: 6162 return parseRet(Inst, BB, PFS); 6163 case lltok::kw_br: 6164 return parseBr(Inst, PFS); 6165 case lltok::kw_switch: 6166 return parseSwitch(Inst, PFS); 6167 case lltok::kw_indirectbr: 6168 return parseIndirectBr(Inst, PFS); 6169 case lltok::kw_invoke: 6170 return parseInvoke(Inst, PFS); 6171 case lltok::kw_resume: 6172 return parseResume(Inst, PFS); 6173 case lltok::kw_cleanupret: 6174 return parseCleanupRet(Inst, PFS); 6175 case lltok::kw_catchret: 6176 return parseCatchRet(Inst, PFS); 6177 case lltok::kw_catchswitch: 6178 return parseCatchSwitch(Inst, PFS); 6179 case lltok::kw_catchpad: 6180 return parseCatchPad(Inst, PFS); 6181 case lltok::kw_cleanuppad: 6182 return parseCleanupPad(Inst, PFS); 6183 case lltok::kw_callbr: 6184 return parseCallBr(Inst, PFS); 6185 // Unary Operators. 6186 case lltok::kw_fneg: { 6187 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6188 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6189 if (Res != 0) 6190 return Res; 6191 if (FMF.any()) 6192 Inst->setFastMathFlags(FMF); 6193 return false; 6194 } 6195 // Binary Operators. 6196 case lltok::kw_add: 6197 case lltok::kw_sub: 6198 case lltok::kw_mul: 6199 case lltok::kw_shl: { 6200 bool NUW = EatIfPresent(lltok::kw_nuw); 6201 bool NSW = EatIfPresent(lltok::kw_nsw); 6202 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6203 6204 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6205 return true; 6206 6207 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6208 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6209 return false; 6210 } 6211 case lltok::kw_fadd: 6212 case lltok::kw_fsub: 6213 case lltok::kw_fmul: 6214 case lltok::kw_fdiv: 6215 case lltok::kw_frem: { 6216 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6217 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6218 if (Res != 0) 6219 return Res; 6220 if (FMF.any()) 6221 Inst->setFastMathFlags(FMF); 6222 return 0; 6223 } 6224 6225 case lltok::kw_sdiv: 6226 case lltok::kw_udiv: 6227 case lltok::kw_lshr: 6228 case lltok::kw_ashr: { 6229 bool Exact = EatIfPresent(lltok::kw_exact); 6230 6231 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6232 return true; 6233 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6234 return false; 6235 } 6236 6237 case lltok::kw_urem: 6238 case lltok::kw_srem: 6239 return parseArithmetic(Inst, PFS, KeywordVal, 6240 /*IsFP*/ false); 6241 case lltok::kw_and: 6242 case lltok::kw_or: 6243 case lltok::kw_xor: 6244 return parseLogical(Inst, PFS, KeywordVal); 6245 case lltok::kw_icmp: 6246 return parseCompare(Inst, PFS, KeywordVal); 6247 case lltok::kw_fcmp: { 6248 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6249 int Res = parseCompare(Inst, PFS, KeywordVal); 6250 if (Res != 0) 6251 return Res; 6252 if (FMF.any()) 6253 Inst->setFastMathFlags(FMF); 6254 return 0; 6255 } 6256 6257 // Casts. 6258 case lltok::kw_trunc: 6259 case lltok::kw_zext: 6260 case lltok::kw_sext: 6261 case lltok::kw_fptrunc: 6262 case lltok::kw_fpext: 6263 case lltok::kw_bitcast: 6264 case lltok::kw_addrspacecast: 6265 case lltok::kw_uitofp: 6266 case lltok::kw_sitofp: 6267 case lltok::kw_fptoui: 6268 case lltok::kw_fptosi: 6269 case lltok::kw_inttoptr: 6270 case lltok::kw_ptrtoint: 6271 return parseCast(Inst, PFS, KeywordVal); 6272 // Other. 6273 case lltok::kw_select: { 6274 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6275 int Res = parseSelect(Inst, PFS); 6276 if (Res != 0) 6277 return Res; 6278 if (FMF.any()) { 6279 if (!isa<FPMathOperator>(Inst)) 6280 return error(Loc, "fast-math-flags specified for select without " 6281 "floating-point scalar or vector return type"); 6282 Inst->setFastMathFlags(FMF); 6283 } 6284 return 0; 6285 } 6286 case lltok::kw_va_arg: 6287 return parseVAArg(Inst, PFS); 6288 case lltok::kw_extractelement: 6289 return parseExtractElement(Inst, PFS); 6290 case lltok::kw_insertelement: 6291 return parseInsertElement(Inst, PFS); 6292 case lltok::kw_shufflevector: 6293 return parseShuffleVector(Inst, PFS); 6294 case lltok::kw_phi: { 6295 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6296 int Res = parsePHI(Inst, PFS); 6297 if (Res != 0) 6298 return Res; 6299 if (FMF.any()) { 6300 if (!isa<FPMathOperator>(Inst)) 6301 return error(Loc, "fast-math-flags specified for phi without " 6302 "floating-point scalar or vector return type"); 6303 Inst->setFastMathFlags(FMF); 6304 } 6305 return 0; 6306 } 6307 case lltok::kw_landingpad: 6308 return parseLandingPad(Inst, PFS); 6309 case lltok::kw_freeze: 6310 return parseFreeze(Inst, PFS); 6311 // Call. 6312 case lltok::kw_call: 6313 return parseCall(Inst, PFS, CallInst::TCK_None); 6314 case lltok::kw_tail: 6315 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6316 case lltok::kw_musttail: 6317 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6318 case lltok::kw_notail: 6319 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6320 // Memory. 6321 case lltok::kw_alloca: 6322 return parseAlloc(Inst, PFS); 6323 case lltok::kw_load: 6324 return parseLoad(Inst, PFS); 6325 case lltok::kw_store: 6326 return parseStore(Inst, PFS); 6327 case lltok::kw_cmpxchg: 6328 return parseCmpXchg(Inst, PFS); 6329 case lltok::kw_atomicrmw: 6330 return parseAtomicRMW(Inst, PFS); 6331 case lltok::kw_fence: 6332 return parseFence(Inst, PFS); 6333 case lltok::kw_getelementptr: 6334 return parseGetElementPtr(Inst, PFS); 6335 case lltok::kw_extractvalue: 6336 return parseExtractValue(Inst, PFS); 6337 case lltok::kw_insertvalue: 6338 return parseInsertValue(Inst, PFS); 6339 } 6340 } 6341 6342 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6343 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6344 if (Opc == Instruction::FCmp) { 6345 switch (Lex.getKind()) { 6346 default: 6347 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6348 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6349 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6350 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6351 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6352 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6353 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6354 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6355 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6356 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6357 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6358 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6359 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6360 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6361 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6362 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6363 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6364 } 6365 } else { 6366 switch (Lex.getKind()) { 6367 default: 6368 return tokError("expected icmp predicate (e.g. 'eq')"); 6369 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6370 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6371 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6372 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6373 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6374 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6375 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6376 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6377 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6378 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6379 } 6380 } 6381 Lex.Lex(); 6382 return false; 6383 } 6384 6385 //===----------------------------------------------------------------------===// 6386 // Terminator Instructions. 6387 //===----------------------------------------------------------------------===// 6388 6389 /// parseRet - parse a return instruction. 6390 /// ::= 'ret' void (',' !dbg, !1)* 6391 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6392 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6393 PerFunctionState &PFS) { 6394 SMLoc TypeLoc = Lex.getLoc(); 6395 Type *Ty = nullptr; 6396 if (parseType(Ty, true /*void allowed*/)) 6397 return true; 6398 6399 Type *ResType = PFS.getFunction().getReturnType(); 6400 6401 if (Ty->isVoidTy()) { 6402 if (!ResType->isVoidTy()) 6403 return error(TypeLoc, "value doesn't match function result type '" + 6404 getTypeString(ResType) + "'"); 6405 6406 Inst = ReturnInst::Create(Context); 6407 return false; 6408 } 6409 6410 Value *RV; 6411 if (parseValue(Ty, RV, PFS)) 6412 return true; 6413 6414 if (ResType != RV->getType()) 6415 return error(TypeLoc, "value doesn't match function result type '" + 6416 getTypeString(ResType) + "'"); 6417 6418 Inst = ReturnInst::Create(Context, RV); 6419 return false; 6420 } 6421 6422 /// parseBr 6423 /// ::= 'br' TypeAndValue 6424 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6425 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6426 LocTy Loc, Loc2; 6427 Value *Op0; 6428 BasicBlock *Op1, *Op2; 6429 if (parseTypeAndValue(Op0, Loc, PFS)) 6430 return true; 6431 6432 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6433 Inst = BranchInst::Create(BB); 6434 return false; 6435 } 6436 6437 if (Op0->getType() != Type::getInt1Ty(Context)) 6438 return error(Loc, "branch condition must have 'i1' type"); 6439 6440 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6441 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6442 parseToken(lltok::comma, "expected ',' after true destination") || 6443 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6444 return true; 6445 6446 Inst = BranchInst::Create(Op1, Op2, Op0); 6447 return false; 6448 } 6449 6450 /// parseSwitch 6451 /// Instruction 6452 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6453 /// JumpTable 6454 /// ::= (TypeAndValue ',' TypeAndValue)* 6455 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6456 LocTy CondLoc, BBLoc; 6457 Value *Cond; 6458 BasicBlock *DefaultBB; 6459 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6460 parseToken(lltok::comma, "expected ',' after switch condition") || 6461 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6462 parseToken(lltok::lsquare, "expected '[' with switch table")) 6463 return true; 6464 6465 if (!Cond->getType()->isIntegerTy()) 6466 return error(CondLoc, "switch condition must have integer type"); 6467 6468 // parse the jump table pairs. 6469 SmallPtrSet<Value*, 32> SeenCases; 6470 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6471 while (Lex.getKind() != lltok::rsquare) { 6472 Value *Constant; 6473 BasicBlock *DestBB; 6474 6475 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6476 parseToken(lltok::comma, "expected ',' after case value") || 6477 parseTypeAndBasicBlock(DestBB, PFS)) 6478 return true; 6479 6480 if (!SeenCases.insert(Constant).second) 6481 return error(CondLoc, "duplicate case value in switch"); 6482 if (!isa<ConstantInt>(Constant)) 6483 return error(CondLoc, "case value is not a constant integer"); 6484 6485 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6486 } 6487 6488 Lex.Lex(); // Eat the ']'. 6489 6490 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6491 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6492 SI->addCase(Table[i].first, Table[i].second); 6493 Inst = SI; 6494 return false; 6495 } 6496 6497 /// parseIndirectBr 6498 /// Instruction 6499 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6500 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6501 LocTy AddrLoc; 6502 Value *Address; 6503 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6504 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6505 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6506 return true; 6507 6508 if (!Address->getType()->isPointerTy()) 6509 return error(AddrLoc, "indirectbr address must have pointer type"); 6510 6511 // parse the destination list. 6512 SmallVector<BasicBlock*, 16> DestList; 6513 6514 if (Lex.getKind() != lltok::rsquare) { 6515 BasicBlock *DestBB; 6516 if (parseTypeAndBasicBlock(DestBB, PFS)) 6517 return true; 6518 DestList.push_back(DestBB); 6519 6520 while (EatIfPresent(lltok::comma)) { 6521 if (parseTypeAndBasicBlock(DestBB, PFS)) 6522 return true; 6523 DestList.push_back(DestBB); 6524 } 6525 } 6526 6527 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6528 return true; 6529 6530 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6531 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6532 IBI->addDestination(DestList[i]); 6533 Inst = IBI; 6534 return false; 6535 } 6536 6537 /// parseInvoke 6538 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6539 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6540 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6541 LocTy CallLoc = Lex.getLoc(); 6542 AttrBuilder RetAttrs, FnAttrs; 6543 std::vector<unsigned> FwdRefAttrGrps; 6544 LocTy NoBuiltinLoc; 6545 unsigned CC; 6546 unsigned InvokeAddrSpace; 6547 Type *RetType = nullptr; 6548 LocTy RetTypeLoc; 6549 ValID CalleeID; 6550 SmallVector<ParamInfo, 16> ArgList; 6551 SmallVector<OperandBundleDef, 2> BundleList; 6552 6553 BasicBlock *NormalBB, *UnwindBB; 6554 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6555 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6556 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6557 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6558 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6559 NoBuiltinLoc) || 6560 parseOptionalOperandBundles(BundleList, PFS) || 6561 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6562 parseTypeAndBasicBlock(NormalBB, PFS) || 6563 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6564 parseTypeAndBasicBlock(UnwindBB, PFS)) 6565 return true; 6566 6567 // If RetType is a non-function pointer type, then this is the short syntax 6568 // for the call, which means that RetType is just the return type. Infer the 6569 // rest of the function argument types from the arguments that are present. 6570 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6571 if (!Ty) { 6572 // Pull out the types of all of the arguments... 6573 std::vector<Type*> ParamTypes; 6574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6575 ParamTypes.push_back(ArgList[i].V->getType()); 6576 6577 if (!FunctionType::isValidReturnType(RetType)) 6578 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6579 6580 Ty = FunctionType::get(RetType, ParamTypes, false); 6581 } 6582 6583 CalleeID.FTy = Ty; 6584 6585 // Look up the callee. 6586 Value *Callee; 6587 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6588 Callee, &PFS, /*IsCall=*/true)) 6589 return true; 6590 6591 // Set up the Attribute for the function. 