1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 194 case lltok::kw_appending: // OptionalLinkage 195 case lltok::kw_dllexport: // OptionalLinkage 196 case lltok::kw_common: // OptionalLinkage 197 case lltok::kw_dllimport: // OptionalLinkage 198 case lltok::kw_extern_weak: // OptionalLinkage 199 case lltok::kw_external: { // OptionalLinkage 200 unsigned Linkage, Visibility; 201 if (ParseOptionalLinkage(Linkage) || 202 ParseOptionalVisibility(Visibility) || 203 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 204 return true; 205 break; 206 } 207 case lltok::kw_default: // OptionalVisibility 208 case lltok::kw_hidden: // OptionalVisibility 209 case lltok::kw_protected: { // OptionalVisibility 210 unsigned Visibility; 211 if (ParseOptionalVisibility(Visibility) || 212 ParseGlobal("", SMLoc(), 0, false, Visibility)) 213 return true; 214 break; 215 } 216 217 case lltok::kw_thread_local: // OptionalThreadLocal 218 case lltok::kw_addrspace: // OptionalAddrSpace 219 case lltok::kw_constant: // GlobalType 220 case lltok::kw_global: // GlobalType 221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 222 break; 223 } 224 } 225 } 226 227 228 /// toplevelentity 229 /// ::= 'module' 'asm' STRINGCONSTANT 230 bool LLParser::ParseModuleAsm() { 231 assert(Lex.getKind() == lltok::kw_module); 232 Lex.Lex(); 233 234 std::string AsmStr; 235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 236 ParseStringConstant(AsmStr)) return true; 237 238 M->appendModuleInlineAsm(AsmStr); 239 return false; 240 } 241 242 /// toplevelentity 243 /// ::= 'target' 'triple' '=' STRINGCONSTANT 244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 245 bool LLParser::ParseTargetDefinition() { 246 assert(Lex.getKind() == lltok::kw_target); 247 std::string Str; 248 switch (Lex.Lex()) { 249 default: return TokError("unknown target property"); 250 case lltok::kw_triple: 251 Lex.Lex(); 252 if (ParseToken(lltok::equal, "expected '=' after target triple") || 253 ParseStringConstant(Str)) 254 return true; 255 M->setTargetTriple(Str); 256 return false; 257 case lltok::kw_datalayout: 258 Lex.Lex(); 259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 260 ParseStringConstant(Str)) 261 return true; 262 M->setDataLayout(Str); 263 return false; 264 } 265 } 266 267 /// toplevelentity 268 /// ::= 'deplibs' '=' '[' ']' 269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 270 bool LLParser::ParseDepLibs() { 271 assert(Lex.getKind() == lltok::kw_deplibs); 272 Lex.Lex(); 273 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 274 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 275 return true; 276 277 if (EatIfPresent(lltok::rsquare)) 278 return false; 279 280 std::string Str; 281 if (ParseStringConstant(Str)) return true; 282 M->addLibrary(Str); 283 284 while (EatIfPresent(lltok::comma)) { 285 if (ParseStringConstant(Str)) return true; 286 M->addLibrary(Str); 287 } 288 289 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 290 } 291 292 /// ParseUnnamedType: 293 /// ::= LocalVarID '=' 'type' type 294 bool LLParser::ParseUnnamedType() { 295 LocTy TypeLoc = Lex.getLoc(); 296 unsigned TypeID = Lex.getUIntVal(); 297 Lex.Lex(); // eat LocalVarID; 298 299 if (ParseToken(lltok::equal, "expected '=' after name") || 300 ParseToken(lltok::kw_type, "expected 'type' after '='")) 301 return true; 302 303 if (TypeID >= NumberedTypes.size()) 304 NumberedTypes.resize(TypeID+1); 305 306 Type *Result = 0; 307 if (ParseStructDefinition(TypeLoc, "", 308 NumberedTypes[TypeID], Result)) return true; 309 310 if (!isa<StructType>(Result)) { 311 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 312 if (Entry.first) 313 return Error(TypeLoc, "non-struct types may not be recursive"); 314 Entry.first = Result; 315 Entry.second = SMLoc(); 316 } 317 318 return false; 319 } 320 321 322 /// toplevelentity 323 /// ::= LocalVar '=' 'type' type 324 bool LLParser::ParseNamedType() { 325 std::string Name = Lex.getStrVal(); 326 LocTy NameLoc = Lex.getLoc(); 327 Lex.Lex(); // eat LocalVar. 328 329 if (ParseToken(lltok::equal, "expected '=' after name") || 330 ParseToken(lltok::kw_type, "expected 'type' after name")) 331 return true; 332 333 Type *Result = 0; 334 if (ParseStructDefinition(NameLoc, Name, 335 NamedTypes[Name], Result)) return true; 336 337 if (!isa<StructType>(Result)) { 338 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 339 if (Entry.first) 340 return Error(NameLoc, "non-struct types may not be recursive"); 341 Entry.first = Result; 342 Entry.second = SMLoc(); 343 } 344 345 return false; 346 } 347 348 349 /// toplevelentity 350 /// ::= 'declare' FunctionHeader 351 bool LLParser::ParseDeclare() { 352 assert(Lex.getKind() == lltok::kw_declare); 353 Lex.Lex(); 354 355 Function *F; 356 return ParseFunctionHeader(F, false); 357 } 358 359 /// toplevelentity 360 /// ::= 'define' FunctionHeader '{' ... 361 bool LLParser::ParseDefine() { 362 assert(Lex.getKind() == lltok::kw_define); 363 Lex.Lex(); 364 365 Function *F; 366 return ParseFunctionHeader(F, true) || 367 ParseFunctionBody(*F); 368 } 369 370 /// ParseGlobalType 371 /// ::= 'constant' 372 /// ::= 'global' 373 bool LLParser::ParseGlobalType(bool &IsConstant) { 374 if (Lex.getKind() == lltok::kw_constant) 375 IsConstant = true; 376 else if (Lex.getKind() == lltok::kw_global) 377 IsConstant = false; 378 else { 379 IsConstant = false; 380 return TokError("expected 'global' or 'constant'"); 381 } 382 Lex.Lex(); 383 return false; 384 } 385 386 /// ParseUnnamedGlobal: 387 /// OptionalVisibility ALIAS ... 388 /// OptionalLinkage OptionalVisibility ... -> global variable 389 /// GlobalID '=' OptionalVisibility ALIAS ... 390 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 391 bool LLParser::ParseUnnamedGlobal() { 392 unsigned VarID = NumberedVals.size(); 393 std::string Name; 394 LocTy NameLoc = Lex.getLoc(); 395 396 // Handle the GlobalID form. 397 if (Lex.getKind() == lltok::GlobalID) { 398 if (Lex.getUIntVal() != VarID) 399 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 400 Twine(VarID) + "'"); 401 Lex.Lex(); // eat GlobalID; 402 403 if (ParseToken(lltok::equal, "expected '=' after name")) 404 return true; 405 } 406 407 bool HasLinkage; 408 unsigned Linkage, Visibility; 409 if (ParseOptionalLinkage(Linkage, HasLinkage) || 410 ParseOptionalVisibility(Visibility)) 411 return true; 412 413 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 415 return ParseAlias(Name, NameLoc, Visibility); 416 } 417 418 /// ParseNamedGlobal: 419 /// GlobalVar '=' OptionalVisibility ALIAS ... 420 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 421 bool LLParser::ParseNamedGlobal() { 422 assert(Lex.getKind() == lltok::GlobalVar); 423 LocTy NameLoc = Lex.getLoc(); 424 std::string Name = Lex.getStrVal(); 425 Lex.Lex(); 426 427 bool HasLinkage; 428 unsigned Linkage, Visibility; 429 if (ParseToken(lltok::equal, "expected '=' in global variable") || 430 ParseOptionalLinkage(Linkage, HasLinkage) || 431 ParseOptionalVisibility(Visibility)) 432 return true; 433 434 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 435 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 436 return ParseAlias(Name, NameLoc, Visibility); 437 } 438 439 // MDString: 440 // ::= '!' STRINGCONSTANT 441 bool LLParser::ParseMDString(MDString *&Result) { 442 std::string Str; 443 if (ParseStringConstant(Str)) return true; 444 Result = MDString::get(Context, Str); 445 return false; 446 } 447 448 // MDNode: 449 // ::= '!' MDNodeNumber 450 // 451 /// This version of ParseMDNodeID returns the slot number and null in the case 452 /// of a forward reference. 453 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 454 // !{ ..., !42, ... } 455 if (ParseUInt32(SlotNo)) return true; 456 457 // Check existing MDNode. 458 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 459 Result = NumberedMetadata[SlotNo]; 460 else 461 Result = 0; 462 return false; 463 } 464 465 bool LLParser::ParseMDNodeID(MDNode *&Result) { 466 // !{ ..., !42, ... } 467 unsigned MID = 0; 468 if (ParseMDNodeID(Result, MID)) return true; 469 470 // If not a forward reference, just return it now. 471 if (Result) return false; 472 473 // Otherwise, create MDNode forward reference. 474 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 475 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 476 477 if (NumberedMetadata.size() <= MID) 478 NumberedMetadata.resize(MID+1); 479 NumberedMetadata[MID] = FwdNode; 480 Result = FwdNode; 481 return false; 482 } 483 484 /// ParseNamedMetadata: 485 /// !foo = !{ !1, !2 } 486 bool LLParser::ParseNamedMetadata() { 487 assert(Lex.getKind() == lltok::MetadataVar); 488 std::string Name = Lex.getStrVal(); 489 Lex.Lex(); 490 491 if (ParseToken(lltok::equal, "expected '=' here") || 492 ParseToken(lltok::exclaim, "Expected '!' here") || 493 ParseToken(lltok::lbrace, "Expected '{' here")) 494 return true; 495 496 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 497 if (Lex.getKind() != lltok::rbrace) 498 do { 499 if (ParseToken(lltok::exclaim, "Expected '!' here")) 500 return true; 501 502 MDNode *N = 0; 503 if (ParseMDNodeID(N)) return true; 504 NMD->addOperand(N); 505 } while (EatIfPresent(lltok::comma)); 506 507 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 508 return true; 509 510 return false; 511 } 512 513 /// ParseStandaloneMetadata: 514 /// !42 = !{...} 515 bool LLParser::ParseStandaloneMetadata() { 516 assert(Lex.getKind() == lltok::exclaim); 517 Lex.Lex(); 518 unsigned MetadataID = 0; 519 520 LocTy TyLoc; 521 Type *Ty = 0; 522 SmallVector<Value *, 16> Elts; 523 if (ParseUInt32(MetadataID) || 524 ParseToken(lltok::equal, "expected '=' here") || 525 ParseType(Ty, TyLoc) || 526 ParseToken(lltok::exclaim, "Expected '!' here") || 527 ParseToken(lltok::lbrace, "Expected '{' here") || 528 ParseMDNodeVector(Elts, NULL) || 529 ParseToken(lltok::rbrace, "expected end of metadata node")) 530 return true; 531 532 MDNode *Init = MDNode::get(Context, Elts); 533 534 // See if this was forward referenced, if so, handle it. 535 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 536 FI = ForwardRefMDNodes.find(MetadataID); 537 if (FI != ForwardRefMDNodes.end()) { 538 MDNode *Temp = FI->second.first; 539 Temp->replaceAllUsesWith(Init); 540 MDNode::deleteTemporary(Temp); 541 ForwardRefMDNodes.erase(FI); 542 543 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 544 } else { 545 if (MetadataID >= NumberedMetadata.size()) 546 NumberedMetadata.resize(MetadataID+1); 547 548 if (NumberedMetadata[MetadataID] != 0) 549 return TokError("Metadata id is already used"); 550 NumberedMetadata[MetadataID] = Init; 551 } 552 553 return false; 554 } 555 556 /// ParseAlias: 557 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 558 /// Aliasee 559 /// ::= TypeAndValue 560 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 561 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 562 /// 563 /// Everything through visibility has already been parsed. 564 /// 565 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 566 unsigned Visibility) { 567 assert(Lex.getKind() == lltok::kw_alias); 568 Lex.Lex(); 569 unsigned Linkage; 570 LocTy LinkageLoc = Lex.getLoc(); 571 if (ParseOptionalLinkage(Linkage)) 572 return true; 573 574 if (Linkage != GlobalValue::ExternalLinkage && 575 Linkage != GlobalValue::WeakAnyLinkage && 576 Linkage != GlobalValue::WeakODRLinkage && 577 Linkage != GlobalValue::InternalLinkage && 578 Linkage != GlobalValue::PrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool IsConstant, UnnamedAddr; 649 GlobalVariable::ThreadLocalMode TLM; 650 LocTy UnnamedAddrLoc; 651 LocTy TyLoc; 652 653 Type *Ty = 0; 654 if (ParseOptionalThreadLocal(TLM) || 655 ParseOptionalAddrSpace(AddrSpace) || 656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 657 &UnnamedAddrLoc) || 658 ParseGlobalType(IsConstant) || 659 ParseType(Ty, TyLoc)) 660 return true; 661 662 // If the linkage is specified and is external, then no initializer is 663 // present. 664 Constant *Init = 0; 665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 666 Linkage != GlobalValue::ExternalWeakLinkage && 667 Linkage != GlobalValue::ExternalLinkage)) { 668 if (ParseGlobalValue(Ty, Init)) 669 return true; 670 } 671 672 if (Ty->isFunctionTy() || Ty->isLabelTy()) 673 return Error(TyLoc, "invalid type for global variable"); 674 675 GlobalVariable *GV = 0; 676 677 // See if the global was forward referenced, if so, use the global. 678 if (!Name.empty()) { 679 if (GlobalValue *GVal = M->getNamedValue(Name)) { 680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 681 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 682 GV = cast<GlobalVariable>(GVal); 683 } 684 } else { 685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 686 I = ForwardRefValIDs.find(NumberedVals.size()); 687 if (I != ForwardRefValIDs.end()) { 688 GV = cast<GlobalVariable>(I->second.first); 689 ForwardRefValIDs.erase(I); 690 } 691 } 692 693 if (GV == 0) { 694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 695 Name, 0, GlobalVariable::NotThreadLocal, 696 AddrSpace); 697 } else { 698 if (GV->getType()->getElementType() != Ty) 699 return Error(TyLoc, 700 "forward reference and definition of global have different types"); 701 702 // Move the forward-reference to the correct spot in the module. 703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 704 } 705 706 if (Name.empty()) 707 NumberedVals.push_back(GV); 708 709 // Set the parsed properties on the global. 710 if (Init) 711 GV->setInitializer(Init); 712 GV->setConstant(IsConstant); 713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 715 GV->setThreadLocalMode(TLM); 716 GV->setUnnamedAddr(UnnamedAddr); 717 718 // Parse attributes on the global. 719 while (Lex.getKind() == lltok::comma) { 720 Lex.Lex(); 721 722 if (Lex.getKind() == lltok::kw_section) { 723 Lex.Lex(); 724 GV->setSection(Lex.getStrVal()); 725 if (ParseToken(lltok::StringConstant, "expected global section string")) 726 return true; 727 } else if (Lex.getKind() == lltok::kw_align) { 728 unsigned Alignment; 729 if (ParseOptionalAlignment(Alignment)) return true; 730 GV->setAlignment(Alignment); 731 } else { 732 TokError("unknown global variable property!"); 733 } 734 } 735 736 return false; 737 } 738 739 740 //===----------------------------------------------------------------------===// 741 // GlobalValue Reference/Resolution Routines. 742 //===----------------------------------------------------------------------===// 743 744 /// GetGlobalVal - Get a value with the specified name or ID, creating a 745 /// forward reference record if needed. This can return null if the value 746 /// exists but does not have the right type. 747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 748 LocTy Loc) { 749 PointerType *PTy = dyn_cast<PointerType>(Ty); 750 if (PTy == 0) { 751 Error(Loc, "global variable reference must have pointer type"); 752 return 0; 753 } 754 755 // Look this name up in the normal function symbol table. 756 GlobalValue *Val = 757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 758 759 // If this is a forward reference for the value, see if we already created a 760 // forward ref record. 761 if (Val == 0) { 762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 763 I = ForwardRefVals.find(Name); 764 if (I != ForwardRefVals.end()) 765 Val = I->second.first; 766 } 767 768 // If we have the value in the symbol table or fwd-ref table, return it. 769 if (Val) { 770 if (Val->getType() == Ty) return Val; 771 Error(Loc, "'@" + Name + "' defined with type '" + 772 getTypeString(Val->getType()) + "'"); 773 return 0; 774 } 775 776 // Otherwise, create a new forward reference for this value and remember it. 777 GlobalValue *FwdVal; 778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 780 else 781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 782 GlobalValue::ExternalWeakLinkage, 0, Name); 783 784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 785 return FwdVal; 786 } 787 788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 789 PointerType *PTy = dyn_cast<PointerType>(Ty); 790 if (PTy == 0) { 791 Error(Loc, "global variable reference must have pointer type"); 792 return 0; 793 } 794 795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 796 797 // If this is a forward reference for the value, see if we already created a 798 // forward ref record. 