1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (ParseTargetDefinitions()) 75 return true; 76 } 77 78 return ParseTopLevelEntities() || ValidateEndOfModule() || 79 ValidateEndOfIndex(); 80 } 81 82 bool LLParser::parseStandaloneConstantValue(Constant *&C, 83 const SlotMapping *Slots) { 84 restoreParsingState(Slots); 85 Lex.Lex(); 86 87 Type *Ty = nullptr; 88 if (ParseType(Ty) || parseConstantValue(Ty, C)) 89 return true; 90 if (Lex.getKind() != lltok::Eof) 91 return Error(Lex.getLoc(), "expected end of string"); 92 return false; 93 } 94 95 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 96 const SlotMapping *Slots) { 97 restoreParsingState(Slots); 98 Lex.Lex(); 99 100 Read = 0; 101 SMLoc Start = Lex.getLoc(); 102 Ty = nullptr; 103 if (ParseType(Ty)) 104 return true; 105 SMLoc End = Lex.getLoc(); 106 Read = End.getPointer() - Start.getPointer(); 107 108 return false; 109 } 110 111 void LLParser::restoreParsingState(const SlotMapping *Slots) { 112 if (!Slots) 113 return; 114 NumberedVals = Slots->GlobalValues; 115 NumberedMetadata = Slots->MetadataNodes; 116 for (const auto &I : Slots->NamedTypes) 117 NamedTypes.insert( 118 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 119 for (const auto &I : Slots->Types) 120 NumberedTypes.insert( 121 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 122 } 123 124 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 125 /// module. 126 bool LLParser::ValidateEndOfModule() { 127 if (!M) 128 return false; 129 // Handle any function attribute group forward references. 130 for (const auto &RAG : ForwardRefAttrGroups) { 131 Value *V = RAG.first; 132 const std::vector<unsigned> &Attrs = RAG.second; 133 AttrBuilder B; 134 135 for (const auto &Attr : Attrs) 136 B.merge(NumberedAttrBuilders[Attr]); 137 138 if (Function *Fn = dyn_cast<Function>(V)) { 139 AttributeList AS = Fn->getAttributes(); 140 AttrBuilder FnAttrs(AS.getFnAttributes()); 141 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 142 143 FnAttrs.merge(B); 144 145 // If the alignment was parsed as an attribute, move to the alignment 146 // field. 147 if (FnAttrs.hasAlignmentAttr()) { 148 Fn->setAlignment(FnAttrs.getAlignment()); 149 FnAttrs.removeAttribute(Attribute::Alignment); 150 } 151 152 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 153 AttributeSet::get(Context, FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeList AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes()); 158 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 159 FnAttrs.merge(B); 160 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 161 AttributeSet::get(Context, FnAttrs)); 162 CI->setAttributes(AS); 163 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 164 AttributeList AS = II->getAttributes(); 165 AttrBuilder FnAttrs(AS.getFnAttributes()); 166 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 167 FnAttrs.merge(B); 168 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 169 AttributeSet::get(Context, FnAttrs)); 170 II->setAttributes(AS); 171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 172 AttributeList AS = CBI->getAttributes(); 173 AttrBuilder FnAttrs(AS.getFnAttributes()); 174 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 175 FnAttrs.merge(B); 176 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 177 AttributeSet::get(Context, FnAttrs)); 178 CBI->setAttributes(AS); 179 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 180 AttrBuilder Attrs(GV->getAttributes()); 181 Attrs.merge(B); 182 GV->setAttributes(AttributeSet::get(Context,Attrs)); 183 } else { 184 llvm_unreachable("invalid object with forward attribute group reference"); 185 } 186 } 187 188 // If there are entries in ForwardRefBlockAddresses at this point, the 189 // function was never defined. 190 if (!ForwardRefBlockAddresses.empty()) 191 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 192 "expected function name in blockaddress"); 193 194 for (const auto &NT : NumberedTypes) 195 if (NT.second.second.isValid()) 196 return Error(NT.second.second, 197 "use of undefined type '%" + Twine(NT.first) + "'"); 198 199 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 200 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 201 if (I->second.second.isValid()) 202 return Error(I->second.second, 203 "use of undefined type named '" + I->getKey() + "'"); 204 205 if (!ForwardRefComdats.empty()) 206 return Error(ForwardRefComdats.begin()->second, 207 "use of undefined comdat '$" + 208 ForwardRefComdats.begin()->first + "'"); 209 210 if (!ForwardRefVals.empty()) 211 return Error(ForwardRefVals.begin()->second.second, 212 "use of undefined value '@" + ForwardRefVals.begin()->first + 213 "'"); 214 215 if (!ForwardRefValIDs.empty()) 216 return Error(ForwardRefValIDs.begin()->second.second, 217 "use of undefined value '@" + 218 Twine(ForwardRefValIDs.begin()->first) + "'"); 219 220 if (!ForwardRefMDNodes.empty()) 221 return Error(ForwardRefMDNodes.begin()->second.second, 222 "use of undefined metadata '!" + 223 Twine(ForwardRefMDNodes.begin()->first) + "'"); 224 225 // Resolve metadata cycles. 226 for (auto &N : NumberedMetadata) { 227 if (N.second && !N.second->isResolved()) 228 N.second->resolveCycles(); 229 } 230 231 for (auto *Inst : InstsWithTBAATag) { 232 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 233 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 234 auto *UpgradedMD = UpgradeTBAANode(*MD); 235 if (MD != UpgradedMD) 236 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 237 } 238 239 // Look for intrinsic functions and CallInst that need to be upgraded 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 241 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 242 243 // Some types could be renamed during loading if several modules are 244 // loaded in the same LLVMContext (LTO scenario). In this case we should 245 // remangle intrinsics names as well. 246 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 247 Function *F = &*FI++; 248 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 249 F->replaceAllUsesWith(Remangled.getValue()); 250 F->eraseFromParent(); 251 } 252 } 253 254 if (UpgradeDebugInfo) 255 llvm::UpgradeDebugInfo(*M); 256 257 UpgradeModuleFlags(*M); 258 UpgradeSectionAttributes(*M); 259 260 if (!Slots) 261 return false; 262 // Initialize the slot mapping. 263 // Because by this point we've parsed and validated everything, we can "steal" 264 // the mapping from LLParser as it doesn't need it anymore. 265 Slots->GlobalValues = std::move(NumberedVals); 266 Slots->MetadataNodes = std::move(NumberedMetadata); 267 for (const auto &I : NamedTypes) 268 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 269 for (const auto &I : NumberedTypes) 270 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 271 272 return false; 273 } 274 275 /// Do final validity and sanity checks at the end of the index. 276 bool LLParser::ValidateEndOfIndex() { 277 if (!Index) 278 return false; 279 280 if (!ForwardRefValueInfos.empty()) 281 return Error(ForwardRefValueInfos.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefValueInfos.begin()->first) + "'"); 284 285 if (!ForwardRefAliasees.empty()) 286 return Error(ForwardRefAliasees.begin()->second.front().second, 287 "use of undefined summary '^" + 288 Twine(ForwardRefAliasees.begin()->first) + "'"); 289 290 if (!ForwardRefTypeIds.empty()) 291 return Error(ForwardRefTypeIds.begin()->second.front().second, 292 "use of undefined type id summary '^" + 293 Twine(ForwardRefTypeIds.begin()->first) + "'"); 294 295 return false; 296 } 297 298 //===----------------------------------------------------------------------===// 299 // Top-Level Entities 300 //===----------------------------------------------------------------------===// 301 302 bool LLParser::ParseTargetDefinitions() { 303 while (true) { 304 switch (Lex.getKind()) { 305 case lltok::kw_target: 306 if (ParseTargetDefinition()) 307 return true; 308 break; 309 case lltok::kw_source_filename: 310 if (ParseSourceFileName()) 311 return true; 312 break; 313 default: 314 return false; 315 } 316 } 317 } 318 319 bool LLParser::ParseTopLevelEntities() { 320 // If there is no Module, then parse just the summary index entries. 321 if (!M) { 322 while (true) { 323 switch (Lex.getKind()) { 324 case lltok::Eof: 325 return false; 326 case lltok::SummaryID: 327 if (ParseSummaryEntry()) 328 return true; 329 break; 330 case lltok::kw_source_filename: 331 if (ParseSourceFileName()) 332 return true; 333 break; 334 default: 335 // Skip everything else 336 Lex.Lex(); 337 } 338 } 339 } 340 while (true) { 341 switch (Lex.getKind()) { 342 default: return TokError("expected top-level entity"); 343 case lltok::Eof: return false; 344 case lltok::kw_declare: if (ParseDeclare()) return true; break; 345 case lltok::kw_define: if (ParseDefine()) return true; break; 346 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 347 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 348 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 349 case lltok::LocalVar: if (ParseNamedType()) return true; break; 350 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 351 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 352 case lltok::ComdatVar: if (parseComdat()) return true; break; 353 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 354 case lltok::SummaryID: 355 if (ParseSummaryEntry()) 356 return true; 357 break; 358 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 359 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 360 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 361 case lltok::kw_uselistorder_bb: 362 if (ParseUseListOrderBB()) 363 return true; 364 break; 365 } 366 } 367 } 368 369 /// toplevelentity 370 /// ::= 'module' 'asm' STRINGCONSTANT 371 bool LLParser::ParseModuleAsm() { 372 assert(Lex.getKind() == lltok::kw_module); 373 Lex.Lex(); 374 375 std::string AsmStr; 376 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 377 ParseStringConstant(AsmStr)) return true; 378 379 M->appendModuleInlineAsm(AsmStr); 380 return false; 381 } 382 383 /// toplevelentity 384 /// ::= 'target' 'triple' '=' STRINGCONSTANT 385 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 386 bool LLParser::ParseTargetDefinition() { 387 assert(Lex.getKind() == lltok::kw_target); 388 std::string Str; 389 switch (Lex.Lex()) { 390 default: return TokError("unknown target property"); 391 case lltok::kw_triple: 392 Lex.Lex(); 393 if (ParseToken(lltok::equal, "expected '=' after target triple") || 394 ParseStringConstant(Str)) 395 return true; 396 M->setTargetTriple(Str); 397 return false; 398 case lltok::kw_datalayout: 399 Lex.Lex(); 400 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 401 ParseStringConstant(Str)) 402 return true; 403 if (DataLayoutStr.empty()) 404 M->setDataLayout(Str); 405 return false; 406 } 407 } 408 409 /// toplevelentity 410 /// ::= 'source_filename' '=' STRINGCONSTANT 411 bool LLParser::ParseSourceFileName() { 412 assert(Lex.getKind() == lltok::kw_source_filename); 413 Lex.Lex(); 414 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 415 ParseStringConstant(SourceFileName)) 416 return true; 417 if (M) 418 M->setSourceFileName(SourceFileName); 419 return false; 420 } 421 422 /// toplevelentity 423 /// ::= 'deplibs' '=' '[' ']' 424 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 425 /// FIXME: Remove in 4.0. Currently parse, but ignore. 426 bool LLParser::ParseDepLibs() { 427 assert(Lex.getKind() == lltok::kw_deplibs); 428 Lex.Lex(); 429 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 430 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 431 return true; 432 433 if (EatIfPresent(lltok::rsquare)) 434 return false; 435 436 do { 437 std::string Str; 438 if (ParseStringConstant(Str)) return true; 439 } while (EatIfPresent(lltok::comma)); 440 441 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 442 } 443 444 /// ParseUnnamedType: 445 /// ::= LocalVarID '=' 'type' type 446 bool LLParser::ParseUnnamedType() { 447 LocTy TypeLoc = Lex.getLoc(); 448 unsigned TypeID = Lex.getUIntVal(); 449 Lex.Lex(); // eat LocalVarID; 450 451 if (ParseToken(lltok::equal, "expected '=' after name") || 452 ParseToken(lltok::kw_type, "expected 'type' after '='")) 453 return true; 454 455 Type *Result = nullptr; 456 if (ParseStructDefinition(TypeLoc, "", 457 NumberedTypes[TypeID], Result)) return true; 458 459 if (!isa<StructType>(Result)) { 460 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 461 if (Entry.first) 462 return Error(TypeLoc, "non-struct types may not be recursive"); 463 Entry.first = Result; 464 Entry.second = SMLoc(); 465 } 466 467 return false; 468 } 469 470 /// toplevelentity 471 /// ::= LocalVar '=' 'type' type 472 bool LLParser::ParseNamedType() { 473 std::string Name = Lex.getStrVal(); 474 LocTy NameLoc = Lex.getLoc(); 475 Lex.Lex(); // eat LocalVar. 476 477 if (ParseToken(lltok::equal, "expected '=' after name") || 478 ParseToken(lltok::kw_type, "expected 'type' after name")) 479 return true; 480 481 Type *Result = nullptr; 482 if (ParseStructDefinition(NameLoc, Name, 483 NamedTypes[Name], Result)) return true; 484 485 if (!isa<StructType>(Result)) { 486 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 487 if (Entry.first) 488 return Error(NameLoc, "non-struct types may not be recursive"); 489 Entry.first = Result; 490 Entry.second = SMLoc(); 491 } 492 493 return false; 494 } 495 496 /// toplevelentity 497 /// ::= 'declare' FunctionHeader 498 bool LLParser::ParseDeclare() { 499 assert(Lex.getKind() == lltok::kw_declare); 500 Lex.Lex(); 501 502 std::vector<std::pair<unsigned, MDNode *>> MDs; 503 while (Lex.getKind() == lltok::MetadataVar) { 504 unsigned MDK; 505 MDNode *N; 506 if (ParseMetadataAttachment(MDK, N)) 507 return true; 508 MDs.push_back({MDK, N}); 509 } 510 511 Function *F; 512 if (ParseFunctionHeader(F, false)) 513 return true; 514 for (auto &MD : MDs) 515 F->addMetadata(MD.first, *MD.second); 516 return false; 517 } 518 519 /// toplevelentity 520 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 521 bool LLParser::ParseDefine() { 522 assert(Lex.getKind() == lltok::kw_define); 523 Lex.Lex(); 524 525 Function *F; 526 return ParseFunctionHeader(F, true) || 527 ParseOptionalFunctionMetadata(*F) || 528 ParseFunctionBody(*F); 529 } 530 531 /// ParseGlobalType 532 /// ::= 'constant' 533 /// ::= 'global' 534 bool LLParser::ParseGlobalType(bool &IsConstant) { 535 if (Lex.getKind() == lltok::kw_constant) 536 IsConstant = true; 537 else if (Lex.getKind() == lltok::kw_global) 538 IsConstant = false; 539 else { 540 IsConstant = false; 541 return TokError("expected 'global' or 'constant'"); 542 } 543 Lex.Lex(); 544 return false; 545 } 546 547 bool LLParser::ParseOptionalUnnamedAddr( 548 GlobalVariable::UnnamedAddr &UnnamedAddr) { 549 if (EatIfPresent(lltok::kw_unnamed_addr)) 550 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 551 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 552 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 553 else 554 UnnamedAddr = GlobalValue::UnnamedAddr::None; 555 return false; 556 } 557 558 /// ParseUnnamedGlobal: 559 /// OptionalVisibility (ALIAS | IFUNC) ... 560 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 561 /// OptionalDLLStorageClass 562 /// ... -> global variable 563 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 564 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 565 /// OptionalDLLStorageClass 566 /// ... -> global variable 567 bool LLParser::ParseUnnamedGlobal() { 568 unsigned VarID = NumberedVals.size(); 569 std::string Name; 570 LocTy NameLoc = Lex.getLoc(); 571 572 // Handle the GlobalID form. 573 if (Lex.getKind() == lltok::GlobalID) { 574 if (Lex.getUIntVal() != VarID) 575 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 576 Twine(VarID) + "'"); 577 Lex.Lex(); // eat GlobalID; 578 579 if (ParseToken(lltok::equal, "expected '=' after name")) 580 return true; 581 } 582 583 bool HasLinkage; 584 unsigned Linkage, Visibility, DLLStorageClass; 585 bool DSOLocal; 586 GlobalVariable::ThreadLocalMode TLM; 587 GlobalVariable::UnnamedAddr UnnamedAddr; 588 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 589 DSOLocal) || 590 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 591 return true; 592 593 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 594 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 595 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 596 597 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 598 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 599 } 600 601 /// ParseNamedGlobal: 602 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 603 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 604 /// OptionalVisibility OptionalDLLStorageClass 605 /// ... -> global variable 606 bool LLParser::ParseNamedGlobal() { 607 assert(Lex.getKind() == lltok::GlobalVar); 608 LocTy NameLoc = Lex.getLoc(); 609 std::string Name = Lex.getStrVal(); 610 Lex.Lex(); 611 612 bool HasLinkage; 613 unsigned Linkage, Visibility, DLLStorageClass; 614 bool DSOLocal; 615 GlobalVariable::ThreadLocalMode TLM; 616 GlobalVariable::UnnamedAddr UnnamedAddr; 617 if (ParseToken(lltok::equal, "expected '=' in global variable") || 618 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 619 DSOLocal) || 620 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 621 return true; 622 623 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 624 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 625 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 626 627 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 628 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 629 } 630 631 bool LLParser::parseComdat() { 632 assert(Lex.getKind() == lltok::ComdatVar); 633 std::string Name = Lex.getStrVal(); 634 LocTy NameLoc = Lex.getLoc(); 635 Lex.Lex(); 636 637 if (ParseToken(lltok::equal, "expected '=' here")) 638 return true; 639 640 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 641 return TokError("expected comdat type"); 642 643 Comdat::SelectionKind SK; 644 switch (Lex.getKind()) { 645 default: 646 return TokError("unknown selection kind"); 647 case lltok::kw_any: 648 SK = Comdat::Any; 649 break; 650 case lltok::kw_exactmatch: 651 SK = Comdat::ExactMatch; 652 break; 653 case lltok::kw_largest: 654 SK = Comdat::Largest; 655 break; 656 case lltok::kw_noduplicates: 657 SK = Comdat::NoDuplicates; 658 break; 659 case lltok::kw_samesize: 660 SK = Comdat::SameSize; 661 break; 662 } 663 Lex.Lex(); 664 665 // See if the comdat was forward referenced, if so, use the comdat. 666 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 667 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 668 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 669 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 670 671 Comdat *C; 672 if (I != ComdatSymTab.end()) 673 C = &I->second; 674 else 675 C = M->getOrInsertComdat(Name); 676 C->setSelectionKind(SK); 677 678 return false; 679 } 680 681 // MDString: 682 // ::= '!' STRINGCONSTANT 683 bool LLParser::ParseMDString(MDString *&Result) { 684 std::string Str; 685 if (ParseStringConstant(Str)) return true; 686 Result = MDString::get(Context, Str); 687 return false; 688 } 689 690 // MDNode: 691 // ::= '!' MDNodeNumber 692 bool LLParser::ParseMDNodeID(MDNode *&Result) { 693 // !{ ..., !42, ... } 694 LocTy IDLoc = Lex.getLoc(); 695 unsigned MID = 0; 696 if (ParseUInt32(MID)) 697 return true; 698 699 // If not a forward reference, just return it now. 700 if (NumberedMetadata.count(MID)) { 701 Result = NumberedMetadata[MID]; 702 return false; 703 } 704 705 // Otherwise, create MDNode forward reference. 706 auto &FwdRef = ForwardRefMDNodes[MID]; 707 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 708 709 Result = FwdRef.first.get(); 710 NumberedMetadata[MID].reset(Result); 711 return false; 712 } 713 714 /// ParseNamedMetadata: 715 /// !foo = !{ !1, !2 } 716 bool LLParser::ParseNamedMetadata() { 717 assert(Lex.getKind() == lltok::MetadataVar); 718 std::string Name = Lex.getStrVal(); 719 Lex.Lex(); 720 721 if (ParseToken(lltok::equal, "expected '=' here") || 722 ParseToken(lltok::exclaim, "Expected '!' here") || 723 ParseToken(lltok::lbrace, "Expected '{' here")) 724 return true; 725 726 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 727 if (Lex.getKind() != lltok::rbrace) 728 do { 729 MDNode *N = nullptr; 730 // Parse DIExpressions inline as a special case. They are still MDNodes, 731 // so they can still appear in named metadata. Remove this logic if they 732 // become plain Metadata. 733 if (Lex.getKind() == lltok::MetadataVar && 734 Lex.getStrVal() == "DIExpression") { 735 if (ParseDIExpression(N, /*IsDistinct=*/false)) 736 return true; 737 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 738 ParseMDNodeID(N)) { 739 return true; 740 } 741 NMD->addOperand(N); 742 } while (EatIfPresent(lltok::comma)); 743 744 return ParseToken(lltok::rbrace, "expected end of metadata node"); 745 } 746 747 /// ParseStandaloneMetadata: 748 /// !42 = !{...} 749 bool LLParser::ParseStandaloneMetadata() { 750 assert(Lex.getKind() == lltok::exclaim); 751 Lex.Lex(); 752 unsigned MetadataID = 0; 753 754 MDNode *Init; 755 if (ParseUInt32(MetadataID) || 756 ParseToken(lltok::equal, "expected '=' here")) 757 return true; 758 759 // Detect common error, from old metadata syntax. 760 if (Lex.getKind() == lltok::Type) 761 return TokError("unexpected type in metadata definition"); 762 763 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 764 if (Lex.getKind() == lltok::MetadataVar) { 765 if (ParseSpecializedMDNode(Init, IsDistinct)) 766 return true; 767 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 768 ParseMDTuple(Init, IsDistinct)) 769 return true; 770 771 // See if this was forward referenced, if so, handle it. 772 auto FI = ForwardRefMDNodes.find(MetadataID); 773 if (FI != ForwardRefMDNodes.end()) { 774 FI->second.first->replaceAllUsesWith(Init); 775 ForwardRefMDNodes.erase(FI); 776 777 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 778 } else { 779 if (NumberedMetadata.count(MetadataID)) 780 return TokError("Metadata id is already used"); 781 NumberedMetadata[MetadataID].reset(Init); 782 } 783 784 return false; 785 } 786 787 // Skips a single module summary entry. 788 bool LLParser::SkipModuleSummaryEntry() { 789 // Each module summary entry consists of a tag for the entry 790 // type, followed by a colon, then the fields surrounded by nested sets of 791 // parentheses. The "tag:" looks like a Label. Once parsing support is 792 // in place we will look for the tokens corresponding to the expected tags. 793 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 794 Lex.getKind() != lltok::kw_typeid) 795 return TokError( 796 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 797 Lex.Lex(); 798 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 799 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 800 return true; 801 // Now walk through the parenthesized entry, until the number of open 802 // parentheses goes back down to 0 (the first '(' was parsed above). 803 unsigned NumOpenParen = 1; 804 do { 805 switch (Lex.getKind()) { 806 case lltok::lparen: 807 NumOpenParen++; 808 break; 809 case lltok::rparen: 810 NumOpenParen--; 811 break; 812 case lltok::Eof: 813 return TokError("found end of file while parsing summary entry"); 814 default: 815 // Skip everything in between parentheses. 816 break; 817 } 818 Lex.Lex(); 819 } while (NumOpenParen > 0); 820 return false; 821 } 822 823 /// SummaryEntry 824 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 825 bool LLParser::ParseSummaryEntry() { 826 assert(Lex.getKind() == lltok::SummaryID); 827 unsigned SummaryID = Lex.getUIntVal(); 828 829 // For summary entries, colons should be treated as distinct tokens, 830 // not an indication of the end of a label token. 831 Lex.setIgnoreColonInIdentifiers(true); 832 833 Lex.Lex(); 834 if (ParseToken(lltok::equal, "expected '=' here")) 835 return true; 836 837 // If we don't have an index object, skip the summary entry. 838 if (!Index) 839 return SkipModuleSummaryEntry(); 840 841 bool result = false; 842 switch (Lex.getKind()) { 843 case lltok::kw_gv: 844 result = ParseGVEntry(SummaryID); 845 break; 846 case lltok::kw_module: 847 result = ParseModuleEntry(SummaryID); 848 break; 849 case lltok::kw_typeid: 850 result = ParseTypeIdEntry(SummaryID); 851 break; 852 case lltok::kw_typeidCompatibleVTable: 853 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 854 break; 855 case lltok::kw_flags: 856 result = ParseSummaryIndexFlags(); 857 break; 858 default: 859 result = Error(Lex.getLoc(), "unexpected summary kind"); 860 break; 861 } 862 Lex.setIgnoreColonInIdentifiers(false); 863 return result; 864 } 865 866 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 867 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 868 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 869 } 870 871 // If there was an explicit dso_local, update GV. In the absence of an explicit 872 // dso_local we keep the default value. 873 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 874 if (DSOLocal) 875 GV.setDSOLocal(true); 876 } 877 878 /// parseIndirectSymbol: 879 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 880 /// OptionalVisibility OptionalDLLStorageClass 881 /// OptionalThreadLocal OptionalUnnamedAddr 882 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 883 /// 884 /// IndirectSymbol 885 /// ::= TypeAndValue 886 /// 887 /// IndirectSymbolAttr 888 /// ::= ',' 'partition' StringConstant 889 /// 890 /// Everything through OptionalUnnamedAddr has already been parsed. 891 /// 892 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 893 unsigned L, unsigned Visibility, 894 unsigned DLLStorageClass, bool DSOLocal, 895 GlobalVariable::ThreadLocalMode TLM, 896 GlobalVariable::UnnamedAddr UnnamedAddr) { 897 bool IsAlias; 898 if (Lex.getKind() == lltok::kw_alias) 899 IsAlias = true; 900 else if (Lex.getKind() == lltok::kw_ifunc) 901 IsAlias = false; 902 else 903 llvm_unreachable("Not an alias or ifunc!"); 904 Lex.Lex(); 905 906 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 907 908 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 909 return Error(NameLoc, "invalid linkage type for alias"); 910 911 if (!isValidVisibilityForLinkage(Visibility, L)) 912 return Error(NameLoc, 913 "symbol with local linkage must have default visibility"); 914 915 Type *Ty; 916 LocTy ExplicitTypeLoc = Lex.getLoc(); 917 if (ParseType(Ty) || 918 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 919 return true; 920 921 Constant *Aliasee; 922 LocTy AliaseeLoc = Lex.getLoc(); 923 if (Lex.getKind() != lltok::kw_bitcast && 924 Lex.getKind() != lltok::kw_getelementptr && 925 Lex.getKind() != lltok::kw_addrspacecast && 926 Lex.getKind() != lltok::kw_inttoptr) { 927 if (ParseGlobalTypeAndValue(Aliasee)) 928 return true; 929 } else { 930 // The bitcast dest type is not present, it is implied by the dest type. 931 ValID ID; 932 if (ParseValID(ID)) 933 return true; 934 if (ID.Kind != ValID::t_Constant) 935 return Error(AliaseeLoc, "invalid aliasee"); 936 Aliasee = ID.ConstantVal; 937 } 938 939 Type *AliaseeType = Aliasee->getType(); 940 auto *PTy = dyn_cast<PointerType>(AliaseeType); 941 if (!PTy) 942 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 943 unsigned AddrSpace = PTy->getAddressSpace(); 944 945 if (IsAlias && Ty != PTy->getElementType()) 946 return Error( 947 ExplicitTypeLoc, 948 "explicit pointee type doesn't match operand's pointee type"); 949 950 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 951 return Error( 952 ExplicitTypeLoc, 953 "explicit pointee type should be a function type"); 954 955 GlobalValue *GVal = nullptr; 956 957 // See if the alias was forward referenced, if so, prepare to replace the 958 // forward reference. 959 if (!Name.empty()) { 960 GVal = M->getNamedValue(Name); 961 if (GVal) { 962 if (!ForwardRefVals.erase(Name)) 963 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 964 } 965 } else { 966 auto I = ForwardRefValIDs.find(NumberedVals.size()); 967 if (I != ForwardRefValIDs.end()) { 968 GVal = I->second.first; 969 ForwardRefValIDs.erase(I); 970 } 971 } 972 973 // Okay, create the alias but do not insert it into the module yet. 974 std::unique_ptr<GlobalIndirectSymbol> GA; 975 if (IsAlias) 976 GA.reset(GlobalAlias::create(Ty, AddrSpace, 977 (GlobalValue::LinkageTypes)Linkage, Name, 978 Aliasee, /*Parent*/ nullptr)); 979 else 980 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 981 (GlobalValue::LinkageTypes)Linkage, Name, 982 Aliasee, /*Parent*/ nullptr)); 983 GA->setThreadLocalMode(TLM); 984 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 985 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 986 GA->setUnnamedAddr(UnnamedAddr); 987 maybeSetDSOLocal(DSOLocal, *GA); 988 989 // At this point we've parsed everything except for the IndirectSymbolAttrs. 990 // Now parse them if there are any. 991 while (Lex.getKind() == lltok::comma) { 992 Lex.Lex(); 993 994 if (Lex.getKind() == lltok::kw_partition) { 995 Lex.Lex(); 996 GA->setPartition(Lex.getStrVal()); 997 if (ParseToken(lltok::StringConstant, "expected partition string")) 998 return true; 999 } else { 1000 return TokError("unknown alias or ifunc property!"); 1001 } 1002 } 1003 1004 if (Name.empty()) 1005 NumberedVals.push_back(GA.get()); 1006 1007 if (GVal) { 1008 // Verify that types agree. 1009 if (GVal->getType() != GA->getType()) 1010 return Error( 1011 ExplicitTypeLoc, 1012 "forward reference and definition of alias have different types"); 1013 1014 // If they agree, just RAUW the old value with the alias and remove the 1015 // forward ref info. 1016 GVal->replaceAllUsesWith(GA.get()); 1017 GVal->eraseFromParent(); 1018 } 1019 1020 // Insert into the module, we know its name won't collide now. 1021 if (IsAlias) 1022 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1023 else 1024 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1025 assert(GA->getName() == Name && "Should not be a name conflict!"); 1026 1027 // The module owns this now 1028 GA.release(); 1029 1030 return false; 1031 } 1032 1033 /// ParseGlobal 1034 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1035 /// OptionalVisibility OptionalDLLStorageClass 1036 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1037 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1038 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1039 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1040 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1041 /// Const OptionalAttrs 1042 /// 1043 /// Everything up to and including OptionalUnnamedAddr has been parsed 1044 /// already. 1045 /// 1046 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1047 unsigned Linkage, bool HasLinkage, 1048 unsigned Visibility, unsigned DLLStorageClass, 1049 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1050 GlobalVariable::UnnamedAddr UnnamedAddr) { 1051 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1052 return Error(NameLoc, 1053 "symbol with local linkage must have default visibility"); 1054 1055 unsigned AddrSpace; 1056 bool IsConstant, IsExternallyInitialized; 1057 LocTy IsExternallyInitializedLoc; 1058 LocTy TyLoc; 1059 1060 Type *Ty = nullptr; 1061 if (ParseOptionalAddrSpace(AddrSpace) || 1062 ParseOptionalToken(lltok::kw_externally_initialized, 1063 IsExternallyInitialized, 1064 &IsExternallyInitializedLoc) || 1065 ParseGlobalType(IsConstant) || 1066 ParseType(Ty, TyLoc)) 1067 return true; 1068 1069 // If the linkage is specified and is external, then no initializer is 1070 // present. 1071 Constant *Init = nullptr; 1072 if (!HasLinkage || 1073 !GlobalValue::isValidDeclarationLinkage( 1074 (GlobalValue::LinkageTypes)Linkage)) { 1075 if (ParseGlobalValue(Ty, Init)) 1076 return true; 1077 } 1078 1079 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1080 return Error(TyLoc, "invalid type for global variable"); 1081 1082 GlobalValue *GVal = nullptr; 1083 1084 // See if the global was forward referenced, if so, use the global. 1085 if (!Name.empty()) { 1086 GVal = M->getNamedValue(Name); 1087 if (GVal) { 1088 if (!ForwardRefVals.erase(Name)) 1089 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1090 } 1091 } else { 1092 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1093 if (I != ForwardRefValIDs.end()) { 1094 GVal = I->second.first; 1095 ForwardRefValIDs.erase(I); 1096 } 1097 } 1098 1099 GlobalVariable *GV; 1100 if (!GVal) { 1101 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1102 Name, nullptr, GlobalVariable::NotThreadLocal, 1103 AddrSpace); 1104 } else { 1105 if (GVal->getValueType() != Ty) 1106 return Error(TyLoc, 1107 "forward reference and definition of global have different types"); 1108 1109 GV = cast<GlobalVariable>(GVal); 1110 1111 // Move the forward-reference to the correct spot in the module. 1112 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1113 } 1114 1115 if (Name.empty()) 1116 NumberedVals.push_back(GV); 1117 1118 // Set the parsed properties on the global. 1119 if (Init) 1120 GV->setInitializer(Init); 1121 GV->setConstant(IsConstant); 1122 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1123 maybeSetDSOLocal(DSOLocal, *GV); 1124 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1125 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1126 GV->setExternallyInitialized(IsExternallyInitialized); 1127 GV->setThreadLocalMode(TLM); 1128 GV->setUnnamedAddr(UnnamedAddr); 1129 1130 // Parse attributes on the global. 1131 while (Lex.getKind() == lltok::comma) { 1132 Lex.Lex(); 1133 1134 if (Lex.getKind() == lltok::kw_section) { 1135 Lex.Lex(); 1136 GV->setSection(Lex.getStrVal()); 1137 if (ParseToken(lltok::StringConstant, "expected global section string")) 1138 return true; 1139 } else if (Lex.getKind() == lltok::kw_partition) { 1140 Lex.Lex(); 1141 GV->setPartition(Lex.getStrVal()); 1142 if (ParseToken(lltok::StringConstant, "expected partition string")) 1143 return true; 1144 } else if (Lex.getKind() == lltok::kw_align) { 1145 MaybeAlign Alignment; 1146 if (ParseOptionalAlignment(Alignment)) return true; 1147 GV->setAlignment(Alignment); 1148 } else if (Lex.getKind() == lltok::MetadataVar) { 1149 if (ParseGlobalObjectMetadataAttachment(*GV)) 1150 return true; 1151 } else { 1152 Comdat *C; 1153 if (parseOptionalComdat(Name, C)) 1154 return true; 1155 if (C) 1156 GV->setComdat(C); 1157 else 1158 return TokError("unknown global variable property!"); 1159 } 1160 } 1161 1162 AttrBuilder Attrs; 1163 LocTy BuiltinLoc; 1164 std::vector<unsigned> FwdRefAttrGrps; 1165 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1166 return true; 1167 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1168 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1169 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1170 } 1171 1172 return false; 1173 } 1174 1175 /// ParseUnnamedAttrGrp 1176 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1177 bool LLParser::ParseUnnamedAttrGrp() { 1178 assert(Lex.getKind() == lltok::kw_attributes); 1179 LocTy AttrGrpLoc = Lex.getLoc(); 1180 Lex.Lex(); 1181 1182 if (Lex.getKind() != lltok::AttrGrpID) 1183 return TokError("expected attribute group id"); 1184 1185 unsigned VarID = Lex.getUIntVal(); 1186 std::vector<unsigned> unused; 1187 LocTy BuiltinLoc; 1188 Lex.Lex(); 1189 1190 if (ParseToken(lltok::equal, "expected '=' here") || 1191 ParseToken(lltok::lbrace, "expected '{' here") || 1192 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1193 BuiltinLoc) || 1194 ParseToken(lltok::rbrace, "expected end of attribute group")) 1195 return true; 1196 1197 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1198 return Error(AttrGrpLoc, "attribute group has no attributes"); 1199 1200 return false; 1201 } 1202 1203 /// ParseFnAttributeValuePairs 1204 /// ::= <attr> | <attr> '=' <value> 1205 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1206 std::vector<unsigned> &FwdRefAttrGrps, 1207 bool inAttrGrp, LocTy &BuiltinLoc) { 1208 bool HaveError = false; 1209 1210 B.clear(); 1211 1212 while (true) { 1213 lltok::Kind Token = Lex.getKind(); 1214 if (Token == lltok::kw_builtin) 1215 BuiltinLoc = Lex.getLoc(); 1216 switch (Token) { 1217 default: 1218 if (!inAttrGrp) return HaveError; 1219 return Error(Lex.getLoc(), "unterminated attribute group"); 1220 case lltok::rbrace: 1221 // Finished. 1222 return false; 1223 1224 case lltok::AttrGrpID: { 1225 // Allow a function to reference an attribute group: 1226 // 1227 // define void @foo() #1 { ... } 1228 if (inAttrGrp) 1229 HaveError |= 1230 Error(Lex.getLoc(), 1231 "cannot have an attribute group reference in an attribute group"); 1232 1233 unsigned AttrGrpNum = Lex.getUIntVal(); 1234 if (inAttrGrp) break; 1235 1236 // Save the reference to the attribute group. We'll fill it in later. 