1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return Error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (ParseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
81          ValidateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (ParseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return Error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (ParseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return Error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return Error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return Error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return Error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                  "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return Error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                  Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return Error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                  Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::ValidateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return Error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return Error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return Error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::ParseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (ParseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (ParseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::ParseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (ParseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (ParseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:         return TokError("expected top-level entity");
345     case lltok::Eof: return false;
346     case lltok::kw_declare: if (ParseDeclare()) return true; break;
347     case lltok::kw_define:  if (ParseDefine()) return true; break;
348     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
349     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
350     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
351     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
352     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
353     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
354     case lltok::ComdatVar:  if (parseComdat()) return true; break;
355     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
356     case lltok::SummaryID:
357       if (ParseSummaryEntry())
358         return true;
359       break;
360     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
361     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
362     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
363     case lltok::kw_uselistorder_bb:
364       if (ParseUseListOrderBB())
365         return true;
366       break;
367     }
368   }
369 }
370 
371 /// toplevelentity
372 ///   ::= 'module' 'asm' STRINGCONSTANT
373 bool LLParser::ParseModuleAsm() {
374   assert(Lex.getKind() == lltok::kw_module);
375   Lex.Lex();
376 
377   std::string AsmStr;
378   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
379       ParseStringConstant(AsmStr)) return true;
380 
381   M->appendModuleInlineAsm(AsmStr);
382   return false;
383 }
384 
385 /// toplevelentity
386 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
387 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
388 bool LLParser::ParseTargetDefinition() {
389   assert(Lex.getKind() == lltok::kw_target);
390   std::string Str;
391   switch (Lex.Lex()) {
392   default: return TokError("unknown target property");
393   case lltok::kw_triple:
394     Lex.Lex();
395     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
396         ParseStringConstant(Str))
397       return true;
398     M->setTargetTriple(Str);
399     return false;
400   case lltok::kw_datalayout:
401     Lex.Lex();
402     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
403         ParseStringConstant(Str))
404       return true;
405     M->setDataLayout(Str);
406     return false;
407   }
408 }
409 
410 /// toplevelentity
411 ///   ::= 'source_filename' '=' STRINGCONSTANT
412 bool LLParser::ParseSourceFileName() {
413   assert(Lex.getKind() == lltok::kw_source_filename);
414   Lex.Lex();
415   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
416       ParseStringConstant(SourceFileName))
417     return true;
418   if (M)
419     M->setSourceFileName(SourceFileName);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'deplibs' '=' '[' ']'
425 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
426 /// FIXME: Remove in 4.0. Currently parse, but ignore.
427 bool LLParser::ParseDepLibs() {
428   assert(Lex.getKind() == lltok::kw_deplibs);
429   Lex.Lex();
430   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
431       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
432     return true;
433 
434   if (EatIfPresent(lltok::rsquare))
435     return false;
436 
437   do {
438     std::string Str;
439     if (ParseStringConstant(Str)) return true;
440   } while (EatIfPresent(lltok::comma));
441 
442   return ParseToken(lltok::rsquare, "expected ']' at end of list");
443 }
444 
445 /// ParseUnnamedType:
446 ///   ::= LocalVarID '=' 'type' type
447 bool LLParser::ParseUnnamedType() {
448   LocTy TypeLoc = Lex.getLoc();
449   unsigned TypeID = Lex.getUIntVal();
450   Lex.Lex(); // eat LocalVarID;
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after '='"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(TypeLoc, "",
458                             NumberedTypes[TypeID], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
462     if (Entry.first)
463       return Error(TypeLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= LocalVar '=' 'type' type
473 bool LLParser::ParseNamedType() {
474   std::string Name = Lex.getStrVal();
475   LocTy NameLoc = Lex.getLoc();
476   Lex.Lex();  // eat LocalVar.
477 
478   if (ParseToken(lltok::equal, "expected '=' after name") ||
479       ParseToken(lltok::kw_type, "expected 'type' after name"))
480     return true;
481 
482   Type *Result = nullptr;
483   if (ParseStructDefinition(NameLoc, Name,
484                             NamedTypes[Name], Result)) return true;
485 
486   if (!isa<StructType>(Result)) {
487     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
488     if (Entry.first)
489       return Error(NameLoc, "non-struct types may not be recursive");
490     Entry.first = Result;
491     Entry.second = SMLoc();
492   }
493 
494   return false;
495 }
496 
497 /// toplevelentity
498 ///   ::= 'declare' FunctionHeader
499 bool LLParser::ParseDeclare() {
500   assert(Lex.getKind() == lltok::kw_declare);
501   Lex.Lex();
502 
503   std::vector<std::pair<unsigned, MDNode *>> MDs;
504   while (Lex.getKind() == lltok::MetadataVar) {
505     unsigned MDK;
506     MDNode *N;
507     if (ParseMetadataAttachment(MDK, N))
508       return true;
509     MDs.push_back({MDK, N});
510   }
511 
512   Function *F;
513   if (ParseFunctionHeader(F, false))
514     return true;
515   for (auto &MD : MDs)
516     F->addMetadata(MD.first, *MD.second);
517   return false;
518 }
519 
520 /// toplevelentity
521 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
522 bool LLParser::ParseDefine() {
523   assert(Lex.getKind() == lltok::kw_define);
524   Lex.Lex();
525 
526   Function *F;
527   return ParseFunctionHeader(F, true) ||
528          ParseOptionalFunctionMetadata(*F) ||
529          ParseFunctionBody(*F);
530 }
531 
532 /// ParseGlobalType
533 ///   ::= 'constant'
534 ///   ::= 'global'
535 bool LLParser::ParseGlobalType(bool &IsConstant) {
536   if (Lex.getKind() == lltok::kw_constant)
537     IsConstant = true;
538   else if (Lex.getKind() == lltok::kw_global)
539     IsConstant = false;
540   else {
541     IsConstant = false;
542     return TokError("expected 'global' or 'constant'");
543   }
544   Lex.Lex();
545   return false;
546 }
547 
548 bool LLParser::ParseOptionalUnnamedAddr(
549     GlobalVariable::UnnamedAddr &UnnamedAddr) {
550   if (EatIfPresent(lltok::kw_unnamed_addr))
551     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
552   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
554   else
555     UnnamedAddr = GlobalValue::UnnamedAddr::None;
556   return false;
557 }
558 
559 /// ParseUnnamedGlobal:
560 ///   OptionalVisibility (ALIAS | IFUNC) ...
561 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
562 ///   OptionalDLLStorageClass
563 ///                                                     ...   -> global variable
564 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
565 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
566 ///                OptionalDLLStorageClass
567 ///                                                     ...   -> global variable
568 bool LLParser::ParseUnnamedGlobal() {
569   unsigned VarID = NumberedVals.size();
570   std::string Name;
571   LocTy NameLoc = Lex.getLoc();
572 
573   // Handle the GlobalID form.
574   if (Lex.getKind() == lltok::GlobalID) {
575     if (Lex.getUIntVal() != VarID)
576       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
577                    Twine(VarID) + "'");
578     Lex.Lex(); // eat GlobalID;
579 
580     if (ParseToken(lltok::equal, "expected '=' after name"))
581       return true;
582   }
583 
584   bool HasLinkage;
585   unsigned Linkage, Visibility, DLLStorageClass;
586   bool DSOLocal;
587   GlobalVariable::ThreadLocalMode TLM;
588   GlobalVariable::UnnamedAddr UnnamedAddr;
589   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
590                            DSOLocal) ||
591       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
592     return true;
593 
594   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
595     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
596                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 
598   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
599                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
600 }
601 
602 /// ParseNamedGlobal:
603 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///                 OptionalVisibility OptionalDLLStorageClass
606 ///                                                     ...   -> global variable
607 bool LLParser::ParseNamedGlobal() {
608   assert(Lex.getKind() == lltok::GlobalVar);
609   LocTy NameLoc = Lex.getLoc();
610   std::string Name = Lex.getStrVal();
611   Lex.Lex();
612 
613   bool HasLinkage;
614   unsigned Linkage, Visibility, DLLStorageClass;
615   bool DSOLocal;
616   GlobalVariable::ThreadLocalMode TLM;
617   GlobalVariable::UnnamedAddr UnnamedAddr;
618   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
619       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
620                            DSOLocal) ||
621       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
622     return true;
623 
624   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
625     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
626                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 
628   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
629                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
630 }
631 
632 bool LLParser::parseComdat() {
633   assert(Lex.getKind() == lltok::ComdatVar);
634   std::string Name = Lex.getStrVal();
635   LocTy NameLoc = Lex.getLoc();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here"))
639     return true;
640 
641   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
642     return TokError("expected comdat type");
643 
644   Comdat::SelectionKind SK;
645   switch (Lex.getKind()) {
646   default:
647     return TokError("unknown selection kind");
648   case lltok::kw_any:
649     SK = Comdat::Any;
650     break;
651   case lltok::kw_exactmatch:
652     SK = Comdat::ExactMatch;
653     break;
654   case lltok::kw_largest:
655     SK = Comdat::Largest;
656     break;
657   case lltok::kw_noduplicates:
658     SK = Comdat::NoDuplicates;
659     break;
660   case lltok::kw_samesize:
661     SK = Comdat::SameSize;
662     break;
663   }
664   Lex.Lex();
665 
666   // See if the comdat was forward referenced, if so, use the comdat.
667   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
668   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
669   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
670     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
671 
672   Comdat *C;
673   if (I != ComdatSymTab.end())
674     C = &I->second;
675   else
676     C = M->getOrInsertComdat(Name);
677   C->setSelectionKind(SK);
678 
679   return false;
680 }
681 
682 // MDString:
683 //   ::= '!' STRINGCONSTANT
684 bool LLParser::ParseMDString(MDString *&Result) {
685   std::string Str;
686   if (ParseStringConstant(Str)) return true;
687   Result = MDString::get(Context, Str);
688   return false;
689 }
690 
691 // MDNode:
692 //   ::= '!' MDNodeNumber
693 bool LLParser::ParseMDNodeID(MDNode *&Result) {
694   // !{ ..., !42, ... }
695   LocTy IDLoc = Lex.getLoc();
696   unsigned MID = 0;
697   if (ParseUInt32(MID))
698     return true;
699 
700   // If not a forward reference, just return it now.
701   if (NumberedMetadata.count(MID)) {
702     Result = NumberedMetadata[MID];
703     return false;
704   }
705 
706   // Otherwise, create MDNode forward reference.
707   auto &FwdRef = ForwardRefMDNodes[MID];
708   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
709 
710   Result = FwdRef.first.get();
711   NumberedMetadata[MID].reset(Result);
712   return false;
713 }
714 
715 /// ParseNamedMetadata:
716 ///   !foo = !{ !1, !2 }
717 bool LLParser::ParseNamedMetadata() {
718   assert(Lex.getKind() == lltok::MetadataVar);
719   std::string Name = Lex.getStrVal();
720   Lex.Lex();
721 
722   if (ParseToken(lltok::equal, "expected '=' here") ||
723       ParseToken(lltok::exclaim, "Expected '!' here") ||
724       ParseToken(lltok::lbrace, "Expected '{' here"))
725     return true;
726 
727   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
728   if (Lex.getKind() != lltok::rbrace)
729     do {
730       MDNode *N = nullptr;
731       // Parse DIExpressions inline as a special case. They are still MDNodes,
732       // so they can still appear in named metadata. Remove this logic if they
733       // become plain Metadata.
734       if (Lex.getKind() == lltok::MetadataVar &&
735           Lex.getStrVal() == "DIExpression") {
736         if (ParseDIExpression(N, /*IsDistinct=*/false))
737           return true;
738       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
739                  ParseMDNodeID(N)) {
740         return true;
741       }
742       NMD->addOperand(N);
743     } while (EatIfPresent(lltok::comma));
744 
745   return ParseToken(lltok::rbrace, "expected end of metadata node");
746 }
747 
748 /// ParseStandaloneMetadata:
749 ///   !42 = !{...}
750 bool LLParser::ParseStandaloneMetadata() {
751   assert(Lex.getKind() == lltok::exclaim);
752   Lex.Lex();
753   unsigned MetadataID = 0;
754 
755   MDNode *Init;
756   if (ParseUInt32(MetadataID) ||
757       ParseToken(lltok::equal, "expected '=' here"))
758     return true;
759 
760   // Detect common error, from old metadata syntax.
761   if (Lex.getKind() == lltok::Type)
762     return TokError("unexpected type in metadata definition");
763 
764   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
765   if (Lex.getKind() == lltok::MetadataVar) {
766     if (ParseSpecializedMDNode(Init, IsDistinct))
767       return true;
768   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
769              ParseMDTuple(Init, IsDistinct))
770     return true;
771 
772   // See if this was forward referenced, if so, handle it.
773   auto FI = ForwardRefMDNodes.find(MetadataID);
774   if (FI != ForwardRefMDNodes.end()) {
775     FI->second.first->replaceAllUsesWith(Init);
776     ForwardRefMDNodes.erase(FI);
777 
778     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
779   } else {
780     if (NumberedMetadata.count(MetadataID))
781       return TokError("Metadata id is already used");
782     NumberedMetadata[MetadataID].reset(Init);
783   }
784 
785   return false;
786 }
787 
788 // Skips a single module summary entry.
789 bool LLParser::SkipModuleSummaryEntry() {
790   // Each module summary entry consists of a tag for the entry
791   // type, followed by a colon, then the fields which may be surrounded by
792   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
793   // support is in place we will look for the tokens corresponding to the
794   // expected tags.
795   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
796       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
797       Lex.getKind() != lltok::kw_blockcount)
798     return TokError(
799         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
800         "start of summary entry");
801   if (Lex.getKind() == lltok::kw_flags)
802     return ParseSummaryIndexFlags();
803   if (Lex.getKind() == lltok::kw_blockcount)
804     return ParseBlockCount();
805   Lex.Lex();
806   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
807       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
808     return true;
809   // Now walk through the parenthesized entry, until the number of open
810   // parentheses goes back down to 0 (the first '(' was parsed above).
811   unsigned NumOpenParen = 1;
812   do {
813     switch (Lex.getKind()) {
814     case lltok::lparen:
815       NumOpenParen++;
816       break;
817     case lltok::rparen:
818       NumOpenParen--;
819       break;
820     case lltok::Eof:
821       return TokError("found end of file while parsing summary entry");
822     default:
823       // Skip everything in between parentheses.
824       break;
825     }
826     Lex.Lex();
827   } while (NumOpenParen > 0);
828   return false;
829 }
830 
831 /// SummaryEntry
832 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
833 bool LLParser::ParseSummaryEntry() {
834   assert(Lex.getKind() == lltok::SummaryID);
835   unsigned SummaryID = Lex.getUIntVal();
836 
837   // For summary entries, colons should be treated as distinct tokens,
838   // not an indication of the end of a label token.
839   Lex.setIgnoreColonInIdentifiers(true);
840 
841   Lex.Lex();
842   if (ParseToken(lltok::equal, "expected '=' here"))
843     return true;
844 
845   // If we don't have an index object, skip the summary entry.
846   if (!Index)
847     return SkipModuleSummaryEntry();
848 
849   bool result = false;
850   switch (Lex.getKind()) {
851   case lltok::kw_gv:
852     result = ParseGVEntry(SummaryID);
853     break;
854   case lltok::kw_module:
855     result = ParseModuleEntry(SummaryID);
856     break;
857   case lltok::kw_typeid:
858     result = ParseTypeIdEntry(SummaryID);
859     break;
860   case lltok::kw_typeidCompatibleVTable:
861     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
862     break;
863   case lltok::kw_flags:
864     result = ParseSummaryIndexFlags();
865     break;
866   case lltok::kw_blockcount:
867     result = ParseBlockCount();
868     break;
869   default:
870     result = Error(Lex.getLoc(), "unexpected summary kind");
871     break;
872   }
873   Lex.setIgnoreColonInIdentifiers(false);
874   return result;
875 }
876 
877 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
878   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
879          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
880 }
881 
882 // If there was an explicit dso_local, update GV. In the absence of an explicit
883 // dso_local we keep the default value.
884 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
885   if (DSOLocal)
886     GV.setDSOLocal(true);
887 }
888 
889 /// parseIndirectSymbol:
890 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
891 ///                     OptionalVisibility OptionalDLLStorageClass
892 ///                     OptionalThreadLocal OptionalUnnamedAddr
893 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
894 ///
895 /// IndirectSymbol
896 ///   ::= TypeAndValue
897 ///
898 /// IndirectSymbolAttr
899 ///   ::= ',' 'partition' StringConstant
900 ///
901 /// Everything through OptionalUnnamedAddr has already been parsed.
902 ///
903 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
904                                    unsigned L, unsigned Visibility,
905                                    unsigned DLLStorageClass, bool DSOLocal,
906                                    GlobalVariable::ThreadLocalMode TLM,
907                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
908   bool IsAlias;
909   if (Lex.getKind() == lltok::kw_alias)
910     IsAlias = true;
911   else if (Lex.getKind() == lltok::kw_ifunc)
912     IsAlias = false;
913   else
914     llvm_unreachable("Not an alias or ifunc!");
915   Lex.Lex();
916 
917   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
918 
919   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
920     return Error(NameLoc, "invalid linkage type for alias");
921 
922   if (!isValidVisibilityForLinkage(Visibility, L))
923     return Error(NameLoc,
924                  "symbol with local linkage must have default visibility");
925 
926   Type *Ty;
927   LocTy ExplicitTypeLoc = Lex.getLoc();
928   if (ParseType(Ty) ||
929       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
930     return true;
931 
932   Constant *Aliasee;
933   LocTy AliaseeLoc = Lex.getLoc();
934   if (Lex.getKind() != lltok::kw_bitcast &&
935       Lex.getKind() != lltok::kw_getelementptr &&
936       Lex.getKind() != lltok::kw_addrspacecast &&
937       Lex.getKind() != lltok::kw_inttoptr) {
938     if (ParseGlobalTypeAndValue(Aliasee))
939       return true;
940   } else {
941     // The bitcast dest type is not present, it is implied by the dest type.
942     ValID ID;
943     if (ParseValID(ID))
944       return true;
945     if (ID.Kind != ValID::t_Constant)
946       return Error(AliaseeLoc, "invalid aliasee");
947     Aliasee = ID.ConstantVal;
948   }
949 
950   Type *AliaseeType = Aliasee->getType();
951   auto *PTy = dyn_cast<PointerType>(AliaseeType);
952   if (!PTy)
953     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
954   unsigned AddrSpace = PTy->getAddressSpace();
955 
956   if (IsAlias && Ty != PTy->getElementType())
957     return Error(
958         ExplicitTypeLoc,
959         "explicit pointee type doesn't match operand's pointee type");
960 
961   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
962     return Error(
963         ExplicitTypeLoc,
964         "explicit pointee type should be a function type");
965 
966   GlobalValue *GVal = nullptr;
967 
968   // See if the alias was forward referenced, if so, prepare to replace the
969   // forward reference.
970   if (!Name.empty()) {
971     GVal = M->getNamedValue(Name);
972     if (GVal) {
973       if (!ForwardRefVals.erase(Name))
974         return Error(NameLoc, "redefinition of global '@" + Name + "'");
975     }
976   } else {
977     auto I = ForwardRefValIDs.find(NumberedVals.size());
978     if (I != ForwardRefValIDs.end()) {
979       GVal = I->second.first;
980       ForwardRefValIDs.erase(I);
981     }
982   }
983 
984   // Okay, create the alias but do not insert it into the module yet.
985   std::unique_ptr<GlobalIndirectSymbol> GA;
986   if (IsAlias)
987     GA.reset(GlobalAlias::create(Ty, AddrSpace,
988                                  (GlobalValue::LinkageTypes)Linkage, Name,
989                                  Aliasee, /*Parent*/ nullptr));
990   else
991     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
992                                  (GlobalValue::LinkageTypes)Linkage, Name,
993                                  Aliasee, /*Parent*/ nullptr));
994   GA->setThreadLocalMode(TLM);
995   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
996   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
997   GA->setUnnamedAddr(UnnamedAddr);
998   maybeSetDSOLocal(DSOLocal, *GA);
999 
1000   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1001   // Now parse them if there are any.
1002   while (Lex.getKind() == lltok::comma) {
1003     Lex.Lex();
1004 
1005     if (Lex.getKind() == lltok::kw_partition) {
1006       Lex.Lex();
1007       GA->setPartition(Lex.getStrVal());
1008       if (ParseToken(lltok::StringConstant, "expected partition string"))
1009         return true;
1010     } else {
1011       return TokError("unknown alias or ifunc property!");
1012     }
1013   }
1014 
1015   if (Name.empty())
1016     NumberedVals.push_back(GA.get());
1017 
1018   if (GVal) {
1019     // Verify that types agree.
1020     if (GVal->getType() != GA->getType())
1021       return Error(
1022           ExplicitTypeLoc,
1023           "forward reference and definition of alias have different types");
1024 
1025     // If they agree, just RAUW the old value with the alias and remove the
1026     // forward ref info.
1027     GVal->replaceAllUsesWith(GA.get());
1028     GVal->eraseFromParent();
1029   }
1030 
1031   // Insert into the module, we know its name won't collide now.
1032   if (IsAlias)
1033     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1034   else
1035     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1036   assert(GA->getName() == Name && "Should not be a name conflict!");
1037 
1038   // The module owns this now
1039   GA.release();
1040 
1041   return false;
1042 }
1043 
1044 /// ParseGlobal
1045 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1046 ///       OptionalVisibility OptionalDLLStorageClass
1047 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1048 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1049 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1050 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1051 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1052 ///       Const OptionalAttrs
1053 ///
1054 /// Everything up to and including OptionalUnnamedAddr has been parsed
1055 /// already.
1056 ///
1057 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1058                            unsigned Linkage, bool HasLinkage,
1059                            unsigned Visibility, unsigned DLLStorageClass,
1060                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1061                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1062   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1063     return Error(NameLoc,
1064                  "symbol with local linkage must have default visibility");
1065 
1066   unsigned AddrSpace;
1067   bool IsConstant, IsExternallyInitialized;
1068   LocTy IsExternallyInitializedLoc;
1069   LocTy TyLoc;
1070 
1071   Type *Ty = nullptr;
1072   if (ParseOptionalAddrSpace(AddrSpace) ||
1073       ParseOptionalToken(lltok::kw_externally_initialized,
1074                          IsExternallyInitialized,
1075                          &IsExternallyInitializedLoc) ||
1076       ParseGlobalType(IsConstant) ||
1077       ParseType(Ty, TyLoc))
1078     return true;
1079 
1080   // If the linkage is specified and is external, then no initializer is
1081   // present.
1082   Constant *Init = nullptr;
1083   if (!HasLinkage ||
1084       !GlobalValue::isValidDeclarationLinkage(
1085           (GlobalValue::LinkageTypes)Linkage)) {
1086     if (ParseGlobalValue(Ty, Init))
1087       return true;
1088   }
1089 
1090   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1091     return Error(TyLoc, "invalid type for global variable");
1092 
1093   GlobalValue *GVal = nullptr;
1094 
1095   // See if the global was forward referenced, if so, use the global.
1096   if (!Name.empty()) {
1097     GVal = M->getNamedValue(Name);
1098     if (GVal) {
1099       if (!ForwardRefVals.erase(Name))
1100         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1101     }
1102   } else {
1103     auto I = ForwardRefValIDs.find(NumberedVals.size());
1104     if (I != ForwardRefValIDs.end()) {
1105       GVal = I->second.first;
1106       ForwardRefValIDs.erase(I);
1107     }
1108   }
1109 
1110   GlobalVariable *GV;
1111   if (!GVal) {
1112     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1113                             Name, nullptr, GlobalVariable::NotThreadLocal,
1114                             AddrSpace);
1115   } else {
1116     if (GVal->getValueType() != Ty)
1117       return Error(TyLoc,
1118             "forward reference and definition of global have different types");
1119 
1120     GV = cast<GlobalVariable>(GVal);
1121 
1122     // Move the forward-reference to the correct spot in the module.
1123     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1124   }
1125 
1126   if (Name.empty())
1127     NumberedVals.push_back(GV);
1128 
1129   // Set the parsed properties on the global.
1130   if (Init)
1131     GV->setInitializer(Init);
1132   GV->setConstant(IsConstant);
1133   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1134   maybeSetDSOLocal(DSOLocal, *GV);
1135   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1136   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1137   GV->setExternallyInitialized(IsExternallyInitialized);
1138   GV->setThreadLocalMode(TLM);
1139   GV->setUnnamedAddr(UnnamedAddr);
1140 
1141   // Parse attributes on the global.
1142   while (Lex.getKind() == lltok::comma) {
1143     Lex.Lex();
1144 
1145     if (Lex.getKind() == lltok::kw_section) {
1146       Lex.Lex();
1147       GV->setSection(Lex.getStrVal());
1148       if (ParseToken(lltok::StringConstant, "expected global section string"))
1149         return true;
1150     } else if (Lex.getKind() == lltok::kw_partition) {
1151       Lex.Lex();
1152       GV->setPartition(Lex.getStrVal());
1153       if (ParseToken(lltok::StringConstant, "expected partition string"))
1154         return true;
1155     } else if (Lex.getKind() == lltok::kw_align) {
1156       MaybeAlign Alignment;
1157       if (ParseOptionalAlignment(Alignment)) return true;
1158       GV->setAlignment(Alignment);
1159     } else if (Lex.getKind() == lltok::MetadataVar) {
1160       if (ParseGlobalObjectMetadataAttachment(*GV))
1161         return true;
1162     } else {
1163       Comdat *C;
1164       if (parseOptionalComdat(Name, C))
1165         return true;
1166       if (C)
1167         GV->setComdat(C);
1168       else
1169         return TokError("unknown global variable property!");
1170     }
1171   }
1172 
1173   AttrBuilder Attrs;
1174   LocTy BuiltinLoc;
1175   std::vector<unsigned> FwdRefAttrGrps;
1176   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1177     return true;
1178   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1179     GV->setAttributes(AttributeSet::get(Context, Attrs));
1180     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1181   }
1182 
1183   return false;
1184 }
1185 
1186 /// ParseUnnamedAttrGrp
1187 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1188 bool LLParser::ParseUnnamedAttrGrp() {
1189   assert(Lex.getKind() == lltok::kw_attributes);
1190   LocTy AttrGrpLoc = Lex.getLoc();
1191   Lex.Lex();
1192 
1193   if (Lex.getKind() != lltok::AttrGrpID)
1194     return TokError("expected attribute group id");
1195 
1196   unsigned VarID = Lex.getUIntVal();
1197   std::vector<unsigned> unused;
1198   LocTy BuiltinLoc;
1199   Lex.Lex();
1200 
1201   if (ParseToken(lltok::equal, "expected '=' here") ||
1202       ParseToken(lltok::lbrace, "expected '{' here") ||
1203       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1204                                  BuiltinLoc) ||
1205       ParseToken(lltok::rbrace, "expected end of attribute group"))
1206     return true;
1207 
1208   if (!NumberedAttrBuilders[VarID].hasAttributes())
1209     return Error(AttrGrpLoc, "attribute group has no attributes");
1210 
1211   return false;
1212 }
1213 
1214 /// ParseFnAttributeValuePairs
1215 ///   ::= <attr> | <attr> '=' <value>
1216 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1217                                           std::vector<unsigned> &FwdRefAttrGrps,
1218                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1219   bool HaveError = false;
1220 
1221   B.clear();
1222 
1223   while (true) {
1224     lltok::Kind Token = Lex.getKind();
1225     if (Token == lltok::kw_builtin)
1226       BuiltinLoc = Lex.getLoc();
1227     switch (Token) {
1228     default:
1229       if (!inAttrGrp) return HaveError;
1230       return Error(Lex.getLoc(), "unterminated attribute group");
1231     case lltok::rbrace:
1232       // Finished.
1233       return false;
1234 
1235     case lltok::AttrGrpID: {
1236       // Allow a function to reference an attribute group:
1237       //
1238       //   define void @foo() #1 { ... }
1239       if (inAttrGrp)
1240         HaveError |=
1241           Error(Lex.getLoc(),
1242               "cannot have an attribute group reference in an attribute group");
1243 
1244       unsigned AttrGrpNum = Lex.getUIntVal();
1245       if (inAttrGrp) break;
1246 
1247       // Save the reference to the attribute group. We'll fill it in later.
1248       FwdRefAttrGrps.push_back(AttrGrpNum);
1249       break;
1250     }
1251     // Target-dependent attributes:
1252     case lltok::StringConstant: {
1253       if (ParseStringAttribute(B))
1254         return true;
1255       continue;
1256     }
1257 
1258     // Target-independent attributes:
1259     case lltok::kw_align: {
1260       // As a hack, we allow function alignment to be initially parsed as an
1261       // attribute on a function declaration/definition or added to an attribute
1262       // group and later moved to the alignment field.
1263       MaybeAlign Alignment;
1264       if (inAttrGrp) {
1265         Lex.Lex();
1266         uint32_t Value = 0;
1267         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1268           return true;
1269         Alignment = Align(Value);
1270       } else {
1271         if (ParseOptionalAlignment(Alignment))
1272           return true;
1273       }
1274       B.addAlignmentAttr(Alignment);
1275       continue;
1276     }
1277     case lltok::kw_alignstack: {
1278       unsigned Alignment;
1279       if (inAttrGrp) {
1280         Lex.Lex();
1281         if (ParseToken(lltok::equal, "expected '=' here") ||
1282             ParseUInt32(Alignment))
1283           return true;
1284       } else {
1285         if (ParseOptionalStackAlignment(Alignment))
1286           return true;
1287       }
1288       B.addStackAlignmentAttr(Alignment);
1289       continue;
1290     }
1291     case lltok::kw_allocsize: {
1292       unsigned ElemSizeArg;
1293       Optional<unsigned> NumElemsArg;
1294       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1295       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1296         return true;
1297       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1298       continue;
1299     }
1300     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1301     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1302     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1303     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1304     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1305     case lltok::kw_inaccessiblememonly:
1306       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1307     case lltok::kw_inaccessiblemem_or_argmemonly:
1308       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1309     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1310     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1311     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1312     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1313     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1314     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1315     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1316     case lltok::kw_noimplicitfloat:
1317       B.addAttribute(Attribute::NoImplicitFloat); break;
1318     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1319     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1320     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1321     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1322     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1323     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1324     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1325     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1326     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1327     case lltok::kw_null_pointer_is_valid:
1328       B.addAttribute(Attribute::NullPointerIsValid); break;
1329     case lltok::kw_optforfuzzing:
1330       B.addAttribute(Attribute::OptForFuzzing); break;
1331     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1332     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1333     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1334     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1335     case lltok::kw_returns_twice:
1336       B.addAttribute(Attribute::ReturnsTwice); break;
1337     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1338     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1339     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1340     case lltok::kw_sspstrong:
1341       B.addAttribute(Attribute::StackProtectStrong); break;
1342     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1343     case lltok::kw_shadowcallstack:
1344       B.addAttribute(Attribute::ShadowCallStack); break;
1345     case lltok::kw_sanitize_address:
1346       B.addAttribute(Attribute::SanitizeAddress); break;
1347     case lltok::kw_sanitize_hwaddress:
1348       B.addAttribute(Attribute::SanitizeHWAddress); break;
1349     case lltok::kw_sanitize_memtag:
1350       B.addAttribute(Attribute::SanitizeMemTag); break;
1351     case lltok::kw_sanitize_thread:
1352       B.addAttribute(Attribute::SanitizeThread); break;
1353     case lltok::kw_sanitize_memory:
1354       B.addAttribute(Attribute::SanitizeMemory); break;
1355     case lltok::kw_speculative_load_hardening:
1356       B.addAttribute(Attribute::SpeculativeLoadHardening);
1357       break;
1358     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1359     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1360     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1361     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1362     case lltok::kw_preallocated: {
1363       Type *Ty;
1364       if (ParsePreallocated(Ty))
1365         return true;
1366       B.addPreallocatedAttr(Ty);
1367       break;
1368     }
1369 
1370     // Error handling.
1371     case lltok::kw_inreg:
1372     case lltok::kw_signext:
1373     case lltok::kw_zeroext:
1374       HaveError |=
1375         Error(Lex.getLoc(),
1376               "invalid use of attribute on a function");
1377       break;
1378     case lltok::kw_byval:
1379     case lltok::kw_dereferenceable:
1380     case lltok::kw_dereferenceable_or_null:
1381     case lltok::kw_inalloca:
1382     case lltok::kw_nest:
1383     case lltok::kw_noalias:
1384     case lltok::kw_noundef:
1385     case lltok::kw_nocapture:
1386     case lltok::kw_nonnull:
1387     case lltok::kw_returned:
1388     case lltok::kw_sret:
1389     case lltok::kw_swifterror:
1390     case lltok::kw_swiftself:
1391     case lltok::kw_immarg:
1392     case lltok::kw_byref:
1393       HaveError |=
1394         Error(Lex.getLoc(),
1395               "invalid use of parameter-only attribute on a function");
1396       break;
1397     }
1398 
1399     // ParsePreallocated() consumes token
1400     if (Token != lltok::kw_preallocated)
1401       Lex.Lex();
1402   }
1403 }
1404 
1405 //===----------------------------------------------------------------------===//
1406 // GlobalValue Reference/Resolution Routines.
1407 //===----------------------------------------------------------------------===//
1408 
1409 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1410                                               const std::string &Name) {
1411   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1412     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1413                             PTy->getAddressSpace(), Name, M);
1414   else
1415     return new GlobalVariable(*M, PTy->getElementType(), false,
1416                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1417                               nullptr, GlobalVariable::NotThreadLocal,
1418                               PTy->getAddressSpace());
1419 }
1420 
1421 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1422                                         Value *Val, bool IsCall) {
1423   if (Val->getType() == Ty)
1424     return Val;
1425   // For calls we also accept variables in the program address space.
1426   Type *SuggestedTy = Ty;
1427   if (IsCall && isa<PointerType>(Ty)) {
1428     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1429         M->getDataLayout().getProgramAddressSpace());
1430     SuggestedTy = TyInProgAS;
1431     if (Val->getType() == TyInProgAS)
1432       return Val;
1433   }
1434   if (Ty->isLabelTy())
1435     Error(Loc, "'" + Name + "' is not a basic block");
1436   else
1437     Error(Loc, "'" + Name + "' defined with type '" +
1438                    getTypeString(Val->getType()) + "' but expected '" +
1439                    getTypeString(SuggestedTy) + "'");
1440   return nullptr;
1441 }
1442 
1443 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1444 /// forward reference record if needed.  This can return null if the value
1445 /// exists but does not have the right type.
1446 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1447                                     LocTy Loc, bool IsCall) {
1448   PointerType *PTy = dyn_cast<PointerType>(Ty);
1449   if (!PTy) {
1450     Error(Loc, "global variable reference must have pointer type");
1451     return nullptr;
1452   }
1453 
1454   // Look this name up in the normal function symbol table.
1455   GlobalValue *Val =
1456     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1457 
1458   // If this is a forward reference for the value, see if we already created a
1459   // forward ref record.