799 if (Val == 0) { 800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 801 I = ForwardRefValIDs.find(ID); 802 if (I != ForwardRefValIDs.end()) 803 Val = I->second.first; 804 } 805 806 // If we have the value in the symbol table or fwd-ref table, return it. 807 if (Val) { 808 if (Val->getType() == Ty) return Val; 809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 810 getTypeString(Val->getType()) + "'"); 811 return 0; 812 } 813 814 // Otherwise, create a new forward reference for this value and remember it. 815 GlobalValue *FwdVal; 816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 818 else 819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 820 GlobalValue::ExternalWeakLinkage, 0, ""); 821 822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 823 return FwdVal; 824 } 825 826 827 //===----------------------------------------------------------------------===// 828 // Helper Routines. 829 //===----------------------------------------------------------------------===// 830 831 /// ParseToken - If the current token has the specified kind, eat it and return 832 /// success. Otherwise, emit the specified error and return failure. 833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 834 if (Lex.getKind() != T) 835 return TokError(ErrMsg); 836 Lex.Lex(); 837 return false; 838 } 839 840 /// ParseStringConstant 841 /// ::= StringConstant 842 bool LLParser::ParseStringConstant(std::string &Result) { 843 if (Lex.getKind() != lltok::StringConstant) 844 return TokError("expected string constant"); 845 Result = Lex.getStrVal(); 846 Lex.Lex(); 847 return false; 848 } 849 850 /// ParseUInt32 851 /// ::= uint32 852 bool LLParser::ParseUInt32(unsigned &Val) { 853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 854 return TokError("expected integer"); 855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 856 if (Val64 != unsigned(Val64)) 857 return TokError("expected 32-bit integer (too large)"); 858 Val = Val64; 859 Lex.Lex(); 860 return false; 861 } 862 863 /// ParseTLSModel 864 /// := 'localdynamic' 865 /// := 'initialexec' 866 /// := 'localexec' 867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 868 switch (Lex.getKind()) { 869 default: 870 return TokError("expected localdynamic, initialexec or localexec"); 871 case lltok::kw_localdynamic: 872 TLM = GlobalVariable::LocalDynamicTLSModel; 873 break; 874 case lltok::kw_initialexec: 875 TLM = GlobalVariable::InitialExecTLSModel; 876 break; 877 case lltok::kw_localexec: 878 TLM = GlobalVariable::LocalExecTLSModel; 879 break; 880 } 881 882 Lex.Lex(); 883 return false; 884 } 885 886 /// ParseOptionalThreadLocal 887 /// := /*empty*/ 888 /// := 'thread_local' 889 /// := 'thread_local' '(' tlsmodel ')' 890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 891 TLM = GlobalVariable::NotThreadLocal; 892 if (!EatIfPresent(lltok::kw_thread_local)) 893 return false; 894 895 TLM = GlobalVariable::GeneralDynamicTLSModel; 896 if (Lex.getKind() == lltok::lparen) { 897 Lex.Lex(); 898 return ParseTLSModel(TLM) || 899 ParseToken(lltok::rparen, "expected ')' after thread local model"); 900 } 901 return false; 902 } 903 904 /// ParseOptionalAddrSpace 905 /// := /*empty*/ 906 /// := 'addrspace' '(' uint32 ')' 907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 908 AddrSpace = 0; 909 if (!EatIfPresent(lltok::kw_addrspace)) 910 return false; 911 return ParseToken(lltok::lparen, "expected '(' in address space") || 912 ParseUInt32(AddrSpace) || 913 ParseToken(lltok::rparen, "expected ')' in address space"); 914 } 915 916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 917 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 918 /// 2: function attr. 919 bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) { 920 LocTy AttrLoc = Lex.getLoc(); 921 bool HaveError = false; 922 923 B.clear(); 924 925 while (1) { 926 lltok::Kind Token = Lex.getKind(); 927 switch (Token) { 928 default: // End of attributes. 929 return HaveError; 930 case lltok::kw_zeroext: B.addAttribute(Attributes::ZExt); break; 931 case lltok::kw_signext: B.addAttribute(Attributes::SExt); break; 932 case lltok::kw_inreg: B.addAttribute(Attributes::InReg); break; 933 case lltok::kw_sret: B.addAttribute(Attributes::StructRet); break; 934 case lltok::kw_noalias: B.addAttribute(Attributes::NoAlias); break; 935 case lltok::kw_nocapture: B.addAttribute(Attributes::NoCapture); break; 936 case lltok::kw_byval: B.addAttribute(Attributes::ByVal); break; 937 case lltok::kw_nest: B.addAttribute(Attributes::Nest); break; 938 939 case lltok::kw_noreturn: B.addAttribute(Attributes::NoReturn); break; 940 case lltok::kw_nounwind: B.addAttribute(Attributes::NoUnwind); break; 941 case lltok::kw_uwtable: B.addAttribute(Attributes::UWTable); break; 942 case lltok::kw_returns_twice: B.addAttribute(Attributes::ReturnsTwice); break; 943 case lltok::kw_noinline: B.addAttribute(Attributes::NoInline); break; 944 case lltok::kw_readnone: B.addAttribute(Attributes::ReadNone); break; 945 case lltok::kw_readonly: B.addAttribute(Attributes::ReadOnly); break; 946 case lltok::kw_inlinehint: B.addAttribute(Attributes::InlineHint); break; 947 case lltok::kw_alwaysinline: B.addAttribute(Attributes::AlwaysInline); break; 948 case lltok::kw_optsize: B.addAttribute(Attributes::OptimizeForSize); break; 949 case lltok::kw_ssp: B.addAttribute(Attributes::StackProtect); break; 950 case lltok::kw_sspreq: B.addAttribute(Attributes::StackProtectReq); break; 951 case lltok::kw_noredzone: B.addAttribute(Attributes::NoRedZone); break; 952 case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break; 953 case lltok::kw_naked: B.addAttribute(Attributes::Naked); break; 954 case lltok::kw_nonlazybind: B.addAttribute(Attributes::NonLazyBind); break; 955 case lltok::kw_address_safety: B.addAttribute(Attributes::AddressSafety); break; 956 957 case lltok::kw_alignstack: { 958 unsigned Alignment; 959 if (ParseOptionalStackAlignment(Alignment)) 960 return true; 961 B.addStackAlignmentAttr(Alignment); 962 continue; 963 } 964 965 case lltok::kw_align: { 966 unsigned Alignment; 967 if (ParseOptionalAlignment(Alignment)) 968 return true; 969 B.addAlignmentAttr(Alignment); 970 continue; 971 } 972 973 } 974 975 // Perform some error checking. 976 switch (Token) { 977 default: 978 if (AttrKind == 2) 979 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 980 break; 981 case lltok::kw_align: 982 // As a hack, we allow "align 2" on functions as a synonym for 983 // "alignstack 2". 984 break; 985 986 // Parameter Only: 987 case lltok::kw_sret: 988 case lltok::kw_nocapture: 989 case lltok::kw_byval: 990 case lltok::kw_nest: 991 if (AttrKind != 0) 992 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 993 break; 994 995 // Function Only: 996 case lltok::kw_noreturn: 997 case lltok::kw_nounwind: 998 case lltok::kw_readnone: 999 case lltok::kw_readonly: 1000 case lltok::kw_noinline: 1001 case lltok::kw_alwaysinline: 1002 case lltok::kw_optsize: 1003 case lltok::kw_ssp: 1004 case lltok::kw_sspreq: 1005 case lltok::kw_noredzone: 1006 case lltok::kw_noimplicitfloat: 1007 case lltok::kw_naked: 1008 case lltok::kw_inlinehint: 1009 case lltok::kw_alignstack: 1010 case lltok::kw_uwtable: 1011 case lltok::kw_nonlazybind: 1012 case lltok::kw_returns_twice: 1013 case lltok::kw_address_safety: 1014 if (AttrKind != 2) 1015 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 1016 break; 1017 } 1018 1019 Lex.Lex(); 1020 } 1021 } 1022 1023 /// ParseOptionalLinkage 1024 /// ::= /*empty*/ 1025 /// ::= 'private' 1026 /// ::= 'linker_private' 1027 /// ::= 'linker_private_weak' 1028 /// ::= 'internal' 1029 /// ::= 'weak' 1030 /// ::= 'weak_odr' 1031 /// ::= 'linkonce' 1032 /// ::= 'linkonce_odr' 1033 /// ::= 'linkonce_odr_auto_hide' 1034 /// ::= 'available_externally' 1035 /// ::= 'appending' 1036 /// ::= 'dllexport' 1037 /// ::= 'common' 1038 /// ::= 'dllimport' 1039 /// ::= 'extern_weak' 1040 /// ::= 'external' 1041 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1042 HasLinkage = false; 1043 switch (Lex.getKind()) { 1044 default: Res=GlobalValue::ExternalLinkage; return false; 1045 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1046 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1047 case lltok::kw_linker_private_weak: 1048 Res = GlobalValue::LinkerPrivateWeakLinkage; 1049 break; 1050 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1051 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1052 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1053 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1054 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1055 case lltok::kw_linkonce_odr_auto_hide: 1056 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1057 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1058 break; 1059 case lltok::kw_available_externally: 1060 Res = GlobalValue::AvailableExternallyLinkage; 1061 break; 1062 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1063 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1064 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1065 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1066 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1067 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1068 } 1069 Lex.Lex(); 1070 HasLinkage = true; 1071 return false; 1072 } 1073 1074 /// ParseOptionalVisibility 1075 /// ::= /*empty*/ 1076 /// ::= 'default' 1077 /// ::= 'hidden' 1078 /// ::= 'protected' 1079 /// 1080 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1081 switch (Lex.getKind()) { 1082 default: Res = GlobalValue::DefaultVisibility; return false; 1083 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1084 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1085 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1086 } 1087 Lex.Lex(); 1088 return false; 1089 } 1090 1091 /// ParseOptionalCallingConv 1092 /// ::= /*empty*/ 1093 /// ::= 'ccc' 1094 /// ::= 'fastcc' 1095 /// ::= 'coldcc' 1096 /// ::= 'x86_stdcallcc' 1097 /// ::= 'x86_fastcallcc' 1098 /// ::= 'x86_thiscallcc' 1099 /// ::= 'arm_apcscc' 1100 /// ::= 'arm_aapcscc' 1101 /// ::= 'arm_aapcs_vfpcc' 1102 /// ::= 'msp430_intrcc' 1103 /// ::= 'ptx_kernel' 1104 /// ::= 'ptx_device' 1105 /// ::= 'spir_func' 1106 /// ::= 'spir_kernel' 1107 /// ::= 'cc' UINT 1108 /// 1109 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1110 switch (Lex.getKind()) { 1111 default: CC = CallingConv::C; return false; 1112 case lltok::kw_ccc: CC = CallingConv::C; break; 1113 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1114 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1115 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1116 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1117 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1118 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1119 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1120 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1121 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1122 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1123 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1124 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1125 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1126 case lltok::kw_cc: { 1127 unsigned ArbitraryCC; 1128 Lex.Lex(); 1129 if (ParseUInt32(ArbitraryCC)) 1130 return true; 1131 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1132 return false; 1133 } 1134 } 1135 1136 Lex.Lex(); 1137 return false; 1138 } 1139 1140 /// ParseInstructionMetadata 1141 /// ::= !dbg !42 (',' !dbg !57)* 1142 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1143 PerFunctionState *PFS) { 1144 do { 1145 if (Lex.getKind() != lltok::MetadataVar) 1146 return TokError("expected metadata after comma"); 1147 1148 std::string Name = Lex.getStrVal(); 1149 unsigned MDK = M->getMDKindID(Name); 1150 Lex.Lex(); 1151 1152 MDNode *Node; 1153 SMLoc Loc = Lex.getLoc(); 1154 1155 if (ParseToken(lltok::exclaim, "expected '!' here")) 1156 return true; 1157 1158 // This code is similar to that of ParseMetadataValue, however it needs to 1159 // have special-case code for a forward reference; see the comments on 1160 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1161 // at the top level here. 1162 if (Lex.getKind() == lltok::lbrace) { 1163 ValID ID; 1164 if (ParseMetadataListValue(ID, PFS)) 1165 return true; 1166 assert(ID.Kind == ValID::t_MDNode); 1167 Inst->setMetadata(MDK, ID.MDNodeVal); 1168 } else { 1169 unsigned NodeID = 0; 1170 if (ParseMDNodeID(Node, NodeID)) 1171 return true; 1172 if (Node) { 1173 // If we got the node, add it to the instruction. 1174 Inst->setMetadata(MDK, Node); 1175 } else { 1176 MDRef R = { Loc, MDK, NodeID }; 1177 // Otherwise, remember that this should be resolved later. 1178 ForwardRefInstMetadata[Inst].push_back(R); 1179 } 1180 } 1181 1182 // If this is the end of the list, we're done. 1183 } while (EatIfPresent(lltok::comma)); 1184 return false; 1185 } 1186 1187 /// ParseOptionalAlignment 1188 /// ::= /* empty */ 1189 /// ::= 'align' 4 1190 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1191 Alignment = 0; 1192 if (!EatIfPresent(lltok::kw_align)) 1193 return false; 1194 LocTy AlignLoc = Lex.getLoc(); 1195 if (ParseUInt32(Alignment)) return true; 1196 if (!isPowerOf2_32(Alignment)) 1197 return Error(AlignLoc, "alignment is not a power of two"); 1198 if (Alignment > Value::MaximumAlignment) 1199 return Error(AlignLoc, "huge alignments are not supported yet"); 1200 return false; 1201 } 1202 1203 /// ParseOptionalCommaAlign 1204 /// ::= 1205 /// ::= ',' align 4 1206 /// 1207 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1208 /// end. 1209 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1210 bool &AteExtraComma) { 1211 AteExtraComma = false; 1212 while (EatIfPresent(lltok::comma)) { 1213 // Metadata at the end is an early exit. 1214 if (Lex.getKind() == lltok::MetadataVar) { 1215 AteExtraComma = true; 1216 return false; 1217 } 1218 1219 if (Lex.getKind() != lltok::kw_align) 1220 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1221 1222 if (ParseOptionalAlignment(Alignment)) return true; 1223 } 1224 1225 return false; 1226 } 1227 1228 /// ParseScopeAndOrdering 1229 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1230 /// else: ::= 1231 /// 1232 /// This sets Scope and Ordering to the parsed values. 1233 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1234 AtomicOrdering &Ordering) { 1235 if (!isAtomic) 1236 return false; 1237 1238 Scope = CrossThread; 1239 if (EatIfPresent(lltok::kw_singlethread)) 1240 Scope = SingleThread; 1241 switch (Lex.getKind()) { 1242 default: return TokError("Expected ordering on atomic instruction"); 1243 case lltok::kw_unordered: Ordering = Unordered; break; 1244 case lltok::kw_monotonic: Ordering = Monotonic; break; 1245 case lltok::kw_acquire: Ordering = Acquire; break; 1246 case lltok::kw_release: Ordering = Release; break; 1247 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1248 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1249 } 1250 Lex.Lex(); 1251 return false; 1252 } 1253 1254 /// ParseOptionalStackAlignment 1255 /// ::= /* empty */ 1256 /// ::= 'alignstack' '(' 4 ')' 1257 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1258 Alignment = 0; 1259 if (!EatIfPresent(lltok::kw_alignstack)) 1260 return false; 1261 LocTy ParenLoc = Lex.getLoc(); 1262 if (!EatIfPresent(lltok::lparen)) 1263 return Error(ParenLoc, "expected '('"); 1264 LocTy AlignLoc = Lex.getLoc(); 1265 if (ParseUInt32(Alignment)) return true; 1266 ParenLoc = Lex.getLoc(); 1267 if (!EatIfPresent(lltok::rparen)) 1268 return Error(ParenLoc, "expected ')'"); 1269 if (!isPowerOf2_32(Alignment)) 1270 return Error(AlignLoc, "stack alignment is not a power of two"); 1271 return false; 1272 } 1273 1274 /// ParseIndexList - This parses the index list for an insert/extractvalue 1275 /// instruction. This sets AteExtraComma in the case where we eat an extra 1276 /// comma at the end of the line and find that it is followed by metadata. 1277 /// Clients that don't allow metadata can call the version of this function that 1278 /// only takes one argument. 