1237 FwdRefAttrGrps.push_back(AttrGrpNum); 1238 break; 1239 } 1240 // Target-dependent attributes: 1241 case lltok::StringConstant: { 1242 if (ParseStringAttribute(B)) 1243 return true; 1244 continue; 1245 } 1246 1247 // Target-independent attributes: 1248 case lltok::kw_align: { 1249 // As a hack, we allow function alignment to be initially parsed as an 1250 // attribute on a function declaration/definition or added to an attribute 1251 // group and later moved to the alignment field. 1252 MaybeAlign Alignment; 1253 if (inAttrGrp) { 1254 Lex.Lex(); 1255 uint32_t Value = 0; 1256 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1257 return true; 1258 Alignment = Align(Value); 1259 } else { 1260 if (ParseOptionalAlignment(Alignment)) 1261 return true; 1262 } 1263 B.addAlignmentAttr(Alignment); 1264 continue; 1265 } 1266 case lltok::kw_alignstack: { 1267 unsigned Alignment; 1268 if (inAttrGrp) { 1269 Lex.Lex(); 1270 if (ParseToken(lltok::equal, "expected '=' here") || 1271 ParseUInt32(Alignment)) 1272 return true; 1273 } else { 1274 if (ParseOptionalStackAlignment(Alignment)) 1275 return true; 1276 } 1277 B.addStackAlignmentAttr(Alignment); 1278 continue; 1279 } 1280 case lltok::kw_allocsize: { 1281 unsigned ElemSizeArg; 1282 Optional<unsigned> NumElemsArg; 1283 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1284 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1285 return true; 1286 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1287 continue; 1288 } 1289 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1290 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1291 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1292 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1293 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1294 case lltok::kw_inaccessiblememonly: 1295 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1296 case lltok::kw_inaccessiblemem_or_argmemonly: 1297 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1298 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1299 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1300 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1301 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1302 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1303 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1304 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1305 case lltok::kw_noimplicitfloat: 1306 B.addAttribute(Attribute::NoImplicitFloat); break; 1307 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1308 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1309 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1310 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1311 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1312 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1313 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1314 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1315 case lltok::kw_optforfuzzing: 1316 B.addAttribute(Attribute::OptForFuzzing); break; 1317 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1318 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1319 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1320 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1321 case lltok::kw_returns_twice: 1322 B.addAttribute(Attribute::ReturnsTwice); break; 1323 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1324 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1325 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1326 case lltok::kw_sspstrong: 1327 B.addAttribute(Attribute::StackProtectStrong); break; 1328 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1329 case lltok::kw_shadowcallstack: 1330 B.addAttribute(Attribute::ShadowCallStack); break; 1331 case lltok::kw_sanitize_address: 1332 B.addAttribute(Attribute::SanitizeAddress); break; 1333 case lltok::kw_sanitize_hwaddress: 1334 B.addAttribute(Attribute::SanitizeHWAddress); break; 1335 case lltok::kw_sanitize_memtag: 1336 B.addAttribute(Attribute::SanitizeMemTag); break; 1337 case lltok::kw_sanitize_thread: 1338 B.addAttribute(Attribute::SanitizeThread); break; 1339 case lltok::kw_sanitize_memory: 1340 B.addAttribute(Attribute::SanitizeMemory); break; 1341 case lltok::kw_speculative_load_hardening: 1342 B.addAttribute(Attribute::SpeculativeLoadHardening); 1343 break; 1344 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1345 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1346 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1347 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1348 1349 // Error handling. 1350 case lltok::kw_inreg: 1351 case lltok::kw_signext: 1352 case lltok::kw_zeroext: 1353 HaveError |= 1354 Error(Lex.getLoc(), 1355 "invalid use of attribute on a function"); 1356 break; 1357 case lltok::kw_byval: 1358 case lltok::kw_dereferenceable: 1359 case lltok::kw_dereferenceable_or_null: 1360 case lltok::kw_inalloca: 1361 case lltok::kw_nest: 1362 case lltok::kw_noalias: 1363 case lltok::kw_nocapture: 1364 case lltok::kw_nonnull: 1365 case lltok::kw_returned: 1366 case lltok::kw_sret: 1367 case lltok::kw_swifterror: 1368 case lltok::kw_swiftself: 1369 case lltok::kw_immarg: 1370 HaveError |= 1371 Error(Lex.getLoc(), 1372 "invalid use of parameter-only attribute on a function"); 1373 break; 1374 } 1375 1376 Lex.Lex(); 1377 } 1378 } 1379 1380 //===----------------------------------------------------------------------===// 1381 // GlobalValue Reference/Resolution Routines. 1382 //===----------------------------------------------------------------------===// 1383 1384 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1385 const std::string &Name) { 1386 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1387 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1388 PTy->getAddressSpace(), Name, M); 1389 else 1390 return new GlobalVariable(*M, PTy->getElementType(), false, 1391 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1392 nullptr, GlobalVariable::NotThreadLocal, 1393 PTy->getAddressSpace()); 1394 } 1395 1396 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1397 Value *Val, bool IsCall) { 1398 if (Val->getType() == Ty) 1399 return Val; 1400 // For calls we also accept variables in the program address space. 1401 Type *SuggestedTy = Ty; 1402 if (IsCall && isa<PointerType>(Ty)) { 1403 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1404 M->getDataLayout().getProgramAddressSpace()); 1405 SuggestedTy = TyInProgAS; 1406 if (Val->getType() == TyInProgAS) 1407 return Val; 1408 } 1409 if (Ty->isLabelTy()) 1410 Error(Loc, "'" + Name + "' is not a basic block"); 1411 else 1412 Error(Loc, "'" + Name + "' defined with type '" + 1413 getTypeString(Val->getType()) + "' but expected '" + 1414 getTypeString(SuggestedTy) + "'"); 1415 return nullptr; 1416 } 1417 1418 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1419 /// forward reference record if needed. This can return null if the value 1420 /// exists but does not have the right type. 1421 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1422 LocTy Loc, bool IsCall) { 1423 PointerType *PTy = dyn_cast<PointerType>(Ty); 1424 if (!PTy) { 1425 Error(Loc, "global variable reference must have pointer type"); 1426 return nullptr; 1427 } 1428 1429 // Look this name up in the normal function symbol table. 1430 GlobalValue *Val = 1431 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1432 1433 // If this is a forward reference for the value, see if we already created a 1434 // forward ref record. 1435 if (!Val) { 1436 auto I = ForwardRefVals.find(Name); 1437 if (I != ForwardRefVals.end()) 1438 Val = I->second.first; 1439 } 1440 1441 // If we have the value in the symbol table or fwd-ref table, return it. 1442 if (Val) 1443 return cast_or_null<GlobalValue>( 1444 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1445 1446 // Otherwise, create a new forward reference for this value and remember it. 1447 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1448 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1449 return FwdVal; 1450 } 1451 1452 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1453 bool IsCall) { 1454 PointerType *PTy = dyn_cast<PointerType>(Ty); 1455 if (!PTy) { 1456 Error(Loc, "global variable reference must have pointer type"); 1457 return nullptr; 1458 } 1459 1460 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1461 1462 // If this is a forward reference for the value, see if we already created a 1463 // forward ref record. 1464 if (!Val) { 1465 auto I = ForwardRefValIDs.find(ID); 1466 if (I != ForwardRefValIDs.end()) 1467 Val = I->second.first; 1468 } 1469 1470 // If we have the value in the symbol table or fwd-ref table, return it. 1471 if (Val) 1472 return cast_or_null<GlobalValue>( 1473 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1474 1475 // Otherwise, create a new forward reference for this value and remember it. 1476 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1477 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1478 return FwdVal; 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // Comdat Reference/Resolution Routines. 1483 //===----------------------------------------------------------------------===// 1484 1485 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1486 // Look this name up in the comdat symbol table. 1487 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1488 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1489 if (I != ComdatSymTab.end()) 1490 return &I->second; 1491 1492 // Otherwise, create a new forward reference for this value and remember it. 1493 Comdat *C = M->getOrInsertComdat(Name); 1494 ForwardRefComdats[Name] = Loc; 1495 return C; 1496 } 1497 1498 //===----------------------------------------------------------------------===// 1499 // Helper Routines. 1500 //===----------------------------------------------------------------------===// 1501 1502 /// ParseToken - If the current token has the specified kind, eat it and return 1503 /// success. Otherwise, emit the specified error and return failure. 1504 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1505 if (Lex.getKind() != T) 1506 return TokError(ErrMsg); 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseStringConstant 1512 /// ::= StringConstant 1513 bool LLParser::ParseStringConstant(std::string &Result) { 1514 if (Lex.getKind() != lltok::StringConstant) 1515 return TokError("expected string constant"); 1516 Result = Lex.getStrVal(); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// ParseUInt32 1522 /// ::= uint32 1523 bool LLParser::ParseUInt32(uint32_t &Val) { 1524 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1525 return TokError("expected integer"); 1526 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1527 if (Val64 != unsigned(Val64)) 1528 return TokError("expected 32-bit integer (too large)"); 1529 Val = Val64; 1530 Lex.Lex(); 1531 return false; 1532 } 1533 1534 /// ParseUInt64 1535 /// ::= uint64 1536 bool LLParser::ParseUInt64(uint64_t &Val) { 1537 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1538 return TokError("expected integer"); 1539 Val = Lex.getAPSIntVal().getLimitedValue(); 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// ParseTLSModel 1545 /// := 'localdynamic' 1546 /// := 'initialexec' 1547 /// := 'localexec' 1548 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1549 switch (Lex.getKind()) { 1550 default: 1551 return TokError("expected localdynamic, initialexec or localexec"); 1552 case lltok::kw_localdynamic: 1553 TLM = GlobalVariable::LocalDynamicTLSModel; 1554 break; 1555 case lltok::kw_initialexec: 1556 TLM = GlobalVariable::InitialExecTLSModel; 1557 break; 1558 case lltok::kw_localexec: 1559 TLM = GlobalVariable::LocalExecTLSModel; 1560 break; 1561 } 1562 1563 Lex.Lex(); 1564 return false; 1565 } 1566 1567 /// ParseOptionalThreadLocal 1568 /// := /*empty*/ 1569 /// := 'thread_local' 1570 /// := 'thread_local' '(' tlsmodel ')' 1571 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1572 TLM = GlobalVariable::NotThreadLocal; 1573 if (!EatIfPresent(lltok::kw_thread_local)) 1574 return false; 1575 1576 TLM = GlobalVariable::GeneralDynamicTLSModel; 1577 if (Lex.getKind() == lltok::lparen) { 1578 Lex.Lex(); 1579 return ParseTLSModel(TLM) || 1580 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1581 } 1582 return false; 1583 } 1584 1585 /// ParseOptionalAddrSpace 1586 /// := /*empty*/ 1587 /// := 'addrspace' '(' uint32 ')' 1588 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1589 AddrSpace = DefaultAS; 1590 if (!EatIfPresent(lltok::kw_addrspace)) 1591 return false; 1592 return ParseToken(lltok::lparen, "expected '(' in address space") || 1593 ParseUInt32(AddrSpace) || 1594 ParseToken(lltok::rparen, "expected ')' in address space"); 1595 } 1596 1597 /// ParseStringAttribute 1598 /// := StringConstant 1599 /// := StringConstant '=' StringConstant 1600 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1601 std::string Attr = Lex.getStrVal(); 1602 Lex.Lex(); 1603 std::string Val; 1604 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1605 return true; 1606 B.addAttribute(Attr, Val); 1607 return false; 1608 } 1609 1610 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1611 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1612 bool HaveError = false; 1613 1614 B.clear(); 1615 1616 while (true) { 1617 lltok::Kind Token = Lex.getKind(); 1618 switch (Token) { 1619 default: // End of attributes. 1620 return HaveError; 1621 case lltok::StringConstant: { 1622 if (ParseStringAttribute(B)) 1623 return true; 1624 continue; 1625 } 1626 case lltok::kw_align: { 1627 MaybeAlign Alignment; 1628 if (ParseOptionalAlignment(Alignment)) 1629 return true; 1630 B.addAlignmentAttr(Alignment); 1631 continue; 1632 } 1633 case lltok::kw_byval: { 1634 Type *Ty; 1635 if (ParseByValWithOptionalType(Ty)) 1636 return true; 1637 B.addByValAttr(Ty); 1638 continue; 1639 } 1640 case lltok::kw_dereferenceable: { 1641 uint64_t Bytes; 1642 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1643 return true; 1644 B.addDereferenceableAttr(Bytes); 1645 continue; 1646 } 1647 case lltok::kw_dereferenceable_or_null: { 1648 uint64_t Bytes; 1649 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1650 return true; 1651 B.addDereferenceableOrNullAttr(Bytes); 1652 continue; 1653 } 1654 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1655 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1656 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1657 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1658 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1659 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1660 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1661 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1662 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1663 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1664 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1665 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1666 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1667 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1668 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1669 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1670 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1671 1672 case lltok::kw_alignstack: 1673 case lltok::kw_alwaysinline: 1674 case lltok::kw_argmemonly: 1675 case lltok::kw_builtin: 1676 case lltok::kw_inlinehint: 1677 case lltok::kw_jumptable: 1678 case lltok::kw_minsize: 1679 case lltok::kw_naked: 1680 case lltok::kw_nobuiltin: 1681 case lltok::kw_noduplicate: 1682 case lltok::kw_noimplicitfloat: 1683 case lltok::kw_noinline: 1684 case lltok::kw_nonlazybind: 1685 case lltok::kw_noredzone: 1686 case lltok::kw_noreturn: 1687 case lltok::kw_nocf_check: 1688 case lltok::kw_nounwind: 1689 case lltok::kw_optforfuzzing: 1690 case lltok::kw_optnone: 1691 case lltok::kw_optsize: 1692 case lltok::kw_returns_twice: 1693 case lltok::kw_sanitize_address: 1694 case lltok::kw_sanitize_hwaddress: 1695 case lltok::kw_sanitize_memtag: 1696 case lltok::kw_sanitize_memory: 1697 case lltok::kw_sanitize_thread: 1698 case lltok::kw_speculative_load_hardening: 1699 case lltok::kw_ssp: 1700 case lltok::kw_sspreq: 1701 case lltok::kw_sspstrong: 1702 case lltok::kw_safestack: 1703 case lltok::kw_shadowcallstack: 1704 case lltok::kw_strictfp: 1705 case lltok::kw_uwtable: 1706 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1707 break; 1708 } 1709 1710 Lex.Lex(); 1711 } 1712 } 1713 1714 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1715 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1716 bool HaveError = false; 1717 1718 B.clear(); 1719 1720 while (true) { 1721 lltok::Kind Token = Lex.getKind(); 1722 switch (Token) { 1723 default: // End of attributes. 1724 return HaveError; 1725 case lltok::StringConstant: { 1726 if (ParseStringAttribute(B)) 1727 return true; 1728 continue; 1729 } 1730 case lltok::kw_dereferenceable: { 1731 uint64_t Bytes; 1732 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1733 return true; 1734 B.addDereferenceableAttr(Bytes); 1735 continue; 1736 } 1737 case lltok::kw_dereferenceable_or_null: { 1738 uint64_t Bytes; 1739 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1740 return true; 1741 B.addDereferenceableOrNullAttr(Bytes); 1742 continue; 1743 } 1744 case lltok::kw_align: { 1745 MaybeAlign Alignment; 1746 if (ParseOptionalAlignment(Alignment)) 1747 return true; 1748 B.addAlignmentAttr(Alignment); 1749 continue; 1750 } 1751 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1752 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1753 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1754 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1755 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1756 1757 // Error handling. 1758 case lltok::kw_byval: 1759 case lltok::kw_inalloca: 1760 case lltok::kw_nest: 1761 case lltok::kw_nocapture: 1762 case lltok::kw_returned: 1763 case lltok::kw_sret: 1764 case lltok::kw_swifterror: 1765 case lltok::kw_swiftself: 1766 case lltok::kw_immarg: 1767 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1768 break; 1769 1770 case lltok::kw_alignstack: 1771 case lltok::kw_alwaysinline: 1772 case lltok::kw_argmemonly: 1773 case lltok::kw_builtin: 1774 case lltok::kw_cold: 1775 case lltok::kw_inlinehint: 1776 case lltok::kw_jumptable: 1777 case lltok::kw_minsize: 1778 case lltok::kw_naked: 1779 case lltok::kw_nobuiltin: 1780 case lltok::kw_noduplicate: 1781 case lltok::kw_noimplicitfloat: 1782 case lltok::kw_noinline: 1783 case lltok::kw_nonlazybind: 1784 case lltok::kw_noredzone: 1785 case lltok::kw_noreturn: 1786 case lltok::kw_nocf_check: 1787 case lltok::kw_nounwind: 1788 case lltok::kw_optforfuzzing: 1789 case lltok::kw_optnone: 1790 case lltok::kw_optsize: 1791 case lltok::kw_returns_twice: 1792 case lltok::kw_sanitize_address: 1793 case lltok::kw_sanitize_hwaddress: 1794 case lltok::kw_sanitize_memtag: 1795 case lltok::kw_sanitize_memory: 1796 case lltok::kw_sanitize_thread: 1797 case lltok::kw_speculative_load_hardening: 1798 case lltok::kw_ssp: 1799 case lltok::kw_sspreq: 1800 case lltok::kw_sspstrong: 1801 case lltok::kw_safestack: 1802 case lltok::kw_shadowcallstack: 1803 case lltok::kw_strictfp: 1804 case lltok::kw_uwtable: 1805 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1806 break; 1807 1808 case lltok::kw_readnone: 1809 case lltok::kw_readonly: 1810 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1811 } 1812 1813 Lex.Lex(); 1814 } 1815 } 1816 1817 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1818 HasLinkage = true; 1819 switch (Kind) { 1820 default: 1821 HasLinkage = false; 1822 return GlobalValue::ExternalLinkage; 1823 case lltok::kw_private: 1824 return GlobalValue::PrivateLinkage; 1825 case lltok::kw_internal: 1826 return GlobalValue::InternalLinkage; 1827 case lltok::kw_weak: 1828 return GlobalValue::WeakAnyLinkage; 1829 case lltok::kw_weak_odr: 1830 return GlobalValue::WeakODRLinkage; 1831 case lltok::kw_linkonce: 1832 return GlobalValue::LinkOnceAnyLinkage; 1833 case lltok::kw_linkonce_odr: 1834 return GlobalValue::LinkOnceODRLinkage; 1835 case lltok::kw_available_externally: 1836 return GlobalValue::AvailableExternallyLinkage; 1837 case lltok::kw_appending: 1838 return GlobalValue::AppendingLinkage; 1839 case lltok::kw_common: 1840 return GlobalValue::CommonLinkage; 1841 case lltok::kw_extern_weak: 1842 return GlobalValue::ExternalWeakLinkage; 1843 case lltok::kw_external: 1844 return GlobalValue::ExternalLinkage; 1845 } 1846 } 1847 1848 /// ParseOptionalLinkage 1849 /// ::= /*empty*/ 1850 /// ::= 'private' 1851 /// ::= 'internal' 1852 /// ::= 'weak' 1853 /// ::= 'weak_odr' 1854 /// ::= 'linkonce' 1855 /// ::= 'linkonce_odr' 1856 /// ::= 'available_externally' 1857 /// ::= 'appending' 1858 /// ::= 'common' 1859 /// ::= 'extern_weak' 1860 /// ::= 'external' 1861 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1862 unsigned &Visibility, 1863 unsigned &DLLStorageClass, 1864 bool &DSOLocal) { 1865 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1866 if (HasLinkage) 1867 Lex.Lex(); 1868 ParseOptionalDSOLocal(DSOLocal); 1869 ParseOptionalVisibility(Visibility); 1870 ParseOptionalDLLStorageClass(DLLStorageClass); 1871 1872 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1873 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1874 } 1875 1876 return false; 1877 } 1878 1879 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1880 switch (Lex.getKind()) { 1881 default: 1882 DSOLocal = false; 1883 break; 1884 case lltok::kw_dso_local: 1885 DSOLocal = true; 1886 Lex.Lex(); 1887 break; 1888 case lltok::kw_dso_preemptable: 1889 DSOLocal = false; 1890 Lex.Lex(); 1891 break; 1892 } 1893 } 1894 1895 /// ParseOptionalVisibility 1896 /// ::= /*empty*/ 1897 /// ::= 'default' 1898 /// ::= 'hidden' 1899 /// ::= 'protected' 1900 /// 1901 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1902 switch (Lex.getKind()) { 1903 default: 1904 Res = GlobalValue::DefaultVisibility; 1905 return; 1906 case lltok::kw_default: 1907 Res = GlobalValue::DefaultVisibility; 1908 break; 1909 case lltok::kw_hidden: 1910 Res = GlobalValue::HiddenVisibility; 1911 break; 1912 case lltok::kw_protected: 1913 Res = GlobalValue::ProtectedVisibility; 1914 break; 1915 } 1916 Lex.Lex(); 1917 } 1918 1919 /// ParseOptionalDLLStorageClass 1920 /// ::= /*empty*/ 1921 /// ::= 'dllimport' 1922 /// ::= 'dllexport' 1923 /// 1924 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1925 switch (Lex.getKind()) { 1926 default: 1927 Res = GlobalValue::DefaultStorageClass; 1928 return; 1929 case lltok::kw_dllimport: 1930 Res = GlobalValue::DLLImportStorageClass; 1931 break; 1932 case lltok::kw_dllexport: 1933 Res = GlobalValue::DLLExportStorageClass; 1934 break; 1935 } 1936 Lex.Lex(); 1937 } 1938 1939 /// ParseOptionalCallingConv 1940 /// ::= /*empty*/ 1941 /// ::= 'ccc' 1942 /// ::= 'fastcc' 1943 /// ::= 'intel_ocl_bicc' 1944 /// ::= 'coldcc' 1945 /// ::= 'cfguard_checkcc' 1946 /// ::= 'x86_stdcallcc' 1947 /// ::= 'x86_fastcallcc' 1948 /// ::= 'x86_thiscallcc' 1949 /// ::= 'x86_vectorcallcc' 1950 /// ::= 'arm_apcscc' 1951 /// ::= 'arm_aapcscc' 1952 /// ::= 'arm_aapcs_vfpcc' 1953 /// ::= 'aarch64_vector_pcs' 1954 /// ::= 'aarch64_sve_vector_pcs' 1955 /// ::= 'msp430_intrcc' 1956 /// ::= 'avr_intrcc' 1957 /// ::= 'avr_signalcc' 1958 /// ::= 'ptx_kernel' 1959 /// ::= 'ptx_device' 1960 /// ::= 'spir_func' 1961 /// ::= 'spir_kernel' 1962 /// ::= 'x86_64_sysvcc' 1963 /// ::= 'win64cc' 1964 /// ::= 'webkit_jscc' 1965 /// ::= 'anyregcc' 1966 /// ::= 'preserve_mostcc' 1967 /// ::= 'preserve_allcc' 1968 /// ::= 'ghccc' 1969 /// ::= 'swiftcc' 1970 /// ::= 'x86_intrcc' 1971 /// ::= 'hhvmcc' 1972 /// ::= 'hhvm_ccc' 1973 /// ::= 'cxx_fast_tlscc' 1974 /// ::= 'amdgpu_vs' 1975 /// ::= 'amdgpu_ls' 1976 /// ::= 'amdgpu_hs' 1977 /// ::= 'amdgpu_es' 1978 /// ::= 'amdgpu_gs' 1979 /// ::= 'amdgpu_ps' 1980 /// ::= 'amdgpu_cs' 1981 /// ::= 'amdgpu_kernel' 1982 /// ::= 'tailcc' 1983 /// ::= 'cc' UINT 1984 /// 1985 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1986 switch (Lex.getKind()) { 1987 default: CC = CallingConv::C; return false; 1988 case lltok::kw_ccc: CC = CallingConv::C; break; 1989 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1990 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1991 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1992 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1993 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1994 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1995 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1996 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1997 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1998 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1999 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2000 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2001 case lltok::kw_aarch64_sve_vector_pcs: 2002 CC = CallingConv::AArch64_SVE_VectorCall; 2003 break; 2004 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2005 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2006 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2007 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2008 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2009 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2010 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2011 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2012 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2013 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2014 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2015 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2016 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2017 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2018 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2019 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2020 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2021 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2022 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2023 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2024 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2025 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2026 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2027 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2028 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2029 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2030 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2031 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2032 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2033 case lltok::kw_cc: { 2034 Lex.Lex(); 2035 return ParseUInt32(CC); 2036 } 2037 } 2038 2039 Lex.Lex(); 2040 return false; 2041 } 2042 2043 /// ParseMetadataAttachment 2044 /// ::= !dbg !42 2045 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2046 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2047 2048 std::string Name = Lex.getStrVal(); 2049 Kind = M->getMDKindID(Name); 2050 Lex.Lex(); 2051 2052 return ParseMDNode(MD); 2053 } 2054 2055 /// ParseInstructionMetadata 2056 /// ::= !dbg !42 (',' !dbg !57)* 2057 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2058 do { 2059 if (Lex.getKind() != lltok::MetadataVar) 2060 return TokError("expected metadata after comma"); 2061 2062 unsigned MDK; 2063 MDNode *N; 2064 if (ParseMetadataAttachment(MDK, N)) 2065 return true; 2066 2067 Inst.setMetadata(MDK, N); 2068 if (MDK == LLVMContext::MD_tbaa) 2069 InstsWithTBAATag.push_back(&Inst); 2070 2071 // If this is the end of the list, we're done. 2072 } while (EatIfPresent(lltok::comma)); 2073 return false; 2074 } 2075 2076 /// ParseGlobalObjectMetadataAttachment 2077 /// ::= !dbg !57 2078 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2079 unsigned MDK; 2080 MDNode *N; 2081 if (ParseMetadataAttachment(MDK, N)) 2082 return true; 2083 2084 GO.addMetadata(MDK, *N); 2085 return false; 2086 } 2087 2088 /// ParseOptionalFunctionMetadata 2089 /// ::= (!dbg !57)* 2090 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2091 while (Lex.getKind() == lltok::MetadataVar) 2092 if (ParseGlobalObjectMetadataAttachment(F)) 2093 return true; 2094 return false; 2095 } 2096 2097 /// ParseOptionalAlignment 2098 /// ::= /* empty */ 2099 /// ::= 'align' 4 2100 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) { 2101 Alignment = None; 2102 if (!EatIfPresent(lltok::kw_align)) 2103 return false; 2104 LocTy AlignLoc = Lex.getLoc(); 2105 uint32_t Value = 0; 2106 if (ParseUInt32(Value)) 2107 return true; 2108 if (!isPowerOf2_32(Value)) 2109 return Error(AlignLoc, "alignment is not a power of two"); 2110 if (Value > Value::MaximumAlignment) 2111 return Error(AlignLoc, "huge alignments are not supported yet"); 2112 Alignment = Align(Value); 2113 return false; 2114 } 2115 2116 /// ParseOptionalDerefAttrBytes 2117 /// ::= /* empty */ 2118 /// ::= AttrKind '(' 4 ')' 2119 /// 2120 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2121 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2122 uint64_t &Bytes) { 2123 assert((AttrKind == lltok::kw_dereferenceable || 2124 AttrKind == lltok::kw_dereferenceable_or_null) && 2125 "contract!"); 2126 2127 Bytes = 0; 2128 if (!EatIfPresent(AttrKind)) 2129 return false; 2130 LocTy ParenLoc = Lex.getLoc(); 2131 if (!EatIfPresent(lltok::lparen)) 2132 return Error(ParenLoc, "expected '('"); 2133 LocTy DerefLoc = Lex.getLoc(); 2134 if (ParseUInt64(Bytes)) return true; 2135 ParenLoc = Lex.getLoc(); 2136 if (!EatIfPresent(lltok::rparen)) 2137 return Error(ParenLoc, "expected ')'"); 2138 if (!Bytes) 2139 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2140 return false; 2141 } 2142 2143 /// ParseOptionalCommaAlign 2144 /// ::= 2145 /// ::= ',' align 4 2146 /// 2147 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2148 /// end. 2149 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2150 bool &AteExtraComma) { 2151 AteExtraComma = false; 2152 while (EatIfPresent(lltok::comma)) { 2153 // Metadata at the end is an early exit. 2154 if (Lex.getKind() == lltok::MetadataVar) { 2155 AteExtraComma = true; 2156 return false; 2157 } 2158 2159 if (Lex.getKind() != lltok::kw_align) 2160 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2161 2162 if (ParseOptionalAlignment(Alignment)) return true; 2163 } 2164 2165 return false; 2166 } 2167 2168 /// ParseOptionalCommaAddrSpace 2169 /// ::= 2170 /// ::= ',' addrspace(1) 2171 /// 2172 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2173 /// end. 2174 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2175 LocTy &Loc, 2176 bool &AteExtraComma) { 2177 AteExtraComma = false; 2178 while (EatIfPresent(lltok::comma)) { 2179 // Metadata at the end is an early exit. 2180 if (Lex.getKind() == lltok::MetadataVar) { 2181 AteExtraComma = true; 2182 return false; 2183 } 2184 2185 Loc = Lex.getLoc(); 2186 if (Lex.getKind() != lltok::kw_addrspace) 2187 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2188 2189 if (ParseOptionalAddrSpace(AddrSpace)) 2190 return true; 2191 } 2192 2193 return false; 2194 } 2195 2196 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2197 Optional<unsigned> &HowManyArg) { 2198 Lex.Lex(); 2199 2200 auto StartParen = Lex.getLoc(); 2201 if (!EatIfPresent(lltok::lparen)) 2202 return Error(StartParen, "expected '('"); 2203 2204 if (ParseUInt32(BaseSizeArg)) 2205 return true; 2206 2207 if (EatIfPresent(lltok::comma)) { 2208 auto HowManyAt = Lex.getLoc(); 2209 unsigned HowMany; 2210 if (ParseUInt32(HowMany)) 2211 return true; 2212 if (HowMany == BaseSizeArg) 2213 return Error(HowManyAt, 2214 "'allocsize' indices can't refer to the same parameter"); 2215 HowManyArg = HowMany; 2216 } else 2217 HowManyArg = None; 2218 2219 auto EndParen = Lex.getLoc(); 2220 if (!EatIfPresent(lltok::rparen)) 2221 return Error(EndParen, "expected ')'"); 2222 return false; 2223 } 2224 2225 /// ParseScopeAndOrdering 2226 /// if isAtomic: ::= SyncScope? AtomicOrdering 2227 /// else: ::= 2228 /// 2229 /// This sets Scope and Ordering to the parsed values. 2230 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2231 AtomicOrdering &Ordering) { 2232 if (!isAtomic) 2233 return false; 2234 2235 return ParseScope(SSID) || ParseOrdering(Ordering); 2236 } 2237 2238 /// ParseScope 2239 /// ::= syncscope("singlethread" | "<target scope>")? 2240 /// 2241 /// This sets synchronization scope ID to the ID of the parsed value. 2242 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2243 SSID = SyncScope::System; 2244 if (EatIfPresent(lltok::kw_syncscope)) { 2245 auto StartParenAt = Lex.getLoc(); 2246 if (!EatIfPresent(lltok::lparen)) 2247 return Error(StartParenAt, "Expected '(' in syncscope"); 2248 2249 std::string SSN; 2250 auto SSNAt = Lex.getLoc(); 2251 if (ParseStringConstant(SSN)) 2252 return Error(SSNAt, "Expected synchronization scope name"); 2253 2254 auto EndParenAt = Lex.getLoc(); 2255 if (!EatIfPresent(lltok::rparen)) 2256 return Error(EndParenAt, "Expected ')' in syncscope"); 2257 2258 SSID = Context.getOrInsertSyncScopeID(SSN); 2259 } 2260 2261 return false; 2262 } 2263 2264 /// ParseOrdering 2265 /// ::= AtomicOrdering 2266 /// 2267 /// This sets Ordering to the parsed value. 2268 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2269 switch (Lex.getKind()) { 2270 default: return TokError("Expected ordering on atomic instruction"); 2271 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2272 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2273 // Not specified yet: 2274 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2275 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2276 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2277 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2278 case lltok::kw_seq_cst: 2279 Ordering = AtomicOrdering::SequentiallyConsistent; 2280 break; 2281 } 2282 Lex.Lex(); 2283 return false; 2284 } 2285 2286 /// ParseOptionalStackAlignment 2287 /// ::= /* empty */ 2288 /// ::= 'alignstack' '(' 4 ')' 2289 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2290 Alignment = 0; 2291 if (!EatIfPresent(lltok::kw_alignstack)) 2292 return false; 2293 LocTy ParenLoc = Lex.getLoc(); 2294 if (!EatIfPresent(lltok::lparen)) 2295 return Error(ParenLoc, "expected '('"); 2296 LocTy AlignLoc = Lex.getLoc(); 2297 if (ParseUInt32(Alignment)) return true; 2298 ParenLoc = Lex.getLoc(); 2299 if (!EatIfPresent(lltok::rparen)) 2300 return Error(ParenLoc, "expected ')'"); 2301 if (!isPowerOf2_32(Alignment)) 2302 return Error(AlignLoc, "stack alignment is not a power of two"); 2303 return false; 2304 } 2305 2306 /// ParseIndexList - This parses the index list for an insert/extractvalue 2307 /// instruction. This sets AteExtraComma in the case where we eat an extra 2308 /// comma at the end of the line and find that it is followed by metadata. 2309 /// Clients that don't allow metadata can call the version of this function that 2310 /// only takes one argument. 2311 /// 2312 /// ParseIndexList 2313 /// ::= (',' uint32)+ 2314 /// 2315 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2316 bool &AteExtraComma) { 2317 AteExtraComma = false; 2318 2319 if (Lex.getKind() != lltok::comma) 2320 return TokError("expected ',' as start of index list"); 2321 2322 while (EatIfPresent(lltok::comma)) { 2323 if (Lex.getKind() == lltok::MetadataVar) { 2324 if (Indices.empty()) return TokError("expected index"); 2325 AteExtraComma = true; 2326 return false; 2327 } 2328 unsigned Idx = 0; 2329 if (ParseUInt32(Idx)) return true; 2330 Indices.push_back(Idx); 2331 } 2332 2333 return false; 2334 } 2335 2336 //===----------------------------------------------------------------------===// 2337 // Type Parsing. 2338 //===----------------------------------------------------------------------===// 2339 2340 /// ParseType - Parse a type. 2341 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2342 SMLoc TypeLoc = Lex.getLoc(); 2343 switch (Lex.getKind()) { 2344 default: 2345 return TokError(Msg); 2346 case lltok::Type: 2347 // Type ::= 'float' | 'void' (etc) 2348 Result = Lex.getTyVal(); 2349 Lex.Lex(); 2350 break; 2351 case lltok::lbrace: 2352 // Type ::= StructType 2353 if (ParseAnonStructType(Result, false)) 2354 return true; 2355 break; 2356 case lltok::lsquare: 2357 // Type ::= '[' ... ']' 2358 Lex.Lex(); // eat the lsquare. 2359 if (ParseArrayVectorType(Result, false)) 2360 return true; 2361 break; 2362 case lltok::less: // Either vector or packed struct. 