1460   if (!Val) {
1461     auto I = ForwardRefVals.find(Name);
1462     if (I != ForwardRefVals.end())
1463       Val = I->second.first;
1464   }
1465 
1466   // If we have the value in the symbol table or fwd-ref table, return it.
1467   if (Val)
1468     return cast_or_null<GlobalValue>(
1469         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1470 
1471   // Otherwise, create a new forward reference for this value and remember it.
1472   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1473   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1474   return FwdVal;
1475 }
1476 
1477 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1478                                     bool IsCall) {
1479   PointerType *PTy = dyn_cast<PointerType>(Ty);
1480   if (!PTy) {
1481     Error(Loc, "global variable reference must have pointer type");
1482     return nullptr;
1483   }
1484 
1485   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1486 
1487   // If this is a forward reference for the value, see if we already created a
1488   // forward ref record.
1489   if (!Val) {
1490     auto I = ForwardRefValIDs.find(ID);
1491     if (I != ForwardRefValIDs.end())
1492       Val = I->second.first;
1493   }
1494 
1495   // If we have the value in the symbol table or fwd-ref table, return it.
1496   if (Val)
1497     return cast_or_null<GlobalValue>(
1498         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1499 
1500   // Otherwise, create a new forward reference for this value and remember it.
1501   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1502   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1503   return FwdVal;
1504 }
1505 
1506 //===----------------------------------------------------------------------===//
1507 // Comdat Reference/Resolution Routines.
1508 //===----------------------------------------------------------------------===//
1509 
1510 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1511   // Look this name up in the comdat symbol table.
1512   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1513   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1514   if (I != ComdatSymTab.end())
1515     return &I->second;
1516 
1517   // Otherwise, create a new forward reference for this value and remember it.
1518   Comdat *C = M->getOrInsertComdat(Name);
1519   ForwardRefComdats[Name] = Loc;
1520   return C;
1521 }
1522 
1523 //===----------------------------------------------------------------------===//
1524 // Helper Routines.
1525 //===----------------------------------------------------------------------===//
1526 
1527 /// ParseToken - If the current token has the specified kind, eat it and return
1528 /// success.  Otherwise, emit the specified error and return failure.
1529 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1530   if (Lex.getKind() != T)
1531     return TokError(ErrMsg);
1532   Lex.Lex();
1533   return false;
1534 }
1535 
1536 /// ParseStringConstant
1537 ///   ::= StringConstant
1538 bool LLParser::ParseStringConstant(std::string &Result) {
1539   if (Lex.getKind() != lltok::StringConstant)
1540     return TokError("expected string constant");
1541   Result = Lex.getStrVal();
1542   Lex.Lex();
1543   return false;
1544 }
1545 
1546 /// ParseUInt32
1547 ///   ::= uint32
1548 bool LLParser::ParseUInt32(uint32_t &Val) {
1549   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1550     return TokError("expected integer");
1551   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1552   if (Val64 != unsigned(Val64))
1553     return TokError("expected 32-bit integer (too large)");
1554   Val = Val64;
1555   Lex.Lex();
1556   return false;
1557 }
1558 
1559 /// ParseUInt64
1560 ///   ::= uint64
1561 bool LLParser::ParseUInt64(uint64_t &Val) {
1562   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1563     return TokError("expected integer");
1564   Val = Lex.getAPSIntVal().getLimitedValue();
1565   Lex.Lex();
1566   return false;
1567 }
1568 
1569 /// ParseTLSModel
1570 ///   := 'localdynamic'
1571 ///   := 'initialexec'
1572 ///   := 'localexec'
1573 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1574   switch (Lex.getKind()) {
1575     default:
1576       return TokError("expected localdynamic, initialexec or localexec");
1577     case lltok::kw_localdynamic:
1578       TLM = GlobalVariable::LocalDynamicTLSModel;
1579       break;
1580     case lltok::kw_initialexec:
1581       TLM = GlobalVariable::InitialExecTLSModel;
1582       break;
1583     case lltok::kw_localexec:
1584       TLM = GlobalVariable::LocalExecTLSModel;
1585       break;
1586   }
1587 
1588   Lex.Lex();
1589   return false;
1590 }
1591 
1592 /// ParseOptionalThreadLocal
1593 ///   := /*empty*/
1594 ///   := 'thread_local'
1595 ///   := 'thread_local' '(' tlsmodel ')'
1596 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1597   TLM = GlobalVariable::NotThreadLocal;
1598   if (!EatIfPresent(lltok::kw_thread_local))
1599     return false;
1600 
1601   TLM = GlobalVariable::GeneralDynamicTLSModel;
1602   if (Lex.getKind() == lltok::lparen) {
1603     Lex.Lex();
1604     return ParseTLSModel(TLM) ||
1605       ParseToken(lltok::rparen, "expected ')' after thread local model");
1606   }
1607   return false;
1608 }
1609 
1610 /// ParseOptionalAddrSpace
1611 ///   := /*empty*/
1612 ///   := 'addrspace' '(' uint32 ')'
1613 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1614   AddrSpace = DefaultAS;
1615   if (!EatIfPresent(lltok::kw_addrspace))
1616     return false;
1617   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1618          ParseUInt32(AddrSpace) ||
1619          ParseToken(lltok::rparen, "expected ')' in address space");
1620 }
1621 
1622 /// ParseStringAttribute
1623 ///   := StringConstant
1624 ///   := StringConstant '=' StringConstant
1625 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1626   std::string Attr = Lex.getStrVal();
1627   Lex.Lex();
1628   std::string Val;
1629   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1630     return true;
1631   B.addAttribute(Attr, Val);
1632   return false;
1633 }
1634 
1635 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1636 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1637   bool HaveError = false;
1638 
1639   B.clear();
1640 
1641   while (true) {
1642     lltok::Kind Token = Lex.getKind();
1643     switch (Token) {
1644     default:  // End of attributes.
1645       return HaveError;
1646     case lltok::StringConstant: {
1647       if (ParseStringAttribute(B))
1648         return true;
1649       continue;
1650     }
1651     case lltok::kw_align: {
1652       MaybeAlign Alignment;
1653       if (ParseOptionalAlignment(Alignment, true))
1654         return true;
1655       B.addAlignmentAttr(Alignment);
1656       continue;
1657     }
1658     case lltok::kw_byval: {
1659       Type *Ty;
1660       if (ParseByValWithOptionalType(Ty))
1661         return true;
1662       B.addByValAttr(Ty);
1663       continue;
1664     }
1665     case lltok::kw_preallocated: {
1666       Type *Ty;
1667       if (ParsePreallocated(Ty))
1668         return true;
1669       B.addPreallocatedAttr(Ty);
1670       continue;
1671     }
1672     case lltok::kw_dereferenceable: {
1673       uint64_t Bytes;
1674       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1675         return true;
1676       B.addDereferenceableAttr(Bytes);
1677       continue;
1678     }
1679     case lltok::kw_dereferenceable_or_null: {
1680       uint64_t Bytes;
1681       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1682         return true;
1683       B.addDereferenceableOrNullAttr(Bytes);
1684       continue;
1685     }
1686     case lltok::kw_byref: {
1687       Type *Ty;
1688       if (ParseByRef(Ty))
1689         return true;
1690       B.addByRefAttr(Ty);
1691       continue;
1692     }
1693     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1694     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1695     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1696     case lltok::kw_noundef:
1697       B.addAttribute(Attribute::NoUndef);
1698       break;
1699     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1700     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1701     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1702     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1703     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1704     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1705     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1706     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1707     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1708     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1709     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1710     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1711     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1712     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1713 
1714     case lltok::kw_alignstack:
1715     case lltok::kw_alwaysinline:
1716     case lltok::kw_argmemonly:
1717     case lltok::kw_builtin:
1718     case lltok::kw_inlinehint:
1719     case lltok::kw_jumptable:
1720     case lltok::kw_minsize:
1721     case lltok::kw_naked:
1722     case lltok::kw_nobuiltin:
1723     case lltok::kw_noduplicate:
1724     case lltok::kw_noimplicitfloat:
1725     case lltok::kw_noinline:
1726     case lltok::kw_nonlazybind:
1727     case lltok::kw_nomerge:
1728     case lltok::kw_noredzone:
1729     case lltok::kw_noreturn:
1730     case lltok::kw_nocf_check:
1731     case lltok::kw_nounwind:
1732     case lltok::kw_optforfuzzing:
1733     case lltok::kw_optnone:
1734     case lltok::kw_optsize:
1735     case lltok::kw_returns_twice:
1736     case lltok::kw_sanitize_address:
1737     case lltok::kw_sanitize_hwaddress:
1738     case lltok::kw_sanitize_memtag:
1739     case lltok::kw_sanitize_memory:
1740     case lltok::kw_sanitize_thread:
1741     case lltok::kw_speculative_load_hardening:
1742     case lltok::kw_ssp:
1743     case lltok::kw_sspreq:
1744     case lltok::kw_sspstrong:
1745     case lltok::kw_safestack:
1746     case lltok::kw_shadowcallstack:
1747     case lltok::kw_strictfp:
1748     case lltok::kw_uwtable:
1749       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1750       break;
1751     }
1752 
1753     Lex.Lex();
1754   }
1755 }
1756 
1757 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1758 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1759   bool HaveError = false;
1760 
1761   B.clear();
1762 
1763   while (true) {
1764     lltok::Kind Token = Lex.getKind();
1765     switch (Token) {
1766     default:  // End of attributes.
1767       return HaveError;
1768     case lltok::StringConstant: {
1769       if (ParseStringAttribute(B))
1770         return true;
1771       continue;
1772     }
1773     case lltok::kw_dereferenceable: {
1774       uint64_t Bytes;
1775       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1776         return true;
1777       B.addDereferenceableAttr(Bytes);
1778       continue;
1779     }
1780     case lltok::kw_dereferenceable_or_null: {
1781       uint64_t Bytes;
1782       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1783         return true;
1784       B.addDereferenceableOrNullAttr(Bytes);
1785       continue;
1786     }
1787     case lltok::kw_align: {
1788       MaybeAlign Alignment;
1789       if (ParseOptionalAlignment(Alignment))
1790         return true;
1791       B.addAlignmentAttr(Alignment);
1792       continue;
1793     }
1794     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1795     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1796     case lltok::kw_noundef:
1797       B.addAttribute(Attribute::NoUndef);
1798       break;
1799     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1800     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1801     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1802 
1803     // Error handling.
1804     case lltok::kw_byval:
1805     case lltok::kw_inalloca:
1806     case lltok::kw_nest:
1807     case lltok::kw_nocapture:
1808     case lltok::kw_returned:
1809     case lltok::kw_sret:
1810     case lltok::kw_swifterror:
1811     case lltok::kw_swiftself:
1812     case lltok::kw_immarg:
1813     case lltok::kw_byref:
1814       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1815       break;
1816 
1817     case lltok::kw_alignstack:
1818     case lltok::kw_alwaysinline:
1819     case lltok::kw_argmemonly:
1820     case lltok::kw_builtin:
1821     case lltok::kw_cold:
1822     case lltok::kw_inlinehint:
1823     case lltok::kw_jumptable:
1824     case lltok::kw_minsize:
1825     case lltok::kw_naked:
1826     case lltok::kw_nobuiltin:
1827     case lltok::kw_noduplicate:
1828     case lltok::kw_noimplicitfloat:
1829     case lltok::kw_noinline:
1830     case lltok::kw_nonlazybind:
1831     case lltok::kw_nomerge:
1832     case lltok::kw_noredzone:
1833     case lltok::kw_noreturn:
1834     case lltok::kw_nocf_check:
1835     case lltok::kw_nounwind:
1836     case lltok::kw_optforfuzzing:
1837     case lltok::kw_optnone:
1838     case lltok::kw_optsize:
1839     case lltok::kw_returns_twice:
1840     case lltok::kw_sanitize_address:
1841     case lltok::kw_sanitize_hwaddress:
1842     case lltok::kw_sanitize_memtag:
1843     case lltok::kw_sanitize_memory:
1844     case lltok::kw_sanitize_thread:
1845     case lltok::kw_speculative_load_hardening:
1846     case lltok::kw_ssp:
1847     case lltok::kw_sspreq:
1848     case lltok::kw_sspstrong:
1849     case lltok::kw_safestack:
1850     case lltok::kw_shadowcallstack:
1851     case lltok::kw_strictfp:
1852     case lltok::kw_uwtable:
1853       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1854       break;
1855     case lltok::kw_readnone:
1856     case lltok::kw_readonly:
1857       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1858       break;
1859     case lltok::kw_preallocated:
1860       HaveError |=
1861           Error(Lex.getLoc(),
1862                 "invalid use of parameter-only/call site-only attribute");
1863       break;
1864     }
1865 
1866     Lex.Lex();
1867   }
1868 }
1869 
1870 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1871   HasLinkage = true;
1872   switch (Kind) {
1873   default:
1874     HasLinkage = false;
1875     return GlobalValue::ExternalLinkage;
1876   case lltok::kw_private:
1877     return GlobalValue::PrivateLinkage;
1878   case lltok::kw_internal:
1879     return GlobalValue::InternalLinkage;
1880   case lltok::kw_weak:
1881     return GlobalValue::WeakAnyLinkage;
1882   case lltok::kw_weak_odr:
1883     return GlobalValue::WeakODRLinkage;
1884   case lltok::kw_linkonce:
1885     return GlobalValue::LinkOnceAnyLinkage;
1886   case lltok::kw_linkonce_odr:
1887     return GlobalValue::LinkOnceODRLinkage;
1888   case lltok::kw_available_externally:
1889     return GlobalValue::AvailableExternallyLinkage;
1890   case lltok::kw_appending:
1891     return GlobalValue::AppendingLinkage;
1892   case lltok::kw_common:
1893     return GlobalValue::CommonLinkage;
1894   case lltok::kw_extern_weak:
1895     return GlobalValue::ExternalWeakLinkage;
1896   case lltok::kw_external:
1897     return GlobalValue::ExternalLinkage;
1898   }
1899 }
1900 
1901 /// ParseOptionalLinkage
1902 ///   ::= /*empty*/
1903 ///   ::= 'private'
1904 ///   ::= 'internal'
1905 ///   ::= 'weak'
1906 ///   ::= 'weak_odr'
1907 ///   ::= 'linkonce'
1908 ///   ::= 'linkonce_odr'
1909 ///   ::= 'available_externally'
1910 ///   ::= 'appending'
1911 ///   ::= 'common'
1912 ///   ::= 'extern_weak'
1913 ///   ::= 'external'
1914 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1915                                     unsigned &Visibility,
1916                                     unsigned &DLLStorageClass,
1917                                     bool &DSOLocal) {
1918   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1919   if (HasLinkage)
1920     Lex.Lex();
1921   ParseOptionalDSOLocal(DSOLocal);
1922   ParseOptionalVisibility(Visibility);
1923   ParseOptionalDLLStorageClass(DLLStorageClass);
1924 
1925   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1926     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1927   }
1928 
1929   return false;
1930 }
1931 
1932 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1933   switch (Lex.getKind()) {
1934   default:
1935     DSOLocal = false;
1936     break;
1937   case lltok::kw_dso_local:
1938     DSOLocal = true;
1939     Lex.Lex();
1940     break;
1941   case lltok::kw_dso_preemptable:
1942     DSOLocal = false;
1943     Lex.Lex();
1944     break;
1945   }
1946 }
1947 
1948 /// ParseOptionalVisibility
1949 ///   ::= /*empty*/
1950 ///   ::= 'default'
1951 ///   ::= 'hidden'
1952 ///   ::= 'protected'
1953 ///
1954 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1955   switch (Lex.getKind()) {
1956   default:
1957     Res = GlobalValue::DefaultVisibility;
1958     return;
1959   case lltok::kw_default:
1960     Res = GlobalValue::DefaultVisibility;
1961     break;
1962   case lltok::kw_hidden:
1963     Res = GlobalValue::HiddenVisibility;
1964     break;
1965   case lltok::kw_protected:
1966     Res = GlobalValue::ProtectedVisibility;
1967     break;
1968   }
1969   Lex.Lex();
1970 }
1971 
1972 /// ParseOptionalDLLStorageClass
1973 ///   ::= /*empty*/
1974 ///   ::= 'dllimport'
1975 ///   ::= 'dllexport'
1976 ///
1977 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1978   switch (Lex.getKind()) {
1979   default:
1980     Res = GlobalValue::DefaultStorageClass;
1981     return;
1982   case lltok::kw_dllimport:
1983     Res = GlobalValue::DLLImportStorageClass;
1984     break;
1985   case lltok::kw_dllexport:
1986     Res = GlobalValue::DLLExportStorageClass;
1987     break;
1988   }
1989   Lex.Lex();
1990 }
1991 
1992 /// ParseOptionalCallingConv
1993 ///   ::= /*empty*/
1994 ///   ::= 'ccc'
1995 ///   ::= 'fastcc'
1996 ///   ::= 'intel_ocl_bicc'
1997 ///   ::= 'coldcc'
1998 ///   ::= 'cfguard_checkcc'
1999 ///   ::= 'x86_stdcallcc'
2000 ///   ::= 'x86_fastcallcc'
2001 ///   ::= 'x86_thiscallcc'
2002 ///   ::= 'x86_vectorcallcc'
2003 ///   ::= 'arm_apcscc'
2004 ///   ::= 'arm_aapcscc'
2005 ///   ::= 'arm_aapcs_vfpcc'
2006 ///   ::= 'aarch64_vector_pcs'
2007 ///   ::= 'aarch64_sve_vector_pcs'
2008 ///   ::= 'msp430_intrcc'
2009 ///   ::= 'avr_intrcc'
2010 ///   ::= 'avr_signalcc'
2011 ///   ::= 'ptx_kernel'
2012 ///   ::= 'ptx_device'
2013 ///   ::= 'spir_func'
2014 ///   ::= 'spir_kernel'
2015 ///   ::= 'x86_64_sysvcc'
2016 ///   ::= 'win64cc'
2017 ///   ::= 'webkit_jscc'
2018 ///   ::= 'anyregcc'
2019 ///   ::= 'preserve_mostcc'
2020 ///   ::= 'preserve_allcc'
2021 ///   ::= 'ghccc'
2022 ///   ::= 'swiftcc'
2023 ///   ::= 'x86_intrcc'
2024 ///   ::= 'hhvmcc'
2025 ///   ::= 'hhvm_ccc'
2026 ///   ::= 'cxx_fast_tlscc'
2027 ///   ::= 'amdgpu_vs'
2028 ///   ::= 'amdgpu_ls'
2029 ///   ::= 'amdgpu_hs'
2030 ///   ::= 'amdgpu_es'
2031 ///   ::= 'amdgpu_gs'
2032 ///   ::= 'amdgpu_ps'
2033 ///   ::= 'amdgpu_cs'
2034 ///   ::= 'amdgpu_kernel'
2035 ///   ::= 'tailcc'
2036 ///   ::= 'cc' UINT
2037 ///
2038 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2039   switch (Lex.getKind()) {
2040   default:                       CC = CallingConv::C; return false;
2041   case lltok::kw_ccc:            CC = CallingConv::C; break;
2042   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2043   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2044   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2045   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2046   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2047   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2048   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2049   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2050   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2051   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2052   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2053   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2054   case lltok::kw_aarch64_sve_vector_pcs:
2055     CC = CallingConv::AArch64_SVE_VectorCall;
2056     break;
2057   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2058   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2059   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2060   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2061   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2062   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2063   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2064   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2065   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2066   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2067   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2068   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2069   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2070   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2071   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2072   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2073   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2074   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2075   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2076   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2077   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2078   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2079   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2080   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2081   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2082   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2083   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2084   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2085   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2086   case lltok::kw_cc: {
2087       Lex.Lex();
2088       return ParseUInt32(CC);
2089     }
2090   }
2091 
2092   Lex.Lex();
2093   return false;
2094 }
2095 
2096 /// ParseMetadataAttachment
2097 ///   ::= !dbg !42
2098 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2099   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2100 
2101   std::string Name = Lex.getStrVal();
2102   Kind = M->getMDKindID(Name);
2103   Lex.Lex();
2104 
2105   return ParseMDNode(MD);
2106 }
2107 
2108 /// ParseInstructionMetadata
2109 ///   ::= !dbg !42 (',' !dbg !57)*
2110 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2111   do {
2112     if (Lex.getKind() != lltok::MetadataVar)
2113       return TokError("expected metadata after comma");
2114 
2115     unsigned MDK;
2116     MDNode *N;
2117     if (ParseMetadataAttachment(MDK, N))
2118       return true;
2119 
2120     Inst.setMetadata(MDK, N);
2121     if (MDK == LLVMContext::MD_tbaa)
2122       InstsWithTBAATag.push_back(&Inst);
2123 
2124     // If this is the end of the list, we're done.
2125   } while (EatIfPresent(lltok::comma));
2126   return false;
2127 }
2128 
2129 /// ParseGlobalObjectMetadataAttachment
2130 ///   ::= !dbg !57
2131 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2132   unsigned MDK;
2133   MDNode *N;
2134   if (ParseMetadataAttachment(MDK, N))
2135     return true;
2136 
2137   GO.addMetadata(MDK, *N);
2138   return false;
2139 }
2140 
2141 /// ParseOptionalFunctionMetadata
2142 ///   ::= (!dbg !57)*
2143 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2144   while (Lex.getKind() == lltok::MetadataVar)
2145     if (ParseGlobalObjectMetadataAttachment(F))
2146       return true;
2147   return false;
2148 }
2149 
2150 /// ParseOptionalAlignment
2151 ///   ::= /* empty */
2152 ///   ::= 'align' 4
2153 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2154   Alignment = None;
2155   if (!EatIfPresent(lltok::kw_align))
2156     return false;
2157   LocTy AlignLoc = Lex.getLoc();
2158   uint32_t Value = 0;
2159 
2160   LocTy ParenLoc = Lex.getLoc();
2161   bool HaveParens = false;
2162   if (AllowParens) {
2163     if (EatIfPresent(lltok::lparen))
2164       HaveParens = true;
2165   }
2166 
2167   if (ParseUInt32(Value))
2168     return true;
2169 
2170   if (HaveParens && !EatIfPresent(lltok::rparen))
2171     return Error(ParenLoc, "expected ')'");
2172 
2173   if (!isPowerOf2_32(Value))
2174     return Error(AlignLoc, "alignment is not a power of two");
2175   if (Value > Value::MaximumAlignment)
2176     return Error(AlignLoc, "huge alignments are not supported yet");
2177   Alignment = Align(Value);
2178   return false;
2179 }
2180 
2181 /// ParseOptionalDerefAttrBytes
2182 ///   ::= /* empty */
2183 ///   ::= AttrKind '(' 4 ')'
2184 ///
2185 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2186 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2187                                            uint64_t &Bytes) {
2188   assert((AttrKind == lltok::kw_dereferenceable ||
2189           AttrKind == lltok::kw_dereferenceable_or_null) &&
2190          "contract!");
2191 
2192   Bytes = 0;
2193   if (!EatIfPresent(AttrKind))
2194     return false;
2195   LocTy ParenLoc = Lex.getLoc();
2196   if (!EatIfPresent(lltok::lparen))
2197     return Error(ParenLoc, "expected '('");
2198   LocTy DerefLoc = Lex.getLoc();
2199   if (ParseUInt64(Bytes)) return true;
2200   ParenLoc = Lex.getLoc();
2201   if (!EatIfPresent(lltok::rparen))
2202     return Error(ParenLoc, "expected ')'");
2203   if (!Bytes)
2204     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2205   return false;
2206 }
2207 
2208 /// ParseOptionalCommaAlign
2209 ///   ::=
2210 ///   ::= ',' align 4
2211 ///
2212 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2213 /// end.
2214 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2215                                        bool &AteExtraComma) {
2216   AteExtraComma = false;
2217   while (EatIfPresent(lltok::comma)) {
2218     // Metadata at the end is an early exit.
2219     if (Lex.getKind() == lltok::MetadataVar) {
2220       AteExtraComma = true;
2221       return false;
2222     }
2223 
2224     if (Lex.getKind() != lltok::kw_align)
2225       return Error(Lex.getLoc(), "expected metadata or 'align'");
2226 
2227     if (ParseOptionalAlignment(Alignment)) return true;
2228   }
2229 
2230   return false;
2231 }
2232 
2233 /// ParseOptionalCommaAddrSpace
2234 ///   ::=
2235 ///   ::= ',' addrspace(1)
2236 ///
2237 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2238 /// end.
2239 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2240                                            LocTy &Loc,
2241                                            bool &AteExtraComma) {
2242   AteExtraComma = false;
2243   while (EatIfPresent(lltok::comma)) {
2244     // Metadata at the end is an early exit.
2245     if (Lex.getKind() == lltok::MetadataVar) {
2246       AteExtraComma = true;
2247       return false;
2248     }
2249 
2250     Loc = Lex.getLoc();
2251     if (Lex.getKind() != lltok::kw_addrspace)
2252       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2253 
2254     if (ParseOptionalAddrSpace(AddrSpace))
2255       return true;
2256   }
2257 
2258   return false;
2259 }
2260 
2261 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2262                                        Optional<unsigned> &HowManyArg) {
2263   Lex.Lex();
2264 
2265   auto StartParen = Lex.getLoc();
2266   if (!EatIfPresent(lltok::lparen))
2267     return Error(StartParen, "expected '('");
2268 
2269   if (ParseUInt32(BaseSizeArg))
2270     return true;
2271 
2272   if (EatIfPresent(lltok::comma)) {
2273     auto HowManyAt = Lex.getLoc();
2274     unsigned HowMany;
2275     if (ParseUInt32(HowMany))
2276       return true;
2277     if (HowMany == BaseSizeArg)
2278       return Error(HowManyAt,
2279                    "'allocsize' indices can't refer to the same parameter");
2280     HowManyArg = HowMany;
2281   } else
2282     HowManyArg = None;
2283 
2284   auto EndParen = Lex.getLoc();
2285   if (!EatIfPresent(lltok::rparen))
2286     return Error(EndParen, "expected ')'");
2287   return false;
2288 }
2289 
2290 /// ParseScopeAndOrdering
2291 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2292 ///   else: ::=
2293 ///
2294 /// This sets Scope and Ordering to the parsed values.
2295 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2296                                      AtomicOrdering &Ordering) {
2297   if (!isAtomic)
2298     return false;
2299 
2300   return ParseScope(SSID) || ParseOrdering(Ordering);
2301 }
2302 
2303 /// ParseScope
2304 ///   ::= syncscope("singlethread" | "<target scope>")?
2305 ///
2306 /// This sets synchronization scope ID to the ID of the parsed value.
2307 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2308   SSID = SyncScope::System;
2309   if (EatIfPresent(lltok::kw_syncscope)) {
2310     auto StartParenAt = Lex.getLoc();
2311     if (!EatIfPresent(lltok::lparen))
2312       return Error(StartParenAt, "Expected '(' in syncscope");
2313 
2314     std::string SSN;
2315     auto SSNAt = Lex.getLoc();
2316     if (ParseStringConstant(SSN))
2317       return Error(SSNAt, "Expected synchronization scope name");
2318 
2319     auto EndParenAt = Lex.getLoc();
2320     if (!EatIfPresent(lltok::rparen))
2321       return Error(EndParenAt, "Expected ')' in syncscope");
2322 
2323     SSID = Context.getOrInsertSyncScopeID(SSN);
2324   }
2325 
2326   return false;
2327 }
2328 
2329 /// ParseOrdering
2330 ///   ::= AtomicOrdering
2331 ///
2332 /// This sets Ordering to the parsed value.
2333 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2334   switch (Lex.getKind()) {
2335   default: return TokError("Expected ordering on atomic instruction");
2336   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2337   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2338   // Not specified yet:
2339   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2340   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2341   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2342   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2343   case lltok::kw_seq_cst:
2344     Ordering = AtomicOrdering::SequentiallyConsistent;
2345     break;
2346   }
2347   Lex.Lex();
2348   return false;
2349 }
2350 
2351 /// ParseOptionalStackAlignment
2352 ///   ::= /* empty */
2353 ///   ::= 'alignstack' '(' 4 ')'
2354 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2355   Alignment = 0;
2356   if (!EatIfPresent(lltok::kw_alignstack))
2357     return false;
2358   LocTy ParenLoc = Lex.getLoc();
2359   if (!EatIfPresent(lltok::lparen))
2360     return Error(ParenLoc, "expected '('");
2361   LocTy AlignLoc = Lex.getLoc();
2362   if (ParseUInt32(Alignment)) return true;
2363   ParenLoc = Lex.getLoc();
2364   if (!EatIfPresent(lltok::rparen))
2365     return Error(ParenLoc, "expected ')'");
2366   if (!isPowerOf2_32(Alignment))
2367     return Error(AlignLoc, "stack alignment is not a power of two");
2368   return false;
2369 }
2370 
2371 /// ParseIndexList - This parses the index list for an insert/extractvalue
2372 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2373 /// comma at the end of the line and find that it is followed by metadata.
2374 /// Clients that don't allow metadata can call the version of this function that
2375 /// only takes one argument.
2376 ///
2377 /// ParseIndexList
2378 ///    ::=  (',' uint32)+
2379 ///
2380 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2381                               bool &AteExtraComma) {
2382   AteExtraComma = false;
2383 
2384   if (Lex.getKind() != lltok::comma)
2385     return TokError("expected ',' as start of index list");
2386 
2387   while (EatIfPresent(lltok::comma)) {
2388     if (Lex.getKind() == lltok::MetadataVar) {
2389       if (Indices.empty()) return TokError("expected index");
2390       AteExtraComma = true;
2391       return false;
2392     }
2393     unsigned Idx = 0;
2394     if (ParseUInt32(Idx)) return true;
2395     Indices.push_back(Idx);
2396   }
2397 
2398   return false;
2399 }
2400 
2401 //===----------------------------------------------------------------------===//
2402 // Type Parsing.
2403 //===----------------------------------------------------------------------===//
2404 
2405 /// ParseType - Parse a type.
2406 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2407   SMLoc TypeLoc = Lex.getLoc();
2408   switch (Lex.getKind()) {
2409   default:
2410     return TokError(Msg);
2411   case lltok::Type:
2412     // Type ::= 'float' | 'void' (etc)
2413     Result = Lex.getTyVal();
2414     Lex.Lex();
2415     break;
2416   case lltok::lbrace:
2417     // Type ::= StructType
2418     if (ParseAnonStructType(Result, false))
2419       return true;
2420     break;
2421   case lltok::lsquare:
2422     // Type ::= '[' ... ']'
2423     Lex.Lex(); // eat the lsquare.
2424     if (ParseArrayVectorType(Result, false))
2425       return true;
2426     break;
2427   case lltok::less: // Either vector or packed struct.
2428     // Type ::= '<' ... '>'
2429     Lex.Lex();
2430     if (Lex.getKind() == lltok::lbrace) {
2431       if (ParseAnonStructType(Result, true) ||
2432           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2433         return true;
2434     } else if (ParseArrayVectorType(Result, true))
2435       return true;
2436     break;
2437   case lltok::LocalVar: {
2438     // Type ::= %foo
2439     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2440 
2441     // If the type hasn't been defined yet, create a forward definition and
2442     // remember where that forward def'n was seen (in case it never is defined).
2443     if (!Entry.first) {
2444       Entry.first = StructType::create(Context, Lex.getStrVal());
2445       Entry.second = Lex.getLoc();
2446     }
2447     Result = Entry.first;
2448     Lex.Lex();
2449     break;
2450   }
2451 
2452   case lltok::LocalVarID: {
2453     // Type ::= %4
2454     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2455 
2456     // If the type hasn't been defined yet, create a forward definition and
2457     // remember where that forward def'n was seen (in case it never is defined).
2458     if (!Entry.first) {
2459       Entry.first = StructType::create(Context);
2460       Entry.second = Lex.getLoc();
2461     }
2462     Result = Entry.first;
2463     Lex.Lex();
2464     break;
2465   }
2466   }
2467 
2468   // Parse the type suffixes.
2469   while (true) {
2470     switch (Lex.getKind()) {
2471     // End of type.
2472     default:
2473       if (!AllowVoid && Result->isVoidTy())
2474         return Error(TypeLoc, "void type only allowed for function results");
2475       return false;
2476 
2477     // Type ::= Type '*'
2478     case lltok::star:
2479       if (Result->isLabelTy())
2480         return TokError("basic block pointers are invalid");
2481       if (Result->isVoidTy())
2482         return TokError("pointers to void are invalid - use i8* instead");
2483       if (!PointerType::isValidElementType(Result))
2484         return TokError("pointer to this type is invalid");
2485       Result = PointerType::getUnqual(Result);
2486       Lex.Lex();
2487       break;
2488 
2489     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2490     case lltok::kw_addrspace: {
2491       if (Result->isLabelTy())
2492         return TokError("basic block pointers are invalid");
2493       if (Result->isVoidTy())
2494         return TokError("pointers to void are invalid; use i8* instead");
2495       if (!PointerType::isValidElementType(Result))
2496         return TokError("pointer to this type is invalid");
2497       unsigned AddrSpace;
2498       if (ParseOptionalAddrSpace(AddrSpace) ||
2499           ParseToken(lltok::star, "expected '*' in address space"))
2500         return true;
2501 
2502       Result = PointerType::get(Result, AddrSpace);
2503       break;
2504     }
2505 
2506     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2507     case lltok::lparen:
2508       if (ParseFunctionType(Result))
2509         return true;
2510       break;
2511     }
2512   }
2513 }
2514 
2515 /// ParseParameterList
2516 ///    ::= '(' ')'
2517 ///    ::= '(' Arg (',' Arg)* ')'
2518 ///  Arg
2519 ///    ::= Type OptionalAttributes Value OptionalAttributes
2520 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2521                                   PerFunctionState &PFS, bool IsMustTailCall,
2522                                   bool InVarArgsFunc) {
2523   if (ParseToken(lltok::lparen, "expected '(' in call"))
2524     return true;
2525 
2526   while (Lex.getKind() != lltok::rparen) {
2527     // If this isn't the first argument, we need a comma.
2528     if (!ArgList.empty() &&
2529         ParseToken(lltok::comma, "expected ',' in argument list"))
2530       return true;
2531 
2532     // Parse an ellipsis if this is a musttail call in a variadic function.
2533     if (Lex.getKind() == lltok::dotdotdot) {
2534       const char *Msg = "unexpected ellipsis in argument list for ";
2535       if (!IsMustTailCall)
2536         return TokError(Twine(Msg) + "non-musttail call");
2537       if (!InVarArgsFunc)
2538         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2539       Lex.Lex();  // Lex the '...', it is purely for readability.
2540       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2541     }
2542 
2543     // Parse the argument.
2544     LocTy ArgLoc;
2545     Type *ArgTy = nullptr;
2546     AttrBuilder ArgAttrs;
2547     Value *V;
2548     if (ParseType(ArgTy, ArgLoc))
2549       return true;
2550 
2551     if (ArgTy->isMetadataTy()) {
2552       if (ParseMetadataAsValue(V, PFS))
2553         return true;
2554     } else {
2555       // Otherwise, handle normal operands.
