1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743 
744   if (Lex.getKind() == lltok::rbrace) {
745     Lex.Lex();
746     return false;
747   }
748 
749   do {
750     MDNode *N = nullptr;
751     // Parse uniqued MDNodes inline as a special case.
752 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS)                                      \
753   if (Lex.getKind() == lltok::MetadataVar && Lex.getStrVal() == #CLASS) {      \
754     if (parse##CLASS(N, /*IsDistinct=*/false))                                 \
755       return true;                                                             \
756     NMD->addOperand(N);                                                        \
757     continue;                                                                  \
758   }
759 #include "llvm/IR/Metadata.def"
760     // Parse all other MDNodes as an MDNodeID.
761     if (parseToken(lltok::exclaim, "Expected '!' here") || parseMDNodeID(N)) {
762       return true;
763     }
764     NMD->addOperand(N);
765   } while (EatIfPresent(lltok::comma));
766 
767   return parseToken(lltok::rbrace, "expected end of metadata node");
768 }
769 
770 /// parseStandaloneMetadata:
771 ///   !42 = !{...}
772 bool LLParser::parseStandaloneMetadata() {
773   assert(Lex.getKind() == lltok::exclaim);
774   Lex.Lex();
775   unsigned MetadataID = 0;
776 
777   MDNode *Init;
778   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
779     return true;
780 
781   // Detect common error, from old metadata syntax.
782   if (Lex.getKind() == lltok::Type)
783     return tokError("unexpected type in metadata definition");
784 
785   auto DistinctLoc = Lex.getLoc();
786   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
787   if (Lex.getKind() == lltok::MetadataVar) {
788     if (parseSpecializedMDNode(Init, IsDistinct, DistinctLoc))
789       return true;
790   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
791              parseMDTuple(Init, IsDistinct))
792     return true;
793 
794   // See if this was forward referenced, if so, handle it.
795   auto FI = ForwardRefMDNodes.find(MetadataID);
796   if (FI != ForwardRefMDNodes.end()) {
797     FI->second.first->replaceAllUsesWith(Init);
798     ForwardRefMDNodes.erase(FI);
799 
800     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
801   } else {
802     if (NumberedMetadata.count(MetadataID))
803       return tokError("Metadata id is already used");
804     NumberedMetadata[MetadataID].reset(Init);
805   }
806 
807   return false;
808 }
809 
810 // Skips a single module summary entry.
811 bool LLParser::skipModuleSummaryEntry() {
812   // Each module summary entry consists of a tag for the entry
813   // type, followed by a colon, then the fields which may be surrounded by
814   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
815   // support is in place we will look for the tokens corresponding to the
816   // expected tags.
817   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
818       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
819       Lex.getKind() != lltok::kw_blockcount)
820     return tokError(
821         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
822         "start of summary entry");
823   if (Lex.getKind() == lltok::kw_flags)
824     return parseSummaryIndexFlags();
825   if (Lex.getKind() == lltok::kw_blockcount)
826     return parseBlockCount();
827   Lex.Lex();
828   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
829       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
830     return true;
831   // Now walk through the parenthesized entry, until the number of open
832   // parentheses goes back down to 0 (the first '(' was parsed above).
833   unsigned NumOpenParen = 1;
834   do {
835     switch (Lex.getKind()) {
836     case lltok::lparen:
837       NumOpenParen++;
838       break;
839     case lltok::rparen:
840       NumOpenParen--;
841       break;
842     case lltok::Eof:
843       return tokError("found end of file while parsing summary entry");
844     default:
845       // Skip everything in between parentheses.
846       break;
847     }
848     Lex.Lex();
849   } while (NumOpenParen > 0);
850   return false;
851 }
852 
853 /// SummaryEntry
854 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
855 bool LLParser::parseSummaryEntry() {
856   assert(Lex.getKind() == lltok::SummaryID);
857   unsigned SummaryID = Lex.getUIntVal();
858 
859   // For summary entries, colons should be treated as distinct tokens,
860   // not an indication of the end of a label token.
861   Lex.setIgnoreColonInIdentifiers(true);
862 
863   Lex.Lex();
864   if (parseToken(lltok::equal, "expected '=' here"))
865     return true;
866 
867   // If we don't have an index object, skip the summary entry.
868   if (!Index)
869     return skipModuleSummaryEntry();
870 
871   bool result = false;
872   switch (Lex.getKind()) {
873   case lltok::kw_gv:
874     result = parseGVEntry(SummaryID);
875     break;
876   case lltok::kw_module:
877     result = parseModuleEntry(SummaryID);
878     break;
879   case lltok::kw_typeid:
880     result = parseTypeIdEntry(SummaryID);
881     break;
882   case lltok::kw_typeidCompatibleVTable:
883     result = parseTypeIdCompatibleVtableEntry(SummaryID);
884     break;
885   case lltok::kw_flags:
886     result = parseSummaryIndexFlags();
887     break;
888   case lltok::kw_blockcount:
889     result = parseBlockCount();
890     break;
891   default:
892     result = error(Lex.getLoc(), "unexpected summary kind");
893     break;
894   }
895   Lex.setIgnoreColonInIdentifiers(false);
896   return result;
897 }
898 
899 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
900   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
901          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
902 }
903 
904 // If there was an explicit dso_local, update GV. In the absence of an explicit
905 // dso_local we keep the default value.
906 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
907   if (DSOLocal)
908     GV.setDSOLocal(true);
909 }
910 
911 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
912                                               Type *Ty2) {
913   std::string ErrString;
914   raw_string_ostream ErrOS(ErrString);
915   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
916   return ErrOS.str();
917 }
918 
919 /// parseIndirectSymbol:
920 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
921 ///                     OptionalVisibility OptionalDLLStorageClass
922 ///                     OptionalThreadLocal OptionalUnnamedAddr
923 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
924 ///
925 /// IndirectSymbol
926 ///   ::= TypeAndValue
927 ///
928 /// IndirectSymbolAttr
929 ///   ::= ',' 'partition' StringConstant
930 ///
931 /// Everything through OptionalUnnamedAddr has already been parsed.
932 ///
933 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
934                                    unsigned L, unsigned Visibility,
935                                    unsigned DLLStorageClass, bool DSOLocal,
936                                    GlobalVariable::ThreadLocalMode TLM,
937                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
938   bool IsAlias;
939   if (Lex.getKind() == lltok::kw_alias)
940     IsAlias = true;
941   else if (Lex.getKind() == lltok::kw_ifunc)
942     IsAlias = false;
943   else
944     llvm_unreachable("Not an alias or ifunc!");
945   Lex.Lex();
946 
947   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
948 
949   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
950     return error(NameLoc, "invalid linkage type for alias");
951 
952   if (!isValidVisibilityForLinkage(Visibility, L))
953     return error(NameLoc,
954                  "symbol with local linkage must have default visibility");
955 
956   Type *Ty;
957   LocTy ExplicitTypeLoc = Lex.getLoc();
958   if (parseType(Ty) ||
959       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
960     return true;
961 
962   Constant *Aliasee;
963   LocTy AliaseeLoc = Lex.getLoc();
964   if (Lex.getKind() != lltok::kw_bitcast &&
965       Lex.getKind() != lltok::kw_getelementptr &&
966       Lex.getKind() != lltok::kw_addrspacecast &&
967       Lex.getKind() != lltok::kw_inttoptr) {
968     if (parseGlobalTypeAndValue(Aliasee))
969       return true;
970   } else {
971     // The bitcast dest type is not present, it is implied by the dest type.
972     ValID ID;
973     if (parseValID(ID))
974       return true;
975     if (ID.Kind != ValID::t_Constant)
976       return error(AliaseeLoc, "invalid aliasee");
977     Aliasee = ID.ConstantVal;
978   }
979 
980   Type *AliaseeType = Aliasee->getType();
981   auto *PTy = dyn_cast<PointerType>(AliaseeType);
982   if (!PTy)
983     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
984   unsigned AddrSpace = PTy->getAddressSpace();
985 
986   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
987     return error(
988         ExplicitTypeLoc,
989         typeComparisonErrorMessage(
990             "explicit pointee type doesn't match operand's pointee type", Ty,
991             PTy->getElementType()));
992   }
993 
994   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
995     return error(ExplicitTypeLoc,
996                  "explicit pointee type should be a function type");
997   }
998 
999   GlobalValue *GVal = nullptr;
1000 
1001   // See if the alias was forward referenced, if so, prepare to replace the
1002   // forward reference.
1003   if (!Name.empty()) {
1004     GVal = M->getNamedValue(Name);
1005     if (GVal) {
1006       if (!ForwardRefVals.erase(Name))
1007         return error(NameLoc, "redefinition of global '@" + Name + "'");
1008     }
1009   } else {
1010     auto I = ForwardRefValIDs.find(NumberedVals.size());
1011     if (I != ForwardRefValIDs.end()) {
1012       GVal = I->second.first;
1013       ForwardRefValIDs.erase(I);
1014     }
1015   }
1016 
1017   // Okay, create the alias but do not insert it into the module yet.
1018   std::unique_ptr<GlobalIndirectSymbol> GA;
1019   if (IsAlias)
1020     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1021                                  (GlobalValue::LinkageTypes)Linkage, Name,
1022                                  Aliasee, /*Parent*/ nullptr));
1023   else
1024     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1025                                  (GlobalValue::LinkageTypes)Linkage, Name,
1026                                  Aliasee, /*Parent*/ nullptr));
1027   GA->setThreadLocalMode(TLM);
1028   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1029   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1030   GA->setUnnamedAddr(UnnamedAddr);
1031   maybeSetDSOLocal(DSOLocal, *GA);
1032 
1033   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1034   // Now parse them if there are any.
1035   while (Lex.getKind() == lltok::comma) {
1036     Lex.Lex();
1037 
1038     if (Lex.getKind() == lltok::kw_partition) {
1039       Lex.Lex();
1040       GA->setPartition(Lex.getStrVal());
1041       if (parseToken(lltok::StringConstant, "expected partition string"))
1042         return true;
1043     } else {
1044       return tokError("unknown alias or ifunc property!");
1045     }
1046   }
1047 
1048   if (Name.empty())
1049     NumberedVals.push_back(GA.get());
1050 
1051   if (GVal) {
1052     // Verify that types agree.
1053     if (GVal->getType() != GA->getType())
1054       return error(
1055           ExplicitTypeLoc,
1056           "forward reference and definition of alias have different types");
1057 
1058     // If they agree, just RAUW the old value with the alias and remove the
1059     // forward ref info.
1060     GVal->replaceAllUsesWith(GA.get());
1061     GVal->eraseFromParent();
1062   }
1063 
1064   // Insert into the module, we know its name won't collide now.
1065   if (IsAlias)
1066     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1067   else
1068     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1069   assert(GA->getName() == Name && "Should not be a name conflict!");
1070 
1071   // The module owns this now
1072   GA.release();
1073 
1074   return false;
1075 }
1076 
1077 /// parseGlobal
1078 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1079 ///       OptionalVisibility OptionalDLLStorageClass
1080 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1081 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1082 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1083 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1084 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1085 ///       Const OptionalAttrs
1086 ///
1087 /// Everything up to and including OptionalUnnamedAddr has been parsed
1088 /// already.
1089 ///
1090 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1091                            unsigned Linkage, bool HasLinkage,
1092                            unsigned Visibility, unsigned DLLStorageClass,
1093                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1094                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1095   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1096     return error(NameLoc,
1097                  "symbol with local linkage must have default visibility");
1098 
1099   unsigned AddrSpace;
1100   bool IsConstant, IsExternallyInitialized;
1101   LocTy IsExternallyInitializedLoc;
1102   LocTy TyLoc;
1103 
1104   Type *Ty = nullptr;
1105   if (parseOptionalAddrSpace(AddrSpace) ||
1106       parseOptionalToken(lltok::kw_externally_initialized,
1107                          IsExternallyInitialized,
1108                          &IsExternallyInitializedLoc) ||
1109       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1110     return true;
1111 
1112   // If the linkage is specified and is external, then no initializer is
1113   // present.
1114   Constant *Init = nullptr;
1115   if (!HasLinkage ||
1116       !GlobalValue::isValidDeclarationLinkage(
1117           (GlobalValue::LinkageTypes)Linkage)) {
1118     if (parseGlobalValue(Ty, Init))
1119       return true;
1120   }
1121 
1122   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1123     return error(TyLoc, "invalid type for global variable");
1124 
1125   GlobalValue *GVal = nullptr;
1126 
1127   // See if the global was forward referenced, if so, use the global.
1128   if (!Name.empty()) {
1129     GVal = M->getNamedValue(Name);
1130     if (GVal) {
1131       if (!ForwardRefVals.erase(Name))
1132         return error(NameLoc, "redefinition of global '@" + Name + "'");
1133     }
1134   } else {
1135     auto I = ForwardRefValIDs.find(NumberedVals.size());
1136     if (I != ForwardRefValIDs.end()) {
1137       GVal = I->second.first;
1138       ForwardRefValIDs.erase(I);
1139     }
1140   }
1141 
1142   GlobalVariable *GV;
1143   if (!GVal) {
1144     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1145                             Name, nullptr, GlobalVariable::NotThreadLocal,
1146                             AddrSpace);
1147   } else {
1148     if (GVal->getValueType() != Ty)
1149       return error(
1150           TyLoc,
1151           "forward reference and definition of global have different types");
1152 
1153     GV = cast<GlobalVariable>(GVal);
1154 
1155     // Move the forward-reference to the correct spot in the module.
1156     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1157   }
1158 
1159   if (Name.empty())
1160     NumberedVals.push_back(GV);
1161 
1162   // Set the parsed properties on the global.
1163   if (Init)
1164     GV->setInitializer(Init);
1165   GV->setConstant(IsConstant);
1166   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1167   maybeSetDSOLocal(DSOLocal, *GV);
1168   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1169   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1170   GV->setExternallyInitialized(IsExternallyInitialized);
1171   GV->setThreadLocalMode(TLM);
1172   GV->setUnnamedAddr(UnnamedAddr);
1173 
1174   // parse attributes on the global.
1175   while (Lex.getKind() == lltok::comma) {
1176     Lex.Lex();
1177 
1178     if (Lex.getKind() == lltok::kw_section) {
1179       Lex.Lex();
1180       GV->setSection(Lex.getStrVal());
1181       if (parseToken(lltok::StringConstant, "expected global section string"))
1182         return true;
1183     } else if (Lex.getKind() == lltok::kw_partition) {
1184       Lex.Lex();
1185       GV->setPartition(Lex.getStrVal());
1186       if (parseToken(lltok::StringConstant, "expected partition string"))
1187         return true;
1188     } else if (Lex.getKind() == lltok::kw_align) {
1189       MaybeAlign Alignment;
1190       if (parseOptionalAlignment(Alignment))
1191         return true;
1192       GV->setAlignment(Alignment);
1193     } else if (Lex.getKind() == lltok::MetadataVar) {
1194       if (parseGlobalObjectMetadataAttachment(*GV))
1195         return true;
1196     } else {
1197       Comdat *C;
1198       if (parseOptionalComdat(Name, C))
1199         return true;
1200       if (C)
1201         GV->setComdat(C);
1202       else
1203         return tokError("unknown global variable property!");
1204     }
1205   }
1206 
1207   AttrBuilder Attrs;
1208   LocTy BuiltinLoc;
1209   std::vector<unsigned> FwdRefAttrGrps;
1210   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1211     return true;
1212   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1213     GV->setAttributes(AttributeSet::get(Context, Attrs));
1214     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1215   }
1216 
1217   return false;
1218 }
1219 
1220 /// parseUnnamedAttrGrp
1221 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1222 bool LLParser::parseUnnamedAttrGrp() {
1223   assert(Lex.getKind() == lltok::kw_attributes);
1224   LocTy AttrGrpLoc = Lex.getLoc();
1225   Lex.Lex();
1226 
1227   if (Lex.getKind() != lltok::AttrGrpID)
1228     return tokError("expected attribute group id");
1229 
1230   unsigned VarID = Lex.getUIntVal();
1231   std::vector<unsigned> unused;
1232   LocTy BuiltinLoc;
1233   Lex.Lex();
1234 
1235   if (parseToken(lltok::equal, "expected '=' here") ||
1236       parseToken(lltok::lbrace, "expected '{' here") ||
1237       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1238                                  BuiltinLoc) ||
1239       parseToken(lltok::rbrace, "expected end of attribute group"))
1240     return true;
1241 
1242   if (!NumberedAttrBuilders[VarID].hasAttributes())
1243     return error(AttrGrpLoc, "attribute group has no attributes");
1244 
1245   return false;
1246 }
1247 
1248 /// parseFnAttributeValuePairs
1249 ///   ::= <attr> | <attr> '=' <value>
1250 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1251                                           std::vector<unsigned> &FwdRefAttrGrps,
1252                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1253   bool HaveError = false;
1254 
1255   B.clear();
1256 
1257   while (true) {
1258     lltok::Kind Token = Lex.getKind();
1259     if (Token == lltok::kw_builtin)
1260       BuiltinLoc = Lex.getLoc();
1261     switch (Token) {
1262     default:
1263       if (!inAttrGrp) return HaveError;
1264       return error(Lex.getLoc(), "unterminated attribute group");
1265     case lltok::rbrace:
1266       // Finished.
1267       return false;
1268 
1269     case lltok::AttrGrpID: {
1270       // Allow a function to reference an attribute group:
1271       //
1272       //   define void @foo() #1 { ... }
1273       if (inAttrGrp)
1274         HaveError |= error(
1275             Lex.getLoc(),
1276             "cannot have an attribute group reference in an attribute group");
1277 
1278       unsigned AttrGrpNum = Lex.getUIntVal();
1279       if (inAttrGrp) break;
1280 
1281       // Save the reference to the attribute group. We'll fill it in later.
1282       FwdRefAttrGrps.push_back(AttrGrpNum);
1283       break;
1284     }
1285     // Target-dependent attributes:
1286     case lltok::StringConstant: {
1287       if (parseStringAttribute(B))
1288         return true;
1289       continue;
1290     }
1291 
1292     // Target-independent attributes:
1293     case lltok::kw_align: {
1294       // As a hack, we allow function alignment to be initially parsed as an
1295       // attribute on a function declaration/definition or added to an attribute
1296       // group and later moved to the alignment field.
1297       MaybeAlign Alignment;
1298       if (inAttrGrp) {
1299         Lex.Lex();
1300         uint32_t Value = 0;
1301         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1302           return true;
1303         Alignment = Align(Value);
1304       } else {
1305         if (parseOptionalAlignment(Alignment))
1306           return true;
1307       }
1308       B.addAlignmentAttr(Alignment);
1309       continue;
1310     }
1311     case lltok::kw_alignstack: {
1312       unsigned Alignment;
1313       if (inAttrGrp) {
1314         Lex.Lex();
1315         if (parseToken(lltok::equal, "expected '=' here") ||
1316             parseUInt32(Alignment))
1317           return true;
1318       } else {
1319         if (parseOptionalStackAlignment(Alignment))
1320           return true;
1321       }
1322       B.addStackAlignmentAttr(Alignment);
1323       continue;
1324     }
1325     case lltok::kw_allocsize: {
1326       unsigned ElemSizeArg;
1327       Optional<unsigned> NumElemsArg;
1328       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1329       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1330         return true;
1331       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1332       continue;
1333     }
1334     case lltok::kw_vscale_range: {
1335       unsigned MinValue, MaxValue;
1336       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1337       if (parseVScaleRangeArguments(MinValue, MaxValue))
1338         return true;
1339       B.addVScaleRangeAttr(MinValue, MaxValue);
1340       continue;
1341     }
1342     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1343     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1344     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1345     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1346     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1347     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1348     case lltok::kw_inaccessiblememonly:
1349       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1350     case lltok::kw_inaccessiblemem_or_argmemonly:
1351       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1352     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1353     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1354     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1355     case lltok::kw_mustprogress:
1356       B.addAttribute(Attribute::MustProgress);
1357       break;
1358     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1359     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1360     case lltok::kw_nocallback:
1361       B.addAttribute(Attribute::NoCallback);
1362       break;
1363     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1364     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1365     case lltok::kw_noimplicitfloat:
1366       B.addAttribute(Attribute::NoImplicitFloat); break;
1367     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1368     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1369     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1370     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1371     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1372     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1373     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1374     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1375     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1376     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1377     case lltok::kw_nosanitize_coverage:
1378       B.addAttribute(Attribute::NoSanitizeCoverage);
1379       break;
1380     case lltok::kw_null_pointer_is_valid:
1381       B.addAttribute(Attribute::NullPointerIsValid); break;
1382     case lltok::kw_optforfuzzing:
1383       B.addAttribute(Attribute::OptForFuzzing); break;
1384     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1385     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1386     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1387     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1388     case lltok::kw_returns_twice:
1389       B.addAttribute(Attribute::ReturnsTwice); break;
1390     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1391     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1392     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1393     case lltok::kw_sspstrong:
1394       B.addAttribute(Attribute::StackProtectStrong); break;
1395     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1396     case lltok::kw_shadowcallstack:
1397       B.addAttribute(Attribute::ShadowCallStack); break;
1398     case lltok::kw_sanitize_address:
1399       B.addAttribute(Attribute::SanitizeAddress); break;
1400     case lltok::kw_sanitize_hwaddress:
1401       B.addAttribute(Attribute::SanitizeHWAddress); break;
1402     case lltok::kw_sanitize_memtag:
1403       B.addAttribute(Attribute::SanitizeMemTag); break;
1404     case lltok::kw_sanitize_thread:
1405       B.addAttribute(Attribute::SanitizeThread); break;
1406     case lltok::kw_sanitize_memory:
1407       B.addAttribute(Attribute::SanitizeMemory); break;
1408     case lltok::kw_speculative_load_hardening:
1409       B.addAttribute(Attribute::SpeculativeLoadHardening);
1410       break;
1411     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1412     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1413     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1414     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1415     case lltok::kw_preallocated: {
1416       Type *Ty;
1417       if (parsePreallocated(Ty))
1418         return true;
1419       B.addPreallocatedAttr(Ty);
1420       break;
1421     }
1422 
1423     // error handling.
1424     case lltok::kw_inreg:
1425     case lltok::kw_signext:
1426     case lltok::kw_zeroext:
1427       HaveError |=
1428           error(Lex.getLoc(), "invalid use of attribute on a function");
1429       break;
1430     case lltok::kw_byval:
1431     case lltok::kw_dereferenceable:
1432     case lltok::kw_dereferenceable_or_null:
1433     case lltok::kw_inalloca:
1434     case lltok::kw_nest:
1435     case lltok::kw_noalias:
1436     case lltok::kw_noundef:
1437     case lltok::kw_nocapture:
1438     case lltok::kw_nonnull:
1439     case lltok::kw_returned:
1440     case lltok::kw_sret:
1441     case lltok::kw_swifterror:
1442     case lltok::kw_swiftself:
1443     case lltok::kw_swiftasync:
1444     case lltok::kw_immarg:
1445     case lltok::kw_byref:
1446       HaveError |=
1447           error(Lex.getLoc(),
1448                 "invalid use of parameter-only attribute on a function");
1449       break;
1450     }
1451 
1452     // parsePreallocated() consumes token
1453     if (Token != lltok::kw_preallocated)
1454       Lex.Lex();
1455   }
1456 }
1457 
1458 //===----------------------------------------------------------------------===//
1459 // GlobalValue Reference/Resolution Routines.
1460 //===----------------------------------------------------------------------===//
1461 
1462 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1463                                               const std::string &Name) {
1464   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1465     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1466                             PTy->getAddressSpace(), Name, M);
1467   else
1468     return new GlobalVariable(*M, PTy->getElementType(), false,
1469                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1470                               nullptr, GlobalVariable::NotThreadLocal,
1471                               PTy->getAddressSpace());
1472 }
1473 
1474 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1475                                         Value *Val, bool IsCall) {
1476   Type *ValTy = Val->getType();
1477   if (ValTy == Ty)
1478     return Val;
1479   // For calls, we also allow opaque pointers.
1480   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1481                                           Ty->getPointerAddressSpace()))
1482     return Val;
1483   if (Ty->isLabelTy())
1484     error(Loc, "'" + Name + "' is not a basic block");
1485   else
1486     error(Loc, "'" + Name + "' defined with type '" +
1487                    getTypeString(Val->getType()) + "' but expected '" +
1488                    getTypeString(Ty) + "'");
1489   return nullptr;
1490 }
1491 
1492 /// getGlobalVal - Get a value with the specified name or ID, creating a
1493 /// forward reference record if needed.  This can return null if the value
1494 /// exists but does not have the right type.
1495 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1496                                     LocTy Loc, bool IsCall) {
1497   PointerType *PTy = dyn_cast<PointerType>(Ty);
1498   if (!PTy) {
1499     error(Loc, "global variable reference must have pointer type");
1500     return nullptr;
1501   }
1502 
1503   // Look this name up in the normal function symbol table.
1504   GlobalValue *Val =
1505     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1506 
1507   // If this is a forward reference for the value, see if we already created a
1508   // forward ref record.
1509   if (!Val) {
1510     auto I = ForwardRefVals.find(Name);
1511     if (I != ForwardRefVals.end())
1512       Val = I->second.first;
1513   }
1514 
1515   // If we have the value in the symbol table or fwd-ref table, return it.
1516   if (Val)
1517     return cast_or_null<GlobalValue>(
1518         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1519 
1520   // Otherwise, create a new forward reference for this value and remember it.
1521   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1522   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1523   return FwdVal;
1524 }
1525 
1526 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1527                                     bool IsCall) {
1528   PointerType *PTy = dyn_cast<PointerType>(Ty);
1529   if (!PTy) {
1530     error(Loc, "global variable reference must have pointer type");
1531     return nullptr;
1532   }
1533 
1534   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1535 
1536   // If this is a forward reference for the value, see if we already created a
1537   // forward ref record.
1538   if (!Val) {
1539     auto I = ForwardRefValIDs.find(ID);
1540     if (I != ForwardRefValIDs.end())
1541       Val = I->second.first;
1542   }
1543 
1544   // If we have the value in the symbol table or fwd-ref table, return it.
1545   if (Val)
1546     return cast_or_null<GlobalValue>(
1547         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1548 
1549   // Otherwise, create a new forward reference for this value and remember it.
1550   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1551   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1552   return FwdVal;
1553 }
1554 
1555 //===----------------------------------------------------------------------===//
1556 // Comdat Reference/Resolution Routines.
1557 //===----------------------------------------------------------------------===//
1558 
1559 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1560   // Look this name up in the comdat symbol table.
1561   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1562   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1563   if (I != ComdatSymTab.end())
1564     return &I->second;
1565 
1566   // Otherwise, create a new forward reference for this value and remember it.
1567   Comdat *C = M->getOrInsertComdat(Name);
1568   ForwardRefComdats[Name] = Loc;
1569   return C;
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 // Helper Routines.
1574 //===----------------------------------------------------------------------===//
1575 
1576 /// parseToken - If the current token has the specified kind, eat it and return
1577 /// success.  Otherwise, emit the specified error and return failure.
1578 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1579   if (Lex.getKind() != T)
1580     return tokError(ErrMsg);
1581   Lex.Lex();
1582   return false;
1583 }
1584 
1585 /// parseStringConstant
1586 ///   ::= StringConstant
1587 bool LLParser::parseStringConstant(std::string &Result) {
1588   if (Lex.getKind() != lltok::StringConstant)
1589     return tokError("expected string constant");
1590   Result = Lex.getStrVal();
1591   Lex.Lex();
1592   return false;
1593 }
1594 
1595 /// parseUInt32
1596 ///   ::= uint32
1597 bool LLParser::parseUInt32(uint32_t &Val) {
1598   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1599     return tokError("expected integer");
1600   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1601   if (Val64 != unsigned(Val64))
1602     return tokError("expected 32-bit integer (too large)");
1603   Val = Val64;
1604   Lex.Lex();
1605   return false;
1606 }
1607 
1608 /// parseUInt64
1609 ///   ::= uint64
1610 bool LLParser::parseUInt64(uint64_t &Val) {
1611   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1612     return tokError("expected integer");
1613   Val = Lex.getAPSIntVal().getLimitedValue();
1614   Lex.Lex();
1615   return false;
1616 }
1617 
1618 /// parseTLSModel
1619 ///   := 'localdynamic'
1620 ///   := 'initialexec'
1621 ///   := 'localexec'
1622 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1623   switch (Lex.getKind()) {
1624     default:
1625       return tokError("expected localdynamic, initialexec or localexec");
1626     case lltok::kw_localdynamic:
1627       TLM = GlobalVariable::LocalDynamicTLSModel;
1628       break;
1629     case lltok::kw_initialexec:
1630       TLM = GlobalVariable::InitialExecTLSModel;
1631       break;
1632     case lltok::kw_localexec:
1633       TLM = GlobalVariable::LocalExecTLSModel;
1634       break;
1635   }
1636 
1637   Lex.Lex();
1638   return false;
1639 }
1640 
1641 /// parseOptionalThreadLocal
1642 ///   := /*empty*/
1643 ///   := 'thread_local'
1644 ///   := 'thread_local' '(' tlsmodel ')'
1645 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1646   TLM = GlobalVariable::NotThreadLocal;
1647   if (!EatIfPresent(lltok::kw_thread_local))
1648     return false;
1649 
1650   TLM = GlobalVariable::GeneralDynamicTLSModel;
1651   if (Lex.getKind() == lltok::lparen) {
1652     Lex.Lex();
1653     return parseTLSModel(TLM) ||
1654            parseToken(lltok::rparen, "expected ')' after thread local model");
1655   }
1656   return false;
1657 }
1658 
1659 /// parseOptionalAddrSpace
1660 ///   := /*empty*/
1661 ///   := 'addrspace' '(' uint32 ')'
1662 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1663   AddrSpace = DefaultAS;
1664   if (!EatIfPresent(lltok::kw_addrspace))
1665     return false;
1666   return parseToken(lltok::lparen, "expected '(' in address space") ||
1667          parseUInt32(AddrSpace) ||
1668          parseToken(lltok::rparen, "expected ')' in address space");
1669 }
1670 
1671 /// parseStringAttribute
1672 ///   := StringConstant
1673 ///   := StringConstant '=' StringConstant
1674 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1675   std::string Attr = Lex.getStrVal();
1676   Lex.Lex();
1677   std::string Val;
1678   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1679     return true;
1680   B.addAttribute(Attr, Val);
1681   return false;
1682 }
1683 
1684 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1685 /// attributes.
1686 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1687   bool HaveError = false;
1688 
1689   B.clear();
1690 
1691   while (true) {
1692     lltok::Kind Token = Lex.getKind();
1693     switch (Token) {
1694     default:  // End of attributes.
1695       return HaveError;
1696     case lltok::StringConstant: {
1697       if (parseStringAttribute(B))
1698         return true;
1699       continue;
1700     }
1701     case lltok::kw_align: {
1702       MaybeAlign Alignment;
1703       if (parseOptionalAlignment(Alignment, true))
1704         return true;
1705       B.addAlignmentAttr(Alignment);
1706       continue;
1707     }
1708     case lltok::kw_alignstack: {
1709       unsigned Alignment;
1710       if (parseOptionalStackAlignment(Alignment))
1711         return true;
1712       B.addStackAlignmentAttr(Alignment);
1713       continue;
1714     }
1715     case lltok::kw_byval: {
1716       Type *Ty;
1717       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1718         return true;
1719       B.addByValAttr(Ty);
1720       continue;
1721     }
1722     case lltok::kw_sret: {
1723       Type *Ty;
1724       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1725         return true;
1726       B.addStructRetAttr(Ty);
1727       continue;
1728     }
1729     case lltok::kw_preallocated: {
1730       Type *Ty;
1731       if (parsePreallocated(Ty))
1732         return true;
1733       B.addPreallocatedAttr(Ty);
1734       continue;
1735     }
1736     case lltok::kw_inalloca: {
1737       Type *Ty;
1738       if (parseInalloca(Ty))
1739         return true;
1740       B.addInAllocaAttr(Ty);
1741       continue;
1742     }
1743     case lltok::kw_dereferenceable: {
1744       uint64_t Bytes;
1745       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1746         return true;
1747       B.addDereferenceableAttr(Bytes);
1748       continue;
1749     }
1750     case lltok::kw_dereferenceable_or_null: {
1751       uint64_t Bytes;
1752       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1753         return true;
1754       B.addDereferenceableOrNullAttr(Bytes);
1755       continue;
1756     }
1757     case lltok::kw_byref: {
1758       Type *Ty;
1759       if (parseByRef(Ty))
1760         return true;
1761       B.addByRefAttr(Ty);
1762       continue;
1763     }
1764     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1765     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1766     case lltok::kw_noundef:
1767       B.addAttribute(Attribute::NoUndef);
1768       break;
1769     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1770     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1771     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1772     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1773     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1774     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1775     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1776     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1777     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1778     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1779     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1780     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1781     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1782     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1783 
1784     case lltok::kw_alwaysinline:
1785     case lltok::kw_argmemonly:
1786     case lltok::kw_builtin:
1787     case lltok::kw_inlinehint:
1788     case lltok::kw_jumptable:
1789     case lltok::kw_minsize:
1790     case lltok::kw_mustprogress:
1791     case lltok::kw_naked:
1792     case lltok::kw_nobuiltin:
1793     case lltok::kw_noduplicate:
1794     case lltok::kw_noimplicitfloat:
1795     case lltok::kw_noinline:
1796     case lltok::kw_nonlazybind:
1797     case lltok::kw_nomerge:
1798     case lltok::kw_noprofile:
1799     case lltok::kw_noredzone:
1800     case lltok::kw_noreturn:
1801     case lltok::kw_nocf_check:
1802     case lltok::kw_nounwind:
1803     case lltok::kw_nosanitize_coverage:
1804     case lltok::kw_optforfuzzing:
1805     case lltok::kw_optnone:
1806     case lltok::kw_optsize:
1807     case lltok::kw_returns_twice:
1808     case lltok::kw_sanitize_address:
1809     case lltok::kw_sanitize_hwaddress:
1810     case lltok::kw_sanitize_memtag:
1811     case lltok::kw_sanitize_memory:
1812     case lltok::kw_sanitize_thread:
1813     case lltok::kw_speculative_load_hardening:
1814     case lltok::kw_ssp:
1815     case lltok::kw_sspreq:
1816     case lltok::kw_sspstrong:
1817     case lltok::kw_safestack:
1818     case lltok::kw_shadowcallstack:
1819     case lltok::kw_strictfp:
1820     case lltok::kw_uwtable:
1821     case lltok::kw_vscale_range:
1822       HaveError |=
1823           error(Lex.getLoc(), "invalid use of function-only attribute");
1824       break;
1825     }
1826 
1827     Lex.Lex();
1828   }
1829 }
1830 
1831 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1832 /// attributes.
1833 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1834   bool HaveError = false;
1835 
1836   B.clear();
1837 
1838   while (true) {
1839     lltok::Kind Token = Lex.getKind();
1840     switch (Token) {
1841     default:  // End of attributes.