2363 // Type ::= '<' ... '>' 2364 Lex.Lex(); 2365 if (Lex.getKind() == lltok::lbrace) { 2366 if (ParseAnonStructType(Result, true) || 2367 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2368 return true; 2369 } else if (ParseArrayVectorType(Result, true)) 2370 return true; 2371 break; 2372 case lltok::LocalVar: { 2373 // Type ::= %foo 2374 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2375 2376 // If the type hasn't been defined yet, create a forward definition and 2377 // remember where that forward def'n was seen (in case it never is defined). 2378 if (!Entry.first) { 2379 Entry.first = StructType::create(Context, Lex.getStrVal()); 2380 Entry.second = Lex.getLoc(); 2381 } 2382 Result = Entry.first; 2383 Lex.Lex(); 2384 break; 2385 } 2386 2387 case lltok::LocalVarID: { 2388 // Type ::= %4 2389 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2390 2391 // If the type hasn't been defined yet, create a forward definition and 2392 // remember where that forward def'n was seen (in case it never is defined). 2393 if (!Entry.first) { 2394 Entry.first = StructType::create(Context); 2395 Entry.second = Lex.getLoc(); 2396 } 2397 Result = Entry.first; 2398 Lex.Lex(); 2399 break; 2400 } 2401 } 2402 2403 // Parse the type suffixes. 2404 while (true) { 2405 switch (Lex.getKind()) { 2406 // End of type. 2407 default: 2408 if (!AllowVoid && Result->isVoidTy()) 2409 return Error(TypeLoc, "void type only allowed for function results"); 2410 return false; 2411 2412 // Type ::= Type '*' 2413 case lltok::star: 2414 if (Result->isLabelTy()) 2415 return TokError("basic block pointers are invalid"); 2416 if (Result->isVoidTy()) 2417 return TokError("pointers to void are invalid - use i8* instead"); 2418 if (!PointerType::isValidElementType(Result)) 2419 return TokError("pointer to this type is invalid"); 2420 Result = PointerType::getUnqual(Result); 2421 Lex.Lex(); 2422 break; 2423 2424 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2425 case lltok::kw_addrspace: { 2426 if (Result->isLabelTy()) 2427 return TokError("basic block pointers are invalid"); 2428 if (Result->isVoidTy()) 2429 return TokError("pointers to void are invalid; use i8* instead"); 2430 if (!PointerType::isValidElementType(Result)) 2431 return TokError("pointer to this type is invalid"); 2432 unsigned AddrSpace; 2433 if (ParseOptionalAddrSpace(AddrSpace) || 2434 ParseToken(lltok::star, "expected '*' in address space")) 2435 return true; 2436 2437 Result = PointerType::get(Result, AddrSpace); 2438 break; 2439 } 2440 2441 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2442 case lltok::lparen: 2443 if (ParseFunctionType(Result)) 2444 return true; 2445 break; 2446 } 2447 } 2448 } 2449 2450 /// ParseParameterList 2451 /// ::= '(' ')' 2452 /// ::= '(' Arg (',' Arg)* ')' 2453 /// Arg 2454 /// ::= Type OptionalAttributes Value OptionalAttributes 2455 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2456 PerFunctionState &PFS, bool IsMustTailCall, 2457 bool InVarArgsFunc) { 2458 if (ParseToken(lltok::lparen, "expected '(' in call")) 2459 return true; 2460 2461 while (Lex.getKind() != lltok::rparen) { 2462 // If this isn't the first argument, we need a comma. 2463 if (!ArgList.empty() && 2464 ParseToken(lltok::comma, "expected ',' in argument list")) 2465 return true; 2466 2467 // Parse an ellipsis if this is a musttail call in a variadic function. 2468 if (Lex.getKind() == lltok::dotdotdot) { 2469 const char *Msg = "unexpected ellipsis in argument list for "; 2470 if (!IsMustTailCall) 2471 return TokError(Twine(Msg) + "non-musttail call"); 2472 if (!InVarArgsFunc) 2473 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2474 Lex.Lex(); // Lex the '...', it is purely for readability. 2475 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2476 } 2477 2478 // Parse the argument. 2479 LocTy ArgLoc; 2480 Type *ArgTy = nullptr; 2481 AttrBuilder ArgAttrs; 2482 Value *V; 2483 if (ParseType(ArgTy, ArgLoc)) 2484 return true; 2485 2486 if (ArgTy->isMetadataTy()) { 2487 if (ParseMetadataAsValue(V, PFS)) 2488 return true; 2489 } else { 2490 // Otherwise, handle normal operands. 2491 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2492 return true; 2493 } 2494 ArgList.push_back(ParamInfo( 2495 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2496 } 2497 2498 if (IsMustTailCall && InVarArgsFunc) 2499 return TokError("expected '...' at end of argument list for musttail call " 2500 "in varargs function"); 2501 2502 Lex.Lex(); // Lex the ')'. 2503 return false; 2504 } 2505 2506 /// ParseByValWithOptionalType 2507 /// ::= byval 2508 /// ::= byval(<ty>) 2509 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2510 Result = nullptr; 2511 if (!EatIfPresent(lltok::kw_byval)) 2512 return true; 2513 if (!EatIfPresent(lltok::lparen)) 2514 return false; 2515 if (ParseType(Result)) 2516 return true; 2517 if (!EatIfPresent(lltok::rparen)) 2518 return Error(Lex.getLoc(), "expected ')'"); 2519 return false; 2520 } 2521 2522 /// ParseOptionalOperandBundles 2523 /// ::= /*empty*/ 2524 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2525 /// 2526 /// OperandBundle 2527 /// ::= bundle-tag '(' ')' 2528 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2529 /// 2530 /// bundle-tag ::= String Constant 2531 bool LLParser::ParseOptionalOperandBundles( 2532 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2533 LocTy BeginLoc = Lex.getLoc(); 2534 if (!EatIfPresent(lltok::lsquare)) 2535 return false; 2536 2537 while (Lex.getKind() != lltok::rsquare) { 2538 // If this isn't the first operand bundle, we need a comma. 2539 if (!BundleList.empty() && 2540 ParseToken(lltok::comma, "expected ',' in input list")) 2541 return true; 2542 2543 std::string Tag; 2544 if (ParseStringConstant(Tag)) 2545 return true; 2546 2547 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2548 return true; 2549 2550 std::vector<Value *> Inputs; 2551 while (Lex.getKind() != lltok::rparen) { 2552 // If this isn't the first input, we need a comma. 2553 if (!Inputs.empty() && 2554 ParseToken(lltok::comma, "expected ',' in input list")) 2555 return true; 2556 2557 Type *Ty = nullptr; 2558 Value *Input = nullptr; 2559 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2560 return true; 2561 Inputs.push_back(Input); 2562 } 2563 2564 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2565 2566 Lex.Lex(); // Lex the ')'. 2567 } 2568 2569 if (BundleList.empty()) 2570 return Error(BeginLoc, "operand bundle set must not be empty"); 2571 2572 Lex.Lex(); // Lex the ']'. 2573 return false; 2574 } 2575 2576 /// ParseArgumentList - Parse the argument list for a function type or function 2577 /// prototype. 2578 /// ::= '(' ArgTypeListI ')' 2579 /// ArgTypeListI 2580 /// ::= /*empty*/ 2581 /// ::= '...' 2582 /// ::= ArgTypeList ',' '...' 2583 /// ::= ArgType (',' ArgType)* 2584 /// 2585 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2586 bool &isVarArg){ 2587 unsigned CurValID = 0; 2588 isVarArg = false; 2589 assert(Lex.getKind() == lltok::lparen); 2590 Lex.Lex(); // eat the (. 2591 2592 if (Lex.getKind() == lltok::rparen) { 2593 // empty 2594 } else if (Lex.getKind() == lltok::dotdotdot) { 2595 isVarArg = true; 2596 Lex.Lex(); 2597 } else { 2598 LocTy TypeLoc = Lex.getLoc(); 2599 Type *ArgTy = nullptr; 2600 AttrBuilder Attrs; 2601 std::string Name; 2602 2603 if (ParseType(ArgTy) || 2604 ParseOptionalParamAttrs(Attrs)) return true; 2605 2606 if (ArgTy->isVoidTy()) 2607 return Error(TypeLoc, "argument can not have void type"); 2608 2609 if (Lex.getKind() == lltok::LocalVar) { 2610 Name = Lex.getStrVal(); 2611 Lex.Lex(); 2612 } else if (Lex.getKind() == lltok::LocalVarID) { 2613 if (Lex.getUIntVal() != CurValID) 2614 return Error(TypeLoc, "argument expected to be numbered '%" + 2615 Twine(CurValID) + "'"); 2616 ++CurValID; 2617 Lex.Lex(); 2618 } 2619 2620 if (!FunctionType::isValidArgumentType(ArgTy)) 2621 return Error(TypeLoc, "invalid type for function argument"); 2622 2623 ArgList.emplace_back(TypeLoc, ArgTy, 2624 AttributeSet::get(ArgTy->getContext(), Attrs), 2625 std::move(Name)); 2626 2627 while (EatIfPresent(lltok::comma)) { 2628 // Handle ... at end of arg list. 2629 if (EatIfPresent(lltok::dotdotdot)) { 2630 isVarArg = true; 2631 break; 2632 } 2633 2634 // Otherwise must be an argument type. 2635 TypeLoc = Lex.getLoc(); 2636 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2637 2638 if (ArgTy->isVoidTy()) 2639 return Error(TypeLoc, "argument can not have void type"); 2640 2641 if (Lex.getKind() == lltok::LocalVar) { 2642 Name = Lex.getStrVal(); 2643 Lex.Lex(); 2644 } else { 2645 if (Lex.getKind() == lltok::LocalVarID) { 2646 if (Lex.getUIntVal() != CurValID) 2647 return Error(TypeLoc, "argument expected to be numbered '%" + 2648 Twine(CurValID) + "'"); 2649 Lex.Lex(); 2650 } 2651 ++CurValID; 2652 Name = ""; 2653 } 2654 2655 if (!ArgTy->isFirstClassType()) 2656 return Error(TypeLoc, "invalid type for function argument"); 2657 2658 ArgList.emplace_back(TypeLoc, ArgTy, 2659 AttributeSet::get(ArgTy->getContext(), Attrs), 2660 std::move(Name)); 2661 } 2662 } 2663 2664 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2665 } 2666 2667 /// ParseFunctionType 2668 /// ::= Type ArgumentList OptionalAttrs 2669 bool LLParser::ParseFunctionType(Type *&Result) { 2670 assert(Lex.getKind() == lltok::lparen); 2671 2672 if (!FunctionType::isValidReturnType(Result)) 2673 return TokError("invalid function return type"); 2674 2675 SmallVector<ArgInfo, 8> ArgList; 2676 bool isVarArg; 2677 if (ParseArgumentList(ArgList, isVarArg)) 2678 return true; 2679 2680 // Reject names on the arguments lists. 2681 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2682 if (!ArgList[i].Name.empty()) 2683 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2684 if (ArgList[i].Attrs.hasAttributes()) 2685 return Error(ArgList[i].Loc, 2686 "argument attributes invalid in function type"); 2687 } 2688 2689 SmallVector<Type*, 16> ArgListTy; 2690 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2691 ArgListTy.push_back(ArgList[i].Ty); 2692 2693 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2694 return false; 2695 } 2696 2697 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2698 /// other structs. 2699 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2700 SmallVector<Type*, 8> Elts; 2701 if (ParseStructBody(Elts)) return true; 2702 2703 Result = StructType::get(Context, Elts, Packed); 2704 return false; 2705 } 2706 2707 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2708 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2709 std::pair<Type*, LocTy> &Entry, 2710 Type *&ResultTy) { 2711 // If the type was already defined, diagnose the redefinition. 2712 if (Entry.first && !Entry.second.isValid()) 2713 return Error(TypeLoc, "redefinition of type"); 2714 2715 // If we have opaque, just return without filling in the definition for the 2716 // struct. This counts as a definition as far as the .ll file goes. 2717 if (EatIfPresent(lltok::kw_opaque)) { 2718 // This type is being defined, so clear the location to indicate this. 2719 Entry.second = SMLoc(); 2720 2721 // If this type number has never been uttered, create it. 2722 if (!Entry.first) 2723 Entry.first = StructType::create(Context, Name); 2724 ResultTy = Entry.first; 2725 return false; 2726 } 2727 2728 // If the type starts with '<', then it is either a packed struct or a vector. 2729 bool isPacked = EatIfPresent(lltok::less); 2730 2731 // If we don't have a struct, then we have a random type alias, which we 2732 // accept for compatibility with old files. These types are not allowed to be 2733 // forward referenced and not allowed to be recursive. 2734 if (Lex.getKind() != lltok::lbrace) { 2735 if (Entry.first) 2736 return Error(TypeLoc, "forward references to non-struct type"); 2737 2738 ResultTy = nullptr; 2739 if (isPacked) 2740 return ParseArrayVectorType(ResultTy, true); 2741 return ParseType(ResultTy); 2742 } 2743 2744 // This type is being defined, so clear the location to indicate this. 2745 Entry.second = SMLoc(); 2746 2747 // If this type number has never been uttered, create it. 2748 if (!Entry.first) 2749 Entry.first = StructType::create(Context, Name); 2750 2751 StructType *STy = cast<StructType>(Entry.first); 2752 2753 SmallVector<Type*, 8> Body; 2754 if (ParseStructBody(Body) || 2755 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2756 return true; 2757 2758 STy->setBody(Body, isPacked); 2759 ResultTy = STy; 2760 return false; 2761 } 2762 2763 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2764 /// StructType 2765 /// ::= '{' '}' 2766 /// ::= '{' Type (',' Type)* '}' 2767 /// ::= '<' '{' '}' '>' 2768 /// ::= '<' '{' Type (',' Type)* '}' '>' 2769 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2770 assert(Lex.getKind() == lltok::lbrace); 2771 Lex.Lex(); // Consume the '{' 2772 2773 // Handle the empty struct. 2774 if (EatIfPresent(lltok::rbrace)) 2775 return false; 2776 2777 LocTy EltTyLoc = Lex.getLoc(); 2778 Type *Ty = nullptr; 2779 if (ParseType(Ty)) return true; 2780 Body.push_back(Ty); 2781 2782 if (!StructType::isValidElementType(Ty)) 2783 return Error(EltTyLoc, "invalid element type for struct"); 2784 2785 while (EatIfPresent(lltok::comma)) { 2786 EltTyLoc = Lex.getLoc(); 2787 if (ParseType(Ty)) return true; 2788 2789 if (!StructType::isValidElementType(Ty)) 2790 return Error(EltTyLoc, "invalid element type for struct"); 2791 2792 Body.push_back(Ty); 2793 } 2794 2795 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2796 } 2797 2798 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2799 /// token has already been consumed. 2800 /// Type 2801 /// ::= '[' APSINTVAL 'x' Types ']' 2802 /// ::= '<' APSINTVAL 'x' Types '>' 2803 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2804 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2805 bool Scalable = false; 2806 2807 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2808 Lex.Lex(); // consume the 'vscale' 2809 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2810 return true; 2811 2812 Scalable = true; 2813 } 2814 2815 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2816 Lex.getAPSIntVal().getBitWidth() > 64) 2817 return TokError("expected number in address space"); 2818 2819 LocTy SizeLoc = Lex.getLoc(); 2820 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2821 Lex.Lex(); 2822 2823 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2824 return true; 2825 2826 LocTy TypeLoc = Lex.getLoc(); 2827 Type *EltTy = nullptr; 2828 if (ParseType(EltTy)) return true; 2829 2830 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2831 "expected end of sequential type")) 2832 return true; 2833 2834 if (isVector) { 2835 if (Size == 0) 2836 return Error(SizeLoc, "zero element vector is illegal"); 2837 if ((unsigned)Size != Size) 2838 return Error(SizeLoc, "size too large for vector"); 2839 if (!VectorType::isValidElementType(EltTy)) 2840 return Error(TypeLoc, "invalid vector element type"); 2841 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2842 } else { 2843 if (!ArrayType::isValidElementType(EltTy)) 2844 return Error(TypeLoc, "invalid array element type"); 2845 Result = ArrayType::get(EltTy, Size); 2846 } 2847 return false; 2848 } 2849 2850 //===----------------------------------------------------------------------===// 2851 // Function Semantic Analysis. 2852 //===----------------------------------------------------------------------===// 2853 2854 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2855 int functionNumber) 2856 : P(p), F(f), FunctionNumber(functionNumber) { 2857 2858 // Insert unnamed arguments into the NumberedVals list. 2859 for (Argument &A : F.args()) 2860 if (!A.hasName()) 2861 NumberedVals.push_back(&A); 2862 } 2863 2864 LLParser::PerFunctionState::~PerFunctionState() { 2865 // If there were any forward referenced non-basicblock values, delete them. 2866 2867 for (const auto &P : ForwardRefVals) { 2868 if (isa<BasicBlock>(P.second.first)) 2869 continue; 2870 P.second.first->replaceAllUsesWith( 2871 UndefValue::get(P.second.first->getType())); 2872 P.second.first->deleteValue(); 2873 } 2874 2875 for (const auto &P : ForwardRefValIDs) { 2876 if (isa<BasicBlock>(P.second.first)) 2877 continue; 2878 P.second.first->replaceAllUsesWith( 2879 UndefValue::get(P.second.first->getType())); 2880 P.second.first->deleteValue(); 2881 } 2882 } 2883 2884 bool LLParser::PerFunctionState::FinishFunction() { 2885 if (!ForwardRefVals.empty()) 2886 return P.Error(ForwardRefVals.begin()->second.second, 2887 "use of undefined value '%" + ForwardRefVals.begin()->first + 2888 "'"); 2889 if (!ForwardRefValIDs.empty()) 2890 return P.Error(ForwardRefValIDs.begin()->second.second, 2891 "use of undefined value '%" + 2892 Twine(ForwardRefValIDs.begin()->first) + "'"); 2893 return false; 2894 } 2895 2896 /// GetVal - Get a value with the specified name or ID, creating a 2897 /// forward reference record if needed. This can return null if the value 2898 /// exists but does not have the right type. 2899 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2900 LocTy Loc, bool IsCall) { 2901 // Look this name up in the normal function symbol table. 2902 Value *Val = F.getValueSymbolTable()->lookup(Name); 2903 2904 // If this is a forward reference for the value, see if we already created a 2905 // forward ref record. 2906 if (!Val) { 2907 auto I = ForwardRefVals.find(Name); 2908 if (I != ForwardRefVals.end()) 2909 Val = I->second.first; 2910 } 2911 2912 // If we have the value in the symbol table or fwd-ref table, return it. 2913 if (Val) 2914 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2915 2916 // Don't make placeholders with invalid type. 2917 if (!Ty->isFirstClassType()) { 2918 P.Error(Loc, "invalid use of a non-first-class type"); 2919 return nullptr; 2920 } 2921 2922 // Otherwise, create a new forward reference for this value and remember it. 2923 Value *FwdVal; 2924 if (Ty->isLabelTy()) { 2925 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2926 } else { 2927 FwdVal = new Argument(Ty, Name); 2928 } 2929 2930 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2931 return FwdVal; 2932 } 2933 2934 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2935 bool IsCall) { 2936 // Look this name up in the normal function symbol table. 2937 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2938 2939 // If this is a forward reference for the value, see if we already created a 2940 // forward ref record. 2941 if (!Val) { 2942 auto I = ForwardRefValIDs.find(ID); 2943 if (I != ForwardRefValIDs.end()) 2944 Val = I->second.first; 2945 } 2946 2947 // If we have the value in the symbol table or fwd-ref table, return it. 2948 if (Val) 2949 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2950 2951 if (!Ty->isFirstClassType()) { 2952 P.Error(Loc, "invalid use of a non-first-class type"); 2953 return nullptr; 2954 } 2955 2956 // Otherwise, create a new forward reference for this value and remember it. 2957 Value *FwdVal; 2958 if (Ty->isLabelTy()) { 2959 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2960 } else { 2961 FwdVal = new Argument(Ty); 2962 } 2963 2964 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2965 return FwdVal; 2966 } 2967 2968 /// SetInstName - After an instruction is parsed and inserted into its 2969 /// basic block, this installs its name. 2970 bool LLParser::PerFunctionState::SetInstName(int NameID, 2971 const std::string &NameStr, 2972 LocTy NameLoc, Instruction *Inst) { 2973 // If this instruction has void type, it cannot have a name or ID specified. 2974 if (Inst->getType()->isVoidTy()) { 2975 if (NameID != -1 || !NameStr.empty()) 2976 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2977 return false; 2978 } 2979 2980 // If this was a numbered instruction, verify that the instruction is the 2981 // expected value and resolve any forward references. 2982 if (NameStr.empty()) { 2983 // If neither a name nor an ID was specified, just use the next ID. 2984 if (NameID == -1) 2985 NameID = NumberedVals.size(); 2986 2987 if (unsigned(NameID) != NumberedVals.size()) 2988 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2989 Twine(NumberedVals.size()) + "'"); 2990 2991 auto FI = ForwardRefValIDs.find(NameID); 2992 if (FI != ForwardRefValIDs.end()) { 2993 Value *Sentinel = FI->second.first; 2994 if (Sentinel->getType() != Inst->getType()) 2995 return P.Error(NameLoc, "instruction forward referenced with type '" + 2996 getTypeString(FI->second.first->getType()) + "'"); 2997 2998 Sentinel->replaceAllUsesWith(Inst); 2999 Sentinel->deleteValue(); 3000 ForwardRefValIDs.erase(FI); 3001 } 3002 3003 NumberedVals.push_back(Inst); 3004 return false; 3005 } 3006 3007 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3008 auto FI = ForwardRefVals.find(NameStr); 3009 if (FI != ForwardRefVals.end()) { 3010 Value *Sentinel = FI->second.first; 3011 if (Sentinel->getType() != Inst->getType()) 3012 return P.Error(NameLoc, "instruction forward referenced with type '" + 3013 getTypeString(FI->second.first->getType()) + "'"); 3014 3015 Sentinel->replaceAllUsesWith(Inst); 3016 Sentinel->deleteValue(); 3017 ForwardRefVals.erase(FI); 3018 } 3019 3020 // Set the name on the instruction. 3021 Inst->setName(NameStr); 3022 3023 if (Inst->getName() != NameStr) 3024 return P.Error(NameLoc, "multiple definition of local value named '" + 3025 NameStr + "'"); 3026 return false; 3027 } 3028 3029 /// GetBB - Get a basic block with the specified name or ID, creating a 3030 /// forward reference record if needed. 3031 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3032 LocTy Loc) { 3033 return dyn_cast_or_null<BasicBlock>( 3034 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3035 } 3036 3037 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3038 return dyn_cast_or_null<BasicBlock>( 3039 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3040 } 3041 3042 /// DefineBB - Define the specified basic block, which is either named or 3043 /// unnamed. If there is an error, this returns null otherwise it returns 3044 /// the block being defined. 3045 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3046 int NameID, LocTy Loc) { 3047 BasicBlock *BB; 3048 if (Name.empty()) { 3049 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3050 P.Error(Loc, "label expected to be numbered '" + 3051 Twine(NumberedVals.size()) + "'"); 3052 return nullptr; 3053 } 3054 BB = GetBB(NumberedVals.size(), Loc); 3055 if (!BB) { 3056 P.Error(Loc, "unable to create block numbered '" + 3057 Twine(NumberedVals.size()) + "'"); 3058 return nullptr; 3059 } 3060 } else { 3061 BB = GetBB(Name, Loc); 3062 if (!BB) { 3063 P.Error(Loc, "unable to create block named '" + Name + "'"); 3064 return nullptr; 3065 } 3066 } 3067 3068 // Move the block to the end of the function. Forward ref'd blocks are 3069 // inserted wherever they happen to be referenced. 3070 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3071 3072 // Remove the block from forward ref sets. 3073 if (Name.empty()) { 3074 ForwardRefValIDs.erase(NumberedVals.size()); 3075 NumberedVals.push_back(BB); 3076 } else { 3077 // BB forward references are already in the function symbol table. 3078 ForwardRefVals.erase(Name); 3079 } 3080 3081 return BB; 3082 } 3083 3084 //===----------------------------------------------------------------------===// 3085 // Constants. 3086 //===----------------------------------------------------------------------===// 3087 3088 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3089 /// type implied. For example, if we parse "4" we don't know what integer type 3090 /// it has. The value will later be combined with its type and checked for 3091 /// sanity. PFS is used to convert function-local operands of metadata (since 3092 /// metadata operands are not just parsed here but also converted to values). 3093 /// PFS can be null when we are not parsing metadata values inside a function. 3094 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3095 ID.Loc = Lex.getLoc(); 3096 switch (Lex.getKind()) { 3097 default: return TokError("expected value token"); 3098 case lltok::GlobalID: // @42 3099 ID.UIntVal = Lex.getUIntVal(); 3100 ID.Kind = ValID::t_GlobalID; 3101 break; 3102 case lltok::GlobalVar: // @foo 3103 ID.StrVal = Lex.getStrVal(); 3104 ID.Kind = ValID::t_GlobalName; 3105 break; 3106 case lltok::LocalVarID: // %42 3107 ID.UIntVal = Lex.getUIntVal(); 3108 ID.Kind = ValID::t_LocalID; 3109 break; 3110 case lltok::LocalVar: // %foo 3111 ID.StrVal = Lex.getStrVal(); 3112 ID.Kind = ValID::t_LocalName; 3113 break; 3114 case lltok::APSInt: 3115 ID.APSIntVal = Lex.getAPSIntVal(); 3116 ID.Kind = ValID::t_APSInt; 3117 break; 3118 case lltok::APFloat: 3119 ID.APFloatVal = Lex.getAPFloatVal(); 3120 ID.Kind = ValID::t_APFloat; 3121 break; 3122 case lltok::kw_true: 3123 ID.ConstantVal = ConstantInt::getTrue(Context); 3124 ID.Kind = ValID::t_Constant; 3125 break; 3126 case lltok::kw_false: 3127 ID.ConstantVal = ConstantInt::getFalse(Context); 3128 ID.Kind = ValID::t_Constant; 3129 break; 3130 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3131 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3132 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3133 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3134 3135 case lltok::lbrace: { 3136 // ValID ::= '{' ConstVector '}' 3137 Lex.Lex(); 3138 SmallVector<Constant*, 16> Elts; 3139 if (ParseGlobalValueVector(Elts) || 3140 ParseToken(lltok::rbrace, "expected end of struct constant")) 3141 return true; 3142 3143 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3144 ID.UIntVal = Elts.size(); 3145 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3146 Elts.size() * sizeof(Elts[0])); 3147 ID.Kind = ValID::t_ConstantStruct; 3148 return false; 3149 } 3150 case lltok::less: { 3151 // ValID ::= '<' ConstVector '>' --> Vector. 3152 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3153 Lex.Lex(); 3154 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3155 3156 SmallVector<Constant*, 16> Elts; 3157 LocTy FirstEltLoc = Lex.getLoc(); 3158 if (ParseGlobalValueVector(Elts) || 3159 (isPackedStruct && 3160 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3161 ParseToken(lltok::greater, "expected end of constant")) 3162 return true; 3163 3164 if (isPackedStruct) { 3165 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3166 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3167 Elts.size() * sizeof(Elts[0])); 3168 ID.UIntVal = Elts.size(); 3169 ID.Kind = ValID::t_PackedConstantStruct; 3170 return false; 3171 } 3172 3173 if (Elts.empty()) 3174 return Error(ID.Loc, "constant vector must not be empty"); 3175 3176 if (!Elts[0]->getType()->isIntegerTy() && 3177 !Elts[0]->getType()->isFloatingPointTy() && 3178 !Elts[0]->getType()->isPointerTy()) 3179 return Error(FirstEltLoc, 3180 "vector elements must have integer, pointer or floating point type"); 3181 3182 // Verify that all the vector elements have the same type. 3183 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3184 if (Elts[i]->getType() != Elts[0]->getType()) 3185 return Error(FirstEltLoc, 3186 "vector element #" + Twine(i) + 3187 " is not of type '" + getTypeString(Elts[0]->getType())); 3188 3189 ID.ConstantVal = ConstantVector::get(Elts); 3190 ID.Kind = ValID::t_Constant; 3191 return false; 3192 } 3193 case lltok::lsquare: { // Array Constant 3194 Lex.Lex(); 3195 SmallVector<Constant*, 16> Elts; 3196 LocTy FirstEltLoc = Lex.getLoc(); 3197 if (ParseGlobalValueVector(Elts) || 3198 ParseToken(lltok::rsquare, "expected end of array constant")) 3199 return true; 3200 3201 // Handle empty element. 3202 if (Elts.empty()) { 3203 // Use undef instead of an array because it's inconvenient to determine 3204 // the element type at this point, there being no elements to examine. 3205 ID.Kind = ValID::t_EmptyArray; 3206 return false; 3207 } 3208 3209 if (!Elts[0]->getType()->isFirstClassType()) 3210 return Error(FirstEltLoc, "invalid array element type: " + 3211 getTypeString(Elts[0]->getType())); 3212 3213 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3214 3215 // Verify all elements are correct type! 3216 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3217 if (Elts[i]->getType() != Elts[0]->getType()) 3218 return Error(FirstEltLoc, 3219 "array element #" + Twine(i) + 3220 " is not of type '" + getTypeString(Elts[0]->getType())); 3221 } 3222 3223 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3224 ID.Kind = ValID::t_Constant; 3225 return false; 3226 } 3227 case lltok::kw_c: // c "foo" 3228 Lex.Lex(); 3229 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3230 false); 3231 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3232 ID.Kind = ValID::t_Constant; 3233 return false; 3234 3235 case lltok::kw_asm: { 3236 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3237 // STRINGCONSTANT 3238 bool HasSideEffect, AlignStack, AsmDialect; 3239 Lex.Lex(); 3240 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3241 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3242 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3243 ParseStringConstant(ID.StrVal) || 3244 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3245 ParseToken(lltok::StringConstant, "expected constraint string")) 3246 return true; 3247 ID.StrVal2 = Lex.getStrVal(); 3248 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3249 (unsigned(AsmDialect)<<2); 3250 ID.Kind = ValID::t_InlineAsm; 3251 return false; 3252 } 3253 3254 case lltok::kw_blockaddress: { 3255 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3256 Lex.Lex(); 3257 3258 ValID Fn, Label; 3259 3260 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3261 ParseValID(Fn) || 3262 ParseToken(lltok::comma, "expected comma in block address expression")|| 3263 ParseValID(Label) || 3264 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return Error(Fn.Loc, "expected function name in blockaddress"); 3269 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3270 return Error(Label.Loc, "expected basic block name in blockaddress"); 3271 3272 // Try to find the function (but skip it if it's forward-referenced). 3273 GlobalValue *GV = nullptr; 3274 if (Fn.Kind == ValID::t_GlobalID) { 3275 if (Fn.UIntVal < NumberedVals.size()) 3276 GV = NumberedVals[Fn.UIntVal]; 3277 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3278 GV = M->getNamedValue(Fn.StrVal); 3279 } 3280 Function *F = nullptr; 3281 if (GV) { 3282 // Confirm that it's actually a function with a definition. 3283 if (!isa<Function>(GV)) 3284 return Error(Fn.Loc, "expected function name in blockaddress"); 3285 F = cast<Function>(GV); 3286 if (F->isDeclaration()) 3287 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3288 } 3289 3290 if (!F) { 3291 // Make a global variable as a placeholder for this reference. 3292 GlobalValue *&FwdRef = 3293 ForwardRefBlockAddresses.insert(std::make_pair( 3294 std::move(Fn), 3295 std::map<ValID, GlobalValue *>())) 3296 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3297 .first->second; 3298 if (!FwdRef) 3299 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3300 GlobalValue::InternalLinkage, nullptr, ""); 3301 ID.ConstantVal = FwdRef; 3302 ID.Kind = ValID::t_Constant; 3303 return false; 3304 } 3305 3306 // We found the function; now find the basic block. Don't use PFS, since we 3307 // might be inside a constant expression. 3308 BasicBlock *BB; 3309 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3310 if (Label.Kind == ValID::t_LocalID) 3311 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3312 else 3313 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3314 if (!BB) 3315 return Error(Label.Loc, "referenced value is not a basic block"); 3316 } else { 3317 if (Label.Kind == ValID::t_LocalID) 3318 return Error(Label.Loc, "cannot take address of numeric label after " 3319 "the function is defined"); 3320 BB = dyn_cast_or_null<BasicBlock>( 3321 F->getValueSymbolTable()->lookup(Label.StrVal)); 3322 if (!BB) 3323 return Error(Label.Loc, "referenced value is not a basic block"); 3324 } 3325 3326 ID.ConstantVal = BlockAddress::get(F, BB); 3327 ID.Kind = ValID::t_Constant; 3328 return false; 3329 } 3330 3331 case lltok::kw_trunc: 3332 case lltok::kw_zext: 3333 case lltok::kw_sext: 3334 case lltok::kw_fptrunc: 3335 case lltok::kw_fpext: 3336 case lltok::kw_bitcast: 3337 case lltok::kw_addrspacecast: 3338 case lltok::kw_uitofp: 3339 case lltok::kw_sitofp: 3340 case lltok::kw_fptoui: 3341 case lltok::kw_fptosi: 3342 case lltok::kw_inttoptr: 3343 case lltok::kw_ptrtoint: { 3344 unsigned Opc = Lex.getUIntVal(); 3345 Type *DestTy = nullptr; 3346 Constant *SrcVal; 3347 Lex.Lex(); 3348 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3349 ParseGlobalTypeAndValue(SrcVal) || 3350 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3351 ParseType(DestTy) || 3352 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3353 return true; 3354 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3355 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3356 getTypeString(SrcVal->getType()) + "' to '" + 3357 getTypeString(DestTy) + "'"); 3358 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3359 SrcVal, DestTy); 3360 ID.Kind = ValID::t_Constant; 3361 return false; 3362 } 3363 case lltok::kw_extractvalue: { 3364 Lex.Lex(); 3365 Constant *Val; 3366 SmallVector<unsigned, 4> Indices; 3367 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3368 ParseGlobalTypeAndValue(Val) || 3369 ParseIndexList(Indices) || 3370 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3371 return true; 3372 3373 if (!Val->getType()->isAggregateType()) 3374 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3375 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3376 return Error(ID.Loc, "invalid indices for extractvalue"); 3377 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3378 ID.Kind = ValID::t_Constant; 3379 return false; 3380 } 3381 case lltok::kw_insertvalue: { 3382 Lex.Lex(); 3383 Constant *Val0, *Val1; 3384 SmallVector<unsigned, 4> Indices; 3385 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3386 ParseGlobalTypeAndValue(Val0) || 3387 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3388 ParseGlobalTypeAndValue(Val1) || 3389 ParseIndexList(Indices) || 3390 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3391 return true; 3392 if (!Val0->getType()->isAggregateType()) 3393 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3394 Type *IndexedType = 3395 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3396 if (!IndexedType) 3397 return Error(ID.Loc, "invalid indices for insertvalue"); 3398 if (IndexedType != Val1->getType()) 3399 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3400 getTypeString(Val1->getType()) + 3401 "' instead of '" + getTypeString(IndexedType) + 3402 "'"); 3403 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3404 ID.Kind = ValID::t_Constant; 3405 return false; 3406 } 3407 case lltok::kw_icmp: 3408 case lltok::kw_fcmp: { 3409 unsigned PredVal, Opc = Lex.getUIntVal(); 3410 Constant *Val0, *Val1; 3411 Lex.Lex(); 3412 if (ParseCmpPredicate(PredVal, Opc) || 3413 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3414 ParseGlobalTypeAndValue(Val0) || 3415 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3416 ParseGlobalTypeAndValue(Val1) || 3417 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3418 return true; 3419 3420 if (Val0->getType() != Val1->getType()) 3421 return Error(ID.Loc, "compare operands must have the same type"); 3422 3423 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3424 3425 if (Opc == Instruction::FCmp) { 3426 if (!Val0->getType()->isFPOrFPVectorTy()) 3427 return Error(ID.Loc, "fcmp requires floating point operands"); 3428 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3429 } else { 3430 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3431 if (!Val0->getType()->isIntOrIntVectorTy() && 3432 !Val0->getType()->isPtrOrPtrVectorTy()) 3433 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3434 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3435 } 3436 ID.Kind = ValID::t_Constant; 3437 return false; 3438 } 3439 3440 // Unary Operators. 3441 case lltok::kw_fneg: { 3442 unsigned Opc = Lex.getUIntVal(); 3443 Constant *Val; 3444 Lex.Lex(); 3445 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3446 ParseGlobalTypeAndValue(Val) || 3447 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3448 return true; 3449 3450 // Check that the type is valid for the operator. 3451 switch (Opc) { 3452 case Instruction::FNeg: 3453 if (!Val->getType()->isFPOrFPVectorTy()) 3454 return Error(ID.Loc, "constexpr requires fp operands"); 3455 break; 3456 default: llvm_unreachable("Unknown unary operator!"); 3457 } 3458 unsigned Flags = 0; 3459 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3460 ID.ConstantVal = C; 3461 ID.Kind = ValID::t_Constant; 3462 return false; 3463 } 3464 // Binary Operators. 