1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743   if (Lex.getKind() != lltok::rbrace)
744     do {
745       MDNode *N = nullptr;
746       // parse DIExpressions inline as a special case. They are still MDNodes,
747       // so they can still appear in named metadata. Remove this logic if they
748       // become plain Metadata.
749       if (Lex.getKind() == lltok::MetadataVar &&
750           Lex.getStrVal() == "DIExpression") {
751         if (parseDIExpression(N, /*IsDistinct=*/false))
752           return true;
753         // DIArgLists should only appear inline in a function, as they may
754         // contain LocalAsMetadata arguments which require a function context.
755       } else if (Lex.getKind() == lltok::MetadataVar &&
756                  Lex.getStrVal() == "DIArgList") {
757         return tokError("found DIArgList outside of function");
758       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
759                  parseMDNodeID(N)) {
760         return true;
761       }
762       NMD->addOperand(N);
763     } while (EatIfPresent(lltok::comma));
764 
765   return parseToken(lltok::rbrace, "expected end of metadata node");
766 }
767 
768 /// parseStandaloneMetadata:
769 ///   !42 = !{...}
770 bool LLParser::parseStandaloneMetadata() {
771   assert(Lex.getKind() == lltok::exclaim);
772   Lex.Lex();
773   unsigned MetadataID = 0;
774 
775   MDNode *Init;
776   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
777     return true;
778 
779   // Detect common error, from old metadata syntax.
780   if (Lex.getKind() == lltok::Type)
781     return tokError("unexpected type in metadata definition");
782 
783   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
784   if (Lex.getKind() == lltok::MetadataVar) {
785     if (parseSpecializedMDNode(Init, IsDistinct))
786       return true;
787   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
788              parseMDTuple(Init, IsDistinct))
789     return true;
790 
791   // See if this was forward referenced, if so, handle it.
792   auto FI = ForwardRefMDNodes.find(MetadataID);
793   if (FI != ForwardRefMDNodes.end()) {
794     FI->second.first->replaceAllUsesWith(Init);
795     ForwardRefMDNodes.erase(FI);
796 
797     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
798   } else {
799     if (NumberedMetadata.count(MetadataID))
800       return tokError("Metadata id is already used");
801     NumberedMetadata[MetadataID].reset(Init);
802   }
803 
804   return false;
805 }
806 
807 // Skips a single module summary entry.
808 bool LLParser::skipModuleSummaryEntry() {
809   // Each module summary entry consists of a tag for the entry
810   // type, followed by a colon, then the fields which may be surrounded by
811   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
812   // support is in place we will look for the tokens corresponding to the
813   // expected tags.
814   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
815       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
816       Lex.getKind() != lltok::kw_blockcount)
817     return tokError(
818         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
819         "start of summary entry");
820   if (Lex.getKind() == lltok::kw_flags)
821     return parseSummaryIndexFlags();
822   if (Lex.getKind() == lltok::kw_blockcount)
823     return parseBlockCount();
824   Lex.Lex();
825   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
826       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
827     return true;
828   // Now walk through the parenthesized entry, until the number of open
829   // parentheses goes back down to 0 (the first '(' was parsed above).
830   unsigned NumOpenParen = 1;
831   do {
832     switch (Lex.getKind()) {
833     case lltok::lparen:
834       NumOpenParen++;
835       break;
836     case lltok::rparen:
837       NumOpenParen--;
838       break;
839     case lltok::Eof:
840       return tokError("found end of file while parsing summary entry");
841     default:
842       // Skip everything in between parentheses.
843       break;
844     }
845     Lex.Lex();
846   } while (NumOpenParen > 0);
847   return false;
848 }
849 
850 /// SummaryEntry
851 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
852 bool LLParser::parseSummaryEntry() {
853   assert(Lex.getKind() == lltok::SummaryID);
854   unsigned SummaryID = Lex.getUIntVal();
855 
856   // For summary entries, colons should be treated as distinct tokens,
857   // not an indication of the end of a label token.
858   Lex.setIgnoreColonInIdentifiers(true);
859 
860   Lex.Lex();
861   if (parseToken(lltok::equal, "expected '=' here"))
862     return true;
863 
864   // If we don't have an index object, skip the summary entry.
865   if (!Index)
866     return skipModuleSummaryEntry();
867 
868   bool result = false;
869   switch (Lex.getKind()) {
870   case lltok::kw_gv:
871     result = parseGVEntry(SummaryID);
872     break;
873   case lltok::kw_module:
874     result = parseModuleEntry(SummaryID);
875     break;
876   case lltok::kw_typeid:
877     result = parseTypeIdEntry(SummaryID);
878     break;
879   case lltok::kw_typeidCompatibleVTable:
880     result = parseTypeIdCompatibleVtableEntry(SummaryID);
881     break;
882   case lltok::kw_flags:
883     result = parseSummaryIndexFlags();
884     break;
885   case lltok::kw_blockcount:
886     result = parseBlockCount();
887     break;
888   default:
889     result = error(Lex.getLoc(), "unexpected summary kind");
890     break;
891   }
892   Lex.setIgnoreColonInIdentifiers(false);
893   return result;
894 }
895 
896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
897   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
898          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
899 }
900 
901 // If there was an explicit dso_local, update GV. In the absence of an explicit
902 // dso_local we keep the default value.
903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
904   if (DSOLocal)
905     GV.setDSOLocal(true);
906 }
907 
908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
909                                               Type *Ty2) {
910   std::string ErrString;
911   raw_string_ostream ErrOS(ErrString);
912   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
913   return ErrOS.str();
914 }
915 
916 /// parseIndirectSymbol:
917 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
918 ///                     OptionalVisibility OptionalDLLStorageClass
919 ///                     OptionalThreadLocal OptionalUnnamedAddr
920 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
921 ///
922 /// IndirectSymbol
923 ///   ::= TypeAndValue
924 ///
925 /// IndirectSymbolAttr
926 ///   ::= ',' 'partition' StringConstant
927 ///
928 /// Everything through OptionalUnnamedAddr has already been parsed.
929 ///
930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
931                                    unsigned L, unsigned Visibility,
932                                    unsigned DLLStorageClass, bool DSOLocal,
933                                    GlobalVariable::ThreadLocalMode TLM,
934                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
935   bool IsAlias;
936   if (Lex.getKind() == lltok::kw_alias)
937     IsAlias = true;
938   else if (Lex.getKind() == lltok::kw_ifunc)
939     IsAlias = false;
940   else
941     llvm_unreachable("Not an alias or ifunc!");
942   Lex.Lex();
943 
944   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
945 
946   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
947     return error(NameLoc, "invalid linkage type for alias");
948 
949   if (!isValidVisibilityForLinkage(Visibility, L))
950     return error(NameLoc,
951                  "symbol with local linkage must have default visibility");
952 
953   Type *Ty;
954   LocTy ExplicitTypeLoc = Lex.getLoc();
955   if (parseType(Ty) ||
956       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
957     return true;
958 
959   Constant *Aliasee;
960   LocTy AliaseeLoc = Lex.getLoc();
961   if (Lex.getKind() != lltok::kw_bitcast &&
962       Lex.getKind() != lltok::kw_getelementptr &&
963       Lex.getKind() != lltok::kw_addrspacecast &&
964       Lex.getKind() != lltok::kw_inttoptr) {
965     if (parseGlobalTypeAndValue(Aliasee))
966       return true;
967   } else {
968     // The bitcast dest type is not present, it is implied by the dest type.
969     ValID ID;
970     if (parseValID(ID))
971       return true;
972     if (ID.Kind != ValID::t_Constant)
973       return error(AliaseeLoc, "invalid aliasee");
974     Aliasee = ID.ConstantVal;
975   }
976 
977   Type *AliaseeType = Aliasee->getType();
978   auto *PTy = dyn_cast<PointerType>(AliaseeType);
979   if (!PTy)
980     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
981   unsigned AddrSpace = PTy->getAddressSpace();
982 
983   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
984     return error(
985         ExplicitTypeLoc,
986         typeComparisonErrorMessage(
987             "explicit pointee type doesn't match operand's pointee type", Ty,
988             PTy->getElementType()));
989   }
990 
991   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
992     return error(ExplicitTypeLoc,
993                  "explicit pointee type should be a function type");
994   }
995 
996   GlobalValue *GVal = nullptr;
997 
998   // See if the alias was forward referenced, if so, prepare to replace the
999   // forward reference.
1000   if (!Name.empty()) {
1001     GVal = M->getNamedValue(Name);
1002     if (GVal) {
1003       if (!ForwardRefVals.erase(Name))
1004         return error(NameLoc, "redefinition of global '@" + Name + "'");
1005     }
1006   } else {
1007     auto I = ForwardRefValIDs.find(NumberedVals.size());
1008     if (I != ForwardRefValIDs.end()) {
1009       GVal = I->second.first;
1010       ForwardRefValIDs.erase(I);
1011     }
1012   }
1013 
1014   // Okay, create the alias but do not insert it into the module yet.
1015   std::unique_ptr<GlobalIndirectSymbol> GA;
1016   if (IsAlias)
1017     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1018                                  (GlobalValue::LinkageTypes)Linkage, Name,
1019                                  Aliasee, /*Parent*/ nullptr));
1020   else
1021     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1022                                  (GlobalValue::LinkageTypes)Linkage, Name,
1023                                  Aliasee, /*Parent*/ nullptr));
1024   GA->setThreadLocalMode(TLM);
1025   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1026   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1027   GA->setUnnamedAddr(UnnamedAddr);
1028   maybeSetDSOLocal(DSOLocal, *GA);
1029 
1030   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1031   // Now parse them if there are any.
1032   while (Lex.getKind() == lltok::comma) {
1033     Lex.Lex();
1034 
1035     if (Lex.getKind() == lltok::kw_partition) {
1036       Lex.Lex();
1037       GA->setPartition(Lex.getStrVal());
1038       if (parseToken(lltok::StringConstant, "expected partition string"))
1039         return true;
1040     } else {
1041       return tokError("unknown alias or ifunc property!");
1042     }
1043   }
1044 
1045   if (Name.empty())
1046     NumberedVals.push_back(GA.get());
1047 
1048   if (GVal) {
1049     // Verify that types agree.
1050     if (GVal->getType() != GA->getType())
1051       return error(
1052           ExplicitTypeLoc,
1053           "forward reference and definition of alias have different types");
1054 
1055     // If they agree, just RAUW the old value with the alias and remove the
1056     // forward ref info.
1057     GVal->replaceAllUsesWith(GA.get());
1058     GVal->eraseFromParent();
1059   }
1060 
1061   // Insert into the module, we know its name won't collide now.
1062   if (IsAlias)
1063     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1064   else
1065     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1066   assert(GA->getName() == Name && "Should not be a name conflict!");
1067 
1068   // The module owns this now
1069   GA.release();
1070 
1071   return false;
1072 }
1073 
1074 /// parseGlobal
1075 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1076 ///       OptionalVisibility OptionalDLLStorageClass
1077 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1078 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1079 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1080 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1081 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1082 ///       Const OptionalAttrs
1083 ///
1084 /// Everything up to and including OptionalUnnamedAddr has been parsed
1085 /// already.
1086 ///
1087 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1088                            unsigned Linkage, bool HasLinkage,
1089                            unsigned Visibility, unsigned DLLStorageClass,
1090                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1091                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1092   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1093     return error(NameLoc,
1094                  "symbol with local linkage must have default visibility");
1095 
1096   unsigned AddrSpace;
1097   bool IsConstant, IsExternallyInitialized;
1098   LocTy IsExternallyInitializedLoc;
1099   LocTy TyLoc;
1100 
1101   Type *Ty = nullptr;
1102   if (parseOptionalAddrSpace(AddrSpace) ||
1103       parseOptionalToken(lltok::kw_externally_initialized,
1104                          IsExternallyInitialized,
1105                          &IsExternallyInitializedLoc) ||
1106       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1107     return true;
1108 
1109   // If the linkage is specified and is external, then no initializer is
1110   // present.
1111   Constant *Init = nullptr;
1112   if (!HasLinkage ||
1113       !GlobalValue::isValidDeclarationLinkage(
1114           (GlobalValue::LinkageTypes)Linkage)) {
1115     if (parseGlobalValue(Ty, Init))
1116       return true;
1117   }
1118 
1119   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1120     return error(TyLoc, "invalid type for global variable");
1121 
1122   GlobalValue *GVal = nullptr;
1123 
1124   // See if the global was forward referenced, if so, use the global.
1125   if (!Name.empty()) {
1126     GVal = M->getNamedValue(Name);
1127     if (GVal) {
1128       if (!ForwardRefVals.erase(Name))
1129         return error(NameLoc, "redefinition of global '@" + Name + "'");
1130     }
1131   } else {
1132     auto I = ForwardRefValIDs.find(NumberedVals.size());
1133     if (I != ForwardRefValIDs.end()) {
1134       GVal = I->second.first;
1135       ForwardRefValIDs.erase(I);
1136     }
1137   }
1138 
1139   GlobalVariable *GV;
1140   if (!GVal) {
1141     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1142                             Name, nullptr, GlobalVariable::NotThreadLocal,
1143                             AddrSpace);
1144   } else {
1145     if (GVal->getValueType() != Ty)
1146       return error(
1147           TyLoc,
1148           "forward reference and definition of global have different types");
1149 
1150     GV = cast<GlobalVariable>(GVal);
1151 
1152     // Move the forward-reference to the correct spot in the module.
1153     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1154   }
1155 
1156   if (Name.empty())
1157     NumberedVals.push_back(GV);
1158 
1159   // Set the parsed properties on the global.
1160   if (Init)
1161     GV->setInitializer(Init);
1162   GV->setConstant(IsConstant);
1163   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1164   maybeSetDSOLocal(DSOLocal, *GV);
1165   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1166   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1167   GV->setExternallyInitialized(IsExternallyInitialized);
1168   GV->setThreadLocalMode(TLM);
1169   GV->setUnnamedAddr(UnnamedAddr);
1170 
1171   // parse attributes on the global.
1172   while (Lex.getKind() == lltok::comma) {
1173     Lex.Lex();
1174 
1175     if (Lex.getKind() == lltok::kw_section) {
1176       Lex.Lex();
1177       GV->setSection(Lex.getStrVal());
1178       if (parseToken(lltok::StringConstant, "expected global section string"))
1179         return true;
1180     } else if (Lex.getKind() == lltok::kw_partition) {
1181       Lex.Lex();
1182       GV->setPartition(Lex.getStrVal());
1183       if (parseToken(lltok::StringConstant, "expected partition string"))
1184         return true;
1185     } else if (Lex.getKind() == lltok::kw_align) {
1186       MaybeAlign Alignment;
1187       if (parseOptionalAlignment(Alignment))
1188         return true;
1189       GV->setAlignment(Alignment);
1190     } else if (Lex.getKind() == lltok::MetadataVar) {
1191       if (parseGlobalObjectMetadataAttachment(*GV))
1192         return true;
1193     } else {
1194       Comdat *C;
1195       if (parseOptionalComdat(Name, C))
1196         return true;
1197       if (C)
1198         GV->setComdat(C);
1199       else
1200         return tokError("unknown global variable property!");
1201     }
1202   }
1203 
1204   AttrBuilder Attrs;
1205   LocTy BuiltinLoc;
1206   std::vector<unsigned> FwdRefAttrGrps;
1207   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1208     return true;
1209   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1210     GV->setAttributes(AttributeSet::get(Context, Attrs));
1211     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1212   }
1213 
1214   return false;
1215 }
1216 
1217 /// parseUnnamedAttrGrp
1218 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1219 bool LLParser::parseUnnamedAttrGrp() {
1220   assert(Lex.getKind() == lltok::kw_attributes);
1221   LocTy AttrGrpLoc = Lex.getLoc();
1222   Lex.Lex();
1223 
1224   if (Lex.getKind() != lltok::AttrGrpID)
1225     return tokError("expected attribute group id");
1226 
1227   unsigned VarID = Lex.getUIntVal();
1228   std::vector<unsigned> unused;
1229   LocTy BuiltinLoc;
1230   Lex.Lex();
1231 
1232   if (parseToken(lltok::equal, "expected '=' here") ||
1233       parseToken(lltok::lbrace, "expected '{' here") ||
1234       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1235                                  BuiltinLoc) ||
1236       parseToken(lltok::rbrace, "expected end of attribute group"))
1237     return true;
1238 
1239   if (!NumberedAttrBuilders[VarID].hasAttributes())
1240     return error(AttrGrpLoc, "attribute group has no attributes");
1241 
1242   return false;
1243 }
1244 
1245 /// parseFnAttributeValuePairs
1246 ///   ::= <attr> | <attr> '=' <value>
1247 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1248                                           std::vector<unsigned> &FwdRefAttrGrps,
1249                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1250   bool HaveError = false;
1251 
1252   B.clear();
1253 
1254   while (true) {
1255     lltok::Kind Token = Lex.getKind();
1256     if (Token == lltok::kw_builtin)
1257       BuiltinLoc = Lex.getLoc();
1258     switch (Token) {
1259     default:
1260       if (!inAttrGrp) return HaveError;
1261       return error(Lex.getLoc(), "unterminated attribute group");
1262     case lltok::rbrace:
1263       // Finished.
1264       return false;
1265 
1266     case lltok::AttrGrpID: {
1267       // Allow a function to reference an attribute group:
1268       //
1269       //   define void @foo() #1 { ... }
1270       if (inAttrGrp)
1271         HaveError |= error(
1272             Lex.getLoc(),
1273             "cannot have an attribute group reference in an attribute group");
1274 
1275       unsigned AttrGrpNum = Lex.getUIntVal();
1276       if (inAttrGrp) break;
1277 
1278       // Save the reference to the attribute group. We'll fill it in later.
1279       FwdRefAttrGrps.push_back(AttrGrpNum);
1280       break;
1281     }
1282     // Target-dependent attributes:
1283     case lltok::StringConstant: {
1284       if (parseStringAttribute(B))
1285         return true;
1286       continue;
1287     }
1288 
1289     // Target-independent attributes:
1290     case lltok::kw_align: {
1291       // As a hack, we allow function alignment to be initially parsed as an
1292       // attribute on a function declaration/definition or added to an attribute
1293       // group and later moved to the alignment field.
1294       MaybeAlign Alignment;
1295       if (inAttrGrp) {
1296         Lex.Lex();
1297         uint32_t Value = 0;
1298         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1299           return true;
1300         Alignment = Align(Value);
1301       } else {
1302         if (parseOptionalAlignment(Alignment))
1303           return true;
1304       }
1305       B.addAlignmentAttr(Alignment);
1306       continue;
1307     }
1308     case lltok::kw_alignstack: {
1309       unsigned Alignment;
1310       if (inAttrGrp) {
1311         Lex.Lex();
1312         if (parseToken(lltok::equal, "expected '=' here") ||
1313             parseUInt32(Alignment))
1314           return true;
1315       } else {
1316         if (parseOptionalStackAlignment(Alignment))
1317           return true;
1318       }
1319       B.addStackAlignmentAttr(Alignment);
1320       continue;
1321     }
1322     case lltok::kw_allocsize: {
1323       unsigned ElemSizeArg;
1324       Optional<unsigned> NumElemsArg;
1325       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1326       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1327         return true;
1328       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1329       continue;
1330     }
1331     case lltok::kw_vscale_range: {
1332       unsigned MinValue, MaxValue;
1333       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1334       if (parseVScaleRangeArguments(MinValue, MaxValue))
1335         return true;
1336       B.addVScaleRangeAttr(MinValue, MaxValue);
1337       continue;
1338     }
1339     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1340     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1341     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1342     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1343     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1344     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1345     case lltok::kw_inaccessiblememonly:
1346       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1347     case lltok::kw_inaccessiblemem_or_argmemonly:
1348       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1349     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1350     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1351     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1352     case lltok::kw_mustprogress:
1353       B.addAttribute(Attribute::MustProgress);
1354       break;
1355     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1356     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1357     case lltok::kw_nocallback:
1358       B.addAttribute(Attribute::NoCallback);
1359       break;
1360     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1361     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1362     case lltok::kw_noimplicitfloat:
1363       B.addAttribute(Attribute::NoImplicitFloat); break;
1364     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1365     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1366     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1367     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1368     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1369     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1370     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1371     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1372     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1373     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1374     case lltok::kw_nosanitize_coverage:
1375       B.addAttribute(Attribute::NoSanitizeCoverage);
1376       break;
1377     case lltok::kw_null_pointer_is_valid:
1378       B.addAttribute(Attribute::NullPointerIsValid); break;
1379     case lltok::kw_optforfuzzing:
1380       B.addAttribute(Attribute::OptForFuzzing); break;
1381     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1382     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1383     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1384     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1385     case lltok::kw_returns_twice:
1386       B.addAttribute(Attribute::ReturnsTwice); break;
1387     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1388     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1389     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1390     case lltok::kw_sspstrong:
1391       B.addAttribute(Attribute::StackProtectStrong); break;
1392     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1393     case lltok::kw_shadowcallstack:
1394       B.addAttribute(Attribute::ShadowCallStack); break;
1395     case lltok::kw_sanitize_address:
1396       B.addAttribute(Attribute::SanitizeAddress); break;
1397     case lltok::kw_sanitize_hwaddress:
1398       B.addAttribute(Attribute::SanitizeHWAddress); break;
1399     case lltok::kw_sanitize_memtag:
1400       B.addAttribute(Attribute::SanitizeMemTag); break;
1401     case lltok::kw_sanitize_thread:
1402       B.addAttribute(Attribute::SanitizeThread); break;
1403     case lltok::kw_sanitize_memory:
1404       B.addAttribute(Attribute::SanitizeMemory); break;
1405     case lltok::kw_speculative_load_hardening:
1406       B.addAttribute(Attribute::SpeculativeLoadHardening);
1407       break;
1408     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1409     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1410     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1411     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1412     case lltok::kw_preallocated: {
1413       Type *Ty;
1414       if (parsePreallocated(Ty))
1415         return true;
1416       B.addPreallocatedAttr(Ty);
1417       break;
1418     }
1419 
1420     // error handling.
1421     case lltok::kw_inreg:
1422     case lltok::kw_signext:
1423     case lltok::kw_zeroext:
1424       HaveError |=
1425           error(Lex.getLoc(), "invalid use of attribute on a function");
1426       break;
1427     case lltok::kw_byval:
1428     case lltok::kw_dereferenceable:
1429     case lltok::kw_dereferenceable_or_null:
1430     case lltok::kw_inalloca:
1431     case lltok::kw_nest:
1432     case lltok::kw_noalias:
1433     case lltok::kw_noundef:
1434     case lltok::kw_nocapture:
1435     case lltok::kw_nonnull:
1436     case lltok::kw_returned:
1437     case lltok::kw_sret:
1438     case lltok::kw_swifterror:
1439     case lltok::kw_swiftself:
1440     case lltok::kw_swiftasync:
1441     case lltok::kw_immarg:
1442     case lltok::kw_byref:
1443       HaveError |=
1444           error(Lex.getLoc(),
1445                 "invalid use of parameter-only attribute on a function");
1446       break;
1447     }
1448 
1449     // parsePreallocated() consumes token
1450     if (Token != lltok::kw_preallocated)
1451       Lex.Lex();
1452   }
1453 }
1454 
1455 //===----------------------------------------------------------------------===//
1456 // GlobalValue Reference/Resolution Routines.
1457 //===----------------------------------------------------------------------===//
1458 
1459 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1460                                               const std::string &Name) {
1461   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1462     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1463                             PTy->getAddressSpace(), Name, M);
1464   else
1465     return new GlobalVariable(*M, PTy->getElementType(), false,
1466                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1467                               nullptr, GlobalVariable::NotThreadLocal,
1468                               PTy->getAddressSpace());
1469 }
1470 
1471 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1472                                         Value *Val, bool IsCall) {
1473   Type *ValTy = Val->getType();
1474   if (ValTy == Ty)
1475     return Val;
1476   // For calls, we also allow opaque pointers.
1477   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1478                                           Ty->getPointerAddressSpace()))
1479     return Val;
1480   if (Ty->isLabelTy())
1481     error(Loc, "'" + Name + "' is not a basic block");
1482   else
1483     error(Loc, "'" + Name + "' defined with type '" +
1484                    getTypeString(Val->getType()) + "' but expected '" +
1485                    getTypeString(Ty) + "'");
1486   return nullptr;
1487 }
1488 
1489 /// getGlobalVal - Get a value with the specified name or ID, creating a
1490 /// forward reference record if needed.  This can return null if the value
1491 /// exists but does not have the right type.
1492 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1493                                     LocTy Loc, bool IsCall) {
1494   PointerType *PTy = dyn_cast<PointerType>(Ty);
1495   if (!PTy) {
1496     error(Loc, "global variable reference must have pointer type");
1497     return nullptr;
1498   }
1499 
1500   // Look this name up in the normal function symbol table.
1501   GlobalValue *Val =
1502     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1503 
1504   // If this is a forward reference for the value, see if we already created a
1505   // forward ref record.
1506   if (!Val) {
1507     auto I = ForwardRefVals.find(Name);
1508     if (I != ForwardRefVals.end())
1509       Val = I->second.first;
1510   }
1511 
1512   // If we have the value in the symbol table or fwd-ref table, return it.
1513   if (Val)
1514     return cast_or_null<GlobalValue>(
1515         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1516 
1517   // Otherwise, create a new forward reference for this value and remember it.
1518   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1519   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1520   return FwdVal;
1521 }
1522 
1523 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1524                                     bool IsCall) {
1525   PointerType *PTy = dyn_cast<PointerType>(Ty);
1526   if (!PTy) {
1527     error(Loc, "global variable reference must have pointer type");
1528     return nullptr;
1529   }
1530 
1531   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1532 
1533   // If this is a forward reference for the value, see if we already created a
1534   // forward ref record.
1535   if (!Val) {
1536     auto I = ForwardRefValIDs.find(ID);
1537     if (I != ForwardRefValIDs.end())
1538       Val = I->second.first;
1539   }
1540 
1541   // If we have the value in the symbol table or fwd-ref table, return it.
1542   if (Val)
1543     return cast_or_null<GlobalValue>(
1544         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1545 
1546   // Otherwise, create a new forward reference for this value and remember it.
1547   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1548   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1549   return FwdVal;
1550 }
1551 
1552 //===----------------------------------------------------------------------===//
1553 // Comdat Reference/Resolution Routines.
1554 //===----------------------------------------------------------------------===//
1555 
1556 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1557   // Look this name up in the comdat symbol table.
1558   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1559   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1560   if (I != ComdatSymTab.end())
1561     return &I->second;
1562 
1563   // Otherwise, create a new forward reference for this value and remember it.
1564   Comdat *C = M->getOrInsertComdat(Name);
1565   ForwardRefComdats[Name] = Loc;
1566   return C;
1567 }
1568 
1569 //===----------------------------------------------------------------------===//
1570 // Helper Routines.
1571 //===----------------------------------------------------------------------===//
1572 
1573 /// parseToken - If the current token has the specified kind, eat it and return
1574 /// success.  Otherwise, emit the specified error and return failure.
1575 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1576   if (Lex.getKind() != T)
1577     return tokError(ErrMsg);
1578   Lex.Lex();
1579   return false;
1580 }
1581 
1582 /// parseStringConstant
1583 ///   ::= StringConstant
1584 bool LLParser::parseStringConstant(std::string &Result) {
1585   if (Lex.getKind() != lltok::StringConstant)
1586     return tokError("expected string constant");
1587   Result = Lex.getStrVal();
1588   Lex.Lex();
1589   return false;
1590 }
1591 
1592 /// parseUInt32
1593 ///   ::= uint32
1594 bool LLParser::parseUInt32(uint32_t &Val) {
1595   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1596     return tokError("expected integer");
1597   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1598   if (Val64 != unsigned(Val64))
1599     return tokError("expected 32-bit integer (too large)");
1600   Val = Val64;
1601   Lex.Lex();
1602   return false;
1603 }
1604 
1605 /// parseUInt64
1606 ///   ::= uint64
1607 bool LLParser::parseUInt64(uint64_t &Val) {
1608   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1609     return tokError("expected integer");
1610   Val = Lex.getAPSIntVal().getLimitedValue();
1611   Lex.Lex();
1612   return false;
1613 }
1614 
1615 /// parseTLSModel
1616 ///   := 'localdynamic'
1617 ///   := 'initialexec'
1618 ///   := 'localexec'
1619 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1620   switch (Lex.getKind()) {
1621     default:
1622       return tokError("expected localdynamic, initialexec or localexec");
1623     case lltok::kw_localdynamic:
1624       TLM = GlobalVariable::LocalDynamicTLSModel;
1625       break;
1626     case lltok::kw_initialexec:
1627       TLM = GlobalVariable::InitialExecTLSModel;
1628       break;
1629     case lltok::kw_localexec:
1630       TLM = GlobalVariable::LocalExecTLSModel;
1631       break;
1632   }
1633 
1634   Lex.Lex();
1635   return false;
1636 }
1637 
1638 /// parseOptionalThreadLocal
1639 ///   := /*empty*/
1640 ///   := 'thread_local'
1641 ///   := 'thread_local' '(' tlsmodel ')'
1642 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1643   TLM = GlobalVariable::NotThreadLocal;
1644   if (!EatIfPresent(lltok::kw_thread_local))
1645     return false;
1646 
1647   TLM = GlobalVariable::GeneralDynamicTLSModel;
1648   if (Lex.getKind() == lltok::lparen) {
1649     Lex.Lex();
1650     return parseTLSModel(TLM) ||
1651            parseToken(lltok::rparen, "expected ')' after thread local model");
1652   }
1653   return false;
1654 }
1655 
1656 /// parseOptionalAddrSpace
1657 ///   := /*empty*/
1658 ///   := 'addrspace' '(' uint32 ')'
1659 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1660   AddrSpace = DefaultAS;
1661   if (!EatIfPresent(lltok::kw_addrspace))
1662     return false;
1663   return parseToken(lltok::lparen, "expected '(' in address space") ||
1664          parseUInt32(AddrSpace) ||
1665          parseToken(lltok::rparen, "expected ')' in address space");
1666 }
1667 
1668 /// parseStringAttribute
1669 ///   := StringConstant
1670 ///   := StringConstant '=' StringConstant
1671 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1672   std::string Attr = Lex.getStrVal();
1673   Lex.Lex();
1674   std::string Val;
1675   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1676     return true;
1677   B.addAttribute(Attr, Val);
1678   return false;
1679 }
1680 
1681 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1682 /// attributes.
1683 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1684   bool HaveError = false;
1685 
1686   B.clear();
1687 
1688   while (true) {
1689     lltok::Kind Token = Lex.getKind();
1690     switch (Token) {
1691     default:  // End of attributes.
1692       return HaveError;
1693     case lltok::StringConstant: {
1694       if (parseStringAttribute(B))
1695         return true;
1696       continue;
1697     }
1698     case lltok::kw_align: {
1699       MaybeAlign Alignment;
1700       if (parseOptionalAlignment(Alignment, true))
1701         return true;
1702       B.addAlignmentAttr(Alignment);
1703       continue;
1704     }
1705     case lltok::kw_alignstack: {
1706       unsigned Alignment;
1707       if (parseOptionalStackAlignment(Alignment))
1708         return true;
1709       B.addStackAlignmentAttr(Alignment);
1710       continue;
1711     }
1712     case lltok::kw_byval: {
1713       Type *Ty;
1714       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1715         return true;
1716       B.addByValAttr(Ty);
1717       continue;
1718     }
1719     case lltok::kw_sret: {
1720       Type *Ty;
1721       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1722         return true;
1723       B.addStructRetAttr(Ty);
1724       continue;
1725     }
1726     case lltok::kw_preallocated: {
1727       Type *Ty;
1728       if (parsePreallocated(Ty))
1729         return true;
1730       B.addPreallocatedAttr(Ty);
1731       continue;
1732     }
1733     case lltok::kw_inalloca: {
1734       Type *Ty;
1735       if (parseInalloca(Ty))
1736         return true;
1737       B.addInAllocaAttr(Ty);
1738       continue;
1739     }
1740     case lltok::kw_dereferenceable: {
1741       uint64_t Bytes;
1742       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1743         return true;
1744       B.addDereferenceableAttr(Bytes);
1745       continue;
1746     }
1747     case lltok::kw_dereferenceable_or_null: {
1748       uint64_t Bytes;
1749       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1750         return true;
1751       B.addDereferenceableOrNullAttr(Bytes);
1752       continue;
1753     }
1754     case lltok::kw_byref: {
1755       Type *Ty;
1756       if (parseByRef(Ty))
1757         return true;
1758       B.addByRefAttr(Ty);
1759       continue;
1760     }
1761     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1762     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1763     case lltok::kw_noundef:
1764       B.addAttribute(Attribute::NoUndef);
1765       break;
1766     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1767     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1768     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1769     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1770     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1771     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1772     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1773     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1774     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1775     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1776     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1777     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1778     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1779     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1780 
1781     case lltok::kw_alwaysinline:
1782     case lltok::kw_argmemonly:
1783     case lltok::kw_builtin:
1784     case lltok::kw_inlinehint:
1785     case lltok::kw_jumptable:
1786     case lltok::kw_minsize:
1787     case lltok::kw_mustprogress:
1788     case lltok::kw_naked:
1789     case lltok::kw_nobuiltin:
1790     case lltok::kw_noduplicate:
1791     case lltok::kw_noimplicitfloat:
1792     case lltok::kw_noinline:
1793     case lltok::kw_nonlazybind:
1794     case lltok::kw_nomerge:
1795     case lltok::kw_noprofile:
1796     case lltok::kw_noredzone:
1797     case lltok::kw_noreturn:
1798     case lltok::kw_nocf_check:
1799     case lltok::kw_nounwind:
1800     case lltok::kw_nosanitize_coverage:
1801     case lltok::kw_optforfuzzing:
1802     case lltok::kw_optnone:
1803     case lltok::kw_optsize:
1804     case lltok::kw_returns_twice:
1805     case lltok::kw_sanitize_address:
1806     case lltok::kw_sanitize_hwaddress:
1807     case lltok::kw_sanitize_memtag:
1808     case lltok::kw_sanitize_memory:
1809     case lltok::kw_sanitize_thread:
1810     case lltok::kw_speculative_load_hardening:
1811     case lltok::kw_ssp:
1812     case lltok::kw_sspreq:
1813     case lltok::kw_sspstrong:
1814     case lltok::kw_safestack:
1815     case lltok::kw_shadowcallstack:
1816     case lltok::kw_strictfp:
1817     case lltok::kw_uwtable:
1818     case lltok::kw_vscale_range:
1819       HaveError |=
1820           error(Lex.getLoc(), "invalid use of function-only attribute");
1821       break;
1822     }
1823 
1824     Lex.Lex();
1825   }
1826 }
1827 
1828 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1829 /// attributes.
1830 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1831   bool HaveError = false;
1832 
1833   B.clear();
1834 
1835   while (true) {
1836     lltok::Kind Token = Lex.getKind();
1837     switch (Token) {
1838     default:  // End of attributes.