6592 SmallVector<Value *, 8> Args; 6593 SmallVector<AttributeSet, 8> ArgAttrs; 6594 6595 // Loop through FunctionType's arguments and ensure they are specified 6596 // correctly. Also, gather any parameter attributes. 6597 FunctionType::param_iterator I = Ty->param_begin(); 6598 FunctionType::param_iterator E = Ty->param_end(); 6599 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6600 Type *ExpectedTy = nullptr; 6601 if (I != E) { 6602 ExpectedTy = *I++; 6603 } else if (!Ty->isVarArg()) { 6604 return error(ArgList[i].Loc, "too many arguments specified"); 6605 } 6606 6607 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6608 return error(ArgList[i].Loc, "argument is not of expected type '" + 6609 getTypeString(ExpectedTy) + "'"); 6610 Args.push_back(ArgList[i].V); 6611 ArgAttrs.push_back(ArgList[i].Attrs); 6612 } 6613 6614 if (I != E) 6615 return error(CallLoc, "not enough parameters specified for call"); 6616 6617 if (FnAttrs.hasAlignmentAttr()) 6618 return error(CallLoc, "invoke instructions may not have an alignment"); 6619 6620 // Finish off the Attribute and check them 6621 AttributeList PAL = 6622 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6623 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6624 6625 InvokeInst *II = 6626 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6627 II->setCallingConv(CC); 6628 II->setAttributes(PAL); 6629 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6630 Inst = II; 6631 return false; 6632 } 6633 6634 /// parseResume 6635 /// ::= 'resume' TypeAndValue 6636 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6637 Value *Exn; LocTy ExnLoc; 6638 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6639 return true; 6640 6641 ResumeInst *RI = ResumeInst::Create(Exn); 6642 Inst = RI; 6643 return false; 6644 } 6645 6646 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6647 PerFunctionState &PFS) { 6648 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6649 return true; 6650 6651 while (Lex.getKind() != lltok::rsquare) { 6652 // If this isn't the first argument, we need a comma. 6653 if (!Args.empty() && 6654 parseToken(lltok::comma, "expected ',' in argument list")) 6655 return true; 6656 6657 // parse the argument. 6658 LocTy ArgLoc; 6659 Type *ArgTy = nullptr; 6660 if (parseType(ArgTy, ArgLoc)) 6661 return true; 6662 6663 Value *V; 6664 if (ArgTy->isMetadataTy()) { 6665 if (parseMetadataAsValue(V, PFS)) 6666 return true; 6667 } else { 6668 if (parseValue(ArgTy, V, PFS)) 6669 return true; 6670 } 6671 Args.push_back(V); 6672 } 6673 6674 Lex.Lex(); // Lex the ']'. 6675 return false; 6676 } 6677 6678 /// parseCleanupRet 6679 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6680 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6681 Value *CleanupPad = nullptr; 6682 6683 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6684 return true; 6685 6686 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6687 return true; 6688 6689 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6690 return true; 6691 6692 BasicBlock *UnwindBB = nullptr; 6693 if (Lex.getKind() == lltok::kw_to) { 6694 Lex.Lex(); 6695 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6696 return true; 6697 } else { 6698 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6699 return true; 6700 } 6701 } 6702 6703 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6704 return false; 6705 } 6706 6707 /// parseCatchRet 6708 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6709 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6710 Value *CatchPad = nullptr; 6711 6712 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6713 return true; 6714 6715 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6716 return true; 6717 6718 BasicBlock *BB; 6719 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6720 parseTypeAndBasicBlock(BB, PFS)) 6721 return true; 6722 6723 Inst = CatchReturnInst::Create(CatchPad, BB); 6724 return false; 6725 } 6726 6727 /// parseCatchSwitch 6728 /// ::= 'catchswitch' within Parent 6729 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6730 Value *ParentPad; 6731 6732 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6733 return true; 6734 6735 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6736 Lex.getKind() != lltok::LocalVarID) 6737 return tokError("expected scope value for catchswitch"); 6738 6739 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6740 return true; 6741 6742 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6743 return true; 6744 6745 SmallVector<BasicBlock *, 32> Table; 6746 do { 6747 BasicBlock *DestBB; 6748 if (parseTypeAndBasicBlock(DestBB, PFS)) 6749 return true; 6750 Table.push_back(DestBB); 6751 } while (EatIfPresent(lltok::comma)); 6752 6753 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6754 return true; 6755 6756 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6757 return true; 6758 6759 BasicBlock *UnwindBB = nullptr; 6760 if (EatIfPresent(lltok::kw_to)) { 6761 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6762 return true; 6763 } else { 6764 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6765 return true; 6766 } 6767 6768 auto *CatchSwitch = 6769 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6770 for (BasicBlock *DestBB : Table) 6771 CatchSwitch->addHandler(DestBB); 6772 Inst = CatchSwitch; 6773 return false; 6774 } 6775 6776 /// parseCatchPad 6777 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6778 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6779 Value *CatchSwitch = nullptr; 6780 6781 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6782 return true; 6783 6784 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6785 return tokError("expected scope value for catchpad"); 6786 6787 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6788 return true; 6789 6790 SmallVector<Value *, 8> Args; 6791 if (parseExceptionArgs(Args, PFS)) 6792 return true; 6793 6794 Inst = CatchPadInst::Create(CatchSwitch, Args); 6795 return false; 6796 } 6797 6798 /// parseCleanupPad 6799 /// ::= 'cleanuppad' within Parent ParamList 6800 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6801 Value *ParentPad = nullptr; 6802 6803 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6804 return true; 6805 6806 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6807 Lex.getKind() != lltok::LocalVarID) 6808 return tokError("expected scope value for cleanuppad"); 6809 6810 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6811 return true; 6812 6813 SmallVector<Value *, 8> Args; 6814 if (parseExceptionArgs(Args, PFS)) 6815 return true; 6816 6817 Inst = CleanupPadInst::Create(ParentPad, Args); 6818 return false; 6819 } 6820 6821 //===----------------------------------------------------------------------===// 6822 // Unary Operators. 6823 //===----------------------------------------------------------------------===// 6824 6825 /// parseUnaryOp 6826 /// ::= UnaryOp TypeAndValue ',' Value 6827 /// 6828 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6829 /// operand is allowed. 6830 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6831 unsigned Opc, bool IsFP) { 6832 LocTy Loc; Value *LHS; 6833 if (parseTypeAndValue(LHS, Loc, PFS)) 6834 return true; 6835 6836 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6837 : LHS->getType()->isIntOrIntVectorTy(); 6838 6839 if (!Valid) 6840 return error(Loc, "invalid operand type for instruction"); 6841 6842 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6843 return false; 6844 } 6845 6846 /// parseCallBr 6847 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6848 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6849 /// '[' LabelList ']' 6850 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6851 LocTy CallLoc = Lex.getLoc(); 6852 AttrBuilder RetAttrs, FnAttrs; 6853 std::vector<unsigned> FwdRefAttrGrps; 6854 LocTy NoBuiltinLoc; 6855 unsigned CC; 6856 Type *RetType = nullptr; 6857 LocTy RetTypeLoc; 6858 ValID CalleeID; 6859 SmallVector<ParamInfo, 16> ArgList; 6860 SmallVector<OperandBundleDef, 2> BundleList; 6861 6862 BasicBlock *DefaultDest; 6863 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6864 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6865 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6866 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6867 NoBuiltinLoc) || 6868 parseOptionalOperandBundles(BundleList, PFS) || 6869 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6870 parseTypeAndBasicBlock(DefaultDest, PFS) || 6871 parseToken(lltok::lsquare, "expected '[' in callbr")) 6872 return true; 6873 6874 // parse the destination list. 6875 SmallVector<BasicBlock *, 16> IndirectDests; 6876 6877 if (Lex.getKind() != lltok::rsquare) { 6878 BasicBlock *DestBB; 6879 if (parseTypeAndBasicBlock(DestBB, PFS)) 6880 return true; 6881 IndirectDests.push_back(DestBB); 6882 6883 while (EatIfPresent(lltok::comma)) { 6884 if (parseTypeAndBasicBlock(DestBB, PFS)) 6885 return true; 6886 IndirectDests.push_back(DestBB); 6887 } 6888 } 6889 6890 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6891 return true; 6892 6893 // If RetType is a non-function pointer type, then this is the short syntax 6894 // for the call, which means that RetType is just the return type. Infer the 6895 // rest of the function argument types from the arguments that are present. 6896 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6897 if (!Ty) { 6898 // Pull out the types of all of the arguments... 6899 std::vector<Type *> ParamTypes; 6900 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6901 ParamTypes.push_back(ArgList[i].V->getType()); 6902 6903 if (!FunctionType::isValidReturnType(RetType)) 6904 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6905 6906 Ty = FunctionType::get(RetType, ParamTypes, false); 6907 } 6908 6909 CalleeID.FTy = Ty; 6910 6911 // Look up the callee. 6912 Value *Callee; 6913 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6914 /*IsCall=*/true)) 6915 return true; 6916 6917 // Set up the Attribute for the function. 6918 SmallVector<Value *, 8> Args; 6919 SmallVector<AttributeSet, 8> ArgAttrs; 6920 6921 // Loop through FunctionType's arguments and ensure they are specified 6922 // correctly. Also, gather any parameter attributes. 6923 FunctionType::param_iterator I = Ty->param_begin(); 6924 FunctionType::param_iterator E = Ty->param_end(); 6925 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6926 Type *ExpectedTy = nullptr; 6927 if (I != E) { 6928 ExpectedTy = *I++; 6929 } else if (!Ty->isVarArg()) { 6930 return error(ArgList[i].Loc, "too many arguments specified"); 6931 } 6932 6933 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6934 return error(ArgList[i].Loc, "argument is not of expected type '" + 6935 getTypeString(ExpectedTy) + "'"); 6936 Args.push_back(ArgList[i].V); 6937 ArgAttrs.push_back(ArgList[i].Attrs); 6938 } 6939 6940 if (I != E) 6941 return error(CallLoc, "not enough parameters specified for call"); 6942 6943 if (FnAttrs.hasAlignmentAttr()) 6944 return error(CallLoc, "callbr instructions may not have an alignment"); 6945 6946 // Finish off the Attribute and check them 6947 AttributeList PAL = 6948 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6949 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6950 6951 CallBrInst *CBI = 6952 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6953 BundleList); 6954 CBI->setCallingConv(CC); 6955 CBI->setAttributes(PAL); 6956 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6957 Inst = CBI; 6958 return false; 6959 } 6960 6961 //===----------------------------------------------------------------------===// 6962 // Binary Operators. 6963 //===----------------------------------------------------------------------===// 6964 6965 /// parseArithmetic 6966 /// ::= ArithmeticOps TypeAndValue ',' Value 6967 /// 6968 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6969 /// operand is allowed. 6970 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6971 unsigned Opc, bool IsFP) { 6972 LocTy Loc; Value *LHS, *RHS; 6973 if (parseTypeAndValue(LHS, Loc, PFS) || 6974 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6975 parseValue(LHS->getType(), RHS, PFS)) 6976 return true; 6977 6978 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6979 : LHS->getType()->isIntOrIntVectorTy(); 6980 6981 if (!Valid) 6982 return error(Loc, "invalid operand type for instruction"); 6983 6984 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6985 return false; 6986 } 6987 6988 /// parseLogical 6989 /// ::= ArithmeticOps TypeAndValue ',' Value { 6990 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6991 unsigned Opc) { 6992 LocTy Loc; Value *LHS, *RHS; 6993 if (parseTypeAndValue(LHS, Loc, PFS) || 6994 parseToken(lltok::comma, "expected ',' in logical operation") || 6995 parseValue(LHS->getType(), RHS, PFS)) 6996 return true; 6997 6998 if (!LHS->getType()->isIntOrIntVectorTy()) 6999 return error(Loc, 7000 "instruction requires integer or integer vector operands"); 7001 7002 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7003 return false; 7004 } 7005 7006 /// parseCompare 7007 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7008 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7009 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7010 unsigned Opc) { 7011 // parse the integer/fp comparison predicate. 7012 LocTy Loc; 7013 unsigned Pred; 7014 Value *LHS, *RHS; 7015 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7016 parseToken(lltok::comma, "expected ',' after compare value") || 7017 parseValue(LHS->getType(), RHS, PFS)) 7018 return true; 7019 7020 if (Opc == Instruction::FCmp) { 7021 if (!LHS->getType()->isFPOrFPVectorTy()) 7022 return error(Loc, "fcmp requires floating point operands"); 7023 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7024 } else { 7025 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7026 if (!LHS->getType()->isIntOrIntVectorTy() && 7027 !LHS->getType()->isPtrOrPtrVectorTy()) 7028 return error(Loc, "icmp requires integer operands"); 7029 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7030 } 7031 return false; 7032 } 7033 7034 //===----------------------------------------------------------------------===// 7035 // Other Instructions. 