2556       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2557         return true;
2558     }
2559     ArgList.push_back(ParamInfo(
2560         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2561   }
2562 
2563   if (IsMustTailCall && InVarArgsFunc)
2564     return TokError("expected '...' at end of argument list for musttail call "
2565                     "in varargs function");
2566 
2567   Lex.Lex();  // Lex the ')'.
2568   return false;
2569 }
2570 
2571 /// ParseByValWithOptionalType
2572 ///   ::= byval
2573 ///   ::= byval(<ty>)
2574 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2575   Result = nullptr;
2576   if (!EatIfPresent(lltok::kw_byval))
2577     return true;
2578   if (!EatIfPresent(lltok::lparen))
2579     return false;
2580   if (ParseType(Result))
2581     return true;
2582   if (!EatIfPresent(lltok::rparen))
2583     return Error(Lex.getLoc(), "expected ')'");
2584   return false;
2585 }
2586 
2587 /// ParseRequiredTypeAttr
2588 ///   ::= attrname(<ty>)
2589 bool LLParser::ParseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2590   Result = nullptr;
2591   if (!EatIfPresent(AttrName))
2592     return true;
2593   if (!EatIfPresent(lltok::lparen))
2594     return Error(Lex.getLoc(), "expected '('");
2595   if (ParseType(Result))
2596     return true;
2597   if (!EatIfPresent(lltok::rparen))
2598     return Error(Lex.getLoc(), "expected ')'");
2599   return false;
2600 }
2601 
2602 /// ParsePreallocated
2603 ///   ::= preallocated(<ty>)
2604 bool LLParser::ParsePreallocated(Type *&Result) {
2605   return ParseRequiredTypeAttr(Result, lltok::kw_preallocated);
2606 }
2607 
2608 /// ParseByRef
2609 ///   ::= byref(<type>)
2610 bool LLParser::ParseByRef(Type *&Result) {
2611   return ParseRequiredTypeAttr(Result, lltok::kw_byref);
2612 }
2613 
2614 /// ParseOptionalOperandBundles
2615 ///    ::= /*empty*/
2616 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2617 ///
2618 /// OperandBundle
2619 ///    ::= bundle-tag '(' ')'
2620 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2621 ///
2622 /// bundle-tag ::= String Constant
2623 bool LLParser::ParseOptionalOperandBundles(
2624     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2625   LocTy BeginLoc = Lex.getLoc();
2626   if (!EatIfPresent(lltok::lsquare))
2627     return false;
2628 
2629   while (Lex.getKind() != lltok::rsquare) {
2630     // If this isn't the first operand bundle, we need a comma.
2631     if (!BundleList.empty() &&
2632         ParseToken(lltok::comma, "expected ',' in input list"))
2633       return true;
2634 
2635     std::string Tag;
2636     if (ParseStringConstant(Tag))
2637       return true;
2638 
2639     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2640       return true;
2641 
2642     std::vector<Value *> Inputs;
2643     while (Lex.getKind() != lltok::rparen) {
2644       // If this isn't the first input, we need a comma.
2645       if (!Inputs.empty() &&
2646           ParseToken(lltok::comma, "expected ',' in input list"))
2647         return true;
2648 
2649       Type *Ty = nullptr;
2650       Value *Input = nullptr;
2651       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2652         return true;
2653       Inputs.push_back(Input);
2654     }
2655 
2656     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2657 
2658     Lex.Lex(); // Lex the ')'.
2659   }
2660 
2661   if (BundleList.empty())
2662     return Error(BeginLoc, "operand bundle set must not be empty");
2663 
2664   Lex.Lex(); // Lex the ']'.
2665   return false;
2666 }
2667 
2668 /// ParseArgumentList - Parse the argument list for a function type or function
2669 /// prototype.
2670 ///   ::= '(' ArgTypeListI ')'
2671 /// ArgTypeListI
2672 ///   ::= /*empty*/
2673 ///   ::= '...'
2674 ///   ::= ArgTypeList ',' '...'
2675 ///   ::= ArgType (',' ArgType)*
2676 ///
2677 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2678                                  bool &isVarArg){
2679   unsigned CurValID = 0;
2680   isVarArg = false;
2681   assert(Lex.getKind() == lltok::lparen);
2682   Lex.Lex(); // eat the (.
2683 
2684   if (Lex.getKind() == lltok::rparen) {
2685     // empty
2686   } else if (Lex.getKind() == lltok::dotdotdot) {
2687     isVarArg = true;
2688     Lex.Lex();
2689   } else {
2690     LocTy TypeLoc = Lex.getLoc();
2691     Type *ArgTy = nullptr;
2692     AttrBuilder Attrs;
2693     std::string Name;
2694 
2695     if (ParseType(ArgTy) ||
2696         ParseOptionalParamAttrs(Attrs)) return true;
2697 
2698     if (ArgTy->isVoidTy())
2699       return Error(TypeLoc, "argument can not have void type");
2700 
2701     if (Lex.getKind() == lltok::LocalVar) {
2702       Name = Lex.getStrVal();
2703       Lex.Lex();
2704     } else if (Lex.getKind() == lltok::LocalVarID) {
2705       if (Lex.getUIntVal() != CurValID)
2706         return Error(TypeLoc, "argument expected to be numbered '%" +
2707                                   Twine(CurValID) + "'");
2708       ++CurValID;
2709       Lex.Lex();
2710     }
2711 
2712     if (!FunctionType::isValidArgumentType(ArgTy))
2713       return Error(TypeLoc, "invalid type for function argument");
2714 
2715     ArgList.emplace_back(TypeLoc, ArgTy,
2716                          AttributeSet::get(ArgTy->getContext(), Attrs),
2717                          std::move(Name));
2718 
2719     while (EatIfPresent(lltok::comma)) {
2720       // Handle ... at end of arg list.
2721       if (EatIfPresent(lltok::dotdotdot)) {
2722         isVarArg = true;
2723         break;
2724       }
2725 
2726       // Otherwise must be an argument type.
2727       TypeLoc = Lex.getLoc();
2728       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2729 
2730       if (ArgTy->isVoidTy())
2731         return Error(TypeLoc, "argument can not have void type");
2732 
2733       if (Lex.getKind() == lltok::LocalVar) {
2734         Name = Lex.getStrVal();
2735         Lex.Lex();
2736       } else {
2737         if (Lex.getKind() == lltok::LocalVarID) {
2738           if (Lex.getUIntVal() != CurValID)
2739             return Error(TypeLoc, "argument expected to be numbered '%" +
2740                                       Twine(CurValID) + "'");
2741           Lex.Lex();
2742         }
2743         ++CurValID;
2744         Name = "";
2745       }
2746 
2747       if (!ArgTy->isFirstClassType())
2748         return Error(TypeLoc, "invalid type for function argument");
2749 
2750       ArgList.emplace_back(TypeLoc, ArgTy,
2751                            AttributeSet::get(ArgTy->getContext(), Attrs),
2752                            std::move(Name));
2753     }
2754   }
2755 
2756   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2757 }
2758 
2759 /// ParseFunctionType
2760 ///  ::= Type ArgumentList OptionalAttrs
2761 bool LLParser::ParseFunctionType(Type *&Result) {
2762   assert(Lex.getKind() == lltok::lparen);
2763 
2764   if (!FunctionType::isValidReturnType(Result))
2765     return TokError("invalid function return type");
2766 
2767   SmallVector<ArgInfo, 8> ArgList;
2768   bool isVarArg;
2769   if (ParseArgumentList(ArgList, isVarArg))
2770     return true;
2771 
2772   // Reject names on the arguments lists.
2773   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2774     if (!ArgList[i].Name.empty())
2775       return Error(ArgList[i].Loc, "argument name invalid in function type");
2776     if (ArgList[i].Attrs.hasAttributes())
2777       return Error(ArgList[i].Loc,
2778                    "argument attributes invalid in function type");
2779   }
2780 
2781   SmallVector<Type*, 16> ArgListTy;
2782   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2783     ArgListTy.push_back(ArgList[i].Ty);
2784 
2785   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2786   return false;
2787 }
2788 
2789 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2790 /// other structs.
2791 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2792   SmallVector<Type*, 8> Elts;
2793   if (ParseStructBody(Elts)) return true;
2794 
2795   Result = StructType::get(Context, Elts, Packed);
2796   return false;
2797 }
2798 
2799 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2800 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2801                                      std::pair<Type*, LocTy> &Entry,
2802                                      Type *&ResultTy) {
2803   // If the type was already defined, diagnose the redefinition.
2804   if (Entry.first && !Entry.second.isValid())
2805     return Error(TypeLoc, "redefinition of type");
2806 
2807   // If we have opaque, just return without filling in the definition for the
2808   // struct.  This counts as a definition as far as the .ll file goes.
2809   if (EatIfPresent(lltok::kw_opaque)) {
2810     // This type is being defined, so clear the location to indicate this.
2811     Entry.second = SMLoc();
2812 
2813     // If this type number has never been uttered, create it.
2814     if (!Entry.first)
2815       Entry.first = StructType::create(Context, Name);
2816     ResultTy = Entry.first;
2817     return false;
2818   }
2819 
2820   // If the type starts with '<', then it is either a packed struct or a vector.
2821   bool isPacked = EatIfPresent(lltok::less);
2822 
2823   // If we don't have a struct, then we have a random type alias, which we
2824   // accept for compatibility with old files.  These types are not allowed to be
2825   // forward referenced and not allowed to be recursive.
2826   if (Lex.getKind() != lltok::lbrace) {
2827     if (Entry.first)
2828       return Error(TypeLoc, "forward references to non-struct type");
2829 
2830     ResultTy = nullptr;
2831     if (isPacked)
2832       return ParseArrayVectorType(ResultTy, true);
2833     return ParseType(ResultTy);
2834   }
2835 
2836   // This type is being defined, so clear the location to indicate this.
2837   Entry.second = SMLoc();
2838 
2839   // If this type number has never been uttered, create it.
2840   if (!Entry.first)
2841     Entry.first = StructType::create(Context, Name);
2842 
2843   StructType *STy = cast<StructType>(Entry.first);
2844 
2845   SmallVector<Type*, 8> Body;
2846   if (ParseStructBody(Body) ||
2847       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2848     return true;
2849 
2850   STy->setBody(Body, isPacked);
2851   ResultTy = STy;
2852   return false;
2853 }
2854 
2855 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2856 ///   StructType
2857 ///     ::= '{' '}'
2858 ///     ::= '{' Type (',' Type)* '}'
2859 ///     ::= '<' '{' '}' '>'
2860 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2861 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2862   assert(Lex.getKind() == lltok::lbrace);
2863   Lex.Lex(); // Consume the '{'
2864 
2865   // Handle the empty struct.
2866   if (EatIfPresent(lltok::rbrace))
2867     return false;
2868 
2869   LocTy EltTyLoc = Lex.getLoc();
2870   Type *Ty = nullptr;
2871   if (ParseType(Ty)) return true;
2872   Body.push_back(Ty);
2873 
2874   if (!StructType::isValidElementType(Ty))
2875     return Error(EltTyLoc, "invalid element type for struct");
2876 
2877   while (EatIfPresent(lltok::comma)) {
2878     EltTyLoc = Lex.getLoc();
2879     if (ParseType(Ty)) return true;
2880 
2881     if (!StructType::isValidElementType(Ty))
2882       return Error(EltTyLoc, "invalid element type for struct");
2883 
2884     Body.push_back(Ty);
2885   }
2886 
2887   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2888 }
2889 
2890 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2891 /// token has already been consumed.
2892 ///   Type
2893 ///     ::= '[' APSINTVAL 'x' Types ']'
2894 ///     ::= '<' APSINTVAL 'x' Types '>'
2895 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2896 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2897   bool Scalable = false;
2898 
2899   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2900     Lex.Lex(); // consume the 'vscale'
2901     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2902       return true;
2903 
2904     Scalable = true;
2905   }
2906 
2907   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2908       Lex.getAPSIntVal().getBitWidth() > 64)
2909     return TokError("expected number in address space");
2910 
2911   LocTy SizeLoc = Lex.getLoc();
2912   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2913   Lex.Lex();
2914 
2915   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2916       return true;
2917 
2918   LocTy TypeLoc = Lex.getLoc();
2919   Type *EltTy = nullptr;
2920   if (ParseType(EltTy)) return true;
2921 
2922   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2923                  "expected end of sequential type"))
2924     return true;
2925 
2926   if (isVector) {
2927     if (Size == 0)
2928       return Error(SizeLoc, "zero element vector is illegal");
2929     if ((unsigned)Size != Size)
2930       return Error(SizeLoc, "size too large for vector");
2931     if (!VectorType::isValidElementType(EltTy))
2932       return Error(TypeLoc, "invalid vector element type");
2933     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2934   } else {
2935     if (!ArrayType::isValidElementType(EltTy))
2936       return Error(TypeLoc, "invalid array element type");
2937     Result = ArrayType::get(EltTy, Size);
2938   }
2939   return false;
2940 }
2941 
2942 //===----------------------------------------------------------------------===//
2943 // Function Semantic Analysis.
2944 //===----------------------------------------------------------------------===//
2945 
2946 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2947                                              int functionNumber)
2948   : P(p), F(f), FunctionNumber(functionNumber) {
2949 
2950   // Insert unnamed arguments into the NumberedVals list.
2951   for (Argument &A : F.args())
2952     if (!A.hasName())
2953       NumberedVals.push_back(&A);
2954 }
2955 
2956 LLParser::PerFunctionState::~PerFunctionState() {
2957   // If there were any forward referenced non-basicblock values, delete them.
2958 
2959   for (const auto &P : ForwardRefVals) {
2960     if (isa<BasicBlock>(P.second.first))
2961       continue;
2962     P.second.first->replaceAllUsesWith(
2963         UndefValue::get(P.second.first->getType()));
2964     P.second.first->deleteValue();
2965   }
2966 
2967   for (const auto &P : ForwardRefValIDs) {
2968     if (isa<BasicBlock>(P.second.first))
2969       continue;
2970     P.second.first->replaceAllUsesWith(
2971         UndefValue::get(P.second.first->getType()));
2972     P.second.first->deleteValue();
2973   }
2974 }
2975 
2976 bool LLParser::PerFunctionState::FinishFunction() {
2977   if (!ForwardRefVals.empty())
2978     return P.Error(ForwardRefVals.begin()->second.second,
2979                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2980                    "'");
2981   if (!ForwardRefValIDs.empty())
2982     return P.Error(ForwardRefValIDs.begin()->second.second,
2983                    "use of undefined value '%" +
2984                    Twine(ForwardRefValIDs.begin()->first) + "'");
2985   return false;
2986 }
2987 
2988 /// GetVal - Get a value with the specified name or ID, creating a
2989 /// forward reference record if needed.  This can return null if the value
2990 /// exists but does not have the right type.
2991 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2992                                           LocTy Loc, bool IsCall) {
2993   // Look this name up in the normal function symbol table.
2994   Value *Val = F.getValueSymbolTable()->lookup(Name);
2995 
2996   // If this is a forward reference for the value, see if we already created a
2997   // forward ref record.
2998   if (!Val) {
2999     auto I = ForwardRefVals.find(Name);
3000     if (I != ForwardRefVals.end())
3001       Val = I->second.first;
3002   }
3003 
3004   // If we have the value in the symbol table or fwd-ref table, return it.
3005   if (Val)
3006     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3007 
3008   // Don't make placeholders with invalid type.
3009   if (!Ty->isFirstClassType()) {
3010     P.Error(Loc, "invalid use of a non-first-class type");
3011     return nullptr;
3012   }
3013 
3014   // Otherwise, create a new forward reference for this value and remember it.
3015   Value *FwdVal;
3016   if (Ty->isLabelTy()) {
3017     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3018   } else {
3019     FwdVal = new Argument(Ty, Name);
3020   }
3021 
3022   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3023   return FwdVal;
3024 }
3025 
3026 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
3027                                           bool IsCall) {
3028   // Look this name up in the normal function symbol table.
3029   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3030 
3031   // If this is a forward reference for the value, see if we already created a
3032   // forward ref record.
3033   if (!Val) {
3034     auto I = ForwardRefValIDs.find(ID);
3035     if (I != ForwardRefValIDs.end())
3036       Val = I->second.first;
3037   }
3038 
3039   // If we have the value in the symbol table or fwd-ref table, return it.
3040   if (Val)
3041     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3042 
3043   if (!Ty->isFirstClassType()) {
3044     P.Error(Loc, "invalid use of a non-first-class type");
3045     return nullptr;
3046   }
3047 
3048   // Otherwise, create a new forward reference for this value and remember it.
3049   Value *FwdVal;
3050   if (Ty->isLabelTy()) {
3051     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3052   } else {
3053     FwdVal = new Argument(Ty);
3054   }
3055 
3056   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3057   return FwdVal;
3058 }
3059 
3060 /// SetInstName - After an instruction is parsed and inserted into its
3061 /// basic block, this installs its name.
3062 bool LLParser::PerFunctionState::SetInstName(int NameID,
3063                                              const std::string &NameStr,
3064                                              LocTy NameLoc, Instruction *Inst) {
3065   // If this instruction has void type, it cannot have a name or ID specified.
3066   if (Inst->getType()->isVoidTy()) {
3067     if (NameID != -1 || !NameStr.empty())
3068       return P.Error(NameLoc, "instructions returning void cannot have a name");
3069     return false;
3070   }
3071 
3072   // If this was a numbered instruction, verify that the instruction is the
3073   // expected value and resolve any forward references.
3074   if (NameStr.empty()) {
3075     // If neither a name nor an ID was specified, just use the next ID.
3076     if (NameID == -1)
3077       NameID = NumberedVals.size();
3078 
3079     if (unsigned(NameID) != NumberedVals.size())
3080       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3081                      Twine(NumberedVals.size()) + "'");
3082 
3083     auto FI = ForwardRefValIDs.find(NameID);
3084     if (FI != ForwardRefValIDs.end()) {
3085       Value *Sentinel = FI->second.first;
3086       if (Sentinel->getType() != Inst->getType())
3087         return P.Error(NameLoc, "instruction forward referenced with type '" +
3088                        getTypeString(FI->second.first->getType()) + "'");
3089 
3090       Sentinel->replaceAllUsesWith(Inst);
3091       Sentinel->deleteValue();
3092       ForwardRefValIDs.erase(FI);
3093     }
3094 
3095     NumberedVals.push_back(Inst);
3096     return false;
3097   }
3098 
3099   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3100   auto FI = ForwardRefVals.find(NameStr);
3101   if (FI != ForwardRefVals.end()) {
3102     Value *Sentinel = FI->second.first;
3103     if (Sentinel->getType() != Inst->getType())
3104       return P.Error(NameLoc, "instruction forward referenced with type '" +
3105                      getTypeString(FI->second.first->getType()) + "'");
3106 
3107     Sentinel->replaceAllUsesWith(Inst);
3108     Sentinel->deleteValue();
3109     ForwardRefVals.erase(FI);
3110   }
3111 
3112   // Set the name on the instruction.
3113   Inst->setName(NameStr);
3114 
3115   if (Inst->getName() != NameStr)
3116     return P.Error(NameLoc, "multiple definition of local value named '" +
3117                    NameStr + "'");
3118   return false;
3119 }
3120 
3121 /// GetBB - Get a basic block with the specified name or ID, creating a
3122 /// forward reference record if needed.
3123 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3124                                               LocTy Loc) {
3125   return dyn_cast_or_null<BasicBlock>(
3126       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3127 }
3128 
3129 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3130   return dyn_cast_or_null<BasicBlock>(
3131       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3132 }
3133 
3134 /// DefineBB - Define the specified basic block, which is either named or
3135 /// unnamed.  If there is an error, this returns null otherwise it returns
3136 /// the block being defined.
3137 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3138                                                  int NameID, LocTy Loc) {
3139   BasicBlock *BB;
3140   if (Name.empty()) {
3141     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3142       P.Error(Loc, "label expected to be numbered '" +
3143                        Twine(NumberedVals.size()) + "'");
3144       return nullptr;
3145     }
3146     BB = GetBB(NumberedVals.size(), Loc);
3147     if (!BB) {
3148       P.Error(Loc, "unable to create block numbered '" +
3149                        Twine(NumberedVals.size()) + "'");
3150       return nullptr;
3151     }
3152   } else {
3153     BB = GetBB(Name, Loc);
3154     if (!BB) {
3155       P.Error(Loc, "unable to create block named '" + Name + "'");
3156       return nullptr;
3157     }
3158   }
3159 
3160   // Move the block to the end of the function.  Forward ref'd blocks are
3161   // inserted wherever they happen to be referenced.
3162   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3163 
3164   // Remove the block from forward ref sets.
3165   if (Name.empty()) {
3166     ForwardRefValIDs.erase(NumberedVals.size());
3167     NumberedVals.push_back(BB);
3168   } else {
3169     // BB forward references are already in the function symbol table.
3170     ForwardRefVals.erase(Name);
3171   }
3172 
3173   return BB;
3174 }
3175 
3176 //===----------------------------------------------------------------------===//
3177 // Constants.
3178 //===----------------------------------------------------------------------===//
3179 
3180 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3181 /// type implied.  For example, if we parse "4" we don't know what integer type
3182 /// it has.  The value will later be combined with its type and checked for
3183 /// sanity.  PFS is used to convert function-local operands of metadata (since
3184 /// metadata operands are not just parsed here but also converted to values).
3185 /// PFS can be null when we are not parsing metadata values inside a function.
3186 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3187   ID.Loc = Lex.getLoc();
3188   switch (Lex.getKind()) {
3189   default: return TokError("expected value token");
3190   case lltok::GlobalID:  // @42
3191     ID.UIntVal = Lex.getUIntVal();
3192     ID.Kind = ValID::t_GlobalID;
3193     break;
3194   case lltok::GlobalVar:  // @foo
3195     ID.StrVal = Lex.getStrVal();
3196     ID.Kind = ValID::t_GlobalName;
3197     break;
3198   case lltok::LocalVarID:  // %42
3199     ID.UIntVal = Lex.getUIntVal();
3200     ID.Kind = ValID::t_LocalID;
3201     break;
3202   case lltok::LocalVar:  // %foo
3203     ID.StrVal = Lex.getStrVal();
3204     ID.Kind = ValID::t_LocalName;
3205     break;
3206   case lltok::APSInt:
3207     ID.APSIntVal = Lex.getAPSIntVal();
3208     ID.Kind = ValID::t_APSInt;
3209     break;
3210   case lltok::APFloat:
3211     ID.APFloatVal = Lex.getAPFloatVal();
3212     ID.Kind = ValID::t_APFloat;
3213     break;
3214   case lltok::kw_true:
3215     ID.ConstantVal = ConstantInt::getTrue(Context);
3216     ID.Kind = ValID::t_Constant;
3217     break;
3218   case lltok::kw_false:
3219     ID.ConstantVal = ConstantInt::getFalse(Context);
3220     ID.Kind = ValID::t_Constant;
3221     break;
3222   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3223   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3224   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3225   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3226 
3227   case lltok::lbrace: {
3228     // ValID ::= '{' ConstVector '}'
3229     Lex.Lex();
3230     SmallVector<Constant*, 16> Elts;
3231     if (ParseGlobalValueVector(Elts) ||
3232         ParseToken(lltok::rbrace, "expected end of struct constant"))
3233       return true;
3234 
3235     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3236     ID.UIntVal = Elts.size();
3237     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3238            Elts.size() * sizeof(Elts[0]));
3239     ID.Kind = ValID::t_ConstantStruct;
3240     return false;
3241   }
3242   case lltok::less: {
3243     // ValID ::= '<' ConstVector '>'         --> Vector.
3244     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3245     Lex.Lex();
3246     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3247 
3248     SmallVector<Constant*, 16> Elts;
3249     LocTy FirstEltLoc = Lex.getLoc();
3250     if (ParseGlobalValueVector(Elts) ||
3251         (isPackedStruct &&
3252          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3253         ParseToken(lltok::greater, "expected end of constant"))
3254       return true;
3255 
3256     if (isPackedStruct) {
3257       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3258       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3259              Elts.size() * sizeof(Elts[0]));
3260       ID.UIntVal = Elts.size();
3261       ID.Kind = ValID::t_PackedConstantStruct;
3262       return false;
3263     }
3264 
3265     if (Elts.empty())
3266       return Error(ID.Loc, "constant vector must not be empty");
3267 
3268     if (!Elts[0]->getType()->isIntegerTy() &&
3269         !Elts[0]->getType()->isFloatingPointTy() &&
3270         !Elts[0]->getType()->isPointerTy())
3271       return Error(FirstEltLoc,
3272             "vector elements must have integer, pointer or floating point type");
3273 
3274     // Verify that all the vector elements have the same type.
3275     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3276       if (Elts[i]->getType() != Elts[0]->getType())
3277         return Error(FirstEltLoc,
3278                      "vector element #" + Twine(i) +
3279                     " is not of type '" + getTypeString(Elts[0]->getType()));
3280 
3281     ID.ConstantVal = ConstantVector::get(Elts);
3282     ID.Kind = ValID::t_Constant;
3283     return false;
3284   }
3285   case lltok::lsquare: {   // Array Constant
3286     Lex.Lex();
3287     SmallVector<Constant*, 16> Elts;
3288     LocTy FirstEltLoc = Lex.getLoc();
3289     if (ParseGlobalValueVector(Elts) ||
3290         ParseToken(lltok::rsquare, "expected end of array constant"))
3291       return true;
3292 
3293     // Handle empty element.
3294     if (Elts.empty()) {
3295       // Use undef instead of an array because it's inconvenient to determine
3296       // the element type at this point, there being no elements to examine.
3297       ID.Kind = ValID::t_EmptyArray;
3298       return false;
3299     }
3300 
3301     if (!Elts[0]->getType()->isFirstClassType())
3302       return Error(FirstEltLoc, "invalid array element type: " +
3303                    getTypeString(Elts[0]->getType()));
3304 
3305     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3306 
3307     // Verify all elements are correct type!
3308     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3309       if (Elts[i]->getType() != Elts[0]->getType())
3310         return Error(FirstEltLoc,
3311                      "array element #" + Twine(i) +
3312                      " is not of type '" + getTypeString(Elts[0]->getType()));
3313     }
3314 
3315     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3316     ID.Kind = ValID::t_Constant;
3317     return false;
3318   }
3319   case lltok::kw_c:  // c "foo"
3320     Lex.Lex();
3321     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3322                                                   false);
3323     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3324     ID.Kind = ValID::t_Constant;
3325     return false;
3326 
3327   case lltok::kw_asm: {
3328     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3329     //             STRINGCONSTANT
3330     bool HasSideEffect, AlignStack, AsmDialect;
3331     Lex.Lex();
3332     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3333         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3334         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3335         ParseStringConstant(ID.StrVal) ||
3336         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3337         ParseToken(lltok::StringConstant, "expected constraint string"))
3338       return true;
3339     ID.StrVal2 = Lex.getStrVal();
3340     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3341       (unsigned(AsmDialect)<<2);
3342     ID.Kind = ValID::t_InlineAsm;
3343     return false;
3344   }
3345 
3346   case lltok::kw_blockaddress: {
3347     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3348     Lex.Lex();
3349 
3350     ValID Fn, Label;
3351 
3352     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3353         ParseValID(Fn) ||
3354         ParseToken(lltok::comma, "expected comma in block address expression")||
3355         ParseValID(Label) ||
3356         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3357       return true;
3358 
3359     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3360       return Error(Fn.Loc, "expected function name in blockaddress");
3361     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3362       return Error(Label.Loc, "expected basic block name in blockaddress");
3363 
3364     // Try to find the function (but skip it if it's forward-referenced).
3365     GlobalValue *GV = nullptr;
3366     if (Fn.Kind == ValID::t_GlobalID) {
3367       if (Fn.UIntVal < NumberedVals.size())
3368         GV = NumberedVals[Fn.UIntVal];
3369     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3370       GV = M->getNamedValue(Fn.StrVal);
3371     }
3372     Function *F = nullptr;
3373     if (GV) {
3374       // Confirm that it's actually a function with a definition.
3375       if (!isa<Function>(GV))
3376         return Error(Fn.Loc, "expected function name in blockaddress");
3377       F = cast<Function>(GV);
3378       if (F->isDeclaration())
3379         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3380     }
3381 
3382     if (!F) {
3383       // Make a global variable as a placeholder for this reference.
3384       GlobalValue *&FwdRef =
3385           ForwardRefBlockAddresses.insert(std::make_pair(
3386                                               std::move(Fn),
3387                                               std::map<ValID, GlobalValue *>()))
3388               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3389               .first->second;
3390       if (!FwdRef)
3391         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3392                                     GlobalValue::InternalLinkage, nullptr, "");
3393       ID.ConstantVal = FwdRef;
3394       ID.Kind = ValID::t_Constant;
3395       return false;
3396     }
3397 
3398     // We found the function; now find the basic block.  Don't use PFS, since we
3399     // might be inside a constant expression.
3400     BasicBlock *BB;
3401     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3402       if (Label.Kind == ValID::t_LocalID)
3403         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3404       else
3405         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3406       if (!BB)
3407         return Error(Label.Loc, "referenced value is not a basic block");
3408     } else {
3409       if (Label.Kind == ValID::t_LocalID)
3410         return Error(Label.Loc, "cannot take address of numeric label after "
3411                                 "the function is defined");
3412       BB = dyn_cast_or_null<BasicBlock>(
3413           F->getValueSymbolTable()->lookup(Label.StrVal));
3414       if (!BB)
3415         return Error(Label.Loc, "referenced value is not a basic block");
3416     }
3417 
3418     ID.ConstantVal = BlockAddress::get(F, BB);
3419     ID.Kind = ValID::t_Constant;
3420     return false;
3421   }
3422 
3423   case lltok::kw_trunc:
3424   case lltok::kw_zext:
3425   case lltok::kw_sext:
3426   case lltok::kw_fptrunc:
3427   case lltok::kw_fpext:
3428   case lltok::kw_bitcast:
3429   case lltok::kw_addrspacecast:
3430   case lltok::kw_uitofp:
3431   case lltok::kw_sitofp:
3432   case lltok::kw_fptoui:
3433   case lltok::kw_fptosi:
3434   case lltok::kw_inttoptr:
3435   case lltok::kw_ptrtoint: {
3436     unsigned Opc = Lex.getUIntVal();
3437     Type *DestTy = nullptr;
3438     Constant *SrcVal;
3439     Lex.Lex();
3440     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3441         ParseGlobalTypeAndValue(SrcVal) ||
3442         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3443         ParseType(DestTy) ||
3444         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3445       return true;
3446     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3447       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3448                    getTypeString(SrcVal->getType()) + "' to '" +
3449                    getTypeString(DestTy) + "'");
3450     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3451                                                  SrcVal, DestTy);
3452     ID.Kind = ValID::t_Constant;
3453     return false;
3454   }
3455   case lltok::kw_extractvalue: {
3456     Lex.Lex();
3457     Constant *Val;
3458     SmallVector<unsigned, 4> Indices;
3459     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3460         ParseGlobalTypeAndValue(Val) ||
3461         ParseIndexList(Indices) ||
3462         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3463       return true;
3464 
3465     if (!Val->getType()->isAggregateType())
3466       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3467     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3468       return Error(ID.Loc, "invalid indices for extractvalue");
3469     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3470     ID.Kind = ValID::t_Constant;
3471     return false;
3472   }
3473   case lltok::kw_insertvalue: {
3474     Lex.Lex();
3475     Constant *Val0, *Val1;
3476     SmallVector<unsigned, 4> Indices;
3477     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3478         ParseGlobalTypeAndValue(Val0) ||
3479         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3480         ParseGlobalTypeAndValue(Val1) ||
3481         ParseIndexList(Indices) ||
3482         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3483       return true;
3484     if (!Val0->getType()->isAggregateType())
3485       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3486     Type *IndexedType =
3487         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3488     if (!IndexedType)
3489       return Error(ID.Loc, "invalid indices for insertvalue");
3490     if (IndexedType != Val1->getType())
3491       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3492                                getTypeString(Val1->getType()) +
3493                                "' instead of '" + getTypeString(IndexedType) +
3494                                "'");
3495     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3496     ID.Kind = ValID::t_Constant;
3497     return false;
3498   }
3499   case lltok::kw_icmp:
3500   case lltok::kw_fcmp: {
3501     unsigned PredVal, Opc = Lex.getUIntVal();
3502     Constant *Val0, *Val1;
3503     Lex.Lex();
3504     if (ParseCmpPredicate(PredVal, Opc) ||
3505         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3506         ParseGlobalTypeAndValue(Val0) ||
3507         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3508         ParseGlobalTypeAndValue(Val1) ||
3509         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3510       return true;
3511 
3512     if (Val0->getType() != Val1->getType())
3513       return Error(ID.Loc, "compare operands must have the same type");
3514 
3515     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3516 
3517     if (Opc == Instruction::FCmp) {
3518       if (!Val0->getType()->isFPOrFPVectorTy())
3519         return Error(ID.Loc, "fcmp requires floating point operands");
3520       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3521     } else {
3522       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3523       if (!Val0->getType()->isIntOrIntVectorTy() &&
3524           !Val0->getType()->isPtrOrPtrVectorTy())
3525         return Error(ID.Loc, "icmp requires pointer or integer operands");
3526       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3527     }
3528     ID.Kind = ValID::t_Constant;
3529     return false;
3530   }
3531 
3532   // Unary Operators.
3533   case lltok::kw_fneg: {
3534     unsigned Opc = Lex.getUIntVal();
3535     Constant *Val;
3536     Lex.Lex();
3537     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3538         ParseGlobalTypeAndValue(Val) ||
3539         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3540       return true;
3541 
3542     // Check that the type is valid for the operator.
3543     switch (Opc) {
3544     case Instruction::FNeg:
3545       if (!Val->getType()->isFPOrFPVectorTy())
3546         return Error(ID.Loc, "constexpr requires fp operands");
3547       break;
3548     default: llvm_unreachable("Unknown unary operator!");
3549     }
3550     unsigned Flags = 0;
3551     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3552     ID.ConstantVal = C;
3553     ID.Kind = ValID::t_Constant;
3554     return false;
3555   }
3556   // Binary Operators.