1839       return HaveError;
1840     case lltok::StringConstant: {
1841       if (parseStringAttribute(B))
1842         return true;
1843       continue;
1844     }
1845     case lltok::kw_dereferenceable: {
1846       uint64_t Bytes;
1847       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1848         return true;
1849       B.addDereferenceableAttr(Bytes);
1850       continue;
1851     }
1852     case lltok::kw_dereferenceable_or_null: {
1853       uint64_t Bytes;
1854       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1855         return true;
1856       B.addDereferenceableOrNullAttr(Bytes);
1857       continue;
1858     }
1859     case lltok::kw_align: {
1860       MaybeAlign Alignment;
1861       if (parseOptionalAlignment(Alignment))
1862         return true;
1863       B.addAlignmentAttr(Alignment);
1864       continue;
1865     }
1866     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1867     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1868     case lltok::kw_noundef:
1869       B.addAttribute(Attribute::NoUndef);
1870       break;
1871     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1872     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1873     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1874 
1875     // error handling.
1876     case lltok::kw_byval:
1877     case lltok::kw_inalloca:
1878     case lltok::kw_nest:
1879     case lltok::kw_nocapture:
1880     case lltok::kw_returned:
1881     case lltok::kw_sret:
1882     case lltok::kw_swifterror:
1883     case lltok::kw_swiftself:
1884     case lltok::kw_swiftasync:
1885     case lltok::kw_immarg:
1886     case lltok::kw_byref:
1887       HaveError |=
1888           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1889       break;
1890 
1891     case lltok::kw_alignstack:
1892     case lltok::kw_alwaysinline:
1893     case lltok::kw_argmemonly:
1894     case lltok::kw_builtin:
1895     case lltok::kw_cold:
1896     case lltok::kw_inlinehint:
1897     case lltok::kw_jumptable:
1898     case lltok::kw_minsize:
1899     case lltok::kw_mustprogress:
1900     case lltok::kw_naked:
1901     case lltok::kw_nobuiltin:
1902     case lltok::kw_noduplicate:
1903     case lltok::kw_noimplicitfloat:
1904     case lltok::kw_noinline:
1905     case lltok::kw_nonlazybind:
1906     case lltok::kw_nomerge:
1907     case lltok::kw_noprofile:
1908     case lltok::kw_noredzone:
1909     case lltok::kw_noreturn:
1910     case lltok::kw_nocf_check:
1911     case lltok::kw_nounwind:
1912     case lltok::kw_nosanitize_coverage:
1913     case lltok::kw_optforfuzzing:
1914     case lltok::kw_optnone:
1915     case lltok::kw_optsize:
1916     case lltok::kw_returns_twice:
1917     case lltok::kw_sanitize_address:
1918     case lltok::kw_sanitize_hwaddress:
1919     case lltok::kw_sanitize_memtag:
1920     case lltok::kw_sanitize_memory:
1921     case lltok::kw_sanitize_thread:
1922     case lltok::kw_speculative_load_hardening:
1923     case lltok::kw_ssp:
1924     case lltok::kw_sspreq:
1925     case lltok::kw_sspstrong:
1926     case lltok::kw_safestack:
1927     case lltok::kw_shadowcallstack:
1928     case lltok::kw_strictfp:
1929     case lltok::kw_uwtable:
1930     case lltok::kw_vscale_range:
1931       HaveError |=
1932           error(Lex.getLoc(), "invalid use of function-only attribute");
1933       break;
1934     case lltok::kw_readnone:
1935     case lltok::kw_readonly:
1936       HaveError |=
1937           error(Lex.getLoc(), "invalid use of attribute on return type");
1938       break;
1939     case lltok::kw_preallocated:
1940       HaveError |=
1941           error(Lex.getLoc(),
1942                 "invalid use of parameter-only/call site-only attribute");
1943       break;
1944     }
1945 
1946     Lex.Lex();
1947   }
1948 }
1949 
1950 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1951   HasLinkage = true;
1952   switch (Kind) {
1953   default:
1954     HasLinkage = false;
1955     return GlobalValue::ExternalLinkage;
1956   case lltok::kw_private:
1957     return GlobalValue::PrivateLinkage;
1958   case lltok::kw_internal:
1959     return GlobalValue::InternalLinkage;
1960   case lltok::kw_weak:
1961     return GlobalValue::WeakAnyLinkage;
1962   case lltok::kw_weak_odr:
1963     return GlobalValue::WeakODRLinkage;
1964   case lltok::kw_linkonce:
1965     return GlobalValue::LinkOnceAnyLinkage;
1966   case lltok::kw_linkonce_odr:
1967     return GlobalValue::LinkOnceODRLinkage;
1968   case lltok::kw_available_externally:
1969     return GlobalValue::AvailableExternallyLinkage;
1970   case lltok::kw_appending:
1971     return GlobalValue::AppendingLinkage;
1972   case lltok::kw_common:
1973     return GlobalValue::CommonLinkage;
1974   case lltok::kw_extern_weak:
1975     return GlobalValue::ExternalWeakLinkage;
1976   case lltok::kw_external:
1977     return GlobalValue::ExternalLinkage;
1978   }
1979 }
1980 
1981 /// parseOptionalLinkage
1982 ///   ::= /*empty*/
1983 ///   ::= 'private'
1984 ///   ::= 'internal'
1985 ///   ::= 'weak'
1986 ///   ::= 'weak_odr'
1987 ///   ::= 'linkonce'
1988 ///   ::= 'linkonce_odr'
1989 ///   ::= 'available_externally'
1990 ///   ::= 'appending'
1991 ///   ::= 'common'
1992 ///   ::= 'extern_weak'
1993 ///   ::= 'external'
1994 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1995                                     unsigned &Visibility,
1996                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1997   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1998   if (HasLinkage)
1999     Lex.Lex();
2000   parseOptionalDSOLocal(DSOLocal);
2001   parseOptionalVisibility(Visibility);
2002   parseOptionalDLLStorageClass(DLLStorageClass);
2003 
2004   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2005     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2006   }
2007 
2008   return false;
2009 }
2010 
2011 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2012   switch (Lex.getKind()) {
2013   default:
2014     DSOLocal = false;
2015     break;
2016   case lltok::kw_dso_local:
2017     DSOLocal = true;
2018     Lex.Lex();
2019     break;
2020   case lltok::kw_dso_preemptable:
2021     DSOLocal = false;
2022     Lex.Lex();
2023     break;
2024   }
2025 }
2026 
2027 /// parseOptionalVisibility
2028 ///   ::= /*empty*/
2029 ///   ::= 'default'
2030 ///   ::= 'hidden'
2031 ///   ::= 'protected'
2032 ///
2033 void LLParser::parseOptionalVisibility(unsigned &Res) {
2034   switch (Lex.getKind()) {
2035   default:
2036     Res = GlobalValue::DefaultVisibility;
2037     return;
2038   case lltok::kw_default:
2039     Res = GlobalValue::DefaultVisibility;
2040     break;
2041   case lltok::kw_hidden:
2042     Res = GlobalValue::HiddenVisibility;
2043     break;
2044   case lltok::kw_protected:
2045     Res = GlobalValue::ProtectedVisibility;
2046     break;
2047   }
2048   Lex.Lex();
2049 }
2050 
2051 /// parseOptionalDLLStorageClass
2052 ///   ::= /*empty*/
2053 ///   ::= 'dllimport'
2054 ///   ::= 'dllexport'
2055 ///
2056 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2057   switch (Lex.getKind()) {
2058   default:
2059     Res = GlobalValue::DefaultStorageClass;
2060     return;
2061   case lltok::kw_dllimport:
2062     Res = GlobalValue::DLLImportStorageClass;
2063     break;
2064   case lltok::kw_dllexport:
2065     Res = GlobalValue::DLLExportStorageClass;
2066     break;
2067   }
2068   Lex.Lex();
2069 }
2070 
2071 /// parseOptionalCallingConv
2072 ///   ::= /*empty*/
2073 ///   ::= 'ccc'
2074 ///   ::= 'fastcc'
2075 ///   ::= 'intel_ocl_bicc'
2076 ///   ::= 'coldcc'
2077 ///   ::= 'cfguard_checkcc'
2078 ///   ::= 'x86_stdcallcc'
2079 ///   ::= 'x86_fastcallcc'
2080 ///   ::= 'x86_thiscallcc'
2081 ///   ::= 'x86_vectorcallcc'
2082 ///   ::= 'arm_apcscc'
2083 ///   ::= 'arm_aapcscc'
2084 ///   ::= 'arm_aapcs_vfpcc'
2085 ///   ::= 'aarch64_vector_pcs'
2086 ///   ::= 'aarch64_sve_vector_pcs'
2087 ///   ::= 'msp430_intrcc'
2088 ///   ::= 'avr_intrcc'
2089 ///   ::= 'avr_signalcc'
2090 ///   ::= 'ptx_kernel'
2091 ///   ::= 'ptx_device'
2092 ///   ::= 'spir_func'
2093 ///   ::= 'spir_kernel'
2094 ///   ::= 'x86_64_sysvcc'
2095 ///   ::= 'win64cc'
2096 ///   ::= 'webkit_jscc'
2097 ///   ::= 'anyregcc'
2098 ///   ::= 'preserve_mostcc'
2099 ///   ::= 'preserve_allcc'
2100 ///   ::= 'ghccc'
2101 ///   ::= 'swiftcc'
2102 ///   ::= 'swifttailcc'
2103 ///   ::= 'x86_intrcc'
2104 ///   ::= 'hhvmcc'
2105 ///   ::= 'hhvm_ccc'
2106 ///   ::= 'cxx_fast_tlscc'
2107 ///   ::= 'amdgpu_vs'
2108 ///   ::= 'amdgpu_ls'
2109 ///   ::= 'amdgpu_hs'
2110 ///   ::= 'amdgpu_es'
2111 ///   ::= 'amdgpu_gs'
2112 ///   ::= 'amdgpu_ps'
2113 ///   ::= 'amdgpu_cs'
2114 ///   ::= 'amdgpu_kernel'
2115 ///   ::= 'tailcc'
2116 ///   ::= 'cc' UINT
2117 ///
2118 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2119   switch (Lex.getKind()) {
2120   default:                       CC = CallingConv::C; return false;
2121   case lltok::kw_ccc:            CC = CallingConv::C; break;
2122   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2123   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2124   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2125   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2126   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2127   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2128   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2129   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2130   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2131   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2132   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2133   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2134   case lltok::kw_aarch64_sve_vector_pcs:
2135     CC = CallingConv::AArch64_SVE_VectorCall;
2136     break;
2137   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2138   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2139   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2140   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2141   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2142   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2143   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2144   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2145   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2146   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2147   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2148   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2149   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2150   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2151   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2152   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2153   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2154   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2155   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2156   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2157   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2158   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2159   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2160   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2161   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2162   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2163   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2164   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2165   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2166   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2167   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2168   case lltok::kw_cc: {
2169       Lex.Lex();
2170       return parseUInt32(CC);
2171     }
2172   }
2173 
2174   Lex.Lex();
2175   return false;
2176 }
2177 
2178 /// parseMetadataAttachment
2179 ///   ::= !dbg !42
2180 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2181   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2182 
2183   std::string Name = Lex.getStrVal();
2184   Kind = M->getMDKindID(Name);
2185   Lex.Lex();
2186 
2187   return parseMDNode(MD);
2188 }
2189 
2190 /// parseInstructionMetadata
2191 ///   ::= !dbg !42 (',' !dbg !57)*
2192 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2193   do {
2194     if (Lex.getKind() != lltok::MetadataVar)
2195       return tokError("expected metadata after comma");
2196 
2197     unsigned MDK;
2198     MDNode *N;
2199     if (parseMetadataAttachment(MDK, N))
2200       return true;
2201 
2202     Inst.setMetadata(MDK, N);
2203     if (MDK == LLVMContext::MD_tbaa)
2204       InstsWithTBAATag.push_back(&Inst);
2205 
2206     // If this is the end of the list, we're done.
2207   } while (EatIfPresent(lltok::comma));
2208   return false;
2209 }
2210 
2211 /// parseGlobalObjectMetadataAttachment
2212 ///   ::= !dbg !57
2213 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2214   unsigned MDK;
2215   MDNode *N;
2216   if (parseMetadataAttachment(MDK, N))
2217     return true;
2218 
2219   GO.addMetadata(MDK, *N);
2220   return false;
2221 }
2222 
2223 /// parseOptionalFunctionMetadata
2224 ///   ::= (!dbg !57)*
2225 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2226   while (Lex.getKind() == lltok::MetadataVar)
2227     if (parseGlobalObjectMetadataAttachment(F))
2228       return true;
2229   return false;
2230 }
2231 
2232 /// parseOptionalAlignment
2233 ///   ::= /* empty */
2234 ///   ::= 'align' 4
2235 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2236   Alignment = None;
2237   if (!EatIfPresent(lltok::kw_align))
2238     return false;
2239   LocTy AlignLoc = Lex.getLoc();
2240   uint32_t Value = 0;
2241 
2242   LocTy ParenLoc = Lex.getLoc();
2243   bool HaveParens = false;
2244   if (AllowParens) {
2245     if (EatIfPresent(lltok::lparen))
2246       HaveParens = true;
2247   }
2248 
2249   if (parseUInt32(Value))
2250     return true;
2251 
2252   if (HaveParens && !EatIfPresent(lltok::rparen))
2253     return error(ParenLoc, "expected ')'");
2254 
2255   if (!isPowerOf2_32(Value))
2256     return error(AlignLoc, "alignment is not a power of two");
2257   if (Value > Value::MaximumAlignment)
2258     return error(AlignLoc, "huge alignments are not supported yet");
2259   Alignment = Align(Value);
2260   return false;
2261 }
2262 
2263 /// parseOptionalDerefAttrBytes
2264 ///   ::= /* empty */
2265 ///   ::= AttrKind '(' 4 ')'
2266 ///
2267 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2268 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2269                                            uint64_t &Bytes) {
2270   assert((AttrKind == lltok::kw_dereferenceable ||
2271           AttrKind == lltok::kw_dereferenceable_or_null) &&
2272          "contract!");
2273 
2274   Bytes = 0;
2275   if (!EatIfPresent(AttrKind))
2276     return false;
2277   LocTy ParenLoc = Lex.getLoc();
2278   if (!EatIfPresent(lltok::lparen))
2279     return error(ParenLoc, "expected '('");
2280   LocTy DerefLoc = Lex.getLoc();
2281   if (parseUInt64(Bytes))
2282     return true;
2283   ParenLoc = Lex.getLoc();
2284   if (!EatIfPresent(lltok::rparen))
2285     return error(ParenLoc, "expected ')'");
2286   if (!Bytes)
2287     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2288   return false;
2289 }
2290 
2291 /// parseOptionalCommaAlign
2292 ///   ::=
2293 ///   ::= ',' align 4
2294 ///
2295 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2296 /// end.
2297 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2298                                        bool &AteExtraComma) {
2299   AteExtraComma = false;
2300   while (EatIfPresent(lltok::comma)) {
2301     // Metadata at the end is an early exit.
2302     if (Lex.getKind() == lltok::MetadataVar) {
2303       AteExtraComma = true;
2304       return false;
2305     }
2306 
2307     if (Lex.getKind() != lltok::kw_align)
2308       return error(Lex.getLoc(), "expected metadata or 'align'");
2309 
2310     if (parseOptionalAlignment(Alignment))
2311       return true;
2312   }
2313 
2314   return false;
2315 }
2316 
2317 /// parseOptionalCommaAddrSpace
2318 ///   ::=
2319 ///   ::= ',' addrspace(1)
2320 ///
2321 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2322 /// end.
2323 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2324                                            bool &AteExtraComma) {
2325   AteExtraComma = false;
2326   while (EatIfPresent(lltok::comma)) {
2327     // Metadata at the end is an early exit.
2328     if (Lex.getKind() == lltok::MetadataVar) {
2329       AteExtraComma = true;
2330       return false;
2331     }
2332 
2333     Loc = Lex.getLoc();
2334     if (Lex.getKind() != lltok::kw_addrspace)
2335       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2336 
2337     if (parseOptionalAddrSpace(AddrSpace))
2338       return true;
2339   }
2340 
2341   return false;
2342 }
2343 
2344 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2345                                        Optional<unsigned> &HowManyArg) {
2346   Lex.Lex();
2347 
2348   auto StartParen = Lex.getLoc();
2349   if (!EatIfPresent(lltok::lparen))
2350     return error(StartParen, "expected '('");
2351 
2352   if (parseUInt32(BaseSizeArg))
2353     return true;
2354 
2355   if (EatIfPresent(lltok::comma)) {
2356     auto HowManyAt = Lex.getLoc();
2357     unsigned HowMany;
2358     if (parseUInt32(HowMany))
2359       return true;
2360     if (HowMany == BaseSizeArg)
2361       return error(HowManyAt,
2362                    "'allocsize' indices can't refer to the same parameter");
2363     HowManyArg = HowMany;
2364   } else
2365     HowManyArg = None;
2366 
2367   auto EndParen = Lex.getLoc();
2368   if (!EatIfPresent(lltok::rparen))
2369     return error(EndParen, "expected ')'");
2370   return false;
2371 }
2372 
2373 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2374                                          unsigned &MaxValue) {
2375   Lex.Lex();
2376 
2377   auto StartParen = Lex.getLoc();
2378   if (!EatIfPresent(lltok::lparen))
2379     return error(StartParen, "expected '('");
2380 
2381   if (parseUInt32(MinValue))
2382     return true;
2383 
2384   if (EatIfPresent(lltok::comma)) {
2385     if (parseUInt32(MaxValue))
2386       return true;
2387   } else
2388     MaxValue = MinValue;
2389 
2390   auto EndParen = Lex.getLoc();
2391   if (!EatIfPresent(lltok::rparen))
2392     return error(EndParen, "expected ')'");
2393   return false;
2394 }
2395 
2396 /// parseScopeAndOrdering
2397 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2398 ///   else: ::=
2399 ///
2400 /// This sets Scope and Ordering to the parsed values.
2401 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2402                                      AtomicOrdering &Ordering) {
2403   if (!IsAtomic)
2404     return false;
2405 
2406   return parseScope(SSID) || parseOrdering(Ordering);
2407 }
2408 
2409 /// parseScope
2410 ///   ::= syncscope("singlethread" | "<target scope>")?
2411 ///
2412 /// This sets synchronization scope ID to the ID of the parsed value.
2413 bool LLParser::parseScope(SyncScope::ID &SSID) {
2414   SSID = SyncScope::System;
2415   if (EatIfPresent(lltok::kw_syncscope)) {
2416     auto StartParenAt = Lex.getLoc();
2417     if (!EatIfPresent(lltok::lparen))
2418       return error(StartParenAt, "Expected '(' in syncscope");
2419 
2420     std::string SSN;
2421     auto SSNAt = Lex.getLoc();
2422     if (parseStringConstant(SSN))
2423       return error(SSNAt, "Expected synchronization scope name");
2424 
2425     auto EndParenAt = Lex.getLoc();
2426     if (!EatIfPresent(lltok::rparen))
2427       return error(EndParenAt, "Expected ')' in syncscope");
2428 
2429     SSID = Context.getOrInsertSyncScopeID(SSN);
2430   }
2431 
2432   return false;
2433 }
2434 
2435 /// parseOrdering
2436 ///   ::= AtomicOrdering
2437 ///
2438 /// This sets Ordering to the parsed value.
2439 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2440   switch (Lex.getKind()) {
2441   default:
2442     return tokError("Expected ordering on atomic instruction");
2443   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2444   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2445   // Not specified yet:
2446   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2447   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2448   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2449   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2450   case lltok::kw_seq_cst:
2451     Ordering = AtomicOrdering::SequentiallyConsistent;
2452     break;
2453   }
2454   Lex.Lex();
2455   return false;
2456 }
2457 
2458 /// parseOptionalStackAlignment
2459 ///   ::= /* empty */
2460 ///   ::= 'alignstack' '(' 4 ')'
2461 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2462   Alignment = 0;
2463   if (!EatIfPresent(lltok::kw_alignstack))
2464     return false;
2465   LocTy ParenLoc = Lex.getLoc();
2466   if (!EatIfPresent(lltok::lparen))
2467     return error(ParenLoc, "expected '('");
2468   LocTy AlignLoc = Lex.getLoc();
2469   if (parseUInt32(Alignment))
2470     return true;
2471   ParenLoc = Lex.getLoc();
2472   if (!EatIfPresent(lltok::rparen))
2473     return error(ParenLoc, "expected ')'");
2474   if (!isPowerOf2_32(Alignment))
2475     return error(AlignLoc, "stack alignment is not a power of two");
2476   return false;
2477 }
2478 
2479 /// parseIndexList - This parses the index list for an insert/extractvalue
2480 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2481 /// comma at the end of the line and find that it is followed by metadata.
2482 /// Clients that don't allow metadata can call the version of this function that
2483 /// only takes one argument.
2484 ///
2485 /// parseIndexList
2486 ///    ::=  (',' uint32)+
2487 ///
2488 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2489                               bool &AteExtraComma) {
2490   AteExtraComma = false;
2491 
2492   if (Lex.getKind() != lltok::comma)
2493     return tokError("expected ',' as start of index list");
2494 
2495   while (EatIfPresent(lltok::comma)) {
2496     if (Lex.getKind() == lltok::MetadataVar) {
2497       if (Indices.empty())
2498         return tokError("expected index");
2499       AteExtraComma = true;
2500       return false;
2501     }
2502     unsigned Idx = 0;
2503     if (parseUInt32(Idx))
2504       return true;
2505     Indices.push_back(Idx);
2506   }
2507 
2508   return false;
2509 }
2510 
2511 //===----------------------------------------------------------------------===//
2512 // Type Parsing.
2513 //===----------------------------------------------------------------------===//
2514 
2515 /// parseType - parse a type.
2516 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2517   SMLoc TypeLoc = Lex.getLoc();
2518   switch (Lex.getKind()) {
2519   default:
2520     return tokError(Msg);
2521   case lltok::Type:
2522     // Type ::= 'float' | 'void' (etc)
2523     Result = Lex.getTyVal();
2524     Lex.Lex();
2525     break;
2526   case lltok::lbrace:
2527     // Type ::= StructType
2528     if (parseAnonStructType(Result, false))
2529       return true;
2530     break;
2531   case lltok::lsquare:
2532     // Type ::= '[' ... ']'
2533     Lex.Lex(); // eat the lsquare.
2534     if (parseArrayVectorType(Result, false))
2535       return true;
2536     break;
2537   case lltok::less: // Either vector or packed struct.
2538     // Type ::= '<' ... '>'
2539     Lex.Lex();
2540     if (Lex.getKind() == lltok::lbrace) {
2541       if (parseAnonStructType(Result, true) ||
2542           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2543         return true;
2544     } else if (parseArrayVectorType(Result, true))
2545       return true;
2546     break;
2547   case lltok::LocalVar: {
2548     // Type ::= %foo
2549     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2550 
2551     // If the type hasn't been defined yet, create a forward definition and
2552     // remember where that forward def'n was seen (in case it never is defined).
2553     if (!Entry.first) {
2554       Entry.first = StructType::create(Context, Lex.getStrVal());
2555       Entry.second = Lex.getLoc();
2556     }
2557     Result = Entry.first;
2558     Lex.Lex();
2559     break;
2560   }
2561 
2562   case lltok::LocalVarID: {
2563     // Type ::= %4
2564     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2565 
2566     // If the type hasn't been defined yet, create a forward definition and
2567     // remember where that forward def'n was seen (in case it never is defined).
2568     if (!Entry.first) {
2569       Entry.first = StructType::create(Context);
2570       Entry.second = Lex.getLoc();
2571     }
2572     Result = Entry.first;
2573     Lex.Lex();
2574     break;
2575   }
2576   }
2577 
2578   if (Result->isOpaquePointerTy()) {
2579     unsigned AddrSpace;
2580     if (parseOptionalAddrSpace(AddrSpace))
2581       return true;
2582     Result = PointerType::get(getContext(), AddrSpace);
2583   }
2584 
2585   // parse the type suffixes.
2586   while (true) {
2587     switch (Lex.getKind()) {
2588     // End of type.
2589     default:
2590       if (!AllowVoid && Result->isVoidTy())
2591         return error(TypeLoc, "void type only allowed for function results");
2592       return false;
2593 
2594     // Type ::= Type '*'
2595     case lltok::star:
2596       if (Result->isLabelTy())
2597         return tokError("basic block pointers are invalid");
2598       if (Result->isVoidTy())
2599         return tokError("pointers to void are invalid - use i8* instead");
2600       if (Result->isOpaquePointerTy())
2601         return tokError("ptr* is invalid - use ptr instead");
2602       if (!PointerType::isValidElementType(Result))
2603         return tokError("pointer to this type is invalid");
2604       Result = PointerType::getUnqual(Result);
2605       Lex.Lex();
2606       break;
2607 
2608     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2609     case lltok::kw_addrspace: {
2610       if (Result->isLabelTy())
2611         return tokError("basic block pointers are invalid");
2612       if (Result->isVoidTy())
2613         return tokError("pointers to void are invalid; use i8* instead");
2614       if (!PointerType::isValidElementType(Result))
2615         return tokError("pointer to this type is invalid");
2616       unsigned AddrSpace;
2617       if (parseOptionalAddrSpace(AddrSpace) ||
2618           parseToken(lltok::star, "expected '*' in address space"))
2619         return true;
2620 
2621       Result = PointerType::get(Result, AddrSpace);
2622       break;
2623     }
2624 
2625     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2626     case lltok::lparen:
2627       if (parseFunctionType(Result))
2628         return true;
2629       break;
2630     }
2631   }
2632 }
2633 
2634 /// parseParameterList
2635 ///    ::= '(' ')'
2636 ///    ::= '(' Arg (',' Arg)* ')'
2637 ///  Arg
2638 ///    ::= Type OptionalAttributes Value OptionalAttributes
2639 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2640                                   PerFunctionState &PFS, bool IsMustTailCall,
2641                                   bool InVarArgsFunc) {
2642   if (parseToken(lltok::lparen, "expected '(' in call"))
2643     return true;
2644 
2645   while (Lex.getKind() != lltok::rparen) {
2646     // If this isn't the first argument, we need a comma.
2647     if (!ArgList.empty() &&
2648         parseToken(lltok::comma, "expected ',' in argument list"))
2649       return true;
2650 
2651     // parse an ellipsis if this is a musttail call in a variadic function.
2652     if (Lex.getKind() == lltok::dotdotdot) {
2653       const char *Msg = "unexpected ellipsis in argument list for ";
2654       if (!IsMustTailCall)
2655         return tokError(Twine(Msg) + "non-musttail call");
2656       if (!InVarArgsFunc)
2657         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2658       Lex.Lex();  // Lex the '...', it is purely for readability.
2659       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2660     }
2661 
2662     // parse the argument.
2663     LocTy ArgLoc;
2664     Type *ArgTy = nullptr;
2665     AttrBuilder ArgAttrs;
2666     Value *V;
2667     if (parseType(ArgTy, ArgLoc))
2668       return true;
2669 
2670     if (ArgTy->isMetadataTy()) {
2671       if (parseMetadataAsValue(V, PFS))
2672         return true;
2673     } else {
2674       // Otherwise, handle normal operands.
2675       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2676         return true;
2677     }
2678     ArgList.push_back(ParamInfo(
2679         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2680   }
2681 
2682   if (IsMustTailCall && InVarArgsFunc)
2683     return tokError("expected '...' at end of argument list for musttail call "
2684                     "in varargs function");
2685 
2686   Lex.Lex();  // Lex the ')'.
2687   return false;
2688 }
2689 
2690 /// parseRequiredTypeAttr
2691 ///   ::= attrname(<ty>)
2692 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2693   Result = nullptr;
2694   if (!EatIfPresent(AttrName))
2695     return true;
2696   if (!EatIfPresent(lltok::lparen))
2697     return error(Lex.getLoc(), "expected '('");
2698   if (parseType(Result))
2699     return true;
2700   if (!EatIfPresent(lltok::rparen))
2701     return error(Lex.getLoc(), "expected ')'");
2702   return false;
2703 }
2704 
2705 /// parsePreallocated
2706 ///   ::= preallocated(<ty>)
2707 bool LLParser::parsePreallocated(Type *&Result) {
2708   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2709 }
2710 
2711 /// parseInalloca
2712 ///   ::= inalloca(<ty>)
2713 bool LLParser::parseInalloca(Type *&Result) {
2714   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2715 }
2716 
2717 /// parseByRef
2718 ///   ::= byref(<type>)
2719 bool LLParser::parseByRef(Type *&Result) {
2720   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2721 }
2722 
2723 /// parseOptionalOperandBundles
2724 ///    ::= /*empty*/
2725 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2726 ///
2727 /// OperandBundle
2728 ///    ::= bundle-tag '(' ')'
2729 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2730 ///
2731 /// bundle-tag ::= String Constant
2732 bool LLParser::parseOptionalOperandBundles(
2733     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2734   LocTy BeginLoc = Lex.getLoc();
2735   if (!EatIfPresent(lltok::lsquare))
2736     return false;
2737 
2738   while (Lex.getKind() != lltok::rsquare) {
2739     // If this isn't the first operand bundle, we need a comma.
2740     if (!BundleList.empty() &&
2741         parseToken(lltok::comma, "expected ',' in input list"))
2742       return true;
2743 
2744     std::string Tag;
2745     if (parseStringConstant(Tag))
2746       return true;
2747 
2748     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2749       return true;
2750 
2751     std::vector<Value *> Inputs;
2752     while (Lex.getKind() != lltok::rparen) {
2753       // If this isn't the first input, we need a comma.
2754       if (!Inputs.empty() &&
2755           parseToken(lltok::comma, "expected ',' in input list"))
2756         return true;
2757 
2758       Type *Ty = nullptr;
2759       Value *Input = nullptr;
2760       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2761         return true;
2762       Inputs.push_back(Input);
2763     }
2764 
2765     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2766 
2767     Lex.Lex(); // Lex the ')'.
2768   }
2769 
2770   if (BundleList.empty())
2771     return error(BeginLoc, "operand bundle set must not be empty");
2772 
2773   Lex.Lex(); // Lex the ']'.
2774   return false;
2775 }
2776 
2777 /// parseArgumentList - parse the argument list for a function type or function
2778 /// prototype.
2779 ///   ::= '(' ArgTypeListI ')'
2780 /// ArgTypeListI
2781 ///   ::= /*empty*/
2782 ///   ::= '...'
2783 ///   ::= ArgTypeList ',' '...'
2784 ///   ::= ArgType (',' ArgType)*
2785 ///
2786 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2787                                  bool &IsVarArg) {
2788   unsigned CurValID = 0;
2789   IsVarArg = false;
2790   assert(Lex.getKind() == lltok::lparen);
2791   Lex.Lex(); // eat the (.
2792 
2793   if (Lex.getKind() == lltok::rparen) {
2794     // empty
2795   } else if (Lex.getKind() == lltok::dotdotdot) {
2796     IsVarArg = true;
2797     Lex.Lex();
2798   } else {
2799     LocTy TypeLoc = Lex.getLoc();
2800     Type *ArgTy = nullptr;
2801     AttrBuilder Attrs;
2802     std::string Name;
2803 
2804     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2805       return true;
2806 
2807     if (ArgTy->isVoidTy())
2808       return error(TypeLoc, "argument can not have void type");
2809 
2810     if (Lex.getKind() == lltok::LocalVar) {
2811       Name = Lex.getStrVal();
2812       Lex.Lex();
2813     } else if (Lex.getKind() == lltok::LocalVarID) {
2814       if (Lex.getUIntVal() != CurValID)
2815         return error(TypeLoc, "argument expected to be numbered '%" +
2816                                   Twine(CurValID) + "'");
2817       ++CurValID;
2818       Lex.Lex();
2819     }
2820 
2821     if (!FunctionType::isValidArgumentType(ArgTy))
2822       return error(TypeLoc, "invalid type for function argument");
2823 
2824     ArgList.emplace_back(TypeLoc, ArgTy,
2825                          AttributeSet::get(ArgTy->getContext(), Attrs),
2826                          std::move(Name));
2827 
2828     while (EatIfPresent(lltok::comma)) {
2829       // Handle ... at end of arg list.
2830       if (EatIfPresent(lltok::dotdotdot)) {
2831         IsVarArg = true;
2832         break;
2833       }
2834 
2835       // Otherwise must be an argument type.
2836       TypeLoc = Lex.getLoc();
2837       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2838         return true;
2839 
2840       if (ArgTy->isVoidTy())
2841         return error(TypeLoc, "argument can not have void type");
2842 
2843       if (Lex.getKind() == lltok::LocalVar) {
2844         Name = Lex.getStrVal();
2845         Lex.Lex();
2846       } else {
2847         if (Lex.getKind() == lltok::LocalVarID) {
2848           if (Lex.getUIntVal() != CurValID)
2849             return error(TypeLoc, "argument expected to be numbered '%" +
2850                                       Twine(CurValID) + "'");
2851           Lex.Lex();
2852         }
2853         ++CurValID;
2854         Name = "";
2855       }
2856 
2857       if (!ArgTy->isFirstClassType())
2858         return error(TypeLoc, "invalid type for function argument");
2859 
2860       ArgList.emplace_back(TypeLoc, ArgTy,
2861                            AttributeSet::get(ArgTy->getContext(), Attrs),
2862                            std::move(Name));
2863     }
2864   }
2865 
2866   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2867 }
2868 
2869 /// parseFunctionType
2870 ///  ::= Type ArgumentList OptionalAttrs
2871 bool LLParser::parseFunctionType(Type *&Result) {
2872   assert(Lex.getKind() == lltok::lparen);
2873 
2874   if (!FunctionType::isValidReturnType(Result))
2875     return tokError("invalid function return type");
2876 
2877   SmallVector<ArgInfo, 8> ArgList;
2878   bool IsVarArg;
2879   if (parseArgumentList(ArgList, IsVarArg))
2880     return true;
2881 
2882   // Reject names on the arguments lists.
2883   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2884     if (!ArgList[i].Name.empty())
2885       return error(ArgList[i].Loc, "argument name invalid in function type");
2886     if (ArgList[i].Attrs.hasAttributes())
2887       return error(ArgList[i].Loc,
2888                    "argument attributes invalid in function type");
2889   }
2890 
2891   SmallVector<Type*, 16> ArgListTy;
2892   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2893     ArgListTy.push_back(ArgList[i].Ty);
2894 
2895   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2896   return false;
2897 }
2898 
2899 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2900 /// other structs.
2901 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2902   SmallVector<Type*, 8> Elts;
2903   if (parseStructBody(Elts))
2904     return true;
2905 
2906   Result = StructType::get(Context, Elts, Packed);
2907   return false;
2908 }
2909 
2910 /// parseStructDefinition - parse a struct in a 'type' definition.
2911 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2912                                      std::pair<Type *, LocTy> &Entry,
2913                                      Type *&ResultTy) {
2914   // If the type was already defined, diagnose the redefinition.