7036 //===----------------------------------------------------------------------===// 7037 7038 /// parseCast 7039 /// ::= CastOpc TypeAndValue 'to' Type 7040 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7041 unsigned Opc) { 7042 LocTy Loc; 7043 Value *Op; 7044 Type *DestTy = nullptr; 7045 if (parseTypeAndValue(Op, Loc, PFS) || 7046 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7047 parseType(DestTy)) 7048 return true; 7049 7050 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7051 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7052 return error(Loc, "invalid cast opcode for cast from '" + 7053 getTypeString(Op->getType()) + "' to '" + 7054 getTypeString(DestTy) + "'"); 7055 } 7056 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7057 return false; 7058 } 7059 7060 /// parseSelect 7061 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7062 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7063 LocTy Loc; 7064 Value *Op0, *Op1, *Op2; 7065 if (parseTypeAndValue(Op0, Loc, PFS) || 7066 parseToken(lltok::comma, "expected ',' after select condition") || 7067 parseTypeAndValue(Op1, PFS) || 7068 parseToken(lltok::comma, "expected ',' after select value") || 7069 parseTypeAndValue(Op2, PFS)) 7070 return true; 7071 7072 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7073 return error(Loc, Reason); 7074 7075 Inst = SelectInst::Create(Op0, Op1, Op2); 7076 return false; 7077 } 7078 7079 /// parseVAArg 7080 /// ::= 'va_arg' TypeAndValue ',' Type 7081 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7082 Value *Op; 7083 Type *EltTy = nullptr; 7084 LocTy TypeLoc; 7085 if (parseTypeAndValue(Op, PFS) || 7086 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7087 parseType(EltTy, TypeLoc)) 7088 return true; 7089 7090 if (!EltTy->isFirstClassType()) 7091 return error(TypeLoc, "va_arg requires operand with first class type"); 7092 7093 Inst = new VAArgInst(Op, EltTy); 7094 return false; 7095 } 7096 7097 /// parseExtractElement 7098 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7099 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7100 LocTy Loc; 7101 Value *Op0, *Op1; 7102 if (parseTypeAndValue(Op0, Loc, PFS) || 7103 parseToken(lltok::comma, "expected ',' after extract value") || 7104 parseTypeAndValue(Op1, PFS)) 7105 return true; 7106 7107 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7108 return error(Loc, "invalid extractelement operands"); 7109 7110 Inst = ExtractElementInst::Create(Op0, Op1); 7111 return false; 7112 } 7113 7114 /// parseInsertElement 7115 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7116 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7117 LocTy Loc; 7118 Value *Op0, *Op1, *Op2; 7119 if (parseTypeAndValue(Op0, Loc, PFS) || 7120 parseToken(lltok::comma, "expected ',' after insertelement value") || 7121 parseTypeAndValue(Op1, PFS) || 7122 parseToken(lltok::comma, "expected ',' after insertelement value") || 7123 parseTypeAndValue(Op2, PFS)) 7124 return true; 7125 7126 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7127 return error(Loc, "invalid insertelement operands"); 7128 7129 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7130 return false; 7131 } 7132 7133 /// parseShuffleVector 7134 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7135 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7136 LocTy Loc; 7137 Value *Op0, *Op1, *Op2; 7138 if (parseTypeAndValue(Op0, Loc, PFS) || 7139 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7140 parseTypeAndValue(Op1, PFS) || 7141 parseToken(lltok::comma, "expected ',' after shuffle value") || 7142 parseTypeAndValue(Op2, PFS)) 7143 return true; 7144 7145 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7146 return error(Loc, "invalid shufflevector operands"); 7147 7148 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7149 return false; 7150 } 7151 7152 /// parsePHI 7153 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7154 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7155 Type *Ty = nullptr; LocTy TypeLoc; 7156 Value *Op0, *Op1; 7157 7158 if (parseType(Ty, TypeLoc) || 7159 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7160 parseValue(Ty, Op0, PFS) || 7161 parseToken(lltok::comma, "expected ',' after insertelement value") || 7162 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7163 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7164 return true; 7165 7166 bool AteExtraComma = false; 7167 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7168 7169 while (true) { 7170 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7171 7172 if (!EatIfPresent(lltok::comma)) 7173 break; 7174 7175 if (Lex.getKind() == lltok::MetadataVar) { 7176 AteExtraComma = true; 7177 break; 7178 } 7179 7180 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7181 parseValue(Ty, Op0, PFS) || 7182 parseToken(lltok::comma, "expected ',' after insertelement value") || 7183 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7184 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7185 return true; 7186 } 7187 7188 if (!Ty->isFirstClassType()) 7189 return error(TypeLoc, "phi node must have first class type"); 7190 7191 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7192 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7193 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7194 Inst = PN; 7195 return AteExtraComma ? InstExtraComma : InstNormal; 7196 } 7197 7198 /// parseLandingPad 7199 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7200 /// Clause 7201 /// ::= 'catch' TypeAndValue 7202 /// ::= 'filter' 7203 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7204 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7205 Type *Ty = nullptr; LocTy TyLoc; 7206 7207 if (parseType(Ty, TyLoc)) 7208 return true; 7209 7210 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7211 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7212 7213 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7214 LandingPadInst::ClauseType CT; 7215 if (EatIfPresent(lltok::kw_catch)) 7216 CT = LandingPadInst::Catch; 7217 else if (EatIfPresent(lltok::kw_filter)) 7218 CT = LandingPadInst::Filter; 7219 else 7220 return tokError("expected 'catch' or 'filter' clause type"); 7221 7222 Value *V; 7223 LocTy VLoc; 7224 if (parseTypeAndValue(V, VLoc, PFS)) 7225 return true; 7226 7227 // A 'catch' type expects a non-array constant. A filter clause expects an 7228 // array constant. 7229 if (CT == LandingPadInst::Catch) { 7230 if (isa<ArrayType>(V->getType())) 7231 error(VLoc, "'catch' clause has an invalid type"); 7232 } else { 7233 if (!isa<ArrayType>(V->getType())) 7234 error(VLoc, "'filter' clause has an invalid type"); 7235 } 7236 7237 Constant *CV = dyn_cast<Constant>(V); 7238 if (!CV) 7239 return error(VLoc, "clause argument must be a constant"); 7240 LP->addClause(CV); 7241 } 7242 7243 Inst = LP.release(); 7244 return false; 7245 } 7246 7247 /// parseFreeze 7248 /// ::= 'freeze' Type Value 7249 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7250 LocTy Loc; 7251 Value *Op; 7252 if (parseTypeAndValue(Op, Loc, PFS)) 7253 return true; 7254 7255 Inst = new FreezeInst(Op); 7256 return false; 7257 } 7258 7259 /// parseCall 7260 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7261 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7262 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7263 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7264 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7265 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7266 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7267 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7268 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7269 CallInst::TailCallKind TCK) { 7270 AttrBuilder RetAttrs, FnAttrs; 7271 std::vector<unsigned> FwdRefAttrGrps; 7272 LocTy BuiltinLoc; 7273 unsigned CallAddrSpace; 7274 unsigned CC; 7275 Type *RetType = nullptr; 7276 LocTy RetTypeLoc; 7277 ValID CalleeID; 7278 SmallVector<ParamInfo, 16> ArgList; 7279 SmallVector<OperandBundleDef, 2> BundleList; 7280 LocTy CallLoc = Lex.getLoc(); 7281 7282 if (TCK != CallInst::TCK_None && 7283 parseToken(lltok::kw_call, 7284 "expected 'tail call', 'musttail call', or 'notail call'")) 7285 return true; 7286 7287 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7288 7289 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7290 parseOptionalProgramAddrSpace(CallAddrSpace) || 7291 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7292 parseValID(CalleeID) || 7293 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7294 PFS.getFunction().isVarArg()) || 7295 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7296 parseOptionalOperandBundles(BundleList, PFS)) 7297 return true; 7298 7299 // If RetType is a non-function pointer type, then this is the short syntax 7300 // for the call, which means that RetType is just the return type. Infer the 7301 // rest of the function argument types from the arguments that are present. 7302 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7303 if (!Ty) { 7304 // Pull out the types of all of the arguments... 7305 std::vector<Type*> ParamTypes; 7306 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7307 ParamTypes.push_back(ArgList[i].V->getType()); 7308 7309 if (!FunctionType::isValidReturnType(RetType)) 7310 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7311 7312 Ty = FunctionType::get(RetType, ParamTypes, false); 7313 } 7314 7315 CalleeID.FTy = Ty; 7316 7317 // Look up the callee. 7318 Value *Callee; 7319 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7320 &PFS, /*IsCall=*/true)) 7321 return true; 7322 7323 // Set up the Attribute for the function. 7324 SmallVector<AttributeSet, 8> Attrs; 7325 7326 SmallVector<Value*, 8> Args; 7327 7328 // Loop through FunctionType's arguments and ensure they are specified 7329 // correctly. Also, gather any parameter attributes. 7330 FunctionType::param_iterator I = Ty->param_begin(); 7331 FunctionType::param_iterator E = Ty->param_end(); 7332 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7333 Type *ExpectedTy = nullptr; 7334 if (I != E) { 7335 ExpectedTy = *I++; 7336 } else if (!Ty->isVarArg()) { 7337 return error(ArgList[i].Loc, "too many arguments specified"); 7338 } 7339 7340 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7341 return error(ArgList[i].Loc, "argument is not of expected type '" + 7342 getTypeString(ExpectedTy) + "'"); 7343 Args.push_back(ArgList[i].V); 7344 Attrs.push_back(ArgList[i].Attrs); 7345 } 7346 7347 if (I != E) 7348 return error(CallLoc, "not enough parameters specified for call"); 7349 7350 if (FnAttrs.hasAlignmentAttr()) 7351 return error(CallLoc, "call instructions may not have an alignment"); 7352 7353 // Finish off the Attribute and check them 7354 AttributeList PAL = 7355 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7356 AttributeSet::get(Context, RetAttrs), Attrs); 7357 7358 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7359 CI->setTailCallKind(TCK); 7360 CI->setCallingConv(CC); 7361 if (FMF.any()) { 7362 if (!isa<FPMathOperator>(CI)) { 7363 CI->deleteValue(); 7364 return error(CallLoc, "fast-math-flags specified for call without " 7365 "floating-point scalar or vector return type"); 7366 } 7367 CI->setFastMathFlags(FMF); 7368 } 7369 CI->setAttributes(PAL); 7370 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7371 Inst = CI; 7372 return false; 7373 } 7374 7375 //===----------------------------------------------------------------------===// 7376 // Memory Instructions. 7377 //===----------------------------------------------------------------------===// 7378 7379 /// parseAlloc 7380 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7381 /// (',' 'align' i32)? (',', 'addrspace(n))? 7382 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7383 Value *Size = nullptr; 7384 LocTy SizeLoc, TyLoc, ASLoc; 7385 MaybeAlign Alignment; 7386 unsigned AddrSpace = 0; 7387 Type *Ty = nullptr; 7388 7389 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7390 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7391 7392 if (parseType(Ty, TyLoc)) 7393 return true; 7394 7395 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7396 return error(TyLoc, "invalid type for alloca"); 7397 7398 bool AteExtraComma = false; 7399 if (EatIfPresent(lltok::comma)) { 7400 if (Lex.getKind() == lltok::kw_align) { 7401 if (parseOptionalAlignment(Alignment)) 7402 return true; 7403 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7404 return true; 7405 } else if (Lex.getKind() == lltok::kw_addrspace) { 7406 ASLoc = Lex.getLoc(); 7407 if (parseOptionalAddrSpace(AddrSpace)) 7408 return true; 7409 } else if (Lex.getKind() == lltok::MetadataVar) { 7410 AteExtraComma = true; 7411 } else { 7412 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7413 return true; 7414 if (EatIfPresent(lltok::comma)) { 7415 if (Lex.getKind() == lltok::kw_align) { 7416 if (parseOptionalAlignment(Alignment)) 7417 return true; 7418 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7419 return true; 7420 } else if (Lex.getKind() == lltok::kw_addrspace) { 7421 ASLoc = Lex.getLoc(); 7422 if (parseOptionalAddrSpace(AddrSpace)) 7423 return true; 7424 } else if (Lex.getKind() == lltok::MetadataVar) { 7425 AteExtraComma = true; 7426 } 7427 } 7428 } 7429 } 7430 7431 if (Size && !Size->getType()->isIntegerTy()) 7432 return error(SizeLoc, "element count must have integer type"); 7433 7434 SmallPtrSet<Type *, 4> Visited; 7435 if (!Alignment && !Ty->isSized(&Visited)) 7436 return error(TyLoc, "Cannot allocate unsized type"); 7437 if (!Alignment) 7438 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7439 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7440 AI->setUsedWithInAlloca(IsInAlloca); 7441 AI->setSwiftError(IsSwiftError); 7442 Inst = AI; 7443 return AteExtraComma ? InstExtraComma : InstNormal; 7444 } 7445 7446 /// parseLoad 7447 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7448 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7449 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7450 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7451 Value *Val; LocTy Loc; 7452 MaybeAlign Alignment; 7453 bool AteExtraComma = false; 7454 bool isAtomic = false; 7455 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7456 SyncScope::ID SSID = SyncScope::System; 7457 7458 if (Lex.getKind() == lltok::kw_atomic) { 7459 isAtomic = true; 7460 Lex.Lex(); 7461 } 7462 7463 bool isVolatile = false; 7464 if (Lex.getKind() == lltok::kw_volatile) { 7465 isVolatile = true; 7466 Lex.Lex(); 7467 } 7468 7469 Type *Ty; 7470 LocTy ExplicitTypeLoc = Lex.getLoc(); 7471 if (parseType(Ty) || 7472 parseToken(lltok::comma, "expected comma after load's type") || 7473 parseTypeAndValue(Val, Loc, PFS) || 7474 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7475 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7476 return true; 7477 7478 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7479 return error(Loc, "load operand must be a pointer to a first class type"); 7480 if (isAtomic && !Alignment) 7481 return error(Loc, "atomic load must have explicit non-zero alignment"); 7482 if (Ordering == AtomicOrdering::Release || 7483 Ordering == AtomicOrdering::AcquireRelease) 7484 return error(Loc, "atomic load cannot use Release ordering"); 7485 7486 if (Ty != cast<PointerType>(Val->getType())->getElementType()) { 7487 return error( 7488 ExplicitTypeLoc, 7489 typeComparisonErrorMessage( 7490 "explicit pointee type doesn't match operand's pointee type", Ty, 7491 cast<PointerType>(Val->getType())->getElementType())); 7492 } 7493 SmallPtrSet<Type *, 4> Visited; 7494 if (!Alignment && !Ty->isSized(&Visited)) 7495 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7496 if (!Alignment) 7497 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7498 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7499 return AteExtraComma ? InstExtraComma : InstNormal; 7500 } 7501 7502 /// parseStore 7503 7504 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7505 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7506 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7507 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7508 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7509 MaybeAlign Alignment; 7510 bool AteExtraComma = false; 7511 bool isAtomic = false; 7512 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7513 SyncScope::ID SSID = SyncScope::System; 7514 7515 if (Lex.getKind() == lltok::kw_atomic) { 7516 isAtomic = true; 7517 Lex.Lex(); 7518 } 7519 7520 bool isVolatile = false; 7521 if (Lex.getKind() == lltok::kw_volatile) { 7522 isVolatile = true; 7523 Lex.Lex(); 7524 } 7525 7526 if (parseTypeAndValue(Val, Loc, PFS) || 7527 parseToken(lltok::comma, "expected ',' after store operand") || 7528 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7529 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7530 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7531 return true; 7532 7533 if (!Ptr->getType()->isPointerTy()) 7534 return error(PtrLoc, "store operand must be a pointer"); 7535 if (!Val->getType()->isFirstClassType()) 7536 return error(Loc, "store operand must be a first class value"); 7537 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7538 return error(Loc, "stored value and pointer type do not match"); 7539 if (isAtomic && !Alignment) 7540 return error(Loc, "atomic store must have explicit non-zero alignment"); 7541 if (Ordering == AtomicOrdering::Acquire || 7542 Ordering == AtomicOrdering::AcquireRelease) 7543 return error(Loc, "atomic store cannot use Acquire ordering"); 7544 SmallPtrSet<Type *, 4> Visited; 7545 if (!Alignment && !Val->getType()->isSized(&Visited)) 7546 return error(Loc, "storing unsized types is not allowed"); 7547 if (!Alignment) 7548 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7549 7550 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7551 return AteExtraComma ? InstExtraComma : InstNormal; 7552 } 7553 7554 /// parseCmpXchg 7555 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7556 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7557 /// 'Align'? 7558 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7559 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7560 bool AteExtraComma = false; 7561 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7562 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7563 SyncScope::ID SSID = SyncScope::System; 7564 bool isVolatile = false; 7565 bool isWeak = false; 7566 MaybeAlign Alignment; 7567 7568 if (EatIfPresent(lltok::kw_weak)) 7569 isWeak = true; 7570 7571 if (EatIfPresent(lltok::kw_volatile)) 7572 isVolatile = true; 7573 7574 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7575 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7576 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7577 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7578 parseTypeAndValue(New, NewLoc, PFS) || 7579 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7580 parseOrdering(FailureOrdering) || 7581 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7582 return true; 7583 7584 if (SuccessOrdering == AtomicOrdering::Unordered || 7585 FailureOrdering == AtomicOrdering::Unordered) 7586 return tokError("cmpxchg cannot be unordered"); 7587 if (FailureOrdering == AtomicOrdering::Release || 7588 FailureOrdering == AtomicOrdering::AcquireRelease) 7589 return tokError( 7590 "cmpxchg failure ordering cannot include release semantics"); 7591 if (!Ptr->getType()->isPointerTy()) 7592 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7593 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7594 return error(CmpLoc, "compare value and pointer type do not match"); 7595 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7596 return error(NewLoc, "new value and pointer type do not match"); 7597 if (!New->getType()->isFirstClassType()) 7598 return error(NewLoc, "cmpxchg operand must be a first class value"); 7599 7600 const Align DefaultAlignment( 7601 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7602 Cmp->getType())); 7603 7604 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7605 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7606 FailureOrdering, SSID); 7607 CXI->setVolatile(isVolatile); 7608 CXI->setWeak(isWeak); 7609 7610 Inst = CXI; 7611 return AteExtraComma ? InstExtraComma : InstNormal; 7612 } 7613 7614 /// parseAtomicRMW 7615 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7616 /// 'singlethread'? AtomicOrdering 7617 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7618 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7619 bool AteExtraComma = false; 7620 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7621 SyncScope::ID SSID = SyncScope::System; 7622 bool isVolatile = false; 7623 bool IsFP = false; 7624 AtomicRMWInst::BinOp Operation; 7625 MaybeAlign Alignment; 7626 7627 if (EatIfPresent(lltok::kw_volatile)) 7628 isVolatile = true; 7629 7630 switch (Lex.getKind()) { 7631 default: 7632 return tokError("expected binary operation in atomicrmw"); 7633 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7634 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7635 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7636 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7637 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7638 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7639 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7640 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7641 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7642 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7643 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7644 case lltok::kw_fadd: 7645 Operation = AtomicRMWInst::FAdd; 7646 IsFP = true; 7647 break; 7648 case lltok::kw_fsub: 7649 Operation = AtomicRMWInst::FSub; 7650 IsFP = true; 7651 break; 7652 } 7653 Lex.Lex(); // Eat the operation. 7654 7655 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7656 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7657 parseTypeAndValue(Val, ValLoc, PFS) || 7658 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7659 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7660 return true; 7661 7662 if (Ordering == AtomicOrdering::Unordered) 7663 return tokError("atomicrmw cannot be unordered"); 7664 if (!Ptr->getType()->isPointerTy()) 7665 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7666 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7667 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7668 7669 if (Operation == AtomicRMWInst::Xchg) { 7670 if (!Val->getType()->isIntegerTy() && 7671 !Val->getType()->isFloatingPointTy()) { 7672 return error(ValLoc, 7673 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7674 " operand must be an integer or floating point type"); 7675 } 7676 } else if (IsFP) { 7677 if (!Val->getType()->isFloatingPointTy()) { 7678 return error(ValLoc, "atomicrmw " + 7679 AtomicRMWInst::getOperationName(Operation) + 7680 " operand must be a floating point type"); 7681 } 7682 } else { 7683 if (!Val->getType()->isIntegerTy()) { 7684 return error(ValLoc, "atomicrmw " + 7685 AtomicRMWInst::getOperationName(Operation) + 7686 " operand must be an integer"); 7687 } 7688 } 7689 7690 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7691 if (Size < 8 || (Size & (Size - 1))) 7692 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7693 " integer"); 7694 const Align DefaultAlignment( 7695 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7696 Val->getType())); 7697 AtomicRMWInst *RMWI = 7698 new AtomicRMWInst(Operation, Ptr, Val, 7699 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7700 RMWI->setVolatile(isVolatile); 7701 Inst = RMWI; 7702 return AteExtraComma ? InstExtraComma : InstNormal; 7703 } 7704 7705 /// parseFence 7706 /// ::= 'fence' 'singlethread'? AtomicOrdering 7707 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7708 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7709 SyncScope::ID SSID = SyncScope::System; 7710 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7711 return true; 7712 7713 if (Ordering == AtomicOrdering::Unordered) 7714 return tokError("fence cannot be unordered"); 7715 if (Ordering == AtomicOrdering::Monotonic) 7716 return tokError("fence cannot be monotonic"); 7717 7718 Inst = new FenceInst(Context, Ordering, SSID); 7719 return InstNormal; 7720 } 7721 7722 /// parseGetElementPtr 7723 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7724 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7725 Value *Ptr = nullptr; 7726 Value *Val = nullptr; 7727 LocTy Loc, EltLoc; 7728 7729 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7730 7731 Type *Ty = nullptr; 7732 LocTy ExplicitTypeLoc = Lex.getLoc(); 7733 if (parseType(Ty) || 7734 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7735 parseTypeAndValue(Ptr, Loc, PFS)) 7736 return true; 7737 7738 Type *BaseType = Ptr->getType(); 7739 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7740 if (!BasePointerType) 7741 return error(Loc, "base of getelementptr must be a pointer"); 7742 7743 if (Ty != BasePointerType->getElementType()) { 7744 return error( 7745 ExplicitTypeLoc, 7746 typeComparisonErrorMessage( 7747 "explicit pointee type doesn't match operand's pointee type", Ty, 7748 BasePointerType->getElementType())); 7749 } 7750 7751 SmallVector<Value*, 16> Indices; 7752 bool AteExtraComma = false; 7753 // GEP returns a vector of pointers if at least one of parameters is a vector. 7754 // All vector parameters should have the same vector width. 7755 ElementCount GEPWidth = BaseType->isVectorTy() 7756 ? cast<VectorType>(BaseType)->getElementCount() 7757 : ElementCount::getFixed(0); 7758 7759 while (EatIfPresent(lltok::comma)) { 7760 if (Lex.getKind() == lltok::MetadataVar) { 7761 AteExtraComma = true; 7762 break; 7763 } 7764 if (parseTypeAndValue(Val, EltLoc, PFS)) 7765 return true; 7766 if (!Val->getType()->isIntOrIntVectorTy()) 7767 return error(EltLoc, "getelementptr index must be an integer"); 7768 7769 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7770 ElementCount ValNumEl = ValVTy->getElementCount(); 7771 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7772 return error( 7773 EltLoc, 7774 "getelementptr vector index has a wrong number of elements"); 7775 GEPWidth = ValNumEl; 7776 } 7777 Indices.push_back(Val); 7778 } 7779 7780 SmallPtrSet<Type*, 4> Visited; 7781 if (!Indices.empty() && !Ty->isSized(&Visited)) 7782 return error(Loc, "base element of getelementptr must be sized"); 7783 7784 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7785 return error(Loc, "invalid getelementptr indices"); 7786 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7787 if (InBounds) 7788 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7789 return AteExtraComma ? InstExtraComma : InstNormal; 7790 } 7791 7792 /// parseExtractValue 7793 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7794 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7795 Value *Val; LocTy Loc; 7796 SmallVector<unsigned, 4> Indices; 7797 bool AteExtraComma; 7798 if (parseTypeAndValue(Val, Loc, PFS) || 7799 parseIndexList(Indices, AteExtraComma)) 7800 return true; 7801 7802 if (!Val->getType()->isAggregateType()) 7803 return error(Loc, "extractvalue operand must be aggregate type"); 7804 7805 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7806 return error(Loc, "invalid indices for extractvalue"); 7807 Inst = ExtractValueInst::Create(Val, Indices); 7808 return AteExtraComma ? InstExtraComma : InstNormal; 7809 } 7810 7811 /// parseInsertValue 7812 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7813 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7814 Value *Val0, *Val1; LocTy Loc0, Loc1; 7815 SmallVector<unsigned, 4> Indices; 7816 bool AteExtraComma; 7817 if (parseTypeAndValue(Val0, Loc0, PFS) || 7818 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7819 parseTypeAndValue(Val1, Loc1, PFS) || 7820 parseIndexList(Indices, AteExtraComma)) 7821 return true; 7822 7823 if (!Val0->getType()->isAggregateType()) 7824 return error(Loc0, "insertvalue operand must be aggregate type"); 7825 7826 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7827 if (!IndexedType) 7828 return error(Loc0, "invalid indices for insertvalue"); 7829 if (IndexedType != Val1->getType()) 7830 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7831 getTypeString(Val1->getType()) + "' instead of '" + 7832 getTypeString(IndexedType) + "'"); 7833 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7834 return AteExtraComma ? InstExtraComma : InstNormal; 7835 } 7836 7837 //===----------------------------------------------------------------------===// 7838 // Embedded metadata. 7839 //===----------------------------------------------------------------------===// 7840 7841 /// parseMDNodeVector 7842 /// ::= { Element (',' Element)* } 7843 /// Element 7844 /// ::= 'null' | TypeAndValue 7845 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7846 if (parseToken(lltok::lbrace, "expected '{' here")) 7847 return true; 7848 7849 // Check for an empty list. 7850 if (EatIfPresent(lltok::rbrace)) 7851 return false; 7852 7853 do { 7854 // Null is a special case since it is typeless. 