3557   case lltok::kw_add:
3558   case lltok::kw_fadd:
3559   case lltok::kw_sub:
3560   case lltok::kw_fsub:
3561   case lltok::kw_mul:
3562   case lltok::kw_fmul:
3563   case lltok::kw_udiv:
3564   case lltok::kw_sdiv:
3565   case lltok::kw_fdiv:
3566   case lltok::kw_urem:
3567   case lltok::kw_srem:
3568   case lltok::kw_frem:
3569   case lltok::kw_shl:
3570   case lltok::kw_lshr:
3571   case lltok::kw_ashr: {
3572     bool NUW = false;
3573     bool NSW = false;
3574     bool Exact = false;
3575     unsigned Opc = Lex.getUIntVal();
3576     Constant *Val0, *Val1;
3577     Lex.Lex();
3578     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3579         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3580       if (EatIfPresent(lltok::kw_nuw))
3581         NUW = true;
3582       if (EatIfPresent(lltok::kw_nsw)) {
3583         NSW = true;
3584         if (EatIfPresent(lltok::kw_nuw))
3585           NUW = true;
3586       }
3587     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3588                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3589       if (EatIfPresent(lltok::kw_exact))
3590         Exact = true;
3591     }
3592     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3593         ParseGlobalTypeAndValue(Val0) ||
3594         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3595         ParseGlobalTypeAndValue(Val1) ||
3596         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3597       return true;
3598     if (Val0->getType() != Val1->getType())
3599       return Error(ID.Loc, "operands of constexpr must have same type");
3600     // Check that the type is valid for the operator.
3601     switch (Opc) {
3602     case Instruction::Add:
3603     case Instruction::Sub:
3604     case Instruction::Mul:
3605     case Instruction::UDiv:
3606     case Instruction::SDiv:
3607     case Instruction::URem:
3608     case Instruction::SRem:
3609     case Instruction::Shl:
3610     case Instruction::AShr:
3611     case Instruction::LShr:
3612       if (!Val0->getType()->isIntOrIntVectorTy())
3613         return Error(ID.Loc, "constexpr requires integer operands");
3614       break;
3615     case Instruction::FAdd:
3616     case Instruction::FSub:
3617     case Instruction::FMul:
3618     case Instruction::FDiv:
3619     case Instruction::FRem:
3620       if (!Val0->getType()->isFPOrFPVectorTy())
3621         return Error(ID.Loc, "constexpr requires fp operands");
3622       break;
3623     default: llvm_unreachable("Unknown binary operator!");
3624     }
3625     unsigned Flags = 0;
3626     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3627     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3628     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3629     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3630     ID.ConstantVal = C;
3631     ID.Kind = ValID::t_Constant;
3632     return false;
3633   }
3634 
3635   // Logical Operations
3636   case lltok::kw_and:
3637   case lltok::kw_or:
3638   case lltok::kw_xor: {
3639     unsigned Opc = Lex.getUIntVal();
3640     Constant *Val0, *Val1;
3641     Lex.Lex();
3642     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3643         ParseGlobalTypeAndValue(Val0) ||
3644         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3645         ParseGlobalTypeAndValue(Val1) ||
3646         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3647       return true;
3648     if (Val0->getType() != Val1->getType())
3649       return Error(ID.Loc, "operands of constexpr must have same type");
3650     if (!Val0->getType()->isIntOrIntVectorTy())
3651       return Error(ID.Loc,
3652                    "constexpr requires integer or integer vector operands");
3653     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3654     ID.Kind = ValID::t_Constant;
3655     return false;
3656   }
3657 
3658   case lltok::kw_getelementptr:
3659   case lltok::kw_shufflevector:
3660   case lltok::kw_insertelement:
3661   case lltok::kw_extractelement:
3662   case lltok::kw_select: {
3663     unsigned Opc = Lex.getUIntVal();
3664     SmallVector<Constant*, 16> Elts;
3665     bool InBounds = false;
3666     Type *Ty;
3667     Lex.Lex();
3668 
3669     if (Opc == Instruction::GetElementPtr)
3670       InBounds = EatIfPresent(lltok::kw_inbounds);
3671 
3672     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3673       return true;
3674 
3675     LocTy ExplicitTypeLoc = Lex.getLoc();
3676     if (Opc == Instruction::GetElementPtr) {
3677       if (ParseType(Ty) ||
3678           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3679         return true;
3680     }
3681 
3682     Optional<unsigned> InRangeOp;
3683     if (ParseGlobalValueVector(
3684             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3685         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3686       return true;
3687 
3688     if (Opc == Instruction::GetElementPtr) {
3689       if (Elts.size() == 0 ||
3690           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3691         return Error(ID.Loc, "base of getelementptr must be a pointer");
3692 
3693       Type *BaseType = Elts[0]->getType();
3694       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3695       if (Ty != BasePointerType->getElementType())
3696         return Error(
3697             ExplicitTypeLoc,
3698             "explicit pointee type doesn't match operand's pointee type");
3699 
3700       unsigned GEPWidth =
3701           BaseType->isVectorTy()
3702               ? cast<FixedVectorType>(BaseType)->getNumElements()
3703               : 0;
3704 
3705       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3706       for (Constant *Val : Indices) {
3707         Type *ValTy = Val->getType();
3708         if (!ValTy->isIntOrIntVectorTy())
3709           return Error(ID.Loc, "getelementptr index must be an integer");
3710         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3711           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3712           if (GEPWidth && (ValNumEl != GEPWidth))
3713             return Error(
3714                 ID.Loc,
3715                 "getelementptr vector index has a wrong number of elements");
3716           // GEPWidth may have been unknown because the base is a scalar,
3717           // but it is known now.
3718           GEPWidth = ValNumEl;
3719         }
3720       }
3721 
3722       SmallPtrSet<Type*, 4> Visited;
3723       if (!Indices.empty() && !Ty->isSized(&Visited))
3724         return Error(ID.Loc, "base element of getelementptr must be sized");
3725 
3726       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3727         return Error(ID.Loc, "invalid getelementptr indices");
3728 
3729       if (InRangeOp) {
3730         if (*InRangeOp == 0)
3731           return Error(ID.Loc,
3732                        "inrange keyword may not appear on pointer operand");
3733         --*InRangeOp;
3734       }
3735 
3736       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3737                                                       InBounds, InRangeOp);
3738     } else if (Opc == Instruction::Select) {
3739       if (Elts.size() != 3)
3740         return Error(ID.Loc, "expected three operands to select");
3741       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3742                                                               Elts[2]))
3743         return Error(ID.Loc, Reason);
3744       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3745     } else if (Opc == Instruction::ShuffleVector) {
3746       if (Elts.size() != 3)
3747         return Error(ID.Loc, "expected three operands to shufflevector");
3748       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3749         return Error(ID.Loc, "invalid operands to shufflevector");
3750       SmallVector<int, 16> Mask;
3751       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3752       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3753     } else if (Opc == Instruction::ExtractElement) {
3754       if (Elts.size() != 2)
3755         return Error(ID.Loc, "expected two operands to extractelement");
3756       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3757         return Error(ID.Loc, "invalid extractelement operands");
3758       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3759     } else {
3760       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3761       if (Elts.size() != 3)
3762       return Error(ID.Loc, "expected three operands to insertelement");
3763       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3764         return Error(ID.Loc, "invalid insertelement operands");
3765       ID.ConstantVal =
3766                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3767     }
3768 
3769     ID.Kind = ValID::t_Constant;
3770     return false;
3771   }
3772   }
3773 
3774   Lex.Lex();
3775   return false;
3776 }
3777 
3778 /// ParseGlobalValue - Parse a global value with the specified type.
3779 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3780   C = nullptr;
3781   ValID ID;
3782   Value *V = nullptr;
3783   bool Parsed = ParseValID(ID) ||
3784                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3785   if (V && !(C = dyn_cast<Constant>(V)))
3786     return Error(ID.Loc, "global values must be constants");
3787   return Parsed;
3788 }
3789 
3790 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3791   Type *Ty = nullptr;
3792   return ParseType(Ty) ||
3793          ParseGlobalValue(Ty, V);
3794 }
3795 
3796 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3797   C = nullptr;
3798 
3799   LocTy KwLoc = Lex.getLoc();
3800   if (!EatIfPresent(lltok::kw_comdat))
3801     return false;
3802 
3803   if (EatIfPresent(lltok::lparen)) {
3804     if (Lex.getKind() != lltok::ComdatVar)
3805       return TokError("expected comdat variable");
3806     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3807     Lex.Lex();
3808     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3809       return true;
3810   } else {
3811     if (GlobalName.empty())
3812       return TokError("comdat cannot be unnamed");
3813     C = getComdat(std::string(GlobalName), KwLoc);
3814   }
3815 
3816   return false;
3817 }
3818 
3819 /// ParseGlobalValueVector
3820 ///   ::= /*empty*/
3821 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3822 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3823                                       Optional<unsigned> *InRangeOp) {
3824   // Empty list.
3825   if (Lex.getKind() == lltok::rbrace ||
3826       Lex.getKind() == lltok::rsquare ||
3827       Lex.getKind() == lltok::greater ||
3828       Lex.getKind() == lltok::rparen)
3829     return false;
3830 
3831   do {
3832     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3833       *InRangeOp = Elts.size();
3834 
3835     Constant *C;
3836     if (ParseGlobalTypeAndValue(C)) return true;
3837     Elts.push_back(C);
3838   } while (EatIfPresent(lltok::comma));
3839 
3840   return false;
3841 }
3842 
3843 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3844   SmallVector<Metadata *, 16> Elts;
3845   if (ParseMDNodeVector(Elts))
3846     return true;
3847 
3848   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3849   return false;
3850 }
3851 
3852 /// MDNode:
3853 ///  ::= !{ ... }
3854 ///  ::= !7
3855 ///  ::= !DILocation(...)
3856 bool LLParser::ParseMDNode(MDNode *&N) {
3857   if (Lex.getKind() == lltok::MetadataVar)
3858     return ParseSpecializedMDNode(N);
3859 
3860   return ParseToken(lltok::exclaim, "expected '!' here") ||
3861          ParseMDNodeTail(N);
3862 }
3863 
3864 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3865   // !{ ... }
3866   if (Lex.getKind() == lltok::lbrace)
3867     return ParseMDTuple(N);
3868 
3869   // !42
3870   return ParseMDNodeID(N);
3871 }
3872 
3873 namespace {
3874 
3875 /// Structure to represent an optional metadata field.
3876 template <class FieldTy> struct MDFieldImpl {
3877   typedef MDFieldImpl ImplTy;
3878   FieldTy Val;
3879   bool Seen;
3880 
3881   void assign(FieldTy Val) {
3882     Seen = true;
3883     this->Val = std::move(Val);
3884   }
3885 
3886   explicit MDFieldImpl(FieldTy Default)
3887       : Val(std::move(Default)), Seen(false) {}
3888 };
3889 
3890 /// Structure to represent an optional metadata field that
3891 /// can be of either type (A or B) and encapsulates the
3892 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3893 /// to reimplement the specifics for representing each Field.
3894 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3895   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3896   FieldTypeA A;
3897   FieldTypeB B;
3898   bool Seen;
3899 
3900   enum {
3901     IsInvalid = 0,
3902     IsTypeA = 1,
3903     IsTypeB = 2
3904   } WhatIs;
3905 
3906   void assign(FieldTypeA A) {
3907     Seen = true;
3908     this->A = std::move(A);
3909     WhatIs = IsTypeA;
3910   }
3911 
3912   void assign(FieldTypeB B) {
3913     Seen = true;
3914     this->B = std::move(B);
3915     WhatIs = IsTypeB;
3916   }
3917 
3918   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3919       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3920         WhatIs(IsInvalid) {}
3921 };
3922 
3923 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3924   uint64_t Max;
3925 
3926   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3927       : ImplTy(Default), Max(Max) {}
3928 };
3929 
3930 struct LineField : public MDUnsignedField {
3931   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3932 };
3933 
3934 struct ColumnField : public MDUnsignedField {
3935   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3936 };
3937 
3938 struct DwarfTagField : public MDUnsignedField {
3939   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3940   DwarfTagField(dwarf::Tag DefaultTag)
3941       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3942 };
3943 
3944 struct DwarfMacinfoTypeField : public MDUnsignedField {
3945   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3946   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3947     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3948 };
3949 
3950 struct DwarfAttEncodingField : public MDUnsignedField {
3951   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3952 };
3953 
3954 struct DwarfVirtualityField : public MDUnsignedField {
3955   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3956 };
3957 
3958 struct DwarfLangField : public MDUnsignedField {
3959   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3960 };
3961 
3962 struct DwarfCCField : public MDUnsignedField {
3963   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3964 };
3965 
3966 struct EmissionKindField : public MDUnsignedField {
3967   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3968 };
3969 
3970 struct NameTableKindField : public MDUnsignedField {
3971   NameTableKindField()
3972       : MDUnsignedField(
3973             0, (unsigned)
3974                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3975 };
3976 
3977 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3978   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3979 };
3980 
3981 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3982   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3983 };
3984 
3985 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3986   MDAPSIntField() : ImplTy(APSInt()) {}
3987 };
3988 
3989 struct MDSignedField : public MDFieldImpl<int64_t> {
3990   int64_t Min;
3991   int64_t Max;
3992 
3993   MDSignedField(int64_t Default = 0)
3994       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3995   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3996       : ImplTy(Default), Min(Min), Max(Max) {}
3997 };
3998 
3999 struct MDBoolField : public MDFieldImpl<bool> {
4000   MDBoolField(bool Default = false) : ImplTy(Default) {}
4001 };
4002 
4003 struct MDField : public MDFieldImpl<Metadata *> {
4004   bool AllowNull;
4005 
4006   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4007 };
4008 
4009 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4010   MDConstant() : ImplTy(nullptr) {}
4011 };
4012 
4013 struct MDStringField : public MDFieldImpl<MDString *> {
4014   bool AllowEmpty;
4015   MDStringField(bool AllowEmpty = true)
4016       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4017 };
4018 
4019 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4020   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4021 };
4022 
4023 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4024   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4025 };
4026 
4027 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4028   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4029       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4030 
4031   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4032                     bool AllowNull = true)
4033       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4034 
4035   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4036   bool isMDField() const { return WhatIs == IsTypeB; }
4037   int64_t getMDSignedValue() const {
4038     assert(isMDSignedField() && "Wrong field type");
4039     return A.Val;
4040   }
4041   Metadata *getMDFieldValue() const {
4042     assert(isMDField() && "Wrong field type");
4043     return B.Val;
4044   }
4045 };
4046 
4047 struct MDSignedOrUnsignedField
4048     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4049   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4050 
4051   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4052   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4053   int64_t getMDSignedValue() const {
4054     assert(isMDSignedField() && "Wrong field type");
4055     return A.Val;
4056   }
4057   uint64_t getMDUnsignedValue() const {
4058     assert(isMDUnsignedField() && "Wrong field type");
4059     return B.Val;
4060   }
4061 };
4062 
4063 } // end anonymous namespace
4064 
4065 namespace llvm {
4066 
4067 template <>
4068 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4069   if (Lex.getKind() != lltok::APSInt)
4070     return TokError("expected integer");
4071 
4072   Result.assign(Lex.getAPSIntVal());
4073   Lex.Lex();
4074   return false;
4075 }
4076 
4077 template <>
4078 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4079                             MDUnsignedField &Result) {
4080   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4081     return TokError("expected unsigned integer");
4082 
4083   auto &U = Lex.getAPSIntVal();
4084   if (U.ugt(Result.Max))
4085     return TokError("value for '" + Name + "' too large, limit is " +
4086                     Twine(Result.Max));
4087   Result.assign(U.getZExtValue());
4088   assert(Result.Val <= Result.Max && "Expected value in range");
4089   Lex.Lex();
4090   return false;
4091 }
4092 
4093 template <>
4094 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4095   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4096 }
4097 template <>
4098 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4099   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4100 }
4101 
4102 template <>
4103 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4104   if (Lex.getKind() == lltok::APSInt)
4105     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4106 
4107   if (Lex.getKind() != lltok::DwarfTag)
4108     return TokError("expected DWARF tag");
4109 
4110   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4111   if (Tag == dwarf::DW_TAG_invalid)
4112     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4113   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4114 
4115   Result.assign(Tag);
4116   Lex.Lex();
4117   return false;
4118 }
4119 
4120 template <>
4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4122                             DwarfMacinfoTypeField &Result) {
4123   if (Lex.getKind() == lltok::APSInt)
4124     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4125 
4126   if (Lex.getKind() != lltok::DwarfMacinfo)
4127     return TokError("expected DWARF macinfo type");
4128 
4129   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4130   if (Macinfo == dwarf::DW_MACINFO_invalid)
4131     return TokError(
4132         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4133   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4134 
4135   Result.assign(Macinfo);
4136   Lex.Lex();
4137   return false;
4138 }
4139 
4140 template <>
4141 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4142                             DwarfVirtualityField &Result) {
4143   if (Lex.getKind() == lltok::APSInt)
4144     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4145 
4146   if (Lex.getKind() != lltok::DwarfVirtuality)
4147     return TokError("expected DWARF virtuality code");
4148 
4149   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4150   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4151     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4152                     Lex.getStrVal() + "'");
4153   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4154   Result.assign(Virtuality);
4155   Lex.Lex();
4156   return false;
4157 }
4158 
4159 template <>
4160 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4161   if (Lex.getKind() == lltok::APSInt)
4162     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4163 
4164   if (Lex.getKind() != lltok::DwarfLang)
4165     return TokError("expected DWARF language");
4166 
4167   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4168   if (!Lang)
4169     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4170                     "'");
4171   assert(Lang <= Result.Max && "Expected valid DWARF language");
4172   Result.assign(Lang);
4173   Lex.Lex();
4174   return false;
4175 }
4176 
4177 template <>
4178 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4179   if (Lex.getKind() == lltok::APSInt)
4180     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4181 
4182   if (Lex.getKind() != lltok::DwarfCC)
4183     return TokError("expected DWARF calling convention");
4184 
4185   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4186   if (!CC)
4187     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4188                     "'");
4189   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4190   Result.assign(CC);
4191   Lex.Lex();
4192   return false;
4193 }
4194 
4195 template <>
4196 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4197   if (Lex.getKind() == lltok::APSInt)
4198     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4199 
4200   if (Lex.getKind() != lltok::EmissionKind)
4201     return TokError("expected emission kind");
4202 
4203   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4204   if (!Kind)
4205     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4206                     "'");
4207   assert(*Kind <= Result.Max && "Expected valid emission kind");
4208   Result.assign(*Kind);
4209   Lex.Lex();
4210   return false;
4211 }
4212 
4213 template <>
4214 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4215                             NameTableKindField &Result) {
4216   if (Lex.getKind() == lltok::APSInt)
4217     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4218 
4219   if (Lex.getKind() != lltok::NameTableKind)
4220     return TokError("expected nameTable kind");
4221 
4222   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4223   if (!Kind)
4224     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4225                     "'");
4226   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4227   Result.assign((unsigned)*Kind);
4228   Lex.Lex();
4229   return false;
4230 }
4231 
4232 template <>
4233 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4234                             DwarfAttEncodingField &Result) {
4235   if (Lex.getKind() == lltok::APSInt)
4236     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4237 
4238   if (Lex.getKind() != lltok::DwarfAttEncoding)
4239     return TokError("expected DWARF type attribute encoding");
4240 
4241   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4242   if (!Encoding)
4243     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4244                     Lex.getStrVal() + "'");
4245   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4246   Result.assign(Encoding);
4247   Lex.Lex();
4248   return false;
4249 }
4250 
4251 /// DIFlagField
4252 ///  ::= uint32
4253 ///  ::= DIFlagVector
4254 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4255 template <>
4256 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4257 
4258   // Parser for a single flag.
4259   auto parseFlag = [&](DINode::DIFlags &Val) {
4260     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4261       uint32_t TempVal = static_cast<uint32_t>(Val);
4262       bool Res = ParseUInt32(TempVal);
4263       Val = static_cast<DINode::DIFlags>(TempVal);
4264       return Res;
4265     }
4266 
4267     if (Lex.getKind() != lltok::DIFlag)
4268       return TokError("expected debug info flag");
4269 
4270     Val = DINode::getFlag(Lex.getStrVal());
4271     if (!Val)
4272       return TokError(Twine("invalid debug info flag flag '") +
4273                       Lex.getStrVal() + "'");
4274     Lex.Lex();
4275     return false;
4276   };
4277 
4278   // Parse the flags and combine them together.
4279   DINode::DIFlags Combined = DINode::FlagZero;
4280   do {
4281     DINode::DIFlags Val;
4282     if (parseFlag(Val))
4283       return true;
4284     Combined |= Val;
4285   } while (EatIfPresent(lltok::bar));
4286 
4287   Result.assign(Combined);
4288   return false;
4289 }
4290 
4291 /// DISPFlagField
4292 ///  ::= uint32
4293 ///  ::= DISPFlagVector
4294 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4295 template <>
4296 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4297 
4298   // Parser for a single flag.
4299   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4300     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4301       uint32_t TempVal = static_cast<uint32_t>(Val);
4302       bool Res = ParseUInt32(TempVal);
4303       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4304       return Res;
4305     }
4306 
4307     if (Lex.getKind() != lltok::DISPFlag)
4308       return TokError("expected debug info flag");
4309 
4310     Val = DISubprogram::getFlag(Lex.getStrVal());
4311     if (!Val)
4312       return TokError(Twine("invalid subprogram debug info flag '") +
4313                       Lex.getStrVal() + "'");
4314     Lex.Lex();
4315     return false;
4316   };
4317 
4318   // Parse the flags and combine them together.
4319   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4320   do {
4321     DISubprogram::DISPFlags Val;
4322     if (parseFlag(Val))
4323       return true;
4324     Combined |= Val;
4325   } while (EatIfPresent(lltok::bar));
4326 
4327   Result.assign(Combined);
4328   return false;
4329 }
4330 
4331 template <>
4332 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4333                             MDSignedField &Result) {
4334   if (Lex.getKind() != lltok::APSInt)
4335     return TokError("expected signed integer");
4336 
4337   auto &S = Lex.getAPSIntVal();
4338   if (S < Result.Min)
4339     return TokError("value for '" + Name + "' too small, limit is " +
4340                     Twine(Result.Min));
4341   if (S > Result.Max)
4342     return TokError("value for '" + Name + "' too large, limit is " +
4343                     Twine(Result.Max));
4344   Result.assign(S.getExtValue());
4345   assert(Result.Val >= Result.Min && "Expected value in range");
4346   assert(Result.Val <= Result.Max && "Expected value in range");
4347   Lex.Lex();
4348   return false;
4349 }
4350 
4351 template <>
4352 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4353   switch (Lex.getKind()) {
4354   default:
4355     return TokError("expected 'true' or 'false'");
4356   case lltok::kw_true:
4357     Result.assign(true);
4358     break;
4359   case lltok::kw_false:
4360     Result.assign(false);
4361     break;
4362   }
4363   Lex.Lex();
4364   return false;
4365 }
4366 
4367 template <>
4368 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4369   if (Lex.getKind() == lltok::kw_null) {
4370     if (!Result.AllowNull)
4371       return TokError("'" + Name + "' cannot be null");
4372     Lex.Lex();
4373     Result.assign(nullptr);
4374     return false;
4375   }
4376 
4377   Metadata *MD;
4378   if (ParseMetadata(MD, nullptr))
4379     return true;
4380 
4381   Result.assign(MD);
4382   return false;
4383 }
4384 
4385 template <>
4386 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4387                             MDSignedOrMDField &Result) {
4388   // Try to parse a signed int.
4389   if (Lex.getKind() == lltok::APSInt) {
4390     MDSignedField Res = Result.A;
4391     if (!ParseMDField(Loc, Name, Res)) {
4392       Result.assign(Res);
4393       return false;
4394     }
4395     return true;
4396   }
4397 
4398   // Otherwise, try to parse as an MDField.
4399   MDField Res = Result.B;
4400   if (!ParseMDField(Loc, Name, Res)) {
4401     Result.assign(Res);
4402     return false;
4403   }
4404 
4405   return true;
4406 }
4407 
4408 template <>
4409 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4410   LocTy ValueLoc = Lex.getLoc();
4411   std::string S;
4412   if (ParseStringConstant(S))
4413     return true;
4414 
4415   if (!Result.AllowEmpty && S.empty())
4416     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4417 
4418   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4419   return false;
4420 }
4421 
4422 template <>
4423 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4424   SmallVector<Metadata *, 4> MDs;
4425   if (ParseMDNodeVector(MDs))
4426     return true;
4427 
4428   Result.assign(std::move(MDs));
4429   return false;
4430 }
4431 
4432 template <>
4433 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4434                             ChecksumKindField &Result) {
4435   Optional<DIFile::ChecksumKind> CSKind =
4436       DIFile::getChecksumKind(Lex.getStrVal());
4437 
4438   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4439     return TokError(
4440         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4441 
4442   Result.assign(*CSKind);
4443   Lex.Lex();
4444   return false;
4445 }
4446 
4447 } // end namespace llvm
4448 
4449 template <class ParserTy>
4450 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4451   do {
4452     if (Lex.getKind() != lltok::LabelStr)
4453       return TokError("expected field label here");
4454 
4455     if (parseField())
4456       return true;
4457   } while (EatIfPresent(lltok::comma));
4458 
4459   return false;
4460 }
4461 
4462 template <class ParserTy>
4463 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4464   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4465   Lex.Lex();
4466 
4467   if (ParseToken(lltok::lparen, "expected '(' here"))
4468     return true;
4469   if (Lex.getKind() != lltok::rparen)
4470     if (ParseMDFieldsImplBody(parseField))
4471       return true;
4472 
4473   ClosingLoc = Lex.getLoc();
4474   return ParseToken(lltok::rparen, "expected ')' here");
4475 }
4476 
4477 template <class FieldTy>
4478 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4479   if (Result.Seen)
4480     return TokError("field '" + Name + "' cannot be specified more than once");
4481 
4482   LocTy Loc = Lex.getLoc();
4483   Lex.Lex();
4484   return ParseMDField(Loc, Name, Result);
4485 }
4486 
4487 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4488   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4489 
4490 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4491   if (Lex.getStrVal() == #CLASS)                                               \
4492     return Parse##CLASS(N, IsDistinct);
4493 #include "llvm/IR/Metadata.def"
4494 
4495   return TokError("expected metadata type");
4496 }
4497 
4498 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4499 #define NOP_FIELD(NAME, TYPE, INIT)
4500 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4501   if (!NAME.Seen)                                                              \
4502     return Error(ClosingLoc, "missing required field '" #NAME "'");
4503 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4504   if (Lex.getStrVal() == #NAME)                                                \
4505     return ParseMDField(#NAME, NAME);
4506 #define PARSE_MD_FIELDS()                                                      \
4507   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4508   do {                                                                         \
4509     LocTy ClosingLoc;                                                          \
4510     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4511       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4512       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4513     }, ClosingLoc))                                                            \
4514       return true;                                                             \
4515     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4516   } while (false)
4517 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4518   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4519 
4520 /// ParseDILocationFields:
4521 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4522 ///   isImplicitCode: true)
4523 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4525   OPTIONAL(line, LineField, );                                                 \
4526   OPTIONAL(column, ColumnField, );                                             \
4527   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4528   OPTIONAL(inlinedAt, MDField, );                                              \
4529   OPTIONAL(isImplicitCode, MDBoolField, (false));
4530   PARSE_MD_FIELDS();
4531 #undef VISIT_MD_FIELDS
4532 
4533   Result =
4534       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4535                                    inlinedAt.Val, isImplicitCode.Val));
4536   return false;
4537 }
4538 
4539 /// ParseGenericDINode:
4540 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4541 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4542 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4543   REQUIRED(tag, DwarfTagField, );                                              \
4544   OPTIONAL(header, MDStringField, );                                           \
4545   OPTIONAL(operands, MDFieldList, );
4546   PARSE_MD_FIELDS();
4547 #undef VISIT_MD_FIELDS
4548 
4549   Result = GET_OR_DISTINCT(GenericDINode,
4550                            (Context, tag.Val, header.Val, operands.Val));
4551   return false;
4552 }
4553 
4554 /// ParseDISubrange:
4555 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4556 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4557 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4558 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4560   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4561   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4562   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4563   OPTIONAL(stride, MDSignedOrMDField, );
4564   PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566 
4567   Metadata *Count = nullptr;
4568   Metadata *LowerBound = nullptr;
4569   Metadata *UpperBound = nullptr;
4570   Metadata *Stride = nullptr;
4571   if (count.isMDSignedField())
4572     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4573         Type::getInt64Ty(Context), count.getMDSignedValue()));
4574   else if (count.isMDField())
4575     Count = count.getMDFieldValue();
4576 
4577   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4578     if (Bound.isMDSignedField())
4579       return ConstantAsMetadata::get(ConstantInt::getSigned(
4580           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4581     if (Bound.isMDField())
4582       return Bound.getMDFieldValue();
4583     return nullptr;
4584   };
4585 
4586   LowerBound = convToMetadata(lowerBound);
4587   UpperBound = convToMetadata(upperBound);
4588   Stride = convToMetadata(stride);
4589 
4590   Result = GET_OR_DISTINCT(DISubrange,
4591                            (Context, Count, LowerBound, UpperBound, Stride));
4592 
4593   return false;
4594 }
4595 
4596 /// ParseDIEnumerator:
4597 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4598 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4599 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4600   REQUIRED(name, MDStringField, );                                             \
4601   REQUIRED(value, MDAPSIntField, );                                            \
4602   OPTIONAL(isUnsigned, MDBoolField, (false));
4603   PARSE_MD_FIELDS();
4604 #undef VISIT_MD_FIELDS
4605 
4606   if (isUnsigned.Val && value.Val.isNegative())
4607     return TokError("unsigned enumerator with negative value");
4608 
4609   APSInt Value(value.Val);
4610   // Add a leading zero so that unsigned values with the msb set are not
4611   // mistaken for negative values when used for signed enumerators.
4612   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4613     Value = Value.zext(Value.getBitWidth() + 1);
4614 
4615   Result =
4616       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4617 
4618   return false;
4619 }
4620 
4621 /// ParseDIBasicType:
4622 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4623 ///                    encoding: DW_ATE_encoding, flags: 0)
4624 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4626   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4627   OPTIONAL(name, MDStringField, );                                             \
4628   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4629   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4630   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4631   OPTIONAL(flags, DIFlagField, );
4632   PARSE_MD_FIELDS();
4633 #undef VISIT_MD_FIELDS
4634 
4635   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4636                                          align.Val, encoding.Val, flags.Val));
4637   return false;
4638 }
4639 
4640 /// ParseDIStringType:
4641 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4642 bool LLParser::ParseDIStringType(MDNode *&Result, bool IsDistinct) {
4643 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4644   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4645   OPTIONAL(name, MDStringField, );                                             \
4646   OPTIONAL(stringLength, MDField, );                                           \
4647   OPTIONAL(stringLengthExpression, MDField, );                                 \
4648   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4649   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4650   OPTIONAL(encoding, DwarfAttEncodingField, );
4651   PARSE_MD_FIELDS();
4652 #undef VISIT_MD_FIELDS
4653 
4654   Result = GET_OR_DISTINCT(DIStringType,
4655                            (Context, tag.Val, name.Val, stringLength.Val,
4656                             stringLengthExpression.Val, size.Val, align.Val,
4657                             encoding.Val));
4658   return false;
4659 }
4660 
4661 /// ParseDIDerivedType:
4662 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4663 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4664 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4665 ///                      dwarfAddressSpace: 3)
4666 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4667 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4668   REQUIRED(tag, DwarfTagField, );                                              \
4669   OPTIONAL(name, MDStringField, );                                             \
4670   OPTIONAL(file, MDField, );                                                   \
4671   OPTIONAL(line, LineField, );                                                 \
4672   OPTIONAL(scope, MDField, );                                                  \
4673   REQUIRED(baseType, MDField, );                                               \
4674   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4675   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4676   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4677   OPTIONAL(flags, DIFlagField, );                                              \
4678   OPTIONAL(extraData, MDField, );                                              \
4679   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4680   PARSE_MD_FIELDS();
4681 #undef VISIT_MD_FIELDS
4682 
4683   Optional<unsigned> DWARFAddressSpace;
4684   if (dwarfAddressSpace.Val != UINT32_MAX)
4685     DWARFAddressSpace = dwarfAddressSpace.Val;
4686 
4687   Result = GET_OR_DISTINCT(DIDerivedType,
4688                            (Context, tag.Val, name.Val, file.Val, line.Val,
4689                             scope.Val, baseType.Val, size.Val, align.Val,
4690                             offset.Val, DWARFAddressSpace, flags.Val,
4691                             extraData.Val));
4692   return false;
4693 }
4694 
4695 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4697   REQUIRED(tag, DwarfTagField, );                                              \
4698   OPTIONAL(name, MDStringField, );                                             \
4699   OPTIONAL(file, MDField, );                                                   \
4700   OPTIONAL(line, LineField, );                                                 \
4701   OPTIONAL(scope, MDField, );                                                  \
4702   OPTIONAL(baseType, MDField, );                                               \
4703   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4704   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4705   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4706   OPTIONAL(flags, DIFlagField, );                                              \
4707   OPTIONAL(elements, MDField, );                                               \
4708   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4709   OPTIONAL(vtableHolder, MDField, );                                           \
4710   OPTIONAL(templateParams, MDField, );                                         \
4711   OPTIONAL(identifier, MDStringField, );                                       \
4712   OPTIONAL(discriminator, MDField, );                                          \
4713   OPTIONAL(dataLocation, MDField, );                                           \
4714   OPTIONAL(associated, MDField, );                                             \
4715   OPTIONAL(allocated, MDField, );
4716   PARSE_MD_FIELDS();
4717 #undef VISIT_MD_FIELDS
4718 
4719   // If this has an identifier try to build an ODR type.
4720   if (identifier.Val)
4721     if (auto *CT = DICompositeType::buildODRType(
4722             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4723             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4724             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4725             discriminator.Val, dataLocation.Val, associated.Val,
4726             allocated.Val)) {
4727       Result = CT;
4728       return false;
4729     }
4730 
4731   // Create a new node, and save it in the context if it belongs in the type
4732   // map.
4733   Result = GET_OR_DISTINCT(
4734       DICompositeType,
4735       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4736        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4737        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4738        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val));
4739   return false;
4740 }
4741 
4742 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4743 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4744   OPTIONAL(flags, DIFlagField, );                                              \
4745   OPTIONAL(cc, DwarfCCField, );                                                \
4746   REQUIRED(types, MDField, );
4747   PARSE_MD_FIELDS();
4748 #undef VISIT_MD_FIELDS
4749 
4750   Result = GET_OR_DISTINCT(DISubroutineType,
4751                            (Context, flags.Val, cc.Val, types.Val));
4752   return false;
4753 }
4754 
4755 /// ParseDIFileType:
4756 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4757 ///                   checksumkind: CSK_MD5,
4758 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4759 ///                   source: "source file contents")
4760 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4761   // The default constructed value for checksumkind is required, but will never
4762   // be used, as the parser checks if the field was actually Seen before using
4763   // the Val.