1842       return HaveError;
1843     case lltok::StringConstant: {
1844       if (parseStringAttribute(B))
1845         return true;
1846       continue;
1847     }
1848     case lltok::kw_dereferenceable: {
1849       uint64_t Bytes;
1850       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1851         return true;
1852       B.addDereferenceableAttr(Bytes);
1853       continue;
1854     }
1855     case lltok::kw_dereferenceable_or_null: {
1856       uint64_t Bytes;
1857       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1858         return true;
1859       B.addDereferenceableOrNullAttr(Bytes);
1860       continue;
1861     }
1862     case lltok::kw_align: {
1863       MaybeAlign Alignment;
1864       if (parseOptionalAlignment(Alignment))
1865         return true;
1866       B.addAlignmentAttr(Alignment);
1867       continue;
1868     }
1869     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1870     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1871     case lltok::kw_noundef:
1872       B.addAttribute(Attribute::NoUndef);
1873       break;
1874     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1875     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1876     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1877 
1878     // error handling.
1879     case lltok::kw_byval:
1880     case lltok::kw_inalloca:
1881     case lltok::kw_nest:
1882     case lltok::kw_nocapture:
1883     case lltok::kw_returned:
1884     case lltok::kw_sret:
1885     case lltok::kw_swifterror:
1886     case lltok::kw_swiftself:
1887     case lltok::kw_swiftasync:
1888     case lltok::kw_immarg:
1889     case lltok::kw_byref:
1890       HaveError |=
1891           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1892       break;
1893 
1894     case lltok::kw_alignstack:
1895     case lltok::kw_alwaysinline:
1896     case lltok::kw_argmemonly:
1897     case lltok::kw_builtin:
1898     case lltok::kw_cold:
1899     case lltok::kw_inlinehint:
1900     case lltok::kw_jumptable:
1901     case lltok::kw_minsize:
1902     case lltok::kw_mustprogress:
1903     case lltok::kw_naked:
1904     case lltok::kw_nobuiltin:
1905     case lltok::kw_noduplicate:
1906     case lltok::kw_noimplicitfloat:
1907     case lltok::kw_noinline:
1908     case lltok::kw_nonlazybind:
1909     case lltok::kw_nomerge:
1910     case lltok::kw_noprofile:
1911     case lltok::kw_noredzone:
1912     case lltok::kw_noreturn:
1913     case lltok::kw_nocf_check:
1914     case lltok::kw_nounwind:
1915     case lltok::kw_nosanitize_coverage:
1916     case lltok::kw_optforfuzzing:
1917     case lltok::kw_optnone:
1918     case lltok::kw_optsize:
1919     case lltok::kw_returns_twice:
1920     case lltok::kw_sanitize_address:
1921     case lltok::kw_sanitize_hwaddress:
1922     case lltok::kw_sanitize_memtag:
1923     case lltok::kw_sanitize_memory:
1924     case lltok::kw_sanitize_thread:
1925     case lltok::kw_speculative_load_hardening:
1926     case lltok::kw_ssp:
1927     case lltok::kw_sspreq:
1928     case lltok::kw_sspstrong:
1929     case lltok::kw_safestack:
1930     case lltok::kw_shadowcallstack:
1931     case lltok::kw_strictfp:
1932     case lltok::kw_uwtable:
1933     case lltok::kw_vscale_range:
1934       HaveError |=
1935           error(Lex.getLoc(), "invalid use of function-only attribute");
1936       break;
1937     case lltok::kw_readnone:
1938     case lltok::kw_readonly:
1939       HaveError |=
1940           error(Lex.getLoc(), "invalid use of attribute on return type");
1941       break;
1942     case lltok::kw_preallocated:
1943       HaveError |=
1944           error(Lex.getLoc(),
1945                 "invalid use of parameter-only/call site-only attribute");
1946       break;
1947     }
1948 
1949     Lex.Lex();
1950   }
1951 }
1952 
1953 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1954   HasLinkage = true;
1955   switch (Kind) {
1956   default:
1957     HasLinkage = false;
1958     return GlobalValue::ExternalLinkage;
1959   case lltok::kw_private:
1960     return GlobalValue::PrivateLinkage;
1961   case lltok::kw_internal:
1962     return GlobalValue::InternalLinkage;
1963   case lltok::kw_weak:
1964     return GlobalValue::WeakAnyLinkage;
1965   case lltok::kw_weak_odr:
1966     return GlobalValue::WeakODRLinkage;
1967   case lltok::kw_linkonce:
1968     return GlobalValue::LinkOnceAnyLinkage;
1969   case lltok::kw_linkonce_odr:
1970     return GlobalValue::LinkOnceODRLinkage;
1971   case lltok::kw_available_externally:
1972     return GlobalValue::AvailableExternallyLinkage;
1973   case lltok::kw_appending:
1974     return GlobalValue::AppendingLinkage;
1975   case lltok::kw_common:
1976     return GlobalValue::CommonLinkage;
1977   case lltok::kw_extern_weak:
1978     return GlobalValue::ExternalWeakLinkage;
1979   case lltok::kw_external:
1980     return GlobalValue::ExternalLinkage;
1981   }
1982 }
1983 
1984 /// parseOptionalLinkage
1985 ///   ::= /*empty*/
1986 ///   ::= 'private'
1987 ///   ::= 'internal'
1988 ///   ::= 'weak'
1989 ///   ::= 'weak_odr'
1990 ///   ::= 'linkonce'
1991 ///   ::= 'linkonce_odr'
1992 ///   ::= 'available_externally'
1993 ///   ::= 'appending'
1994 ///   ::= 'common'
1995 ///   ::= 'extern_weak'
1996 ///   ::= 'external'
1997 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1998                                     unsigned &Visibility,
1999                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2000   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2001   if (HasLinkage)
2002     Lex.Lex();
2003   parseOptionalDSOLocal(DSOLocal);
2004   parseOptionalVisibility(Visibility);
2005   parseOptionalDLLStorageClass(DLLStorageClass);
2006 
2007   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2008     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2009   }
2010 
2011   return false;
2012 }
2013 
2014 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2015   switch (Lex.getKind()) {
2016   default:
2017     DSOLocal = false;
2018     break;
2019   case lltok::kw_dso_local:
2020     DSOLocal = true;
2021     Lex.Lex();
2022     break;
2023   case lltok::kw_dso_preemptable:
2024     DSOLocal = false;
2025     Lex.Lex();
2026     break;
2027   }
2028 }
2029 
2030 /// parseOptionalVisibility
2031 ///   ::= /*empty*/
2032 ///   ::= 'default'
2033 ///   ::= 'hidden'
2034 ///   ::= 'protected'
2035 ///
2036 void LLParser::parseOptionalVisibility(unsigned &Res) {
2037   switch (Lex.getKind()) {
2038   default:
2039     Res = GlobalValue::DefaultVisibility;
2040     return;
2041   case lltok::kw_default:
2042     Res = GlobalValue::DefaultVisibility;
2043     break;
2044   case lltok::kw_hidden:
2045     Res = GlobalValue::HiddenVisibility;
2046     break;
2047   case lltok::kw_protected:
2048     Res = GlobalValue::ProtectedVisibility;
2049     break;
2050   }
2051   Lex.Lex();
2052 }
2053 
2054 /// parseOptionalDLLStorageClass
2055 ///   ::= /*empty*/
2056 ///   ::= 'dllimport'
2057 ///   ::= 'dllexport'
2058 ///
2059 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2060   switch (Lex.getKind()) {
2061   default:
2062     Res = GlobalValue::DefaultStorageClass;
2063     return;
2064   case lltok::kw_dllimport:
2065     Res = GlobalValue::DLLImportStorageClass;
2066     break;
2067   case lltok::kw_dllexport:
2068     Res = GlobalValue::DLLExportStorageClass;
2069     break;
2070   }
2071   Lex.Lex();
2072 }
2073 
2074 /// parseOptionalCallingConv
2075 ///   ::= /*empty*/
2076 ///   ::= 'ccc'
2077 ///   ::= 'fastcc'
2078 ///   ::= 'intel_ocl_bicc'
2079 ///   ::= 'coldcc'
2080 ///   ::= 'cfguard_checkcc'
2081 ///   ::= 'x86_stdcallcc'
2082 ///   ::= 'x86_fastcallcc'
2083 ///   ::= 'x86_thiscallcc'
2084 ///   ::= 'x86_vectorcallcc'
2085 ///   ::= 'arm_apcscc'
2086 ///   ::= 'arm_aapcscc'
2087 ///   ::= 'arm_aapcs_vfpcc'
2088 ///   ::= 'aarch64_vector_pcs'
2089 ///   ::= 'aarch64_sve_vector_pcs'
2090 ///   ::= 'msp430_intrcc'
2091 ///   ::= 'avr_intrcc'
2092 ///   ::= 'avr_signalcc'
2093 ///   ::= 'ptx_kernel'
2094 ///   ::= 'ptx_device'
2095 ///   ::= 'spir_func'
2096 ///   ::= 'spir_kernel'
2097 ///   ::= 'x86_64_sysvcc'
2098 ///   ::= 'win64cc'
2099 ///   ::= 'webkit_jscc'
2100 ///   ::= 'anyregcc'
2101 ///   ::= 'preserve_mostcc'
2102 ///   ::= 'preserve_allcc'
2103 ///   ::= 'ghccc'
2104 ///   ::= 'swiftcc'
2105 ///   ::= 'swifttailcc'
2106 ///   ::= 'x86_intrcc'
2107 ///   ::= 'hhvmcc'
2108 ///   ::= 'hhvm_ccc'
2109 ///   ::= 'cxx_fast_tlscc'
2110 ///   ::= 'amdgpu_vs'
2111 ///   ::= 'amdgpu_ls'
2112 ///   ::= 'amdgpu_hs'
2113 ///   ::= 'amdgpu_es'
2114 ///   ::= 'amdgpu_gs'
2115 ///   ::= 'amdgpu_ps'
2116 ///   ::= 'amdgpu_cs'
2117 ///   ::= 'amdgpu_kernel'
2118 ///   ::= 'tailcc'
2119 ///   ::= 'cc' UINT
2120 ///
2121 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2122   switch (Lex.getKind()) {
2123   default:                       CC = CallingConv::C; return false;
2124   case lltok::kw_ccc:            CC = CallingConv::C; break;
2125   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2126   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2127   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2128   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2129   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2130   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2131   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2132   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2133   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2134   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2135   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2136   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2137   case lltok::kw_aarch64_sve_vector_pcs:
2138     CC = CallingConv::AArch64_SVE_VectorCall;
2139     break;
2140   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2141   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2142   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2143   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2144   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2145   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2146   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2147   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2148   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2149   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2150   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2151   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2152   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2153   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2154   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2155   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2156   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2157   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2158   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2159   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2160   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2161   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2162   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2163   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2164   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2165   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2166   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2167   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2168   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2169   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2170   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2171   case lltok::kw_cc: {
2172       Lex.Lex();
2173       return parseUInt32(CC);
2174     }
2175   }
2176 
2177   Lex.Lex();
2178   return false;
2179 }
2180 
2181 /// parseMetadataAttachment
2182 ///   ::= !dbg !42
2183 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2184   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2185 
2186   std::string Name = Lex.getStrVal();
2187   Kind = M->getMDKindID(Name);
2188   Lex.Lex();
2189 
2190   return parseMDNode(MD);
2191 }
2192 
2193 /// parseInstructionMetadata
2194 ///   ::= !dbg !42 (',' !dbg !57)*
2195 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2196   do {
2197     if (Lex.getKind() != lltok::MetadataVar)
2198       return tokError("expected metadata after comma");
2199 
2200     unsigned MDK;
2201     MDNode *N;
2202     if (parseMetadataAttachment(MDK, N))
2203       return true;
2204 
2205     Inst.setMetadata(MDK, N);
2206     if (MDK == LLVMContext::MD_tbaa)
2207       InstsWithTBAATag.push_back(&Inst);
2208 
2209     // If this is the end of the list, we're done.
2210   } while (EatIfPresent(lltok::comma));
2211   return false;
2212 }
2213 
2214 /// parseGlobalObjectMetadataAttachment
2215 ///   ::= !dbg !57
2216 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2217   unsigned MDK;
2218   MDNode *N;
2219   if (parseMetadataAttachment(MDK, N))
2220     return true;
2221 
2222   GO.addMetadata(MDK, *N);
2223   return false;
2224 }
2225 
2226 /// parseOptionalFunctionMetadata
2227 ///   ::= (!dbg !57)*
2228 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2229   while (Lex.getKind() == lltok::MetadataVar)
2230     if (parseGlobalObjectMetadataAttachment(F))
2231       return true;
2232   return false;
2233 }
2234 
2235 /// parseOptionalAlignment
2236 ///   ::= /* empty */
2237 ///   ::= 'align' 4
2238 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2239   Alignment = None;
2240   if (!EatIfPresent(lltok::kw_align))
2241     return false;
2242   LocTy AlignLoc = Lex.getLoc();
2243   uint32_t Value = 0;
2244 
2245   LocTy ParenLoc = Lex.getLoc();
2246   bool HaveParens = false;
2247   if (AllowParens) {
2248     if (EatIfPresent(lltok::lparen))
2249       HaveParens = true;
2250   }
2251 
2252   if (parseUInt32(Value))
2253     return true;
2254 
2255   if (HaveParens && !EatIfPresent(lltok::rparen))
2256     return error(ParenLoc, "expected ')'");
2257 
2258   if (!isPowerOf2_32(Value))
2259     return error(AlignLoc, "alignment is not a power of two");
2260   if (Value > Value::MaximumAlignment)
2261     return error(AlignLoc, "huge alignments are not supported yet");
2262   Alignment = Align(Value);
2263   return false;
2264 }
2265 
2266 /// parseOptionalDerefAttrBytes
2267 ///   ::= /* empty */
2268 ///   ::= AttrKind '(' 4 ')'
2269 ///
2270 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2271 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2272                                            uint64_t &Bytes) {
2273   assert((AttrKind == lltok::kw_dereferenceable ||
2274           AttrKind == lltok::kw_dereferenceable_or_null) &&
2275          "contract!");
2276 
2277   Bytes = 0;
2278   if (!EatIfPresent(AttrKind))
2279     return false;
2280   LocTy ParenLoc = Lex.getLoc();
2281   if (!EatIfPresent(lltok::lparen))
2282     return error(ParenLoc, "expected '('");
2283   LocTy DerefLoc = Lex.getLoc();
2284   if (parseUInt64(Bytes))
2285     return true;
2286   ParenLoc = Lex.getLoc();
2287   if (!EatIfPresent(lltok::rparen))
2288     return error(ParenLoc, "expected ')'");
2289   if (!Bytes)
2290     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2291   return false;
2292 }
2293 
2294 /// parseOptionalCommaAlign
2295 ///   ::=
2296 ///   ::= ',' align 4
2297 ///
2298 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2299 /// end.
2300 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2301                                        bool &AteExtraComma) {
2302   AteExtraComma = false;
2303   while (EatIfPresent(lltok::comma)) {
2304     // Metadata at the end is an early exit.
2305     if (Lex.getKind() == lltok::MetadataVar) {
2306       AteExtraComma = true;
2307       return false;
2308     }
2309 
2310     if (Lex.getKind() != lltok::kw_align)
2311       return error(Lex.getLoc(), "expected metadata or 'align'");
2312 
2313     if (parseOptionalAlignment(Alignment))
2314       return true;
2315   }
2316 
2317   return false;
2318 }
2319 
2320 /// parseOptionalCommaAddrSpace
2321 ///   ::=
2322 ///   ::= ',' addrspace(1)
2323 ///
2324 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2325 /// end.
2326 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2327                                            bool &AteExtraComma) {
2328   AteExtraComma = false;
2329   while (EatIfPresent(lltok::comma)) {
2330     // Metadata at the end is an early exit.
2331     if (Lex.getKind() == lltok::MetadataVar) {
2332       AteExtraComma = true;
2333       return false;
2334     }
2335 
2336     Loc = Lex.getLoc();
2337     if (Lex.getKind() != lltok::kw_addrspace)
2338       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2339 
2340     if (parseOptionalAddrSpace(AddrSpace))
2341       return true;
2342   }
2343 
2344   return false;
2345 }
2346 
2347 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2348                                        Optional<unsigned> &HowManyArg) {
2349   Lex.Lex();
2350 
2351   auto StartParen = Lex.getLoc();
2352   if (!EatIfPresent(lltok::lparen))
2353     return error(StartParen, "expected '('");
2354 
2355   if (parseUInt32(BaseSizeArg))
2356     return true;
2357 
2358   if (EatIfPresent(lltok::comma)) {
2359     auto HowManyAt = Lex.getLoc();
2360     unsigned HowMany;
2361     if (parseUInt32(HowMany))
2362       return true;
2363     if (HowMany == BaseSizeArg)
2364       return error(HowManyAt,
2365                    "'allocsize' indices can't refer to the same parameter");
2366     HowManyArg = HowMany;
2367   } else
2368     HowManyArg = None;
2369 
2370   auto EndParen = Lex.getLoc();
2371   if (!EatIfPresent(lltok::rparen))
2372     return error(EndParen, "expected ')'");
2373   return false;
2374 }
2375 
2376 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2377                                          unsigned &MaxValue) {
2378   Lex.Lex();
2379 
2380   auto StartParen = Lex.getLoc();
2381   if (!EatIfPresent(lltok::lparen))
2382     return error(StartParen, "expected '('");
2383 
2384   if (parseUInt32(MinValue))
2385     return true;
2386 
2387   if (EatIfPresent(lltok::comma)) {
2388     if (parseUInt32(MaxValue))
2389       return true;
2390   } else
2391     MaxValue = MinValue;
2392 
2393   auto EndParen = Lex.getLoc();
2394   if (!EatIfPresent(lltok::rparen))
2395     return error(EndParen, "expected ')'");
2396   return false;
2397 }
2398 
2399 /// parseScopeAndOrdering
2400 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2401 ///   else: ::=
2402 ///
2403 /// This sets Scope and Ordering to the parsed values.
2404 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2405                                      AtomicOrdering &Ordering) {
2406   if (!IsAtomic)
2407     return false;
2408 
2409   return parseScope(SSID) || parseOrdering(Ordering);
2410 }
2411 
2412 /// parseScope
2413 ///   ::= syncscope("singlethread" | "<target scope>")?
2414 ///
2415 /// This sets synchronization scope ID to the ID of the parsed value.
2416 bool LLParser::parseScope(SyncScope::ID &SSID) {
2417   SSID = SyncScope::System;
2418   if (EatIfPresent(lltok::kw_syncscope)) {
2419     auto StartParenAt = Lex.getLoc();
2420     if (!EatIfPresent(lltok::lparen))
2421       return error(StartParenAt, "Expected '(' in syncscope");
2422 
2423     std::string SSN;
2424     auto SSNAt = Lex.getLoc();
2425     if (parseStringConstant(SSN))
2426       return error(SSNAt, "Expected synchronization scope name");
2427 
2428     auto EndParenAt = Lex.getLoc();
2429     if (!EatIfPresent(lltok::rparen))
2430       return error(EndParenAt, "Expected ')' in syncscope");
2431 
2432     SSID = Context.getOrInsertSyncScopeID(SSN);
2433   }
2434 
2435   return false;
2436 }
2437 
2438 /// parseOrdering
2439 ///   ::= AtomicOrdering
2440 ///
2441 /// This sets Ordering to the parsed value.
2442 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2443   switch (Lex.getKind()) {
2444   default:
2445     return tokError("Expected ordering on atomic instruction");
2446   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2447   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2448   // Not specified yet:
2449   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2450   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2451   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2452   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2453   case lltok::kw_seq_cst:
2454     Ordering = AtomicOrdering::SequentiallyConsistent;
2455     break;
2456   }
2457   Lex.Lex();
2458   return false;
2459 }
2460 
2461 /// parseOptionalStackAlignment
2462 ///   ::= /* empty */
2463 ///   ::= 'alignstack' '(' 4 ')'
2464 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2465   Alignment = 0;
2466   if (!EatIfPresent(lltok::kw_alignstack))
2467     return false;
2468   LocTy ParenLoc = Lex.getLoc();
2469   if (!EatIfPresent(lltok::lparen))
2470     return error(ParenLoc, "expected '('");
2471   LocTy AlignLoc = Lex.getLoc();
2472   if (parseUInt32(Alignment))
2473     return true;
2474   ParenLoc = Lex.getLoc();
2475   if (!EatIfPresent(lltok::rparen))
2476     return error(ParenLoc, "expected ')'");
2477   if (!isPowerOf2_32(Alignment))
2478     return error(AlignLoc, "stack alignment is not a power of two");
2479   return false;
2480 }
2481 
2482 /// parseIndexList - This parses the index list for an insert/extractvalue
2483 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2484 /// comma at the end of the line and find that it is followed by metadata.
2485 /// Clients that don't allow metadata can call the version of this function that
2486 /// only takes one argument.
2487 ///
2488 /// parseIndexList
2489 ///    ::=  (',' uint32)+
2490 ///
2491 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2492                               bool &AteExtraComma) {
2493   AteExtraComma = false;
2494 
2495   if (Lex.getKind() != lltok::comma)
2496     return tokError("expected ',' as start of index list");
2497 
2498   while (EatIfPresent(lltok::comma)) {
2499     if (Lex.getKind() == lltok::MetadataVar) {
2500       if (Indices.empty())
2501         return tokError("expected index");
2502       AteExtraComma = true;
2503       return false;
2504     }
2505     unsigned Idx = 0;
2506     if (parseUInt32(Idx))
2507       return true;
2508     Indices.push_back(Idx);
2509   }
2510 
2511   return false;
2512 }
2513 
2514 //===----------------------------------------------------------------------===//
2515 // Type Parsing.
2516 //===----------------------------------------------------------------------===//
2517 
2518 /// parseType - parse a type.
2519 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2520   SMLoc TypeLoc = Lex.getLoc();
2521   switch (Lex.getKind()) {
2522   default:
2523     return tokError(Msg);
2524   case lltok::Type:
2525     // Type ::= 'float' | 'void' (etc)
2526     Result = Lex.getTyVal();
2527     Lex.Lex();
2528     break;
2529   case lltok::lbrace:
2530     // Type ::= StructType
2531     if (parseAnonStructType(Result, false))
2532       return true;
2533     break;
2534   case lltok::lsquare:
2535     // Type ::= '[' ... ']'
2536     Lex.Lex(); // eat the lsquare.
2537     if (parseArrayVectorType(Result, false))
2538       return true;
2539     break;
2540   case lltok::less: // Either vector or packed struct.
2541     // Type ::= '<' ... '>'
2542     Lex.Lex();
2543     if (Lex.getKind() == lltok::lbrace) {
2544       if (parseAnonStructType(Result, true) ||
2545           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2546         return true;
2547     } else if (parseArrayVectorType(Result, true))
2548       return true;
2549     break;
2550   case lltok::LocalVar: {
2551     // Type ::= %foo
2552     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2553 
2554     // If the type hasn't been defined yet, create a forward definition and
2555     // remember where that forward def'n was seen (in case it never is defined).
2556     if (!Entry.first) {
2557       Entry.first = StructType::create(Context, Lex.getStrVal());
2558       Entry.second = Lex.getLoc();
2559     }
2560     Result = Entry.first;
2561     Lex.Lex();
2562     break;
2563   }
2564 
2565   case lltok::LocalVarID: {
2566     // Type ::= %4
2567     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2568 
2569     // If the type hasn't been defined yet, create a forward definition and
2570     // remember where that forward def'n was seen (in case it never is defined).
2571     if (!Entry.first) {
2572       Entry.first = StructType::create(Context);
2573       Entry.second = Lex.getLoc();
2574     }
2575     Result = Entry.first;
2576     Lex.Lex();
2577     break;
2578   }
2579   }
2580 
2581   if (Result->isOpaquePointerTy()) {
2582     unsigned AddrSpace;
2583     if (parseOptionalAddrSpace(AddrSpace))
2584       return true;
2585     Result = PointerType::get(getContext(), AddrSpace);
2586   }
2587 
2588   // parse the type suffixes.
2589   while (true) {
2590     switch (Lex.getKind()) {
2591     // End of type.
2592     default:
2593       if (!AllowVoid && Result->isVoidTy())
2594         return error(TypeLoc, "void type only allowed for function results");
2595       return false;
2596 
2597     // Type ::= Type '*'
2598     case lltok::star:
2599       if (Result->isLabelTy())
2600         return tokError("basic block pointers are invalid");
2601       if (Result->isVoidTy())
2602         return tokError("pointers to void are invalid - use i8* instead");
2603       if (Result->isOpaquePointerTy())
2604         return tokError("ptr* is invalid - use ptr instead");
2605       if (!PointerType::isValidElementType(Result))
2606         return tokError("pointer to this type is invalid");
2607       Result = PointerType::getUnqual(Result);
2608       Lex.Lex();
2609       break;
2610 
2611     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2612     case lltok::kw_addrspace: {
2613       if (Result->isLabelTy())
2614         return tokError("basic block pointers are invalid");
2615       if (Result->isVoidTy())
2616         return tokError("pointers to void are invalid; use i8* instead");
2617       if (!PointerType::isValidElementType(Result))
2618         return tokError("pointer to this type is invalid");
2619       unsigned AddrSpace;
2620       if (parseOptionalAddrSpace(AddrSpace) ||
2621           parseToken(lltok::star, "expected '*' in address space"))
2622         return true;
2623 
2624       Result = PointerType::get(Result, AddrSpace);
2625       break;
2626     }
2627 
2628     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2629     case lltok::lparen:
2630       if (parseFunctionType(Result))
2631         return true;
2632       break;
2633     }
2634   }
2635 }
2636 
2637 /// parseParameterList
2638 ///    ::= '(' ')'
2639 ///    ::= '(' Arg (',' Arg)* ')'
2640 ///  Arg
2641 ///    ::= Type OptionalAttributes Value OptionalAttributes
2642 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2643                                   PerFunctionState &PFS, bool IsMustTailCall,
2644                                   bool InVarArgsFunc) {
2645   if (parseToken(lltok::lparen, "expected '(' in call"))
2646     return true;
2647 
2648   while (Lex.getKind() != lltok::rparen) {
2649     // If this isn't the first argument, we need a comma.
2650     if (!ArgList.empty() &&
2651         parseToken(lltok::comma, "expected ',' in argument list"))
2652       return true;
2653 
2654     // parse an ellipsis if this is a musttail call in a variadic function.
2655     if (Lex.getKind() == lltok::dotdotdot) {
2656       const char *Msg = "unexpected ellipsis in argument list for ";
2657       if (!IsMustTailCall)
2658         return tokError(Twine(Msg) + "non-musttail call");
2659       if (!InVarArgsFunc)
2660         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2661       Lex.Lex();  // Lex the '...', it is purely for readability.
2662       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2663     }
2664 
2665     // parse the argument.
2666     LocTy ArgLoc;
2667     Type *ArgTy = nullptr;
2668     AttrBuilder ArgAttrs;
2669     Value *V;
2670     if (parseType(ArgTy, ArgLoc))
2671       return true;
2672 
2673     if (ArgTy->isMetadataTy()) {
2674       if (parseMetadataAsValue(V, PFS))
2675         return true;
2676     } else {
2677       // Otherwise, handle normal operands.
2678       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2679         return true;
2680     }
2681     ArgList.push_back(ParamInfo(
2682         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2683   }
2684 
2685   if (IsMustTailCall && InVarArgsFunc)
2686     return tokError("expected '...' at end of argument list for musttail call "
2687                     "in varargs function");
2688 
2689   Lex.Lex();  // Lex the ')'.
2690   return false;
2691 }
2692 
2693 /// parseRequiredTypeAttr
2694 ///   ::= attrname(<ty>)
2695 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2696   Result = nullptr;
2697   if (!EatIfPresent(AttrName))
2698     return true;
2699   if (!EatIfPresent(lltok::lparen))
2700     return error(Lex.getLoc(), "expected '('");
2701   if (parseType(Result))
2702     return true;
2703   if (!EatIfPresent(lltok::rparen))
2704     return error(Lex.getLoc(), "expected ')'");
2705   return false;
2706 }
2707 
2708 /// parsePreallocated
2709 ///   ::= preallocated(<ty>)
2710 bool LLParser::parsePreallocated(Type *&Result) {
2711   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2712 }
2713 
2714 /// parseInalloca
2715 ///   ::= inalloca(<ty>)
2716 bool LLParser::parseInalloca(Type *&Result) {
2717   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2718 }
2719 
2720 /// parseByRef
2721 ///   ::= byref(<type>)
2722 bool LLParser::parseByRef(Type *&Result) {
2723   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2724 }
2725 
2726 /// parseOptionalOperandBundles
2727 ///    ::= /*empty*/
2728 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2729 ///
2730 /// OperandBundle
2731 ///    ::= bundle-tag '(' ')'
2732 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2733 ///
2734 /// bundle-tag ::= String Constant
2735 bool LLParser::parseOptionalOperandBundles(
2736     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2737   LocTy BeginLoc = Lex.getLoc();
2738   if (!EatIfPresent(lltok::lsquare))
2739     return false;
2740 
2741   while (Lex.getKind() != lltok::rsquare) {
2742     // If this isn't the first operand bundle, we need a comma.
2743     if (!BundleList.empty() &&
2744         parseToken(lltok::comma, "expected ',' in input list"))
2745       return true;
2746 
2747     std::string Tag;
2748     if (parseStringConstant(Tag))
2749       return true;
2750 
2751     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2752       return true;
2753 
2754     std::vector<Value *> Inputs;
2755     while (Lex.getKind() != lltok::rparen) {
2756       // If this isn't the first input, we need a comma.
2757       if (!Inputs.empty() &&
2758           parseToken(lltok::comma, "expected ',' in input list"))
2759         return true;
2760 
2761       Type *Ty = nullptr;
2762       Value *Input = nullptr;
2763       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2764         return true;
2765       Inputs.push_back(Input);
2766     }
2767 
2768     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2769 
2770     Lex.Lex(); // Lex the ')'.
2771   }
2772 
2773   if (BundleList.empty())
2774     return error(BeginLoc, "operand bundle set must not be empty");
2775 
2776   Lex.Lex(); // Lex the ']'.
2777   return false;
2778 }
2779 
2780 /// parseArgumentList - parse the argument list for a function type or function
2781 /// prototype.
2782 ///   ::= '(' ArgTypeListI ')'
2783 /// ArgTypeListI
2784 ///   ::= /*empty*/
2785 ///   ::= '...'
2786 ///   ::= ArgTypeList ',' '...'
2787 ///   ::= ArgType (',' ArgType)*
2788 ///
2789 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2790                                  bool &IsVarArg) {
2791   unsigned CurValID = 0;
2792   IsVarArg = false;
2793   assert(Lex.getKind() == lltok::lparen);
2794   Lex.Lex(); // eat the (.
2795 
2796   if (Lex.getKind() == lltok::rparen) {
2797     // empty
2798   } else if (Lex.getKind() == lltok::dotdotdot) {
2799     IsVarArg = true;
2800     Lex.Lex();
2801   } else {
2802     LocTy TypeLoc = Lex.getLoc();
2803     Type *ArgTy = nullptr;
2804     AttrBuilder Attrs;
2805     std::string Name;
2806 
2807     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2808       return true;
2809 
2810     if (ArgTy->isVoidTy())
2811       return error(TypeLoc, "argument can not have void type");
2812 
2813     if (Lex.getKind() == lltok::LocalVar) {
2814       Name = Lex.getStrVal();
2815       Lex.Lex();
2816     } else if (Lex.getKind() == lltok::LocalVarID) {
2817       if (Lex.getUIntVal() != CurValID)
2818         return error(TypeLoc, "argument expected to be numbered '%" +
2819                                   Twine(CurValID) + "'");
2820       ++CurValID;
2821       Lex.Lex();
2822     }
2823 
2824     if (!FunctionType::isValidArgumentType(ArgTy))
2825       return error(TypeLoc, "invalid type for function argument");
2826 
2827     ArgList.emplace_back(TypeLoc, ArgTy,
2828                          AttributeSet::get(ArgTy->getContext(), Attrs),
2829                          std::move(Name));
2830 
2831     while (EatIfPresent(lltok::comma)) {
2832       // Handle ... at end of arg list.
2833       if (EatIfPresent(lltok::dotdotdot)) {
2834         IsVarArg = true;
2835         break;
2836       }
2837 
2838       // Otherwise must be an argument type.
2839       TypeLoc = Lex.getLoc();
2840       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2841         return true;
2842 
2843       if (ArgTy->isVoidTy())
2844         return error(TypeLoc, "argument can not have void type");
2845 
2846       if (Lex.getKind() == lltok::LocalVar) {
2847         Name = Lex.getStrVal();
2848         Lex.Lex();
2849       } else {
2850         if (Lex.getKind() == lltok::LocalVarID) {
2851           if (Lex.getUIntVal() != CurValID)
2852             return error(TypeLoc, "argument expected to be numbered '%" +
2853                                       Twine(CurValID) + "'");
2854           Lex.Lex();
2855         }
2856         ++CurValID;
2857         Name = "";
2858       }
2859 
2860       if (!ArgTy->isFirstClassType())
2861         return error(TypeLoc, "invalid type for function argument");
2862 
2863       ArgList.emplace_back(TypeLoc, ArgTy,
2864                            AttributeSet::get(ArgTy->getContext(), Attrs),
2865                            std::move(Name));
2866     }
2867   }
2868 
2869   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2870 }
2871 
2872 /// parseFunctionType
2873 ///  ::= Type ArgumentList OptionalAttrs
2874 bool LLParser::parseFunctionType(Type *&Result) {
2875   assert(Lex.getKind() == lltok::lparen);
2876 
2877   if (!FunctionType::isValidReturnType(Result))
2878     return tokError("invalid function return type");
2879 
2880   SmallVector<ArgInfo, 8> ArgList;
2881   bool IsVarArg;
2882   if (parseArgumentList(ArgList, IsVarArg))
2883     return true;
2884 
2885   // Reject names on the arguments lists.
2886   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2887     if (!ArgList[i].Name.empty())
2888       return error(ArgList[i].Loc, "argument name invalid in function type");
2889     if (ArgList[i].Attrs.hasAttributes())
2890       return error(ArgList[i].Loc,
2891                    "argument attributes invalid in function type");
2892   }
2893 
2894   SmallVector<Type*, 16> ArgListTy;
2895   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2896     ArgListTy.push_back(ArgList[i].Ty);
2897 
2898   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2899   return false;
2900 }
2901 
2902 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2903 /// other structs.
2904 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2905   SmallVector<Type*, 8> Elts;
2906   if (parseStructBody(Elts))
2907     return true;
2908 
2909   Result = StructType::get(Context, Elts, Packed);
2910   return false;
2911 }
2912 
2913 /// parseStructDefinition - parse a struct in a 'type' definition.
2914 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2915                                      std::pair<Type *, LocTy> &Entry,
2916                                      Type *&ResultTy) {
2917   // If the type was already defined, diagnose the redefinition.
2918   if (Entry.first && !Entry.second.isValid())
2919     return error(TypeLoc, "redefinition of type");
2920 
2921   // If we have opaque, just return without filling in the definition for the
2922   // struct.  This counts as a definition as far as the .ll file goes.