1279 /// 1280 /// ParseIndexList 1281 /// ::= (',' uint32)+ 1282 /// 1283 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1284 bool &AteExtraComma) { 1285 AteExtraComma = false; 1286 1287 if (Lex.getKind() != lltok::comma) 1288 return TokError("expected ',' as start of index list"); 1289 1290 while (EatIfPresent(lltok::comma)) { 1291 if (Lex.getKind() == lltok::MetadataVar) { 1292 AteExtraComma = true; 1293 return false; 1294 } 1295 unsigned Idx = 0; 1296 if (ParseUInt32(Idx)) return true; 1297 Indices.push_back(Idx); 1298 } 1299 1300 return false; 1301 } 1302 1303 //===----------------------------------------------------------------------===// 1304 // Type Parsing. 1305 //===----------------------------------------------------------------------===// 1306 1307 /// ParseType - Parse a type. 1308 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1309 SMLoc TypeLoc = Lex.getLoc(); 1310 switch (Lex.getKind()) { 1311 default: 1312 return TokError("expected type"); 1313 case lltok::Type: 1314 // Type ::= 'float' | 'void' (etc) 1315 Result = Lex.getTyVal(); 1316 Lex.Lex(); 1317 break; 1318 case lltok::lbrace: 1319 // Type ::= StructType 1320 if (ParseAnonStructType(Result, false)) 1321 return true; 1322 break; 1323 case lltok::lsquare: 1324 // Type ::= '[' ... ']' 1325 Lex.Lex(); // eat the lsquare. 1326 if (ParseArrayVectorType(Result, false)) 1327 return true; 1328 break; 1329 case lltok::less: // Either vector or packed struct. 1330 // Type ::= '<' ... '>' 1331 Lex.Lex(); 1332 if (Lex.getKind() == lltok::lbrace) { 1333 if (ParseAnonStructType(Result, true) || 1334 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1335 return true; 1336 } else if (ParseArrayVectorType(Result, true)) 1337 return true; 1338 break; 1339 case lltok::LocalVar: { 1340 // Type ::= %foo 1341 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1342 1343 // If the type hasn't been defined yet, create a forward definition and 1344 // remember where that forward def'n was seen (in case it never is defined). 1345 if (Entry.first == 0) { 1346 Entry.first = StructType::create(Context, Lex.getStrVal()); 1347 Entry.second = Lex.getLoc(); 1348 } 1349 Result = Entry.first; 1350 Lex.Lex(); 1351 break; 1352 } 1353 1354 case lltok::LocalVarID: { 1355 // Type ::= %4 1356 if (Lex.getUIntVal() >= NumberedTypes.size()) 1357 NumberedTypes.resize(Lex.getUIntVal()+1); 1358 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1359 1360 // If the type hasn't been defined yet, create a forward definition and 1361 // remember where that forward def'n was seen (in case it never is defined). 1362 if (Entry.first == 0) { 1363 Entry.first = StructType::create(Context); 1364 Entry.second = Lex.getLoc(); 1365 } 1366 Result = Entry.first; 1367 Lex.Lex(); 1368 break; 1369 } 1370 } 1371 1372 // Parse the type suffixes. 1373 while (1) { 1374 switch (Lex.getKind()) { 1375 // End of type. 1376 default: 1377 if (!AllowVoid && Result->isVoidTy()) 1378 return Error(TypeLoc, "void type only allowed for function results"); 1379 return false; 1380 1381 // Type ::= Type '*' 1382 case lltok::star: 1383 if (Result->isLabelTy()) 1384 return TokError("basic block pointers are invalid"); 1385 if (Result->isVoidTy()) 1386 return TokError("pointers to void are invalid - use i8* instead"); 1387 if (!PointerType::isValidElementType(Result)) 1388 return TokError("pointer to this type is invalid"); 1389 Result = PointerType::getUnqual(Result); 1390 Lex.Lex(); 1391 break; 1392 1393 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1394 case lltok::kw_addrspace: { 1395 if (Result->isLabelTy()) 1396 return TokError("basic block pointers are invalid"); 1397 if (Result->isVoidTy()) 1398 return TokError("pointers to void are invalid; use i8* instead"); 1399 if (!PointerType::isValidElementType(Result)) 1400 return TokError("pointer to this type is invalid"); 1401 unsigned AddrSpace; 1402 if (ParseOptionalAddrSpace(AddrSpace) || 1403 ParseToken(lltok::star, "expected '*' in address space")) 1404 return true; 1405 1406 Result = PointerType::get(Result, AddrSpace); 1407 break; 1408 } 1409 1410 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1411 case lltok::lparen: 1412 if (ParseFunctionType(Result)) 1413 return true; 1414 break; 1415 } 1416 } 1417 } 1418 1419 /// ParseParameterList 1420 /// ::= '(' ')' 1421 /// ::= '(' Arg (',' Arg)* ')' 1422 /// Arg 1423 /// ::= Type OptionalAttributes Value OptionalAttributes 1424 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1425 PerFunctionState &PFS) { 1426 if (ParseToken(lltok::lparen, "expected '(' in call")) 1427 return true; 1428 1429 while (Lex.getKind() != lltok::rparen) { 1430 // If this isn't the first argument, we need a comma. 1431 if (!ArgList.empty() && 1432 ParseToken(lltok::comma, "expected ',' in argument list")) 1433 return true; 1434 1435 // Parse the argument. 1436 LocTy ArgLoc; 1437 Type *ArgTy = 0; 1438 AttrBuilder ArgAttrs; 1439 Value *V; 1440 if (ParseType(ArgTy, ArgLoc)) 1441 return true; 1442 1443 // Otherwise, handle normal operands. 1444 if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS)) 1445 return true; 1446 ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(), 1447 ArgAttrs))); 1448 } 1449 1450 Lex.Lex(); // Lex the ')'. 1451 return false; 1452 } 1453 1454 1455 1456 /// ParseArgumentList - Parse the argument list for a function type or function 1457 /// prototype. 1458 /// ::= '(' ArgTypeListI ')' 1459 /// ArgTypeListI 1460 /// ::= /*empty*/ 1461 /// ::= '...' 1462 /// ::= ArgTypeList ',' '...' 1463 /// ::= ArgType (',' ArgType)* 1464 /// 1465 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1466 bool &isVarArg){ 1467 isVarArg = false; 1468 assert(Lex.getKind() == lltok::lparen); 1469 Lex.Lex(); // eat the (. 1470 1471 if (Lex.getKind() == lltok::rparen) { 1472 // empty 1473 } else if (Lex.getKind() == lltok::dotdotdot) { 1474 isVarArg = true; 1475 Lex.Lex(); 1476 } else { 1477 LocTy TypeLoc = Lex.getLoc(); 1478 Type *ArgTy = 0; 1479 AttrBuilder Attrs; 1480 std::string Name; 1481 1482 if (ParseType(ArgTy) || 1483 ParseOptionalAttrs(Attrs, 0)) return true; 1484 1485 if (ArgTy->isVoidTy()) 1486 return Error(TypeLoc, "argument can not have void type"); 1487 1488 if (Lex.getKind() == lltok::LocalVar) { 1489 Name = Lex.getStrVal(); 1490 Lex.Lex(); 1491 } 1492 1493 if (!FunctionType::isValidArgumentType(ArgTy)) 1494 return Error(TypeLoc, "invalid type for function argument"); 1495 1496 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1497 Attributes::get(ArgTy->getContext(), 1498 Attrs), Name)); 1499 1500 while (EatIfPresent(lltok::comma)) { 1501 // Handle ... at end of arg list. 1502 if (EatIfPresent(lltok::dotdotdot)) { 1503 isVarArg = true; 1504 break; 1505 } 1506 1507 // Otherwise must be an argument type. 1508 TypeLoc = Lex.getLoc(); 1509 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1510 1511 if (ArgTy->isVoidTy()) 1512 return Error(TypeLoc, "argument can not have void type"); 1513 1514 if (Lex.getKind() == lltok::LocalVar) { 1515 Name = Lex.getStrVal(); 1516 Lex.Lex(); 1517 } else { 1518 Name = ""; 1519 } 1520 1521 if (!ArgTy->isFirstClassType()) 1522 return Error(TypeLoc, "invalid type for function argument"); 1523 1524 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1525 Attributes::get(ArgTy->getContext(), Attrs), 1526 Name)); 1527 } 1528 } 1529 1530 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1531 } 1532 1533 /// ParseFunctionType 1534 /// ::= Type ArgumentList OptionalAttrs 1535 bool LLParser::ParseFunctionType(Type *&Result) { 1536 assert(Lex.getKind() == lltok::lparen); 1537 1538 if (!FunctionType::isValidReturnType(Result)) 1539 return TokError("invalid function return type"); 1540 1541 SmallVector<ArgInfo, 8> ArgList; 1542 bool isVarArg; 1543 if (ParseArgumentList(ArgList, isVarArg)) 1544 return true; 1545 1546 // Reject names on the arguments lists. 1547 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1548 if (!ArgList[i].Name.empty()) 1549 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1550 if (ArgList[i].Attrs.hasAttributes()) 1551 return Error(ArgList[i].Loc, 1552 "argument attributes invalid in function type"); 1553 } 1554 1555 SmallVector<Type*, 16> ArgListTy; 1556 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1557 ArgListTy.push_back(ArgList[i].Ty); 1558 1559 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1560 return false; 1561 } 1562 1563 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1564 /// other structs. 1565 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1566 SmallVector<Type*, 8> Elts; 1567 if (ParseStructBody(Elts)) return true; 1568 1569 Result = StructType::get(Context, Elts, Packed); 1570 return false; 1571 } 1572 1573 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1574 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1575 std::pair<Type*, LocTy> &Entry, 1576 Type *&ResultTy) { 1577 // If the type was already defined, diagnose the redefinition. 1578 if (Entry.first && !Entry.second.isValid()) 1579 return Error(TypeLoc, "redefinition of type"); 1580 1581 // If we have opaque, just return without filling in the definition for the 1582 // struct. This counts as a definition as far as the .ll file goes. 1583 if (EatIfPresent(lltok::kw_opaque)) { 1584 // This type is being defined, so clear the location to indicate this. 1585 Entry.second = SMLoc(); 1586 1587 // If this type number has never been uttered, create it. 1588 if (Entry.first == 0) 1589 Entry.first = StructType::create(Context, Name); 1590 ResultTy = Entry.first; 1591 return false; 1592 } 1593 1594 // If the type starts with '<', then it is either a packed struct or a vector. 1595 bool isPacked = EatIfPresent(lltok::less); 1596 1597 // If we don't have a struct, then we have a random type alias, which we 1598 // accept for compatibility with old files. These types are not allowed to be 1599 // forward referenced and not allowed to be recursive. 1600 if (Lex.getKind() != lltok::lbrace) { 1601 if (Entry.first) 1602 return Error(TypeLoc, "forward references to non-struct type"); 1603 1604 ResultTy = 0; 1605 if (isPacked) 1606 return ParseArrayVectorType(ResultTy, true); 1607 return ParseType(ResultTy); 1608 } 1609 1610 // This type is being defined, so clear the location to indicate this. 1611 Entry.second = SMLoc(); 1612 1613 // If this type number has never been uttered, create it. 1614 if (Entry.first == 0) 1615 Entry.first = StructType::create(Context, Name); 1616 1617 StructType *STy = cast<StructType>(Entry.first); 1618 1619 SmallVector<Type*, 8> Body; 1620 if (ParseStructBody(Body) || 1621 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1622 return true; 1623 1624 STy->setBody(Body, isPacked); 1625 ResultTy = STy; 1626 return false; 1627 } 1628 1629 1630 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1631 /// StructType 1632 /// ::= '{' '}' 1633 /// ::= '{' Type (',' Type)* '}' 1634 /// ::= '<' '{' '}' '>' 1635 /// ::= '<' '{' Type (',' Type)* '}' '>' 1636 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1637 assert(Lex.getKind() == lltok::lbrace); 1638 Lex.Lex(); // Consume the '{' 1639 1640 // Handle the empty struct. 1641 if (EatIfPresent(lltok::rbrace)) 1642 return false; 1643 1644 LocTy EltTyLoc = Lex.getLoc(); 1645 Type *Ty = 0; 1646 if (ParseType(Ty)) return true; 1647 Body.push_back(Ty); 1648 1649 if (!StructType::isValidElementType(Ty)) 1650 return Error(EltTyLoc, "invalid element type for struct"); 1651 1652 while (EatIfPresent(lltok::comma)) { 1653 EltTyLoc = Lex.getLoc(); 1654 if (ParseType(Ty)) return true; 1655 1656 if (!StructType::isValidElementType(Ty)) 1657 return Error(EltTyLoc, "invalid element type for struct"); 1658 1659 Body.push_back(Ty); 1660 } 1661 1662 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1663 } 1664 1665 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1666 /// token has already been consumed. 1667 /// Type 1668 /// ::= '[' APSINTVAL 'x' Types ']' 1669 /// ::= '<' APSINTVAL 'x' Types '>' 1670 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1671 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1672 Lex.getAPSIntVal().getBitWidth() > 64) 1673 return TokError("expected number in address space"); 1674 1675 LocTy SizeLoc = Lex.getLoc(); 1676 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1677 Lex.Lex(); 1678 1679 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1680 return true; 1681 1682 LocTy TypeLoc = Lex.getLoc(); 1683 Type *EltTy = 0; 1684 if (ParseType(EltTy)) return true; 1685 1686 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1687 "expected end of sequential type")) 1688 return true; 1689 1690 if (isVector) { 1691 if (Size == 0) 1692 return Error(SizeLoc, "zero element vector is illegal"); 1693 if ((unsigned)Size != Size) 1694 return Error(SizeLoc, "size too large for vector"); 1695 if (!VectorType::isValidElementType(EltTy)) 1696 return Error(TypeLoc, 1697 "vector element type must be fp, integer or a pointer to these types"); 1698 Result = VectorType::get(EltTy, unsigned(Size)); 1699 } else { 1700 if (!ArrayType::isValidElementType(EltTy)) 1701 return Error(TypeLoc, "invalid array element type"); 1702 Result = ArrayType::get(EltTy, Size); 1703 } 1704 return false; 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Function Semantic Analysis. 1709 //===----------------------------------------------------------------------===// 1710 1711 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1712 int functionNumber) 1713 : P(p), F(f), FunctionNumber(functionNumber) { 1714 1715 // Insert unnamed arguments into the NumberedVals list. 1716 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1717 AI != E; ++AI) 1718 if (!AI->hasName()) 1719 NumberedVals.push_back(AI); 1720 } 1721 1722 LLParser::PerFunctionState::~PerFunctionState() { 1723 // If there were any forward referenced non-basicblock values, delete them. 1724 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1725 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1726 if (!isa<BasicBlock>(I->second.first)) { 1727 I->second.first->replaceAllUsesWith( 1728 UndefValue::get(I->second.first->getType())); 1729 delete I->second.first; 1730 I->second.first = 0; 1731 } 1732 1733 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1734 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1735 if (!isa<BasicBlock>(I->second.first)) { 1736 I->second.first->replaceAllUsesWith( 1737 UndefValue::get(I->second.first->getType())); 1738 delete I->second.first; 1739 I->second.first = 0; 1740 } 1741 } 1742 1743 bool LLParser::PerFunctionState::FinishFunction() { 1744 // Check to see if someone took the address of labels in this block. 1745 if (!P.ForwardRefBlockAddresses.empty()) { 1746 ValID FunctionID; 1747 if (!F.getName().empty()) { 1748 FunctionID.Kind = ValID::t_GlobalName; 1749 FunctionID.StrVal = F.getName(); 1750 } else { 1751 FunctionID.Kind = ValID::t_GlobalID; 1752 FunctionID.UIntVal = FunctionNumber; 1753 } 1754 1755 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1756 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1757 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1758 // Resolve all these references. 1759 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1760 return true; 1761 1762 P.ForwardRefBlockAddresses.erase(FRBAI); 1763 } 1764 } 1765 1766 if (!ForwardRefVals.empty()) 1767 return P.Error(ForwardRefVals.begin()->second.second, 1768 "use of undefined value '%" + ForwardRefVals.begin()->first + 1769 "'"); 1770 if (!ForwardRefValIDs.empty()) 1771 return P.Error(ForwardRefValIDs.begin()->second.second, 1772 "use of undefined value '%" + 1773 Twine(ForwardRefValIDs.begin()->first) + "'"); 1774 return false; 1775 } 1776 1777 1778 /// GetVal - Get a value with the specified name or ID, creating a 1779 /// forward reference record if needed. This can return null if the value 1780 /// exists but does not have the right type. 1781 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1782 Type *Ty, LocTy Loc) { 1783 // Look this name up in the normal function symbol table. 1784 Value *Val = F.getValueSymbolTable().lookup(Name); 1785 1786 // If this is a forward reference for the value, see if we already created a 1787 // forward ref record. 