2915   if (Entry.first && !Entry.second.isValid())
2916     return error(TypeLoc, "redefinition of type");
2917 
2918   // If we have opaque, just return without filling in the definition for the
2919   // struct.  This counts as a definition as far as the .ll file goes.
2920   if (EatIfPresent(lltok::kw_opaque)) {
2921     // This type is being defined, so clear the location to indicate this.
2922     Entry.second = SMLoc();
2923 
2924     // If this type number has never been uttered, create it.
2925     if (!Entry.first)
2926       Entry.first = StructType::create(Context, Name);
2927     ResultTy = Entry.first;
2928     return false;
2929   }
2930 
2931   // If the type starts with '<', then it is either a packed struct or a vector.
2932   bool isPacked = EatIfPresent(lltok::less);
2933 
2934   // If we don't have a struct, then we have a random type alias, which we
2935   // accept for compatibility with old files.  These types are not allowed to be
2936   // forward referenced and not allowed to be recursive.
2937   if (Lex.getKind() != lltok::lbrace) {
2938     if (Entry.first)
2939       return error(TypeLoc, "forward references to non-struct type");
2940 
2941     ResultTy = nullptr;
2942     if (isPacked)
2943       return parseArrayVectorType(ResultTy, true);
2944     return parseType(ResultTy);
2945   }
2946 
2947   // This type is being defined, so clear the location to indicate this.
2948   Entry.second = SMLoc();
2949 
2950   // If this type number has never been uttered, create it.
2951   if (!Entry.first)
2952     Entry.first = StructType::create(Context, Name);
2953 
2954   StructType *STy = cast<StructType>(Entry.first);
2955 
2956   SmallVector<Type*, 8> Body;
2957   if (parseStructBody(Body) ||
2958       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2959     return true;
2960 
2961   STy->setBody(Body, isPacked);
2962   ResultTy = STy;
2963   return false;
2964 }
2965 
2966 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2967 ///   StructType
2968 ///     ::= '{' '}'
2969 ///     ::= '{' Type (',' Type)* '}'
2970 ///     ::= '<' '{' '}' '>'
2971 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2972 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2973   assert(Lex.getKind() == lltok::lbrace);
2974   Lex.Lex(); // Consume the '{'
2975 
2976   // Handle the empty struct.
2977   if (EatIfPresent(lltok::rbrace))
2978     return false;
2979 
2980   LocTy EltTyLoc = Lex.getLoc();
2981   Type *Ty = nullptr;
2982   if (parseType(Ty))
2983     return true;
2984   Body.push_back(Ty);
2985 
2986   if (!StructType::isValidElementType(Ty))
2987     return error(EltTyLoc, "invalid element type for struct");
2988 
2989   while (EatIfPresent(lltok::comma)) {
2990     EltTyLoc = Lex.getLoc();
2991     if (parseType(Ty))
2992       return true;
2993 
2994     if (!StructType::isValidElementType(Ty))
2995       return error(EltTyLoc, "invalid element type for struct");
2996 
2997     Body.push_back(Ty);
2998   }
2999 
3000   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3001 }
3002 
3003 /// parseArrayVectorType - parse an array or vector type, assuming the first
3004 /// token has already been consumed.
3005 ///   Type
3006 ///     ::= '[' APSINTVAL 'x' Types ']'
3007 ///     ::= '<' APSINTVAL 'x' Types '>'
3008 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3009 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3010   bool Scalable = false;
3011 
3012   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3013     Lex.Lex(); // consume the 'vscale'
3014     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3015       return true;
3016 
3017     Scalable = true;
3018   }
3019 
3020   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3021       Lex.getAPSIntVal().getBitWidth() > 64)
3022     return tokError("expected number in address space");
3023 
3024   LocTy SizeLoc = Lex.getLoc();
3025   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3026   Lex.Lex();
3027 
3028   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3029     return true;
3030 
3031   LocTy TypeLoc = Lex.getLoc();
3032   Type *EltTy = nullptr;
3033   if (parseType(EltTy))
3034     return true;
3035 
3036   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3037                  "expected end of sequential type"))
3038     return true;
3039 
3040   if (IsVector) {
3041     if (Size == 0)
3042       return error(SizeLoc, "zero element vector is illegal");
3043     if ((unsigned)Size != Size)
3044       return error(SizeLoc, "size too large for vector");
3045     if (!VectorType::isValidElementType(EltTy))
3046       return error(TypeLoc, "invalid vector element type");
3047     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3048   } else {
3049     if (!ArrayType::isValidElementType(EltTy))
3050       return error(TypeLoc, "invalid array element type");
3051     Result = ArrayType::get(EltTy, Size);
3052   }
3053   return false;
3054 }
3055 
3056 //===----------------------------------------------------------------------===//
3057 // Function Semantic Analysis.
3058 //===----------------------------------------------------------------------===//
3059 
3060 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3061                                              int functionNumber)
3062   : P(p), F(f), FunctionNumber(functionNumber) {
3063 
3064   // Insert unnamed arguments into the NumberedVals list.
3065   for (Argument &A : F.args())
3066     if (!A.hasName())
3067       NumberedVals.push_back(&A);
3068 }
3069 
3070 LLParser::PerFunctionState::~PerFunctionState() {
3071   // If there were any forward referenced non-basicblock values, delete them.
3072 
3073   for (const auto &P : ForwardRefVals) {
3074     if (isa<BasicBlock>(P.second.first))
3075       continue;
3076     P.second.first->replaceAllUsesWith(
3077         UndefValue::get(P.second.first->getType()));
3078     P.second.first->deleteValue();
3079   }
3080 
3081   for (const auto &P : ForwardRefValIDs) {
3082     if (isa<BasicBlock>(P.second.first))
3083       continue;
3084     P.second.first->replaceAllUsesWith(
3085         UndefValue::get(P.second.first->getType()));
3086     P.second.first->deleteValue();
3087   }
3088 }
3089 
3090 bool LLParser::PerFunctionState::finishFunction() {
3091   if (!ForwardRefVals.empty())
3092     return P.error(ForwardRefVals.begin()->second.second,
3093                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3094                        "'");
3095   if (!ForwardRefValIDs.empty())
3096     return P.error(ForwardRefValIDs.begin()->second.second,
3097                    "use of undefined value '%" +
3098                        Twine(ForwardRefValIDs.begin()->first) + "'");
3099   return false;
3100 }
3101 
3102 /// getVal - Get a value with the specified name or ID, creating a
3103 /// forward reference record if needed.  This can return null if the value
3104 /// exists but does not have the right type.
3105 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3106                                           LocTy Loc, bool IsCall) {
3107   // Look this name up in the normal function symbol table.
3108   Value *Val = F.getValueSymbolTable()->lookup(Name);
3109 
3110   // If this is a forward reference for the value, see if we already created a
3111   // forward ref record.
3112   if (!Val) {
3113     auto I = ForwardRefVals.find(Name);
3114     if (I != ForwardRefVals.end())
3115       Val = I->second.first;
3116   }
3117 
3118   // If we have the value in the symbol table or fwd-ref table, return it.
3119   if (Val)
3120     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3121 
3122   // Don't make placeholders with invalid type.
3123   if (!Ty->isFirstClassType()) {
3124     P.error(Loc, "invalid use of a non-first-class type");
3125     return nullptr;
3126   }
3127 
3128   // Otherwise, create a new forward reference for this value and remember it.
3129   Value *FwdVal;
3130   if (Ty->isLabelTy()) {
3131     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3132   } else {
3133     FwdVal = new Argument(Ty, Name);
3134   }
3135 
3136   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3137   return FwdVal;
3138 }
3139 
3140 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3141                                           bool IsCall) {
3142   // Look this name up in the normal function symbol table.
3143   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3144 
3145   // If this is a forward reference for the value, see if we already created a
3146   // forward ref record.
3147   if (!Val) {
3148     auto I = ForwardRefValIDs.find(ID);
3149     if (I != ForwardRefValIDs.end())
3150       Val = I->second.first;
3151   }
3152 
3153   // If we have the value in the symbol table or fwd-ref table, return it.
3154   if (Val)
3155     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3156 
3157   if (!Ty->isFirstClassType()) {
3158     P.error(Loc, "invalid use of a non-first-class type");
3159     return nullptr;
3160   }
3161 
3162   // Otherwise, create a new forward reference for this value and remember it.
3163   Value *FwdVal;
3164   if (Ty->isLabelTy()) {
3165     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3166   } else {
3167     FwdVal = new Argument(Ty);
3168   }
3169 
3170   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3171   return FwdVal;
3172 }
3173 
3174 /// setInstName - After an instruction is parsed and inserted into its
3175 /// basic block, this installs its name.
3176 bool LLParser::PerFunctionState::setInstName(int NameID,
3177                                              const std::string &NameStr,
3178                                              LocTy NameLoc, Instruction *Inst) {
3179   // If this instruction has void type, it cannot have a name or ID specified.
3180   if (Inst->getType()->isVoidTy()) {
3181     if (NameID != -1 || !NameStr.empty())
3182       return P.error(NameLoc, "instructions returning void cannot have a name");
3183     return false;
3184   }
3185 
3186   // If this was a numbered instruction, verify that the instruction is the
3187   // expected value and resolve any forward references.
3188   if (NameStr.empty()) {
3189     // If neither a name nor an ID was specified, just use the next ID.
3190     if (NameID == -1)
3191       NameID = NumberedVals.size();
3192 
3193     if (unsigned(NameID) != NumberedVals.size())
3194       return P.error(NameLoc, "instruction expected to be numbered '%" +
3195                                   Twine(NumberedVals.size()) + "'");
3196 
3197     auto FI = ForwardRefValIDs.find(NameID);
3198     if (FI != ForwardRefValIDs.end()) {
3199       Value *Sentinel = FI->second.first;
3200       if (Sentinel->getType() != Inst->getType())
3201         return P.error(NameLoc, "instruction forward referenced with type '" +
3202                                     getTypeString(FI->second.first->getType()) +
3203                                     "'");
3204 
3205       Sentinel->replaceAllUsesWith(Inst);
3206       Sentinel->deleteValue();
3207       ForwardRefValIDs.erase(FI);
3208     }
3209 
3210     NumberedVals.push_back(Inst);
3211     return false;
3212   }
3213 
3214   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3215   auto FI = ForwardRefVals.find(NameStr);
3216   if (FI != ForwardRefVals.end()) {
3217     Value *Sentinel = FI->second.first;
3218     if (Sentinel->getType() != Inst->getType())
3219       return P.error(NameLoc, "instruction forward referenced with type '" +
3220                                   getTypeString(FI->second.first->getType()) +
3221                                   "'");
3222 
3223     Sentinel->replaceAllUsesWith(Inst);
3224     Sentinel->deleteValue();
3225     ForwardRefVals.erase(FI);
3226   }
3227 
3228   // Set the name on the instruction.
3229   Inst->setName(NameStr);
3230 
3231   if (Inst->getName() != NameStr)
3232     return P.error(NameLoc, "multiple definition of local value named '" +
3233                                 NameStr + "'");
3234   return false;
3235 }
3236 
3237 /// getBB - Get a basic block with the specified name or ID, creating a
3238 /// forward reference record if needed.
3239 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3240                                               LocTy Loc) {
3241   return dyn_cast_or_null<BasicBlock>(
3242       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3243 }
3244 
3245 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3246   return dyn_cast_or_null<BasicBlock>(
3247       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3248 }
3249 
3250 /// defineBB - Define the specified basic block, which is either named or
3251 /// unnamed.  If there is an error, this returns null otherwise it returns
3252 /// the block being defined.
3253 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3254                                                  int NameID, LocTy Loc) {
3255   BasicBlock *BB;
3256   if (Name.empty()) {
3257     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3258       P.error(Loc, "label expected to be numbered '" +
3259                        Twine(NumberedVals.size()) + "'");
3260       return nullptr;
3261     }
3262     BB = getBB(NumberedVals.size(), Loc);
3263     if (!BB) {
3264       P.error(Loc, "unable to create block numbered '" +
3265                        Twine(NumberedVals.size()) + "'");
3266       return nullptr;
3267     }
3268   } else {
3269     BB = getBB(Name, Loc);
3270     if (!BB) {
3271       P.error(Loc, "unable to create block named '" + Name + "'");
3272       return nullptr;
3273     }
3274   }
3275 
3276   // Move the block to the end of the function.  Forward ref'd blocks are
3277   // inserted wherever they happen to be referenced.
3278   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3279 
3280   // Remove the block from forward ref sets.
3281   if (Name.empty()) {
3282     ForwardRefValIDs.erase(NumberedVals.size());
3283     NumberedVals.push_back(BB);
3284   } else {
3285     // BB forward references are already in the function symbol table.
3286     ForwardRefVals.erase(Name);
3287   }
3288 
3289   return BB;
3290 }
3291 
3292 //===----------------------------------------------------------------------===//
3293 // Constants.
3294 //===----------------------------------------------------------------------===//
3295 
3296 /// parseValID - parse an abstract value that doesn't necessarily have a
3297 /// type implied.  For example, if we parse "4" we don't know what integer type
3298 /// it has.  The value will later be combined with its type and checked for
3299 /// sanity.  PFS is used to convert function-local operands of metadata (since
3300 /// metadata operands are not just parsed here but also converted to values).
3301 /// PFS can be null when we are not parsing metadata values inside a function.
3302 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3303   ID.Loc = Lex.getLoc();
3304   switch (Lex.getKind()) {
3305   default:
3306     return tokError("expected value token");
3307   case lltok::GlobalID:  // @42
3308     ID.UIntVal = Lex.getUIntVal();
3309     ID.Kind = ValID::t_GlobalID;
3310     break;
3311   case lltok::GlobalVar:  // @foo
3312     ID.StrVal = Lex.getStrVal();
3313     ID.Kind = ValID::t_GlobalName;
3314     break;
3315   case lltok::LocalVarID:  // %42
3316     ID.UIntVal = Lex.getUIntVal();
3317     ID.Kind = ValID::t_LocalID;
3318     break;
3319   case lltok::LocalVar:  // %foo
3320     ID.StrVal = Lex.getStrVal();
3321     ID.Kind = ValID::t_LocalName;
3322     break;
3323   case lltok::APSInt:
3324     ID.APSIntVal = Lex.getAPSIntVal();
3325     ID.Kind = ValID::t_APSInt;
3326     break;
3327   case lltok::APFloat:
3328     ID.APFloatVal = Lex.getAPFloatVal();
3329     ID.Kind = ValID::t_APFloat;
3330     break;
3331   case lltok::kw_true:
3332     ID.ConstantVal = ConstantInt::getTrue(Context);
3333     ID.Kind = ValID::t_Constant;
3334     break;
3335   case lltok::kw_false:
3336     ID.ConstantVal = ConstantInt::getFalse(Context);
3337     ID.Kind = ValID::t_Constant;
3338     break;
3339   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3340   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3341   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3342   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3343   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3344 
3345   case lltok::lbrace: {
3346     // ValID ::= '{' ConstVector '}'
3347     Lex.Lex();
3348     SmallVector<Constant*, 16> Elts;
3349     if (parseGlobalValueVector(Elts) ||
3350         parseToken(lltok::rbrace, "expected end of struct constant"))
3351       return true;
3352 
3353     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3354     ID.UIntVal = Elts.size();
3355     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3356            Elts.size() * sizeof(Elts[0]));
3357     ID.Kind = ValID::t_ConstantStruct;
3358     return false;
3359   }
3360   case lltok::less: {
3361     // ValID ::= '<' ConstVector '>'         --> Vector.
3362     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3363     Lex.Lex();
3364     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3365 
3366     SmallVector<Constant*, 16> Elts;
3367     LocTy FirstEltLoc = Lex.getLoc();
3368     if (parseGlobalValueVector(Elts) ||
3369         (isPackedStruct &&
3370          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3371         parseToken(lltok::greater, "expected end of constant"))
3372       return true;
3373 
3374     if (isPackedStruct) {
3375       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3376       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3377              Elts.size() * sizeof(Elts[0]));
3378       ID.UIntVal = Elts.size();
3379       ID.Kind = ValID::t_PackedConstantStruct;
3380       return false;
3381     }
3382 
3383     if (Elts.empty())
3384       return error(ID.Loc, "constant vector must not be empty");
3385 
3386     if (!Elts[0]->getType()->isIntegerTy() &&
3387         !Elts[0]->getType()->isFloatingPointTy() &&
3388         !Elts[0]->getType()->isPointerTy())
3389       return error(
3390           FirstEltLoc,
3391           "vector elements must have integer, pointer or floating point type");
3392 
3393     // Verify that all the vector elements have the same type.
3394     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3395       if (Elts[i]->getType() != Elts[0]->getType())
3396         return error(FirstEltLoc, "vector element #" + Twine(i) +
3397                                       " is not of type '" +
3398                                       getTypeString(Elts[0]->getType()));
3399 
3400     ID.ConstantVal = ConstantVector::get(Elts);
3401     ID.Kind = ValID::t_Constant;
3402     return false;
3403   }
3404   case lltok::lsquare: {   // Array Constant
3405     Lex.Lex();
3406     SmallVector<Constant*, 16> Elts;
3407     LocTy FirstEltLoc = Lex.getLoc();
3408     if (parseGlobalValueVector(Elts) ||
3409         parseToken(lltok::rsquare, "expected end of array constant"))
3410       return true;
3411 
3412     // Handle empty element.
3413     if (Elts.empty()) {
3414       // Use undef instead of an array because it's inconvenient to determine
3415       // the element type at this point, there being no elements to examine.
3416       ID.Kind = ValID::t_EmptyArray;
3417       return false;
3418     }
3419 
3420     if (!Elts[0]->getType()->isFirstClassType())
3421       return error(FirstEltLoc, "invalid array element type: " +
3422                                     getTypeString(Elts[0]->getType()));
3423 
3424     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3425 
3426     // Verify all elements are correct type!
3427     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3428       if (Elts[i]->getType() != Elts[0]->getType())
3429         return error(FirstEltLoc, "array element #" + Twine(i) +
3430                                       " is not of type '" +
3431                                       getTypeString(Elts[0]->getType()));
3432     }
3433 
3434     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3435     ID.Kind = ValID::t_Constant;
3436     return false;
3437   }
3438   case lltok::kw_c:  // c "foo"
3439     Lex.Lex();
3440     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3441                                                   false);
3442     if (parseToken(lltok::StringConstant, "expected string"))
3443       return true;
3444     ID.Kind = ValID::t_Constant;
3445     return false;
3446 
3447   case lltok::kw_asm: {
3448     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3449     //             STRINGCONSTANT
3450     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3451     Lex.Lex();
3452     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3453         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3454         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3455         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3456         parseStringConstant(ID.StrVal) ||
3457         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3458         parseToken(lltok::StringConstant, "expected constraint string"))
3459       return true;
3460     ID.StrVal2 = Lex.getStrVal();
3461     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3462                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3463     ID.Kind = ValID::t_InlineAsm;
3464     return false;
3465   }
3466 
3467   case lltok::kw_blockaddress: {
3468     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3469     Lex.Lex();
3470 
3471     ValID Fn, Label;
3472 
3473     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3474         parseValID(Fn) ||
3475         parseToken(lltok::comma,
3476                    "expected comma in block address expression") ||
3477         parseValID(Label) ||
3478         parseToken(lltok::rparen, "expected ')' in block address expression"))
3479       return true;
3480 
3481     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3482       return error(Fn.Loc, "expected function name in blockaddress");
3483     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3484       return error(Label.Loc, "expected basic block name in blockaddress");
3485 
3486     // Try to find the function (but skip it if it's forward-referenced).
3487     GlobalValue *GV = nullptr;
3488     if (Fn.Kind == ValID::t_GlobalID) {
3489       if (Fn.UIntVal < NumberedVals.size())
3490         GV = NumberedVals[Fn.UIntVal];
3491     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3492       GV = M->getNamedValue(Fn.StrVal);
3493     }
3494     Function *F = nullptr;
3495     if (GV) {
3496       // Confirm that it's actually a function with a definition.
3497       if (!isa<Function>(GV))
3498         return error(Fn.Loc, "expected function name in blockaddress");
3499       F = cast<Function>(GV);
3500       if (F->isDeclaration())
3501         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3502     }
3503 
3504     if (!F) {
3505       // Make a global variable as a placeholder for this reference.
3506       GlobalValue *&FwdRef =
3507           ForwardRefBlockAddresses.insert(std::make_pair(
3508                                               std::move(Fn),
3509                                               std::map<ValID, GlobalValue *>()))
3510               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3511               .first->second;
3512       if (!FwdRef)
3513         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3514                                     GlobalValue::InternalLinkage, nullptr, "");
3515       ID.ConstantVal = FwdRef;
3516       ID.Kind = ValID::t_Constant;
3517       return false;
3518     }
3519 
3520     // We found the function; now find the basic block.  Don't use PFS, since we
3521     // might be inside a constant expression.
3522     BasicBlock *BB;
3523     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3524       if (Label.Kind == ValID::t_LocalID)
3525         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3526       else
3527         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3528       if (!BB)
3529         return error(Label.Loc, "referenced value is not a basic block");
3530     } else {
3531       if (Label.Kind == ValID::t_LocalID)
3532         return error(Label.Loc, "cannot take address of numeric label after "
3533                                 "the function is defined");
3534       BB = dyn_cast_or_null<BasicBlock>(
3535           F->getValueSymbolTable()->lookup(Label.StrVal));
3536       if (!BB)
3537         return error(Label.Loc, "referenced value is not a basic block");
3538     }
3539 
3540     ID.ConstantVal = BlockAddress::get(F, BB);
3541     ID.Kind = ValID::t_Constant;
3542     return false;
3543   }
3544 
3545   case lltok::kw_dso_local_equivalent: {
3546     // ValID ::= 'dso_local_equivalent' @foo
3547     Lex.Lex();
3548 
3549     ValID Fn;
3550 
3551     if (parseValID(Fn))
3552       return true;
3553 
3554     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3555       return error(Fn.Loc,
3556                    "expected global value name in dso_local_equivalent");
3557 
3558     // Try to find the function (but skip it if it's forward-referenced).
3559     GlobalValue *GV = nullptr;
3560     if (Fn.Kind == ValID::t_GlobalID) {
3561       if (Fn.UIntVal < NumberedVals.size())
3562         GV = NumberedVals[Fn.UIntVal];
3563     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3564       GV = M->getNamedValue(Fn.StrVal);
3565     }
3566 
3567     assert(GV && "Could not find a corresponding global variable");
3568 
3569     if (!GV->getValueType()->isFunctionTy())
3570       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3571                            "in dso_local_equivalent");
3572 
3573     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3574     ID.Kind = ValID::t_Constant;
3575     return false;
3576   }
3577 
3578   case lltok::kw_trunc:
3579   case lltok::kw_zext:
3580   case lltok::kw_sext:
3581   case lltok::kw_fptrunc:
3582   case lltok::kw_fpext:
3583   case lltok::kw_bitcast:
3584   case lltok::kw_addrspacecast:
3585   case lltok::kw_uitofp:
3586   case lltok::kw_sitofp:
3587   case lltok::kw_fptoui:
3588   case lltok::kw_fptosi:
3589   case lltok::kw_inttoptr:
3590   case lltok::kw_ptrtoint: {
3591     unsigned Opc = Lex.getUIntVal();
3592     Type *DestTy = nullptr;
3593     Constant *SrcVal;
3594     Lex.Lex();
3595     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3596         parseGlobalTypeAndValue(SrcVal) ||
3597         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3598         parseType(DestTy) ||
3599         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3600       return true;
3601     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3602       return error(ID.Loc, "invalid cast opcode for cast from '" +
3603                                getTypeString(SrcVal->getType()) + "' to '" +
3604                                getTypeString(DestTy) + "'");
3605     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3606                                                  SrcVal, DestTy);
3607     ID.Kind = ValID::t_Constant;
3608     return false;
3609   }
3610   case lltok::kw_extractvalue: {
3611     Lex.Lex();
3612     Constant *Val;
3613     SmallVector<unsigned, 4> Indices;
3614     if (parseToken(lltok::lparen,
3615                    "expected '(' in extractvalue constantexpr") ||
3616         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3617         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3618       return true;
3619 
3620     if (!Val->getType()->isAggregateType())
3621       return error(ID.Loc, "extractvalue operand must be aggregate type");
3622     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3623       return error(ID.Loc, "invalid indices for extractvalue");
3624     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3625     ID.Kind = ValID::t_Constant;
3626     return false;
3627   }
3628   case lltok::kw_insertvalue: {
3629     Lex.Lex();
3630     Constant *Val0, *Val1;
3631     SmallVector<unsigned, 4> Indices;
3632     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3633         parseGlobalTypeAndValue(Val0) ||
3634         parseToken(lltok::comma,
3635                    "expected comma in insertvalue constantexpr") ||
3636         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3637         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3638       return true;
3639     if (!Val0->getType()->isAggregateType())
3640       return error(ID.Loc, "insertvalue operand must be aggregate type");
3641     Type *IndexedType =
3642         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3643     if (!IndexedType)
3644       return error(ID.Loc, "invalid indices for insertvalue");
3645     if (IndexedType != Val1->getType())
3646       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3647                                getTypeString(Val1->getType()) +
3648                                "' instead of '" + getTypeString(IndexedType) +
3649                                "'");
3650     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3651     ID.Kind = ValID::t_Constant;
3652     return false;
3653   }
3654   case lltok::kw_icmp:
3655   case lltok::kw_fcmp: {
3656     unsigned PredVal, Opc = Lex.getUIntVal();
3657     Constant *Val0, *Val1;
3658     Lex.Lex();
3659     if (parseCmpPredicate(PredVal, Opc) ||
3660         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3661         parseGlobalTypeAndValue(Val0) ||
3662         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3663         parseGlobalTypeAndValue(Val1) ||
3664         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3665       return true;
3666 
3667     if (Val0->getType() != Val1->getType())
3668       return error(ID.Loc, "compare operands must have the same type");
3669 
3670     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3671 
3672     if (Opc == Instruction::FCmp) {
3673       if (!Val0->getType()->isFPOrFPVectorTy())
3674         return error(ID.Loc, "fcmp requires floating point operands");
3675       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3676     } else {
3677       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3678       if (!Val0->getType()->isIntOrIntVectorTy() &&
3679           !Val0->getType()->isPtrOrPtrVectorTy())
3680         return error(ID.Loc, "icmp requires pointer or integer operands");
3681       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3682     }
3683     ID.Kind = ValID::t_Constant;
3684     return false;
3685   }
3686 
3687   // Unary Operators.
3688   case lltok::kw_fneg: {
3689     unsigned Opc = Lex.getUIntVal();
3690     Constant *Val;
3691     Lex.Lex();
3692     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3693         parseGlobalTypeAndValue(Val) ||
3694         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3695       return true;
3696 
3697     // Check that the type is valid for the operator.
3698     switch (Opc) {
3699     case Instruction::FNeg:
3700       if (!Val->getType()->isFPOrFPVectorTy())
3701         return error(ID.Loc, "constexpr requires fp operands");
3702       break;
3703     default: llvm_unreachable("Unknown unary operator!");
3704     }
3705     unsigned Flags = 0;
3706     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3707     ID.ConstantVal = C;
3708     ID.Kind = ValID::t_Constant;
3709     return false;
3710   }
3711   // Binary Operators.
3712   case lltok::kw_add:
3713   case lltok::kw_fadd:
3714   case lltok::kw_sub:
3715   case lltok::kw_fsub:
3716   case lltok::kw_mul:
3717   case lltok::kw_fmul:
3718   case lltok::kw_udiv:
3719   case lltok::kw_sdiv:
3720   case lltok::kw_fdiv:
3721   case lltok::kw_urem:
3722   case lltok::kw_srem:
3723   case lltok::kw_frem:
3724   case lltok::kw_shl:
3725   case lltok::kw_lshr:
3726   case lltok::kw_ashr: {
3727     bool NUW = false;
3728     bool NSW = false;
3729     bool Exact = false;
3730     unsigned Opc = Lex.getUIntVal();
3731     Constant *Val0, *Val1;
3732     Lex.Lex();
3733     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3734         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3735       if (EatIfPresent(lltok::kw_nuw))
3736         NUW = true;
3737       if (EatIfPresent(lltok::kw_nsw)) {
3738         NSW = true;
3739         if (EatIfPresent(lltok::kw_nuw))
3740           NUW = true;
3741       }
3742     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3743                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3744       if (EatIfPresent(lltok::kw_exact))
3745         Exact = true;
3746     }
3747     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3748         parseGlobalTypeAndValue(Val0) ||
3749         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3750         parseGlobalTypeAndValue(Val1) ||
3751         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3752       return true;
3753     if (Val0->getType() != Val1->getType())
3754       return error(ID.Loc, "operands of constexpr must have same type");
3755     // Check that the type is valid for the operator.
3756     switch (Opc) {
3757     case Instruction::Add:
3758     case Instruction::Sub:
3759     case Instruction::Mul:
3760     case Instruction::UDiv:
3761     case Instruction::SDiv:
3762     case Instruction::URem:
3763     case Instruction::SRem:
3764     case Instruction::Shl:
3765     case Instruction::AShr:
3766     case Instruction::LShr:
3767       if (!Val0->getType()->isIntOrIntVectorTy())
3768         return error(ID.Loc, "constexpr requires integer operands");
3769       break;
3770     case Instruction::FAdd:
3771     case Instruction::FSub:
3772     case Instruction::FMul:
3773     case Instruction::FDiv:
3774     case Instruction::FRem:
3775       if (!Val0->getType()->isFPOrFPVectorTy())
3776         return error(ID.Loc, "constexpr requires fp operands");
3777       break;
3778     default: llvm_unreachable("Unknown binary operator!");
3779     }
3780     unsigned Flags = 0;
3781     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3782     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3783     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3784     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3785     ID.ConstantVal = C;
3786     ID.Kind = ValID::t_Constant;
3787     return false;
3788   }
3789 
3790   // Logical Operations
3791   case lltok::kw_and:
3792   case lltok::kw_or:
3793   case lltok::kw_xor: {
3794     unsigned Opc = Lex.getUIntVal();
3795     Constant *Val0, *Val1;
3796     Lex.Lex();
3797     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3798         parseGlobalTypeAndValue(Val0) ||
3799         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3800         parseGlobalTypeAndValue(Val1) ||
3801         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3802       return true;
3803     if (Val0->getType() != Val1->getType())
3804       return error(ID.Loc, "operands of constexpr must have same type");
3805     if (!Val0->getType()->isIntOrIntVectorTy())
3806       return error(ID.Loc,
3807                    "constexpr requires integer or integer vector operands");
3808     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3809     ID.Kind = ValID::t_Constant;
3810     return false;
3811   }
3812 
3813   case lltok::kw_getelementptr:
3814   case lltok::kw_shufflevector:
3815   case lltok::kw_insertelement:
3816   case lltok::kw_extractelement:
3817   case lltok::kw_select: {
3818     unsigned Opc = Lex.getUIntVal();
3819     SmallVector<Constant*, 16> Elts;
3820     bool InBounds = false;
3821     Type *Ty;
3822     Lex.Lex();
3823 
3824     if (Opc == Instruction::GetElementPtr)
3825       InBounds = EatIfPresent(lltok::kw_inbounds);
3826 
3827     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3828       return true;
3829 
3830     LocTy ExplicitTypeLoc = Lex.getLoc();
3831     if (Opc == Instruction::GetElementPtr) {
3832       if (parseType(Ty) ||
3833           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3834         return true;
3835     }
3836 
3837     Optional<unsigned> InRangeOp;
3838     if (parseGlobalValueVector(
3839             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3840         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3841       return true;
3842 
3843     if (Opc == Instruction::GetElementPtr) {
3844       if (Elts.size() == 0 ||
3845           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3846         return error(ID.Loc, "base of getelementptr must be a pointer");
3847 
3848       Type *BaseType = Elts[0]->getType();
3849       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3850       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3851         return error(
3852             ExplicitTypeLoc,
3853             typeComparisonErrorMessage(
3854                 "explicit pointee type doesn't match operand's pointee type",
3855                 Ty, BasePointerType->getElementType()));
3856       }
3857 
3858       unsigned GEPWidth =
3859           BaseType->isVectorTy()
3860               ? cast<FixedVectorType>(BaseType)->getNumElements()
3861               : 0;
3862 
3863       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3864       for (Constant *Val : Indices) {
3865         Type *ValTy = Val->getType();
3866         if (!ValTy->isIntOrIntVectorTy())
3867           return error(ID.Loc, "getelementptr index must be an integer");
3868         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3869           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3870           if (GEPWidth && (ValNumEl != GEPWidth))
3871             return error(
3872                 ID.Loc,
3873                 "getelementptr vector index has a wrong number of elements");
3874           // GEPWidth may have been unknown because the base is a scalar,
3875           // but it is known now.
3876           GEPWidth = ValNumEl;
3877         }
3878       }
3879 
3880       SmallPtrSet<Type*, 4> Visited;
3881       if (!Indices.empty() && !Ty->isSized(&Visited))
3882         return error(ID.Loc, "base element of getelementptr must be sized");
3883 
3884       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3885         return error(ID.Loc, "invalid getelementptr indices");
3886 
3887       if (InRangeOp) {
3888         if (*InRangeOp == 0)
3889           return error(ID.Loc,
3890                        "inrange keyword may not appear on pointer operand");
3891         --*InRangeOp;
3892       }
3893 
3894       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3895                                                       InBounds, InRangeOp);
3896     } else if (Opc == Instruction::Select) {
3897       if (Elts.size() != 3)
3898         return error(ID.Loc, "expected three operands to select");
3899       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3900                                                               Elts[2]))
3901         return error(ID.Loc, Reason);
3902       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3903     } else if (Opc == Instruction::ShuffleVector) {
3904       if (Elts.size() != 3)
3905         return error(ID.Loc, "expected three operands to shufflevector");
3906       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3907         return error(ID.Loc, "invalid operands to shufflevector");
3908       SmallVector<int, 16> Mask;
3909       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3910       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3911     } else if (Opc == Instruction::ExtractElement) {
3912       if (Elts.size() != 2)
3913         return error(ID.Loc, "expected two operands to extractelement");
3914       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3915         return error(ID.Loc, "invalid extractelement operands");
3916       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3917     } else {
3918       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3919       if (Elts.size() != 3)
3920         return error(ID.Loc, "expected three operands to insertelement");
3921       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3922         return error(ID.Loc, "invalid insertelement operands");
3923       ID.ConstantVal =
3924                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3925     }
3926 
3927     ID.Kind = ValID::t_Constant;
3928     return false;
3929   }
3930   }
3931 
3932   Lex.Lex();
3933   return false;
3934 }
3935 
3936 /// parseGlobalValue - parse a global value with the specified type.
