1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 // Okay, create the alias but do not insert it into the module yet. 717 std::unique_ptr<GlobalAlias> GA( 718 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 719 Name, Aliasee, /*Parent*/ nullptr)); 720 GA->setThreadLocalMode(TLM); 721 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 722 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 723 GA->setUnnamedAddr(UnnamedAddr); 724 725 if (Name.empty()) 726 NumberedVals.push_back(GA.get()); 727 728 // See if this value already exists in the symbol table. If so, it is either 729 // a redefinition or a definition of a forward reference. 730 if (GlobalValue *Val = M->getNamedValue(Name)) { 731 // See if this was a redefinition. If so, there is no entry in 732 // ForwardRefVals. 733 auto I = ForwardRefVals.find(Name); 734 if (I == ForwardRefVals.end()) 735 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 736 737 // Otherwise, this was a definition of forward ref. Verify that types 738 // agree. 739 if (Val->getType() != GA->getType()) 740 return Error(NameLoc, 741 "forward reference and definition of alias have different types"); 742 743 // If they agree, just RAUW the old value with the alias and remove the 744 // forward ref info. 745 Val->replaceAllUsesWith(GA.get()); 746 Val->eraseFromParent(); 747 ForwardRefVals.erase(I); 748 } 749 750 // Insert into the module, we know its name won't collide now. 751 M->getAliasList().push_back(GA.get()); 752 assert(GA->getName() == Name && "Should not be a name conflict!"); 753 754 // The module owns this now 755 GA.release(); 756 757 return false; 758 } 759 760 /// ParseGlobal 761 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 762 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 763 /// OptionalExternallyInitialized GlobalType Type Const 764 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 765 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 766 /// OptionalExternallyInitialized GlobalType Type Const 767 /// 768 /// Everything up to and including OptionalUnnamedAddr has been parsed 769 /// already. 770 /// 771 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 772 unsigned Linkage, bool HasLinkage, 773 unsigned Visibility, unsigned DLLStorageClass, 774 GlobalVariable::ThreadLocalMode TLM, 775 bool UnnamedAddr) { 776 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 777 return Error(NameLoc, 778 "symbol with local linkage must have default visibility"); 779 780 unsigned AddrSpace; 781 bool IsConstant, IsExternallyInitialized; 782 LocTy IsExternallyInitializedLoc; 783 LocTy TyLoc; 784 785 Type *Ty = nullptr; 786 if (ParseOptionalAddrSpace(AddrSpace) || 787 ParseOptionalToken(lltok::kw_externally_initialized, 788 IsExternallyInitialized, 789 &IsExternallyInitializedLoc) || 790 ParseGlobalType(IsConstant) || 791 ParseType(Ty, TyLoc)) 792 return true; 793 794 // If the linkage is specified and is external, then no initializer is 795 // present. 796 Constant *Init = nullptr; 797 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 798 Linkage != GlobalValue::ExternalLinkage)) { 799 if (ParseGlobalValue(Ty, Init)) 800 return true; 801 } 802 803 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 804 return Error(TyLoc, "invalid type for global variable"); 805 806 GlobalValue *GVal = nullptr; 807 808 // See if the global was forward referenced, if so, use the global. 809 if (!Name.empty()) { 810 GVal = M->getNamedValue(Name); 811 if (GVal) { 812 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 813 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 814 } 815 } else { 816 auto I = ForwardRefValIDs.find(NumberedVals.size()); 817 if (I != ForwardRefValIDs.end()) { 818 GVal = I->second.first; 819 ForwardRefValIDs.erase(I); 820 } 821 } 822 823 GlobalVariable *GV; 824 if (!GVal) { 825 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 826 Name, nullptr, GlobalVariable::NotThreadLocal, 827 AddrSpace); 828 } else { 829 if (GVal->getValueType() != Ty) 830 return Error(TyLoc, 831 "forward reference and definition of global have different types"); 832 833 GV = cast<GlobalVariable>(GVal); 834 835 // Move the forward-reference to the correct spot in the module. 836 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 837 } 838 839 if (Name.empty()) 840 NumberedVals.push_back(GV); 841 842 // Set the parsed properties on the global. 