7855 if (EatIfPresent(lltok::kw_null)) { 7856 Elts.push_back(nullptr); 7857 continue; 7858 } 7859 7860 Metadata *MD; 7861 if (parseMetadata(MD, nullptr)) 7862 return true; 7863 Elts.push_back(MD); 7864 } while (EatIfPresent(lltok::comma)); 7865 7866 return parseToken(lltok::rbrace, "expected end of metadata node"); 7867 } 7868 7869 //===----------------------------------------------------------------------===// 7870 // Use-list order directives. 7871 //===----------------------------------------------------------------------===// 7872 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7873 SMLoc Loc) { 7874 if (V->use_empty()) 7875 return error(Loc, "value has no uses"); 7876 7877 unsigned NumUses = 0; 7878 SmallDenseMap<const Use *, unsigned, 16> Order; 7879 for (const Use &U : V->uses()) { 7880 if (++NumUses > Indexes.size()) 7881 break; 7882 Order[&U] = Indexes[NumUses - 1]; 7883 } 7884 if (NumUses < 2) 7885 return error(Loc, "value only has one use"); 7886 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7887 return error(Loc, 7888 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7889 7890 V->sortUseList([&](const Use &L, const Use &R) { 7891 return Order.lookup(&L) < Order.lookup(&R); 7892 }); 7893 return false; 7894 } 7895 7896 /// parseUseListOrderIndexes 7897 /// ::= '{' uint32 (',' uint32)+ '}' 7898 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7899 SMLoc Loc = Lex.getLoc(); 7900 if (parseToken(lltok::lbrace, "expected '{' here")) 7901 return true; 7902 if (Lex.getKind() == lltok::rbrace) 7903 return Lex.Error("expected non-empty list of uselistorder indexes"); 7904 7905 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7906 // indexes should be distinct numbers in the range [0, size-1], and should 7907 // not be in order. 7908 unsigned Offset = 0; 7909 unsigned Max = 0; 7910 bool IsOrdered = true; 7911 assert(Indexes.empty() && "Expected empty order vector"); 7912 do { 7913 unsigned Index; 7914 if (parseUInt32(Index)) 7915 return true; 7916 7917 // Update consistency checks. 7918 Offset += Index - Indexes.size(); 7919 Max = std::max(Max, Index); 7920 IsOrdered &= Index == Indexes.size(); 7921 7922 Indexes.push_back(Index); 7923 } while (EatIfPresent(lltok::comma)); 7924 7925 if (parseToken(lltok::rbrace, "expected '}' here")) 7926 return true; 7927 7928 if (Indexes.size() < 2) 7929 return error(Loc, "expected >= 2 uselistorder indexes"); 7930 if (Offset != 0 || Max >= Indexes.size()) 7931 return error(Loc, 7932 "expected distinct uselistorder indexes in range [0, size)"); 7933 if (IsOrdered) 7934 return error(Loc, "expected uselistorder indexes to change the order"); 7935 7936 return false; 7937 } 7938 7939 /// parseUseListOrder 7940 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7941 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7942 SMLoc Loc = Lex.getLoc(); 7943 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7944 return true; 7945 7946 Value *V; 7947 SmallVector<unsigned, 16> Indexes; 7948 if (parseTypeAndValue(V, PFS) || 7949 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7950 parseUseListOrderIndexes(Indexes)) 7951 return true; 7952 7953 return sortUseListOrder(V, Indexes, Loc); 7954 } 7955 7956 /// parseUseListOrderBB 7957 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7958 bool LLParser::parseUseListOrderBB() { 7959 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7960 SMLoc Loc = Lex.getLoc(); 7961 Lex.Lex(); 7962 7963 ValID Fn, Label; 7964 SmallVector<unsigned, 16> Indexes; 7965 if (parseValID(Fn) || 7966 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7967 parseValID(Label) || 7968 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7969 parseUseListOrderIndexes(Indexes)) 7970 return true; 7971 7972 // Check the function. 7973 GlobalValue *GV; 7974 if (Fn.Kind == ValID::t_GlobalName) 7975 GV = M->getNamedValue(Fn.StrVal); 7976 else if (Fn.Kind == ValID::t_GlobalID) 7977 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7978 else 7979 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7980 if (!GV) 7981 return error(Fn.Loc, 7982 "invalid function forward reference in uselistorder_bb"); 7983 auto *F = dyn_cast<Function>(GV); 7984 if (!F) 7985 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7986 if (F->isDeclaration()) 7987 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7988 7989 // Check the basic block. 7990 if (Label.Kind == ValID::t_LocalID) 7991 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7992 if (Label.Kind != ValID::t_LocalName) 7993 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7994 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7995 if (!V) 7996 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7997 if (!isa<BasicBlock>(V)) 7998 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7999 8000 return sortUseListOrder(V, Indexes, Loc); 8001 } 8002 8003 /// ModuleEntry 8004 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8005 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8006 bool LLParser::parseModuleEntry(unsigned ID) { 8007 assert(Lex.getKind() == lltok::kw_module); 8008 Lex.Lex(); 8009 8010 std::string Path; 8011 if (parseToken(lltok::colon, "expected ':' here") || 8012 parseToken(lltok::lparen, "expected '(' here") || 8013 parseToken(lltok::kw_path, "expected 'path' here") || 8014 parseToken(lltok::colon, "expected ':' here") || 8015 parseStringConstant(Path) || 8016 parseToken(lltok::comma, "expected ',' here") || 8017 parseToken(lltok::kw_hash, "expected 'hash' here") || 8018 parseToken(lltok::colon, "expected ':' here") || 8019 parseToken(lltok::lparen, "expected '(' here")) 8020 return true; 8021 8022 ModuleHash Hash; 8023 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8024 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8025 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8026 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8027 parseUInt32(Hash[4])) 8028 return true; 8029 8030 if (parseToken(lltok::rparen, "expected ')' here") || 8031 parseToken(lltok::rparen, "expected ')' here")) 8032 return true; 8033 8034 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8035 ModuleIdMap[ID] = ModuleEntry->first(); 8036 8037 return false; 8038 } 8039 8040 /// TypeIdEntry 8041 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8042 bool LLParser::parseTypeIdEntry(unsigned ID) { 8043 assert(Lex.getKind() == lltok::kw_typeid); 8044 Lex.Lex(); 8045 8046 std::string Name; 8047 if (parseToken(lltok::colon, "expected ':' here") || 8048 parseToken(lltok::lparen, "expected '(' here") || 8049 parseToken(lltok::kw_name, "expected 'name' here") || 8050 parseToken(lltok::colon, "expected ':' here") || 8051 parseStringConstant(Name)) 8052 return true; 8053 8054 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8055 if (parseToken(lltok::comma, "expected ',' here") || 8056 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8057 return true; 8058 8059 // Check if this ID was forward referenced, and if so, update the 8060 // corresponding GUIDs. 8061 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8062 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8063 for (auto TIDRef : FwdRefTIDs->second) { 8064 assert(!*TIDRef.first && 8065 "Forward referenced type id GUID expected to be 0"); 8066 *TIDRef.first = GlobalValue::getGUID(Name); 8067 } 8068 ForwardRefTypeIds.erase(FwdRefTIDs); 8069 } 8070 8071 return false; 8072 } 8073 8074 /// TypeIdSummary 8075 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8076 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8077 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8078 parseToken(lltok::colon, "expected ':' here") || 8079 parseToken(lltok::lparen, "expected '(' here") || 8080 parseTypeTestResolution(TIS.TTRes)) 8081 return true; 8082 8083 if (EatIfPresent(lltok::comma)) { 8084 // Expect optional wpdResolutions field 8085 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8086 return true; 8087 } 8088 8089 if (parseToken(lltok::rparen, "expected ')' here")) 8090 return true; 8091 8092 return false; 8093 } 8094 8095 static ValueInfo EmptyVI = 8096 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8097 8098 /// TypeIdCompatibleVtableEntry 8099 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8100 /// TypeIdCompatibleVtableInfo 8101 /// ')' 8102 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8103 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8104 Lex.Lex(); 8105 8106 std::string Name; 8107 if (parseToken(lltok::colon, "expected ':' here") || 8108 parseToken(lltok::lparen, "expected '(' here") || 8109 parseToken(lltok::kw_name, "expected 'name' here") || 8110 parseToken(lltok::colon, "expected ':' here") || 8111 parseStringConstant(Name)) 8112 return true; 8113 8114 TypeIdCompatibleVtableInfo &TI = 8115 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8116 if (parseToken(lltok::comma, "expected ',' here") || 8117 parseToken(lltok::kw_summary, "expected 'summary' here") || 8118 parseToken(lltok::colon, "expected ':' here") || 8119 parseToken(lltok::lparen, "expected '(' here")) 8120 return true; 8121 8122 IdToIndexMapType IdToIndexMap; 8123 // parse each call edge 8124 do { 8125 uint64_t Offset; 8126 if (parseToken(lltok::lparen, "expected '(' here") || 8127 parseToken(lltok::kw_offset, "expected 'offset' here") || 8128 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8129 parseToken(lltok::comma, "expected ',' here")) 8130 return true; 8131 8132 LocTy Loc = Lex.getLoc(); 8133 unsigned GVId; 8134 ValueInfo VI; 8135 if (parseGVReference(VI, GVId)) 8136 return true; 8137 8138 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8139 // forward reference. We will save the location of the ValueInfo needing an 8140 // update, but can only do so once the std::vector is finalized. 8141 if (VI == EmptyVI) 8142 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8143 TI.push_back({Offset, VI}); 8144 8145 if (parseToken(lltok::rparen, "expected ')' in call")) 8146 return true; 8147 } while (EatIfPresent(lltok::comma)); 8148 8149 // Now that the TI vector is finalized, it is safe to save the locations 8150 // of any forward GV references that need updating later. 8151 for (auto I : IdToIndexMap) { 8152 auto &Infos = ForwardRefValueInfos[I.first]; 8153 for (auto P : I.second) { 8154 assert(TI[P.first].VTableVI == EmptyVI && 8155 "Forward referenced ValueInfo expected to be empty"); 8156 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8157 } 8158 } 8159 8160 if (parseToken(lltok::rparen, "expected ')' here") || 8161 parseToken(lltok::rparen, "expected ')' here")) 8162 return true; 8163 8164 // Check if this ID was forward referenced, and if so, update the 8165 // corresponding GUIDs. 8166 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8167 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8168 for (auto TIDRef : FwdRefTIDs->second) { 8169 assert(!*TIDRef.first && 8170 "Forward referenced type id GUID expected to be 0"); 8171 *TIDRef.first = GlobalValue::getGUID(Name); 8172 } 8173 ForwardRefTypeIds.erase(FwdRefTIDs); 8174 } 8175 8176 return false; 8177 } 8178 8179 /// TypeTestResolution 8180 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8181 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8182 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8183 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8184 /// [',' 'inlinesBits' ':' UInt64]? ')' 8185 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8186 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8187 parseToken(lltok::colon, "expected ':' here") || 8188 parseToken(lltok::lparen, "expected '(' here") || 8189 parseToken(lltok::kw_kind, "expected 'kind' here") || 8190 parseToken(lltok::colon, "expected ':' here")) 8191 return true; 8192 8193 switch (Lex.getKind()) { 8194 case lltok::kw_unknown: 8195 TTRes.TheKind = TypeTestResolution::Unknown; 8196 break; 8197 case lltok::kw_unsat: 8198 TTRes.TheKind = TypeTestResolution::Unsat; 8199 break; 8200 case lltok::kw_byteArray: 8201 TTRes.TheKind = TypeTestResolution::ByteArray; 8202 break; 8203 case lltok::kw_inline: 8204 TTRes.TheKind = TypeTestResolution::Inline; 8205 break; 8206 case lltok::kw_single: 8207 TTRes.TheKind = TypeTestResolution::Single; 8208 break; 8209 case lltok::kw_allOnes: 8210 TTRes.TheKind = TypeTestResolution::AllOnes; 8211 break; 8212 default: 8213 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8214 } 8215 Lex.Lex(); 8216 8217 if (parseToken(lltok::comma, "expected ',' here") || 8218 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8219 parseToken(lltok::colon, "expected ':' here") || 8220 parseUInt32(TTRes.SizeM1BitWidth)) 8221 return true; 8222 8223 // parse optional fields 8224 while (EatIfPresent(lltok::comma)) { 8225 switch (Lex.getKind()) { 8226 case lltok::kw_alignLog2: 8227 Lex.Lex(); 8228 if (parseToken(lltok::colon, "expected ':'") || 8229 parseUInt64(TTRes.AlignLog2)) 8230 return true; 8231 break; 8232 case lltok::kw_sizeM1: 8233 Lex.Lex(); 8234 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8235 return true; 8236 break; 8237 case lltok::kw_bitMask: { 8238 unsigned Val; 8239 Lex.Lex(); 8240 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8241 return true; 8242 assert(Val <= 0xff); 8243 TTRes.BitMask = (uint8_t)Val; 8244 break; 8245 } 8246 case lltok::kw_inlineBits: 8247 Lex.Lex(); 8248 if (parseToken(lltok::colon, "expected ':'") || 8249 parseUInt64(TTRes.InlineBits)) 8250 return true; 8251 break; 8252 default: 8253 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8254 } 8255 } 8256 8257 if (parseToken(lltok::rparen, "expected ')' here")) 8258 return true; 8259 8260 return false; 8261 } 8262 8263 /// OptionalWpdResolutions 8264 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8265 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8266 bool LLParser::parseOptionalWpdResolutions( 8267 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8268 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8269 parseToken(lltok::colon, "expected ':' here") || 8270 parseToken(lltok::lparen, "expected '(' here")) 8271 return true; 8272 8273 do { 8274 uint64_t Offset; 8275 WholeProgramDevirtResolution WPDRes; 8276 if (parseToken(lltok::lparen, "expected '(' here") || 8277 parseToken(lltok::kw_offset, "expected 'offset' here") || 8278 