1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 if (UpgradeDebugInfo) 241 llvm::UpgradeDebugInfo(*M); 242 243 UpgradeModuleFlags(*M); 244 UpgradeSectionAttributes(*M); 245 246 if (!Slots) 247 return false; 248 // Initialize the slot mapping. 249 // Because by this point we've parsed and validated everything, we can "steal" 250 // the mapping from LLParser as it doesn't need it anymore. 251 Slots->GlobalValues = std::move(NumberedVals); 252 Slots->MetadataNodes = std::move(NumberedMetadata); 253 for (const auto &I : NamedTypes) 254 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 255 for (const auto &I : NumberedTypes) 256 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 257 258 return false; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Top-Level Entities 263 //===----------------------------------------------------------------------===// 264 265 bool LLParser::ParseTopLevelEntities() { 266 while (true) { 267 switch (Lex.getKind()) { 268 default: return TokError("expected top-level entity"); 269 case lltok::Eof: return false; 270 case lltok::kw_declare: if (ParseDeclare()) return true; break; 271 case lltok::kw_define: if (ParseDefine()) return true; break; 272 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 273 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 274 case lltok::kw_source_filename: 275 if (ParseSourceFileName()) 276 return true; 277 break; 278 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 279 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 280 case lltok::LocalVar: if (ParseNamedType()) return true; break; 281 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 282 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 283 case lltok::ComdatVar: if (parseComdat()) return true; break; 284 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 285 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 288 case lltok::kw_uselistorder_bb: 289 if (ParseUseListOrderBB()) 290 return true; 291 break; 292 } 293 } 294 } 295 296 /// toplevelentity 297 /// ::= 'module' 'asm' STRINGCONSTANT 298 bool LLParser::ParseModuleAsm() { 299 assert(Lex.getKind() == lltok::kw_module); 300 Lex.Lex(); 301 302 std::string AsmStr; 303 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 304 ParseStringConstant(AsmStr)) return true; 305 306 M->appendModuleInlineAsm(AsmStr); 307 return false; 308 } 309 310 /// toplevelentity 311 /// ::= 'target' 'triple' '=' STRINGCONSTANT 312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 313 bool LLParser::ParseTargetDefinition() { 314 assert(Lex.getKind() == lltok::kw_target); 315 std::string Str; 316 switch (Lex.Lex()) { 317 default: return TokError("unknown target property"); 318 case lltok::kw_triple: 319 Lex.Lex(); 320 if (ParseToken(lltok::equal, "expected '=' after target triple") || 321 ParseStringConstant(Str)) 322 return true; 323 M->setTargetTriple(Str); 324 return false; 325 case lltok::kw_datalayout: 326 Lex.Lex(); 327 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 328 ParseStringConstant(Str)) 329 return true; 330 M->setDataLayout(Str); 331 return false; 332 } 333 } 334 335 /// toplevelentity 336 /// ::= 'source_filename' '=' STRINGCONSTANT 337 bool LLParser::ParseSourceFileName() { 338 assert(Lex.getKind() == lltok::kw_source_filename); 339 std::string Str; 340 Lex.Lex(); 341 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 342 ParseStringConstant(Str)) 343 return true; 344 M->setSourceFileName(Str); 345 return false; 346 } 347 348 /// toplevelentity 349 /// ::= 'deplibs' '=' '[' ']' 350 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 351 /// FIXME: Remove in 4.0. Currently parse, but ignore. 352 bool LLParser::ParseDepLibs() { 353 assert(Lex.getKind() == lltok::kw_deplibs); 354 Lex.Lex(); 355 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 356 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 357 return true; 358 359 if (EatIfPresent(lltok::rsquare)) 360 return false; 361 362 do { 363 std::string Str; 364 if (ParseStringConstant(Str)) return true; 365 } while (EatIfPresent(lltok::comma)); 366 367 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 368 } 369 370 /// ParseUnnamedType: 371 /// ::= LocalVarID '=' 'type' type 372 bool LLParser::ParseUnnamedType() { 373 LocTy TypeLoc = Lex.getLoc(); 374 unsigned TypeID = Lex.getUIntVal(); 375 Lex.Lex(); // eat LocalVarID; 376 377 if (ParseToken(lltok::equal, "expected '=' after name") || 378 ParseToken(lltok::kw_type, "expected 'type' after '='")) 379 return true; 380 381 Type *Result = nullptr; 382 if (ParseStructDefinition(TypeLoc, "", 383 NumberedTypes[TypeID], Result)) return true; 384 385 if (!isa<StructType>(Result)) { 386 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 387 if (Entry.first) 388 return Error(TypeLoc, "non-struct types may not be recursive"); 389 Entry.first = Result; 390 Entry.second = SMLoc(); 391 } 392 393 return false; 394 } 395 396 /// toplevelentity 397 /// ::= LocalVar '=' 'type' type 398 bool LLParser::ParseNamedType() { 399 std::string Name = Lex.getStrVal(); 400 LocTy NameLoc = Lex.getLoc(); 401 Lex.Lex(); // eat LocalVar. 402 403 if (ParseToken(lltok::equal, "expected '=' after name") || 404 ParseToken(lltok::kw_type, "expected 'type' after name")) 405 return true; 406 407 Type *Result = nullptr; 408 if (ParseStructDefinition(NameLoc, Name, 409 NamedTypes[Name], Result)) return true; 410 411 if (!isa<StructType>(Result)) { 412 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 413 if (Entry.first) 414 return Error(NameLoc, "non-struct types may not be recursive"); 415 Entry.first = Result; 416 Entry.second = SMLoc(); 417 } 418 419 return false; 420 } 421 422 /// toplevelentity 423 /// ::= 'declare' FunctionHeader 424 bool LLParser::ParseDeclare() { 425 assert(Lex.getKind() == lltok::kw_declare); 426 Lex.Lex(); 427 428 std::vector<std::pair<unsigned, MDNode *>> MDs; 429 while (Lex.getKind() == lltok::MetadataVar) { 430 unsigned MDK; 431 MDNode *N; 432 if (ParseMetadataAttachment(MDK, N)) 433 return true; 434 MDs.push_back({MDK, N}); 435 } 436 437 Function *F; 438 if (ParseFunctionHeader(F, false)) 439 return true; 440 for (auto &MD : MDs) 441 F->addMetadata(MD.first, *MD.second); 442 return false; 443 } 444 445 /// toplevelentity 446 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 447 bool LLParser::ParseDefine() { 448 assert(Lex.getKind() == lltok::kw_define); 449 Lex.Lex(); 450 451 Function *F; 452 return ParseFunctionHeader(F, true) || 453 ParseOptionalFunctionMetadata(*F) || 454 ParseFunctionBody(*F); 455 } 456 457 /// ParseGlobalType 458 /// ::= 'constant' 459 /// ::= 'global' 460 bool LLParser::ParseGlobalType(bool &IsConstant) { 461 if (Lex.getKind() == lltok::kw_constant) 462 IsConstant = true; 463 else if (Lex.getKind() == lltok::kw_global) 464 IsConstant = false; 465 else { 466 IsConstant = false; 467 return TokError("expected 'global' or 'constant'"); 468 } 469 Lex.Lex(); 470 return false; 471 } 472 473 bool LLParser::ParseOptionalUnnamedAddr( 474 GlobalVariable::UnnamedAddr &UnnamedAddr) { 475 if (EatIfPresent(lltok::kw_unnamed_addr)) 476 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 477 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 478 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 479 else 480 UnnamedAddr = GlobalValue::UnnamedAddr::None; 481 return false; 482 } 483 484 /// ParseUnnamedGlobal: 485 /// OptionalVisibility (ALIAS | IFUNC) ... 486 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 487 /// OptionalDLLStorageClass 488 /// ... -> global variable 489 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 490 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 491 /// OptionalDLLStorageClass 492 /// ... -> global variable 493 bool LLParser::ParseUnnamedGlobal() { 494 unsigned VarID = NumberedVals.size(); 495 std::string Name; 496 LocTy NameLoc = Lex.getLoc(); 497 498 // Handle the GlobalID form. 499 if (Lex.getKind() == lltok::GlobalID) { 500 if (Lex.getUIntVal() != VarID) 501 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 502 Twine(VarID) + "'"); 503 Lex.Lex(); // eat GlobalID; 504 505 if (ParseToken(lltok::equal, "expected '=' after name")) 506 return true; 507 } 508 509 bool HasLinkage; 510 unsigned Linkage, Visibility, DLLStorageClass; 511 bool DSOLocal; 512 GlobalVariable::ThreadLocalMode TLM; 513 GlobalVariable::UnnamedAddr UnnamedAddr; 514 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 515 DSOLocal) || 516 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 517 return true; 518 519 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 520 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 521 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 522 523 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 524 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 525 } 526 527 /// ParseNamedGlobal: 528 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 529 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 530 /// OptionalVisibility OptionalDLLStorageClass 531 /// ... -> global variable 532 bool LLParser::ParseNamedGlobal() { 533 assert(Lex.getKind() == lltok::GlobalVar); 534 LocTy NameLoc = Lex.getLoc(); 535 std::string Name = Lex.getStrVal(); 536 Lex.Lex(); 537 538 bool HasLinkage; 539 unsigned Linkage, Visibility, DLLStorageClass; 540 bool DSOLocal; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 545 DSOLocal) || 546 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 547 return true; 548 549 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 550 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 551 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 552 553 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 554 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 555 } 556 557 bool LLParser::parseComdat() { 558 assert(Lex.getKind() == lltok::ComdatVar); 559 std::string Name = Lex.getStrVal(); 560 LocTy NameLoc = Lex.getLoc(); 561 Lex.Lex(); 562 563 if (ParseToken(lltok::equal, "expected '=' here")) 564 return true; 565 566 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 567 return TokError("expected comdat type"); 568 569 Comdat::SelectionKind SK; 570 switch (Lex.getKind()) { 571 default: 572 return TokError("unknown selection kind"); 573 case lltok::kw_any: 574 SK = Comdat::Any; 575 break; 576 case lltok::kw_exactmatch: 577 SK = Comdat::ExactMatch; 578 break; 579 case lltok::kw_largest: 580 SK = Comdat::Largest; 581 break; 582 case lltok::kw_noduplicates: 583 SK = Comdat::NoDuplicates; 584 break; 585 case lltok::kw_samesize: 586 SK = Comdat::SameSize; 587 break; 588 } 589 Lex.Lex(); 590 591 // See if the comdat was forward referenced, if so, use the comdat. 592 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 593 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 594 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 595 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 596 597 Comdat *C; 598 if (I != ComdatSymTab.end()) 599 C = &I->second; 600 else 601 C = M->getOrInsertComdat(Name); 602 C->setSelectionKind(SK); 603 604 return false; 605 } 606 607 // MDString: 608 // ::= '!' STRINGCONSTANT 609 bool LLParser::ParseMDString(MDString *&Result) { 610 std::string Str; 611 if (ParseStringConstant(Str)) return true; 612 Result = MDString::get(Context, Str); 613 return false; 614 } 615 616 // MDNode: 617 // ::= '!' MDNodeNumber 618 bool LLParser::ParseMDNodeID(MDNode *&Result) { 619 // !{ ..., !42, ... } 620 LocTy IDLoc = Lex.getLoc(); 621 unsigned MID = 0; 622 if (ParseUInt32(MID)) 623 return true; 624 625 // If not a forward reference, just return it now. 626 if (NumberedMetadata.count(MID)) { 627 Result = NumberedMetadata[MID]; 628 return false; 629 } 630 631 // Otherwise, create MDNode forward reference. 632 auto &FwdRef = ForwardRefMDNodes[MID]; 633 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 634 635 Result = FwdRef.first.get(); 636 NumberedMetadata[MID].reset(Result); 637 return false; 638 } 639 640 /// ParseNamedMetadata: 641 /// !foo = !{ !1, !2 } 642 bool LLParser::ParseNamedMetadata() { 643 assert(Lex.getKind() == lltok::MetadataVar); 644 std::string Name = Lex.getStrVal(); 645 Lex.Lex(); 646 647 if (ParseToken(lltok::equal, "expected '=' here") || 648 ParseToken(lltok::exclaim, "Expected '!' here") || 649 ParseToken(lltok::lbrace, "Expected '{' here")) 650 return true; 651 652 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 653 if (Lex.getKind() != lltok::rbrace) 654 do { 655 MDNode *N = nullptr; 656 // Parse DIExpressions inline as a special case. They are still MDNodes, 657 // so they can still appear in named metadata. Remove this logic if they 658 // become plain Metadata. 659 if (Lex.getKind() == lltok::MetadataVar && 660 Lex.getStrVal() == "DIExpression") { 661 if (ParseDIExpression(N, /*IsDistinct=*/false)) 662 return true; 663 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 664 ParseMDNodeID(N)) { 665 return true; 666 } 667 NMD->addOperand(N); 668 } while (EatIfPresent(lltok::comma)); 669 670 return ParseToken(lltok::rbrace, "expected end of metadata node"); 671 } 672 673 /// ParseStandaloneMetadata: 674 /// !42 = !{...} 675 bool LLParser::ParseStandaloneMetadata() { 676 assert(Lex.getKind() == lltok::exclaim); 677 Lex.Lex(); 678 unsigned MetadataID = 0; 679 680 MDNode *Init; 681 if (ParseUInt32(MetadataID) || 682 ParseToken(lltok::equal, "expected '=' here")) 683 return true; 684 685 // Detect common error, from old metadata syntax. 686 if (Lex.getKind() == lltok::Type) 687 return TokError("unexpected type in metadata definition"); 688 689 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 690 if (Lex.getKind() == lltok::MetadataVar) { 691 if (ParseSpecializedMDNode(Init, IsDistinct)) 692 return true; 693 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 694 ParseMDTuple(Init, IsDistinct)) 695 return true; 696 697 // See if this was forward referenced, if so, handle it. 698 auto FI = ForwardRefMDNodes.find(MetadataID); 699 if (FI != ForwardRefMDNodes.end()) { 700 FI->second.first->replaceAllUsesWith(Init); 701 ForwardRefMDNodes.erase(FI); 702 703 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 704 } else { 705 if (NumberedMetadata.count(MetadataID)) 706 return TokError("Metadata id is already used"); 707 NumberedMetadata[MetadataID].reset(Init); 708 } 709 710 return false; 711 } 712 713 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 714 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 715 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 716 } 717 718 /// parseIndirectSymbol: 719 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 720 /// OptionalVisibility OptionalDLLStorageClass 721 /// OptionalThreadLocal OptionalUnnamedAddr 722 // 'alias|ifunc' IndirectSymbol 723 /// 724 /// IndirectSymbol 725 /// ::= TypeAndValue 726 /// 727 /// Everything through OptionalUnnamedAddr has already been parsed. 728 /// 729 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 730 unsigned L, unsigned Visibility, 731 unsigned DLLStorageClass, bool DSOLocal, 732 GlobalVariable::ThreadLocalMode TLM, 733 GlobalVariable::UnnamedAddr UnnamedAddr) { 734 bool IsAlias; 735 if (Lex.getKind() == lltok::kw_alias) 736 IsAlias = true; 737 else if (Lex.getKind() == lltok::kw_ifunc) 738 IsAlias = false; 739 else 740 llvm_unreachable("Not an alias or ifunc!"); 741 Lex.Lex(); 742 743 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 744 745 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 746 return Error(NameLoc, "invalid linkage type for alias"); 747 748 if (!isValidVisibilityForLinkage(Visibility, L)) 749 return Error(NameLoc, 750 "symbol with local linkage must have default visibility"); 751 752 if (DSOLocal && !IsAlias) { 753 return Error(NameLoc, 754 "dso_local is invalid on ifunc"); 755 } 756 757 Type *Ty; 758 LocTy ExplicitTypeLoc = Lex.getLoc(); 759 if (ParseType(Ty) || 760 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 761 return true; 762 763 Constant *Aliasee; 764 LocTy AliaseeLoc = Lex.getLoc(); 765 if (Lex.getKind() != lltok::kw_bitcast && 766 Lex.getKind() != lltok::kw_getelementptr && 767 Lex.getKind() != lltok::kw_addrspacecast && 768 Lex.getKind() != lltok::kw_inttoptr) { 769 if (ParseGlobalTypeAndValue(Aliasee)) 770 return true; 771 } else { 772 // The bitcast dest type is not present, it is implied by the dest type. 773 ValID ID; 774 if (ParseValID(ID)) 775 return true; 776 if (ID.Kind != ValID::t_Constant) 777 return Error(AliaseeLoc, "invalid aliasee"); 778 Aliasee = ID.ConstantVal; 779 } 780 781 Type *AliaseeType = Aliasee->getType(); 782 auto *PTy = dyn_cast<PointerType>(AliaseeType); 783 if (!PTy) 784 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 785 unsigned AddrSpace = PTy->getAddressSpace(); 786 787 if (IsAlias && Ty != PTy->getElementType()) 788 return Error( 789 ExplicitTypeLoc, 790 "explicit pointee type doesn't match operand's pointee type"); 791 792 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 793 return Error( 794 ExplicitTypeLoc, 795 "explicit pointee type should be a function type"); 796 797 GlobalValue *GVal = nullptr; 798 799 // See if the alias was forward referenced, if so, prepare to replace the 800 // forward reference. 801 if (!Name.empty()) { 802 GVal = M->getNamedValue(Name); 803 if (GVal) { 804 if (!ForwardRefVals.erase(Name)) 805 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 806 } 807 } else { 808 auto I = ForwardRefValIDs.find(NumberedVals.size()); 809 if (I != ForwardRefValIDs.end()) { 810 GVal = I->second.first; 811 ForwardRefValIDs.erase(I); 812 } 813 } 814 815 // Okay, create the alias but do not insert it into the module yet. 816 std::unique_ptr<GlobalIndirectSymbol> GA; 817 if (IsAlias) 818 GA.reset(GlobalAlias::create(Ty, AddrSpace, 819 (GlobalValue::LinkageTypes)Linkage, Name, 820 Aliasee, /*Parent*/ nullptr)); 821 else 822 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 823 (GlobalValue::LinkageTypes)Linkage, Name, 824 Aliasee, /*Parent*/ nullptr)); 825 GA->setThreadLocalMode(TLM); 826 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 827 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 828 GA->setUnnamedAddr(UnnamedAddr); 829 GA->setDSOLocal(DSOLocal); 830 831 if (Name.empty()) 832 NumberedVals.push_back(GA.get()); 833 834 if (GVal) { 835 // Verify that types agree. 836 if (GVal->getType() != GA->getType()) 837 return Error( 838 ExplicitTypeLoc, 839 "forward reference and definition of alias have different types"); 840 841 // If they agree, just RAUW the old value with the alias and remove the 842 // forward ref info. 843 GVal->replaceAllUsesWith(GA.get()); 844 GVal->eraseFromParent(); 845 } 846 847 // Insert into the module, we know its name won't collide now. 848 if (IsAlias) 849 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 850 else 851 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 852 assert(GA->getName() == Name && "Should not be a name conflict!"); 853 854 // The module owns this now 855 GA.release(); 856 857 return false; 858 } 859 860 /// ParseGlobal 861 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 862 /// OptionalVisibility OptionalDLLStorageClass 863 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 864 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 865 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 866 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 867 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 868 /// Const OptionalAttrs 869 /// 870 /// Everything up to and including OptionalUnnamedAddr has been parsed 871 /// already. 872 /// 873 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 874 unsigned Linkage, bool HasLinkage, 875 unsigned Visibility, unsigned DLLStorageClass, 876 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 877 GlobalVariable::UnnamedAddr UnnamedAddr) { 878 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 879 return Error(NameLoc, 880 "symbol with local linkage must have default visibility"); 881 882 unsigned AddrSpace; 883 bool IsConstant, IsExternallyInitialized; 884 LocTy IsExternallyInitializedLoc; 885 LocTy TyLoc; 886 887 Type *Ty = nullptr; 888 if (ParseOptionalAddrSpace(AddrSpace) || 889 ParseOptionalToken(lltok::kw_externally_initialized, 890 IsExternallyInitialized, 891 &IsExternallyInitializedLoc) || 892 ParseGlobalType(IsConstant) || 893 ParseType(Ty, TyLoc)) 894 return true; 895 896 // If the linkage is specified and is external, then no initializer is 897 // present. 898 Constant *Init = nullptr; 899 if (!HasLinkage || 900 !GlobalValue::isValidDeclarationLinkage( 901 (GlobalValue::LinkageTypes)Linkage)) { 902 if (ParseGlobalValue(Ty, Init)) 903 return true; 904 } 905 906 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 907 return Error(TyLoc, "invalid type for global variable"); 908 909 GlobalValue *GVal = nullptr; 910 911 // See if the global was forward referenced, if so, use the global. 912 if (!Name.empty()) { 913 GVal = M->getNamedValue(Name); 914 if (GVal) { 915 if (!ForwardRefVals.erase(Name)) 916 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 917 } 918 } else { 919 auto I = ForwardRefValIDs.find(NumberedVals.size()); 920 if (I != ForwardRefValIDs.end()) { 921 GVal = I->second.first; 922 ForwardRefValIDs.erase(I); 923 } 924 } 925 926 GlobalVariable *GV; 927 if (!GVal) { 928 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 929 Name, nullptr, GlobalVariable::NotThreadLocal, 930 AddrSpace); 931 } else { 932 if (GVal->getValueType() != Ty) 933 return Error(TyLoc, 934 "forward reference and definition of global have different types"); 935 936 GV = cast<GlobalVariable>(GVal); 937 938 // Move the forward-reference to the correct spot in the module. 939 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 940 } 941 942 if (Name.empty()) 943 NumberedVals.push_back(GV); 944 945 // Set the parsed properties on the global. 946 if (Init) 947 GV->setInitializer(Init); 948 GV->setConstant(IsConstant); 949 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 950 GV->setDSOLocal(DSOLocal); 951 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 952 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 953 GV->setExternallyInitialized(IsExternallyInitialized); 954 GV->setThreadLocalMode(TLM); 955 GV->setUnnamedAddr(UnnamedAddr); 956 957 // Parse attributes on the global. 958 while (Lex.getKind() == lltok::comma) { 959 Lex.Lex(); 960 961 if (Lex.getKind() == lltok::kw_section) { 962 Lex.Lex(); 963 GV->setSection(Lex.getStrVal()); 964 if (ParseToken(lltok::StringConstant, "expected global section string")) 965 return true; 966 } else if (Lex.getKind() == lltok::kw_align) { 967 unsigned Alignment; 968 if (ParseOptionalAlignment(Alignment)) return true; 969 GV->setAlignment(Alignment); 970 } else if (Lex.getKind() == lltok::MetadataVar) { 971 if (ParseGlobalObjectMetadataAttachment(*GV)) 972 return true; 973 } else { 974 Comdat *C; 975 if (parseOptionalComdat(Name, C)) 976 return true; 977 if (C) 978 GV->setComdat(C); 979 else 980 return TokError("unknown global variable property!"); 981 } 982 } 983 984 AttrBuilder Attrs; 985 LocTy BuiltinLoc; 986 std::vector<unsigned> FwdRefAttrGrps; 987 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 988 return true; 989 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 990 GV->setAttributes(AttributeSet::get(Context, Attrs)); 991 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 992 } 993 994 return false; 995 } 996 997 /// ParseUnnamedAttrGrp 998 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 999 bool LLParser::ParseUnnamedAttrGrp() { 1000 assert(Lex.getKind() == lltok::kw_attributes); 1001 LocTy AttrGrpLoc = Lex.getLoc(); 1002 Lex.Lex(); 1003 1004 if (Lex.getKind() != lltok::AttrGrpID) 1005 return TokError("expected attribute group id"); 1006 1007 unsigned VarID = Lex.getUIntVal(); 1008 std::vector<unsigned> unused; 1009 LocTy BuiltinLoc; 1010 Lex.Lex(); 1011 1012 if (ParseToken(lltok::equal, "expected '=' here") || 1013 ParseToken(lltok::lbrace, "expected '{' here") || 1014 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1015 BuiltinLoc) || 1016 ParseToken(lltok::rbrace, "expected end of attribute group")) 1017 return true; 1018 1019 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1020 return Error(AttrGrpLoc, "attribute group has no attributes"); 1021 1022 return false; 1023 } 1024 1025 /// ParseFnAttributeValuePairs 1026 /// ::= <attr> | <attr> '=' <value> 1027 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1028 std::vector<unsigned> &FwdRefAttrGrps, 1029 bool inAttrGrp, LocTy &BuiltinLoc) { 1030 bool HaveError = false; 1031 1032 B.clear(); 1033 1034 while (true) { 1035 lltok::Kind Token = Lex.getKind(); 1036 if (Token == lltok::kw_builtin) 1037 BuiltinLoc = Lex.getLoc(); 1038 switch (Token) { 1039 default: 1040 if (!inAttrGrp) return HaveError; 1041 return Error(Lex.getLoc(), "unterminated attribute group"); 1042 case lltok::rbrace: 1043 // Finished. 1044 return false; 1045 1046 case lltok::AttrGrpID: { 1047 // Allow a function to reference an attribute group: 1048 // 1049 // define void @foo() #1 { ... } 1050 if (inAttrGrp) 1051 HaveError |= 1052 Error(Lex.getLoc(), 1053 "cannot have an attribute group reference in an attribute group"); 1054 1055 unsigned AttrGrpNum = Lex.getUIntVal(); 1056 if (inAttrGrp) break; 1057 1058 // Save the reference to the attribute group. We'll fill it in later. 1059 FwdRefAttrGrps.push_back(AttrGrpNum); 1060 break; 1061 } 1062 // Target-dependent attributes: 1063 case lltok::StringConstant: { 1064 if (ParseStringAttribute(B)) 1065 return true; 1066 continue; 1067 } 1068 1069 // Target-independent attributes: 1070 case lltok::kw_align: { 1071 // As a hack, we allow function alignment to be initially parsed as an 1072 // attribute on a function declaration/definition or added to an attribute 1073 // group and later moved to the alignment field. 