3465 case lltok::kw_add: 3466 case lltok::kw_fadd: 3467 case lltok::kw_sub: 3468 case lltok::kw_fsub: 3469 case lltok::kw_mul: 3470 case lltok::kw_fmul: 3471 case lltok::kw_udiv: 3472 case lltok::kw_sdiv: 3473 case lltok::kw_fdiv: 3474 case lltok::kw_urem: 3475 case lltok::kw_srem: 3476 case lltok::kw_frem: 3477 case lltok::kw_shl: 3478 case lltok::kw_lshr: 3479 case lltok::kw_ashr: { 3480 bool NUW = false; 3481 bool NSW = false; 3482 bool Exact = false; 3483 unsigned Opc = Lex.getUIntVal(); 3484 Constant *Val0, *Val1; 3485 Lex.Lex(); 3486 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3487 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3488 if (EatIfPresent(lltok::kw_nuw)) 3489 NUW = true; 3490 if (EatIfPresent(lltok::kw_nsw)) { 3491 NSW = true; 3492 if (EatIfPresent(lltok::kw_nuw)) 3493 NUW = true; 3494 } 3495 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3496 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3497 if (EatIfPresent(lltok::kw_exact)) 3498 Exact = true; 3499 } 3500 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3501 ParseGlobalTypeAndValue(Val0) || 3502 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3503 ParseGlobalTypeAndValue(Val1) || 3504 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3505 return true; 3506 if (Val0->getType() != Val1->getType()) 3507 return Error(ID.Loc, "operands of constexpr must have same type"); 3508 // Check that the type is valid for the operator. 3509 switch (Opc) { 3510 case Instruction::Add: 3511 case Instruction::Sub: 3512 case Instruction::Mul: 3513 case Instruction::UDiv: 3514 case Instruction::SDiv: 3515 case Instruction::URem: 3516 case Instruction::SRem: 3517 case Instruction::Shl: 3518 case Instruction::AShr: 3519 case Instruction::LShr: 3520 if (!Val0->getType()->isIntOrIntVectorTy()) 3521 return Error(ID.Loc, "constexpr requires integer operands"); 3522 break; 3523 case Instruction::FAdd: 3524 case Instruction::FSub: 3525 case Instruction::FMul: 3526 case Instruction::FDiv: 3527 case Instruction::FRem: 3528 if (!Val0->getType()->isFPOrFPVectorTy()) 3529 return Error(ID.Loc, "constexpr requires fp operands"); 3530 break; 3531 default: llvm_unreachable("Unknown binary operator!"); 3532 } 3533 unsigned Flags = 0; 3534 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3535 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3536 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3537 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3538 ID.ConstantVal = C; 3539 ID.Kind = ValID::t_Constant; 3540 return false; 3541 } 3542 3543 // Logical Operations 3544 case lltok::kw_and: 3545 case lltok::kw_or: 3546 case lltok::kw_xor: { 3547 unsigned Opc = Lex.getUIntVal(); 3548 Constant *Val0, *Val1; 3549 Lex.Lex(); 3550 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3551 ParseGlobalTypeAndValue(Val0) || 3552 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3553 ParseGlobalTypeAndValue(Val1) || 3554 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3555 return true; 3556 if (Val0->getType() != Val1->getType()) 3557 return Error(ID.Loc, "operands of constexpr must have same type"); 3558 if (!Val0->getType()->isIntOrIntVectorTy()) 3559 return Error(ID.Loc, 3560 "constexpr requires integer or integer vector operands"); 3561 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3562 ID.Kind = ValID::t_Constant; 3563 return false; 3564 } 3565 3566 case lltok::kw_getelementptr: 3567 case lltok::kw_shufflevector: 3568 case lltok::kw_insertelement: 3569 case lltok::kw_extractelement: 3570 case lltok::kw_select: { 3571 unsigned Opc = Lex.getUIntVal(); 3572 SmallVector<Constant*, 16> Elts; 3573 bool InBounds = false; 3574 Type *Ty; 3575 Lex.Lex(); 3576 3577 if (Opc == Instruction::GetElementPtr) 3578 InBounds = EatIfPresent(lltok::kw_inbounds); 3579 3580 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3581 return true; 3582 3583 LocTy ExplicitTypeLoc = Lex.getLoc(); 3584 if (Opc == Instruction::GetElementPtr) { 3585 if (ParseType(Ty) || 3586 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3587 return true; 3588 } 3589 3590 Optional<unsigned> InRangeOp; 3591 if (ParseGlobalValueVector( 3592 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3593 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3594 return true; 3595 3596 if (Opc == Instruction::GetElementPtr) { 3597 if (Elts.size() == 0 || 3598 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3599 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3600 3601 Type *BaseType = Elts[0]->getType(); 3602 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3603 if (Ty != BasePointerType->getElementType()) 3604 return Error( 3605 ExplicitTypeLoc, 3606 "explicit pointee type doesn't match operand's pointee type"); 3607 3608 unsigned GEPWidth = BaseType->isVectorTy() 3609 ? cast<VectorType>(BaseType)->getNumElements() 3610 : 0; 3611 3612 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3613 for (Constant *Val : Indices) { 3614 Type *ValTy = Val->getType(); 3615 if (!ValTy->isIntOrIntVectorTy()) 3616 return Error(ID.Loc, "getelementptr index must be an integer"); 3617 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3618 unsigned ValNumEl = ValVTy->getNumElements(); 3619 if (GEPWidth && (ValNumEl != GEPWidth)) 3620 return Error( 3621 ID.Loc, 3622 "getelementptr vector index has a wrong number of elements"); 3623 // GEPWidth may have been unknown because the base is a scalar, 3624 // but it is known now. 3625 GEPWidth = ValNumEl; 3626 } 3627 } 3628 3629 SmallPtrSet<Type*, 4> Visited; 3630 if (!Indices.empty() && !Ty->isSized(&Visited)) 3631 return Error(ID.Loc, "base element of getelementptr must be sized"); 3632 3633 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3634 return Error(ID.Loc, "invalid getelementptr indices"); 3635 3636 if (InRangeOp) { 3637 if (*InRangeOp == 0) 3638 return Error(ID.Loc, 3639 "inrange keyword may not appear on pointer operand"); 3640 --*InRangeOp; 3641 } 3642 3643 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3644 InBounds, InRangeOp); 3645 } else if (Opc == Instruction::Select) { 3646 if (Elts.size() != 3) 3647 return Error(ID.Loc, "expected three operands to select"); 3648 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3649 Elts[2])) 3650 return Error(ID.Loc, Reason); 3651 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3652 } else if (Opc == Instruction::ShuffleVector) { 3653 if (Elts.size() != 3) 3654 return Error(ID.Loc, "expected three operands to shufflevector"); 3655 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3656 return Error(ID.Loc, "invalid operands to shufflevector"); 3657 SmallVector<int, 16> Mask; 3658 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3659 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3660 } else if (Opc == Instruction::ExtractElement) { 3661 if (Elts.size() != 2) 3662 return Error(ID.Loc, "expected two operands to extractelement"); 3663 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3664 return Error(ID.Loc, "invalid extractelement operands"); 3665 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3666 } else { 3667 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3668 if (Elts.size() != 3) 3669 return Error(ID.Loc, "expected three operands to insertelement"); 3670 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3671 return Error(ID.Loc, "invalid insertelement operands"); 3672 ID.ConstantVal = 3673 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3674 } 3675 3676 ID.Kind = ValID::t_Constant; 3677 return false; 3678 } 3679 } 3680 3681 Lex.Lex(); 3682 return false; 3683 } 3684 3685 /// ParseGlobalValue - Parse a global value with the specified type. 3686 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3687 C = nullptr; 3688 ValID ID; 3689 Value *V = nullptr; 3690 bool Parsed = ParseValID(ID) || 3691 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3692 if (V && !(C = dyn_cast<Constant>(V))) 3693 return Error(ID.Loc, "global values must be constants"); 3694 return Parsed; 3695 } 3696 3697 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3698 Type *Ty = nullptr; 3699 return ParseType(Ty) || 3700 ParseGlobalValue(Ty, V); 3701 } 3702 3703 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3704 C = nullptr; 3705 3706 LocTy KwLoc = Lex.getLoc(); 3707 if (!EatIfPresent(lltok::kw_comdat)) 3708 return false; 3709 3710 if (EatIfPresent(lltok::lparen)) { 3711 if (Lex.getKind() != lltok::ComdatVar) 3712 return TokError("expected comdat variable"); 3713 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3714 Lex.Lex(); 3715 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3716 return true; 3717 } else { 3718 if (GlobalName.empty()) 3719 return TokError("comdat cannot be unnamed"); 3720 C = getComdat(std::string(GlobalName), KwLoc); 3721 } 3722 3723 return false; 3724 } 3725 3726 /// ParseGlobalValueVector 3727 /// ::= /*empty*/ 3728 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3729 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3730 Optional<unsigned> *InRangeOp) { 3731 // Empty list. 3732 if (Lex.getKind() == lltok::rbrace || 3733 Lex.getKind() == lltok::rsquare || 3734 Lex.getKind() == lltok::greater || 3735 Lex.getKind() == lltok::rparen) 3736 return false; 3737 3738 do { 3739 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3740 *InRangeOp = Elts.size(); 3741 3742 Constant *C; 3743 if (ParseGlobalTypeAndValue(C)) return true; 3744 Elts.push_back(C); 3745 } while (EatIfPresent(lltok::comma)); 3746 3747 return false; 3748 } 3749 3750 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3751 SmallVector<Metadata *, 16> Elts; 3752 if (ParseMDNodeVector(Elts)) 3753 return true; 3754 3755 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3756 return false; 3757 } 3758 3759 /// MDNode: 3760 /// ::= !{ ... } 3761 /// ::= !7 3762 /// ::= !DILocation(...) 3763 bool LLParser::ParseMDNode(MDNode *&N) { 3764 if (Lex.getKind() == lltok::MetadataVar) 3765 return ParseSpecializedMDNode(N); 3766 3767 return ParseToken(lltok::exclaim, "expected '!' here") || 3768 ParseMDNodeTail(N); 3769 } 3770 3771 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3772 // !{ ... } 3773 if (Lex.getKind() == lltok::lbrace) 3774 return ParseMDTuple(N); 3775 3776 // !42 3777 return ParseMDNodeID(N); 3778 } 3779 3780 namespace { 3781 3782 /// Structure to represent an optional metadata field. 3783 template <class FieldTy> struct MDFieldImpl { 3784 typedef MDFieldImpl ImplTy; 3785 FieldTy Val; 3786 bool Seen; 3787 3788 void assign(FieldTy Val) { 3789 Seen = true; 3790 this->Val = std::move(Val); 3791 } 3792 3793 explicit MDFieldImpl(FieldTy Default) 3794 : Val(std::move(Default)), Seen(false) {} 3795 }; 3796 3797 /// Structure to represent an optional metadata field that 3798 /// can be of either type (A or B) and encapsulates the 3799 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3800 /// to reimplement the specifics for representing each Field. 3801 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3802 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3803 FieldTypeA A; 3804 FieldTypeB B; 3805 bool Seen; 3806 3807 enum { 3808 IsInvalid = 0, 3809 IsTypeA = 1, 3810 IsTypeB = 2 3811 } WhatIs; 3812 3813 void assign(FieldTypeA A) { 3814 Seen = true; 3815 this->A = std::move(A); 3816 WhatIs = IsTypeA; 3817 } 3818 3819 void assign(FieldTypeB B) { 3820 Seen = true; 3821 this->B = std::move(B); 3822 WhatIs = IsTypeB; 3823 } 3824 3825 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3826 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3827 WhatIs(IsInvalid) {} 3828 }; 3829 3830 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3831 uint64_t Max; 3832 3833 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3834 : ImplTy(Default), Max(Max) {} 3835 }; 3836 3837 struct LineField : public MDUnsignedField { 3838 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3839 }; 3840 3841 struct ColumnField : public MDUnsignedField { 3842 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3843 }; 3844 3845 struct DwarfTagField : public MDUnsignedField { 3846 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3847 DwarfTagField(dwarf::Tag DefaultTag) 3848 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3849 }; 3850 3851 struct DwarfMacinfoTypeField : public MDUnsignedField { 3852 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3853 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3854 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3855 }; 3856 3857 struct DwarfAttEncodingField : public MDUnsignedField { 3858 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3859 }; 3860 3861 struct DwarfVirtualityField : public MDUnsignedField { 3862 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3863 }; 3864 3865 struct DwarfLangField : public MDUnsignedField { 3866 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3867 }; 3868 3869 struct DwarfCCField : public MDUnsignedField { 3870 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3871 }; 3872 3873 struct EmissionKindField : public MDUnsignedField { 3874 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3875 }; 3876 3877 struct NameTableKindField : public MDUnsignedField { 3878 NameTableKindField() 3879 : MDUnsignedField( 3880 0, (unsigned) 3881 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3882 }; 3883 3884 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3885 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3886 }; 3887 3888 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3889 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3890 }; 3891 3892 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3893 MDAPSIntField() : ImplTy(APSInt()) {} 3894 }; 3895 3896 struct MDSignedField : public MDFieldImpl<int64_t> { 3897 int64_t Min; 3898 int64_t Max; 3899 3900 MDSignedField(int64_t Default = 0) 3901 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3902 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3903 : ImplTy(Default), Min(Min), Max(Max) {} 3904 }; 3905 3906 struct MDBoolField : public MDFieldImpl<bool> { 3907 MDBoolField(bool Default = false) : ImplTy(Default) {} 3908 }; 3909 3910 struct MDField : public MDFieldImpl<Metadata *> { 3911 bool AllowNull; 3912 3913 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3914 }; 3915 3916 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3917 MDConstant() : ImplTy(nullptr) {} 3918 }; 3919 3920 struct MDStringField : public MDFieldImpl<MDString *> { 3921 bool AllowEmpty; 3922 MDStringField(bool AllowEmpty = true) 3923 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3924 }; 3925 3926 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3927 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3928 }; 3929 3930 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3931 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3932 }; 3933 3934 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3935 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3936 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3937 3938 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3939 bool AllowNull = true) 3940 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3941 3942 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3943 bool isMDField() const { return WhatIs == IsTypeB; } 3944 int64_t getMDSignedValue() const { 3945 assert(isMDSignedField() && "Wrong field type"); 3946 return A.Val; 3947 } 3948 Metadata *getMDFieldValue() const { 3949 assert(isMDField() && "Wrong field type"); 3950 return B.Val; 3951 } 3952 }; 3953 3954 struct MDSignedOrUnsignedField 3955 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3956 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3957 3958 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3959 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3960 int64_t getMDSignedValue() const { 3961 assert(isMDSignedField() && "Wrong field type"); 3962 return A.Val; 3963 } 3964 uint64_t getMDUnsignedValue() const { 3965 assert(isMDUnsignedField() && "Wrong field type"); 3966 return B.Val; 3967 } 3968 }; 3969 3970 } // end anonymous namespace 3971 3972 namespace llvm { 3973 3974 template <> 3975 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3976 if (Lex.getKind() != lltok::APSInt) 3977 return TokError("expected integer"); 3978 3979 Result.assign(Lex.getAPSIntVal()); 3980 Lex.Lex(); 3981 return false; 3982 } 3983 3984 template <> 3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3986 MDUnsignedField &Result) { 3987 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3988 return TokError("expected unsigned integer"); 3989 3990 auto &U = Lex.getAPSIntVal(); 3991 if (U.ugt(Result.Max)) 3992 return TokError("value for '" + Name + "' too large, limit is " + 3993 Twine(Result.Max)); 3994 Result.assign(U.getZExtValue()); 3995 assert(Result.Val <= Result.Max && "Expected value in range"); 3996 Lex.Lex(); 3997 return false; 3998 } 3999 4000 template <> 4001 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4002 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4003 } 4004 template <> 4005 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4006 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4007 } 4008 4009 template <> 4010 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4011 if (Lex.getKind() == lltok::APSInt) 4012 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4013 4014 if (Lex.getKind() != lltok::DwarfTag) 4015 return TokError("expected DWARF tag"); 4016 4017 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4018 if (Tag == dwarf::DW_TAG_invalid) 4019 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4020 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4021 4022 Result.assign(Tag); 4023 Lex.Lex(); 4024 return false; 4025 } 4026 4027 template <> 4028 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4029 DwarfMacinfoTypeField &Result) { 4030 if (Lex.getKind() == lltok::APSInt) 4031 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4032 4033 if (Lex.getKind() != lltok::DwarfMacinfo) 4034 return TokError("expected DWARF macinfo type"); 4035 4036 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4037 if (Macinfo == dwarf::DW_MACINFO_invalid) 4038 return TokError( 4039 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 4040 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4041 4042 Result.assign(Macinfo); 4043 Lex.Lex(); 4044 return false; 4045 } 4046 4047 template <> 4048 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4049 DwarfVirtualityField &Result) { 4050 if (Lex.getKind() == lltok::APSInt) 4051 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4052 4053 if (Lex.getKind() != lltok::DwarfVirtuality) 4054 return TokError("expected DWARF virtuality code"); 4055 4056 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4057 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4058 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4059 Lex.getStrVal() + "'"); 4060 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4061 Result.assign(Virtuality); 4062 Lex.Lex(); 4063 return false; 4064 } 4065 4066 template <> 4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4068 if (Lex.getKind() == lltok::APSInt) 4069 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4070 4071 if (Lex.getKind() != lltok::DwarfLang) 4072 return TokError("expected DWARF language"); 4073 4074 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4075 if (!Lang) 4076 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4077 "'"); 4078 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4079 Result.assign(Lang); 4080 Lex.Lex(); 4081 return false; 4082 } 4083 4084 template <> 4085 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4086 if (Lex.getKind() == lltok::APSInt) 4087 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4088 4089 if (Lex.getKind() != lltok::DwarfCC) 4090 return TokError("expected DWARF calling convention"); 4091 4092 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4093 if (!CC) 4094 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4095 "'"); 4096 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4097 Result.assign(CC); 4098 Lex.Lex(); 4099 return false; 4100 } 4101 4102 template <> 4103 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4104 if (Lex.getKind() == lltok::APSInt) 4105 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4106 4107 if (Lex.getKind() != lltok::EmissionKind) 4108 return TokError("expected emission kind"); 4109 4110 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4111 if (!Kind) 4112 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4113 "'"); 4114 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4115 Result.assign(*Kind); 4116 Lex.Lex(); 4117 return false; 4118 } 4119 4120 template <> 4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4122 NameTableKindField &Result) { 4123 if (Lex.getKind() == lltok::APSInt) 4124 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4125 4126 if (Lex.getKind() != lltok::NameTableKind) 4127 return TokError("expected nameTable kind"); 4128 4129 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4130 if (!Kind) 4131 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4132 "'"); 4133 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4134 Result.assign((unsigned)*Kind); 4135 Lex.Lex(); 4136 return false; 4137 } 4138 4139 template <> 4140 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4141 DwarfAttEncodingField &Result) { 4142 if (Lex.getKind() == lltok::APSInt) 4143 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4144 4145 if (Lex.getKind() != lltok::DwarfAttEncoding) 4146 return TokError("expected DWARF type attribute encoding"); 4147 4148 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4149 if (!Encoding) 4150 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4151 Lex.getStrVal() + "'"); 4152 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4153 Result.assign(Encoding); 4154 Lex.Lex(); 4155 return false; 4156 } 4157 4158 /// DIFlagField 4159 /// ::= uint32 4160 /// ::= DIFlagVector 4161 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4162 template <> 4163 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4164 4165 // Parser for a single flag. 4166 auto parseFlag = [&](DINode::DIFlags &Val) { 4167 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4168 uint32_t TempVal = static_cast<uint32_t>(Val); 4169 bool Res = ParseUInt32(TempVal); 4170 Val = static_cast<DINode::DIFlags>(TempVal); 4171 return Res; 4172 } 4173 4174 if (Lex.getKind() != lltok::DIFlag) 4175 return TokError("expected debug info flag"); 4176 4177 Val = DINode::getFlag(Lex.getStrVal()); 4178 if (!Val) 4179 return TokError(Twine("invalid debug info flag flag '") + 4180 Lex.getStrVal() + "'"); 4181 Lex.Lex(); 4182 return false; 4183 }; 4184 4185 // Parse the flags and combine them together. 4186 DINode::DIFlags Combined = DINode::FlagZero; 4187 do { 4188 DINode::DIFlags Val; 4189 if (parseFlag(Val)) 4190 return true; 4191 Combined |= Val; 4192 } while (EatIfPresent(lltok::bar)); 4193 4194 Result.assign(Combined); 4195 return false; 4196 } 4197 4198 /// DISPFlagField 4199 /// ::= uint32 4200 /// ::= DISPFlagVector 4201 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4202 template <> 4203 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4204 4205 // Parser for a single flag. 4206 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4207 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4208 uint32_t TempVal = static_cast<uint32_t>(Val); 4209 bool Res = ParseUInt32(TempVal); 4210 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4211 return Res; 4212 } 4213 4214 if (Lex.getKind() != lltok::DISPFlag) 4215 return TokError("expected debug info flag"); 4216 4217 Val = DISubprogram::getFlag(Lex.getStrVal()); 4218 if (!Val) 4219 return TokError(Twine("invalid subprogram debug info flag '") + 4220 Lex.getStrVal() + "'"); 4221 Lex.Lex(); 4222 return false; 4223 }; 4224 4225 // Parse the flags and combine them together. 4226 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4227 do { 4228 DISubprogram::DISPFlags Val; 4229 if (parseFlag(Val)) 4230 return true; 4231 Combined |= Val; 4232 } while (EatIfPresent(lltok::bar)); 4233 4234 Result.assign(Combined); 4235 return false; 4236 } 4237 4238 template <> 4239 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4240 MDSignedField &Result) { 4241 if (Lex.getKind() != lltok::APSInt) 4242 return TokError("expected signed integer"); 4243 4244 auto &S = Lex.getAPSIntVal(); 4245 if (S < Result.Min) 4246 return TokError("value for '" + Name + "' too small, limit is " + 4247 Twine(Result.Min)); 4248 if (S > Result.Max) 4249 return TokError("value for '" + Name + "' too large, limit is " + 4250 Twine(Result.Max)); 4251 Result.assign(S.getExtValue()); 4252 assert(Result.Val >= Result.Min && "Expected value in range"); 4253 assert(Result.Val <= Result.Max && "Expected value in range"); 4254 Lex.Lex(); 4255 return false; 4256 } 4257 4258 template <> 4259 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4260 switch (Lex.getKind()) { 4261 default: 4262 return TokError("expected 'true' or 'false'"); 4263 case lltok::kw_true: 4264 Result.assign(true); 4265 break; 4266 case lltok::kw_false: 4267 Result.assign(false); 4268 break; 4269 } 4270 Lex.Lex(); 4271 return false; 4272 } 4273 4274 template <> 4275 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4276 if (Lex.getKind() == lltok::kw_null) { 4277 if (!Result.AllowNull) 4278 return TokError("'" + Name + "' cannot be null"); 4279 Lex.Lex(); 4280 Result.assign(nullptr); 4281 return false; 4282 } 4283 4284 Metadata *MD; 4285 if (ParseMetadata(MD, nullptr)) 4286 return true; 4287 4288 Result.assign(MD); 4289 return false; 4290 } 4291 4292 template <> 4293 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4294 MDSignedOrMDField &Result) { 4295 // Try to parse a signed int. 4296 if (Lex.getKind() == lltok::APSInt) { 4297 MDSignedField Res = Result.A; 4298 if (!ParseMDField(Loc, Name, Res)) { 4299 Result.assign(Res); 4300 return false; 4301 } 4302 return true; 4303 } 4304 4305 // Otherwise, try to parse as an MDField. 4306 MDField Res = Result.B; 4307 if (!ParseMDField(Loc, Name, Res)) { 4308 Result.assign(Res); 4309 return false; 4310 } 4311 4312 return true; 4313 } 4314 4315 template <> 4316 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4317 LocTy ValueLoc = Lex.getLoc(); 4318 std::string S; 4319 if (ParseStringConstant(S)) 4320 return true; 4321 4322 if (!Result.AllowEmpty && S.empty()) 4323 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4324 4325 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4326 return false; 4327 } 4328 4329 template <> 4330 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4331 SmallVector<Metadata *, 4> MDs; 4332 if (ParseMDNodeVector(MDs)) 4333 return true; 4334 4335 Result.assign(std::move(MDs)); 4336 return false; 4337 } 4338 4339 template <> 4340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4341 ChecksumKindField &Result) { 4342 Optional<DIFile::ChecksumKind> CSKind = 4343 DIFile::getChecksumKind(Lex.getStrVal()); 4344 4345 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4346 return TokError( 4347 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4348 4349 Result.assign(*CSKind); 4350 Lex.Lex(); 4351 return false; 4352 } 4353 4354 } // end namespace llvm 4355 4356 template <class ParserTy> 4357 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4358 do { 4359 if (Lex.getKind() != lltok::LabelStr) 4360 return TokError("expected field label here"); 4361 4362 if (parseField()) 4363 return true; 4364 } while (EatIfPresent(lltok::comma)); 4365 4366 return false; 4367 } 4368 4369 template <class ParserTy> 4370 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4371 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4372 Lex.Lex(); 4373 4374 if (ParseToken(lltok::lparen, "expected '(' here")) 4375 return true; 4376 if (Lex.getKind() != lltok::rparen) 4377 if (ParseMDFieldsImplBody(parseField)) 4378 return true; 4379 4380 ClosingLoc = Lex.getLoc(); 4381 return ParseToken(lltok::rparen, "expected ')' here"); 4382 } 4383 4384 template <class FieldTy> 4385 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4386 if (Result.Seen) 4387 return TokError("field '" + Name + "' cannot be specified more than once"); 4388 4389 LocTy Loc = Lex.getLoc(); 4390 Lex.Lex(); 4391 return ParseMDField(Loc, Name, Result); 4392 } 4393 4394 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4395 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4396 4397 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4398 if (Lex.getStrVal() == #CLASS) \ 4399 return Parse##CLASS(N, IsDistinct); 4400 #include "llvm/IR/Metadata.def" 4401 4402 return TokError("expected metadata type"); 4403 } 4404 4405 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4406 #define NOP_FIELD(NAME, TYPE, INIT) 4407 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4408 if (!NAME.Seen) \ 4409 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4410 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4411 if (Lex.getStrVal() == #NAME) \ 4412 return ParseMDField(#NAME, NAME); 4413 #define PARSE_MD_FIELDS() \ 4414 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4415 do { \ 4416 LocTy ClosingLoc; \ 4417 if (ParseMDFieldsImpl([&]() -> bool { \ 4418 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4419 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4420 }, ClosingLoc)) \ 4421 return true; \ 4422 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4423 } while (false) 4424 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4425 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4426 4427 /// ParseDILocationFields: 4428 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4429 /// isImplicitCode: true) 4430 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4431 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4432 OPTIONAL(line, LineField, ); \ 4433 OPTIONAL(column, ColumnField, ); \ 4434 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4435 OPTIONAL(inlinedAt, MDField, ); \ 4436 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4437 PARSE_MD_FIELDS(); 4438 #undef VISIT_MD_FIELDS 4439 4440 Result = 4441 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4442 inlinedAt.Val, isImplicitCode.Val)); 4443 return false; 4444 } 4445 4446 /// ParseGenericDINode: 4447 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4448 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4450 REQUIRED(tag, DwarfTagField, ); \ 4451 OPTIONAL(header, MDStringField, ); \ 4452 OPTIONAL(operands, MDFieldList, ); 4453 PARSE_MD_FIELDS(); 4454 #undef VISIT_MD_FIELDS 4455 4456 Result = GET_OR_DISTINCT(GenericDINode, 4457 (Context, tag.Val, header.Val, operands.Val)); 4458 return false; 4459 } 4460 4461 /// ParseDISubrange: 4462 /// ::= !DISubrange(count: 30, lowerBound: 2) 4463 /// ::= !DISubrange(count: !node, lowerBound: 2) 4464 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4465 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4466 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4467 OPTIONAL(lowerBound, MDSignedField, ); 4468 PARSE_MD_FIELDS(); 4469 #undef VISIT_MD_FIELDS 4470 4471 if (count.isMDSignedField()) 4472 Result = GET_OR_DISTINCT( 4473 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4474 else if (count.isMDField()) 4475 Result = GET_OR_DISTINCT( 4476 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4477 else 4478 return true; 4479 4480 return false; 4481 } 4482 4483 /// ParseDIEnumerator: 4484 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4485 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4486 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4487 REQUIRED(name, MDStringField, ); \ 4488 REQUIRED(value, MDAPSIntField, ); \ 4489 OPTIONAL(isUnsigned, MDBoolField, (false)); 4490 PARSE_MD_FIELDS(); 4491 #undef VISIT_MD_FIELDS 4492 4493 if (isUnsigned.Val && value.Val.isNegative()) 4494 return TokError("unsigned enumerator with negative value"); 4495 4496 APSInt Value(value.Val); 4497 // Add a leading zero so that unsigned values with the msb set are not 4498 // mistaken for negative values when used for signed enumerators. 4499 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4500 Value = Value.zext(Value.getBitWidth() + 1); 4501 4502 Result = 4503 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4504 4505 return false; 4506 } 4507 4508 /// ParseDIBasicType: 4509 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4510 /// encoding: DW_ATE_encoding, flags: 0) 4511 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4512 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4513 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4514 OPTIONAL(name, MDStringField, ); \ 4515 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4516 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4517 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4518 OPTIONAL(flags, DIFlagField, ); 4519 PARSE_MD_FIELDS(); 4520 #undef VISIT_MD_FIELDS 4521 4522 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4523 align.Val, encoding.Val, flags.Val)); 4524 return false; 4525 } 4526 4527 /// ParseDIDerivedType: 4528 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4529 /// line: 7, scope: !1, baseType: !2, size: 32, 4530 /// align: 32, offset: 0, flags: 0, extraData: !3, 4531 /// dwarfAddressSpace: 3) 4532 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4534 REQUIRED(tag, DwarfTagField, ); \ 4535 OPTIONAL(name, MDStringField, ); \ 4536 OPTIONAL(file, MDField, ); \ 4537 OPTIONAL(line, LineField, ); \ 4538 OPTIONAL(scope, MDField, ); \ 4539 REQUIRED(baseType, MDField, ); \ 4540 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4541 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4542 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4543 OPTIONAL(flags, DIFlagField, ); \ 4544 OPTIONAL(extraData, MDField, ); \ 4545 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4546 PARSE_MD_FIELDS(); 4547 #undef VISIT_MD_FIELDS 4548 4549 Optional<unsigned> DWARFAddressSpace; 4550 if (dwarfAddressSpace.Val != UINT32_MAX) 4551 DWARFAddressSpace = dwarfAddressSpace.Val; 4552 4553 Result = GET_OR_DISTINCT(DIDerivedType, 4554 (Context, tag.Val, name.Val, file.Val, line.Val, 4555 scope.Val, baseType.Val, size.Val, align.Val, 4556 offset.Val, DWARFAddressSpace, flags.Val, 4557 extraData.Val)); 4558 return false; 4559 } 4560 4561 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4562 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4563 REQUIRED(tag, DwarfTagField, ); \ 4564 OPTIONAL(name, MDStringField, ); \ 4565 OPTIONAL(file, MDField, ); \ 4566 OPTIONAL(line, LineField, ); \ 4567 OPTIONAL(scope, MDField, ); \ 4568 OPTIONAL(baseType, MDField, ); \ 4569 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4570 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4571 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4572 OPTIONAL(flags, DIFlagField, ); \ 4573 OPTIONAL(elements, MDField, ); \ 4574 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4575 OPTIONAL(vtableHolder, MDField, ); \ 4576 OPTIONAL(templateParams, MDField, ); \ 4577 OPTIONAL(identifier, MDStringField, ); \ 4578 OPTIONAL(discriminator, MDField, ); 4579 PARSE_MD_FIELDS(); 4580 #undef VISIT_MD_FIELDS 4581 4582 // If this has an identifier try to build an ODR type. 4583 if (identifier.Val) 4584 if (auto *CT = DICompositeType::buildODRType( 4585 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4586 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4587 elements.Val, runtimeLang.Val, vtableHolder.Val, 4588 templateParams.Val, discriminator.Val)) { 4589 Result = CT; 4590 return false; 4591 } 4592 4593 // Create a new node, and save it in the context if it belongs in the type 4594 // map. 4595 Result = GET_OR_DISTINCT( 4596 DICompositeType, 4597 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4598 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4599 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4600 discriminator.Val)); 4601 return false; 4602 } 4603 4604 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4605 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4606 OPTIONAL(flags, DIFlagField, ); \ 4607 OPTIONAL(cc, DwarfCCField, ); \ 4608 REQUIRED(types, MDField, ); 4609 PARSE_MD_FIELDS(); 4610 #undef VISIT_MD_FIELDS 4611 4612 Result = GET_OR_DISTINCT(DISubroutineType, 4613 (Context, flags.Val, cc.Val, types.Val)); 4614 return false; 4615 } 4616 4617 /// ParseDIFileType: 4618 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4619 /// checksumkind: CSK_MD5, 4620 /// checksum: "000102030405060708090a0b0c0d0e0f", 4621 /// source: "source file contents") 4622 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4623 // The default constructed value for checksumkind is required, but will never 4624 // be used, as the parser checks if the field was actually Seen before using 4625 // the Val. 4626 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4627 REQUIRED(filename, MDStringField, ); \ 4628 REQUIRED(directory, MDStringField, ); \ 4629 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4630 OPTIONAL(checksum, MDStringField, ); \ 4631 OPTIONAL(source, MDStringField, ); 4632 PARSE_MD_FIELDS(); 4633 #undef VISIT_MD_FIELDS 4634 4635 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4636 if (checksumkind.Seen && checksum.Seen) 4637 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4638 else if (checksumkind.Seen || checksum.Seen) 4639 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4640 4641 Optional<MDString *> OptSource; 4642 if (source.Seen) 4643 OptSource = source.Val; 4644 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4645 OptChecksum, OptSource)); 4646 return false; 4647 } 4648 4649 /// ParseDICompileUnit: 4650 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4651 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4652 /// splitDebugFilename: "abc.debug", 4653 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4654 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4655 /// sysroot: "/", sdk: "MacOSX.sdk") 4656 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4657 if (!IsDistinct) 4658 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4659 4660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4661 REQUIRED(language, DwarfLangField, ); \ 4662 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4663 OPTIONAL(producer, MDStringField, ); \ 4664 OPTIONAL(isOptimized, MDBoolField, ); \ 4665 OPTIONAL(flags, MDStringField, ); \ 4666 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4667 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4668 OPTIONAL(emissionKind, EmissionKindField, ); \ 4669 OPTIONAL(enums, MDField, ); \ 4670 OPTIONAL(retainedTypes, MDField, ); \ 4671 OPTIONAL(globals, MDField, ); \ 4672 OPTIONAL(imports, MDField, ); \ 4673 OPTIONAL(macros, MDField, ); \ 4674 OPTIONAL(dwoId, MDUnsignedField, ); \ 4675 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4676 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4677 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4678 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4679 OPTIONAL(sysroot, MDStringField, ); \ 4680 OPTIONAL(sdk, MDStringField, ); 4681 PARSE_MD_FIELDS(); 4682 #undef VISIT_MD_FIELDS 4683 4684 Result = DICompileUnit::getDistinct( 4685 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4686 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4687 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4688 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4689 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4690 return false; 4691 } 4692 4693 /// ParseDISubprogram: 4694 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4695 /// file: !1, line: 7, type: !2, isLocal: false, 4696 /// isDefinition: true, scopeLine: 8, containingType: !3, 4697 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4698 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4699 /// spFlags: 10, isOptimized: false, templateParams: !4, 4700 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4701 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4702 auto Loc = Lex.getLoc(); 4703 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4704 OPTIONAL(scope, MDField, ); \ 4705 OPTIONAL(name, MDStringField, ); \ 4706 OPTIONAL(linkageName, MDStringField, ); \ 4707 OPTIONAL(file, MDField, ); \ 4708 OPTIONAL(line, LineField, ); \ 4709 OPTIONAL(type, MDField, ); \ 4710 OPTIONAL(isLocal, MDBoolField, ); \ 4711 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4712 OPTIONAL(scopeLine, LineField, ); \ 4713 OPTIONAL(containingType, MDField, ); \ 4714 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4715 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4716 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4717 OPTIONAL(flags, DIFlagField, ); \ 4718 OPTIONAL(spFlags, DISPFlagField, ); \ 4719 OPTIONAL(isOptimized, MDBoolField, ); \ 4720 OPTIONAL(unit, MDField, ); \ 4721 OPTIONAL(templateParams, MDField, ); \ 4722 OPTIONAL(declaration, MDField, ); \ 4723 OPTIONAL(retainedNodes, MDField, ); \ 4724 OPTIONAL(thrownTypes, MDField, ); 4725 PARSE_MD_FIELDS(); 4726 #undef VISIT_MD_FIELDS 4727 4728 // An explicit spFlags field takes precedence over individual fields in 4729 // older IR versions. 