3937 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3938   C = nullptr;
3939   ValID ID;
3940   Value *V = nullptr;
3941   bool Parsed = parseValID(ID) ||
3942                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3943   if (V && !(C = dyn_cast<Constant>(V)))
3944     return error(ID.Loc, "global values must be constants");
3945   return Parsed;
3946 }
3947 
3948 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3949   Type *Ty = nullptr;
3950   return parseType(Ty) || parseGlobalValue(Ty, V);
3951 }
3952 
3953 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3954   C = nullptr;
3955 
3956   LocTy KwLoc = Lex.getLoc();
3957   if (!EatIfPresent(lltok::kw_comdat))
3958     return false;
3959 
3960   if (EatIfPresent(lltok::lparen)) {
3961     if (Lex.getKind() != lltok::ComdatVar)
3962       return tokError("expected comdat variable");
3963     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3964     Lex.Lex();
3965     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3966       return true;
3967   } else {
3968     if (GlobalName.empty())
3969       return tokError("comdat cannot be unnamed");
3970     C = getComdat(std::string(GlobalName), KwLoc);
3971   }
3972 
3973   return false;
3974 }
3975 
3976 /// parseGlobalValueVector
3977 ///   ::= /*empty*/
3978 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3979 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3980                                       Optional<unsigned> *InRangeOp) {
3981   // Empty list.
3982   if (Lex.getKind() == lltok::rbrace ||
3983       Lex.getKind() == lltok::rsquare ||
3984       Lex.getKind() == lltok::greater ||
3985       Lex.getKind() == lltok::rparen)
3986     return false;
3987 
3988   do {
3989     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3990       *InRangeOp = Elts.size();
3991 
3992     Constant *C;
3993     if (parseGlobalTypeAndValue(C))
3994       return true;
3995     Elts.push_back(C);
3996   } while (EatIfPresent(lltok::comma));
3997 
3998   return false;
3999 }
4000 
4001 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4002   SmallVector<Metadata *, 16> Elts;
4003   if (parseMDNodeVector(Elts))
4004     return true;
4005 
4006   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4007   return false;
4008 }
4009 
4010 /// MDNode:
4011 ///  ::= !{ ... }
4012 ///  ::= !7
4013 ///  ::= !DILocation(...)
4014 bool LLParser::parseMDNode(MDNode *&N) {
4015   if (Lex.getKind() == lltok::MetadataVar)
4016     return parseSpecializedMDNode(N);
4017 
4018   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4019 }
4020 
4021 bool LLParser::parseMDNodeTail(MDNode *&N) {
4022   // !{ ... }
4023   if (Lex.getKind() == lltok::lbrace)
4024     return parseMDTuple(N);
4025 
4026   // !42
4027   return parseMDNodeID(N);
4028 }
4029 
4030 namespace {
4031 
4032 /// Structure to represent an optional metadata field.
4033 template <class FieldTy> struct MDFieldImpl {
4034   typedef MDFieldImpl ImplTy;
4035   FieldTy Val;
4036   bool Seen;
4037 
4038   void assign(FieldTy Val) {
4039     Seen = true;
4040     this->Val = std::move(Val);
4041   }
4042 
4043   explicit MDFieldImpl(FieldTy Default)
4044       : Val(std::move(Default)), Seen(false) {}
4045 };
4046 
4047 /// Structure to represent an optional metadata field that
4048 /// can be of either type (A or B) and encapsulates the
4049 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4050 /// to reimplement the specifics for representing each Field.
4051 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4052   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4053   FieldTypeA A;
4054   FieldTypeB B;
4055   bool Seen;
4056 
4057   enum {
4058     IsInvalid = 0,
4059     IsTypeA = 1,
4060     IsTypeB = 2
4061   } WhatIs;
4062 
4063   void assign(FieldTypeA A) {
4064     Seen = true;
4065     this->A = std::move(A);
4066     WhatIs = IsTypeA;
4067   }
4068 
4069   void assign(FieldTypeB B) {
4070     Seen = true;
4071     this->B = std::move(B);
4072     WhatIs = IsTypeB;
4073   }
4074 
4075   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4076       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4077         WhatIs(IsInvalid) {}
4078 };
4079 
4080 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4081   uint64_t Max;
4082 
4083   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4084       : ImplTy(Default), Max(Max) {}
4085 };
4086 
4087 struct LineField : public MDUnsignedField {
4088   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4089 };
4090 
4091 struct ColumnField : public MDUnsignedField {
4092   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4093 };
4094 
4095 struct DwarfTagField : public MDUnsignedField {
4096   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4097   DwarfTagField(dwarf::Tag DefaultTag)
4098       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4099 };
4100 
4101 struct DwarfMacinfoTypeField : public MDUnsignedField {
4102   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4103   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4104     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4105 };
4106 
4107 struct DwarfAttEncodingField : public MDUnsignedField {
4108   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4109 };
4110 
4111 struct DwarfVirtualityField : public MDUnsignedField {
4112   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4113 };
4114 
4115 struct DwarfLangField : public MDUnsignedField {
4116   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4117 };
4118 
4119 struct DwarfCCField : public MDUnsignedField {
4120   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4121 };
4122 
4123 struct EmissionKindField : public MDUnsignedField {
4124   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4125 };
4126 
4127 struct NameTableKindField : public MDUnsignedField {
4128   NameTableKindField()
4129       : MDUnsignedField(
4130             0, (unsigned)
4131                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4132 };
4133 
4134 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4135   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4136 };
4137 
4138 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4139   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4140 };
4141 
4142 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4143   MDAPSIntField() : ImplTy(APSInt()) {}
4144 };
4145 
4146 struct MDSignedField : public MDFieldImpl<int64_t> {
4147   int64_t Min;
4148   int64_t Max;
4149 
4150   MDSignedField(int64_t Default = 0)
4151       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4152   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4153       : ImplTy(Default), Min(Min), Max(Max) {}
4154 };
4155 
4156 struct MDBoolField : public MDFieldImpl<bool> {
4157   MDBoolField(bool Default = false) : ImplTy(Default) {}
4158 };
4159 
4160 struct MDField : public MDFieldImpl<Metadata *> {
4161   bool AllowNull;
4162 
4163   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4164 };
4165 
4166 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4167   MDConstant() : ImplTy(nullptr) {}
4168 };
4169 
4170 struct MDStringField : public MDFieldImpl<MDString *> {
4171   bool AllowEmpty;
4172   MDStringField(bool AllowEmpty = true)
4173       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4174 };
4175 
4176 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4177   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4178 };
4179 
4180 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4181   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4182 };
4183 
4184 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4185   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4186       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4187 
4188   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4189                     bool AllowNull = true)
4190       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4191 
4192   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4193   bool isMDField() const { return WhatIs == IsTypeB; }
4194   int64_t getMDSignedValue() const {
4195     assert(isMDSignedField() && "Wrong field type");
4196     return A.Val;
4197   }
4198   Metadata *getMDFieldValue() const {
4199     assert(isMDField() && "Wrong field type");
4200     return B.Val;
4201   }
4202 };
4203 
4204 struct MDSignedOrUnsignedField
4205     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4206   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4207 
4208   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4209   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4210   int64_t getMDSignedValue() const {
4211     assert(isMDSignedField() && "Wrong field type");
4212     return A.Val;
4213   }
4214   uint64_t getMDUnsignedValue() const {
4215     assert(isMDUnsignedField() && "Wrong field type");
4216     return B.Val;
4217   }
4218 };
4219 
4220 } // end anonymous namespace
4221 
4222 namespace llvm {
4223 
4224 template <>
4225 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4226   if (Lex.getKind() != lltok::APSInt)
4227     return tokError("expected integer");
4228 
4229   Result.assign(Lex.getAPSIntVal());
4230   Lex.Lex();
4231   return false;
4232 }
4233 
4234 template <>
4235 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4236                             MDUnsignedField &Result) {
4237   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4238     return tokError("expected unsigned integer");
4239 
4240   auto &U = Lex.getAPSIntVal();
4241   if (U.ugt(Result.Max))
4242     return tokError("value for '" + Name + "' too large, limit is " +
4243                     Twine(Result.Max));
4244   Result.assign(U.getZExtValue());
4245   assert(Result.Val <= Result.Max && "Expected value in range");
4246   Lex.Lex();
4247   return false;
4248 }
4249 
4250 template <>
4251 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4252   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4253 }
4254 template <>
4255 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4256   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4257 }
4258 
4259 template <>
4260 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4261   if (Lex.getKind() == lltok::APSInt)
4262     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4263 
4264   if (Lex.getKind() != lltok::DwarfTag)
4265     return tokError("expected DWARF tag");
4266 
4267   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4268   if (Tag == dwarf::DW_TAG_invalid)
4269     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4270   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4271 
4272   Result.assign(Tag);
4273   Lex.Lex();
4274   return false;
4275 }
4276 
4277 template <>
4278 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4279                             DwarfMacinfoTypeField &Result) {
4280   if (Lex.getKind() == lltok::APSInt)
4281     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4282 
4283   if (Lex.getKind() != lltok::DwarfMacinfo)
4284     return tokError("expected DWARF macinfo type");
4285 
4286   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4287   if (Macinfo == dwarf::DW_MACINFO_invalid)
4288     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4289                     Lex.getStrVal() + "'");
4290   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4291 
4292   Result.assign(Macinfo);
4293   Lex.Lex();
4294   return false;
4295 }
4296 
4297 template <>
4298 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4299                             DwarfVirtualityField &Result) {
4300   if (Lex.getKind() == lltok::APSInt)
4301     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4302 
4303   if (Lex.getKind() != lltok::DwarfVirtuality)
4304     return tokError("expected DWARF virtuality code");
4305 
4306   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4307   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4308     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4309                     Lex.getStrVal() + "'");
4310   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4311   Result.assign(Virtuality);
4312   Lex.Lex();
4313   return false;
4314 }
4315 
4316 template <>
4317 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4318   if (Lex.getKind() == lltok::APSInt)
4319     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4320 
4321   if (Lex.getKind() != lltok::DwarfLang)
4322     return tokError("expected DWARF language");
4323 
4324   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4325   if (!Lang)
4326     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4327                     "'");
4328   assert(Lang <= Result.Max && "Expected valid DWARF language");
4329   Result.assign(Lang);
4330   Lex.Lex();
4331   return false;
4332 }
4333 
4334 template <>
4335 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4336   if (Lex.getKind() == lltok::APSInt)
4337     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4338 
4339   if (Lex.getKind() != lltok::DwarfCC)
4340     return tokError("expected DWARF calling convention");
4341 
4342   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4343   if (!CC)
4344     return tokError("invalid DWARF calling convention" + Twine(" '") +
4345                     Lex.getStrVal() + "'");
4346   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4347   Result.assign(CC);
4348   Lex.Lex();
4349   return false;
4350 }
4351 
4352 template <>
4353 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4354                             EmissionKindField &Result) {
4355   if (Lex.getKind() == lltok::APSInt)
4356     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4357 
4358   if (Lex.getKind() != lltok::EmissionKind)
4359     return tokError("expected emission kind");
4360 
4361   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4362   if (!Kind)
4363     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4364                     "'");
4365   assert(*Kind <= Result.Max && "Expected valid emission kind");
4366   Result.assign(*Kind);
4367   Lex.Lex();
4368   return false;
4369 }
4370 
4371 template <>
4372 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4373                             NameTableKindField &Result) {
4374   if (Lex.getKind() == lltok::APSInt)
4375     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4376 
4377   if (Lex.getKind() != lltok::NameTableKind)
4378     return tokError("expected nameTable kind");
4379 
4380   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4381   if (!Kind)
4382     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4383                     "'");
4384   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4385   Result.assign((unsigned)*Kind);
4386   Lex.Lex();
4387   return false;
4388 }
4389 
4390 template <>
4391 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4392                             DwarfAttEncodingField &Result) {
4393   if (Lex.getKind() == lltok::APSInt)
4394     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4395 
4396   if (Lex.getKind() != lltok::DwarfAttEncoding)
4397     return tokError("expected DWARF type attribute encoding");
4398 
4399   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4400   if (!Encoding)
4401     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4402                     Lex.getStrVal() + "'");
4403   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4404   Result.assign(Encoding);
4405   Lex.Lex();
4406   return false;
4407 }
4408 
4409 /// DIFlagField
4410 ///  ::= uint32
4411 ///  ::= DIFlagVector
4412 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4413 template <>
4414 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4415 
4416   // parser for a single flag.
4417   auto parseFlag = [&](DINode::DIFlags &Val) {
4418     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4419       uint32_t TempVal = static_cast<uint32_t>(Val);
4420       bool Res = parseUInt32(TempVal);
4421       Val = static_cast<DINode::DIFlags>(TempVal);
4422       return Res;
4423     }
4424 
4425     if (Lex.getKind() != lltok::DIFlag)
4426       return tokError("expected debug info flag");
4427 
4428     Val = DINode::getFlag(Lex.getStrVal());
4429     if (!Val)
4430       return tokError(Twine("invalid debug info flag flag '") +
4431                       Lex.getStrVal() + "'");
4432     Lex.Lex();
4433     return false;
4434   };
4435 
4436   // parse the flags and combine them together.
4437   DINode::DIFlags Combined = DINode::FlagZero;
4438   do {
4439     DINode::DIFlags Val;
4440     if (parseFlag(Val))
4441       return true;
4442     Combined |= Val;
4443   } while (EatIfPresent(lltok::bar));
4444 
4445   Result.assign(Combined);
4446   return false;
4447 }
4448 
4449 /// DISPFlagField
4450 ///  ::= uint32
4451 ///  ::= DISPFlagVector
4452 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4453 template <>
4454 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4455 
4456   // parser for a single flag.
4457   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4458     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4459       uint32_t TempVal = static_cast<uint32_t>(Val);
4460       bool Res = parseUInt32(TempVal);
4461       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4462       return Res;
4463     }
4464 
4465     if (Lex.getKind() != lltok::DISPFlag)
4466       return tokError("expected debug info flag");
4467 
4468     Val = DISubprogram::getFlag(Lex.getStrVal());
4469     if (!Val)
4470       return tokError(Twine("invalid subprogram debug info flag '") +
4471                       Lex.getStrVal() + "'");
4472     Lex.Lex();
4473     return false;
4474   };
4475 
4476   // parse the flags and combine them together.
4477   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4478   do {
4479     DISubprogram::DISPFlags Val;
4480     if (parseFlag(Val))
4481       return true;
4482     Combined |= Val;
4483   } while (EatIfPresent(lltok::bar));
4484 
4485   Result.assign(Combined);
4486   return false;
4487 }
4488 
4489 template <>
4490 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4491   if (Lex.getKind() != lltok::APSInt)
4492     return tokError("expected signed integer");
4493 
4494   auto &S = Lex.getAPSIntVal();
4495   if (S < Result.Min)
4496     return tokError("value for '" + Name + "' too small, limit is " +
4497                     Twine(Result.Min));
4498   if (S > Result.Max)
4499     return tokError("value for '" + Name + "' too large, limit is " +
4500                     Twine(Result.Max));
4501   Result.assign(S.getExtValue());
4502   assert(Result.Val >= Result.Min && "Expected value in range");
4503   assert(Result.Val <= Result.Max && "Expected value in range");
4504   Lex.Lex();
4505   return false;
4506 }
4507 
4508 template <>
4509 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4510   switch (Lex.getKind()) {
4511   default:
4512     return tokError("expected 'true' or 'false'");
4513   case lltok::kw_true:
4514     Result.assign(true);
4515     break;
4516   case lltok::kw_false:
4517     Result.assign(false);
4518     break;
4519   }
4520   Lex.Lex();
4521   return false;
4522 }
4523 
4524 template <>
4525 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4526   if (Lex.getKind() == lltok::kw_null) {
4527     if (!Result.AllowNull)
4528       return tokError("'" + Name + "' cannot be null");
4529     Lex.Lex();
4530     Result.assign(nullptr);
4531     return false;
4532   }
4533 
4534   Metadata *MD;
4535   if (parseMetadata(MD, nullptr))
4536     return true;
4537 
4538   Result.assign(MD);
4539   return false;
4540 }
4541 
4542 template <>
4543 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4544                             MDSignedOrMDField &Result) {
4545   // Try to parse a signed int.
4546   if (Lex.getKind() == lltok::APSInt) {
4547     MDSignedField Res = Result.A;
4548     if (!parseMDField(Loc, Name, Res)) {
4549       Result.assign(Res);
4550       return false;
4551     }
4552     return true;
4553   }
4554 
4555   // Otherwise, try to parse as an MDField.
4556   MDField Res = Result.B;
4557   if (!parseMDField(Loc, Name, Res)) {
4558     Result.assign(Res);
4559     return false;
4560   }
4561 
4562   return true;
4563 }
4564 
4565 template <>
4566 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4567   LocTy ValueLoc = Lex.getLoc();
4568   std::string S;
4569   if (parseStringConstant(S))
4570     return true;
4571 
4572   if (!Result.AllowEmpty && S.empty())
4573     return error(ValueLoc, "'" + Name + "' cannot be empty");
4574 
4575   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4576   return false;
4577 }
4578 
4579 template <>
4580 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4581   SmallVector<Metadata *, 4> MDs;
4582   if (parseMDNodeVector(MDs))
4583     return true;
4584 
4585   Result.assign(std::move(MDs));
4586   return false;
4587 }
4588 
4589 template <>
4590 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4591                             ChecksumKindField &Result) {
4592   Optional<DIFile::ChecksumKind> CSKind =
4593       DIFile::getChecksumKind(Lex.getStrVal());
4594 
4595   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4596     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4597                     "'");
4598 
4599   Result.assign(*CSKind);
4600   Lex.Lex();
4601   return false;
4602 }
4603 
4604 } // end namespace llvm
4605 
4606 template <class ParserTy>
4607 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4608   do {
4609     if (Lex.getKind() != lltok::LabelStr)
4610       return tokError("expected field label here");
4611 
4612     if (ParseField())
4613       return true;
4614   } while (EatIfPresent(lltok::comma));
4615 
4616   return false;
4617 }
4618 
4619 template <class ParserTy>
4620 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4621   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4622   Lex.Lex();
4623 
4624   if (parseToken(lltok::lparen, "expected '(' here"))
4625     return true;
4626   if (Lex.getKind() != lltok::rparen)
4627     if (parseMDFieldsImplBody(ParseField))
4628       return true;
4629 
4630   ClosingLoc = Lex.getLoc();
4631   return parseToken(lltok::rparen, "expected ')' here");
4632 }
4633 
4634 template <class FieldTy>
4635 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4636   if (Result.Seen)
4637     return tokError("field '" + Name + "' cannot be specified more than once");
4638 
4639   LocTy Loc = Lex.getLoc();
4640   Lex.Lex();
4641   return parseMDField(Loc, Name, Result);
4642 }
4643 
4644 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4645   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4646 
4647 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4648   if (Lex.getStrVal() == #CLASS)                                               \
4649     return parse##CLASS(N, IsDistinct);
4650 #include "llvm/IR/Metadata.def"
4651 
4652   return tokError("expected metadata type");
4653 }
4654 
4655 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4656 #define NOP_FIELD(NAME, TYPE, INIT)
4657 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4658   if (!NAME.Seen)                                                              \
4659     return error(ClosingLoc, "missing required field '" #NAME "'");
4660 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4661   if (Lex.getStrVal() == #NAME)                                                \
4662     return parseMDField(#NAME, NAME);
4663 #define PARSE_MD_FIELDS()                                                      \
4664   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4665   do {                                                                         \
4666     LocTy ClosingLoc;                                                          \
4667     if (parseMDFieldsImpl(                                                     \
4668             [&]() -> bool {                                                    \
4669               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4670               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4671                               "'");                                            \
4672             },                                                                 \
4673             ClosingLoc))                                                       \
4674       return true;                                                             \
4675     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4676   } while (false)
4677 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4678   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4679 
4680 /// parseDILocationFields:
4681 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4682 ///   isImplicitCode: true)
4683 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4685   OPTIONAL(line, LineField, );                                                 \
4686   OPTIONAL(column, ColumnField, );                                             \
4687   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4688   OPTIONAL(inlinedAt, MDField, );                                              \
4689   OPTIONAL(isImplicitCode, MDBoolField, (false));
4690   PARSE_MD_FIELDS();
4691 #undef VISIT_MD_FIELDS
4692 
4693   Result =
4694       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4695                                    inlinedAt.Val, isImplicitCode.Val));
4696   return false;
4697 }
4698 
4699 /// parseGenericDINode:
4700 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4701 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4702 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4703   REQUIRED(tag, DwarfTagField, );                                              \
4704   OPTIONAL(header, MDStringField, );                                           \
4705   OPTIONAL(operands, MDFieldList, );
4706   PARSE_MD_FIELDS();
4707 #undef VISIT_MD_FIELDS
4708 
4709   Result = GET_OR_DISTINCT(GenericDINode,
4710                            (Context, tag.Val, header.Val, operands.Val));
4711   return false;
4712 }
4713 
4714 /// parseDISubrange:
4715 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4716 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4717 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4718 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4720   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4721   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4722   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4723   OPTIONAL(stride, MDSignedOrMDField, );
4724   PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727   Metadata *Count = nullptr;
4728   Metadata *LowerBound = nullptr;
4729   Metadata *UpperBound = nullptr;
4730   Metadata *Stride = nullptr;
4731 
4732   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4733     if (Bound.isMDSignedField())
4734       return ConstantAsMetadata::get(ConstantInt::getSigned(
4735           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4736     if (Bound.isMDField())
4737       return Bound.getMDFieldValue();
4738     return nullptr;
4739   };
4740 
4741   Count = convToMetadata(count);
4742   LowerBound = convToMetadata(lowerBound);
4743   UpperBound = convToMetadata(upperBound);
4744   Stride = convToMetadata(stride);
4745 
4746   Result = GET_OR_DISTINCT(DISubrange,
4747                            (Context, Count, LowerBound, UpperBound, Stride));
4748 
4749   return false;
4750 }
4751 
4752 /// parseDIGenericSubrange:
4753 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4754 ///   !node3)
4755 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4756 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4757   OPTIONAL(count, MDSignedOrMDField, );                                        \
4758   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4759   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4760   OPTIONAL(stride, MDSignedOrMDField, );
4761   PARSE_MD_FIELDS();
4762 #undef VISIT_MD_FIELDS
4763 
4764   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4765     if (Bound.isMDSignedField())
4766       return DIExpression::get(
4767           Context, {dwarf::DW_OP_consts,
4768                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4769     if (Bound.isMDField())
4770       return Bound.getMDFieldValue();
4771     return nullptr;
4772   };
4773 
4774   Metadata *Count = ConvToMetadata(count);
4775   Metadata *LowerBound = ConvToMetadata(lowerBound);
4776   Metadata *UpperBound = ConvToMetadata(upperBound);
4777   Metadata *Stride = ConvToMetadata(stride);
4778 
4779   Result = GET_OR_DISTINCT(DIGenericSubrange,
4780                            (Context, Count, LowerBound, UpperBound, Stride));
4781 
4782   return false;
4783 }
4784 
4785 /// parseDIEnumerator:
4786 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4787 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4788 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4789   REQUIRED(name, MDStringField, );                                             \
4790   REQUIRED(value, MDAPSIntField, );                                            \
4791   OPTIONAL(isUnsigned, MDBoolField, (false));
4792   PARSE_MD_FIELDS();
4793 #undef VISIT_MD_FIELDS
4794 
4795   if (isUnsigned.Val && value.Val.isNegative())
4796     return tokError("unsigned enumerator with negative value");
4797 
4798   APSInt Value(value.Val);
4799   // Add a leading zero so that unsigned values with the msb set are not
4800   // mistaken for negative values when used for signed enumerators.
4801   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4802     Value = Value.zext(Value.getBitWidth() + 1);
4803 
4804   Result =
4805       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4806 
4807   return false;
4808 }
4809 
4810 /// parseDIBasicType:
4811 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4812 ///                    encoding: DW_ATE_encoding, flags: 0)
4813 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4815   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4816   OPTIONAL(name, MDStringField, );                                             \
4817   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4818   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4819   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4820   OPTIONAL(flags, DIFlagField, );
4821   PARSE_MD_FIELDS();
4822 #undef VISIT_MD_FIELDS
4823 
4824   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4825                                          align.Val, encoding.Val, flags.Val));
4826   return false;
4827 }
4828 
4829 /// parseDIStringType:
4830 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4831 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4833   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4834   OPTIONAL(name, MDStringField, );                                             \
4835   OPTIONAL(stringLength, MDField, );                                           \
4836   OPTIONAL(stringLengthExpression, MDField, );                                 \
4837   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4838   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4839   OPTIONAL(encoding, DwarfAttEncodingField, );
4840   PARSE_MD_FIELDS();
4841 #undef VISIT_MD_FIELDS
4842 
4843   Result = GET_OR_DISTINCT(DIStringType,
4844                            (Context, tag.Val, name.Val, stringLength.Val,
4845                             stringLengthExpression.Val, size.Val, align.Val,
4846                             encoding.Val));
4847   return false;
4848 }
4849 
4850 /// parseDIDerivedType:
4851 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4852 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4853 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4854 ///                      dwarfAddressSpace: 3)
4855 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4856 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4857   REQUIRED(tag, DwarfTagField, );                                              \
4858   OPTIONAL(name, MDStringField, );                                             \
4859   OPTIONAL(file, MDField, );                                                   \
4860   OPTIONAL(line, LineField, );                                                 \
4861   OPTIONAL(scope, MDField, );                                                  \
4862   REQUIRED(baseType, MDField, );                                               \
4863   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4864   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4865   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4866   OPTIONAL(flags, DIFlagField, );                                              \
4867   OPTIONAL(extraData, MDField, );                                              \
4868   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4869   PARSE_MD_FIELDS();
4870 #undef VISIT_MD_FIELDS
4871 
4872   Optional<unsigned> DWARFAddressSpace;
4873   if (dwarfAddressSpace.Val != UINT32_MAX)
4874     DWARFAddressSpace = dwarfAddressSpace.Val;
4875 
4876   Result = GET_OR_DISTINCT(DIDerivedType,
4877                            (Context, tag.Val, name.Val, file.Val, line.Val,
4878                             scope.Val, baseType.Val, size.Val, align.Val,
4879                             offset.Val, DWARFAddressSpace, flags.Val,
4880                             extraData.Val));
4881   return false;
4882 }
4883 
4884 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4886   REQUIRED(tag, DwarfTagField, );                                              \
4887   OPTIONAL(name, MDStringField, );                                             \
4888   OPTIONAL(file, MDField, );                                                   \
4889   OPTIONAL(line, LineField, );                                                 \
4890   OPTIONAL(scope, MDField, );                                                  \
4891   OPTIONAL(baseType, MDField, );                                               \
4892   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4893   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4894   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4895   OPTIONAL(flags, DIFlagField, );                                              \
4896   OPTIONAL(elements, MDField, );                                               \
4897   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4898   OPTIONAL(vtableHolder, MDField, );                                           \
4899   OPTIONAL(templateParams, MDField, );                                         \
4900   OPTIONAL(identifier, MDStringField, );                                       \
4901   OPTIONAL(discriminator, MDField, );                                          \
4902   OPTIONAL(dataLocation, MDField, );                                           \
4903   OPTIONAL(associated, MDField, );                                             \
4904   OPTIONAL(allocated, MDField, );                                              \
4905   OPTIONAL(rank, MDSignedOrMDField, );
4906   PARSE_MD_FIELDS();
4907 #undef VISIT_MD_FIELDS
4908 
4909   Metadata *Rank = nullptr;
4910   if (rank.isMDSignedField())
4911     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4912         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4913   else if (rank.isMDField())
4914     Rank = rank.getMDFieldValue();
4915 
4916   // If this has an identifier try to build an ODR type.
4917   if (identifier.Val)
4918     if (auto *CT = DICompositeType::buildODRType(
4919             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4920             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4921             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4922             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4923             Rank)) {
4924       Result = CT;
4925       return false;
4926     }
4927 
4928   // Create a new node, and save it in the context if it belongs in the type
4929   // map.
4930   Result = GET_OR_DISTINCT(
4931       DICompositeType,
4932       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4933        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4934        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4935        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4936        Rank));
4937   return false;
4938 }
4939 
4940 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4941 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4942   OPTIONAL(flags, DIFlagField, );                                              \
4943   OPTIONAL(cc, DwarfCCField, );                                                \
4944   REQUIRED(types, MDField, );
4945   PARSE_MD_FIELDS();
4946 #undef VISIT_MD_FIELDS
4947 
4948   Result = GET_OR_DISTINCT(DISubroutineType,
4949                            (Context, flags.Val, cc.Val, types.Val));
4950   return false;
4951 }
4952 
4953 /// parseDIFileType:
4954 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4955 ///                   checksumkind: CSK_MD5,
4956 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4957 ///                   source: "source file contents")
4958 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4959   // The default constructed value for checksumkind is required, but will never
4960   // be used, as the parser checks if the field was actually Seen before using
4961   // the Val.
4962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4963   REQUIRED(filename, MDStringField, );                                         \
4964   REQUIRED(directory, MDStringField, );                                        \
4965   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4966   OPTIONAL(checksum, MDStringField, );                                         \
4967   OPTIONAL(source, MDStringField, );
4968   PARSE_MD_FIELDS();
4969 #undef VISIT_MD_FIELDS
4970 
4971   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4972   if (checksumkind.Seen && checksum.Seen)
4973     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4974   else if (checksumkind.Seen || checksum.Seen)
4975     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4976 
4977   Optional<MDString *> OptSource;
4978   if (source.Seen)
4979     OptSource = source.Val;
4980   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4981                                     OptChecksum, OptSource));
4982   return false;
4983 }
4984 
4985 /// parseDICompileUnit:
4986 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4987 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4988 ///                      splitDebugFilename: "abc.debug",
4989 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4990 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4991 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4992 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4993   if (!IsDistinct)
4994     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4995 
4996 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4997   REQUIRED(language, DwarfLangField, );                                        \
4998   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4999   OPTIONAL(producer, MDStringField, );                                         \
5000   OPTIONAL(isOptimized, MDBoolField, );                                        \
5001   OPTIONAL(flags, MDStringField, );                                            \
5002   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5003   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5004   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5005   OPTIONAL(enums, MDField, );                                                  \
5006   OPTIONAL(retainedTypes, MDField, );                                          \
5007   OPTIONAL(globals, MDField, );                                                \
5008   OPTIONAL(imports, MDField, );                                                \
5009   OPTIONAL(macros, MDField, );                                                 \
5010   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5011   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5012   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5013   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5014   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5015   OPTIONAL(sysroot, MDStringField, );                                          \
5016   OPTIONAL(sdk, MDStringField, );
5017   PARSE_MD_FIELDS();
5018 #undef VISIT_MD_FIELDS
5019 
5020   Result = DICompileUnit::getDistinct(
5021       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5022       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5023       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5024       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5025       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5026   return false;
5027 }
5028 
5029 /// parseDISubprogram:
5030 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5031 ///                     file: !1, line: 7, type: !2, isLocal: false,
5032 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5033 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5034 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5035 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5036 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5037 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5038   auto Loc = Lex.getLoc();
5039 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5040   OPTIONAL(scope, MDField, );                                                  \
5041   OPTIONAL(name, MDStringField, );                                             \
5042   OPTIONAL(linkageName, MDStringField, );                                      \
5043   OPTIONAL(file, MDField, );                                                   \
5044   OPTIONAL(line, LineField, );                                                 \
5045   OPTIONAL(type, MDField, );                                                   \
5046   OPTIONAL(isLocal, MDBoolField, );                                            \
5047   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5048   OPTIONAL(scopeLine, LineField, );                                            \
5049   OPTIONAL(containingType, MDField, );                                         \
5050   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5051   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5052   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5053   OPTIONAL(flags, DIFlagField, );                                              \
5054   OPTIONAL(spFlags, DISPFlagField, );                                          \
5055   OPTIONAL(isOptimized, MDBoolField, );                                        \
5056   OPTIONAL(unit, MDField, );                                                   \
5057   OPTIONAL(templateParams, MDField, );                                         \
5058   OPTIONAL(declaration, MDField, );                                            \
5059   OPTIONAL(retainedNodes, MDField, );                                          \
5060   OPTIONAL(thrownTypes, MDField, );
5061   PARSE_MD_FIELDS();
5062 #undef VISIT_MD_FIELDS
5063 
5064   // An explicit spFlags field takes precedence over individual fields in
5065   // older IR versions.