1074 unsigned Alignment; 1075 if (inAttrGrp) { 1076 Lex.Lex(); 1077 if (ParseToken(lltok::equal, "expected '=' here") || 1078 ParseUInt32(Alignment)) 1079 return true; 1080 } else { 1081 if (ParseOptionalAlignment(Alignment)) 1082 return true; 1083 } 1084 B.addAlignmentAttr(Alignment); 1085 continue; 1086 } 1087 case lltok::kw_alignstack: { 1088 unsigned Alignment; 1089 if (inAttrGrp) { 1090 Lex.Lex(); 1091 if (ParseToken(lltok::equal, "expected '=' here") || 1092 ParseUInt32(Alignment)) 1093 return true; 1094 } else { 1095 if (ParseOptionalStackAlignment(Alignment)) 1096 return true; 1097 } 1098 B.addStackAlignmentAttr(Alignment); 1099 continue; 1100 } 1101 case lltok::kw_allocsize: { 1102 unsigned ElemSizeArg; 1103 Optional<unsigned> NumElemsArg; 1104 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1105 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1106 return true; 1107 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1108 continue; 1109 } 1110 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1111 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1112 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1113 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1114 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1115 case lltok::kw_inaccessiblememonly: 1116 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1117 case lltok::kw_inaccessiblemem_or_argmemonly: 1118 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1119 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1120 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1121 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1122 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1123 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1124 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1125 case lltok::kw_noimplicitfloat: 1126 B.addAttribute(Attribute::NoImplicitFloat); break; 1127 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1128 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1129 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1130 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1131 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1132 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1133 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1134 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1135 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1136 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1137 case lltok::kw_returns_twice: 1138 B.addAttribute(Attribute::ReturnsTwice); break; 1139 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1140 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1141 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1142 case lltok::kw_sspstrong: 1143 B.addAttribute(Attribute::StackProtectStrong); break; 1144 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1145 case lltok::kw_sanitize_address: 1146 B.addAttribute(Attribute::SanitizeAddress); break; 1147 case lltok::kw_sanitize_thread: 1148 B.addAttribute(Attribute::SanitizeThread); break; 1149 case lltok::kw_sanitize_memory: 1150 B.addAttribute(Attribute::SanitizeMemory); break; 1151 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1152 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1153 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1154 1155 // Error handling. 1156 case lltok::kw_inreg: 1157 case lltok::kw_signext: 1158 case lltok::kw_zeroext: 1159 HaveError |= 1160 Error(Lex.getLoc(), 1161 "invalid use of attribute on a function"); 1162 break; 1163 case lltok::kw_byval: 1164 case lltok::kw_dereferenceable: 1165 case lltok::kw_dereferenceable_or_null: 1166 case lltok::kw_inalloca: 1167 case lltok::kw_nest: 1168 case lltok::kw_noalias: 1169 case lltok::kw_nocapture: 1170 case lltok::kw_nonnull: 1171 case lltok::kw_returned: 1172 case lltok::kw_sret: 1173 case lltok::kw_swifterror: 1174 case lltok::kw_swiftself: 1175 HaveError |= 1176 Error(Lex.getLoc(), 1177 "invalid use of parameter-only attribute on a function"); 1178 break; 1179 } 1180 1181 Lex.Lex(); 1182 } 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // GlobalValue Reference/Resolution Routines. 1187 //===----------------------------------------------------------------------===// 1188 1189 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1190 const std::string &Name) { 1191 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1192 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1193 else 1194 return new GlobalVariable(*M, PTy->getElementType(), false, 1195 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1196 nullptr, GlobalVariable::NotThreadLocal, 1197 PTy->getAddressSpace()); 1198 } 1199 1200 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1201 /// forward reference record if needed. This can return null if the value 1202 /// exists but does not have the right type. 1203 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1204 LocTy Loc) { 1205 PointerType *PTy = dyn_cast<PointerType>(Ty); 1206 if (!PTy) { 1207 Error(Loc, "global variable reference must have pointer type"); 1208 return nullptr; 1209 } 1210 1211 // Look this name up in the normal function symbol table. 1212 GlobalValue *Val = 1213 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1214 1215 // If this is a forward reference for the value, see if we already created a 1216 // forward ref record. 1217 if (!Val) { 1218 auto I = ForwardRefVals.find(Name); 1219 if (I != ForwardRefVals.end()) 1220 Val = I->second.first; 1221 } 1222 1223 // If we have the value in the symbol table or fwd-ref table, return it. 1224 if (Val) { 1225 if (Val->getType() == Ty) return Val; 1226 Error(Loc, "'@" + Name + "' defined with type '" + 1227 getTypeString(Val->getType()) + "'"); 1228 return nullptr; 1229 } 1230 1231 // Otherwise, create a new forward reference for this value and remember it. 1232 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1233 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1234 return FwdVal; 1235 } 1236 1237 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1238 PointerType *PTy = dyn_cast<PointerType>(Ty); 1239 if (!PTy) { 1240 Error(Loc, "global variable reference must have pointer type"); 1241 return nullptr; 1242 } 1243 1244 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1245 1246 // If this is a forward reference for the value, see if we already created a 1247 // forward ref record. 1248 if (!Val) { 1249 auto I = ForwardRefValIDs.find(ID); 1250 if (I != ForwardRefValIDs.end()) 1251 Val = I->second.first; 1252 } 1253 1254 // If we have the value in the symbol table or fwd-ref table, return it. 1255 if (Val) { 1256 if (Val->getType() == Ty) return Val; 1257 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1258 getTypeString(Val->getType()) + "'"); 1259 return nullptr; 1260 } 1261 1262 // Otherwise, create a new forward reference for this value and remember it. 1263 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1264 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1265 return FwdVal; 1266 } 1267 1268 //===----------------------------------------------------------------------===// 1269 // Comdat Reference/Resolution Routines. 1270 //===----------------------------------------------------------------------===// 1271 1272 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1273 // Look this name up in the comdat symbol table. 1274 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1275 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1276 if (I != ComdatSymTab.end()) 1277 return &I->second; 1278 1279 // Otherwise, create a new forward reference for this value and remember it. 1280 Comdat *C = M->getOrInsertComdat(Name); 1281 ForwardRefComdats[Name] = Loc; 1282 return C; 1283 } 1284 1285 //===----------------------------------------------------------------------===// 1286 // Helper Routines. 1287 //===----------------------------------------------------------------------===// 1288 1289 /// ParseToken - If the current token has the specified kind, eat it and return 1290 /// success. Otherwise, emit the specified error and return failure. 1291 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1292 if (Lex.getKind() != T) 1293 return TokError(ErrMsg); 1294 Lex.Lex(); 1295 return false; 1296 } 1297 1298 /// ParseStringConstant 1299 /// ::= StringConstant 1300 bool LLParser::ParseStringConstant(std::string &Result) { 1301 if (Lex.getKind() != lltok::StringConstant) 1302 return TokError("expected string constant"); 1303 Result = Lex.getStrVal(); 1304 Lex.Lex(); 1305 return false; 1306 } 1307 1308 /// ParseUInt32 1309 /// ::= uint32 1310 bool LLParser::ParseUInt32(uint32_t &Val) { 1311 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1312 return TokError("expected integer"); 1313 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1314 if (Val64 != unsigned(Val64)) 1315 return TokError("expected 32-bit integer (too large)"); 1316 Val = Val64; 1317 Lex.Lex(); 1318 return false; 1319 } 1320 1321 /// ParseUInt64 1322 /// ::= uint64 1323 bool LLParser::ParseUInt64(uint64_t &Val) { 1324 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1325 return TokError("expected integer"); 1326 Val = Lex.getAPSIntVal().getLimitedValue(); 1327 Lex.Lex(); 1328 return false; 1329 } 1330 1331 /// ParseTLSModel 1332 /// := 'localdynamic' 1333 /// := 'initialexec' 1334 /// := 'localexec' 1335 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1336 switch (Lex.getKind()) { 1337 default: 1338 return TokError("expected localdynamic, initialexec or localexec"); 1339 case lltok::kw_localdynamic: 1340 TLM = GlobalVariable::LocalDynamicTLSModel; 1341 break; 1342 case lltok::kw_initialexec: 1343 TLM = GlobalVariable::InitialExecTLSModel; 1344 break; 1345 case lltok::kw_localexec: 1346 TLM = GlobalVariable::LocalExecTLSModel; 1347 break; 1348 } 1349 1350 Lex.Lex(); 1351 return false; 1352 } 1353 1354 /// ParseOptionalThreadLocal 1355 /// := /*empty*/ 1356 /// := 'thread_local' 1357 /// := 'thread_local' '(' tlsmodel ')' 1358 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1359 TLM = GlobalVariable::NotThreadLocal; 1360 if (!EatIfPresent(lltok::kw_thread_local)) 1361 return false; 1362 1363 TLM = GlobalVariable::GeneralDynamicTLSModel; 1364 if (Lex.getKind() == lltok::lparen) { 1365 Lex.Lex(); 1366 return ParseTLSModel(TLM) || 1367 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1368 } 1369 return false; 1370 } 1371 1372 /// ParseOptionalAddrSpace 1373 /// := /*empty*/ 1374 /// := 'addrspace' '(' uint32 ')' 1375 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1376 AddrSpace = 0; 1377 if (!EatIfPresent(lltok::kw_addrspace)) 1378 return false; 1379 return ParseToken(lltok::lparen, "expected '(' in address space") || 1380 ParseUInt32(AddrSpace) || 1381 ParseToken(lltok::rparen, "expected ')' in address space"); 1382 } 1383 1384 /// ParseStringAttribute 1385 /// := StringConstant 1386 /// := StringConstant '=' StringConstant 1387 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1388 std::string Attr = Lex.getStrVal(); 1389 Lex.Lex(); 1390 std::string Val; 1391 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1392 return true; 1393 B.addAttribute(Attr, Val); 1394 return false; 1395 } 1396 1397 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1398 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1399 bool HaveError = false; 1400 1401 B.clear(); 1402 1403 while (true) { 1404 lltok::Kind Token = Lex.getKind(); 1405 switch (Token) { 1406 default: // End of attributes. 1407 return HaveError; 1408 case lltok::StringConstant: { 1409 if (ParseStringAttribute(B)) 1410 return true; 1411 continue; 1412 } 1413 case lltok::kw_align: { 1414 unsigned Alignment; 1415 if (ParseOptionalAlignment(Alignment)) 1416 return true; 1417 B.addAlignmentAttr(Alignment); 1418 continue; 1419 } 1420 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1421 case lltok::kw_dereferenceable: { 1422 uint64_t Bytes; 1423 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1424 return true; 1425 B.addDereferenceableAttr(Bytes); 1426 continue; 1427 } 1428 case lltok::kw_dereferenceable_or_null: { 1429 uint64_t Bytes; 1430 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1431 return true; 1432 B.addDereferenceableOrNullAttr(Bytes); 1433 continue; 1434 } 1435 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1436 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1437 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1438 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1439 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1440 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1441 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1442 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1443 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1444 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1445 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1446 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1447 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1448 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1449 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1450 1451 case lltok::kw_alignstack: 1452 case lltok::kw_alwaysinline: 1453 case lltok::kw_argmemonly: 1454 case lltok::kw_builtin: 1455 case lltok::kw_inlinehint: 1456 case lltok::kw_jumptable: 1457 case lltok::kw_minsize: 1458 case lltok::kw_naked: 1459 case lltok::kw_nobuiltin: 1460 case lltok::kw_noduplicate: 1461 case lltok::kw_noimplicitfloat: 1462 case lltok::kw_noinline: 1463 case lltok::kw_nonlazybind: 1464 case lltok::kw_noredzone: 1465 case lltok::kw_noreturn: 1466 case lltok::kw_nounwind: 1467 case lltok::kw_optnone: 1468 case lltok::kw_optsize: 1469 case lltok::kw_returns_twice: 1470 case lltok::kw_sanitize_address: 1471 case lltok::kw_sanitize_memory: 1472 case lltok::kw_sanitize_thread: 1473 case lltok::kw_ssp: 1474 case lltok::kw_sspreq: 1475 case lltok::kw_sspstrong: 1476 case lltok::kw_safestack: 1477 case lltok::kw_strictfp: 1478 case lltok::kw_uwtable: 1479 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1480 break; 1481 } 1482 1483 Lex.Lex(); 1484 } 1485 } 1486 1487 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1488 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1489 bool HaveError = false; 1490 1491 B.clear(); 1492 1493 while (true) { 1494 lltok::Kind Token = Lex.getKind(); 1495 switch (Token) { 1496 default: // End of attributes. 1497 return HaveError; 1498 case lltok::StringConstant: { 1499 if (ParseStringAttribute(B)) 1500 return true; 1501 continue; 1502 } 1503 case lltok::kw_dereferenceable: { 1504 uint64_t Bytes; 1505 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1506 return true; 1507 B.addDereferenceableAttr(Bytes); 1508 continue; 1509 } 1510 case lltok::kw_dereferenceable_or_null: { 1511 uint64_t Bytes; 1512 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1513 return true; 1514 B.addDereferenceableOrNullAttr(Bytes); 1515 continue; 1516 } 1517 case lltok::kw_align: { 1518 unsigned Alignment; 1519 if (ParseOptionalAlignment(Alignment)) 1520 return true; 1521 B.addAlignmentAttr(Alignment); 1522 continue; 1523 } 1524 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1525 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1526 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1527 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1528 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1529 1530 // Error handling. 1531 case lltok::kw_byval: 1532 case lltok::kw_inalloca: 1533 case lltok::kw_nest: 1534 case lltok::kw_nocapture: 1535 case lltok::kw_returned: 1536 case lltok::kw_sret: 1537 case lltok::kw_swifterror: 1538 case lltok::kw_swiftself: 1539 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1540 break; 1541 1542 case lltok::kw_alignstack: 1543 case lltok::kw_alwaysinline: 1544 case lltok::kw_argmemonly: 1545 case lltok::kw_builtin: 1546 case lltok::kw_cold: 1547 case lltok::kw_inlinehint: 1548 case lltok::kw_jumptable: 1549 case lltok::kw_minsize: 1550 case lltok::kw_naked: 1551 case lltok::kw_nobuiltin: 1552 case lltok::kw_noduplicate: 1553 case lltok::kw_noimplicitfloat: 1554 case lltok::kw_noinline: 1555 case lltok::kw_nonlazybind: 1556 case lltok::kw_noredzone: 1557 case lltok::kw_noreturn: 1558 case lltok::kw_nounwind: 1559 case lltok::kw_optnone: 1560 case lltok::kw_optsize: 1561 case lltok::kw_returns_twice: 1562 case lltok::kw_sanitize_address: 1563 case lltok::kw_sanitize_memory: 1564 case lltok::kw_sanitize_thread: 1565 case lltok::kw_ssp: 1566 case lltok::kw_sspreq: 1567 case lltok::kw_sspstrong: 1568 case lltok::kw_safestack: 1569 case lltok::kw_strictfp: 1570 case lltok::kw_uwtable: 1571 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1572 break; 1573 1574 case lltok::kw_readnone: 1575 case lltok::kw_readonly: 1576 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1577 } 1578 1579 Lex.Lex(); 1580 } 1581 } 1582 1583 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1584 HasLinkage = true; 1585 switch (Kind) { 1586 default: 1587 HasLinkage = false; 1588 return GlobalValue::ExternalLinkage; 1589 case lltok::kw_private: 1590 return GlobalValue::PrivateLinkage; 1591 case lltok::kw_internal: 1592 return GlobalValue::InternalLinkage; 1593 case lltok::kw_weak: 1594 return GlobalValue::WeakAnyLinkage; 1595 case lltok::kw_weak_odr: 1596 return GlobalValue::WeakODRLinkage; 1597 case lltok::kw_linkonce: 1598 return GlobalValue::LinkOnceAnyLinkage; 1599 case lltok::kw_linkonce_odr: 1600 return GlobalValue::LinkOnceODRLinkage; 1601 case lltok::kw_available_externally: 1602 return GlobalValue::AvailableExternallyLinkage; 1603 case lltok::kw_appending: 1604 return GlobalValue::AppendingLinkage; 1605 case lltok::kw_common: 1606 return GlobalValue::CommonLinkage; 1607 case lltok::kw_extern_weak: 1608 return GlobalValue::ExternalWeakLinkage; 1609 case lltok::kw_external: 1610 return GlobalValue::ExternalLinkage; 1611 } 1612 } 1613 1614 /// ParseOptionalLinkage 1615 /// ::= /*empty*/ 1616 /// ::= 'private' 1617 /// ::= 'internal' 1618 /// ::= 'weak' 1619 /// ::= 'weak_odr' 1620 /// ::= 'linkonce' 1621 /// ::= 'linkonce_odr' 1622 /// ::= 'available_externally' 1623 /// ::= 'appending' 1624 /// ::= 'common' 1625 /// ::= 'extern_weak' 1626 /// ::= 'external' 1627 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1628 unsigned &Visibility, 1629 unsigned &DLLStorageClass, 1630 bool &DSOLocal) { 1631 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1632 if (HasLinkage) 1633 Lex.Lex(); 1634 ParseOptionalDSOLocal(DSOLocal); 1635 ParseOptionalVisibility(Visibility); 1636 ParseOptionalDLLStorageClass(DLLStorageClass); 1637 1638 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1639 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1640 } 1641 1642 return false; 1643 } 1644 1645 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1646 switch (Lex.getKind()) { 1647 default: 1648 DSOLocal = false; 1649 break; 1650 case lltok::kw_dso_local: 1651 DSOLocal = true; 1652 Lex.Lex(); 1653 break; 1654 case lltok::kw_dso_preemptable: 1655 DSOLocal = false; 1656 Lex.Lex(); 1657 break; 1658 } 1659 } 1660 1661 /// ParseOptionalVisibility 1662 /// ::= /*empty*/ 1663 /// ::= 'default' 1664 /// ::= 'hidden' 1665 /// ::= 'protected' 1666 /// 1667 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1668 switch (Lex.getKind()) { 1669 default: 1670 Res = GlobalValue::DefaultVisibility; 1671 return; 1672 case lltok::kw_default: 1673 Res = GlobalValue::DefaultVisibility; 1674 break; 1675 case lltok::kw_hidden: 1676 Res = GlobalValue::HiddenVisibility; 1677 break; 1678 case lltok::kw_protected: 1679 Res = GlobalValue::ProtectedVisibility; 1680 break; 1681 } 1682 Lex.Lex(); 1683 } 1684 1685 /// ParseOptionalDLLStorageClass 1686 /// ::= /*empty*/ 1687 /// ::= 'dllimport' 1688 /// ::= 'dllexport' 1689 /// 1690 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1691 switch (Lex.getKind()) { 1692 default: 1693 Res = GlobalValue::DefaultStorageClass; 1694 return; 1695 case lltok::kw_dllimport: 1696 Res = GlobalValue::DLLImportStorageClass; 1697 break; 1698 case lltok::kw_dllexport: 1699 Res = GlobalValue::DLLExportStorageClass; 1700 break; 1701 } 1702 Lex.Lex(); 1703 } 1704 1705 /// ParseOptionalCallingConv 1706 /// ::= /*empty*/ 1707 /// ::= 'ccc' 1708 /// ::= 'fastcc' 1709 /// ::= 'intel_ocl_bicc' 1710 /// ::= 'coldcc' 1711 /// ::= 'x86_stdcallcc' 1712 /// ::= 'x86_fastcallcc' 1713 /// ::= 'x86_thiscallcc' 1714 /// ::= 'x86_vectorcallcc' 1715 /// ::= 'arm_apcscc' 1716 /// ::= 'arm_aapcscc' 1717 /// ::= 'arm_aapcs_vfpcc' 1718 /// ::= 'msp430_intrcc' 1719 /// ::= 'avr_intrcc' 1720 /// ::= 'avr_signalcc' 1721 /// ::= 'ptx_kernel' 1722 /// ::= 'ptx_device' 1723 /// ::= 'spir_func' 1724 /// ::= 'spir_kernel' 1725 /// ::= 'x86_64_sysvcc' 1726 /// ::= 'win64cc' 1727 /// ::= 'webkit_jscc' 1728 /// ::= 'anyregcc' 1729 /// ::= 'preserve_mostcc' 1730 /// ::= 'preserve_allcc' 1731 /// ::= 'ghccc' 1732 /// ::= 'swiftcc' 1733 /// ::= 'x86_intrcc' 1734 /// ::= 'hhvmcc' 1735 /// ::= 'hhvm_ccc' 1736 /// ::= 'cxx_fast_tlscc' 1737 /// ::= 'amdgpu_vs' 1738 /// ::= 'amdgpu_ls' 1739 /// ::= 'amdgpu_hs' 1740 /// ::= 'amdgpu_es' 1741 /// ::= 'amdgpu_gs' 1742 /// ::= 'amdgpu_ps' 1743 /// ::= 'amdgpu_cs' 1744 /// ::= 'amdgpu_kernel' 1745 /// ::= 'cc' UINT 1746 /// 1747 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1748 switch (Lex.getKind()) { 1749 default: CC = CallingConv::C; return false; 1750 case lltok::kw_ccc: CC = CallingConv::C; break; 1751 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1752 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1753 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1754 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1755 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1756 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1757 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1758 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1759 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1760 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1761 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1762 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1763 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1764 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1765 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1766 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1767 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1768 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1769 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1770 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1771 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1772 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1773 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1774 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1775 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1776 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1777 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1778 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1779 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1780 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1781 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1782 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1783 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1784 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1785 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1786 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1787 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1788 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1789 case lltok::kw_cc: { 1790 Lex.Lex(); 1791 return ParseUInt32(CC); 1792 } 1793 } 1794 1795 Lex.Lex(); 1796 return false; 1797 } 1798 1799 /// ParseMetadataAttachment 1800 /// ::= !dbg !42 1801 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1802 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1803 1804 std::string Name = Lex.getStrVal(); 1805 Kind = M->getMDKindID(Name); 1806 Lex.Lex(); 1807 1808 return ParseMDNode(MD); 1809 } 1810 1811 /// ParseInstructionMetadata 1812 /// ::= !dbg !42 (',' !dbg !57)* 1813 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1814 do { 1815 if (Lex.getKind() != lltok::MetadataVar) 1816 return TokError("expected metadata after comma"); 1817 1818 unsigned MDK; 1819 MDNode *N; 1820 if (ParseMetadataAttachment(MDK, N)) 1821 return true; 1822 1823 Inst.setMetadata(MDK, N); 1824 if (MDK == LLVMContext::MD_tbaa) 1825 InstsWithTBAATag.push_back(&Inst); 1826 1827 // If this is the end of the list, we're done. 1828 } while (EatIfPresent(lltok::comma)); 1829 return false; 1830 } 1831 1832 /// ParseGlobalObjectMetadataAttachment 1833 /// ::= !dbg !57 1834 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1835 unsigned MDK; 1836 MDNode *N; 1837 if (ParseMetadataAttachment(MDK, N)) 1838 return true; 1839 1840 GO.addMetadata(MDK, *N); 1841 return false; 1842 } 1843 1844 /// ParseOptionalFunctionMetadata 1845 /// ::= (!dbg !57)* 1846 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1847 while (Lex.getKind() == lltok::MetadataVar) 1848 if (ParseGlobalObjectMetadataAttachment(F)) 1849 return true; 1850 return false; 1851 } 1852 1853 /// ParseOptionalAlignment 1854 /// ::= /* empty */ 1855 /// ::= 'align' 4 1856 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1857 Alignment = 0; 1858 if (!EatIfPresent(lltok::kw_align)) 1859 return false; 1860 LocTy AlignLoc = Lex.getLoc(); 1861 if (ParseUInt32(Alignment)) return true; 1862 if (!isPowerOf2_32(Alignment)) 1863 return Error(AlignLoc, "alignment is not a power of two"); 1864 if (Alignment > Value::MaximumAlignment) 1865 return Error(AlignLoc, "huge alignments are not supported yet"); 1866 return false; 1867 } 1868 1869 /// ParseOptionalDerefAttrBytes 1870 /// ::= /* empty */ 1871 /// ::= AttrKind '(' 4 ')' 1872 /// 1873 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1874 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1875 uint64_t &Bytes) { 1876 assert((AttrKind == lltok::kw_dereferenceable || 1877 AttrKind == lltok::kw_dereferenceable_or_null) && 1878 "contract!"); 1879 1880 Bytes = 0; 1881 if (!EatIfPresent(AttrKind)) 1882 return false; 1883 LocTy ParenLoc = Lex.getLoc(); 1884 if (!EatIfPresent(lltok::lparen)) 1885 return Error(ParenLoc, "expected '('"); 1886 LocTy DerefLoc = Lex.getLoc(); 1887 if (ParseUInt64(Bytes)) return true; 1888 ParenLoc = Lex.getLoc(); 1889 if (!EatIfPresent(lltok::rparen)) 1890 return Error(ParenLoc, "expected ')'"); 1891 if (!Bytes) 1892 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1893 return false; 1894 } 1895 1896 /// ParseOptionalCommaAlign 1897 /// ::= 1898 /// ::= ',' align 4 1899 /// 1900 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1901 /// end. 1902 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1903 bool &AteExtraComma) { 1904 AteExtraComma = false; 1905 while (EatIfPresent(lltok::comma)) { 1906 // Metadata at the end is an early exit. 1907 if (Lex.getKind() == lltok::MetadataVar) { 1908 AteExtraComma = true; 1909 return false; 1910 } 1911 1912 if (Lex.getKind() != lltok::kw_align) 1913 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1914 1915 if (ParseOptionalAlignment(Alignment)) return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 /// ParseOptionalCommaAddrSpace 1922 /// ::= 1923 /// ::= ',' addrspace(1) 1924 /// 1925 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1926 /// end. 1927 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1928 LocTy &Loc, 1929 bool &AteExtraComma) { 1930 AteExtraComma = false; 1931 while (EatIfPresent(lltok::comma)) { 1932 // Metadata at the end is an early exit. 1933 if (Lex.getKind() == lltok::MetadataVar) { 1934 AteExtraComma = true; 1935 return false; 1936 } 1937 1938 Loc = Lex.getLoc(); 1939 if (Lex.getKind() != lltok::kw_addrspace) 1940 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1941 1942 if (ParseOptionalAddrSpace(AddrSpace)) 1943 return true; 1944 } 1945 1946 return false; 1947 } 1948 1949 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1950 Optional<unsigned> &HowManyArg) { 1951 Lex.Lex(); 1952 1953 auto StartParen = Lex.getLoc(); 1954 if (!EatIfPresent(lltok::lparen)) 1955 return Error(StartParen, "expected '('"); 1956 1957 if (ParseUInt32(BaseSizeArg)) 1958 return true; 1959 1960 if (EatIfPresent(lltok::comma)) { 1961 auto HowManyAt = Lex.getLoc(); 1962 unsigned HowMany; 1963 if (ParseUInt32(HowMany)) 1964 return true; 1965 if (HowMany == BaseSizeArg) 1966 return Error(HowManyAt, 1967 "'allocsize' indices can't refer to the same parameter"); 1968 HowManyArg = HowMany; 1969 } else 1970 HowManyArg = None; 1971 1972 auto EndParen = Lex.getLoc(); 1973 if (!EatIfPresent(lltok::rparen)) 1974 return Error(EndParen, "expected ')'"); 1975 return false; 1976 } 1977 1978 /// ParseScopeAndOrdering 1979 /// if isAtomic: ::= SyncScope? AtomicOrdering 1980 /// else: ::= 1981 /// 1982 /// This sets Scope and Ordering to the parsed values. 