4730 DISubprogram::DISPFlags SPFlags = 4731 spFlags.Seen ? spFlags.Val 4732 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4733 isOptimized.Val, virtuality.Val); 4734 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4735 return Lex.Error( 4736 Loc, 4737 "missing 'distinct', required for !DISubprogram that is a Definition"); 4738 Result = GET_OR_DISTINCT( 4739 DISubprogram, 4740 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4741 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4742 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4743 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4744 return false; 4745 } 4746 4747 /// ParseDILexicalBlock: 4748 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4749 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4751 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4752 OPTIONAL(file, MDField, ); \ 4753 OPTIONAL(line, LineField, ); \ 4754 OPTIONAL(column, ColumnField, ); 4755 PARSE_MD_FIELDS(); 4756 #undef VISIT_MD_FIELDS 4757 4758 Result = GET_OR_DISTINCT( 4759 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4760 return false; 4761 } 4762 4763 /// ParseDILexicalBlockFile: 4764 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4765 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4766 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4767 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4768 OPTIONAL(file, MDField, ); \ 4769 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4770 PARSE_MD_FIELDS(); 4771 #undef VISIT_MD_FIELDS 4772 4773 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4774 (Context, scope.Val, file.Val, discriminator.Val)); 4775 return false; 4776 } 4777 4778 /// ParseDICommonBlock: 4779 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4780 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4782 REQUIRED(scope, MDField, ); \ 4783 OPTIONAL(declaration, MDField, ); \ 4784 OPTIONAL(name, MDStringField, ); \ 4785 OPTIONAL(file, MDField, ); \ 4786 OPTIONAL(line, LineField, ); 4787 PARSE_MD_FIELDS(); 4788 #undef VISIT_MD_FIELDS 4789 4790 Result = GET_OR_DISTINCT(DICommonBlock, 4791 (Context, scope.Val, declaration.Val, name.Val, 4792 file.Val, line.Val)); 4793 return false; 4794 } 4795 4796 /// ParseDINamespace: 4797 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4798 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 REQUIRED(scope, MDField, ); \ 4801 OPTIONAL(name, MDStringField, ); \ 4802 OPTIONAL(exportSymbols, MDBoolField, ); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Result = GET_OR_DISTINCT(DINamespace, 4807 (Context, scope.Val, name.Val, exportSymbols.Val)); 4808 return false; 4809 } 4810 4811 /// ParseDIMacro: 4812 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4813 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4815 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4816 OPTIONAL(line, LineField, ); \ 4817 REQUIRED(name, MDStringField, ); \ 4818 OPTIONAL(value, MDStringField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DIMacro, 4823 (Context, type.Val, line.Val, name.Val, value.Val)); 4824 return false; 4825 } 4826 4827 /// ParseDIMacroFile: 4828 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4829 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4831 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4832 OPTIONAL(line, LineField, ); \ 4833 REQUIRED(file, MDField, ); \ 4834 OPTIONAL(nodes, MDField, ); 4835 PARSE_MD_FIELDS(); 4836 #undef VISIT_MD_FIELDS 4837 4838 Result = GET_OR_DISTINCT(DIMacroFile, 4839 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4840 return false; 4841 } 4842 4843 /// ParseDIModule: 4844 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4845 /// includePath: "/usr/include", apinotes: "module.apinotes") 4846 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4848 REQUIRED(scope, MDField, ); \ 4849 REQUIRED(name, MDStringField, ); \ 4850 OPTIONAL(configMacros, MDStringField, ); \ 4851 OPTIONAL(includePath, MDStringField, ); \ 4852 OPTIONAL(apinotes, MDStringField, ); 4853 PARSE_MD_FIELDS(); 4854 #undef VISIT_MD_FIELDS 4855 4856 Result = 4857 GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, configMacros.Val, 4858 includePath.Val, apinotes.Val)); 4859 return false; 4860 } 4861 4862 /// ParseDITemplateTypeParameter: 4863 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4864 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4865 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4866 OPTIONAL(name, MDStringField, ); \ 4867 REQUIRED(type, MDField, ); \ 4868 OPTIONAL(defaulted, MDBoolField, ); 4869 PARSE_MD_FIELDS(); 4870 #undef VISIT_MD_FIELDS 4871 4872 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4873 (Context, name.Val, type.Val, defaulted.Val)); 4874 return false; 4875 } 4876 4877 /// ParseDITemplateValueParameter: 4878 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4879 /// name: "V", type: !1, defaulted: false, 4880 /// value: i32 7) 4881 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4883 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4884 OPTIONAL(name, MDStringField, ); \ 4885 OPTIONAL(type, MDField, ); \ 4886 OPTIONAL(defaulted, MDBoolField, ); \ 4887 REQUIRED(value, MDField, ); 4888 4889 PARSE_MD_FIELDS(); 4890 #undef VISIT_MD_FIELDS 4891 4892 Result = GET_OR_DISTINCT( 4893 DITemplateValueParameter, 4894 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4895 return false; 4896 } 4897 4898 /// ParseDIGlobalVariable: 4899 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4900 /// file: !1, line: 7, type: !2, isLocal: false, 4901 /// isDefinition: true, templateParams: !3, 4902 /// declaration: !4, align: 8) 4903 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4904 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4905 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4906 OPTIONAL(scope, MDField, ); \ 4907 OPTIONAL(linkageName, MDStringField, ); \ 4908 OPTIONAL(file, MDField, ); \ 4909 OPTIONAL(line, LineField, ); \ 4910 OPTIONAL(type, MDField, ); \ 4911 OPTIONAL(isLocal, MDBoolField, ); \ 4912 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4913 OPTIONAL(templateParams, MDField, ); \ 4914 OPTIONAL(declaration, MDField, ); \ 4915 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4916 PARSE_MD_FIELDS(); 4917 #undef VISIT_MD_FIELDS 4918 4919 Result = 4920 GET_OR_DISTINCT(DIGlobalVariable, 4921 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4922 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4923 declaration.Val, templateParams.Val, align.Val)); 4924 return false; 4925 } 4926 4927 /// ParseDILocalVariable: 4928 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4929 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4930 /// align: 8) 4931 /// ::= !DILocalVariable(scope: !0, name: "foo", 4932 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4933 /// align: 8) 4934 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4935 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4936 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4937 OPTIONAL(name, MDStringField, ); \ 4938 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4939 OPTIONAL(file, MDField, ); \ 4940 OPTIONAL(line, LineField, ); \ 4941 OPTIONAL(type, MDField, ); \ 4942 OPTIONAL(flags, DIFlagField, ); \ 4943 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4944 PARSE_MD_FIELDS(); 4945 #undef VISIT_MD_FIELDS 4946 4947 Result = GET_OR_DISTINCT(DILocalVariable, 4948 (Context, scope.Val, name.Val, file.Val, line.Val, 4949 type.Val, arg.Val, flags.Val, align.Val)); 4950 return false; 4951 } 4952 4953 /// ParseDILabel: 4954 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4955 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4957 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4958 REQUIRED(name, MDStringField, ); \ 4959 REQUIRED(file, MDField, ); \ 4960 REQUIRED(line, LineField, ); 4961 PARSE_MD_FIELDS(); 4962 #undef VISIT_MD_FIELDS 4963 4964 Result = GET_OR_DISTINCT(DILabel, 4965 (Context, scope.Val, name.Val, file.Val, line.Val)); 4966 return false; 4967 } 4968 4969 /// ParseDIExpression: 4970 /// ::= !DIExpression(0, 7, -1) 4971 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4972 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4973 Lex.Lex(); 4974 4975 if (ParseToken(lltok::lparen, "expected '(' here")) 4976 return true; 4977 4978 SmallVector<uint64_t, 8> Elements; 4979 if (Lex.getKind() != lltok::rparen) 4980 do { 4981 if (Lex.getKind() == lltok::DwarfOp) { 4982 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4983 Lex.Lex(); 4984 Elements.push_back(Op); 4985 continue; 4986 } 4987 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4988 } 4989 4990 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4991 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4992 Lex.Lex(); 4993 Elements.push_back(Op); 4994 continue; 4995 } 4996 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4997 } 4998 4999 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5000 return TokError("expected unsigned integer"); 5001 5002 auto &U = Lex.getAPSIntVal(); 5003 if (U.ugt(UINT64_MAX)) 5004 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 5005 Elements.push_back(U.getZExtValue()); 5006 Lex.Lex(); 5007 } while (EatIfPresent(lltok::comma)); 5008 5009 if (ParseToken(lltok::rparen, "expected ')' here")) 5010 return true; 5011 5012 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5013 return false; 5014 } 5015 5016 /// ParseDIGlobalVariableExpression: 5017 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5018 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 5019 bool IsDistinct) { 5020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5021 REQUIRED(var, MDField, ); \ 5022 REQUIRED(expr, MDField, ); 5023 PARSE_MD_FIELDS(); 5024 #undef VISIT_MD_FIELDS 5025 5026 Result = 5027 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5028 return false; 5029 } 5030 5031 /// ParseDIObjCProperty: 5032 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5033 /// getter: "getFoo", attributes: 7, type: !2) 5034 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5035 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5036 OPTIONAL(name, MDStringField, ); \ 5037 OPTIONAL(file, MDField, ); \ 5038 OPTIONAL(line, LineField, ); \ 5039 OPTIONAL(setter, MDStringField, ); \ 5040 OPTIONAL(getter, MDStringField, ); \ 5041 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5042 OPTIONAL(type, MDField, ); 5043 PARSE_MD_FIELDS(); 5044 #undef VISIT_MD_FIELDS 5045 5046 Result = GET_OR_DISTINCT(DIObjCProperty, 5047 (Context, name.Val, file.Val, line.Val, setter.Val, 5048 getter.Val, attributes.Val, type.Val)); 5049 return false; 5050 } 5051 5052 /// ParseDIImportedEntity: 5053 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5054 /// line: 7, name: "foo") 5055 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5056 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5057 REQUIRED(tag, DwarfTagField, ); \ 5058 REQUIRED(scope, MDField, ); \ 5059 OPTIONAL(entity, MDField, ); \ 5060 OPTIONAL(file, MDField, ); \ 5061 OPTIONAL(line, LineField, ); \ 5062 OPTIONAL(name, MDStringField, ); 5063 PARSE_MD_FIELDS(); 5064 #undef VISIT_MD_FIELDS 5065 5066 Result = GET_OR_DISTINCT( 5067 DIImportedEntity, 5068 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5069 return false; 5070 } 5071 5072 #undef PARSE_MD_FIELD 5073 #undef NOP_FIELD 5074 #undef REQUIRE_FIELD 5075 #undef DECLARE_FIELD 5076 5077 /// ParseMetadataAsValue 5078 /// ::= metadata i32 %local 5079 /// ::= metadata i32 @global 5080 /// ::= metadata i32 7 5081 /// ::= metadata !0 5082 /// ::= metadata !{...} 5083 /// ::= metadata !"string" 5084 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5085 // Note: the type 'metadata' has already been parsed. 5086 Metadata *MD; 5087 if (ParseMetadata(MD, &PFS)) 5088 return true; 5089 5090 V = MetadataAsValue::get(Context, MD); 5091 return false; 5092 } 5093 5094 /// ParseValueAsMetadata 5095 /// ::= i32 %local 5096 /// ::= i32 @global 5097 /// ::= i32 7 5098 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5099 PerFunctionState *PFS) { 5100 Type *Ty; 5101 LocTy Loc; 5102 if (ParseType(Ty, TypeMsg, Loc)) 5103 return true; 5104 if (Ty->isMetadataTy()) 5105 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5106 5107 Value *V; 5108 if (ParseValue(Ty, V, PFS)) 5109 return true; 5110 5111 MD = ValueAsMetadata::get(V); 5112 return false; 5113 } 5114 5115 /// ParseMetadata 5116 /// ::= i32 %local 5117 /// ::= i32 @global 5118 /// ::= i32 7 5119 /// ::= !42 5120 /// ::= !{...} 5121 /// ::= !"string" 5122 /// ::= !DILocation(...) 5123 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5124 if (Lex.getKind() == lltok::MetadataVar) { 5125 MDNode *N; 5126 if (ParseSpecializedMDNode(N)) 5127 return true; 5128 MD = N; 5129 return false; 5130 } 5131 5132 // ValueAsMetadata: 5133 // <type> <value> 5134 if (Lex.getKind() != lltok::exclaim) 5135 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5136 5137 // '!'. 5138 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5139 Lex.Lex(); 5140 5141 // MDString: 5142 // ::= '!' STRINGCONSTANT 5143 if (Lex.getKind() == lltok::StringConstant) { 5144 MDString *S; 5145 if (ParseMDString(S)) 5146 return true; 5147 MD = S; 5148 return false; 5149 } 5150 5151 // MDNode: 5152 // !{ ... } 5153 // !7 5154 MDNode *N; 5155 if (ParseMDNodeTail(N)) 5156 return true; 5157 MD = N; 5158 return false; 5159 } 5160 5161 //===----------------------------------------------------------------------===// 5162 // Function Parsing. 5163 //===----------------------------------------------------------------------===// 5164 5165 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5166 PerFunctionState *PFS, bool IsCall) { 5167 if (Ty->isFunctionTy()) 5168 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5169 5170 switch (ID.Kind) { 5171 case ValID::t_LocalID: 5172 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5173 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5174 return V == nullptr; 5175 case ValID::t_LocalName: 5176 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5177 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5178 return V == nullptr; 5179 case ValID::t_InlineAsm: { 5180 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5181 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5182 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5183 (ID.UIntVal >> 1) & 1, 5184 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5185 return false; 5186 } 5187 case ValID::t_GlobalName: 5188 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5189 return V == nullptr; 5190 case ValID::t_GlobalID: 5191 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5192 return V == nullptr; 5193 case ValID::t_APSInt: 5194 if (!Ty->isIntegerTy()) 5195 return Error(ID.Loc, "integer constant must have integer type"); 5196 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5197 V = ConstantInt::get(Context, ID.APSIntVal); 5198 return false; 5199 case ValID::t_APFloat: 5200 if (!Ty->isFloatingPointTy() || 5201 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5202 return Error(ID.Loc, "floating point constant invalid for type"); 5203 5204 // The lexer has no type info, so builds all half, float, and double FP 5205 // constants as double. Fix this here. Long double does not need this. 5206 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5207 bool Ignored; 5208 if (Ty->isHalfTy()) 5209 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5210 &Ignored); 5211 else if (Ty->isFloatTy()) 5212 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5213 &Ignored); 5214 } 5215 V = ConstantFP::get(Context, ID.APFloatVal); 5216 5217 if (V->getType() != Ty) 5218 return Error(ID.Loc, "floating point constant does not have type '" + 5219 getTypeString(Ty) + "'"); 5220 5221 return false; 5222 case ValID::t_Null: 5223 if (!Ty->isPointerTy()) 5224 return Error(ID.Loc, "null must be a pointer type"); 5225 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5226 return false; 5227 case ValID::t_Undef: 5228 // FIXME: LabelTy should not be a first-class type. 5229 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5230 return Error(ID.Loc, "invalid type for undef constant"); 5231 V = UndefValue::get(Ty); 5232 return false; 5233 case ValID::t_EmptyArray: 5234 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5235 return Error(ID.Loc, "invalid empty array initializer"); 5236 V = UndefValue::get(Ty); 5237 return false; 5238 case ValID::t_Zero: 5239 // FIXME: LabelTy should not be a first-class type. 5240 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5241 return Error(ID.Loc, "invalid type for null constant"); 5242 V = Constant::getNullValue(Ty); 5243 return false; 5244 case ValID::t_None: 5245 if (!Ty->isTokenTy()) 5246 return Error(ID.Loc, "invalid type for none constant"); 5247 V = Constant::getNullValue(Ty); 5248 return false; 5249 case ValID::t_Constant: 5250 if (ID.ConstantVal->getType() != Ty) 5251 return Error(ID.Loc, "constant expression type mismatch"); 5252 5253 V = ID.ConstantVal; 5254 return false; 5255 case ValID::t_ConstantStruct: 5256 case ValID::t_PackedConstantStruct: 5257 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5258 if (ST->getNumElements() != ID.UIntVal) 5259 return Error(ID.Loc, 5260 "initializer with struct type has wrong # elements"); 5261 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5262 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5263 5264 // Verify that the elements are compatible with the structtype. 5265 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5266 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5267 return Error(ID.Loc, "element " + Twine(i) + 5268 " of struct initializer doesn't match struct element type"); 5269 5270 V = ConstantStruct::get( 5271 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5272 } else 5273 return Error(ID.Loc, "constant expression type mismatch"); 5274 return false; 5275 } 5276 llvm_unreachable("Invalid ValID"); 5277 } 5278 5279 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5280 C = nullptr; 5281 ValID ID; 5282 auto Loc = Lex.getLoc(); 5283 if (ParseValID(ID, /*PFS=*/nullptr)) 5284 return true; 5285 switch (ID.Kind) { 5286 case ValID::t_APSInt: 5287 case ValID::t_APFloat: 5288 case ValID::t_Undef: 5289 case ValID::t_Constant: 5290 case ValID::t_ConstantStruct: 5291 case ValID::t_PackedConstantStruct: { 5292 Value *V; 5293 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5294 return true; 5295 assert(isa<Constant>(V) && "Expected a constant value"); 5296 C = cast<Constant>(V); 5297 return false; 5298 } 5299 case ValID::t_Null: 5300 C = Constant::getNullValue(Ty); 5301 return false; 5302 default: 5303 return Error(Loc, "expected a constant value"); 5304 } 5305 } 5306 5307 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5308 V = nullptr; 5309 ValID ID; 5310 return ParseValID(ID, PFS) || 5311 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5312 } 5313 5314 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5315 Type *Ty = nullptr; 5316 return ParseType(Ty) || 5317 ParseValue(Ty, V, PFS); 5318 } 5319 5320 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5321 PerFunctionState &PFS) { 5322 Value *V; 5323 Loc = Lex.getLoc(); 5324 if (ParseTypeAndValue(V, PFS)) return true; 5325 if (!isa<BasicBlock>(V)) 5326 return Error(Loc, "expected a basic block"); 5327 BB = cast<BasicBlock>(V); 5328 return false; 5329 } 5330 5331 /// FunctionHeader 5332 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5333 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5334 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5335 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5336 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5337 // Parse the linkage. 5338 LocTy LinkageLoc = Lex.getLoc(); 5339 unsigned Linkage; 5340 unsigned Visibility; 5341 unsigned DLLStorageClass; 5342 bool DSOLocal; 5343 AttrBuilder RetAttrs; 5344 unsigned CC; 5345 bool HasLinkage; 5346 Type *RetType = nullptr; 5347 LocTy RetTypeLoc = Lex.getLoc(); 5348 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5349 DSOLocal) || 5350 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5351 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5352 return true; 5353 5354 // Verify that the linkage is ok. 5355 switch ((GlobalValue::LinkageTypes)Linkage) { 5356 case GlobalValue::ExternalLinkage: 5357 break; // always ok. 5358 case GlobalValue::ExternalWeakLinkage: 5359 if (isDefine) 5360 return Error(LinkageLoc, "invalid linkage for function definition"); 5361 break; 5362 case GlobalValue::PrivateLinkage: 5363 case GlobalValue::InternalLinkage: 5364 case GlobalValue::AvailableExternallyLinkage: 5365 case GlobalValue::LinkOnceAnyLinkage: 5366 case GlobalValue::LinkOnceODRLinkage: 5367 case GlobalValue::WeakAnyLinkage: 5368 case GlobalValue::WeakODRLinkage: 5369 if (!isDefine) 5370 return Error(LinkageLoc, "invalid linkage for function declaration"); 5371 break; 5372 case GlobalValue::AppendingLinkage: 5373 case GlobalValue::CommonLinkage: 5374 return Error(LinkageLoc, "invalid function linkage type"); 5375 } 5376 5377 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5378 return Error(LinkageLoc, 5379 "symbol with local linkage must have default visibility"); 5380 5381 if (!FunctionType::isValidReturnType(RetType)) 5382 return Error(RetTypeLoc, "invalid function return type"); 5383 5384 LocTy NameLoc = Lex.getLoc(); 5385 5386 std::string FunctionName; 5387 if (Lex.getKind() == lltok::GlobalVar) { 5388 FunctionName = Lex.getStrVal(); 5389 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5390 unsigned NameID = Lex.getUIntVal(); 5391 5392 if (NameID != NumberedVals.size()) 5393 return TokError("function expected to be numbered '%" + 5394 Twine(NumberedVals.size()) + "'"); 5395 } else { 5396 return TokError("expected function name"); 5397 } 5398 5399 Lex.Lex(); 5400 5401 if (Lex.getKind() != lltok::lparen) 5402 return TokError("expected '(' in function argument list"); 5403 5404 SmallVector<ArgInfo, 8> ArgList; 5405 bool isVarArg; 5406 AttrBuilder FuncAttrs; 5407 std::vector<unsigned> FwdRefAttrGrps; 5408 LocTy BuiltinLoc; 5409 std::string Section; 5410 std::string Partition; 5411 MaybeAlign Alignment; 5412 std::string GC; 5413 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5414 unsigned AddrSpace = 0; 5415 Constant *Prefix = nullptr; 5416 Constant *Prologue = nullptr; 5417 Constant *PersonalityFn = nullptr; 5418 Comdat *C; 5419 5420 if (ParseArgumentList(ArgList, isVarArg) || 5421 ParseOptionalUnnamedAddr(UnnamedAddr) || 5422 ParseOptionalProgramAddrSpace(AddrSpace) || 5423 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5424 BuiltinLoc) || 5425 (EatIfPresent(lltok::kw_section) && 5426 ParseStringConstant(Section)) || 5427 (EatIfPresent(lltok::kw_partition) && 5428 ParseStringConstant(Partition)) || 5429 parseOptionalComdat(FunctionName, C) || 5430 ParseOptionalAlignment(Alignment) || 5431 (EatIfPresent(lltok::kw_gc) && 5432 ParseStringConstant(GC)) || 5433 (EatIfPresent(lltok::kw_prefix) && 5434 ParseGlobalTypeAndValue(Prefix)) || 5435 (EatIfPresent(lltok::kw_prologue) && 5436 ParseGlobalTypeAndValue(Prologue)) || 5437 (EatIfPresent(lltok::kw_personality) && 5438 ParseGlobalTypeAndValue(PersonalityFn))) 5439 return true; 5440 5441 if (FuncAttrs.contains(Attribute::Builtin)) 5442 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5443 5444 // If the alignment was parsed as an attribute, move to the alignment field. 5445 if (FuncAttrs.hasAlignmentAttr()) { 5446 Alignment = FuncAttrs.getAlignment(); 5447 FuncAttrs.removeAttribute(Attribute::Alignment); 5448 } 5449 5450 // Okay, if we got here, the function is syntactically valid. Convert types 5451 // and do semantic checks. 5452 std::vector<Type*> ParamTypeList; 5453 SmallVector<AttributeSet, 8> Attrs; 5454 5455 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5456 ParamTypeList.push_back(ArgList[i].Ty); 5457 Attrs.push_back(ArgList[i].Attrs); 5458 } 5459 5460 AttributeList PAL = 5461 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5462 AttributeSet::get(Context, RetAttrs), Attrs); 5463 5464 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5465 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5466 5467 FunctionType *FT = 5468 FunctionType::get(RetType, ParamTypeList, isVarArg); 5469 PointerType *PFT = PointerType::get(FT, AddrSpace); 5470 5471 Fn = nullptr; 5472 if (!FunctionName.empty()) { 5473 // If this was a definition of a forward reference, remove the definition 5474 // from the forward reference table and fill in the forward ref. 5475 auto FRVI = ForwardRefVals.find(FunctionName); 5476 if (FRVI != ForwardRefVals.end()) { 5477 Fn = M->getFunction(FunctionName); 5478 if (!Fn) 5479 return Error(FRVI->second.second, "invalid forward reference to " 5480 "function as global value!"); 5481 if (Fn->getType() != PFT) 5482 return Error(FRVI->second.second, "invalid forward reference to " 5483 "function '" + FunctionName + "' with wrong type: " 5484 "expected '" + getTypeString(PFT) + "' but was '" + 5485 getTypeString(Fn->getType()) + "'"); 5486 ForwardRefVals.erase(FRVI); 5487 } else if ((Fn = M->getFunction(FunctionName))) { 5488 // Reject redefinitions. 5489 return Error(NameLoc, "invalid redefinition of function '" + 5490 FunctionName + "'"); 5491 } else if (M->getNamedValue(FunctionName)) { 5492 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5493 } 5494 5495 } else { 5496 // If this is a definition of a forward referenced function, make sure the 5497 // types agree. 5498 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5499 if (I != ForwardRefValIDs.end()) { 5500 Fn = cast<Function>(I->second.first); 5501 if (Fn->getType() != PFT) 5502 return Error(NameLoc, "type of definition and forward reference of '@" + 5503 Twine(NumberedVals.size()) + "' disagree: " 5504 "expected '" + getTypeString(PFT) + "' but was '" + 5505 getTypeString(Fn->getType()) + "'"); 5506 ForwardRefValIDs.erase(I); 5507 } 5508 } 5509 5510 if (!Fn) 5511 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5512 FunctionName, M); 5513 else // Move the forward-reference to the correct spot in the module. 5514 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5515 5516 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5517 5518 if (FunctionName.empty()) 5519 NumberedVals.push_back(Fn); 5520 5521 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5522 maybeSetDSOLocal(DSOLocal, *Fn); 5523 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5524 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5525 Fn->setCallingConv(CC); 5526 Fn->setAttributes(PAL); 5527 Fn->setUnnamedAddr(UnnamedAddr); 5528 Fn->setAlignment(MaybeAlign(Alignment)); 5529 Fn->setSection(Section); 5530 Fn->setPartition(Partition); 5531 Fn->setComdat(C); 5532 Fn->setPersonalityFn(PersonalityFn); 5533 if (!GC.empty()) Fn->setGC(GC); 5534 Fn->setPrefixData(Prefix); 5535 Fn->setPrologueData(Prologue); 5536 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5537 5538 // Add all of the arguments we parsed to the function. 5539 Function::arg_iterator ArgIt = Fn->arg_begin(); 5540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5541 // If the argument has a name, insert it into the argument symbol table. 5542 if (ArgList[i].Name.empty()) continue; 5543 5544 // Set the name, if it conflicted, it will be auto-renamed. 5545 ArgIt->setName(ArgList[i].Name); 5546 5547 if (ArgIt->getName() != ArgList[i].Name) 5548 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5549 ArgList[i].Name + "'"); 5550 } 5551 5552 if (isDefine) 5553 return false; 5554 5555 // Check the declaration has no block address forward references. 5556 ValID ID; 5557 if (FunctionName.empty()) { 5558 ID.Kind = ValID::t_GlobalID; 5559 ID.UIntVal = NumberedVals.size() - 1; 5560 } else { 5561 ID.Kind = ValID::t_GlobalName; 5562 ID.StrVal = FunctionName; 5563 } 5564 auto Blocks = ForwardRefBlockAddresses.find(ID); 5565 if (Blocks != ForwardRefBlockAddresses.end()) 5566 return Error(Blocks->first.Loc, 5567 "cannot take blockaddress inside a declaration"); 5568 return false; 5569 } 5570 5571 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5572 ValID ID; 5573 if (FunctionNumber == -1) { 5574 ID.Kind = ValID::t_GlobalName; 5575 ID.StrVal = std::string(F.getName()); 5576 } else { 5577 ID.Kind = ValID::t_GlobalID; 5578 ID.UIntVal = FunctionNumber; 5579 } 5580 5581 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5582 if (Blocks == P.ForwardRefBlockAddresses.end()) 5583 return false; 5584 5585 for (const auto &I : Blocks->second) { 5586 const ValID &BBID = I.first; 5587 GlobalValue *GV = I.second; 5588 5589 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5590 "Expected local id or name"); 5591 BasicBlock *BB; 5592 if (BBID.Kind == ValID::t_LocalName) 5593 BB = GetBB(BBID.StrVal, BBID.Loc); 5594 else 5595 BB = GetBB(BBID.UIntVal, BBID.Loc); 5596 if (!BB) 5597 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5598 5599 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5600 GV->eraseFromParent(); 5601 } 5602 5603 P.ForwardRefBlockAddresses.erase(Blocks); 5604 return false; 5605 } 5606 5607 /// ParseFunctionBody 5608 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5609 bool LLParser::ParseFunctionBody(Function &Fn) { 5610 if (Lex.getKind() != lltok::lbrace) 5611 return TokError("expected '{' in function body"); 5612 Lex.Lex(); // eat the {. 5613 5614 int FunctionNumber = -1; 5615 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5616 5617 PerFunctionState PFS(*this, Fn, FunctionNumber); 5618 5619 // Resolve block addresses and allow basic blocks to be forward-declared 5620 // within this function. 5621 if (PFS.resolveForwardRefBlockAddresses()) 5622 return true; 5623 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5624 5625 // We need at least one basic block. 5626 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5627 return TokError("function body requires at least one basic block"); 5628 5629 while (Lex.getKind() != lltok::rbrace && 5630 Lex.getKind() != lltok::kw_uselistorder) 5631 if (ParseBasicBlock(PFS)) return true; 5632 5633 while (Lex.getKind() != lltok::rbrace) 5634 if (ParseUseListOrder(&PFS)) 5635 return true; 5636 5637 // Eat the }. 5638 Lex.Lex(); 5639 5640 // Verify function is ok. 5641 return PFS.FinishFunction(); 5642 } 5643 5644 /// ParseBasicBlock 5645 /// ::= (LabelStr|LabelID)? Instruction* 5646 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5647 // If this basic block starts out with a name, remember it. 5648 std::string Name; 5649 int NameID = -1; 5650 LocTy NameLoc = Lex.getLoc(); 5651 if (Lex.getKind() == lltok::LabelStr) { 5652 Name = Lex.getStrVal(); 5653 Lex.Lex(); 5654 } else if (Lex.getKind() == lltok::LabelID) { 5655 NameID = Lex.getUIntVal(); 5656 Lex.Lex(); 5657 } 5658 5659 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5660 if (!BB) 5661 return true; 5662 5663 std::string NameStr; 5664 5665 // Parse the instructions in this block until we get a terminator. 5666 Instruction *Inst; 5667 do { 5668 // This instruction may have three possibilities for a name: a) none 5669 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5670 LocTy NameLoc = Lex.getLoc(); 5671 int NameID = -1; 5672 NameStr = ""; 5673 5674 if (Lex.getKind() == lltok::LocalVarID) { 5675 NameID = Lex.getUIntVal(); 5676 Lex.Lex(); 5677 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5678 return true; 5679 } else if (Lex.getKind() == lltok::LocalVar) { 5680 NameStr = Lex.getStrVal(); 5681 Lex.Lex(); 5682 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5683 return true; 5684 } 5685 5686 switch (ParseInstruction(Inst, BB, PFS)) { 5687 default: llvm_unreachable("Unknown ParseInstruction result!"); 5688 case InstError: return true; 5689 case InstNormal: 5690 BB->getInstList().push_back(Inst); 5691 5692 // With a normal result, we check to see if the instruction is followed by 5693 // a comma and metadata. 5694 if (EatIfPresent(lltok::comma)) 5695 if (ParseInstructionMetadata(*Inst)) 5696 return true; 5697 break; 5698 case InstExtraComma: 5699 BB->getInstList().push_back(Inst); 5700 5701 // If the instruction parser ate an extra comma at the end of it, it 5702 // *must* be followed by metadata. 