843 if (Init) 844 GV->setInitializer(Init); 845 GV->setConstant(IsConstant); 846 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 847 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 848 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 849 GV->setExternallyInitialized(IsExternallyInitialized); 850 GV->setThreadLocalMode(TLM); 851 GV->setUnnamedAddr(UnnamedAddr); 852 853 // Parse attributes on the global. 854 while (Lex.getKind() == lltok::comma) { 855 Lex.Lex(); 856 857 if (Lex.getKind() == lltok::kw_section) { 858 Lex.Lex(); 859 GV->setSection(Lex.getStrVal()); 860 if (ParseToken(lltok::StringConstant, "expected global section string")) 861 return true; 862 } else if (Lex.getKind() == lltok::kw_align) { 863 unsigned Alignment; 864 if (ParseOptionalAlignment(Alignment)) return true; 865 GV->setAlignment(Alignment); 866 } else { 867 Comdat *C; 868 if (parseOptionalComdat(Name, C)) 869 return true; 870 if (C) 871 GV->setComdat(C); 872 else 873 return TokError("unknown global variable property!"); 874 } 875 } 876 877 return false; 878 } 879 880 /// ParseUnnamedAttrGrp 881 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 882 bool LLParser::ParseUnnamedAttrGrp() { 883 assert(Lex.getKind() == lltok::kw_attributes); 884 LocTy AttrGrpLoc = Lex.getLoc(); 885 Lex.Lex(); 886 887 if (Lex.getKind() != lltok::AttrGrpID) 888 return TokError("expected attribute group id"); 889 890 unsigned VarID = Lex.getUIntVal(); 891 std::vector<unsigned> unused; 892 LocTy BuiltinLoc; 893 Lex.Lex(); 894 895 if (ParseToken(lltok::equal, "expected '=' here") || 896 ParseToken(lltok::lbrace, "expected '{' here") || 897 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 898 BuiltinLoc) || 899 ParseToken(lltok::rbrace, "expected end of attribute group")) 900 return true; 901 902 if (!NumberedAttrBuilders[VarID].hasAttributes()) 903 return Error(AttrGrpLoc, "attribute group has no attributes"); 904 905 return false; 906 } 907 908 /// ParseFnAttributeValuePairs 909 /// ::= <attr> | <attr> '=' <value> 910 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 911 std::vector<unsigned> &FwdRefAttrGrps, 912 bool inAttrGrp, LocTy &BuiltinLoc) { 913 bool HaveError = false; 914 915 B.clear(); 916 917 while (true) { 918 lltok::Kind Token = Lex.getKind(); 919 if (Token == lltok::kw_builtin) 920 BuiltinLoc = Lex.getLoc(); 921 switch (Token) { 922 default: 923 if (!inAttrGrp) return HaveError; 924 return Error(Lex.getLoc(), "unterminated attribute group"); 925 case lltok::rbrace: 926 // Finished. 927 return false; 928 929 case lltok::AttrGrpID: { 930 // Allow a function to reference an attribute group: 931 // 932 // define void @foo() #1 { ... } 933 if (inAttrGrp) 934 HaveError |= 935 Error(Lex.getLoc(), 936 "cannot have an attribute group reference in an attribute group"); 937 938 unsigned AttrGrpNum = Lex.getUIntVal(); 939 if (inAttrGrp) break; 940 941 // Save the reference to the attribute group. We'll fill it in later. 942 FwdRefAttrGrps.push_back(AttrGrpNum); 943 break; 944 } 945 // Target-dependent attributes: 946 case lltok::StringConstant: { 947 if (ParseStringAttribute(B)) 948 return true; 949 continue; 950 } 951 952 // Target-independent attributes: 953 case lltok::kw_align: { 954 // As a hack, we allow function alignment to be initially parsed as an 955 // attribute on a function declaration/definition or added to an attribute 956 // group and later moved to the alignment field. 957 unsigned Alignment; 958 if (inAttrGrp) { 959 Lex.Lex(); 960 if (ParseToken(lltok::equal, "expected '=' here") || 961 ParseUInt32(Alignment)) 962 return true; 963 } else { 964 if (ParseOptionalAlignment(Alignment)) 965 return true; 966 } 967 B.addAlignmentAttr(Alignment); 968 continue; 969 } 970 case lltok::kw_alignstack: { 971 unsigned Alignment; 972 if (inAttrGrp) { 973 Lex.Lex(); 974 if (ParseToken(lltok::equal, "expected '=' here") || 975 ParseUInt32(Alignment)) 976 return true; 977 } else { 978 if (ParseOptionalStackAlignment(Alignment)) 979 return true; 980 } 981 B.addStackAlignmentAttr(Alignment); 982 continue; 983 } 984 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 985 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 986 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 987 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 988 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 