4764 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4765   REQUIRED(filename, MDStringField, );                                         \
4766   REQUIRED(directory, MDStringField, );                                        \
4767   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4768   OPTIONAL(checksum, MDStringField, );                                         \
4769   OPTIONAL(source, MDStringField, );
4770   PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772 
4773   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4774   if (checksumkind.Seen && checksum.Seen)
4775     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4776   else if (checksumkind.Seen || checksum.Seen)
4777     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4778 
4779   Optional<MDString *> OptSource;
4780   if (source.Seen)
4781     OptSource = source.Val;
4782   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4783                                     OptChecksum, OptSource));
4784   return false;
4785 }
4786 
4787 /// ParseDICompileUnit:
4788 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4789 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4790 ///                      splitDebugFilename: "abc.debug",
4791 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4792 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4793 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4794 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4795   if (!IsDistinct)
4796     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4797 
4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4799   REQUIRED(language, DwarfLangField, );                                        \
4800   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4801   OPTIONAL(producer, MDStringField, );                                         \
4802   OPTIONAL(isOptimized, MDBoolField, );                                        \
4803   OPTIONAL(flags, MDStringField, );                                            \
4804   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4805   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4806   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4807   OPTIONAL(enums, MDField, );                                                  \
4808   OPTIONAL(retainedTypes, MDField, );                                          \
4809   OPTIONAL(globals, MDField, );                                                \
4810   OPTIONAL(imports, MDField, );                                                \
4811   OPTIONAL(macros, MDField, );                                                 \
4812   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4813   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4814   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4815   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4816   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4817   OPTIONAL(sysroot, MDStringField, );                                          \
4818   OPTIONAL(sdk, MDStringField, );
4819   PARSE_MD_FIELDS();
4820 #undef VISIT_MD_FIELDS
4821 
4822   Result = DICompileUnit::getDistinct(
4823       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4824       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4825       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4826       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4827       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4828   return false;
4829 }
4830 
4831 /// ParseDISubprogram:
4832 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4833 ///                     file: !1, line: 7, type: !2, isLocal: false,
4834 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4835 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4836 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4837 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4838 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4839 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4840   auto Loc = Lex.getLoc();
4841 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4842   OPTIONAL(scope, MDField, );                                                  \
4843   OPTIONAL(name, MDStringField, );                                             \
4844   OPTIONAL(linkageName, MDStringField, );                                      \
4845   OPTIONAL(file, MDField, );                                                   \
4846   OPTIONAL(line, LineField, );                                                 \
4847   OPTIONAL(type, MDField, );                                                   \
4848   OPTIONAL(isLocal, MDBoolField, );                                            \
4849   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4850   OPTIONAL(scopeLine, LineField, );                                            \
4851   OPTIONAL(containingType, MDField, );                                         \
4852   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4853   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4854   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4855   OPTIONAL(flags, DIFlagField, );                                              \
4856   OPTIONAL(spFlags, DISPFlagField, );                                          \
4857   OPTIONAL(isOptimized, MDBoolField, );                                        \
4858   OPTIONAL(unit, MDField, );                                                   \
4859   OPTIONAL(templateParams, MDField, );                                         \
4860   OPTIONAL(declaration, MDField, );                                            \
4861   OPTIONAL(retainedNodes, MDField, );                                          \
4862   OPTIONAL(thrownTypes, MDField, );
4863   PARSE_MD_FIELDS();
4864 #undef VISIT_MD_FIELDS
4865 
4866   // An explicit spFlags field takes precedence over individual fields in
4867   // older IR versions.
4868   DISubprogram::DISPFlags SPFlags =
4869       spFlags.Seen ? spFlags.Val
4870                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4871                                              isOptimized.Val, virtuality.Val);
4872   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4873     return Lex.Error(
4874         Loc,
4875         "missing 'distinct', required for !DISubprogram that is a Definition");
4876   Result = GET_OR_DISTINCT(
4877       DISubprogram,
4878       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4879        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4880        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4881        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4882   return false;
4883 }
4884 
4885 /// ParseDILexicalBlock:
4886 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4887 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4888 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4889   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4890   OPTIONAL(file, MDField, );                                                   \
4891   OPTIONAL(line, LineField, );                                                 \
4892   OPTIONAL(column, ColumnField, );
4893   PARSE_MD_FIELDS();
4894 #undef VISIT_MD_FIELDS
4895 
4896   Result = GET_OR_DISTINCT(
4897       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4898   return false;
4899 }
4900 
4901 /// ParseDILexicalBlockFile:
4902 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4903 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4904 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4905   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4906   OPTIONAL(file, MDField, );                                                   \
4907   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4908   PARSE_MD_FIELDS();
4909 #undef VISIT_MD_FIELDS
4910 
4911   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4912                            (Context, scope.Val, file.Val, discriminator.Val));
4913   return false;
4914 }
4915 
4916 /// ParseDICommonBlock:
4917 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4918 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4920   REQUIRED(scope, MDField, );                                                  \
4921   OPTIONAL(declaration, MDField, );                                            \
4922   OPTIONAL(name, MDStringField, );                                             \
4923   OPTIONAL(file, MDField, );                                                   \
4924   OPTIONAL(line, LineField, );
4925   PARSE_MD_FIELDS();
4926 #undef VISIT_MD_FIELDS
4927 
4928   Result = GET_OR_DISTINCT(DICommonBlock,
4929                            (Context, scope.Val, declaration.Val, name.Val,
4930                             file.Val, line.Val));
4931   return false;
4932 }
4933 
4934 /// ParseDINamespace:
4935 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4936 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4937 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4938   REQUIRED(scope, MDField, );                                                  \
4939   OPTIONAL(name, MDStringField, );                                             \
4940   OPTIONAL(exportSymbols, MDBoolField, );
4941   PARSE_MD_FIELDS();
4942 #undef VISIT_MD_FIELDS
4943 
4944   Result = GET_OR_DISTINCT(DINamespace,
4945                            (Context, scope.Val, name.Val, exportSymbols.Val));
4946   return false;
4947 }
4948 
4949 /// ParseDIMacro:
4950 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4951 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4953   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4954   OPTIONAL(line, LineField, );                                                 \
4955   REQUIRED(name, MDStringField, );                                             \
4956   OPTIONAL(value, MDStringField, );
4957   PARSE_MD_FIELDS();
4958 #undef VISIT_MD_FIELDS
4959 
4960   Result = GET_OR_DISTINCT(DIMacro,
4961                            (Context, type.Val, line.Val, name.Val, value.Val));
4962   return false;
4963 }
4964 
4965 /// ParseDIMacroFile:
4966 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4967 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4969   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4970   OPTIONAL(line, LineField, );                                                 \
4971   REQUIRED(file, MDField, );                                                   \
4972   OPTIONAL(nodes, MDField, );
4973   PARSE_MD_FIELDS();
4974 #undef VISIT_MD_FIELDS
4975 
4976   Result = GET_OR_DISTINCT(DIMacroFile,
4977                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4978   return false;
4979 }
4980 
4981 /// ParseDIModule:
4982 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4983 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4984 ///   file: !1, line: 4)
4985 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4987   REQUIRED(scope, MDField, );                                                  \
4988   REQUIRED(name, MDStringField, );                                             \
4989   OPTIONAL(configMacros, MDStringField, );                                     \
4990   OPTIONAL(includePath, MDStringField, );                                      \
4991   OPTIONAL(apinotes, MDStringField, );                                         \
4992   OPTIONAL(file, MDField, );                                                   \
4993   OPTIONAL(line, LineField, );
4994   PARSE_MD_FIELDS();
4995 #undef VISIT_MD_FIELDS
4996 
4997   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4998                                       configMacros.Val, includePath.Val,
4999                                       apinotes.Val, line.Val));
5000   return false;
5001 }
5002 
5003 /// ParseDITemplateTypeParameter:
5004 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5005 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5006 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5007   OPTIONAL(name, MDStringField, );                                             \
5008   REQUIRED(type, MDField, );                                                   \
5009   OPTIONAL(defaulted, MDBoolField, );
5010   PARSE_MD_FIELDS();
5011 #undef VISIT_MD_FIELDS
5012 
5013   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5014                            (Context, name.Val, type.Val, defaulted.Val));
5015   return false;
5016 }
5017 
5018 /// ParseDITemplateValueParameter:
5019 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5020 ///                                 name: "V", type: !1, defaulted: false,
5021 ///                                 value: i32 7)
5022 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5024   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5025   OPTIONAL(name, MDStringField, );                                             \
5026   OPTIONAL(type, MDField, );                                                   \
5027   OPTIONAL(defaulted, MDBoolField, );                                          \
5028   REQUIRED(value, MDField, );
5029 
5030   PARSE_MD_FIELDS();
5031 #undef VISIT_MD_FIELDS
5032 
5033   Result = GET_OR_DISTINCT(
5034       DITemplateValueParameter,
5035       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5036   return false;
5037 }
5038 
5039 /// ParseDIGlobalVariable:
5040 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5041 ///                         file: !1, line: 7, type: !2, isLocal: false,
5042 ///                         isDefinition: true, templateParams: !3,
5043 ///                         declaration: !4, align: 8)
5044 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5045 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5046   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5047   OPTIONAL(scope, MDField, );                                                  \
5048   OPTIONAL(linkageName, MDStringField, );                                      \
5049   OPTIONAL(file, MDField, );                                                   \
5050   OPTIONAL(line, LineField, );                                                 \
5051   OPTIONAL(type, MDField, );                                                   \
5052   OPTIONAL(isLocal, MDBoolField, );                                            \
5053   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5054   OPTIONAL(templateParams, MDField, );                                         \
5055   OPTIONAL(declaration, MDField, );                                            \
5056   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5057   PARSE_MD_FIELDS();
5058 #undef VISIT_MD_FIELDS
5059 
5060   Result =
5061       GET_OR_DISTINCT(DIGlobalVariable,
5062                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5063                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5064                        declaration.Val, templateParams.Val, align.Val));
5065   return false;
5066 }
5067 
5068 /// ParseDILocalVariable:
5069 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5070 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5071 ///                        align: 8)
5072 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5073 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5074 ///                        align: 8)
5075 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5076 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5077   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5078   OPTIONAL(name, MDStringField, );                                             \
5079   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5080   OPTIONAL(file, MDField, );                                                   \
5081   OPTIONAL(line, LineField, );                                                 \
5082   OPTIONAL(type, MDField, );                                                   \
5083   OPTIONAL(flags, DIFlagField, );                                              \
5084   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5085   PARSE_MD_FIELDS();
5086 #undef VISIT_MD_FIELDS
5087 
5088   Result = GET_OR_DISTINCT(DILocalVariable,
5089                            (Context, scope.Val, name.Val, file.Val, line.Val,
5090                             type.Val, arg.Val, flags.Val, align.Val));
5091   return false;
5092 }
5093 
5094 /// ParseDILabel:
5095 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5096 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5098   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5099   REQUIRED(name, MDStringField, );                                             \
5100   REQUIRED(file, MDField, );                                                   \
5101   REQUIRED(line, LineField, );
5102   PARSE_MD_FIELDS();
5103 #undef VISIT_MD_FIELDS
5104 
5105   Result = GET_OR_DISTINCT(DILabel,
5106                            (Context, scope.Val, name.Val, file.Val, line.Val));
5107   return false;
5108 }
5109 
5110 /// ParseDIExpression:
5111 ///   ::= !DIExpression(0, 7, -1)
5112 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5113   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5114   Lex.Lex();
5115 
5116   if (ParseToken(lltok::lparen, "expected '(' here"))
5117     return true;
5118 
5119   SmallVector<uint64_t, 8> Elements;
5120   if (Lex.getKind() != lltok::rparen)
5121     do {
5122       if (Lex.getKind() == lltok::DwarfOp) {
5123         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5124           Lex.Lex();
5125           Elements.push_back(Op);
5126           continue;
5127         }
5128         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5129       }
5130 
5131       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5132         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5133           Lex.Lex();
5134           Elements.push_back(Op);
5135           continue;
5136         }
5137         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5138       }
5139 
5140       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5141         return TokError("expected unsigned integer");
5142 
5143       auto &U = Lex.getAPSIntVal();
5144       if (U.ugt(UINT64_MAX))
5145         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5146       Elements.push_back(U.getZExtValue());
5147       Lex.Lex();
5148     } while (EatIfPresent(lltok::comma));
5149 
5150   if (ParseToken(lltok::rparen, "expected ')' here"))
5151     return true;
5152 
5153   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5154   return false;
5155 }
5156 
5157 /// ParseDIGlobalVariableExpression:
5158 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5159 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5160                                                bool IsDistinct) {
5161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5162   REQUIRED(var, MDField, );                                                    \
5163   REQUIRED(expr, MDField, );
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result =
5168       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5169   return false;
5170 }
5171 
5172 /// ParseDIObjCProperty:
5173 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5174 ///                       getter: "getFoo", attributes: 7, type: !2)
5175 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5177   OPTIONAL(name, MDStringField, );                                             \
5178   OPTIONAL(file, MDField, );                                                   \
5179   OPTIONAL(line, LineField, );                                                 \
5180   OPTIONAL(setter, MDStringField, );                                           \
5181   OPTIONAL(getter, MDStringField, );                                           \
5182   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5183   OPTIONAL(type, MDField, );
5184   PARSE_MD_FIELDS();
5185 #undef VISIT_MD_FIELDS
5186 
5187   Result = GET_OR_DISTINCT(DIObjCProperty,
5188                            (Context, name.Val, file.Val, line.Val, setter.Val,
5189                             getter.Val, attributes.Val, type.Val));
5190   return false;
5191 }
5192 
5193 /// ParseDIImportedEntity:
5194 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5195 ///                         line: 7, name: "foo")
5196 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5197 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5198   REQUIRED(tag, DwarfTagField, );                                              \
5199   REQUIRED(scope, MDField, );                                                  \
5200   OPTIONAL(entity, MDField, );                                                 \
5201   OPTIONAL(file, MDField, );                                                   \
5202   OPTIONAL(line, LineField, );                                                 \
5203   OPTIONAL(name, MDStringField, );
5204   PARSE_MD_FIELDS();
5205 #undef VISIT_MD_FIELDS
5206 
5207   Result = GET_OR_DISTINCT(
5208       DIImportedEntity,
5209       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5210   return false;
5211 }
5212 
5213 #undef PARSE_MD_FIELD
5214 #undef NOP_FIELD
5215 #undef REQUIRE_FIELD
5216 #undef DECLARE_FIELD
5217 
5218 /// ParseMetadataAsValue
5219 ///  ::= metadata i32 %local
5220 ///  ::= metadata i32 @global
5221 ///  ::= metadata i32 7
5222 ///  ::= metadata !0
5223 ///  ::= metadata !{...}
5224 ///  ::= metadata !"string"
5225 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5226   // Note: the type 'metadata' has already been parsed.
5227   Metadata *MD;
5228   if (ParseMetadata(MD, &PFS))
5229     return true;
5230 
5231   V = MetadataAsValue::get(Context, MD);
5232   return false;
5233 }
5234 
5235 /// ParseValueAsMetadata
5236 ///  ::= i32 %local
5237 ///  ::= i32 @global
5238 ///  ::= i32 7
5239 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5240                                     PerFunctionState *PFS) {
5241   Type *Ty;
5242   LocTy Loc;
5243   if (ParseType(Ty, TypeMsg, Loc))
5244     return true;
5245   if (Ty->isMetadataTy())
5246     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5247 
5248   Value *V;
5249   if (ParseValue(Ty, V, PFS))
5250     return true;
5251 
5252   MD = ValueAsMetadata::get(V);
5253   return false;
5254 }
5255 
5256 /// ParseMetadata
5257 ///  ::= i32 %local
5258 ///  ::= i32 @global
5259 ///  ::= i32 7
5260 ///  ::= !42
5261 ///  ::= !{...}
5262 ///  ::= !"string"
5263 ///  ::= !DILocation(...)
5264 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5265   if (Lex.getKind() == lltok::MetadataVar) {
5266     MDNode *N;
5267     if (ParseSpecializedMDNode(N))
5268       return true;
5269     MD = N;
5270     return false;
5271   }
5272 
5273   // ValueAsMetadata:
5274   // <type> <value>
5275   if (Lex.getKind() != lltok::exclaim)
5276     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5277 
5278   // '!'.
5279   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5280   Lex.Lex();
5281 
5282   // MDString:
5283   //   ::= '!' STRINGCONSTANT
5284   if (Lex.getKind() == lltok::StringConstant) {
5285     MDString *S;
5286     if (ParseMDString(S))
5287       return true;
5288     MD = S;
5289     return false;
5290   }
5291 
5292   // MDNode:
5293   // !{ ... }
5294   // !7
5295   MDNode *N;
5296   if (ParseMDNodeTail(N))
5297     return true;
5298   MD = N;
5299   return false;
5300 }
5301 
5302 //===----------------------------------------------------------------------===//
5303 // Function Parsing.
5304 //===----------------------------------------------------------------------===//
5305 
5306 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5307                                    PerFunctionState *PFS, bool IsCall) {
5308   if (Ty->isFunctionTy())
5309     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5310 
5311   switch (ID.Kind) {
5312   case ValID::t_LocalID:
5313     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5314     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5315     return V == nullptr;
5316   case ValID::t_LocalName:
5317     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5318     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5319     return V == nullptr;
5320   case ValID::t_InlineAsm: {
5321     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5322       return Error(ID.Loc, "invalid type for inline asm constraint string");
5323     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5324                        (ID.UIntVal >> 1) & 1,
5325                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5326     return false;
5327   }
5328   case ValID::t_GlobalName:
5329     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5330     return V == nullptr;
5331   case ValID::t_GlobalID:
5332     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5333     return V == nullptr;
5334   case ValID::t_APSInt:
5335     if (!Ty->isIntegerTy())
5336       return Error(ID.Loc, "integer constant must have integer type");
5337     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5338     V = ConstantInt::get(Context, ID.APSIntVal);
5339     return false;
5340   case ValID::t_APFloat:
5341     if (!Ty->isFloatingPointTy() ||
5342         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5343       return Error(ID.Loc, "floating point constant invalid for type");
5344 
5345     // The lexer has no type info, so builds all half, bfloat, float, and double
5346     // FP constants as double.  Fix this here.  Long double does not need this.
5347     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5348       bool Ignored;
5349       if (Ty->isHalfTy())
5350         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5351                               &Ignored);
5352       else if (Ty->isBFloatTy())
5353         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5354                               &Ignored);
5355       else if (Ty->isFloatTy())
5356         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5357                               &Ignored);
5358     }
5359     V = ConstantFP::get(Context, ID.APFloatVal);
5360 
5361     if (V->getType() != Ty)
5362       return Error(ID.Loc, "floating point constant does not have type '" +
5363                    getTypeString(Ty) + "'");
5364 
5365     return false;
5366   case ValID::t_Null:
5367     if (!Ty->isPointerTy())
5368       return Error(ID.Loc, "null must be a pointer type");
5369     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5370     return false;
5371   case ValID::t_Undef:
5372     // FIXME: LabelTy should not be a first-class type.
5373     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5374       return Error(ID.Loc, "invalid type for undef constant");
5375     V = UndefValue::get(Ty);
5376     return false;
5377   case ValID::t_EmptyArray:
5378     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5379       return Error(ID.Loc, "invalid empty array initializer");
5380     V = UndefValue::get(Ty);
5381     return false;
5382   case ValID::t_Zero:
5383     // FIXME: LabelTy should not be a first-class type.
5384     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5385       return Error(ID.Loc, "invalid type for null constant");
5386     V = Constant::getNullValue(Ty);
5387     return false;
5388   case ValID::t_None:
5389     if (!Ty->isTokenTy())
5390       return Error(ID.Loc, "invalid type for none constant");
5391     V = Constant::getNullValue(Ty);
5392     return false;
5393   case ValID::t_Constant:
5394     if (ID.ConstantVal->getType() != Ty)
5395       return Error(ID.Loc, "constant expression type mismatch");
5396 
5397     V = ID.ConstantVal;
5398     return false;
5399   case ValID::t_ConstantStruct:
5400   case ValID::t_PackedConstantStruct:
5401     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5402       if (ST->getNumElements() != ID.UIntVal)
5403         return Error(ID.Loc,
5404                      "initializer with struct type has wrong # elements");
5405       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5406         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5407 
5408       // Verify that the elements are compatible with the structtype.
5409       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5410         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5411           return Error(ID.Loc, "element " + Twine(i) +
5412                     " of struct initializer doesn't match struct element type");
5413 
5414       V = ConstantStruct::get(
5415           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5416     } else
5417       return Error(ID.Loc, "constant expression type mismatch");
5418     return false;
5419   }
5420   llvm_unreachable("Invalid ValID");
5421 }
5422 
5423 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5424   C = nullptr;
5425   ValID ID;
5426   auto Loc = Lex.getLoc();
5427   if (ParseValID(ID, /*PFS=*/nullptr))
5428     return true;
5429   switch (ID.Kind) {
5430   case ValID::t_APSInt:
5431   case ValID::t_APFloat:
5432   case ValID::t_Undef:
5433   case ValID::t_Constant:
5434   case ValID::t_ConstantStruct:
5435   case ValID::t_PackedConstantStruct: {
5436     Value *V;
5437     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5438       return true;
5439     assert(isa<Constant>(V) && "Expected a constant value");
5440     C = cast<Constant>(V);
5441     return false;
5442   }
5443   case ValID::t_Null:
5444     C = Constant::getNullValue(Ty);
5445     return false;
5446   default:
5447     return Error(Loc, "expected a constant value");
5448   }
5449 }
5450 
5451 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5452   V = nullptr;
5453   ValID ID;
5454   return ParseValID(ID, PFS) ||
5455          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5456 }
5457 
5458 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5459   Type *Ty = nullptr;
5460   return ParseType(Ty) ||
5461          ParseValue(Ty, V, PFS);
5462 }
5463 
5464 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5465                                       PerFunctionState &PFS) {
5466   Value *V;
5467   Loc = Lex.getLoc();
5468   if (ParseTypeAndValue(V, PFS)) return true;
5469   if (!isa<BasicBlock>(V))
5470     return Error(Loc, "expected a basic block");
5471   BB = cast<BasicBlock>(V);
5472   return false;
5473 }
5474 
5475 /// FunctionHeader
5476 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5477 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5478 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5479 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5480 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5481   // Parse the linkage.
5482   LocTy LinkageLoc = Lex.getLoc();
5483   unsigned Linkage;
5484   unsigned Visibility;
5485   unsigned DLLStorageClass;
5486   bool DSOLocal;
5487   AttrBuilder RetAttrs;
5488   unsigned CC;
5489   bool HasLinkage;
5490   Type *RetType = nullptr;
5491   LocTy RetTypeLoc = Lex.getLoc();
5492   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5493                            DSOLocal) ||
5494       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5495       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5496     return true;
5497 
5498   // Verify that the linkage is ok.
5499   switch ((GlobalValue::LinkageTypes)Linkage) {
5500   case GlobalValue::ExternalLinkage:
5501     break; // always ok.
5502   case GlobalValue::ExternalWeakLinkage:
5503     if (isDefine)
5504       return Error(LinkageLoc, "invalid linkage for function definition");
5505     break;
5506   case GlobalValue::PrivateLinkage:
5507   case GlobalValue::InternalLinkage:
5508   case GlobalValue::AvailableExternallyLinkage:
5509   case GlobalValue::LinkOnceAnyLinkage:
5510   case GlobalValue::LinkOnceODRLinkage:
5511   case GlobalValue::WeakAnyLinkage:
5512   case GlobalValue::WeakODRLinkage:
5513     if (!isDefine)
5514       return Error(LinkageLoc, "invalid linkage for function declaration");
5515     break;
5516   case GlobalValue::AppendingLinkage:
5517   case GlobalValue::CommonLinkage:
5518     return Error(LinkageLoc, "invalid function linkage type");
5519   }
5520 
5521   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5522     return Error(LinkageLoc,
5523                  "symbol with local linkage must have default visibility");
5524 
5525   if (!FunctionType::isValidReturnType(RetType))
5526     return Error(RetTypeLoc, "invalid function return type");
5527 
5528   LocTy NameLoc = Lex.getLoc();
5529 
5530   std::string FunctionName;
5531   if (Lex.getKind() == lltok::GlobalVar) {
5532     FunctionName = Lex.getStrVal();
5533   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5534     unsigned NameID = Lex.getUIntVal();
5535 
5536     if (NameID != NumberedVals.size())
5537       return TokError("function expected to be numbered '%" +
5538                       Twine(NumberedVals.size()) + "'");
5539   } else {
5540     return TokError("expected function name");
5541   }
5542 
5543   Lex.Lex();
5544 
5545   if (Lex.getKind() != lltok::lparen)
5546     return TokError("expected '(' in function argument list");
5547 
5548   SmallVector<ArgInfo, 8> ArgList;
5549   bool isVarArg;
5550   AttrBuilder FuncAttrs;
5551   std::vector<unsigned> FwdRefAttrGrps;
5552   LocTy BuiltinLoc;
5553   std::string Section;
5554   std::string Partition;
5555   MaybeAlign Alignment;
5556   std::string GC;
5557   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5558   unsigned AddrSpace = 0;
5559   Constant *Prefix = nullptr;
5560   Constant *Prologue = nullptr;
5561   Constant *PersonalityFn = nullptr;
5562   Comdat *C;
5563 
5564   if (ParseArgumentList(ArgList, isVarArg) ||
5565       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5566       ParseOptionalProgramAddrSpace(AddrSpace) ||
5567       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5568                                  BuiltinLoc) ||
5569       (EatIfPresent(lltok::kw_section) &&
5570        ParseStringConstant(Section)) ||
5571       (EatIfPresent(lltok::kw_partition) &&
5572        ParseStringConstant(Partition)) ||
5573       parseOptionalComdat(FunctionName, C) ||
5574       ParseOptionalAlignment(Alignment) ||
5575       (EatIfPresent(lltok::kw_gc) &&
5576        ParseStringConstant(GC)) ||
5577       (EatIfPresent(lltok::kw_prefix) &&
5578        ParseGlobalTypeAndValue(Prefix)) ||
5579       (EatIfPresent(lltok::kw_prologue) &&
5580        ParseGlobalTypeAndValue(Prologue)) ||
5581       (EatIfPresent(lltok::kw_personality) &&
5582        ParseGlobalTypeAndValue(PersonalityFn)))
5583     return true;
5584 
5585   if (FuncAttrs.contains(Attribute::Builtin))
5586     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5587 
5588   // If the alignment was parsed as an attribute, move to the alignment field.
5589   if (FuncAttrs.hasAlignmentAttr()) {
5590     Alignment = FuncAttrs.getAlignment();
5591     FuncAttrs.removeAttribute(Attribute::Alignment);
5592   }
5593 
5594   // Okay, if we got here, the function is syntactically valid.  Convert types
5595   // and do semantic checks.
5596   std::vector<Type*> ParamTypeList;
5597   SmallVector<AttributeSet, 8> Attrs;
5598 
5599   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5600     ParamTypeList.push_back(ArgList[i].Ty);
5601     Attrs.push_back(ArgList[i].Attrs);
5602   }
5603 
5604   AttributeList PAL =
5605       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5606                          AttributeSet::get(Context, RetAttrs), Attrs);
5607 
5608   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5609     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5610 
5611   FunctionType *FT =
5612     FunctionType::get(RetType, ParamTypeList, isVarArg);
5613   PointerType *PFT = PointerType::get(FT, AddrSpace);
5614 
5615   Fn = nullptr;
5616   if (!FunctionName.empty()) {
5617     // If this was a definition of a forward reference, remove the definition
5618     // from the forward reference table and fill in the forward ref.
5619     auto FRVI = ForwardRefVals.find(FunctionName);
5620     if (FRVI != ForwardRefVals.end()) {
5621       Fn = M->getFunction(FunctionName);
5622       if (!Fn)
5623         return Error(FRVI->second.second, "invalid forward reference to "
5624                      "function as global value!");
5625       if (Fn->getType() != PFT)
5626         return Error(FRVI->second.second, "invalid forward reference to "
5627                      "function '" + FunctionName + "' with wrong type: "
5628                      "expected '" + getTypeString(PFT) + "' but was '" +
5629                      getTypeString(Fn->getType()) + "'");
5630       ForwardRefVals.erase(FRVI);
5631     } else if ((Fn = M->getFunction(FunctionName))) {
5632       // Reject redefinitions.
5633       return Error(NameLoc, "invalid redefinition of function '" +
5634                    FunctionName + "'");
5635     } else if (M->getNamedValue(FunctionName)) {
5636       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5637     }
5638 
5639   } else {
5640     // If this is a definition of a forward referenced function, make sure the
5641     // types agree.
5642     auto I = ForwardRefValIDs.find(NumberedVals.size());
5643     if (I != ForwardRefValIDs.end()) {
5644       Fn = cast<Function>(I->second.first);
5645       if (Fn->getType() != PFT)
5646         return Error(NameLoc, "type of definition and forward reference of '@" +
5647                      Twine(NumberedVals.size()) + "' disagree: "
5648                      "expected '" + getTypeString(PFT) + "' but was '" +
5649                      getTypeString(Fn->getType()) + "'");
5650       ForwardRefValIDs.erase(I);
5651     }
5652   }
5653 
5654   if (!Fn)
5655     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5656                           FunctionName, M);
5657   else // Move the forward-reference to the correct spot in the module.
5658     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5659 
5660   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5661 
5662   if (FunctionName.empty())
5663     NumberedVals.push_back(Fn);
5664 
5665   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5666   maybeSetDSOLocal(DSOLocal, *Fn);
5667   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5668   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5669   Fn->setCallingConv(CC);
5670   Fn->setAttributes(PAL);
5671   Fn->setUnnamedAddr(UnnamedAddr);
5672   Fn->setAlignment(MaybeAlign(Alignment));
5673   Fn->setSection(Section);
5674   Fn->setPartition(Partition);
5675   Fn->setComdat(C);
5676   Fn->setPersonalityFn(PersonalityFn);
5677   if (!GC.empty()) Fn->setGC(GC);
5678   Fn->setPrefixData(Prefix);
5679   Fn->setPrologueData(Prologue);
5680   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5681 
5682   // Add all of the arguments we parsed to the function.
5683   Function::arg_iterator ArgIt = Fn->arg_begin();
5684   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5685     // If the argument has a name, insert it into the argument symbol table.
5686     if (ArgList[i].Name.empty()) continue;
5687 
5688     // Set the name, if it conflicted, it will be auto-renamed.
5689     ArgIt->setName(ArgList[i].Name);
5690 
5691     if (ArgIt->getName() != ArgList[i].Name)
5692       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5693                    ArgList[i].Name + "'");
5694   }
5695 
5696   if (isDefine)
5697     return false;
5698 
5699   // Check the declaration has no block address forward references.
5700   ValID ID;
5701   if (FunctionName.empty()) {
5702     ID.Kind = ValID::t_GlobalID;
5703     ID.UIntVal = NumberedVals.size() - 1;
5704   } else {
5705     ID.Kind = ValID::t_GlobalName;
5706     ID.StrVal = FunctionName;
5707   }
5708   auto Blocks = ForwardRefBlockAddresses.find(ID);
5709   if (Blocks != ForwardRefBlockAddresses.end())
5710     return Error(Blocks->first.Loc,
5711                  "cannot take blockaddress inside a declaration");
5712   return false;
5713 }
5714 
5715 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5716   ValID ID;
5717   if (FunctionNumber == -1) {
5718     ID.Kind = ValID::t_GlobalName;
5719     ID.StrVal = std::string(F.getName());
5720   } else {
5721     ID.Kind = ValID::t_GlobalID;
5722     ID.UIntVal = FunctionNumber;
5723   }
5724 
5725   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5726   if (Blocks == P.ForwardRefBlockAddresses.end())
5727     return false;
5728 
5729   for (const auto &I : Blocks->second) {
5730     const ValID &BBID = I.first;
5731     GlobalValue *GV = I.second;
5732 
5733     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5734            "Expected local id or name");
5735     BasicBlock *BB;
5736     if (BBID.Kind == ValID::t_LocalName)
5737       BB = GetBB(BBID.StrVal, BBID.Loc);
5738     else
5739       BB = GetBB(BBID.UIntVal, BBID.Loc);
5740     if (!BB)
5741       return P.Error(BBID.Loc, "referenced value is not a basic block");
5742 
5743     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5744     GV->eraseFromParent();
5745   }
5746 
5747   P.ForwardRefBlockAddresses.erase(Blocks);
5748   return false;
5749 }
5750 
5751 /// ParseFunctionBody
5752 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5753 bool LLParser::ParseFunctionBody(Function &Fn) {
5754   if (Lex.getKind() != lltok::lbrace)
5755     return TokError("expected '{' in function body");
5756   Lex.Lex();  // eat the {.
5757 
5758   int FunctionNumber = -1;
5759   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5760 
5761   PerFunctionState PFS(*this, Fn, FunctionNumber);
5762 
5763   // Resolve block addresses and allow basic blocks to be forward-declared
5764   // within this function.
5765   if (PFS.resolveForwardRefBlockAddresses())
5766     return true;
5767   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5768 
5769   // We need at least one basic block.
5770   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5771     return TokError("function body requires at least one basic block");
5772 
5773   while (Lex.getKind() != lltok::rbrace &&
5774          Lex.getKind() != lltok::kw_uselistorder)
5775     if (ParseBasicBlock(PFS)) return true;
5776 
5777   while (Lex.getKind() != lltok::rbrace)
5778     if (ParseUseListOrder(&PFS))
5779       return true;
5780 
5781   // Eat the }.
5782   Lex.Lex();
5783 
5784   // Verify function is ok.
5785   return PFS.FinishFunction();
5786 }
5787 
5788 /// ParseBasicBlock
5789 ///   ::= (LabelStr|LabelID)? Instruction*
5790 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5791   // If this basic block starts out with a name, remember it.
5792   std::string Name;
5793   int NameID = -1;
5794   LocTy NameLoc = Lex.getLoc();
5795   if (Lex.getKind() == lltok::LabelStr) {
5796     Name = Lex.getStrVal();
5797     Lex.Lex();
5798   } else if (Lex.getKind() == lltok::LabelID) {
5799     NameID = Lex.getUIntVal();
5800     Lex.Lex();
5801   }
5802 
5803   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5804   if (!BB)
5805     return true;
5806 
5807   std::string NameStr;
5808 
5809   // Parse the instructions in this block until we get a terminator.
5810   Instruction *Inst;
5811   do {
5812     // This instruction may have three possibilities for a name: a) none
5813     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5814     LocTy NameLoc = Lex.getLoc();
5815     int NameID = -1;
5816     NameStr = "";
5817 
5818     if (Lex.getKind() == lltok::LocalVarID) {
5819       NameID = Lex.getUIntVal();
5820       Lex.Lex();
5821       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5822         return true;
5823     } else if (Lex.getKind() == lltok::LocalVar) {
5824       NameStr = Lex.getStrVal();
5825       Lex.Lex();
5826       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5827         return true;
5828     }
5829 
5830     switch (ParseInstruction(Inst, BB, PFS)) {
5831     default: llvm_unreachable("Unknown ParseInstruction result!");
5832     case InstError: return true;
5833     case InstNormal:
5834       BB->getInstList().push_back(Inst);
5835 
5836       // With a normal result, we check to see if the instruction is followed by
5837       // a comma and metadata.