5703 if (ParseInstructionMetadata(*Inst)) 5704 return true; 5705 break; 5706 } 5707 5708 // Set the name on the instruction. 5709 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5710 } while (!Inst->isTerminator()); 5711 5712 return false; 5713 } 5714 5715 //===----------------------------------------------------------------------===// 5716 // Instruction Parsing. 5717 //===----------------------------------------------------------------------===// 5718 5719 /// ParseInstruction - Parse one of the many different instructions. 5720 /// 5721 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5722 PerFunctionState &PFS) { 5723 lltok::Kind Token = Lex.getKind(); 5724 if (Token == lltok::Eof) 5725 return TokError("found end of file when expecting more instructions"); 5726 LocTy Loc = Lex.getLoc(); 5727 unsigned KeywordVal = Lex.getUIntVal(); 5728 Lex.Lex(); // Eat the keyword. 5729 5730 switch (Token) { 5731 default: return Error(Loc, "expected instruction opcode"); 5732 // Terminator Instructions. 5733 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5734 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5735 case lltok::kw_br: return ParseBr(Inst, PFS); 5736 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5737 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5738 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5739 case lltok::kw_resume: return ParseResume(Inst, PFS); 5740 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5741 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5742 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5743 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5744 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5745 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5746 // Unary Operators. 5747 case lltok::kw_fneg: { 5748 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5749 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5750 if (Res != 0) 5751 return Res; 5752 if (FMF.any()) 5753 Inst->setFastMathFlags(FMF); 5754 return false; 5755 } 5756 // Binary Operators. 5757 case lltok::kw_add: 5758 case lltok::kw_sub: 5759 case lltok::kw_mul: 5760 case lltok::kw_shl: { 5761 bool NUW = EatIfPresent(lltok::kw_nuw); 5762 bool NSW = EatIfPresent(lltok::kw_nsw); 5763 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5764 5765 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5766 5767 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5768 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5769 return false; 5770 } 5771 case lltok::kw_fadd: 5772 case lltok::kw_fsub: 5773 case lltok::kw_fmul: 5774 case lltok::kw_fdiv: 5775 case lltok::kw_frem: { 5776 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5777 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5778 if (Res != 0) 5779 return Res; 5780 if (FMF.any()) 5781 Inst->setFastMathFlags(FMF); 5782 return 0; 5783 } 5784 5785 case lltok::kw_sdiv: 5786 case lltok::kw_udiv: 5787 case lltok::kw_lshr: 5788 case lltok::kw_ashr: { 5789 bool Exact = EatIfPresent(lltok::kw_exact); 5790 5791 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5792 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5793 return false; 5794 } 5795 5796 case lltok::kw_urem: 5797 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5798 /*IsFP*/false); 5799 case lltok::kw_and: 5800 case lltok::kw_or: 5801 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5802 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5803 case lltok::kw_fcmp: { 5804 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5805 int Res = ParseCompare(Inst, PFS, KeywordVal); 5806 if (Res != 0) 5807 return Res; 5808 if (FMF.any()) 5809 Inst->setFastMathFlags(FMF); 5810 return 0; 5811 } 5812 5813 // Casts. 5814 case lltok::kw_trunc: 5815 case lltok::kw_zext: 5816 case lltok::kw_sext: 5817 case lltok::kw_fptrunc: 5818 case lltok::kw_fpext: 5819 case lltok::kw_bitcast: 5820 case lltok::kw_addrspacecast: 5821 case lltok::kw_uitofp: 5822 case lltok::kw_sitofp: 5823 case lltok::kw_fptoui: 5824 case lltok::kw_fptosi: 5825 case lltok::kw_inttoptr: 5826 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5827 // Other. 5828 case lltok::kw_select: { 5829 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5830 int Res = ParseSelect(Inst, PFS); 5831 if (Res != 0) 5832 return Res; 5833 if (FMF.any()) { 5834 if (!isa<FPMathOperator>(Inst)) 5835 return Error(Loc, "fast-math-flags specified for select without " 5836 "floating-point scalar or vector return type"); 5837 Inst->setFastMathFlags(FMF); 5838 } 5839 return 0; 5840 } 5841 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5842 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5843 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5844 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5845 case lltok::kw_phi: { 5846 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5847 int Res = ParsePHI(Inst, PFS); 5848 if (Res != 0) 5849 return Res; 5850 if (FMF.any()) { 5851 if (!isa<FPMathOperator>(Inst)) 5852 return Error(Loc, "fast-math-flags specified for phi without " 5853 "floating-point scalar or vector return type"); 5854 Inst->setFastMathFlags(FMF); 5855 } 5856 return 0; 5857 } 5858 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5859 case lltok::kw_freeze: return ParseFreeze(Inst, PFS); 5860 // Call. 5861 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5862 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5863 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5864 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5865 // Memory. 5866 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5867 case lltok::kw_load: return ParseLoad(Inst, PFS); 5868 case lltok::kw_store: return ParseStore(Inst, PFS); 5869 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5870 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5871 case lltok::kw_fence: return ParseFence(Inst, PFS); 5872 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5873 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5874 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5875 } 5876 } 5877 5878 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5879 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5880 if (Opc == Instruction::FCmp) { 5881 switch (Lex.getKind()) { 5882 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5883 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5884 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5885 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5886 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5887 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5888 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5889 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5890 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5891 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5892 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5893 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5894 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5895 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5896 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5897 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5898 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5899 } 5900 } else { 5901 switch (Lex.getKind()) { 5902 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5903 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5904 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5905 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5906 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5907 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5908 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5909 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5910 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5911 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5912 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5913 } 5914 } 5915 Lex.Lex(); 5916 return false; 5917 } 5918 5919 //===----------------------------------------------------------------------===// 5920 // Terminator Instructions. 5921 //===----------------------------------------------------------------------===// 5922 5923 /// ParseRet - Parse a return instruction. 5924 /// ::= 'ret' void (',' !dbg, !1)* 5925 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5926 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5927 PerFunctionState &PFS) { 5928 SMLoc TypeLoc = Lex.getLoc(); 5929 Type *Ty = nullptr; 5930 if (ParseType(Ty, true /*void allowed*/)) return true; 5931 5932 Type *ResType = PFS.getFunction().getReturnType(); 5933 5934 if (Ty->isVoidTy()) { 5935 if (!ResType->isVoidTy()) 5936 return Error(TypeLoc, "value doesn't match function result type '" + 5937 getTypeString(ResType) + "'"); 5938 5939 Inst = ReturnInst::Create(Context); 5940 return false; 5941 } 5942 5943 Value *RV; 5944 if (ParseValue(Ty, RV, PFS)) return true; 5945 5946 if (ResType != RV->getType()) 5947 return Error(TypeLoc, "value doesn't match function result type '" + 5948 getTypeString(ResType) + "'"); 5949 5950 Inst = ReturnInst::Create(Context, RV); 5951 return false; 5952 } 5953 5954 /// ParseBr 5955 /// ::= 'br' TypeAndValue 5956 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5957 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5958 LocTy Loc, Loc2; 5959 Value *Op0; 5960 BasicBlock *Op1, *Op2; 5961 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5962 5963 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5964 Inst = BranchInst::Create(BB); 5965 return false; 5966 } 5967 5968 if (Op0->getType() != Type::getInt1Ty(Context)) 5969 return Error(Loc, "branch condition must have 'i1' type"); 5970 5971 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5972 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5973 ParseToken(lltok::comma, "expected ',' after true destination") || 5974 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5975 return true; 5976 5977 Inst = BranchInst::Create(Op1, Op2, Op0); 5978 return false; 5979 } 5980 5981 /// ParseSwitch 5982 /// Instruction 5983 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5984 /// JumpTable 5985 /// ::= (TypeAndValue ',' TypeAndValue)* 5986 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5987 LocTy CondLoc, BBLoc; 5988 Value *Cond; 5989 BasicBlock *DefaultBB; 5990 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5991 ParseToken(lltok::comma, "expected ',' after switch condition") || 5992 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5993 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5994 return true; 5995 5996 if (!Cond->getType()->isIntegerTy()) 5997 return Error(CondLoc, "switch condition must have integer type"); 5998 5999 // Parse the jump table pairs. 6000 SmallPtrSet<Value*, 32> SeenCases; 6001 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6002 while (Lex.getKind() != lltok::rsquare) { 6003 Value *Constant; 6004 BasicBlock *DestBB; 6005 6006 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 6007 ParseToken(lltok::comma, "expected ',' after case value") || 6008 ParseTypeAndBasicBlock(DestBB, PFS)) 6009 return true; 6010 6011 if (!SeenCases.insert(Constant).second) 6012 return Error(CondLoc, "duplicate case value in switch"); 6013 if (!isa<ConstantInt>(Constant)) 6014 return Error(CondLoc, "case value is not a constant integer"); 6015 6016 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6017 } 6018 6019 Lex.Lex(); // Eat the ']'. 6020 6021 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6022 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6023 SI->addCase(Table[i].first, Table[i].second); 6024 Inst = SI; 6025 return false; 6026 } 6027 6028 /// ParseIndirectBr 6029 /// Instruction 6030 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6031 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6032 LocTy AddrLoc; 6033 Value *Address; 6034 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6035 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6036 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6037 return true; 6038 6039 if (!Address->getType()->isPointerTy()) 6040 return Error(AddrLoc, "indirectbr address must have pointer type"); 6041 6042 // Parse the destination list. 6043 SmallVector<BasicBlock*, 16> DestList; 6044 6045 if (Lex.getKind() != lltok::rsquare) { 6046 BasicBlock *DestBB; 6047 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6048 return true; 6049 DestList.push_back(DestBB); 6050 6051 while (EatIfPresent(lltok::comma)) { 6052 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6053 return true; 6054 DestList.push_back(DestBB); 6055 } 6056 } 6057 6058 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6059 return true; 6060 6061 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6062 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6063 IBI->addDestination(DestList[i]); 6064 Inst = IBI; 6065 return false; 6066 } 6067 6068 /// ParseInvoke 6069 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6070 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6071 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6072 LocTy CallLoc = Lex.getLoc(); 6073 AttrBuilder RetAttrs, FnAttrs; 6074 std::vector<unsigned> FwdRefAttrGrps; 6075 LocTy NoBuiltinLoc; 6076 unsigned CC; 6077 unsigned InvokeAddrSpace; 6078 Type *RetType = nullptr; 6079 LocTy RetTypeLoc; 6080 ValID CalleeID; 6081 SmallVector<ParamInfo, 16> ArgList; 6082 SmallVector<OperandBundleDef, 2> BundleList; 6083 6084 BasicBlock *NormalBB, *UnwindBB; 6085 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6086 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6087 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6088 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6089 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6090 NoBuiltinLoc) || 6091 ParseOptionalOperandBundles(BundleList, PFS) || 6092 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6093 ParseTypeAndBasicBlock(NormalBB, PFS) || 6094 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6095 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6096 return true; 6097 6098 // If RetType is a non-function pointer type, then this is the short syntax 6099 // for the call, which means that RetType is just the return type. Infer the 6100 // rest of the function argument types from the arguments that are present. 6101 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6102 if (!Ty) { 6103 // Pull out the types of all of the arguments... 6104 std::vector<Type*> ParamTypes; 6105 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6106 ParamTypes.push_back(ArgList[i].V->getType()); 6107 6108 if (!FunctionType::isValidReturnType(RetType)) 6109 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6110 6111 Ty = FunctionType::get(RetType, ParamTypes, false); 6112 } 6113 6114 CalleeID.FTy = Ty; 6115 6116 // Look up the callee. 6117 Value *Callee; 6118 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6119 Callee, &PFS, /*IsCall=*/true)) 6120 return true; 6121 6122 // Set up the Attribute for the function. 6123 SmallVector<Value *, 8> Args; 6124 SmallVector<AttributeSet, 8> ArgAttrs; 6125 6126 // Loop through FunctionType's arguments and ensure they are specified 6127 // correctly. Also, gather any parameter attributes. 6128 FunctionType::param_iterator I = Ty->param_begin(); 6129 FunctionType::param_iterator E = Ty->param_end(); 6130 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6131 Type *ExpectedTy = nullptr; 6132 if (I != E) { 6133 ExpectedTy = *I++; 6134 } else if (!Ty->isVarArg()) { 6135 return Error(ArgList[i].Loc, "too many arguments specified"); 6136 } 6137 6138 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6139 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6140 getTypeString(ExpectedTy) + "'"); 6141 Args.push_back(ArgList[i].V); 6142 ArgAttrs.push_back(ArgList[i].Attrs); 6143 } 6144 6145 if (I != E) 6146 return Error(CallLoc, "not enough parameters specified for call"); 6147 6148 if (FnAttrs.hasAlignmentAttr()) 6149 return Error(CallLoc, "invoke instructions may not have an alignment"); 6150 6151 // Finish off the Attribute and check them 6152 AttributeList PAL = 6153 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6154 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6155 6156 InvokeInst *II = 6157 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6158 II->setCallingConv(CC); 6159 II->setAttributes(PAL); 6160 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6161 Inst = II; 6162 return false; 6163 } 6164 6165 /// ParseResume 6166 /// ::= 'resume' TypeAndValue 6167 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6168 Value *Exn; LocTy ExnLoc; 6169 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6170 return true; 6171 6172 ResumeInst *RI = ResumeInst::Create(Exn); 6173 Inst = RI; 6174 return false; 6175 } 6176 6177 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6178 PerFunctionState &PFS) { 6179 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6180 return true; 6181 6182 while (Lex.getKind() != lltok::rsquare) { 6183 // If this isn't the first argument, we need a comma. 6184 if (!Args.empty() && 6185 ParseToken(lltok::comma, "expected ',' in argument list")) 6186 return true; 6187 6188 // Parse the argument. 6189 LocTy ArgLoc; 6190 Type *ArgTy = nullptr; 6191 if (ParseType(ArgTy, ArgLoc)) 6192 return true; 6193 6194 Value *V; 6195 if (ArgTy->isMetadataTy()) { 6196 if (ParseMetadataAsValue(V, PFS)) 6197 return true; 6198 } else { 6199 if (ParseValue(ArgTy, V, PFS)) 6200 return true; 6201 } 6202 Args.push_back(V); 6203 } 6204 6205 Lex.Lex(); // Lex the ']'. 6206 return false; 6207 } 6208 6209 /// ParseCleanupRet 6210 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6211 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6212 Value *CleanupPad = nullptr; 6213 6214 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6215 return true; 6216 6217 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6218 return true; 6219 6220 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6221 return true; 6222 6223 BasicBlock *UnwindBB = nullptr; 6224 if (Lex.getKind() == lltok::kw_to) { 6225 Lex.Lex(); 6226 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6227 return true; 6228 } else { 6229 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6230 return true; 6231 } 6232 } 6233 6234 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6235 return false; 6236 } 6237 6238 /// ParseCatchRet 6239 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6240 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6241 Value *CatchPad = nullptr; 6242 6243 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6244 return true; 6245 6246 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6247 return true; 6248 6249 BasicBlock *BB; 6250 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6251 ParseTypeAndBasicBlock(BB, PFS)) 6252 return true; 6253 6254 Inst = CatchReturnInst::Create(CatchPad, BB); 6255 return false; 6256 } 6257 6258 /// ParseCatchSwitch 6259 /// ::= 'catchswitch' within Parent 6260 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6261 Value *ParentPad; 6262 6263 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6264 return true; 6265 6266 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6267 Lex.getKind() != lltok::LocalVarID) 6268 return TokError("expected scope value for catchswitch"); 6269 6270 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6271 return true; 6272 6273 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6274 return true; 6275 6276 SmallVector<BasicBlock *, 32> Table; 6277 do { 6278 BasicBlock *DestBB; 6279 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6280 return true; 6281 Table.push_back(DestBB); 6282 } while (EatIfPresent(lltok::comma)); 6283 6284 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6285 return true; 6286 6287 if (ParseToken(lltok::kw_unwind, 6288 "expected 'unwind' after catchswitch scope")) 6289 return true; 6290 6291 BasicBlock *UnwindBB = nullptr; 6292 if (EatIfPresent(lltok::kw_to)) { 6293 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6294 return true; 6295 } else { 6296 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6297 return true; 6298 } 6299 6300 auto *CatchSwitch = 6301 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6302 for (BasicBlock *DestBB : Table) 6303 CatchSwitch->addHandler(DestBB); 6304 Inst = CatchSwitch; 6305 return false; 6306 } 6307 6308 /// ParseCatchPad 6309 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6310 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6311 Value *CatchSwitch = nullptr; 6312 6313 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6314 return true; 6315 6316 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6317 return TokError("expected scope value for catchpad"); 6318 6319 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6320 return true; 6321 6322 SmallVector<Value *, 8> Args; 6323 if (ParseExceptionArgs(Args, PFS)) 6324 return true; 6325 6326 Inst = CatchPadInst::Create(CatchSwitch, Args); 6327 return false; 6328 } 6329 6330 /// ParseCleanupPad 6331 /// ::= 'cleanuppad' within Parent ParamList 6332 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6333 Value *ParentPad = nullptr; 6334 6335 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6336 return true; 6337 6338 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6339 Lex.getKind() != lltok::LocalVarID) 6340 return TokError("expected scope value for cleanuppad"); 6341 6342 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6343 return true; 6344 6345 SmallVector<Value *, 8> Args; 6346 if (ParseExceptionArgs(Args, PFS)) 6347 return true; 6348 6349 Inst = CleanupPadInst::Create(ParentPad, Args); 6350 return false; 6351 } 6352 6353 //===----------------------------------------------------------------------===// 6354 // Unary Operators. 6355 //===----------------------------------------------------------------------===// 6356 6357 /// ParseUnaryOp 6358 /// ::= UnaryOp TypeAndValue ',' Value 6359 /// 6360 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6361 /// operand is allowed. 6362 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6363 unsigned Opc, bool IsFP) { 6364 LocTy Loc; Value *LHS; 6365 if (ParseTypeAndValue(LHS, Loc, PFS)) 6366 return true; 6367 6368 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6369 : LHS->getType()->isIntOrIntVectorTy(); 6370 6371 if (!Valid) 6372 return Error(Loc, "invalid operand type for instruction"); 6373 6374 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6375 return false; 6376 } 6377 6378 /// ParseCallBr 6379 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6380 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6381 /// '[' LabelList ']' 6382 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6383 LocTy CallLoc = Lex.getLoc(); 6384 AttrBuilder RetAttrs, FnAttrs; 6385 std::vector<unsigned> FwdRefAttrGrps; 6386 LocTy NoBuiltinLoc; 6387 unsigned CC; 6388 Type *RetType = nullptr; 6389 LocTy RetTypeLoc; 6390 ValID CalleeID; 6391 SmallVector<ParamInfo, 16> ArgList; 6392 SmallVector<OperandBundleDef, 2> BundleList; 6393 6394 BasicBlock *DefaultDest; 6395 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6396 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6397 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6398 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6399 NoBuiltinLoc) || 6400 ParseOptionalOperandBundles(BundleList, PFS) || 6401 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6402 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6403 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6404 return true; 6405 6406 // Parse the destination list. 6407 SmallVector<BasicBlock *, 16> IndirectDests; 6408 6409 if (Lex.getKind() != lltok::rsquare) { 6410 BasicBlock *DestBB; 6411 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6412 return true; 6413 IndirectDests.push_back(DestBB); 6414 6415 while (EatIfPresent(lltok::comma)) { 6416 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6417 return true; 6418 IndirectDests.push_back(DestBB); 6419 } 6420 } 6421 6422 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6423 return true; 6424 6425 // If RetType is a non-function pointer type, then this is the short syntax 6426 // for the call, which means that RetType is just the return type. Infer the 6427 // rest of the function argument types from the arguments that are present. 6428 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6429 if (!Ty) { 6430 // Pull out the types of all of the arguments... 6431 std::vector<Type *> ParamTypes; 6432 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6433 ParamTypes.push_back(ArgList[i].V->getType()); 6434 6435 if (!FunctionType::isValidReturnType(RetType)) 6436 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6437 6438 Ty = FunctionType::get(RetType, ParamTypes, false); 6439 } 6440 6441 CalleeID.FTy = Ty; 6442 6443 // Look up the callee. 6444 Value *Callee; 6445 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6446 /*IsCall=*/true)) 6447 return true; 6448 6449 // Set up the Attribute for the function. 6450 SmallVector<Value *, 8> Args; 6451 SmallVector<AttributeSet, 8> ArgAttrs; 6452 6453 // Loop through FunctionType's arguments and ensure they are specified 6454 // correctly. Also, gather any parameter attributes. 6455 FunctionType::param_iterator I = Ty->param_begin(); 6456 FunctionType::param_iterator E = Ty->param_end(); 6457 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6458 Type *ExpectedTy = nullptr; 6459 if (I != E) { 6460 ExpectedTy = *I++; 6461 } else if (!Ty->isVarArg()) { 6462 return Error(ArgList[i].Loc, "too many arguments specified"); 6463 } 6464 6465 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6466 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6467 getTypeString(ExpectedTy) + "'"); 6468 Args.push_back(ArgList[i].V); 6469 ArgAttrs.push_back(ArgList[i].Attrs); 6470 } 6471 6472 if (I != E) 6473 return Error(CallLoc, "not enough parameters specified for call"); 6474 6475 if (FnAttrs.hasAlignmentAttr()) 6476 return Error(CallLoc, "callbr instructions may not have an alignment"); 6477 6478 // Finish off the Attribute and check them 6479 AttributeList PAL = 6480 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6481 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6482 6483 CallBrInst *CBI = 6484 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6485 BundleList); 6486 CBI->setCallingConv(CC); 6487 CBI->setAttributes(PAL); 6488 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6489 Inst = CBI; 6490 return false; 6491 } 6492 6493 //===----------------------------------------------------------------------===// 6494 // Binary Operators. 6495 //===----------------------------------------------------------------------===// 6496 6497 /// ParseArithmetic 6498 /// ::= ArithmeticOps TypeAndValue ',' Value 6499 /// 6500 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6501 /// operand is allowed. 6502 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6503 unsigned Opc, bool IsFP) { 6504 LocTy Loc; Value *LHS, *RHS; 6505 if (ParseTypeAndValue(LHS, Loc, PFS) || 6506 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6507 ParseValue(LHS->getType(), RHS, PFS)) 6508 return true; 6509 6510 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6511 : LHS->getType()->isIntOrIntVectorTy(); 6512 6513 if (!Valid) 6514 return Error(Loc, "invalid operand type for instruction"); 6515 6516 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6517 return false; 6518 } 6519 6520 /// ParseLogical 6521 /// ::= ArithmeticOps TypeAndValue ',' Value { 6522 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6523 unsigned Opc) { 6524 LocTy Loc; Value *LHS, *RHS; 6525 if (ParseTypeAndValue(LHS, Loc, PFS) || 6526 ParseToken(lltok::comma, "expected ',' in logical operation") || 6527 ParseValue(LHS->getType(), RHS, PFS)) 6528 return true; 6529 6530 if (!LHS->getType()->isIntOrIntVectorTy()) 6531 return Error(Loc,"instruction requires integer or integer vector operands"); 6532 6533 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6534 return false; 6535 } 6536 6537 /// ParseCompare 6538 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6539 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6540 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6541 unsigned Opc) { 6542 // Parse the integer/fp comparison predicate. 6543 LocTy Loc; 6544 unsigned Pred; 6545 Value *LHS, *RHS; 6546 if (ParseCmpPredicate(Pred, Opc) || 6547 ParseTypeAndValue(LHS, Loc, PFS) || 6548 ParseToken(lltok::comma, "expected ',' after compare value") || 6549 ParseValue(LHS->getType(), RHS, PFS)) 6550 return true; 6551 6552 if (Opc == Instruction::FCmp) { 6553 if (!LHS->getType()->isFPOrFPVectorTy()) 6554 return Error(Loc, "fcmp requires floating point operands"); 6555 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6556 } else { 6557 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6558 if (!LHS->getType()->isIntOrIntVectorTy() && 6559 !LHS->getType()->isPtrOrPtrVectorTy()) 6560 return Error(Loc, "icmp requires integer operands"); 6561 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6562 } 6563 return false; 6564 } 6565 6566 //===----------------------------------------------------------------------===// 6567 // Other Instructions. 6568 //===----------------------------------------------------------------------===// 6569 6570 6571 /// ParseCast 6572 /// ::= CastOpc TypeAndValue 'to' Type 6573 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6574 unsigned Opc) { 6575 LocTy Loc; 6576 Value *Op; 6577 Type *DestTy = nullptr; 6578 if (ParseTypeAndValue(Op, Loc, PFS) || 6579 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6580 ParseType(DestTy)) 6581 return true; 6582 6583 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6584 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6585 return Error(Loc, "invalid cast opcode for cast from '" + 6586 getTypeString(Op->getType()) + "' to '" + 6587 getTypeString(DestTy) + "'"); 6588 } 6589 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6590 return false; 6591 } 6592 6593 /// ParseSelect 6594 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6595 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6596 LocTy Loc; 6597 Value *Op0, *Op1, *Op2; 6598 if (ParseTypeAndValue(Op0, Loc, PFS) || 6599 ParseToken(lltok::comma, "expected ',' after select condition") || 6600 ParseTypeAndValue(Op1, PFS) || 6601 ParseToken(lltok::comma, "expected ',' after select value") || 6602 ParseTypeAndValue(Op2, PFS)) 6603 return true; 6604 6605 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6606 return Error(Loc, Reason); 6607 6608 Inst = SelectInst::Create(Op0, Op1, Op2); 6609 return false; 6610 } 6611 6612 /// ParseVA_Arg 6613 /// ::= 'va_arg' TypeAndValue ',' Type 6614 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6615 Value *Op; 6616 Type *EltTy = nullptr; 6617 LocTy TypeLoc; 6618 if (ParseTypeAndValue(Op, PFS) || 6619 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6620 ParseType(EltTy, TypeLoc)) 6621 return true; 6622 6623 if (!EltTy->isFirstClassType()) 6624 return Error(TypeLoc, "va_arg requires operand with first class type"); 6625 6626 Inst = new VAArgInst(Op, EltTy); 6627 return false; 6628 } 6629 6630 /// ParseExtractElement 6631 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6632 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6633 LocTy Loc; 6634 Value *Op0, *Op1; 6635 if (ParseTypeAndValue(Op0, Loc, PFS) || 6636 ParseToken(lltok::comma, "expected ',' after extract value") || 6637 ParseTypeAndValue(Op1, PFS)) 6638 return true; 6639 6640 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6641 return Error(Loc, "invalid extractelement operands"); 6642 6643 Inst = ExtractElementInst::Create(Op0, Op1); 6644 return false; 6645 } 6646 6647 /// ParseInsertElement 6648 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6649 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6650 LocTy Loc; 6651 Value *Op0, *Op1, *Op2; 6652 if (ParseTypeAndValue(Op0, Loc, PFS) || 6653 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6654 ParseTypeAndValue(Op1, PFS) || 6655 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6656 ParseTypeAndValue(Op2, PFS)) 6657 return true; 6658 6659 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6660 return Error(Loc, "invalid insertelement operands"); 6661 6662 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6663 return false; 6664 } 6665 6666 /// ParseShuffleVector 6667 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6668 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6669 LocTy Loc; 6670 Value *Op0, *Op1, *Op2; 6671 if (ParseTypeAndValue(Op0, Loc, PFS) || 6672 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6673 ParseTypeAndValue(Op1, PFS) || 6674 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6675 ParseTypeAndValue(Op2, PFS)) 6676 return true; 6677 6678 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6679 return Error(Loc, "invalid shufflevector operands"); 6680 6681 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6682 return false; 6683 } 6684 6685 /// ParsePHI 6686 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6687 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6688 Type *Ty = nullptr; LocTy TypeLoc; 6689 Value *Op0, *Op1; 6690 6691 if (ParseType(Ty, TypeLoc) || 6692 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6693 ParseValue(Ty, Op0, PFS) || 6694 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6695 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6696 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6697 return true; 6698 6699 bool AteExtraComma = false; 6700 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6701 6702 while (true) { 6703 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6704 6705 if (!EatIfPresent(lltok::comma)) 6706 break; 6707 6708 if (Lex.getKind() == lltok::MetadataVar) { 6709 AteExtraComma = true; 6710 break; 6711 } 6712 6713 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6714 ParseValue(Ty, Op0, PFS) || 6715 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6716 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6717 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6718 return true; 6719 } 6720 6721 if (!Ty->isFirstClassType()) 6722 return Error(TypeLoc, "phi node must have first class type"); 6723 6724 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6725 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6726 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6727 Inst = PN; 6728 return AteExtraComma ? InstExtraComma : InstNormal; 6729 } 6730 6731 /// ParseLandingPad 6732 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6733 /// Clause 6734 /// ::= 'catch' TypeAndValue 6735 /// ::= 'filter' 6736 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6737 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6738 Type *Ty = nullptr; LocTy TyLoc; 6739 6740 if (ParseType(Ty, TyLoc)) 6741 return true; 6742 6743 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6744 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6745 6746 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6747 LandingPadInst::ClauseType CT; 6748 if (EatIfPresent(lltok::kw_catch)) 6749 CT = LandingPadInst::Catch; 6750 else if (EatIfPresent(lltok::kw_filter)) 6751 CT = LandingPadInst::Filter; 6752 else 6753 return TokError("expected 'catch' or 'filter' clause type"); 6754 6755 Value *V; 6756 LocTy VLoc; 6757 if (ParseTypeAndValue(V, VLoc, PFS)) 6758 return true; 6759 6760 // A 'catch' type expects a non-array constant. A filter clause expects an 6761 // array constant. 