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8279 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8280 parseToken(lltok::rparen, "expected ')' here")) 8281 return true; 8282 WPDResMap[Offset] = WPDRes; 8283 } while (EatIfPresent(lltok::comma)); 8284 8285 if (parseToken(lltok::rparen, "expected ')' here")) 8286 return true; 8287 8288 return false; 8289 } 8290 8291 /// WpdRes 8292 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8293 /// [',' OptionalResByArg]? ')' 8294 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8295 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8296 /// [',' OptionalResByArg]? ')' 8297 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8298 /// [',' OptionalResByArg]? ')' 8299 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8300 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8301 parseToken(lltok::colon, "expected ':' here") || 8302 parseToken(lltok::lparen, "expected '(' here") || 8303 parseToken(lltok::kw_kind, "expected 'kind' here") || 8304 parseToken(lltok::colon, "expected ':' here")) 8305 return true; 8306 8307 switch (Lex.getKind()) { 8308 case lltok::kw_indir: 8309 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8310 break; 8311 case lltok::kw_singleImpl: 8312 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8313 break; 8314 case lltok::kw_branchFunnel: 8315 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8316 break; 8317 default: 8318 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8319 } 8320 Lex.Lex(); 8321 8322 // parse optional fields 8323 while (EatIfPresent(lltok::comma)) { 8324 switch (Lex.getKind()) { 8325 case lltok::kw_singleImplName: 8326 Lex.Lex(); 8327 if (parseToken(lltok::colon, "expected ':' here") || 8328 parseStringConstant(WPDRes.SingleImplName)) 8329 return true; 8330 break; 8331 case lltok::kw_resByArg: 8332 if (parseOptionalResByArg(WPDRes.ResByArg)) 8333 return true; 8334 break; 8335 default: 8336 return error(Lex.getLoc(), 8337 "expected optional WholeProgramDevirtResolution field"); 8338 } 8339 } 8340 8341 if (parseToken(lltok::rparen, "expected ')' here")) 8342 return true; 8343 8344 return false; 8345 } 8346 8347 /// OptionalResByArg 8348 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8349 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8350 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8351 /// 'virtualConstProp' ) 8352 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8353 /// [',' 'bit' ':' UInt32]? ')' 8354 bool LLParser::parseOptionalResByArg( 8355 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8356 &ResByArg) { 8357 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8358 parseToken(lltok::colon, "expected ':' here") || 8359 parseToken(lltok::lparen, "expected '(' here")) 8360 return true; 8361 8362 do { 8363 std::vector<uint64_t> Args; 8364 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8365 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8366 parseToken(lltok::colon, "expected ':' here") || 8367 parseToken(lltok::lparen, "expected '(' here") || 8368 parseToken(lltok::kw_kind, "expected 'kind' here") || 8369 parseToken(lltok::colon, "expected ':' here")) 8370 return true; 8371 8372 WholeProgramDevirtResolution::ByArg ByArg; 8373 switch (Lex.getKind()) { 8374 case lltok::kw_indir: 8375 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8376 break; 8377 case lltok::kw_uniformRetVal: 8378 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8379 break; 8380 case lltok::kw_uniqueRetVal: 8381 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8382 break; 8383 case lltok::kw_virtualConstProp: 8384 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8385 break; 8386 default: 8387 return error(Lex.getLoc(), 8388 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8389 } 8390 Lex.Lex(); 8391 8392 // parse optional fields 8393 while (EatIfPresent(lltok::comma)) { 8394 switch (Lex.getKind()) { 8395 case lltok::kw_info: 8396 Lex.Lex(); 8397 if (parseToken(lltok::colon, "expected ':' here") || 8398 parseUInt64(ByArg.Info)) 8399 return true; 8400 break; 8401 case lltok::kw_byte: 8402 Lex.Lex(); 8403 if (parseToken(lltok::colon, "expected ':' here") || 8404 parseUInt32(ByArg.Byte)) 8405 return true; 8406 break; 8407 case lltok::kw_bit: 8408 Lex.Lex(); 8409 if (parseToken(lltok::colon, "expected ':' here") || 8410 parseUInt32(ByArg.Bit)) 8411 return true; 8412 break; 8413 default: 8414 return error(Lex.getLoc(), 8415 "expected optional whole program devirt field"); 8416 } 8417 } 8418 8419 if (parseToken(lltok::rparen, "expected ')' here")) 8420 return true; 8421 8422 ResByArg[Args] = ByArg; 8423 } while (EatIfPresent(lltok::comma)); 8424 8425 if (parseToken(lltok::rparen, "expected ')' here")) 8426 return true; 8427 8428 return false; 8429 } 8430 8431 /// OptionalResByArg 8432 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8433 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8434 if (parseToken(lltok::kw_args, "expected 'args' here") || 8435 parseToken(lltok::colon, "expected ':' here") || 8436 parseToken(lltok::lparen, "expected '(' here")) 8437 return true; 8438 8439 do { 8440 uint64_t Val; 8441 if (parseUInt64(Val)) 8442 return true; 8443 Args.push_back(Val); 8444 } while (EatIfPresent(lltok::comma)); 8445 8446 if (parseToken(lltok::rparen, "expected ')' here")) 8447 return true; 8448 8449 return false; 8450 } 8451 8452 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8453 8454 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8455 bool ReadOnly = Fwd->isReadOnly(); 8456 bool WriteOnly = Fwd->isWriteOnly(); 8457 assert(!(ReadOnly && WriteOnly)); 8458 *Fwd = Resolved; 8459 if (ReadOnly) 8460 Fwd->setReadOnly(); 8461 if (WriteOnly) 8462 Fwd->setWriteOnly(); 8463 } 8464 8465 /// Stores the given Name/GUID and associated summary into the Index. 8466 /// Also updates any forward references to the associated entry ID. 8467 void LLParser::addGlobalValueToIndex( 8468 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8469 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8470 // First create the ValueInfo utilizing the Name or GUID. 8471 ValueInfo VI; 8472 if (GUID != 0) { 8473 assert(Name.empty()); 8474 VI = Index->getOrInsertValueInfo(GUID); 8475 } else { 8476 assert(!Name.empty()); 8477 if (M) { 8478 auto *GV = M->getNamedValue(Name); 8479 assert(GV); 8480 VI = Index->getOrInsertValueInfo(GV); 8481 } else { 8482 assert( 8483 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8484 "Need a source_filename to compute GUID for local"); 8485 GUID = GlobalValue::getGUID( 8486 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8487 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8488 } 8489 } 8490 8491 // Resolve forward references from calls/refs 8492 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8493 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8494 for (auto VIRef : FwdRefVIs->second) { 8495 assert(VIRef.first->getRef() == FwdVIRef && 8496 "Forward referenced ValueInfo expected to be empty"); 8497 resolveFwdRef(VIRef.first, VI); 8498 } 8499 ForwardRefValueInfos.erase(FwdRefVIs); 8500 } 8501 8502 // Resolve forward references from aliases 8503 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8504 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8505 for (auto AliaseeRef : FwdRefAliasees->second) { 8506 assert(!AliaseeRef.first->hasAliasee() && 8507 "Forward referencing alias already has aliasee"); 8508 assert(Summary && "Aliasee must be a definition"); 8509 AliaseeRef.first->setAliasee(VI, Summary.get()); 8510 } 8511 ForwardRefAliasees.erase(FwdRefAliasees); 8512 } 8513 8514 // Add the summary if one was provided. 8515 if (Summary) 8516 Index->addGlobalValueSummary(VI, std::move(Summary)); 8517 8518 // Save the associated ValueInfo for use in later references by ID. 8519 if (ID == NumberedValueInfos.size()) 8520 NumberedValueInfos.push_back(VI); 8521 else { 8522 // Handle non-continuous numbers (to make test simplification easier). 8523 if (ID > NumberedValueInfos.size()) 8524 NumberedValueInfos.resize(ID + 1); 8525 NumberedValueInfos[ID] = VI; 8526 } 8527 } 8528 8529 /// parseSummaryIndexFlags 8530 /// ::= 'flags' ':' UInt64 8531 bool LLParser::parseSummaryIndexFlags() { 8532 assert(Lex.getKind() == lltok::kw_flags); 8533 Lex.Lex(); 8534 8535 if (parseToken(lltok::colon, "expected ':' here")) 8536 return true; 8537 uint64_t Flags; 8538 if (parseUInt64(Flags)) 8539 return true; 8540 if (Index) 8541 Index->setFlags(Flags); 8542 return false; 8543 } 8544 8545 /// parseBlockCount 8546 /// ::= 'blockcount' ':' UInt64 8547 bool LLParser::parseBlockCount() { 8548 assert(Lex.getKind() == lltok::kw_blockcount); 8549 Lex.Lex(); 8550 8551 if (parseToken(lltok::colon, "expected ':' here")) 8552 return true; 8553 uint64_t BlockCount; 8554 if (parseUInt64(BlockCount)) 8555 return true; 8556 if (Index) 8557 Index->setBlockCount(BlockCount); 8558 return false; 8559 } 8560 8561 /// parseGVEntry 8562 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8563 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8564 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8565 bool LLParser::parseGVEntry(unsigned ID) { 8566 assert(Lex.getKind() == lltok::kw_gv); 8567 Lex.Lex(); 8568 8569 if (parseToken(lltok::colon, "expected ':' here") || 8570 parseToken(lltok::lparen, "expected '(' here")) 8571 return true; 8572 8573 std::string Name; 8574 GlobalValue::GUID GUID = 0; 8575 switch (Lex.getKind()) { 8576 case lltok::kw_name: 8577 Lex.Lex(); 8578 if (parseToken(lltok::colon, "expected ':' here") || 8579 parseStringConstant(Name)) 8580 return true; 8581 // Can't create GUID/ValueInfo until we have the linkage. 8582 break; 8583 case lltok::kw_guid: 8584 Lex.Lex(); 8585 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8586 return true; 8587 break; 8588 default: 8589 return error(Lex.getLoc(), "expected name or guid tag"); 8590 } 8591 8592 if (!EatIfPresent(lltok::comma)) { 8593 // No summaries. Wrap up. 8594 if (parseToken(lltok::rparen, "expected ')' here")) 8595 return true; 8596 // This was created for a call to an external or indirect target. 8597 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8598 // created for indirect calls with VP. A Name with no GUID came from 8599 // an external definition. We pass ExternalLinkage since that is only 8600 // used when the GUID must be computed from Name, and in that case 8601 // the symbol must have external linkage. 8602 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8603 nullptr); 8604 return false; 8605 } 8606 8607 // Have a list of summaries 8608 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8609 parseToken(lltok::colon, "expected ':' here") || 8610 parseToken(lltok::lparen, "expected '(' here")) 8611 return true; 8612 do { 8613 switch (Lex.getKind()) { 8614 case lltok::kw_function: 8615 if (parseFunctionSummary(Name, GUID, ID)) 8616 return true; 8617 break; 8618 case lltok::kw_variable: 8619 if (parseVariableSummary(Name, GUID, ID)) 8620 return true; 8621 break; 8622 case lltok::kw_alias: 8623 if (parseAliasSummary(Name, GUID, ID)) 8624 return true; 8625 break; 8626 default: 8627 return error(Lex.getLoc(), "expected summary type"); 8628 } 8629 } while (EatIfPresent(lltok::comma)); 8630 8631 if (parseToken(lltok::rparen, "expected ')' here") || 8632 parseToken(lltok::rparen, "expected ')' here")) 8633 return true; 8634 8635 return false; 8636 } 8637 8638 /// FunctionSummary 8639 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8640 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8641 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8642 /// [',' OptionalRefs]? ')' 8643 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8644 unsigned ID) { 8645 assert(Lex.getKind() == lltok::kw_function); 8646 Lex.Lex(); 8647 8648 StringRef ModulePath; 8649 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8650 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8651 /*NotEligibleToImport=*/false, 8652 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8653 unsigned InstCount; 8654 std::vector<FunctionSummary::EdgeTy> Calls; 8655 FunctionSummary::TypeIdInfo TypeIdInfo; 8656 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8657 std::vector<ValueInfo> Refs; 8658 // Default is all-zeros (conservative values). 8659 FunctionSummary::FFlags FFlags = {}; 8660 if (parseToken(lltok::colon, "expected ':' here") || 8661 parseToken(lltok::lparen, "expected '(' here") || 8662 parseModuleReference(ModulePath) || 8663 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8664 parseToken(lltok::comma, "expected ',' here") || 8665 parseToken(lltok::kw_insts, "expected 'insts' here") || 8666 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8667 return true; 8668 8669 // parse optional fields 8670 while (EatIfPresent(lltok::comma)) { 8671 switch (Lex.getKind()) { 8672 case lltok::kw_funcFlags: 8673 if (parseOptionalFFlags(FFlags)) 8674 return true; 8675 break; 8676 case lltok::kw_calls: 8677 if (parseOptionalCalls(Calls)) 8678 return true; 8679 break; 8680 case lltok::kw_typeIdInfo: 8681 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8682 return true; 8683 break; 8684 case lltok::kw_refs: 8685 if (parseOptionalRefs(Refs)) 8686 return true; 8687 break; 8688 case lltok::kw_params: 8689 if (parseOptionalParamAccesses(ParamAccesses)) 8690 return true; 8691 break; 8692 default: 8693 return error(Lex.getLoc(), "expected optional function summary field"); 8694 } 8695 } 8696 8697 if (parseToken(lltok::rparen, "expected ')' here")) 8698 return true; 8699 8700 auto FS = std::make_unique<FunctionSummary>( 8701 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8702 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8703 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8704 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8705 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8706 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8707 std::move(ParamAccesses)); 8708 8709 FS->setModulePath(ModulePath); 8710 8711 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8712 ID, std::move(FS)); 8713 8714 return false; 8715 } 8716 8717 /// VariableSummary 8718 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8719 /// [',' OptionalRefs]? ')' 8720 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8721 unsigned ID) { 8722 assert(Lex.getKind() == lltok::kw_variable); 8723 Lex.Lex(); 8724 8725 StringRef ModulePath; 8726 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8727 