2923   if (EatIfPresent(lltok::kw_opaque)) {
2924     // This type is being defined, so clear the location to indicate this.
2925     Entry.second = SMLoc();
2926 
2927     // If this type number has never been uttered, create it.
2928     if (!Entry.first)
2929       Entry.first = StructType::create(Context, Name);
2930     ResultTy = Entry.first;
2931     return false;
2932   }
2933 
2934   // If the type starts with '<', then it is either a packed struct or a vector.
2935   bool isPacked = EatIfPresent(lltok::less);
2936 
2937   // If we don't have a struct, then we have a random type alias, which we
2938   // accept for compatibility with old files.  These types are not allowed to be
2939   // forward referenced and not allowed to be recursive.
2940   if (Lex.getKind() != lltok::lbrace) {
2941     if (Entry.first)
2942       return error(TypeLoc, "forward references to non-struct type");
2943 
2944     ResultTy = nullptr;
2945     if (isPacked)
2946       return parseArrayVectorType(ResultTy, true);
2947     return parseType(ResultTy);
2948   }
2949 
2950   // This type is being defined, so clear the location to indicate this.
2951   Entry.second = SMLoc();
2952 
2953   // If this type number has never been uttered, create it.
2954   if (!Entry.first)
2955     Entry.first = StructType::create(Context, Name);
2956 
2957   StructType *STy = cast<StructType>(Entry.first);
2958 
2959   SmallVector<Type*, 8> Body;
2960   if (parseStructBody(Body) ||
2961       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2962     return true;
2963 
2964   STy->setBody(Body, isPacked);
2965   ResultTy = STy;
2966   return false;
2967 }
2968 
2969 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2970 ///   StructType
2971 ///     ::= '{' '}'
2972 ///     ::= '{' Type (',' Type)* '}'
2973 ///     ::= '<' '{' '}' '>'
2974 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2975 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2976   assert(Lex.getKind() == lltok::lbrace);
2977   Lex.Lex(); // Consume the '{'
2978 
2979   // Handle the empty struct.
2980   if (EatIfPresent(lltok::rbrace))
2981     return false;
2982 
2983   LocTy EltTyLoc = Lex.getLoc();
2984   Type *Ty = nullptr;
2985   if (parseType(Ty))
2986     return true;
2987   Body.push_back(Ty);
2988 
2989   if (!StructType::isValidElementType(Ty))
2990     return error(EltTyLoc, "invalid element type for struct");
2991 
2992   while (EatIfPresent(lltok::comma)) {
2993     EltTyLoc = Lex.getLoc();
2994     if (parseType(Ty))
2995       return true;
2996 
2997     if (!StructType::isValidElementType(Ty))
2998       return error(EltTyLoc, "invalid element type for struct");
2999 
3000     Body.push_back(Ty);
3001   }
3002 
3003   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3004 }
3005 
3006 /// parseArrayVectorType - parse an array or vector type, assuming the first
3007 /// token has already been consumed.
3008 ///   Type
3009 ///     ::= '[' APSINTVAL 'x' Types ']'
3010 ///     ::= '<' APSINTVAL 'x' Types '>'
3011 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3012 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3013   bool Scalable = false;
3014 
3015   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3016     Lex.Lex(); // consume the 'vscale'
3017     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3018       return true;
3019 
3020     Scalable = true;
3021   }
3022 
3023   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3024       Lex.getAPSIntVal().getBitWidth() > 64)
3025     return tokError("expected number in address space");
3026 
3027   LocTy SizeLoc = Lex.getLoc();
3028   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3029   Lex.Lex();
3030 
3031   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3032     return true;
3033 
3034   LocTy TypeLoc = Lex.getLoc();
3035   Type *EltTy = nullptr;
3036   if (parseType(EltTy))
3037     return true;
3038 
3039   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3040                  "expected end of sequential type"))
3041     return true;
3042 
3043   if (IsVector) {
3044     if (Size == 0)
3045       return error(SizeLoc, "zero element vector is illegal");
3046     if ((unsigned)Size != Size)
3047       return error(SizeLoc, "size too large for vector");
3048     if (!VectorType::isValidElementType(EltTy))
3049       return error(TypeLoc, "invalid vector element type");
3050     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3051   } else {
3052     if (!ArrayType::isValidElementType(EltTy))
3053       return error(TypeLoc, "invalid array element type");
3054     Result = ArrayType::get(EltTy, Size);
3055   }
3056   return false;
3057 }
3058 
3059 //===----------------------------------------------------------------------===//
3060 // Function Semantic Analysis.
3061 //===----------------------------------------------------------------------===//
3062 
3063 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3064                                              int functionNumber)
3065   : P(p), F(f), FunctionNumber(functionNumber) {
3066 
3067   // Insert unnamed arguments into the NumberedVals list.
3068   for (Argument &A : F.args())
3069     if (!A.hasName())
3070       NumberedVals.push_back(&A);
3071 }
3072 
3073 LLParser::PerFunctionState::~PerFunctionState() {
3074   // If there were any forward referenced non-basicblock values, delete them.
3075 
3076   for (const auto &P : ForwardRefVals) {
3077     if (isa<BasicBlock>(P.second.first))
3078       continue;
3079     P.second.first->replaceAllUsesWith(
3080         UndefValue::get(P.second.first->getType()));
3081     P.second.first->deleteValue();
3082   }
3083 
3084   for (const auto &P : ForwardRefValIDs) {
3085     if (isa<BasicBlock>(P.second.first))
3086       continue;
3087     P.second.first->replaceAllUsesWith(
3088         UndefValue::get(P.second.first->getType()));
3089     P.second.first->deleteValue();
3090   }
3091 }
3092 
3093 bool LLParser::PerFunctionState::finishFunction() {
3094   if (!ForwardRefVals.empty())
3095     return P.error(ForwardRefVals.begin()->second.second,
3096                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3097                        "'");
3098   if (!ForwardRefValIDs.empty())
3099     return P.error(ForwardRefValIDs.begin()->second.second,
3100                    "use of undefined value '%" +
3101                        Twine(ForwardRefValIDs.begin()->first) + "'");
3102   return false;
3103 }
3104 
3105 /// getVal - Get a value with the specified name or ID, creating a
3106 /// forward reference record if needed.  This can return null if the value
3107 /// exists but does not have the right type.
3108 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3109                                           LocTy Loc, bool IsCall) {
3110   // Look this name up in the normal function symbol table.
3111   Value *Val = F.getValueSymbolTable()->lookup(Name);
3112 
3113   // If this is a forward reference for the value, see if we already created a
3114   // forward ref record.
3115   if (!Val) {
3116     auto I = ForwardRefVals.find(Name);
3117     if (I != ForwardRefVals.end())
3118       Val = I->second.first;
3119   }
3120 
3121   // If we have the value in the symbol table or fwd-ref table, return it.
3122   if (Val)
3123     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3124 
3125   // Don't make placeholders with invalid type.
3126   if (!Ty->isFirstClassType()) {
3127     P.error(Loc, "invalid use of a non-first-class type");
3128     return nullptr;
3129   }
3130 
3131   // Otherwise, create a new forward reference for this value and remember it.
3132   Value *FwdVal;
3133   if (Ty->isLabelTy()) {
3134     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3135   } else {
3136     FwdVal = new Argument(Ty, Name);
3137   }
3138 
3139   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3140   return FwdVal;
3141 }
3142 
3143 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3144                                           bool IsCall) {
3145   // Look this name up in the normal function symbol table.
3146   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3147 
3148   // If this is a forward reference for the value, see if we already created a
3149   // forward ref record.
3150   if (!Val) {
3151     auto I = ForwardRefValIDs.find(ID);
3152     if (I != ForwardRefValIDs.end())
3153       Val = I->second.first;
3154   }
3155 
3156   // If we have the value in the symbol table or fwd-ref table, return it.
3157   if (Val)
3158     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3159 
3160   if (!Ty->isFirstClassType()) {
3161     P.error(Loc, "invalid use of a non-first-class type");
3162     return nullptr;
3163   }
3164 
3165   // Otherwise, create a new forward reference for this value and remember it.
3166   Value *FwdVal;
3167   if (Ty->isLabelTy()) {
3168     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3169   } else {
3170     FwdVal = new Argument(Ty);
3171   }
3172 
3173   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3174   return FwdVal;
3175 }
3176 
3177 /// setInstName - After an instruction is parsed and inserted into its
3178 /// basic block, this installs its name.
3179 bool LLParser::PerFunctionState::setInstName(int NameID,
3180                                              const std::string &NameStr,
3181                                              LocTy NameLoc, Instruction *Inst) {
3182   // If this instruction has void type, it cannot have a name or ID specified.
3183   if (Inst->getType()->isVoidTy()) {
3184     if (NameID != -1 || !NameStr.empty())
3185       return P.error(NameLoc, "instructions returning void cannot have a name");
3186     return false;
3187   }
3188 
3189   // If this was a numbered instruction, verify that the instruction is the
3190   // expected value and resolve any forward references.
3191   if (NameStr.empty()) {
3192     // If neither a name nor an ID was specified, just use the next ID.
3193     if (NameID == -1)
3194       NameID = NumberedVals.size();
3195 
3196     if (unsigned(NameID) != NumberedVals.size())
3197       return P.error(NameLoc, "instruction expected to be numbered '%" +
3198                                   Twine(NumberedVals.size()) + "'");
3199 
3200     auto FI = ForwardRefValIDs.find(NameID);
3201     if (FI != ForwardRefValIDs.end()) {
3202       Value *Sentinel = FI->second.first;
3203       if (Sentinel->getType() != Inst->getType())
3204         return P.error(NameLoc, "instruction forward referenced with type '" +
3205                                     getTypeString(FI->second.first->getType()) +
3206                                     "'");
3207 
3208       Sentinel->replaceAllUsesWith(Inst);
3209       Sentinel->deleteValue();
3210       ForwardRefValIDs.erase(FI);
3211     }
3212 
3213     NumberedVals.push_back(Inst);
3214     return false;
3215   }
3216 
3217   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3218   auto FI = ForwardRefVals.find(NameStr);
3219   if (FI != ForwardRefVals.end()) {
3220     Value *Sentinel = FI->second.first;
3221     if (Sentinel->getType() != Inst->getType())
3222       return P.error(NameLoc, "instruction forward referenced with type '" +
3223                                   getTypeString(FI->second.first->getType()) +
3224                                   "'");
3225 
3226     Sentinel->replaceAllUsesWith(Inst);
3227     Sentinel->deleteValue();
3228     ForwardRefVals.erase(FI);
3229   }
3230 
3231   // Set the name on the instruction.
3232   Inst->setName(NameStr);
3233 
3234   if (Inst->getName() != NameStr)
3235     return P.error(NameLoc, "multiple definition of local value named '" +
3236                                 NameStr + "'");
3237   return false;
3238 }
3239 
3240 /// getBB - Get a basic block with the specified name or ID, creating a
3241 /// forward reference record if needed.
3242 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3243                                               LocTy Loc) {
3244   return dyn_cast_or_null<BasicBlock>(
3245       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3246 }
3247 
3248 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3249   return dyn_cast_or_null<BasicBlock>(
3250       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3251 }
3252 
3253 /// defineBB - Define the specified basic block, which is either named or
3254 /// unnamed.  If there is an error, this returns null otherwise it returns
3255 /// the block being defined.
3256 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3257                                                  int NameID, LocTy Loc) {
3258   BasicBlock *BB;
3259   if (Name.empty()) {
3260     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3261       P.error(Loc, "label expected to be numbered '" +
3262                        Twine(NumberedVals.size()) + "'");
3263       return nullptr;
3264     }
3265     BB = getBB(NumberedVals.size(), Loc);
3266     if (!BB) {
3267       P.error(Loc, "unable to create block numbered '" +
3268                        Twine(NumberedVals.size()) + "'");
3269       return nullptr;
3270     }
3271   } else {
3272     BB = getBB(Name, Loc);
3273     if (!BB) {
3274       P.error(Loc, "unable to create block named '" + Name + "'");
3275       return nullptr;
3276     }
3277   }
3278 
3279   // Move the block to the end of the function.  Forward ref'd blocks are
3280   // inserted wherever they happen to be referenced.
3281   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3282 
3283   // Remove the block from forward ref sets.
3284   if (Name.empty()) {
3285     ForwardRefValIDs.erase(NumberedVals.size());
3286     NumberedVals.push_back(BB);
3287   } else {
3288     // BB forward references are already in the function symbol table.
3289     ForwardRefVals.erase(Name);
3290   }
3291 
3292   return BB;
3293 }
3294 
3295 //===----------------------------------------------------------------------===//
3296 // Constants.
3297 //===----------------------------------------------------------------------===//
3298 
3299 /// parseValID - parse an abstract value that doesn't necessarily have a
3300 /// type implied.  For example, if we parse "4" we don't know what integer type
3301 /// it has.  The value will later be combined with its type and checked for
3302 /// sanity.  PFS is used to convert function-local operands of metadata (since
3303 /// metadata operands are not just parsed here but also converted to values).
3304 /// PFS can be null when we are not parsing metadata values inside a function.
3305 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3306   ID.Loc = Lex.getLoc();
3307   switch (Lex.getKind()) {
3308   default:
3309     return tokError("expected value token");
3310   case lltok::GlobalID:  // @42
3311     ID.UIntVal = Lex.getUIntVal();
3312     ID.Kind = ValID::t_GlobalID;
3313     break;
3314   case lltok::GlobalVar:  // @foo
3315     ID.StrVal = Lex.getStrVal();
3316     ID.Kind = ValID::t_GlobalName;
3317     break;
3318   case lltok::LocalVarID:  // %42
3319     ID.UIntVal = Lex.getUIntVal();
3320     ID.Kind = ValID::t_LocalID;
3321     break;
3322   case lltok::LocalVar:  // %foo
3323     ID.StrVal = Lex.getStrVal();
3324     ID.Kind = ValID::t_LocalName;
3325     break;
3326   case lltok::APSInt:
3327     ID.APSIntVal = Lex.getAPSIntVal();
3328     ID.Kind = ValID::t_APSInt;
3329     break;
3330   case lltok::APFloat:
3331     ID.APFloatVal = Lex.getAPFloatVal();
3332     ID.Kind = ValID::t_APFloat;
3333     break;
3334   case lltok::kw_true:
3335     ID.ConstantVal = ConstantInt::getTrue(Context);
3336     ID.Kind = ValID::t_Constant;
3337     break;
3338   case lltok::kw_false:
3339     ID.ConstantVal = ConstantInt::getFalse(Context);
3340     ID.Kind = ValID::t_Constant;
3341     break;
3342   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3343   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3344   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3345   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3346   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3347 
3348   case lltok::lbrace: {
3349     // ValID ::= '{' ConstVector '}'
3350     Lex.Lex();
3351     SmallVector<Constant*, 16> Elts;
3352     if (parseGlobalValueVector(Elts) ||
3353         parseToken(lltok::rbrace, "expected end of struct constant"))
3354       return true;
3355 
3356     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3357     ID.UIntVal = Elts.size();
3358     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3359            Elts.size() * sizeof(Elts[0]));
3360     ID.Kind = ValID::t_ConstantStruct;
3361     return false;
3362   }
3363   case lltok::less: {
3364     // ValID ::= '<' ConstVector '>'         --> Vector.
3365     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3366     Lex.Lex();
3367     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3368 
3369     SmallVector<Constant*, 16> Elts;
3370     LocTy FirstEltLoc = Lex.getLoc();
3371     if (parseGlobalValueVector(Elts) ||
3372         (isPackedStruct &&
3373          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3374         parseToken(lltok::greater, "expected end of constant"))
3375       return true;
3376 
3377     if (isPackedStruct) {
3378       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3379       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3380              Elts.size() * sizeof(Elts[0]));
3381       ID.UIntVal = Elts.size();
3382       ID.Kind = ValID::t_PackedConstantStruct;
3383       return false;
3384     }
3385 
3386     if (Elts.empty())
3387       return error(ID.Loc, "constant vector must not be empty");
3388 
3389     if (!Elts[0]->getType()->isIntegerTy() &&
3390         !Elts[0]->getType()->isFloatingPointTy() &&
3391         !Elts[0]->getType()->isPointerTy())
3392       return error(
3393           FirstEltLoc,
3394           "vector elements must have integer, pointer or floating point type");
3395 
3396     // Verify that all the vector elements have the same type.
3397     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3398       if (Elts[i]->getType() != Elts[0]->getType())
3399         return error(FirstEltLoc, "vector element #" + Twine(i) +
3400                                       " is not of type '" +
3401                                       getTypeString(Elts[0]->getType()));
3402 
3403     ID.ConstantVal = ConstantVector::get(Elts);
3404     ID.Kind = ValID::t_Constant;
3405     return false;
3406   }
3407   case lltok::lsquare: {   // Array Constant
3408     Lex.Lex();
3409     SmallVector<Constant*, 16> Elts;
3410     LocTy FirstEltLoc = Lex.getLoc();
3411     if (parseGlobalValueVector(Elts) ||
3412         parseToken(lltok::rsquare, "expected end of array constant"))
3413       return true;
3414 
3415     // Handle empty element.
3416     if (Elts.empty()) {
3417       // Use undef instead of an array because it's inconvenient to determine
3418       // the element type at this point, there being no elements to examine.
3419       ID.Kind = ValID::t_EmptyArray;
3420       return false;
3421     }
3422 
3423     if (!Elts[0]->getType()->isFirstClassType())
3424       return error(FirstEltLoc, "invalid array element type: " +
3425                                     getTypeString(Elts[0]->getType()));
3426 
3427     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3428 
3429     // Verify all elements are correct type!
3430     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3431       if (Elts[i]->getType() != Elts[0]->getType())
3432         return error(FirstEltLoc, "array element #" + Twine(i) +
3433                                       " is not of type '" +
3434                                       getTypeString(Elts[0]->getType()));
3435     }
3436 
3437     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3438     ID.Kind = ValID::t_Constant;
3439     return false;
3440   }
3441   case lltok::kw_c:  // c "foo"
3442     Lex.Lex();
3443     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3444                                                   false);
3445     if (parseToken(lltok::StringConstant, "expected string"))
3446       return true;
3447     ID.Kind = ValID::t_Constant;
3448     return false;
3449 
3450   case lltok::kw_asm: {
3451     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3452     //             STRINGCONSTANT
3453     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3454     Lex.Lex();
3455     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3456         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3457         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3458         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3459         parseStringConstant(ID.StrVal) ||
3460         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3461         parseToken(lltok::StringConstant, "expected constraint string"))
3462       return true;
3463     ID.StrVal2 = Lex.getStrVal();
3464     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3465                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3466     ID.Kind = ValID::t_InlineAsm;
3467     return false;
3468   }
3469 
3470   case lltok::kw_blockaddress: {
3471     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3472     Lex.Lex();
3473 
3474     ValID Fn, Label;
3475 
3476     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3477         parseValID(Fn) ||
3478         parseToken(lltok::comma,
3479                    "expected comma in block address expression") ||
3480         parseValID(Label) ||
3481         parseToken(lltok::rparen, "expected ')' in block address expression"))
3482       return true;
3483 
3484     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3485       return error(Fn.Loc, "expected function name in blockaddress");
3486     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3487       return error(Label.Loc, "expected basic block name in blockaddress");
3488 
3489     // Try to find the function (but skip it if it's forward-referenced).
3490     GlobalValue *GV = nullptr;
3491     if (Fn.Kind == ValID::t_GlobalID) {
3492       if (Fn.UIntVal < NumberedVals.size())
3493         GV = NumberedVals[Fn.UIntVal];
3494     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3495       GV = M->getNamedValue(Fn.StrVal);
3496     }
3497     Function *F = nullptr;
3498     if (GV) {
3499       // Confirm that it's actually a function with a definition.
3500       if (!isa<Function>(GV))
3501         return error(Fn.Loc, "expected function name in blockaddress");
3502       F = cast<Function>(GV);
3503       if (F->isDeclaration())
3504         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3505     }
3506 
3507     if (!F) {
3508       // Make a global variable as a placeholder for this reference.
3509       GlobalValue *&FwdRef =
3510           ForwardRefBlockAddresses.insert(std::make_pair(
3511                                               std::move(Fn),
3512                                               std::map<ValID, GlobalValue *>()))
3513               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3514               .first->second;
3515       if (!FwdRef)
3516         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3517                                     GlobalValue::InternalLinkage, nullptr, "");
3518       ID.ConstantVal = FwdRef;
3519       ID.Kind = ValID::t_Constant;
3520       return false;
3521     }
3522 
3523     // We found the function; now find the basic block.  Don't use PFS, since we
3524     // might be inside a constant expression.
3525     BasicBlock *BB;
3526     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3527       if (Label.Kind == ValID::t_LocalID)
3528         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3529       else
3530         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3531       if (!BB)
3532         return error(Label.Loc, "referenced value is not a basic block");
3533     } else {
3534       if (Label.Kind == ValID::t_LocalID)
3535         return error(Label.Loc, "cannot take address of numeric label after "
3536                                 "the function is defined");
3537       BB = dyn_cast_or_null<BasicBlock>(
3538           F->getValueSymbolTable()->lookup(Label.StrVal));
3539       if (!BB)
3540         return error(Label.Loc, "referenced value is not a basic block");
3541     }
3542 
3543     ID.ConstantVal = BlockAddress::get(F, BB);
3544     ID.Kind = ValID::t_Constant;
3545     return false;
3546   }
3547 
3548   case lltok::kw_dso_local_equivalent: {
3549     // ValID ::= 'dso_local_equivalent' @foo
3550     Lex.Lex();
3551 
3552     ValID Fn;
3553 
3554     if (parseValID(Fn))
3555       return true;
3556 
3557     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3558       return error(Fn.Loc,
3559                    "expected global value name in dso_local_equivalent");
3560 
3561     // Try to find the function (but skip it if it's forward-referenced).
3562     GlobalValue *GV = nullptr;
3563     if (Fn.Kind == ValID::t_GlobalID) {
3564       if (Fn.UIntVal < NumberedVals.size())
3565         GV = NumberedVals[Fn.UIntVal];
3566     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3567       GV = M->getNamedValue(Fn.StrVal);
3568     }
3569 
3570     assert(GV && "Could not find a corresponding global variable");
3571 
3572     if (!GV->getValueType()->isFunctionTy())
3573       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3574                            "in dso_local_equivalent");
3575 
3576     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3577     ID.Kind = ValID::t_Constant;
3578     return false;
3579   }
3580 
3581   case lltok::kw_trunc:
3582   case lltok::kw_zext:
3583   case lltok::kw_sext:
3584   case lltok::kw_fptrunc:
3585   case lltok::kw_fpext:
3586   case lltok::kw_bitcast:
3587   case lltok::kw_addrspacecast:
3588   case lltok::kw_uitofp:
3589   case lltok::kw_sitofp:
3590   case lltok::kw_fptoui:
3591   case lltok::kw_fptosi:
3592   case lltok::kw_inttoptr:
3593   case lltok::kw_ptrtoint: {
3594     unsigned Opc = Lex.getUIntVal();
3595     Type *DestTy = nullptr;
3596     Constant *SrcVal;
3597     Lex.Lex();
3598     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3599         parseGlobalTypeAndValue(SrcVal) ||
3600         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3601         parseType(DestTy) ||
3602         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3603       return true;
3604     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3605       return error(ID.Loc, "invalid cast opcode for cast from '" +
3606                                getTypeString(SrcVal->getType()) + "' to '" +
3607                                getTypeString(DestTy) + "'");
3608     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3609                                                  SrcVal, DestTy);
3610     ID.Kind = ValID::t_Constant;
3611     return false;
3612   }
3613   case lltok::kw_extractvalue: {
3614     Lex.Lex();
3615     Constant *Val;
3616     SmallVector<unsigned, 4> Indices;
3617     if (parseToken(lltok::lparen,
3618                    "expected '(' in extractvalue constantexpr") ||
3619         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3620         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3621       return true;
3622 
3623     if (!Val->getType()->isAggregateType())
3624       return error(ID.Loc, "extractvalue operand must be aggregate type");
3625     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3626       return error(ID.Loc, "invalid indices for extractvalue");
3627     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3628     ID.Kind = ValID::t_Constant;
3629     return false;
3630   }
3631   case lltok::kw_insertvalue: {
3632     Lex.Lex();
3633     Constant *Val0, *Val1;
3634     SmallVector<unsigned, 4> Indices;
3635     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3636         parseGlobalTypeAndValue(Val0) ||
3637         parseToken(lltok::comma,
3638                    "expected comma in insertvalue constantexpr") ||
3639         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3640         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3641       return true;
3642     if (!Val0->getType()->isAggregateType())
3643       return error(ID.Loc, "insertvalue operand must be aggregate type");
3644     Type *IndexedType =
3645         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3646     if (!IndexedType)
3647       return error(ID.Loc, "invalid indices for insertvalue");
3648     if (IndexedType != Val1->getType())
3649       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3650                                getTypeString(Val1->getType()) +
3651                                "' instead of '" + getTypeString(IndexedType) +
3652                                "'");
3653     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3654     ID.Kind = ValID::t_Constant;
3655     return false;
3656   }
3657   case lltok::kw_icmp:
3658   case lltok::kw_fcmp: {
3659     unsigned PredVal, Opc = Lex.getUIntVal();
3660     Constant *Val0, *Val1;
3661     Lex.Lex();
3662     if (parseCmpPredicate(PredVal, Opc) ||
3663         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3664         parseGlobalTypeAndValue(Val0) ||
3665         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3666         parseGlobalTypeAndValue(Val1) ||
3667         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3668       return true;
3669 
3670     if (Val0->getType() != Val1->getType())
3671       return error(ID.Loc, "compare operands must have the same type");
3672 
3673     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3674 
3675     if (Opc == Instruction::FCmp) {
3676       if (!Val0->getType()->isFPOrFPVectorTy())
3677         return error(ID.Loc, "fcmp requires floating point operands");
3678       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3679     } else {
3680       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3681       if (!Val0->getType()->isIntOrIntVectorTy() &&
3682           !Val0->getType()->isPtrOrPtrVectorTy())
3683         return error(ID.Loc, "icmp requires pointer or integer operands");
3684       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3685     }
3686     ID.Kind = ValID::t_Constant;
3687     return false;
3688   }
3689 
3690   // Unary Operators.
3691   case lltok::kw_fneg: {
3692     unsigned Opc = Lex.getUIntVal();
3693     Constant *Val;
3694     Lex.Lex();
3695     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3696         parseGlobalTypeAndValue(Val) ||
3697         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3698       return true;
3699 
3700     // Check that the type is valid for the operator.
3701     switch (Opc) {
3702     case Instruction::FNeg:
3703       if (!Val->getType()->isFPOrFPVectorTy())
3704         return error(ID.Loc, "constexpr requires fp operands");
3705       break;
3706     default: llvm_unreachable("Unknown unary operator!");
3707     }
3708     unsigned Flags = 0;
3709     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3710     ID.ConstantVal = C;
3711     ID.Kind = ValID::t_Constant;
3712     return false;
3713   }
3714   // Binary Operators.
3715   case lltok::kw_add:
3716   case lltok::kw_fadd:
3717   case lltok::kw_sub:
3718   case lltok::kw_fsub:
3719   case lltok::kw_mul:
3720   case lltok::kw_fmul:
3721   case lltok::kw_udiv:
3722   case lltok::kw_sdiv:
3723   case lltok::kw_fdiv:
3724   case lltok::kw_urem:
3725   case lltok::kw_srem:
3726   case lltok::kw_frem:
3727   case lltok::kw_shl:
3728   case lltok::kw_lshr:
3729   case lltok::kw_ashr: {
3730     bool NUW = false;
3731     bool NSW = false;
3732     bool Exact = false;
3733     unsigned Opc = Lex.getUIntVal();
3734     Constant *Val0, *Val1;
3735     Lex.Lex();
3736     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3737         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3738       if (EatIfPresent(lltok::kw_nuw))
3739         NUW = true;
3740       if (EatIfPresent(lltok::kw_nsw)) {
3741         NSW = true;
3742         if (EatIfPresent(lltok::kw_nuw))
3743           NUW = true;
3744       }
3745     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3746                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3747       if (EatIfPresent(lltok::kw_exact))
3748         Exact = true;
3749     }
3750     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3751         parseGlobalTypeAndValue(Val0) ||
3752         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3753         parseGlobalTypeAndValue(Val1) ||
3754         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3755       return true;
3756     if (Val0->getType() != Val1->getType())
3757       return error(ID.Loc, "operands of constexpr must have same type");
3758     // Check that the type is valid for the operator.
3759     switch (Opc) {
3760     case Instruction::Add:
3761     case Instruction::Sub:
3762     case Instruction::Mul:
3763     case Instruction::UDiv:
3764     case Instruction::SDiv:
3765     case Instruction::URem:
3766     case Instruction::SRem:
3767     case Instruction::Shl:
3768     case Instruction::AShr:
3769     case Instruction::LShr:
3770       if (!Val0->getType()->isIntOrIntVectorTy())
3771         return error(ID.Loc, "constexpr requires integer operands");
3772       break;
3773     case Instruction::FAdd:
3774     case Instruction::FSub:
3775     case Instruction::FMul:
3776     case Instruction::FDiv:
3777     case Instruction::FRem:
3778       if (!Val0->getType()->isFPOrFPVectorTy())
3779         return error(ID.Loc, "constexpr requires fp operands");
3780       break;
3781     default: llvm_unreachable("Unknown binary operator!");
3782     }
3783     unsigned Flags = 0;
3784     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3785     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3786     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3787     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3788     ID.ConstantVal = C;
3789     ID.Kind = ValID::t_Constant;
3790     return false;
3791   }
3792 
3793   // Logical Operations
3794   case lltok::kw_and:
3795   case lltok::kw_or:
3796   case lltok::kw_xor: {
3797     unsigned Opc = Lex.getUIntVal();
3798     Constant *Val0, *Val1;
3799     Lex.Lex();
3800     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3801         parseGlobalTypeAndValue(Val0) ||
3802         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3803         parseGlobalTypeAndValue(Val1) ||
3804         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3805       return true;
3806     if (Val0->getType() != Val1->getType())
3807       return error(ID.Loc, "operands of constexpr must have same type");
3808     if (!Val0->getType()->isIntOrIntVectorTy())
3809       return error(ID.Loc,
3810                    "constexpr requires integer or integer vector operands");
3811     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3812     ID.Kind = ValID::t_Constant;
3813     return false;
3814   }
3815 
3816   case lltok::kw_getelementptr:
3817   case lltok::kw_shufflevector:
3818   case lltok::kw_insertelement:
3819   case lltok::kw_extractelement:
3820   case lltok::kw_select: {
3821     unsigned Opc = Lex.getUIntVal();
3822     SmallVector<Constant*, 16> Elts;
3823     bool InBounds = false;
3824     Type *Ty;
3825     Lex.Lex();
3826 
3827     if (Opc == Instruction::GetElementPtr)
3828       InBounds = EatIfPresent(lltok::kw_inbounds);
3829 
3830     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3831       return true;
3832 
3833     LocTy ExplicitTypeLoc = Lex.getLoc();
3834     if (Opc == Instruction::GetElementPtr) {
3835       if (parseType(Ty) ||
3836           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3837         return true;
3838     }
3839 
3840     Optional<unsigned> InRangeOp;
3841     if (parseGlobalValueVector(
3842             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3843         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3844       return true;
3845 
3846     if (Opc == Instruction::GetElementPtr) {
3847       if (Elts.size() == 0 ||
3848           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3849         return error(ID.Loc, "base of getelementptr must be a pointer");
3850 
3851       Type *BaseType = Elts[0]->getType();
3852       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3853       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3854         return error(
3855             ExplicitTypeLoc,
3856             typeComparisonErrorMessage(
3857                 "explicit pointee type doesn't match operand's pointee type",
3858                 Ty, BasePointerType->getElementType()));
3859       }
3860 
3861       unsigned GEPWidth =
3862           BaseType->isVectorTy()
3863               ? cast<FixedVectorType>(BaseType)->getNumElements()
3864               : 0;
3865 
3866       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3867       for (Constant *Val : Indices) {
3868         Type *ValTy = Val->getType();
3869         if (!ValTy->isIntOrIntVectorTy())
3870           return error(ID.Loc, "getelementptr index must be an integer");
3871         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3872           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3873           if (GEPWidth && (ValNumEl != GEPWidth))
3874             return error(
3875                 ID.Loc,
3876                 "getelementptr vector index has a wrong number of elements");
3877           // GEPWidth may have been unknown because the base is a scalar,
3878           // but it is known now.
3879           GEPWidth = ValNumEl;
3880         }
3881       }
3882 
3883       SmallPtrSet<Type*, 4> Visited;
3884       if (!Indices.empty() && !Ty->isSized(&Visited))
3885         return error(ID.Loc, "base element of getelementptr must be sized");
3886 
3887       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3888         return error(ID.Loc, "invalid getelementptr indices");
3889 
3890       if (InRangeOp) {
3891         if (*InRangeOp == 0)
3892           return error(ID.Loc,
3893                        "inrange keyword may not appear on pointer operand");
3894         --*InRangeOp;
3895       }
3896 
3897       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3898                                                       InBounds, InRangeOp);
3899     } else if (Opc == Instruction::Select) {
3900       if (Elts.size() != 3)
3901         return error(ID.Loc, "expected three operands to select");
3902       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3903                                                               Elts[2]))
3904         return error(ID.Loc, Reason);
3905       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3906     } else if (Opc == Instruction::ShuffleVector) {
3907       if (Elts.size() != 3)
3908         return error(ID.Loc, "expected three operands to shufflevector");
3909       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3910         return error(ID.Loc, "invalid operands to shufflevector");
3911       SmallVector<int, 16> Mask;
3912       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3913       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3914     } else if (Opc == Instruction::ExtractElement) {
3915       if (Elts.size() != 2)
3916         return error(ID.Loc, "expected two operands to extractelement");
3917       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3918         return error(ID.Loc, "invalid extractelement operands");
3919       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3920     } else {
3921       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3922       if (Elts.size() != 3)
3923         return error(ID.Loc, "expected three operands to insertelement");
3924       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3925         return error(ID.Loc, "invalid insertelement operands");
3926       ID.ConstantVal =
3927                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3928     }
3929 
3930     ID.Kind = ValID::t_Constant;
3931     return false;
3932   }
3933   }
3934 
3935   Lex.Lex();
3936   return false;
3937 }
3938 
3939 /// parseGlobalValue - parse a global value with the specified type.
3940 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3941   C = nullptr;
3942   ValID ID;
3943   Value *V = nullptr;
3944   bool Parsed = parseValID(ID) ||
3945                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3946   if (V && !(C = dyn_cast<Constant>(V)))
3947     return error(ID.Loc, "global values must be constants");
3948   return Parsed;
3949 }
3950 
3951 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3952   Type *Ty = nullptr;
3953   return parseType(Ty) || parseGlobalValue(Ty, V);
3954 }
3955 
3956 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3957   C = nullptr;
3958 
3959   LocTy KwLoc = Lex.getLoc();
3960   if (!EatIfPresent(lltok::kw_comdat))
3961     return false;
3962 
3963   if (EatIfPresent(lltok::lparen)) {
3964     if (Lex.getKind() != lltok::ComdatVar)
3965       return tokError("expected comdat variable");
3966     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3967     Lex.Lex();
3968     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3969       return true;
3970   } else {
3971     if (GlobalName.empty())
3972       return tokError("comdat cannot be unnamed");
3973     C = getComdat(std::string(GlobalName), KwLoc);
3974   }
3975 
3976   return false;
3977 }
3978 
3979 /// parseGlobalValueVector
3980 ///   ::= /*empty*/
3981 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3982 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3983                                       Optional<unsigned> *InRangeOp) {
3984   // Empty list.