6762 if (CT == LandingPadInst::Catch) { 6763 if (isa<ArrayType>(V->getType())) 6764 Error(VLoc, "'catch' clause has an invalid type"); 6765 } else { 6766 if (!isa<ArrayType>(V->getType())) 6767 Error(VLoc, "'filter' clause has an invalid type"); 6768 } 6769 6770 Constant *CV = dyn_cast<Constant>(V); 6771 if (!CV) 6772 return Error(VLoc, "clause argument must be a constant"); 6773 LP->addClause(CV); 6774 } 6775 6776 Inst = LP.release(); 6777 return false; 6778 } 6779 6780 /// ParseFreeze 6781 /// ::= 'freeze' Type Value 6782 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6783 LocTy Loc; 6784 Value *Op; 6785 if (ParseTypeAndValue(Op, Loc, PFS)) 6786 return true; 6787 6788 Inst = new FreezeInst(Op); 6789 return false; 6790 } 6791 6792 /// ParseCall 6793 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6794 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6795 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6796 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6797 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6798 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6799 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6800 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6801 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6802 CallInst::TailCallKind TCK) { 6803 AttrBuilder RetAttrs, FnAttrs; 6804 std::vector<unsigned> FwdRefAttrGrps; 6805 LocTy BuiltinLoc; 6806 unsigned CallAddrSpace; 6807 unsigned CC; 6808 Type *RetType = nullptr; 6809 LocTy RetTypeLoc; 6810 ValID CalleeID; 6811 SmallVector<ParamInfo, 16> ArgList; 6812 SmallVector<OperandBundleDef, 2> BundleList; 6813 LocTy CallLoc = Lex.getLoc(); 6814 6815 if (TCK != CallInst::TCK_None && 6816 ParseToken(lltok::kw_call, 6817 "expected 'tail call', 'musttail call', or 'notail call'")) 6818 return true; 6819 6820 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6821 6822 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6823 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6824 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6825 ParseValID(CalleeID) || 6826 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6827 PFS.getFunction().isVarArg()) || 6828 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6829 ParseOptionalOperandBundles(BundleList, PFS)) 6830 return true; 6831 6832 // If RetType is a non-function pointer type, then this is the short syntax 6833 // for the call, which means that RetType is just the return type. Infer the 6834 // rest of the function argument types from the arguments that are present. 6835 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6836 if (!Ty) { 6837 // Pull out the types of all of the arguments... 6838 std::vector<Type*> ParamTypes; 6839 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6840 ParamTypes.push_back(ArgList[i].V->getType()); 6841 6842 if (!FunctionType::isValidReturnType(RetType)) 6843 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6844 6845 Ty = FunctionType::get(RetType, ParamTypes, false); 6846 } 6847 6848 CalleeID.FTy = Ty; 6849 6850 // Look up the callee. 6851 Value *Callee; 6852 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6853 &PFS, /*IsCall=*/true)) 6854 return true; 6855 6856 // Set up the Attribute for the function. 6857 SmallVector<AttributeSet, 8> Attrs; 6858 6859 SmallVector<Value*, 8> Args; 6860 6861 // Loop through FunctionType's arguments and ensure they are specified 6862 // correctly. Also, gather any parameter attributes. 6863 FunctionType::param_iterator I = Ty->param_begin(); 6864 FunctionType::param_iterator E = Ty->param_end(); 6865 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6866 Type *ExpectedTy = nullptr; 6867 if (I != E) { 6868 ExpectedTy = *I++; 6869 } else if (!Ty->isVarArg()) { 6870 return Error(ArgList[i].Loc, "too many arguments specified"); 6871 } 6872 6873 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6874 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6875 getTypeString(ExpectedTy) + "'"); 6876 Args.push_back(ArgList[i].V); 6877 Attrs.push_back(ArgList[i].Attrs); 6878 } 6879 6880 if (I != E) 6881 return Error(CallLoc, "not enough parameters specified for call"); 6882 6883 if (FnAttrs.hasAlignmentAttr()) 6884 return Error(CallLoc, "call instructions may not have an alignment"); 6885 6886 // Finish off the Attribute and check them 6887 AttributeList PAL = 6888 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6889 AttributeSet::get(Context, RetAttrs), Attrs); 6890 6891 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6892 CI->setTailCallKind(TCK); 6893 CI->setCallingConv(CC); 6894 if (FMF.any()) { 6895 if (!isa<FPMathOperator>(CI)) 6896 return Error(CallLoc, "fast-math-flags specified for call without " 6897 "floating-point scalar or vector return type"); 6898 CI->setFastMathFlags(FMF); 6899 } 6900 CI->setAttributes(PAL); 6901 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6902 Inst = CI; 6903 return false; 6904 } 6905 6906 //===----------------------------------------------------------------------===// 6907 // Memory Instructions. 6908 //===----------------------------------------------------------------------===// 6909 6910 /// ParseAlloc 6911 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6912 /// (',' 'align' i32)? (',', 'addrspace(n))? 6913 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6914 Value *Size = nullptr; 6915 LocTy SizeLoc, TyLoc, ASLoc; 6916 MaybeAlign Alignment; 6917 unsigned AddrSpace = 0; 6918 Type *Ty = nullptr; 6919 6920 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6921 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6922 6923 if (ParseType(Ty, TyLoc)) return true; 6924 6925 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6926 return Error(TyLoc, "invalid type for alloca"); 6927 6928 bool AteExtraComma = false; 6929 if (EatIfPresent(lltok::comma)) { 6930 if (Lex.getKind() == lltok::kw_align) { 6931 if (ParseOptionalAlignment(Alignment)) 6932 return true; 6933 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6934 return true; 6935 } else if (Lex.getKind() == lltok::kw_addrspace) { 6936 ASLoc = Lex.getLoc(); 6937 if (ParseOptionalAddrSpace(AddrSpace)) 6938 return true; 6939 } else if (Lex.getKind() == lltok::MetadataVar) { 6940 AteExtraComma = true; 6941 } else { 6942 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6943 return true; 6944 if (EatIfPresent(lltok::comma)) { 6945 if (Lex.getKind() == lltok::kw_align) { 6946 if (ParseOptionalAlignment(Alignment)) 6947 return true; 6948 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6949 return true; 6950 } else if (Lex.getKind() == lltok::kw_addrspace) { 6951 ASLoc = Lex.getLoc(); 6952 if (ParseOptionalAddrSpace(AddrSpace)) 6953 return true; 6954 } else if (Lex.getKind() == lltok::MetadataVar) { 6955 AteExtraComma = true; 6956 } 6957 } 6958 } 6959 } 6960 6961 if (Size && !Size->getType()->isIntegerTy()) 6962 return Error(SizeLoc, "element count must have integer type"); 6963 6964 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6965 AI->setUsedWithInAlloca(IsInAlloca); 6966 AI->setSwiftError(IsSwiftError); 6967 Inst = AI; 6968 return AteExtraComma ? InstExtraComma : InstNormal; 6969 } 6970 6971 /// ParseLoad 6972 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6973 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6974 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6975 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6976 Value *Val; LocTy Loc; 6977 MaybeAlign Alignment; 6978 bool AteExtraComma = false; 6979 bool isAtomic = false; 6980 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6981 SyncScope::ID SSID = SyncScope::System; 6982 6983 if (Lex.getKind() == lltok::kw_atomic) { 6984 isAtomic = true; 6985 Lex.Lex(); 6986 } 6987 6988 bool isVolatile = false; 6989 if (Lex.getKind() == lltok::kw_volatile) { 6990 isVolatile = true; 6991 Lex.Lex(); 6992 } 6993 6994 Type *Ty; 6995 LocTy ExplicitTypeLoc = Lex.getLoc(); 6996 if (ParseType(Ty) || 6997 ParseToken(lltok::comma, "expected comma after load's type") || 6998 ParseTypeAndValue(Val, Loc, PFS) || 6999 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7000 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7001 return true; 7002 7003 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7004 return Error(Loc, "load operand must be a pointer to a first class type"); 7005 if (isAtomic && !Alignment) 7006 return Error(Loc, "atomic load must have explicit non-zero alignment"); 7007 if (Ordering == AtomicOrdering::Release || 7008 Ordering == AtomicOrdering::AcquireRelease) 7009 return Error(Loc, "atomic load cannot use Release ordering"); 7010 7011 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7012 return Error(ExplicitTypeLoc, 7013 "explicit pointee type doesn't match operand's pointee type"); 7014 7015 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 7016 return AteExtraComma ? InstExtraComma : InstNormal; 7017 } 7018 7019 /// ParseStore 7020 7021 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7022 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7023 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7024 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 7025 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7026 MaybeAlign Alignment; 7027 bool AteExtraComma = false; 7028 bool isAtomic = false; 7029 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7030 SyncScope::ID SSID = SyncScope::System; 7031 7032 if (Lex.getKind() == lltok::kw_atomic) { 7033 isAtomic = true; 7034 Lex.Lex(); 7035 } 7036 7037 bool isVolatile = false; 7038 if (Lex.getKind() == lltok::kw_volatile) { 7039 isVolatile = true; 7040 Lex.Lex(); 7041 } 7042 7043 if (ParseTypeAndValue(Val, Loc, PFS) || 7044 ParseToken(lltok::comma, "expected ',' after store operand") || 7045 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7046 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7047 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7048 return true; 7049 7050 if (!Ptr->getType()->isPointerTy()) 7051 return Error(PtrLoc, "store operand must be a pointer"); 7052 if (!Val->getType()->isFirstClassType()) 7053 return Error(Loc, "store operand must be a first class value"); 7054 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7055 return Error(Loc, "stored value and pointer type do not match"); 7056 if (isAtomic && !Alignment) 7057 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7058 if (Ordering == AtomicOrdering::Acquire || 7059 Ordering == AtomicOrdering::AcquireRelease) 7060 return Error(Loc, "atomic store cannot use Acquire ordering"); 7061 7062 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7063 return AteExtraComma ? InstExtraComma : InstNormal; 7064 } 7065 7066 /// ParseCmpXchg 7067 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7068 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7069 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7070 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7071 bool AteExtraComma = false; 7072 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7073 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7074 SyncScope::ID SSID = SyncScope::System; 7075 bool isVolatile = false; 7076 bool isWeak = false; 7077 7078 if (EatIfPresent(lltok::kw_weak)) 7079 isWeak = true; 7080 7081 if (EatIfPresent(lltok::kw_volatile)) 7082 isVolatile = true; 7083 7084 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7085 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7086 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7087 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7088 ParseTypeAndValue(New, NewLoc, PFS) || 7089 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7090 ParseOrdering(FailureOrdering)) 7091 return true; 7092 7093 if (SuccessOrdering == AtomicOrdering::Unordered || 7094 FailureOrdering == AtomicOrdering::Unordered) 7095 return TokError("cmpxchg cannot be unordered"); 7096 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7097 return TokError("cmpxchg failure argument shall be no stronger than the " 7098 "success argument"); 7099 if (FailureOrdering == AtomicOrdering::Release || 7100 FailureOrdering == AtomicOrdering::AcquireRelease) 7101 return TokError( 7102 "cmpxchg failure ordering cannot include release semantics"); 7103 if (!Ptr->getType()->isPointerTy()) 7104 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7105 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7106 return Error(CmpLoc, "compare value and pointer type do not match"); 7107 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7108 return Error(NewLoc, "new value and pointer type do not match"); 7109 if (!New->getType()->isFirstClassType()) 7110 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7111 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7112 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7113 CXI->setVolatile(isVolatile); 7114 CXI->setWeak(isWeak); 7115 Inst = CXI; 7116 return AteExtraComma ? InstExtraComma : InstNormal; 7117 } 7118 7119 /// ParseAtomicRMW 7120 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7121 /// 'singlethread'? AtomicOrdering 7122 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7123 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7124 bool AteExtraComma = false; 7125 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7126 SyncScope::ID SSID = SyncScope::System; 7127 bool isVolatile = false; 7128 bool IsFP = false; 7129 AtomicRMWInst::BinOp Operation; 7130 7131 if (EatIfPresent(lltok::kw_volatile)) 7132 isVolatile = true; 7133 7134 switch (Lex.getKind()) { 7135 default: return TokError("expected binary operation in atomicrmw"); 7136 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7137 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7138 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7139 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7140 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7141 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7142 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7143 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7144 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7145 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7146 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7147 case lltok::kw_fadd: 7148 Operation = AtomicRMWInst::FAdd; 7149 IsFP = true; 7150 break; 7151 case lltok::kw_fsub: 7152 Operation = AtomicRMWInst::FSub; 7153 IsFP = true; 7154 break; 7155 } 7156 Lex.Lex(); // Eat the operation. 7157 7158 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7159 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7160 ParseTypeAndValue(Val, ValLoc, PFS) || 7161 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7162 return true; 7163 7164 if (Ordering == AtomicOrdering::Unordered) 7165 return TokError("atomicrmw cannot be unordered"); 7166 if (!Ptr->getType()->isPointerTy()) 7167 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7168 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7169 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7170 7171 if (Operation == AtomicRMWInst::Xchg) { 7172 if (!Val->getType()->isIntegerTy() && 7173 !Val->getType()->isFloatingPointTy()) { 7174 return Error(ValLoc, "atomicrmw " + 7175 AtomicRMWInst::getOperationName(Operation) + 7176 " operand must be an integer or floating point type"); 7177 } 7178 } else if (IsFP) { 7179 if (!Val->getType()->isFloatingPointTy()) { 7180 return Error(ValLoc, "atomicrmw " + 7181 AtomicRMWInst::getOperationName(Operation) + 7182 " operand must be a floating point type"); 7183 } 7184 } else { 7185 if (!Val->getType()->isIntegerTy()) { 7186 return Error(ValLoc, "atomicrmw " + 7187 AtomicRMWInst::getOperationName(Operation) + 7188 " operand must be an integer"); 7189 } 7190 } 7191 7192 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7193 if (Size < 8 || (Size & (Size - 1))) 7194 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7195 " integer"); 7196 7197 AtomicRMWInst *RMWI = 7198 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7199 RMWI->setVolatile(isVolatile); 7200 Inst = RMWI; 7201 return AteExtraComma ? InstExtraComma : InstNormal; 7202 } 7203 7204 /// ParseFence 7205 /// ::= 'fence' 'singlethread'? AtomicOrdering 7206 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7207 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7208 SyncScope::ID SSID = SyncScope::System; 7209 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7210 return true; 7211 7212 if (Ordering == AtomicOrdering::Unordered) 7213 return TokError("fence cannot be unordered"); 7214 if (Ordering == AtomicOrdering::Monotonic) 7215 return TokError("fence cannot be monotonic"); 7216 7217 Inst = new FenceInst(Context, Ordering, SSID); 7218 return InstNormal; 7219 } 7220 7221 /// ParseGetElementPtr 7222 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7223 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7224 Value *Ptr = nullptr; 7225 Value *Val = nullptr; 7226 LocTy Loc, EltLoc; 7227 7228 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7229 7230 Type *Ty = nullptr; 7231 LocTy ExplicitTypeLoc = Lex.getLoc(); 7232 if (ParseType(Ty) || 7233 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7234 ParseTypeAndValue(Ptr, Loc, PFS)) 7235 return true; 7236 7237 Type *BaseType = Ptr->getType(); 7238 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7239 if (!BasePointerType) 7240 return Error(Loc, "base of getelementptr must be a pointer"); 7241 7242 if (Ty != BasePointerType->getElementType()) 7243 return Error(ExplicitTypeLoc, 7244 "explicit pointee type doesn't match operand's pointee type"); 7245 7246 SmallVector<Value*, 16> Indices; 7247 bool AteExtraComma = false; 7248 // GEP returns a vector of pointers if at least one of parameters is a vector. 7249 // All vector parameters should have the same vector width. 7250 ElementCount GEPWidth = BaseType->isVectorTy() 7251 ? cast<VectorType>(BaseType)->getElementCount() 7252 : ElementCount(0, false); 7253 7254 while (EatIfPresent(lltok::comma)) { 7255 if (Lex.getKind() == lltok::MetadataVar) { 7256 AteExtraComma = true; 7257 break; 7258 } 7259 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7260 if (!Val->getType()->isIntOrIntVectorTy()) 7261 return Error(EltLoc, "getelementptr index must be an integer"); 7262 7263 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7264 ElementCount ValNumEl = ValVTy->getElementCount(); 7265 if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl) 7266 return Error(EltLoc, 7267 "getelementptr vector index has a wrong number of elements"); 7268 GEPWidth = ValNumEl; 7269 } 7270 Indices.push_back(Val); 7271 } 7272 7273 SmallPtrSet<Type*, 4> Visited; 7274 if (!Indices.empty() && !Ty->isSized(&Visited)) 7275 return Error(Loc, "base element of getelementptr must be sized"); 7276 7277 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7278 return Error(Loc, "invalid getelementptr indices"); 7279 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7280 if (InBounds) 7281 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7282 return AteExtraComma ? InstExtraComma : InstNormal; 7283 } 7284 7285 /// ParseExtractValue 7286 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7287 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7288 Value *Val; LocTy Loc; 7289 SmallVector<unsigned, 4> Indices; 7290 bool AteExtraComma; 7291 if (ParseTypeAndValue(Val, Loc, PFS) || 7292 ParseIndexList(Indices, AteExtraComma)) 7293 return true; 7294 7295 if (!Val->getType()->isAggregateType()) 7296 return Error(Loc, "extractvalue operand must be aggregate type"); 7297 7298 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7299 return Error(Loc, "invalid indices for extractvalue"); 7300 Inst = ExtractValueInst::Create(Val, Indices); 7301 return AteExtraComma ? InstExtraComma : InstNormal; 7302 } 7303 7304 /// ParseInsertValue 7305 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7306 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7307 Value *Val0, *Val1; LocTy Loc0, Loc1; 7308 SmallVector<unsigned, 4> Indices; 7309 bool AteExtraComma; 7310 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7311 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7312 ParseTypeAndValue(Val1, Loc1, PFS) || 7313 ParseIndexList(Indices, AteExtraComma)) 7314 return true; 7315 7316 if (!Val0->getType()->isAggregateType()) 7317 return Error(Loc0, "insertvalue operand must be aggregate type"); 7318 7319 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7320 if (!IndexedType) 7321 return Error(Loc0, "invalid indices for insertvalue"); 7322 if (IndexedType != Val1->getType()) 7323 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7324 getTypeString(Val1->getType()) + "' instead of '" + 7325 getTypeString(IndexedType) + "'"); 7326 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7327 return AteExtraComma ? InstExtraComma : InstNormal; 7328 } 7329 7330 //===----------------------------------------------------------------------===// 7331 // Embedded metadata. 7332 //===----------------------------------------------------------------------===// 7333 7334 /// ParseMDNodeVector 7335 /// ::= { Element (',' Element)* } 7336 /// Element 7337 /// ::= 'null' | TypeAndValue 7338 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7339 if (ParseToken(lltok::lbrace, "expected '{' here")) 7340 return true; 7341 7342 // Check for an empty list. 7343 if (EatIfPresent(lltok::rbrace)) 7344 return false; 7345 7346 do { 7347 // Null is a special case since it is typeless. 7348 if (EatIfPresent(lltok::kw_null)) { 7349 Elts.push_back(nullptr); 7350 continue; 7351 } 7352 7353 Metadata *MD; 7354 if (ParseMetadata(MD, nullptr)) 7355 return true; 7356 Elts.push_back(MD); 7357 } while (EatIfPresent(lltok::comma)); 7358 7359 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7360 } 7361 7362 //===----------------------------------------------------------------------===// 7363 // Use-list order directives. 7364 //===----------------------------------------------------------------------===// 7365 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7366 SMLoc Loc) { 7367 if (V->use_empty()) 7368 return Error(Loc, "value has no uses"); 7369 7370 unsigned NumUses = 0; 7371 SmallDenseMap<const Use *, unsigned, 16> Order; 7372 for (const Use &U : V->uses()) { 7373 if (++NumUses > Indexes.size()) 7374 break; 7375 Order[&U] = Indexes[NumUses - 1]; 7376 } 7377 if (NumUses < 2) 7378 return Error(Loc, "value only has one use"); 7379 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7380 return Error(Loc, 7381 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7382 7383 V->sortUseList([&](const Use &L, const Use &R) { 7384 return Order.lookup(&L) < Order.lookup(&R); 7385 }); 7386 return false; 7387 } 7388 7389 /// ParseUseListOrderIndexes 7390 /// ::= '{' uint32 (',' uint32)+ '}' 7391 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7392 SMLoc Loc = Lex.getLoc(); 7393 if (ParseToken(lltok::lbrace, "expected '{' here")) 7394 return true; 7395 if (Lex.getKind() == lltok::rbrace) 7396 return Lex.Error("expected non-empty list of uselistorder indexes"); 7397 7398 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7399 // indexes should be distinct numbers in the range [0, size-1], and should 7400 // not be in order. 7401 unsigned Offset = 0; 7402 unsigned Max = 0; 7403 bool IsOrdered = true; 7404 assert(Indexes.empty() && "Expected empty order vector"); 7405 do { 7406 unsigned Index; 7407 if (ParseUInt32(Index)) 7408 return true; 7409 7410 // Update consistency checks. 7411 Offset += Index - Indexes.size(); 7412 Max = std::max(Max, Index); 7413 IsOrdered &= Index == Indexes.size(); 7414 7415 Indexes.push_back(Index); 7416 } while (EatIfPresent(lltok::comma)); 7417 7418 if (ParseToken(lltok::rbrace, "expected '}' here")) 7419 return true; 7420 7421 if (Indexes.size() < 2) 7422 return Error(Loc, "expected >= 2 uselistorder indexes"); 7423 if (Offset != 0 || Max >= Indexes.size()) 7424 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7425 if (IsOrdered) 7426 return Error(Loc, "expected uselistorder indexes to change the order"); 7427 7428 return false; 7429 } 7430 7431 /// ParseUseListOrder 7432 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7433 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7434 SMLoc Loc = Lex.getLoc(); 7435 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7436 return true; 7437 7438 Value *V; 7439 SmallVector<unsigned, 16> Indexes; 7440 if (ParseTypeAndValue(V, PFS) || 7441 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7442 ParseUseListOrderIndexes(Indexes)) 7443 return true; 7444 7445 return sortUseListOrder(V, Indexes, Loc); 7446 } 7447 7448 /// ParseUseListOrderBB 7449 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7450 bool LLParser::ParseUseListOrderBB() { 7451 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7452 SMLoc Loc = Lex.getLoc(); 7453 Lex.Lex(); 7454 7455 ValID Fn, Label; 7456 SmallVector<unsigned, 16> Indexes; 7457 if (ParseValID(Fn) || 7458 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7459 ParseValID(Label) || 7460 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7461 ParseUseListOrderIndexes(Indexes)) 7462 return true; 7463 7464 // Check the function. 7465 GlobalValue *GV; 7466 if (Fn.Kind == ValID::t_GlobalName) 7467 GV = M->getNamedValue(Fn.StrVal); 7468 else if (Fn.Kind == ValID::t_GlobalID) 7469 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7470 else 7471 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7472 if (!GV) 7473 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7474 auto *F = dyn_cast<Function>(GV); 7475 if (!F) 7476 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7477 if (F->isDeclaration()) 7478 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7479 7480 // Check the basic block. 7481 if (Label.Kind == ValID::t_LocalID) 7482 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7483 if (Label.Kind != ValID::t_LocalName) 7484 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7485 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7486 if (!V) 7487 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7488 if (!isa<BasicBlock>(V)) 7489 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7490 7491 return sortUseListOrder(V, Indexes, Loc); 7492 } 7493 7494 /// ModuleEntry 7495 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7496 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7497 bool LLParser::ParseModuleEntry(unsigned ID) { 7498 assert(Lex.getKind() == lltok::kw_module); 7499 Lex.Lex(); 7500 7501 std::string Path; 7502 if (ParseToken(lltok::colon, "expected ':' here") || 7503 ParseToken(lltok::lparen, "expected '(' here") || 7504 ParseToken(lltok::kw_path, "expected 'path' here") || 7505 ParseToken(lltok::colon, "expected ':' here") || 7506 ParseStringConstant(Path) || 7507 ParseToken(lltok::comma, "expected ',' here") || 7508 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7509 ParseToken(lltok::colon, "expected ':' here") || 7510 ParseToken(lltok::lparen, "expected '(' here")) 7511 return true; 7512 7513 ModuleHash Hash; 7514 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7515 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7516 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7517 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7518 ParseUInt32(Hash[4])) 7519 return true; 7520 7521 if (ParseToken(lltok::rparen, "expected ')' here") || 7522 ParseToken(lltok::rparen, "expected ')' here")) 7523 return true; 7524 7525 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7526 ModuleIdMap[ID] = ModuleEntry->first(); 7527 7528 return false; 7529 } 7530 7531 /// TypeIdEntry 7532 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7533 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7534 assert(Lex.getKind() == lltok::kw_typeid); 7535 Lex.Lex(); 7536 7537 std::string Name; 7538 if (ParseToken(lltok::colon, "expected ':' here") || 7539 ParseToken(lltok::lparen, "expected '(' here") || 7540 ParseToken(lltok::kw_name, "expected 'name' here") || 7541 ParseToken(lltok::colon, "expected ':' here") || 7542 ParseStringConstant(Name)) 7543 return true; 7544 7545 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7546 if (ParseToken(lltok::comma, "expected ',' here") || 7547 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7548 return true; 7549 7550 // Check if this ID was forward referenced, and if so, update the 7551 // corresponding GUIDs. 7552 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7553 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7554 for (auto TIDRef : FwdRefTIDs->second) { 7555 assert(!*TIDRef.first && 7556 "Forward referenced type id GUID expected to be 0"); 7557 *TIDRef.first = GlobalValue::getGUID(Name); 7558 } 7559 ForwardRefTypeIds.erase(FwdRefTIDs); 7560 } 7561 7562 return false; 7563 } 7564 7565 /// TypeIdSummary 7566 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7567 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7568 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7569 ParseToken(lltok::colon, "expected ':' here") || 7570 ParseToken(lltok::lparen, "expected '(' here") || 7571 ParseTypeTestResolution(TIS.TTRes)) 7572 return true; 7573 7574 if (EatIfPresent(lltok::comma)) { 7575 // Expect optional wpdResolutions field 7576 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7577 return true; 7578 } 7579 7580 if (ParseToken(lltok::rparen, "expected ')' here")) 7581 return true; 7582 7583 return false; 7584 } 7585 7586 static ValueInfo EmptyVI = 7587 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7588 7589 /// TypeIdCompatibleVtableEntry 7590 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7591 /// TypeIdCompatibleVtableInfo 7592 /// ')' 7593 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7594 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7595 Lex.Lex(); 7596 7597 std::string Name; 7598 if (ParseToken(lltok::colon, "expected ':' here") || 7599 ParseToken(lltok::lparen, "expected '(' here") || 7600 ParseToken(lltok::kw_name, "expected 'name' here") || 7601 ParseToken(lltok::colon, "expected ':' here") || 7602 ParseStringConstant(Name)) 7603 return true; 7604 7605 TypeIdCompatibleVtableInfo &TI = 7606 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7607 if (ParseToken(lltok::comma, "expected ',' here") || 7608 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7609 ParseToken(lltok::colon, "expected ':' here") || 7610 ParseToken(lltok::lparen, "expected '(' here")) 7611 return true; 7612 7613 IdToIndexMapType IdToIndexMap; 7614 // Parse each call edge 7615 do { 7616 uint64_t Offset; 7617 if (ParseToken(lltok::lparen, "expected '(' here") || 7618 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7619 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7620 ParseToken(lltok::comma, "expected ',' here")) 7621 return true; 7622 7623 LocTy Loc = Lex.getLoc(); 7624 unsigned GVId; 7625 ValueInfo VI; 7626 if (ParseGVReference(VI, GVId)) 7627 return true; 7628 7629 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7630 // forward reference. We will save the location of the ValueInfo needing an 7631 // update, but can only do so once the std::vector is finalized. 7632 if (VI == EmptyVI) 7633 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7634 TI.push_back({Offset, VI}); 7635 7636 if (ParseToken(lltok::rparen, "expected ')' in call")) 7637 return true; 7638 } while (EatIfPresent(lltok::comma)); 7639 7640 // Now that the TI vector is finalized, it is safe to save the locations 7641 // of any forward GV references that need updating later. 7642 for (auto I : IdToIndexMap) { 7643 for (auto P : I.second) { 7644 assert(TI[P.first].VTableVI == EmptyVI && 7645 "Forward referenced ValueInfo expected to be empty"); 7646 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7647 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7648 FwdRef.first->second.push_back( 7649 std::make_pair(&TI[P.first].VTableVI, P.second)); 7650 } 7651 } 7652 7653 if (ParseToken(lltok::rparen, "expected ')' here") || 7654 ParseToken(lltok::rparen, "expected ')' here")) 7655 return true; 7656 7657 // Check if this ID was forward referenced, and if so, update the 7658 // corresponding GUIDs. 7659 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7660 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7661 for (auto TIDRef : FwdRefTIDs->second) { 7662 assert(!*TIDRef.first && 7663 "Forward referenced type id GUID expected to be 0"); 7664 *TIDRef.first = GlobalValue::getGUID(Name); 7665 } 7666 ForwardRefTypeIds.erase(FwdRefTIDs); 7667 } 7668 7669 return false; 7670 } 7671 7672 /// TypeTestResolution 7673 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7674 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7675 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7676 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7677 /// [',' 'inlinesBits' ':' UInt64]? ')' 7678 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7679 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7680 ParseToken(lltok::colon, "expected ':' here") || 7681 ParseToken(lltok::lparen, "expected '(' here") || 7682 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7683 ParseToken(lltok::colon, "expected ':' here")) 7684 return true; 7685 7686 switch (Lex.getKind()) { 7687 case lltok::kw_unsat: 7688 TTRes.TheKind = TypeTestResolution::Unsat; 7689 break; 7690 case lltok::kw_byteArray: 7691 TTRes.TheKind = TypeTestResolution::ByteArray; 7692 break; 7693 case lltok::kw_inline: 7694 TTRes.TheKind = TypeTestResolution::Inline; 7695 break; 7696 case lltok::kw_single: 7697 TTRes.TheKind = TypeTestResolution::Single; 7698 break; 7699 case lltok::kw_allOnes: 7700 TTRes.TheKind = TypeTestResolution::AllOnes; 7701 break; 7702 default: 7703 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7704 } 7705 Lex.Lex(); 7706 7707 if (ParseToken(lltok::comma, "expected ',' here") || 7708 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7709 ParseToken(lltok::colon, "expected ':' here") || 7710 ParseUInt32(TTRes.SizeM1BitWidth)) 7711 return true; 7712 7713 // Parse optional fields 7714 while (EatIfPresent(lltok::comma)) { 7715 switch (Lex.getKind()) { 7716 case lltok::kw_alignLog2: 7717 Lex.Lex(); 7718 if (ParseToken(lltok::colon, "expected ':'") || 7719 ParseUInt64(TTRes.AlignLog2)) 7720 return true; 7721 break; 7722 case lltok::kw_sizeM1: 7723 Lex.Lex(); 7724 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7725 return true; 7726 break; 7727 case lltok::kw_bitMask: { 7728 unsigned Val; 7729 Lex.Lex(); 7730 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7731 return true; 7732 assert(Val <= 0xff); 7733 TTRes.BitMask = (uint8_t)Val; 7734 break; 7735 } 7736 case lltok::kw_inlineBits: 7737 Lex.Lex(); 7738 if (ParseToken(lltok::colon, "expected ':'") || 7739 ParseUInt64(TTRes.InlineBits)) 7740 return true; 7741 break; 7742 default: 7743 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7744 } 7745 } 7746 7747 if (ParseToken(lltok::rparen, "expected ')' here")) 7748 return true; 7749 7750 return false; 7751 } 7752 7753 /// OptionalWpdResolutions 7754 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7755 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7756 bool LLParser::ParseOptionalWpdResolutions( 7757 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7758 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7759 ParseToken(lltok::colon, "expected ':' here") || 7760 ParseToken(lltok::lparen, "expected '(' here")) 7761 return true; 7762 7763 do { 7764 uint64_t Offset; 7765 WholeProgramDevirtResolution WPDRes; 7766 if (ParseToken(lltok::lparen, "expected '(' here") || 7767 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7768 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7769 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7770 ParseToken(lltok::rparen, "expected ')' here")) 7771 return true; 7772 WPDResMap[Offset] = WPDRes; 7773 } while (EatIfPresent(lltok::comma)); 7774 7775 if (ParseToken(lltok::rparen, "expected ')' here")) 7776 return true; 7777 7778 return false; 7779 } 7780 7781 /// WpdRes 7782 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7783 /// [',' OptionalResByArg]? ')' 7784 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7785 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7786 /// [',' OptionalResByArg]? ')' 7787 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7788 /// [',' OptionalResByArg]? ')' 7789 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7790 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7791 ParseToken(lltok::colon, "expected ':' here") || 7792 ParseToken(lltok::lparen, "expected '(' here") || 7793 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7794 ParseToken(lltok::colon, "expected ':' here")) 7795 return true; 7796 7797 switch (Lex.getKind()) { 7798 case lltok::kw_indir: 7799 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7800 break; 7801 case lltok::kw_singleImpl: 7802 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7803 break; 7804 case lltok::kw_branchFunnel: 7805 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7806 break; 7807 default: 7808 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7809 } 7810 Lex.Lex(); 7811 7812 // Parse optional fields 7813 while (EatIfPresent(lltok::comma)) { 7814 switch (Lex.getKind()) { 7815 case lltok::kw_singleImplName: 7816 Lex.Lex(); 7817 if (ParseToken(lltok::colon, "expected ':' here") || 7818 ParseStringConstant(WPDRes.SingleImplName)) 7819 return true; 7820 break; 7821 case lltok::kw_resByArg: 7822 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7823 return true; 7824 break; 7825 default: 7826 return Error(Lex.getLoc(), 7827 "expected optional WholeProgramDevirtResolution field"); 7828 } 7829 } 7830 7831 if (ParseToken(lltok::rparen, "expected ')' here")) 7832 return true; 7833 7834 return false; 7835 } 7836 7837 /// OptionalResByArg 7838 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7839 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7840 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7841 /// 'virtualConstProp' ) 7842 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7843 /// [',' 'bit' ':' UInt32]? ')' 7844 bool LLParser::ParseOptionalResByArg( 7845 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7846 &ResByArg) { 7847 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7848 ParseToken(lltok::colon, "expected ':' here") || 7849 ParseToken(lltok::lparen, "expected '(' here")) 7850 return true; 7851 7852 do { 7853 std::vector<uint64_t> Args; 7854 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7855 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7856 ParseToken(lltok::colon, "expected ':' here") || 7857 ParseToken(lltok::lparen, "expected '(' here") || 7858 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7859 ParseToken(lltok::colon, "expected ':' here")) 7860 return true; 7861 7862 WholeProgramDevirtResolution::ByArg ByArg; 7863 switch (Lex.getKind()) { 7864 case lltok::kw_indir: 7865 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7866 break; 7867 case lltok::kw_uniformRetVal: 7868 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7869 break; 7870 case lltok::kw_uniqueRetVal: 7871 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7872 break; 7873 case lltok::kw_virtualConstProp: 7874 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7875 break; 7876 default: 7877 return Error(Lex.getLoc(), 7878 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7879 } 7880 Lex.Lex(); 7881 7882 // Parse optional fields 7883 while (EatIfPresent(lltok::comma)) { 7884 switch (Lex.getKind()) { 7885 case lltok::kw_info: 7886 Lex.Lex(); 7887 if (ParseToken(lltok::colon, "expected ':' here") || 7888 ParseUInt64(ByArg.Info)) 7889 return true; 7890 break; 7891 case lltok::kw_byte: 7892 Lex.Lex(); 7893 if (ParseToken(lltok::colon, "expected ':' here") || 7894 ParseUInt32(ByArg.Byte)) 7895 return true; 7896 break; 7897 case lltok::kw_bit: 7898 Lex.Lex(); 7899 if (ParseToken(lltok::colon, "expected ':' here") || 7900 ParseUInt32(ByArg.Bit)) 7901 return true; 7902 break; 7903 default: 7904 return Error(Lex.getLoc(), 7905 "expected optional whole program devirt field"); 7906 } 7907 } 7908 7909 if (ParseToken(lltok::rparen, "expected ')' here")) 7910 return true; 7911 7912 ResByArg[Args] = ByArg; 7913 } while (EatIfPresent(lltok::comma)); 7914 7915 if (ParseToken(lltok::rparen, "expected ')' here")) 7916 return true; 7917 7918 return false; 7919 } 7920 7921 /// OptionalResByArg 7922 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7923 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7924 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7925 ParseToken(lltok::colon, "expected ':' here") || 7926 ParseToken(lltok::lparen, "expected '(' here")) 7927 return true; 7928 7929 do { 7930 uint64_t Val; 7931 if (ParseUInt64(Val)) 7932 return true; 7933 Args.push_back(Val); 7934 } while (EatIfPresent(lltok::comma)); 7935 7936 if (ParseToken(lltok::rparen, "expected ')' here")) 7937 return true; 7938 7939 return false; 7940 } 7941 7942 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7943 7944 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7945 bool ReadOnly = Fwd->isReadOnly(); 7946 bool WriteOnly = Fwd->isWriteOnly(); 7947 assert(!