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8728 /*NotEligibleToImport=*/false, 8729 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8730 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8731 /* WriteOnly */ false, 8732 /* Constant */ false, 8733 GlobalObject::VCallVisibilityPublic); 8734 std::vector<ValueInfo> Refs; 8735 VTableFuncList VTableFuncs; 8736 if (parseToken(lltok::colon, "expected ':' here") || 8737 parseToken(lltok::lparen, "expected '(' here") || 8738 parseModuleReference(ModulePath) || 8739 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8740 parseToken(lltok::comma, "expected ',' here") || 8741 parseGVarFlags(GVarFlags)) 8742 return true; 8743 8744 // parse optional fields 8745 while (EatIfPresent(lltok::comma)) { 8746 switch (Lex.getKind()) { 8747 case lltok::kw_vTableFuncs: 8748 if (parseOptionalVTableFuncs(VTableFuncs)) 8749 return true; 8750 break; 8751 case lltok::kw_refs: 8752 if (parseOptionalRefs(Refs)) 8753 return true; 8754 break; 8755 default: 8756 return error(Lex.getLoc(), "expected optional variable summary field"); 8757 } 8758 } 8759 8760 if (parseToken(lltok::rparen, "expected ')' here")) 8761 return true; 8762 8763 auto GS = 8764 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8765 8766 GS->setModulePath(ModulePath); 8767 GS->setVTableFuncs(std::move(VTableFuncs)); 8768 8769 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8770 ID, std::move(GS)); 8771 8772 return false; 8773 } 8774 8775 /// AliasSummary 8776 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8777 /// 'aliasee' ':' GVReference ')' 8778 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8779 unsigned ID) { 8780 assert(Lex.getKind() == lltok::kw_alias); 8781 LocTy Loc = Lex.getLoc(); 8782 Lex.Lex(); 8783 8784 StringRef ModulePath; 8785 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8786 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8787 /*NotEligibleToImport=*/false, 8788 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8789 if (parseToken(lltok::colon, "expected ':' here") || 8790 parseToken(lltok::lparen, "expected '(' here") || 8791 parseModuleReference(ModulePath) || 8792 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8793 parseToken(lltok::comma, "expected ',' here") || 8794 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8795 parseToken(lltok::colon, "expected ':' here")) 8796 return true; 8797 8798 ValueInfo AliaseeVI; 8799 unsigned GVId; 8800 if (parseGVReference(AliaseeVI, GVId)) 8801 return true; 8802 8803 if (parseToken(lltok::rparen, "expected ')' here")) 8804 return true; 8805 8806 auto AS = std::make_unique<AliasSummary>(GVFlags); 8807 8808 AS->setModulePath(ModulePath); 8809 8810 // Record forward reference if the aliasee is not parsed yet. 8811 if (AliaseeVI.getRef() == FwdVIRef) { 8812 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8813 } else { 8814 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8815 assert(Summary && "Aliasee must be a definition"); 8816 AS->setAliasee(AliaseeVI, Summary); 8817 } 8818 8819 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8820 ID, std::move(AS)); 8821 8822 return false; 8823 } 8824 8825 /// Flag 8826 /// ::= [0|1] 8827 bool LLParser::parseFlag(unsigned &Val) { 8828 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8829 return tokError("expected integer"); 8830 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8831 Lex.Lex(); 8832 return false; 8833 } 8834 8835 /// OptionalFFlags 8836 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8837 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8838 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8839 /// [',' 'noInline' ':' Flag]? ')' 8840 /// [',' 'alwaysInline' ':' Flag]? ')' 8841 8842 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8843 assert(Lex.getKind() == lltok::kw_funcFlags); 8844 Lex.Lex(); 8845 8846 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8847 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8848 return true; 8849 8850 do { 8851 unsigned Val = 0; 8852 switch (Lex.getKind()) { 8853 case lltok::kw_readNone: 8854 Lex.Lex(); 8855 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8856 return true; 8857 FFlags.ReadNone = Val; 8858 break; 8859 case lltok::kw_readOnly: 8860 Lex.Lex(); 8861 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8862 return true; 8863 FFlags.ReadOnly = Val; 8864 break; 8865 case lltok::kw_noRecurse: 8866 Lex.Lex(); 8867 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8868 return true; 8869 FFlags.NoRecurse = Val; 8870 break; 8871 case lltok::kw_returnDoesNotAlias: 8872 Lex.Lex(); 8873 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8874 return true; 8875 FFlags.ReturnDoesNotAlias = Val; 8876 break; 8877 case lltok::kw_noInline: 8878 Lex.Lex(); 8879 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8880 return true; 8881 FFlags.NoInline = Val; 8882 break; 8883 case lltok::kw_alwaysInline: 8884 Lex.Lex(); 8885 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8886 return true; 8887 FFlags.AlwaysInline = Val; 8888 break; 8889 default: 8890 return error(Lex.getLoc(), "expected function flag type"); 8891 } 8892 } while (EatIfPresent(lltok::comma)); 8893 8894 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8895 return true; 8896 8897 return false; 8898 } 8899 8900 /// OptionalCalls 8901 /// := 'calls' ':' '(' Call [',' Call]* ')' 8902 /// Call ::= '(' 'callee' ':' GVReference 8903 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8904 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8905 assert(Lex.getKind() == lltok::kw_calls); 8906 Lex.Lex(); 8907 8908 if (parseToken(lltok::colon, "expected ':' in calls") | 8909 parseToken(lltok::lparen, "expected '(' in calls")) 8910 return true; 8911 8912 IdToIndexMapType IdToIndexMap; 8913 // parse each call edge 8914 do { 8915 ValueInfo VI; 8916 if (parseToken(lltok::lparen, "expected '(' in call") || 8917 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8918 parseToken(lltok::colon, "expected ':'")) 8919 return true; 8920 8921 LocTy Loc = Lex.getLoc(); 8922 unsigned GVId; 8923 if (parseGVReference(VI, GVId)) 8924 return true; 8925 8926 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8927 unsigned RelBF = 0; 8928 if (EatIfPresent(lltok::comma)) { 8929 // Expect either hotness or relbf 8930 if (EatIfPresent(lltok::kw_hotness)) { 8931 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8932 return true; 8933 } else { 8934 if (parseToken(lltok::kw_relbf, "expected relbf") || 8935 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8936 return true; 8937 } 8938 } 8939 // Keep track of the Call array index needing a forward reference. 8940 // We will save the location of the ValueInfo needing an update, but 8941 // can only do so once the std::vector is finalized. 8942 if (VI.getRef() == FwdVIRef) 8943 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8944 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8945 8946 if (parseToken(lltok::rparen, "expected ')' in call")) 8947 return true; 8948 } while (EatIfPresent(lltok::comma)); 8949 8950 // Now that the Calls vector is finalized, it is safe to save the locations 8951 // of any forward GV references that need updating later. 8952 for (auto I : IdToIndexMap) { 8953 auto &Infos = ForwardRefValueInfos[I.first]; 8954 for (auto P : I.second) { 8955 assert(Calls[P.first].first.getRef() == FwdVIRef && 8956 "Forward referenced ValueInfo expected to be empty"); 8957 Infos.emplace_back(&Calls[P.first].first, P.second); 8958 } 8959 } 8960 8961 if (parseToken(lltok::rparen, "expected ')' in calls")) 8962 return true; 8963 8964 return false; 8965 } 8966 8967 /// Hotness 8968 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8969 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8970 switch (Lex.getKind()) { 8971 case lltok::kw_unknown: 8972 Hotness = CalleeInfo::HotnessType::Unknown; 8973 break; 8974 case lltok::kw_cold: 8975 Hotness = CalleeInfo::HotnessType::Cold; 8976 break; 8977 case lltok::kw_none: 8978 Hotness = CalleeInfo::HotnessType::None; 8979 break; 8980 case lltok::kw_hot: 8981 Hotness = CalleeInfo::HotnessType::Hot; 8982 break; 8983 case lltok::kw_critical: 8984 Hotness = CalleeInfo::HotnessType::Critical; 8985 break; 8986 default: 8987 return error(Lex.getLoc(), "invalid call edge hotness"); 8988 } 8989 Lex.Lex(); 8990 return false; 8991 } 8992 8993 /// OptionalVTableFuncs 8994 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8995 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8996 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8997 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8998 Lex.Lex(); 8999 9000 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 9001 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9002 return true; 9003 9004 IdToIndexMapType IdToIndexMap; 9005 // parse each virtual function pair 9006 do { 9007 ValueInfo VI; 9008 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9009 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9010 parseToken(lltok::colon, "expected ':'")) 9011 return true; 9012 9013 LocTy Loc = Lex.getLoc(); 9014 unsigned GVId; 9015 if (parseGVReference(VI, GVId)) 9016 return true; 9017 9018 uint64_t Offset; 9019 if (parseToken(lltok::comma, "expected comma") || 9020 parseToken(lltok::kw_offset, "expected offset") || 9021 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9022 return true; 9023 9024 // Keep track of the VTableFuncs array index needing a forward reference. 9025 // We will save the location of the ValueInfo needing an update, but 9026 // can only do so once the std::vector is finalized. 9027 if (VI == EmptyVI) 9028 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9029 VTableFuncs.push_back({VI, Offset}); 9030 9031 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9032 return true; 9033 } while (EatIfPresent(lltok::comma)); 9034 9035 // Now that the VTableFuncs vector is finalized, it is safe to save the 9036 // locations of any forward GV references that need updating later. 9037 for (auto I : IdToIndexMap) { 9038 auto &Infos = ForwardRefValueInfos[I.first]; 9039 for (auto P : I.second) { 9040 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9041 "Forward referenced ValueInfo expected to be empty"); 9042 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9043 } 9044 } 9045 9046 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9047 return true; 9048 9049 return false; 9050 } 9051 9052 /// ParamNo := 'param' ':' UInt64 9053 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9054 if (parseToken(lltok::kw_param, "expected 'param' here") || 9055 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9056 return true; 9057 return false; 9058 } 9059 9060 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9061 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9062 APSInt Lower; 9063 APSInt Upper; 9064 auto ParseAPSInt = [&](APSInt &Val) { 9065 if (Lex.getKind() != lltok::APSInt) 9066 return tokError("expected integer"); 9067 Val = Lex.getAPSIntVal(); 9068 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9069 Val.setIsSigned(true); 9070 Lex.Lex(); 9071 return false; 9072 }; 9073 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9074 parseToken(lltok::colon, "expected ':' here") || 9075 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9076 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9077 parseToken(lltok::rsquare, "expected ']' here")) 9078 return true; 9079 9080 ++Upper; 9081 Range = 9082 (Lower == Upper && !Lower.isMaxValue()) 9083 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9084 : ConstantRange(Lower, Upper); 9085 9086 return false; 9087 } 9088 9089 /// ParamAccessCall 9090 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9091 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9092 IdLocListType &IdLocList) { 9093 if (parseToken(lltok::lparen, "expected '(' here") || 9094 parseToken(lltok::kw_callee, "expected 'callee' here") || 9095 parseToken(lltok::colon, "expected ':' here")) 9096 return true; 9097 9098 unsigned GVId; 9099 ValueInfo VI; 9100 LocTy Loc = Lex.getLoc(); 9101 if (parseGVReference(VI, GVId)) 9102 return true; 9103 9104 Call.Callee = VI; 9105 IdLocList.emplace_back(GVId, Loc); 9106 9107 if (parseToken(lltok::comma, "expected ',' here") || 9108 parseParamNo(Call.ParamNo) || 9109 parseToken(lltok::comma, "expected ',' here") || 9110 parseParamAccessOffset(Call.Offsets)) 9111 return true; 9112 9113 if (parseToken(lltok::rparen, "expected ')' here")) 9114 return true; 9115 9116 return false; 9117 } 9118 9119 /// ParamAccess 9120 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9121 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9122 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9123 IdLocListType &IdLocList) { 9124 if (parseToken(lltok::lparen, "expected '(' here") || 9125 parseParamNo(Param.ParamNo) || 9126 parseToken(lltok::comma, "expected ',' here") || 9127 parseParamAccessOffset(Param.Use)) 9128 return true; 9129 9130 if (EatIfPresent(lltok::comma)) { 9131 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9132 parseToken(lltok::colon, "expected ':' here") || 9133 parseToken(lltok::lparen, "expected '(' here")) 9134 return true; 9135 do { 9136 FunctionSummary::ParamAccess::Call Call; 9137 if (parseParamAccessCall(Call, IdLocList)) 9138 return true; 9139 Param.Calls.push_back(Call); 9140 } while (EatIfPresent(lltok::comma)); 9141 9142 if (parseToken(lltok::rparen, "expected ')' here")) 9143 return true; 9144 } 9145 9146 if (parseToken(lltok::rparen, "expected ')' here")) 9147 return true; 9148 9149 return false; 9150 } 9151 9152 /// OptionalParamAccesses 9153 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9154 bool LLParser::parseOptionalParamAccesses( 9155 std::vector<FunctionSummary::ParamAccess> &Params) { 9156 assert(Lex.getKind() == lltok::kw_params); 9157 Lex.Lex(); 9158 9159 if (parseToken(lltok::colon, "expected ':' here") || 9160 parseToken(lltok::lparen, "expected '(' here")) 9161 return true; 9162 9163 IdLocListType VContexts; 9164 size_t CallsNum = 0; 9165 do { 9166 FunctionSummary::ParamAccess ParamAccess; 9167 if (parseParamAccess(ParamAccess, VContexts)) 9168 return true; 9169 CallsNum += ParamAccess.Calls.size(); 9170 assert(VContexts.size() == CallsNum); 9171 Params.emplace_back(std::move(ParamAccess)); 9172 } while (EatIfPresent(lltok::comma)); 9173 9174 if (parseToken(lltok::rparen, "expected ')' here")) 9175 return true; 9176 9177 // Now that the Params is finalized, it is safe to save the locations 9178 // of any forward GV references that need updating later. 