1983 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1984 AtomicOrdering &Ordering) { 1985 if (!isAtomic) 1986 return false; 1987 1988 return ParseScope(SSID) || ParseOrdering(Ordering); 1989 } 1990 1991 /// ParseScope 1992 /// ::= syncscope("singlethread" | "<target scope>")? 1993 /// 1994 /// This sets synchronization scope ID to the ID of the parsed value. 1995 bool LLParser::ParseScope(SyncScope::ID &SSID) { 1996 SSID = SyncScope::System; 1997 if (EatIfPresent(lltok::kw_syncscope)) { 1998 auto StartParenAt = Lex.getLoc(); 1999 if (!EatIfPresent(lltok::lparen)) 2000 return Error(StartParenAt, "Expected '(' in syncscope"); 2001 2002 std::string SSN; 2003 auto SSNAt = Lex.getLoc(); 2004 if (ParseStringConstant(SSN)) 2005 return Error(SSNAt, "Expected synchronization scope name"); 2006 2007 auto EndParenAt = Lex.getLoc(); 2008 if (!EatIfPresent(lltok::rparen)) 2009 return Error(EndParenAt, "Expected ')' in syncscope"); 2010 2011 SSID = Context.getOrInsertSyncScopeID(SSN); 2012 } 2013 2014 return false; 2015 } 2016 2017 /// ParseOrdering 2018 /// ::= AtomicOrdering 2019 /// 2020 /// This sets Ordering to the parsed value. 2021 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2022 switch (Lex.getKind()) { 2023 default: return TokError("Expected ordering on atomic instruction"); 2024 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2025 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2026 // Not specified yet: 2027 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2028 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2029 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2030 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2031 case lltok::kw_seq_cst: 2032 Ordering = AtomicOrdering::SequentiallyConsistent; 2033 break; 2034 } 2035 Lex.Lex(); 2036 return false; 2037 } 2038 2039 /// ParseOptionalStackAlignment 2040 /// ::= /* empty */ 2041 /// ::= 'alignstack' '(' 4 ')' 2042 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2043 Alignment = 0; 2044 if (!EatIfPresent(lltok::kw_alignstack)) 2045 return false; 2046 LocTy ParenLoc = Lex.getLoc(); 2047 if (!EatIfPresent(lltok::lparen)) 2048 return Error(ParenLoc, "expected '('"); 2049 LocTy AlignLoc = Lex.getLoc(); 2050 if (ParseUInt32(Alignment)) return true; 2051 ParenLoc = Lex.getLoc(); 2052 if (!EatIfPresent(lltok::rparen)) 2053 return Error(ParenLoc, "expected ')'"); 2054 if (!isPowerOf2_32(Alignment)) 2055 return Error(AlignLoc, "stack alignment is not a power of two"); 2056 return false; 2057 } 2058 2059 /// ParseIndexList - This parses the index list for an insert/extractvalue 2060 /// instruction. This sets AteExtraComma in the case where we eat an extra 2061 /// comma at the end of the line and find that it is followed by metadata. 2062 /// Clients that don't allow metadata can call the version of this function that 2063 /// only takes one argument. 2064 /// 2065 /// ParseIndexList 2066 /// ::= (',' uint32)+ 2067 /// 2068 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2069 bool &AteExtraComma) { 2070 AteExtraComma = false; 2071 2072 if (Lex.getKind() != lltok::comma) 2073 return TokError("expected ',' as start of index list"); 2074 2075 while (EatIfPresent(lltok::comma)) { 2076 if (Lex.getKind() == lltok::MetadataVar) { 2077 if (Indices.empty()) return TokError("expected index"); 2078 AteExtraComma = true; 2079 return false; 2080 } 2081 unsigned Idx = 0; 2082 if (ParseUInt32(Idx)) return true; 2083 Indices.push_back(Idx); 2084 } 2085 2086 return false; 2087 } 2088 2089 //===----------------------------------------------------------------------===// 2090 // Type Parsing. 2091 //===----------------------------------------------------------------------===// 2092 2093 /// ParseType - Parse a type. 2094 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2095 SMLoc TypeLoc = Lex.getLoc(); 2096 switch (Lex.getKind()) { 2097 default: 2098 return TokError(Msg); 2099 case lltok::Type: 2100 // Type ::= 'float' | 'void' (etc) 2101 Result = Lex.getTyVal(); 2102 Lex.Lex(); 2103 break; 2104 case lltok::lbrace: 2105 // Type ::= StructType 2106 if (ParseAnonStructType(Result, false)) 2107 return true; 2108 break; 2109 case lltok::lsquare: 2110 // Type ::= '[' ... ']' 2111 Lex.Lex(); // eat the lsquare. 2112 if (ParseArrayVectorType(Result, false)) 2113 return true; 2114 break; 2115 case lltok::less: // Either vector or packed struct. 2116 // Type ::= '<' ... '>' 2117 Lex.Lex(); 2118 if (Lex.getKind() == lltok::lbrace) { 2119 if (ParseAnonStructType(Result, true) || 2120 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2121 return true; 2122 } else if (ParseArrayVectorType(Result, true)) 2123 return true; 2124 break; 2125 case lltok::LocalVar: { 2126 // Type ::= %foo 2127 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2128 2129 // If the type hasn't been defined yet, create a forward definition and 2130 // remember where that forward def'n was seen (in case it never is defined). 2131 if (!Entry.first) { 2132 Entry.first = StructType::create(Context, Lex.getStrVal()); 2133 Entry.second = Lex.getLoc(); 2134 } 2135 Result = Entry.first; 2136 Lex.Lex(); 2137 break; 2138 } 2139 2140 case lltok::LocalVarID: { 2141 // Type ::= %4 2142 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2143 2144 // If the type hasn't been defined yet, create a forward definition and 2145 // remember where that forward def'n was seen (in case it never is defined). 2146 if (!Entry.first) { 2147 Entry.first = StructType::create(Context); 2148 Entry.second = Lex.getLoc(); 2149 } 2150 Result = Entry.first; 2151 Lex.Lex(); 2152 break; 2153 } 2154 } 2155 2156 // Parse the type suffixes. 2157 while (true) { 2158 switch (Lex.getKind()) { 2159 // End of type. 2160 default: 2161 if (!AllowVoid && Result->isVoidTy()) 2162 return Error(TypeLoc, "void type only allowed for function results"); 2163 return false; 2164 2165 // Type ::= Type '*' 2166 case lltok::star: 2167 if (Result->isLabelTy()) 2168 return TokError("basic block pointers are invalid"); 2169 if (Result->isVoidTy()) 2170 return TokError("pointers to void are invalid - use i8* instead"); 2171 if (!PointerType::isValidElementType(Result)) 2172 return TokError("pointer to this type is invalid"); 2173 Result = PointerType::getUnqual(Result); 2174 Lex.Lex(); 2175 break; 2176 2177 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2178 case lltok::kw_addrspace: { 2179 if (Result->isLabelTy()) 2180 return TokError("basic block pointers are invalid"); 2181 if (Result->isVoidTy()) 2182 return TokError("pointers to void are invalid; use i8* instead"); 2183 if (!PointerType::isValidElementType(Result)) 2184 return TokError("pointer to this type is invalid"); 2185 unsigned AddrSpace; 2186 if (ParseOptionalAddrSpace(AddrSpace) || 2187 ParseToken(lltok::star, "expected '*' in address space")) 2188 return true; 2189 2190 Result = PointerType::get(Result, AddrSpace); 2191 break; 2192 } 2193 2194 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2195 case lltok::lparen: 2196 if (ParseFunctionType(Result)) 2197 return true; 2198 break; 2199 } 2200 } 2201 } 2202 2203 /// ParseParameterList 2204 /// ::= '(' ')' 2205 /// ::= '(' Arg (',' Arg)* ')' 2206 /// Arg 2207 /// ::= Type OptionalAttributes Value OptionalAttributes 2208 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2209 PerFunctionState &PFS, bool IsMustTailCall, 2210 bool InVarArgsFunc) { 2211 if (ParseToken(lltok::lparen, "expected '(' in call")) 2212 return true; 2213 2214 while (Lex.getKind() != lltok::rparen) { 2215 // If this isn't the first argument, we need a comma. 2216 if (!ArgList.empty() && 2217 ParseToken(lltok::comma, "expected ',' in argument list")) 2218 return true; 2219 2220 // Parse an ellipsis if this is a musttail call in a variadic function. 2221 if (Lex.getKind() == lltok::dotdotdot) { 2222 const char *Msg = "unexpected ellipsis in argument list for "; 2223 if (!IsMustTailCall) 2224 return TokError(Twine(Msg) + "non-musttail call"); 2225 if (!InVarArgsFunc) 2226 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2227 Lex.Lex(); // Lex the '...', it is purely for readability. 2228 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2229 } 2230 2231 // Parse the argument. 2232 LocTy ArgLoc; 2233 Type *ArgTy = nullptr; 2234 AttrBuilder ArgAttrs; 2235 Value *V; 2236 if (ParseType(ArgTy, ArgLoc)) 2237 return true; 2238 2239 if (ArgTy->isMetadataTy()) { 2240 if (ParseMetadataAsValue(V, PFS)) 2241 return true; 2242 } else { 2243 // Otherwise, handle normal operands. 2244 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2245 return true; 2246 } 2247 ArgList.push_back(ParamInfo( 2248 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2249 } 2250 2251 if (IsMustTailCall && InVarArgsFunc) 2252 return TokError("expected '...' at end of argument list for musttail call " 2253 "in varargs function"); 2254 2255 Lex.Lex(); // Lex the ')'. 2256 return false; 2257 } 2258 2259 /// ParseOptionalOperandBundles 2260 /// ::= /*empty*/ 2261 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2262 /// 2263 /// OperandBundle 2264 /// ::= bundle-tag '(' ')' 2265 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2266 /// 2267 /// bundle-tag ::= String Constant 2268 bool LLParser::ParseOptionalOperandBundles( 2269 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2270 LocTy BeginLoc = Lex.getLoc(); 2271 if (!EatIfPresent(lltok::lsquare)) 2272 return false; 2273 2274 while (Lex.getKind() != lltok::rsquare) { 2275 // If this isn't the first operand bundle, we need a comma. 2276 if (!BundleList.empty() && 2277 ParseToken(lltok::comma, "expected ',' in input list")) 2278 return true; 2279 2280 std::string Tag; 2281 if (ParseStringConstant(Tag)) 2282 return true; 2283 2284 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2285 return true; 2286 2287 std::vector<Value *> Inputs; 2288 while (Lex.getKind() != lltok::rparen) { 2289 // If this isn't the first input, we need a comma. 2290 if (!Inputs.empty() && 2291 ParseToken(lltok::comma, "expected ',' in input list")) 2292 return true; 2293 2294 Type *Ty = nullptr; 2295 Value *Input = nullptr; 2296 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2297 return true; 2298 Inputs.push_back(Input); 2299 } 2300 2301 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2302 2303 Lex.Lex(); // Lex the ')'. 2304 } 2305 2306 if (BundleList.empty()) 2307 return Error(BeginLoc, "operand bundle set must not be empty"); 2308 2309 Lex.Lex(); // Lex the ']'. 2310 return false; 2311 } 2312 2313 /// ParseArgumentList - Parse the argument list for a function type or function 2314 /// prototype. 2315 /// ::= '(' ArgTypeListI ')' 2316 /// ArgTypeListI 2317 /// ::= /*empty*/ 2318 /// ::= '...' 2319 /// ::= ArgTypeList ',' '...' 2320 /// ::= ArgType (',' ArgType)* 2321 /// 2322 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2323 bool &isVarArg){ 2324 isVarArg = false; 2325 assert(Lex.getKind() == lltok::lparen); 2326 Lex.Lex(); // eat the (. 2327 2328 if (Lex.getKind() == lltok::rparen) { 2329 // empty 2330 } else if (Lex.getKind() == lltok::dotdotdot) { 2331 isVarArg = true; 2332 Lex.Lex(); 2333 } else { 2334 LocTy TypeLoc = Lex.getLoc(); 2335 Type *ArgTy = nullptr; 2336 AttrBuilder Attrs; 2337 std::string Name; 2338 2339 if (ParseType(ArgTy) || 2340 ParseOptionalParamAttrs(Attrs)) return true; 2341 2342 if (ArgTy->isVoidTy()) 2343 return Error(TypeLoc, "argument can not have void type"); 2344 2345 if (Lex.getKind() == lltok::LocalVar) { 2346 Name = Lex.getStrVal(); 2347 Lex.Lex(); 2348 } 2349 2350 if (!FunctionType::isValidArgumentType(ArgTy)) 2351 return Error(TypeLoc, "invalid type for function argument"); 2352 2353 ArgList.emplace_back(TypeLoc, ArgTy, 2354 AttributeSet::get(ArgTy->getContext(), Attrs), 2355 std::move(Name)); 2356 2357 while (EatIfPresent(lltok::comma)) { 2358 // Handle ... at end of arg list. 2359 if (EatIfPresent(lltok::dotdotdot)) { 2360 isVarArg = true; 2361 break; 2362 } 2363 2364 // Otherwise must be an argument type. 2365 TypeLoc = Lex.getLoc(); 2366 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2367 2368 if (ArgTy->isVoidTy()) 2369 return Error(TypeLoc, "argument can not have void type"); 2370 2371 if (Lex.getKind() == lltok::LocalVar) { 2372 Name = Lex.getStrVal(); 2373 Lex.Lex(); 2374 } else { 2375 Name = ""; 2376 } 2377 2378 if (!ArgTy->isFirstClassType()) 2379 return Error(TypeLoc, "invalid type for function argument"); 2380 2381 ArgList.emplace_back(TypeLoc, ArgTy, 2382 AttributeSet::get(ArgTy->getContext(), Attrs), 2383 std::move(Name)); 2384 } 2385 } 2386 2387 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2388 } 2389 2390 /// ParseFunctionType 2391 /// ::= Type ArgumentList OptionalAttrs 2392 bool LLParser::ParseFunctionType(Type *&Result) { 2393 assert(Lex.getKind() == lltok::lparen); 2394 2395 if (!FunctionType::isValidReturnType(Result)) 2396 return TokError("invalid function return type"); 2397 2398 SmallVector<ArgInfo, 8> ArgList; 2399 bool isVarArg; 2400 if (ParseArgumentList(ArgList, isVarArg)) 2401 return true; 2402 2403 // Reject names on the arguments lists. 2404 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2405 if (!ArgList[i].Name.empty()) 2406 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2407 if (ArgList[i].Attrs.hasAttributes()) 2408 return Error(ArgList[i].Loc, 2409 "argument attributes invalid in function type"); 2410 } 2411 2412 SmallVector<Type*, 16> ArgListTy; 2413 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2414 ArgListTy.push_back(ArgList[i].Ty); 2415 2416 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2417 return false; 2418 } 2419 2420 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2421 /// other structs. 2422 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2423 SmallVector<Type*, 8> Elts; 2424 if (ParseStructBody(Elts)) return true; 2425 2426 Result = StructType::get(Context, Elts, Packed); 2427 return false; 2428 } 2429 2430 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2431 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2432 std::pair<Type*, LocTy> &Entry, 2433 Type *&ResultTy) { 2434 // If the type was already defined, diagnose the redefinition. 2435 if (Entry.first && !Entry.second.isValid()) 2436 return Error(TypeLoc, "redefinition of type"); 2437 2438 // If we have opaque, just return without filling in the definition for the 2439 // struct. This counts as a definition as far as the .ll file goes. 2440 if (EatIfPresent(lltok::kw_opaque)) { 2441 // This type is being defined, so clear the location to indicate this. 2442 Entry.second = SMLoc(); 2443 2444 // If this type number has never been uttered, create it. 2445 if (!Entry.first) 2446 Entry.first = StructType::create(Context, Name); 2447 ResultTy = Entry.first; 2448 return false; 2449 } 2450 2451 // If the type starts with '<', then it is either a packed struct or a vector. 2452 bool isPacked = EatIfPresent(lltok::less); 2453 2454 // If we don't have a struct, then we have a random type alias, which we 2455 // accept for compatibility with old files. These types are not allowed to be 2456 // forward referenced and not allowed to be recursive. 2457 if (Lex.getKind() != lltok::lbrace) { 2458 if (Entry.first) 2459 return Error(TypeLoc, "forward references to non-struct type"); 2460 2461 ResultTy = nullptr; 2462 if (isPacked) 2463 return ParseArrayVectorType(ResultTy, true); 2464 return ParseType(ResultTy); 2465 } 2466 2467 // This type is being defined, so clear the location to indicate this. 2468 Entry.second = SMLoc(); 2469 2470 // If this type number has never been uttered, create it. 2471 if (!Entry.first) 2472 Entry.first = StructType::create(Context, Name); 2473 2474 StructType *STy = cast<StructType>(Entry.first); 2475 2476 SmallVector<Type*, 8> Body; 2477 if (ParseStructBody(Body) || 2478 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2479 return true; 2480 2481 STy->setBody(Body, isPacked); 2482 ResultTy = STy; 2483 return false; 2484 } 2485 2486 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2487 /// StructType 2488 /// ::= '{' '}' 2489 /// ::= '{' Type (',' Type)* '}' 2490 /// ::= '<' '{' '}' '>' 2491 /// ::= '<' '{' Type (',' Type)* '}' '>' 2492 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2493 assert(Lex.getKind() == lltok::lbrace); 2494 Lex.Lex(); // Consume the '{' 2495 2496 // Handle the empty struct. 2497 if (EatIfPresent(lltok::rbrace)) 2498 return false; 2499 2500 LocTy EltTyLoc = Lex.getLoc(); 2501 Type *Ty = nullptr; 2502 if (ParseType(Ty)) return true; 2503 Body.push_back(Ty); 2504 2505 if (!StructType::isValidElementType(Ty)) 2506 return Error(EltTyLoc, "invalid element type for struct"); 2507 2508 while (EatIfPresent(lltok::comma)) { 2509 EltTyLoc = Lex.getLoc(); 2510 if (ParseType(Ty)) return true; 2511 2512 if (!StructType::isValidElementType(Ty)) 2513 return Error(EltTyLoc, "invalid element type for struct"); 2514 2515 Body.push_back(Ty); 2516 } 2517 2518 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2519 } 2520 2521 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2522 /// token has already been consumed. 2523 /// Type 2524 /// ::= '[' APSINTVAL 'x' Types ']' 2525 /// ::= '<' APSINTVAL 'x' Types '>' 2526 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2527 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2528 Lex.getAPSIntVal().getBitWidth() > 64) 2529 return TokError("expected number in address space"); 2530 2531 LocTy SizeLoc = Lex.getLoc(); 2532 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2533 Lex.Lex(); 2534 2535 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2536 return true; 2537 2538 LocTy TypeLoc = Lex.getLoc(); 2539 Type *EltTy = nullptr; 2540 if (ParseType(EltTy)) return true; 2541 2542 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2543 "expected end of sequential type")) 2544 return true; 2545 2546 if (isVector) { 2547 if (Size == 0) 2548 return Error(SizeLoc, "zero element vector is illegal"); 2549 if ((unsigned)Size != Size) 2550 return Error(SizeLoc, "size too large for vector"); 2551 if (!VectorType::isValidElementType(EltTy)) 2552 return Error(TypeLoc, "invalid vector element type"); 2553 Result = VectorType::get(EltTy, unsigned(Size)); 2554 } else { 2555 if (!ArrayType::isValidElementType(EltTy)) 2556 return Error(TypeLoc, "invalid array element type"); 2557 Result = ArrayType::get(EltTy, Size); 2558 } 2559 return false; 2560 } 2561 2562 //===----------------------------------------------------------------------===// 2563 // Function Semantic Analysis. 2564 //===----------------------------------------------------------------------===// 2565 2566 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2567 int functionNumber) 2568 : P(p), F(f), FunctionNumber(functionNumber) { 2569 2570 // Insert unnamed arguments into the NumberedVals list. 2571 for (Argument &A : F.args()) 2572 if (!A.hasName()) 2573 NumberedVals.push_back(&A); 2574 } 2575 2576 LLParser::PerFunctionState::~PerFunctionState() { 2577 // If there were any forward referenced non-basicblock values, delete them. 2578 2579 for (const auto &P : ForwardRefVals) { 2580 if (isa<BasicBlock>(P.second.first)) 2581 continue; 2582 P.second.first->replaceAllUsesWith( 2583 UndefValue::get(P.second.first->getType())); 2584 P.second.first->deleteValue(); 2585 } 2586 2587 for (const auto &P : ForwardRefValIDs) { 2588 if (isa<BasicBlock>(P.second.first)) 2589 continue; 2590 P.second.first->replaceAllUsesWith( 2591 UndefValue::get(P.second.first->getType())); 2592 P.second.first->deleteValue(); 2593 } 2594 } 2595 2596 bool LLParser::PerFunctionState::FinishFunction() { 2597 if (!ForwardRefVals.empty()) 2598 return P.Error(ForwardRefVals.begin()->second.second, 2599 "use of undefined value '%" + ForwardRefVals.begin()->first + 2600 "'"); 2601 if (!ForwardRefValIDs.empty()) 2602 return P.Error(ForwardRefValIDs.begin()->second.second, 2603 "use of undefined value '%" + 2604 Twine(ForwardRefValIDs.begin()->first) + "'"); 2605 return false; 2606 } 2607 2608 /// GetVal - Get a value with the specified name or ID, creating a 2609 /// forward reference record if needed. This can return null if the value 2610 /// exists but does not have the right type. 2611 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2612 LocTy Loc) { 2613 // Look this name up in the normal function symbol table. 2614 Value *Val = F.getValueSymbolTable()->lookup(Name); 2615 2616 // If this is a forward reference for the value, see if we already created a 2617 // forward ref record. 2618 if (!Val) { 2619 auto I = ForwardRefVals.find(Name); 2620 if (I != ForwardRefVals.end()) 2621 Val = I->second.first; 2622 } 2623 2624 // If we have the value in the symbol table or fwd-ref table, return it. 2625 if (Val) { 2626 if (Val->getType() == Ty) return Val; 2627 if (Ty->isLabelTy()) 2628 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2629 else 2630 P.Error(Loc, "'%" + Name + "' defined with type '" + 2631 getTypeString(Val->getType()) + "'"); 2632 return nullptr; 2633 } 2634 2635 // Don't make placeholders with invalid type. 2636 if (!Ty->isFirstClassType()) { 2637 P.Error(Loc, "invalid use of a non-first-class type"); 2638 return nullptr; 2639 } 2640 2641 // Otherwise, create a new forward reference for this value and remember it. 2642 Value *FwdVal; 2643 if (Ty->isLabelTy()) { 2644 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2645 } else { 2646 FwdVal = new Argument(Ty, Name); 2647 } 2648 2649 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2650 return FwdVal; 2651 } 2652 2653 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2654 // Look this name up in the normal function symbol table. 2655 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2656 2657 // If this is a forward reference for the value, see if we already created a 2658 // forward ref record. 2659 if (!Val) { 2660 auto I = ForwardRefValIDs.find(ID); 2661 if (I != ForwardRefValIDs.end()) 2662 Val = I->second.first; 2663 } 2664 2665 // If we have the value in the symbol table or fwd-ref table, return it. 2666 if (Val) { 2667 if (Val->getType() == Ty) return Val; 2668 if (Ty->isLabelTy()) 2669 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2670 else 2671 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2672 getTypeString(Val->getType()) + "'"); 2673 return nullptr; 2674 } 2675 2676 if (!Ty->isFirstClassType()) { 2677 P.Error(Loc, "invalid use of a non-first-class type"); 2678 return nullptr; 2679 } 2680 2681 // Otherwise, create a new forward reference for this value and remember it. 2682 Value *FwdVal; 2683 if (Ty->isLabelTy()) { 2684 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2685 } else { 2686 FwdVal = new Argument(Ty); 2687 } 2688 2689 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2690 return FwdVal; 2691 } 2692 2693 /// SetInstName - After an instruction is parsed and inserted into its 2694 /// basic block, this installs its name. 2695 bool LLParser::PerFunctionState::SetInstName(int NameID, 2696 const std::string &NameStr, 2697 LocTy NameLoc, Instruction *Inst) { 2698 // If this instruction has void type, it cannot have a name or ID specified. 2699 if (Inst->getType()->isVoidTy()) { 2700 if (NameID != -1 || !NameStr.empty()) 2701 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2702 return false; 2703 } 2704 2705 // If this was a numbered instruction, verify that the instruction is the 2706 // expected value and resolve any forward references. 2707 if (NameStr.empty()) { 2708 // If neither a name nor an ID was specified, just use the next ID. 2709 if (NameID == -1) 2710 NameID = NumberedVals.size(); 2711 2712 if (unsigned(NameID) != NumberedVals.size()) 2713 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2714 Twine(NumberedVals.size()) + "'"); 2715 2716 auto FI = ForwardRefValIDs.find(NameID); 2717 if (FI != ForwardRefValIDs.end()) { 2718 Value *Sentinel = FI->second.first; 2719 if (Sentinel->getType() != Inst->getType()) 2720 return P.Error(NameLoc, "instruction forward referenced with type '" + 2721 getTypeString(FI->second.first->getType()) + "'"); 2722 2723 Sentinel->replaceAllUsesWith(Inst); 2724 Sentinel->deleteValue(); 2725 ForwardRefValIDs.erase(FI); 2726 } 2727 2728 NumberedVals.push_back(Inst); 2729 return false; 2730 } 2731 2732 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2733 auto FI = ForwardRefVals.find(NameStr); 2734 if (FI != ForwardRefVals.end()) { 2735 Value *Sentinel = FI->second.first; 2736 if (Sentinel->getType() != Inst->getType()) 2737 return P.Error(NameLoc, "instruction forward referenced with type '" + 2738 getTypeString(FI->second.first->getType()) + "'"); 2739 2740 Sentinel->replaceAllUsesWith(Inst); 2741 Sentinel->deleteValue(); 2742 ForwardRefVals.erase(FI); 2743 } 2744 2745 // Set the name on the instruction. 2746 Inst->setName(NameStr); 2747 2748 if (Inst->getName() != NameStr) 2749 return P.Error(NameLoc, "multiple definition of local value named '" + 2750 NameStr + "'"); 2751 return false; 2752 } 2753 2754 /// GetBB - Get a basic block with the specified name or ID, creating a 2755 /// forward reference record if needed. 