3985   if (Lex.getKind() == lltok::rbrace ||
3986       Lex.getKind() == lltok::rsquare ||
3987       Lex.getKind() == lltok::greater ||
3988       Lex.getKind() == lltok::rparen)
3989     return false;
3990 
3991   do {
3992     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3993       *InRangeOp = Elts.size();
3994 
3995     Constant *C;
3996     if (parseGlobalTypeAndValue(C))
3997       return true;
3998     Elts.push_back(C);
3999   } while (EatIfPresent(lltok::comma));
4000 
4001   return false;
4002 }
4003 
4004 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4005   SmallVector<Metadata *, 16> Elts;
4006   if (parseMDNodeVector(Elts))
4007     return true;
4008 
4009   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4010   return false;
4011 }
4012 
4013 /// MDNode:
4014 ///  ::= !{ ... }
4015 ///  ::= !7
4016 ///  ::= !DILocation(...)
4017 bool LLParser::parseMDNode(MDNode *&N) {
4018   if (Lex.getKind() == lltok::MetadataVar)
4019     return parseSpecializedMDNode(N);
4020 
4021   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4022 }
4023 
4024 bool LLParser::parseMDNodeTail(MDNode *&N) {
4025   // !{ ... }
4026   if (Lex.getKind() == lltok::lbrace)
4027     return parseMDTuple(N);
4028 
4029   // !42
4030   return parseMDNodeID(N);
4031 }
4032 
4033 namespace {
4034 
4035 /// Structure to represent an optional metadata field.
4036 template <class FieldTy> struct MDFieldImpl {
4037   typedef MDFieldImpl ImplTy;
4038   FieldTy Val;
4039   bool Seen;
4040 
4041   void assign(FieldTy Val) {
4042     Seen = true;
4043     this->Val = std::move(Val);
4044   }
4045 
4046   explicit MDFieldImpl(FieldTy Default)
4047       : Val(std::move(Default)), Seen(false) {}
4048 };
4049 
4050 /// Structure to represent an optional metadata field that
4051 /// can be of either type (A or B) and encapsulates the
4052 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4053 /// to reimplement the specifics for representing each Field.
4054 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4055   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4056   FieldTypeA A;
4057   FieldTypeB B;
4058   bool Seen;
4059 
4060   enum {
4061     IsInvalid = 0,
4062     IsTypeA = 1,
4063     IsTypeB = 2
4064   } WhatIs;
4065 
4066   void assign(FieldTypeA A) {
4067     Seen = true;
4068     this->A = std::move(A);
4069     WhatIs = IsTypeA;
4070   }
4071 
4072   void assign(FieldTypeB B) {
4073     Seen = true;
4074     this->B = std::move(B);
4075     WhatIs = IsTypeB;
4076   }
4077 
4078   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4079       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4080         WhatIs(IsInvalid) {}
4081 };
4082 
4083 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4084   uint64_t Max;
4085 
4086   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4087       : ImplTy(Default), Max(Max) {}
4088 };
4089 
4090 struct LineField : public MDUnsignedField {
4091   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4092 };
4093 
4094 struct ColumnField : public MDUnsignedField {
4095   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4096 };
4097 
4098 struct DwarfTagField : public MDUnsignedField {
4099   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4100   DwarfTagField(dwarf::Tag DefaultTag)
4101       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4102 };
4103 
4104 struct DwarfMacinfoTypeField : public MDUnsignedField {
4105   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4106   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4107     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4108 };
4109 
4110 struct DwarfAttEncodingField : public MDUnsignedField {
4111   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4112 };
4113 
4114 struct DwarfVirtualityField : public MDUnsignedField {
4115   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4116 };
4117 
4118 struct DwarfLangField : public MDUnsignedField {
4119   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4120 };
4121 
4122 struct DwarfCCField : public MDUnsignedField {
4123   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4124 };
4125 
4126 struct EmissionKindField : public MDUnsignedField {
4127   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4128 };
4129 
4130 struct NameTableKindField : public MDUnsignedField {
4131   NameTableKindField()
4132       : MDUnsignedField(
4133             0, (unsigned)
4134                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4135 };
4136 
4137 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4138   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4139 };
4140 
4141 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4142   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4143 };
4144 
4145 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4146   MDAPSIntField() : ImplTy(APSInt()) {}
4147 };
4148 
4149 struct MDSignedField : public MDFieldImpl<int64_t> {
4150   int64_t Min;
4151   int64_t Max;
4152 
4153   MDSignedField(int64_t Default = 0)
4154       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4155   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4156       : ImplTy(Default), Min(Min), Max(Max) {}
4157 };
4158 
4159 struct MDBoolField : public MDFieldImpl<bool> {
4160   MDBoolField(bool Default = false) : ImplTy(Default) {}
4161 };
4162 
4163 struct MDField : public MDFieldImpl<Metadata *> {
4164   bool AllowNull;
4165 
4166   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4167 };
4168 
4169 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4170   MDConstant() : ImplTy(nullptr) {}
4171 };
4172 
4173 struct MDStringField : public MDFieldImpl<MDString *> {
4174   bool AllowEmpty;
4175   MDStringField(bool AllowEmpty = true)
4176       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4177 };
4178 
4179 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4180   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4181 };
4182 
4183 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4184   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4185 };
4186 
4187 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4188   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4189       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4190 
4191   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4192                     bool AllowNull = true)
4193       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4194 
4195   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4196   bool isMDField() const { return WhatIs == IsTypeB; }
4197   int64_t getMDSignedValue() const {
4198     assert(isMDSignedField() && "Wrong field type");
4199     return A.Val;
4200   }
4201   Metadata *getMDFieldValue() const {
4202     assert(isMDField() && "Wrong field type");
4203     return B.Val;
4204   }
4205 };
4206 
4207 struct MDSignedOrUnsignedField
4208     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4209   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4210 
4211   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4212   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4213   int64_t getMDSignedValue() const {
4214     assert(isMDSignedField() && "Wrong field type");
4215     return A.Val;
4216   }
4217   uint64_t getMDUnsignedValue() const {
4218     assert(isMDUnsignedField() && "Wrong field type");
4219     return B.Val;
4220   }
4221 };
4222 
4223 } // end anonymous namespace
4224 
4225 namespace llvm {
4226 
4227 template <>
4228 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4229   if (Lex.getKind() != lltok::APSInt)
4230     return tokError("expected integer");
4231 
4232   Result.assign(Lex.getAPSIntVal());
4233   Lex.Lex();
4234   return false;
4235 }
4236 
4237 template <>
4238 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4239                             MDUnsignedField &Result) {
4240   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4241     return tokError("expected unsigned integer");
4242 
4243   auto &U = Lex.getAPSIntVal();
4244   if (U.ugt(Result.Max))
4245     return tokError("value for '" + Name + "' too large, limit is " +
4246                     Twine(Result.Max));
4247   Result.assign(U.getZExtValue());
4248   assert(Result.Val <= Result.Max && "Expected value in range");
4249   Lex.Lex();
4250   return false;
4251 }
4252 
4253 template <>
4254 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4255   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4256 }
4257 template <>
4258 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4259   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4260 }
4261 
4262 template <>
4263 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4264   if (Lex.getKind() == lltok::APSInt)
4265     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4266 
4267   if (Lex.getKind() != lltok::DwarfTag)
4268     return tokError("expected DWARF tag");
4269 
4270   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4271   if (Tag == dwarf::DW_TAG_invalid)
4272     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4273   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4274 
4275   Result.assign(Tag);
4276   Lex.Lex();
4277   return false;
4278 }
4279 
4280 template <>
4281 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4282                             DwarfMacinfoTypeField &Result) {
4283   if (Lex.getKind() == lltok::APSInt)
4284     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4285 
4286   if (Lex.getKind() != lltok::DwarfMacinfo)
4287     return tokError("expected DWARF macinfo type");
4288 
4289   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4290   if (Macinfo == dwarf::DW_MACINFO_invalid)
4291     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4292                     Lex.getStrVal() + "'");
4293   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4294 
4295   Result.assign(Macinfo);
4296   Lex.Lex();
4297   return false;
4298 }
4299 
4300 template <>
4301 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4302                             DwarfVirtualityField &Result) {
4303   if (Lex.getKind() == lltok::APSInt)
4304     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4305 
4306   if (Lex.getKind() != lltok::DwarfVirtuality)
4307     return tokError("expected DWARF virtuality code");
4308 
4309   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4310   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4311     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4312                     Lex.getStrVal() + "'");
4313   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4314   Result.assign(Virtuality);
4315   Lex.Lex();
4316   return false;
4317 }
4318 
4319 template <>
4320 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4321   if (Lex.getKind() == lltok::APSInt)
4322     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4323 
4324   if (Lex.getKind() != lltok::DwarfLang)
4325     return tokError("expected DWARF language");
4326 
4327   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4328   if (!Lang)
4329     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4330                     "'");
4331   assert(Lang <= Result.Max && "Expected valid DWARF language");
4332   Result.assign(Lang);
4333   Lex.Lex();
4334   return false;
4335 }
4336 
4337 template <>
4338 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4339   if (Lex.getKind() == lltok::APSInt)
4340     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4341 
4342   if (Lex.getKind() != lltok::DwarfCC)
4343     return tokError("expected DWARF calling convention");
4344 
4345   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4346   if (!CC)
4347     return tokError("invalid DWARF calling convention" + Twine(" '") +
4348                     Lex.getStrVal() + "'");
4349   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4350   Result.assign(CC);
4351   Lex.Lex();
4352   return false;
4353 }
4354 
4355 template <>
4356 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4357                             EmissionKindField &Result) {
4358   if (Lex.getKind() == lltok::APSInt)
4359     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4360 
4361   if (Lex.getKind() != lltok::EmissionKind)
4362     return tokError("expected emission kind");
4363 
4364   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4365   if (!Kind)
4366     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4367                     "'");
4368   assert(*Kind <= Result.Max && "Expected valid emission kind");
4369   Result.assign(*Kind);
4370   Lex.Lex();
4371   return false;
4372 }
4373 
4374 template <>
4375 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4376                             NameTableKindField &Result) {
4377   if (Lex.getKind() == lltok::APSInt)
4378     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4379 
4380   if (Lex.getKind() != lltok::NameTableKind)
4381     return tokError("expected nameTable kind");
4382 
4383   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4384   if (!Kind)
4385     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4386                     "'");
4387   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4388   Result.assign((unsigned)*Kind);
4389   Lex.Lex();
4390   return false;
4391 }
4392 
4393 template <>
4394 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4395                             DwarfAttEncodingField &Result) {
4396   if (Lex.getKind() == lltok::APSInt)
4397     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4398 
4399   if (Lex.getKind() != lltok::DwarfAttEncoding)
4400     return tokError("expected DWARF type attribute encoding");
4401 
4402   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4403   if (!Encoding)
4404     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4405                     Lex.getStrVal() + "'");
4406   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4407   Result.assign(Encoding);
4408   Lex.Lex();
4409   return false;
4410 }
4411 
4412 /// DIFlagField
4413 ///  ::= uint32
4414 ///  ::= DIFlagVector
4415 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4416 template <>
4417 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4418 
4419   // parser for a single flag.
4420   auto parseFlag = [&](DINode::DIFlags &Val) {
4421     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4422       uint32_t TempVal = static_cast<uint32_t>(Val);
4423       bool Res = parseUInt32(TempVal);
4424       Val = static_cast<DINode::DIFlags>(TempVal);
4425       return Res;
4426     }
4427 
4428     if (Lex.getKind() != lltok::DIFlag)
4429       return tokError("expected debug info flag");
4430 
4431     Val = DINode::getFlag(Lex.getStrVal());
4432     if (!Val)
4433       return tokError(Twine("invalid debug info flag flag '") +
4434                       Lex.getStrVal() + "'");
4435     Lex.Lex();
4436     return false;
4437   };
4438 
4439   // parse the flags and combine them together.
4440   DINode::DIFlags Combined = DINode::FlagZero;
4441   do {
4442     DINode::DIFlags Val;
4443     if (parseFlag(Val))
4444       return true;
4445     Combined |= Val;
4446   } while (EatIfPresent(lltok::bar));
4447 
4448   Result.assign(Combined);
4449   return false;
4450 }
4451 
4452 /// DISPFlagField
4453 ///  ::= uint32
4454 ///  ::= DISPFlagVector
4455 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4456 template <>
4457 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4458 
4459   // parser for a single flag.
4460   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4461     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4462       uint32_t TempVal = static_cast<uint32_t>(Val);
4463       bool Res = parseUInt32(TempVal);
4464       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4465       return Res;
4466     }
4467 
4468     if (Lex.getKind() != lltok::DISPFlag)
4469       return tokError("expected debug info flag");
4470 
4471     Val = DISubprogram::getFlag(Lex.getStrVal());
4472     if (!Val)
4473       return tokError(Twine("invalid subprogram debug info flag '") +
4474                       Lex.getStrVal() + "'");
4475     Lex.Lex();
4476     return false;
4477   };
4478 
4479   // parse the flags and combine them together.
4480   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4481   do {
4482     DISubprogram::DISPFlags Val;
4483     if (parseFlag(Val))
4484       return true;
4485     Combined |= Val;
4486   } while (EatIfPresent(lltok::bar));
4487 
4488   Result.assign(Combined);
4489   return false;
4490 }
4491 
4492 template <>
4493 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4494   if (Lex.getKind() != lltok::APSInt)
4495     return tokError("expected signed integer");
4496 
4497   auto &S = Lex.getAPSIntVal();
4498   if (S < Result.Min)
4499     return tokError("value for '" + Name + "' too small, limit is " +
4500                     Twine(Result.Min));
4501   if (S > Result.Max)
4502     return tokError("value for '" + Name + "' too large, limit is " +
4503                     Twine(Result.Max));
4504   Result.assign(S.getExtValue());
4505   assert(Result.Val >= Result.Min && "Expected value in range");
4506   assert(Result.Val <= Result.Max && "Expected value in range");
4507   Lex.Lex();
4508   return false;
4509 }
4510 
4511 template <>
4512 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4513   switch (Lex.getKind()) {
4514   default:
4515     return tokError("expected 'true' or 'false'");
4516   case lltok::kw_true:
4517     Result.assign(true);
4518     break;
4519   case lltok::kw_false:
4520     Result.assign(false);
4521     break;
4522   }
4523   Lex.Lex();
4524   return false;
4525 }
4526 
4527 template <>
4528 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4529   if (Lex.getKind() == lltok::kw_null) {
4530     if (!Result.AllowNull)
4531       return tokError("'" + Name + "' cannot be null");
4532     Lex.Lex();
4533     Result.assign(nullptr);
4534     return false;
4535   }
4536 
4537   Metadata *MD;
4538   if (parseMetadata(MD, nullptr))
4539     return true;
4540 
4541   Result.assign(MD);
4542   return false;
4543 }
4544 
4545 template <>
4546 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4547                             MDSignedOrMDField &Result) {
4548   // Try to parse a signed int.
4549   if (Lex.getKind() == lltok::APSInt) {
4550     MDSignedField Res = Result.A;
4551     if (!parseMDField(Loc, Name, Res)) {
4552       Result.assign(Res);
4553       return false;
4554     }
4555     return true;
4556   }
4557 
4558   // Otherwise, try to parse as an MDField.
4559   MDField Res = Result.B;
4560   if (!parseMDField(Loc, Name, Res)) {
4561     Result.assign(Res);
4562     return false;
4563   }
4564 
4565   return true;
4566 }
4567 
4568 template <>
4569 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4570   LocTy ValueLoc = Lex.getLoc();
4571   std::string S;
4572   if (parseStringConstant(S))
4573     return true;
4574 
4575   if (!Result.AllowEmpty && S.empty())
4576     return error(ValueLoc, "'" + Name + "' cannot be empty");
4577 
4578   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4579   return false;
4580 }
4581 
4582 template <>
4583 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4584   SmallVector<Metadata *, 4> MDs;
4585   if (parseMDNodeVector(MDs))
4586     return true;
4587 
4588   Result.assign(std::move(MDs));
4589   return false;
4590 }
4591 
4592 template <>
4593 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4594                             ChecksumKindField &Result) {
4595   Optional<DIFile::ChecksumKind> CSKind =
4596       DIFile::getChecksumKind(Lex.getStrVal());
4597 
4598   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4599     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4600                     "'");
4601 
4602   Result.assign(*CSKind);
4603   Lex.Lex();
4604   return false;
4605 }
4606 
4607 } // end namespace llvm
4608 
4609 template <class ParserTy>
4610 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4611   do {
4612     if (Lex.getKind() != lltok::LabelStr)
4613       return tokError("expected field label here");
4614 
4615     if (ParseField())
4616       return true;
4617   } while (EatIfPresent(lltok::comma));
4618 
4619   return false;
4620 }
4621 
4622 template <class ParserTy>
4623 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4624   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4625   Lex.Lex();
4626 
4627   if (parseToken(lltok::lparen, "expected '(' here"))
4628     return true;
4629   if (Lex.getKind() != lltok::rparen)
4630     if (parseMDFieldsImplBody(ParseField))
4631       return true;
4632 
4633   ClosingLoc = Lex.getLoc();
4634   return parseToken(lltok::rparen, "expected ')' here");
4635 }
4636 
4637 template <class FieldTy>
4638 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4639   if (Result.Seen)
4640     return tokError("field '" + Name + "' cannot be specified more than once");
4641 
4642   LocTy Loc = Lex.getLoc();
4643   Lex.Lex();
4644   return parseMDField(Loc, Name, Result);
4645 }
4646 
4647 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct,
4648                                       LocTy DistinctLoc) {
4649   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4650 
4651 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUABLE(CLASS)                        \
4652   if (Lex.getStrVal() == #CLASS)                                               \
4653     return parse##CLASS(N, IsDistinct);
4654 #define HANDLE_SPECIALIZED_MDNODE_LEAF_UNIQUED(CLASS)                          \
4655   if (Lex.getStrVal() == #CLASS) {                                             \
4656     if (IsDistinct)                                                            \
4657       return error(DistinctLoc, "'distinct' not allowed for !" #CLASS);        \
4658     return parse##CLASS(N, IsDistinct);                                        \
4659   }
4660 #define HANDLE_SPECIALIZED_MDNODE_LEAF_DISTINCT(CLASS)                         \
4661   if (Lex.getStrVal() == #CLASS) {                                             \
4662     if (!IsDistinct)                                                           \
4663       return error(DistinctLoc, "missing 'distinct', required for !" #CLASS);  \
4664     return parse##CLASS(N, IsDistinct);                                        \
4665   }
4666 #include "llvm/IR/Metadata.def"
4667 
4668   return tokError("expected metadata type");
4669 }
4670 
4671 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4672 #define NOP_FIELD(NAME, TYPE, INIT)
4673 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4674   if (!NAME.Seen)                                                              \
4675     return error(ClosingLoc, "missing required field '" #NAME "'");
4676 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4677   if (Lex.getStrVal() == #NAME)                                                \
4678     return parseMDField(#NAME, NAME);
4679 #define PARSE_MD_FIELDS()                                                      \
4680   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4681   do {                                                                         \
4682     LocTy ClosingLoc;                                                          \
4683     if (parseMDFieldsImpl(                                                     \
4684             [&]() -> bool {                                                    \
4685               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4686               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4687                               "'");                                            \
4688             },                                                                 \
4689             ClosingLoc))                                                       \
4690       return true;                                                             \
4691     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4692   } while (false)
4693 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4694   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4695 
4696 /// parseDILocationFields:
4697 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4698 ///   isImplicitCode: true)
4699 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4700 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4701   OPTIONAL(line, LineField, );                                                 \
4702   OPTIONAL(column, ColumnField, );                                             \
4703   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4704   OPTIONAL(inlinedAt, MDField, );                                              \
4705   OPTIONAL(isImplicitCode, MDBoolField, (false));
4706   PARSE_MD_FIELDS();
4707 #undef VISIT_MD_FIELDS
4708 
4709   Result =
4710       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4711                                    inlinedAt.Val, isImplicitCode.Val));
4712   return false;
4713 }
4714 
4715 /// parseGenericDINode:
4716 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4717 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4719   REQUIRED(tag, DwarfTagField, );                                              \
4720   OPTIONAL(header, MDStringField, );                                           \
4721   OPTIONAL(operands, MDFieldList, );
4722   PARSE_MD_FIELDS();
4723 #undef VISIT_MD_FIELDS
4724 
4725   Result = GET_OR_DISTINCT(GenericDINode,
4726                            (Context, tag.Val, header.Val, operands.Val));
4727   return false;
4728 }
4729 
4730 /// parseDISubrange:
4731 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4732 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4733 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4734 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4736   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4737   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4738   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4739   OPTIONAL(stride, MDSignedOrMDField, );
4740   PARSE_MD_FIELDS();
4741 #undef VISIT_MD_FIELDS
4742 
4743   Metadata *Count = nullptr;
4744   Metadata *LowerBound = nullptr;
4745   Metadata *UpperBound = nullptr;
4746   Metadata *Stride = nullptr;
4747 
4748   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4749     if (Bound.isMDSignedField())
4750       return ConstantAsMetadata::get(ConstantInt::getSigned(
4751           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4752     if (Bound.isMDField())
4753       return Bound.getMDFieldValue();
4754     return nullptr;
4755   };
4756 
4757   Count = convToMetadata(count);
4758   LowerBound = convToMetadata(lowerBound);
4759   UpperBound = convToMetadata(upperBound);
4760   Stride = convToMetadata(stride);
4761 
4762   Result = GET_OR_DISTINCT(DISubrange,
4763                            (Context, Count, LowerBound, UpperBound, Stride));
4764 
4765   return false;
4766 }
4767 
4768 /// parseDIGenericSubrange:
4769 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4770 ///   !node3)
4771 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4772 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4773   OPTIONAL(count, MDSignedOrMDField, );                                        \
4774   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4775   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4776   OPTIONAL(stride, MDSignedOrMDField, );
4777   PARSE_MD_FIELDS();
4778 #undef VISIT_MD_FIELDS
4779 
4780   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4781     if (Bound.isMDSignedField())
4782       return DIExpression::get(
4783           Context, {dwarf::DW_OP_consts,
4784                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4785     if (Bound.isMDField())
4786       return Bound.getMDFieldValue();
4787     return nullptr;
4788   };
4789 
4790   Metadata *Count = ConvToMetadata(count);
4791   Metadata *LowerBound = ConvToMetadata(lowerBound);
4792   Metadata *UpperBound = ConvToMetadata(upperBound);
4793   Metadata *Stride = ConvToMetadata(stride);
4794 
4795   Result = GET_OR_DISTINCT(DIGenericSubrange,
4796                            (Context, Count, LowerBound, UpperBound, Stride));
4797 
4798   return false;
4799 }
4800 
4801 /// parseDIEnumerator:
4802 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4803 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4805   REQUIRED(name, MDStringField, );                                             \
4806   REQUIRED(value, MDAPSIntField, );                                            \
4807   OPTIONAL(isUnsigned, MDBoolField, (false));
4808   PARSE_MD_FIELDS();
4809 #undef VISIT_MD_FIELDS
4810 
4811   if (isUnsigned.Val && value.Val.isNegative())
4812     return tokError("unsigned enumerator with negative value");
4813 
4814   APSInt Value(value.Val);
4815   // Add a leading zero so that unsigned values with the msb set are not
4816   // mistaken for negative values when used for signed enumerators.
4817   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4818     Value = Value.zext(Value.getBitWidth() + 1);
4819 
4820   Result =
4821       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4822 
4823   return false;
4824 }
4825 
4826 /// parseDIBasicType:
4827 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4828 ///                    encoding: DW_ATE_encoding, flags: 0)
4829 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4831   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4832   OPTIONAL(name, MDStringField, );                                             \
4833   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4834   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4835   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4836   OPTIONAL(flags, DIFlagField, );
4837   PARSE_MD_FIELDS();
4838 #undef VISIT_MD_FIELDS
4839 
4840   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4841                                          align.Val, encoding.Val, flags.Val));
4842   return false;
4843 }
4844 
4845 /// parseDIStringType:
4846 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4847 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4849   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4850   OPTIONAL(name, MDStringField, );                                             \
4851   OPTIONAL(stringLength, MDField, );                                           \
4852   OPTIONAL(stringLengthExpression, MDField, );                                 \
4853   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4854   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4855   OPTIONAL(encoding, DwarfAttEncodingField, );
4856   PARSE_MD_FIELDS();
4857 #undef VISIT_MD_FIELDS
4858 
4859   Result = GET_OR_DISTINCT(DIStringType,
4860                            (Context, tag.Val, name.Val, stringLength.Val,
4861                             stringLengthExpression.Val, size.Val, align.Val,
4862                             encoding.Val));
4863   return false;
4864 }
4865 
4866 /// parseDIDerivedType:
4867 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4868 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4869 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4870 ///                      dwarfAddressSpace: 3)
4871 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4872 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4873   REQUIRED(tag, DwarfTagField, );                                              \
4874   OPTIONAL(name, MDStringField, );                                             \
4875   OPTIONAL(file, MDField, );                                                   \
4876   OPTIONAL(line, LineField, );                                                 \
4877   OPTIONAL(scope, MDField, );                                                  \
4878   REQUIRED(baseType, MDField, );                                               \
4879   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4880   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4881   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4882   OPTIONAL(flags, DIFlagField, );                                              \
4883   OPTIONAL(extraData, MDField, );                                              \
4884   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4885   PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4887 
4888   Optional<unsigned> DWARFAddressSpace;
4889   if (dwarfAddressSpace.Val != UINT32_MAX)
4890     DWARFAddressSpace = dwarfAddressSpace.Val;
4891 
4892   Result = GET_OR_DISTINCT(DIDerivedType,
4893                            (Context, tag.Val, name.Val, file.Val, line.Val,
4894                             scope.Val, baseType.Val, size.Val, align.Val,
4895                             offset.Val, DWARFAddressSpace, flags.Val,
4896                             extraData.Val));
4897   return false;
4898 }
4899 
4900 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4902   REQUIRED(tag, DwarfTagField, );                                              \
4903   OPTIONAL(name, MDStringField, );                                             \
4904   OPTIONAL(file, MDField, );                                                   \
4905   OPTIONAL(line, LineField, );                                                 \
4906   OPTIONAL(scope, MDField, );                                                  \
4907   OPTIONAL(baseType, MDField, );                                               \
4908   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4909   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4910   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4911   OPTIONAL(flags, DIFlagField, );                                              \
4912   OPTIONAL(elements, MDField, );                                               \
4913   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4914   OPTIONAL(vtableHolder, MDField, );                                           \
4915   OPTIONAL(templateParams, MDField, );                                         \
4916   OPTIONAL(identifier, MDStringField, );                                       \
4917   OPTIONAL(discriminator, MDField, );                                          \
4918   OPTIONAL(dataLocation, MDField, );                                           \
4919   OPTIONAL(associated, MDField, );                                             \
4920   OPTIONAL(allocated, MDField, );                                              \
4921   OPTIONAL(rank, MDSignedOrMDField, );
4922   PARSE_MD_FIELDS();
4923 #undef VISIT_MD_FIELDS
4924 
4925   Metadata *Rank = nullptr;
4926   if (rank.isMDSignedField())
4927     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4928         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4929   else if (rank.isMDField())
4930     Rank = rank.getMDFieldValue();
4931 
4932   // If this has an identifier try to build an ODR type.
4933   if (identifier.Val)
4934     if (auto *CT = DICompositeType::buildODRType(
4935             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4936             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4937             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4938             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4939             Rank)) {
4940       Result = CT;
4941       return false;
4942     }
4943 
4944   // Create a new node, and save it in the context if it belongs in the type
4945   // map.
4946   Result = GET_OR_DISTINCT(
4947       DICompositeType,
4948       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4949        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4950        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4951        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4952        Rank));
4953   return false;
4954 }
4955 
4956 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4957 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4958   OPTIONAL(flags, DIFlagField, );                                              \
4959   OPTIONAL(cc, DwarfCCField, );                                                \
4960   REQUIRED(types, MDField, );
4961   PARSE_MD_FIELDS();
4962 #undef VISIT_MD_FIELDS
4963 
4964   Result = GET_OR_DISTINCT(DISubroutineType,
4965                            (Context, flags.Val, cc.Val, types.Val));
4966   return false;
4967 }
4968 
4969 /// parseDIFileType:
4970 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4971 ///                   checksumkind: CSK_MD5,
4972 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4973 ///                   source: "source file contents")
4974 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4975   // The default constructed value for checksumkind is required, but will never
4976   // be used, as the parser checks if the field was actually Seen before using
4977   // the Val.
4978 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4979   REQUIRED(filename, MDStringField, );                                         \
4980   REQUIRED(directory, MDStringField, );                                        \
4981   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4982   OPTIONAL(checksum, MDStringField, );                                         \
4983   OPTIONAL(source, MDStringField, );
4984   PARSE_MD_FIELDS();
4985 #undef VISIT_MD_FIELDS
4986 
4987   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4988   if (checksumkind.Seen && checksum.Seen)
4989     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4990   else if (checksumkind.Seen || checksum.Seen)
4991     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4992 
4993   Optional<MDString *> OptSource;
4994   if (source.Seen)
4995     OptSource = source.Val;
4996   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4997                                     OptChecksum, OptSource));
4998   return false;
4999 }
5000 
5001 /// parseDICompileUnit:
5002 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5003 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5004 ///                      splitDebugFilename: "abc.debug",
5005 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5006 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5007 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5008 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5009 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5010   REQUIRED(language, DwarfLangField, );                                        \
5011   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5012   OPTIONAL(producer, MDStringField, );                                         \
5013   OPTIONAL(isOptimized, MDBoolField, );                                        \
5014   OPTIONAL(flags, MDStringField, );                                            \
5015   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5016   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5017   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5018   OPTIONAL(enums, MDField, );                                                  \
5019   OPTIONAL(retainedTypes, MDField, );                                          \
5020   OPTIONAL(globals, MDField, );                                                \
5021   OPTIONAL(imports, MDField, );                                                \
5022   OPTIONAL(macros, MDField, );                                                 \
5023   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5024   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5025   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5026   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5027   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5028   OPTIONAL(sysroot, MDStringField, );                                          \
5029   OPTIONAL(sdk, MDStringField, );
5030   PARSE_MD_FIELDS();
5031 #undef VISIT_MD_FIELDS
5032 
5033   Result = DICompileUnit::getDistinct(
5034       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5035       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5036       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5037       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5038       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5039   return false;
5040 }
5041 
5042 /// parseDISubprogram:
5043 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5044 ///                     file: !1, line: 7, type: !2, isLocal: false,
5045 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5046 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5047 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5048 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5049 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5050 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5051   auto Loc = Lex.getLoc();
5052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5053   OPTIONAL(scope, MDField, );                                                  \
5054   OPTIONAL(name, MDStringField, );                                             \
5055   OPTIONAL(linkageName, MDStringField, );                                      \
5056   OPTIONAL(file, MDField, );                                                   \
5057   OPTIONAL(line, LineField, );                                                 \
5058   OPTIONAL(type, MDField, );                                                   \
5059   OPTIONAL(isLocal, MDBoolField, );                                            \
5060   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5061   OPTIONAL(scopeLine, LineField, );                                            \
5062   OPTIONAL(containingType, MDField, );                                         \
5063   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5064   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5065   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5066   OPTIONAL(flags, DIFlagField, );                                              \
5067   OPTIONAL(spFlags, DISPFlagField, );                                          \
5068   OPTIONAL(isOptimized, MDBoolField, );                                        \
5069   OPTIONAL(unit, MDField, );                                                   \
5070   OPTIONAL(templateParams, MDField, );                                         \
5071   OPTIONAL(declaration, MDField, );                                            \
5072   OPTIONAL(retainedNodes, MDField, );                                          \
5073   OPTIONAL(thrownTypes, MDField, );
5074   PARSE_MD_FIELDS();
5075 #undef VISIT_MD_FIELDS
5076 
5077   // An explicit spFlags field takes precedence over individual fields in
5078   // older IR versions.