9179 IdLocListType::const_iterator ItContext = VContexts.begin(); 9180 for (auto &PA : Params) { 9181 for (auto &C : PA.Calls) { 9182 if (C.Callee.getRef() == FwdVIRef) 9183 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9184 ItContext->second); 9185 ++ItContext; 9186 } 9187 } 9188 assert(ItContext == VContexts.end()); 9189 9190 return false; 9191 } 9192 9193 /// OptionalRefs 9194 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9195 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9196 assert(Lex.getKind() == lltok::kw_refs); 9197 Lex.Lex(); 9198 9199 if (parseToken(lltok::colon, "expected ':' in refs") || 9200 parseToken(lltok::lparen, "expected '(' in refs")) 9201 return true; 9202 9203 struct ValueContext { 9204 ValueInfo VI; 9205 unsigned GVId; 9206 LocTy Loc; 9207 }; 9208 std::vector<ValueContext> VContexts; 9209 // parse each ref edge 9210 do { 9211 ValueContext VC; 9212 VC.Loc = Lex.getLoc(); 9213 if (parseGVReference(VC.VI, VC.GVId)) 9214 return true; 9215 VContexts.push_back(VC); 9216 } while (EatIfPresent(lltok::comma)); 9217 9218 // Sort value contexts so that ones with writeonly 9219 // and readonly ValueInfo are at the end of VContexts vector. 9220 // See FunctionSummary::specialRefCounts() 9221 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9222 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9223 }); 9224 9225 IdToIndexMapType IdToIndexMap; 9226 for (auto &VC : VContexts) { 9227 // Keep track of the Refs array index needing a forward reference. 9228 // We will save the location of the ValueInfo needing an update, but 9229 // can only do so once the std::vector is finalized. 9230 if (VC.VI.getRef() == FwdVIRef) 9231 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9232 Refs.push_back(VC.VI); 9233 } 9234 9235 // Now that the Refs vector is finalized, it is safe to save the locations 9236 // of any forward GV references that need updating later. 9237 for (auto I : IdToIndexMap) { 9238 auto &Infos = ForwardRefValueInfos[I.first]; 9239 for (auto P : I.second) { 9240 assert(Refs[P.first].getRef() == FwdVIRef && 9241 "Forward referenced ValueInfo expected to be empty"); 9242 Infos.emplace_back(&Refs[P.first], P.second); 9243 } 9244 } 9245 9246 if (parseToken(lltok::rparen, "expected ')' in refs")) 9247 return true; 9248 9249 return false; 9250 } 9251 9252 /// OptionalTypeIdInfo 9253 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9254 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9255 /// [',' TypeCheckedLoadConstVCalls]? ')' 9256 bool LLParser::parseOptionalTypeIdInfo( 9257 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9258 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9259 Lex.Lex(); 9260 9261 if (parseToken(lltok::colon, "expected ':' here") || 9262 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9263 return true; 9264 9265 do { 9266 switch (Lex.getKind()) { 9267 case lltok::kw_typeTests: 9268 if (parseTypeTests(TypeIdInfo.TypeTests)) 9269 return true; 9270 break; 9271 case lltok::kw_typeTestAssumeVCalls: 9272 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9273 TypeIdInfo.TypeTestAssumeVCalls)) 9274 return true; 9275 break; 9276 case lltok::kw_typeCheckedLoadVCalls: 9277 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9278 TypeIdInfo.TypeCheckedLoadVCalls)) 9279 return true; 9280 break; 9281 case lltok::kw_typeTestAssumeConstVCalls: 9282 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9283 TypeIdInfo.TypeTestAssumeConstVCalls)) 9284 return true; 9285 break; 9286 case lltok::kw_typeCheckedLoadConstVCalls: 9287 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9288 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9289 return true; 9290 break; 9291 default: 9292 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9293 } 9294 } while (EatIfPresent(lltok::comma)); 9295 9296 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9297 return true; 9298 9299 return false; 9300 } 9301 9302 /// TypeTests 9303 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9304 /// [',' (SummaryID | UInt64)]* ')' 9305 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9306 assert(Lex.getKind() == lltok::kw_typeTests); 9307 Lex.Lex(); 9308 9309 if (parseToken(lltok::colon, "expected ':' here") || 9310 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9311 return true; 9312 9313 IdToIndexMapType IdToIndexMap; 9314 do { 9315 GlobalValue::GUID GUID = 0; 9316 if (Lex.getKind() == lltok::SummaryID) { 9317 unsigned ID = Lex.getUIntVal(); 9318 LocTy Loc = Lex.getLoc(); 9319 // Keep track of the TypeTests array index needing a forward reference. 9320 // We will save the location of the GUID needing an update, but 9321 // can only do so once the std::vector is finalized. 9322 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9323 Lex.Lex(); 9324 } else if (parseUInt64(GUID)) 9325 return true; 9326 TypeTests.push_back(GUID); 9327 } while (EatIfPresent(lltok::comma)); 9328 9329 // Now that the TypeTests vector is finalized, it is safe to save the 9330 // locations of any forward GV references that need updating later. 9331 for (auto I : IdToIndexMap) { 9332 auto &Ids = ForwardRefTypeIds[I.first]; 9333 for (auto P : I.second) { 9334 assert(TypeTests[P.first] == 0 && 9335 "Forward referenced type id GUID expected to be 0"); 9336 Ids.emplace_back(&TypeTests[P.first], P.second); 9337 } 9338 } 9339 9340 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9341 return true; 9342 9343 return false; 9344 } 9345 9346 /// VFuncIdList 9347 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9348 bool LLParser::parseVFuncIdList( 9349 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9350 assert(Lex.getKind() == Kind); 9351 Lex.Lex(); 9352 9353 if (parseToken(lltok::colon, "expected ':' here") || 9354 parseToken(lltok::lparen, "expected '(' here")) 9355 return true; 9356 9357 IdToIndexMapType IdToIndexMap; 9358 do { 9359 FunctionSummary::VFuncId VFuncId; 9360 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9361 return true; 9362 VFuncIdList.push_back(VFuncId); 9363 } while (EatIfPresent(lltok::comma)); 9364 9365 if (parseToken(lltok::rparen, "expected ')' here")) 9366 return true; 9367 9368 // Now that the VFuncIdList vector is finalized, it is safe to save the 9369 // locations of any forward GV references that need updating later. 9370 for (auto I : IdToIndexMap) { 9371 auto &Ids = ForwardRefTypeIds[I.first]; 9372 for (auto P : I.second) { 9373 assert(VFuncIdList[P.first].GUID == 0 && 9374 "Forward referenced type id GUID expected to be 0"); 9375 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9376 } 9377 } 9378 9379 return false; 9380 } 9381 9382 /// ConstVCallList 9383 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9384 bool LLParser::parseConstVCallList( 9385 lltok::Kind Kind, 9386 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9387 assert(Lex.getKind() == Kind); 9388 Lex.Lex(); 9389 9390 if (parseToken(lltok::colon, "expected ':' here") || 9391 parseToken(lltok::lparen, "expected '(' here")) 9392 return true; 9393 9394 IdToIndexMapType IdToIndexMap; 9395 do { 9396 FunctionSummary::ConstVCall ConstVCall; 9397 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9398 return true; 9399 ConstVCallList.push_back(ConstVCall); 9400 } while (EatIfPresent(lltok::comma)); 9401 9402 if (parseToken(lltok::rparen, "expected ')' here")) 9403 return true; 9404 9405 // Now that the ConstVCallList vector is finalized, it is safe to save the 9406 // locations of any forward GV references that need updating later. 9407 for (auto I : IdToIndexMap) { 9408 auto &Ids = ForwardRefTypeIds[I.first]; 9409 for (auto P : I.second) { 9410 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9411 "Forward referenced type id GUID expected to be 0"); 9412 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9413 } 9414 } 9415 9416 return false; 9417 } 9418 9419 /// ConstVCall 9420 /// ::= '(' VFuncId ',' Args ')' 9421 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9422 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9423 if (parseToken(lltok::lparen, "expected '(' here") || 9424 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9425 return true; 9426 9427 if (EatIfPresent(lltok::comma)) 9428 if (parseArgs(ConstVCall.Args)) 9429 return true; 9430 9431 if (parseToken(lltok::rparen, "expected ')' here")) 9432 return true; 9433 9434 return false; 9435 } 9436 9437 /// VFuncId 9438 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9439 /// 'offset' ':' UInt64 ')' 9440 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9441 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9442 assert(Lex.getKind() == lltok::kw_vFuncId); 9443 Lex.Lex(); 9444 9445 if (parseToken(lltok::colon, "expected ':' here") || 9446 parseToken(lltok::lparen, "expected '(' here")) 9447 return true; 9448 9449 if (Lex.getKind() == lltok::SummaryID) { 9450 VFuncId.GUID = 0; 9451 unsigned ID = Lex.getUIntVal(); 9452 LocTy Loc = Lex.getLoc(); 9453 // Keep track of the array index needing a forward reference. 9454 // We will save the location of the GUID needing an update, but 9455 // can only do so once the caller's std::vector is finalized. 9456 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9457 Lex.Lex(); 9458 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9459 parseToken(lltok::colon, "expected ':' here") || 9460 parseUInt64(VFuncId.GUID)) 9461 return true; 9462 9463 if (parseToken(lltok::comma, "expected ',' here") || 9464 parseToken(lltok::kw_offset, "expected 'offset' here") || 9465 parseToken(lltok::colon, "expected ':' here") || 9466 parseUInt64(VFuncId.Offset) || 9467 parseToken(lltok::rparen, "expected ')' here")) 9468 return true; 9469 9470 return false; 9471 } 9472 9473 /// GVFlags 9474 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9475 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9476 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9477 /// 'canAutoHide' ':' Flag ',' ')' 9478 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9479 assert(Lex.getKind() == lltok::kw_flags); 9480 Lex.Lex(); 9481 9482 if (parseToken(lltok::colon, "expected ':' here") || 9483 parseToken(lltok::lparen, "expected '(' here")) 9484 return true; 9485 9486 do { 9487 unsigned Flag = 0; 9488 switch (Lex.getKind()) { 9489 case lltok::kw_linkage: 9490 Lex.Lex(); 9491 if (parseToken(lltok::colon, "expected ':'")) 9492 return true; 9493 bool HasLinkage; 9494 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9495 assert(HasLinkage && "Linkage not optional in summary entry"); 9496 Lex.Lex(); 9497 break; 9498 case lltok::kw_visibility: 9499 Lex.Lex(); 9500 if (parseToken(lltok::colon, "expected ':'")) 9501 return true; 9502 parseOptionalVisibility(Flag); 9503 GVFlags.Visibility = Flag; 9504 break; 9505 case lltok::kw_notEligibleToImport: 9506 Lex.Lex(); 9507 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9508 return true; 9509 GVFlags.NotEligibleToImport = Flag; 9510 break; 9511 case lltok::kw_live: 9512 Lex.Lex(); 9513 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9514 return true; 9515 GVFlags.Live = Flag; 9516 break; 9517 case lltok::kw_dsoLocal: 9518 Lex.Lex(); 9519 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9520 return true; 9521 GVFlags.DSOLocal = Flag; 9522 break; 9523 case lltok::kw_canAutoHide: 9524 Lex.Lex(); 9525 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9526 return true; 9527 GVFlags.CanAutoHide = Flag; 9528 break; 9529 default: 9530 return error(Lex.getLoc(), "expected gv flag type"); 9531 } 9532 } while (EatIfPresent(lltok::comma)); 9533 9534 if (parseToken(lltok::rparen, "expected ')' here")) 9535 return true; 9536 9537 return false; 9538 } 9539 9540 /// GVarFlags 9541 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9542 /// ',' 'writeonly' ':' Flag 9543 /// ',' 'constant' ':' Flag ')' 9544 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9545 assert(Lex.getKind() == lltok::kw_varFlags); 9546 Lex.Lex(); 9547 9548 if (parseToken(lltok::colon, "expected ':' here") || 9549 parseToken(lltok::lparen, "expected '(' here")) 9550 return true; 9551 9552 auto ParseRest = [this](unsigned int &Val) { 9553 Lex.Lex(); 9554 if (parseToken(lltok::colon, "expected ':'")) 9555 return true; 9556 return parseFlag(Val); 9557 }; 9558 9559 do { 9560 unsigned Flag = 0; 9561 switch (Lex.getKind()) { 9562 case lltok::kw_readonly: 9563 if (ParseRest(Flag)) 9564 return true; 9565 GVarFlags.MaybeReadOnly = Flag; 9566 break; 9567 case lltok::kw_writeonly: 9568 if (ParseRest(Flag)) 9569 return true; 9570 GVarFlags.MaybeWriteOnly = Flag; 9571 break; 9572 case lltok::kw_constant: 9573 if (ParseRest(Flag)) 9574 return true; 9575 GVarFlags.Constant = Flag; 9576 break; 9577 case lltok::kw_vcall_visibility: 9578 if (ParseRest(Flag)) 9579 return true; 9580 GVarFlags.VCallVisibility = Flag; 9581 break; 9582 default: 9583 return error(Lex.getLoc(), "expected gvar flag type"); 9584 } 9585 } while (EatIfPresent(lltok::comma)); 9586 return parseToken(lltok::rparen, "expected ')' here"); 9587 } 9588 9589 /// ModuleReference 9590 /// ::= 'module' ':' UInt 9591 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9592 // parse module id. 9593 if (parseToken(lltok::kw_module, "expected 'module' here") || 9594 parseToken(lltok::colon, "expected ':' here") || 9595 parseToken(lltok::SummaryID, "expected module ID")) 9596 return true; 9597 9598 unsigned ModuleID = Lex.getUIntVal(); 9599 auto I = ModuleIdMap.find(ModuleID); 9600 // We should have already parsed all module IDs 9601 assert(I != ModuleIdMap.end()); 9602 ModulePath = I->second; 9603 return false; 9604 } 9605 9606 /// GVReference 9607 /// ::= SummaryID 9608 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9609 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9610 if (!ReadOnly) 9611 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9612 if (parseToken(lltok::SummaryID, "expected GV ID")) 9613 return true; 9614 9615 GVId = Lex.getUIntVal(); 9616 // Check if we already have a VI for this GV 9617 if (GVId < NumberedValueInfos.size()) { 9618 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9619 VI = NumberedValueInfos[GVId]; 9620 } else 9621 // We will create a forward reference to the stored location. 9622 VI = ValueInfo(false, FwdVIRef); 9623 9624 if (ReadOnly) 9625 VI.setReadOnly(); 9626 if (WriteOnly) 9627 VI.setWriteOnly(); 9628 return false; 9629 } 9630