5838       if (EatIfPresent(lltok::comma))
5839         if (ParseInstructionMetadata(*Inst))
5840           return true;
5841       break;
5842     case InstExtraComma:
5843       BB->getInstList().push_back(Inst);
5844 
5845       // If the instruction parser ate an extra comma at the end of it, it
5846       // *must* be followed by metadata.
5847       if (ParseInstructionMetadata(*Inst))
5848         return true;
5849       break;
5850     }
5851 
5852     // Set the name on the instruction.
5853     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5854   } while (!Inst->isTerminator());
5855 
5856   return false;
5857 }
5858 
5859 //===----------------------------------------------------------------------===//
5860 // Instruction Parsing.
5861 //===----------------------------------------------------------------------===//
5862 
5863 /// ParseInstruction - Parse one of the many different instructions.
5864 ///
5865 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5866                                PerFunctionState &PFS) {
5867   lltok::Kind Token = Lex.getKind();
5868   if (Token == lltok::Eof)
5869     return TokError("found end of file when expecting more instructions");
5870   LocTy Loc = Lex.getLoc();
5871   unsigned KeywordVal = Lex.getUIntVal();
5872   Lex.Lex();  // Eat the keyword.
5873 
5874   switch (Token) {
5875   default:                    return Error(Loc, "expected instruction opcode");
5876   // Terminator Instructions.
5877   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5878   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5879   case lltok::kw_br:          return ParseBr(Inst, PFS);
5880   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5881   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5882   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5883   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5884   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5885   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5886   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5887   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5888   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5889   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5890   // Unary Operators.
5891   case lltok::kw_fneg: {
5892     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5893     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5894     if (Res != 0)
5895       return Res;
5896     if (FMF.any())
5897       Inst->setFastMathFlags(FMF);
5898     return false;
5899   }
5900   // Binary Operators.
5901   case lltok::kw_add:
5902   case lltok::kw_sub:
5903   case lltok::kw_mul:
5904   case lltok::kw_shl: {
5905     bool NUW = EatIfPresent(lltok::kw_nuw);
5906     bool NSW = EatIfPresent(lltok::kw_nsw);
5907     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5908 
5909     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5910 
5911     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5912     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5913     return false;
5914   }
5915   case lltok::kw_fadd:
5916   case lltok::kw_fsub:
5917   case lltok::kw_fmul:
5918   case lltok::kw_fdiv:
5919   case lltok::kw_frem: {
5920     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5921     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5922     if (Res != 0)
5923       return Res;
5924     if (FMF.any())
5925       Inst->setFastMathFlags(FMF);
5926     return 0;
5927   }
5928 
5929   case lltok::kw_sdiv:
5930   case lltok::kw_udiv:
5931   case lltok::kw_lshr:
5932   case lltok::kw_ashr: {
5933     bool Exact = EatIfPresent(lltok::kw_exact);
5934 
5935     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5936     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5937     return false;
5938   }
5939 
5940   case lltok::kw_urem:
5941   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5942                                                 /*IsFP*/false);
5943   case lltok::kw_and:
5944   case lltok::kw_or:
5945   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5946   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5947   case lltok::kw_fcmp: {
5948     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5949     int Res = ParseCompare(Inst, PFS, KeywordVal);
5950     if (Res != 0)
5951       return Res;
5952     if (FMF.any())
5953       Inst->setFastMathFlags(FMF);
5954     return 0;
5955   }
5956 
5957   // Casts.
5958   case lltok::kw_trunc:
5959   case lltok::kw_zext:
5960   case lltok::kw_sext:
5961   case lltok::kw_fptrunc:
5962   case lltok::kw_fpext:
5963   case lltok::kw_bitcast:
5964   case lltok::kw_addrspacecast:
5965   case lltok::kw_uitofp:
5966   case lltok::kw_sitofp:
5967   case lltok::kw_fptoui:
5968   case lltok::kw_fptosi:
5969   case lltok::kw_inttoptr:
5970   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5971   // Other.
5972   case lltok::kw_select: {
5973     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5974     int Res = ParseSelect(Inst, PFS);
5975     if (Res != 0)
5976       return Res;
5977     if (FMF.any()) {
5978       if (!isa<FPMathOperator>(Inst))
5979         return Error(Loc, "fast-math-flags specified for select without "
5980                           "floating-point scalar or vector return type");
5981       Inst->setFastMathFlags(FMF);
5982     }
5983     return 0;
5984   }
5985   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5986   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5987   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5988   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5989   case lltok::kw_phi: {
5990     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5991     int Res = ParsePHI(Inst, PFS);
5992     if (Res != 0)
5993       return Res;
5994     if (FMF.any()) {
5995       if (!isa<FPMathOperator>(Inst))
5996         return Error(Loc, "fast-math-flags specified for phi without "
5997                           "floating-point scalar or vector return type");
5998       Inst->setFastMathFlags(FMF);
5999     }
6000     return 0;
6001   }
6002   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
6003   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
6004   // Call.
6005   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
6006   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
6007   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
6008   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
6009   // Memory.
6010   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
6011   case lltok::kw_load:           return ParseLoad(Inst, PFS);
6012   case lltok::kw_store:          return ParseStore(Inst, PFS);
6013   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
6014   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
6015   case lltok::kw_fence:          return ParseFence(Inst, PFS);
6016   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
6017   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
6018   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
6019   }
6020 }
6021 
6022 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
6023 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
6024   if (Opc == Instruction::FCmp) {
6025     switch (Lex.getKind()) {
6026     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
6027     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6028     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6029     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6030     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6031     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6032     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6033     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6034     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6035     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6036     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6037     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6038     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6039     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6040     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6041     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6042     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6043     }
6044   } else {
6045     switch (Lex.getKind()) {
6046     default: return TokError("expected icmp predicate (e.g. 'eq')");
6047     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6048     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6049     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6050     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6051     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6052     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6053     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6054     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6055     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6056     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6057     }
6058   }
6059   Lex.Lex();
6060   return false;
6061 }
6062 
6063 //===----------------------------------------------------------------------===//
6064 // Terminator Instructions.
6065 //===----------------------------------------------------------------------===//
6066 
6067 /// ParseRet - Parse a return instruction.
6068 ///   ::= 'ret' void (',' !dbg, !1)*
6069 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6070 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
6071                         PerFunctionState &PFS) {
6072   SMLoc TypeLoc = Lex.getLoc();
6073   Type *Ty = nullptr;
6074   if (ParseType(Ty, true /*void allowed*/)) return true;
6075 
6076   Type *ResType = PFS.getFunction().getReturnType();
6077 
6078   if (Ty->isVoidTy()) {
6079     if (!ResType->isVoidTy())
6080       return Error(TypeLoc, "value doesn't match function result type '" +
6081                    getTypeString(ResType) + "'");
6082 
6083     Inst = ReturnInst::Create(Context);
6084     return false;
6085   }
6086 
6087   Value *RV;
6088   if (ParseValue(Ty, RV, PFS)) return true;
6089 
6090   if (ResType != RV->getType())
6091     return Error(TypeLoc, "value doesn't match function result type '" +
6092                  getTypeString(ResType) + "'");
6093 
6094   Inst = ReturnInst::Create(Context, RV);
6095   return false;
6096 }
6097 
6098 /// ParseBr
6099 ///   ::= 'br' TypeAndValue
6100 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6101 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6102   LocTy Loc, Loc2;
6103   Value *Op0;
6104   BasicBlock *Op1, *Op2;
6105   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6106 
6107   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6108     Inst = BranchInst::Create(BB);
6109     return false;
6110   }
6111 
6112   if (Op0->getType() != Type::getInt1Ty(Context))
6113     return Error(Loc, "branch condition must have 'i1' type");
6114 
6115   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6116       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6117       ParseToken(lltok::comma, "expected ',' after true destination") ||
6118       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6119     return true;
6120 
6121   Inst = BranchInst::Create(Op1, Op2, Op0);
6122   return false;
6123 }
6124 
6125 /// ParseSwitch
6126 ///  Instruction
6127 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6128 ///  JumpTable
6129 ///    ::= (TypeAndValue ',' TypeAndValue)*
6130 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6131   LocTy CondLoc, BBLoc;
6132   Value *Cond;
6133   BasicBlock *DefaultBB;
6134   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6135       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6136       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6137       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6138     return true;
6139 
6140   if (!Cond->getType()->isIntegerTy())
6141     return Error(CondLoc, "switch condition must have integer type");
6142 
6143   // Parse the jump table pairs.
6144   SmallPtrSet<Value*, 32> SeenCases;
6145   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6146   while (Lex.getKind() != lltok::rsquare) {
6147     Value *Constant;
6148     BasicBlock *DestBB;
6149 
6150     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6151         ParseToken(lltok::comma, "expected ',' after case value") ||
6152         ParseTypeAndBasicBlock(DestBB, PFS))
6153       return true;
6154 
6155     if (!SeenCases.insert(Constant).second)
6156       return Error(CondLoc, "duplicate case value in switch");
6157     if (!isa<ConstantInt>(Constant))
6158       return Error(CondLoc, "case value is not a constant integer");
6159 
6160     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6161   }
6162 
6163   Lex.Lex();  // Eat the ']'.
6164 
6165   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6166   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6167     SI->addCase(Table[i].first, Table[i].second);
6168   Inst = SI;
6169   return false;
6170 }
6171 
6172 /// ParseIndirectBr
6173 ///  Instruction
6174 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6175 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6176   LocTy AddrLoc;
6177   Value *Address;
6178   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6179       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6180       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6181     return true;
6182 
6183   if (!Address->getType()->isPointerTy())
6184     return Error(AddrLoc, "indirectbr address must have pointer type");
6185 
6186   // Parse the destination list.
6187   SmallVector<BasicBlock*, 16> DestList;
6188 
6189   if (Lex.getKind() != lltok::rsquare) {
6190     BasicBlock *DestBB;
6191     if (ParseTypeAndBasicBlock(DestBB, PFS))
6192       return true;
6193     DestList.push_back(DestBB);
6194 
6195     while (EatIfPresent(lltok::comma)) {
6196       if (ParseTypeAndBasicBlock(DestBB, PFS))
6197         return true;
6198       DestList.push_back(DestBB);
6199     }
6200   }
6201 
6202   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6203     return true;
6204 
6205   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6206   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6207     IBI->addDestination(DestList[i]);
6208   Inst = IBI;
6209   return false;
6210 }
6211 
6212 /// ParseInvoke
6213 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6214 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6215 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6216   LocTy CallLoc = Lex.getLoc();
6217   AttrBuilder RetAttrs, FnAttrs;
6218   std::vector<unsigned> FwdRefAttrGrps;
6219   LocTy NoBuiltinLoc;
6220   unsigned CC;
6221   unsigned InvokeAddrSpace;
6222   Type *RetType = nullptr;
6223   LocTy RetTypeLoc;
6224   ValID CalleeID;
6225   SmallVector<ParamInfo, 16> ArgList;
6226   SmallVector<OperandBundleDef, 2> BundleList;
6227 
6228   BasicBlock *NormalBB, *UnwindBB;
6229   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6230       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6231       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6232       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6233       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6234                                  NoBuiltinLoc) ||
6235       ParseOptionalOperandBundles(BundleList, PFS) ||
6236       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6237       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6238       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6239       ParseTypeAndBasicBlock(UnwindBB, PFS))
6240     return true;
6241 
6242   // If RetType is a non-function pointer type, then this is the short syntax
6243   // for the call, which means that RetType is just the return type.  Infer the
6244   // rest of the function argument types from the arguments that are present.
6245   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6246   if (!Ty) {
6247     // Pull out the types of all of the arguments...
6248     std::vector<Type*> ParamTypes;
6249     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6250       ParamTypes.push_back(ArgList[i].V->getType());
6251 
6252     if (!FunctionType::isValidReturnType(RetType))
6253       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6254 
6255     Ty = FunctionType::get(RetType, ParamTypes, false);
6256   }
6257 
6258   CalleeID.FTy = Ty;
6259 
6260   // Look up the callee.
6261   Value *Callee;
6262   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6263                           Callee, &PFS, /*IsCall=*/true))
6264     return true;
6265 
6266   // Set up the Attribute for the function.
6267   SmallVector<Value *, 8> Args;
6268   SmallVector<AttributeSet, 8> ArgAttrs;
6269 
6270   // Loop through FunctionType's arguments and ensure they are specified
6271   // correctly.  Also, gather any parameter attributes.
6272   FunctionType::param_iterator I = Ty->param_begin();
6273   FunctionType::param_iterator E = Ty->param_end();
6274   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6275     Type *ExpectedTy = nullptr;
6276     if (I != E) {
6277       ExpectedTy = *I++;
6278     } else if (!Ty->isVarArg()) {
6279       return Error(ArgList[i].Loc, "too many arguments specified");
6280     }
6281 
6282     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6283       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6284                    getTypeString(ExpectedTy) + "'");
6285     Args.push_back(ArgList[i].V);
6286     ArgAttrs.push_back(ArgList[i].Attrs);
6287   }
6288 
6289   if (I != E)
6290     return Error(CallLoc, "not enough parameters specified for call");
6291 
6292   if (FnAttrs.hasAlignmentAttr())
6293     return Error(CallLoc, "invoke instructions may not have an alignment");
6294 
6295   // Finish off the Attribute and check them
6296   AttributeList PAL =
6297       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6298                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6299 
6300   InvokeInst *II =
6301       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6302   II->setCallingConv(CC);
6303   II->setAttributes(PAL);
6304   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6305   Inst = II;
6306   return false;
6307 }
6308 
6309 /// ParseResume
6310 ///   ::= 'resume' TypeAndValue
6311 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6312   Value *Exn; LocTy ExnLoc;
6313   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6314     return true;
6315 
6316   ResumeInst *RI = ResumeInst::Create(Exn);
6317   Inst = RI;
6318   return false;
6319 }
6320 
6321 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6322                                   PerFunctionState &PFS) {
6323   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6324     return true;
6325 
6326   while (Lex.getKind() != lltok::rsquare) {
6327     // If this isn't the first argument, we need a comma.
6328     if (!Args.empty() &&
6329         ParseToken(lltok::comma, "expected ',' in argument list"))
6330       return true;
6331 
6332     // Parse the argument.
6333     LocTy ArgLoc;
6334     Type *ArgTy = nullptr;
6335     if (ParseType(ArgTy, ArgLoc))
6336       return true;
6337 
6338     Value *V;
6339     if (ArgTy->isMetadataTy()) {
6340       if (ParseMetadataAsValue(V, PFS))
6341         return true;
6342     } else {
6343       if (ParseValue(ArgTy, V, PFS))
6344         return true;
6345     }
6346     Args.push_back(V);
6347   }
6348 
6349   Lex.Lex();  // Lex the ']'.
6350   return false;
6351 }
6352 
6353 /// ParseCleanupRet
6354 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6355 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6356   Value *CleanupPad = nullptr;
6357 
6358   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6359     return true;
6360 
6361   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6362     return true;
6363 
6364   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6365     return true;
6366 
6367   BasicBlock *UnwindBB = nullptr;
6368   if (Lex.getKind() == lltok::kw_to) {
6369     Lex.Lex();
6370     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6371       return true;
6372   } else {
6373     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6374       return true;
6375     }
6376   }
6377 
6378   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6379   return false;
6380 }
6381 
6382 /// ParseCatchRet
6383 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6384 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6385   Value *CatchPad = nullptr;
6386 
6387   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6388     return true;
6389 
6390   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6391     return true;
6392 
6393   BasicBlock *BB;
6394   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6395       ParseTypeAndBasicBlock(BB, PFS))
6396       return true;
6397 
6398   Inst = CatchReturnInst::Create(CatchPad, BB);
6399   return false;
6400 }
6401 
6402 /// ParseCatchSwitch
6403 ///   ::= 'catchswitch' within Parent
6404 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6405   Value *ParentPad;
6406 
6407   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6408     return true;
6409 
6410   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6411       Lex.getKind() != lltok::LocalVarID)
6412     return TokError("expected scope value for catchswitch");
6413 
6414   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6415     return true;
6416 
6417   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6418     return true;
6419 
6420   SmallVector<BasicBlock *, 32> Table;
6421   do {
6422     BasicBlock *DestBB;
6423     if (ParseTypeAndBasicBlock(DestBB, PFS))
6424       return true;
6425     Table.push_back(DestBB);
6426   } while (EatIfPresent(lltok::comma));
6427 
6428   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6429     return true;
6430 
6431   if (ParseToken(lltok::kw_unwind,
6432                  "expected 'unwind' after catchswitch scope"))
6433     return true;
6434 
6435   BasicBlock *UnwindBB = nullptr;
6436   if (EatIfPresent(lltok::kw_to)) {
6437     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6438       return true;
6439   } else {
6440     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6441       return true;
6442   }
6443 
6444   auto *CatchSwitch =
6445       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6446   for (BasicBlock *DestBB : Table)
6447     CatchSwitch->addHandler(DestBB);
6448   Inst = CatchSwitch;
6449   return false;
6450 }
6451 
6452 /// ParseCatchPad
6453 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6454 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6455   Value *CatchSwitch = nullptr;
6456 
6457   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6458     return true;
6459 
6460   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6461     return TokError("expected scope value for catchpad");
6462 
6463   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6464     return true;
6465 
6466   SmallVector<Value *, 8> Args;
6467   if (ParseExceptionArgs(Args, PFS))
6468     return true;
6469 
6470   Inst = CatchPadInst::Create(CatchSwitch, Args);
6471   return false;
6472 }
6473 
6474 /// ParseCleanupPad
6475 ///   ::= 'cleanuppad' within Parent ParamList
6476 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6477   Value *ParentPad = nullptr;
6478 
6479   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6480     return true;
6481 
6482   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6483       Lex.getKind() != lltok::LocalVarID)
6484     return TokError("expected scope value for cleanuppad");
6485 
6486   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6487     return true;
6488 
6489   SmallVector<Value *, 8> Args;
6490   if (ParseExceptionArgs(Args, PFS))
6491     return true;
6492 
6493   Inst = CleanupPadInst::Create(ParentPad, Args);
6494   return false;
6495 }
6496 
6497 //===----------------------------------------------------------------------===//
6498 // Unary Operators.
6499 //===----------------------------------------------------------------------===//
6500 
6501 /// ParseUnaryOp
6502 ///  ::= UnaryOp TypeAndValue ',' Value
6503 ///
6504 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6505 /// operand is allowed.
6506 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6507                             unsigned Opc, bool IsFP) {
6508   LocTy Loc; Value *LHS;
6509   if (ParseTypeAndValue(LHS, Loc, PFS))
6510     return true;
6511 
6512   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6513                     : LHS->getType()->isIntOrIntVectorTy();
6514 
6515   if (!Valid)
6516     return Error(Loc, "invalid operand type for instruction");
6517 
6518   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6519   return false;
6520 }
6521 
6522 /// ParseCallBr
6523 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6524 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6525 ///       '[' LabelList ']'
6526 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6527   LocTy CallLoc = Lex.getLoc();
6528   AttrBuilder RetAttrs, FnAttrs;
6529   std::vector<unsigned> FwdRefAttrGrps;
6530   LocTy NoBuiltinLoc;
6531   unsigned CC;
6532   Type *RetType = nullptr;
6533   LocTy RetTypeLoc;
6534   ValID CalleeID;
6535   SmallVector<ParamInfo, 16> ArgList;
6536   SmallVector<OperandBundleDef, 2> BundleList;
6537 
6538   BasicBlock *DefaultDest;
6539   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6540       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6541       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6542       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6543                                  NoBuiltinLoc) ||
6544       ParseOptionalOperandBundles(BundleList, PFS) ||
6545       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6546       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6547       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6548     return true;
6549 
6550   // Parse the destination list.
6551   SmallVector<BasicBlock *, 16> IndirectDests;
6552 
6553   if (Lex.getKind() != lltok::rsquare) {
6554     BasicBlock *DestBB;
6555     if (ParseTypeAndBasicBlock(DestBB, PFS))
6556       return true;
6557     IndirectDests.push_back(DestBB);
6558 
6559     while (EatIfPresent(lltok::comma)) {
6560       if (ParseTypeAndBasicBlock(DestBB, PFS))
6561         return true;
6562       IndirectDests.push_back(DestBB);
6563     }
6564   }
6565 
6566   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6567     return true;
6568 
6569   // If RetType is a non-function pointer type, then this is the short syntax
6570   // for the call, which means that RetType is just the return type.  Infer the
6571   // rest of the function argument types from the arguments that are present.
6572   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6573   if (!Ty) {
6574     // Pull out the types of all of the arguments...
6575     std::vector<Type *> ParamTypes;
6576     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6577       ParamTypes.push_back(ArgList[i].V->getType());
6578 
6579     if (!FunctionType::isValidReturnType(RetType))
6580       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6581 
6582     Ty = FunctionType::get(RetType, ParamTypes, false);
6583   }
6584 
6585   CalleeID.FTy = Ty;
6586 
6587   // Look up the callee.
6588   Value *Callee;
6589   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6590                           /*IsCall=*/true))
6591     return true;
6592 
6593   // Set up the Attribute for the function.
6594   SmallVector<Value *, 8> Args;
6595   SmallVector<AttributeSet, 8> ArgAttrs;
6596 
6597   // Loop through FunctionType's arguments and ensure they are specified
6598   // correctly.  Also, gather any parameter attributes.
6599   FunctionType::param_iterator I = Ty->param_begin();
6600   FunctionType::param_iterator E = Ty->param_end();
6601   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6602     Type *ExpectedTy = nullptr;
6603     if (I != E) {
6604       ExpectedTy = *I++;
6605     } else if (!Ty->isVarArg()) {
6606       return Error(ArgList[i].Loc, "too many arguments specified");
6607     }
6608 
6609     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6610       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6611                                        getTypeString(ExpectedTy) + "'");
6612     Args.push_back(ArgList[i].V);
6613     ArgAttrs.push_back(ArgList[i].Attrs);
6614   }
6615 
6616   if (I != E)
6617     return Error(CallLoc, "not enough parameters specified for call");
6618 
6619   if (FnAttrs.hasAlignmentAttr())
6620     return Error(CallLoc, "callbr instructions may not have an alignment");
6621 
6622   // Finish off the Attribute and check them
6623   AttributeList PAL =
6624       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6625                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6626 
6627   CallBrInst *CBI =
6628       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6629                          BundleList);
6630   CBI->setCallingConv(CC);
6631   CBI->setAttributes(PAL);
6632   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6633   Inst = CBI;
6634   return false;
6635 }
6636 
6637 //===----------------------------------------------------------------------===//
6638 // Binary Operators.
6639 //===----------------------------------------------------------------------===//
6640 
6641 /// ParseArithmetic
6642 ///  ::= ArithmeticOps TypeAndValue ',' Value
6643 ///
6644 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6645 /// operand is allowed.
6646 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6647                                unsigned Opc, bool IsFP) {
6648   LocTy Loc; Value *LHS, *RHS;
6649   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6650       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6651       ParseValue(LHS->getType(), RHS, PFS))
6652     return true;
6653 
6654   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6655                     : LHS->getType()->isIntOrIntVectorTy();
6656 
6657   if (!Valid)
6658     return Error(Loc, "invalid operand type for instruction");
6659 
6660   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6661   return false;
6662 }
6663 
6664 /// ParseLogical
6665 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6666 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6667                             unsigned Opc) {
6668   LocTy Loc; Value *LHS, *RHS;
6669   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6670       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6671       ParseValue(LHS->getType(), RHS, PFS))
6672     return true;
6673 
6674   if (!LHS->getType()->isIntOrIntVectorTy())
6675     return Error(Loc,"instruction requires integer or integer vector operands");
6676 
6677   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6678   return false;
6679 }
6680 
6681 /// ParseCompare
6682 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6683 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6684 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6685                             unsigned Opc) {
6686   // Parse the integer/fp comparison predicate.
6687   LocTy Loc;
6688   unsigned Pred;
6689   Value *LHS, *RHS;
6690   if (ParseCmpPredicate(Pred, Opc) ||
6691       ParseTypeAndValue(LHS, Loc, PFS) ||
6692       ParseToken(lltok::comma, "expected ',' after compare value") ||
6693       ParseValue(LHS->getType(), RHS, PFS))
6694     return true;
6695 
6696   if (Opc == Instruction::FCmp) {
6697     if (!LHS->getType()->isFPOrFPVectorTy())
6698       return Error(Loc, "fcmp requires floating point operands");
6699     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6700   } else {
6701     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6702     if (!LHS->getType()->isIntOrIntVectorTy() &&
6703         !LHS->getType()->isPtrOrPtrVectorTy())
6704       return Error(Loc, "icmp requires integer operands");
6705     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6706   }
6707   return false;
6708 }
6709 
6710 //===----------------------------------------------------------------------===//
6711 // Other Instructions.
6712 //===----------------------------------------------------------------------===//
6713 
6714 
6715 /// ParseCast
6716 ///   ::= CastOpc TypeAndValue 'to' Type
6717 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6718                          unsigned Opc) {
6719   LocTy Loc;
6720   Value *Op;
6721   Type *DestTy = nullptr;
6722   if (ParseTypeAndValue(Op, Loc, PFS) ||
6723       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6724       ParseType(DestTy))
6725     return true;
6726 
6727   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6728     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6729     return Error(Loc, "invalid cast opcode for cast from '" +
6730                  getTypeString(Op->getType()) + "' to '" +
6731                  getTypeString(DestTy) + "'");
6732   }
6733   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6734   return false;
6735 }
6736 
6737 /// ParseSelect
6738 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6739 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6740   LocTy Loc;
6741   Value *Op0, *Op1, *Op2;
6742   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6743       ParseToken(lltok::comma, "expected ',' after select condition") ||
6744       ParseTypeAndValue(Op1, PFS) ||
6745       ParseToken(lltok::comma, "expected ',' after select value") ||
6746       ParseTypeAndValue(Op2, PFS))
6747     return true;
6748 
6749   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6750     return Error(Loc, Reason);
6751 
6752   Inst = SelectInst::Create(Op0, Op1, Op2);
6753   return false;
6754 }
6755 
6756 /// ParseVA_Arg
6757 ///   ::= 'va_arg' TypeAndValue ',' Type
6758 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6759   Value *Op;
6760   Type *EltTy = nullptr;
6761   LocTy TypeLoc;
6762   if (ParseTypeAndValue(Op, PFS) ||
6763       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6764       ParseType(EltTy, TypeLoc))
6765     return true;
6766 
6767   if (!EltTy->isFirstClassType())
6768     return Error(TypeLoc, "va_arg requires operand with first class type");
6769 
6770   Inst = new VAArgInst(Op, EltTy);
6771   return false;
6772 }
6773 
6774 /// ParseExtractElement
6775 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6776 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6777   LocTy Loc;
6778   Value *Op0, *Op1;
6779   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6780       ParseToken(lltok::comma, "expected ',' after extract value") ||
6781       ParseTypeAndValue(Op1, PFS))
6782     return true;
6783 
6784   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6785     return Error(Loc, "invalid extractelement operands");
6786 
6787   Inst = ExtractElementInst::Create(Op0, Op1);
6788   return false;
6789 }
6790 
6791 /// ParseInsertElement
6792 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6793 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6794   LocTy Loc;
6795   Value *Op0, *Op1, *Op2;
6796   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6797       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6798       ParseTypeAndValue(Op1, PFS) ||
6799       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6800       ParseTypeAndValue(Op2, PFS))
6801     return true;
6802 
6803   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6804     return Error(Loc, "invalid insertelement operands");
6805 
6806   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6807   return false;
6808 }
6809 
6810 /// ParseShuffleVector
6811 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6812 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6813   LocTy Loc;
6814   Value *Op0, *Op1, *Op2;
6815   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6816       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6817       ParseTypeAndValue(Op1, PFS) ||
6818       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6819       ParseTypeAndValue(Op2, PFS))
6820     return true;
6821 
6822   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6823     return Error(Loc, "invalid shufflevector operands");
6824 
6825   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6826   return false;
6827 }
6828 
6829 /// ParsePHI
6830 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6831 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6832   Type *Ty = nullptr;  LocTy TypeLoc;
6833   Value *Op0, *Op1;
6834 
6835   if (ParseType(Ty, TypeLoc) ||
6836       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6837       ParseValue(Ty, Op0, PFS) ||
6838       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6839       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6840       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6841     return true;
6842 
6843   bool AteExtraComma = false;
6844   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6845 
6846   while (true) {
6847     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6848 
6849     if (!EatIfPresent(lltok::comma))
6850       break;
6851 
6852     if (Lex.getKind() == lltok::MetadataVar) {
6853       AteExtraComma = true;
6854       break;
6855     }
6856 
6857     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6858         ParseValue(Ty, Op0, PFS) ||
6859         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6860         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6861         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6862       return true;
6863   }
6864 
6865   if (!Ty->isFirstClassType())
6866     return Error(TypeLoc, "phi node must have first class type");
6867 
6868   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6869   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6870     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6871   Inst = PN;
6872   return AteExtraComma ? InstExtraComma : InstNormal;
6873 }
6874 
6875 /// ParseLandingPad
6876 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6877 /// Clause
6878 ///   ::= 'catch' TypeAndValue
6879 ///   ::= 'filter'
6880 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6881 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6882   Type *Ty = nullptr; LocTy TyLoc;
6883 
6884   if (ParseType(Ty, TyLoc))
6885     return true;
6886 
6887   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6888   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6889 
6890   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6891     LandingPadInst::ClauseType CT;
6892     if (EatIfPresent(lltok::kw_catch))
6893       CT = LandingPadInst::Catch;
6894     else if (EatIfPresent(lltok::kw_filter))
6895       CT = LandingPadInst::Filter;
6896     else
6897       return TokError("expected 'catch' or 'filter' clause type");
6898 
6899     Value *V;
6900     LocTy VLoc;
6901     if (ParseTypeAndValue(V, VLoc, PFS))
6902       return true;
6903 
6904     // A 'catch' type expects a non-array constant. A filter clause expects an
6905     // array constant.
6906     if (CT == LandingPadInst::Catch) {
6907       if (isa<ArrayType>(V->getType()))
6908         Error(VLoc, "'catch' clause has an invalid type");
6909     } else {
6910       if (!isa<ArrayType>(V->getType()))
6911         Error(VLoc, "'filter' clause has an invalid type");
6912     }
6913 
6914     Constant *CV = dyn_cast<Constant>(V);
6915     if (!CV)
6916       return Error(VLoc, "clause argument must be a constant");
6917     LP->addClause(CV);
6918   }
6919 
6920   Inst = LP.release();
6921   return false;
6922 }
6923 
6924 /// ParseFreeze
6925 ///   ::= 'freeze' Type Value
6926 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6927   LocTy Loc;
6928   Value *Op;
6929   if (ParseTypeAndValue(Op, Loc, PFS))
6930     return true;
6931 
6932   Inst = new FreezeInst(Op);
6933   return false;
6934 }
6935 
6936 /// ParseCall
6937 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6938 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6939 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6940 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6941 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6942 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6943 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6944 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6945 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6946                          CallInst::TailCallKind TCK) {
6947   AttrBuilder RetAttrs, FnAttrs;
6948   std::vector<unsigned> FwdRefAttrGrps;
6949   LocTy BuiltinLoc;
6950   unsigned CallAddrSpace;
6951   unsigned CC;
6952   Type *RetType = nullptr;
6953   LocTy RetTypeLoc;
6954   ValID CalleeID;
6955   SmallVector<ParamInfo, 16> ArgList;
6956   SmallVector<OperandBundleDef, 2> BundleList;
6957   LocTy CallLoc = Lex.getLoc();
6958 
6959   if (TCK != CallInst::TCK_None &&
6960       ParseToken(lltok::kw_call,
6961                  "expected 'tail call', 'musttail call', or 'notail call'"))
6962     return true;
6963 
6964   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6965 
6966   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6967       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6968       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6969       ParseValID(CalleeID) ||
6970       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6971                          PFS.getFunction().isVarArg()) ||
6972       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6973       ParseOptionalOperandBundles(BundleList, PFS))
6974     return true;
6975 
6976   // If RetType is a non-function pointer type, then this is the short syntax
6977   // for the call, which means that RetType is just the return type.  Infer the
6978   // rest of the function argument types from the arguments that are present.
6979   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6980   if (!Ty) {
6981     // Pull out the types of all of the arguments...
6982     std::vector<Type*> ParamTypes;
6983     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6984       ParamTypes.push_back(ArgList[i].V->getType());
6985 
6986     if (!FunctionType::isValidReturnType(RetType))
6987       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6988 
6989     Ty = FunctionType::get(RetType, ParamTypes, false);
6990   }
6991 
6992   CalleeID.FTy = Ty;
6993 
6994   // Look up the callee.
6995   Value *Callee;
6996   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6997                           &PFS, /*IsCall=*/true))
6998     return true;
6999 
7000   // Set up the Attribute for the function.
7001   SmallVector<AttributeSet, 8> Attrs;
7002 
7003   SmallVector<Value*, 8> Args;
7004 
7005   // Loop through FunctionType's arguments and ensure they are specified
7006   // correctly.  Also, gather any parameter attributes.
7007   FunctionType::param_iterator I = Ty->param_begin();
7008   FunctionType::param_iterator E = Ty->param_end();
7009   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7010     Type *ExpectedTy = nullptr;
7011     if (I != E) {
7012       ExpectedTy = *I++;
7013     } else if (!Ty->isVarArg()) {
7014       return Error(ArgList[i].Loc, "too many arguments specified");
7015     }
7016 
7017     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7018       return Error(ArgList[i].Loc, "argument is not of expected type '" +
7019                    getTypeString(ExpectedTy) + "'");
7020     Args.push_back(ArgList[i].V);
7021     Attrs.push_back(ArgList[i].Attrs);
7022   }
7023 
7024   if (I != E)
7025     return Error(CallLoc, "not enough parameters specified for call");
7026 
7027   if (FnAttrs.hasAlignmentAttr())
7028     return Error(CallLoc, "call instructions may not have an alignment");
7029 
7030   // Finish off the Attribute and check them
7031   AttributeList PAL =
7032       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7033                          AttributeSet::get(Context, RetAttrs), Attrs);
7034 
7035   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7036   CI->setTailCallKind(TCK);
7037   CI->setCallingConv(CC);
7038   if (FMF.any()) {
7039     if (!isa<FPMathOperator>(CI)) {
7040       CI->deleteValue();
7041       return Error(CallLoc, "fast-math-flags specified for call without "
7042                    "floating-point scalar or vector return type");
7043     }
7044     CI->setFastMathFlags(FMF);
7045   }
7046   CI->setAttributes(PAL);
7047   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7048   Inst = CI;
7049   return false;
7050 }
7051 
7052 //===----------------------------------------------------------------------===//
7053 // Memory Instructions.