5079   DISubprogram::DISPFlags SPFlags =
5080       spFlags.Seen ? spFlags.Val
5081                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5082                                              isOptimized.Val, virtuality.Val);
5083   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5084     return Lex.Error(
5085         Loc,
5086         "missing 'distinct', required for !DISubprogram that is a Definition");
5087   Result = GET_OR_DISTINCT(
5088       DISubprogram,
5089       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5090        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5091        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5092        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5093   return false;
5094 }
5095 
5096 /// parseDILexicalBlock:
5097 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5098 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5099 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5100   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5101   OPTIONAL(file, MDField, );                                                   \
5102   OPTIONAL(line, LineField, );                                                 \
5103   OPTIONAL(column, ColumnField, );
5104   PARSE_MD_FIELDS();
5105 #undef VISIT_MD_FIELDS
5106 
5107   Result = GET_OR_DISTINCT(
5108       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5109   return false;
5110 }
5111 
5112 /// parseDILexicalBlockFile:
5113 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5114 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5116   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5117   OPTIONAL(file, MDField, );                                                   \
5118   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5119   PARSE_MD_FIELDS();
5120 #undef VISIT_MD_FIELDS
5121 
5122   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5123                            (Context, scope.Val, file.Val, discriminator.Val));
5124   return false;
5125 }
5126 
5127 /// parseDICommonBlock:
5128 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5129 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5130 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5131   REQUIRED(scope, MDField, );                                                  \
5132   OPTIONAL(declaration, MDField, );                                            \
5133   OPTIONAL(name, MDStringField, );                                             \
5134   OPTIONAL(file, MDField, );                                                   \
5135   OPTIONAL(line, LineField, );
5136   PARSE_MD_FIELDS();
5137 #undef VISIT_MD_FIELDS
5138 
5139   Result = GET_OR_DISTINCT(DICommonBlock,
5140                            (Context, scope.Val, declaration.Val, name.Val,
5141                             file.Val, line.Val));
5142   return false;
5143 }
5144 
5145 /// parseDINamespace:
5146 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5147 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5148 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5149   REQUIRED(scope, MDField, );                                                  \
5150   OPTIONAL(name, MDStringField, );                                             \
5151   OPTIONAL(exportSymbols, MDBoolField, );
5152   PARSE_MD_FIELDS();
5153 #undef VISIT_MD_FIELDS
5154 
5155   Result = GET_OR_DISTINCT(DINamespace,
5156                            (Context, scope.Val, name.Val, exportSymbols.Val));
5157   return false;
5158 }
5159 
5160 /// parseDIMacro:
5161 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5162 ///   "SomeValue")
5163 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5164 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5165   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5166   OPTIONAL(line, LineField, );                                                 \
5167   REQUIRED(name, MDStringField, );                                             \
5168   OPTIONAL(value, MDStringField, );
5169   PARSE_MD_FIELDS();
5170 #undef VISIT_MD_FIELDS
5171 
5172   Result = GET_OR_DISTINCT(DIMacro,
5173                            (Context, type.Val, line.Val, name.Val, value.Val));
5174   return false;
5175 }
5176 
5177 /// parseDIMacroFile:
5178 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5179 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5180 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5181   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5182   OPTIONAL(line, LineField, );                                                 \
5183   REQUIRED(file, MDField, );                                                   \
5184   OPTIONAL(nodes, MDField, );
5185   PARSE_MD_FIELDS();
5186 #undef VISIT_MD_FIELDS
5187 
5188   Result = GET_OR_DISTINCT(DIMacroFile,
5189                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5190   return false;
5191 }
5192 
5193 /// parseDIModule:
5194 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5195 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5196 ///   file: !1, line: 4, isDecl: false)
5197 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5198 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5199   REQUIRED(scope, MDField, );                                                  \
5200   REQUIRED(name, MDStringField, );                                             \
5201   OPTIONAL(configMacros, MDStringField, );                                     \
5202   OPTIONAL(includePath, MDStringField, );                                      \
5203   OPTIONAL(apinotes, MDStringField, );                                         \
5204   OPTIONAL(file, MDField, );                                                   \
5205   OPTIONAL(line, LineField, );                                                 \
5206   OPTIONAL(isDecl, MDBoolField, );
5207   PARSE_MD_FIELDS();
5208 #undef VISIT_MD_FIELDS
5209 
5210   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5211                                       configMacros.Val, includePath.Val,
5212                                       apinotes.Val, line.Val, isDecl.Val));
5213   return false;
5214 }
5215 
5216 /// parseDITemplateTypeParameter:
5217 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5218 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5219 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5220   OPTIONAL(name, MDStringField, );                                             \
5221   REQUIRED(type, MDField, );                                                   \
5222   OPTIONAL(defaulted, MDBoolField, );
5223   PARSE_MD_FIELDS();
5224 #undef VISIT_MD_FIELDS
5225 
5226   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5227                            (Context, name.Val, type.Val, defaulted.Val));
5228   return false;
5229 }
5230 
5231 /// parseDITemplateValueParameter:
5232 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5233 ///                                 name: "V", type: !1, defaulted: false,
5234 ///                                 value: i32 7)
5235 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5236 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5237   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5238   OPTIONAL(name, MDStringField, );                                             \
5239   OPTIONAL(type, MDField, );                                                   \
5240   OPTIONAL(defaulted, MDBoolField, );                                          \
5241   REQUIRED(value, MDField, );
5242 
5243   PARSE_MD_FIELDS();
5244 #undef VISIT_MD_FIELDS
5245 
5246   Result = GET_OR_DISTINCT(
5247       DITemplateValueParameter,
5248       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5249   return false;
5250 }
5251 
5252 /// parseDIGlobalVariable:
5253 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5254 ///                         file: !1, line: 7, type: !2, isLocal: false,
5255 ///                         isDefinition: true, templateParams: !3,
5256 ///                         declaration: !4, align: 8)
5257 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5258 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5259   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5260   OPTIONAL(scope, MDField, );                                                  \
5261   OPTIONAL(linkageName, MDStringField, );                                      \
5262   OPTIONAL(file, MDField, );                                                   \
5263   OPTIONAL(line, LineField, );                                                 \
5264   OPTIONAL(type, MDField, );                                                   \
5265   OPTIONAL(isLocal, MDBoolField, );                                            \
5266   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5267   OPTIONAL(templateParams, MDField, );                                         \
5268   OPTIONAL(declaration, MDField, );                                            \
5269   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5270   PARSE_MD_FIELDS();
5271 #undef VISIT_MD_FIELDS
5272 
5273   Result =
5274       GET_OR_DISTINCT(DIGlobalVariable,
5275                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5276                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5277                        declaration.Val, templateParams.Val, align.Val));
5278   return false;
5279 }
5280 
5281 /// parseDILocalVariable:
5282 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5283 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5284 ///                        align: 8)
5285 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5286 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5287 ///                        align: 8)
5288 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5289 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5290   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5291   OPTIONAL(name, MDStringField, );                                             \
5292   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5293   OPTIONAL(file, MDField, );                                                   \
5294   OPTIONAL(line, LineField, );                                                 \
5295   OPTIONAL(type, MDField, );                                                   \
5296   OPTIONAL(flags, DIFlagField, );                                              \
5297   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5298   PARSE_MD_FIELDS();
5299 #undef VISIT_MD_FIELDS
5300 
5301   Result = GET_OR_DISTINCT(DILocalVariable,
5302                            (Context, scope.Val, name.Val, file.Val, line.Val,
5303                             type.Val, arg.Val, flags.Val, align.Val));
5304   return false;
5305 }
5306 
5307 /// parseDILabel:
5308 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5309 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5310 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5311   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5312   REQUIRED(name, MDStringField, );                                             \
5313   REQUIRED(file, MDField, );                                                   \
5314   REQUIRED(line, LineField, );
5315   PARSE_MD_FIELDS();
5316 #undef VISIT_MD_FIELDS
5317 
5318   Result = GET_OR_DISTINCT(DILabel,
5319                            (Context, scope.Val, name.Val, file.Val, line.Val));
5320   return false;
5321 }
5322 
5323 /// parseDIExpression:
5324 ///   ::= !DIExpression(0, 7, -1)
5325 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5326   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5327   Lex.Lex();
5328 
5329   if (parseToken(lltok::lparen, "expected '(' here"))
5330     return true;
5331 
5332   SmallVector<uint64_t, 8> Elements;
5333   if (Lex.getKind() != lltok::rparen)
5334     do {
5335       if (Lex.getKind() == lltok::DwarfOp) {
5336         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5337           Lex.Lex();
5338           Elements.push_back(Op);
5339           continue;
5340         }
5341         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5342       }
5343 
5344       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5345         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5346           Lex.Lex();
5347           Elements.push_back(Op);
5348           continue;
5349         }
5350         return tokError(Twine("invalid DWARF attribute encoding '") +
5351                         Lex.getStrVal() + "'");
5352       }
5353 
5354       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5355         return tokError("expected unsigned integer");
5356 
5357       auto &U = Lex.getAPSIntVal();
5358       if (U.ugt(UINT64_MAX))
5359         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5360       Elements.push_back(U.getZExtValue());
5361       Lex.Lex();
5362     } while (EatIfPresent(lltok::comma));
5363 
5364   if (parseToken(lltok::rparen, "expected ')' here"))
5365     return true;
5366 
5367   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5368   return false;
5369 }
5370 
5371 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5372   return tokError("!DIArgList cannot appear outside of a function");
5373 }
5374 /// ParseDIArgList:
5375 ///   ::= !DIArgList(i32 7, i64 %0)
5376 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5377                               PerFunctionState *PFS) {
5378   assert(PFS && "Expected valid function state");
5379   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5380   Lex.Lex();
5381 
5382   if (parseToken(lltok::lparen, "expected '(' here"))
5383     return true;
5384 
5385   SmallVector<ValueAsMetadata *, 4> Args;
5386   if (Lex.getKind() != lltok::rparen)
5387     do {
5388       Metadata *MD;
5389       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5390         return true;
5391       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5392     } while (EatIfPresent(lltok::comma));
5393 
5394   if (parseToken(lltok::rparen, "expected ')' here"))
5395     return true;
5396 
5397   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5398   return false;
5399 }
5400 
5401 /// parseDIGlobalVariableExpression:
5402 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5403 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5404                                                bool IsDistinct) {
5405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5406   REQUIRED(var, MDField, );                                                    \
5407   REQUIRED(expr, MDField, );
5408   PARSE_MD_FIELDS();
5409 #undef VISIT_MD_FIELDS
5410 
5411   Result =
5412       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5413   return false;
5414 }
5415 
5416 /// parseDIObjCProperty:
5417 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5418 ///                       getter: "getFoo", attributes: 7, type: !2)
5419 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5420 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5421   OPTIONAL(name, MDStringField, );                                             \
5422   OPTIONAL(file, MDField, );                                                   \
5423   OPTIONAL(line, LineField, );                                                 \
5424   OPTIONAL(setter, MDStringField, );                                           \
5425   OPTIONAL(getter, MDStringField, );                                           \
5426   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5427   OPTIONAL(type, MDField, );
5428   PARSE_MD_FIELDS();
5429 #undef VISIT_MD_FIELDS
5430 
5431   Result = GET_OR_DISTINCT(DIObjCProperty,
5432                            (Context, name.Val, file.Val, line.Val, setter.Val,
5433                             getter.Val, attributes.Val, type.Val));
5434   return false;
5435 }
5436 
5437 /// parseDIImportedEntity:
5438 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5439 ///                         line: 7, name: "foo")
5440 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5442   REQUIRED(tag, DwarfTagField, );                                              \
5443   REQUIRED(scope, MDField, );                                                  \
5444   OPTIONAL(entity, MDField, );                                                 \
5445   OPTIONAL(file, MDField, );                                                   \
5446   OPTIONAL(line, LineField, );                                                 \
5447   OPTIONAL(name, MDStringField, );
5448   PARSE_MD_FIELDS();
5449 #undef VISIT_MD_FIELDS
5450 
5451   Result = GET_OR_DISTINCT(
5452       DIImportedEntity,
5453       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5454   return false;
5455 }
5456 
5457 #undef PARSE_MD_FIELD
5458 #undef NOP_FIELD
5459 #undef REQUIRE_FIELD
5460 #undef DECLARE_FIELD
5461 
5462 /// parseMetadataAsValue
5463 ///  ::= metadata i32 %local
5464 ///  ::= metadata i32 @global
5465 ///  ::= metadata i32 7
5466 ///  ::= metadata !0
5467 ///  ::= metadata !{...}
5468 ///  ::= metadata !"string"
5469 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5470   // Note: the type 'metadata' has already been parsed.
5471   Metadata *MD;
5472   if (parseMetadata(MD, &PFS))
5473     return true;
5474 
5475   V = MetadataAsValue::get(Context, MD);
5476   return false;
5477 }
5478 
5479 /// parseValueAsMetadata
5480 ///  ::= i32 %local
5481 ///  ::= i32 @global
5482 ///  ::= i32 7
5483 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5484                                     PerFunctionState *PFS) {
5485   Type *Ty;
5486   LocTy Loc;
5487   if (parseType(Ty, TypeMsg, Loc))
5488     return true;
5489   if (Ty->isMetadataTy())
5490     return error(Loc, "invalid metadata-value-metadata roundtrip");
5491 
5492   Value *V;
5493   if (parseValue(Ty, V, PFS))
5494     return true;
5495 
5496   MD = ValueAsMetadata::get(V);
5497   return false;
5498 }
5499 
5500 /// parseMetadata
5501 ///  ::= i32 %local
5502 ///  ::= i32 @global
5503 ///  ::= i32 7
5504 ///  ::= !42
5505 ///  ::= !{...}
5506 ///  ::= !"string"
5507 ///  ::= !DILocation(...)
5508 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5509   if (Lex.getKind() == lltok::MetadataVar) {
5510     MDNode *N;
5511     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5512     // so parsing this requires a Function State.
5513     if (Lex.getStrVal() == "DIArgList") {
5514       if (parseDIArgList(N, false, PFS))
5515         return true;
5516     } else if (parseSpecializedMDNode(N)) {
5517       return true;
5518     }
5519     MD = N;
5520     return false;
5521   }
5522 
5523   // ValueAsMetadata:
5524   // <type> <value>
5525   if (Lex.getKind() != lltok::exclaim)
5526     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5527 
5528   // '!'.
5529   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5530   Lex.Lex();
5531 
5532   // MDString:
5533   //   ::= '!' STRINGCONSTANT
5534   if (Lex.getKind() == lltok::StringConstant) {
5535     MDString *S;
5536     if (parseMDString(S))
5537       return true;
5538     MD = S;
5539     return false;
5540   }
5541 
5542   // MDNode:
5543   // !{ ... }
5544   // !7
5545   MDNode *N;
5546   if (parseMDNodeTail(N))
5547     return true;
5548   MD = N;
5549   return false;
5550 }
5551 
5552 //===----------------------------------------------------------------------===//
5553 // Function Parsing.
5554 //===----------------------------------------------------------------------===//
5555 
5556 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5557                                    PerFunctionState *PFS, bool IsCall) {
5558   if (Ty->isFunctionTy())
5559     return error(ID.Loc, "functions are not values, refer to them as pointers");
5560 
5561   switch (ID.Kind) {
5562   case ValID::t_LocalID:
5563     if (!PFS)
5564       return error(ID.Loc, "invalid use of function-local name");
5565     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5566     return V == nullptr;
5567   case ValID::t_LocalName:
5568     if (!PFS)
5569       return error(ID.Loc, "invalid use of function-local name");
5570     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5571     return V == nullptr;
5572   case ValID::t_InlineAsm: {
5573     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5574       return error(ID.Loc, "invalid type for inline asm constraint string");
5575     V = InlineAsm::get(
5576         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5577         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5578     return false;
5579   }
5580   case ValID::t_GlobalName:
5581     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5582     return V == nullptr;
5583   case ValID::t_GlobalID:
5584     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5585     return V == nullptr;
5586   case ValID::t_APSInt:
5587     if (!Ty->isIntegerTy())
5588       return error(ID.Loc, "integer constant must have integer type");
5589     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5590     V = ConstantInt::get(Context, ID.APSIntVal);
5591     return false;
5592   case ValID::t_APFloat:
5593     if (!Ty->isFloatingPointTy() ||
5594         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5595       return error(ID.Loc, "floating point constant invalid for type");
5596 
5597     // The lexer has no type info, so builds all half, bfloat, float, and double
5598     // FP constants as double.  Fix this here.  Long double does not need this.
5599     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5600       // Check for signaling before potentially converting and losing that info.
5601       bool IsSNAN = ID.APFloatVal.isSignaling();
5602       bool Ignored;
5603       if (Ty->isHalfTy())
5604         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5605                               &Ignored);
5606       else if (Ty->isBFloatTy())
5607         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5608                               &Ignored);
5609       else if (Ty->isFloatTy())
5610         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5611                               &Ignored);
5612       if (IsSNAN) {
5613         // The convert call above may quiet an SNaN, so manufacture another
5614         // SNaN. The bitcast works because the payload (significand) parameter
5615         // is truncated to fit.
5616         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5617         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5618                                          ID.APFloatVal.isNegative(), &Payload);
5619       }
5620     }
5621     V = ConstantFP::get(Context, ID.APFloatVal);
5622 
5623     if (V->getType() != Ty)
5624       return error(ID.Loc, "floating point constant does not have type '" +
5625                                getTypeString(Ty) + "'");
5626 
5627     return false;
5628   case ValID::t_Null:
5629     if (!Ty->isPointerTy())
5630       return error(ID.Loc, "null must be a pointer type");
5631     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5632     return false;
5633   case ValID::t_Undef:
5634     // FIXME: LabelTy should not be a first-class type.
5635     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5636       return error(ID.Loc, "invalid type for undef constant");
5637     V = UndefValue::get(Ty);
5638     return false;
5639   case ValID::t_EmptyArray:
5640     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5641       return error(ID.Loc, "invalid empty array initializer");
5642     V = UndefValue::get(Ty);
5643     return false;
5644   case ValID::t_Zero:
5645     // FIXME: LabelTy should not be a first-class type.
5646     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5647       return error(ID.Loc, "invalid type for null constant");
5648     V = Constant::getNullValue(Ty);
5649     return false;
5650   case ValID::t_None:
5651     if (!Ty->isTokenTy())
5652       return error(ID.Loc, "invalid type for none constant");
5653     V = Constant::getNullValue(Ty);
5654     return false;
5655   case ValID::t_Poison:
5656     // FIXME: LabelTy should not be a first-class type.
5657     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5658       return error(ID.Loc, "invalid type for poison constant");
5659     V = PoisonValue::get(Ty);
5660     return false;
5661   case ValID::t_Constant:
5662     if (ID.ConstantVal->getType() != Ty)
5663       return error(ID.Loc, "constant expression type mismatch");
5664     V = ID.ConstantVal;
5665     return false;
5666   case ValID::t_ConstantStruct:
5667   case ValID::t_PackedConstantStruct:
5668     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5669       if (ST->getNumElements() != ID.UIntVal)
5670         return error(ID.Loc,
5671                      "initializer with struct type has wrong # elements");
5672       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5673         return error(ID.Loc, "packed'ness of initializer and type don't match");
5674 
5675       // Verify that the elements are compatible with the structtype.
5676       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5677         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5678           return error(
5679               ID.Loc,
5680               "element " + Twine(i) +
5681                   " of struct initializer doesn't match struct element type");
5682 
5683       V = ConstantStruct::get(
5684           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5685     } else
5686       return error(ID.Loc, "constant expression type mismatch");
5687     return false;
5688   }
5689   llvm_unreachable("Invalid ValID");
5690 }
5691 
5692 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5693   C = nullptr;
5694   ValID ID;
5695   auto Loc = Lex.getLoc();
5696   if (parseValID(ID, /*PFS=*/nullptr))
5697     return true;
5698   switch (ID.Kind) {
5699   case ValID::t_APSInt:
5700   case ValID::t_APFloat:
5701   case ValID::t_Undef:
5702   case ValID::t_Constant:
5703   case ValID::t_ConstantStruct:
5704   case ValID::t_PackedConstantStruct: {
5705     Value *V;
5706     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5707       return true;
5708     assert(isa<Constant>(V) && "Expected a constant value");
5709     C = cast<Constant>(V);
5710     return false;
5711   }
5712   case ValID::t_Null:
5713     C = Constant::getNullValue(Ty);
5714     return false;
5715   default:
5716     return error(Loc, "expected a constant value");
5717   }
5718 }
5719 
5720 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5721   V = nullptr;
5722   ValID ID;
5723   return parseValID(ID, PFS) ||
5724          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5725 }
5726 
5727 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5728   Type *Ty = nullptr;
5729   return parseType(Ty) || parseValue(Ty, V, PFS);
5730 }
5731 
5732 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5733                                       PerFunctionState &PFS) {
5734   Value *V;
5735   Loc = Lex.getLoc();
5736   if (parseTypeAndValue(V, PFS))
5737     return true;
5738   if (!isa<BasicBlock>(V))
5739     return error(Loc, "expected a basic block");
5740   BB = cast<BasicBlock>(V);
5741   return false;
5742 }
5743 
5744 /// FunctionHeader
5745 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5746 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5747 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5748 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5749 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5750   // parse the linkage.
5751   LocTy LinkageLoc = Lex.getLoc();
5752   unsigned Linkage;
5753   unsigned Visibility;
5754   unsigned DLLStorageClass;
5755   bool DSOLocal;
5756   AttrBuilder RetAttrs;
5757   unsigned CC;
5758   bool HasLinkage;
5759   Type *RetType = nullptr;
5760   LocTy RetTypeLoc = Lex.getLoc();
5761   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5762                            DSOLocal) ||
5763       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5764       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5765     return true;
5766 
5767   // Verify that the linkage is ok.
5768   switch ((GlobalValue::LinkageTypes)Linkage) {
5769   case GlobalValue::ExternalLinkage:
5770     break; // always ok.
5771   case GlobalValue::ExternalWeakLinkage:
5772     if (IsDefine)
5773       return error(LinkageLoc, "invalid linkage for function definition");
5774     break;
5775   case GlobalValue::PrivateLinkage:
5776   case GlobalValue::InternalLinkage:
5777   case GlobalValue::AvailableExternallyLinkage:
5778   case GlobalValue::LinkOnceAnyLinkage:
5779   case GlobalValue::LinkOnceODRLinkage:
5780   case GlobalValue::WeakAnyLinkage:
5781   case GlobalValue::WeakODRLinkage:
5782     if (!IsDefine)
5783       return error(LinkageLoc, "invalid linkage for function declaration");
5784     break;
5785   case GlobalValue::AppendingLinkage:
5786   case GlobalValue::CommonLinkage:
5787     return error(LinkageLoc, "invalid function linkage type");
5788   }
5789 
5790   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5791     return error(LinkageLoc,
5792                  "symbol with local linkage must have default visibility");
5793 
5794   if (!FunctionType::isValidReturnType(RetType))
5795     return error(RetTypeLoc, "invalid function return type");
5796 
5797   LocTy NameLoc = Lex.getLoc();
5798 
5799   std::string FunctionName;
5800   if (Lex.getKind() == lltok::GlobalVar) {
5801     FunctionName = Lex.getStrVal();
5802   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5803     unsigned NameID = Lex.getUIntVal();
5804 
5805     if (NameID != NumberedVals.size())
5806       return tokError("function expected to be numbered '%" +
5807                       Twine(NumberedVals.size()) + "'");
5808   } else {
5809     return tokError("expected function name");
5810   }
5811 
5812   Lex.Lex();
5813 
5814   if (Lex.getKind() != lltok::lparen)
5815     return tokError("expected '(' in function argument list");
5816 
5817   SmallVector<ArgInfo, 8> ArgList;
5818   bool IsVarArg;
5819   AttrBuilder FuncAttrs;
5820   std::vector<unsigned> FwdRefAttrGrps;
5821   LocTy BuiltinLoc;
5822   std::string Section;
5823   std::string Partition;
5824   MaybeAlign Alignment;
5825   std::string GC;
5826   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5827   unsigned AddrSpace = 0;
5828   Constant *Prefix = nullptr;
5829   Constant *Prologue = nullptr;
5830   Constant *PersonalityFn = nullptr;
5831   Comdat *C;
5832 
5833   if (parseArgumentList(ArgList, IsVarArg) ||
5834       parseOptionalUnnamedAddr(UnnamedAddr) ||
5835       parseOptionalProgramAddrSpace(AddrSpace) ||
5836       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5837                                  BuiltinLoc) ||
5838       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5839       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5840       parseOptionalComdat(FunctionName, C) ||
5841       parseOptionalAlignment(Alignment) ||
5842       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5843       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5844       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5845       (EatIfPresent(lltok::kw_personality) &&
5846        parseGlobalTypeAndValue(PersonalityFn)))
5847     return true;
5848 
5849   if (FuncAttrs.contains(Attribute::Builtin))
5850     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5851 
5852   // If the alignment was parsed as an attribute, move to the alignment field.
5853   if (FuncAttrs.hasAlignmentAttr()) {
5854     Alignment = FuncAttrs.getAlignment();
5855     FuncAttrs.removeAttribute(Attribute::Alignment);
5856   }
5857 
5858   // Okay, if we got here, the function is syntactically valid.  Convert types
5859   // and do semantic checks.
5860   std::vector<Type*> ParamTypeList;
5861   SmallVector<AttributeSet, 8> Attrs;
5862 
5863   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5864     ParamTypeList.push_back(ArgList[i].Ty);
5865     Attrs.push_back(ArgList[i].Attrs);
5866   }
5867 
5868   AttributeList PAL =
5869       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5870                          AttributeSet::get(Context, RetAttrs), Attrs);
5871 
5872   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5873     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5874 
5875   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5876   PointerType *PFT = PointerType::get(FT, AddrSpace);
5877 
5878   Fn = nullptr;
5879   if (!FunctionName.empty()) {
5880     // If this was a definition of a forward reference, remove the definition
5881     // from the forward reference table and fill in the forward ref.
5882     auto FRVI = ForwardRefVals.find(FunctionName);
5883     if (FRVI != ForwardRefVals.end()) {
5884       Fn = M->getFunction(FunctionName);
5885       if (!Fn)
5886         return error(FRVI->second.second, "invalid forward reference to "
5887                                           "function as global value!");
5888       if (Fn->getType() != PFT)
5889         return error(FRVI->second.second,
5890                      "invalid forward reference to "
5891                      "function '" +
5892                          FunctionName +
5893                          "' with wrong type: "
5894                          "expected '" +
5895                          getTypeString(PFT) + "' but was '" +
5896                          getTypeString(Fn->getType()) + "'");
5897       ForwardRefVals.erase(FRVI);
5898     } else if ((Fn = M->getFunction(FunctionName))) {
5899       // Reject redefinitions.
5900       return error(NameLoc,
5901                    "invalid redefinition of function '" + FunctionName + "'");
5902     } else if (M->getNamedValue(FunctionName)) {
5903       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5904     }
5905 
5906   } else {
5907     // If this is a definition of a forward referenced function, make sure the
5908     // types agree.
5909     auto I = ForwardRefValIDs.find(NumberedVals.size());
5910     if (I != ForwardRefValIDs.end()) {
5911       Fn = cast<Function>(I->second.first);
5912       if (Fn->getType() != PFT)
5913         return error(NameLoc, "type of definition and forward reference of '@" +
5914                                   Twine(NumberedVals.size()) +
5915                                   "' disagree: "
5916                                   "expected '" +
5917                                   getTypeString(PFT) + "' but was '" +
5918                                   getTypeString(Fn->getType()) + "'");
5919       ForwardRefValIDs.erase(I);
5920     }
5921   }
5922 
5923   if (!Fn)
5924     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5925                           FunctionName, M);
5926   else // Move the forward-reference to the correct spot in the module.
5927     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5928 
5929   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5930 
5931   if (FunctionName.empty())
5932     NumberedVals.push_back(Fn);
5933 
5934   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5935   maybeSetDSOLocal(DSOLocal, *Fn);
5936   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5937   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5938   Fn->setCallingConv(CC);
5939   Fn->setAttributes(PAL);
5940   Fn->setUnnamedAddr(UnnamedAddr);
5941   Fn->setAlignment(MaybeAlign(Alignment));
5942   Fn->setSection(Section);
5943   Fn->setPartition(Partition);
5944   Fn->setComdat(C);
5945   Fn->setPersonalityFn(PersonalityFn);
5946   if (!GC.empty()) Fn->setGC(GC);
5947   Fn->setPrefixData(Prefix);
5948   Fn->setPrologueData(Prologue);
5949   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5950 
5951   // Add all of the arguments we parsed to the function.
5952   Function::arg_iterator ArgIt = Fn->arg_begin();
5953   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5954     // If the argument has a name, insert it into the argument symbol table.
5955     if (ArgList[i].Name.empty()) continue;
5956 
5957     // Set the name, if it conflicted, it will be auto-renamed.
5958     ArgIt->setName(ArgList[i].Name);
5959 
5960     if (ArgIt->getName() != ArgList[i].Name)
5961       return error(ArgList[i].Loc,
5962                    "redefinition of argument '%" + ArgList[i].Name + "'");
5963   }
5964 
5965   if (IsDefine)
5966     return false;
5967 
5968   // Check the declaration has no block address forward references.
5969   ValID ID;
5970   if (FunctionName.empty()) {
5971     ID.Kind = ValID::t_GlobalID;
5972     ID.UIntVal = NumberedVals.size() - 1;
5973   } else {
5974     ID.Kind = ValID::t_GlobalName;
5975     ID.StrVal = FunctionName;
5976   }
5977   auto Blocks = ForwardRefBlockAddresses.find(ID);
5978   if (Blocks != ForwardRefBlockAddresses.end())
5979     return error(Blocks->first.Loc,
5980                  "cannot take blockaddress inside a declaration");
5981   return false;
5982 }
5983 
5984 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5985   ValID ID;
5986   if (FunctionNumber == -1) {
5987     ID.Kind = ValID::t_GlobalName;
5988     ID.StrVal = std::string(F.getName());
5989   } else {
5990     ID.Kind = ValID::t_GlobalID;
5991     ID.UIntVal = FunctionNumber;
5992   }
5993 
5994   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5995   if (Blocks == P.ForwardRefBlockAddresses.end())
5996     return false;
5997 
5998   for (const auto &I : Blocks->second) {
5999     const ValID &BBID = I.first;
6000     GlobalValue *GV = I.second;
6001 
6002     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6003            "Expected local id or name");
6004     BasicBlock *BB;
6005     if (BBID.Kind == ValID::t_LocalName)
6006       BB = getBB(BBID.StrVal, BBID.Loc);
6007     else
6008       BB = getBB(BBID.UIntVal, BBID.Loc);
6009     if (!BB)
6010       return P.error(BBID.Loc, "referenced value is not a basic block");
6011 
6012     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
6013     GV->eraseFromParent();
6014   }
6015 
6016   P.ForwardRefBlockAddresses.erase(Blocks);
6017   return false;
6018 }
6019 
6020 /// parseFunctionBody
6021 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6022 bool LLParser::parseFunctionBody(Function &Fn) {
6023   if (Lex.getKind() != lltok::lbrace)
6024     return tokError("expected '{' in function body");
6025   Lex.Lex();  // eat the {.
6026 
6027   int FunctionNumber = -1;
6028   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6029 
6030   PerFunctionState PFS(*this, Fn, FunctionNumber);
6031 
6032   // Resolve block addresses and allow basic blocks to be forward-declared
6033   // within this function.
6034   if (PFS.resolveForwardRefBlockAddresses())
6035     return true;
6036   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6037 
6038   // We need at least one basic block.
6039   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6040     return tokError("function body requires at least one basic block");
6041 
6042   while (Lex.getKind() != lltok::rbrace &&
6043          Lex.getKind() != lltok::kw_uselistorder)
6044     if (parseBasicBlock(PFS))
6045       return true;
6046 
6047   while (Lex.getKind() != lltok::rbrace)
6048     if (parseUseListOrder(&PFS))
6049       return true;
6050 
6051   // Eat the }.
6052   Lex.Lex();
6053 
6054   // Verify function is ok.
6055   return PFS.finishFunction();
6056 }
6057 
6058 /// parseBasicBlock
6059 ///   ::= (LabelStr|LabelID)? Instruction*
6060 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6061   // If this basic block starts out with a name, remember it.
6062   std::string Name;
6063   int NameID = -1;
6064   LocTy NameLoc = Lex.getLoc();
6065   if (Lex.getKind() == lltok::LabelStr) {
6066     Name = Lex.getStrVal();
6067     Lex.Lex();
6068   } else if (Lex.getKind() == lltok::LabelID) {
6069     NameID = Lex.getUIntVal();
6070     Lex.Lex();
6071   }
6072 
6073   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6074   if (!BB)
6075     return true;
6076 
6077   std::string NameStr;
6078 
6079   // parse the instructions in this block until we get a terminator.
6080   Instruction *Inst;
6081   do {
6082     // This instruction may have three possibilities for a name: a) none
6083     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6084     LocTy NameLoc = Lex.getLoc();
6085     int NameID = -1;
6086     NameStr = "";
6087 
6088     if (Lex.getKind() == lltok::LocalVarID) {
6089       NameID = Lex.getUIntVal();
6090       Lex.Lex();
6091       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6092         return true;
6093     } else if (Lex.getKind() == lltok::LocalVar) {
6094       NameStr = Lex.getStrVal();
6095       Lex.Lex();
6096       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6097         return true;
6098     }
6099 
6100     switch (parseInstruction(Inst, BB, PFS)) {
6101     default:
6102       llvm_unreachable("Unknown parseInstruction result!");
6103     case InstError: return true;
6104     case InstNormal:
6105       BB->getInstList().push_back(Inst);
6106 
6107       // With a normal result, we check to see if the instruction is followed by
6108       // a comma and metadata.
6109       if (EatIfPresent(lltok::comma))
6110         if (parseInstructionMetadata(*Inst))
6111           return true;
6112       break;
6113     case InstExtraComma:
6114       BB->getInstList().push_back(Inst);
6115 
6116       // If the instruction parser ate an extra comma at the end of it, it
6117       // *must* be followed by metadata.
6118       if (parseInstructionMetadata(*Inst))
6119         return true;
6120       break;
6121     }
6122 
6123     // Set the name on the instruction.
6124     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6125       return true;
6126   } while (!Inst->isTerminator());
6127 
6128   return false;
6129 }
6130 
6131 //===----------------------------------------------------------------------===//
6132 // Instruction Parsing.
6133 //===----------------------------------------------------------------------===//
6134 
6135 /// parseInstruction - parse one of the many different instructions.
6136 ///
6137 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6138                                PerFunctionState &PFS) {
6139   lltok::Kind Token = Lex.getKind();
6140   if (Token == lltok::Eof)
6141     return tokError("found end of file when expecting more instructions");
6142   LocTy Loc = Lex.getLoc();
6143   unsigned KeywordVal = Lex.getUIntVal();
6144   Lex.Lex();  // Eat the keyword.
6145 
6146   switch (Token) {
6147   default:
6148     return error(Loc, "expected instruction opcode");
6149   // Terminator Instructions.
6150   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6151   case lltok::kw_ret:
6152     return parseRet(Inst, BB, PFS);
6153   case lltok::kw_br:
6154     return parseBr(Inst, PFS);
6155   case lltok::kw_switch:
6156     return parseSwitch(Inst, PFS);
6157   case lltok::kw_indirectbr:
6158     return parseIndirectBr(Inst, PFS);
6159   case lltok::kw_invoke:
6160     return parseInvoke(Inst, PFS);
6161   case lltok::kw_resume:
6162     return parseResume(Inst, PFS);
6163   case lltok::kw_cleanupret:
6164     return parseCleanupRet(Inst, PFS);
6165   case lltok::kw_catchret:
6166     return parseCatchRet(Inst, PFS);
6167   case lltok::kw_catchswitch:
6168     return parseCatchSwitch(Inst, PFS);
6169   case lltok::kw_catchpad:
6170     return parseCatchPad(Inst, PFS);
6171   case lltok::kw_cleanuppad:
6172     return parseCleanupPad(Inst, PFS);
6173   case lltok::kw_callbr:
6174     return parseCallBr(Inst, PFS);
6175   // Unary Operators.
6176   case lltok::kw_fneg: {
6177     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6178     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6179     if (Res != 0)
6180       return Res;
6181     if (FMF.any())
6182       Inst->setFastMathFlags(FMF);
6183     return false;
6184   }
6185   // Binary Operators.
6186   case lltok::kw_add:
6187   case lltok::kw_sub:
6188   case lltok::kw_mul:
6189   case lltok::kw_shl: {
6190     bool NUW = EatIfPresent(lltok::kw_nuw);
6191     bool NSW = EatIfPresent(lltok::kw_nsw);
6192     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6193 
6194     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6195       return true;
6196 
6197     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6198     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6199     return false;
6200   }
6201   case lltok::kw_fadd:
6202   case lltok::kw_fsub:
6203   case lltok::kw_fmul:
6204   case lltok::kw_fdiv:
6205   case lltok::kw_frem: {
6206     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6207     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6208     if (Res != 0)
6209       return Res;
6210     if (FMF.any())
6211       Inst->setFastMathFlags(FMF);
6212     return 0;
6213   }
6214 
6215   case lltok::kw_sdiv:
6216   case lltok::kw_udiv:
6217   case lltok::kw_lshr:
6218   case lltok::kw_ashr: {
6219     bool Exact = EatIfPresent(lltok::kw_exact);
6220 
6221     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6222       return true;
6223     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6224     return false;
6225   }
6226 
6227   case lltok::kw_urem:
6228   case lltok::kw_srem:
6229     return parseArithmetic(Inst, PFS, KeywordVal,
6230                            /*IsFP*/ false);
6231   case lltok::kw_and:
6232   case lltok::kw_or:
6233   case lltok::kw_xor:
6234     return parseLogical(Inst, PFS, KeywordVal);
6235   case lltok::kw_icmp:
6236     return parseCompare(Inst, PFS, KeywordVal);
6237   case lltok::kw_fcmp: {
6238     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6239     int Res = parseCompare(Inst, PFS, KeywordVal);
6240     if (Res != 0)
6241       return Res;
6242     if (FMF.any())
6243       Inst->setFastMathFlags(FMF);
6244     return 0;
6245   }
6246 
6247   // Casts.