5066   DISubprogram::DISPFlags SPFlags =
5067       spFlags.Seen ? spFlags.Val
5068                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5069                                              isOptimized.Val, virtuality.Val);
5070   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5071     return Lex.Error(
5072         Loc,
5073         "missing 'distinct', required for !DISubprogram that is a Definition");
5074   Result = GET_OR_DISTINCT(
5075       DISubprogram,
5076       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5077        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5078        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5079        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5080   return false;
5081 }
5082 
5083 /// parseDILexicalBlock:
5084 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5085 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5086 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5087   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5088   OPTIONAL(file, MDField, );                                                   \
5089   OPTIONAL(line, LineField, );                                                 \
5090   OPTIONAL(column, ColumnField, );
5091   PARSE_MD_FIELDS();
5092 #undef VISIT_MD_FIELDS
5093 
5094   Result = GET_OR_DISTINCT(
5095       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5096   return false;
5097 }
5098 
5099 /// parseDILexicalBlockFile:
5100 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5101 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5103   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5104   OPTIONAL(file, MDField, );                                                   \
5105   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5106   PARSE_MD_FIELDS();
5107 #undef VISIT_MD_FIELDS
5108 
5109   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5110                            (Context, scope.Val, file.Val, discriminator.Val));
5111   return false;
5112 }
5113 
5114 /// parseDICommonBlock:
5115 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5116 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5117 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5118   REQUIRED(scope, MDField, );                                                  \
5119   OPTIONAL(declaration, MDField, );                                            \
5120   OPTIONAL(name, MDStringField, );                                             \
5121   OPTIONAL(file, MDField, );                                                   \
5122   OPTIONAL(line, LineField, );
5123   PARSE_MD_FIELDS();
5124 #undef VISIT_MD_FIELDS
5125 
5126   Result = GET_OR_DISTINCT(DICommonBlock,
5127                            (Context, scope.Val, declaration.Val, name.Val,
5128                             file.Val, line.Val));
5129   return false;
5130 }
5131 
5132 /// parseDINamespace:
5133 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5134 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5135 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5136   REQUIRED(scope, MDField, );                                                  \
5137   OPTIONAL(name, MDStringField, );                                             \
5138   OPTIONAL(exportSymbols, MDBoolField, );
5139   PARSE_MD_FIELDS();
5140 #undef VISIT_MD_FIELDS
5141 
5142   Result = GET_OR_DISTINCT(DINamespace,
5143                            (Context, scope.Val, name.Val, exportSymbols.Val));
5144   return false;
5145 }
5146 
5147 /// parseDIMacro:
5148 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5149 ///   "SomeValue")
5150 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5151 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5152   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5153   OPTIONAL(line, LineField, );                                                 \
5154   REQUIRED(name, MDStringField, );                                             \
5155   OPTIONAL(value, MDStringField, );
5156   PARSE_MD_FIELDS();
5157 #undef VISIT_MD_FIELDS
5158 
5159   Result = GET_OR_DISTINCT(DIMacro,
5160                            (Context, type.Val, line.Val, name.Val, value.Val));
5161   return false;
5162 }
5163 
5164 /// parseDIMacroFile:
5165 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5166 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5167 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5168   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5169   OPTIONAL(line, LineField, );                                                 \
5170   REQUIRED(file, MDField, );                                                   \
5171   OPTIONAL(nodes, MDField, );
5172   PARSE_MD_FIELDS();
5173 #undef VISIT_MD_FIELDS
5174 
5175   Result = GET_OR_DISTINCT(DIMacroFile,
5176                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5177   return false;
5178 }
5179 
5180 /// parseDIModule:
5181 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5182 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5183 ///   file: !1, line: 4, isDecl: false)
5184 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5185 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5186   REQUIRED(scope, MDField, );                                                  \
5187   REQUIRED(name, MDStringField, );                                             \
5188   OPTIONAL(configMacros, MDStringField, );                                     \
5189   OPTIONAL(includePath, MDStringField, );                                      \
5190   OPTIONAL(apinotes, MDStringField, );                                         \
5191   OPTIONAL(file, MDField, );                                                   \
5192   OPTIONAL(line, LineField, );                                                 \
5193   OPTIONAL(isDecl, MDBoolField, );
5194   PARSE_MD_FIELDS();
5195 #undef VISIT_MD_FIELDS
5196 
5197   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5198                                       configMacros.Val, includePath.Val,
5199                                       apinotes.Val, line.Val, isDecl.Val));
5200   return false;
5201 }
5202 
5203 /// parseDITemplateTypeParameter:
5204 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5205 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5206 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5207   OPTIONAL(name, MDStringField, );                                             \
5208   REQUIRED(type, MDField, );                                                   \
5209   OPTIONAL(defaulted, MDBoolField, );
5210   PARSE_MD_FIELDS();
5211 #undef VISIT_MD_FIELDS
5212 
5213   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5214                            (Context, name.Val, type.Val, defaulted.Val));
5215   return false;
5216 }
5217 
5218 /// parseDITemplateValueParameter:
5219 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5220 ///                                 name: "V", type: !1, defaulted: false,
5221 ///                                 value: i32 7)
5222 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5223 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5224   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5225   OPTIONAL(name, MDStringField, );                                             \
5226   OPTIONAL(type, MDField, );                                                   \
5227   OPTIONAL(defaulted, MDBoolField, );                                          \
5228   REQUIRED(value, MDField, );
5229 
5230   PARSE_MD_FIELDS();
5231 #undef VISIT_MD_FIELDS
5232 
5233   Result = GET_OR_DISTINCT(
5234       DITemplateValueParameter,
5235       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5236   return false;
5237 }
5238 
5239 /// parseDIGlobalVariable:
5240 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5241 ///                         file: !1, line: 7, type: !2, isLocal: false,
5242 ///                         isDefinition: true, templateParams: !3,
5243 ///                         declaration: !4, align: 8)
5244 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5245 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5246   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5247   OPTIONAL(scope, MDField, );                                                  \
5248   OPTIONAL(linkageName, MDStringField, );                                      \
5249   OPTIONAL(file, MDField, );                                                   \
5250   OPTIONAL(line, LineField, );                                                 \
5251   OPTIONAL(type, MDField, );                                                   \
5252   OPTIONAL(isLocal, MDBoolField, );                                            \
5253   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5254   OPTIONAL(templateParams, MDField, );                                         \
5255   OPTIONAL(declaration, MDField, );                                            \
5256   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5257   PARSE_MD_FIELDS();
5258 #undef VISIT_MD_FIELDS
5259 
5260   Result =
5261       GET_OR_DISTINCT(DIGlobalVariable,
5262                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5263                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5264                        declaration.Val, templateParams.Val, align.Val));
5265   return false;
5266 }
5267 
5268 /// parseDILocalVariable:
5269 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5270 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5271 ///                        align: 8)
5272 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5273 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5274 ///                        align: 8)
5275 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5276 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5277   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5278   OPTIONAL(name, MDStringField, );                                             \
5279   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5280   OPTIONAL(file, MDField, );                                                   \
5281   OPTIONAL(line, LineField, );                                                 \
5282   OPTIONAL(type, MDField, );                                                   \
5283   OPTIONAL(flags, DIFlagField, );                                              \
5284   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5285   PARSE_MD_FIELDS();
5286 #undef VISIT_MD_FIELDS
5287 
5288   Result = GET_OR_DISTINCT(DILocalVariable,
5289                            (Context, scope.Val, name.Val, file.Val, line.Val,
5290                             type.Val, arg.Val, flags.Val, align.Val));
5291   return false;
5292 }
5293 
5294 /// parseDILabel:
5295 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5296 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5297 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5298   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5299   REQUIRED(name, MDStringField, );                                             \
5300   REQUIRED(file, MDField, );                                                   \
5301   REQUIRED(line, LineField, );
5302   PARSE_MD_FIELDS();
5303 #undef VISIT_MD_FIELDS
5304 
5305   Result = GET_OR_DISTINCT(DILabel,
5306                            (Context, scope.Val, name.Val, file.Val, line.Val));
5307   return false;
5308 }
5309 
5310 /// parseDIExpression:
5311 ///   ::= !DIExpression(0, 7, -1)
5312 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5313   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5314   Lex.Lex();
5315 
5316   if (parseToken(lltok::lparen, "expected '(' here"))
5317     return true;
5318 
5319   SmallVector<uint64_t, 8> Elements;
5320   if (Lex.getKind() != lltok::rparen)
5321     do {
5322       if (Lex.getKind() == lltok::DwarfOp) {
5323         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5324           Lex.Lex();
5325           Elements.push_back(Op);
5326           continue;
5327         }
5328         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5329       }
5330 
5331       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5332         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5333           Lex.Lex();
5334           Elements.push_back(Op);
5335           continue;
5336         }
5337         return tokError(Twine("invalid DWARF attribute encoding '") +
5338                         Lex.getStrVal() + "'");
5339       }
5340 
5341       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5342         return tokError("expected unsigned integer");
5343 
5344       auto &U = Lex.getAPSIntVal();
5345       if (U.ugt(UINT64_MAX))
5346         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5347       Elements.push_back(U.getZExtValue());
5348       Lex.Lex();
5349     } while (EatIfPresent(lltok::comma));
5350 
5351   if (parseToken(lltok::rparen, "expected ')' here"))
5352     return true;
5353 
5354   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5355   return false;
5356 }
5357 
5358 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5359   return parseDIArgList(Result, IsDistinct, nullptr);
5360 }
5361 /// ParseDIArgList:
5362 ///   ::= !DIArgList(i32 7, i64 %0)
5363 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5364                               PerFunctionState *PFS) {
5365   assert(PFS && "Expected valid function state");
5366   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5367   Lex.Lex();
5368 
5369   if (parseToken(lltok::lparen, "expected '(' here"))
5370     return true;
5371 
5372   SmallVector<ValueAsMetadata *, 4> Args;
5373   if (Lex.getKind() != lltok::rparen)
5374     do {
5375       Metadata *MD;
5376       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5377         return true;
5378       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5379     } while (EatIfPresent(lltok::comma));
5380 
5381   if (parseToken(lltok::rparen, "expected ')' here"))
5382     return true;
5383 
5384   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5385   return false;
5386 }
5387 
5388 /// parseDIGlobalVariableExpression:
5389 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5390 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5391                                                bool IsDistinct) {
5392 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5393   REQUIRED(var, MDField, );                                                    \
5394   REQUIRED(expr, MDField, );
5395   PARSE_MD_FIELDS();
5396 #undef VISIT_MD_FIELDS
5397 
5398   Result =
5399       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5400   return false;
5401 }
5402 
5403 /// parseDIObjCProperty:
5404 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5405 ///                       getter: "getFoo", attributes: 7, type: !2)
5406 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5408   OPTIONAL(name, MDStringField, );                                             \
5409   OPTIONAL(file, MDField, );                                                   \
5410   OPTIONAL(line, LineField, );                                                 \
5411   OPTIONAL(setter, MDStringField, );                                           \
5412   OPTIONAL(getter, MDStringField, );                                           \
5413   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5414   OPTIONAL(type, MDField, );
5415   PARSE_MD_FIELDS();
5416 #undef VISIT_MD_FIELDS
5417 
5418   Result = GET_OR_DISTINCT(DIObjCProperty,
5419                            (Context, name.Val, file.Val, line.Val, setter.Val,
5420                             getter.Val, attributes.Val, type.Val));
5421   return false;
5422 }
5423 
5424 /// parseDIImportedEntity:
5425 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5426 ///                         line: 7, name: "foo")
5427 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5428 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5429   REQUIRED(tag, DwarfTagField, );                                              \
5430   REQUIRED(scope, MDField, );                                                  \
5431   OPTIONAL(entity, MDField, );                                                 \
5432   OPTIONAL(file, MDField, );                                                   \
5433   OPTIONAL(line, LineField, );                                                 \
5434   OPTIONAL(name, MDStringField, );
5435   PARSE_MD_FIELDS();
5436 #undef VISIT_MD_FIELDS
5437 
5438   Result = GET_OR_DISTINCT(
5439       DIImportedEntity,
5440       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5441   return false;
5442 }
5443 
5444 #undef PARSE_MD_FIELD
5445 #undef NOP_FIELD
5446 #undef REQUIRE_FIELD
5447 #undef DECLARE_FIELD
5448 
5449 /// parseMetadataAsValue
5450 ///  ::= metadata i32 %local
5451 ///  ::= metadata i32 @global
5452 ///  ::= metadata i32 7
5453 ///  ::= metadata !0
5454 ///  ::= metadata !{...}
5455 ///  ::= metadata !"string"
5456 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5457   // Note: the type 'metadata' has already been parsed.
5458   Metadata *MD;
5459   if (parseMetadata(MD, &PFS))
5460     return true;
5461 
5462   V = MetadataAsValue::get(Context, MD);
5463   return false;
5464 }
5465 
5466 /// parseValueAsMetadata
5467 ///  ::= i32 %local
5468 ///  ::= i32 @global
5469 ///  ::= i32 7
5470 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5471                                     PerFunctionState *PFS) {
5472   Type *Ty;
5473   LocTy Loc;
5474   if (parseType(Ty, TypeMsg, Loc))
5475     return true;
5476   if (Ty->isMetadataTy())
5477     return error(Loc, "invalid metadata-value-metadata roundtrip");
5478 
5479   Value *V;
5480   if (parseValue(Ty, V, PFS))
5481     return true;
5482 
5483   MD = ValueAsMetadata::get(V);
5484   return false;
5485 }
5486 
5487 /// parseMetadata
5488 ///  ::= i32 %local
5489 ///  ::= i32 @global
5490 ///  ::= i32 7
5491 ///  ::= !42
5492 ///  ::= !{...}
5493 ///  ::= !"string"
5494 ///  ::= !DILocation(...)
5495 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5496   if (Lex.getKind() == lltok::MetadataVar) {
5497     MDNode *N;
5498     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5499     // so parsing this requires a Function State.
5500     if (Lex.getStrVal() == "DIArgList") {
5501       if (parseDIArgList(N, false, PFS))
5502         return true;
5503     } else if (parseSpecializedMDNode(N)) {
5504       return true;
5505     }
5506     MD = N;
5507     return false;
5508   }
5509 
5510   // ValueAsMetadata:
5511   // <type> <value>
5512   if (Lex.getKind() != lltok::exclaim)
5513     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5514 
5515   // '!'.
5516   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5517   Lex.Lex();
5518 
5519   // MDString:
5520   //   ::= '!' STRINGCONSTANT
5521   if (Lex.getKind() == lltok::StringConstant) {
5522     MDString *S;
5523     if (parseMDString(S))
5524       return true;
5525     MD = S;
5526     return false;
5527   }
5528 
5529   // MDNode:
5530   // !{ ... }
5531   // !7
5532   MDNode *N;
5533   if (parseMDNodeTail(N))
5534     return true;
5535   MD = N;
5536   return false;
5537 }
5538 
5539 //===----------------------------------------------------------------------===//
5540 // Function Parsing.
5541 //===----------------------------------------------------------------------===//
5542 
5543 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5544                                    PerFunctionState *PFS, bool IsCall) {
5545   if (Ty->isFunctionTy())
5546     return error(ID.Loc, "functions are not values, refer to them as pointers");
5547 
5548   switch (ID.Kind) {
5549   case ValID::t_LocalID:
5550     if (!PFS)
5551       return error(ID.Loc, "invalid use of function-local name");
5552     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5553     return V == nullptr;
5554   case ValID::t_LocalName:
5555     if (!PFS)
5556       return error(ID.Loc, "invalid use of function-local name");
5557     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5558     return V == nullptr;
5559   case ValID::t_InlineAsm: {
5560     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5561       return error(ID.Loc, "invalid type for inline asm constraint string");
5562     V = InlineAsm::get(
5563         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5564         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5565     return false;
5566   }
5567   case ValID::t_GlobalName:
5568     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5569     return V == nullptr;
5570   case ValID::t_GlobalID:
5571     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5572     return V == nullptr;
5573   case ValID::t_APSInt:
5574     if (!Ty->isIntegerTy())
5575       return error(ID.Loc, "integer constant must have integer type");
5576     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5577     V = ConstantInt::get(Context, ID.APSIntVal);
5578     return false;
5579   case ValID::t_APFloat:
5580     if (!Ty->isFloatingPointTy() ||
5581         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5582       return error(ID.Loc, "floating point constant invalid for type");
5583 
5584     // The lexer has no type info, so builds all half, bfloat, float, and double
5585     // FP constants as double.  Fix this here.  Long double does not need this.
5586     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5587       // Check for signaling before potentially converting and losing that info.
5588       bool IsSNAN = ID.APFloatVal.isSignaling();
5589       bool Ignored;
5590       if (Ty->isHalfTy())
5591         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5592                               &Ignored);
5593       else if (Ty->isBFloatTy())
5594         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5595                               &Ignored);
5596       else if (Ty->isFloatTy())
5597         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5598                               &Ignored);
5599       if (IsSNAN) {
5600         // The convert call above may quiet an SNaN, so manufacture another
5601         // SNaN. The bitcast works because the payload (significand) parameter
5602         // is truncated to fit.
5603         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5604         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5605                                          ID.APFloatVal.isNegative(), &Payload);
5606       }
5607     }
5608     V = ConstantFP::get(Context, ID.APFloatVal);
5609 
5610     if (V->getType() != Ty)
5611       return error(ID.Loc, "floating point constant does not have type '" +
5612                                getTypeString(Ty) + "'");
5613 
5614     return false;
5615   case ValID::t_Null:
5616     if (!Ty->isPointerTy())
5617       return error(ID.Loc, "null must be a pointer type");
5618     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5619     return false;
5620   case ValID::t_Undef:
5621     // FIXME: LabelTy should not be a first-class type.
5622     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5623       return error(ID.Loc, "invalid type for undef constant");
5624     V = UndefValue::get(Ty);
5625     return false;
5626   case ValID::t_EmptyArray:
5627     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5628       return error(ID.Loc, "invalid empty array initializer");
5629     V = UndefValue::get(Ty);
5630     return false;
5631   case ValID::t_Zero:
5632     // FIXME: LabelTy should not be a first-class type.
5633     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5634       return error(ID.Loc, "invalid type for null constant");
5635     V = Constant::getNullValue(Ty);
5636     return false;
5637   case ValID::t_None:
5638     if (!Ty->isTokenTy())
5639       return error(ID.Loc, "invalid type for none constant");
5640     V = Constant::getNullValue(Ty);
5641     return false;
5642   case ValID::t_Poison:
5643     // FIXME: LabelTy should not be a first-class type.
5644     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5645       return error(ID.Loc, "invalid type for poison constant");
5646     V = PoisonValue::get(Ty);
5647     return false;
5648   case ValID::t_Constant:
5649     if (ID.ConstantVal->getType() != Ty)
5650       return error(ID.Loc, "constant expression type mismatch");
5651     V = ID.ConstantVal;
5652     return false;
5653   case ValID::t_ConstantStruct:
5654   case ValID::t_PackedConstantStruct:
5655     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5656       if (ST->getNumElements() != ID.UIntVal)
5657         return error(ID.Loc,
5658                      "initializer with struct type has wrong # elements");
5659       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5660         return error(ID.Loc, "packed'ness of initializer and type don't match");
5661 
5662       // Verify that the elements are compatible with the structtype.
5663       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5664         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5665           return error(
5666               ID.Loc,
5667               "element " + Twine(i) +
5668                   " of struct initializer doesn't match struct element type");
5669 
5670       V = ConstantStruct::get(
5671           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5672     } else
5673       return error(ID.Loc, "constant expression type mismatch");
5674     return false;
5675   }
5676   llvm_unreachable("Invalid ValID");
5677 }
5678 
5679 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5680   C = nullptr;
5681   ValID ID;
5682   auto Loc = Lex.getLoc();
5683   if (parseValID(ID, /*PFS=*/nullptr))
5684     return true;
5685   switch (ID.Kind) {
5686   case ValID::t_APSInt:
5687   case ValID::t_APFloat:
5688   case ValID::t_Undef:
5689   case ValID::t_Constant:
5690   case ValID::t_ConstantStruct:
5691   case ValID::t_PackedConstantStruct: {
5692     Value *V;
5693     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5694       return true;
5695     assert(isa<Constant>(V) && "Expected a constant value");
5696     C = cast<Constant>(V);
5697     return false;
5698   }
5699   case ValID::t_Null:
5700     C = Constant::getNullValue(Ty);
5701     return false;
5702   default:
5703     return error(Loc, "expected a constant value");
5704   }
5705 }
5706 
5707 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5708   V = nullptr;
5709   ValID ID;
5710   return parseValID(ID, PFS) ||
5711          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5712 }
5713 
5714 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5715   Type *Ty = nullptr;
5716   return parseType(Ty) || parseValue(Ty, V, PFS);
5717 }
5718 
5719 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5720                                       PerFunctionState &PFS) {
5721   Value *V;
5722   Loc = Lex.getLoc();
5723   if (parseTypeAndValue(V, PFS))
5724     return true;
5725   if (!isa<BasicBlock>(V))
5726     return error(Loc, "expected a basic block");
5727   BB = cast<BasicBlock>(V);
5728   return false;
5729 }
5730 
5731 /// FunctionHeader
5732 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5733 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5734 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5735 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5736 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5737   // parse the linkage.
5738   LocTy LinkageLoc = Lex.getLoc();
5739   unsigned Linkage;
5740   unsigned Visibility;
5741   unsigned DLLStorageClass;
5742   bool DSOLocal;
5743   AttrBuilder RetAttrs;
5744   unsigned CC;
5745   bool HasLinkage;
5746   Type *RetType = nullptr;
5747   LocTy RetTypeLoc = Lex.getLoc();
5748   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5749                            DSOLocal) ||
5750       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5751       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5752     return true;
5753 
5754   // Verify that the linkage is ok.
5755   switch ((GlobalValue::LinkageTypes)Linkage) {
5756   case GlobalValue::ExternalLinkage:
5757     break; // always ok.
5758   case GlobalValue::ExternalWeakLinkage:
5759     if (IsDefine)
5760       return error(LinkageLoc, "invalid linkage for function definition");
5761     break;
5762   case GlobalValue::PrivateLinkage:
5763   case GlobalValue::InternalLinkage:
5764   case GlobalValue::AvailableExternallyLinkage:
5765   case GlobalValue::LinkOnceAnyLinkage:
5766   case GlobalValue::LinkOnceODRLinkage:
5767   case GlobalValue::WeakAnyLinkage:
5768   case GlobalValue::WeakODRLinkage:
5769     if (!IsDefine)
5770       return error(LinkageLoc, "invalid linkage for function declaration");
5771     break;
5772   case GlobalValue::AppendingLinkage:
5773   case GlobalValue::CommonLinkage:
5774     return error(LinkageLoc, "invalid function linkage type");
5775   }
5776 
5777   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5778     return error(LinkageLoc,
5779                  "symbol with local linkage must have default visibility");
5780 
5781   if (!FunctionType::isValidReturnType(RetType))
5782     return error(RetTypeLoc, "invalid function return type");
5783 
5784   LocTy NameLoc = Lex.getLoc();
5785 
5786   std::string FunctionName;
5787   if (Lex.getKind() == lltok::GlobalVar) {
5788     FunctionName = Lex.getStrVal();
5789   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5790     unsigned NameID = Lex.getUIntVal();
5791 
5792     if (NameID != NumberedVals.size())
5793       return tokError("function expected to be numbered '%" +
5794                       Twine(NumberedVals.size()) + "'");
5795   } else {
5796     return tokError("expected function name");
5797   }
5798 
5799   Lex.Lex();
5800 
5801   if (Lex.getKind() != lltok::lparen)
5802     return tokError("expected '(' in function argument list");
5803 
5804   SmallVector<ArgInfo, 8> ArgList;
5805   bool IsVarArg;
5806   AttrBuilder FuncAttrs;
5807   std::vector<unsigned> FwdRefAttrGrps;
5808   LocTy BuiltinLoc;
5809   std::string Section;
5810   std::string Partition;
5811   MaybeAlign Alignment;
5812   std::string GC;
5813   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5814   unsigned AddrSpace = 0;
5815   Constant *Prefix = nullptr;
5816   Constant *Prologue = nullptr;
5817   Constant *PersonalityFn = nullptr;
5818   Comdat *C;
5819 
5820   if (parseArgumentList(ArgList, IsVarArg) ||
5821       parseOptionalUnnamedAddr(UnnamedAddr) ||
5822       parseOptionalProgramAddrSpace(AddrSpace) ||
5823       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5824                                  BuiltinLoc) ||
5825       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5826       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5827       parseOptionalComdat(FunctionName, C) ||
5828       parseOptionalAlignment(Alignment) ||
5829       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5830       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5831       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5832       (EatIfPresent(lltok::kw_personality) &&
5833        parseGlobalTypeAndValue(PersonalityFn)))
5834     return true;
5835 
5836   if (FuncAttrs.contains(Attribute::Builtin))
5837     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5838 
5839   // If the alignment was parsed as an attribute, move to the alignment field.
5840   if (FuncAttrs.hasAlignmentAttr()) {
5841     Alignment = FuncAttrs.getAlignment();
5842     FuncAttrs.removeAttribute(Attribute::Alignment);
5843   }
5844 
5845   // Okay, if we got here, the function is syntactically valid.  Convert types
5846   // and do semantic checks.
5847   std::vector<Type*> ParamTypeList;
5848   SmallVector<AttributeSet, 8> Attrs;
5849 
5850   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5851     ParamTypeList.push_back(ArgList[i].Ty);
5852     Attrs.push_back(ArgList[i].Attrs);
5853   }
5854 
5855   AttributeList PAL =
5856       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5857                          AttributeSet::get(Context, RetAttrs), Attrs);
5858 
5859   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5860     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5861 
5862   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5863   PointerType *PFT = PointerType::get(FT, AddrSpace);
5864 
5865   Fn = nullptr;
5866   if (!FunctionName.empty()) {
5867     // If this was a definition of a forward reference, remove the definition
5868     // from the forward reference table and fill in the forward ref.
5869     auto FRVI = ForwardRefVals.find(FunctionName);
5870     if (FRVI != ForwardRefVals.end()) {
5871       Fn = M->getFunction(FunctionName);
5872       if (!Fn)
5873         return error(FRVI->second.second, "invalid forward reference to "
5874                                           "function as global value!");
5875       if (Fn->getType() != PFT)
5876         return error(FRVI->second.second,
5877                      "invalid forward reference to "
5878                      "function '" +
5879                          FunctionName +
5880                          "' with wrong type: "
5881                          "expected '" +
5882                          getTypeString(PFT) + "' but was '" +
5883                          getTypeString(Fn->getType()) + "'");
5884       ForwardRefVals.erase(FRVI);
5885     } else if ((Fn = M->getFunction(FunctionName))) {
5886       // Reject redefinitions.
5887       return error(NameLoc,
5888                    "invalid redefinition of function '" + FunctionName + "'");
5889     } else if (M->getNamedValue(FunctionName)) {
5890       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5891     }
5892 
5893   } else {
5894     // If this is a definition of a forward referenced function, make sure the
5895     // types agree.
5896     auto I = ForwardRefValIDs.find(NumberedVals.size());
5897     if (I != ForwardRefValIDs.end()) {
5898       Fn = cast<Function>(I->second.first);
5899       if (Fn->getType() != PFT)
5900         return error(NameLoc, "type of definition and forward reference of '@" +
5901                                   Twine(NumberedVals.size()) +
5902                                   "' disagree: "
5903                                   "expected '" +
5904                                   getTypeString(PFT) + "' but was '" +
5905                                   getTypeString(Fn->getType()) + "'");
5906       ForwardRefValIDs.erase(I);
5907     }
5908   }
5909 
5910   if (!Fn)
5911     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5912                           FunctionName, M);
5913   else // Move the forward-reference to the correct spot in the module.
5914     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5915 
5916   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5917 
5918   if (FunctionName.empty())
5919     NumberedVals.push_back(Fn);
5920 
5921   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5922   maybeSetDSOLocal(DSOLocal, *Fn);
5923   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5924   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5925   Fn->setCallingConv(CC);
5926   Fn->setAttributes(PAL);
5927   Fn->setUnnamedAddr(UnnamedAddr);
5928   Fn->setAlignment(MaybeAlign(Alignment));
5929   Fn->setSection(Section);
5930   Fn->setPartition(Partition);
5931   Fn->setComdat(C);
5932   Fn->setPersonalityFn(PersonalityFn);
5933   if (!GC.empty()) Fn->setGC(GC);
5934   Fn->setPrefixData(Prefix);
5935   Fn->setPrologueData(Prologue);
5936   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5937 
5938   // Add all of the arguments we parsed to the function.
5939   Function::arg_iterator ArgIt = Fn->arg_begin();
5940   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5941     // If the argument has a name, insert it into the argument symbol table.
5942     if (ArgList[i].Name.empty()) continue;
5943 
5944     // Set the name, if it conflicted, it will be auto-renamed.
5945     ArgIt->setName(ArgList[i].Name);
5946 
5947     if (ArgIt->getName() != ArgList[i].Name)
5948       return error(ArgList[i].Loc,
5949                    "redefinition of argument '%" + ArgList[i].Name + "'");
5950   }
5951 
5952   if (IsDefine)
5953     return false;
5954 
5955   // Check the declaration has no block address forward references.
5956   ValID ID;
5957   if (FunctionName.empty()) {
5958     ID.Kind = ValID::t_GlobalID;
5959     ID.UIntVal = NumberedVals.size() - 1;
5960   } else {
5961     ID.Kind = ValID::t_GlobalName;
5962     ID.StrVal = FunctionName;
5963   }
5964   auto Blocks = ForwardRefBlockAddresses.find(ID);
5965   if (Blocks != ForwardRefBlockAddresses.end())
5966     return error(Blocks->first.Loc,
5967                  "cannot take blockaddress inside a declaration");
5968   return false;
5969 }
5970 
5971 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5972   ValID ID;
5973   if (FunctionNumber == -1) {
5974     ID.Kind = ValID::t_GlobalName;
5975     ID.StrVal = std::string(F.getName());
5976   } else {
5977     ID.Kind = ValID::t_GlobalID;
5978     ID.UIntVal = FunctionNumber;
5979   }
5980 
5981   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5982   if (Blocks == P.ForwardRefBlockAddresses.end())
5983     return false;
5984 
5985   for (const auto &I : Blocks->second) {
5986     const ValID &BBID = I.first;
5987     GlobalValue *GV = I.second;
5988 
5989     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5990            "Expected local id or name");
5991     BasicBlock *BB;
5992     if (BBID.Kind == ValID::t_LocalName)
5993       BB = getBB(BBID.StrVal, BBID.Loc);
5994     else
5995       BB = getBB(BBID.UIntVal, BBID.Loc);
5996     if (!BB)
5997       return P.error(BBID.Loc, "referenced value is not a basic block");
5998 
5999     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
6000     GV->eraseFromParent();
6001   }
6002 
6003   P.ForwardRefBlockAddresses.erase(Blocks);
6004   return false;
6005 }
6006 
6007 /// parseFunctionBody
6008 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6009 bool LLParser::parseFunctionBody(Function &Fn) {
6010   if (Lex.getKind() != lltok::lbrace)
6011     return tokError("expected '{' in function body");
6012   Lex.Lex();  // eat the {.
6013 
6014   int FunctionNumber = -1;
6015   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6016 
6017   PerFunctionState PFS(*this, Fn, FunctionNumber);
6018 
6019   // Resolve block addresses and allow basic blocks to be forward-declared
6020   // within this function.
6021   if (PFS.resolveForwardRefBlockAddresses())
6022     return true;
6023   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6024 
6025   // We need at least one basic block.
6026   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6027     return tokError("function body requires at least one basic block");
6028 
6029   while (Lex.getKind() != lltok::rbrace &&
6030          Lex.getKind() != lltok::kw_uselistorder)
6031     if (parseBasicBlock(PFS))
6032       return true;
6033 
6034   while (Lex.getKind() != lltok::rbrace)
6035     if (parseUseListOrder(&PFS))
6036       return true;
6037 
6038   // Eat the }.
6039   Lex.Lex();
6040 
6041   // Verify function is ok.
6042   return PFS.finishFunction();
6043 }
6044 
6045 /// parseBasicBlock
6046 ///   ::= (LabelStr|LabelID)? Instruction*
6047 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6048   // If this basic block starts out with a name, remember it.
6049   std::string Name;
6050   int NameID = -1;
6051   LocTy NameLoc = Lex.getLoc();
6052   if (Lex.getKind() == lltok::LabelStr) {
6053     Name = Lex.getStrVal();
6054     Lex.Lex();
6055   } else if (Lex.getKind() == lltok::LabelID) {
6056     NameID = Lex.getUIntVal();
6057     Lex.Lex();
6058   }
6059 
6060   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6061   if (!BB)
6062     return true;
6063 
6064   std::string NameStr;
6065 
6066   // parse the instructions in this block until we get a terminator.
6067   Instruction *Inst;
6068   do {
6069     // This instruction may have three possibilities for a name: a) none
6070     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6071     LocTy NameLoc = Lex.getLoc();
6072     int NameID = -1;
6073     NameStr = "";
6074 
6075     if (Lex.getKind() == lltok::LocalVarID) {
6076       NameID = Lex.getUIntVal();
6077       Lex.Lex();
6078       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6079         return true;
6080     } else if (Lex.getKind() == lltok::LocalVar) {
6081       NameStr = Lex.getStrVal();
6082       Lex.Lex();
6083       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6084         return true;
6085     }
6086 
6087     switch (parseInstruction(Inst, BB, PFS)) {
6088     default:
6089       llvm_unreachable("Unknown parseInstruction result!");
6090     case InstError: return true;
6091     case InstNormal:
6092       BB->getInstList().push_back(Inst);
6093 
6094       // With a normal result, we check to see if the instruction is followed by
6095       // a comma and metadata.
6096       if (EatIfPresent(lltok::comma))
6097         if (parseInstructionMetadata(*Inst))
6098           return true;
6099       break;
6100     case InstExtraComma:
6101       BB->getInstList().push_back(Inst);
6102 
6103       // If the instruction parser ate an extra comma at the end of it, it
6104       // *must* be followed by metadata.
6105       if (parseInstructionMetadata(*Inst))
6106         return true;
6107       break;
6108     }
6109 
6110     // Set the name on the instruction.
6111     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6112       return true;
6113   } while (!Inst->isTerminator());
6114 
6115   return false;
6116 }
6117 
6118 //===----------------------------------------------------------------------===//
6119 // Instruction Parsing.
6120 //===----------------------------------------------------------------------===//
6121 
6122 /// parseInstruction - parse one of the many different instructions.
6123 ///
6124 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6125                                PerFunctionState &PFS) {
6126   lltok::Kind Token = Lex.getKind();
6127   if (Token == lltok::Eof)
6128     return tokError("found end of file when expecting more instructions");
6129   LocTy Loc = Lex.getLoc();
6130   unsigned KeywordVal = Lex.getUIntVal();
6131   Lex.Lex();  // Eat the keyword.
6132 
6133   switch (Token) {
6134   default:
6135     return error(Loc, "expected instruction opcode");
6136   // Terminator Instructions.
6137   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6138   case lltok::kw_ret:
6139     return parseRet(Inst, BB, PFS);
6140   case lltok::kw_br:
6141     return parseBr(Inst, PFS);
6142   case lltok::kw_switch:
6143     return parseSwitch(Inst, PFS);
6144   case lltok::kw_indirectbr:
6145     return parseIndirectBr(Inst, PFS);
6146   case lltok::kw_invoke:
6147     return parseInvoke(Inst, PFS);
6148   case lltok::kw_resume:
6149     return parseResume(Inst, PFS);
6150   case lltok::kw_cleanupret:
6151     return parseCleanupRet(Inst, PFS);
6152   case lltok::kw_catchret:
6153     return parseCatchRet(Inst, PFS);
6154   case lltok::kw_catchswitch:
6155     return parseCatchSwitch(Inst, PFS);
6156   case lltok::kw_catchpad:
6157     return parseCatchPad(Inst, PFS);
6158   case lltok::kw_cleanuppad:
6159     return parseCleanupPad(Inst, PFS);
6160   case lltok::kw_callbr:
6161     return parseCallBr(Inst, PFS);
6162   // Unary Operators.
6163   case lltok::kw_fneg: {
6164     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6165     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6166     if (Res != 0)
6167       return Res;
6168     if (FMF.any())
6169       Inst->setFastMathFlags(FMF);
6170     return false;
6171   }
6172   // Binary Operators.
6173   case lltok::kw_add:
6174   case lltok::kw_sub:
6175   case lltok::kw_mul:
6176   case lltok::kw_shl: {
6177     bool NUW = EatIfPresent(lltok::kw_nuw);
6178     bool NSW = EatIfPresent(lltok::kw_nsw);
6179     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6180 
6181     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6182       return true;
6183 
6184     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6185     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6186     return false;
6187   }
6188   case lltok::kw_fadd:
6189   case lltok::kw_fsub:
6190   case lltok::kw_fmul:
6191   case lltok::kw_fdiv:
6192   case lltok::kw_frem: {
6193     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6194     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6195     if (Res != 0)
6196       return Res;
6197     if (FMF.any())
6198       Inst->setFastMathFlags(FMF);
6199     return 0;
6200   }
6201 
6202   case lltok::kw_sdiv:
6203   case lltok::kw_udiv:
6204   case lltok::kw_lshr:
6205   case lltok::kw_ashr: {
6206     bool Exact = EatIfPresent(lltok::kw_exact);
6207 
6208     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6209       return true;
6210     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6211     return false;
6212   }
6213 
6214   case lltok::kw_urem:
6215   case lltok::kw_srem:
6216     return parseArithmetic(Inst, PFS, KeywordVal,
6217                            /*IsFP*/ false);
6218   case lltok::kw_and:
6219   case lltok::kw_or:
6220   case lltok::kw_xor:
6221     return parseLogical(Inst, PFS, KeywordVal);
6222   case lltok::kw_icmp:
6223     return parseCompare(Inst, PFS, KeywordVal);
6224   case lltok::kw_fcmp: {
6225     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6226     int Res = parseCompare(Inst, PFS, KeywordVal);
6227     if (Res != 0)
6228       return Res;
6229     if (FMF.any())
6230       Inst->setFastMathFlags(FMF);
6231     return 0;
6232   }
6233 
6234   // Casts.