7054 //===----------------------------------------------------------------------===//
7055 
7056 /// ParseAlloc
7057 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7058 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7059 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7060   Value *Size = nullptr;
7061   LocTy SizeLoc, TyLoc, ASLoc;
7062   MaybeAlign Alignment;
7063   unsigned AddrSpace = 0;
7064   Type *Ty = nullptr;
7065 
7066   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7067   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7068 
7069   if (ParseType(Ty, TyLoc)) return true;
7070 
7071   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7072     return Error(TyLoc, "invalid type for alloca");
7073 
7074   bool AteExtraComma = false;
7075   if (EatIfPresent(lltok::comma)) {
7076     if (Lex.getKind() == lltok::kw_align) {
7077       if (ParseOptionalAlignment(Alignment))
7078         return true;
7079       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7080         return true;
7081     } else if (Lex.getKind() == lltok::kw_addrspace) {
7082       ASLoc = Lex.getLoc();
7083       if (ParseOptionalAddrSpace(AddrSpace))
7084         return true;
7085     } else if (Lex.getKind() == lltok::MetadataVar) {
7086       AteExtraComma = true;
7087     } else {
7088       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7089         return true;
7090       if (EatIfPresent(lltok::comma)) {
7091         if (Lex.getKind() == lltok::kw_align) {
7092           if (ParseOptionalAlignment(Alignment))
7093             return true;
7094           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7095             return true;
7096         } else if (Lex.getKind() == lltok::kw_addrspace) {
7097           ASLoc = Lex.getLoc();
7098           if (ParseOptionalAddrSpace(AddrSpace))
7099             return true;
7100         } else if (Lex.getKind() == lltok::MetadataVar) {
7101           AteExtraComma = true;
7102         }
7103       }
7104     }
7105   }
7106 
7107   if (Size && !Size->getType()->isIntegerTy())
7108     return Error(SizeLoc, "element count must have integer type");
7109 
7110   SmallPtrSet<Type *, 4> Visited;
7111   if (!Alignment && !Ty->isSized(&Visited))
7112     return Error(TyLoc, "Cannot allocate unsized type");
7113   if (!Alignment)
7114     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7115   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7116   AI->setUsedWithInAlloca(IsInAlloca);
7117   AI->setSwiftError(IsSwiftError);
7118   Inst = AI;
7119   return AteExtraComma ? InstExtraComma : InstNormal;
7120 }
7121 
7122 /// ParseLoad
7123 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7124 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7125 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7126 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7127   Value *Val; LocTy Loc;
7128   MaybeAlign Alignment;
7129   bool AteExtraComma = false;
7130   bool isAtomic = false;
7131   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7132   SyncScope::ID SSID = SyncScope::System;
7133 
7134   if (Lex.getKind() == lltok::kw_atomic) {
7135     isAtomic = true;
7136     Lex.Lex();
7137   }
7138 
7139   bool isVolatile = false;
7140   if (Lex.getKind() == lltok::kw_volatile) {
7141     isVolatile = true;
7142     Lex.Lex();
7143   }
7144 
7145   Type *Ty;
7146   LocTy ExplicitTypeLoc = Lex.getLoc();
7147   if (ParseType(Ty) ||
7148       ParseToken(lltok::comma, "expected comma after load's type") ||
7149       ParseTypeAndValue(Val, Loc, PFS) ||
7150       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7151       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7152     return true;
7153 
7154   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7155     return Error(Loc, "load operand must be a pointer to a first class type");
7156   if (isAtomic && !Alignment)
7157     return Error(Loc, "atomic load must have explicit non-zero alignment");
7158   if (Ordering == AtomicOrdering::Release ||
7159       Ordering == AtomicOrdering::AcquireRelease)
7160     return Error(Loc, "atomic load cannot use Release ordering");
7161 
7162   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7163     return Error(ExplicitTypeLoc,
7164                  "explicit pointee type doesn't match operand's pointee type");
7165   SmallPtrSet<Type *, 4> Visited;
7166   if (!Alignment && !Ty->isSized(&Visited))
7167     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7168   if (!Alignment)
7169     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7170   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7171   return AteExtraComma ? InstExtraComma : InstNormal;
7172 }
7173 
7174 /// ParseStore
7175 
7176 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7177 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7178 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7179 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7180   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7181   MaybeAlign Alignment;
7182   bool AteExtraComma = false;
7183   bool isAtomic = false;
7184   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7185   SyncScope::ID SSID = SyncScope::System;
7186 
7187   if (Lex.getKind() == lltok::kw_atomic) {
7188     isAtomic = true;
7189     Lex.Lex();
7190   }
7191 
7192   bool isVolatile = false;
7193   if (Lex.getKind() == lltok::kw_volatile) {
7194     isVolatile = true;
7195     Lex.Lex();
7196   }
7197 
7198   if (ParseTypeAndValue(Val, Loc, PFS) ||
7199       ParseToken(lltok::comma, "expected ',' after store operand") ||
7200       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7201       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7202       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7203     return true;
7204 
7205   if (!Ptr->getType()->isPointerTy())
7206     return Error(PtrLoc, "store operand must be a pointer");
7207   if (!Val->getType()->isFirstClassType())
7208     return Error(Loc, "store operand must be a first class value");
7209   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7210     return Error(Loc, "stored value and pointer type do not match");
7211   if (isAtomic && !Alignment)
7212     return Error(Loc, "atomic store must have explicit non-zero alignment");
7213   if (Ordering == AtomicOrdering::Acquire ||
7214       Ordering == AtomicOrdering::AcquireRelease)
7215     return Error(Loc, "atomic store cannot use Acquire ordering");
7216   SmallPtrSet<Type *, 4> Visited;
7217   if (!Alignment && !Val->getType()->isSized(&Visited))
7218     return Error(Loc, "storing unsized types is not allowed");
7219   if (!Alignment)
7220     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7221 
7222   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7223   return AteExtraComma ? InstExtraComma : InstNormal;
7224 }
7225 
7226 /// ParseCmpXchg
7227 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7228 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7229 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7230   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7231   bool AteExtraComma = false;
7232   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7233   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7234   SyncScope::ID SSID = SyncScope::System;
7235   bool isVolatile = false;
7236   bool isWeak = false;
7237 
7238   if (EatIfPresent(lltok::kw_weak))
7239     isWeak = true;
7240 
7241   if (EatIfPresent(lltok::kw_volatile))
7242     isVolatile = true;
7243 
7244   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7245       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7246       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7247       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7248       ParseTypeAndValue(New, NewLoc, PFS) ||
7249       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7250       ParseOrdering(FailureOrdering))
7251     return true;
7252 
7253   if (SuccessOrdering == AtomicOrdering::Unordered ||
7254       FailureOrdering == AtomicOrdering::Unordered)
7255     return TokError("cmpxchg cannot be unordered");
7256   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7257     return TokError("cmpxchg failure argument shall be no stronger than the "
7258                     "success argument");
7259   if (FailureOrdering == AtomicOrdering::Release ||
7260       FailureOrdering == AtomicOrdering::AcquireRelease)
7261     return TokError(
7262         "cmpxchg failure ordering cannot include release semantics");
7263   if (!Ptr->getType()->isPointerTy())
7264     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7265   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7266     return Error(CmpLoc, "compare value and pointer type do not match");
7267   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7268     return Error(NewLoc, "new value and pointer type do not match");
7269   if (!New->getType()->isFirstClassType())
7270     return Error(NewLoc, "cmpxchg operand must be a first class value");
7271 
7272   Align Alignment(
7273       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7274           Cmp->getType()));
7275 
7276   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7277       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7278   CXI->setVolatile(isVolatile);
7279   CXI->setWeak(isWeak);
7280   Inst = CXI;
7281   return AteExtraComma ? InstExtraComma : InstNormal;
7282 }
7283 
7284 /// ParseAtomicRMW
7285 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7286 ///       'singlethread'? AtomicOrdering
7287 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7288   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7289   bool AteExtraComma = false;
7290   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7291   SyncScope::ID SSID = SyncScope::System;
7292   bool isVolatile = false;
7293   bool IsFP = false;
7294   AtomicRMWInst::BinOp Operation;
7295 
7296   if (EatIfPresent(lltok::kw_volatile))
7297     isVolatile = true;
7298 
7299   switch (Lex.getKind()) {
7300   default: return TokError("expected binary operation in atomicrmw");
7301   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7302   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7303   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7304   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7305   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7306   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7307   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7308   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7309   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7310   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7311   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7312   case lltok::kw_fadd:
7313     Operation = AtomicRMWInst::FAdd;
7314     IsFP = true;
7315     break;
7316   case lltok::kw_fsub:
7317     Operation = AtomicRMWInst::FSub;
7318     IsFP = true;
7319     break;
7320   }
7321   Lex.Lex();  // Eat the operation.
7322 
7323   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7324       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7325       ParseTypeAndValue(Val, ValLoc, PFS) ||
7326       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7327     return true;
7328 
7329   if (Ordering == AtomicOrdering::Unordered)
7330     return TokError("atomicrmw cannot be unordered");
7331   if (!Ptr->getType()->isPointerTy())
7332     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7333   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7334     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7335 
7336   if (Operation == AtomicRMWInst::Xchg) {
7337     if (!Val->getType()->isIntegerTy() &&
7338         !Val->getType()->isFloatingPointTy()) {
7339       return Error(ValLoc, "atomicrmw " +
7340                    AtomicRMWInst::getOperationName(Operation) +
7341                    " operand must be an integer or floating point type");
7342     }
7343   } else if (IsFP) {
7344     if (!Val->getType()->isFloatingPointTy()) {
7345       return Error(ValLoc, "atomicrmw " +
7346                    AtomicRMWInst::getOperationName(Operation) +
7347                    " operand must be a floating point type");
7348     }
7349   } else {
7350     if (!Val->getType()->isIntegerTy()) {
7351       return Error(ValLoc, "atomicrmw " +
7352                    AtomicRMWInst::getOperationName(Operation) +
7353                    " operand must be an integer");
7354     }
7355   }
7356 
7357   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7358   if (Size < 8 || (Size & (Size - 1)))
7359     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7360                          " integer");
7361   Align Alignment(
7362       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7363           Val->getType()));
7364   AtomicRMWInst *RMWI =
7365       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7366   RMWI->setVolatile(isVolatile);
7367   Inst = RMWI;
7368   return AteExtraComma ? InstExtraComma : InstNormal;
7369 }
7370 
7371 /// ParseFence
7372 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7373 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7374   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7375   SyncScope::ID SSID = SyncScope::System;
7376   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7377     return true;
7378 
7379   if (Ordering == AtomicOrdering::Unordered)
7380     return TokError("fence cannot be unordered");
7381   if (Ordering == AtomicOrdering::Monotonic)
7382     return TokError("fence cannot be monotonic");
7383 
7384   Inst = new FenceInst(Context, Ordering, SSID);
7385   return InstNormal;
7386 }
7387 
7388 /// ParseGetElementPtr
7389 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7390 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7391   Value *Ptr = nullptr;
7392   Value *Val = nullptr;
7393   LocTy Loc, EltLoc;
7394 
7395   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7396 
7397   Type *Ty = nullptr;
7398   LocTy ExplicitTypeLoc = Lex.getLoc();
7399   if (ParseType(Ty) ||
7400       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7401       ParseTypeAndValue(Ptr, Loc, PFS))
7402     return true;
7403 
7404   Type *BaseType = Ptr->getType();
7405   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7406   if (!BasePointerType)
7407     return Error(Loc, "base of getelementptr must be a pointer");
7408 
7409   if (Ty != BasePointerType->getElementType())
7410     return Error(ExplicitTypeLoc,
7411                  "explicit pointee type doesn't match operand's pointee type");
7412 
7413   SmallVector<Value*, 16> Indices;
7414   bool AteExtraComma = false;
7415   // GEP returns a vector of pointers if at least one of parameters is a vector.
7416   // All vector parameters should have the same vector width.
7417   ElementCount GEPWidth = BaseType->isVectorTy()
7418                               ? cast<VectorType>(BaseType)->getElementCount()
7419                               : ElementCount::getFixed(0);
7420 
7421   while (EatIfPresent(lltok::comma)) {
7422     if (Lex.getKind() == lltok::MetadataVar) {
7423       AteExtraComma = true;
7424       break;
7425     }
7426     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7427     if (!Val->getType()->isIntOrIntVectorTy())
7428       return Error(EltLoc, "getelementptr index must be an integer");
7429 
7430     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7431       ElementCount ValNumEl = ValVTy->getElementCount();
7432       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7433         return Error(EltLoc,
7434           "getelementptr vector index has a wrong number of elements");
7435       GEPWidth = ValNumEl;
7436     }
7437     Indices.push_back(Val);
7438   }
7439 
7440   SmallPtrSet<Type*, 4> Visited;
7441   if (!Indices.empty() && !Ty->isSized(&Visited))
7442     return Error(Loc, "base element of getelementptr must be sized");
7443 
7444   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7445     return Error(Loc, "invalid getelementptr indices");
7446   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7447   if (InBounds)
7448     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7449   return AteExtraComma ? InstExtraComma : InstNormal;
7450 }
7451 
7452 /// ParseExtractValue
7453 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7454 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7455   Value *Val; LocTy Loc;
7456   SmallVector<unsigned, 4> Indices;
7457   bool AteExtraComma;
7458   if (ParseTypeAndValue(Val, Loc, PFS) ||
7459       ParseIndexList(Indices, AteExtraComma))
7460     return true;
7461 
7462   if (!Val->getType()->isAggregateType())
7463     return Error(Loc, "extractvalue operand must be aggregate type");
7464 
7465   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7466     return Error(Loc, "invalid indices for extractvalue");
7467   Inst = ExtractValueInst::Create(Val, Indices);
7468   return AteExtraComma ? InstExtraComma : InstNormal;
7469 }
7470 
7471 /// ParseInsertValue
7472 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7473 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7474   Value *Val0, *Val1; LocTy Loc0, Loc1;
7475   SmallVector<unsigned, 4> Indices;
7476   bool AteExtraComma;
7477   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7478       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7479       ParseTypeAndValue(Val1, Loc1, PFS) ||
7480       ParseIndexList(Indices, AteExtraComma))
7481     return true;
7482 
7483   if (!Val0->getType()->isAggregateType())
7484     return Error(Loc0, "insertvalue operand must be aggregate type");
7485 
7486   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7487   if (!IndexedType)
7488     return Error(Loc0, "invalid indices for insertvalue");
7489   if (IndexedType != Val1->getType())
7490     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7491                            getTypeString(Val1->getType()) + "' instead of '" +
7492                            getTypeString(IndexedType) + "'");
7493   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7494   return AteExtraComma ? InstExtraComma : InstNormal;
7495 }
7496 
7497 //===----------------------------------------------------------------------===//
7498 // Embedded metadata.
7499 //===----------------------------------------------------------------------===//
7500 
7501 /// ParseMDNodeVector
7502 ///   ::= { Element (',' Element)* }
7503 /// Element
7504 ///   ::= 'null' | TypeAndValue
7505 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7506   if (ParseToken(lltok::lbrace, "expected '{' here"))
7507     return true;
7508 
7509   // Check for an empty list.
7510   if (EatIfPresent(lltok::rbrace))
7511     return false;
7512 
7513   do {
7514     // Null is a special case since it is typeless.
7515     if (EatIfPresent(lltok::kw_null)) {
7516       Elts.push_back(nullptr);
7517       continue;
7518     }
7519 
7520     Metadata *MD;
7521     if (ParseMetadata(MD, nullptr))
7522       return true;
7523     Elts.push_back(MD);
7524   } while (EatIfPresent(lltok::comma));
7525 
7526   return ParseToken(lltok::rbrace, "expected end of metadata node");
7527 }
7528 
7529 //===----------------------------------------------------------------------===//
7530 // Use-list order directives.
7531 //===----------------------------------------------------------------------===//
7532 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7533                                 SMLoc Loc) {
7534   if (V->use_empty())
7535     return Error(Loc, "value has no uses");
7536 
7537   unsigned NumUses = 0;
7538   SmallDenseMap<const Use *, unsigned, 16> Order;
7539   for (const Use &U : V->uses()) {
7540     if (++NumUses > Indexes.size())
7541       break;
7542     Order[&U] = Indexes[NumUses - 1];
7543   }
7544   if (NumUses < 2)
7545     return Error(Loc, "value only has one use");
7546   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7547     return Error(Loc,
7548                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7549 
7550   V->sortUseList([&](const Use &L, const Use &R) {
7551     return Order.lookup(&L) < Order.lookup(&R);
7552   });
7553   return false;
7554 }
7555 
7556 /// ParseUseListOrderIndexes
7557 ///   ::= '{' uint32 (',' uint32)+ '}'
7558 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7559   SMLoc Loc = Lex.getLoc();
7560   if (ParseToken(lltok::lbrace, "expected '{' here"))
7561     return true;
7562   if (Lex.getKind() == lltok::rbrace)
7563     return Lex.Error("expected non-empty list of uselistorder indexes");
7564 
7565   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7566   // indexes should be distinct numbers in the range [0, size-1], and should
7567   // not be in order.
7568   unsigned Offset = 0;
7569   unsigned Max = 0;
7570   bool IsOrdered = true;
7571   assert(Indexes.empty() && "Expected empty order vector");
7572   do {
7573     unsigned Index;
7574     if (ParseUInt32(Index))
7575       return true;
7576 
7577     // Update consistency checks.
7578     Offset += Index - Indexes.size();
7579     Max = std::max(Max, Index);
7580     IsOrdered &= Index == Indexes.size();
7581 
7582     Indexes.push_back(Index);
7583   } while (EatIfPresent(lltok::comma));
7584 
7585   if (ParseToken(lltok::rbrace, "expected '}' here"))
7586     return true;
7587 
7588   if (Indexes.size() < 2)
7589     return Error(Loc, "expected >= 2 uselistorder indexes");
7590   if (Offset != 0 || Max >= Indexes.size())
7591     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7592   if (IsOrdered)
7593     return Error(Loc, "expected uselistorder indexes to change the order");
7594 
7595   return false;
7596 }
7597 
7598 /// ParseUseListOrder
7599 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7600 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7601   SMLoc Loc = Lex.getLoc();
7602   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7603     return true;
7604 
7605   Value *V;
7606   SmallVector<unsigned, 16> Indexes;
7607   if (ParseTypeAndValue(V, PFS) ||
7608       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7609       ParseUseListOrderIndexes(Indexes))
7610     return true;
7611 
7612   return sortUseListOrder(V, Indexes, Loc);
7613 }
7614 
7615 /// ParseUseListOrderBB
7616 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7617 bool LLParser::ParseUseListOrderBB() {
7618   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7619   SMLoc Loc = Lex.getLoc();
7620   Lex.Lex();
7621 
7622   ValID Fn, Label;
7623   SmallVector<unsigned, 16> Indexes;
7624   if (ParseValID(Fn) ||
7625       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7626       ParseValID(Label) ||
7627       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7628       ParseUseListOrderIndexes(Indexes))
7629     return true;
7630 
7631   // Check the function.
7632   GlobalValue *GV;
7633   if (Fn.Kind == ValID::t_GlobalName)
7634     GV = M->getNamedValue(Fn.StrVal);
7635   else if (Fn.Kind == ValID::t_GlobalID)
7636     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7637   else
7638     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7639   if (!GV)
7640     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7641   auto *F = dyn_cast<Function>(GV);
7642   if (!F)
7643     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7644   if (F->isDeclaration())
7645     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7646 
7647   // Check the basic block.
7648   if (Label.Kind == ValID::t_LocalID)
7649     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7650   if (Label.Kind != ValID::t_LocalName)
7651     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7652   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7653   if (!V)
7654     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7655   if (!isa<BasicBlock>(V))
7656     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7657 
7658   return sortUseListOrder(V, Indexes, Loc);
7659 }
7660 
7661 /// ModuleEntry
7662 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7663 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7664 bool LLParser::ParseModuleEntry(unsigned ID) {
7665   assert(Lex.getKind() == lltok::kw_module);
7666   Lex.Lex();
7667 
7668   std::string Path;
7669   if (ParseToken(lltok::colon, "expected ':' here") ||
7670       ParseToken(lltok::lparen, "expected '(' here") ||
7671       ParseToken(lltok::kw_path, "expected 'path' here") ||
7672       ParseToken(lltok::colon, "expected ':' here") ||
7673       ParseStringConstant(Path) ||
7674       ParseToken(lltok::comma, "expected ',' here") ||
7675       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7676       ParseToken(lltok::colon, "expected ':' here") ||
7677       ParseToken(lltok::lparen, "expected '(' here"))
7678     return true;
7679 
7680   ModuleHash Hash;
7681   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7682       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7683       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7684       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7685       ParseUInt32(Hash[4]))
7686     return true;
7687 
7688   if (ParseToken(lltok::rparen, "expected ')' here") ||
7689       ParseToken(lltok::rparen, "expected ')' here"))
7690     return true;
7691 
7692   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7693   ModuleIdMap[ID] = ModuleEntry->first();
7694 
7695   return false;
7696 }
7697 
7698 /// TypeIdEntry
7699 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7700 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7701   assert(Lex.getKind() == lltok::kw_typeid);
7702   Lex.Lex();
7703 
7704   std::string Name;
7705   if (ParseToken(lltok::colon, "expected ':' here") ||
7706       ParseToken(lltok::lparen, "expected '(' here") ||
7707       ParseToken(lltok::kw_name, "expected 'name' here") ||
7708       ParseToken(lltok::colon, "expected ':' here") ||
7709       ParseStringConstant(Name))
7710     return true;
7711 
7712   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7713   if (ParseToken(lltok::comma, "expected ',' here") ||
7714       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7715     return true;
7716 
7717   // Check if this ID was forward referenced, and if so, update the
7718   // corresponding GUIDs.
7719   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7720   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7721     for (auto TIDRef : FwdRefTIDs->second) {
7722       assert(!*TIDRef.first &&
7723              "Forward referenced type id GUID expected to be 0");
7724       *TIDRef.first = GlobalValue::getGUID(Name);
7725     }
7726     ForwardRefTypeIds.erase(FwdRefTIDs);
7727   }
7728 
7729   return false;
7730 }
7731 
7732 /// TypeIdSummary
7733 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7734 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7735   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7736       ParseToken(lltok::colon, "expected ':' here") ||
7737       ParseToken(lltok::lparen, "expected '(' here") ||
7738       ParseTypeTestResolution(TIS.TTRes))
7739     return true;
7740 
7741   if (EatIfPresent(lltok::comma)) {
7742     // Expect optional wpdResolutions field
7743     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7744       return true;
7745   }
7746 
7747   if (ParseToken(lltok::rparen, "expected ')' here"))
7748     return true;
7749 
7750   return false;
7751 }
7752 
7753 static ValueInfo EmptyVI =
7754     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7755 
7756 /// TypeIdCompatibleVtableEntry
7757 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7758 ///   TypeIdCompatibleVtableInfo
7759 ///   ')'
7760 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7761   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7762   Lex.Lex();
7763 
7764   std::string Name;
7765   if (ParseToken(lltok::colon, "expected ':' here") ||
7766       ParseToken(lltok::lparen, "expected '(' here") ||
7767       ParseToken(lltok::kw_name, "expected 'name' here") ||
7768       ParseToken(lltok::colon, "expected ':' here") ||
7769       ParseStringConstant(Name))
7770     return true;
7771 
7772   TypeIdCompatibleVtableInfo &TI =
7773       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7774   if (ParseToken(lltok::comma, "expected ',' here") ||
7775       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7776       ParseToken(lltok::colon, "expected ':' here") ||
7777       ParseToken(lltok::lparen, "expected '(' here"))
7778     return true;
7779 
7780   IdToIndexMapType IdToIndexMap;
7781   // Parse each call edge
7782   do {
7783     uint64_t Offset;
7784     if (ParseToken(lltok::lparen, "expected '(' here") ||
7785         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7786         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7787         ParseToken(lltok::comma, "expected ',' here"))
7788       return true;
7789 
7790     LocTy Loc = Lex.getLoc();
7791     unsigned GVId;
7792     ValueInfo VI;
7793     if (ParseGVReference(VI, GVId))
7794       return true;
7795 
7796     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7797     // forward reference. We will save the location of the ValueInfo needing an
7798     // update, but can only do so once the std::vector is finalized.
7799     if (VI == EmptyVI)
7800       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7801     TI.push_back({Offset, VI});
7802 
7803     if (ParseToken(lltok::rparen, "expected ')' in call"))
7804       return true;
7805   } while (EatIfPresent(lltok::comma));
7806 
7807   // Now that the TI vector is finalized, it is safe to save the locations
7808   // of any forward GV references that need updating later.
7809   for (auto I : IdToIndexMap) {
7810     auto &Infos = ForwardRefValueInfos[I.first];
7811     for (auto P : I.second) {
7812       assert(TI[P.first].VTableVI == EmptyVI &&
7813              "Forward referenced ValueInfo expected to be empty");
7814       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7815     }
7816   }
7817 
7818   if (ParseToken(lltok::rparen, "expected ')' here") ||
7819       ParseToken(lltok::rparen, "expected ')' here"))
7820     return true;
7821 
7822   // Check if this ID was forward referenced, and if so, update the
7823   // corresponding GUIDs.
7824   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7825   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7826     for (auto TIDRef : FwdRefTIDs->second) {
7827       assert(!*TIDRef.first &&
7828              "Forward referenced type id GUID expected to be 0");
7829       *TIDRef.first = GlobalValue::getGUID(Name);
7830     }
7831     ForwardRefTypeIds.erase(FwdRefTIDs);
7832   }
7833 
7834   return false;
7835 }
7836 
7837 /// TypeTestResolution
7838 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7839 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7840 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7841 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7842 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7843 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7844   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7845       ParseToken(lltok::colon, "expected ':' here") ||
7846       ParseToken(lltok::lparen, "expected '(' here") ||
7847       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7848       ParseToken(lltok::colon, "expected ':' here"))
7849     return true;
7850 
7851   switch (Lex.getKind()) {
7852   case lltok::kw_unknown:
7853     TTRes.TheKind = TypeTestResolution::Unknown;
7854     break;
7855   case lltok::kw_unsat:
7856     TTRes.TheKind = TypeTestResolution::Unsat;
7857     break;
7858   case lltok::kw_byteArray:
7859     TTRes.TheKind = TypeTestResolution::ByteArray;
7860     break;
7861   case lltok::kw_inline:
7862     TTRes.TheKind = TypeTestResolution::Inline;
7863     break;
7864   case lltok::kw_single:
7865     TTRes.TheKind = TypeTestResolution::Single;
7866     break;
7867   case lltok::kw_allOnes:
7868     TTRes.TheKind = TypeTestResolution::AllOnes;
7869     break;
7870   default:
7871     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7872   }
7873   Lex.Lex();
7874 
7875   if (ParseToken(lltok::comma, "expected ',' here") ||
7876       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7877       ParseToken(lltok::colon, "expected ':' here") ||
7878       ParseUInt32(TTRes.SizeM1BitWidth))
7879     return true;
7880 
7881   // Parse optional fields
7882   while (EatIfPresent(lltok::comma)) {
7883     switch (Lex.getKind()) {
7884     case lltok::kw_alignLog2:
7885       Lex.Lex();
7886       if (ParseToken(lltok::colon, "expected ':'") ||
7887           ParseUInt64(TTRes.AlignLog2))
7888         return true;
7889       break;
7890     case lltok::kw_sizeM1:
7891       Lex.Lex();
7892       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7893         return true;
7894       break;
7895     case lltok::kw_bitMask: {
7896       unsigned Val;
7897       Lex.Lex();
7898       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7899         return true;
7900       assert(Val <= 0xff);
7901       TTRes.BitMask = (uint8_t)Val;
7902       break;
7903     }
7904     case lltok::kw_inlineBits:
7905       Lex.Lex();
7906       if (ParseToken(lltok::colon, "expected ':'") ||
7907           ParseUInt64(TTRes.InlineBits))
7908         return true;
7909       break;
7910     default:
7911       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7912     }
7913   }
7914 
7915   if (ParseToken(lltok::rparen, "expected ')' here"))
7916     return true;
7917 
7918   return false;
7919 }
7920 
7921 /// OptionalWpdResolutions
7922 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7923 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7924 bool LLParser::ParseOptionalWpdResolutions(
7925     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7926   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7927       ParseToken(lltok::colon, "expected ':' here") ||
7928       ParseToken(lltok::lparen, "expected '(' here"))
7929     return true;
7930 
7931   do {
7932     uint64_t Offset;
7933     WholeProgramDevirtResolution WPDRes;
7934     if (ParseToken(lltok::lparen, "expected '(' here") ||
7935         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7936         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7937         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7938         ParseToken(lltok::rparen, "expected ')' here"))
7939       return true;
7940     WPDResMap[Offset] = WPDRes;
7941   } while (EatIfPresent(lltok::comma));
7942 
7943   if (ParseToken(lltok::rparen, "expected ')' here"))
7944     return true;
7945 
7946   return false;
7947 }
7948 
7949 /// WpdRes
7950 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7951 ///         [',' OptionalResByArg]? ')'
7952 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7953 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7954 ///         [',' OptionalResByArg]? ')'
7955 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7956 ///         [',' OptionalResByArg]? ')'
7957 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7958   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7959       ParseToken(lltok::colon, "expected ':' here") ||
7960       ParseToken(lltok::lparen, "expected '(' here") ||
7961       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7962       ParseToken(lltok::colon, "expected ':' here"))
7963     return true;
7964 
7965   switch (Lex.getKind()) {
7966   case lltok::kw_indir:
7967     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7968     break;
7969   case lltok::kw_singleImpl:
7970     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7971     break;
7972   case lltok::kw_branchFunnel:
7973     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7974     break;
7975   default:
7976     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7977   }
7978   Lex.Lex();
7979 
7980   // Parse optional fields
7981   while (EatIfPresent(lltok::comma)) {
7982     switch (Lex.getKind()) {
7983     case lltok::kw_singleImplName:
7984       Lex.Lex();
7985       if (ParseToken(lltok::colon, "expected ':' here") ||
7986           ParseStringConstant(WPDRes.SingleImplName))
7987         return true;
7988       break;
7989     case lltok::kw_resByArg:
7990       if (ParseOptionalResByArg(WPDRes.ResByArg))
7991         return true;
7992       break;
7993     default:
7994       return Error(Lex.getLoc(),
7995                    "expected optional WholeProgramDevirtResolution field");
7996     }
7997   }
7998 
7999   if (ParseToken(lltok::rparen, "expected ')' here"))
8000     return true;
8001 
8002   return false;
8003 }
8004 
8005 /// OptionalResByArg
8006 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8007 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8008 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8009 ///                  'virtualConstProp' )
8010 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8011 ///                [',' 'bit' ':' UInt32]? ')'
8012 bool LLParser::ParseOptionalResByArg(
8013     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8014         &ResByArg) {
8015   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8016       ParseToken(lltok::colon, "expected ':' here") ||
8017       ParseToken(lltok::lparen, "expected '(' here"))
8018     return true;
8019 
8020   do {
8021     std::vector<uint64_t> Args;
8022     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
8023         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
8024         ParseToken(lltok::colon, "expected ':' here") ||
8025         ParseToken(lltok::lparen, "expected '(' here") ||
8026         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
8027         ParseToken(lltok::colon, "expected ':' here"))
8028       return true;
8029 
8030     WholeProgramDevirtResolution::ByArg ByArg;
8031     switch (Lex.getKind()) {
8032     case lltok::kw_indir:
8033       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8034       break;
8035     case lltok::kw_uniformRetVal:
8036       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8037       break;
8038     case lltok::kw_uniqueRetVal:
8039       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8040       break;
8041     case lltok::kw_virtualConstProp:
8042       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8043       break;
8044     default:
8045       return Error(Lex.getLoc(),
8046                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8047     }
8048     Lex.Lex();
8049 
8050     // Parse optional fields
8051     while (EatIfPresent(lltok::comma)) {
8052       switch (Lex.getKind()) {
8053       case lltok::kw_info:
8054         Lex.Lex();
8055         if (ParseToken(lltok::colon, "expected ':' here") ||
8056             ParseUInt64(ByArg.Info))
8057           return true;
8058         break;
8059       case lltok::kw_byte:
8060         Lex.Lex();
8061         if (ParseToken(lltok::colon, "expected ':' here") ||
8062             ParseUInt32(ByArg.Byte))
8063           return true;
8064         break;
8065       case lltok::kw_bit:
8066         Lex.Lex();
8067         if (ParseToken(lltok::colon, "expected ':' here") ||
8068             ParseUInt32(ByArg.Bit))
8069           return true;
8070         break;
8071       default:
8072         return Error(Lex.getLoc(),
8073                      "expected optional whole program devirt field");
8074       }
8075     }
8076 
8077     if (ParseToken(lltok::rparen, "expected ')' here"))
8078       return true;
8079 
8080     ResByArg[Args] = ByArg;
8081   } while (EatIfPresent(lltok::comma));
8082 
8083   if (ParseToken(lltok::rparen, "expected ')' here"))
8084     return true;
8085 
8086   return false;
8087 }
8088 
8089 /// OptionalResByArg
8090 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8091 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8092   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8093       ParseToken(lltok::colon, "expected ':' here") ||
8094       ParseToken(lltok::lparen, "expected '(' here"))
8095     return true;
8096 
8097   do {
8098     uint64_t Val;
8099     if (ParseUInt64(Val))
8100       return true;
8101     Args.push_back(Val);
8102   } while (EatIfPresent(lltok::comma));
8103 
8104   if (ParseToken(lltok::rparen, "expected ')' here"))
8105     return true;
8106 
8107   return false;
8108 }
8109 
8110 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8111 
8112 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8113   bool ReadOnly = Fwd->isReadOnly();
8114   bool WriteOnly = Fwd->isWriteOnly();
8115   assert(!(ReadOnly && WriteOnly));
8116   *Fwd = Resolved;
8117   if (ReadOnly)
8118     Fwd->setReadOnly();
8119   if (WriteOnly)
8120     Fwd->setWriteOnly();
8121 }
8122 
8123 /// Stores the given Name/GUID and associated summary into the Index.
8124 /// Also updates any forward references to the associated entry ID.
8125 void LLParser::AddGlobalValueToIndex(
8126     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8127     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8128   // First create the ValueInfo utilizing the Name or GUID.
8129   ValueInfo VI;
8130   if (GUID != 0) {
8131     assert(Name.empty());
8132     VI = Index->getOrInsertValueInfo(GUID);
8133   } else {
8134     assert(!Name.empty());
8135     if (M) {
8136       auto *GV = M->getNamedValue(Name);
8137       assert(GV);
8138       VI = Index->getOrInsertValueInfo(GV);
8139     } else {
8140       assert(
8141           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8142           "Need a source_filename to compute GUID for local");
8143       GUID = GlobalValue::getGUID(
8144           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8145       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8146     }
8147   }
8148 
8149   // Resolve forward references from calls/refs
8150   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8151   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8152     for (auto VIRef : FwdRefVIs->second) {
8153       assert(VIRef.first->getRef() == FwdVIRef &&
8154              "Forward referenced ValueInfo expected to be empty");
8155       resolveFwdRef(VIRef.first, VI);
8156     }
8157     ForwardRefValueInfos.erase(FwdRefVIs);
8158   }
8159 
8160   // Resolve forward references from aliases
8161   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8162   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8163     for (auto AliaseeRef : FwdRefAliasees->second) {
8164       assert(!AliaseeRef.first->hasAliasee() &&
8165              "Forward referencing alias already has aliasee");
8166       assert(Summary && "Aliasee must be a definition");
8167       AliaseeRef.first->setAliasee(VI, Summary.get());
8168     }
8169     ForwardRefAliasees.erase(FwdRefAliasees);
8170   }
8171 
8172   // Add the summary if one was provided.