6248   case lltok::kw_trunc:
6249   case lltok::kw_zext:
6250   case lltok::kw_sext:
6251   case lltok::kw_fptrunc:
6252   case lltok::kw_fpext:
6253   case lltok::kw_bitcast:
6254   case lltok::kw_addrspacecast:
6255   case lltok::kw_uitofp:
6256   case lltok::kw_sitofp:
6257   case lltok::kw_fptoui:
6258   case lltok::kw_fptosi:
6259   case lltok::kw_inttoptr:
6260   case lltok::kw_ptrtoint:
6261     return parseCast(Inst, PFS, KeywordVal);
6262   // Other.
6263   case lltok::kw_select: {
6264     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6265     int Res = parseSelect(Inst, PFS);
6266     if (Res != 0)
6267       return Res;
6268     if (FMF.any()) {
6269       if (!isa<FPMathOperator>(Inst))
6270         return error(Loc, "fast-math-flags specified for select without "
6271                           "floating-point scalar or vector return type");
6272       Inst->setFastMathFlags(FMF);
6273     }
6274     return 0;
6275   }
6276   case lltok::kw_va_arg:
6277     return parseVAArg(Inst, PFS);
6278   case lltok::kw_extractelement:
6279     return parseExtractElement(Inst, PFS);
6280   case lltok::kw_insertelement:
6281     return parseInsertElement(Inst, PFS);
6282   case lltok::kw_shufflevector:
6283     return parseShuffleVector(Inst, PFS);
6284   case lltok::kw_phi: {
6285     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6286     int Res = parsePHI(Inst, PFS);
6287     if (Res != 0)
6288       return Res;
6289     if (FMF.any()) {
6290       if (!isa<FPMathOperator>(Inst))
6291         return error(Loc, "fast-math-flags specified for phi without "
6292                           "floating-point scalar or vector return type");
6293       Inst->setFastMathFlags(FMF);
6294     }
6295     return 0;
6296   }
6297   case lltok::kw_landingpad:
6298     return parseLandingPad(Inst, PFS);
6299   case lltok::kw_freeze:
6300     return parseFreeze(Inst, PFS);
6301   // Call.
6302   case lltok::kw_call:
6303     return parseCall(Inst, PFS, CallInst::TCK_None);
6304   case lltok::kw_tail:
6305     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6306   case lltok::kw_musttail:
6307     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6308   case lltok::kw_notail:
6309     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6310   // Memory.
6311   case lltok::kw_alloca:
6312     return parseAlloc(Inst, PFS);
6313   case lltok::kw_load:
6314     return parseLoad(Inst, PFS);
6315   case lltok::kw_store:
6316     return parseStore(Inst, PFS);
6317   case lltok::kw_cmpxchg:
6318     return parseCmpXchg(Inst, PFS);
6319   case lltok::kw_atomicrmw:
6320     return parseAtomicRMW(Inst, PFS);
6321   case lltok::kw_fence:
6322     return parseFence(Inst, PFS);
6323   case lltok::kw_getelementptr:
6324     return parseGetElementPtr(Inst, PFS);
6325   case lltok::kw_extractvalue:
6326     return parseExtractValue(Inst, PFS);
6327   case lltok::kw_insertvalue:
6328     return parseInsertValue(Inst, PFS);
6329   }
6330 }
6331 
6332 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6333 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6334   if (Opc == Instruction::FCmp) {
6335     switch (Lex.getKind()) {
6336     default:
6337       return tokError("expected fcmp predicate (e.g. 'oeq')");
6338     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6339     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6340     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6341     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6342     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6343     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6344     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6345     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6346     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6347     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6348     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6349     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6350     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6351     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6352     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6353     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6354     }
6355   } else {
6356     switch (Lex.getKind()) {
6357     default:
6358       return tokError("expected icmp predicate (e.g. 'eq')");
6359     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6360     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6361     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6362     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6363     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6364     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6365     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6366     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6367     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6368     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6369     }
6370   }
6371   Lex.Lex();
6372   return false;
6373 }
6374 
6375 //===----------------------------------------------------------------------===//
6376 // Terminator Instructions.
6377 //===----------------------------------------------------------------------===//
6378 
6379 /// parseRet - parse a return instruction.
6380 ///   ::= 'ret' void (',' !dbg, !1)*
6381 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6382 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6383                         PerFunctionState &PFS) {
6384   SMLoc TypeLoc = Lex.getLoc();
6385   Type *Ty = nullptr;
6386   if (parseType(Ty, true /*void allowed*/))
6387     return true;
6388 
6389   Type *ResType = PFS.getFunction().getReturnType();
6390 
6391   if (Ty->isVoidTy()) {
6392     if (!ResType->isVoidTy())
6393       return error(TypeLoc, "value doesn't match function result type '" +
6394                                 getTypeString(ResType) + "'");
6395 
6396     Inst = ReturnInst::Create(Context);
6397     return false;
6398   }
6399 
6400   Value *RV;
6401   if (parseValue(Ty, RV, PFS))
6402     return true;
6403 
6404   if (ResType != RV->getType())
6405     return error(TypeLoc, "value doesn't match function result type '" +
6406                               getTypeString(ResType) + "'");
6407 
6408   Inst = ReturnInst::Create(Context, RV);
6409   return false;
6410 }
6411 
6412 /// parseBr
6413 ///   ::= 'br' TypeAndValue
6414 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6415 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6416   LocTy Loc, Loc2;
6417   Value *Op0;
6418   BasicBlock *Op1, *Op2;
6419   if (parseTypeAndValue(Op0, Loc, PFS))
6420     return true;
6421 
6422   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6423     Inst = BranchInst::Create(BB);
6424     return false;
6425   }
6426 
6427   if (Op0->getType() != Type::getInt1Ty(Context))
6428     return error(Loc, "branch condition must have 'i1' type");
6429 
6430   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6431       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6432       parseToken(lltok::comma, "expected ',' after true destination") ||
6433       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6434     return true;
6435 
6436   Inst = BranchInst::Create(Op1, Op2, Op0);
6437   return false;
6438 }
6439 
6440 /// parseSwitch
6441 ///  Instruction
6442 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6443 ///  JumpTable
6444 ///    ::= (TypeAndValue ',' TypeAndValue)*
6445 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6446   LocTy CondLoc, BBLoc;
6447   Value *Cond;
6448   BasicBlock *DefaultBB;
6449   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6450       parseToken(lltok::comma, "expected ',' after switch condition") ||
6451       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6452       parseToken(lltok::lsquare, "expected '[' with switch table"))
6453     return true;
6454 
6455   if (!Cond->getType()->isIntegerTy())
6456     return error(CondLoc, "switch condition must have integer type");
6457 
6458   // parse the jump table pairs.
6459   SmallPtrSet<Value*, 32> SeenCases;
6460   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6461   while (Lex.getKind() != lltok::rsquare) {
6462     Value *Constant;
6463     BasicBlock *DestBB;
6464 
6465     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6466         parseToken(lltok::comma, "expected ',' after case value") ||
6467         parseTypeAndBasicBlock(DestBB, PFS))
6468       return true;
6469 
6470     if (!SeenCases.insert(Constant).second)
6471       return error(CondLoc, "duplicate case value in switch");
6472     if (!isa<ConstantInt>(Constant))
6473       return error(CondLoc, "case value is not a constant integer");
6474 
6475     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6476   }
6477 
6478   Lex.Lex();  // Eat the ']'.
6479 
6480   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6481   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6482     SI->addCase(Table[i].first, Table[i].second);
6483   Inst = SI;
6484   return false;
6485 }
6486 
6487 /// parseIndirectBr
6488 ///  Instruction
6489 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6490 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6491   LocTy AddrLoc;
6492   Value *Address;
6493   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6494       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6495       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6496     return true;
6497 
6498   if (!Address->getType()->isPointerTy())
6499     return error(AddrLoc, "indirectbr address must have pointer type");
6500 
6501   // parse the destination list.
6502   SmallVector<BasicBlock*, 16> DestList;
6503 
6504   if (Lex.getKind() != lltok::rsquare) {
6505     BasicBlock *DestBB;
6506     if (parseTypeAndBasicBlock(DestBB, PFS))
6507       return true;
6508     DestList.push_back(DestBB);
6509 
6510     while (EatIfPresent(lltok::comma)) {
6511       if (parseTypeAndBasicBlock(DestBB, PFS))
6512         return true;
6513       DestList.push_back(DestBB);
6514     }
6515   }
6516 
6517   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6518     return true;
6519 
6520   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6521   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6522     IBI->addDestination(DestList[i]);
6523   Inst = IBI;
6524   return false;
6525 }
6526 
6527 /// parseInvoke
6528 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6529 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6530 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6531   LocTy CallLoc = Lex.getLoc();
6532   AttrBuilder RetAttrs, FnAttrs;
6533   std::vector<unsigned> FwdRefAttrGrps;
6534   LocTy NoBuiltinLoc;
6535   unsigned CC;
6536   unsigned InvokeAddrSpace;
6537   Type *RetType = nullptr;
6538   LocTy RetTypeLoc;
6539   ValID CalleeID;
6540   SmallVector<ParamInfo, 16> ArgList;
6541   SmallVector<OperandBundleDef, 2> BundleList;
6542 
6543   BasicBlock *NormalBB, *UnwindBB;
6544   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6545       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6546       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6547       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6548       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6549                                  NoBuiltinLoc) ||
6550       parseOptionalOperandBundles(BundleList, PFS) ||
6551       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6552       parseTypeAndBasicBlock(NormalBB, PFS) ||
6553       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6554       parseTypeAndBasicBlock(UnwindBB, PFS))
6555     return true;
6556 
6557   // If RetType is a non-function pointer type, then this is the short syntax
6558   // for the call, which means that RetType is just the return type.  Infer the
6559   // rest of the function argument types from the arguments that are present.
6560   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6561   if (!Ty) {
6562     // Pull out the types of all of the arguments...
6563     std::vector<Type*> ParamTypes;
6564     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6565       ParamTypes.push_back(ArgList[i].V->getType());
6566 
6567     if (!FunctionType::isValidReturnType(RetType))
6568       return error(RetTypeLoc, "Invalid result type for LLVM function");
6569 
6570     Ty = FunctionType::get(RetType, ParamTypes, false);
6571   }
6572 
6573   CalleeID.FTy = Ty;
6574 
6575   // Look up the callee.
6576   Value *Callee;
6577   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6578                           Callee, &PFS, /*IsCall=*/true))
6579     return true;
6580 
6581   // Set up the Attribute for the function.
6582   SmallVector<Value *, 8> Args;
6583   SmallVector<AttributeSet, 8> ArgAttrs;
6584 
6585   // Loop through FunctionType's arguments and ensure they are specified
6586   // correctly.  Also, gather any parameter attributes.
6587   FunctionType::param_iterator I = Ty->param_begin();
6588   FunctionType::param_iterator E = Ty->param_end();
6589   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6590     Type *ExpectedTy = nullptr;
6591     if (I != E) {
6592       ExpectedTy = *I++;
6593     } else if (!Ty->isVarArg()) {
6594       return error(ArgList[i].Loc, "too many arguments specified");
6595     }
6596 
6597     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6598       return error(ArgList[i].Loc, "argument is not of expected type '" +
6599                                        getTypeString(ExpectedTy) + "'");
6600     Args.push_back(ArgList[i].V);
6601     ArgAttrs.push_back(ArgList[i].Attrs);
6602   }
6603 
6604   if (I != E)
6605     return error(CallLoc, "not enough parameters specified for call");
6606 
6607   if (FnAttrs.hasAlignmentAttr())
6608     return error(CallLoc, "invoke instructions may not have an alignment");
6609 
6610   // Finish off the Attribute and check them
6611   AttributeList PAL =
6612       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6613                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6614 
6615   InvokeInst *II =
6616       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6617   II->setCallingConv(CC);
6618   II->setAttributes(PAL);
6619   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6620   Inst = II;
6621   return false;
6622 }
6623 
6624 /// parseResume
6625 ///   ::= 'resume' TypeAndValue
6626 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6627   Value *Exn; LocTy ExnLoc;
6628   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6629     return true;
6630 
6631   ResumeInst *RI = ResumeInst::Create(Exn);
6632   Inst = RI;
6633   return false;
6634 }
6635 
6636 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6637                                   PerFunctionState &PFS) {
6638   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6639     return true;
6640 
6641   while (Lex.getKind() != lltok::rsquare) {
6642     // If this isn't the first argument, we need a comma.
6643     if (!Args.empty() &&
6644         parseToken(lltok::comma, "expected ',' in argument list"))
6645       return true;
6646 
6647     // parse the argument.
6648     LocTy ArgLoc;
6649     Type *ArgTy = nullptr;
6650     if (parseType(ArgTy, ArgLoc))
6651       return true;
6652 
6653     Value *V;
6654     if (ArgTy->isMetadataTy()) {
6655       if (parseMetadataAsValue(V, PFS))
6656         return true;
6657     } else {
6658       if (parseValue(ArgTy, V, PFS))
6659         return true;
6660     }
6661     Args.push_back(V);
6662   }
6663 
6664   Lex.Lex();  // Lex the ']'.
6665   return false;
6666 }
6667 
6668 /// parseCleanupRet
6669 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6670 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6671   Value *CleanupPad = nullptr;
6672 
6673   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6674     return true;
6675 
6676   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6677     return true;
6678 
6679   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6680     return true;
6681 
6682   BasicBlock *UnwindBB = nullptr;
6683   if (Lex.getKind() == lltok::kw_to) {
6684     Lex.Lex();
6685     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6686       return true;
6687   } else {
6688     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6689       return true;
6690     }
6691   }
6692 
6693   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6694   return false;
6695 }
6696 
6697 /// parseCatchRet
6698 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6699 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6700   Value *CatchPad = nullptr;
6701 
6702   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6703     return true;
6704 
6705   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6706     return true;
6707 
6708   BasicBlock *BB;
6709   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6710       parseTypeAndBasicBlock(BB, PFS))
6711     return true;
6712 
6713   Inst = CatchReturnInst::Create(CatchPad, BB);
6714   return false;
6715 }
6716 
6717 /// parseCatchSwitch
6718 ///   ::= 'catchswitch' within Parent
6719 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6720   Value *ParentPad;
6721 
6722   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6723     return true;
6724 
6725   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6726       Lex.getKind() != lltok::LocalVarID)
6727     return tokError("expected scope value for catchswitch");
6728 
6729   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6730     return true;
6731 
6732   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6733     return true;
6734 
6735   SmallVector<BasicBlock *, 32> Table;
6736   do {
6737     BasicBlock *DestBB;
6738     if (parseTypeAndBasicBlock(DestBB, PFS))
6739       return true;
6740     Table.push_back(DestBB);
6741   } while (EatIfPresent(lltok::comma));
6742 
6743   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6744     return true;
6745 
6746   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6747     return true;
6748 
6749   BasicBlock *UnwindBB = nullptr;
6750   if (EatIfPresent(lltok::kw_to)) {
6751     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6752       return true;
6753   } else {
6754     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6755       return true;
6756   }
6757 
6758   auto *CatchSwitch =
6759       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6760   for (BasicBlock *DestBB : Table)
6761     CatchSwitch->addHandler(DestBB);
6762   Inst = CatchSwitch;
6763   return false;
6764 }
6765 
6766 /// parseCatchPad
6767 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6768 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6769   Value *CatchSwitch = nullptr;
6770 
6771   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6772     return true;
6773 
6774   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6775     return tokError("expected scope value for catchpad");
6776 
6777   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6778     return true;
6779 
6780   SmallVector<Value *, 8> Args;
6781   if (parseExceptionArgs(Args, PFS))
6782     return true;
6783 
6784   Inst = CatchPadInst::Create(CatchSwitch, Args);
6785   return false;
6786 }
6787 
6788 /// parseCleanupPad
6789 ///   ::= 'cleanuppad' within Parent ParamList
6790 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6791   Value *ParentPad = nullptr;
6792 
6793   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6794     return true;
6795 
6796   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6797       Lex.getKind() != lltok::LocalVarID)
6798     return tokError("expected scope value for cleanuppad");
6799 
6800   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6801     return true;
6802 
6803   SmallVector<Value *, 8> Args;
6804   if (parseExceptionArgs(Args, PFS))
6805     return true;
6806 
6807   Inst = CleanupPadInst::Create(ParentPad, Args);
6808   return false;
6809 }
6810 
6811 //===----------------------------------------------------------------------===//
6812 // Unary Operators.
6813 //===----------------------------------------------------------------------===//
6814 
6815 /// parseUnaryOp
6816 ///  ::= UnaryOp TypeAndValue ',' Value
6817 ///
6818 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6819 /// operand is allowed.
6820 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6821                             unsigned Opc, bool IsFP) {
6822   LocTy Loc; Value *LHS;
6823   if (parseTypeAndValue(LHS, Loc, PFS))
6824     return true;
6825 
6826   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6827                     : LHS->getType()->isIntOrIntVectorTy();
6828 
6829   if (!Valid)
6830     return error(Loc, "invalid operand type for instruction");
6831 
6832   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6833   return false;
6834 }
6835 
6836 /// parseCallBr
6837 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6838 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6839 ///       '[' LabelList ']'
6840 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6841   LocTy CallLoc = Lex.getLoc();
6842   AttrBuilder RetAttrs, FnAttrs;
6843   std::vector<unsigned> FwdRefAttrGrps;
6844   LocTy NoBuiltinLoc;
6845   unsigned CC;
6846   Type *RetType = nullptr;
6847   LocTy RetTypeLoc;
6848   ValID CalleeID;
6849   SmallVector<ParamInfo, 16> ArgList;
6850   SmallVector<OperandBundleDef, 2> BundleList;
6851 
6852   BasicBlock *DefaultDest;
6853   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6854       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6855       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6856       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6857                                  NoBuiltinLoc) ||
6858       parseOptionalOperandBundles(BundleList, PFS) ||
6859       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6860       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6861       parseToken(lltok::lsquare, "expected '[' in callbr"))
6862     return true;
6863 
6864   // parse the destination list.
6865   SmallVector<BasicBlock *, 16> IndirectDests;
6866 
6867   if (Lex.getKind() != lltok::rsquare) {
6868     BasicBlock *DestBB;
6869     if (parseTypeAndBasicBlock(DestBB, PFS))
6870       return true;
6871     IndirectDests.push_back(DestBB);
6872 
6873     while (EatIfPresent(lltok::comma)) {
6874       if (parseTypeAndBasicBlock(DestBB, PFS))
6875         return true;
6876       IndirectDests.push_back(DestBB);
6877     }
6878   }
6879 
6880   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6881     return true;
6882 
6883   // If RetType is a non-function pointer type, then this is the short syntax
6884   // for the call, which means that RetType is just the return type.  Infer the
6885   // rest of the function argument types from the arguments that are present.
6886   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6887   if (!Ty) {
6888     // Pull out the types of all of the arguments...
6889     std::vector<Type *> ParamTypes;
6890     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6891       ParamTypes.push_back(ArgList[i].V->getType());
6892 
6893     if (!FunctionType::isValidReturnType(RetType))
6894       return error(RetTypeLoc, "Invalid result type for LLVM function");
6895 
6896     Ty = FunctionType::get(RetType, ParamTypes, false);
6897   }
6898 
6899   CalleeID.FTy = Ty;
6900 
6901   // Look up the callee.
6902   Value *Callee;
6903   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6904                           /*IsCall=*/true))
6905     return true;
6906 
6907   // Set up the Attribute for the function.
6908   SmallVector<Value *, 8> Args;
6909   SmallVector<AttributeSet, 8> ArgAttrs;
6910 
6911   // Loop through FunctionType's arguments and ensure they are specified
6912   // correctly.  Also, gather any parameter attributes.
6913   FunctionType::param_iterator I = Ty->param_begin();
6914   FunctionType::param_iterator E = Ty->param_end();
6915   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6916     Type *ExpectedTy = nullptr;
6917     if (I != E) {
6918       ExpectedTy = *I++;
6919     } else if (!Ty->isVarArg()) {
6920       return error(ArgList[i].Loc, "too many arguments specified");
6921     }
6922 
6923     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6924       return error(ArgList[i].Loc, "argument is not of expected type '" +
6925                                        getTypeString(ExpectedTy) + "'");
6926     Args.push_back(ArgList[i].V);
6927     ArgAttrs.push_back(ArgList[i].Attrs);
6928   }
6929 
6930   if (I != E)
6931     return error(CallLoc, "not enough parameters specified for call");
6932 
6933   if (FnAttrs.hasAlignmentAttr())
6934     return error(CallLoc, "callbr instructions may not have an alignment");
6935 
6936   // Finish off the Attribute and check them
6937   AttributeList PAL =
6938       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6939                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6940 
6941   CallBrInst *CBI =
6942       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6943                          BundleList);
6944   CBI->setCallingConv(CC);
6945   CBI->setAttributes(PAL);
6946   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6947   Inst = CBI;
6948   return false;
6949 }
6950 
6951 //===----------------------------------------------------------------------===//
6952 // Binary Operators.
6953 //===----------------------------------------------------------------------===//
6954 
6955 /// parseArithmetic
6956 ///  ::= ArithmeticOps TypeAndValue ',' Value
6957 ///
6958 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6959 /// operand is allowed.
6960 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6961                                unsigned Opc, bool IsFP) {
6962   LocTy Loc; Value *LHS, *RHS;
6963   if (parseTypeAndValue(LHS, Loc, PFS) ||
6964       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6965       parseValue(LHS->getType(), RHS, PFS))
6966     return true;
6967 
6968   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6969                     : LHS->getType()->isIntOrIntVectorTy();
6970 
6971   if (!Valid)
6972     return error(Loc, "invalid operand type for instruction");
6973 
6974   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6975   return false;
6976 }
6977 
6978 /// parseLogical
6979 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6980 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6981                             unsigned Opc) {
6982   LocTy Loc; Value *LHS, *RHS;
6983   if (parseTypeAndValue(LHS, Loc, PFS) ||
6984       parseToken(lltok::comma, "expected ',' in logical operation") ||
6985       parseValue(LHS->getType(), RHS, PFS))
6986     return true;
6987 
6988   if (!LHS->getType()->isIntOrIntVectorTy())
6989     return error(Loc,
6990                  "instruction requires integer or integer vector operands");
6991 
6992   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6993   return false;
6994 }
6995 
6996 /// parseCompare
6997 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6998 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6999 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7000                             unsigned Opc) {
7001   // parse the integer/fp comparison predicate.
7002   LocTy Loc;
7003   unsigned Pred;
7004   Value *LHS, *RHS;
7005   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7006       parseToken(lltok::comma, "expected ',' after compare value") ||
7007       parseValue(LHS->getType(), RHS, PFS))
7008     return true;
7009 
7010   if (Opc == Instruction::FCmp) {
7011     if (!LHS->getType()->isFPOrFPVectorTy())
7012       return error(Loc, "fcmp requires floating point operands");
7013     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7014   } else {
7015     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7016     if (!LHS->getType()->isIntOrIntVectorTy() &&
7017         !LHS->getType()->isPtrOrPtrVectorTy())
7018       return error(Loc, "icmp requires integer operands");
7019     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7020   }
7021   return false;
7022 }
7023 
7024 //===----------------------------------------------------------------------===//
7025 // Other Instructions.
7026 //===----------------------------------------------------------------------===//
7027 
7028 /// parseCast
7029 ///   ::= CastOpc TypeAndValue 'to' Type
7030 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7031                          unsigned Opc) {
7032   LocTy Loc;
7033   Value *Op;
7034   Type *DestTy = nullptr;
7035   if (parseTypeAndValue(Op, Loc, PFS) ||
7036       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7037       parseType(DestTy))
7038     return true;
7039 
7040   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7041     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7042     return error(Loc, "invalid cast opcode for cast from '" +
7043                           getTypeString(Op->getType()) + "' to '" +
7044                           getTypeString(DestTy) + "'");
7045   }
7046   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7047   return false;
7048 }
7049 
7050 /// parseSelect
7051 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7052 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7053   LocTy Loc;
7054   Value *Op0, *Op1, *Op2;
7055   if (parseTypeAndValue(Op0, Loc, PFS) ||
7056       parseToken(lltok::comma, "expected ',' after select condition") ||
7057       parseTypeAndValue(Op1, PFS) ||
7058       parseToken(lltok::comma, "expected ',' after select value") ||
7059       parseTypeAndValue(Op2, PFS))
7060     return true;
7061 
7062   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7063     return error(Loc, Reason);
7064 
7065   Inst = SelectInst::Create(Op0, Op1, Op2);
7066   return false;
7067 }
7068 
7069 /// parseVAArg
7070 ///   ::= 'va_arg' TypeAndValue ',' Type
7071 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7072   Value *Op;
7073   Type *EltTy = nullptr;
7074   LocTy TypeLoc;
7075   if (parseTypeAndValue(Op, PFS) ||
7076       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7077       parseType(EltTy, TypeLoc))
7078     return true;
7079 
7080   if (!EltTy->isFirstClassType())
7081     return error(TypeLoc, "va_arg requires operand with first class type");
7082 
7083   Inst = new VAArgInst(Op, EltTy);
7084   return false;
7085 }
7086 
7087 /// parseExtractElement
7088 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7089 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7090   LocTy Loc;
7091   Value *Op0, *Op1;
7092   if (parseTypeAndValue(Op0, Loc, PFS) ||
7093       parseToken(lltok::comma, "expected ',' after extract value") ||
7094       parseTypeAndValue(Op1, PFS))
7095     return true;
7096 
7097   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7098     return error(Loc, "invalid extractelement operands");
7099 
7100   Inst = ExtractElementInst::Create(Op0, Op1);
7101   return false;
7102 }
7103 
7104 /// parseInsertElement
7105 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7106 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7107   LocTy Loc;
7108   Value *Op0, *Op1, *Op2;
7109   if (parseTypeAndValue(Op0, Loc, PFS) ||
7110       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7111       parseTypeAndValue(Op1, PFS) ||
7112       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7113       parseTypeAndValue(Op2, PFS))
7114     return true;
7115 
7116   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7117     return error(Loc, "invalid insertelement operands");
7118 
7119   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7120   return false;
7121 }
7122 
7123 /// parseShuffleVector
7124 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7125 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7126   LocTy Loc;
7127   Value *Op0, *Op1, *Op2;
7128   if (parseTypeAndValue(Op0, Loc, PFS) ||
7129       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7130       parseTypeAndValue(Op1, PFS) ||
7131       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7132       parseTypeAndValue(Op2, PFS))
7133     return true;
7134 
7135   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7136     return error(Loc, "invalid shufflevector operands");
7137 
7138   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7139   return false;
7140 }
7141 
7142 /// parsePHI
7143 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7144 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7145   Type *Ty = nullptr;  LocTy TypeLoc;
7146   Value *Op0, *Op1;
7147 
7148   if (parseType(Ty, TypeLoc) ||
7149       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7150       parseValue(Ty, Op0, PFS) ||
7151       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7152       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7153       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7154     return true;
7155 
7156   bool AteExtraComma = false;
7157   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7158 
7159   while (true) {
7160     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7161 
7162     if (!EatIfPresent(lltok::comma))
7163       break;
7164 
7165     if (Lex.getKind() == lltok::MetadataVar) {
7166       AteExtraComma = true;
7167       break;
7168     }
7169 
7170     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7171         parseValue(Ty, Op0, PFS) ||
7172         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7173         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7174         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7175       return true;
7176   }
7177 
7178   if (!Ty->isFirstClassType())
7179     return error(TypeLoc, "phi node must have first class type");
7180 
7181   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7182   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7183     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7184   Inst = PN;
7185   return AteExtraComma ? InstExtraComma : InstNormal;
7186 }
7187 
7188 /// parseLandingPad
7189 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7190 /// Clause
7191 ///   ::= 'catch' TypeAndValue
7192 ///   ::= 'filter'
7193 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7194 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7195   Type *Ty = nullptr; LocTy TyLoc;
7196 
7197   if (parseType(Ty, TyLoc))
7198     return true;
7199 
7200   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7201   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7202 
7203   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7204     LandingPadInst::ClauseType CT;
7205     if (EatIfPresent(lltok::kw_catch))
7206       CT = LandingPadInst::Catch;
7207     else if (EatIfPresent(lltok::kw_filter))
7208       CT = LandingPadInst::Filter;
7209     else
7210       return tokError("expected 'catch' or 'filter' clause type");
7211 
7212     Value *V;
7213     LocTy VLoc;
7214     if (parseTypeAndValue(V, VLoc, PFS))
7215       return true;
7216 
7217     // A 'catch' type expects a non-array constant. A filter clause expects an
7218     // array constant.
7219     if (CT == LandingPadInst::Catch) {
7220       if (isa<ArrayType>(V->getType()))
7221         error(VLoc, "'catch' clause has an invalid type");
7222     } else {
7223       if (!isa<ArrayType>(V->getType()))
7224         error(VLoc, "'filter' clause has an invalid type");
7225     }
7226 
7227     Constant *CV = dyn_cast<Constant>(V);
7228     if (!CV)
7229       return error(VLoc, "clause argument must be a constant");
7230     LP->addClause(CV);
7231   }
7232 
7233   Inst = LP.release();
7234   return false;
7235 }
7236 
7237 /// parseFreeze
7238 ///   ::= 'freeze' Type Value
7239 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7240   LocTy Loc;
7241   Value *Op;
7242   if (parseTypeAndValue(Op, Loc, PFS))
7243     return true;
7244 
7245   Inst = new FreezeInst(Op);
7246   return false;
7247 }
7248 
7249 /// parseCall
7250 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7251 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7252 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7253 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7254 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7255 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7256 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7257 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7258 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7259                          CallInst::TailCallKind TCK) {
7260   AttrBuilder RetAttrs, FnAttrs;
7261   std::vector<unsigned> FwdRefAttrGrps;
7262   LocTy BuiltinLoc;
7263   unsigned CallAddrSpace;
7264   unsigned CC;
7265   Type *RetType = nullptr;
7266   LocTy RetTypeLoc;
7267   ValID CalleeID;
7268   SmallVector<ParamInfo, 16> ArgList;
7269   SmallVector<OperandBundleDef, 2> BundleList;
7270   LocTy CallLoc = Lex.getLoc();
7271 
7272   if (TCK != CallInst::TCK_None &&
7273       parseToken(lltok::kw_call,
7274                  "expected 'tail call', 'musttail call', or 'notail call'"))
7275     return true;
7276 
7277   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7278 
7279   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7280       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7281       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7282       parseValID(CalleeID) ||
7283       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7284                          PFS.getFunction().isVarArg()) ||
7285       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7286       parseOptionalOperandBundles(BundleList, PFS))
7287     return true;
7288 
7289   // If RetType is a non-function pointer type, then this is the short syntax
7290   // for the call, which means that RetType is just the return type.  Infer the
7291   // rest of the function argument types from the arguments that are present.
7292   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7293   if (!Ty) {
7294     // Pull out the types of all of the arguments...
7295     std::vector<Type*> ParamTypes;
7296     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7297       ParamTypes.push_back(ArgList[i].V->getType());
7298 
7299     if (!FunctionType::isValidReturnType(RetType))
7300       return error(RetTypeLoc, "Invalid result type for LLVM function");
7301 
7302     Ty = FunctionType::get(RetType, ParamTypes, false);
7303   }
7304 
7305   CalleeID.FTy = Ty;
7306 
7307   // Look up the callee.
7308   Value *Callee;
7309   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7310                           &PFS, /*IsCall=*/true))
7311     return true;
7312 
7313   // Set up the Attribute for the function.
7314   SmallVector<AttributeSet, 8> Attrs;
7315 
7316   SmallVector<Value*, 8> Args;
7317 
7318   // Loop through FunctionType's arguments and ensure they are specified
7319   // correctly.  Also, gather any parameter attributes.
7320   FunctionType::param_iterator I = Ty->param_begin();
7321   FunctionType::param_iterator E = Ty->param_end();
7322   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7323     Type *ExpectedTy = nullptr;
7324     if (I != E) {
7325       ExpectedTy = *I++;
7326     } else if (!Ty->isVarArg()) {
7327       return error(ArgList[i].Loc, "too many arguments specified");
7328     }
7329 
7330     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7331       return error(ArgList[i].Loc, "argument is not of expected type '" +
7332                                        getTypeString(ExpectedTy) + "'");
7333     Args.push_back(ArgList[i].V);
7334     Attrs.push_back(ArgList[i].Attrs);
7335   }
7336 
7337   if (I != E)
7338     return error(CallLoc, "not enough parameters specified for call");
7339 
7340   if (FnAttrs.hasAlignmentAttr())
7341     return error(CallLoc, "call instructions may not have an alignment");
7342 
7343   // Finish off the Attribute and check them
7344   AttributeList PAL =
7345       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7346                          AttributeSet::get(Context, RetAttrs), Attrs);
7347 
7348   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7349   CI->setTailCallKind(TCK);
7350   CI->setCallingConv(CC);
7351   if (FMF.any()) {
7352     if (!isa<FPMathOperator>(CI)) {
7353       CI->deleteValue();
7354       return error(CallLoc, "fast-math-flags specified for call without "
7355                             "floating-point scalar or vector return type");
7356     }
7357     CI->setFastMathFlags(FMF);
7358   }
7359   CI->setAttributes(PAL);
7360   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7361   Inst = CI;
7362   return false;
7363 }
7364 
7365 //===----------------------------------------------------------------------===//
7366 // Memory Instructions.