6235   case lltok::kw_trunc:
6236   case lltok::kw_zext:
6237   case lltok::kw_sext:
6238   case lltok::kw_fptrunc:
6239   case lltok::kw_fpext:
6240   case lltok::kw_bitcast:
6241   case lltok::kw_addrspacecast:
6242   case lltok::kw_uitofp:
6243   case lltok::kw_sitofp:
6244   case lltok::kw_fptoui:
6245   case lltok::kw_fptosi:
6246   case lltok::kw_inttoptr:
6247   case lltok::kw_ptrtoint:
6248     return parseCast(Inst, PFS, KeywordVal);
6249   // Other.
6250   case lltok::kw_select: {
6251     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6252     int Res = parseSelect(Inst, PFS);
6253     if (Res != 0)
6254       return Res;
6255     if (FMF.any()) {
6256       if (!isa<FPMathOperator>(Inst))
6257         return error(Loc, "fast-math-flags specified for select without "
6258                           "floating-point scalar or vector return type");
6259       Inst->setFastMathFlags(FMF);
6260     }
6261     return 0;
6262   }
6263   case lltok::kw_va_arg:
6264     return parseVAArg(Inst, PFS);
6265   case lltok::kw_extractelement:
6266     return parseExtractElement(Inst, PFS);
6267   case lltok::kw_insertelement:
6268     return parseInsertElement(Inst, PFS);
6269   case lltok::kw_shufflevector:
6270     return parseShuffleVector(Inst, PFS);
6271   case lltok::kw_phi: {
6272     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6273     int Res = parsePHI(Inst, PFS);
6274     if (Res != 0)
6275       return Res;
6276     if (FMF.any()) {
6277       if (!isa<FPMathOperator>(Inst))
6278         return error(Loc, "fast-math-flags specified for phi without "
6279                           "floating-point scalar or vector return type");
6280       Inst->setFastMathFlags(FMF);
6281     }
6282     return 0;
6283   }
6284   case lltok::kw_landingpad:
6285     return parseLandingPad(Inst, PFS);
6286   case lltok::kw_freeze:
6287     return parseFreeze(Inst, PFS);
6288   // Call.
6289   case lltok::kw_call:
6290     return parseCall(Inst, PFS, CallInst::TCK_None);
6291   case lltok::kw_tail:
6292     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6293   case lltok::kw_musttail:
6294     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6295   case lltok::kw_notail:
6296     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6297   // Memory.
6298   case lltok::kw_alloca:
6299     return parseAlloc(Inst, PFS);
6300   case lltok::kw_load:
6301     return parseLoad(Inst, PFS);
6302   case lltok::kw_store:
6303     return parseStore(Inst, PFS);
6304   case lltok::kw_cmpxchg:
6305     return parseCmpXchg(Inst, PFS);
6306   case lltok::kw_atomicrmw:
6307     return parseAtomicRMW(Inst, PFS);
6308   case lltok::kw_fence:
6309     return parseFence(Inst, PFS);
6310   case lltok::kw_getelementptr:
6311     return parseGetElementPtr(Inst, PFS);
6312   case lltok::kw_extractvalue:
6313     return parseExtractValue(Inst, PFS);
6314   case lltok::kw_insertvalue:
6315     return parseInsertValue(Inst, PFS);
6316   }
6317 }
6318 
6319 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6320 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6321   if (Opc == Instruction::FCmp) {
6322     switch (Lex.getKind()) {
6323     default:
6324       return tokError("expected fcmp predicate (e.g. 'oeq')");
6325     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6326     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6327     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6328     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6329     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6330     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6331     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6332     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6333     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6334     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6335     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6336     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6337     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6338     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6339     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6340     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6341     }
6342   } else {
6343     switch (Lex.getKind()) {
6344     default:
6345       return tokError("expected icmp predicate (e.g. 'eq')");
6346     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6347     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6348     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6349     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6350     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6351     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6352     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6353     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6354     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6355     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6356     }
6357   }
6358   Lex.Lex();
6359   return false;
6360 }
6361 
6362 //===----------------------------------------------------------------------===//
6363 // Terminator Instructions.
6364 //===----------------------------------------------------------------------===//
6365 
6366 /// parseRet - parse a return instruction.
6367 ///   ::= 'ret' void (',' !dbg, !1)*
6368 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6369 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6370                         PerFunctionState &PFS) {
6371   SMLoc TypeLoc = Lex.getLoc();
6372   Type *Ty = nullptr;
6373   if (parseType(Ty, true /*void allowed*/))
6374     return true;
6375 
6376   Type *ResType = PFS.getFunction().getReturnType();
6377 
6378   if (Ty->isVoidTy()) {
6379     if (!ResType->isVoidTy())
6380       return error(TypeLoc, "value doesn't match function result type '" +
6381                                 getTypeString(ResType) + "'");
6382 
6383     Inst = ReturnInst::Create(Context);
6384     return false;
6385   }
6386 
6387   Value *RV;
6388   if (parseValue(Ty, RV, PFS))
6389     return true;
6390 
6391   if (ResType != RV->getType())
6392     return error(TypeLoc, "value doesn't match function result type '" +
6393                               getTypeString(ResType) + "'");
6394 
6395   Inst = ReturnInst::Create(Context, RV);
6396   return false;
6397 }
6398 
6399 /// parseBr
6400 ///   ::= 'br' TypeAndValue
6401 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6402 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6403   LocTy Loc, Loc2;
6404   Value *Op0;
6405   BasicBlock *Op1, *Op2;
6406   if (parseTypeAndValue(Op0, Loc, PFS))
6407     return true;
6408 
6409   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6410     Inst = BranchInst::Create(BB);
6411     return false;
6412   }
6413 
6414   if (Op0->getType() != Type::getInt1Ty(Context))
6415     return error(Loc, "branch condition must have 'i1' type");
6416 
6417   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6418       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6419       parseToken(lltok::comma, "expected ',' after true destination") ||
6420       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6421     return true;
6422 
6423   Inst = BranchInst::Create(Op1, Op2, Op0);
6424   return false;
6425 }
6426 
6427 /// parseSwitch
6428 ///  Instruction
6429 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6430 ///  JumpTable
6431 ///    ::= (TypeAndValue ',' TypeAndValue)*
6432 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6433   LocTy CondLoc, BBLoc;
6434   Value *Cond;
6435   BasicBlock *DefaultBB;
6436   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6437       parseToken(lltok::comma, "expected ',' after switch condition") ||
6438       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6439       parseToken(lltok::lsquare, "expected '[' with switch table"))
6440     return true;
6441 
6442   if (!Cond->getType()->isIntegerTy())
6443     return error(CondLoc, "switch condition must have integer type");
6444 
6445   // parse the jump table pairs.
6446   SmallPtrSet<Value*, 32> SeenCases;
6447   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6448   while (Lex.getKind() != lltok::rsquare) {
6449     Value *Constant;
6450     BasicBlock *DestBB;
6451 
6452     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6453         parseToken(lltok::comma, "expected ',' after case value") ||
6454         parseTypeAndBasicBlock(DestBB, PFS))
6455       return true;
6456 
6457     if (!SeenCases.insert(Constant).second)
6458       return error(CondLoc, "duplicate case value in switch");
6459     if (!isa<ConstantInt>(Constant))
6460       return error(CondLoc, "case value is not a constant integer");
6461 
6462     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6463   }
6464 
6465   Lex.Lex();  // Eat the ']'.
6466 
6467   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6468   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6469     SI->addCase(Table[i].first, Table[i].second);
6470   Inst = SI;
6471   return false;
6472 }
6473 
6474 /// parseIndirectBr
6475 ///  Instruction
6476 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6477 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6478   LocTy AddrLoc;
6479   Value *Address;
6480   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6481       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6482       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6483     return true;
6484 
6485   if (!Address->getType()->isPointerTy())
6486     return error(AddrLoc, "indirectbr address must have pointer type");
6487 
6488   // parse the destination list.
6489   SmallVector<BasicBlock*, 16> DestList;
6490 
6491   if (Lex.getKind() != lltok::rsquare) {
6492     BasicBlock *DestBB;
6493     if (parseTypeAndBasicBlock(DestBB, PFS))
6494       return true;
6495     DestList.push_back(DestBB);
6496 
6497     while (EatIfPresent(lltok::comma)) {
6498       if (parseTypeAndBasicBlock(DestBB, PFS))
6499         return true;
6500       DestList.push_back(DestBB);
6501     }
6502   }
6503 
6504   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6505     return true;
6506 
6507   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6508   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6509     IBI->addDestination(DestList[i]);
6510   Inst = IBI;
6511   return false;
6512 }
6513 
6514 /// parseInvoke
6515 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6516 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6517 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6518   LocTy CallLoc = Lex.getLoc();
6519   AttrBuilder RetAttrs, FnAttrs;
6520   std::vector<unsigned> FwdRefAttrGrps;
6521   LocTy NoBuiltinLoc;
6522   unsigned CC;
6523   unsigned InvokeAddrSpace;
6524   Type *RetType = nullptr;
6525   LocTy RetTypeLoc;
6526   ValID CalleeID;
6527   SmallVector<ParamInfo, 16> ArgList;
6528   SmallVector<OperandBundleDef, 2> BundleList;
6529 
6530   BasicBlock *NormalBB, *UnwindBB;
6531   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6532       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6533       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6534       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6535       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6536                                  NoBuiltinLoc) ||
6537       parseOptionalOperandBundles(BundleList, PFS) ||
6538       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6539       parseTypeAndBasicBlock(NormalBB, PFS) ||
6540       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6541       parseTypeAndBasicBlock(UnwindBB, PFS))
6542     return true;
6543 
6544   // If RetType is a non-function pointer type, then this is the short syntax
6545   // for the call, which means that RetType is just the return type.  Infer the
6546   // rest of the function argument types from the arguments that are present.
6547   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6548   if (!Ty) {
6549     // Pull out the types of all of the arguments...
6550     std::vector<Type*> ParamTypes;
6551     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6552       ParamTypes.push_back(ArgList[i].V->getType());
6553 
6554     if (!FunctionType::isValidReturnType(RetType))
6555       return error(RetTypeLoc, "Invalid result type for LLVM function");
6556 
6557     Ty = FunctionType::get(RetType, ParamTypes, false);
6558   }
6559 
6560   CalleeID.FTy = Ty;
6561 
6562   // Look up the callee.
6563   Value *Callee;
6564   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6565                           Callee, &PFS, /*IsCall=*/true))
6566     return true;
6567 
6568   // Set up the Attribute for the function.
6569   SmallVector<Value *, 8> Args;
6570   SmallVector<AttributeSet, 8> ArgAttrs;
6571 
6572   // Loop through FunctionType's arguments and ensure they are specified
6573   // correctly.  Also, gather any parameter attributes.
6574   FunctionType::param_iterator I = Ty->param_begin();
6575   FunctionType::param_iterator E = Ty->param_end();
6576   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6577     Type *ExpectedTy = nullptr;
6578     if (I != E) {
6579       ExpectedTy = *I++;
6580     } else if (!Ty->isVarArg()) {
6581       return error(ArgList[i].Loc, "too many arguments specified");
6582     }
6583 
6584     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6585       return error(ArgList[i].Loc, "argument is not of expected type '" +
6586                                        getTypeString(ExpectedTy) + "'");
6587     Args.push_back(ArgList[i].V);
6588     ArgAttrs.push_back(ArgList[i].Attrs);
6589   }
6590 
6591   if (I != E)
6592     return error(CallLoc, "not enough parameters specified for call");
6593 
6594   if (FnAttrs.hasAlignmentAttr())
6595     return error(CallLoc, "invoke instructions may not have an alignment");
6596 
6597   // Finish off the Attribute and check them
6598   AttributeList PAL =
6599       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6600                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6601 
6602   InvokeInst *II =
6603       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6604   II->setCallingConv(CC);
6605   II->setAttributes(PAL);
6606   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6607   Inst = II;
6608   return false;
6609 }
6610 
6611 /// parseResume
6612 ///   ::= 'resume' TypeAndValue
6613 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6614   Value *Exn; LocTy ExnLoc;
6615   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6616     return true;
6617 
6618   ResumeInst *RI = ResumeInst::Create(Exn);
6619   Inst = RI;
6620   return false;
6621 }
6622 
6623 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6624                                   PerFunctionState &PFS) {
6625   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6626     return true;
6627 
6628   while (Lex.getKind() != lltok::rsquare) {
6629     // If this isn't the first argument, we need a comma.
6630     if (!Args.empty() &&
6631         parseToken(lltok::comma, "expected ',' in argument list"))
6632       return true;
6633 
6634     // parse the argument.
6635     LocTy ArgLoc;
6636     Type *ArgTy = nullptr;
6637     if (parseType(ArgTy, ArgLoc))
6638       return true;
6639 
6640     Value *V;
6641     if (ArgTy->isMetadataTy()) {
6642       if (parseMetadataAsValue(V, PFS))
6643         return true;
6644     } else {
6645       if (parseValue(ArgTy, V, PFS))
6646         return true;
6647     }
6648     Args.push_back(V);
6649   }
6650 
6651   Lex.Lex();  // Lex the ']'.
6652   return false;
6653 }
6654 
6655 /// parseCleanupRet
6656 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6657 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6658   Value *CleanupPad = nullptr;
6659 
6660   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6661     return true;
6662 
6663   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6664     return true;
6665 
6666   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6667     return true;
6668 
6669   BasicBlock *UnwindBB = nullptr;
6670   if (Lex.getKind() == lltok::kw_to) {
6671     Lex.Lex();
6672     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6673       return true;
6674   } else {
6675     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6676       return true;
6677     }
6678   }
6679 
6680   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6681   return false;
6682 }
6683 
6684 /// parseCatchRet
6685 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6686 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6687   Value *CatchPad = nullptr;
6688 
6689   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6690     return true;
6691 
6692   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6693     return true;
6694 
6695   BasicBlock *BB;
6696   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6697       parseTypeAndBasicBlock(BB, PFS))
6698     return true;
6699 
6700   Inst = CatchReturnInst::Create(CatchPad, BB);
6701   return false;
6702 }
6703 
6704 /// parseCatchSwitch
6705 ///   ::= 'catchswitch' within Parent
6706 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6707   Value *ParentPad;
6708 
6709   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6710     return true;
6711 
6712   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6713       Lex.getKind() != lltok::LocalVarID)
6714     return tokError("expected scope value for catchswitch");
6715 
6716   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6717     return true;
6718 
6719   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6720     return true;
6721 
6722   SmallVector<BasicBlock *, 32> Table;
6723   do {
6724     BasicBlock *DestBB;
6725     if (parseTypeAndBasicBlock(DestBB, PFS))
6726       return true;
6727     Table.push_back(DestBB);
6728   } while (EatIfPresent(lltok::comma));
6729 
6730   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6731     return true;
6732 
6733   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6734     return true;
6735 
6736   BasicBlock *UnwindBB = nullptr;
6737   if (EatIfPresent(lltok::kw_to)) {
6738     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6739       return true;
6740   } else {
6741     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6742       return true;
6743   }
6744 
6745   auto *CatchSwitch =
6746       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6747   for (BasicBlock *DestBB : Table)
6748     CatchSwitch->addHandler(DestBB);
6749   Inst = CatchSwitch;
6750   return false;
6751 }
6752 
6753 /// parseCatchPad
6754 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6755 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6756   Value *CatchSwitch = nullptr;
6757 
6758   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6759     return true;
6760 
6761   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6762     return tokError("expected scope value for catchpad");
6763 
6764   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6765     return true;
6766 
6767   SmallVector<Value *, 8> Args;
6768   if (parseExceptionArgs(Args, PFS))
6769     return true;
6770 
6771   Inst = CatchPadInst::Create(CatchSwitch, Args);
6772   return false;
6773 }
6774 
6775 /// parseCleanupPad
6776 ///   ::= 'cleanuppad' within Parent ParamList
6777 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6778   Value *ParentPad = nullptr;
6779 
6780   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6781     return true;
6782 
6783   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6784       Lex.getKind() != lltok::LocalVarID)
6785     return tokError("expected scope value for cleanuppad");
6786 
6787   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6788     return true;
6789 
6790   SmallVector<Value *, 8> Args;
6791   if (parseExceptionArgs(Args, PFS))
6792     return true;
6793 
6794   Inst = CleanupPadInst::Create(ParentPad, Args);
6795   return false;
6796 }
6797 
6798 //===----------------------------------------------------------------------===//
6799 // Unary Operators.
6800 //===----------------------------------------------------------------------===//
6801 
6802 /// parseUnaryOp
6803 ///  ::= UnaryOp TypeAndValue ',' Value
6804 ///
6805 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6806 /// operand is allowed.
6807 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6808                             unsigned Opc, bool IsFP) {
6809   LocTy Loc; Value *LHS;
6810   if (parseTypeAndValue(LHS, Loc, PFS))
6811     return true;
6812 
6813   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6814                     : LHS->getType()->isIntOrIntVectorTy();
6815 
6816   if (!Valid)
6817     return error(Loc, "invalid operand type for instruction");
6818 
6819   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6820   return false;
6821 }
6822 
6823 /// parseCallBr
6824 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6825 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6826 ///       '[' LabelList ']'
6827 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6828   LocTy CallLoc = Lex.getLoc();
6829   AttrBuilder RetAttrs, FnAttrs;
6830   std::vector<unsigned> FwdRefAttrGrps;
6831   LocTy NoBuiltinLoc;
6832   unsigned CC;
6833   Type *RetType = nullptr;
6834   LocTy RetTypeLoc;
6835   ValID CalleeID;
6836   SmallVector<ParamInfo, 16> ArgList;
6837   SmallVector<OperandBundleDef, 2> BundleList;
6838 
6839   BasicBlock *DefaultDest;
6840   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6841       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6842       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6843       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6844                                  NoBuiltinLoc) ||
6845       parseOptionalOperandBundles(BundleList, PFS) ||
6846       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6847       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6848       parseToken(lltok::lsquare, "expected '[' in callbr"))
6849     return true;
6850 
6851   // parse the destination list.
6852   SmallVector<BasicBlock *, 16> IndirectDests;
6853 
6854   if (Lex.getKind() != lltok::rsquare) {
6855     BasicBlock *DestBB;
6856     if (parseTypeAndBasicBlock(DestBB, PFS))
6857       return true;
6858     IndirectDests.push_back(DestBB);
6859 
6860     while (EatIfPresent(lltok::comma)) {
6861       if (parseTypeAndBasicBlock(DestBB, PFS))
6862         return true;
6863       IndirectDests.push_back(DestBB);
6864     }
6865   }
6866 
6867   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6868     return true;
6869 
6870   // If RetType is a non-function pointer type, then this is the short syntax
6871   // for the call, which means that RetType is just the return type.  Infer the
6872   // rest of the function argument types from the arguments that are present.
6873   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6874   if (!Ty) {
6875     // Pull out the types of all of the arguments...
6876     std::vector<Type *> ParamTypes;
6877     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6878       ParamTypes.push_back(ArgList[i].V->getType());
6879 
6880     if (!FunctionType::isValidReturnType(RetType))
6881       return error(RetTypeLoc, "Invalid result type for LLVM function");
6882 
6883     Ty = FunctionType::get(RetType, ParamTypes, false);
6884   }
6885 
6886   CalleeID.FTy = Ty;
6887 
6888   // Look up the callee.
6889   Value *Callee;
6890   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6891                           /*IsCall=*/true))
6892     return true;
6893 
6894   // Set up the Attribute for the function.
6895   SmallVector<Value *, 8> Args;
6896   SmallVector<AttributeSet, 8> ArgAttrs;
6897 
6898   // Loop through FunctionType's arguments and ensure they are specified
6899   // correctly.  Also, gather any parameter attributes.
6900   FunctionType::param_iterator I = Ty->param_begin();
6901   FunctionType::param_iterator E = Ty->param_end();
6902   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6903     Type *ExpectedTy = nullptr;
6904     if (I != E) {
6905       ExpectedTy = *I++;
6906     } else if (!Ty->isVarArg()) {
6907       return error(ArgList[i].Loc, "too many arguments specified");
6908     }
6909 
6910     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6911       return error(ArgList[i].Loc, "argument is not of expected type '" +
6912                                        getTypeString(ExpectedTy) + "'");
6913     Args.push_back(ArgList[i].V);
6914     ArgAttrs.push_back(ArgList[i].Attrs);
6915   }
6916 
6917   if (I != E)
6918     return error(CallLoc, "not enough parameters specified for call");
6919 
6920   if (FnAttrs.hasAlignmentAttr())
6921     return error(CallLoc, "callbr instructions may not have an alignment");
6922 
6923   // Finish off the Attribute and check them
6924   AttributeList PAL =
6925       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6926                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6927 
6928   CallBrInst *CBI =
6929       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6930                          BundleList);
6931   CBI->setCallingConv(CC);
6932   CBI->setAttributes(PAL);
6933   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6934   Inst = CBI;
6935   return false;
6936 }
6937 
6938 //===----------------------------------------------------------------------===//
6939 // Binary Operators.
6940 //===----------------------------------------------------------------------===//
6941 
6942 /// parseArithmetic
6943 ///  ::= ArithmeticOps TypeAndValue ',' Value
6944 ///
6945 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6946 /// operand is allowed.
6947 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6948                                unsigned Opc, bool IsFP) {
6949   LocTy Loc; Value *LHS, *RHS;
6950   if (parseTypeAndValue(LHS, Loc, PFS) ||
6951       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6952       parseValue(LHS->getType(), RHS, PFS))
6953     return true;
6954 
6955   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6956                     : LHS->getType()->isIntOrIntVectorTy();
6957 
6958   if (!Valid)
6959     return error(Loc, "invalid operand type for instruction");
6960 
6961   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6962   return false;
6963 }
6964 
6965 /// parseLogical
6966 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6967 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6968                             unsigned Opc) {
6969   LocTy Loc; Value *LHS, *RHS;
6970   if (parseTypeAndValue(LHS, Loc, PFS) ||
6971       parseToken(lltok::comma, "expected ',' in logical operation") ||
6972       parseValue(LHS->getType(), RHS, PFS))
6973     return true;
6974 
6975   if (!LHS->getType()->isIntOrIntVectorTy())
6976     return error(Loc,
6977                  "instruction requires integer or integer vector operands");
6978 
6979   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6980   return false;
6981 }
6982 
6983 /// parseCompare
6984 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6985 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6986 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6987                             unsigned Opc) {
6988   // parse the integer/fp comparison predicate.
6989   LocTy Loc;
6990   unsigned Pred;
6991   Value *LHS, *RHS;
6992   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6993       parseToken(lltok::comma, "expected ',' after compare value") ||
6994       parseValue(LHS->getType(), RHS, PFS))
6995     return true;
6996 
6997   if (Opc == Instruction::FCmp) {
6998     if (!LHS->getType()->isFPOrFPVectorTy())
6999       return error(Loc, "fcmp requires floating point operands");
7000     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7001   } else {
7002     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7003     if (!LHS->getType()->isIntOrIntVectorTy() &&
7004         !LHS->getType()->isPtrOrPtrVectorTy())
7005       return error(Loc, "icmp requires integer operands");
7006     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7007   }
7008   return false;
7009 }
7010 
7011 //===----------------------------------------------------------------------===//
7012 // Other Instructions.
7013 //===----------------------------------------------------------------------===//
7014 
7015 /// parseCast
7016 ///   ::= CastOpc TypeAndValue 'to' Type
7017 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7018                          unsigned Opc) {
7019   LocTy Loc;
7020   Value *Op;
7021   Type *DestTy = nullptr;
7022   if (parseTypeAndValue(Op, Loc, PFS) ||
7023       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7024       parseType(DestTy))
7025     return true;
7026 
7027   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7028     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7029     return error(Loc, "invalid cast opcode for cast from '" +
7030                           getTypeString(Op->getType()) + "' to '" +
7031                           getTypeString(DestTy) + "'");
7032   }
7033   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7034   return false;
7035 }
7036 
7037 /// parseSelect
7038 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7039 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7040   LocTy Loc;
7041   Value *Op0, *Op1, *Op2;
7042   if (parseTypeAndValue(Op0, Loc, PFS) ||
7043       parseToken(lltok::comma, "expected ',' after select condition") ||
7044       parseTypeAndValue(Op1, PFS) ||
7045       parseToken(lltok::comma, "expected ',' after select value") ||
7046       parseTypeAndValue(Op2, PFS))
7047     return true;
7048 
7049   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7050     return error(Loc, Reason);
7051 
7052   Inst = SelectInst::Create(Op0, Op1, Op2);
7053   return false;
7054 }
7055 
7056 /// parseVAArg
7057 ///   ::= 'va_arg' TypeAndValue ',' Type
7058 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7059   Value *Op;
7060   Type *EltTy = nullptr;
7061   LocTy TypeLoc;
7062   if (parseTypeAndValue(Op, PFS) ||
7063       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7064       parseType(EltTy, TypeLoc))
7065     return true;
7066 
7067   if (!EltTy->isFirstClassType())
7068     return error(TypeLoc, "va_arg requires operand with first class type");
7069 
7070   Inst = new VAArgInst(Op, EltTy);
7071   return false;
7072 }
7073 
7074 /// parseExtractElement
7075 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7076 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7077   LocTy Loc;
7078   Value *Op0, *Op1;
7079   if (parseTypeAndValue(Op0, Loc, PFS) ||
7080       parseToken(lltok::comma, "expected ',' after extract value") ||
7081       parseTypeAndValue(Op1, PFS))
7082     return true;
7083 
7084   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7085     return error(Loc, "invalid extractelement operands");
7086 
7087   Inst = ExtractElementInst::Create(Op0, Op1);
7088   return false;
7089 }
7090 
7091 /// parseInsertElement
7092 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7093 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7094   LocTy Loc;
7095   Value *Op0, *Op1, *Op2;
7096   if (parseTypeAndValue(Op0, Loc, PFS) ||
7097       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7098       parseTypeAndValue(Op1, PFS) ||
7099       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7100       parseTypeAndValue(Op2, PFS))
7101     return true;
7102 
7103   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7104     return error(Loc, "invalid insertelement operands");
7105 
7106   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7107   return false;
7108 }
7109 
7110 /// parseShuffleVector
7111 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7112 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7113   LocTy Loc;
7114   Value *Op0, *Op1, *Op2;
7115   if (parseTypeAndValue(Op0, Loc, PFS) ||
7116       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7117       parseTypeAndValue(Op1, PFS) ||
7118       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7119       parseTypeAndValue(Op2, PFS))
7120     return true;
7121 
7122   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7123     return error(Loc, "invalid shufflevector operands");
7124 
7125   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7126   return false;
7127 }
7128 
7129 /// parsePHI
7130 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7131 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7132   Type *Ty = nullptr;  LocTy TypeLoc;
7133   Value *Op0, *Op1;
7134 
7135   if (parseType(Ty, TypeLoc) ||
7136       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7137       parseValue(Ty, Op0, PFS) ||
7138       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7139       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7140       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7141     return true;
7142 
7143   bool AteExtraComma = false;
7144   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7145 
7146   while (true) {
7147     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7148 
7149     if (!EatIfPresent(lltok::comma))
7150       break;
7151 
7152     if (Lex.getKind() == lltok::MetadataVar) {
7153       AteExtraComma = true;
7154       break;
7155     }
7156 
7157     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7158         parseValue(Ty, Op0, PFS) ||
7159         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7160         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7161         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7162       return true;
7163   }
7164 
7165   if (!Ty->isFirstClassType())
7166     return error(TypeLoc, "phi node must have first class type");
7167 
7168   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7169   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7170     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7171   Inst = PN;
7172   return AteExtraComma ? InstExtraComma : InstNormal;
7173 }
7174 
7175 /// parseLandingPad
7176 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7177 /// Clause
7178 ///   ::= 'catch' TypeAndValue
7179 ///   ::= 'filter'
7180 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7181 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7182   Type *Ty = nullptr; LocTy TyLoc;
7183 
7184   if (parseType(Ty, TyLoc))
7185     return true;
7186 
7187   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7188   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7189 
7190   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7191     LandingPadInst::ClauseType CT;
7192     if (EatIfPresent(lltok::kw_catch))
7193       CT = LandingPadInst::Catch;
7194     else if (EatIfPresent(lltok::kw_filter))
7195       CT = LandingPadInst::Filter;
7196     else
7197       return tokError("expected 'catch' or 'filter' clause type");
7198 
7199     Value *V;
7200     LocTy VLoc;
7201     if (parseTypeAndValue(V, VLoc, PFS))
7202       return true;
7203 
7204     // A 'catch' type expects a non-array constant. A filter clause expects an
7205     // array constant.
7206     if (CT == LandingPadInst::Catch) {
7207       if (isa<ArrayType>(V->getType()))
7208         error(VLoc, "'catch' clause has an invalid type");
7209     } else {
7210       if (!isa<ArrayType>(V->getType()))
7211         error(VLoc, "'filter' clause has an invalid type");
7212     }
7213 
7214     Constant *CV = dyn_cast<Constant>(V);
7215     if (!CV)
7216       return error(VLoc, "clause argument must be a constant");
7217     LP->addClause(CV);
7218   }
7219 
7220   Inst = LP.release();
7221   return false;
7222 }
7223 
7224 /// parseFreeze
7225 ///   ::= 'freeze' Type Value
7226 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7227   LocTy Loc;
7228   Value *Op;
7229   if (parseTypeAndValue(Op, Loc, PFS))
7230     return true;
7231 
7232   Inst = new FreezeInst(Op);
7233   return false;
7234 }
7235 
7236 /// parseCall
7237 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7238 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7239 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7240 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7241 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7242 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7243 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7244 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7245 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7246                          CallInst::TailCallKind TCK) {
7247   AttrBuilder RetAttrs, FnAttrs;
7248   std::vector<unsigned> FwdRefAttrGrps;
7249   LocTy BuiltinLoc;
7250   unsigned CallAddrSpace;
7251   unsigned CC;
7252   Type *RetType = nullptr;
7253   LocTy RetTypeLoc;
7254   ValID CalleeID;
7255   SmallVector<ParamInfo, 16> ArgList;
7256   SmallVector<OperandBundleDef, 2> BundleList;
7257   LocTy CallLoc = Lex.getLoc();
7258 
7259   if (TCK != CallInst::TCK_None &&
7260       parseToken(lltok::kw_call,
7261                  "expected 'tail call', 'musttail call', or 'notail call'"))
7262     return true;
7263 
7264   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7265 
7266   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7267       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7268       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7269       parseValID(CalleeID) ||
7270       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7271                          PFS.getFunction().isVarArg()) ||
7272       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7273       parseOptionalOperandBundles(BundleList, PFS))
7274     return true;
7275 
7276   // If RetType is a non-function pointer type, then this is the short syntax
7277   // for the call, which means that RetType is just the return type.  Infer the
7278   // rest of the function argument types from the arguments that are present.
7279   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7280   if (!Ty) {
7281     // Pull out the types of all of the arguments...
7282     std::vector<Type*> ParamTypes;
7283     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7284       ParamTypes.push_back(ArgList[i].V->getType());
7285 
7286     if (!FunctionType::isValidReturnType(RetType))
7287       return error(RetTypeLoc, "Invalid result type for LLVM function");
7288 
7289     Ty = FunctionType::get(RetType, ParamTypes, false);
7290   }
7291 
7292   CalleeID.FTy = Ty;
7293 
7294   // Look up the callee.
7295   Value *Callee;
7296   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7297                           &PFS, /*IsCall=*/true))
7298     return true;
7299 
7300   // Set up the Attribute for the function.
7301   SmallVector<AttributeSet, 8> Attrs;
7302 
7303   SmallVector<Value*, 8> Args;
7304 
7305   // Loop through FunctionType's arguments and ensure they are specified
7306   // correctly.  Also, gather any parameter attributes.
7307   FunctionType::param_iterator I = Ty->param_begin();
7308   FunctionType::param_iterator E = Ty->param_end();
7309   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7310     Type *ExpectedTy = nullptr;
7311     if (I != E) {
7312       ExpectedTy = *I++;
7313     } else if (!Ty->isVarArg()) {
7314       return error(ArgList[i].Loc, "too many arguments specified");
7315     }
7316 
7317     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7318       return error(ArgList[i].Loc, "argument is not of expected type '" +
7319                                        getTypeString(ExpectedTy) + "'");
7320     Args.push_back(ArgList[i].V);
7321     Attrs.push_back(ArgList[i].Attrs);
7322   }
7323 
7324   if (I != E)
7325     return error(CallLoc, "not enough parameters specified for call");
7326 
7327   if (FnAttrs.hasAlignmentAttr())
7328     return error(CallLoc, "call instructions may not have an alignment");
7329 
7330   // Finish off the Attribute and check them
7331   AttributeList PAL =
7332       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7333                          AttributeSet::get(Context, RetAttrs), Attrs);
7334 
7335   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7336   CI->setTailCallKind(TCK);
7337   CI->setCallingConv(CC);
7338   if (FMF.any()) {
7339     if (!isa<FPMathOperator>(CI)) {
7340       CI->deleteValue();
7341       return error(CallLoc, "fast-math-flags specified for call without "
7342                             "floating-point scalar or vector return type");
7343     }
7344     CI->setFastMathFlags(FMF);
7345   }
7346   CI->setAttributes(PAL);
7347   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7348   Inst = CI;
7349   return false;
7350 }
7351 
7352 //===----------------------------------------------------------------------===//
7353 // Memory Instructions.