2756 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2757 LocTy Loc) { 2758 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2759 Type::getLabelTy(F.getContext()), Loc)); 2760 } 2761 2762 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2763 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2764 Type::getLabelTy(F.getContext()), Loc)); 2765 } 2766 2767 /// DefineBB - Define the specified basic block, which is either named or 2768 /// unnamed. If there is an error, this returns null otherwise it returns 2769 /// the block being defined. 2770 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2771 LocTy Loc) { 2772 BasicBlock *BB; 2773 if (Name.empty()) 2774 BB = GetBB(NumberedVals.size(), Loc); 2775 else 2776 BB = GetBB(Name, Loc); 2777 if (!BB) return nullptr; // Already diagnosed error. 2778 2779 // Move the block to the end of the function. Forward ref'd blocks are 2780 // inserted wherever they happen to be referenced. 2781 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2782 2783 // Remove the block from forward ref sets. 2784 if (Name.empty()) { 2785 ForwardRefValIDs.erase(NumberedVals.size()); 2786 NumberedVals.push_back(BB); 2787 } else { 2788 // BB forward references are already in the function symbol table. 2789 ForwardRefVals.erase(Name); 2790 } 2791 2792 return BB; 2793 } 2794 2795 //===----------------------------------------------------------------------===// 2796 // Constants. 2797 //===----------------------------------------------------------------------===// 2798 2799 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2800 /// type implied. For example, if we parse "4" we don't know what integer type 2801 /// it has. The value will later be combined with its type and checked for 2802 /// sanity. PFS is used to convert function-local operands of metadata (since 2803 /// metadata operands are not just parsed here but also converted to values). 2804 /// PFS can be null when we are not parsing metadata values inside a function. 2805 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2806 ID.Loc = Lex.getLoc(); 2807 switch (Lex.getKind()) { 2808 default: return TokError("expected value token"); 2809 case lltok::GlobalID: // @42 2810 ID.UIntVal = Lex.getUIntVal(); 2811 ID.Kind = ValID::t_GlobalID; 2812 break; 2813 case lltok::GlobalVar: // @foo 2814 ID.StrVal = Lex.getStrVal(); 2815 ID.Kind = ValID::t_GlobalName; 2816 break; 2817 case lltok::LocalVarID: // %42 2818 ID.UIntVal = Lex.getUIntVal(); 2819 ID.Kind = ValID::t_LocalID; 2820 break; 2821 case lltok::LocalVar: // %foo 2822 ID.StrVal = Lex.getStrVal(); 2823 ID.Kind = ValID::t_LocalName; 2824 break; 2825 case lltok::APSInt: 2826 ID.APSIntVal = Lex.getAPSIntVal(); 2827 ID.Kind = ValID::t_APSInt; 2828 break; 2829 case lltok::APFloat: 2830 ID.APFloatVal = Lex.getAPFloatVal(); 2831 ID.Kind = ValID::t_APFloat; 2832 break; 2833 case lltok::kw_true: 2834 ID.ConstantVal = ConstantInt::getTrue(Context); 2835 ID.Kind = ValID::t_Constant; 2836 break; 2837 case lltok::kw_false: 2838 ID.ConstantVal = ConstantInt::getFalse(Context); 2839 ID.Kind = ValID::t_Constant; 2840 break; 2841 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2842 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2843 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2844 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2845 2846 case lltok::lbrace: { 2847 // ValID ::= '{' ConstVector '}' 2848 Lex.Lex(); 2849 SmallVector<Constant*, 16> Elts; 2850 if (ParseGlobalValueVector(Elts) || 2851 ParseToken(lltok::rbrace, "expected end of struct constant")) 2852 return true; 2853 2854 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2855 ID.UIntVal = Elts.size(); 2856 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2857 Elts.size() * sizeof(Elts[0])); 2858 ID.Kind = ValID::t_ConstantStruct; 2859 return false; 2860 } 2861 case lltok::less: { 2862 // ValID ::= '<' ConstVector '>' --> Vector. 2863 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2864 Lex.Lex(); 2865 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2866 2867 SmallVector<Constant*, 16> Elts; 2868 LocTy FirstEltLoc = Lex.getLoc(); 2869 if (ParseGlobalValueVector(Elts) || 2870 (isPackedStruct && 2871 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2872 ParseToken(lltok::greater, "expected end of constant")) 2873 return true; 2874 2875 if (isPackedStruct) { 2876 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2877 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2878 Elts.size() * sizeof(Elts[0])); 2879 ID.UIntVal = Elts.size(); 2880 ID.Kind = ValID::t_PackedConstantStruct; 2881 return false; 2882 } 2883 2884 if (Elts.empty()) 2885 return Error(ID.Loc, "constant vector must not be empty"); 2886 2887 if (!Elts[0]->getType()->isIntegerTy() && 2888 !Elts[0]->getType()->isFloatingPointTy() && 2889 !Elts[0]->getType()->isPointerTy()) 2890 return Error(FirstEltLoc, 2891 "vector elements must have integer, pointer or floating point type"); 2892 2893 // Verify that all the vector elements have the same type. 2894 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2895 if (Elts[i]->getType() != Elts[0]->getType()) 2896 return Error(FirstEltLoc, 2897 "vector element #" + Twine(i) + 2898 " is not of type '" + getTypeString(Elts[0]->getType())); 2899 2900 ID.ConstantVal = ConstantVector::get(Elts); 2901 ID.Kind = ValID::t_Constant; 2902 return false; 2903 } 2904 case lltok::lsquare: { // Array Constant 2905 Lex.Lex(); 2906 SmallVector<Constant*, 16> Elts; 2907 LocTy FirstEltLoc = Lex.getLoc(); 2908 if (ParseGlobalValueVector(Elts) || 2909 ParseToken(lltok::rsquare, "expected end of array constant")) 2910 return true; 2911 2912 // Handle empty element. 2913 if (Elts.empty()) { 2914 // Use undef instead of an array because it's inconvenient to determine 2915 // the element type at this point, there being no elements to examine. 2916 ID.Kind = ValID::t_EmptyArray; 2917 return false; 2918 } 2919 2920 if (!Elts[0]->getType()->isFirstClassType()) 2921 return Error(FirstEltLoc, "invalid array element type: " + 2922 getTypeString(Elts[0]->getType())); 2923 2924 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2925 2926 // Verify all elements are correct type! 2927 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2928 if (Elts[i]->getType() != Elts[0]->getType()) 2929 return Error(FirstEltLoc, 2930 "array element #" + Twine(i) + 2931 " is not of type '" + getTypeString(Elts[0]->getType())); 2932 } 2933 2934 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2935 ID.Kind = ValID::t_Constant; 2936 return false; 2937 } 2938 case lltok::kw_c: // c "foo" 2939 Lex.Lex(); 2940 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2941 false); 2942 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2943 ID.Kind = ValID::t_Constant; 2944 return false; 2945 2946 case lltok::kw_asm: { 2947 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2948 // STRINGCONSTANT 2949 bool HasSideEffect, AlignStack, AsmDialect; 2950 Lex.Lex(); 2951 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2952 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2953 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2954 ParseStringConstant(ID.StrVal) || 2955 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2956 ParseToken(lltok::StringConstant, "expected constraint string")) 2957 return true; 2958 ID.StrVal2 = Lex.getStrVal(); 2959 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2960 (unsigned(AsmDialect)<<2); 2961 ID.Kind = ValID::t_InlineAsm; 2962 return false; 2963 } 2964 2965 case lltok::kw_blockaddress: { 2966 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2967 Lex.Lex(); 2968 2969 ValID Fn, Label; 2970 2971 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2972 ParseValID(Fn) || 2973 ParseToken(lltok::comma, "expected comma in block address expression")|| 2974 ParseValID(Label) || 2975 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2976 return true; 2977 2978 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2979 return Error(Fn.Loc, "expected function name in blockaddress"); 2980 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2981 return Error(Label.Loc, "expected basic block name in blockaddress"); 2982 2983 // Try to find the function (but skip it if it's forward-referenced). 2984 GlobalValue *GV = nullptr; 2985 if (Fn.Kind == ValID::t_GlobalID) { 2986 if (Fn.UIntVal < NumberedVals.size()) 2987 GV = NumberedVals[Fn.UIntVal]; 2988 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2989 GV = M->getNamedValue(Fn.StrVal); 2990 } 2991 Function *F = nullptr; 2992 if (GV) { 2993 // Confirm that it's actually a function with a definition. 2994 if (!isa<Function>(GV)) 2995 return Error(Fn.Loc, "expected function name in blockaddress"); 2996 F = cast<Function>(GV); 2997 if (F->isDeclaration()) 2998 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2999 } 3000 3001 if (!F) { 3002 // Make a global variable as a placeholder for this reference. 3003 GlobalValue *&FwdRef = 3004 ForwardRefBlockAddresses.insert(std::make_pair( 3005 std::move(Fn), 3006 std::map<ValID, GlobalValue *>())) 3007 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3008 .first->second; 3009 if (!FwdRef) 3010 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3011 GlobalValue::InternalLinkage, nullptr, ""); 3012 ID.ConstantVal = FwdRef; 3013 ID.Kind = ValID::t_Constant; 3014 return false; 3015 } 3016 3017 // We found the function; now find the basic block. Don't use PFS, since we 3018 // might be inside a constant expression. 3019 BasicBlock *BB; 3020 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3021 if (Label.Kind == ValID::t_LocalID) 3022 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3023 else 3024 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3025 if (!BB) 3026 return Error(Label.Loc, "referenced value is not a basic block"); 3027 } else { 3028 if (Label.Kind == ValID::t_LocalID) 3029 return Error(Label.Loc, "cannot take address of numeric label after " 3030 "the function is defined"); 3031 BB = dyn_cast_or_null<BasicBlock>( 3032 F->getValueSymbolTable()->lookup(Label.StrVal)); 3033 if (!BB) 3034 return Error(Label.Loc, "referenced value is not a basic block"); 3035 } 3036 3037 ID.ConstantVal = BlockAddress::get(F, BB); 3038 ID.Kind = ValID::t_Constant; 3039 return false; 3040 } 3041 3042 case lltok::kw_trunc: 3043 case lltok::kw_zext: 3044 case lltok::kw_sext: 3045 case lltok::kw_fptrunc: 3046 case lltok::kw_fpext: 3047 case lltok::kw_bitcast: 3048 case lltok::kw_addrspacecast: 3049 case lltok::kw_uitofp: 3050 case lltok::kw_sitofp: 3051 case lltok::kw_fptoui: 3052 case lltok::kw_fptosi: 3053 case lltok::kw_inttoptr: 3054 case lltok::kw_ptrtoint: { 3055 unsigned Opc = Lex.getUIntVal(); 3056 Type *DestTy = nullptr; 3057 Constant *SrcVal; 3058 Lex.Lex(); 3059 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3060 ParseGlobalTypeAndValue(SrcVal) || 3061 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3062 ParseType(DestTy) || 3063 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3064 return true; 3065 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3066 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3067 getTypeString(SrcVal->getType()) + "' to '" + 3068 getTypeString(DestTy) + "'"); 3069 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3070 SrcVal, DestTy); 3071 ID.Kind = ValID::t_Constant; 3072 return false; 3073 } 3074 case lltok::kw_extractvalue: { 3075 Lex.Lex(); 3076 Constant *Val; 3077 SmallVector<unsigned, 4> Indices; 3078 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3079 ParseGlobalTypeAndValue(Val) || 3080 ParseIndexList(Indices) || 3081 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3082 return true; 3083 3084 if (!Val->getType()->isAggregateType()) 3085 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3086 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3087 return Error(ID.Loc, "invalid indices for extractvalue"); 3088 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3089 ID.Kind = ValID::t_Constant; 3090 return false; 3091 } 3092 case lltok::kw_insertvalue: { 3093 Lex.Lex(); 3094 Constant *Val0, *Val1; 3095 SmallVector<unsigned, 4> Indices; 3096 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3097 ParseGlobalTypeAndValue(Val0) || 3098 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3099 ParseGlobalTypeAndValue(Val1) || 3100 ParseIndexList(Indices) || 3101 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3102 return true; 3103 if (!Val0->getType()->isAggregateType()) 3104 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3105 Type *IndexedType = 3106 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3107 if (!IndexedType) 3108 return Error(ID.Loc, "invalid indices for insertvalue"); 3109 if (IndexedType != Val1->getType()) 3110 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3111 getTypeString(Val1->getType()) + 3112 "' instead of '" + getTypeString(IndexedType) + 3113 "'"); 3114 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3115 ID.Kind = ValID::t_Constant; 3116 return false; 3117 } 3118 case lltok::kw_icmp: 3119 case lltok::kw_fcmp: { 3120 unsigned PredVal, Opc = Lex.getUIntVal(); 3121 Constant *Val0, *Val1; 3122 Lex.Lex(); 3123 if (ParseCmpPredicate(PredVal, Opc) || 3124 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3125 ParseGlobalTypeAndValue(Val0) || 3126 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3127 ParseGlobalTypeAndValue(Val1) || 3128 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3129 return true; 3130 3131 if (Val0->getType() != Val1->getType()) 3132 return Error(ID.Loc, "compare operands must have the same type"); 3133 3134 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3135 3136 if (Opc == Instruction::FCmp) { 3137 if (!Val0->getType()->isFPOrFPVectorTy()) 3138 return Error(ID.Loc, "fcmp requires floating point operands"); 3139 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3140 } else { 3141 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3142 if (!Val0->getType()->isIntOrIntVectorTy() && 3143 !Val0->getType()->isPtrOrPtrVectorTy()) 3144 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3145 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3146 } 3147 ID.Kind = ValID::t_Constant; 3148 return false; 3149 } 3150 3151 // Binary Operators. 3152 case lltok::kw_add: 3153 case lltok::kw_fadd: 3154 case lltok::kw_sub: 3155 case lltok::kw_fsub: 3156 case lltok::kw_mul: 3157 case lltok::kw_fmul: 3158 case lltok::kw_udiv: 3159 case lltok::kw_sdiv: 3160 case lltok::kw_fdiv: 3161 case lltok::kw_urem: 3162 case lltok::kw_srem: 3163 case lltok::kw_frem: 3164 case lltok::kw_shl: 3165 case lltok::kw_lshr: 3166 case lltok::kw_ashr: { 3167 bool NUW = false; 3168 bool NSW = false; 3169 bool Exact = false; 3170 unsigned Opc = Lex.getUIntVal(); 3171 Constant *Val0, *Val1; 3172 Lex.Lex(); 3173 LocTy ModifierLoc = Lex.getLoc(); 3174 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3175 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3176 if (EatIfPresent(lltok::kw_nuw)) 3177 NUW = true; 3178 if (EatIfPresent(lltok::kw_nsw)) { 3179 NSW = true; 3180 if (EatIfPresent(lltok::kw_nuw)) 3181 NUW = true; 3182 } 3183 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3184 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3185 if (EatIfPresent(lltok::kw_exact)) 3186 Exact = true; 3187 } 3188 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3189 ParseGlobalTypeAndValue(Val0) || 3190 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3191 ParseGlobalTypeAndValue(Val1) || 3192 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3193 return true; 3194 if (Val0->getType() != Val1->getType()) 3195 return Error(ID.Loc, "operands of constexpr must have same type"); 3196 if (!Val0->getType()->isIntOrIntVectorTy()) { 3197 if (NUW) 3198 return Error(ModifierLoc, "nuw only applies to integer operations"); 3199 if (NSW) 3200 return Error(ModifierLoc, "nsw only applies to integer operations"); 3201 } 3202 // Check that the type is valid for the operator. 3203 switch (Opc) { 3204 case Instruction::Add: 3205 case Instruction::Sub: 3206 case Instruction::Mul: 3207 case Instruction::UDiv: 3208 case Instruction::SDiv: 3209 case Instruction::URem: 3210 case Instruction::SRem: 3211 case Instruction::Shl: 3212 case Instruction::AShr: 3213 case Instruction::LShr: 3214 if (!Val0->getType()->isIntOrIntVectorTy()) 3215 return Error(ID.Loc, "constexpr requires integer operands"); 3216 break; 3217 case Instruction::FAdd: 3218 case Instruction::FSub: 3219 case Instruction::FMul: 3220 case Instruction::FDiv: 3221 case Instruction::FRem: 3222 if (!Val0->getType()->isFPOrFPVectorTy()) 3223 return Error(ID.Loc, "constexpr requires fp operands"); 3224 break; 3225 default: llvm_unreachable("Unknown binary operator!"); 3226 } 3227 unsigned Flags = 0; 3228 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3229 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3230 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3231 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3232 ID.ConstantVal = C; 3233 ID.Kind = ValID::t_Constant; 3234 return false; 3235 } 3236 3237 // Logical Operations 3238 case lltok::kw_and: 3239 case lltok::kw_or: 3240 case lltok::kw_xor: { 3241 unsigned Opc = Lex.getUIntVal(); 3242 Constant *Val0, *Val1; 3243 Lex.Lex(); 3244 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3245 ParseGlobalTypeAndValue(Val0) || 3246 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3247 ParseGlobalTypeAndValue(Val1) || 3248 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3249 return true; 3250 if (Val0->getType() != Val1->getType()) 3251 return Error(ID.Loc, "operands of constexpr must have same type"); 3252 if (!Val0->getType()->isIntOrIntVectorTy()) 3253 return Error(ID.Loc, 3254 "constexpr requires integer or integer vector operands"); 3255 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3256 ID.Kind = ValID::t_Constant; 3257 return false; 3258 } 3259 3260 case lltok::kw_getelementptr: 3261 case lltok::kw_shufflevector: 3262 case lltok::kw_insertelement: 3263 case lltok::kw_extractelement: 3264 case lltok::kw_select: { 3265 unsigned Opc = Lex.getUIntVal(); 3266 SmallVector<Constant*, 16> Elts; 3267 bool InBounds = false; 3268 Type *Ty; 3269 Lex.Lex(); 3270 3271 if (Opc == Instruction::GetElementPtr) 3272 InBounds = EatIfPresent(lltok::kw_inbounds); 3273 3274 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3275 return true; 3276 3277 LocTy ExplicitTypeLoc = Lex.getLoc(); 3278 if (Opc == Instruction::GetElementPtr) { 3279 if (ParseType(Ty) || 3280 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3281 return true; 3282 } 3283 3284 Optional<unsigned> InRangeOp; 3285 if (ParseGlobalValueVector( 3286 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3287 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3288 return true; 3289 3290 if (Opc == Instruction::GetElementPtr) { 3291 if (Elts.size() == 0 || 3292 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3293 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3294 3295 Type *BaseType = Elts[0]->getType(); 3296 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3297 if (Ty != BasePointerType->getElementType()) 3298 return Error( 3299 ExplicitTypeLoc, 3300 "explicit pointee type doesn't match operand's pointee type"); 3301 3302 unsigned GEPWidth = 3303 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3304 3305 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3306 for (Constant *Val : Indices) { 3307 Type *ValTy = Val->getType(); 3308 if (!ValTy->isIntOrIntVectorTy()) 3309 return Error(ID.Loc, "getelementptr index must be an integer"); 3310 if (ValTy->isVectorTy()) { 3311 unsigned ValNumEl = ValTy->getVectorNumElements(); 3312 if (GEPWidth && (ValNumEl != GEPWidth)) 3313 return Error( 3314 ID.Loc, 3315 "getelementptr vector index has a wrong number of elements"); 3316 // GEPWidth may have been unknown because the base is a scalar, 3317 // but it is known now. 3318 GEPWidth = ValNumEl; 3319 } 3320 } 3321 3322 SmallPtrSet<Type*, 4> Visited; 3323 if (!Indices.empty() && !Ty->isSized(&Visited)) 3324 return Error(ID.Loc, "base element of getelementptr must be sized"); 3325 3326 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3327 return Error(ID.Loc, "invalid getelementptr indices"); 3328 3329 if (InRangeOp) { 3330 if (*InRangeOp == 0) 3331 return Error(ID.Loc, 3332 "inrange keyword may not appear on pointer operand"); 3333 --*InRangeOp; 3334 } 3335 3336 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3337 InBounds, InRangeOp); 3338 } else if (Opc == Instruction::Select) { 3339 if (Elts.size() != 3) 3340 return Error(ID.Loc, "expected three operands to select"); 3341 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3342 Elts[2])) 3343 return Error(ID.Loc, Reason); 3344 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3345 } else if (Opc == Instruction::ShuffleVector) { 3346 if (Elts.size() != 3) 3347 return Error(ID.Loc, "expected three operands to shufflevector"); 3348 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3349 return Error(ID.Loc, "invalid operands to shufflevector"); 3350 ID.ConstantVal = 3351 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3352 } else if (Opc == Instruction::ExtractElement) { 3353 if (Elts.size() != 2) 3354 return Error(ID.Loc, "expected two operands to extractelement"); 3355 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3356 return Error(ID.Loc, "invalid extractelement operands"); 3357 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3358 } else { 3359 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3360 if (Elts.size() != 3) 3361 return Error(ID.Loc, "expected three operands to insertelement"); 3362 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3363 return Error(ID.Loc, "invalid insertelement operands"); 3364 ID.ConstantVal = 3365 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3366 } 3367 3368 ID.Kind = ValID::t_Constant; 3369 return false; 3370 } 3371 } 3372 3373 Lex.Lex(); 3374 return false; 3375 } 3376 3377 /// ParseGlobalValue - Parse a global value with the specified type. 3378 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3379 C = nullptr; 3380 ValID ID; 3381 Value *V = nullptr; 3382 bool Parsed = ParseValID(ID) || 3383 ConvertValIDToValue(Ty, ID, V, nullptr); 3384 if (V && !(C = dyn_cast<Constant>(V))) 3385 return Error(ID.Loc, "global values must be constants"); 3386 return Parsed; 3387 } 3388 3389 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3390 Type *Ty = nullptr; 3391 return ParseType(Ty) || 3392 ParseGlobalValue(Ty, V); 3393 } 3394 3395 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3396 C = nullptr; 3397 3398 LocTy KwLoc = Lex.getLoc(); 3399 if (!EatIfPresent(lltok::kw_comdat)) 3400 return false; 3401 3402 if (EatIfPresent(lltok::lparen)) { 3403 if (Lex.getKind() != lltok::ComdatVar) 3404 return TokError("expected comdat variable"); 3405 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3406 Lex.Lex(); 3407 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3408 return true; 3409 } else { 3410 if (GlobalName.empty()) 3411 return TokError("comdat cannot be unnamed"); 3412 C = getComdat(GlobalName, KwLoc); 3413 } 3414 3415 return false; 3416 } 3417 3418 /// ParseGlobalValueVector 3419 /// ::= /*empty*/ 3420 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3421 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3422 Optional<unsigned> *InRangeOp) { 3423 // Empty list. 3424 if (Lex.getKind() == lltok::rbrace || 3425 Lex.getKind() == lltok::rsquare || 3426 Lex.getKind() == lltok::greater || 3427 Lex.getKind() == lltok::rparen) 3428 return false; 3429 3430 do { 3431 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3432 *InRangeOp = Elts.size(); 3433 3434 Constant *C; 3435 if (ParseGlobalTypeAndValue(C)) return true; 3436 Elts.push_back(C); 3437 } while (EatIfPresent(lltok::comma)); 3438 3439 return false; 3440 } 3441 3442 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3443 SmallVector<Metadata *, 16> Elts; 3444 if (ParseMDNodeVector(Elts)) 3445 return true; 3446 3447 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3448 return false; 3449 } 3450 3451 /// MDNode: 3452 /// ::= !{ ... } 3453 /// ::= !7 3454 /// ::= !DILocation(...) 3455 bool LLParser::ParseMDNode(MDNode *&N) { 3456 if (Lex.getKind() == lltok::MetadataVar) 3457 return ParseSpecializedMDNode(N); 3458 3459 return ParseToken(lltok::exclaim, "expected '!' here") || 3460 ParseMDNodeTail(N); 3461 } 3462 3463 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3464 // !{ ... } 3465 if (Lex.getKind() == lltok::lbrace) 3466 return ParseMDTuple(N); 3467 3468 // !42 3469 return ParseMDNodeID(N); 3470 } 3471 3472 namespace { 3473 3474 /// Structure to represent an optional metadata field. 