1788 if (Val == 0) { 1789 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1790 I = ForwardRefVals.find(Name); 1791 if (I != ForwardRefVals.end()) 1792 Val = I->second.first; 1793 } 1794 1795 // If we have the value in the symbol table or fwd-ref table, return it. 1796 if (Val) { 1797 if (Val->getType() == Ty) return Val; 1798 if (Ty->isLabelTy()) 1799 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1800 else 1801 P.Error(Loc, "'%" + Name + "' defined with type '" + 1802 getTypeString(Val->getType()) + "'"); 1803 return 0; 1804 } 1805 1806 // Don't make placeholders with invalid type. 1807 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1808 P.Error(Loc, "invalid use of a non-first-class type"); 1809 return 0; 1810 } 1811 1812 // Otherwise, create a new forward reference for this value and remember it. 1813 Value *FwdVal; 1814 if (Ty->isLabelTy()) 1815 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1816 else 1817 FwdVal = new Argument(Ty, Name); 1818 1819 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1820 return FwdVal; 1821 } 1822 1823 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1824 LocTy Loc) { 1825 // Look this name up in the normal function symbol table. 1826 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1827 1828 // If this is a forward reference for the value, see if we already created a 1829 // forward ref record. 1830 if (Val == 0) { 1831 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1832 I = ForwardRefValIDs.find(ID); 1833 if (I != ForwardRefValIDs.end()) 1834 Val = I->second.first; 1835 } 1836 1837 // If we have the value in the symbol table or fwd-ref table, return it. 1838 if (Val) { 1839 if (Val->getType() == Ty) return Val; 1840 if (Ty->isLabelTy()) 1841 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1842 else 1843 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1844 getTypeString(Val->getType()) + "'"); 1845 return 0; 1846 } 1847 1848 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1849 P.Error(Loc, "invalid use of a non-first-class type"); 1850 return 0; 1851 } 1852 1853 // Otherwise, create a new forward reference for this value and remember it. 1854 Value *FwdVal; 1855 if (Ty->isLabelTy()) 1856 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1857 else 1858 FwdVal = new Argument(Ty); 1859 1860 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1861 return FwdVal; 1862 } 1863 1864 /// SetInstName - After an instruction is parsed and inserted into its 1865 /// basic block, this installs its name. 1866 bool LLParser::PerFunctionState::SetInstName(int NameID, 1867 const std::string &NameStr, 1868 LocTy NameLoc, Instruction *Inst) { 1869 // If this instruction has void type, it cannot have a name or ID specified. 1870 if (Inst->getType()->isVoidTy()) { 1871 if (NameID != -1 || !NameStr.empty()) 1872 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1873 return false; 1874 } 1875 1876 // If this was a numbered instruction, verify that the instruction is the 1877 // expected value and resolve any forward references. 1878 if (NameStr.empty()) { 1879 // If neither a name nor an ID was specified, just use the next ID. 1880 if (NameID == -1) 1881 NameID = NumberedVals.size(); 1882 1883 if (unsigned(NameID) != NumberedVals.size()) 1884 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1885 Twine(NumberedVals.size()) + "'"); 1886 1887 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1888 ForwardRefValIDs.find(NameID); 1889 if (FI != ForwardRefValIDs.end()) { 1890 if (FI->second.first->getType() != Inst->getType()) 1891 return P.Error(NameLoc, "instruction forward referenced with type '" + 1892 getTypeString(FI->second.first->getType()) + "'"); 1893 FI->second.first->replaceAllUsesWith(Inst); 1894 delete FI->second.first; 1895 ForwardRefValIDs.erase(FI); 1896 } 1897 1898 NumberedVals.push_back(Inst); 1899 return false; 1900 } 1901 1902 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1903 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1904 FI = ForwardRefVals.find(NameStr); 1905 if (FI != ForwardRefVals.end()) { 1906 if (FI->second.first->getType() != Inst->getType()) 1907 return P.Error(NameLoc, "instruction forward referenced with type '" + 1908 getTypeString(FI->second.first->getType()) + "'"); 1909 FI->second.first->replaceAllUsesWith(Inst); 1910 delete FI->second.first; 1911 ForwardRefVals.erase(FI); 1912 } 1913 1914 // Set the name on the instruction. 1915 Inst->setName(NameStr); 1916 1917 if (Inst->getName() != NameStr) 1918 return P.Error(NameLoc, "multiple definition of local value named '" + 1919 NameStr + "'"); 1920 return false; 1921 } 1922 1923 /// GetBB - Get a basic block with the specified name or ID, creating a 1924 /// forward reference record if needed. 1925 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1926 LocTy Loc) { 1927 return cast_or_null<BasicBlock>(GetVal(Name, 1928 Type::getLabelTy(F.getContext()), Loc)); 1929 } 1930 1931 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1932 return cast_or_null<BasicBlock>(GetVal(ID, 1933 Type::getLabelTy(F.getContext()), Loc)); 1934 } 1935 1936 /// DefineBB - Define the specified basic block, which is either named or 1937 /// unnamed. If there is an error, this returns null otherwise it returns 1938 /// the block being defined. 1939 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1940 LocTy Loc) { 1941 BasicBlock *BB; 1942 if (Name.empty()) 1943 BB = GetBB(NumberedVals.size(), Loc); 1944 else 1945 BB = GetBB(Name, Loc); 1946 if (BB == 0) return 0; // Already diagnosed error. 1947 1948 // Move the block to the end of the function. Forward ref'd blocks are 1949 // inserted wherever they happen to be referenced. 1950 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1951 1952 // Remove the block from forward ref sets. 1953 if (Name.empty()) { 1954 ForwardRefValIDs.erase(NumberedVals.size()); 1955 NumberedVals.push_back(BB); 1956 } else { 1957 // BB forward references are already in the function symbol table. 1958 ForwardRefVals.erase(Name); 1959 } 1960 1961 return BB; 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // Constants. 1966 //===----------------------------------------------------------------------===// 1967 1968 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1969 /// type implied. For example, if we parse "4" we don't know what integer type 1970 /// it has. The value will later be combined with its type and checked for 1971 /// sanity. PFS is used to convert function-local operands of metadata (since 1972 /// metadata operands are not just parsed here but also converted to values). 1973 /// PFS can be null when we are not parsing metadata values inside a function. 1974 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1975 ID.Loc = Lex.getLoc(); 1976 switch (Lex.getKind()) { 1977 default: return TokError("expected value token"); 1978 case lltok::GlobalID: // @42 1979 ID.UIntVal = Lex.getUIntVal(); 1980 ID.Kind = ValID::t_GlobalID; 1981 break; 1982 case lltok::GlobalVar: // @foo 1983 ID.StrVal = Lex.getStrVal(); 1984 ID.Kind = ValID::t_GlobalName; 1985 break; 1986 case lltok::LocalVarID: // %42 1987 ID.UIntVal = Lex.getUIntVal(); 1988 ID.Kind = ValID::t_LocalID; 1989 break; 1990 case lltok::LocalVar: // %foo 1991 ID.StrVal = Lex.getStrVal(); 1992 ID.Kind = ValID::t_LocalName; 1993 break; 1994 case lltok::exclaim: // !42, !{...}, or !"foo" 1995 return ParseMetadataValue(ID, PFS); 1996 case lltok::APSInt: 1997 ID.APSIntVal = Lex.getAPSIntVal(); 1998 ID.Kind = ValID::t_APSInt; 1999 break; 2000 case lltok::APFloat: 2001 ID.APFloatVal = Lex.getAPFloatVal(); 2002 ID.Kind = ValID::t_APFloat; 2003 break; 2004 case lltok::kw_true: 2005 ID.ConstantVal = ConstantInt::getTrue(Context); 2006 ID.Kind = ValID::t_Constant; 2007 break; 2008 case lltok::kw_false: 2009 ID.ConstantVal = ConstantInt::getFalse(Context); 2010 ID.Kind = ValID::t_Constant; 2011 break; 2012 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2013 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2014 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2015 2016 case lltok::lbrace: { 2017 // ValID ::= '{' ConstVector '}' 2018 Lex.Lex(); 2019 SmallVector<Constant*, 16> Elts; 2020 if (ParseGlobalValueVector(Elts) || 2021 ParseToken(lltok::rbrace, "expected end of struct constant")) 2022 return true; 2023 2024 ID.ConstantStructElts = new Constant*[Elts.size()]; 2025 ID.UIntVal = Elts.size(); 2026 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2027 ID.Kind = ValID::t_ConstantStruct; 2028 return false; 2029 } 2030 case lltok::less: { 2031 // ValID ::= '<' ConstVector '>' --> Vector. 2032 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2033 Lex.Lex(); 2034 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2035 2036 SmallVector<Constant*, 16> Elts; 2037 LocTy FirstEltLoc = Lex.getLoc(); 2038 if (ParseGlobalValueVector(Elts) || 2039 (isPackedStruct && 2040 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2041 ParseToken(lltok::greater, "expected end of constant")) 2042 return true; 2043 2044 if (isPackedStruct) { 2045 ID.ConstantStructElts = new Constant*[Elts.size()]; 2046 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2047 ID.UIntVal = Elts.size(); 2048 ID.Kind = ValID::t_PackedConstantStruct; 2049 return false; 2050 } 2051 2052 if (Elts.empty()) 2053 return Error(ID.Loc, "constant vector must not be empty"); 2054 2055 if (!Elts[0]->getType()->isIntegerTy() && 2056 !Elts[0]->getType()->isFloatingPointTy() && 2057 !Elts[0]->getType()->isPointerTy()) 2058 return Error(FirstEltLoc, 2059 "vector elements must have integer, pointer or floating point type"); 2060 2061 // Verify that all the vector elements have the same type. 2062 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2063 if (Elts[i]->getType() != Elts[0]->getType()) 2064 return Error(FirstEltLoc, 2065 "vector element #" + Twine(i) + 2066 " is not of type '" + getTypeString(Elts[0]->getType())); 2067 2068 ID.ConstantVal = ConstantVector::get(Elts); 2069 ID.Kind = ValID::t_Constant; 2070 return false; 2071 } 2072 case lltok::lsquare: { // Array Constant 2073 Lex.Lex(); 2074 SmallVector<Constant*, 16> Elts; 2075 LocTy FirstEltLoc = Lex.getLoc(); 2076 if (ParseGlobalValueVector(Elts) || 2077 ParseToken(lltok::rsquare, "expected end of array constant")) 2078 return true; 2079 2080 // Handle empty element. 2081 if (Elts.empty()) { 2082 // Use undef instead of an array because it's inconvenient to determine 2083 // the element type at this point, there being no elements to examine. 2084 ID.Kind = ValID::t_EmptyArray; 2085 return false; 2086 } 2087 2088 if (!Elts[0]->getType()->isFirstClassType()) 2089 return Error(FirstEltLoc, "invalid array element type: " + 2090 getTypeString(Elts[0]->getType())); 2091 2092 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2093 2094 // Verify all elements are correct type! 2095 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2096 if (Elts[i]->getType() != Elts[0]->getType()) 2097 return Error(FirstEltLoc, 2098 "array element #" + Twine(i) + 2099 " is not of type '" + getTypeString(Elts[0]->getType())); 2100 } 2101 2102 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2103 ID.Kind = ValID::t_Constant; 2104 return false; 2105 } 2106 case lltok::kw_c: // c "foo" 2107 Lex.Lex(); 2108 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2109 false); 2110 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2111 ID.Kind = ValID::t_Constant; 2112 return false; 2113 2114 case lltok::kw_asm: { 2115 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2116 bool HasSideEffect, AlignStack, AsmDialect; 2117 Lex.Lex(); 2118 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2119 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2120 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2121 ParseStringConstant(ID.StrVal) || 2122 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2123 ParseToken(lltok::StringConstant, "expected constraint string")) 2124 return true; 2125 ID.StrVal2 = Lex.getStrVal(); 2126 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2127 (unsigned(AsmDialect)<<2); 2128 ID.Kind = ValID::t_InlineAsm; 2129 return false; 2130 } 2131 2132 case lltok::kw_blockaddress: { 2133 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2134 Lex.Lex(); 2135 2136 ValID Fn, Label; 2137 LocTy FnLoc, LabelLoc; 2138 2139 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2140 ParseValID(Fn) || 2141 ParseToken(lltok::comma, "expected comma in block address expression")|| 2142 ParseValID(Label) || 2143 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2144 return true; 2145 2146 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2147 return Error(Fn.Loc, "expected function name in blockaddress"); 2148 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2149 return Error(Label.Loc, "expected basic block name in blockaddress"); 2150 2151 // Make a global variable as a placeholder for this reference. 2152 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2153 false, GlobalValue::InternalLinkage, 2154 0, ""); 2155 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2156 ID.ConstantVal = FwdRef; 2157 ID.Kind = ValID::t_Constant; 2158 return false; 2159 } 2160 2161 case lltok::kw_trunc: 2162 case lltok::kw_zext: 2163 case lltok::kw_sext: 2164 case lltok::kw_fptrunc: 2165 case lltok::kw_fpext: 2166 case lltok::kw_bitcast: 2167 case lltok::kw_uitofp: 2168 case lltok::kw_sitofp: 2169 case lltok::kw_fptoui: 2170 case lltok::kw_fptosi: 2171 case lltok::kw_inttoptr: 2172 case lltok::kw_ptrtoint: { 2173 unsigned Opc = Lex.getUIntVal(); 2174 Type *DestTy = 0; 2175 Constant *SrcVal; 2176 Lex.Lex(); 2177 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2178 ParseGlobalTypeAndValue(SrcVal) || 2179 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2180 ParseType(DestTy) || 2181 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2182 return true; 2183 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2184 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2185 getTypeString(SrcVal->getType()) + "' to '" + 2186 getTypeString(DestTy) + "'"); 2187 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2188 SrcVal, DestTy); 2189 ID.Kind = ValID::t_Constant; 2190 return false; 2191 } 2192 case lltok::kw_extractvalue: { 2193 Lex.Lex(); 2194 Constant *Val; 2195 SmallVector<unsigned, 4> Indices; 2196 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2197 ParseGlobalTypeAndValue(Val) || 2198 ParseIndexList(Indices) || 2199 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2200 return true; 2201 2202 if (!Val->getType()->isAggregateType()) 2203 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2204 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2205 return Error(ID.Loc, "invalid indices for extractvalue"); 2206 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2207 ID.Kind = ValID::t_Constant; 2208 return false; 2209 } 2210 case lltok::kw_insertvalue: { 2211 Lex.Lex(); 2212 Constant *Val0, *Val1; 2213 SmallVector<unsigned, 4> Indices; 2214 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2215 ParseGlobalTypeAndValue(Val0) || 2216 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2217 ParseGlobalTypeAndValue(Val1) || 2218 ParseIndexList(Indices) || 2219 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2220 return true; 2221 if (!Val0->getType()->isAggregateType()) 2222 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2223 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2224 return Error(ID.Loc, "invalid indices for insertvalue"); 2225 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2226 ID.Kind = ValID::t_Constant; 2227 return false; 2228 } 2229 case lltok::kw_icmp: 2230 case lltok::kw_fcmp: { 2231 unsigned PredVal, Opc = Lex.getUIntVal(); 2232 Constant *Val0, *Val1; 2233 Lex.Lex(); 2234 if (ParseCmpPredicate(PredVal, Opc) || 2235 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2236 ParseGlobalTypeAndValue(Val0) || 2237 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2238 ParseGlobalTypeAndValue(Val1) || 2239 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2240 return true; 2241 2242 if (Val0->getType() != Val1->getType()) 2243 return Error(ID.Loc, "compare operands must have the same type"); 2244 2245 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2246 2247 if (Opc == Instruction::FCmp) { 2248 if (!Val0->getType()->isFPOrFPVectorTy()) 2249 return Error(ID.Loc, "fcmp requires floating point operands"); 2250 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2251 } else { 2252 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2253 if (!Val0->getType()->isIntOrIntVectorTy() && 2254 !Val0->getType()->getScalarType()->isPointerTy()) 2255 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2256 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2257 } 2258 ID.Kind = ValID::t_Constant; 2259 return false; 2260 } 2261 2262 // Binary Operators. 