(ReadOnly && WriteOnly)); 7948 *Fwd = Resolved; 7949 if (ReadOnly) 7950 Fwd->setReadOnly(); 7951 if (WriteOnly) 7952 Fwd->setWriteOnly(); 7953 } 7954 7955 /// Stores the given Name/GUID and associated summary into the Index. 7956 /// Also updates any forward references to the associated entry ID. 7957 void LLParser::AddGlobalValueToIndex( 7958 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7959 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7960 // First create the ValueInfo utilizing the Name or GUID. 7961 ValueInfo VI; 7962 if (GUID != 0) { 7963 assert(Name.empty()); 7964 VI = Index->getOrInsertValueInfo(GUID); 7965 } else { 7966 assert(!Name.empty()); 7967 if (M) { 7968 auto *GV = M->getNamedValue(Name); 7969 assert(GV); 7970 VI = Index->getOrInsertValueInfo(GV); 7971 } else { 7972 assert( 7973 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7974 "Need a source_filename to compute GUID for local"); 7975 GUID = GlobalValue::getGUID( 7976 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7977 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7978 } 7979 } 7980 7981 // Resolve forward references from calls/refs 7982 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7983 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7984 for (auto VIRef : FwdRefVIs->second) { 7985 assert(VIRef.first->getRef() == FwdVIRef && 7986 "Forward referenced ValueInfo expected to be empty"); 7987 resolveFwdRef(VIRef.first, VI); 7988 } 7989 ForwardRefValueInfos.erase(FwdRefVIs); 7990 } 7991 7992 // Resolve forward references from aliases 7993 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7994 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7995 for (auto AliaseeRef : FwdRefAliasees->second) { 7996 assert(!AliaseeRef.first->hasAliasee() && 7997 "Forward referencing alias already has aliasee"); 7998 assert(Summary && "Aliasee must be a definition"); 7999 AliaseeRef.first->setAliasee(VI, Summary.get()); 8000 } 8001 ForwardRefAliasees.erase(FwdRefAliasees); 8002 } 8003 8004 // Add the summary if one was provided. 8005 if (Summary) 8006 Index->addGlobalValueSummary(VI, std::move(Summary)); 8007 8008 // Save the associated ValueInfo for use in later references by ID. 8009 if (ID == NumberedValueInfos.size()) 8010 NumberedValueInfos.push_back(VI); 8011 else { 8012 // Handle non-continuous numbers (to make test simplification easier). 8013 if (ID > NumberedValueInfos.size()) 8014 NumberedValueInfos.resize(ID + 1); 8015 NumberedValueInfos[ID] = VI; 8016 } 8017 } 8018 8019 /// ParseSummaryIndexFlags 8020 /// ::= 'flags' ':' UInt64 8021 bool LLParser::ParseSummaryIndexFlags() { 8022 assert(Lex.getKind() == lltok::kw_flags); 8023 Lex.Lex(); 8024 8025 if (ParseToken(lltok::colon, "expected ':' here")) 8026 return true; 8027 uint64_t Flags; 8028 if (ParseUInt64(Flags)) 8029 return true; 8030 Index->setFlags(Flags); 8031 return false; 8032 } 8033 8034 /// ParseGVEntry 8035 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8036 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8037 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8038 bool LLParser::ParseGVEntry(unsigned ID) { 8039 assert(Lex.getKind() == lltok::kw_gv); 8040 Lex.Lex(); 8041 8042 if (ParseToken(lltok::colon, "expected ':' here") || 8043 ParseToken(lltok::lparen, "expected '(' here")) 8044 return true; 8045 8046 std::string Name; 8047 GlobalValue::GUID GUID = 0; 8048 switch (Lex.getKind()) { 8049 case lltok::kw_name: 8050 Lex.Lex(); 8051 if (ParseToken(lltok::colon, "expected ':' here") || 8052 ParseStringConstant(Name)) 8053 return true; 8054 // Can't create GUID/ValueInfo until we have the linkage. 8055 break; 8056 case lltok::kw_guid: 8057 Lex.Lex(); 8058 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8059 return true; 8060 break; 8061 default: 8062 return Error(Lex.getLoc(), "expected name or guid tag"); 8063 } 8064 8065 if (!EatIfPresent(lltok::comma)) { 8066 // No summaries. Wrap up. 8067 if (ParseToken(lltok::rparen, "expected ')' here")) 8068 return true; 8069 // This was created for a call to an external or indirect target. 8070 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8071 // created for indirect calls with VP. A Name with no GUID came from 8072 // an external definition. We pass ExternalLinkage since that is only 8073 // used when the GUID must be computed from Name, and in that case 8074 // the symbol must have external linkage. 8075 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8076 nullptr); 8077 return false; 8078 } 8079 8080 // Have a list of summaries 8081 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8082 ParseToken(lltok::colon, "expected ':' here") || 8083 ParseToken(lltok::lparen, "expected '(' here")) 8084 return true; 8085 do { 8086 switch (Lex.getKind()) { 8087 case lltok::kw_function: 8088 if (ParseFunctionSummary(Name, GUID, ID)) 8089 return true; 8090 break; 8091 case lltok::kw_variable: 8092 if (ParseVariableSummary(Name, GUID, ID)) 8093 return true; 8094 break; 8095 case lltok::kw_alias: 8096 if (ParseAliasSummary(Name, GUID, ID)) 8097 return true; 8098 break; 8099 default: 8100 return Error(Lex.getLoc(), "expected summary type"); 8101 } 8102 } while (EatIfPresent(lltok::comma)); 8103 8104 if (ParseToken(lltok::rparen, "expected ')' here") || 8105 ParseToken(lltok::rparen, "expected ')' here")) 8106 return true; 8107 8108 return false; 8109 } 8110 8111 /// FunctionSummary 8112 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8113 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8114 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8115 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8116 unsigned ID) { 8117 assert(Lex.getKind() == lltok::kw_function); 8118 Lex.Lex(); 8119 8120 StringRef ModulePath; 8121 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8122 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8123 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8124 unsigned InstCount; 8125 std::vector<FunctionSummary::EdgeTy> Calls; 8126 FunctionSummary::TypeIdInfo TypeIdInfo; 8127 std::vector<ValueInfo> Refs; 8128 // Default is all-zeros (conservative values). 8129 FunctionSummary::FFlags FFlags = {}; 8130 if (ParseToken(lltok::colon, "expected ':' here") || 8131 ParseToken(lltok::lparen, "expected '(' here") || 8132 ParseModuleReference(ModulePath) || 8133 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8134 ParseToken(lltok::comma, "expected ',' here") || 8135 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8136 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8137 return true; 8138 8139 // Parse optional fields 8140 while (EatIfPresent(lltok::comma)) { 8141 switch (Lex.getKind()) { 8142 case lltok::kw_funcFlags: 8143 if (ParseOptionalFFlags(FFlags)) 8144 return true; 8145 break; 8146 case lltok::kw_calls: 8147 if (ParseOptionalCalls(Calls)) 8148 return true; 8149 break; 8150 case lltok::kw_typeIdInfo: 8151 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8152 return true; 8153 break; 8154 case lltok::kw_refs: 8155 if (ParseOptionalRefs(Refs)) 8156 return true; 8157 break; 8158 default: 8159 return Error(Lex.getLoc(), "expected optional function summary field"); 8160 } 8161 } 8162 8163 if (ParseToken(lltok::rparen, "expected ')' here")) 8164 return true; 8165 8166 auto FS = std::make_unique<FunctionSummary>( 8167 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8168 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8169 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8170 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8171 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8172 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8173 8174 FS->setModulePath(ModulePath); 8175 8176 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8177 ID, std::move(FS)); 8178 8179 return false; 8180 } 8181 8182 /// VariableSummary 8183 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8184 /// [',' OptionalRefs]? ')' 8185 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8186 unsigned ID) { 8187 assert(Lex.getKind() == lltok::kw_variable); 8188 Lex.Lex(); 8189 8190 StringRef ModulePath; 8191 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8192 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8193 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8194 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8195 /* WriteOnly */ false, 8196 /* Constant */ false, 8197 GlobalObject::VCallVisibilityPublic); 8198 std::vector<ValueInfo> Refs; 8199 VTableFuncList VTableFuncs; 8200 if (ParseToken(lltok::colon, "expected ':' here") || 8201 ParseToken(lltok::lparen, "expected '(' here") || 8202 ParseModuleReference(ModulePath) || 8203 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8204 ParseToken(lltok::comma, "expected ',' here") || 8205 ParseGVarFlags(GVarFlags)) 8206 return true; 8207 8208 // Parse optional fields 8209 while (EatIfPresent(lltok::comma)) { 8210 switch (Lex.getKind()) { 8211 case lltok::kw_vTableFuncs: 8212 if (ParseOptionalVTableFuncs(VTableFuncs)) 8213 return true; 8214 break; 8215 case lltok::kw_refs: 8216 if (ParseOptionalRefs(Refs)) 8217 return true; 8218 break; 8219 default: 8220 return Error(Lex.getLoc(), "expected optional variable summary field"); 8221 } 8222 } 8223 8224 if (ParseToken(lltok::rparen, "expected ')' here")) 8225 return true; 8226 8227 auto GS = 8228 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8229 8230 GS->setModulePath(ModulePath); 8231 GS->setVTableFuncs(std::move(VTableFuncs)); 8232 8233 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8234 ID, std::move(GS)); 8235 8236 return false; 8237 } 8238 8239 /// AliasSummary 8240 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8241 /// 'aliasee' ':' GVReference ')' 8242 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8243 unsigned ID) { 8244 assert(Lex.getKind() == lltok::kw_alias); 8245 LocTy Loc = Lex.getLoc(); 8246 Lex.Lex(); 8247 8248 StringRef ModulePath; 8249 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8250 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8251 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8252 if (ParseToken(lltok::colon, "expected ':' here") || 8253 ParseToken(lltok::lparen, "expected '(' here") || 8254 ParseModuleReference(ModulePath) || 8255 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8256 ParseToken(lltok::comma, "expected ',' here") || 8257 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8258 ParseToken(lltok::colon, "expected ':' here")) 8259 return true; 8260 8261 ValueInfo AliaseeVI; 8262 unsigned GVId; 8263 if (ParseGVReference(AliaseeVI, GVId)) 8264 return true; 8265 8266 if (ParseToken(lltok::rparen, "expected ')' here")) 8267 return true; 8268 8269 auto AS = std::make_unique<AliasSummary>(GVFlags); 8270 8271 AS->setModulePath(ModulePath); 8272 8273 // Record forward reference if the aliasee is not parsed yet. 8274 if (AliaseeVI.getRef() == FwdVIRef) { 8275 auto FwdRef = ForwardRefAliasees.insert( 8276 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8277 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8278 } else { 8279 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8280 assert(Summary && "Aliasee must be a definition"); 8281 AS->setAliasee(AliaseeVI, Summary); 8282 } 8283 8284 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8285 ID, std::move(AS)); 8286 8287 return false; 8288 } 8289 8290 /// Flag 8291 /// ::= [0|1] 8292 bool LLParser::ParseFlag(unsigned &Val) { 8293 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8294 return TokError("expected integer"); 8295 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8296 Lex.Lex(); 8297 return false; 8298 } 8299 8300 /// OptionalFFlags 8301 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8302 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8303 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8304 /// [',' 'noInline' ':' Flag]? ')' 8305 /// [',' 'alwaysInline' ':' Flag]? ')' 8306 8307 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8308 assert(Lex.getKind() == lltok::kw_funcFlags); 8309 Lex.Lex(); 8310 8311 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8312 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8313 return true; 8314 8315 do { 8316 unsigned Val = 0; 8317 switch (Lex.getKind()) { 8318 case lltok::kw_readNone: 8319 Lex.Lex(); 8320 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8321 return true; 8322 FFlags.ReadNone = Val; 8323 break; 8324 case lltok::kw_readOnly: 8325 Lex.Lex(); 8326 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8327 return true; 8328 FFlags.ReadOnly = Val; 8329 break; 8330 case lltok::kw_noRecurse: 8331 Lex.Lex(); 8332 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8333 return true; 8334 FFlags.NoRecurse = Val; 8335 break; 8336 case lltok::kw_returnDoesNotAlias: 8337 Lex.Lex(); 8338 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8339 return true; 8340 FFlags.ReturnDoesNotAlias = Val; 8341 break; 8342 case lltok::kw_noInline: 8343 Lex.Lex(); 8344 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8345 return true; 8346 FFlags.NoInline = Val; 8347 break; 8348 case lltok::kw_alwaysInline: 8349 Lex.Lex(); 8350 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8351 return true; 8352 FFlags.AlwaysInline = Val; 8353 break; 8354 default: 8355 return Error(Lex.getLoc(), "expected function flag type"); 8356 } 8357 } while (EatIfPresent(lltok::comma)); 8358 8359 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8360 return true; 8361 8362 return false; 8363 } 8364 8365 /// OptionalCalls 8366 /// := 'calls' ':' '(' Call [',' Call]* ')' 8367 /// Call ::= '(' 'callee' ':' GVReference 8368 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8369 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8370 assert(Lex.getKind() == lltok::kw_calls); 8371 Lex.Lex(); 8372 8373 if (ParseToken(lltok::colon, "expected ':' in calls") | 8374 ParseToken(lltok::lparen, "expected '(' in calls")) 8375 return true; 8376 8377 IdToIndexMapType IdToIndexMap; 8378 // Parse each call edge 8379 do { 8380 ValueInfo VI; 8381 if (ParseToken(lltok::lparen, "expected '(' in call") || 8382 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8383 ParseToken(lltok::colon, "expected ':'")) 8384 return true; 8385 8386 LocTy Loc = Lex.getLoc(); 8387 unsigned GVId; 8388 if (ParseGVReference(VI, GVId)) 8389 return true; 8390 8391 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8392 unsigned RelBF = 0; 8393 if (EatIfPresent(lltok::comma)) { 8394 // Expect either hotness or relbf 8395 if (EatIfPresent(lltok::kw_hotness)) { 8396 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8397 return true; 8398 } else { 8399 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8400 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8401 return true; 8402 } 8403 } 8404 // Keep track of the Call array index needing a forward reference. 8405 // We will save the location of the ValueInfo needing an update, but 8406 // can only do so once the std::vector is finalized. 8407 if (VI.getRef() == FwdVIRef) 8408 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8409 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8410 8411 if (ParseToken(lltok::rparen, "expected ')' in call")) 8412 return true; 8413 } while (EatIfPresent(lltok::comma)); 8414 8415 // Now that the Calls vector is finalized, it is safe to save the locations 8416 // of any forward GV references that need updating later. 8417 for (auto I : IdToIndexMap) { 8418 for (auto P : I.second) { 8419 assert(Calls[P.first].first.getRef() == FwdVIRef && 8420 "Forward referenced ValueInfo expected to be empty"); 8421 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8422 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8423 FwdRef.first->second.push_back( 8424 std::make_pair(&Calls[P.first].first, P.second)); 8425 } 8426 } 8427 8428 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8429 return true; 8430 8431 return false; 8432 } 8433 8434 /// Hotness 8435 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8436 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8437 switch (Lex.getKind()) { 8438 case lltok::kw_unknown: 8439 Hotness = CalleeInfo::HotnessType::Unknown; 8440 break; 8441 case lltok::kw_cold: 8442 Hotness = CalleeInfo::HotnessType::Cold; 8443 break; 8444 case lltok::kw_none: 8445 Hotness = CalleeInfo::HotnessType::None; 8446 break; 8447 case lltok::kw_hot: 8448 Hotness = CalleeInfo::HotnessType::Hot; 8449 break; 8450 case lltok::kw_critical: 8451 Hotness = CalleeInfo::HotnessType::Critical; 8452 break; 8453 default: 8454 return Error(Lex.getLoc(), "invalid call edge hotness"); 8455 } 8456 Lex.Lex(); 8457 return false; 8458 } 8459 8460 /// OptionalVTableFuncs 8461 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8462 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8463 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8464 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8465 Lex.Lex(); 8466 8467 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8468 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8469 return true; 8470 8471 IdToIndexMapType IdToIndexMap; 8472 // Parse each virtual function pair 8473 do { 8474 ValueInfo VI; 8475 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8476 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8477 ParseToken(lltok::colon, "expected ':'")) 8478 return true; 8479 8480 LocTy Loc = Lex.getLoc(); 8481 unsigned GVId; 8482 if (ParseGVReference(VI, GVId)) 8483 return true; 8484 8485 uint64_t Offset; 8486 if (ParseToken(lltok::comma, "expected comma") || 8487 ParseToken(lltok::kw_offset, "expected offset") || 8488 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8489 return true; 8490 8491 // Keep track of the VTableFuncs array index needing a forward reference. 8492 // We will save the location of the ValueInfo needing an update, but 8493 // can only do so once the std::vector is finalized. 8494 if (VI == EmptyVI) 8495 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8496 VTableFuncs.push_back({VI, Offset}); 8497 8498 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8499 return true; 8500 } while (EatIfPresent(lltok::comma)); 8501 8502 // Now that the VTableFuncs vector is finalized, it is safe to save the 8503 // locations of any forward GV references that need updating later. 8504 for (auto I : IdToIndexMap) { 8505 for (auto P : I.second) { 8506 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8507 "Forward referenced ValueInfo expected to be empty"); 8508 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8509 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8510 FwdRef.first->second.push_back( 8511 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8512 } 8513 } 8514 8515 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8516 return true; 8517 8518 return false; 8519 } 8520 8521 /// OptionalRefs 8522 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8523 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8524 assert(Lex.getKind() == lltok::kw_refs); 8525 Lex.Lex(); 8526 8527 if (ParseToken(lltok::colon, "expected ':' in refs") | 8528 ParseToken(lltok::lparen, "expected '(' in refs")) 8529 return true; 8530 8531 struct ValueContext { 8532 ValueInfo VI; 8533 unsigned GVId; 8534 LocTy Loc; 8535 }; 8536 std::vector<ValueContext> VContexts; 8537 // Parse each ref edge 8538 do { 8539 ValueContext VC; 8540 VC.Loc = Lex.getLoc(); 8541 if (ParseGVReference(VC.VI, VC.GVId)) 8542 return true; 8543 VContexts.push_back(VC); 8544 } while (EatIfPresent(lltok::comma)); 8545 8546 // Sort value contexts so that ones with writeonly 8547 // and readonly ValueInfo are at the end of VContexts vector. 8548 // See FunctionSummary::specialRefCounts() 8549 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8550 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8551 }); 8552 8553 IdToIndexMapType IdToIndexMap; 8554 for (auto &VC : VContexts) { 8555 // Keep track of the Refs array index needing a forward reference. 8556 // We will save the location of the ValueInfo needing an update, but 8557 // can only do so once the std::vector is finalized. 8558 if (VC.VI.getRef() == FwdVIRef) 8559 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8560 Refs.push_back(VC.VI); 8561 } 8562 8563 // Now that the Refs vector is finalized, it is safe to save the locations 8564 // of any forward GV references that need updating later. 8565 for (auto I : IdToIndexMap) { 8566 for (auto P : I.second) { 8567 assert(Refs[P.first].getRef() == FwdVIRef && 8568 "Forward referenced ValueInfo expected to be empty"); 8569 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8570 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8571 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8572 } 8573 } 8574 8575 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8576 return true; 8577 8578 return false; 8579 } 8580 8581 /// OptionalTypeIdInfo 8582 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8583 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8584 /// [',' TypeCheckedLoadConstVCalls]? ')' 8585 bool LLParser::ParseOptionalTypeIdInfo( 8586 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8587 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8588 Lex.Lex(); 8589 8590 if (ParseToken(lltok::colon, "expected ':' here") || 8591 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8592 return true; 8593 8594 do { 8595 switch (Lex.getKind()) { 8596 case lltok::kw_typeTests: 8597 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8598 return true; 8599 break; 8600 case lltok::kw_typeTestAssumeVCalls: 8601 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8602 TypeIdInfo.TypeTestAssumeVCalls)) 8603 return true; 8604 break; 8605 case lltok::kw_typeCheckedLoadVCalls: 8606 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8607 TypeIdInfo.TypeCheckedLoadVCalls)) 8608 return true; 8609 break; 8610 case lltok::kw_typeTestAssumeConstVCalls: 8611 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8612 TypeIdInfo.TypeTestAssumeConstVCalls)) 8613 return true; 8614 break; 8615 case lltok::kw_typeCheckedLoadConstVCalls: 8616 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8617 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8618 return true; 8619 break; 8620 default: 8621 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8622 } 8623 } while (EatIfPresent(lltok::comma)); 8624 8625 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8626 return true; 8627 8628 return false; 8629 } 8630 8631 /// TypeTests 8632 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8633 /// [',' (SummaryID | UInt64)]* ')' 8634 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8635 assert(Lex.getKind() == lltok::kw_typeTests); 8636 Lex.Lex(); 8637 8638 if (ParseToken(lltok::colon, "expected ':' here") || 8639 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8640 return true; 8641 8642 IdToIndexMapType IdToIndexMap; 8643 do { 8644 GlobalValue::GUID GUID = 0; 8645 if (Lex.getKind() == lltok::SummaryID) { 8646 unsigned ID = Lex.getUIntVal(); 8647 LocTy Loc = Lex.getLoc(); 8648 // Keep track of the TypeTests array index needing a forward reference. 8649 // We will save the location of the GUID needing an update, but 8650 // can only do so once the std::vector is finalized. 8651 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8652 Lex.Lex(); 8653 } else if (ParseUInt64(GUID)) 8654 return true; 8655 TypeTests.push_back(GUID); 8656 } while (EatIfPresent(lltok::comma)); 8657 8658 // Now that the TypeTests vector is finalized, it is safe to save the 8659 // locations of any forward GV references that need updating later. 8660 for (auto I : IdToIndexMap) { 8661 for (auto P : I.second) { 8662 assert(TypeTests[P.first] == 0 && 8663 "Forward referenced type id GUID expected to be 0"); 8664 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8665 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8666 FwdRef.first->second.push_back( 8667 std::make_pair(&TypeTests[P.first], P.second)); 8668 } 8669 } 8670 8671 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8672 return true; 8673 8674 return false; 8675 } 8676 8677 /// VFuncIdList 8678 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8679 bool LLParser::ParseVFuncIdList( 8680 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8681 assert(Lex.getKind() == Kind); 8682 Lex.Lex(); 8683 8684 if (ParseToken(lltok::colon, "expected ':' here") || 8685 ParseToken(lltok::lparen, "expected '(' here")) 8686 return true; 8687 8688 IdToIndexMapType IdToIndexMap; 8689 do { 8690 FunctionSummary::VFuncId VFuncId; 8691 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8692 return true; 8693 VFuncIdList.push_back(VFuncId); 8694 } while (EatIfPresent(lltok::comma)); 8695 8696 if (ParseToken(lltok::rparen, "expected ')' here")) 8697 return true; 8698 8699 // Now that the VFuncIdList vector is finalized, it is safe to save the 8700 // locations of any forward GV references that need updating later. 8701 for (auto I : IdToIndexMap) { 8702 for (auto P : I.second) { 8703 assert(VFuncIdList[P.first].GUID == 0 && 8704 "Forward referenced type id GUID expected to be 0"); 8705 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8706 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8707 FwdRef.first->second.push_back( 8708 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8709 } 8710 } 8711 8712 return false; 8713 } 8714 8715 /// ConstVCallList 8716 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8717 bool LLParser::ParseConstVCallList( 8718 lltok::Kind Kind, 8719 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8720 assert(Lex.getKind() == Kind); 8721 Lex.Lex(); 8722 8723 if (ParseToken(lltok::colon, "expected ':' here") || 8724 ParseToken(lltok::lparen, "expected '(' here")) 8725 return true; 8726 8727 IdToIndexMapType IdToIndexMap; 8728 do { 8729 FunctionSummary::ConstVCall ConstVCall; 8730 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8731 return true; 8732 ConstVCallList.push_back(ConstVCall); 8733 } while (EatIfPresent(lltok::comma)); 8734 8735 if (ParseToken(lltok::rparen, "expected ')' here")) 8736 return true; 8737 8738 // Now that the ConstVCallList vector is finalized, it is safe to save the 8739 // locations of any forward GV references that need updating later. 8740 for (auto I : IdToIndexMap) { 8741 for (auto P : I.second) { 8742 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8743 "Forward referenced type id GUID expected to be 0"); 8744 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8745 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8746 FwdRef.first->second.push_back( 8747 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8748 } 8749 } 8750 8751 return false; 8752 } 8753 8754 /// ConstVCall 8755 /// ::= '(' VFuncId ',' Args ')' 8756 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8757 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8758 if (ParseToken(lltok::lparen, "expected '(' here") || 8759 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8760 return true; 8761 8762 if (EatIfPresent(lltok::comma)) 8763 if (ParseArgs(ConstVCall.Args)) 8764 return true; 8765 8766 if (ParseToken(lltok::rparen, "expected ')' here")) 8767 return true; 8768 8769 return false; 8770 } 8771 8772 /// VFuncId 8773 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8774 /// 'offset' ':' UInt64 ')' 8775 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8776 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8777 assert(Lex.getKind() == lltok::kw_vFuncId); 8778 Lex.Lex(); 8779 8780 if (ParseToken(lltok::colon, "expected ':' here") || 8781 ParseToken(lltok::lparen, "expected '(' here")) 8782 return true; 8783 8784 if (Lex.getKind() == lltok::SummaryID) { 8785 VFuncId.GUID = 0; 8786 unsigned ID = Lex.getUIntVal(); 8787 LocTy Loc = Lex.getLoc(); 8788 // Keep track of the array index needing a forward reference. 8789 // We will save the location of the GUID needing an update, but 8790 // can only do so once the caller's std::vector is finalized. 8791 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8792 Lex.Lex(); 8793 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8794 ParseToken(lltok::colon, "expected ':' here") || 8795 ParseUInt64(VFuncId.GUID)) 8796 return true; 8797 8798 if (ParseToken(lltok::comma, "expected ',' here") || 8799 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8800 ParseToken(lltok::colon, "expected ':' here") || 8801 ParseUInt64(VFuncId.Offset) || 8802 ParseToken(lltok::rparen, "expected ')' here")) 8803 return true; 8804 8805 return false; 8806 } 8807 8808 /// GVFlags 8809 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8810 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8811 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8812 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8813 assert(Lex.getKind() == lltok::kw_flags); 8814 Lex.Lex(); 8815 8816 if (ParseToken(lltok::colon, "expected ':' here") || 8817 ParseToken(lltok::lparen, "expected '(' here")) 8818 return true; 8819 8820 do { 8821 unsigned Flag = 0; 8822 switch (Lex.getKind()) { 8823 case lltok::kw_linkage: 8824 Lex.Lex(); 8825 if (ParseToken(lltok::colon, "expected ':'")) 8826 return true; 8827 bool HasLinkage; 8828 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8829 assert(HasLinkage && "Linkage not optional in summary entry"); 8830 Lex.Lex(); 8831 break; 8832 case lltok::kw_notEligibleToImport: 8833 Lex.Lex(); 8834 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8835 return true; 8836 GVFlags.NotEligibleToImport = Flag; 8837 break; 8838 case lltok::kw_live: 8839 Lex.Lex(); 8840 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8841 return true; 8842 GVFlags.Live = Flag; 8843 break; 8844 case lltok::kw_dsoLocal: 8845 Lex.Lex(); 8846 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8847 return true; 8848 GVFlags.DSOLocal = Flag; 8849 break; 8850 case lltok::kw_canAutoHide: 8851 Lex.Lex(); 8852 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8853 return true; 8854 GVFlags.CanAutoHide = Flag; 8855 break; 8856 default: 8857 return Error(Lex.getLoc(), "expected gv flag type"); 8858 } 8859 } while (EatIfPresent(lltok::comma)); 8860 8861 if (ParseToken(lltok::rparen, "expected ')' here")) 8862 return true; 8863 8864 return false; 8865 } 8866 8867 /// GVarFlags 8868 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8869 /// ',' 'writeonly' ':' Flag 8870 /// ',' 'constant' ':' Flag ')' 8871 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8872 assert(Lex.getKind() == lltok::kw_varFlags); 8873 Lex.Lex(); 8874 8875 if (ParseToken(lltok::colon, "expected ':' here") || 8876 ParseToken(lltok::lparen, "expected '(' here")) 8877 return true; 8878 8879 auto ParseRest = [this](unsigned int &Val) { 8880 Lex.Lex(); 8881 if (ParseToken(lltok::colon, "expected ':'")) 8882 return true; 8883 return ParseFlag(Val); 8884 }; 8885 8886 do { 8887 unsigned Flag = 0; 8888 switch (Lex.getKind()) { 8889 case lltok::kw_readonly: 8890 if (ParseRest(Flag)) 8891 return true; 8892 GVarFlags.MaybeReadOnly = Flag; 8893 break; 8894 case lltok::kw_writeonly: 8895 if (ParseRest(Flag)) 8896 return true; 8897 GVarFlags.MaybeWriteOnly = Flag; 8898 break; 8899 case lltok::kw_constant: 8900 if (ParseRest(Flag)) 8901 return true; 8902 GVarFlags.Constant = Flag; 8903 break; 8904 case lltok::kw_vcall_visibility: 8905 if (ParseRest(Flag)) 8906 return true; 8907 GVarFlags.VCallVisibility = Flag; 8908 break; 8909 default: 8910 return Error(Lex.getLoc(), "expected gvar flag type"); 8911 } 8912 } while (EatIfPresent(lltok::comma)); 8913 return ParseToken(lltok::rparen, "expected ')' here"); 8914 } 8915 8916 /// ModuleReference 8917 /// ::= 'module' ':' UInt 8918 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8919 // Parse module id. 8920 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8921 ParseToken(lltok::colon, "expected ':' here") || 8922 ParseToken(lltok::SummaryID, "expected module ID")) 8923 return true; 8924 8925 unsigned ModuleID = Lex.getUIntVal(); 8926 auto I = ModuleIdMap.find(ModuleID); 8927 // We should have already parsed all module IDs 8928 assert(I != ModuleIdMap.end()); 8929 ModulePath = I->second; 8930 return false; 8931 } 8932 8933 /// GVReference 8934 /// ::= SummaryID 8935 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8936 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8937 if (!ReadOnly) 8938 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8939 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8940 return true; 8941 8942 GVId = Lex.getUIntVal(); 8943 // Check if we already have a VI for this GV 8944 if (GVId < NumberedValueInfos.size()) { 8945 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8946 VI = NumberedValueInfos[GVId]; 8947 } else 8948 // We will create a forward reference to the stored location. 8949 VI = ValueInfo(false, FwdVIRef); 8950 8951 if (ReadOnly) 8952 VI.setReadOnly(); 8953 if (WriteOnly) 8954 VI.setWriteOnly(); 8955 return false; 8956 } 8957