3475 template <class FieldTy> struct MDFieldImpl { 3476 typedef MDFieldImpl ImplTy; 3477 FieldTy Val; 3478 bool Seen; 3479 3480 void assign(FieldTy Val) { 3481 Seen = true; 3482 this->Val = std::move(Val); 3483 } 3484 3485 explicit MDFieldImpl(FieldTy Default) 3486 : Val(std::move(Default)), Seen(false) {} 3487 }; 3488 3489 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3490 uint64_t Max; 3491 3492 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3493 : ImplTy(Default), Max(Max) {} 3494 }; 3495 3496 struct LineField : public MDUnsignedField { 3497 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3498 }; 3499 3500 struct ColumnField : public MDUnsignedField { 3501 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3502 }; 3503 3504 struct DwarfTagField : public MDUnsignedField { 3505 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3506 DwarfTagField(dwarf::Tag DefaultTag) 3507 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3508 }; 3509 3510 struct DwarfMacinfoTypeField : public MDUnsignedField { 3511 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3512 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3513 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3514 }; 3515 3516 struct DwarfAttEncodingField : public MDUnsignedField { 3517 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3518 }; 3519 3520 struct DwarfVirtualityField : public MDUnsignedField { 3521 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3522 }; 3523 3524 struct DwarfLangField : public MDUnsignedField { 3525 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3526 }; 3527 3528 struct DwarfCCField : public MDUnsignedField { 3529 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3530 }; 3531 3532 struct EmissionKindField : public MDUnsignedField { 3533 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3534 }; 3535 3536 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3537 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3538 }; 3539 3540 struct MDSignedField : public MDFieldImpl<int64_t> { 3541 int64_t Min; 3542 int64_t Max; 3543 3544 MDSignedField(int64_t Default = 0) 3545 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3546 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3547 : ImplTy(Default), Min(Min), Max(Max) {} 3548 }; 3549 3550 struct MDBoolField : public MDFieldImpl<bool> { 3551 MDBoolField(bool Default = false) : ImplTy(Default) {} 3552 }; 3553 3554 struct MDField : public MDFieldImpl<Metadata *> { 3555 bool AllowNull; 3556 3557 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3558 }; 3559 3560 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3561 MDConstant() : ImplTy(nullptr) {} 3562 }; 3563 3564 struct MDStringField : public MDFieldImpl<MDString *> { 3565 bool AllowEmpty; 3566 MDStringField(bool AllowEmpty = true) 3567 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3568 }; 3569 3570 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3571 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3572 }; 3573 3574 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3575 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3576 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3577 }; 3578 3579 } // end anonymous namespace 3580 3581 namespace llvm { 3582 3583 template <> 3584 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3585 MDUnsignedField &Result) { 3586 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3587 return TokError("expected unsigned integer"); 3588 3589 auto &U = Lex.getAPSIntVal(); 3590 if (U.ugt(Result.Max)) 3591 return TokError("value for '" + Name + "' too large, limit is " + 3592 Twine(Result.Max)); 3593 Result.assign(U.getZExtValue()); 3594 assert(Result.Val <= Result.Max && "Expected value in range"); 3595 Lex.Lex(); 3596 return false; 3597 } 3598 3599 template <> 3600 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3601 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3602 } 3603 template <> 3604 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3605 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3606 } 3607 3608 template <> 3609 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3610 if (Lex.getKind() == lltok::APSInt) 3611 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3612 3613 if (Lex.getKind() != lltok::DwarfTag) 3614 return TokError("expected DWARF tag"); 3615 3616 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3617 if (Tag == dwarf::DW_TAG_invalid) 3618 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3619 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3620 3621 Result.assign(Tag); 3622 Lex.Lex(); 3623 return false; 3624 } 3625 3626 template <> 3627 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3628 DwarfMacinfoTypeField &Result) { 3629 if (Lex.getKind() == lltok::APSInt) 3630 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3631 3632 if (Lex.getKind() != lltok::DwarfMacinfo) 3633 return TokError("expected DWARF macinfo type"); 3634 3635 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3636 if (Macinfo == dwarf::DW_MACINFO_invalid) 3637 return TokError( 3638 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3639 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3640 3641 Result.assign(Macinfo); 3642 Lex.Lex(); 3643 return false; 3644 } 3645 3646 template <> 3647 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3648 DwarfVirtualityField &Result) { 3649 if (Lex.getKind() == lltok::APSInt) 3650 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3651 3652 if (Lex.getKind() != lltok::DwarfVirtuality) 3653 return TokError("expected DWARF virtuality code"); 3654 3655 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3656 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3657 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3658 Lex.getStrVal() + "'"); 3659 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3660 Result.assign(Virtuality); 3661 Lex.Lex(); 3662 return false; 3663 } 3664 3665 template <> 3666 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3667 if (Lex.getKind() == lltok::APSInt) 3668 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3669 3670 if (Lex.getKind() != lltok::DwarfLang) 3671 return TokError("expected DWARF language"); 3672 3673 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3674 if (!Lang) 3675 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3676 "'"); 3677 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3678 Result.assign(Lang); 3679 Lex.Lex(); 3680 return false; 3681 } 3682 3683 template <> 3684 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3685 if (Lex.getKind() == lltok::APSInt) 3686 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3687 3688 if (Lex.getKind() != lltok::DwarfCC) 3689 return TokError("expected DWARF calling convention"); 3690 3691 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3692 if (!CC) 3693 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3694 "'"); 3695 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3696 Result.assign(CC); 3697 Lex.Lex(); 3698 return false; 3699 } 3700 3701 template <> 3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3703 if (Lex.getKind() == lltok::APSInt) 3704 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3705 3706 if (Lex.getKind() != lltok::EmissionKind) 3707 return TokError("expected emission kind"); 3708 3709 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3710 if (!Kind) 3711 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3712 "'"); 3713 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3714 Result.assign(*Kind); 3715 Lex.Lex(); 3716 return false; 3717 } 3718 3719 template <> 3720 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3721 DwarfAttEncodingField &Result) { 3722 if (Lex.getKind() == lltok::APSInt) 3723 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3724 3725 if (Lex.getKind() != lltok::DwarfAttEncoding) 3726 return TokError("expected DWARF type attribute encoding"); 3727 3728 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3729 if (!Encoding) 3730 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3731 Lex.getStrVal() + "'"); 3732 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3733 Result.assign(Encoding); 3734 Lex.Lex(); 3735 return false; 3736 } 3737 3738 /// DIFlagField 3739 /// ::= uint32 3740 /// ::= DIFlagVector 3741 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3742 template <> 3743 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3744 3745 // Parser for a single flag. 3746 auto parseFlag = [&](DINode::DIFlags &Val) { 3747 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3748 uint32_t TempVal = static_cast<uint32_t>(Val); 3749 bool Res = ParseUInt32(TempVal); 3750 Val = static_cast<DINode::DIFlags>(TempVal); 3751 return Res; 3752 } 3753 3754 if (Lex.getKind() != lltok::DIFlag) 3755 return TokError("expected debug info flag"); 3756 3757 Val = DINode::getFlag(Lex.getStrVal()); 3758 if (!Val) 3759 return TokError(Twine("invalid debug info flag flag '") + 3760 Lex.getStrVal() + "'"); 3761 Lex.Lex(); 3762 return false; 3763 }; 3764 3765 // Parse the flags and combine them together. 3766 DINode::DIFlags Combined = DINode::FlagZero; 3767 do { 3768 DINode::DIFlags Val; 3769 if (parseFlag(Val)) 3770 return true; 3771 Combined |= Val; 3772 } while (EatIfPresent(lltok::bar)); 3773 3774 Result.assign(Combined); 3775 return false; 3776 } 3777 3778 template <> 3779 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3780 MDSignedField &Result) { 3781 if (Lex.getKind() != lltok::APSInt) 3782 return TokError("expected signed integer"); 3783 3784 auto &S = Lex.getAPSIntVal(); 3785 if (S < Result.Min) 3786 return TokError("value for '" + Name + "' too small, limit is " + 3787 Twine(Result.Min)); 3788 if (S > Result.Max) 3789 return TokError("value for '" + Name + "' too large, limit is " + 3790 Twine(Result.Max)); 3791 Result.assign(S.getExtValue()); 3792 assert(Result.Val >= Result.Min && "Expected value in range"); 3793 assert(Result.Val <= Result.Max && "Expected value in range"); 3794 Lex.Lex(); 3795 return false; 3796 } 3797 3798 template <> 3799 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3800 switch (Lex.getKind()) { 3801 default: 3802 return TokError("expected 'true' or 'false'"); 3803 case lltok::kw_true: 3804 Result.assign(true); 3805 break; 3806 case lltok::kw_false: 3807 Result.assign(false); 3808 break; 3809 } 3810 Lex.Lex(); 3811 return false; 3812 } 3813 3814 template <> 3815 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3816 if (Lex.getKind() == lltok::kw_null) { 3817 if (!Result.AllowNull) 3818 return TokError("'" + Name + "' cannot be null"); 3819 Lex.Lex(); 3820 Result.assign(nullptr); 3821 return false; 3822 } 3823 3824 Metadata *MD; 3825 if (ParseMetadata(MD, nullptr)) 3826 return true; 3827 3828 Result.assign(MD); 3829 return false; 3830 } 3831 3832 template <> 3833 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3834 LocTy ValueLoc = Lex.getLoc(); 3835 std::string S; 3836 if (ParseStringConstant(S)) 3837 return true; 3838 3839 if (!Result.AllowEmpty && S.empty()) 3840 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3841 3842 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3843 return false; 3844 } 3845 3846 template <> 3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3848 SmallVector<Metadata *, 4> MDs; 3849 if (ParseMDNodeVector(MDs)) 3850 return true; 3851 3852 Result.assign(std::move(MDs)); 3853 return false; 3854 } 3855 3856 template <> 3857 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3858 ChecksumKindField &Result) { 3859 if (Lex.getKind() != lltok::ChecksumKind) 3860 return TokError( 3861 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3862 3863 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3864 3865 Result.assign(CSKind); 3866 Lex.Lex(); 3867 return false; 3868 } 3869 3870 } // end namespace llvm 3871 3872 template <class ParserTy> 3873 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3874 do { 3875 if (Lex.getKind() != lltok::LabelStr) 3876 return TokError("expected field label here"); 3877 3878 if (parseField()) 3879 return true; 3880 } while (EatIfPresent(lltok::comma)); 3881 3882 return false; 3883 } 3884 3885 template <class ParserTy> 3886 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3887 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3888 Lex.Lex(); 3889 3890 if (ParseToken(lltok::lparen, "expected '(' here")) 3891 return true; 3892 if (Lex.getKind() != lltok::rparen) 3893 if (ParseMDFieldsImplBody(parseField)) 3894 return true; 3895 3896 ClosingLoc = Lex.getLoc(); 3897 return ParseToken(lltok::rparen, "expected ')' here"); 3898 } 3899 3900 template <class FieldTy> 3901 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3902 if (Result.Seen) 3903 return TokError("field '" + Name + "' cannot be specified more than once"); 3904 3905 LocTy Loc = Lex.getLoc(); 3906 Lex.Lex(); 3907 return ParseMDField(Loc, Name, Result); 3908 } 3909 3910 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3911 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3912 3913 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3914 if (Lex.getStrVal() == #CLASS) \ 3915 return Parse##CLASS(N, IsDistinct); 3916 #include "llvm/IR/Metadata.def" 3917 3918 return TokError("expected metadata type"); 3919 } 3920 3921 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3922 #define NOP_FIELD(NAME, TYPE, INIT) 3923 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3924 if (!NAME.Seen) \ 3925 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3926 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3927 if (Lex.getStrVal() == #NAME) \ 3928 return ParseMDField(#NAME, NAME); 3929 #define PARSE_MD_FIELDS() \ 3930 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3931 do { \ 3932 LocTy ClosingLoc; \ 3933 if (ParseMDFieldsImpl([&]() -> bool { \ 3934 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3935 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3936 }, ClosingLoc)) \ 3937 return true; \ 3938 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3939 } while (false) 3940 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3941 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3942 3943 /// ParseDILocationFields: 3944 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3945 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3947 OPTIONAL(line, LineField, ); \ 3948 OPTIONAL(column, ColumnField, ); \ 3949 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3950 OPTIONAL(inlinedAt, MDField, ); 3951 PARSE_MD_FIELDS(); 3952 #undef VISIT_MD_FIELDS 3953 3954 Result = GET_OR_DISTINCT( 3955 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3956 return false; 3957 } 3958 3959 /// ParseGenericDINode: 3960 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3961 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3963 REQUIRED(tag, DwarfTagField, ); \ 3964 OPTIONAL(header, MDStringField, ); \ 3965 OPTIONAL(operands, MDFieldList, ); 3966 PARSE_MD_FIELDS(); 3967 #undef VISIT_MD_FIELDS 3968 3969 Result = GET_OR_DISTINCT(GenericDINode, 3970 (Context, tag.Val, header.Val, operands.Val)); 3971 return false; 3972 } 3973 3974 /// ParseDISubrange: 3975 /// ::= !DISubrange(count: 30, lowerBound: 2) 3976 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3978 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3979 OPTIONAL(lowerBound, MDSignedField, ); 3980 PARSE_MD_FIELDS(); 3981 #undef VISIT_MD_FIELDS 3982 3983 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3984 return false; 3985 } 3986 3987 /// ParseDIEnumerator: 3988 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3989 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3990 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3991 REQUIRED(name, MDStringField, ); \ 3992 REQUIRED(value, MDSignedField, ); 3993 PARSE_MD_FIELDS(); 3994 #undef VISIT_MD_FIELDS 3995 3996 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3997 return false; 3998 } 3999 4000 /// ParseDIBasicType: 4001 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4002 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4004 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4005 OPTIONAL(name, MDStringField, ); \ 4006 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4007 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4008 OPTIONAL(encoding, DwarfAttEncodingField, ); 4009 PARSE_MD_FIELDS(); 4010 #undef VISIT_MD_FIELDS 4011 4012 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4013 align.Val, encoding.Val)); 4014 return false; 4015 } 4016 4017 /// ParseDIDerivedType: 4018 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4019 /// line: 7, scope: !1, baseType: !2, size: 32, 4020 /// align: 32, offset: 0, flags: 0, extraData: !3, 4021 /// dwarfAddressSpace: 3) 4022 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4024 REQUIRED(tag, DwarfTagField, ); \ 4025 OPTIONAL(name, MDStringField, ); \ 4026 OPTIONAL(file, MDField, ); \ 4027 OPTIONAL(line, LineField, ); \ 4028 OPTIONAL(scope, MDField, ); \ 4029 REQUIRED(baseType, MDField, ); \ 4030 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4031 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4032 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4033 OPTIONAL(flags, DIFlagField, ); \ 4034 OPTIONAL(extraData, MDField, ); \ 4035 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4036 PARSE_MD_FIELDS(); 4037 #undef VISIT_MD_FIELDS 4038 4039 Optional<unsigned> DWARFAddressSpace; 4040 if (dwarfAddressSpace.Val != UINT32_MAX) 4041 DWARFAddressSpace = dwarfAddressSpace.Val; 4042 4043 Result = GET_OR_DISTINCT(DIDerivedType, 4044 (Context, tag.Val, name.Val, file.Val, line.Val, 4045 scope.Val, baseType.Val, size.Val, align.Val, 4046 offset.Val, DWARFAddressSpace, flags.Val, 4047 extraData.Val)); 4048 return false; 4049 } 4050 4051 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4053 REQUIRED(tag, DwarfTagField, ); \ 4054 OPTIONAL(name, MDStringField, ); \ 4055 OPTIONAL(file, MDField, ); \ 4056 OPTIONAL(line, LineField, ); \ 4057 OPTIONAL(scope, MDField, ); \ 4058 OPTIONAL(baseType, MDField, ); \ 4059 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4060 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4061 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4062 OPTIONAL(flags, DIFlagField, ); \ 4063 OPTIONAL(elements, MDField, ); \ 4064 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4065 OPTIONAL(vtableHolder, MDField, ); \ 4066 OPTIONAL(templateParams, MDField, ); \ 4067 OPTIONAL(identifier, MDStringField, ); 4068 PARSE_MD_FIELDS(); 4069 #undef VISIT_MD_FIELDS 4070 4071 // If this has an identifier try to build an ODR type. 4072 if (identifier.Val) 4073 if (auto *CT = DICompositeType::buildODRType( 4074 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4075 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4076 elements.Val, runtimeLang.Val, vtableHolder.Val, 4077 templateParams.Val)) { 4078 Result = CT; 4079 return false; 4080 } 4081 4082 // Create a new node, and save it in the context if it belongs in the type 4083 // map. 4084 Result = GET_OR_DISTINCT( 4085 DICompositeType, 4086 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4087 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4088 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 4089 return false; 4090 } 4091 4092 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4094 OPTIONAL(flags, DIFlagField, ); \ 4095 OPTIONAL(cc, DwarfCCField, ); \ 4096 REQUIRED(types, MDField, ); 4097 PARSE_MD_FIELDS(); 4098 #undef VISIT_MD_FIELDS 4099 4100 Result = GET_OR_DISTINCT(DISubroutineType, 4101 (Context, flags.Val, cc.Val, types.Val)); 4102 return false; 4103 } 4104 4105 /// ParseDIFileType: 4106 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4107 /// checksumkind: CSK_MD5, 4108 /// checksum: "000102030405060708090a0b0c0d0e0f") 4109 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4110 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4111 REQUIRED(filename, MDStringField, ); \ 4112 REQUIRED(directory, MDStringField, ); \ 4113 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4114 OPTIONAL(checksum, MDStringField, ); 4115 PARSE_MD_FIELDS(); 4116 #undef VISIT_MD_FIELDS 4117 4118 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4119 checksumkind.Val, checksum.Val)); 4120 return false; 4121 } 4122 4123 /// ParseDICompileUnit: 4124 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4125 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4126 /// splitDebugFilename: "abc.debug", 4127 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4128 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4129 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4130 if (!IsDistinct) 4131 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4132 4133 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4134 REQUIRED(language, DwarfLangField, ); \ 4135 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4136 OPTIONAL(producer, MDStringField, ); \ 4137 OPTIONAL(isOptimized, MDBoolField, ); \ 4138 OPTIONAL(flags, MDStringField, ); \ 4139 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4140 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4141 OPTIONAL(emissionKind, EmissionKindField, ); \ 4142 OPTIONAL(enums, MDField, ); \ 4143 OPTIONAL(retainedTypes, MDField, ); \ 4144 OPTIONAL(globals, MDField, ); \ 4145 OPTIONAL(imports, MDField, ); \ 4146 OPTIONAL(macros, MDField, ); \ 4147 OPTIONAL(dwoId, MDUnsignedField, ); \ 4148 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4149 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4150 OPTIONAL(gnuPubnames, MDBoolField, = false); 4151 PARSE_MD_FIELDS(); 4152 #undef VISIT_MD_FIELDS 4153 4154 Result = DICompileUnit::getDistinct( 4155 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4156 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4157 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4158 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4159 return false; 4160 } 4161 4162 /// ParseDISubprogram: 4163 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4164 /// file: !1, line: 7, type: !2, isLocal: false, 4165 /// isDefinition: true, scopeLine: 8, containingType: !3, 4166 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4167 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4168 /// isOptimized: false, templateParams: !4, declaration: !5, 4169 /// variables: !6, thrownTypes: !7) 4170 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4171 auto Loc = Lex.getLoc(); 4172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4173 OPTIONAL(scope, MDField, ); \ 4174 OPTIONAL(name, MDStringField, ); \ 4175 OPTIONAL(linkageName, MDStringField, ); \ 4176 OPTIONAL(file, MDField, ); \ 4177 OPTIONAL(line, LineField, ); \ 4178 OPTIONAL(type, MDField, ); \ 4179 OPTIONAL(isLocal, MDBoolField, ); \ 4180 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4181 OPTIONAL(scopeLine, LineField, ); \ 4182 OPTIONAL(containingType, MDField, ); \ 4183 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4184 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4185 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4186 OPTIONAL(flags, DIFlagField, ); \ 4187 OPTIONAL(isOptimized, MDBoolField, ); \ 4188 OPTIONAL(unit, MDField, ); \ 4189 OPTIONAL(templateParams, MDField, ); \ 4190 OPTIONAL(declaration, MDField, ); \ 4191 OPTIONAL(variables, MDField, ); \ 4192 OPTIONAL(thrownTypes, MDField, ); 4193 PARSE_MD_FIELDS(); 4194 #undef VISIT_MD_FIELDS 4195 4196 if (isDefinition.Val && !IsDistinct) 4197 return Lex.Error( 4198 Loc, 4199 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4200 4201 Result = GET_OR_DISTINCT( 4202 DISubprogram, 4203 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4204 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4205 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4206 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4207 declaration.Val, variables.Val, thrownTypes.Val)); 4208 return false; 4209 } 4210 4211 /// ParseDILexicalBlock: 4212 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4213 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4214 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4215 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4216 OPTIONAL(file, MDField, ); \ 4217 OPTIONAL(line, LineField, ); \ 4218 OPTIONAL(column, ColumnField, ); 4219 PARSE_MD_FIELDS(); 4220 #undef VISIT_MD_FIELDS 4221 4222 Result = GET_OR_DISTINCT( 4223 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4224 return false; 4225 } 4226 4227 /// ParseDILexicalBlockFile: 4228 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4229 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4231 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4232 OPTIONAL(file, MDField, ); \ 4233 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4234 PARSE_MD_FIELDS(); 4235 #undef VISIT_MD_FIELDS 4236 4237 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4238 (Context, scope.Val, file.Val, discriminator.Val)); 4239 return false; 4240 } 4241 4242 /// ParseDINamespace: 4243 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4244 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4245 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4246 REQUIRED(scope, MDField, ); \ 4247 OPTIONAL(name, MDStringField, ); \ 4248 OPTIONAL(exportSymbols, MDBoolField, ); 4249 PARSE_MD_FIELDS(); 4250 #undef VISIT_MD_FIELDS 4251 4252 Result = GET_OR_DISTINCT(DINamespace, 4253 (Context, scope.Val, name.Val, exportSymbols.Val)); 4254 return false; 4255 } 4256 4257 /// ParseDIMacro: 4258 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4259 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4260 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4261 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4262 OPTIONAL(line, LineField, ); \ 4263 REQUIRED(name, MDStringField, ); \ 4264 OPTIONAL(value, MDStringField, ); 4265 PARSE_MD_FIELDS(); 4266 #undef VISIT_MD_FIELDS 4267 4268 Result = GET_OR_DISTINCT(DIMacro, 4269 (Context, type.Val, line.Val, name.Val, value.Val)); 4270 return false; 4271 } 4272 4273 /// ParseDIMacroFile: 4274 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4275 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4276 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4277 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4278 OPTIONAL(line, LineField, ); \ 4279 REQUIRED(file, MDField, ); \ 4280 OPTIONAL(nodes, MDField, ); 4281 PARSE_MD_FIELDS(); 4282 #undef VISIT_MD_FIELDS 4283 4284 Result = GET_OR_DISTINCT(DIMacroFile, 4285 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4286 return false; 4287 } 4288 4289 /// ParseDIModule: 4290 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4291 /// includePath: "/usr/include", isysroot: "/") 4292 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4293 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4294 REQUIRED(scope, MDField, ); \ 4295 REQUIRED(name, MDStringField, ); \ 4296 OPTIONAL(configMacros, MDStringField, ); \ 4297 OPTIONAL(includePath, MDStringField, ); \ 4298 OPTIONAL(isysroot, MDStringField, ); 4299 PARSE_MD_FIELDS(); 4300 #undef VISIT_MD_FIELDS 4301 4302 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4303 configMacros.Val, includePath.Val, isysroot.Val)); 4304 return false; 4305 } 4306 4307 /// ParseDITemplateTypeParameter: 4308 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4309 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4310 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4311 OPTIONAL(name, MDStringField, ); \ 4312 REQUIRED(type, MDField, ); 4313 PARSE_MD_FIELDS(); 4314 #undef VISIT_MD_FIELDS 4315 4316 Result = 4317 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4318 return false; 4319 } 4320 4321 /// ParseDITemplateValueParameter: 4322 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4323 /// name: "V", type: !1, value: i32 7) 4324 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4325 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4326 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4327 OPTIONAL(name, MDStringField, ); \ 4328 OPTIONAL(type, MDField, ); \ 4329 REQUIRED(value, MDField, ); 4330 PARSE_MD_FIELDS(); 4331 #undef VISIT_MD_FIELDS 4332 4333 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4334 (Context, tag.Val, name.Val, type.Val, value.Val)); 4335 return false; 4336 } 4337 4338 /// ParseDIGlobalVariable: 4339 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4340 /// file: !1, line: 7, type: !2, isLocal: false, 4341 /// isDefinition: true, declaration: !3, align: 8) 4342 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4343 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4344 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4345 OPTIONAL(scope, MDField, ); \ 4346 OPTIONAL(linkageName, MDStringField, ); \ 4347 OPTIONAL(file, MDField, ); \ 4348 OPTIONAL(line, LineField, ); \ 