8173   if (Summary)
8174     Index->addGlobalValueSummary(VI, std::move(Summary));
8175 
8176   // Save the associated ValueInfo for use in later references by ID.
8177   if (ID == NumberedValueInfos.size())
8178     NumberedValueInfos.push_back(VI);
8179   else {
8180     // Handle non-continuous numbers (to make test simplification easier).
8181     if (ID > NumberedValueInfos.size())
8182       NumberedValueInfos.resize(ID + 1);
8183     NumberedValueInfos[ID] = VI;
8184   }
8185 }
8186 
8187 /// ParseSummaryIndexFlags
8188 ///   ::= 'flags' ':' UInt64
8189 bool LLParser::ParseSummaryIndexFlags() {
8190   assert(Lex.getKind() == lltok::kw_flags);
8191   Lex.Lex();
8192 
8193   if (ParseToken(lltok::colon, "expected ':' here"))
8194     return true;
8195   uint64_t Flags;
8196   if (ParseUInt64(Flags))
8197     return true;
8198   if (Index)
8199     Index->setFlags(Flags);
8200   return false;
8201 }
8202 
8203 /// ParseBlockCount
8204 ///   ::= 'blockcount' ':' UInt64
8205 bool LLParser::ParseBlockCount() {
8206   assert(Lex.getKind() == lltok::kw_blockcount);
8207   Lex.Lex();
8208 
8209   if (ParseToken(lltok::colon, "expected ':' here"))
8210     return true;
8211   uint64_t BlockCount;
8212   if (ParseUInt64(BlockCount))
8213     return true;
8214   if (Index)
8215     Index->setBlockCount(BlockCount);
8216   return false;
8217 }
8218 
8219 /// ParseGVEntry
8220 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8221 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8222 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8223 bool LLParser::ParseGVEntry(unsigned ID) {
8224   assert(Lex.getKind() == lltok::kw_gv);
8225   Lex.Lex();
8226 
8227   if (ParseToken(lltok::colon, "expected ':' here") ||
8228       ParseToken(lltok::lparen, "expected '(' here"))
8229     return true;
8230 
8231   std::string Name;
8232   GlobalValue::GUID GUID = 0;
8233   switch (Lex.getKind()) {
8234   case lltok::kw_name:
8235     Lex.Lex();
8236     if (ParseToken(lltok::colon, "expected ':' here") ||
8237         ParseStringConstant(Name))
8238       return true;
8239     // Can't create GUID/ValueInfo until we have the linkage.
8240     break;
8241   case lltok::kw_guid:
8242     Lex.Lex();
8243     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8244       return true;
8245     break;
8246   default:
8247     return Error(Lex.getLoc(), "expected name or guid tag");
8248   }
8249 
8250   if (!EatIfPresent(lltok::comma)) {
8251     // No summaries. Wrap up.
8252     if (ParseToken(lltok::rparen, "expected ')' here"))
8253       return true;
8254     // This was created for a call to an external or indirect target.
8255     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8256     // created for indirect calls with VP. A Name with no GUID came from
8257     // an external definition. We pass ExternalLinkage since that is only
8258     // used when the GUID must be computed from Name, and in that case
8259     // the symbol must have external linkage.
8260     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8261                           nullptr);
8262     return false;
8263   }
8264 
8265   // Have a list of summaries
8266   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8267       ParseToken(lltok::colon, "expected ':' here") ||
8268       ParseToken(lltok::lparen, "expected '(' here"))
8269     return true;
8270   do {
8271     switch (Lex.getKind()) {
8272     case lltok::kw_function:
8273       if (ParseFunctionSummary(Name, GUID, ID))
8274         return true;
8275       break;
8276     case lltok::kw_variable:
8277       if (ParseVariableSummary(Name, GUID, ID))
8278         return true;
8279       break;
8280     case lltok::kw_alias:
8281       if (ParseAliasSummary(Name, GUID, ID))
8282         return true;
8283       break;
8284     default:
8285       return Error(Lex.getLoc(), "expected summary type");
8286     }
8287   } while (EatIfPresent(lltok::comma));
8288 
8289   if (ParseToken(lltok::rparen, "expected ')' here") ||
8290       ParseToken(lltok::rparen, "expected ')' here"))
8291     return true;
8292 
8293   return false;
8294 }
8295 
8296 /// FunctionSummary
8297 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8298 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8299 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8300 ///         [',' OptionalRefs]? ')'
8301 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8302                                     unsigned ID) {
8303   assert(Lex.getKind() == lltok::kw_function);
8304   Lex.Lex();
8305 
8306   StringRef ModulePath;
8307   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8308       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8309       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8310   unsigned InstCount;
8311   std::vector<FunctionSummary::EdgeTy> Calls;
8312   FunctionSummary::TypeIdInfo TypeIdInfo;
8313   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8314   std::vector<ValueInfo> Refs;
8315   // Default is all-zeros (conservative values).
8316   FunctionSummary::FFlags FFlags = {};
8317   if (ParseToken(lltok::colon, "expected ':' here") ||
8318       ParseToken(lltok::lparen, "expected '(' here") ||
8319       ParseModuleReference(ModulePath) ||
8320       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8321       ParseToken(lltok::comma, "expected ',' here") ||
8322       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8323       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8324     return true;
8325 
8326   // Parse optional fields
8327   while (EatIfPresent(lltok::comma)) {
8328     switch (Lex.getKind()) {
8329     case lltok::kw_funcFlags:
8330       if (ParseOptionalFFlags(FFlags))
8331         return true;
8332       break;
8333     case lltok::kw_calls:
8334       if (ParseOptionalCalls(Calls))
8335         return true;
8336       break;
8337     case lltok::kw_typeIdInfo:
8338       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8339         return true;
8340       break;
8341     case lltok::kw_refs:
8342       if (ParseOptionalRefs(Refs))
8343         return true;
8344       break;
8345     case lltok::kw_params:
8346       if (ParseOptionalParamAccesses(ParamAccesses))
8347         return true;
8348       break;
8349     default:
8350       return Error(Lex.getLoc(), "expected optional function summary field");
8351     }
8352   }
8353 
8354   if (ParseToken(lltok::rparen, "expected ')' here"))
8355     return true;
8356 
8357   auto FS = std::make_unique<FunctionSummary>(
8358       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8359       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8360       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8361       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8362       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8363       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8364       std::move(ParamAccesses));
8365 
8366   FS->setModulePath(ModulePath);
8367 
8368   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8369                         ID, std::move(FS));
8370 
8371   return false;
8372 }
8373 
8374 /// VariableSummary
8375 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8376 ///         [',' OptionalRefs]? ')'
8377 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8378                                     unsigned ID) {
8379   assert(Lex.getKind() == lltok::kw_variable);
8380   Lex.Lex();
8381 
8382   StringRef ModulePath;
8383   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8384       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8385       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8386   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8387                                         /* WriteOnly */ false,
8388                                         /* Constant */ false,
8389                                         GlobalObject::VCallVisibilityPublic);
8390   std::vector<ValueInfo> Refs;
8391   VTableFuncList VTableFuncs;
8392   if (ParseToken(lltok::colon, "expected ':' here") ||
8393       ParseToken(lltok::lparen, "expected '(' here") ||
8394       ParseModuleReference(ModulePath) ||
8395       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8396       ParseToken(lltok::comma, "expected ',' here") ||
8397       ParseGVarFlags(GVarFlags))
8398     return true;
8399 
8400   // Parse optional fields
8401   while (EatIfPresent(lltok::comma)) {
8402     switch (Lex.getKind()) {
8403     case lltok::kw_vTableFuncs:
8404       if (ParseOptionalVTableFuncs(VTableFuncs))
8405         return true;
8406       break;
8407     case lltok::kw_refs:
8408       if (ParseOptionalRefs(Refs))
8409         return true;
8410       break;
8411     default:
8412       return Error(Lex.getLoc(), "expected optional variable summary field");
8413     }
8414   }
8415 
8416   if (ParseToken(lltok::rparen, "expected ')' here"))
8417     return true;
8418 
8419   auto GS =
8420       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8421 
8422   GS->setModulePath(ModulePath);
8423   GS->setVTableFuncs(std::move(VTableFuncs));
8424 
8425   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8426                         ID, std::move(GS));
8427 
8428   return false;
8429 }
8430 
8431 /// AliasSummary
8432 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8433 ///         'aliasee' ':' GVReference ')'
8434 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8435                                  unsigned ID) {
8436   assert(Lex.getKind() == lltok::kw_alias);
8437   LocTy Loc = Lex.getLoc();
8438   Lex.Lex();
8439 
8440   StringRef ModulePath;
8441   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8442       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8443       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8444   if (ParseToken(lltok::colon, "expected ':' here") ||
8445       ParseToken(lltok::lparen, "expected '(' here") ||
8446       ParseModuleReference(ModulePath) ||
8447       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8448       ParseToken(lltok::comma, "expected ',' here") ||
8449       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8450       ParseToken(lltok::colon, "expected ':' here"))
8451     return true;
8452 
8453   ValueInfo AliaseeVI;
8454   unsigned GVId;
8455   if (ParseGVReference(AliaseeVI, GVId))
8456     return true;
8457 
8458   if (ParseToken(lltok::rparen, "expected ')' here"))
8459     return true;
8460 
8461   auto AS = std::make_unique<AliasSummary>(GVFlags);
8462 
8463   AS->setModulePath(ModulePath);
8464 
8465   // Record forward reference if the aliasee is not parsed yet.
8466   if (AliaseeVI.getRef() == FwdVIRef) {
8467     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8468   } else {
8469     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8470     assert(Summary && "Aliasee must be a definition");
8471     AS->setAliasee(AliaseeVI, Summary);
8472   }
8473 
8474   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8475                         ID, std::move(AS));
8476 
8477   return false;
8478 }
8479 
8480 /// Flag
8481 ///   ::= [0|1]
8482 bool LLParser::ParseFlag(unsigned &Val) {
8483   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8484     return TokError("expected integer");
8485   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8486   Lex.Lex();
8487   return false;
8488 }
8489 
8490 /// OptionalFFlags
8491 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8492 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8493 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8494 ///        [',' 'noInline' ':' Flag]? ')'
8495 ///        [',' 'alwaysInline' ':' Flag]? ')'
8496 
8497 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8498   assert(Lex.getKind() == lltok::kw_funcFlags);
8499   Lex.Lex();
8500 
8501   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8502       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8503     return true;
8504 
8505   do {
8506     unsigned Val = 0;
8507     switch (Lex.getKind()) {
8508     case lltok::kw_readNone:
8509       Lex.Lex();
8510       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8511         return true;
8512       FFlags.ReadNone = Val;
8513       break;
8514     case lltok::kw_readOnly:
8515       Lex.Lex();
8516       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8517         return true;
8518       FFlags.ReadOnly = Val;
8519       break;
8520     case lltok::kw_noRecurse:
8521       Lex.Lex();
8522       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8523         return true;
8524       FFlags.NoRecurse = Val;
8525       break;
8526     case lltok::kw_returnDoesNotAlias:
8527       Lex.Lex();
8528       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8529         return true;
8530       FFlags.ReturnDoesNotAlias = Val;
8531       break;
8532     case lltok::kw_noInline:
8533       Lex.Lex();
8534       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8535         return true;
8536       FFlags.NoInline = Val;
8537       break;
8538     case lltok::kw_alwaysInline:
8539       Lex.Lex();
8540       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8541         return true;
8542       FFlags.AlwaysInline = Val;
8543       break;
8544     default:
8545       return Error(Lex.getLoc(), "expected function flag type");
8546     }
8547   } while (EatIfPresent(lltok::comma));
8548 
8549   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8550     return true;
8551 
8552   return false;
8553 }
8554 
8555 /// OptionalCalls
8556 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8557 /// Call ::= '(' 'callee' ':' GVReference
8558 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8559 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8560   assert(Lex.getKind() == lltok::kw_calls);
8561   Lex.Lex();
8562 
8563   if (ParseToken(lltok::colon, "expected ':' in calls") |
8564       ParseToken(lltok::lparen, "expected '(' in calls"))
8565     return true;
8566 
8567   IdToIndexMapType IdToIndexMap;
8568   // Parse each call edge
8569   do {
8570     ValueInfo VI;
8571     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8572         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8573         ParseToken(lltok::colon, "expected ':'"))
8574       return true;
8575 
8576     LocTy Loc = Lex.getLoc();
8577     unsigned GVId;
8578     if (ParseGVReference(VI, GVId))
8579       return true;
8580 
8581     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8582     unsigned RelBF = 0;
8583     if (EatIfPresent(lltok::comma)) {
8584       // Expect either hotness or relbf
8585       if (EatIfPresent(lltok::kw_hotness)) {
8586         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8587           return true;
8588       } else {
8589         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8590             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8591           return true;
8592       }
8593     }
8594     // Keep track of the Call array index needing a forward reference.
8595     // We will save the location of the ValueInfo needing an update, but
8596     // can only do so once the std::vector is finalized.
8597     if (VI.getRef() == FwdVIRef)
8598       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8599     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8600 
8601     if (ParseToken(lltok::rparen, "expected ')' in call"))
8602       return true;
8603   } while (EatIfPresent(lltok::comma));
8604 
8605   // Now that the Calls vector is finalized, it is safe to save the locations
8606   // of any forward GV references that need updating later.
8607   for (auto I : IdToIndexMap) {
8608     auto &Infos = ForwardRefValueInfos[I.first];
8609     for (auto P : I.second) {
8610       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8611              "Forward referenced ValueInfo expected to be empty");
8612       Infos.emplace_back(&Calls[P.first].first, P.second);
8613     }
8614   }
8615 
8616   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8617     return true;
8618 
8619   return false;
8620 }
8621 
8622 /// Hotness
8623 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8624 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8625   switch (Lex.getKind()) {
8626   case lltok::kw_unknown:
8627     Hotness = CalleeInfo::HotnessType::Unknown;
8628     break;
8629   case lltok::kw_cold:
8630     Hotness = CalleeInfo::HotnessType::Cold;
8631     break;
8632   case lltok::kw_none:
8633     Hotness = CalleeInfo::HotnessType::None;
8634     break;
8635   case lltok::kw_hot:
8636     Hotness = CalleeInfo::HotnessType::Hot;
8637     break;
8638   case lltok::kw_critical:
8639     Hotness = CalleeInfo::HotnessType::Critical;
8640     break;
8641   default:
8642     return Error(Lex.getLoc(), "invalid call edge hotness");
8643   }
8644   Lex.Lex();
8645   return false;
8646 }
8647 
8648 /// OptionalVTableFuncs
8649 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8650 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8651 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8652   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8653   Lex.Lex();
8654 
8655   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8656       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8657     return true;
8658 
8659   IdToIndexMapType IdToIndexMap;
8660   // Parse each virtual function pair
8661   do {
8662     ValueInfo VI;
8663     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8664         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8665         ParseToken(lltok::colon, "expected ':'"))
8666       return true;
8667 
8668     LocTy Loc = Lex.getLoc();
8669     unsigned GVId;
8670     if (ParseGVReference(VI, GVId))
8671       return true;
8672 
8673     uint64_t Offset;
8674     if (ParseToken(lltok::comma, "expected comma") ||
8675         ParseToken(lltok::kw_offset, "expected offset") ||
8676         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8677       return true;
8678 
8679     // Keep track of the VTableFuncs array index needing a forward reference.
8680     // We will save the location of the ValueInfo needing an update, but
8681     // can only do so once the std::vector is finalized.
8682     if (VI == EmptyVI)
8683       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8684     VTableFuncs.push_back({VI, Offset});
8685 
8686     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8687       return true;
8688   } while (EatIfPresent(lltok::comma));
8689 
8690   // Now that the VTableFuncs vector is finalized, it is safe to save the
8691   // locations of any forward GV references that need updating later.
8692   for (auto I : IdToIndexMap) {
8693     auto &Infos = ForwardRefValueInfos[I.first];
8694     for (auto P : I.second) {
8695       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8696              "Forward referenced ValueInfo expected to be empty");
8697       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8698     }
8699   }
8700 
8701   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8702     return true;
8703 
8704   return false;
8705 }
8706 
8707 /// ParamNo := 'param' ':' UInt64
8708 bool LLParser::ParseParamNo(uint64_t &ParamNo) {
8709   if (ParseToken(lltok::kw_param, "expected 'param' here") ||
8710       ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo))
8711     return true;
8712   return false;
8713 }
8714 
8715 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8716 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) {
8717   APSInt Lower;
8718   APSInt Upper;
8719   auto ParseAPSInt = [&](APSInt &Val) {
8720     if (Lex.getKind() != lltok::APSInt)
8721       return TokError("expected integer");
8722     Val = Lex.getAPSIntVal();
8723     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8724     Val.setIsSigned(true);
8725     Lex.Lex();
8726     return false;
8727   };
8728   if (ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8729       ParseToken(lltok::colon, "expected ':' here") ||
8730       ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8731       ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8732       ParseToken(lltok::rsquare, "expected ']' here"))
8733     return true;
8734 
8735   ++Upper;
8736   Range =
8737       (Lower == Upper && !Lower.isMaxValue())
8738           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8739           : ConstantRange(Lower, Upper);
8740 
8741   return false;
8742 }
8743 
8744 /// ParamAccessCall
8745 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8746 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8747                                     IdLocListType &IdLocList) {
8748   if (ParseToken(lltok::lparen, "expected '(' here") ||
8749       ParseToken(lltok::kw_callee, "expected 'callee' here") ||
8750       ParseToken(lltok::colon, "expected ':' here"))
8751     return true;
8752 
8753   unsigned GVId;
8754   ValueInfo VI;
8755   LocTy Loc = Lex.getLoc();
8756   if (ParseGVReference(VI, GVId))
8757     return true;
8758 
8759   Call.Callee = VI;
8760   IdLocList.emplace_back(GVId, Loc);
8761 
8762   if (ParseToken(lltok::comma, "expected ',' here") ||
8763       ParseParamNo(Call.ParamNo) ||
8764       ParseToken(lltok::comma, "expected ',' here") ||
8765       ParseParamAccessOffset(Call.Offsets))
8766     return true;
8767 
8768   if (ParseToken(lltok::rparen, "expected ')' here"))
8769     return true;
8770 
8771   return false;
8772 }
8773 
8774 /// ParamAccess
8775 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8776 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8777 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param,
8778                                 IdLocListType &IdLocList) {
8779   if (ParseToken(lltok::lparen, "expected '(' here") ||
8780       ParseParamNo(Param.ParamNo) ||
8781       ParseToken(lltok::comma, "expected ',' here") ||
8782       ParseParamAccessOffset(Param.Use))
8783     return true;
8784 
8785   if (EatIfPresent(lltok::comma)) {
8786     if (ParseToken(lltok::kw_calls, "expected 'calls' here") ||
8787         ParseToken(lltok::colon, "expected ':' here") ||
8788         ParseToken(lltok::lparen, "expected '(' here"))
8789       return true;
8790     do {
8791       FunctionSummary::ParamAccess::Call Call;
8792       if (ParseParamAccessCall(Call, IdLocList))
8793         return true;
8794       Param.Calls.push_back(Call);
8795     } while (EatIfPresent(lltok::comma));
8796 
8797     if (ParseToken(lltok::rparen, "expected ')' here"))
8798       return true;
8799   }
8800 
8801   if (ParseToken(lltok::rparen, "expected ')' here"))
8802     return true;
8803 
8804   return false;
8805 }
8806 
8807 /// OptionalParamAccesses
8808 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8809 bool LLParser::ParseOptionalParamAccesses(
8810     std::vector<FunctionSummary::ParamAccess> &Params) {
8811   assert(Lex.getKind() == lltok::kw_params);
8812   Lex.Lex();
8813 
8814   if (ParseToken(lltok::colon, "expected ':' here") ||
8815       ParseToken(lltok::lparen, "expected '(' here"))
8816     return true;
8817 
8818   IdLocListType VContexts;
8819   size_t CallsNum = 0;
8820   do {
8821     FunctionSummary::ParamAccess ParamAccess;
8822     if (ParseParamAccess(ParamAccess, VContexts))
8823       return true;
8824     CallsNum += ParamAccess.Calls.size();
8825     assert(VContexts.size() == CallsNum);
8826     Params.emplace_back(std::move(ParamAccess));
8827   } while (EatIfPresent(lltok::comma));
8828 
8829   if (ParseToken(lltok::rparen, "expected ')' here"))
8830     return true;
8831 
8832   // Now that the Params is finalized, it is safe to save the locations
8833   // of any forward GV references that need updating later.
8834   IdLocListType::const_iterator ItContext = VContexts.begin();
8835   for (auto &PA : Params) {
8836     for (auto &C : PA.Calls) {
8837       if (C.Callee.getRef() == FwdVIRef)
8838         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8839                                                             ItContext->second);
8840       ++ItContext;
8841     }
8842   }
8843   assert(ItContext == VContexts.end());
8844 
8845   return false;
8846 }
8847 
8848 /// OptionalRefs
8849 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8850 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8851   assert(Lex.getKind() == lltok::kw_refs);
8852   Lex.Lex();
8853 
8854   if (ParseToken(lltok::colon, "expected ':' in refs") ||
8855       ParseToken(lltok::lparen, "expected '(' in refs"))
8856     return true;
8857 
8858   struct ValueContext {
8859     ValueInfo VI;
8860     unsigned GVId;
8861     LocTy Loc;
8862   };
8863   std::vector<ValueContext> VContexts;
8864   // Parse each ref edge
8865   do {
8866     ValueContext VC;
8867     VC.Loc = Lex.getLoc();
8868     if (ParseGVReference(VC.VI, VC.GVId))
8869       return true;
8870     VContexts.push_back(VC);
8871   } while (EatIfPresent(lltok::comma));
8872 
8873   // Sort value contexts so that ones with writeonly
8874   // and readonly ValueInfo  are at the end of VContexts vector.
8875   // See FunctionSummary::specialRefCounts()
8876   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8877     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8878   });
8879 
8880   IdToIndexMapType IdToIndexMap;
8881   for (auto &VC : VContexts) {
8882     // Keep track of the Refs array index needing a forward reference.
8883     // We will save the location of the ValueInfo needing an update, but
8884     // can only do so once the std::vector is finalized.
8885     if (VC.VI.getRef() == FwdVIRef)
8886       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8887     Refs.push_back(VC.VI);
8888   }
8889 
8890   // Now that the Refs vector is finalized, it is safe to save the locations
8891   // of any forward GV references that need updating later.
8892   for (auto I : IdToIndexMap) {
8893     auto &Infos = ForwardRefValueInfos[I.first];
8894     for (auto P : I.second) {
8895       assert(Refs[P.first].getRef() == FwdVIRef &&
8896              "Forward referenced ValueInfo expected to be empty");
8897       Infos.emplace_back(&Refs[P.first], P.second);
8898     }
8899   }
8900 
8901   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8902     return true;
8903 
8904   return false;
8905 }
8906 
8907 /// OptionalTypeIdInfo
8908 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8909 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8910 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8911 bool LLParser::ParseOptionalTypeIdInfo(
8912     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8913   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8914   Lex.Lex();
8915 
8916   if (ParseToken(lltok::colon, "expected ':' here") ||
8917       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8918     return true;
8919 
8920   do {
8921     switch (Lex.getKind()) {
8922     case lltok::kw_typeTests:
8923       if (ParseTypeTests(TypeIdInfo.TypeTests))
8924         return true;
8925       break;
8926     case lltok::kw_typeTestAssumeVCalls:
8927       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8928                            TypeIdInfo.TypeTestAssumeVCalls))
8929         return true;
8930       break;
8931     case lltok::kw_typeCheckedLoadVCalls:
8932       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8933                            TypeIdInfo.TypeCheckedLoadVCalls))
8934         return true;
8935       break;
8936     case lltok::kw_typeTestAssumeConstVCalls:
8937       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8938                               TypeIdInfo.TypeTestAssumeConstVCalls))
8939         return true;
8940       break;
8941     case lltok::kw_typeCheckedLoadConstVCalls:
8942       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8943                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8944         return true;
8945       break;
8946     default:
8947       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8948     }
8949   } while (EatIfPresent(lltok::comma));
8950 
8951   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8952     return true;
8953 
8954   return false;
8955 }
8956 
8957 /// TypeTests
8958 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8959 ///         [',' (SummaryID | UInt64)]* ')'
8960 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8961   assert(Lex.getKind() == lltok::kw_typeTests);
8962   Lex.Lex();
8963 
8964   if (ParseToken(lltok::colon, "expected ':' here") ||
8965       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8966     return true;
8967 
8968   IdToIndexMapType IdToIndexMap;
8969   do {
8970     GlobalValue::GUID GUID = 0;
8971     if (Lex.getKind() == lltok::SummaryID) {
8972       unsigned ID = Lex.getUIntVal();
8973       LocTy Loc = Lex.getLoc();
8974       // Keep track of the TypeTests array index needing a forward reference.
8975       // We will save the location of the GUID needing an update, but
8976       // can only do so once the std::vector is finalized.
8977       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8978       Lex.Lex();
8979     } else if (ParseUInt64(GUID))
8980       return true;
8981     TypeTests.push_back(GUID);
8982   } while (EatIfPresent(lltok::comma));
8983 
8984   // Now that the TypeTests vector is finalized, it is safe to save the
8985   // locations of any forward GV references that need updating later.
8986   for (auto I : IdToIndexMap) {
8987     auto &Ids = ForwardRefTypeIds[I.first];
8988     for (auto P : I.second) {
8989       assert(TypeTests[P.first] == 0 &&
8990              "Forward referenced type id GUID expected to be 0");
8991       Ids.emplace_back(&TypeTests[P.first], P.second);
8992     }
8993   }
8994 
8995   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8996     return true;
8997 
8998   return false;
8999 }
9000 
9001 /// VFuncIdList
9002 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9003 bool LLParser::ParseVFuncIdList(
9004     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9005   assert(Lex.getKind() == Kind);
9006   Lex.Lex();
9007 
9008   if (ParseToken(lltok::colon, "expected ':' here") ||
9009       ParseToken(lltok::lparen, "expected '(' here"))
9010     return true;
9011 
9012   IdToIndexMapType IdToIndexMap;
9013   do {
9014     FunctionSummary::VFuncId VFuncId;
9015     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9016       return true;
9017     VFuncIdList.push_back(VFuncId);
9018   } while (EatIfPresent(lltok::comma));
9019 
9020   if (ParseToken(lltok::rparen, "expected ')' here"))
9021     return true;
9022 
9023   // Now that the VFuncIdList vector is finalized, it is safe to save the
9024   // locations of any forward GV references that need updating later.
9025   for (auto I : IdToIndexMap) {
9026     auto &Ids = ForwardRefTypeIds[I.first];
9027     for (auto P : I.second) {
9028       assert(VFuncIdList[P.first].GUID == 0 &&
9029              "Forward referenced type id GUID expected to be 0");
9030       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9031     }
9032   }
9033 
9034   return false;
9035 }
9036 
9037 /// ConstVCallList
9038 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9039 bool LLParser::ParseConstVCallList(
9040     lltok::Kind Kind,
9041     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9042   assert(Lex.getKind() == Kind);
9043   Lex.Lex();
9044 
9045   if (ParseToken(lltok::colon, "expected ':' here") ||
9046       ParseToken(lltok::lparen, "expected '(' here"))
9047     return true;
9048 
9049   IdToIndexMapType IdToIndexMap;
9050   do {
9051     FunctionSummary::ConstVCall ConstVCall;
9052     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9053       return true;
9054     ConstVCallList.push_back(ConstVCall);
9055   } while (EatIfPresent(lltok::comma));
9056 
9057   if (ParseToken(lltok::rparen, "expected ')' here"))
9058     return true;
9059 
9060   // Now that the ConstVCallList vector is finalized, it is safe to save the
9061   // locations of any forward GV references that need updating later.
9062   for (auto I : IdToIndexMap) {
9063     auto &Ids = ForwardRefTypeIds[I.first];
9064     for (auto P : I.second) {
9065       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9066              "Forward referenced type id GUID expected to be 0");
9067       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9068     }
9069   }
9070 
9071   return false;
9072 }
9073 
9074 /// ConstVCall
9075 ///   ::= '(' VFuncId ',' Args ')'
9076 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9077                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9078   if (ParseToken(lltok::lparen, "expected '(' here") ||
9079       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9080     return true;
9081 
9082   if (EatIfPresent(lltok::comma))
9083     if (ParseArgs(ConstVCall.Args))
9084       return true;
9085 
9086   if (ParseToken(lltok::rparen, "expected ')' here"))
9087     return true;
9088 
9089   return false;
9090 }
9091 
9092 /// VFuncId
9093 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9094 ///         'offset' ':' UInt64 ')'
9095 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
9096                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9097   assert(Lex.getKind() == lltok::kw_vFuncId);
9098   Lex.Lex();
9099 
9100   if (ParseToken(lltok::colon, "expected ':' here") ||
9101       ParseToken(lltok::lparen, "expected '(' here"))
9102     return true;
9103 
9104   if (Lex.getKind() == lltok::SummaryID) {
9105     VFuncId.GUID = 0;
9106     unsigned ID = Lex.getUIntVal();
9107     LocTy Loc = Lex.getLoc();
9108     // Keep track of the array index needing a forward reference.
9109     // We will save the location of the GUID needing an update, but
9110     // can only do so once the caller's std::vector is finalized.
9111     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9112     Lex.Lex();
9113   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
9114              ParseToken(lltok::colon, "expected ':' here") ||
9115              ParseUInt64(VFuncId.GUID))
9116     return true;
9117 
9118   if (ParseToken(lltok::comma, "expected ',' here") ||
9119       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
9120       ParseToken(lltok::colon, "expected ':' here") ||
9121       ParseUInt64(VFuncId.Offset) ||
9122       ParseToken(lltok::rparen, "expected ')' here"))
9123     return true;
9124 
9125   return false;
9126 }
9127 
9128 /// GVFlags
9129 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9130 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9131 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9132 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9133   assert(Lex.getKind() == lltok::kw_flags);
9134   Lex.Lex();
9135 
9136   if (ParseToken(lltok::colon, "expected ':' here") ||
9137       ParseToken(lltok::lparen, "expected '(' here"))
9138     return true;
9139 
9140   do {
9141     unsigned Flag = 0;
9142     switch (Lex.getKind()) {
9143     case lltok::kw_linkage:
9144       Lex.Lex();
9145       if (ParseToken(lltok::colon, "expected ':'"))
9146         return true;
9147       bool HasLinkage;
9148       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9149       assert(HasLinkage && "Linkage not optional in summary entry");
9150       Lex.Lex();
9151       break;
9152     case lltok::kw_notEligibleToImport:
9153       Lex.Lex();
9154       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9155         return true;
9156       GVFlags.NotEligibleToImport = Flag;
9157       break;
9158     case lltok::kw_live:
9159       Lex.Lex();
9160       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9161         return true;
9162       GVFlags.Live = Flag;
9163       break;
9164     case lltok::kw_dsoLocal:
9165       Lex.Lex();
9166       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9167         return true;
9168       GVFlags.DSOLocal = Flag;
9169       break;
9170     case lltok::kw_canAutoHide:
9171       Lex.Lex();
9172       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9173         return true;
9174       GVFlags.CanAutoHide = Flag;
9175       break;
9176     default:
9177       return Error(Lex.getLoc(), "expected gv flag type");
9178     }
9179   } while (EatIfPresent(lltok::comma));
9180 
9181   if (ParseToken(lltok::rparen, "expected ')' here"))
9182     return true;
9183 
9184   return false;
9185 }
9186 
9187 /// GVarFlags
9188 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9189 ///                      ',' 'writeonly' ':' Flag
9190 ///                      ',' 'constant' ':' Flag ')'
9191 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9192   assert(Lex.getKind() == lltok::kw_varFlags);
9193   Lex.Lex();
9194 
9195   if (ParseToken(lltok::colon, "expected ':' here") ||
9196       ParseToken(lltok::lparen, "expected '(' here"))
9197     return true;
9198 
9199   auto ParseRest = [this](unsigned int &Val) {
9200     Lex.Lex();
9201     if (ParseToken(lltok::colon, "expected ':'"))
9202       return true;
9203     return ParseFlag(Val);
9204   };
9205 
9206   do {
9207     unsigned Flag = 0;
9208     switch (Lex.getKind()) {
9209     case lltok::kw_readonly:
9210       if (ParseRest(Flag))
9211         return true;
9212       GVarFlags.MaybeReadOnly = Flag;
9213       break;
9214     case lltok::kw_writeonly:
9215       if (ParseRest(Flag))
9216         return true;
9217       GVarFlags.MaybeWriteOnly = Flag;
9218       break;
9219     case lltok::kw_constant:
9220       if (ParseRest(Flag))
9221         return true;
9222       GVarFlags.Constant = Flag;
9223       break;
9224     case lltok::kw_vcall_visibility:
9225       if (ParseRest(Flag))
9226         return true;
9227       GVarFlags.VCallVisibility = Flag;
9228       break;
9229     default:
9230       return Error(Lex.getLoc(), "expected gvar flag type");
9231     }
9232   } while (EatIfPresent(lltok::comma));
9233   return ParseToken(lltok::rparen, "expected ')' here");
9234 }
9235 
9236 /// ModuleReference
9237 ///   ::= 'module' ':' UInt
9238 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
9239   // Parse module id.
9240   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9241       ParseToken(lltok::colon, "expected ':' here") ||
9242       ParseToken(lltok::SummaryID, "expected module ID"))
9243     return true;
9244 
9245   unsigned ModuleID = Lex.getUIntVal();
9246   auto I = ModuleIdMap.find(ModuleID);
9247   // We should have already parsed all module IDs
9248   assert(I != ModuleIdMap.end());
9249   ModulePath = I->second;
9250   return false;
9251 }
9252 
9253 /// GVReference
9254 ///   ::= SummaryID
9255 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9256   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9257   if (!ReadOnly)
9258     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9259   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9260     return true;
9261 
9262   GVId = Lex.getUIntVal();
9263   // Check if we already have a VI for this GV
9264   if (GVId < NumberedValueInfos.size()) {
9265     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9266     VI = NumberedValueInfos[GVId];
9267   } else
9268     // We will create a forward reference to the stored location.
9269     VI = ValueInfo(false, FwdVIRef);
9270 
9271   if (ReadOnly)
9272     VI.setReadOnly();
9273   if (WriteOnly)
9274     VI.setWriteOnly();
9275   return false;
9276 }
9277