7354 //===----------------------------------------------------------------------===//
7355 
7356 /// parseAlloc
7357 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7358 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7359 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7360   Value *Size = nullptr;
7361   LocTy SizeLoc, TyLoc, ASLoc;
7362   MaybeAlign Alignment;
7363   unsigned AddrSpace = 0;
7364   Type *Ty = nullptr;
7365 
7366   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7367   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7368 
7369   if (parseType(Ty, TyLoc))
7370     return true;
7371 
7372   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7373     return error(TyLoc, "invalid type for alloca");
7374 
7375   bool AteExtraComma = false;
7376   if (EatIfPresent(lltok::comma)) {
7377     if (Lex.getKind() == lltok::kw_align) {
7378       if (parseOptionalAlignment(Alignment))
7379         return true;
7380       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7381         return true;
7382     } else if (Lex.getKind() == lltok::kw_addrspace) {
7383       ASLoc = Lex.getLoc();
7384       if (parseOptionalAddrSpace(AddrSpace))
7385         return true;
7386     } else if (Lex.getKind() == lltok::MetadataVar) {
7387       AteExtraComma = true;
7388     } else {
7389       if (parseTypeAndValue(Size, SizeLoc, PFS))
7390         return true;
7391       if (EatIfPresent(lltok::comma)) {
7392         if (Lex.getKind() == lltok::kw_align) {
7393           if (parseOptionalAlignment(Alignment))
7394             return true;
7395           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7396             return true;
7397         } else if (Lex.getKind() == lltok::kw_addrspace) {
7398           ASLoc = Lex.getLoc();
7399           if (parseOptionalAddrSpace(AddrSpace))
7400             return true;
7401         } else if (Lex.getKind() == lltok::MetadataVar) {
7402           AteExtraComma = true;
7403         }
7404       }
7405     }
7406   }
7407 
7408   if (Size && !Size->getType()->isIntegerTy())
7409     return error(SizeLoc, "element count must have integer type");
7410 
7411   SmallPtrSet<Type *, 4> Visited;
7412   if (!Alignment && !Ty->isSized(&Visited))
7413     return error(TyLoc, "Cannot allocate unsized type");
7414   if (!Alignment)
7415     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7416   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7417   AI->setUsedWithInAlloca(IsInAlloca);
7418   AI->setSwiftError(IsSwiftError);
7419   Inst = AI;
7420   return AteExtraComma ? InstExtraComma : InstNormal;
7421 }
7422 
7423 /// parseLoad
7424 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7425 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7426 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7427 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7428   Value *Val; LocTy Loc;
7429   MaybeAlign Alignment;
7430   bool AteExtraComma = false;
7431   bool isAtomic = false;
7432   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7433   SyncScope::ID SSID = SyncScope::System;
7434 
7435   if (Lex.getKind() == lltok::kw_atomic) {
7436     isAtomic = true;
7437     Lex.Lex();
7438   }
7439 
7440   bool isVolatile = false;
7441   if (Lex.getKind() == lltok::kw_volatile) {
7442     isVolatile = true;
7443     Lex.Lex();
7444   }
7445 
7446   Type *Ty;
7447   LocTy ExplicitTypeLoc = Lex.getLoc();
7448   if (parseType(Ty) ||
7449       parseToken(lltok::comma, "expected comma after load's type") ||
7450       parseTypeAndValue(Val, Loc, PFS) ||
7451       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7452       parseOptionalCommaAlign(Alignment, AteExtraComma))
7453     return true;
7454 
7455   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7456     return error(Loc, "load operand must be a pointer to a first class type");
7457   if (isAtomic && !Alignment)
7458     return error(Loc, "atomic load must have explicit non-zero alignment");
7459   if (Ordering == AtomicOrdering::Release ||
7460       Ordering == AtomicOrdering::AcquireRelease)
7461     return error(Loc, "atomic load cannot use Release ordering");
7462 
7463   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7464     return error(
7465         ExplicitTypeLoc,
7466         typeComparisonErrorMessage(
7467             "explicit pointee type doesn't match operand's pointee type", Ty,
7468             cast<PointerType>(Val->getType())->getElementType()));
7469   }
7470   SmallPtrSet<Type *, 4> Visited;
7471   if (!Alignment && !Ty->isSized(&Visited))
7472     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7473   if (!Alignment)
7474     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7475   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7476   return AteExtraComma ? InstExtraComma : InstNormal;
7477 }
7478 
7479 /// parseStore
7480 
7481 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7482 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7483 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7484 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7485   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7486   MaybeAlign Alignment;
7487   bool AteExtraComma = false;
7488   bool isAtomic = false;
7489   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7490   SyncScope::ID SSID = SyncScope::System;
7491 
7492   if (Lex.getKind() == lltok::kw_atomic) {
7493     isAtomic = true;
7494     Lex.Lex();
7495   }
7496 
7497   bool isVolatile = false;
7498   if (Lex.getKind() == lltok::kw_volatile) {
7499     isVolatile = true;
7500     Lex.Lex();
7501   }
7502 
7503   if (parseTypeAndValue(Val, Loc, PFS) ||
7504       parseToken(lltok::comma, "expected ',' after store operand") ||
7505       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7506       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7507       parseOptionalCommaAlign(Alignment, AteExtraComma))
7508     return true;
7509 
7510   if (!Ptr->getType()->isPointerTy())
7511     return error(PtrLoc, "store operand must be a pointer");
7512   if (!Val->getType()->isFirstClassType())
7513     return error(Loc, "store operand must be a first class value");
7514   if (!cast<PointerType>(Ptr->getType())
7515            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7516     return error(Loc, "stored value and pointer type do not match");
7517   if (isAtomic && !Alignment)
7518     return error(Loc, "atomic store must have explicit non-zero alignment");
7519   if (Ordering == AtomicOrdering::Acquire ||
7520       Ordering == AtomicOrdering::AcquireRelease)
7521     return error(Loc, "atomic store cannot use Acquire ordering");
7522   SmallPtrSet<Type *, 4> Visited;
7523   if (!Alignment && !Val->getType()->isSized(&Visited))
7524     return error(Loc, "storing unsized types is not allowed");
7525   if (!Alignment)
7526     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7527 
7528   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7529   return AteExtraComma ? InstExtraComma : InstNormal;
7530 }
7531 
7532 /// parseCmpXchg
7533 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7534 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7535 ///       'Align'?
7536 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7537   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7538   bool AteExtraComma = false;
7539   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7540   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7541   SyncScope::ID SSID = SyncScope::System;
7542   bool isVolatile = false;
7543   bool isWeak = false;
7544   MaybeAlign Alignment;
7545 
7546   if (EatIfPresent(lltok::kw_weak))
7547     isWeak = true;
7548 
7549   if (EatIfPresent(lltok::kw_volatile))
7550     isVolatile = true;
7551 
7552   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7553       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7554       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7555       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7556       parseTypeAndValue(New, NewLoc, PFS) ||
7557       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7558       parseOrdering(FailureOrdering) ||
7559       parseOptionalCommaAlign(Alignment, AteExtraComma))
7560     return true;
7561 
7562   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7563     return tokError("invalid cmpxchg success ordering");
7564   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7565     return tokError("invalid cmpxchg failure ordering");
7566   if (!Ptr->getType()->isPointerTy())
7567     return error(PtrLoc, "cmpxchg operand must be a pointer");
7568   if (!cast<PointerType>(Ptr->getType())
7569            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7570     return error(CmpLoc, "compare value and pointer type do not match");
7571   if (!cast<PointerType>(Ptr->getType())
7572            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7573     return error(NewLoc, "new value and pointer type do not match");
7574   if (Cmp->getType() != New->getType())
7575     return error(NewLoc, "compare value and new value type do not match");
7576   if (!New->getType()->isFirstClassType())
7577     return error(NewLoc, "cmpxchg operand must be a first class value");
7578 
7579   const Align DefaultAlignment(
7580       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7581           Cmp->getType()));
7582 
7583   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7584       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7585       FailureOrdering, SSID);
7586   CXI->setVolatile(isVolatile);
7587   CXI->setWeak(isWeak);
7588 
7589   Inst = CXI;
7590   return AteExtraComma ? InstExtraComma : InstNormal;
7591 }
7592 
7593 /// parseAtomicRMW
7594 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7595 ///       'singlethread'? AtomicOrdering
7596 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7597   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7598   bool AteExtraComma = false;
7599   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7600   SyncScope::ID SSID = SyncScope::System;
7601   bool isVolatile = false;
7602   bool IsFP = false;
7603   AtomicRMWInst::BinOp Operation;
7604   MaybeAlign Alignment;
7605 
7606   if (EatIfPresent(lltok::kw_volatile))
7607     isVolatile = true;
7608 
7609   switch (Lex.getKind()) {
7610   default:
7611     return tokError("expected binary operation in atomicrmw");
7612   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7613   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7614   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7615   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7616   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7617   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7618   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7619   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7620   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7621   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7622   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7623   case lltok::kw_fadd:
7624     Operation = AtomicRMWInst::FAdd;
7625     IsFP = true;
7626     break;
7627   case lltok::kw_fsub:
7628     Operation = AtomicRMWInst::FSub;
7629     IsFP = true;
7630     break;
7631   }
7632   Lex.Lex();  // Eat the operation.
7633 
7634   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7635       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7636       parseTypeAndValue(Val, ValLoc, PFS) ||
7637       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7638       parseOptionalCommaAlign(Alignment, AteExtraComma))
7639     return true;
7640 
7641   if (Ordering == AtomicOrdering::Unordered)
7642     return tokError("atomicrmw cannot be unordered");
7643   if (!Ptr->getType()->isPointerTy())
7644     return error(PtrLoc, "atomicrmw operand must be a pointer");
7645   if (!cast<PointerType>(Ptr->getType())
7646            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7647     return error(ValLoc, "atomicrmw value and pointer type do not match");
7648 
7649   if (Operation == AtomicRMWInst::Xchg) {
7650     if (!Val->getType()->isIntegerTy() &&
7651         !Val->getType()->isFloatingPointTy()) {
7652       return error(ValLoc,
7653                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7654                        " operand must be an integer or floating point type");
7655     }
7656   } else if (IsFP) {
7657     if (!Val->getType()->isFloatingPointTy()) {
7658       return error(ValLoc, "atomicrmw " +
7659                                AtomicRMWInst::getOperationName(Operation) +
7660                                " operand must be a floating point type");
7661     }
7662   } else {
7663     if (!Val->getType()->isIntegerTy()) {
7664       return error(ValLoc, "atomicrmw " +
7665                                AtomicRMWInst::getOperationName(Operation) +
7666                                " operand must be an integer");
7667     }
7668   }
7669 
7670   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7671   if (Size < 8 || (Size & (Size - 1)))
7672     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7673                          " integer");
7674   const Align DefaultAlignment(
7675       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7676           Val->getType()));
7677   AtomicRMWInst *RMWI =
7678       new AtomicRMWInst(Operation, Ptr, Val,
7679                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7680   RMWI->setVolatile(isVolatile);
7681   Inst = RMWI;
7682   return AteExtraComma ? InstExtraComma : InstNormal;
7683 }
7684 
7685 /// parseFence
7686 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7687 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7688   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7689   SyncScope::ID SSID = SyncScope::System;
7690   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7691     return true;
7692 
7693   if (Ordering == AtomicOrdering::Unordered)
7694     return tokError("fence cannot be unordered");
7695   if (Ordering == AtomicOrdering::Monotonic)
7696     return tokError("fence cannot be monotonic");
7697 
7698   Inst = new FenceInst(Context, Ordering, SSID);
7699   return InstNormal;
7700 }
7701 
7702 /// parseGetElementPtr
7703 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7704 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7705   Value *Ptr = nullptr;
7706   Value *Val = nullptr;
7707   LocTy Loc, EltLoc;
7708 
7709   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7710 
7711   Type *Ty = nullptr;
7712   LocTy ExplicitTypeLoc = Lex.getLoc();
7713   if (parseType(Ty) ||
7714       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7715       parseTypeAndValue(Ptr, Loc, PFS))
7716     return true;
7717 
7718   Type *BaseType = Ptr->getType();
7719   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7720   if (!BasePointerType)
7721     return error(Loc, "base of getelementptr must be a pointer");
7722 
7723   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7724     return error(
7725         ExplicitTypeLoc,
7726         typeComparisonErrorMessage(
7727             "explicit pointee type doesn't match operand's pointee type", Ty,
7728             BasePointerType->getElementType()));
7729   }
7730 
7731   SmallVector<Value*, 16> Indices;
7732   bool AteExtraComma = false;
7733   // GEP returns a vector of pointers if at least one of parameters is a vector.
7734   // All vector parameters should have the same vector width.
7735   ElementCount GEPWidth = BaseType->isVectorTy()
7736                               ? cast<VectorType>(BaseType)->getElementCount()
7737                               : ElementCount::getFixed(0);
7738 
7739   while (EatIfPresent(lltok::comma)) {
7740     if (Lex.getKind() == lltok::MetadataVar) {
7741       AteExtraComma = true;
7742       break;
7743     }
7744     if (parseTypeAndValue(Val, EltLoc, PFS))
7745       return true;
7746     if (!Val->getType()->isIntOrIntVectorTy())
7747       return error(EltLoc, "getelementptr index must be an integer");
7748 
7749     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7750       ElementCount ValNumEl = ValVTy->getElementCount();
7751       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7752         return error(
7753             EltLoc,
7754             "getelementptr vector index has a wrong number of elements");
7755       GEPWidth = ValNumEl;
7756     }
7757     Indices.push_back(Val);
7758   }
7759 
7760   SmallPtrSet<Type*, 4> Visited;
7761   if (!Indices.empty() && !Ty->isSized(&Visited))
7762     return error(Loc, "base element of getelementptr must be sized");
7763 
7764   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7765     return error(Loc, "invalid getelementptr indices");
7766   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7767   if (InBounds)
7768     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7769   return AteExtraComma ? InstExtraComma : InstNormal;
7770 }
7771 
7772 /// parseExtractValue
7773 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7774 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7775   Value *Val; LocTy Loc;
7776   SmallVector<unsigned, 4> Indices;
7777   bool AteExtraComma;
7778   if (parseTypeAndValue(Val, Loc, PFS) ||
7779       parseIndexList(Indices, AteExtraComma))
7780     return true;
7781 
7782   if (!Val->getType()->isAggregateType())
7783     return error(Loc, "extractvalue operand must be aggregate type");
7784 
7785   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7786     return error(Loc, "invalid indices for extractvalue");
7787   Inst = ExtractValueInst::Create(Val, Indices);
7788   return AteExtraComma ? InstExtraComma : InstNormal;
7789 }
7790 
7791 /// parseInsertValue
7792 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7793 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7794   Value *Val0, *Val1; LocTy Loc0, Loc1;
7795   SmallVector<unsigned, 4> Indices;
7796   bool AteExtraComma;
7797   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7798       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7799       parseTypeAndValue(Val1, Loc1, PFS) ||
7800       parseIndexList(Indices, AteExtraComma))
7801     return true;
7802 
7803   if (!Val0->getType()->isAggregateType())
7804     return error(Loc0, "insertvalue operand must be aggregate type");
7805 
7806   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7807   if (!IndexedType)
7808     return error(Loc0, "invalid indices for insertvalue");
7809   if (IndexedType != Val1->getType())
7810     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7811                            getTypeString(Val1->getType()) + "' instead of '" +
7812                            getTypeString(IndexedType) + "'");
7813   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7814   return AteExtraComma ? InstExtraComma : InstNormal;
7815 }
7816 
7817 //===----------------------------------------------------------------------===//
7818 // Embedded metadata.
7819 //===----------------------------------------------------------------------===//
7820 
7821 /// parseMDNodeVector
7822 ///   ::= { Element (',' Element)* }
7823 /// Element
7824 ///   ::= 'null' | TypeAndValue
7825 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7826   if (parseToken(lltok::lbrace, "expected '{' here"))
7827     return true;
7828 
7829   // Check for an empty list.
7830   if (EatIfPresent(lltok::rbrace))
7831     return false;
7832 
7833   do {
7834     // Null is a special case since it is typeless.
7835     if (EatIfPresent(lltok::kw_null)) {
7836       Elts.push_back(nullptr);
7837       continue;
7838     }
7839 
7840     Metadata *MD;
7841     if (parseMetadata(MD, nullptr))
7842       return true;
7843     Elts.push_back(MD);
7844   } while (EatIfPresent(lltok::comma));
7845 
7846   return parseToken(lltok::rbrace, "expected end of metadata node");
7847 }
7848 
7849 //===----------------------------------------------------------------------===//
7850 // Use-list order directives.
7851 //===----------------------------------------------------------------------===//
7852 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7853                                 SMLoc Loc) {
7854   if (V->use_empty())
7855     return error(Loc, "value has no uses");
7856 
7857   unsigned NumUses = 0;
7858   SmallDenseMap<const Use *, unsigned, 16> Order;
7859   for (const Use &U : V->uses()) {
7860     if (++NumUses > Indexes.size())
7861       break;
7862     Order[&U] = Indexes[NumUses - 1];
7863   }
7864   if (NumUses < 2)
7865     return error(Loc, "value only has one use");
7866   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7867     return error(Loc,
7868                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7869 
7870   V->sortUseList([&](const Use &L, const Use &R) {
7871     return Order.lookup(&L) < Order.lookup(&R);
7872   });
7873   return false;
7874 }
7875 
7876 /// parseUseListOrderIndexes
7877 ///   ::= '{' uint32 (',' uint32)+ '}'
7878 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7879   SMLoc Loc = Lex.getLoc();
7880   if (parseToken(lltok::lbrace, "expected '{' here"))
7881     return true;
7882   if (Lex.getKind() == lltok::rbrace)
7883     return Lex.Error("expected non-empty list of uselistorder indexes");
7884 
7885   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7886   // indexes should be distinct numbers in the range [0, size-1], and should
7887   // not be in order.
7888   unsigned Offset = 0;
7889   unsigned Max = 0;
7890   bool IsOrdered = true;
7891   assert(Indexes.empty() && "Expected empty order vector");
7892   do {
7893     unsigned Index;
7894     if (parseUInt32(Index))
7895       return true;
7896 
7897     // Update consistency checks.
7898     Offset += Index - Indexes.size();
7899     Max = std::max(Max, Index);
7900     IsOrdered &= Index == Indexes.size();
7901 
7902     Indexes.push_back(Index);
7903   } while (EatIfPresent(lltok::comma));
7904 
7905   if (parseToken(lltok::rbrace, "expected '}' here"))
7906     return true;
7907 
7908   if (Indexes.size() < 2)
7909     return error(Loc, "expected >= 2 uselistorder indexes");
7910   if (Offset != 0 || Max >= Indexes.size())
7911     return error(Loc,
7912                  "expected distinct uselistorder indexes in range [0, size)");
7913   if (IsOrdered)
7914     return error(Loc, "expected uselistorder indexes to change the order");
7915 
7916   return false;
7917 }
7918 
7919 /// parseUseListOrder
7920 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7921 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7922   SMLoc Loc = Lex.getLoc();
7923   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7924     return true;
7925 
7926   Value *V;
7927   SmallVector<unsigned, 16> Indexes;
7928   if (parseTypeAndValue(V, PFS) ||
7929       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7930       parseUseListOrderIndexes(Indexes))
7931     return true;
7932 
7933   return sortUseListOrder(V, Indexes, Loc);
7934 }
7935 
7936 /// parseUseListOrderBB
7937 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7938 bool LLParser::parseUseListOrderBB() {
7939   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7940   SMLoc Loc = Lex.getLoc();
7941   Lex.Lex();
7942 
7943   ValID Fn, Label;
7944   SmallVector<unsigned, 16> Indexes;
7945   if (parseValID(Fn) ||
7946       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7947       parseValID(Label) ||
7948       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7949       parseUseListOrderIndexes(Indexes))
7950     return true;
7951 
7952   // Check the function.
7953   GlobalValue *GV;
7954   if (Fn.Kind == ValID::t_GlobalName)
7955     GV = M->getNamedValue(Fn.StrVal);
7956   else if (Fn.Kind == ValID::t_GlobalID)
7957     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7958   else
7959     return error(Fn.Loc, "expected function name in uselistorder_bb");
7960   if (!GV)
7961     return error(Fn.Loc,
7962                  "invalid function forward reference in uselistorder_bb");
7963   auto *F = dyn_cast<Function>(GV);
7964   if (!F)
7965     return error(Fn.Loc, "expected function name in uselistorder_bb");
7966   if (F->isDeclaration())
7967     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7968 
7969   // Check the basic block.
7970   if (Label.Kind == ValID::t_LocalID)
7971     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7972   if (Label.Kind != ValID::t_LocalName)
7973     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7974   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7975   if (!V)
7976     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7977   if (!isa<BasicBlock>(V))
7978     return error(Label.Loc, "expected basic block in uselistorder_bb");
7979 
7980   return sortUseListOrder(V, Indexes, Loc);
7981 }
7982 
7983 /// ModuleEntry
7984 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7985 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7986 bool LLParser::parseModuleEntry(unsigned ID) {
7987   assert(Lex.getKind() == lltok::kw_module);
7988   Lex.Lex();
7989 
7990   std::string Path;
7991   if (parseToken(lltok::colon, "expected ':' here") ||
7992       parseToken(lltok::lparen, "expected '(' here") ||
7993       parseToken(lltok::kw_path, "expected 'path' here") ||
7994       parseToken(lltok::colon, "expected ':' here") ||
7995       parseStringConstant(Path) ||
7996       parseToken(lltok::comma, "expected ',' here") ||
7997       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7998       parseToken(lltok::colon, "expected ':' here") ||
7999       parseToken(lltok::lparen, "expected '(' here"))
8000     return true;
8001 
8002   ModuleHash Hash;
8003   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8004       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8005       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8006       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8007       parseUInt32(Hash[4]))
8008     return true;
8009 
8010   if (parseToken(lltok::rparen, "expected ')' here") ||
8011       parseToken(lltok::rparen, "expected ')' here"))
8012     return true;
8013 
8014   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8015   ModuleIdMap[ID] = ModuleEntry->first();
8016 
8017   return false;
8018 }
8019 
8020 /// TypeIdEntry
8021 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8022 bool LLParser::parseTypeIdEntry(unsigned ID) {
8023   assert(Lex.getKind() == lltok::kw_typeid);
8024   Lex.Lex();
8025 
8026   std::string Name;
8027   if (parseToken(lltok::colon, "expected ':' here") ||
8028       parseToken(lltok::lparen, "expected '(' here") ||
8029       parseToken(lltok::kw_name, "expected 'name' here") ||
8030       parseToken(lltok::colon, "expected ':' here") ||
8031       parseStringConstant(Name))
8032     return true;
8033 
8034   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8035   if (parseToken(lltok::comma, "expected ',' here") ||
8036       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8037     return true;
8038 
8039   // Check if this ID was forward referenced, and if so, update the
8040   // corresponding GUIDs.
8041   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8042   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8043     for (auto TIDRef : FwdRefTIDs->second) {
8044       assert(!*TIDRef.first &&
8045              "Forward referenced type id GUID expected to be 0");
8046       *TIDRef.first = GlobalValue::getGUID(Name);
8047     }
8048     ForwardRefTypeIds.erase(FwdRefTIDs);
8049   }
8050 
8051   return false;
8052 }
8053 
8054 /// TypeIdSummary
8055 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8056 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8057   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8058       parseToken(lltok::colon, "expected ':' here") ||
8059       parseToken(lltok::lparen, "expected '(' here") ||
8060       parseTypeTestResolution(TIS.TTRes))
8061     return true;
8062 
8063   if (EatIfPresent(lltok::comma)) {
8064     // Expect optional wpdResolutions field
8065     if (parseOptionalWpdResolutions(TIS.WPDRes))
8066       return true;
8067   }
8068 
8069   if (parseToken(lltok::rparen, "expected ')' here"))
8070     return true;
8071 
8072   return false;
8073 }
8074 
8075 static ValueInfo EmptyVI =
8076     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8077 
8078 /// TypeIdCompatibleVtableEntry
8079 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8080 ///   TypeIdCompatibleVtableInfo
8081 ///   ')'
8082 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8083   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8084   Lex.Lex();
8085 
8086   std::string Name;
8087   if (parseToken(lltok::colon, "expected ':' here") ||
8088       parseToken(lltok::lparen, "expected '(' here") ||
8089       parseToken(lltok::kw_name, "expected 'name' here") ||
8090       parseToken(lltok::colon, "expected ':' here") ||
8091       parseStringConstant(Name))
8092     return true;
8093 
8094   TypeIdCompatibleVtableInfo &TI =
8095       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8096   if (parseToken(lltok::comma, "expected ',' here") ||
8097       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8098       parseToken(lltok::colon, "expected ':' here") ||
8099       parseToken(lltok::lparen, "expected '(' here"))
8100     return true;
8101 
8102   IdToIndexMapType IdToIndexMap;
8103   // parse each call edge
8104   do {
8105     uint64_t Offset;
8106     if (parseToken(lltok::lparen, "expected '(' here") ||
8107         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8108         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8109         parseToken(lltok::comma, "expected ',' here"))
8110       return true;
8111 
8112     LocTy Loc = Lex.getLoc();
8113     unsigned GVId;
8114     ValueInfo VI;
8115     if (parseGVReference(VI, GVId))
8116       return true;
8117 
8118     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8119     // forward reference. We will save the location of the ValueInfo needing an
8120     // update, but can only do so once the std::vector is finalized.
8121     if (VI == EmptyVI)
8122       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8123     TI.push_back({Offset, VI});
8124 
8125     if (parseToken(lltok::rparen, "expected ')' in call"))
8126       return true;
8127   } while (EatIfPresent(lltok::comma));
8128 
8129   // Now that the TI vector is finalized, it is safe to save the locations
8130   // of any forward GV references that need updating later.
8131   for (auto I : IdToIndexMap) {
8132     auto &Infos = ForwardRefValueInfos[I.first];
8133     for (auto P : I.second) {
8134       assert(TI[P.first].VTableVI == EmptyVI &&
8135              "Forward referenced ValueInfo expected to be empty");
8136       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8137     }
8138   }
8139 
8140   if (parseToken(lltok::rparen, "expected ')' here") ||
8141       parseToken(lltok::rparen, "expected ')' here"))
8142     return true;
8143 
8144   // Check if this ID was forward referenced, and if so, update the
8145   // corresponding GUIDs.
8146   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8147   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8148     for (auto TIDRef : FwdRefTIDs->second) {
8149       assert(!*TIDRef.first &&
8150              "Forward referenced type id GUID expected to be 0");
8151       *TIDRef.first = GlobalValue::getGUID(Name);
8152     }
8153     ForwardRefTypeIds.erase(FwdRefTIDs);
8154   }
8155 
8156   return false;
8157 }
8158 
8159 /// TypeTestResolution
8160 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8161 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8162 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8163 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8164 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8165 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8166   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8167       parseToken(lltok::colon, "expected ':' here") ||
8168       parseToken(lltok::lparen, "expected '(' here") ||
8169       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8170       parseToken(lltok::colon, "expected ':' here"))
8171     return true;
8172 
8173   switch (Lex.getKind()) {
8174   case lltok::kw_unknown:
8175     TTRes.TheKind = TypeTestResolution::Unknown;
8176     break;
8177   case lltok::kw_unsat:
8178     TTRes.TheKind = TypeTestResolution::Unsat;
8179     break;
8180   case lltok::kw_byteArray:
8181     TTRes.TheKind = TypeTestResolution::ByteArray;
8182     break;
8183   case lltok::kw_inline:
8184     TTRes.TheKind = TypeTestResolution::Inline;
8185     break;
8186   case lltok::kw_single:
8187     TTRes.TheKind = TypeTestResolution::Single;
8188     break;
8189   case lltok::kw_allOnes:
8190     TTRes.TheKind = TypeTestResolution::AllOnes;
8191     break;
8192   default:
8193     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8194   }
8195   Lex.Lex();
8196 
8197   if (parseToken(lltok::comma, "expected ',' here") ||
8198       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8199       parseToken(lltok::colon, "expected ':' here") ||
8200       parseUInt32(TTRes.SizeM1BitWidth))
8201     return true;
8202 
8203   // parse optional fields
8204   while (EatIfPresent(lltok::comma)) {
8205     switch (Lex.getKind()) {
8206     case lltok::kw_alignLog2:
8207       Lex.Lex();
8208       if (parseToken(lltok::colon, "expected ':'") ||
8209           parseUInt64(TTRes.AlignLog2))
8210         return true;
8211       break;
8212     case lltok::kw_sizeM1:
8213       Lex.Lex();
8214       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8215         return true;
8216       break;
8217     case lltok::kw_bitMask: {
8218       unsigned Val;
8219       Lex.Lex();
8220       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8221         return true;
8222       assert(Val <= 0xff);
8223       TTRes.BitMask = (uint8_t)Val;
8224       break;
8225     }
8226     case lltok::kw_inlineBits:
8227       Lex.Lex();
8228       if (parseToken(lltok::colon, "expected ':'") ||
8229           parseUInt64(TTRes.InlineBits))
8230         return true;
8231       break;
8232     default:
8233       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8234     }
8235   }
8236 
8237   if (parseToken(lltok::rparen, "expected ')' here"))
8238     return true;
8239 
8240   return false;
8241 }
8242 
8243 /// OptionalWpdResolutions
8244 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8245 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8246 bool LLParser::parseOptionalWpdResolutions(
8247     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8248   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8249       parseToken(lltok::colon, "expected ':' here") ||
8250       parseToken(lltok::lparen, "expected '(' here"))
8251     return true;
8252 
8253   do {
8254     uint64_t Offset;
8255     WholeProgramDevirtResolution WPDRes;
8256     if (parseToken(lltok::lparen, "expected '(' here") ||
8257         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8258         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8259         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8260         parseToken(lltok::rparen, "expected ')' here"))
8261       return true;
8262     WPDResMap[Offset] = WPDRes;
8263   } while (EatIfPresent(lltok::comma));
8264 
8265   if (parseToken(lltok::rparen, "expected ')' here"))
8266     return true;
8267 
8268   return false;
8269 }
8270 
8271 /// WpdRes
8272 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8273 ///         [',' OptionalResByArg]? ')'
8274 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8275 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8276 ///         [',' OptionalResByArg]? ')'
8277 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8278 ///         [',' OptionalResByArg]? ')'
8279 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8280   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8281       parseToken(lltok::colon, "expected ':' here") ||
8282       parseToken(lltok::lparen, "expected '(' here") ||
8283       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8284       parseToken(lltok::colon, "expected ':' here"))
8285     return true;
8286 
8287   switch (Lex.getKind()) {
8288   case lltok::kw_indir:
8289     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8290     break;
8291   case lltok::kw_singleImpl:
8292     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8293     break;
8294   case lltok::kw_branchFunnel:
8295     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8296     break;
8297   default:
8298     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8299   }
8300   Lex.Lex();
8301 
8302   // parse optional fields
8303   while (EatIfPresent(lltok::comma)) {
8304     switch (Lex.getKind()) {
8305     case lltok::kw_singleImplName:
8306       Lex.Lex();
8307       if (parseToken(lltok::colon, "expected ':' here") ||
8308           parseStringConstant(WPDRes.SingleImplName))
8309         return true;
8310       break;
8311     case lltok::kw_resByArg:
8312       if (parseOptionalResByArg(WPDRes.ResByArg))
8313         return true;
8314       break;
8315     default:
8316       return error(Lex.getLoc(),
8317                    "expected optional WholeProgramDevirtResolution field");
8318     }
8319   }
8320 
8321   if (parseToken(lltok::rparen, "expected ')' here"))
8322     return true;
8323 
8324   return false;
8325 }
8326 
8327 /// OptionalResByArg
8328 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8329 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8330 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8331 ///                  'virtualConstProp' )
8332 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8333 ///                [',' 'bit' ':' UInt32]? ')'
8334 bool LLParser::parseOptionalResByArg(
8335     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8336         &ResByArg) {
8337   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8338       parseToken(lltok::colon, "expected ':' here") ||
8339       parseToken(lltok::lparen, "expected '(' here"))
8340     return true;
8341 
8342   do {
8343     std::vector<uint64_t> Args;
8344     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8345         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8346         parseToken(lltok::colon, "expected ':' here") ||
8347         parseToken(lltok::lparen, "expected '(' here") ||
8348         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8349         parseToken(lltok::colon, "expected ':' here"))
8350       return true;
8351 
8352     WholeProgramDevirtResolution::ByArg ByArg;
8353     switch (Lex.getKind()) {
8354     case lltok::kw_indir:
8355       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8356       break;
8357     case lltok::kw_uniformRetVal:
8358       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8359       break;
8360     case lltok::kw_uniqueRetVal:
8361       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8362       break;
8363     case lltok::kw_virtualConstProp:
8364       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8365       break;
8366     default:
8367       return error(Lex.getLoc(),
8368                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8369     }
8370     Lex.Lex();
8371 
8372     // parse optional fields
8373     while (EatIfPresent(lltok::comma)) {
8374       switch (Lex.getKind()) {
8375       case lltok::kw_info:
8376         Lex.Lex();
8377         if (parseToken(lltok::colon, "expected ':' here") ||
8378             parseUInt64(ByArg.Info))
8379           return true;
8380         break;
8381       case lltok::kw_byte:
8382         Lex.Lex();
8383         if (parseToken(lltok::colon, "expected ':' here") ||
8384             parseUInt32(ByArg.Byte))
8385           return true;
8386         break;
8387       case lltok::kw_bit:
8388         Lex.Lex();
8389         if (parseToken(lltok::colon, "expected ':' here") ||
8390             parseUInt32(ByArg.Bit))
8391           return true;
8392         break;
8393       default:
8394         return error(Lex.getLoc(),
8395                      "expected optional whole program devirt field");
8396       }
8397     }
8398 
8399     if (parseToken(lltok::rparen, "expected ')' here"))
8400       return true;
8401 
8402     ResByArg[Args] = ByArg;
8403   } while (EatIfPresent(lltok::comma));
8404 
8405   if (parseToken(lltok::rparen, "expected ')' here"))
8406     return true;
8407 
8408   return false;
8409 }
8410 
8411 /// OptionalResByArg
8412 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8413 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8414   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8415       parseToken(lltok::colon, "expected ':' here") ||
8416       parseToken(lltok::lparen, "expected '(' here"))
8417     return true;
8418 
8419   do {
8420     uint64_t Val;
8421     if (parseUInt64(Val))
8422       return true;
8423     Args.push_back(Val);
8424   } while (EatIfPresent(lltok::comma));
8425 
8426   if (parseToken(lltok::rparen, "expected ')' here"))
8427     return true;
8428 
8429   return false;
8430 }
8431 
8432 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8433 
8434 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8435   bool ReadOnly = Fwd->isReadOnly();
8436   bool WriteOnly = Fwd->isWriteOnly();
8437   assert(!(ReadOnly && WriteOnly));
8438   *Fwd = Resolved;
8439   if (ReadOnly)
8440     Fwd->setReadOnly();
8441   if (WriteOnly)
8442     Fwd->setWriteOnly();
8443 }
8444 
8445 /// Stores the given Name/GUID and associated summary into the Index.
8446 /// Also updates any forward references to the associated entry ID.
8447 void LLParser::addGlobalValueToIndex(
8448     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8449     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8450   // First create the ValueInfo utilizing the Name or GUID.
8451   ValueInfo VI;
8452   if (GUID != 0) {
8453     assert(Name.empty());
8454     VI = Index->getOrInsertValueInfo(GUID);
8455   } else {
8456     assert(!Name.empty());
8457     if (M) {
8458       auto *GV = M->getNamedValue(Name);
8459       assert(GV);
8460       VI = Index->getOrInsertValueInfo(GV);
8461     } else {
8462       assert(
8463           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8464           "Need a source_filename to compute GUID for local");
8465       GUID = GlobalValue::getGUID(
8466           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8467       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8468     }
8469   }
8470 
8471   // Resolve forward references from calls/refs
8472   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8473   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8474     for (auto VIRef : FwdRefVIs->second) {
8475       assert(VIRef.first->getRef() == FwdVIRef &&
8476              "Forward referenced ValueInfo expected to be empty");
8477       resolveFwdRef(VIRef.first, VI);
8478     }
8479     ForwardRefValueInfos.erase(FwdRefVIs);
8480   }
8481 
8482   // Resolve forward references from aliases
8483   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8484   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8485     for (auto AliaseeRef : FwdRefAliasees->second) {
8486       assert(!AliaseeRef.first->hasAliasee() &&
8487              "Forward referencing alias already has aliasee");
8488       assert(Summary && "Aliasee must be a definition");
8489       AliaseeRef.first->setAliasee(VI, Summary.get());
8490     }
8491     ForwardRefAliasees.erase(FwdRefAliasees);
8492   }
8493 
8494   // Add the summary if one was provided.