989 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 990 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 991 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 992 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 993 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 994 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 995 case lltok::kw_noimplicitfloat: 996 B.addAttribute(Attribute::NoImplicitFloat); break; 997 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 998 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 999 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1000 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1001 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1002 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1003 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1004 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1005 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1006 case lltok::kw_returns_twice: 1007 B.addAttribute(Attribute::ReturnsTwice); break; 1008 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1009 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1010 case lltok::kw_sspstrong: 1011 B.addAttribute(Attribute::StackProtectStrong); break; 1012 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1013 case lltok::kw_sanitize_address: 1014 B.addAttribute(Attribute::SanitizeAddress); break; 1015 case lltok::kw_sanitize_thread: 1016 B.addAttribute(Attribute::SanitizeThread); break; 1017 case lltok::kw_sanitize_memory: 1018 B.addAttribute(Attribute::SanitizeMemory); break; 1019 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1020 1021 // Error handling. 1022 case lltok::kw_inreg: 1023 case lltok::kw_signext: 1024 case lltok::kw_zeroext: 1025 HaveError |= 1026 Error(Lex.getLoc(), 1027 "invalid use of attribute on a function"); 1028 break; 1029 case lltok::kw_byval: 1030 case lltok::kw_dereferenceable: 1031 case lltok::kw_dereferenceable_or_null: 1032 case lltok::kw_inalloca: 1033 case lltok::kw_nest: 1034 case lltok::kw_noalias: 1035 case lltok::kw_nocapture: 1036 case lltok::kw_nonnull: 1037 case lltok::kw_returned: 1038 case lltok::kw_sret: 1039 HaveError |= 1040 Error(Lex.getLoc(), 1041 "invalid use of parameter-only attribute on a function"); 1042 break; 1043 } 1044 1045 Lex.Lex(); 1046 } 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // GlobalValue Reference/Resolution Routines. 1051 //===----------------------------------------------------------------------===// 1052 1053 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1054 const std::string &Name) { 1055 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1056 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1057 else 1058 return new GlobalVariable(*M, PTy->getElementType(), false, 1059 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1060 nullptr, GlobalVariable::NotThreadLocal, 1061 PTy->getAddressSpace()); 1062 } 1063 1064 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1065 /// forward reference record if needed. This can return null if the value 1066 /// exists but does not have the right type. 1067 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1068 LocTy Loc) { 1069 PointerType *PTy = dyn_cast<PointerType>(Ty); 1070 if (!PTy) { 1071 Error(Loc, "global variable reference must have pointer type"); 1072 return nullptr; 1073 } 1074 1075 // Look this name up in the normal function symbol table. 1076 GlobalValue *Val = 1077 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1078 1079 // If this is a forward reference for the value, see if we already created a 1080 // forward ref record. 1081 if (!Val) { 1082 auto I = ForwardRefVals.find(Name); 1083 if (I != ForwardRefVals.end()) 1084 Val = I->second.first; 1085 } 1086 1087 // If we have the value in the symbol table or fwd-ref table, return it. 1088 if (Val) { 1089 if (Val->getType() == Ty) return Val; 1090 Error(Loc, "'@" + Name + "' defined with type '" + 1091 getTypeString(Val->getType()) + "'"); 1092 return nullptr; 1093 } 1094 1095 // Otherwise, create a new forward reference for this value and remember it. 1096 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1097 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1098 return FwdVal; 1099 } 1100 1101 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1102 PointerType *PTy = dyn_cast<PointerType>(Ty); 1103 if (!PTy) { 1104 Error(Loc, "global variable reference must have pointer type"); 1105 return nullptr; 1106 } 1107 1108 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1109 1110 // If this is a forward reference for the value, see if we already created a 1111 // forward ref record. 