7367 //===----------------------------------------------------------------------===//
7368 
7369 /// parseAlloc
7370 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7371 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7372 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7373   Value *Size = nullptr;
7374   LocTy SizeLoc, TyLoc, ASLoc;
7375   MaybeAlign Alignment;
7376   unsigned AddrSpace = 0;
7377   Type *Ty = nullptr;
7378 
7379   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7380   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7381 
7382   if (parseType(Ty, TyLoc))
7383     return true;
7384 
7385   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7386     return error(TyLoc, "invalid type for alloca");
7387 
7388   bool AteExtraComma = false;
7389   if (EatIfPresent(lltok::comma)) {
7390     if (Lex.getKind() == lltok::kw_align) {
7391       if (parseOptionalAlignment(Alignment))
7392         return true;
7393       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7394         return true;
7395     } else if (Lex.getKind() == lltok::kw_addrspace) {
7396       ASLoc = Lex.getLoc();
7397       if (parseOptionalAddrSpace(AddrSpace))
7398         return true;
7399     } else if (Lex.getKind() == lltok::MetadataVar) {
7400       AteExtraComma = true;
7401     } else {
7402       if (parseTypeAndValue(Size, SizeLoc, PFS))
7403         return true;
7404       if (EatIfPresent(lltok::comma)) {
7405         if (Lex.getKind() == lltok::kw_align) {
7406           if (parseOptionalAlignment(Alignment))
7407             return true;
7408           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7409             return true;
7410         } else if (Lex.getKind() == lltok::kw_addrspace) {
7411           ASLoc = Lex.getLoc();
7412           if (parseOptionalAddrSpace(AddrSpace))
7413             return true;
7414         } else if (Lex.getKind() == lltok::MetadataVar) {
7415           AteExtraComma = true;
7416         }
7417       }
7418     }
7419   }
7420 
7421   if (Size && !Size->getType()->isIntegerTy())
7422     return error(SizeLoc, "element count must have integer type");
7423 
7424   SmallPtrSet<Type *, 4> Visited;
7425   if (!Alignment && !Ty->isSized(&Visited))
7426     return error(TyLoc, "Cannot allocate unsized type");
7427   if (!Alignment)
7428     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7429   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7430   AI->setUsedWithInAlloca(IsInAlloca);
7431   AI->setSwiftError(IsSwiftError);
7432   Inst = AI;
7433   return AteExtraComma ? InstExtraComma : InstNormal;
7434 }
7435 
7436 /// parseLoad
7437 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7438 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7439 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7440 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7441   Value *Val; LocTy Loc;
7442   MaybeAlign Alignment;
7443   bool AteExtraComma = false;
7444   bool isAtomic = false;
7445   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7446   SyncScope::ID SSID = SyncScope::System;
7447 
7448   if (Lex.getKind() == lltok::kw_atomic) {
7449     isAtomic = true;
7450     Lex.Lex();
7451   }
7452 
7453   bool isVolatile = false;
7454   if (Lex.getKind() == lltok::kw_volatile) {
7455     isVolatile = true;
7456     Lex.Lex();
7457   }
7458 
7459   Type *Ty;
7460   LocTy ExplicitTypeLoc = Lex.getLoc();
7461   if (parseType(Ty) ||
7462       parseToken(lltok::comma, "expected comma after load's type") ||
7463       parseTypeAndValue(Val, Loc, PFS) ||
7464       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7465       parseOptionalCommaAlign(Alignment, AteExtraComma))
7466     return true;
7467 
7468   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7469     return error(Loc, "load operand must be a pointer to a first class type");
7470   if (isAtomic && !Alignment)
7471     return error(Loc, "atomic load must have explicit non-zero alignment");
7472   if (Ordering == AtomicOrdering::Release ||
7473       Ordering == AtomicOrdering::AcquireRelease)
7474     return error(Loc, "atomic load cannot use Release ordering");
7475 
7476   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7477     return error(
7478         ExplicitTypeLoc,
7479         typeComparisonErrorMessage(
7480             "explicit pointee type doesn't match operand's pointee type", Ty,
7481             cast<PointerType>(Val->getType())->getElementType()));
7482   }
7483   SmallPtrSet<Type *, 4> Visited;
7484   if (!Alignment && !Ty->isSized(&Visited))
7485     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7486   if (!Alignment)
7487     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7488   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7489   return AteExtraComma ? InstExtraComma : InstNormal;
7490 }
7491 
7492 /// parseStore
7493 
7494 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7495 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7496 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7497 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7498   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7499   MaybeAlign Alignment;
7500   bool AteExtraComma = false;
7501   bool isAtomic = false;
7502   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7503   SyncScope::ID SSID = SyncScope::System;
7504 
7505   if (Lex.getKind() == lltok::kw_atomic) {
7506     isAtomic = true;
7507     Lex.Lex();
7508   }
7509 
7510   bool isVolatile = false;
7511   if (Lex.getKind() == lltok::kw_volatile) {
7512     isVolatile = true;
7513     Lex.Lex();
7514   }
7515 
7516   if (parseTypeAndValue(Val, Loc, PFS) ||
7517       parseToken(lltok::comma, "expected ',' after store operand") ||
7518       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7519       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7520       parseOptionalCommaAlign(Alignment, AteExtraComma))
7521     return true;
7522 
7523   if (!Ptr->getType()->isPointerTy())
7524     return error(PtrLoc, "store operand must be a pointer");
7525   if (!Val->getType()->isFirstClassType())
7526     return error(Loc, "store operand must be a first class value");
7527   if (!cast<PointerType>(Ptr->getType())
7528            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7529     return error(Loc, "stored value and pointer type do not match");
7530   if (isAtomic && !Alignment)
7531     return error(Loc, "atomic store must have explicit non-zero alignment");
7532   if (Ordering == AtomicOrdering::Acquire ||
7533       Ordering == AtomicOrdering::AcquireRelease)
7534     return error(Loc, "atomic store cannot use Acquire ordering");
7535   SmallPtrSet<Type *, 4> Visited;
7536   if (!Alignment && !Val->getType()->isSized(&Visited))
7537     return error(Loc, "storing unsized types is not allowed");
7538   if (!Alignment)
7539     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7540 
7541   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7542   return AteExtraComma ? InstExtraComma : InstNormal;
7543 }
7544 
7545 /// parseCmpXchg
7546 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7547 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7548 ///       'Align'?
7549 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7550   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7551   bool AteExtraComma = false;
7552   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7553   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7554   SyncScope::ID SSID = SyncScope::System;
7555   bool isVolatile = false;
7556   bool isWeak = false;
7557   MaybeAlign Alignment;
7558 
7559   if (EatIfPresent(lltok::kw_weak))
7560     isWeak = true;
7561 
7562   if (EatIfPresent(lltok::kw_volatile))
7563     isVolatile = true;
7564 
7565   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7566       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7567       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7568       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7569       parseTypeAndValue(New, NewLoc, PFS) ||
7570       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7571       parseOrdering(FailureOrdering) ||
7572       parseOptionalCommaAlign(Alignment, AteExtraComma))
7573     return true;
7574 
7575   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7576     return tokError("invalid cmpxchg success ordering");
7577   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7578     return tokError("invalid cmpxchg failure ordering");
7579   if (!Ptr->getType()->isPointerTy())
7580     return error(PtrLoc, "cmpxchg operand must be a pointer");
7581   if (!cast<PointerType>(Ptr->getType())
7582            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7583     return error(CmpLoc, "compare value and pointer type do not match");
7584   if (!cast<PointerType>(Ptr->getType())
7585            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7586     return error(NewLoc, "new value and pointer type do not match");
7587   if (Cmp->getType() != New->getType())
7588     return error(NewLoc, "compare value and new value type do not match");
7589   if (!New->getType()->isFirstClassType())
7590     return error(NewLoc, "cmpxchg operand must be a first class value");
7591 
7592   const Align DefaultAlignment(
7593       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7594           Cmp->getType()));
7595 
7596   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7597       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7598       FailureOrdering, SSID);
7599   CXI->setVolatile(isVolatile);
7600   CXI->setWeak(isWeak);
7601 
7602   Inst = CXI;
7603   return AteExtraComma ? InstExtraComma : InstNormal;
7604 }
7605 
7606 /// parseAtomicRMW
7607 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7608 ///       'singlethread'? AtomicOrdering
7609 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7610   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7611   bool AteExtraComma = false;
7612   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7613   SyncScope::ID SSID = SyncScope::System;
7614   bool isVolatile = false;
7615   bool IsFP = false;
7616   AtomicRMWInst::BinOp Operation;
7617   MaybeAlign Alignment;
7618 
7619   if (EatIfPresent(lltok::kw_volatile))
7620     isVolatile = true;
7621 
7622   switch (Lex.getKind()) {
7623   default:
7624     return tokError("expected binary operation in atomicrmw");
7625   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7626   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7627   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7628   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7629   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7630   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7631   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7632   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7633   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7634   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7635   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7636   case lltok::kw_fadd:
7637     Operation = AtomicRMWInst::FAdd;
7638     IsFP = true;
7639     break;
7640   case lltok::kw_fsub:
7641     Operation = AtomicRMWInst::FSub;
7642     IsFP = true;
7643     break;
7644   }
7645   Lex.Lex();  // Eat the operation.
7646 
7647   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7648       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7649       parseTypeAndValue(Val, ValLoc, PFS) ||
7650       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7651       parseOptionalCommaAlign(Alignment, AteExtraComma))
7652     return true;
7653 
7654   if (Ordering == AtomicOrdering::Unordered)
7655     return tokError("atomicrmw cannot be unordered");
7656   if (!Ptr->getType()->isPointerTy())
7657     return error(PtrLoc, "atomicrmw operand must be a pointer");
7658   if (!cast<PointerType>(Ptr->getType())
7659            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7660     return error(ValLoc, "atomicrmw value and pointer type do not match");
7661 
7662   if (Operation == AtomicRMWInst::Xchg) {
7663     if (!Val->getType()->isIntegerTy() &&
7664         !Val->getType()->isFloatingPointTy()) {
7665       return error(ValLoc,
7666                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7667                        " operand must be an integer or floating point type");
7668     }
7669   } else if (IsFP) {
7670     if (!Val->getType()->isFloatingPointTy()) {
7671       return error(ValLoc, "atomicrmw " +
7672                                AtomicRMWInst::getOperationName(Operation) +
7673                                " operand must be a floating point type");
7674     }
7675   } else {
7676     if (!Val->getType()->isIntegerTy()) {
7677       return error(ValLoc, "atomicrmw " +
7678                                AtomicRMWInst::getOperationName(Operation) +
7679                                " operand must be an integer");
7680     }
7681   }
7682 
7683   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7684   if (Size < 8 || (Size & (Size - 1)))
7685     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7686                          " integer");
7687   const Align DefaultAlignment(
7688       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7689           Val->getType()));
7690   AtomicRMWInst *RMWI =
7691       new AtomicRMWInst(Operation, Ptr, Val,
7692                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7693   RMWI->setVolatile(isVolatile);
7694   Inst = RMWI;
7695   return AteExtraComma ? InstExtraComma : InstNormal;
7696 }
7697 
7698 /// parseFence
7699 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7700 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7701   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7702   SyncScope::ID SSID = SyncScope::System;
7703   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7704     return true;
7705 
7706   if (Ordering == AtomicOrdering::Unordered)
7707     return tokError("fence cannot be unordered");
7708   if (Ordering == AtomicOrdering::Monotonic)
7709     return tokError("fence cannot be monotonic");
7710 
7711   Inst = new FenceInst(Context, Ordering, SSID);
7712   return InstNormal;
7713 }
7714 
7715 /// parseGetElementPtr
7716 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7717 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7718   Value *Ptr = nullptr;
7719   Value *Val = nullptr;
7720   LocTy Loc, EltLoc;
7721 
7722   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7723 
7724   Type *Ty = nullptr;
7725   LocTy ExplicitTypeLoc = Lex.getLoc();
7726   if (parseType(Ty) ||
7727       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7728       parseTypeAndValue(Ptr, Loc, PFS))
7729     return true;
7730 
7731   Type *BaseType = Ptr->getType();
7732   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7733   if (!BasePointerType)
7734     return error(Loc, "base of getelementptr must be a pointer");
7735 
7736   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7737     return error(
7738         ExplicitTypeLoc,
7739         typeComparisonErrorMessage(
7740             "explicit pointee type doesn't match operand's pointee type", Ty,
7741             BasePointerType->getElementType()));
7742   }
7743 
7744   SmallVector<Value*, 16> Indices;
7745   bool AteExtraComma = false;
7746   // GEP returns a vector of pointers if at least one of parameters is a vector.
7747   // All vector parameters should have the same vector width.
7748   ElementCount GEPWidth = BaseType->isVectorTy()
7749                               ? cast<VectorType>(BaseType)->getElementCount()
7750                               : ElementCount::getFixed(0);
7751 
7752   while (EatIfPresent(lltok::comma)) {
7753     if (Lex.getKind() == lltok::MetadataVar) {
7754       AteExtraComma = true;
7755       break;
7756     }
7757     if (parseTypeAndValue(Val, EltLoc, PFS))
7758       return true;
7759     if (!Val->getType()->isIntOrIntVectorTy())
7760       return error(EltLoc, "getelementptr index must be an integer");
7761 
7762     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7763       ElementCount ValNumEl = ValVTy->getElementCount();
7764       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7765         return error(
7766             EltLoc,
7767             "getelementptr vector index has a wrong number of elements");
7768       GEPWidth = ValNumEl;
7769     }
7770     Indices.push_back(Val);
7771   }
7772 
7773   SmallPtrSet<Type*, 4> Visited;
7774   if (!Indices.empty() && !Ty->isSized(&Visited))
7775     return error(Loc, "base element of getelementptr must be sized");
7776 
7777   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7778     return error(Loc, "invalid getelementptr indices");
7779   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7780   if (InBounds)
7781     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7782   return AteExtraComma ? InstExtraComma : InstNormal;
7783 }
7784 
7785 /// parseExtractValue
7786 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7787 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7788   Value *Val; LocTy Loc;
7789   SmallVector<unsigned, 4> Indices;
7790   bool AteExtraComma;
7791   if (parseTypeAndValue(Val, Loc, PFS) ||
7792       parseIndexList(Indices, AteExtraComma))
7793     return true;
7794 
7795   if (!Val->getType()->isAggregateType())
7796     return error(Loc, "extractvalue operand must be aggregate type");
7797 
7798   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7799     return error(Loc, "invalid indices for extractvalue");
7800   Inst = ExtractValueInst::Create(Val, Indices);
7801   return AteExtraComma ? InstExtraComma : InstNormal;
7802 }
7803 
7804 /// parseInsertValue
7805 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7806 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7807   Value *Val0, *Val1; LocTy Loc0, Loc1;
7808   SmallVector<unsigned, 4> Indices;
7809   bool AteExtraComma;
7810   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7811       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7812       parseTypeAndValue(Val1, Loc1, PFS) ||
7813       parseIndexList(Indices, AteExtraComma))
7814     return true;
7815 
7816   if (!Val0->getType()->isAggregateType())
7817     return error(Loc0, "insertvalue operand must be aggregate type");
7818 
7819   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7820   if (!IndexedType)
7821     return error(Loc0, "invalid indices for insertvalue");
7822   if (IndexedType != Val1->getType())
7823     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7824                            getTypeString(Val1->getType()) + "' instead of '" +
7825                            getTypeString(IndexedType) + "'");
7826   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7827   return AteExtraComma ? InstExtraComma : InstNormal;
7828 }
7829 
7830 //===----------------------------------------------------------------------===//
7831 // Embedded metadata.
7832 //===----------------------------------------------------------------------===//
7833 
7834 /// parseMDNodeVector
7835 ///   ::= { Element (',' Element)* }
7836 /// Element
7837 ///   ::= 'null' | TypeAndValue
7838 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7839   if (parseToken(lltok::lbrace, "expected '{' here"))
7840     return true;
7841 
7842   // Check for an empty list.
7843   if (EatIfPresent(lltok::rbrace))
7844     return false;
7845 
7846   do {
7847     // Null is a special case since it is typeless.
7848     if (EatIfPresent(lltok::kw_null)) {
7849       Elts.push_back(nullptr);
7850       continue;
7851     }
7852 
7853     Metadata *MD;
7854     if (parseMetadata(MD, nullptr))
7855       return true;
7856     Elts.push_back(MD);
7857   } while (EatIfPresent(lltok::comma));
7858 
7859   return parseToken(lltok::rbrace, "expected end of metadata node");
7860 }
7861 
7862 //===----------------------------------------------------------------------===//
7863 // Use-list order directives.
7864 //===----------------------------------------------------------------------===//
7865 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7866                                 SMLoc Loc) {
7867   if (V->use_empty())
7868     return error(Loc, "value has no uses");
7869 
7870   unsigned NumUses = 0;
7871   SmallDenseMap<const Use *, unsigned, 16> Order;
7872   for (const Use &U : V->uses()) {
7873     if (++NumUses > Indexes.size())
7874       break;
7875     Order[&U] = Indexes[NumUses - 1];
7876   }
7877   if (NumUses < 2)
7878     return error(Loc, "value only has one use");
7879   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7880     return error(Loc,
7881                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7882 
7883   V->sortUseList([&](const Use &L, const Use &R) {
7884     return Order.lookup(&L) < Order.lookup(&R);
7885   });
7886   return false;
7887 }
7888 
7889 /// parseUseListOrderIndexes
7890 ///   ::= '{' uint32 (',' uint32)+ '}'
7891 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7892   SMLoc Loc = Lex.getLoc();
7893   if (parseToken(lltok::lbrace, "expected '{' here"))
7894     return true;
7895   if (Lex.getKind() == lltok::rbrace)
7896     return Lex.Error("expected non-empty list of uselistorder indexes");
7897 
7898   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7899   // indexes should be distinct numbers in the range [0, size-1], and should
7900   // not be in order.
7901   unsigned Offset = 0;
7902   unsigned Max = 0;
7903   bool IsOrdered = true;
7904   assert(Indexes.empty() && "Expected empty order vector");
7905   do {
7906     unsigned Index;
7907     if (parseUInt32(Index))
7908       return true;
7909 
7910     // Update consistency checks.
7911     Offset += Index - Indexes.size();
7912     Max = std::max(Max, Index);
7913     IsOrdered &= Index == Indexes.size();
7914 
7915     Indexes.push_back(Index);
7916   } while (EatIfPresent(lltok::comma));
7917 
7918   if (parseToken(lltok::rbrace, "expected '}' here"))
7919     return true;
7920 
7921   if (Indexes.size() < 2)
7922     return error(Loc, "expected >= 2 uselistorder indexes");
7923   if (Offset != 0 || Max >= Indexes.size())
7924     return error(Loc,
7925                  "expected distinct uselistorder indexes in range [0, size)");
7926   if (IsOrdered)
7927     return error(Loc, "expected uselistorder indexes to change the order");
7928 
7929   return false;
7930 }
7931 
7932 /// parseUseListOrder
7933 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7934 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7935   SMLoc Loc = Lex.getLoc();
7936   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7937     return true;
7938 
7939   Value *V;
7940   SmallVector<unsigned, 16> Indexes;
7941   if (parseTypeAndValue(V, PFS) ||
7942       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7943       parseUseListOrderIndexes(Indexes))
7944     return true;
7945 
7946   return sortUseListOrder(V, Indexes, Loc);
7947 }
7948 
7949 /// parseUseListOrderBB
7950 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7951 bool LLParser::parseUseListOrderBB() {
7952   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7953   SMLoc Loc = Lex.getLoc();
7954   Lex.Lex();
7955 
7956   ValID Fn, Label;
7957   SmallVector<unsigned, 16> Indexes;
7958   if (parseValID(Fn) ||
7959       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7960       parseValID(Label) ||
7961       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7962       parseUseListOrderIndexes(Indexes))
7963     return true;
7964 
7965   // Check the function.
7966   GlobalValue *GV;
7967   if (Fn.Kind == ValID::t_GlobalName)
7968     GV = M->getNamedValue(Fn.StrVal);
7969   else if (Fn.Kind == ValID::t_GlobalID)
7970     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7971   else
7972     return error(Fn.Loc, "expected function name in uselistorder_bb");
7973   if (!GV)
7974     return error(Fn.Loc,
7975                  "invalid function forward reference in uselistorder_bb");
7976   auto *F = dyn_cast<Function>(GV);
7977   if (!F)
7978     return error(Fn.Loc, "expected function name in uselistorder_bb");
7979   if (F->isDeclaration())
7980     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7981 
7982   // Check the basic block.
7983   if (Label.Kind == ValID::t_LocalID)
7984     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7985   if (Label.Kind != ValID::t_LocalName)
7986     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7987   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7988   if (!V)
7989     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7990   if (!isa<BasicBlock>(V))
7991     return error(Label.Loc, "expected basic block in uselistorder_bb");
7992 
7993   return sortUseListOrder(V, Indexes, Loc);
7994 }
7995 
7996 /// ModuleEntry
7997 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7998 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7999 bool LLParser::parseModuleEntry(unsigned ID) {
8000   assert(Lex.getKind() == lltok::kw_module);
8001   Lex.Lex();
8002 
8003   std::string Path;
8004   if (parseToken(lltok::colon, "expected ':' here") ||
8005       parseToken(lltok::lparen, "expected '(' here") ||
8006       parseToken(lltok::kw_path, "expected 'path' here") ||
8007       parseToken(lltok::colon, "expected ':' here") ||
8008       parseStringConstant(Path) ||
8009       parseToken(lltok::comma, "expected ',' here") ||
8010       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8011       parseToken(lltok::colon, "expected ':' here") ||
8012       parseToken(lltok::lparen, "expected '(' here"))
8013     return true;
8014 
8015   ModuleHash Hash;
8016   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8017       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8018       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8019       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8020       parseUInt32(Hash[4]))
8021     return true;
8022 
8023   if (parseToken(lltok::rparen, "expected ')' here") ||
8024       parseToken(lltok::rparen, "expected ')' here"))
8025     return true;
8026 
8027   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8028   ModuleIdMap[ID] = ModuleEntry->first();
8029 
8030   return false;
8031 }
8032 
8033 /// TypeIdEntry
8034 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8035 bool LLParser::parseTypeIdEntry(unsigned ID) {
8036   assert(Lex.getKind() == lltok::kw_typeid);
8037   Lex.Lex();
8038 
8039   std::string Name;
8040   if (parseToken(lltok::colon, "expected ':' here") ||
8041       parseToken(lltok::lparen, "expected '(' here") ||
8042       parseToken(lltok::kw_name, "expected 'name' here") ||
8043       parseToken(lltok::colon, "expected ':' here") ||
8044       parseStringConstant(Name))
8045     return true;
8046 
8047   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8048   if (parseToken(lltok::comma, "expected ',' here") ||
8049       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8050     return true;
8051 
8052   // Check if this ID was forward referenced, and if so, update the
8053   // corresponding GUIDs.
8054   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8055   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8056     for (auto TIDRef : FwdRefTIDs->second) {
8057       assert(!*TIDRef.first &&
8058              "Forward referenced type id GUID expected to be 0");
8059       *TIDRef.first = GlobalValue::getGUID(Name);
8060     }
8061     ForwardRefTypeIds.erase(FwdRefTIDs);
8062   }
8063 
8064   return false;
8065 }
8066 
8067 /// TypeIdSummary
8068 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8069 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8070   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8071       parseToken(lltok::colon, "expected ':' here") ||
8072       parseToken(lltok::lparen, "expected '(' here") ||
8073       parseTypeTestResolution(TIS.TTRes))
8074     return true;
8075 
8076   if (EatIfPresent(lltok::comma)) {
8077     // Expect optional wpdResolutions field
8078     if (parseOptionalWpdResolutions(TIS.WPDRes))
8079       return true;
8080   }
8081 
8082   if (parseToken(lltok::rparen, "expected ')' here"))
8083     return true;
8084 
8085   return false;
8086 }
8087 
8088 static ValueInfo EmptyVI =
8089     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8090 
8091 /// TypeIdCompatibleVtableEntry
8092 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8093 ///   TypeIdCompatibleVtableInfo
8094 ///   ')'
8095 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8096   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8097   Lex.Lex();
8098 
8099   std::string Name;
8100   if (parseToken(lltok::colon, "expected ':' here") ||
8101       parseToken(lltok::lparen, "expected '(' here") ||
8102       parseToken(lltok::kw_name, "expected 'name' here") ||
8103       parseToken(lltok::colon, "expected ':' here") ||
8104       parseStringConstant(Name))
8105     return true;
8106 
8107   TypeIdCompatibleVtableInfo &TI =
8108       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8109   if (parseToken(lltok::comma, "expected ',' here") ||
8110       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8111       parseToken(lltok::colon, "expected ':' here") ||
8112       parseToken(lltok::lparen, "expected '(' here"))
8113     return true;
8114 
8115   IdToIndexMapType IdToIndexMap;
8116   // parse each call edge
8117   do {
8118     uint64_t Offset;
8119     if (parseToken(lltok::lparen, "expected '(' here") ||
8120         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8121         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8122         parseToken(lltok::comma, "expected ',' here"))
8123       return true;
8124 
8125     LocTy Loc = Lex.getLoc();
8126     unsigned GVId;
8127     ValueInfo VI;
8128     if (parseGVReference(VI, GVId))
8129       return true;
8130 
8131     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8132     // forward reference. We will save the location of the ValueInfo needing an
8133     // update, but can only do so once the std::vector is finalized.
8134     if (VI == EmptyVI)
8135       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8136     TI.push_back({Offset, VI});
8137 
8138     if (parseToken(lltok::rparen, "expected ')' in call"))
8139       return true;
8140   } while (EatIfPresent(lltok::comma));
8141 
8142   // Now that the TI vector is finalized, it is safe to save the locations
8143   // of any forward GV references that need updating later.
8144   for (auto I : IdToIndexMap) {
8145     auto &Infos = ForwardRefValueInfos[I.first];
8146     for (auto P : I.second) {
8147       assert(TI[P.first].VTableVI == EmptyVI &&
8148              "Forward referenced ValueInfo expected to be empty");
8149       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8150     }
8151   }
8152 
8153   if (parseToken(lltok::rparen, "expected ')' here") ||
8154       parseToken(lltok::rparen, "expected ')' here"))
8155     return true;
8156 
8157   // Check if this ID was forward referenced, and if so, update the
8158   // corresponding GUIDs.
8159   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8160   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8161     for (auto TIDRef : FwdRefTIDs->second) {
8162       assert(!*TIDRef.first &&
8163              "Forward referenced type id GUID expected to be 0");
8164       *TIDRef.first = GlobalValue::getGUID(Name);
8165     }
8166     ForwardRefTypeIds.erase(FwdRefTIDs);
8167   }
8168 
8169   return false;
8170 }
8171 
8172 /// TypeTestResolution
8173 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8174 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8175 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8176 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8177 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8178 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8179   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8180       parseToken(lltok::colon, "expected ':' here") ||
8181       parseToken(lltok::lparen, "expected '(' here") ||
8182       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8183       parseToken(lltok::colon, "expected ':' here"))
8184     return true;
8185 
8186   switch (Lex.getKind()) {
8187   case lltok::kw_unknown:
8188     TTRes.TheKind = TypeTestResolution::Unknown;
8189     break;
8190   case lltok::kw_unsat:
8191     TTRes.TheKind = TypeTestResolution::Unsat;
8192     break;
8193   case lltok::kw_byteArray:
8194     TTRes.TheKind = TypeTestResolution::ByteArray;
8195     break;
8196   case lltok::kw_inline:
8197     TTRes.TheKind = TypeTestResolution::Inline;
8198     break;
8199   case lltok::kw_single:
8200     TTRes.TheKind = TypeTestResolution::Single;
8201     break;
8202   case lltok::kw_allOnes:
8203     TTRes.TheKind = TypeTestResolution::AllOnes;
8204     break;
8205   default:
8206     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8207   }
8208   Lex.Lex();
8209 
8210   if (parseToken(lltok::comma, "expected ',' here") ||
8211       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8212       parseToken(lltok::colon, "expected ':' here") ||
8213       parseUInt32(TTRes.SizeM1BitWidth))
8214     return true;
8215 
8216   // parse optional fields
8217   while (EatIfPresent(lltok::comma)) {
8218     switch (Lex.getKind()) {
8219     case lltok::kw_alignLog2:
8220       Lex.Lex();
8221       if (parseToken(lltok::colon, "expected ':'") ||
8222           parseUInt64(TTRes.AlignLog2))
8223         return true;
8224       break;
8225     case lltok::kw_sizeM1:
8226       Lex.Lex();
8227       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8228         return true;
8229       break;
8230     case lltok::kw_bitMask: {
8231       unsigned Val;
8232       Lex.Lex();
8233       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8234         return true;
8235       assert(Val <= 0xff);
8236       TTRes.BitMask = (uint8_t)Val;
8237       break;
8238     }
8239     case lltok::kw_inlineBits:
8240       Lex.Lex();
8241       if (parseToken(lltok::colon, "expected ':'") ||
8242           parseUInt64(TTRes.InlineBits))
8243         return true;
8244       break;
8245     default:
8246       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8247     }
8248   }
8249 
8250   if (parseToken(lltok::rparen, "expected ')' here"))
8251     return true;
8252 
8253   return false;
8254 }
8255 
8256 /// OptionalWpdResolutions
8257 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8258 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8259 bool LLParser::parseOptionalWpdResolutions(
8260     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8261   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8262       parseToken(lltok::colon, "expected ':' here") ||
8263       parseToken(lltok::lparen, "expected '(' here"))
8264     return true;
8265 
8266   do {
8267     uint64_t Offset;
8268     WholeProgramDevirtResolution WPDRes;
8269     if (parseToken(lltok::lparen, "expected '(' here") ||
8270         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8271         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8272         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8273         parseToken(lltok::rparen, "expected ')' here"))
8274       return true;
8275     WPDResMap[Offset] = WPDRes;
8276   } while (EatIfPresent(lltok::comma));
8277 
8278   if (parseToken(lltok::rparen, "expected ')' here"))
8279     return true;
8280 
8281   return false;
8282 }
8283 
8284 /// WpdRes
8285 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8286 ///         [',' OptionalResByArg]? ')'
8287 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8288 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8289 ///         [',' OptionalResByArg]? ')'
8290 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8291 ///         [',' OptionalResByArg]? ')'
8292 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8293   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8294       parseToken(lltok::colon, "expected ':' here") ||
8295       parseToken(lltok::lparen, "expected '(' here") ||
8296       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8297       parseToken(lltok::colon, "expected ':' here"))
8298     return true;
8299 
8300   switch (Lex.getKind()) {
8301   case lltok::kw_indir:
8302     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8303     break;
8304   case lltok::kw_singleImpl:
8305     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8306     break;
8307   case lltok::kw_branchFunnel:
8308     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8309     break;
8310   default:
8311     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8312   }
8313   Lex.Lex();
8314 
8315   // parse optional fields
8316   while (EatIfPresent(lltok::comma)) {
8317     switch (Lex.getKind()) {
8318     case lltok::kw_singleImplName:
8319       Lex.Lex();
8320       if (parseToken(lltok::colon, "expected ':' here") ||
8321           parseStringConstant(WPDRes.SingleImplName))
8322         return true;
8323       break;
8324     case lltok::kw_resByArg:
8325       if (parseOptionalResByArg(WPDRes.ResByArg))
8326         return true;
8327       break;
8328     default:
8329       return error(Lex.getLoc(),
8330                    "expected optional WholeProgramDevirtResolution field");
8331     }
8332   }
8333 
8334   if (parseToken(lltok::rparen, "expected ')' here"))
8335     return true;
8336 
8337   return false;
8338 }
8339 
8340 /// OptionalResByArg
8341 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8342 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8343 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8344 ///                  'virtualConstProp' )
8345 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8346 ///                [',' 'bit' ':' UInt32]? ')'
8347 bool LLParser::parseOptionalResByArg(
8348     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8349         &ResByArg) {
8350   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8351       parseToken(lltok::colon, "expected ':' here") ||
8352       parseToken(lltok::lparen, "expected '(' here"))
8353     return true;
8354 
8355   do {
8356     std::vector<uint64_t> Args;
8357     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8358         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8359         parseToken(lltok::colon, "expected ':' here") ||
8360         parseToken(lltok::lparen, "expected '(' here") ||
8361         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8362         parseToken(lltok::colon, "expected ':' here"))
8363       return true;
8364 
8365     WholeProgramDevirtResolution::ByArg ByArg;
8366     switch (Lex.getKind()) {
8367     case lltok::kw_indir:
8368       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8369       break;
8370     case lltok::kw_uniformRetVal:
8371       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8372       break;
8373     case lltok::kw_uniqueRetVal:
8374       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8375       break;
8376     case lltok::kw_virtualConstProp:
8377       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8378       break;
8379     default:
8380       return error(Lex.getLoc(),
8381                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8382     }
8383     Lex.Lex();
8384 
8385     // parse optional fields
8386     while (EatIfPresent(lltok::comma)) {
8387       switch (Lex.getKind()) {
8388       case lltok::kw_info:
8389         Lex.Lex();
8390         if (parseToken(lltok::colon, "expected ':' here") ||
8391             parseUInt64(ByArg.Info))
8392           return true;
8393         break;
8394       case lltok::kw_byte:
8395         Lex.Lex();
8396         if (parseToken(lltok::colon, "expected ':' here") ||
8397             parseUInt32(ByArg.Byte))
8398           return true;
8399         break;
8400       case lltok::kw_bit:
8401         Lex.Lex();
8402         if (parseToken(lltok::colon, "expected ':' here") ||
8403             parseUInt32(ByArg.Bit))
8404           return true;
8405         break;
8406       default:
8407         return error(Lex.getLoc(),
8408                      "expected optional whole program devirt field");
8409       }
8410     }
8411 
8412     if (parseToken(lltok::rparen, "expected ')' here"))
8413       return true;
8414 
8415     ResByArg[Args] = ByArg;
8416   } while (EatIfPresent(lltok::comma));
8417 
8418   if (parseToken(lltok::rparen, "expected ')' here"))
8419     return true;
8420 
8421   return false;
8422 }
8423 
8424 /// OptionalResByArg
8425 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8426 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8427   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8428       parseToken(lltok::colon, "expected ':' here") ||
8429       parseToken(lltok::lparen, "expected '(' here"))
8430     return true;
8431 
8432   do {
8433     uint64_t Val;
8434     if (parseUInt64(Val))
8435       return true;
8436     Args.push_back(Val);
8437   } while (EatIfPresent(lltok::comma));
8438 
8439   if (parseToken(lltok::rparen, "expected ')' here"))
8440     return true;
8441 
8442   return false;
8443 }
8444 
8445 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8446 
8447 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8448   bool ReadOnly = Fwd->isReadOnly();
8449   bool WriteOnly = Fwd->isWriteOnly();
8450   assert(!(ReadOnly && WriteOnly));
8451   *Fwd = Resolved;
8452   if (ReadOnly)
8453     Fwd->setReadOnly();
8454   if (WriteOnly)
8455     Fwd->setWriteOnly();
8456 }
8457 
8458 /// Stores the given Name/GUID and associated summary into the Index.
8459 /// Also updates any forward references to the associated entry ID.
8460 void LLParser::addGlobalValueToIndex(
8461     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8462     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8463   // First create the ValueInfo utilizing the Name or GUID.
8464   ValueInfo VI;
8465   if (GUID != 0) {
8466     assert(Name.empty());
8467     VI = Index->getOrInsertValueInfo(GUID);
8468   } else {
8469     assert(!Name.empty());
8470     if (M) {
8471       auto *GV = M->getNamedValue(Name);
8472       assert(GV);
8473       VI = Index->getOrInsertValueInfo(GV);
8474     } else {
8475       assert(
8476           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8477           "Need a source_filename to compute GUID for local");
8478       GUID = GlobalValue::getGUID(
8479           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8480       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8481     }
8482   }
8483 
8484   // Resolve forward references from calls/refs
8485   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8486   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8487     for (auto VIRef : FwdRefVIs->second) {
8488       assert(VIRef.first->getRef() == FwdVIRef &&
8489              "Forward referenced ValueInfo expected to be empty");
8490       resolveFwdRef(VIRef.first, VI);
8491     }
8492     ForwardRefValueInfos.erase(FwdRefVIs);
8493   }
8494 
8495   // Resolve forward references from aliases
8496   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8497   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8498     for (auto AliaseeRef : FwdRefAliasees->second) {
8499       assert(!AliaseeRef.first->hasAliasee() &&
8500              "Forward referencing alias already has aliasee");
8501       assert(Summary && "Aliasee must be a definition");
8502       AliaseeRef.first->setAliasee(VI, Summary.get());
8503     }
8504     ForwardRefAliasees.erase(FwdRefAliasees);
8505   }
8506 
8507   // Add the summary if one was provided.