4349 OPTIONAL(type, MDField, ); \ 4350 OPTIONAL(isLocal, MDBoolField, ); \ 4351 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4352 OPTIONAL(declaration, MDField, ); \ 4353 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4354 PARSE_MD_FIELDS(); 4355 #undef VISIT_MD_FIELDS 4356 4357 Result = GET_OR_DISTINCT(DIGlobalVariable, 4358 (Context, scope.Val, name.Val, linkageName.Val, 4359 file.Val, line.Val, type.Val, isLocal.Val, 4360 isDefinition.Val, declaration.Val, align.Val)); 4361 return false; 4362 } 4363 4364 /// ParseDILocalVariable: 4365 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4366 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4367 /// align: 8) 4368 /// ::= !DILocalVariable(scope: !0, name: "foo", 4369 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4370 /// align: 8) 4371 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4372 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4373 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4374 OPTIONAL(name, MDStringField, ); \ 4375 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4376 OPTIONAL(file, MDField, ); \ 4377 OPTIONAL(line, LineField, ); \ 4378 OPTIONAL(type, MDField, ); \ 4379 OPTIONAL(flags, DIFlagField, ); \ 4380 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4381 PARSE_MD_FIELDS(); 4382 #undef VISIT_MD_FIELDS 4383 4384 Result = GET_OR_DISTINCT(DILocalVariable, 4385 (Context, scope.Val, name.Val, file.Val, line.Val, 4386 type.Val, arg.Val, flags.Val, align.Val)); 4387 return false; 4388 } 4389 4390 /// ParseDIExpression: 4391 /// ::= !DIExpression(0, 7, -1) 4392 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4393 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4394 Lex.Lex(); 4395 4396 if (ParseToken(lltok::lparen, "expected '(' here")) 4397 return true; 4398 4399 SmallVector<uint64_t, 8> Elements; 4400 if (Lex.getKind() != lltok::rparen) 4401 do { 4402 if (Lex.getKind() == lltok::DwarfOp) { 4403 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4404 Lex.Lex(); 4405 Elements.push_back(Op); 4406 continue; 4407 } 4408 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4409 } 4410 4411 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4412 return TokError("expected unsigned integer"); 4413 4414 auto &U = Lex.getAPSIntVal(); 4415 if (U.ugt(UINT64_MAX)) 4416 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4417 Elements.push_back(U.getZExtValue()); 4418 Lex.Lex(); 4419 } while (EatIfPresent(lltok::comma)); 4420 4421 if (ParseToken(lltok::rparen, "expected ')' here")) 4422 return true; 4423 4424 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4425 return false; 4426 } 4427 4428 /// ParseDIGlobalVariableExpression: 4429 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4430 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4431 bool IsDistinct) { 4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4433 REQUIRED(var, MDField, ); \ 4434 REQUIRED(expr, MDField, ); 4435 PARSE_MD_FIELDS(); 4436 #undef VISIT_MD_FIELDS 4437 4438 Result = 4439 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4440 return false; 4441 } 4442 4443 /// ParseDIObjCProperty: 4444 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4445 /// getter: "getFoo", attributes: 7, type: !2) 4446 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4447 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4448 OPTIONAL(name, MDStringField, ); \ 4449 OPTIONAL(file, MDField, ); \ 4450 OPTIONAL(line, LineField, ); \ 4451 OPTIONAL(setter, MDStringField, ); \ 4452 OPTIONAL(getter, MDStringField, ); \ 4453 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4454 OPTIONAL(type, MDField, ); 4455 PARSE_MD_FIELDS(); 4456 #undef VISIT_MD_FIELDS 4457 4458 Result = GET_OR_DISTINCT(DIObjCProperty, 4459 (Context, name.Val, file.Val, line.Val, setter.Val, 4460 getter.Val, attributes.Val, type.Val)); 4461 return false; 4462 } 4463 4464 /// ParseDIImportedEntity: 4465 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4466 /// line: 7, name: "foo") 4467 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4468 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4469 REQUIRED(tag, DwarfTagField, ); \ 4470 REQUIRED(scope, MDField, ); \ 4471 OPTIONAL(entity, MDField, ); \ 4472 OPTIONAL(file, MDField, ); \ 4473 OPTIONAL(line, LineField, ); \ 4474 OPTIONAL(name, MDStringField, ); 4475 PARSE_MD_FIELDS(); 4476 #undef VISIT_MD_FIELDS 4477 4478 Result = GET_OR_DISTINCT( 4479 DIImportedEntity, 4480 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4481 return false; 4482 } 4483 4484 #undef PARSE_MD_FIELD 4485 #undef NOP_FIELD 4486 #undef REQUIRE_FIELD 4487 #undef DECLARE_FIELD 4488 4489 /// ParseMetadataAsValue 4490 /// ::= metadata i32 %local 4491 /// ::= metadata i32 @global 4492 /// ::= metadata i32 7 4493 /// ::= metadata !0 4494 /// ::= metadata !{...} 4495 /// ::= metadata !"string" 4496 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4497 // Note: the type 'metadata' has already been parsed. 4498 Metadata *MD; 4499 if (ParseMetadata(MD, &PFS)) 4500 return true; 4501 4502 V = MetadataAsValue::get(Context, MD); 4503 return false; 4504 } 4505 4506 /// ParseValueAsMetadata 4507 /// ::= i32 %local 4508 /// ::= i32 @global 4509 /// ::= i32 7 4510 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4511 PerFunctionState *PFS) { 4512 Type *Ty; 4513 LocTy Loc; 4514 if (ParseType(Ty, TypeMsg, Loc)) 4515 return true; 4516 if (Ty->isMetadataTy()) 4517 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4518 4519 Value *V; 4520 if (ParseValue(Ty, V, PFS)) 4521 return true; 4522 4523 MD = ValueAsMetadata::get(V); 4524 return false; 4525 } 4526 4527 /// ParseMetadata 4528 /// ::= i32 %local 4529 /// ::= i32 @global 4530 /// ::= i32 7 4531 /// ::= !42 4532 /// ::= !{...} 4533 /// ::= !"string" 4534 /// ::= !DILocation(...) 4535 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4536 if (Lex.getKind() == lltok::MetadataVar) { 4537 MDNode *N; 4538 if (ParseSpecializedMDNode(N)) 4539 return true; 4540 MD = N; 4541 return false; 4542 } 4543 4544 // ValueAsMetadata: 4545 // <type> <value> 4546 if (Lex.getKind() != lltok::exclaim) 4547 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4548 4549 // '!'. 4550 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4551 Lex.Lex(); 4552 4553 // MDString: 4554 // ::= '!' STRINGCONSTANT 4555 if (Lex.getKind() == lltok::StringConstant) { 4556 MDString *S; 4557 if (ParseMDString(S)) 4558 return true; 4559 MD = S; 4560 return false; 4561 } 4562 4563 // MDNode: 4564 // !{ ... } 4565 // !7 4566 MDNode *N; 4567 if (ParseMDNodeTail(N)) 4568 return true; 4569 MD = N; 4570 return false; 4571 } 4572 4573 //===----------------------------------------------------------------------===// 4574 // Function Parsing. 4575 //===----------------------------------------------------------------------===// 4576 4577 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4578 PerFunctionState *PFS) { 4579 if (Ty->isFunctionTy()) 4580 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4581 4582 switch (ID.Kind) { 4583 case ValID::t_LocalID: 4584 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4585 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4586 return V == nullptr; 4587 case ValID::t_LocalName: 4588 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4589 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4590 return V == nullptr; 4591 case ValID::t_InlineAsm: { 4592 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4593 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4594 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4595 (ID.UIntVal >> 1) & 1, 4596 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4597 return false; 4598 } 4599 case ValID::t_GlobalName: 4600 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4601 return V == nullptr; 4602 case ValID::t_GlobalID: 4603 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4604 return V == nullptr; 4605 case ValID::t_APSInt: 4606 if (!Ty->isIntegerTy()) 4607 return Error(ID.Loc, "integer constant must have integer type"); 4608 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4609 V = ConstantInt::get(Context, ID.APSIntVal); 4610 return false; 4611 case ValID::t_APFloat: 4612 if (!Ty->isFloatingPointTy() || 4613 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4614 return Error(ID.Loc, "floating point constant invalid for type"); 4615 4616 // The lexer has no type info, so builds all half, float, and double FP 4617 // constants as double. Fix this here. Long double does not need this. 4618 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4619 bool Ignored; 4620 if (Ty->isHalfTy()) 4621 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4622 &Ignored); 4623 else if (Ty->isFloatTy()) 4624 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4625 &Ignored); 4626 } 4627 V = ConstantFP::get(Context, ID.APFloatVal); 4628 4629 if (V->getType() != Ty) 4630 return Error(ID.Loc, "floating point constant does not have type '" + 4631 getTypeString(Ty) + "'"); 4632 4633 return false; 4634 case ValID::t_Null: 4635 if (!Ty->isPointerTy()) 4636 return Error(ID.Loc, "null must be a pointer type"); 4637 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4638 return false; 4639 case ValID::t_Undef: 4640 // FIXME: LabelTy should not be a first-class type. 4641 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4642 return Error(ID.Loc, "invalid type for undef constant"); 4643 V = UndefValue::get(Ty); 4644 return false; 4645 case ValID::t_EmptyArray: 4646 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4647 return Error(ID.Loc, "invalid empty array initializer"); 4648 V = UndefValue::get(Ty); 4649 return false; 4650 case ValID::t_Zero: 4651 // FIXME: LabelTy should not be a first-class type. 4652 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4653 return Error(ID.Loc, "invalid type for null constant"); 4654 V = Constant::getNullValue(Ty); 4655 return false; 4656 case ValID::t_None: 4657 if (!Ty->isTokenTy()) 4658 return Error(ID.Loc, "invalid type for none constant"); 4659 V = Constant::getNullValue(Ty); 4660 return false; 4661 case ValID::t_Constant: 4662 if (ID.ConstantVal->getType() != Ty) 4663 return Error(ID.Loc, "constant expression type mismatch"); 4664 4665 V = ID.ConstantVal; 4666 return false; 4667 case ValID::t_ConstantStruct: 4668 case ValID::t_PackedConstantStruct: 4669 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4670 if (ST->getNumElements() != ID.UIntVal) 4671 return Error(ID.Loc, 4672 "initializer with struct type has wrong # elements"); 4673 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4674 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4675 4676 // Verify that the elements are compatible with the structtype. 4677 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4678 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4679 return Error(ID.Loc, "element " + Twine(i) + 4680 " of struct initializer doesn't match struct element type"); 4681 4682 V = ConstantStruct::get( 4683 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4684 } else 4685 return Error(ID.Loc, "constant expression type mismatch"); 4686 return false; 4687 } 4688 llvm_unreachable("Invalid ValID"); 4689 } 4690 4691 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4692 C = nullptr; 4693 ValID ID; 4694 auto Loc = Lex.getLoc(); 4695 if (ParseValID(ID, /*PFS=*/nullptr)) 4696 return true; 4697 switch (ID.Kind) { 4698 case ValID::t_APSInt: 4699 case ValID::t_APFloat: 4700 case ValID::t_Undef: 4701 case ValID::t_Constant: 4702 case ValID::t_ConstantStruct: 4703 case ValID::t_PackedConstantStruct: { 4704 Value *V; 4705 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4706 return true; 4707 assert(isa<Constant>(V) && "Expected a constant value"); 4708 C = cast<Constant>(V); 4709 return false; 4710 } 4711 case ValID::t_Null: 4712 C = Constant::getNullValue(Ty); 4713 return false; 4714 default: 4715 return Error(Loc, "expected a constant value"); 4716 } 4717 } 4718 4719 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4720 V = nullptr; 4721 ValID ID; 4722 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4723 } 4724 4725 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4726 Type *Ty = nullptr; 4727 return ParseType(Ty) || 4728 ParseValue(Ty, V, PFS); 4729 } 4730 4731 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4732 PerFunctionState &PFS) { 4733 Value *V; 4734 Loc = Lex.getLoc(); 4735 if (ParseTypeAndValue(V, PFS)) return true; 4736 if (!isa<BasicBlock>(V)) 4737 return Error(Loc, "expected a basic block"); 4738 BB = cast<BasicBlock>(V); 4739 return false; 4740 } 4741 4742 /// FunctionHeader 4743 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 4744 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 4745 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 4746 /// OptionalPrefix OptionalPrologue OptPersonalityFn 4747 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4748 // Parse the linkage. 4749 LocTy LinkageLoc = Lex.getLoc(); 4750 unsigned Linkage; 4751 unsigned Visibility; 4752 unsigned DLLStorageClass; 4753 bool DSOLocal; 4754 AttrBuilder RetAttrs; 4755 unsigned CC; 4756 bool HasLinkage; 4757 Type *RetType = nullptr; 4758 LocTy RetTypeLoc = Lex.getLoc(); 4759 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 4760 DSOLocal) || 4761 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4762 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4763 return true; 4764 4765 // Verify that the linkage is ok. 4766 switch ((GlobalValue::LinkageTypes)Linkage) { 4767 case GlobalValue::ExternalLinkage: 4768 break; // always ok. 4769 case GlobalValue::ExternalWeakLinkage: 4770 if (isDefine) 4771 return Error(LinkageLoc, "invalid linkage for function definition"); 4772 break; 4773 case GlobalValue::PrivateLinkage: 4774 case GlobalValue::InternalLinkage: 4775 case GlobalValue::AvailableExternallyLinkage: 4776 case GlobalValue::LinkOnceAnyLinkage: 4777 case GlobalValue::LinkOnceODRLinkage: 4778 case GlobalValue::WeakAnyLinkage: 4779 case GlobalValue::WeakODRLinkage: 4780 if (!isDefine) 4781 return Error(LinkageLoc, "invalid linkage for function declaration"); 4782 break; 4783 case GlobalValue::AppendingLinkage: 4784 case GlobalValue::CommonLinkage: 4785 return Error(LinkageLoc, "invalid function linkage type"); 4786 } 4787 4788 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4789 return Error(LinkageLoc, 4790 "symbol with local linkage must have default visibility"); 4791 4792 if (!FunctionType::isValidReturnType(RetType)) 4793 return Error(RetTypeLoc, "invalid function return type"); 4794 4795 LocTy NameLoc = Lex.getLoc(); 4796 4797 std::string FunctionName; 4798 if (Lex.getKind() == lltok::GlobalVar) { 4799 FunctionName = Lex.getStrVal(); 4800 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4801 unsigned NameID = Lex.getUIntVal(); 4802 4803 if (NameID != NumberedVals.size()) 4804 return TokError("function expected to be numbered '%" + 4805 Twine(NumberedVals.size()) + "'"); 4806 } else { 4807 return TokError("expected function name"); 4808 } 4809 4810 Lex.Lex(); 4811 4812 if (Lex.getKind() != lltok::lparen) 4813 return TokError("expected '(' in function argument list"); 4814 4815 SmallVector<ArgInfo, 8> ArgList; 4816 bool isVarArg; 4817 AttrBuilder FuncAttrs; 4818 std::vector<unsigned> FwdRefAttrGrps; 4819 LocTy BuiltinLoc; 4820 std::string Section; 4821 unsigned Alignment; 4822 std::string GC; 4823 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4824 Constant *Prefix = nullptr; 4825 Constant *Prologue = nullptr; 4826 Constant *PersonalityFn = nullptr; 4827 Comdat *C; 4828 4829 if (ParseArgumentList(ArgList, isVarArg) || 4830 ParseOptionalUnnamedAddr(UnnamedAddr) || 4831 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4832 BuiltinLoc) || 4833 (EatIfPresent(lltok::kw_section) && 4834 ParseStringConstant(Section)) || 4835 parseOptionalComdat(FunctionName, C) || 4836 ParseOptionalAlignment(Alignment) || 4837 (EatIfPresent(lltok::kw_gc) && 4838 ParseStringConstant(GC)) || 4839 (EatIfPresent(lltok::kw_prefix) && 4840 ParseGlobalTypeAndValue(Prefix)) || 4841 (EatIfPresent(lltok::kw_prologue) && 4842 ParseGlobalTypeAndValue(Prologue)) || 4843 (EatIfPresent(lltok::kw_personality) && 4844 ParseGlobalTypeAndValue(PersonalityFn))) 4845 return true; 4846 4847 if (FuncAttrs.contains(Attribute::Builtin)) 4848 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4849 4850 // If the alignment was parsed as an attribute, move to the alignment field. 4851 if (FuncAttrs.hasAlignmentAttr()) { 4852 Alignment = FuncAttrs.getAlignment(); 4853 FuncAttrs.removeAttribute(Attribute::Alignment); 4854 } 4855 4856 // Okay, if we got here, the function is syntactically valid. Convert types 4857 // and do semantic checks. 4858 std::vector<Type*> ParamTypeList; 4859 SmallVector<AttributeSet, 8> Attrs; 4860 4861 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4862 ParamTypeList.push_back(ArgList[i].Ty); 4863 Attrs.push_back(ArgList[i].Attrs); 4864 } 4865 4866 AttributeList PAL = 4867 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4868 AttributeSet::get(Context, RetAttrs), Attrs); 4869 4870 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4871 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4872 4873 FunctionType *FT = 4874 FunctionType::get(RetType, ParamTypeList, isVarArg); 4875 PointerType *PFT = PointerType::getUnqual(FT); 4876 4877 Fn = nullptr; 4878 if (!FunctionName.empty()) { 4879 // If this was a definition of a forward reference, remove the definition 4880 // from the forward reference table and fill in the forward ref. 4881 auto FRVI = ForwardRefVals.find(FunctionName); 4882 if (FRVI != ForwardRefVals.end()) { 4883 Fn = M->getFunction(FunctionName); 4884 if (!Fn) 4885 return Error(FRVI->second.second, "invalid forward reference to " 4886 "function as global value!"); 4887 if (Fn->getType() != PFT) 4888 return Error(FRVI->second.second, "invalid forward reference to " 4889 "function '" + FunctionName + "' with wrong type!"); 4890 4891 ForwardRefVals.erase(FRVI); 4892 } else if ((Fn = M->getFunction(FunctionName))) { 4893 // Reject redefinitions. 4894 return Error(NameLoc, "invalid redefinition of function '" + 4895 FunctionName + "'"); 4896 } else if (M->getNamedValue(FunctionName)) { 4897 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4898 } 4899 4900 } else { 4901 // If this is a definition of a forward referenced function, make sure the 4902 // types agree. 4903 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4904 if (I != ForwardRefValIDs.end()) { 4905 Fn = cast<Function>(I->second.first); 4906 if (Fn->getType() != PFT) 4907 return Error(NameLoc, "type of definition and forward reference of '@" + 4908 Twine(NumberedVals.size()) + "' disagree"); 4909 ForwardRefValIDs.erase(I); 4910 } 4911 } 4912 4913 if (!Fn) 4914 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4915 else // Move the forward-reference to the correct spot in the module. 4916 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4917 4918 if (FunctionName.empty()) 4919 NumberedVals.push_back(Fn); 4920 4921 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4922 Fn->setDSOLocal(DSOLocal); 4923 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4924 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4925 Fn->setCallingConv(CC); 4926 Fn->setAttributes(PAL); 4927 Fn->setUnnamedAddr(UnnamedAddr); 4928 Fn->setAlignment(Alignment); 4929 Fn->setSection(Section); 4930 Fn->setComdat(C); 4931 Fn->setPersonalityFn(PersonalityFn); 4932 if (!GC.empty()) Fn->setGC(GC); 4933 Fn->setPrefixData(Prefix); 4934 Fn->setPrologueData(Prologue); 4935 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4936 4937 // Add all of the arguments we parsed to the function. 4938 Function::arg_iterator ArgIt = Fn->arg_begin(); 4939 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4940 // If the argument has a name, insert it into the argument symbol table. 4941 if (ArgList[i].Name.empty()) continue; 4942 4943 // Set the name, if it conflicted, it will be auto-renamed. 4944 ArgIt->setName(ArgList[i].Name); 4945 4946 if (ArgIt->getName() != ArgList[i].Name) 4947 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4948 ArgList[i].Name + "'"); 4949 } 4950 4951 if (isDefine) 4952 return false; 4953 4954 // Check the declaration has no block address forward references. 4955 ValID ID; 4956 if (FunctionName.empty()) { 4957 ID.Kind = ValID::t_GlobalID; 4958 ID.UIntVal = NumberedVals.size() - 1; 4959 } else { 4960 ID.Kind = ValID::t_GlobalName; 4961 ID.StrVal = FunctionName; 4962 } 4963 auto Blocks = ForwardRefBlockAddresses.find(ID); 4964 if (Blocks != ForwardRefBlockAddresses.end()) 4965 return Error(Blocks->first.Loc, 4966 "cannot take blockaddress inside a declaration"); 4967 return false; 4968 } 4969 4970 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4971 ValID ID; 4972 if (FunctionNumber == -1) { 4973 ID.Kind = ValID::t_GlobalName; 4974 ID.StrVal = F.getName(); 4975 } else { 4976 ID.Kind = ValID::t_GlobalID; 4977 ID.UIntVal = FunctionNumber; 4978 } 4979 4980 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4981 if (Blocks == P.ForwardRefBlockAddresses.end()) 4982 return false; 4983 4984 for (const auto &I : Blocks->second) { 4985 const ValID &BBID = I.first; 4986 GlobalValue *GV = I.second; 4987 4988 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4989 "Expected local id or name"); 4990 BasicBlock *BB; 4991 if (BBID.Kind == ValID::t_LocalName) 4992 BB = GetBB(BBID.StrVal, BBID.Loc); 4993 else 4994 BB = GetBB(BBID.UIntVal, BBID.Loc); 4995 if (!BB) 4996 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4997 4998 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4999 GV->eraseFromParent(); 5000 } 5001 5002 P.ForwardRefBlockAddresses.erase(Blocks); 5003 return false; 5004 } 5005 5006 /// ParseFunctionBody 5007 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5008 bool LLParser::ParseFunctionBody(Function &Fn) { 5009 if (Lex.getKind() != lltok::lbrace) 5010 return TokError("expected '{' in function body"); 5011 Lex.Lex(); // eat the {. 5012 5013 int FunctionNumber = -1; 5014 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5015 5016 PerFunctionState PFS(*this, Fn, FunctionNumber); 5017 5018 // Resolve block addresses and allow basic blocks to be forward-declared 5019 // within this function. 5020 if (PFS.resolveForwardRefBlockAddresses()) 5021 return true; 5022 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5023 5024 // We need at least one basic block. 5025 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5026 return TokError("function body requires at least one basic block"); 5027 5028 while (Lex.getKind() != lltok::rbrace && 5029 Lex.getKind() != lltok::kw_uselistorder) 5030 if (ParseBasicBlock(PFS)) return true; 5031 5032 while (Lex.getKind() != lltok::rbrace) 5033 if (ParseUseListOrder(&PFS)) 5034 return true; 5035 5036 // Eat the }. 5037 Lex.Lex(); 5038 5039 // Verify function is ok. 5040 return PFS.FinishFunction(); 5041 } 5042 5043 /// ParseBasicBlock 5044 /// ::= LabelStr? Instruction* 5045 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5046 // If this basic block starts out with a name, remember it. 5047 std::string Name; 5048 LocTy NameLoc = Lex.getLoc(); 5049 if (Lex.getKind() == lltok::LabelStr) { 5050 Name = Lex.getStrVal(); 5051 Lex.Lex(); 5052 } 5053 5054 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5055 if (!BB) 5056 return Error(NameLoc, 5057 "unable to create block named '" + Name + "'"); 5058 5059 std::string NameStr; 5060 5061 // Parse the instructions in this block until we get a terminator. 5062 Instruction *Inst; 5063 do { 5064 // This instruction may have three possibilities for a name: a) none 5065 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5066 LocTy NameLoc = Lex.getLoc(); 5067 int NameID = -1; 5068 NameStr = ""; 5069 5070 if (Lex.getKind() == lltok::LocalVarID) { 5071 NameID = Lex.getUIntVal(); 5072 Lex.Lex(); 5073 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5074 return true; 5075 } else if (Lex.getKind() == lltok::LocalVar) { 5076 NameStr = Lex.getStrVal(); 5077 Lex.Lex(); 5078 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5079 return true; 5080 } 5081 5082 switch (ParseInstruction(Inst, BB, PFS)) { 5083 default: llvm_unreachable("Unknown ParseInstruction result!"); 5084 case InstError: return true; 5085 case InstNormal: 5086 BB->getInstList().push_back(Inst); 5087 5088 // With a normal result, we check to see if the instruction is followed by 5089 // a comma and metadata. 5090 if (EatIfPresent(lltok::comma)) 5091 if (ParseInstructionMetadata(*Inst)) 5092 return true; 5093 break; 5094 case InstExtraComma: 5095 BB->getInstList().push_back(Inst); 5096 5097 // If the instruction parser ate an extra comma at the end of it, it 5098 // *must* be followed by metadata. 5099 if (ParseInstructionMetadata(*Inst)) 5100 return true; 5101 break; 5102 } 5103 5104 // Set the name on the instruction. 5105 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5106 } while (!isa<TerminatorInst>(Inst)); 5107 5108 return false; 5109 } 5110 5111 //===----------------------------------------------------------------------===// 5112 // Instruction Parsing. 5113 //===----------------------------------------------------------------------===// 5114 5115 /// ParseInstruction - Parse one of the many different instructions. 5116 /// 5117 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5118 PerFunctionState &PFS) { 5119 lltok::Kind Token = Lex.getKind(); 5120 if (Token == lltok::Eof) 5121 return TokError("found end of file when expecting more instructions"); 5122 LocTy Loc = Lex.getLoc(); 5123 unsigned KeywordVal = Lex.getUIntVal(); 5124 Lex.Lex(); // Eat the keyword. 5125 5126 switch (Token) { 5127 default: return Error(Loc, "expected instruction opcode"); 5128 // Terminator Instructions. 5129 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5130 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5131 case lltok::kw_br: return ParseBr(Inst, PFS); 5132 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5133 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5134 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5135 case lltok::kw_resume: return ParseResume(Inst, PFS); 5136 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5137 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5138 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5139 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5140 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5141 // Binary Operators. 