1112 if (!Val) { 1113 auto I = ForwardRefValIDs.find(ID); 1114 if (I != ForwardRefValIDs.end()) 1115 Val = I->second.first; 1116 } 1117 1118 // If we have the value in the symbol table or fwd-ref table, return it. 1119 if (Val) { 1120 if (Val->getType() == Ty) return Val; 1121 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1122 getTypeString(Val->getType()) + "'"); 1123 return nullptr; 1124 } 1125 1126 // Otherwise, create a new forward reference for this value and remember it. 1127 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1128 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1129 return FwdVal; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Comdat Reference/Resolution Routines. 1135 //===----------------------------------------------------------------------===// 1136 1137 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1138 // Look this name up in the comdat symbol table. 1139 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1140 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1141 if (I != ComdatSymTab.end()) 1142 return &I->second; 1143 1144 // Otherwise, create a new forward reference for this value and remember it. 1145 Comdat *C = M->getOrInsertComdat(Name); 1146 ForwardRefComdats[Name] = Loc; 1147 return C; 1148 } 1149 1150 1151 //===----------------------------------------------------------------------===// 1152 // Helper Routines. 1153 //===----------------------------------------------------------------------===// 1154 1155 /// ParseToken - If the current token has the specified kind, eat it and return 1156 /// success. Otherwise, emit the specified error and return failure. 1157 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1158 if (Lex.getKind() != T) 1159 return TokError(ErrMsg); 1160 Lex.Lex(); 1161 return false; 1162 } 1163 1164 /// ParseStringConstant 1165 /// ::= StringConstant 1166 bool LLParser::ParseStringConstant(std::string &Result) { 1167 if (Lex.getKind() != lltok::StringConstant) 1168 return TokError("expected string constant"); 1169 Result = Lex.getStrVal(); 1170 Lex.Lex(); 1171 return false; 1172 } 1173 1174 /// ParseUInt32 1175 /// ::= uint32 1176 bool LLParser::ParseUInt32(unsigned &Val) { 1177 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1178 return TokError("expected integer"); 1179 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1180 if (Val64 != unsigned(Val64)) 1181 return TokError("expected 32-bit integer (too large)"); 1182 Val = Val64; 1183 Lex.Lex(); 1184 return false; 1185 } 1186 1187 /// ParseUInt64 1188 /// ::= uint64 1189 bool LLParser::ParseUInt64(uint64_t &Val) { 1190 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1191 return TokError("expected integer"); 1192 Val = Lex.getAPSIntVal().getLimitedValue(); 1193 Lex.Lex(); 1194 return false; 1195 } 1196 1197 /// ParseTLSModel 1198 /// := 'localdynamic' 1199 /// := 'initialexec' 1200 /// := 'localexec' 1201 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1202 switch (Lex.getKind()) { 1203 default: 1204 return TokError("expected localdynamic, initialexec or localexec"); 1205 case lltok::kw_localdynamic: 1206 TLM = GlobalVariable::LocalDynamicTLSModel; 1207 break; 1208 case lltok::kw_initialexec: 1209 TLM = GlobalVariable::InitialExecTLSModel; 1210 break; 1211 case lltok::kw_localexec: 1212 TLM = GlobalVariable::LocalExecTLSModel; 1213 break; 1214 } 1215 1216 Lex.Lex(); 1217 return false; 1218 } 1219 1220 /// ParseOptionalThreadLocal 1221 /// := /*empty*/ 1222 /// := 'thread_local' 1223 /// := 'thread_local' '(' tlsmodel ')' 1224 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1225 TLM = GlobalVariable::NotThreadLocal; 1226 if (!EatIfPresent(lltok::kw_thread_local)) 1227 return false; 1228 1229 TLM = GlobalVariable::GeneralDynamicTLSModel; 1230 if (Lex.getKind() == lltok::lparen) { 1231 Lex.Lex(); 1232 return ParseTLSModel(TLM) || 1233 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1234 } 1235 return false; 1236 } 1237 1238 /// ParseOptionalAddrSpace 1239 /// := /*empty*/ 1240 /// := 'addrspace' '(' uint32 ')' 