8495   if (Summary)
8496     Index->addGlobalValueSummary(VI, std::move(Summary));
8497 
8498   // Save the associated ValueInfo for use in later references by ID.
8499   if (ID == NumberedValueInfos.size())
8500     NumberedValueInfos.push_back(VI);
8501   else {
8502     // Handle non-continuous numbers (to make test simplification easier).
8503     if (ID > NumberedValueInfos.size())
8504       NumberedValueInfos.resize(ID + 1);
8505     NumberedValueInfos[ID] = VI;
8506   }
8507 }
8508 
8509 /// parseSummaryIndexFlags
8510 ///   ::= 'flags' ':' UInt64
8511 bool LLParser::parseSummaryIndexFlags() {
8512   assert(Lex.getKind() == lltok::kw_flags);
8513   Lex.Lex();
8514 
8515   if (parseToken(lltok::colon, "expected ':' here"))
8516     return true;
8517   uint64_t Flags;
8518   if (parseUInt64(Flags))
8519     return true;
8520   if (Index)
8521     Index->setFlags(Flags);
8522   return false;
8523 }
8524 
8525 /// parseBlockCount
8526 ///   ::= 'blockcount' ':' UInt64
8527 bool LLParser::parseBlockCount() {
8528   assert(Lex.getKind() == lltok::kw_blockcount);
8529   Lex.Lex();
8530 
8531   if (parseToken(lltok::colon, "expected ':' here"))
8532     return true;
8533   uint64_t BlockCount;
8534   if (parseUInt64(BlockCount))
8535     return true;
8536   if (Index)
8537     Index->setBlockCount(BlockCount);
8538   return false;
8539 }
8540 
8541 /// parseGVEntry
8542 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8543 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8544 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8545 bool LLParser::parseGVEntry(unsigned ID) {
8546   assert(Lex.getKind() == lltok::kw_gv);
8547   Lex.Lex();
8548 
8549   if (parseToken(lltok::colon, "expected ':' here") ||
8550       parseToken(lltok::lparen, "expected '(' here"))
8551     return true;
8552 
8553   std::string Name;
8554   GlobalValue::GUID GUID = 0;
8555   switch (Lex.getKind()) {
8556   case lltok::kw_name:
8557     Lex.Lex();
8558     if (parseToken(lltok::colon, "expected ':' here") ||
8559         parseStringConstant(Name))
8560       return true;
8561     // Can't create GUID/ValueInfo until we have the linkage.
8562     break;
8563   case lltok::kw_guid:
8564     Lex.Lex();
8565     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8566       return true;
8567     break;
8568   default:
8569     return error(Lex.getLoc(), "expected name or guid tag");
8570   }
8571 
8572   if (!EatIfPresent(lltok::comma)) {
8573     // No summaries. Wrap up.
8574     if (parseToken(lltok::rparen, "expected ')' here"))
8575       return true;
8576     // This was created for a call to an external or indirect target.
8577     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8578     // created for indirect calls with VP. A Name with no GUID came from
8579     // an external definition. We pass ExternalLinkage since that is only
8580     // used when the GUID must be computed from Name, and in that case
8581     // the symbol must have external linkage.
8582     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8583                           nullptr);
8584     return false;
8585   }
8586 
8587   // Have a list of summaries
8588   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8589       parseToken(lltok::colon, "expected ':' here") ||
8590       parseToken(lltok::lparen, "expected '(' here"))
8591     return true;
8592   do {
8593     switch (Lex.getKind()) {
8594     case lltok::kw_function:
8595       if (parseFunctionSummary(Name, GUID, ID))
8596         return true;
8597       break;
8598     case lltok::kw_variable:
8599       if (parseVariableSummary(Name, GUID, ID))
8600         return true;
8601       break;
8602     case lltok::kw_alias:
8603       if (parseAliasSummary(Name, GUID, ID))
8604         return true;
8605       break;
8606     default:
8607       return error(Lex.getLoc(), "expected summary type");
8608     }
8609   } while (EatIfPresent(lltok::comma));
8610 
8611   if (parseToken(lltok::rparen, "expected ')' here") ||
8612       parseToken(lltok::rparen, "expected ')' here"))
8613     return true;
8614 
8615   return false;
8616 }
8617 
8618 /// FunctionSummary
8619 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8620 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8621 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8622 ///         [',' OptionalRefs]? ')'
8623 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8624                                     unsigned ID) {
8625   assert(Lex.getKind() == lltok::kw_function);
8626   Lex.Lex();
8627 
8628   StringRef ModulePath;
8629   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8630       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8631       /*NotEligibleToImport=*/false,
8632       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8633   unsigned InstCount;
8634   std::vector<FunctionSummary::EdgeTy> Calls;
8635   FunctionSummary::TypeIdInfo TypeIdInfo;
8636   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8637   std::vector<ValueInfo> Refs;
8638   // Default is all-zeros (conservative values).
8639   FunctionSummary::FFlags FFlags = {};
8640   if (parseToken(lltok::colon, "expected ':' here") ||
8641       parseToken(lltok::lparen, "expected '(' here") ||
8642       parseModuleReference(ModulePath) ||
8643       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8644       parseToken(lltok::comma, "expected ',' here") ||
8645       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8646       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8647     return true;
8648 
8649   // parse optional fields
8650   while (EatIfPresent(lltok::comma)) {
8651     switch (Lex.getKind()) {
8652     case lltok::kw_funcFlags:
8653       if (parseOptionalFFlags(FFlags))
8654         return true;
8655       break;
8656     case lltok::kw_calls:
8657       if (parseOptionalCalls(Calls))
8658         return true;
8659       break;
8660     case lltok::kw_typeIdInfo:
8661       if (parseOptionalTypeIdInfo(TypeIdInfo))
8662         return true;
8663       break;
8664     case lltok::kw_refs:
8665       if (parseOptionalRefs(Refs))
8666         return true;
8667       break;
8668     case lltok::kw_params:
8669       if (parseOptionalParamAccesses(ParamAccesses))
8670         return true;
8671       break;
8672     default:
8673       return error(Lex.getLoc(), "expected optional function summary field");
8674     }
8675   }
8676 
8677   if (parseToken(lltok::rparen, "expected ')' here"))
8678     return true;
8679 
8680   auto FS = std::make_unique<FunctionSummary>(
8681       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8682       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8683       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8684       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8685       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8686       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8687       std::move(ParamAccesses));
8688 
8689   FS->setModulePath(ModulePath);
8690 
8691   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8692                         ID, std::move(FS));
8693 
8694   return false;
8695 }
8696 
8697 /// VariableSummary
8698 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8699 ///         [',' OptionalRefs]? ')'
8700 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8701                                     unsigned ID) {
8702   assert(Lex.getKind() == lltok::kw_variable);
8703   Lex.Lex();
8704 
8705   StringRef ModulePath;
8706   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8707       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8708       /*NotEligibleToImport=*/false,
8709       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8710   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8711                                         /* WriteOnly */ false,
8712                                         /* Constant */ false,
8713                                         GlobalObject::VCallVisibilityPublic);
8714   std::vector<ValueInfo> Refs;
8715   VTableFuncList VTableFuncs;
8716   if (parseToken(lltok::colon, "expected ':' here") ||
8717       parseToken(lltok::lparen, "expected '(' here") ||
8718       parseModuleReference(ModulePath) ||
8719       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8720       parseToken(lltok::comma, "expected ',' here") ||
8721       parseGVarFlags(GVarFlags))
8722     return true;
8723 
8724   // parse optional fields
8725   while (EatIfPresent(lltok::comma)) {
8726     switch (Lex.getKind()) {
8727     case lltok::kw_vTableFuncs:
8728       if (parseOptionalVTableFuncs(VTableFuncs))
8729         return true;
8730       break;
8731     case lltok::kw_refs:
8732       if (parseOptionalRefs(Refs))
8733         return true;
8734       break;
8735     default:
8736       return error(Lex.getLoc(), "expected optional variable summary field");
8737     }
8738   }
8739 
8740   if (parseToken(lltok::rparen, "expected ')' here"))
8741     return true;
8742 
8743   auto GS =
8744       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8745 
8746   GS->setModulePath(ModulePath);
8747   GS->setVTableFuncs(std::move(VTableFuncs));
8748 
8749   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8750                         ID, std::move(GS));
8751 
8752   return false;
8753 }
8754 
8755 /// AliasSummary
8756 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8757 ///         'aliasee' ':' GVReference ')'
8758 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8759                                  unsigned ID) {
8760   assert(Lex.getKind() == lltok::kw_alias);
8761   LocTy Loc = Lex.getLoc();
8762   Lex.Lex();
8763 
8764   StringRef ModulePath;
8765   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8766       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8767       /*NotEligibleToImport=*/false,
8768       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8769   if (parseToken(lltok::colon, "expected ':' here") ||
8770       parseToken(lltok::lparen, "expected '(' here") ||
8771       parseModuleReference(ModulePath) ||
8772       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8773       parseToken(lltok::comma, "expected ',' here") ||
8774       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8775       parseToken(lltok::colon, "expected ':' here"))
8776     return true;
8777 
8778   ValueInfo AliaseeVI;
8779   unsigned GVId;
8780   if (parseGVReference(AliaseeVI, GVId))
8781     return true;
8782 
8783   if (parseToken(lltok::rparen, "expected ')' here"))
8784     return true;
8785 
8786   auto AS = std::make_unique<AliasSummary>(GVFlags);
8787 
8788   AS->setModulePath(ModulePath);
8789 
8790   // Record forward reference if the aliasee is not parsed yet.
8791   if (AliaseeVI.getRef() == FwdVIRef) {
8792     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8793   } else {
8794     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8795     assert(Summary && "Aliasee must be a definition");
8796     AS->setAliasee(AliaseeVI, Summary);
8797   }
8798 
8799   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8800                         ID, std::move(AS));
8801 
8802   return false;
8803 }
8804 
8805 /// Flag
8806 ///   ::= [0|1]
8807 bool LLParser::parseFlag(unsigned &Val) {
8808   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8809     return tokError("expected integer");
8810   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8811   Lex.Lex();
8812   return false;
8813 }
8814 
8815 /// OptionalFFlags
8816 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8817 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8818 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8819 ///        [',' 'noInline' ':' Flag]? ')'
8820 ///        [',' 'alwaysInline' ':' Flag]? ')'
8821 
8822 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8823   assert(Lex.getKind() == lltok::kw_funcFlags);
8824   Lex.Lex();
8825 
8826   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8827       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8828     return true;
8829 
8830   do {
8831     unsigned Val = 0;
8832     switch (Lex.getKind()) {
8833     case lltok::kw_readNone:
8834       Lex.Lex();
8835       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8836         return true;
8837       FFlags.ReadNone = Val;
8838       break;
8839     case lltok::kw_readOnly:
8840       Lex.Lex();
8841       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8842         return true;
8843       FFlags.ReadOnly = Val;
8844       break;
8845     case lltok::kw_noRecurse:
8846       Lex.Lex();
8847       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8848         return true;
8849       FFlags.NoRecurse = Val;
8850       break;
8851     case lltok::kw_returnDoesNotAlias:
8852       Lex.Lex();
8853       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8854         return true;
8855       FFlags.ReturnDoesNotAlias = Val;
8856       break;
8857     case lltok::kw_noInline:
8858       Lex.Lex();
8859       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8860         return true;
8861       FFlags.NoInline = Val;
8862       break;
8863     case lltok::kw_alwaysInline:
8864       Lex.Lex();
8865       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8866         return true;
8867       FFlags.AlwaysInline = Val;
8868       break;
8869     default:
8870       return error(Lex.getLoc(), "expected function flag type");
8871     }
8872   } while (EatIfPresent(lltok::comma));
8873 
8874   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8875     return true;
8876 
8877   return false;
8878 }
8879 
8880 /// OptionalCalls
8881 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8882 /// Call ::= '(' 'callee' ':' GVReference
8883 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8884 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8885   assert(Lex.getKind() == lltok::kw_calls);
8886   Lex.Lex();
8887 
8888   if (parseToken(lltok::colon, "expected ':' in calls") |
8889       parseToken(lltok::lparen, "expected '(' in calls"))
8890     return true;
8891 
8892   IdToIndexMapType IdToIndexMap;
8893   // parse each call edge
8894   do {
8895     ValueInfo VI;
8896     if (parseToken(lltok::lparen, "expected '(' in call") ||
8897         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8898         parseToken(lltok::colon, "expected ':'"))
8899       return true;
8900 
8901     LocTy Loc = Lex.getLoc();
8902     unsigned GVId;
8903     if (parseGVReference(VI, GVId))
8904       return true;
8905 
8906     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8907     unsigned RelBF = 0;
8908     if (EatIfPresent(lltok::comma)) {
8909       // Expect either hotness or relbf
8910       if (EatIfPresent(lltok::kw_hotness)) {
8911         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8912           return true;
8913       } else {
8914         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8915             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8916           return true;
8917       }
8918     }
8919     // Keep track of the Call array index needing a forward reference.
8920     // We will save the location of the ValueInfo needing an update, but
8921     // can only do so once the std::vector is finalized.
8922     if (VI.getRef() == FwdVIRef)
8923       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8924     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8925 
8926     if (parseToken(lltok::rparen, "expected ')' in call"))
8927       return true;
8928   } while (EatIfPresent(lltok::comma));
8929 
8930   // Now that the Calls vector is finalized, it is safe to save the locations
8931   // of any forward GV references that need updating later.
8932   for (auto I : IdToIndexMap) {
8933     auto &Infos = ForwardRefValueInfos[I.first];
8934     for (auto P : I.second) {
8935       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8936              "Forward referenced ValueInfo expected to be empty");
8937       Infos.emplace_back(&Calls[P.first].first, P.second);
8938     }
8939   }
8940 
8941   if (parseToken(lltok::rparen, "expected ')' in calls"))
8942     return true;
8943 
8944   return false;
8945 }
8946 
8947 /// Hotness
8948 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8949 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8950   switch (Lex.getKind()) {
8951   case lltok::kw_unknown:
8952     Hotness = CalleeInfo::HotnessType::Unknown;
8953     break;
8954   case lltok::kw_cold:
8955     Hotness = CalleeInfo::HotnessType::Cold;
8956     break;
8957   case lltok::kw_none:
8958     Hotness = CalleeInfo::HotnessType::None;
8959     break;
8960   case lltok::kw_hot:
8961     Hotness = CalleeInfo::HotnessType::Hot;
8962     break;
8963   case lltok::kw_critical:
8964     Hotness = CalleeInfo::HotnessType::Critical;
8965     break;
8966   default:
8967     return error(Lex.getLoc(), "invalid call edge hotness");
8968   }
8969   Lex.Lex();
8970   return false;
8971 }
8972 
8973 /// OptionalVTableFuncs
8974 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8975 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8976 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8977   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8978   Lex.Lex();
8979 
8980   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8981       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8982     return true;
8983 
8984   IdToIndexMapType IdToIndexMap;
8985   // parse each virtual function pair
8986   do {
8987     ValueInfo VI;
8988     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8989         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8990         parseToken(lltok::colon, "expected ':'"))
8991       return true;
8992 
8993     LocTy Loc = Lex.getLoc();
8994     unsigned GVId;
8995     if (parseGVReference(VI, GVId))
8996       return true;
8997 
8998     uint64_t Offset;
8999     if (parseToken(lltok::comma, "expected comma") ||
9000         parseToken(lltok::kw_offset, "expected offset") ||
9001         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9002       return true;
9003 
9004     // Keep track of the VTableFuncs array index needing a forward reference.
9005     // We will save the location of the ValueInfo needing an update, but
9006     // can only do so once the std::vector is finalized.
9007     if (VI == EmptyVI)
9008       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9009     VTableFuncs.push_back({VI, Offset});
9010 
9011     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9012       return true;
9013   } while (EatIfPresent(lltok::comma));
9014 
9015   // Now that the VTableFuncs vector is finalized, it is safe to save the
9016   // locations of any forward GV references that need updating later.
9017   for (auto I : IdToIndexMap) {
9018     auto &Infos = ForwardRefValueInfos[I.first];
9019     for (auto P : I.second) {
9020       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9021              "Forward referenced ValueInfo expected to be empty");
9022       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9023     }
9024   }
9025 
9026   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9027     return true;
9028 
9029   return false;
9030 }
9031 
9032 /// ParamNo := 'param' ':' UInt64
9033 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9034   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9035       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9036     return true;
9037   return false;
9038 }
9039 
9040 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9041 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9042   APSInt Lower;
9043   APSInt Upper;
9044   auto ParseAPSInt = [&](APSInt &Val) {
9045     if (Lex.getKind() != lltok::APSInt)
9046       return tokError("expected integer");
9047     Val = Lex.getAPSIntVal();
9048     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9049     Val.setIsSigned(true);
9050     Lex.Lex();
9051     return false;
9052   };
9053   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9054       parseToken(lltok::colon, "expected ':' here") ||
9055       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9056       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9057       parseToken(lltok::rsquare, "expected ']' here"))
9058     return true;
9059 
9060   ++Upper;
9061   Range =
9062       (Lower == Upper && !Lower.isMaxValue())
9063           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9064           : ConstantRange(Lower, Upper);
9065 
9066   return false;
9067 }
9068 
9069 /// ParamAccessCall
9070 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9071 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9072                                     IdLocListType &IdLocList) {
9073   if (parseToken(lltok::lparen, "expected '(' here") ||
9074       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9075       parseToken(lltok::colon, "expected ':' here"))
9076     return true;
9077 
9078   unsigned GVId;
9079   ValueInfo VI;
9080   LocTy Loc = Lex.getLoc();
9081   if (parseGVReference(VI, GVId))
9082     return true;
9083 
9084   Call.Callee = VI;
9085   IdLocList.emplace_back(GVId, Loc);
9086 
9087   if (parseToken(lltok::comma, "expected ',' here") ||
9088       parseParamNo(Call.ParamNo) ||
9089       parseToken(lltok::comma, "expected ',' here") ||
9090       parseParamAccessOffset(Call.Offsets))
9091     return true;
9092 
9093   if (parseToken(lltok::rparen, "expected ')' here"))
9094     return true;
9095 
9096   return false;
9097 }
9098 
9099 /// ParamAccess
9100 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9101 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9102 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9103                                 IdLocListType &IdLocList) {
9104   if (parseToken(lltok::lparen, "expected '(' here") ||
9105       parseParamNo(Param.ParamNo) ||
9106       parseToken(lltok::comma, "expected ',' here") ||
9107       parseParamAccessOffset(Param.Use))
9108     return true;
9109 
9110   if (EatIfPresent(lltok::comma)) {
9111     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9112         parseToken(lltok::colon, "expected ':' here") ||
9113         parseToken(lltok::lparen, "expected '(' here"))
9114       return true;
9115     do {
9116       FunctionSummary::ParamAccess::Call Call;
9117       if (parseParamAccessCall(Call, IdLocList))
9118         return true;
9119       Param.Calls.push_back(Call);
9120     } while (EatIfPresent(lltok::comma));
9121 
9122     if (parseToken(lltok::rparen, "expected ')' here"))
9123       return true;
9124   }
9125 
9126   if (parseToken(lltok::rparen, "expected ')' here"))
9127     return true;
9128 
9129   return false;
9130 }
9131 
9132 /// OptionalParamAccesses
9133 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9134 bool LLParser::parseOptionalParamAccesses(
9135     std::vector<FunctionSummary::ParamAccess> &Params) {
9136   assert(Lex.getKind() == lltok::kw_params);
9137   Lex.Lex();
9138 
9139   if (parseToken(lltok::colon, "expected ':' here") ||
9140       parseToken(lltok::lparen, "expected '(' here"))
9141     return true;
9142 
9143   IdLocListType VContexts;
9144   size_t CallsNum = 0;
9145   do {
9146     FunctionSummary::ParamAccess ParamAccess;
9147     if (parseParamAccess(ParamAccess, VContexts))
9148       return true;
9149     CallsNum += ParamAccess.Calls.size();
9150     assert(VContexts.size() == CallsNum);
9151     (void)CallsNum;
9152     Params.emplace_back(std::move(ParamAccess));
9153   } while (EatIfPresent(lltok::comma));
9154 
9155   if (parseToken(lltok::rparen, "expected ')' here"))
9156     return true;
9157 
9158   // Now that the Params is finalized, it is safe to save the locations
9159   // of any forward GV references that need updating later.
9160   IdLocListType::const_iterator ItContext = VContexts.begin();
9161   for (auto &PA : Params) {
9162     for (auto &C : PA.Calls) {
9163       if (C.Callee.getRef() == FwdVIRef)
9164         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9165                                                             ItContext->second);
9166       ++ItContext;
9167     }
9168   }
9169   assert(ItContext == VContexts.end());
9170 
9171   return false;
9172 }
9173 
9174 /// OptionalRefs
9175 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9176 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9177   assert(Lex.getKind() == lltok::kw_refs);
9178   Lex.Lex();
9179 
9180   if (parseToken(lltok::colon, "expected ':' in refs") ||
9181       parseToken(lltok::lparen, "expected '(' in refs"))
9182     return true;
9183 
9184   struct ValueContext {
9185     ValueInfo VI;
9186     unsigned GVId;
9187     LocTy Loc;
9188   };
9189   std::vector<ValueContext> VContexts;
9190   // parse each ref edge
9191   do {
9192     ValueContext VC;
9193     VC.Loc = Lex.getLoc();
9194     if (parseGVReference(VC.VI, VC.GVId))
9195       return true;
9196     VContexts.push_back(VC);
9197   } while (EatIfPresent(lltok::comma));
9198 
9199   // Sort value contexts so that ones with writeonly
9200   // and readonly ValueInfo  are at the end of VContexts vector.
9201   // See FunctionSummary::specialRefCounts()
9202   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9203     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9204   });
9205 
9206   IdToIndexMapType IdToIndexMap;
9207   for (auto &VC : VContexts) {
9208     // Keep track of the Refs array index needing a forward reference.
9209     // We will save the location of the ValueInfo needing an update, but
9210     // can only do so once the std::vector is finalized.
9211     if (VC.VI.getRef() == FwdVIRef)
9212       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9213     Refs.push_back(VC.VI);
9214   }
9215 
9216   // Now that the Refs vector is finalized, it is safe to save the locations
9217   // of any forward GV references that need updating later.
9218   for (auto I : IdToIndexMap) {
9219     auto &Infos = ForwardRefValueInfos[I.first];
9220     for (auto P : I.second) {
9221       assert(Refs[P.first].getRef() == FwdVIRef &&
9222              "Forward referenced ValueInfo expected to be empty");
9223       Infos.emplace_back(&Refs[P.first], P.second);
9224     }
9225   }
9226 
9227   if (parseToken(lltok::rparen, "expected ')' in refs"))
9228     return true;
9229 
9230   return false;
9231 }
9232 
9233 /// OptionalTypeIdInfo
9234 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9235 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9236 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9237 bool LLParser::parseOptionalTypeIdInfo(
9238     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9239   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9240   Lex.Lex();
9241 
9242   if (parseToken(lltok::colon, "expected ':' here") ||
9243       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9244     return true;
9245 
9246   do {
9247     switch (Lex.getKind()) {
9248     case lltok::kw_typeTests:
9249       if (parseTypeTests(TypeIdInfo.TypeTests))
9250         return true;
9251       break;
9252     case lltok::kw_typeTestAssumeVCalls:
9253       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9254                            TypeIdInfo.TypeTestAssumeVCalls))
9255         return true;
9256       break;
9257     case lltok::kw_typeCheckedLoadVCalls:
9258       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9259                            TypeIdInfo.TypeCheckedLoadVCalls))
9260         return true;
9261       break;
9262     case lltok::kw_typeTestAssumeConstVCalls:
9263       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9264                               TypeIdInfo.TypeTestAssumeConstVCalls))
9265         return true;
9266       break;
9267     case lltok::kw_typeCheckedLoadConstVCalls:
9268       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9269                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9270         return true;
9271       break;
9272     default:
9273       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9274     }
9275   } while (EatIfPresent(lltok::comma));
9276 
9277   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9278     return true;
9279 
9280   return false;
9281 }
9282 
9283 /// TypeTests
9284 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9285 ///         [',' (SummaryID | UInt64)]* ')'
9286 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9287   assert(Lex.getKind() == lltok::kw_typeTests);
9288   Lex.Lex();
9289 
9290   if (parseToken(lltok::colon, "expected ':' here") ||
9291       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9292     return true;
9293 
9294   IdToIndexMapType IdToIndexMap;
9295   do {
9296     GlobalValue::GUID GUID = 0;
9297     if (Lex.getKind() == lltok::SummaryID) {
9298       unsigned ID = Lex.getUIntVal();
9299       LocTy Loc = Lex.getLoc();
9300       // Keep track of the TypeTests array index needing a forward reference.
9301       // We will save the location of the GUID needing an update, but
9302       // can only do so once the std::vector is finalized.
9303       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9304       Lex.Lex();
9305     } else if (parseUInt64(GUID))
9306       return true;
9307     TypeTests.push_back(GUID);
9308   } while (EatIfPresent(lltok::comma));
9309 
9310   // Now that the TypeTests vector is finalized, it is safe to save the
9311   // locations of any forward GV references that need updating later.
9312   for (auto I : IdToIndexMap) {
9313     auto &Ids = ForwardRefTypeIds[I.first];
9314     for (auto P : I.second) {
9315       assert(TypeTests[P.first] == 0 &&
9316              "Forward referenced type id GUID expected to be 0");
9317       Ids.emplace_back(&TypeTests[P.first], P.second);
9318     }
9319   }
9320 
9321   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9322     return true;
9323 
9324   return false;
9325 }
9326 
9327 /// VFuncIdList
9328 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9329 bool LLParser::parseVFuncIdList(
9330     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9331   assert(Lex.getKind() == Kind);
9332   Lex.Lex();
9333 
9334   if (parseToken(lltok::colon, "expected ':' here") ||
9335       parseToken(lltok::lparen, "expected '(' here"))
9336     return true;
9337 
9338   IdToIndexMapType IdToIndexMap;
9339   do {
9340     FunctionSummary::VFuncId VFuncId;
9341     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9342       return true;
9343     VFuncIdList.push_back(VFuncId);
9344   } while (EatIfPresent(lltok::comma));
9345 
9346   if (parseToken(lltok::rparen, "expected ')' here"))
9347     return true;
9348 
9349   // Now that the VFuncIdList vector is finalized, it is safe to save the
9350   // locations of any forward GV references that need updating later.
9351   for (auto I : IdToIndexMap) {
9352     auto &Ids = ForwardRefTypeIds[I.first];
9353     for (auto P : I.second) {
9354       assert(VFuncIdList[P.first].GUID == 0 &&
9355              "Forward referenced type id GUID expected to be 0");
9356       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9357     }
9358   }
9359 
9360   return false;
9361 }
9362 
9363 /// ConstVCallList
9364 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9365 bool LLParser::parseConstVCallList(
9366     lltok::Kind Kind,
9367     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9368   assert(Lex.getKind() == Kind);
9369   Lex.Lex();
9370 
9371   if (parseToken(lltok::colon, "expected ':' here") ||
9372       parseToken(lltok::lparen, "expected '(' here"))
9373     return true;
9374 
9375   IdToIndexMapType IdToIndexMap;
9376   do {
9377     FunctionSummary::ConstVCall ConstVCall;
9378     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9379       return true;
9380     ConstVCallList.push_back(ConstVCall);
9381   } while (EatIfPresent(lltok::comma));
9382 
9383   if (parseToken(lltok::rparen, "expected ')' here"))
9384     return true;
9385 
9386   // Now that the ConstVCallList vector is finalized, it is safe to save the
9387   // locations of any forward GV references that need updating later.
9388   for (auto I : IdToIndexMap) {
9389     auto &Ids = ForwardRefTypeIds[I.first];
9390     for (auto P : I.second) {
9391       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9392              "Forward referenced type id GUID expected to be 0");
9393       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9394     }
9395   }
9396 
9397   return false;
9398 }
9399 
9400 /// ConstVCall
9401 ///   ::= '(' VFuncId ',' Args ')'
9402 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9403                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9404   if (parseToken(lltok::lparen, "expected '(' here") ||
9405       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9406     return true;
9407 
9408   if (EatIfPresent(lltok::comma))
9409     if (parseArgs(ConstVCall.Args))
9410       return true;
9411 
9412   if (parseToken(lltok::rparen, "expected ')' here"))
9413     return true;
9414 
9415   return false;
9416 }
9417 
9418 /// VFuncId
9419 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9420 ///         'offset' ':' UInt64 ')'
9421 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9422                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9423   assert(Lex.getKind() == lltok::kw_vFuncId);
9424   Lex.Lex();
9425 
9426   if (parseToken(lltok::colon, "expected ':' here") ||
9427       parseToken(lltok::lparen, "expected '(' here"))
9428     return true;
9429 
9430   if (Lex.getKind() == lltok::SummaryID) {
9431     VFuncId.GUID = 0;
9432     unsigned ID = Lex.getUIntVal();
9433     LocTy Loc = Lex.getLoc();
9434     // Keep track of the array index needing a forward reference.
9435     // We will save the location of the GUID needing an update, but
9436     // can only do so once the caller's std::vector is finalized.
9437     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9438     Lex.Lex();
9439   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9440              parseToken(lltok::colon, "expected ':' here") ||
9441              parseUInt64(VFuncId.GUID))
9442     return true;
9443 
9444   if (parseToken(lltok::comma, "expected ',' here") ||
9445       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9446       parseToken(lltok::colon, "expected ':' here") ||
9447       parseUInt64(VFuncId.Offset) ||
9448       parseToken(lltok::rparen, "expected ')' here"))
9449     return true;
9450 
9451   return false;
9452 }
9453 
9454 /// GVFlags
9455 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9456 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9457 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9458 ///         'canAutoHide' ':' Flag ',' ')'
9459 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9460   assert(Lex.getKind() == lltok::kw_flags);
9461   Lex.Lex();
9462 
9463   if (parseToken(lltok::colon, "expected ':' here") ||
9464       parseToken(lltok::lparen, "expected '(' here"))
9465     return true;
9466 
9467   do {
9468     unsigned Flag = 0;
9469     switch (Lex.getKind()) {
9470     case lltok::kw_linkage:
9471       Lex.Lex();
9472       if (parseToken(lltok::colon, "expected ':'"))
9473         return true;
9474       bool HasLinkage;
9475       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9476       assert(HasLinkage && "Linkage not optional in summary entry");
9477       Lex.Lex();
9478       break;
9479     case lltok::kw_visibility:
9480       Lex.Lex();
9481       if (parseToken(lltok::colon, "expected ':'"))
9482         return true;
9483       parseOptionalVisibility(Flag);
9484       GVFlags.Visibility = Flag;
9485       break;
9486     case lltok::kw_notEligibleToImport:
9487       Lex.Lex();
9488       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9489         return true;
9490       GVFlags.NotEligibleToImport = Flag;
9491       break;
9492     case lltok::kw_live:
9493       Lex.Lex();
9494       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9495         return true;
9496       GVFlags.Live = Flag;
9497       break;
9498     case lltok::kw_dsoLocal:
9499       Lex.Lex();
9500       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9501         return true;
9502       GVFlags.DSOLocal = Flag;
9503       break;
9504     case lltok::kw_canAutoHide:
9505       Lex.Lex();
9506       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9507         return true;
9508       GVFlags.CanAutoHide = Flag;
9509       break;
9510     default:
9511       return error(Lex.getLoc(), "expected gv flag type");
9512     }
9513   } while (EatIfPresent(lltok::comma));
9514 
9515   if (parseToken(lltok::rparen, "expected ')' here"))
9516     return true;
9517 
9518   return false;
9519 }
9520 
9521 /// GVarFlags
9522 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9523 ///                      ',' 'writeonly' ':' Flag
9524 ///                      ',' 'constant' ':' Flag ')'
9525 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9526   assert(Lex.getKind() == lltok::kw_varFlags);
9527   Lex.Lex();
9528 
9529   if (parseToken(lltok::colon, "expected ':' here") ||
9530       parseToken(lltok::lparen, "expected '(' here"))
9531     return true;
9532 
9533   auto ParseRest = [this](unsigned int &Val) {
9534     Lex.Lex();
9535     if (parseToken(lltok::colon, "expected ':'"))
9536       return true;
9537     return parseFlag(Val);
9538   };
9539 
9540   do {
9541     unsigned Flag = 0;
9542     switch (Lex.getKind()) {
9543     case lltok::kw_readonly:
9544       if (ParseRest(Flag))
9545         return true;
9546       GVarFlags.MaybeReadOnly = Flag;
9547       break;
9548     case lltok::kw_writeonly:
9549       if (ParseRest(Flag))
9550         return true;
9551       GVarFlags.MaybeWriteOnly = Flag;
9552       break;
9553     case lltok::kw_constant:
9554       if (ParseRest(Flag))
9555         return true;
9556       GVarFlags.Constant = Flag;
9557       break;
9558     case lltok::kw_vcall_visibility:
9559       if (ParseRest(Flag))
9560         return true;
9561       GVarFlags.VCallVisibility = Flag;
9562       break;
9563     default:
9564       return error(Lex.getLoc(), "expected gvar flag type");
9565     }
9566   } while (EatIfPresent(lltok::comma));
9567   return parseToken(lltok::rparen, "expected ')' here");
9568 }
9569 
9570 /// ModuleReference
9571 ///   ::= 'module' ':' UInt
9572 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9573   // parse module id.
9574   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9575       parseToken(lltok::colon, "expected ':' here") ||
9576       parseToken(lltok::SummaryID, "expected module ID"))
9577     return true;
9578 
9579   unsigned ModuleID = Lex.getUIntVal();
9580   auto I = ModuleIdMap.find(ModuleID);
9581   // We should have already parsed all module IDs
9582   assert(I != ModuleIdMap.end());
9583   ModulePath = I->second;
9584   return false;
9585 }
9586 
9587 /// GVReference
9588 ///   ::= SummaryID
9589 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9590   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9591   if (!ReadOnly)
9592     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9593   if (parseToken(lltok::SummaryID, "expected GV ID"))
9594     return true;
9595 
9596   GVId = Lex.getUIntVal();
9597   // Check if we already have a VI for this GV
9598   if (GVId < NumberedValueInfos.size()) {
9599     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9600     VI = NumberedValueInfos[GVId];
9601   } else
9602     // We will create a forward reference to the stored location.
9603     VI = ValueInfo(false, FwdVIRef);
9604 
9605   if (ReadOnly)
9606     VI.setReadOnly();
9607   if (WriteOnly)
9608     VI.setWriteOnly();
9609   return false;
9610 }
9611