5142 case lltok::kw_add: 5143 case lltok::kw_sub: 5144 case lltok::kw_mul: 5145 case lltok::kw_shl: { 5146 bool NUW = EatIfPresent(lltok::kw_nuw); 5147 bool NSW = EatIfPresent(lltok::kw_nsw); 5148 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5149 5150 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5151 5152 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5153 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5154 return false; 5155 } 5156 case lltok::kw_fadd: 5157 case lltok::kw_fsub: 5158 case lltok::kw_fmul: 5159 case lltok::kw_fdiv: 5160 case lltok::kw_frem: { 5161 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5162 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5163 if (Res != 0) 5164 return Res; 5165 if (FMF.any()) 5166 Inst->setFastMathFlags(FMF); 5167 return 0; 5168 } 5169 5170 case lltok::kw_sdiv: 5171 case lltok::kw_udiv: 5172 case lltok::kw_lshr: 5173 case lltok::kw_ashr: { 5174 bool Exact = EatIfPresent(lltok::kw_exact); 5175 5176 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5177 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5178 return false; 5179 } 5180 5181 case lltok::kw_urem: 5182 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5183 case lltok::kw_and: 5184 case lltok::kw_or: 5185 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5186 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5187 case lltok::kw_fcmp: { 5188 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5189 int Res = ParseCompare(Inst, PFS, KeywordVal); 5190 if (Res != 0) 5191 return Res; 5192 if (FMF.any()) 5193 Inst->setFastMathFlags(FMF); 5194 return 0; 5195 } 5196 5197 // Casts. 5198 case lltok::kw_trunc: 5199 case lltok::kw_zext: 5200 case lltok::kw_sext: 5201 case lltok::kw_fptrunc: 5202 case lltok::kw_fpext: 5203 case lltok::kw_bitcast: 5204 case lltok::kw_addrspacecast: 5205 case lltok::kw_uitofp: 5206 case lltok::kw_sitofp: 5207 case lltok::kw_fptoui: 5208 case lltok::kw_fptosi: 5209 case lltok::kw_inttoptr: 5210 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5211 // Other. 5212 case lltok::kw_select: return ParseSelect(Inst, PFS); 5213 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5214 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5215 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5216 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5217 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5218 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5219 // Call. 5220 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5221 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5222 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5223 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5224 // Memory. 5225 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5226 case lltok::kw_load: return ParseLoad(Inst, PFS); 5227 case lltok::kw_store: return ParseStore(Inst, PFS); 5228 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5229 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5230 case lltok::kw_fence: return ParseFence(Inst, PFS); 5231 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5232 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5233 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5234 } 5235 } 5236 5237 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5238 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5239 if (Opc == Instruction::FCmp) { 5240 switch (Lex.getKind()) { 5241 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5242 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5243 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5244 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5245 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5246 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5247 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5248 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5249 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5250 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5251 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5252 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5253 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5254 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5255 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5256 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5257 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5258 } 5259 } else { 5260 switch (Lex.getKind()) { 5261 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5262 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5263 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5264 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5265 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5266 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5267 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5268 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5269 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5270 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5271 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5272 } 5273 } 5274 Lex.Lex(); 5275 return false; 5276 } 5277 5278 //===----------------------------------------------------------------------===// 5279 // Terminator Instructions. 5280 //===----------------------------------------------------------------------===// 5281 5282 /// ParseRet - Parse a return instruction. 5283 /// ::= 'ret' void (',' !dbg, !1)* 5284 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5285 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5286 PerFunctionState &PFS) { 5287 SMLoc TypeLoc = Lex.getLoc(); 5288 Type *Ty = nullptr; 5289 if (ParseType(Ty, true /*void allowed*/)) return true; 5290 5291 Type *ResType = PFS.getFunction().getReturnType(); 5292 5293 if (Ty->isVoidTy()) { 5294 if (!ResType->isVoidTy()) 5295 return Error(TypeLoc, "value doesn't match function result type '" + 5296 getTypeString(ResType) + "'"); 5297 5298 Inst = ReturnInst::Create(Context); 5299 return false; 5300 } 5301 5302 Value *RV; 5303 if (ParseValue(Ty, RV, PFS)) return true; 5304 5305 if (ResType != RV->getType()) 5306 return Error(TypeLoc, "value doesn't match function result type '" + 5307 getTypeString(ResType) + "'"); 5308 5309 Inst = ReturnInst::Create(Context, RV); 5310 return false; 5311 } 5312 5313 /// ParseBr 5314 /// ::= 'br' TypeAndValue 5315 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5316 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5317 LocTy Loc, Loc2; 5318 Value *Op0; 5319 BasicBlock *Op1, *Op2; 5320 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5321 5322 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5323 Inst = BranchInst::Create(BB); 5324 return false; 5325 } 5326 5327 if (Op0->getType() != Type::getInt1Ty(Context)) 5328 return Error(Loc, "branch condition must have 'i1' type"); 5329 5330 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5331 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5332 ParseToken(lltok::comma, "expected ',' after true destination") || 5333 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5334 return true; 5335 5336 Inst = BranchInst::Create(Op1, Op2, Op0); 5337 return false; 5338 } 5339 5340 /// ParseSwitch 5341 /// Instruction 5342 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5343 /// JumpTable 5344 /// ::= (TypeAndValue ',' TypeAndValue)* 5345 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5346 LocTy CondLoc, BBLoc; 5347 Value *Cond; 5348 BasicBlock *DefaultBB; 5349 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5350 ParseToken(lltok::comma, "expected ',' after switch condition") || 5351 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5352 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5353 return true; 5354 5355 if (!Cond->getType()->isIntegerTy()) 5356 return Error(CondLoc, "switch condition must have integer type"); 5357 5358 // Parse the jump table pairs. 5359 SmallPtrSet<Value*, 32> SeenCases; 5360 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5361 while (Lex.getKind() != lltok::rsquare) { 5362 Value *Constant; 5363 BasicBlock *DestBB; 5364 5365 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5366 ParseToken(lltok::comma, "expected ',' after case value") || 5367 ParseTypeAndBasicBlock(DestBB, PFS)) 5368 return true; 5369 5370 if (!SeenCases.insert(Constant).second) 5371 return Error(CondLoc, "duplicate case value in switch"); 5372 if (!isa<ConstantInt>(Constant)) 5373 return Error(CondLoc, "case value is not a constant integer"); 5374 5375 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5376 } 5377 5378 Lex.Lex(); // Eat the ']'. 5379 5380 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5381 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5382 SI->addCase(Table[i].first, Table[i].second); 5383 Inst = SI; 5384 return false; 5385 } 5386 5387 /// ParseIndirectBr 5388 /// Instruction 5389 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5390 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5391 LocTy AddrLoc; 5392 Value *Address; 5393 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5394 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5395 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5396 return true; 5397 5398 if (!Address->getType()->isPointerTy()) 5399 return Error(AddrLoc, "indirectbr address must have pointer type"); 5400 5401 // Parse the destination list. 5402 SmallVector<BasicBlock*, 16> DestList; 5403 5404 if (Lex.getKind() != lltok::rsquare) { 5405 BasicBlock *DestBB; 5406 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5407 return true; 5408 DestList.push_back(DestBB); 5409 5410 while (EatIfPresent(lltok::comma)) { 5411 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5412 return true; 5413 DestList.push_back(DestBB); 5414 } 5415 } 5416 5417 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5418 return true; 5419 5420 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5421 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5422 IBI->addDestination(DestList[i]); 5423 Inst = IBI; 5424 return false; 5425 } 5426 5427 /// ParseInvoke 5428 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5429 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5430 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5431 LocTy CallLoc = Lex.getLoc(); 5432 AttrBuilder RetAttrs, FnAttrs; 5433 std::vector<unsigned> FwdRefAttrGrps; 5434 LocTy NoBuiltinLoc; 5435 unsigned CC; 5436 Type *RetType = nullptr; 5437 LocTy RetTypeLoc; 5438 ValID CalleeID; 5439 SmallVector<ParamInfo, 16> ArgList; 5440 SmallVector<OperandBundleDef, 2> BundleList; 5441 5442 BasicBlock *NormalBB, *UnwindBB; 5443 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5444 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5445 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5446 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5447 NoBuiltinLoc) || 5448 ParseOptionalOperandBundles(BundleList, PFS) || 5449 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5450 ParseTypeAndBasicBlock(NormalBB, PFS) || 5451 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5452 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5453 return true; 5454 5455 // If RetType is a non-function pointer type, then this is the short syntax 5456 // for the call, which means that RetType is just the return type. Infer the 5457 // rest of the function argument types from the arguments that are present. 5458 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5459 if (!Ty) { 5460 // Pull out the types of all of the arguments... 5461 std::vector<Type*> ParamTypes; 5462 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5463 ParamTypes.push_back(ArgList[i].V->getType()); 5464 5465 if (!FunctionType::isValidReturnType(RetType)) 5466 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5467 5468 Ty = FunctionType::get(RetType, ParamTypes, false); 5469 } 5470 5471 CalleeID.FTy = Ty; 5472 5473 // Look up the callee. 5474 Value *Callee; 5475 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5476 return true; 5477 5478 // Set up the Attribute for the function. 5479 SmallVector<Value *, 8> Args; 5480 SmallVector<AttributeSet, 8> ArgAttrs; 5481 5482 // Loop through FunctionType's arguments and ensure they are specified 5483 // correctly. Also, gather any parameter attributes. 5484 FunctionType::param_iterator I = Ty->param_begin(); 5485 FunctionType::param_iterator E = Ty->param_end(); 5486 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5487 Type *ExpectedTy = nullptr; 5488 if (I != E) { 5489 ExpectedTy = *I++; 5490 } else if (!Ty->isVarArg()) { 5491 return Error(ArgList[i].Loc, "too many arguments specified"); 5492 } 5493 5494 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5495 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5496 getTypeString(ExpectedTy) + "'"); 5497 Args.push_back(ArgList[i].V); 5498 ArgAttrs.push_back(ArgList[i].Attrs); 5499 } 5500 5501 if (I != E) 5502 return Error(CallLoc, "not enough parameters specified for call"); 5503 5504 if (FnAttrs.hasAlignmentAttr()) 5505 return Error(CallLoc, "invoke instructions may not have an alignment"); 5506 5507 // Finish off the Attribute and check them 5508 AttributeList PAL = 5509 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5510 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5511 5512 InvokeInst *II = 5513 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5514 II->setCallingConv(CC); 5515 II->setAttributes(PAL); 5516 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5517 Inst = II; 5518 return false; 5519 } 5520 5521 /// ParseResume 5522 /// ::= 'resume' TypeAndValue 5523 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5524 Value *Exn; LocTy ExnLoc; 5525 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5526 return true; 5527 5528 ResumeInst *RI = ResumeInst::Create(Exn); 5529 Inst = RI; 5530 return false; 5531 } 5532 5533 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5534 PerFunctionState &PFS) { 5535 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5536 return true; 5537 5538 while (Lex.getKind() != lltok::rsquare) { 5539 // If this isn't the first argument, we need a comma. 5540 if (!Args.empty() && 5541 ParseToken(lltok::comma, "expected ',' in argument list")) 5542 return true; 5543 5544 // Parse the argument. 5545 LocTy ArgLoc; 5546 Type *ArgTy = nullptr; 5547 if (ParseType(ArgTy, ArgLoc)) 5548 return true; 5549 5550 Value *V; 5551 if (ArgTy->isMetadataTy()) { 5552 if (ParseMetadataAsValue(V, PFS)) 5553 return true; 5554 } else { 5555 if (ParseValue(ArgTy, V, PFS)) 5556 return true; 5557 } 5558 Args.push_back(V); 5559 } 5560 5561 Lex.Lex(); // Lex the ']'. 5562 return false; 5563 } 5564 5565 /// ParseCleanupRet 5566 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5567 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5568 Value *CleanupPad = nullptr; 5569 5570 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5571 return true; 5572 5573 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5574 return true; 5575 5576 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5577 return true; 5578 5579 BasicBlock *UnwindBB = nullptr; 5580 if (Lex.getKind() == lltok::kw_to) { 5581 Lex.Lex(); 5582 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5583 return true; 5584 } else { 5585 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5586 return true; 5587 } 5588 } 5589 5590 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5591 return false; 5592 } 5593 5594 /// ParseCatchRet 5595 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5596 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5597 Value *CatchPad = nullptr; 5598 5599 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5600 return true; 5601 5602 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5603 return true; 5604 5605 BasicBlock *BB; 5606 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5607 ParseTypeAndBasicBlock(BB, PFS)) 5608 return true; 5609 5610 Inst = CatchReturnInst::Create(CatchPad, BB); 5611 return false; 5612 } 5613 5614 /// ParseCatchSwitch 5615 /// ::= 'catchswitch' within Parent 5616 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5617 Value *ParentPad; 5618 5619 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5620 return true; 5621 5622 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5623 Lex.getKind() != lltok::LocalVarID) 5624 return TokError("expected scope value for catchswitch"); 5625 5626 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5627 return true; 5628 5629 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5630 return true; 5631 5632 SmallVector<BasicBlock *, 32> Table; 5633 do { 5634 BasicBlock *DestBB; 5635 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5636 return true; 5637 Table.push_back(DestBB); 5638 } while (EatIfPresent(lltok::comma)); 5639 5640 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5641 return true; 5642 5643 if (ParseToken(lltok::kw_unwind, 5644 "expected 'unwind' after catchswitch scope")) 5645 return true; 5646 5647 BasicBlock *UnwindBB = nullptr; 5648 if (EatIfPresent(lltok::kw_to)) { 5649 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5650 return true; 5651 } else { 5652 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5653 return true; 5654 } 5655 5656 auto *CatchSwitch = 5657 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5658 for (BasicBlock *DestBB : Table) 5659 CatchSwitch->addHandler(DestBB); 5660 Inst = CatchSwitch; 5661 return false; 5662 } 5663 5664 /// ParseCatchPad 5665 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5666 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5667 Value *CatchSwitch = nullptr; 5668 5669 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5670 return true; 5671 5672 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5673 return TokError("expected scope value for catchpad"); 5674 5675 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5676 return true; 5677 5678 SmallVector<Value *, 8> Args; 5679 if (ParseExceptionArgs(Args, PFS)) 5680 return true; 5681 5682 Inst = CatchPadInst::Create(CatchSwitch, Args); 5683 return false; 5684 } 5685 5686 /// ParseCleanupPad 5687 /// ::= 'cleanuppad' within Parent ParamList 5688 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5689 Value *ParentPad = nullptr; 5690 5691 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5692 return true; 5693 5694 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5695 Lex.getKind() != lltok::LocalVarID) 5696 return TokError("expected scope value for cleanuppad"); 5697 5698 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5699 return true; 5700 5701 SmallVector<Value *, 8> Args; 5702 if (ParseExceptionArgs(Args, PFS)) 5703 return true; 5704 5705 Inst = CleanupPadInst::Create(ParentPad, Args); 5706 return false; 5707 } 5708 5709 //===----------------------------------------------------------------------===// 5710 // Binary Operators. 5711 //===----------------------------------------------------------------------===// 5712 5713 /// ParseArithmetic 5714 /// ::= ArithmeticOps TypeAndValue ',' Value 5715 /// 5716 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5717 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5718 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5719 unsigned Opc, unsigned OperandType) { 5720 LocTy Loc; Value *LHS, *RHS; 5721 if (ParseTypeAndValue(LHS, Loc, PFS) || 5722 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5723 ParseValue(LHS->getType(), RHS, PFS)) 5724 return true; 5725 5726 bool Valid; 5727 switch (OperandType) { 5728 default: llvm_unreachable("Unknown operand type!"); 5729 case 0: // int or FP. 5730 Valid = LHS->getType()->isIntOrIntVectorTy() || 5731 LHS->getType()->isFPOrFPVectorTy(); 5732 break; 5733 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5734 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5735 } 5736 5737 if (!Valid) 5738 return Error(Loc, "invalid operand type for instruction"); 5739 5740 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5741 return false; 5742 } 5743 5744 /// ParseLogical 5745 /// ::= ArithmeticOps TypeAndValue ',' Value { 5746 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5747 unsigned Opc) { 5748 LocTy Loc; Value *LHS, *RHS; 5749 if (ParseTypeAndValue(LHS, Loc, PFS) || 5750 ParseToken(lltok::comma, "expected ',' in logical operation") || 5751 ParseValue(LHS->getType(), RHS, PFS)) 5752 return true; 5753 5754 if (!LHS->getType()->isIntOrIntVectorTy()) 5755 return Error(Loc,"instruction requires integer or integer vector operands"); 5756 5757 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5758 return false; 5759 } 5760 5761 /// ParseCompare 5762 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5763 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5764 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5765 unsigned Opc) { 5766 // Parse the integer/fp comparison predicate. 5767 LocTy Loc; 5768 unsigned Pred; 5769 Value *LHS, *RHS; 5770 if (ParseCmpPredicate(Pred, Opc) || 5771 ParseTypeAndValue(LHS, Loc, PFS) || 5772 ParseToken(lltok::comma, "expected ',' after compare value") || 5773 ParseValue(LHS->getType(), RHS, PFS)) 5774 return true; 5775 5776 if (Opc == Instruction::FCmp) { 5777 if (!LHS->getType()->isFPOrFPVectorTy()) 5778 return Error(Loc, "fcmp requires floating point operands"); 5779 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5780 } else { 5781 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5782 if (!LHS->getType()->isIntOrIntVectorTy() && 5783 !LHS->getType()->isPtrOrPtrVectorTy()) 5784 return Error(Loc, "icmp requires integer operands"); 5785 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5786 } 5787 return false; 5788 } 5789 5790 //===----------------------------------------------------------------------===// 5791 // Other Instructions. 5792 //===----------------------------------------------------------------------===// 5793 5794 5795 /// ParseCast 5796 /// ::= CastOpc TypeAndValue 'to' Type 5797 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5798 unsigned Opc) { 5799 LocTy Loc; 5800 Value *Op; 5801 Type *DestTy = nullptr; 5802 if (ParseTypeAndValue(Op, Loc, PFS) || 5803 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5804 ParseType(DestTy)) 5805 return true; 5806 5807 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5808 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5809 return Error(Loc, "invalid cast opcode for cast from '" + 5810 getTypeString(Op->getType()) + "' to '" + 5811 getTypeString(DestTy) + "'"); 5812 } 5813 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5814 return false; 5815 } 5816 5817 /// ParseSelect 5818 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5819 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5820 LocTy Loc; 5821 Value *Op0, *Op1, *Op2; 5822 if (ParseTypeAndValue(Op0, Loc, PFS) || 5823 ParseToken(lltok::comma, "expected ',' after select condition") || 5824 ParseTypeAndValue(Op1, PFS) || 5825 ParseToken(lltok::comma, "expected ',' after select value") || 5826 ParseTypeAndValue(Op2, PFS)) 5827 return true; 5828 5829 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5830 return Error(Loc, Reason); 5831 5832 Inst = SelectInst::Create(Op0, Op1, Op2); 5833 return false; 5834 } 5835 5836 /// ParseVA_Arg 5837 /// ::= 'va_arg' TypeAndValue ',' Type 5838 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5839 Value *Op; 5840 Type *EltTy = nullptr; 5841 LocTy TypeLoc; 5842 if (ParseTypeAndValue(Op, PFS) || 5843 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5844 ParseType(EltTy, TypeLoc)) 5845 return true; 5846 5847 if (!EltTy->isFirstClassType()) 5848 return Error(TypeLoc, "va_arg requires operand with first class type"); 5849 5850 Inst = new VAArgInst(Op, EltTy); 5851 return false; 5852 } 5853 5854 /// ParseExtractElement 5855 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5856 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5857 LocTy Loc; 5858 Value *Op0, *Op1; 5859 if (ParseTypeAndValue(Op0, Loc, PFS) || 5860 ParseToken(lltok::comma, "expected ',' after extract value") || 5861 ParseTypeAndValue(Op1, PFS)) 5862 return true; 5863 5864 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5865 return Error(Loc, "invalid extractelement operands"); 5866 5867 Inst = ExtractElementInst::Create(Op0, Op1); 5868 return false; 5869 } 5870 5871 /// ParseInsertElement 5872 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5873 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5874 LocTy Loc; 5875 Value *Op0, *Op1, *Op2; 5876 if (ParseTypeAndValue(Op0, Loc, PFS) || 5877 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5878 ParseTypeAndValue(Op1, PFS) || 5879 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5880 ParseTypeAndValue(Op2, PFS)) 5881 return true; 5882 5883 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5884 return Error(Loc, "invalid insertelement operands"); 5885 5886 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5887 return false; 5888 } 5889 5890 /// ParseShuffleVector 5891 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5892 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5893 LocTy Loc; 5894 Value *Op0, *Op1, *Op2; 5895 if (ParseTypeAndValue(Op0, Loc, PFS) || 5896 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5897 ParseTypeAndValue(Op1, PFS) || 5898 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5899 ParseTypeAndValue(Op2, PFS)) 5900 return true; 5901 5902 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5903 return Error(Loc, "invalid shufflevector operands"); 5904 5905 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5906 return false; 5907 } 5908 5909 /// ParsePHI 5910 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5911 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5912 Type *Ty = nullptr; LocTy TypeLoc; 5913 Value *Op0, *Op1; 5914 5915 if (ParseType(Ty, TypeLoc) || 5916 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5917 ParseValue(Ty, Op0, PFS) || 5918 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5919 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5920 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5921 return true; 5922 5923 bool AteExtraComma = false; 5924 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5925 5926 while (true) { 5927 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5928 5929 if (!EatIfPresent(lltok::comma)) 5930 break; 5931 5932 if (Lex.getKind() == lltok::MetadataVar) { 5933 AteExtraComma = true; 5934 break; 5935 } 5936 5937 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5938 ParseValue(Ty, Op0, PFS) || 5939 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5940 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5941 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5942 return true; 5943 } 5944 5945 if (!Ty->isFirstClassType()) 5946 return Error(TypeLoc, "phi node must have first class type"); 5947 5948 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5949 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5950 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5951 Inst = PN; 5952 return AteExtraComma ? InstExtraComma : InstNormal; 5953 } 5954 5955 /// ParseLandingPad 5956 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5957 /// Clause 5958 /// ::= 'catch' TypeAndValue 5959 /// ::= 'filter' 5960 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5961 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5962 Type *Ty = nullptr; LocTy TyLoc; 5963 5964 if (ParseType(Ty, TyLoc)) 5965 return true; 5966 5967 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5968 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5969 5970 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5971 LandingPadInst::ClauseType CT; 5972 if (EatIfPresent(lltok::kw_catch)) 5973 CT = LandingPadInst::Catch; 5974 else if (EatIfPresent(lltok::kw_filter)) 5975 CT = LandingPadInst::Filter; 5976 else 5977 return TokError("expected 'catch' or 'filter' clause type"); 5978 5979 Value *V; 5980 LocTy VLoc; 5981 if (ParseTypeAndValue(V, VLoc, PFS)) 5982 return true; 5983 5984 // A 'catch' type expects a non-array constant. A filter clause expects an 5985 // array constant. 