2263 case lltok::kw_add: 2264 case lltok::kw_fadd: 2265 case lltok::kw_sub: 2266 case lltok::kw_fsub: 2267 case lltok::kw_mul: 2268 case lltok::kw_fmul: 2269 case lltok::kw_udiv: 2270 case lltok::kw_sdiv: 2271 case lltok::kw_fdiv: 2272 case lltok::kw_urem: 2273 case lltok::kw_srem: 2274 case lltok::kw_frem: 2275 case lltok::kw_shl: 2276 case lltok::kw_lshr: 2277 case lltok::kw_ashr: { 2278 bool NUW = false; 2279 bool NSW = false; 2280 bool Exact = false; 2281 unsigned Opc = Lex.getUIntVal(); 2282 Constant *Val0, *Val1; 2283 Lex.Lex(); 2284 LocTy ModifierLoc = Lex.getLoc(); 2285 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2286 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2287 if (EatIfPresent(lltok::kw_nuw)) 2288 NUW = true; 2289 if (EatIfPresent(lltok::kw_nsw)) { 2290 NSW = true; 2291 if (EatIfPresent(lltok::kw_nuw)) 2292 NUW = true; 2293 } 2294 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2295 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2296 if (EatIfPresent(lltok::kw_exact)) 2297 Exact = true; 2298 } 2299 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2300 ParseGlobalTypeAndValue(Val0) || 2301 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2302 ParseGlobalTypeAndValue(Val1) || 2303 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2304 return true; 2305 if (Val0->getType() != Val1->getType()) 2306 return Error(ID.Loc, "operands of constexpr must have same type"); 2307 if (!Val0->getType()->isIntOrIntVectorTy()) { 2308 if (NUW) 2309 return Error(ModifierLoc, "nuw only applies to integer operations"); 2310 if (NSW) 2311 return Error(ModifierLoc, "nsw only applies to integer operations"); 2312 } 2313 // Check that the type is valid for the operator. 2314 switch (Opc) { 2315 case Instruction::Add: 2316 case Instruction::Sub: 2317 case Instruction::Mul: 2318 case Instruction::UDiv: 2319 case Instruction::SDiv: 2320 case Instruction::URem: 2321 case Instruction::SRem: 2322 case Instruction::Shl: 2323 case Instruction::AShr: 2324 case Instruction::LShr: 2325 if (!Val0->getType()->isIntOrIntVectorTy()) 2326 return Error(ID.Loc, "constexpr requires integer operands"); 2327 break; 2328 case Instruction::FAdd: 2329 case Instruction::FSub: 2330 case Instruction::FMul: 2331 case Instruction::FDiv: 2332 case Instruction::FRem: 2333 if (!Val0->getType()->isFPOrFPVectorTy()) 2334 return Error(ID.Loc, "constexpr requires fp operands"); 2335 break; 2336 default: llvm_unreachable("Unknown binary operator!"); 2337 } 2338 unsigned Flags = 0; 2339 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2340 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2341 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2342 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2343 ID.ConstantVal = C; 2344 ID.Kind = ValID::t_Constant; 2345 return false; 2346 } 2347 2348 // Logical Operations 2349 case lltok::kw_and: 2350 case lltok::kw_or: 2351 case lltok::kw_xor: { 2352 unsigned Opc = Lex.getUIntVal(); 2353 Constant *Val0, *Val1; 2354 Lex.Lex(); 2355 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2356 ParseGlobalTypeAndValue(Val0) || 2357 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2358 ParseGlobalTypeAndValue(Val1) || 2359 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2360 return true; 2361 if (Val0->getType() != Val1->getType()) 2362 return Error(ID.Loc, "operands of constexpr must have same type"); 2363 if (!Val0->getType()->isIntOrIntVectorTy()) 2364 return Error(ID.Loc, 2365 "constexpr requires integer or integer vector operands"); 2366 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2367 ID.Kind = ValID::t_Constant; 2368 return false; 2369 } 2370 2371 case lltok::kw_getelementptr: 2372 case lltok::kw_shufflevector: 2373 case lltok::kw_insertelement: 2374 case lltok::kw_extractelement: 2375 case lltok::kw_select: { 2376 unsigned Opc = Lex.getUIntVal(); 2377 SmallVector<Constant*, 16> Elts; 2378 bool InBounds = false; 2379 Lex.Lex(); 2380 if (Opc == Instruction::GetElementPtr) 2381 InBounds = EatIfPresent(lltok::kw_inbounds); 2382 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2383 ParseGlobalValueVector(Elts) || 2384 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2385 return true; 2386 2387 if (Opc == Instruction::GetElementPtr) { 2388 if (Elts.size() == 0 || 2389 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2390 return Error(ID.Loc, "getelementptr requires pointer operand"); 2391 2392 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2393 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2394 return Error(ID.Loc, "invalid indices for getelementptr"); 2395 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2396 InBounds); 2397 } else if (Opc == Instruction::Select) { 2398 if (Elts.size() != 3) 2399 return Error(ID.Loc, "expected three operands to select"); 2400 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2401 Elts[2])) 2402 return Error(ID.Loc, Reason); 2403 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2404 } else if (Opc == Instruction::ShuffleVector) { 2405 if (Elts.size() != 3) 2406 return Error(ID.Loc, "expected three operands to shufflevector"); 2407 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2408 return Error(ID.Loc, "invalid operands to shufflevector"); 2409 ID.ConstantVal = 2410 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2411 } else if (Opc == Instruction::ExtractElement) { 2412 if (Elts.size() != 2) 2413 return Error(ID.Loc, "expected two operands to extractelement"); 2414 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2415 return Error(ID.Loc, "invalid extractelement operands"); 2416 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2417 } else { 2418 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2419 if (Elts.size() != 3) 2420 return Error(ID.Loc, "expected three operands to insertelement"); 2421 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2422 return Error(ID.Loc, "invalid insertelement operands"); 2423 ID.ConstantVal = 2424 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2425 } 2426 2427 ID.Kind = ValID::t_Constant; 2428 return false; 2429 } 2430 } 2431 2432 Lex.Lex(); 2433 return false; 2434 } 2435 2436 /// ParseGlobalValue - Parse a global value with the specified type. 2437 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2438 C = 0; 2439 ValID ID; 2440 Value *V = NULL; 2441 bool Parsed = ParseValID(ID) || 2442 ConvertValIDToValue(Ty, ID, V, NULL); 2443 if (V && !(C = dyn_cast<Constant>(V))) 2444 return Error(ID.Loc, "global values must be constants"); 2445 return Parsed; 2446 } 2447 2448 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2449 Type *Ty = 0; 2450 return ParseType(Ty) || 2451 ParseGlobalValue(Ty, V); 2452 } 2453 2454 /// ParseGlobalValueVector 2455 /// ::= /*empty*/ 2456 /// ::= TypeAndValue (',' TypeAndValue)* 2457 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2458 // Empty list. 2459 if (Lex.getKind() == lltok::rbrace || 2460 Lex.getKind() == lltok::rsquare || 2461 Lex.getKind() == lltok::greater || 2462 Lex.getKind() == lltok::rparen) 2463 return false; 2464 2465 Constant *C; 2466 if (ParseGlobalTypeAndValue(C)) return true; 2467 Elts.push_back(C); 2468 2469 while (EatIfPresent(lltok::comma)) { 2470 if (ParseGlobalTypeAndValue(C)) return true; 2471 Elts.push_back(C); 2472 } 2473 2474 return false; 2475 } 2476 2477 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2478 assert(Lex.getKind() == lltok::lbrace); 2479 Lex.Lex(); 2480 2481 SmallVector<Value*, 16> Elts; 2482 if (ParseMDNodeVector(Elts, PFS) || 2483 ParseToken(lltok::rbrace, "expected end of metadata node")) 2484 return true; 2485 2486 ID.MDNodeVal = MDNode::get(Context, Elts); 2487 ID.Kind = ValID::t_MDNode; 2488 return false; 2489 } 2490 2491 /// ParseMetadataValue 2492 /// ::= !42 2493 /// ::= !{...} 2494 /// ::= !"string" 2495 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2496 assert(Lex.getKind() == lltok::exclaim); 2497 Lex.Lex(); 2498 2499 // MDNode: 2500 // !{ ... } 2501 if (Lex.getKind() == lltok::lbrace) 2502 return ParseMetadataListValue(ID, PFS); 2503 2504 // Standalone metadata reference 2505 // !42 2506 if (Lex.getKind() == lltok::APSInt) { 2507 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2508 ID.Kind = ValID::t_MDNode; 2509 return false; 2510 } 2511 2512 // MDString: 2513 // ::= '!' STRINGCONSTANT 2514 if (ParseMDString(ID.MDStringVal)) return true; 2515 ID.Kind = ValID::t_MDString; 2516 return false; 2517 } 2518 2519 2520 //===----------------------------------------------------------------------===// 2521 // Function Parsing. 2522 //===----------------------------------------------------------------------===// 2523 2524 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2525 PerFunctionState *PFS) { 2526 if (Ty->isFunctionTy()) 2527 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2528 2529 switch (ID.Kind) { 2530 case ValID::t_LocalID: 2531 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2532 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2533 return (V == 0); 2534 case ValID::t_LocalName: 2535 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2536 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2537 return (V == 0); 2538 case ValID::t_InlineAsm: { 2539 PointerType *PTy = dyn_cast<PointerType>(Ty); 2540 FunctionType *FTy = 2541 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2542 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2543 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2544 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2545 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2546 return false; 2547 } 2548 case ValID::t_MDNode: 2549 if (!Ty->isMetadataTy()) 2550 return Error(ID.Loc, "metadata value must have metadata type"); 2551 V = ID.MDNodeVal; 2552 return false; 2553 case ValID::t_MDString: 2554 if (!Ty->isMetadataTy()) 2555 return Error(ID.Loc, "metadata value must have metadata type"); 2556 V = ID.MDStringVal; 2557 return false; 2558 case ValID::t_GlobalName: 2559 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2560 return V == 0; 2561 case ValID::t_GlobalID: 2562 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2563 return V == 0; 2564 case ValID::t_APSInt: 2565 if (!Ty->isIntegerTy()) 2566 return Error(ID.Loc, "integer constant must have integer type"); 2567 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2568 V = ConstantInt::get(Context, ID.APSIntVal); 2569 return false; 2570 case ValID::t_APFloat: 2571 if (!Ty->isFloatingPointTy() || 2572 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2573 return Error(ID.Loc, "floating point constant invalid for type"); 2574 2575 // The lexer has no type info, so builds all half, float, and double FP 2576 // constants as double. Fix this here. Long double does not need this. 2577 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2578 bool Ignored; 2579 if (Ty->isHalfTy()) 2580 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2581 &Ignored); 2582 else if (Ty->isFloatTy()) 2583 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2584 &Ignored); 2585 } 2586 V = ConstantFP::get(Context, ID.APFloatVal); 2587 2588 if (V->getType() != Ty) 2589 return Error(ID.Loc, "floating point constant does not have type '" + 2590 getTypeString(Ty) + "'"); 2591 2592 return false; 2593 case ValID::t_Null: 2594 if (!Ty->isPointerTy()) 2595 return Error(ID.Loc, "null must be a pointer type"); 2596 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2597 return false; 2598 case ValID::t_Undef: 2599 // FIXME: LabelTy should not be a first-class type. 2600 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2601 return Error(ID.Loc, "invalid type for undef constant"); 2602 V = UndefValue::get(Ty); 2603 return false; 2604 case ValID::t_EmptyArray: 2605 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2606 return Error(ID.Loc, "invalid empty array initializer"); 2607 V = UndefValue::get(Ty); 2608 return false; 2609 case ValID::t_Zero: 2610 // FIXME: LabelTy should not be a first-class type. 2611 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2612 return Error(ID.Loc, "invalid type for null constant"); 2613 V = Constant::getNullValue(Ty); 2614 return false; 2615 case ValID::t_Constant: 2616 if (ID.ConstantVal->getType() != Ty) 2617 return Error(ID.Loc, "constant expression type mismatch"); 2618 2619 V = ID.ConstantVal; 2620 return false; 2621 case ValID::t_ConstantStruct: 2622 case ValID::t_PackedConstantStruct: 2623 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2624 if (ST->getNumElements() != ID.UIntVal) 2625 return Error(ID.Loc, 2626 "initializer with struct type has wrong # elements"); 2627 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2628 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2629 2630 // Verify that the elements are compatible with the structtype. 2631 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2632 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2633 return Error(ID.Loc, "element " + Twine(i) + 2634 " of struct initializer doesn't match struct element type"); 2635 2636 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2637 ID.UIntVal)); 2638 } else 2639 return Error(ID.Loc, "constant expression type mismatch"); 2640 return false; 2641 } 2642 llvm_unreachable("Invalid ValID"); 2643 } 2644 2645 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2646 V = 0; 2647 ValID ID; 2648 return ParseValID(ID, PFS) || 2649 ConvertValIDToValue(Ty, ID, V, PFS); 2650 } 2651 2652 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2653 Type *Ty = 0; 2654 return ParseType(Ty) || 2655 ParseValue(Ty, V, PFS); 2656 } 2657 2658 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2659 PerFunctionState &PFS) { 2660 Value *V; 2661 Loc = Lex.getLoc(); 2662 if (ParseTypeAndValue(V, PFS)) return true; 2663 if (!isa<BasicBlock>(V)) 2664 return Error(Loc, "expected a basic block"); 2665 BB = cast<BasicBlock>(V); 2666 return false; 2667 } 2668 2669 2670 /// FunctionHeader 2671 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2672 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2673 /// OptionalAlign OptGC 2674 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2675 // Parse the linkage. 2676 LocTy LinkageLoc = Lex.getLoc(); 2677 unsigned Linkage; 2678 2679 unsigned Visibility; 2680 AttrBuilder RetAttrs; 2681 CallingConv::ID CC; 2682 Type *RetType = 0; 2683 LocTy RetTypeLoc = Lex.getLoc(); 2684 if (ParseOptionalLinkage(Linkage) || 2685 ParseOptionalVisibility(Visibility) || 2686 ParseOptionalCallingConv(CC) || 2687 ParseOptionalAttrs(RetAttrs, 1) || 2688 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2689 return true; 2690 2691 // Verify that the linkage is ok. 2692 switch ((GlobalValue::LinkageTypes)Linkage) { 2693 case GlobalValue::ExternalLinkage: 2694 break; // always ok. 2695 case GlobalValue::DLLImportLinkage: 2696 case GlobalValue::ExternalWeakLinkage: 2697 if (isDefine) 2698 return Error(LinkageLoc, "invalid linkage for function definition"); 2699 break; 2700 case GlobalValue::PrivateLinkage: 2701 case GlobalValue::LinkerPrivateLinkage: 2702 case GlobalValue::LinkerPrivateWeakLinkage: 2703 case GlobalValue::InternalLinkage: 2704 case GlobalValue::AvailableExternallyLinkage: 2705 case GlobalValue::LinkOnceAnyLinkage: 2706 case GlobalValue::LinkOnceODRLinkage: 2707 case GlobalValue::LinkOnceODRAutoHideLinkage: 2708 case GlobalValue::WeakAnyLinkage: 2709 case GlobalValue::WeakODRLinkage: 2710 case GlobalValue::DLLExportLinkage: 2711 if (!isDefine) 2712 return Error(LinkageLoc, "invalid linkage for function declaration"); 2713 break; 2714 case GlobalValue::AppendingLinkage: 2715 case GlobalValue::CommonLinkage: 2716 return Error(LinkageLoc, "invalid function linkage type"); 2717 } 2718 2719 if (!FunctionType::isValidReturnType(RetType)) 2720 return Error(RetTypeLoc, "invalid function return type"); 2721 2722 LocTy NameLoc = Lex.getLoc(); 2723 2724 std::string FunctionName; 2725 if (Lex.getKind() == lltok::GlobalVar) { 2726 FunctionName = Lex.getStrVal(); 2727 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2728 unsigned NameID = Lex.getUIntVal(); 2729 2730 if (NameID != NumberedVals.size()) 2731 return TokError("function expected to be numbered '%" + 2732 Twine(NumberedVals.size()) + "'"); 2733 } else { 2734 return TokError("expected function name"); 2735 } 2736 2737 Lex.Lex(); 2738 2739 if (Lex.getKind() != lltok::lparen) 2740 return TokError("expected '(' in function argument list"); 2741 2742 SmallVector<ArgInfo, 8> ArgList; 2743 bool isVarArg; 2744 AttrBuilder FuncAttrs; 2745 std::string Section; 2746 unsigned Alignment; 2747 std::string GC; 2748 bool UnnamedAddr; 2749 LocTy UnnamedAddrLoc; 2750 2751 if (ParseArgumentList(ArgList, isVarArg) || 2752 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2753 &UnnamedAddrLoc) || 2754 ParseOptionalAttrs(FuncAttrs, 2) || 2755 (EatIfPresent(lltok::kw_section) && 2756 ParseStringConstant(Section)) || 2757 ParseOptionalAlignment(Alignment) || 2758 (EatIfPresent(lltok::kw_gc) && 2759 ParseStringConstant(GC))) 2760 return true; 2761 2762 // If the alignment was parsed as an attribute, move to the alignment field. 