8508   if (Summary)
8509     Index->addGlobalValueSummary(VI, std::move(Summary));
8510 
8511   // Save the associated ValueInfo for use in later references by ID.
8512   if (ID == NumberedValueInfos.size())
8513     NumberedValueInfos.push_back(VI);
8514   else {
8515     // Handle non-continuous numbers (to make test simplification easier).
8516     if (ID > NumberedValueInfos.size())
8517       NumberedValueInfos.resize(ID + 1);
8518     NumberedValueInfos[ID] = VI;
8519   }
8520 }
8521 
8522 /// parseSummaryIndexFlags
8523 ///   ::= 'flags' ':' UInt64
8524 bool LLParser::parseSummaryIndexFlags() {
8525   assert(Lex.getKind() == lltok::kw_flags);
8526   Lex.Lex();
8527 
8528   if (parseToken(lltok::colon, "expected ':' here"))
8529     return true;
8530   uint64_t Flags;
8531   if (parseUInt64(Flags))
8532     return true;
8533   if (Index)
8534     Index->setFlags(Flags);
8535   return false;
8536 }
8537 
8538 /// parseBlockCount
8539 ///   ::= 'blockcount' ':' UInt64
8540 bool LLParser::parseBlockCount() {
8541   assert(Lex.getKind() == lltok::kw_blockcount);
8542   Lex.Lex();
8543 
8544   if (parseToken(lltok::colon, "expected ':' here"))
8545     return true;
8546   uint64_t BlockCount;
8547   if (parseUInt64(BlockCount))
8548     return true;
8549   if (Index)
8550     Index->setBlockCount(BlockCount);
8551   return false;
8552 }
8553 
8554 /// parseGVEntry
8555 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8556 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8557 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8558 bool LLParser::parseGVEntry(unsigned ID) {
8559   assert(Lex.getKind() == lltok::kw_gv);
8560   Lex.Lex();
8561 
8562   if (parseToken(lltok::colon, "expected ':' here") ||
8563       parseToken(lltok::lparen, "expected '(' here"))
8564     return true;
8565 
8566   std::string Name;
8567   GlobalValue::GUID GUID = 0;
8568   switch (Lex.getKind()) {
8569   case lltok::kw_name:
8570     Lex.Lex();
8571     if (parseToken(lltok::colon, "expected ':' here") ||
8572         parseStringConstant(Name))
8573       return true;
8574     // Can't create GUID/ValueInfo until we have the linkage.
8575     break;
8576   case lltok::kw_guid:
8577     Lex.Lex();
8578     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8579       return true;
8580     break;
8581   default:
8582     return error(Lex.getLoc(), "expected name or guid tag");
8583   }
8584 
8585   if (!EatIfPresent(lltok::comma)) {
8586     // No summaries. Wrap up.
8587     if (parseToken(lltok::rparen, "expected ')' here"))
8588       return true;
8589     // This was created for a call to an external or indirect target.
8590     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8591     // created for indirect calls with VP. A Name with no GUID came from
8592     // an external definition. We pass ExternalLinkage since that is only
8593     // used when the GUID must be computed from Name, and in that case
8594     // the symbol must have external linkage.
8595     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8596                           nullptr);
8597     return false;
8598   }
8599 
8600   // Have a list of summaries
8601   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8602       parseToken(lltok::colon, "expected ':' here") ||
8603       parseToken(lltok::lparen, "expected '(' here"))
8604     return true;
8605   do {
8606     switch (Lex.getKind()) {
8607     case lltok::kw_function:
8608       if (parseFunctionSummary(Name, GUID, ID))
8609         return true;
8610       break;
8611     case lltok::kw_variable:
8612       if (parseVariableSummary(Name, GUID, ID))
8613         return true;
8614       break;
8615     case lltok::kw_alias:
8616       if (parseAliasSummary(Name, GUID, ID))
8617         return true;
8618       break;
8619     default:
8620       return error(Lex.getLoc(), "expected summary type");
8621     }
8622   } while (EatIfPresent(lltok::comma));
8623 
8624   if (parseToken(lltok::rparen, "expected ')' here") ||
8625       parseToken(lltok::rparen, "expected ')' here"))
8626     return true;
8627 
8628   return false;
8629 }
8630 
8631 /// FunctionSummary
8632 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8633 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8634 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8635 ///         [',' OptionalRefs]? ')'
8636 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8637                                     unsigned ID) {
8638   assert(Lex.getKind() == lltok::kw_function);
8639   Lex.Lex();
8640 
8641   StringRef ModulePath;
8642   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8643       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8644       /*NotEligibleToImport=*/false,
8645       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8646   unsigned InstCount;
8647   std::vector<FunctionSummary::EdgeTy> Calls;
8648   FunctionSummary::TypeIdInfo TypeIdInfo;
8649   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8650   std::vector<ValueInfo> Refs;
8651   // Default is all-zeros (conservative values).
8652   FunctionSummary::FFlags FFlags = {};
8653   if (parseToken(lltok::colon, "expected ':' here") ||
8654       parseToken(lltok::lparen, "expected '(' here") ||
8655       parseModuleReference(ModulePath) ||
8656       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8657       parseToken(lltok::comma, "expected ',' here") ||
8658       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8659       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8660     return true;
8661 
8662   // parse optional fields
8663   while (EatIfPresent(lltok::comma)) {
8664     switch (Lex.getKind()) {
8665     case lltok::kw_funcFlags:
8666       if (parseOptionalFFlags(FFlags))
8667         return true;
8668       break;
8669     case lltok::kw_calls:
8670       if (parseOptionalCalls(Calls))
8671         return true;
8672       break;
8673     case lltok::kw_typeIdInfo:
8674       if (parseOptionalTypeIdInfo(TypeIdInfo))
8675         return true;
8676       break;
8677     case lltok::kw_refs:
8678       if (parseOptionalRefs(Refs))
8679         return true;
8680       break;
8681     case lltok::kw_params:
8682       if (parseOptionalParamAccesses(ParamAccesses))
8683         return true;
8684       break;
8685     default:
8686       return error(Lex.getLoc(), "expected optional function summary field");
8687     }
8688   }
8689 
8690   if (parseToken(lltok::rparen, "expected ')' here"))
8691     return true;
8692 
8693   auto FS = std::make_unique<FunctionSummary>(
8694       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8695       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8696       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8697       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8698       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8699       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8700       std::move(ParamAccesses));
8701 
8702   FS->setModulePath(ModulePath);
8703 
8704   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8705                         ID, std::move(FS));
8706 
8707   return false;
8708 }
8709 
8710 /// VariableSummary
8711 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8712 ///         [',' OptionalRefs]? ')'
8713 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8714                                     unsigned ID) {
8715   assert(Lex.getKind() == lltok::kw_variable);
8716   Lex.Lex();
8717 
8718   StringRef ModulePath;
8719   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8720       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8721       /*NotEligibleToImport=*/false,
8722       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8723   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8724                                         /* WriteOnly */ false,
8725                                         /* Constant */ false,
8726                                         GlobalObject::VCallVisibilityPublic);
8727   std::vector<ValueInfo> Refs;
8728   VTableFuncList VTableFuncs;
8729   if (parseToken(lltok::colon, "expected ':' here") ||
8730       parseToken(lltok::lparen, "expected '(' here") ||
8731       parseModuleReference(ModulePath) ||
8732       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8733       parseToken(lltok::comma, "expected ',' here") ||
8734       parseGVarFlags(GVarFlags))
8735     return true;
8736 
8737   // parse optional fields
8738   while (EatIfPresent(lltok::comma)) {
8739     switch (Lex.getKind()) {
8740     case lltok::kw_vTableFuncs:
8741       if (parseOptionalVTableFuncs(VTableFuncs))
8742         return true;
8743       break;
8744     case lltok::kw_refs:
8745       if (parseOptionalRefs(Refs))
8746         return true;
8747       break;
8748     default:
8749       return error(Lex.getLoc(), "expected optional variable summary field");
8750     }
8751   }
8752 
8753   if (parseToken(lltok::rparen, "expected ')' here"))
8754     return true;
8755 
8756   auto GS =
8757       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8758 
8759   GS->setModulePath(ModulePath);
8760   GS->setVTableFuncs(std::move(VTableFuncs));
8761 
8762   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8763                         ID, std::move(GS));
8764 
8765   return false;
8766 }
8767 
8768 /// AliasSummary
8769 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8770 ///         'aliasee' ':' GVReference ')'
8771 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8772                                  unsigned ID) {
8773   assert(Lex.getKind() == lltok::kw_alias);
8774   LocTy Loc = Lex.getLoc();
8775   Lex.Lex();
8776 
8777   StringRef ModulePath;
8778   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8779       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8780       /*NotEligibleToImport=*/false,
8781       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8782   if (parseToken(lltok::colon, "expected ':' here") ||
8783       parseToken(lltok::lparen, "expected '(' here") ||
8784       parseModuleReference(ModulePath) ||
8785       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8786       parseToken(lltok::comma, "expected ',' here") ||
8787       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8788       parseToken(lltok::colon, "expected ':' here"))
8789     return true;
8790 
8791   ValueInfo AliaseeVI;
8792   unsigned GVId;
8793   if (parseGVReference(AliaseeVI, GVId))
8794     return true;
8795 
8796   if (parseToken(lltok::rparen, "expected ')' here"))
8797     return true;
8798 
8799   auto AS = std::make_unique<AliasSummary>(GVFlags);
8800 
8801   AS->setModulePath(ModulePath);
8802 
8803   // Record forward reference if the aliasee is not parsed yet.
8804   if (AliaseeVI.getRef() == FwdVIRef) {
8805     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8806   } else {
8807     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8808     assert(Summary && "Aliasee must be a definition");
8809     AS->setAliasee(AliaseeVI, Summary);
8810   }
8811 
8812   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8813                         ID, std::move(AS));
8814 
8815   return false;
8816 }
8817 
8818 /// Flag
8819 ///   ::= [0|1]
8820 bool LLParser::parseFlag(unsigned &Val) {
8821   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8822     return tokError("expected integer");
8823   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8824   Lex.Lex();
8825   return false;
8826 }
8827 
8828 /// OptionalFFlags
8829 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8830 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8831 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8832 ///        [',' 'noInline' ':' Flag]? ')'
8833 ///        [',' 'alwaysInline' ':' Flag]? ')'
8834 
8835 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8836   assert(Lex.getKind() == lltok::kw_funcFlags);
8837   Lex.Lex();
8838 
8839   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8840       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8841     return true;
8842 
8843   do {
8844     unsigned Val = 0;
8845     switch (Lex.getKind()) {
8846     case lltok::kw_readNone:
8847       Lex.Lex();
8848       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8849         return true;
8850       FFlags.ReadNone = Val;
8851       break;
8852     case lltok::kw_readOnly:
8853       Lex.Lex();
8854       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8855         return true;
8856       FFlags.ReadOnly = Val;
8857       break;
8858     case lltok::kw_noRecurse:
8859       Lex.Lex();
8860       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8861         return true;
8862       FFlags.NoRecurse = Val;
8863       break;
8864     case lltok::kw_returnDoesNotAlias:
8865       Lex.Lex();
8866       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8867         return true;
8868       FFlags.ReturnDoesNotAlias = Val;
8869       break;
8870     case lltok::kw_noInline:
8871       Lex.Lex();
8872       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8873         return true;
8874       FFlags.NoInline = Val;
8875       break;
8876     case lltok::kw_alwaysInline:
8877       Lex.Lex();
8878       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8879         return true;
8880       FFlags.AlwaysInline = Val;
8881       break;
8882     default:
8883       return error(Lex.getLoc(), "expected function flag type");
8884     }
8885   } while (EatIfPresent(lltok::comma));
8886 
8887   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8888     return true;
8889 
8890   return false;
8891 }
8892 
8893 /// OptionalCalls
8894 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8895 /// Call ::= '(' 'callee' ':' GVReference
8896 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8897 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8898   assert(Lex.getKind() == lltok::kw_calls);
8899   Lex.Lex();
8900 
8901   if (parseToken(lltok::colon, "expected ':' in calls") |
8902       parseToken(lltok::lparen, "expected '(' in calls"))
8903     return true;
8904 
8905   IdToIndexMapType IdToIndexMap;
8906   // parse each call edge
8907   do {
8908     ValueInfo VI;
8909     if (parseToken(lltok::lparen, "expected '(' in call") ||
8910         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8911         parseToken(lltok::colon, "expected ':'"))
8912       return true;
8913 
8914     LocTy Loc = Lex.getLoc();
8915     unsigned GVId;
8916     if (parseGVReference(VI, GVId))
8917       return true;
8918 
8919     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8920     unsigned RelBF = 0;
8921     if (EatIfPresent(lltok::comma)) {
8922       // Expect either hotness or relbf
8923       if (EatIfPresent(lltok::kw_hotness)) {
8924         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8925           return true;
8926       } else {
8927         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8928             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8929           return true;
8930       }
8931     }
8932     // Keep track of the Call array index needing a forward reference.
8933     // We will save the location of the ValueInfo needing an update, but
8934     // can only do so once the std::vector is finalized.
8935     if (VI.getRef() == FwdVIRef)
8936       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8937     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8938 
8939     if (parseToken(lltok::rparen, "expected ')' in call"))
8940       return true;
8941   } while (EatIfPresent(lltok::comma));
8942 
8943   // Now that the Calls vector is finalized, it is safe to save the locations
8944   // of any forward GV references that need updating later.
8945   for (auto I : IdToIndexMap) {
8946     auto &Infos = ForwardRefValueInfos[I.first];
8947     for (auto P : I.second) {
8948       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8949              "Forward referenced ValueInfo expected to be empty");
8950       Infos.emplace_back(&Calls[P.first].first, P.second);
8951     }
8952   }
8953 
8954   if (parseToken(lltok::rparen, "expected ')' in calls"))
8955     return true;
8956 
8957   return false;
8958 }
8959 
8960 /// Hotness
8961 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8962 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8963   switch (Lex.getKind()) {
8964   case lltok::kw_unknown:
8965     Hotness = CalleeInfo::HotnessType::Unknown;
8966     break;
8967   case lltok::kw_cold:
8968     Hotness = CalleeInfo::HotnessType::Cold;
8969     break;
8970   case lltok::kw_none:
8971     Hotness = CalleeInfo::HotnessType::None;
8972     break;
8973   case lltok::kw_hot:
8974     Hotness = CalleeInfo::HotnessType::Hot;
8975     break;
8976   case lltok::kw_critical:
8977     Hotness = CalleeInfo::HotnessType::Critical;
8978     break;
8979   default:
8980     return error(Lex.getLoc(), "invalid call edge hotness");
8981   }
8982   Lex.Lex();
8983   return false;
8984 }
8985 
8986 /// OptionalVTableFuncs
8987 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8988 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8989 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8990   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8991   Lex.Lex();
8992 
8993   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8994       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8995     return true;
8996 
8997   IdToIndexMapType IdToIndexMap;
8998   // parse each virtual function pair
8999   do {
9000     ValueInfo VI;
9001     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9002         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9003         parseToken(lltok::colon, "expected ':'"))
9004       return true;
9005 
9006     LocTy Loc = Lex.getLoc();
9007     unsigned GVId;
9008     if (parseGVReference(VI, GVId))
9009       return true;
9010 
9011     uint64_t Offset;
9012     if (parseToken(lltok::comma, "expected comma") ||
9013         parseToken(lltok::kw_offset, "expected offset") ||
9014         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9015       return true;
9016 
9017     // Keep track of the VTableFuncs array index needing a forward reference.
9018     // We will save the location of the ValueInfo needing an update, but
9019     // can only do so once the std::vector is finalized.
9020     if (VI == EmptyVI)
9021       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9022     VTableFuncs.push_back({VI, Offset});
9023 
9024     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9025       return true;
9026   } while (EatIfPresent(lltok::comma));
9027 
9028   // Now that the VTableFuncs vector is finalized, it is safe to save the
9029   // locations of any forward GV references that need updating later.
9030   for (auto I : IdToIndexMap) {
9031     auto &Infos = ForwardRefValueInfos[I.first];
9032     for (auto P : I.second) {
9033       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9034              "Forward referenced ValueInfo expected to be empty");
9035       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9036     }
9037   }
9038 
9039   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9040     return true;
9041 
9042   return false;
9043 }
9044 
9045 /// ParamNo := 'param' ':' UInt64
9046 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9047   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9048       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9049     return true;
9050   return false;
9051 }
9052 
9053 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9054 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9055   APSInt Lower;
9056   APSInt Upper;
9057   auto ParseAPSInt = [&](APSInt &Val) {
9058     if (Lex.getKind() != lltok::APSInt)
9059       return tokError("expected integer");
9060     Val = Lex.getAPSIntVal();
9061     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9062     Val.setIsSigned(true);
9063     Lex.Lex();
9064     return false;
9065   };
9066   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9067       parseToken(lltok::colon, "expected ':' here") ||
9068       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9069       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9070       parseToken(lltok::rsquare, "expected ']' here"))
9071     return true;
9072 
9073   ++Upper;
9074   Range =
9075       (Lower == Upper && !Lower.isMaxValue())
9076           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9077           : ConstantRange(Lower, Upper);
9078 
9079   return false;
9080 }
9081 
9082 /// ParamAccessCall
9083 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9084 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9085                                     IdLocListType &IdLocList) {
9086   if (parseToken(lltok::lparen, "expected '(' here") ||
9087       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9088       parseToken(lltok::colon, "expected ':' here"))
9089     return true;
9090 
9091   unsigned GVId;
9092   ValueInfo VI;
9093   LocTy Loc = Lex.getLoc();
9094   if (parseGVReference(VI, GVId))
9095     return true;
9096 
9097   Call.Callee = VI;
9098   IdLocList.emplace_back(GVId, Loc);
9099 
9100   if (parseToken(lltok::comma, "expected ',' here") ||
9101       parseParamNo(Call.ParamNo) ||
9102       parseToken(lltok::comma, "expected ',' here") ||
9103       parseParamAccessOffset(Call.Offsets))
9104     return true;
9105 
9106   if (parseToken(lltok::rparen, "expected ')' here"))
9107     return true;
9108 
9109   return false;
9110 }
9111 
9112 /// ParamAccess
9113 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9114 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9115 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9116                                 IdLocListType &IdLocList) {
9117   if (parseToken(lltok::lparen, "expected '(' here") ||
9118       parseParamNo(Param.ParamNo) ||
9119       parseToken(lltok::comma, "expected ',' here") ||
9120       parseParamAccessOffset(Param.Use))
9121     return true;
9122 
9123   if (EatIfPresent(lltok::comma)) {
9124     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9125         parseToken(lltok::colon, "expected ':' here") ||
9126         parseToken(lltok::lparen, "expected '(' here"))
9127       return true;
9128     do {
9129       FunctionSummary::ParamAccess::Call Call;
9130       if (parseParamAccessCall(Call, IdLocList))
9131         return true;
9132       Param.Calls.push_back(Call);
9133     } while (EatIfPresent(lltok::comma));
9134 
9135     if (parseToken(lltok::rparen, "expected ')' here"))
9136       return true;
9137   }
9138 
9139   if (parseToken(lltok::rparen, "expected ')' here"))
9140     return true;
9141 
9142   return false;
9143 }
9144 
9145 /// OptionalParamAccesses
9146 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9147 bool LLParser::parseOptionalParamAccesses(
9148     std::vector<FunctionSummary::ParamAccess> &Params) {
9149   assert(Lex.getKind() == lltok::kw_params);
9150   Lex.Lex();
9151 
9152   if (parseToken(lltok::colon, "expected ':' here") ||
9153       parseToken(lltok::lparen, "expected '(' here"))
9154     return true;
9155 
9156   IdLocListType VContexts;
9157   size_t CallsNum = 0;
9158   do {
9159     FunctionSummary::ParamAccess ParamAccess;
9160     if (parseParamAccess(ParamAccess, VContexts))
9161       return true;
9162     CallsNum += ParamAccess.Calls.size();
9163     assert(VContexts.size() == CallsNum);
9164     (void)CallsNum;
9165     Params.emplace_back(std::move(ParamAccess));
9166   } while (EatIfPresent(lltok::comma));
9167 
9168   if (parseToken(lltok::rparen, "expected ')' here"))
9169     return true;
9170 
9171   // Now that the Params is finalized, it is safe to save the locations
9172   // of any forward GV references that need updating later.
9173   IdLocListType::const_iterator ItContext = VContexts.begin();
9174   for (auto &PA : Params) {
9175     for (auto &C : PA.Calls) {
9176       if (C.Callee.getRef() == FwdVIRef)
9177         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9178                                                             ItContext->second);
9179       ++ItContext;
9180     }
9181   }
9182   assert(ItContext == VContexts.end());
9183 
9184   return false;
9185 }
9186 
9187 /// OptionalRefs
9188 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9189 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9190   assert(Lex.getKind() == lltok::kw_refs);
9191   Lex.Lex();
9192 
9193   if (parseToken(lltok::colon, "expected ':' in refs") ||
9194       parseToken(lltok::lparen, "expected '(' in refs"))
9195     return true;
9196 
9197   struct ValueContext {
9198     ValueInfo VI;
9199     unsigned GVId;
9200     LocTy Loc;
9201   };
9202   std::vector<ValueContext> VContexts;
9203   // parse each ref edge
9204   do {
9205     ValueContext VC;
9206     VC.Loc = Lex.getLoc();
9207     if (parseGVReference(VC.VI, VC.GVId))
9208       return true;
9209     VContexts.push_back(VC);
9210   } while (EatIfPresent(lltok::comma));
9211 
9212   // Sort value contexts so that ones with writeonly
9213   // and readonly ValueInfo  are at the end of VContexts vector.
9214   // See FunctionSummary::specialRefCounts()
9215   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9216     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9217   });
9218 
9219   IdToIndexMapType IdToIndexMap;
9220   for (auto &VC : VContexts) {
9221     // Keep track of the Refs array index needing a forward reference.
9222     // We will save the location of the ValueInfo needing an update, but
9223     // can only do so once the std::vector is finalized.
9224     if (VC.VI.getRef() == FwdVIRef)
9225       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9226     Refs.push_back(VC.VI);
9227   }
9228 
9229   // Now that the Refs vector is finalized, it is safe to save the locations
9230   // of any forward GV references that need updating later.
9231   for (auto I : IdToIndexMap) {
9232     auto &Infos = ForwardRefValueInfos[I.first];
9233     for (auto P : I.second) {
9234       assert(Refs[P.first].getRef() == FwdVIRef &&
9235              "Forward referenced ValueInfo expected to be empty");
9236       Infos.emplace_back(&Refs[P.first], P.second);
9237     }
9238   }
9239 
9240   if (parseToken(lltok::rparen, "expected ')' in refs"))
9241     return true;
9242 
9243   return false;
9244 }
9245 
9246 /// OptionalTypeIdInfo
9247 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9248 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9249 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9250 bool LLParser::parseOptionalTypeIdInfo(
9251     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9252   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9253   Lex.Lex();
9254 
9255   if (parseToken(lltok::colon, "expected ':' here") ||
9256       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9257     return true;
9258 
9259   do {
9260     switch (Lex.getKind()) {
9261     case lltok::kw_typeTests:
9262       if (parseTypeTests(TypeIdInfo.TypeTests))
9263         return true;
9264       break;
9265     case lltok::kw_typeTestAssumeVCalls:
9266       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9267                            TypeIdInfo.TypeTestAssumeVCalls))
9268         return true;
9269       break;
9270     case lltok::kw_typeCheckedLoadVCalls:
9271       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9272                            TypeIdInfo.TypeCheckedLoadVCalls))
9273         return true;
9274       break;
9275     case lltok::kw_typeTestAssumeConstVCalls:
9276       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9277                               TypeIdInfo.TypeTestAssumeConstVCalls))
9278         return true;
9279       break;
9280     case lltok::kw_typeCheckedLoadConstVCalls:
9281       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9282                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9283         return true;
9284       break;
9285     default:
9286       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9287     }
9288   } while (EatIfPresent(lltok::comma));
9289 
9290   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9291     return true;
9292 
9293   return false;
9294 }
9295 
9296 /// TypeTests
9297 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9298 ///         [',' (SummaryID | UInt64)]* ')'
9299 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9300   assert(Lex.getKind() == lltok::kw_typeTests);
9301   Lex.Lex();
9302 
9303   if (parseToken(lltok::colon, "expected ':' here") ||
9304       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9305     return true;
9306 
9307   IdToIndexMapType IdToIndexMap;
9308   do {
9309     GlobalValue::GUID GUID = 0;
9310     if (Lex.getKind() == lltok::SummaryID) {
9311       unsigned ID = Lex.getUIntVal();
9312       LocTy Loc = Lex.getLoc();
9313       // Keep track of the TypeTests array index needing a forward reference.
9314       // We will save the location of the GUID needing an update, but
9315       // can only do so once the std::vector is finalized.
9316       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9317       Lex.Lex();
9318     } else if (parseUInt64(GUID))
9319       return true;
9320     TypeTests.push_back(GUID);
9321   } while (EatIfPresent(lltok::comma));
9322 
9323   // Now that the TypeTests vector is finalized, it is safe to save the
9324   // locations of any forward GV references that need updating later.
9325   for (auto I : IdToIndexMap) {
9326     auto &Ids = ForwardRefTypeIds[I.first];
9327     for (auto P : I.second) {
9328       assert(TypeTests[P.first] == 0 &&
9329              "Forward referenced type id GUID expected to be 0");
9330       Ids.emplace_back(&TypeTests[P.first], P.second);
9331     }
9332   }
9333 
9334   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9335     return true;
9336 
9337   return false;
9338 }
9339 
9340 /// VFuncIdList
9341 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9342 bool LLParser::parseVFuncIdList(
9343     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9344   assert(Lex.getKind() == Kind);
9345   Lex.Lex();
9346 
9347   if (parseToken(lltok::colon, "expected ':' here") ||
9348       parseToken(lltok::lparen, "expected '(' here"))
9349     return true;
9350 
9351   IdToIndexMapType IdToIndexMap;
9352   do {
9353     FunctionSummary::VFuncId VFuncId;
9354     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9355       return true;
9356     VFuncIdList.push_back(VFuncId);
9357   } while (EatIfPresent(lltok::comma));
9358 
9359   if (parseToken(lltok::rparen, "expected ')' here"))
9360     return true;
9361 
9362   // Now that the VFuncIdList vector is finalized, it is safe to save the
9363   // locations of any forward GV references that need updating later.
9364   for (auto I : IdToIndexMap) {
9365     auto &Ids = ForwardRefTypeIds[I.first];
9366     for (auto P : I.second) {
9367       assert(VFuncIdList[P.first].GUID == 0 &&
9368              "Forward referenced type id GUID expected to be 0");
9369       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9370     }
9371   }
9372 
9373   return false;
9374 }
9375 
9376 /// ConstVCallList
9377 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9378 bool LLParser::parseConstVCallList(
9379     lltok::Kind Kind,
9380     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9381   assert(Lex.getKind() == Kind);
9382   Lex.Lex();
9383 
9384   if (parseToken(lltok::colon, "expected ':' here") ||
9385       parseToken(lltok::lparen, "expected '(' here"))
9386     return true;
9387 
9388   IdToIndexMapType IdToIndexMap;
9389   do {
9390     FunctionSummary::ConstVCall ConstVCall;
9391     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9392       return true;
9393     ConstVCallList.push_back(ConstVCall);
9394   } while (EatIfPresent(lltok::comma));
9395 
9396   if (parseToken(lltok::rparen, "expected ')' here"))
9397     return true;
9398 
9399   // Now that the ConstVCallList vector is finalized, it is safe to save the
9400   // locations of any forward GV references that need updating later.
9401   for (auto I : IdToIndexMap) {
9402     auto &Ids = ForwardRefTypeIds[I.first];
9403     for (auto P : I.second) {
9404       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9405              "Forward referenced type id GUID expected to be 0");
9406       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9407     }
9408   }
9409 
9410   return false;
9411 }
9412 
9413 /// ConstVCall
9414 ///   ::= '(' VFuncId ',' Args ')'
9415 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9416                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9417   if (parseToken(lltok::lparen, "expected '(' here") ||
9418       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9419     return true;
9420 
9421   if (EatIfPresent(lltok::comma))
9422     if (parseArgs(ConstVCall.Args))
9423       return true;
9424 
9425   if (parseToken(lltok::rparen, "expected ')' here"))
9426     return true;
9427 
9428   return false;
9429 }
9430 
9431 /// VFuncId
9432 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9433 ///         'offset' ':' UInt64 ')'
9434 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9435                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9436   assert(Lex.getKind() == lltok::kw_vFuncId);
9437   Lex.Lex();
9438 
9439   if (parseToken(lltok::colon, "expected ':' here") ||
9440       parseToken(lltok::lparen, "expected '(' here"))
9441     return true;
9442 
9443   if (Lex.getKind() == lltok::SummaryID) {
9444     VFuncId.GUID = 0;
9445     unsigned ID = Lex.getUIntVal();
9446     LocTy Loc = Lex.getLoc();
9447     // Keep track of the array index needing a forward reference.
9448     // We will save the location of the GUID needing an update, but
9449     // can only do so once the caller's std::vector is finalized.
9450     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9451     Lex.Lex();
9452   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9453              parseToken(lltok::colon, "expected ':' here") ||
9454              parseUInt64(VFuncId.GUID))
9455     return true;
9456 
9457   if (parseToken(lltok::comma, "expected ',' here") ||
9458       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9459       parseToken(lltok::colon, "expected ':' here") ||
9460       parseUInt64(VFuncId.Offset) ||
9461       parseToken(lltok::rparen, "expected ')' here"))
9462     return true;
9463 
9464   return false;
9465 }
9466 
9467 /// GVFlags
9468 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9469 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9470 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9471 ///         'canAutoHide' ':' Flag ',' ')'
9472 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9473   assert(Lex.getKind() == lltok::kw_flags);
9474   Lex.Lex();
9475 
9476   if (parseToken(lltok::colon, "expected ':' here") ||
9477       parseToken(lltok::lparen, "expected '(' here"))
9478     return true;
9479 
9480   do {
9481     unsigned Flag = 0;
9482     switch (Lex.getKind()) {
9483     case lltok::kw_linkage:
9484       Lex.Lex();
9485       if (parseToken(lltok::colon, "expected ':'"))
9486         return true;
9487       bool HasLinkage;
9488       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9489       assert(HasLinkage && "Linkage not optional in summary entry");
9490       Lex.Lex();
9491       break;
9492     case lltok::kw_visibility:
9493       Lex.Lex();
9494       if (parseToken(lltok::colon, "expected ':'"))
9495         return true;
9496       parseOptionalVisibility(Flag);
9497       GVFlags.Visibility = Flag;
9498       break;
9499     case lltok::kw_notEligibleToImport:
9500       Lex.Lex();
9501       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9502         return true;
9503       GVFlags.NotEligibleToImport = Flag;
9504       break;
9505     case lltok::kw_live:
9506       Lex.Lex();
9507       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9508         return true;
9509       GVFlags.Live = Flag;
9510       break;
9511     case lltok::kw_dsoLocal:
9512       Lex.Lex();
9513       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9514         return true;
9515       GVFlags.DSOLocal = Flag;
9516       break;
9517     case lltok::kw_canAutoHide:
9518       Lex.Lex();
9519       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9520         return true;
9521       GVFlags.CanAutoHide = Flag;
9522       break;
9523     default:
9524       return error(Lex.getLoc(), "expected gv flag type");
9525     }
9526   } while (EatIfPresent(lltok::comma));
9527 
9528   if (parseToken(lltok::rparen, "expected ')' here"))
9529     return true;
9530 
9531   return false;
9532 }
9533 
9534 /// GVarFlags
9535 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9536 ///                      ',' 'writeonly' ':' Flag
9537 ///                      ',' 'constant' ':' Flag ')'
9538 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9539   assert(Lex.getKind() == lltok::kw_varFlags);
9540   Lex.Lex();
9541 
9542   if (parseToken(lltok::colon, "expected ':' here") ||
9543       parseToken(lltok::lparen, "expected '(' here"))
9544     return true;
9545 
9546   auto ParseRest = [this](unsigned int &Val) {
9547     Lex.Lex();
9548     if (parseToken(lltok::colon, "expected ':'"))
9549       return true;
9550     return parseFlag(Val);
9551   };
9552 
9553   do {
9554     unsigned Flag = 0;
9555     switch (Lex.getKind()) {
9556     case lltok::kw_readonly:
9557       if (ParseRest(Flag))
9558         return true;
9559       GVarFlags.MaybeReadOnly = Flag;
9560       break;
9561     case lltok::kw_writeonly:
9562       if (ParseRest(Flag))
9563         return true;
9564       GVarFlags.MaybeWriteOnly = Flag;
9565       break;
9566     case lltok::kw_constant:
9567       if (ParseRest(Flag))
9568         return true;
9569       GVarFlags.Constant = Flag;
9570       break;
9571     case lltok::kw_vcall_visibility:
9572       if (ParseRest(Flag))
9573         return true;
9574       GVarFlags.VCallVisibility = Flag;
9575       break;
9576     default:
9577       return error(Lex.getLoc(), "expected gvar flag type");
9578     }
9579   } while (EatIfPresent(lltok::comma));
9580   return parseToken(lltok::rparen, "expected ')' here");
9581 }
9582 
9583 /// ModuleReference
9584 ///   ::= 'module' ':' UInt
9585 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9586   // parse module id.
9587   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9588       parseToken(lltok::colon, "expected ':' here") ||
9589       parseToken(lltok::SummaryID, "expected module ID"))
9590     return true;
9591 
9592   unsigned ModuleID = Lex.getUIntVal();
9593   auto I = ModuleIdMap.find(ModuleID);
9594   // We should have already parsed all module IDs
9595   assert(I != ModuleIdMap.end());
9596   ModulePath = I->second;
9597   return false;
9598 }
9599 
9600 /// GVReference
9601 ///   ::= SummaryID
9602 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9603   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9604   if (!ReadOnly)
9605     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9606   if (parseToken(lltok::SummaryID, "expected GV ID"))
9607     return true;
9608 
9609   GVId = Lex.getUIntVal();
9610   // Check if we already have a VI for this GV
9611   if (GVId < NumberedValueInfos.size()) {
9612     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9613     VI = NumberedValueInfos[GVId];
9614   } else
9615     // We will create a forward reference to the stored location.
9616     VI = ValueInfo(false, FwdVIRef);
9617 
9618   if (ReadOnly)
9619     VI.setReadOnly();
9620   if (WriteOnly)
9621     VI.setWriteOnly();
9622   return false;
9623 }
9624