5986 if (CT == LandingPadInst::Catch) { 5987 if (isa<ArrayType>(V->getType())) 5988 Error(VLoc, "'catch' clause has an invalid type"); 5989 } else { 5990 if (!isa<ArrayType>(V->getType())) 5991 Error(VLoc, "'filter' clause has an invalid type"); 5992 } 5993 5994 Constant *CV = dyn_cast<Constant>(V); 5995 if (!CV) 5996 return Error(VLoc, "clause argument must be a constant"); 5997 LP->addClause(CV); 5998 } 5999 6000 Inst = LP.release(); 6001 return false; 6002 } 6003 6004 /// ParseCall 6005 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6006 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6007 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6008 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6009 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6010 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6011 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6012 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6013 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6014 CallInst::TailCallKind TCK) { 6015 AttrBuilder RetAttrs, FnAttrs; 6016 std::vector<unsigned> FwdRefAttrGrps; 6017 LocTy BuiltinLoc; 6018 unsigned CC; 6019 Type *RetType = nullptr; 6020 LocTy RetTypeLoc; 6021 ValID CalleeID; 6022 SmallVector<ParamInfo, 16> ArgList; 6023 SmallVector<OperandBundleDef, 2> BundleList; 6024 LocTy CallLoc = Lex.getLoc(); 6025 6026 if (TCK != CallInst::TCK_None && 6027 ParseToken(lltok::kw_call, 6028 "expected 'tail call', 'musttail call', or 'notail call'")) 6029 return true; 6030 6031 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6032 6033 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6034 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6035 ParseValID(CalleeID) || 6036 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6037 PFS.getFunction().isVarArg()) || 6038 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6039 ParseOptionalOperandBundles(BundleList, PFS)) 6040 return true; 6041 6042 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6043 return Error(CallLoc, "fast-math-flags specified for call without " 6044 "floating-point scalar or vector return type"); 6045 6046 // If RetType is a non-function pointer type, then this is the short syntax 6047 // for the call, which means that RetType is just the return type. Infer the 6048 // rest of the function argument types from the arguments that are present. 6049 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6050 if (!Ty) { 6051 // Pull out the types of all of the arguments... 6052 std::vector<Type*> ParamTypes; 6053 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6054 ParamTypes.push_back(ArgList[i].V->getType()); 6055 6056 if (!FunctionType::isValidReturnType(RetType)) 6057 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6058 6059 Ty = FunctionType::get(RetType, ParamTypes, false); 6060 } 6061 6062 CalleeID.FTy = Ty; 6063 6064 // Look up the callee. 6065 Value *Callee; 6066 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6067 return true; 6068 6069 // Set up the Attribute for the function. 6070 SmallVector<AttributeSet, 8> Attrs; 6071 6072 SmallVector<Value*, 8> Args; 6073 6074 // Loop through FunctionType's arguments and ensure they are specified 6075 // correctly. Also, gather any parameter attributes. 6076 FunctionType::param_iterator I = Ty->param_begin(); 6077 FunctionType::param_iterator E = Ty->param_end(); 6078 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6079 Type *ExpectedTy = nullptr; 6080 if (I != E) { 6081 ExpectedTy = *I++; 6082 } else if (!Ty->isVarArg()) { 6083 return Error(ArgList[i].Loc, "too many arguments specified"); 6084 } 6085 6086 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6087 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6088 getTypeString(ExpectedTy) + "'"); 6089 Args.push_back(ArgList[i].V); 6090 Attrs.push_back(ArgList[i].Attrs); 6091 } 6092 6093 if (I != E) 6094 return Error(CallLoc, "not enough parameters specified for call"); 6095 6096 if (FnAttrs.hasAlignmentAttr()) 6097 return Error(CallLoc, "call instructions may not have an alignment"); 6098 6099 // Finish off the Attribute and check them 6100 AttributeList PAL = 6101 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6102 AttributeSet::get(Context, RetAttrs), Attrs); 6103 6104 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6105 CI->setTailCallKind(TCK); 6106 CI->setCallingConv(CC); 6107 if (FMF.any()) 6108 CI->setFastMathFlags(FMF); 6109 CI->setAttributes(PAL); 6110 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6111 Inst = CI; 6112 return false; 6113 } 6114 6115 //===----------------------------------------------------------------------===// 6116 // Memory Instructions. 6117 //===----------------------------------------------------------------------===// 6118 6119 /// ParseAlloc 6120 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6121 /// (',' 'align' i32)? (',', 'addrspace(n))? 6122 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6123 Value *Size = nullptr; 6124 LocTy SizeLoc, TyLoc, ASLoc; 6125 unsigned Alignment = 0; 6126 unsigned AddrSpace = 0; 6127 Type *Ty = nullptr; 6128 6129 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6130 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6131 6132 if (ParseType(Ty, TyLoc)) return true; 6133 6134 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6135 return Error(TyLoc, "invalid type for alloca"); 6136 6137 bool AteExtraComma = false; 6138 if (EatIfPresent(lltok::comma)) { 6139 if (Lex.getKind() == lltok::kw_align) { 6140 if (ParseOptionalAlignment(Alignment)) 6141 return true; 6142 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6143 return true; 6144 } else if (Lex.getKind() == lltok::kw_addrspace) { 6145 ASLoc = Lex.getLoc(); 6146 if (ParseOptionalAddrSpace(AddrSpace)) 6147 return true; 6148 } else if (Lex.getKind() == lltok::MetadataVar) { 6149 AteExtraComma = true; 6150 } else { 6151 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6152 return true; 6153 if (EatIfPresent(lltok::comma)) { 6154 if (Lex.getKind() == lltok::kw_align) { 6155 if (ParseOptionalAlignment(Alignment)) 6156 return true; 6157 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6158 return true; 6159 } else if (Lex.getKind() == lltok::kw_addrspace) { 6160 ASLoc = Lex.getLoc(); 6161 if (ParseOptionalAddrSpace(AddrSpace)) 6162 return true; 6163 } else if (Lex.getKind() == lltok::MetadataVar) { 6164 AteExtraComma = true; 6165 } 6166 } 6167 } 6168 } 6169 6170 if (Size && !Size->getType()->isIntegerTy()) 6171 return Error(SizeLoc, "element count must have integer type"); 6172 6173 const DataLayout &DL = M->getDataLayout(); 6174 unsigned AS = DL.getAllocaAddrSpace(); 6175 if (AS != AddrSpace) { 6176 // TODO: In the future it should be possible to specify addrspace per-alloca. 6177 return Error(ASLoc, "address space must match datalayout"); 6178 } 6179 6180 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment); 6181 AI->setUsedWithInAlloca(IsInAlloca); 6182 AI->setSwiftError(IsSwiftError); 6183 Inst = AI; 6184 return AteExtraComma ? InstExtraComma : InstNormal; 6185 } 6186 6187 /// ParseLoad 6188 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6189 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6190 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6191 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6192 Value *Val; LocTy Loc; 6193 unsigned Alignment = 0; 6194 bool AteExtraComma = false; 6195 bool isAtomic = false; 6196 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6197 SyncScope::ID SSID = SyncScope::System; 6198 6199 if (Lex.getKind() == lltok::kw_atomic) { 6200 isAtomic = true; 6201 Lex.Lex(); 6202 } 6203 6204 bool isVolatile = false; 6205 if (Lex.getKind() == lltok::kw_volatile) { 6206 isVolatile = true; 6207 Lex.Lex(); 6208 } 6209 6210 Type *Ty; 6211 LocTy ExplicitTypeLoc = Lex.getLoc(); 6212 if (ParseType(Ty) || 6213 ParseToken(lltok::comma, "expected comma after load's type") || 6214 ParseTypeAndValue(Val, Loc, PFS) || 6215 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6216 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6217 return true; 6218 6219 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6220 return Error(Loc, "load operand must be a pointer to a first class type"); 6221 if (isAtomic && !Alignment) 6222 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6223 if (Ordering == AtomicOrdering::Release || 6224 Ordering == AtomicOrdering::AcquireRelease) 6225 return Error(Loc, "atomic load cannot use Release ordering"); 6226 6227 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6228 return Error(ExplicitTypeLoc, 6229 "explicit pointee type doesn't match operand's pointee type"); 6230 6231 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6232 return AteExtraComma ? InstExtraComma : InstNormal; 6233 } 6234 6235 /// ParseStore 6236 6237 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6238 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6239 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6240 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6241 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6242 unsigned Alignment = 0; 6243 bool AteExtraComma = false; 6244 bool isAtomic = false; 6245 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6246 SyncScope::ID SSID = SyncScope::System; 6247 6248 if (Lex.getKind() == lltok::kw_atomic) { 6249 isAtomic = true; 6250 Lex.Lex(); 6251 } 6252 6253 bool isVolatile = false; 6254 if (Lex.getKind() == lltok::kw_volatile) { 6255 isVolatile = true; 6256 Lex.Lex(); 6257 } 6258 6259 if (ParseTypeAndValue(Val, Loc, PFS) || 6260 ParseToken(lltok::comma, "expected ',' after store operand") || 6261 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6262 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6263 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6264 return true; 6265 6266 if (!Ptr->getType()->isPointerTy()) 6267 return Error(PtrLoc, "store operand must be a pointer"); 6268 if (!Val->getType()->isFirstClassType()) 6269 return Error(Loc, "store operand must be a first class value"); 6270 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6271 return Error(Loc, "stored value and pointer type do not match"); 6272 if (isAtomic && !Alignment) 6273 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6274 if (Ordering == AtomicOrdering::Acquire || 6275 Ordering == AtomicOrdering::AcquireRelease) 6276 return Error(Loc, "atomic store cannot use Acquire ordering"); 6277 6278 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6279 return AteExtraComma ? InstExtraComma : InstNormal; 6280 } 6281 6282 /// ParseCmpXchg 6283 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6284 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6285 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6286 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6287 bool AteExtraComma = false; 6288 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6289 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6290 SyncScope::ID SSID = SyncScope::System; 6291 bool isVolatile = false; 6292 bool isWeak = false; 6293 6294 if (EatIfPresent(lltok::kw_weak)) 6295 isWeak = true; 6296 6297 if (EatIfPresent(lltok::kw_volatile)) 6298 isVolatile = true; 6299 6300 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6301 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6302 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6303 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6304 ParseTypeAndValue(New, NewLoc, PFS) || 6305 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6306 ParseOrdering(FailureOrdering)) 6307 return true; 6308 6309 if (SuccessOrdering == AtomicOrdering::Unordered || 6310 FailureOrdering == AtomicOrdering::Unordered) 6311 return TokError("cmpxchg cannot be unordered"); 6312 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6313 return TokError("cmpxchg failure argument shall be no stronger than the " 6314 "success argument"); 6315 if (FailureOrdering == AtomicOrdering::Release || 6316 FailureOrdering == AtomicOrdering::AcquireRelease) 6317 return TokError( 6318 "cmpxchg failure ordering cannot include release semantics"); 6319 if (!Ptr->getType()->isPointerTy()) 6320 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6321 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6322 return Error(CmpLoc, "compare value and pointer type do not match"); 6323 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6324 return Error(NewLoc, "new value and pointer type do not match"); 6325 if (!New->getType()->isFirstClassType()) 6326 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6327 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6328 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6329 CXI->setVolatile(isVolatile); 6330 CXI->setWeak(isWeak); 6331 Inst = CXI; 6332 return AteExtraComma ? InstExtraComma : InstNormal; 6333 } 6334 6335 /// ParseAtomicRMW 6336 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6337 /// 'singlethread'? AtomicOrdering 6338 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6339 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6340 bool AteExtraComma = false; 6341 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6342 SyncScope::ID SSID = SyncScope::System; 6343 bool isVolatile = false; 6344 AtomicRMWInst::BinOp Operation; 6345 6346 if (EatIfPresent(lltok::kw_volatile)) 6347 isVolatile = true; 6348 6349 switch (Lex.getKind()) { 6350 default: return TokError("expected binary operation in atomicrmw"); 6351 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6352 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6353 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6354 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6355 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6356 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6357 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6358 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6359 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6360 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6361 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6362 } 6363 Lex.Lex(); // Eat the operation. 6364 6365 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6366 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6367 ParseTypeAndValue(Val, ValLoc, PFS) || 6368 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6369 return true; 6370 6371 if (Ordering == AtomicOrdering::Unordered) 6372 return TokError("atomicrmw cannot be unordered"); 6373 if (!Ptr->getType()->isPointerTy()) 6374 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6375 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6376 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6377 if (!Val->getType()->isIntegerTy()) 6378 return Error(ValLoc, "atomicrmw operand must be an integer"); 6379 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6380 if (Size < 8 || (Size & (Size - 1))) 6381 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6382 " integer"); 6383 6384 AtomicRMWInst *RMWI = 6385 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6386 RMWI->setVolatile(isVolatile); 6387 Inst = RMWI; 6388 return AteExtraComma ? InstExtraComma : InstNormal; 6389 } 6390 6391 /// ParseFence 6392 /// ::= 'fence' 'singlethread'? AtomicOrdering 6393 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6394 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6395 SyncScope::ID SSID = SyncScope::System; 6396 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6397 return true; 6398 6399 if (Ordering == AtomicOrdering::Unordered) 6400 return TokError("fence cannot be unordered"); 6401 if (Ordering == AtomicOrdering::Monotonic) 6402 return TokError("fence cannot be monotonic"); 6403 6404 Inst = new FenceInst(Context, Ordering, SSID); 6405 return InstNormal; 6406 } 6407 6408 /// ParseGetElementPtr 6409 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6410 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6411 Value *Ptr = nullptr; 6412 Value *Val = nullptr; 6413 LocTy Loc, EltLoc; 6414 6415 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6416 6417 Type *Ty = nullptr; 6418 LocTy ExplicitTypeLoc = Lex.getLoc(); 6419 if (ParseType(Ty) || 6420 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6421 ParseTypeAndValue(Ptr, Loc, PFS)) 6422 return true; 6423 6424 Type *BaseType = Ptr->getType(); 6425 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6426 if (!BasePointerType) 6427 return Error(Loc, "base of getelementptr must be a pointer"); 6428 6429 if (Ty != BasePointerType->getElementType()) 6430 return Error(ExplicitTypeLoc, 6431 "explicit pointee type doesn't match operand's pointee type"); 6432 6433 SmallVector<Value*, 16> Indices; 6434 bool AteExtraComma = false; 6435 // GEP returns a vector of pointers if at least one of parameters is a vector. 6436 // All vector parameters should have the same vector width. 6437 unsigned GEPWidth = BaseType->isVectorTy() ? 6438 BaseType->getVectorNumElements() : 0; 6439 6440 while (EatIfPresent(lltok::comma)) { 6441 if (Lex.getKind() == lltok::MetadataVar) { 6442 AteExtraComma = true; 6443 break; 6444 } 6445 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6446 if (!Val->getType()->isIntOrIntVectorTy()) 6447 return Error(EltLoc, "getelementptr index must be an integer"); 6448 6449 if (Val->getType()->isVectorTy()) { 6450 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6451 if (GEPWidth && GEPWidth != ValNumEl) 6452 return Error(EltLoc, 6453 "getelementptr vector index has a wrong number of elements"); 6454 GEPWidth = ValNumEl; 6455 } 6456 Indices.push_back(Val); 6457 } 6458 6459 SmallPtrSet<Type*, 4> Visited; 6460 if (!Indices.empty() && !Ty->isSized(&Visited)) 6461 return Error(Loc, "base element of getelementptr must be sized"); 6462 6463 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6464 return Error(Loc, "invalid getelementptr indices"); 6465 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6466 if (InBounds) 6467 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6468 return AteExtraComma ? InstExtraComma : InstNormal; 6469 } 6470 6471 /// ParseExtractValue 6472 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6473 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6474 Value *Val; LocTy Loc; 6475 SmallVector<unsigned, 4> Indices; 6476 bool AteExtraComma; 6477 if (ParseTypeAndValue(Val, Loc, PFS) || 6478 ParseIndexList(Indices, AteExtraComma)) 6479 return true; 6480 6481 if (!Val->getType()->isAggregateType()) 6482 return Error(Loc, "extractvalue operand must be aggregate type"); 6483 6484 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6485 return Error(Loc, "invalid indices for extractvalue"); 6486 Inst = ExtractValueInst::Create(Val, Indices); 6487 return AteExtraComma ? InstExtraComma : InstNormal; 6488 } 6489 6490 /// ParseInsertValue 6491 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6492 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6493 Value *Val0, *Val1; LocTy Loc0, Loc1; 6494 SmallVector<unsigned, 4> Indices; 6495 bool AteExtraComma; 6496 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6497 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6498 ParseTypeAndValue(Val1, Loc1, PFS) || 6499 ParseIndexList(Indices, AteExtraComma)) 6500 return true; 6501 6502 if (!Val0->getType()->isAggregateType()) 6503 return Error(Loc0, "insertvalue operand must be aggregate type"); 6504 6505 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6506 if (!IndexedType) 6507 return Error(Loc0, "invalid indices for insertvalue"); 6508 if (IndexedType != Val1->getType()) 6509 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6510 getTypeString(Val1->getType()) + "' instead of '" + 6511 getTypeString(IndexedType) + "'"); 6512 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6513 return AteExtraComma ? InstExtraComma : InstNormal; 6514 } 6515 6516 //===----------------------------------------------------------------------===// 6517 // Embedded metadata. 6518 //===----------------------------------------------------------------------===// 6519 6520 /// ParseMDNodeVector 6521 /// ::= { Element (',' Element)* } 6522 /// Element 6523 /// ::= 'null' | TypeAndValue 6524 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6525 if (ParseToken(lltok::lbrace, "expected '{' here")) 6526 return true; 6527 6528 // Check for an empty list. 6529 if (EatIfPresent(lltok::rbrace)) 6530 return false; 6531 6532 do { 6533 // Null is a special case since it is typeless. 6534 if (EatIfPresent(lltok::kw_null)) { 6535 Elts.push_back(nullptr); 6536 continue; 6537 } 6538 6539 Metadata *MD; 6540 if (ParseMetadata(MD, nullptr)) 6541 return true; 6542 Elts.push_back(MD); 6543 } while (EatIfPresent(lltok::comma)); 6544 6545 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6546 } 6547 6548 //===----------------------------------------------------------------------===// 6549 // Use-list order directives. 6550 //===----------------------------------------------------------------------===// 6551 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6552 SMLoc Loc) { 6553 if (V->use_empty()) 6554 return Error(Loc, "value has no uses"); 6555 6556 unsigned NumUses = 0; 6557 SmallDenseMap<const Use *, unsigned, 16> Order; 6558 for (const Use &U : V->uses()) { 6559 if (++NumUses > Indexes.size()) 6560 break; 6561 Order[&U] = Indexes[NumUses - 1]; 6562 } 6563 if (NumUses < 2) 6564 return Error(Loc, "value only has one use"); 6565 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6566 return Error(Loc, "wrong number of indexes, expected " + 6567 Twine(std::distance(V->use_begin(), V->use_end()))); 6568 6569 V->sortUseList([&](const Use &L, const Use &R) { 6570 return Order.lookup(&L) < Order.lookup(&R); 6571 }); 6572 return false; 6573 } 6574 6575 /// ParseUseListOrderIndexes 6576 /// ::= '{' uint32 (',' uint32)+ '}' 6577 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6578 SMLoc Loc = Lex.getLoc(); 6579 if (ParseToken(lltok::lbrace, "expected '{' here")) 6580 return true; 6581 if (Lex.getKind() == lltok::rbrace) 6582 return Lex.Error("expected non-empty list of uselistorder indexes"); 6583 6584 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6585 // indexes should be distinct numbers in the range [0, size-1], and should 6586 // not be in order. 6587 unsigned Offset = 0; 6588 unsigned Max = 0; 6589 bool IsOrdered = true; 6590 assert(Indexes.empty() && "Expected empty order vector"); 6591 do { 6592 unsigned Index; 6593 if (ParseUInt32(Index)) 6594 return true; 6595 6596 // Update consistency checks. 6597 Offset += Index - Indexes.size(); 6598 Max = std::max(Max, Index); 6599 IsOrdered &= Index == Indexes.size(); 6600 6601 Indexes.push_back(Index); 6602 } while (EatIfPresent(lltok::comma)); 6603 6604 if (ParseToken(lltok::rbrace, "expected '}' here")) 6605 return true; 6606 6607 if (Indexes.size() < 2) 6608 return Error(Loc, "expected >= 2 uselistorder indexes"); 6609 if (Offset != 0 || Max >= Indexes.size()) 6610 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6611 if (IsOrdered) 6612 return Error(Loc, "expected uselistorder indexes to change the order"); 6613 6614 return false; 6615 } 6616 6617 /// ParseUseListOrder 6618 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6619 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6620 SMLoc Loc = Lex.getLoc(); 6621 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6622 return true; 6623 6624 Value *V; 6625 SmallVector<unsigned, 16> Indexes; 6626 if (ParseTypeAndValue(V, PFS) || 6627 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6628 ParseUseListOrderIndexes(Indexes)) 6629 return true; 6630 6631 return sortUseListOrder(V, Indexes, Loc); 6632 } 6633 6634 /// ParseUseListOrderBB 6635 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6636 bool LLParser::ParseUseListOrderBB() { 6637 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6638 SMLoc Loc = Lex.getLoc(); 6639 Lex.Lex(); 6640 6641 ValID Fn, Label; 6642 SmallVector<unsigned, 16> Indexes; 6643 if (ParseValID(Fn) || 6644 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6645 ParseValID(Label) || 6646 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6647 ParseUseListOrderIndexes(Indexes)) 6648 return true; 6649 6650 // Check the function. 6651 GlobalValue *GV; 6652 if (Fn.Kind == ValID::t_GlobalName) 6653 GV = M->getNamedValue(Fn.StrVal); 6654 else if (Fn.Kind == ValID::t_GlobalID) 6655 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6656 else 6657 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6658 if (!GV) 6659 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6660 auto *F = dyn_cast<Function>(GV); 6661 if (!F) 6662 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6663 if (F->isDeclaration()) 6664 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6665 6666 // Check the basic block. 6667 if (Label.Kind == ValID::t_LocalID) 6668 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6669 if (Label.Kind != ValID::t_LocalName) 6670 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6671 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6672 if (!V) 6673 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6674 if (!isa<BasicBlock>(V)) 6675 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6676 6677 return sortUseListOrder(V, Indexes, Loc); 6678 } 6679