2763 if (FuncAttrs.hasAlignmentAttr()) { 2764 Alignment = FuncAttrs.getAlignment(); 2765 FuncAttrs.removeAttribute(Attributes::Alignment); 2766 } 2767 2768 // Okay, if we got here, the function is syntactically valid. Convert types 2769 // and do semantic checks. 2770 std::vector<Type*> ParamTypeList; 2771 SmallVector<AttributeWithIndex, 8> Attrs; 2772 2773 if (RetAttrs.hasAttributes()) 2774 Attrs.push_back( 2775 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 2776 Attributes::get(RetType->getContext(), 2777 RetAttrs))); 2778 2779 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2780 ParamTypeList.push_back(ArgList[i].Ty); 2781 if (ArgList[i].Attrs.hasAttributes()) 2782 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2783 } 2784 2785 if (FuncAttrs.hasAttributes()) 2786 Attrs.push_back( 2787 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 2788 Attributes::get(RetType->getContext(), 2789 FuncAttrs))); 2790 2791 AttrListPtr PAL = AttrListPtr::get(Attrs); 2792 2793 if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) && 2794 !RetType->isVoidTy()) 2795 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2796 2797 FunctionType *FT = 2798 FunctionType::get(RetType, ParamTypeList, isVarArg); 2799 PointerType *PFT = PointerType::getUnqual(FT); 2800 2801 Fn = 0; 2802 if (!FunctionName.empty()) { 2803 // If this was a definition of a forward reference, remove the definition 2804 // from the forward reference table and fill in the forward ref. 2805 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2806 ForwardRefVals.find(FunctionName); 2807 if (FRVI != ForwardRefVals.end()) { 2808 Fn = M->getFunction(FunctionName); 2809 if (!Fn) 2810 return Error(FRVI->second.second, "invalid forward reference to " 2811 "function as global value!"); 2812 if (Fn->getType() != PFT) 2813 return Error(FRVI->second.second, "invalid forward reference to " 2814 "function '" + FunctionName + "' with wrong type!"); 2815 2816 ForwardRefVals.erase(FRVI); 2817 } else if ((Fn = M->getFunction(FunctionName))) { 2818 // Reject redefinitions. 2819 return Error(NameLoc, "invalid redefinition of function '" + 2820 FunctionName + "'"); 2821 } else if (M->getNamedValue(FunctionName)) { 2822 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2823 } 2824 2825 } else { 2826 // If this is a definition of a forward referenced function, make sure the 2827 // types agree. 2828 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2829 = ForwardRefValIDs.find(NumberedVals.size()); 2830 if (I != ForwardRefValIDs.end()) { 2831 Fn = cast<Function>(I->second.first); 2832 if (Fn->getType() != PFT) 2833 return Error(NameLoc, "type of definition and forward reference of '@" + 2834 Twine(NumberedVals.size()) + "' disagree"); 2835 ForwardRefValIDs.erase(I); 2836 } 2837 } 2838 2839 if (Fn == 0) 2840 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2841 else // Move the forward-reference to the correct spot in the module. 2842 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2843 2844 if (FunctionName.empty()) 2845 NumberedVals.push_back(Fn); 2846 2847 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2848 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2849 Fn->setCallingConv(CC); 2850 Fn->setAttributes(PAL); 2851 Fn->setUnnamedAddr(UnnamedAddr); 2852 Fn->setAlignment(Alignment); 2853 Fn->setSection(Section); 2854 if (!GC.empty()) Fn->setGC(GC.c_str()); 2855 2856 // Add all of the arguments we parsed to the function. 2857 Function::arg_iterator ArgIt = Fn->arg_begin(); 2858 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2859 // If the argument has a name, insert it into the argument symbol table. 2860 if (ArgList[i].Name.empty()) continue; 2861 2862 // Set the name, if it conflicted, it will be auto-renamed. 2863 ArgIt->setName(ArgList[i].Name); 2864 2865 if (ArgIt->getName() != ArgList[i].Name) 2866 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2867 ArgList[i].Name + "'"); 2868 } 2869 2870 return false; 2871 } 2872 2873 2874 /// ParseFunctionBody 2875 /// ::= '{' BasicBlock+ '}' 2876 /// 2877 bool LLParser::ParseFunctionBody(Function &Fn) { 2878 if (Lex.getKind() != lltok::lbrace) 2879 return TokError("expected '{' in function body"); 2880 Lex.Lex(); // eat the {. 2881 2882 int FunctionNumber = -1; 2883 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2884 2885 PerFunctionState PFS(*this, Fn, FunctionNumber); 2886 2887 // We need at least one basic block. 2888 if (Lex.getKind() == lltok::rbrace) 2889 return TokError("function body requires at least one basic block"); 2890 2891 while (Lex.getKind() != lltok::rbrace) 2892 if (ParseBasicBlock(PFS)) return true; 2893 2894 // Eat the }. 2895 Lex.Lex(); 2896 2897 // Verify function is ok. 2898 return PFS.FinishFunction(); 2899 } 2900 2901 /// ParseBasicBlock 2902 /// ::= LabelStr? Instruction* 2903 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2904 // If this basic block starts out with a name, remember it. 2905 std::string Name; 2906 LocTy NameLoc = Lex.getLoc(); 2907 if (Lex.getKind() == lltok::LabelStr) { 2908 Name = Lex.getStrVal(); 2909 Lex.Lex(); 2910 } 2911 2912 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2913 if (BB == 0) return true; 2914 2915 std::string NameStr; 2916 2917 // Parse the instructions in this block until we get a terminator. 2918 Instruction *Inst; 2919 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2920 do { 2921 // This instruction may have three possibilities for a name: a) none 2922 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2923 LocTy NameLoc = Lex.getLoc(); 2924 int NameID = -1; 2925 NameStr = ""; 2926 2927 if (Lex.getKind() == lltok::LocalVarID) { 2928 NameID = Lex.getUIntVal(); 2929 Lex.Lex(); 2930 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2931 return true; 2932 } else if (Lex.getKind() == lltok::LocalVar) { 2933 NameStr = Lex.getStrVal(); 2934 Lex.Lex(); 2935 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2936 return true; 2937 } 2938 2939 switch (ParseInstruction(Inst, BB, PFS)) { 2940 default: llvm_unreachable("Unknown ParseInstruction result!"); 2941 case InstError: return true; 2942 case InstNormal: 2943 BB->getInstList().push_back(Inst); 2944 2945 // With a normal result, we check to see if the instruction is followed by 2946 // a comma and metadata. 2947 if (EatIfPresent(lltok::comma)) 2948 if (ParseInstructionMetadata(Inst, &PFS)) 2949 return true; 2950 break; 2951 case InstExtraComma: 2952 BB->getInstList().push_back(Inst); 2953 2954 // If the instruction parser ate an extra comma at the end of it, it 2955 // *must* be followed by metadata. 2956 if (ParseInstructionMetadata(Inst, &PFS)) 2957 return true; 2958 break; 2959 } 2960 2961 // Set the name on the instruction. 2962 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2963 } while (!isa<TerminatorInst>(Inst)); 2964 2965 return false; 2966 } 2967 2968 //===----------------------------------------------------------------------===// 2969 // Instruction Parsing. 2970 //===----------------------------------------------------------------------===// 2971 2972 /// ParseInstruction - Parse one of the many different instructions. 2973 /// 2974 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2975 PerFunctionState &PFS) { 2976 lltok::Kind Token = Lex.getKind(); 2977 if (Token == lltok::Eof) 2978 return TokError("found end of file when expecting more instructions"); 2979 LocTy Loc = Lex.getLoc(); 2980 unsigned KeywordVal = Lex.getUIntVal(); 2981 Lex.Lex(); // Eat the keyword. 2982 2983 switch (Token) { 2984 default: return Error(Loc, "expected instruction opcode"); 2985 // Terminator Instructions. 2986 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2987 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2988 case lltok::kw_br: return ParseBr(Inst, PFS); 2989 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2990 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2991 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2992 case lltok::kw_resume: return ParseResume(Inst, PFS); 2993 // Binary Operators. 2994 case lltok::kw_add: 2995 case lltok::kw_sub: 2996 case lltok::kw_mul: 2997 case lltok::kw_shl: { 2998 bool NUW = EatIfPresent(lltok::kw_nuw); 2999 bool NSW = EatIfPresent(lltok::kw_nsw); 3000 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3001 3002 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3003 3004 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3005 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3006 return false; 3007 } 3008 case lltok::kw_fadd: 3009 case lltok::kw_fsub: 3010 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3011 3012 case lltok::kw_sdiv: 3013 case lltok::kw_udiv: 3014 case lltok::kw_lshr: 3015 case lltok::kw_ashr: { 3016 bool Exact = EatIfPresent(lltok::kw_exact); 3017 3018 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3019 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3020 return false; 3021 } 3022 3023 case lltok::kw_urem: 3024 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3025 case lltok::kw_fdiv: 3026 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3027 case lltok::kw_and: 3028 case lltok::kw_or: 3029 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3030 case lltok::kw_icmp: 3031 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3032 // Casts. 3033 case lltok::kw_trunc: 3034 case lltok::kw_zext: 3035 case lltok::kw_sext: 3036 case lltok::kw_fptrunc: 3037 case lltok::kw_fpext: 3038 case lltok::kw_bitcast: 3039 case lltok::kw_uitofp: 3040 case lltok::kw_sitofp: 3041 case lltok::kw_fptoui: 3042 case lltok::kw_fptosi: 3043 case lltok::kw_inttoptr: 3044 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3045 // Other. 3046 case lltok::kw_select: return ParseSelect(Inst, PFS); 3047 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3048 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3049 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3050 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3051 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3052 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3053 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3054 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3055 // Memory. 3056 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3057 case lltok::kw_load: return ParseLoad(Inst, PFS); 3058 case lltok::kw_store: return ParseStore(Inst, PFS); 3059 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3060 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3061 case lltok::kw_fence: return ParseFence(Inst, PFS); 3062 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3063 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3064 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3065 } 3066 } 3067 3068 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3069 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3070 if (Opc == Instruction::FCmp) { 3071 switch (Lex.getKind()) { 3072 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3073 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3074 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3075 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3076 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3077 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3078 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3079 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3080 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3081 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3082 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3083 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3084 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3085 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3086 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3087 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3088 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3089 } 3090 } else { 3091 switch (Lex.getKind()) { 3092 default: TokError("expected icmp predicate (e.g. 'eq')"); 3093 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3094 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3095 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3096 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3097 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3098 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3099 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3100 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3101 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3102 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3103 } 3104 } 3105 Lex.Lex(); 3106 return false; 3107 } 3108 3109 //===----------------------------------------------------------------------===// 3110 // Terminator Instructions. 3111 //===----------------------------------------------------------------------===// 3112 3113 /// ParseRet - Parse a return instruction. 3114 /// ::= 'ret' void (',' !dbg, !1)* 3115 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3116 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3117 PerFunctionState &PFS) { 3118 SMLoc TypeLoc = Lex.getLoc(); 3119 Type *Ty = 0; 3120 if (ParseType(Ty, true /*void allowed*/)) return true; 3121 3122 Type *ResType = PFS.getFunction().getReturnType(); 3123 3124 if (Ty->isVoidTy()) { 3125 if (!ResType->isVoidTy()) 3126 return Error(TypeLoc, "value doesn't match function result type '" + 3127 getTypeString(ResType) + "'"); 3128 3129 Inst = ReturnInst::Create(Context); 3130 return false; 3131 } 3132 3133 Value *RV; 3134 if (ParseValue(Ty, RV, PFS)) return true; 3135 3136 if (ResType != RV->getType()) 3137 return Error(TypeLoc, "value doesn't match function result type '" + 3138 getTypeString(ResType) + "'"); 3139 3140 Inst = ReturnInst::Create(Context, RV); 3141 return false; 3142 } 3143 3144 3145 /// ParseBr 3146 /// ::= 'br' TypeAndValue 3147 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3148 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3149 LocTy Loc, Loc2; 3150 Value *Op0; 3151 BasicBlock *Op1, *Op2; 3152 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3153 3154 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3155 Inst = BranchInst::Create(BB); 3156 return false; 3157 } 3158 3159 if (Op0->getType() != Type::getInt1Ty(Context)) 3160 return Error(Loc, "branch condition must have 'i1' type"); 3161 3162 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3163 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3164 ParseToken(lltok::comma, "expected ',' after true destination") || 3165 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3166 return true; 3167 3168 Inst = BranchInst::Create(Op1, Op2, Op0); 3169 return false; 3170 } 3171 3172 /// ParseSwitch 3173 /// Instruction 3174 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3175 /// JumpTable 3176 /// ::= (TypeAndValue ',' TypeAndValue)* 3177 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3178 LocTy CondLoc, BBLoc; 3179 Value *Cond; 3180 BasicBlock *DefaultBB; 3181 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3182 ParseToken(lltok::comma, "expected ',' after switch condition") || 3183 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3184 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3185 return true; 3186 3187 if (!Cond->getType()->isIntegerTy()) 3188 return Error(CondLoc, "switch condition must have integer type"); 3189 3190 // Parse the jump table pairs. 3191 SmallPtrSet<Value*, 32> SeenCases; 3192 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3193 while (Lex.getKind() != lltok::rsquare) { 3194 Value *Constant; 3195 BasicBlock *DestBB; 3196 3197 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3198 ParseToken(lltok::comma, "expected ',' after case value") || 3199 ParseTypeAndBasicBlock(DestBB, PFS)) 3200 return true; 3201 3202 if (!SeenCases.insert(Constant)) 3203 return Error(CondLoc, "duplicate case value in switch"); 3204 if (!isa<ConstantInt>(Constant)) 3205 return Error(CondLoc, "case value is not a constant integer"); 3206 3207 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3208 } 3209 3210 Lex.Lex(); // Eat the ']'. 3211 3212 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3213 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3214 SI->addCase(Table[i].first, Table[i].second); 3215 Inst = SI; 3216 return false; 3217 } 3218 3219 /// ParseIndirectBr 3220 /// Instruction 3221 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3222 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3223 LocTy AddrLoc; 3224 Value *Address; 3225 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3226 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3227 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3228 return true; 3229 3230 if (!Address->getType()->isPointerTy()) 3231 return Error(AddrLoc, "indirectbr address must have pointer type"); 3232 3233 // Parse the destination list. 3234 SmallVector<BasicBlock*, 16> DestList; 3235 3236 if (Lex.getKind() != lltok::rsquare) { 3237 BasicBlock *DestBB; 3238 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3239 return true; 3240 DestList.push_back(DestBB); 3241 3242 while (EatIfPresent(lltok::comma)) { 3243 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3244 return true; 3245 DestList.push_back(DestBB); 3246 } 3247 } 3248 3249 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3250 return true; 3251 3252 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3253 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3254 IBI->addDestination(DestList[i]); 3255 Inst = IBI; 3256 return false; 3257 } 3258 3259 3260 /// ParseInvoke 3261 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3262 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3263 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3264 LocTy CallLoc = Lex.getLoc(); 3265 AttrBuilder RetAttrs, FnAttrs; 3266 CallingConv::ID CC; 3267 Type *RetType = 0; 3268 LocTy RetTypeLoc; 3269 ValID CalleeID; 3270 SmallVector<ParamInfo, 16> ArgList; 3271 3272 BasicBlock *NormalBB, *UnwindBB; 3273 if (ParseOptionalCallingConv(CC) || 3274 ParseOptionalAttrs(RetAttrs, 1) || 3275 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3276 ParseValID(CalleeID) || 3277 ParseParameterList(ArgList, PFS) || 3278 ParseOptionalAttrs(FnAttrs, 2) || 3279 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3280 ParseTypeAndBasicBlock(NormalBB, PFS) || 3281 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3282 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3283 return true; 3284 3285 // If RetType is a non-function pointer type, then this is the short syntax 3286 // for the call, which means that RetType is just the return type. Infer the 3287 // rest of the function argument types from the arguments that are present. 3288 PointerType *PFTy = 0; 3289 FunctionType *Ty = 0; 3290 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3291 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3292 // Pull out the types of all of the arguments... 3293 std::vector<Type*> ParamTypes; 3294 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3295 ParamTypes.push_back(ArgList[i].V->getType()); 3296 3297 if (!FunctionType::isValidReturnType(RetType)) 3298 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3299 3300 Ty = FunctionType::get(RetType, ParamTypes, false); 3301 PFTy = PointerType::getUnqual(Ty); 3302 } 3303 3304 // Look up the callee. 3305 Value *Callee; 3306 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3307 3308 // Set up the Attributes for the function. 3309 SmallVector<AttributeWithIndex, 8> Attrs; 3310 if (RetAttrs.hasAttributes()) 3311 Attrs.push_back( 3312 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3313 Attributes::get(Callee->getContext(), 3314 RetAttrs))); 3315 3316 SmallVector<Value*, 8> Args; 3317 3318 // Loop through FunctionType's arguments and ensure they are specified 3319 // correctly. Also, gather any parameter attributes. 3320 FunctionType::param_iterator I = Ty->param_begin(); 3321 FunctionType::param_iterator E = Ty->param_end(); 3322 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3323 Type *ExpectedTy = 0; 3324 if (I != E) { 3325 ExpectedTy = *I++; 3326 } else if (!Ty->isVarArg()) { 3327 return Error(ArgList[i].Loc, "too many arguments specified"); 3328 } 3329 3330 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3331 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3332 getTypeString(ExpectedTy) + "'"); 3333 Args.push_back(ArgList[i].V); 3334 if (ArgList[i].Attrs.hasAttributes()) 3335 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3336 } 3337 3338 if (I != E) 3339 return Error(CallLoc, "not enough parameters specified for call"); 3340 3341 if (FnAttrs.hasAttributes()) 3342 Attrs.push_back( 3343 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3344 Attributes::get(Callee->getContext(), 3345 FnAttrs))); 3346 3347 // Finish off the Attributes and check them 3348 AttrListPtr PAL = AttrListPtr::get(Attrs); 3349 3350 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3351 II->setCallingConv(CC); 3352 II->setAttributes(PAL); 3353 Inst = II; 3354 return false; 3355 } 3356 3357 /// ParseResume 3358 /// ::= 'resume' TypeAndValue 3359 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3360 Value *Exn; LocTy ExnLoc; 3361 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3362 return true; 3363 3364 ResumeInst *RI = ResumeInst::Create(Exn); 3365 Inst = RI; 3366 return false; 3367 } 3368 3369 //===----------------------------------------------------------------------===// 3370 // Binary Operators. 3371 //===----------------------------------------------------------------------===// 3372 3373 /// ParseArithmetic 3374 /// ::= ArithmeticOps TypeAndValue ',' Value 3375 /// 3376 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3377 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3378 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3379 unsigned Opc, unsigned OperandType) { 3380 LocTy Loc; Value *LHS, *RHS; 3381 if (ParseTypeAndValue(LHS, Loc, PFS) || 3382 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3383 ParseValue(LHS->getType(), RHS, PFS)) 3384 return true; 3385 3386 bool Valid; 3387 switch (OperandType) { 3388 default: llvm_unreachable("Unknown operand type!"); 3389 case 0: // int or FP. 3390 Valid = LHS->getType()->isIntOrIntVectorTy() || 3391 LHS->getType()->isFPOrFPVectorTy(); 3392 break; 3393 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3394 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3395 } 3396 3397 if (!Valid) 3398 return Error(Loc, "invalid operand type for instruction"); 3399 3400 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3401 return false; 3402 } 3403 3404 /// ParseLogical 3405 /// ::= ArithmeticOps TypeAndValue ',' Value { 3406 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3407 unsigned Opc) { 3408 LocTy Loc; Value *LHS, *RHS; 3409 if (ParseTypeAndValue(LHS, Loc, PFS) || 3410 ParseToken(lltok::comma, "expected ',' in logical operation") || 3411 ParseValue(LHS->getType(), RHS, PFS)) 3412 return true; 3413 3414 if (!LHS->getType()->isIntOrIntVectorTy()) 3415 return Error(Loc,"instruction requires integer or integer vector operands"); 3416 3417 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3418 return false; 3419 } 3420 3421 3422 /// ParseCompare 3423 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3424 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3425 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3426 unsigned Opc) { 3427 // Parse the integer/fp comparison predicate. 3428 LocTy Loc; 3429 unsigned Pred; 3430 Value *LHS, *RHS; 3431 if (ParseCmpPredicate(Pred, Opc) || 3432 ParseTypeAndValue(LHS, Loc, PFS) || 3433 ParseToken(lltok::comma, "expected ',' after compare value") || 3434 ParseValue(LHS->getType(), RHS, PFS)) 3435 return true; 3436 3437 if (Opc == Instruction::FCmp) { 3438 if (!LHS->getType()->isFPOrFPVectorTy()) 3439 return Error(Loc, "fcmp requires floating point operands"); 3440 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3441 } else { 3442 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3443 if (!LHS->getType()->isIntOrIntVectorTy() && 3444 !LHS->getType()->getScalarType()->isPointerTy()) 3445 return Error(Loc, "icmp requires integer operands"); 3446 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3447 } 3448 return false; 3449 } 3450 3451 //===----------------------------------------------------------------------===// 3452 // Other Instructions. 3453 //===----------------------------------------------------------------------===// 3454 3455 3456 /// ParseCast 3457 /// ::= CastOpc TypeAndValue 'to' Type 3458 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3459 unsigned Opc) { 3460 LocTy Loc; 3461 Value *Op; 3462 Type *DestTy = 0; 3463 if (ParseTypeAndValue(Op, Loc, PFS) || 3464 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3465 ParseType(DestTy)) 3466 return true; 3467 3468 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3469 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3470 return Error(Loc, "invalid cast opcode for cast from '" + 3471 getTypeString(Op->getType()) + "' to '" + 3472 getTypeString(DestTy) + "'"); 3473 } 3474 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3475 return false; 3476 } 3477 3478 /// ParseSelect 3479 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3480 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3481 LocTy Loc; 3482 Value *Op0, *Op1, *Op2; 3483 if (ParseTypeAndValue(Op0, Loc, PFS) || 3484 ParseToken(lltok::comma, "expected ',' after select condition") || 3485 ParseTypeAndValue(Op1, PFS) || 3486 ParseToken(lltok::comma, "expected ',' after select value") || 3487 ParseTypeAndValue(Op2, PFS)) 3488 return true; 3489 3490 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3491 return Error(Loc, Reason); 3492 3493 Inst = SelectInst::Create(Op0, Op1, Op2); 3494 return false; 3495 } 3496 3497 /// ParseVA_Arg 3498 /// ::= 'va_arg' TypeAndValue ',' Type 3499 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3500 Value *Op; 3501 Type *EltTy = 0; 3502 LocTy TypeLoc; 3503 if (ParseTypeAndValue(Op, PFS) || 3504 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3505 ParseType(EltTy, TypeLoc)) 3506 return true; 3507 3508 if (!EltTy->isFirstClassType()) 3509 return Error(TypeLoc, "va_arg requires operand with first class type"); 3510 3511 Inst = new VAArgInst(Op, EltTy); 3512 return false; 3513 } 3514 3515 /// ParseExtractElement 3516 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3517 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3518 LocTy Loc; 3519 Value *Op0, *Op1; 3520 if (ParseTypeAndValue(Op0, Loc, PFS) || 3521 ParseToken(lltok::comma, "expected ',' after extract value") || 3522 ParseTypeAndValue(Op1, PFS)) 3523 return true; 3524 3525 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3526 return Error(Loc, "invalid extractelement operands"); 3527 3528 Inst = ExtractElementInst::Create(Op0, Op1); 3529 return false; 3530 } 3531 3532 /// ParseInsertElement 3533 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3534 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3535 LocTy Loc; 3536 Value *Op0, *Op1, *Op2; 3537 if (ParseTypeAndValue(Op0, Loc, PFS) || 3538 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3539 ParseTypeAndValue(Op1, PFS) || 3540 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3541 ParseTypeAndValue(Op2, PFS)) 3542 return true; 3543 3544 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3545 return Error(Loc, "invalid insertelement operands"); 3546 3547 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3548 return false; 3549 } 3550 3551 /// ParseShuffleVector 3552 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3553 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3554 LocTy Loc; 3555 Value *Op0, *Op1, *Op2; 3556 if (ParseTypeAndValue(Op0, Loc, PFS) || 3557 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3558 ParseTypeAndValue(Op1, PFS) || 3559 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3560 ParseTypeAndValue(Op2, PFS)) 3561 return true; 3562 3563 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3564 return Error(Loc, "invalid shufflevector operands"); 3565 3566 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3567 return false; 3568 } 3569 3570 /// ParsePHI 3571 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3572 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3573 Type *Ty = 0; LocTy TypeLoc; 3574 Value *Op0, *Op1; 3575 3576 if (ParseType(Ty, TypeLoc) || 3577 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3578 ParseValue(Ty, Op0, PFS) || 3579 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3580 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3581 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3582 return true; 3583 3584 bool AteExtraComma = false; 3585 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3586 while (1) { 3587 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3588 3589 if (!EatIfPresent(lltok::comma)) 3590 break; 3591 3592 if (Lex.getKind() == lltok::MetadataVar) { 3593 AteExtraComma = true; 3594 break; 3595 } 3596 3597 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3598 ParseValue(Ty, Op0, PFS) || 3599 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3600 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3601 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3602 return true; 3603 } 3604 3605 if (!Ty->isFirstClassType()) 3606 return Error(TypeLoc, "phi node must have first class type"); 3607 3608 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3609 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3610 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3611 Inst = PN; 3612 return AteExtraComma ? InstExtraComma : InstNormal; 3613 } 3614 3615 /// ParseLandingPad 3616 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3617 /// Clause 3618 /// ::= 'catch' TypeAndValue 3619 /// ::= 'filter' 3620 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3621 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3622 Type *Ty = 0; LocTy TyLoc; 3623 Value *PersFn; LocTy PersFnLoc; 3624 3625 if (ParseType(Ty, TyLoc) || 3626 ParseToken(lltok::kw_personality, "expected 'personality'") || 3627 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3628 return true; 3629 3630 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3631 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3632 3633 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3634 LandingPadInst::ClauseType CT; 3635 if (EatIfPresent(lltok::kw_catch)) 3636 CT = LandingPadInst::Catch; 3637 else if (EatIfPresent(lltok::kw_filter)) 3638 CT = LandingPadInst::Filter; 3639 else 3640 return TokError("expected 'catch' or 'filter' clause type"); 3641 3642 Value *V; LocTy VLoc; 3643 if (ParseTypeAndValue(V, VLoc, PFS)) { 3644 delete LP; 3645 return true; 3646 } 3647 3648 // A 'catch' type expects a non-array constant. A filter clause expects an 3649 // array constant. 3650 if (CT == LandingPadInst::Catch) { 3651 if (isa<ArrayType>(V->getType())) 3652 Error(VLoc, "'catch' clause has an invalid type"); 3653 } else { 3654 if (!isa<ArrayType>(V->getType())) 3655 Error(VLoc, "'filter' clause has an invalid type"); 3656 } 3657 3658 LP->addClause(V); 3659 } 3660 3661 Inst = LP; 3662 return false; 3663 } 3664 3665 /// ParseCall 3666 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3667 /// ParameterList OptionalAttrs 3668 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3669 bool isTail) { 3670 AttrBuilder RetAttrs, FnAttrs; 3671 CallingConv::ID CC; 3672 Type *RetType = 0; 3673 LocTy RetTypeLoc; 3674 ValID CalleeID; 3675 SmallVector<ParamInfo, 16> ArgList; 3676 LocTy CallLoc = Lex.getLoc(); 3677 3678 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3679 ParseOptionalCallingConv(CC) || 3680 ParseOptionalAttrs(RetAttrs, 1) || 3681 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3682 ParseValID(CalleeID) || 3683 ParseParameterList(ArgList, PFS) || 3684 ParseOptionalAttrs(FnAttrs, 2)) 3685 return true; 3686 3687 // If RetType is a non-function pointer type, then this is the short syntax 3688 // for the call, which means that RetType is just the return type. Infer the 3689 // rest of the function argument types from the arguments that are present. 3690 PointerType *PFTy = 0; 3691 FunctionType *Ty = 0; 3692 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3693 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3694 // Pull out the types of all of the arguments... 3695 std::vector<Type*> ParamTypes; 3696 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3697 ParamTypes.push_back(ArgList[i].V->getType()); 3698 3699 if (!FunctionType::isValidReturnType(RetType)) 3700 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3701 3702 Ty = FunctionType::get(RetType, ParamTypes, false); 3703 PFTy = PointerType::getUnqual(Ty); 3704 } 3705 3706 // Look up the callee. 3707 Value *Callee; 3708 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3709 3710 // Set up the Attributes for the function. 3711 SmallVector<AttributeWithIndex, 8> Attrs; 3712 if (RetAttrs.hasAttributes()) 3713 Attrs.push_back( 3714 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3715 Attributes::get(Callee->getContext(), 3716 RetAttrs))); 3717 3718 SmallVector<Value*, 8> Args; 3719 3720 // Loop through FunctionType's arguments and ensure they are specified 3721 // correctly. Also, gather any parameter attributes. 3722 FunctionType::param_iterator I = Ty->param_begin(); 3723 FunctionType::param_iterator E = Ty->param_end(); 3724 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3725 Type *ExpectedTy = 0; 3726 if (I != E) { 3727 ExpectedTy = *I++; 3728 } else if (!Ty->isVarArg()) { 3729 return Error(ArgList[i].Loc, "too many arguments specified"); 3730 } 3731 3732 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3733 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3734 getTypeString(ExpectedTy) + "'"); 3735 Args.push_back(ArgList[i].V); 3736 if (ArgList[i].Attrs.hasAttributes()) 3737 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3738 } 3739 3740 if (I != E) 3741 return Error(CallLoc, "not enough parameters specified for call"); 3742 3743 if (FnAttrs.hasAttributes()) 3744 Attrs.push_back( 3745 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3746 Attributes::get(Callee->getContext(), 3747 FnAttrs))); 3748 3749 // Finish off the Attributes and check them 3750 AttrListPtr PAL = AttrListPtr::get(Attrs); 3751 3752 CallInst *CI = CallInst::Create(Callee, Args); 3753 CI->setTailCall(isTail); 3754 CI->setCallingConv(CC); 3755 CI->setAttributes(PAL); 3756 Inst = CI; 3757 return false; 3758 } 3759 3760 //===----------------------------------------------------------------------===// 3761 // Memory Instructions. 3762 //===----------------------------------------------------------------------===// 3763 3764 /// ParseAlloc 3765 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3766 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3767 Value *Size = 0; 3768 LocTy SizeLoc; 3769 unsigned Alignment = 0; 3770 Type *Ty = 0; 3771 if (ParseType(Ty)) return true; 3772 3773 bool AteExtraComma = false; 3774 if (EatIfPresent(lltok::comma)) { 3775 if (Lex.getKind() == lltok::kw_align) { 3776 if (ParseOptionalAlignment(Alignment)) return true; 3777 } else if (Lex.getKind() == lltok::MetadataVar) { 3778 AteExtraComma = true; 3779 } else { 3780 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3781 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3782 return true; 3783 } 3784 } 3785 3786 if (Size && !Size->getType()->isIntegerTy()) 3787 return Error(SizeLoc, "element count must have integer type"); 3788 3789 Inst = new AllocaInst(Ty, Size, Alignment); 3790 return AteExtraComma ? InstExtraComma : InstNormal; 3791 } 3792 3793 /// ParseLoad 3794 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3795 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3796 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3797 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3798 Value *Val; LocTy Loc; 3799 unsigned Alignment = 0; 3800 bool AteExtraComma = false; 3801 bool isAtomic = false; 3802 AtomicOrdering Ordering = NotAtomic; 3803 SynchronizationScope Scope = CrossThread; 3804 3805 if (Lex.getKind() == lltok::kw_atomic) { 3806 isAtomic = true; 3807 Lex.Lex(); 3808 } 3809 3810 bool isVolatile = false; 3811 if (Lex.getKind() == lltok::kw_volatile) { 3812 isVolatile = true; 3813 Lex.Lex(); 3814 } 3815 3816 if (ParseTypeAndValue(Val, Loc, PFS) || 3817 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3818 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3819 return true; 3820 3821 if (!Val->getType()->isPointerTy() || 3822 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3823 return Error(Loc, "load operand must be a pointer to a first class type"); 3824 if (isAtomic && !Alignment) 3825 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3826 if (Ordering == Release || Ordering == AcquireRelease) 3827 return Error(Loc, "atomic load cannot use Release ordering"); 3828 3829 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3830 return AteExtraComma ? InstExtraComma : InstNormal; 3831 } 3832 3833 /// ParseStore 3834 3835 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3836 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3837 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3838 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3839 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3840 unsigned Alignment = 0; 3841 bool AteExtraComma = false; 3842 bool isAtomic = false; 3843 AtomicOrdering Ordering = NotAtomic; 3844 SynchronizationScope Scope = CrossThread; 3845 3846 if (Lex.getKind() == lltok::kw_atomic) { 3847 isAtomic = true; 3848 Lex.Lex(); 3849 } 3850 3851 bool isVolatile = false; 3852 if (Lex.getKind() == lltok::kw_volatile) { 3853 isVolatile = true; 3854 Lex.Lex(); 3855 } 3856 3857 if (ParseTypeAndValue(Val, Loc, PFS) || 3858 ParseToken(lltok::comma, "expected ',' after store operand") || 3859 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3860 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3861 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3862 return true; 3863 3864 if (!Ptr->getType()->isPointerTy()) 3865 return Error(PtrLoc, "store operand must be a pointer"); 3866 if (!Val->getType()->isFirstClassType()) 3867 return Error(Loc, "store operand must be a first class value"); 3868 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3869 return Error(Loc, "stored value and pointer type do not match"); 3870 if (isAtomic && !Alignment) 3871 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3872 if (Ordering == Acquire || Ordering == AcquireRelease) 3873 return Error(Loc, "atomic store cannot use Acquire ordering"); 3874 3875 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3876 return AteExtraComma ? InstExtraComma : InstNormal; 3877 } 3878 3879 /// ParseCmpXchg 3880 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3881 /// 'singlethread'? AtomicOrdering 3882 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3883 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3884 bool AteExtraComma = false; 3885 AtomicOrdering Ordering = NotAtomic; 3886 SynchronizationScope Scope = CrossThread; 3887 bool isVolatile = false; 3888 3889 if (EatIfPresent(lltok::kw_volatile)) 3890 isVolatile = true; 3891 3892 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3893 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3894 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3895 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3896 ParseTypeAndValue(New, NewLoc, PFS) || 3897 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3898 return true; 3899 3900 if (Ordering == Unordered) 3901 return TokError("cmpxchg cannot be unordered"); 3902 if (!Ptr->getType()->isPointerTy()) 3903 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3904 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3905 return Error(CmpLoc, "compare value and pointer type do not match"); 3906 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3907 return Error(NewLoc, "new value and pointer type do not match"); 3908 if (!New->getType()->isIntegerTy()) 3909 return Error(NewLoc, "cmpxchg operand must be an integer"); 3910 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3911 if (Size < 8 || (Size & (Size - 1))) 3912 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3913 " integer"); 3914 3915 AtomicCmpXchgInst *CXI = 3916 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3917 CXI->setVolatile(isVolatile); 3918 Inst = CXI; 3919 return AteExtraComma ? InstExtraComma : InstNormal; 3920 } 3921 3922 /// ParseAtomicRMW 3923 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3924 /// 'singlethread'? AtomicOrdering 3925 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3926 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3927 bool AteExtraComma = false; 3928 AtomicOrdering Ordering = NotAtomic; 3929 SynchronizationScope Scope = CrossThread; 3930 bool isVolatile = false; 3931 AtomicRMWInst::BinOp Operation; 3932 3933 if (EatIfPresent(lltok::kw_volatile)) 3934 isVolatile = true; 3935 3936 switch (Lex.getKind()) { 3937 default: return TokError("expected binary operation in atomicrmw"); 3938 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3939 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3940 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3941 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3942 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3943 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3944 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3945 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3946 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3947 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3948 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3949 } 3950 Lex.Lex(); // Eat the operation. 3951 3952 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3953 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3954 ParseTypeAndValue(Val, ValLoc, PFS) || 3955 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3956 return true; 3957 3958 if (Ordering == Unordered) 3959 return TokError("atomicrmw cannot be unordered"); 3960 if (!Ptr->getType()->isPointerTy()) 3961 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3962 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3963 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3964 if (!Val->getType()->isIntegerTy()) 3965 return Error(ValLoc, "atomicrmw operand must be an integer"); 3966 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3967 if (Size < 8 || (Size & (Size - 1))) 3968 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3969 " integer"); 3970 3971 AtomicRMWInst *RMWI = 3972 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3973 RMWI->setVolatile(isVolatile); 3974 Inst = RMWI; 3975 return AteExtraComma ? InstExtraComma : InstNormal; 3976 } 3977 3978 /// ParseFence 3979 /// ::= 'fence' 'singlethread'? AtomicOrdering 3980 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3981 AtomicOrdering Ordering = NotAtomic; 3982 SynchronizationScope Scope = CrossThread; 3983 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3984 return true; 3985 3986 if (Ordering == Unordered) 3987 return TokError("fence cannot be unordered"); 3988 if (Ordering == Monotonic) 3989 return TokError("fence cannot be monotonic"); 3990 3991 Inst = new FenceInst(Context, Ordering, Scope); 3992 return InstNormal; 3993 } 3994 3995 /// ParseGetElementPtr 3996 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3997 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3998 Value *Ptr = 0; 3999 Value *Val = 0; 4000 LocTy Loc, EltLoc; 4001 4002 bool InBounds = EatIfPresent(lltok::kw_inbounds); 4003 4004 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 4005 4006 if (!Ptr->getType()->getScalarType()->isPointerTy()) 4007 return Error(Loc, "base of getelementptr must be a pointer"); 4008 4009 SmallVector<Value*, 16> Indices; 4010 bool AteExtraComma = false; 4011 while (EatIfPresent(lltok::comma)) { 4012 if (Lex.getKind() == lltok::MetadataVar) { 4013 AteExtraComma = true; 4014 break; 4015 } 4016 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4017 if (!Val->getType()->getScalarType()->isIntegerTy()) 4018 return Error(EltLoc, "getelementptr index must be an integer"); 4019 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4020 return Error(EltLoc, "getelementptr index type missmatch"); 4021 if (Val->getType()->isVectorTy()) { 4022 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4023 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4024 if (ValNumEl != PtrNumEl) 4025 return Error(EltLoc, 4026 "getelementptr vector index has a wrong number of elements"); 4027 } 4028 Indices.push_back(Val); 4029 } 4030 4031 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 4032 return Error(EltLoc, "vector getelementptrs must have a single index"); 4033 4034 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4035 return Error(Loc, "invalid getelementptr indices"); 4036 Inst = GetElementPtrInst::Create(Ptr, Indices); 4037 if (InBounds) 4038 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4039 return AteExtraComma ? InstExtraComma : InstNormal; 4040 } 4041 4042 /// ParseExtractValue 4043 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4044 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4045 Value *Val; LocTy Loc; 4046 SmallVector<unsigned, 4> Indices; 4047 bool AteExtraComma; 4048 if (ParseTypeAndValue(Val, Loc, PFS) || 4049 ParseIndexList(Indices, AteExtraComma)) 4050 return true; 4051 4052 if (!Val->getType()->isAggregateType()) 4053 return Error(Loc, "extractvalue operand must be aggregate type"); 4054 4055 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4056 return Error(Loc, "invalid indices for extractvalue"); 4057 Inst = ExtractValueInst::Create(Val, Indices); 4058 return AteExtraComma ? InstExtraComma : InstNormal; 4059 } 4060 4061 /// ParseInsertValue 4062 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4063 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4064 Value *Val0, *Val1; LocTy Loc0, Loc1; 4065 SmallVector<unsigned, 4> Indices; 4066 bool AteExtraComma; 4067 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4068 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4069 ParseTypeAndValue(Val1, Loc1, PFS) || 4070 ParseIndexList(Indices, AteExtraComma)) 4071 return true; 4072 4073 if (!Val0->getType()->isAggregateType()) 4074 return Error(Loc0, "insertvalue operand must be aggregate type"); 4075 4076 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4077 return Error(Loc0, "invalid indices for insertvalue"); 4078 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4079 return AteExtraComma ? InstExtraComma : InstNormal; 4080 } 4081 4082 //===----------------------------------------------------------------------===// 4083 // Embedded metadata. 4084 //===----------------------------------------------------------------------===// 4085 4086 /// ParseMDNodeVector 4087 /// ::= Element (',' Element)* 4088 /// Element 4089 /// ::= 'null' | TypeAndValue 4090 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4091 PerFunctionState *PFS) { 4092 // Check for an empty list. 4093 if (Lex.getKind() == lltok::rbrace) 4094 return false; 4095 4096 do { 4097 // Null is a special case since it is typeless. 4098 if (EatIfPresent(lltok::kw_null)) { 4099 Elts.push_back(0); 4100 continue; 4101 } 4102 4103 Value *V = 0; 4104 if (ParseTypeAndValue(V, PFS)) return true; 4105 Elts.push_back(V); 4106 } while (EatIfPresent(lltok::comma)); 4107 4108 return false; 4109 } 4110