1241 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1242 AddrSpace = 0; 1243 if (!EatIfPresent(lltok::kw_addrspace)) 1244 return false; 1245 return ParseToken(lltok::lparen, "expected '(' in address space") || 1246 ParseUInt32(AddrSpace) || 1247 ParseToken(lltok::rparen, "expected ')' in address space"); 1248 } 1249 1250 /// ParseStringAttribute 1251 /// := StringConstant 1252 /// := StringConstant '=' StringConstant 1253 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1254 std::string Attr = Lex.getStrVal(); 1255 Lex.Lex(); 1256 std::string Val; 1257 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1258 return true; 1259 B.addAttribute(Attr, Val); 1260 return false; 1261 } 1262 1263 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1264 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1265 bool HaveError = false; 1266 1267 B.clear(); 1268 1269 while (1) { 1270 lltok::Kind Token = Lex.getKind(); 1271 switch (Token) { 1272 default: // End of attributes. 1273 return HaveError; 1274 case lltok::StringConstant: { 1275 if (ParseStringAttribute(B)) 1276 return true; 1277 continue; 1278 } 1279 case lltok::kw_align: { 1280 unsigned Alignment; 1281 if (ParseOptionalAlignment(Alignment)) 1282 return true; 1283 B.addAlignmentAttr(Alignment); 1284 continue; 1285 } 1286 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1287 case lltok::kw_dereferenceable: { 1288 uint64_t Bytes; 1289 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1290 return true; 1291 B.addDereferenceableAttr(Bytes); 1292 continue; 1293 } 1294 case lltok::kw_dereferenceable_or_null: { 1295 uint64_t Bytes; 1296 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1297 return true; 1298 B.addDereferenceableOrNullAttr(Bytes); 1299 continue; 1300 } 1301 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1302 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1303 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1304 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1305 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1306 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1307 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1308 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1309 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1310 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1311 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1312 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1313 1314 case lltok::kw_alignstack: 1315 case lltok::kw_alwaysinline: 1316 case lltok::kw_argmemonly: 1317 case lltok::kw_builtin: 1318 case lltok::kw_inlinehint: 1319 case lltok::kw_jumptable: 1320 case lltok::kw_minsize: 1321 case lltok::kw_naked: 1322 case lltok::kw_nobuiltin: 1323 case lltok::kw_noduplicate: 1324 case lltok::kw_noimplicitfloat: 1325 case lltok::kw_noinline: 1326 case lltok::kw_nonlazybind: 1327 case lltok::kw_noredzone: 1328 case lltok::kw_noreturn: 1329 case lltok::kw_nounwind: 1330 case lltok::kw_optnone: 1331 case lltok::kw_optsize: 1332 case lltok::kw_returns_twice: 1333 case lltok::kw_sanitize_address: 1334 case lltok::kw_sanitize_memory: 1335 case lltok::kw_sanitize_thread: 1336 case lltok::kw_ssp: 1337 case lltok::kw_sspreq: 1338 case lltok::kw_sspstrong: 1339 case lltok::kw_safestack: 1340 case lltok::kw_uwtable: 1341 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1342 break; 1343 } 1344 1345 Lex.Lex(); 1346 } 1347 } 1348 1349 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1350 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1351 bool HaveError = false; 1352 1353 B.clear(); 1354 1355 while (1) { 1356 lltok::Kind Token = Lex.getKind(); 1357 switch (Token) { 1358 default: // End of attributes. 1359 return HaveError; 1360 case lltok::StringConstant: { 1361 if (ParseStringAttribute(B)) 1362 return true; 1363 continue; 1364 } 1365 case lltok::kw_dereferenceable: { 1366 uint64_t Bytes; 1367 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1368 return true; 1369 B.addDereferenceableAttr(Bytes); 1370 continue; 1371 } 1372 case lltok::kw_dereferenceable_or_null: { 1373 uint64_t Bytes; 1374 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1375 return true; 1376 B.addDereferenceableOrNullAttr(Bytes); 1377 continue; 1378 } 1379 case lltok::kw_align: { 1380 unsigned Alignment; 1381 if (ParseOptionalAlignment(Alignment)) 1382 return true; 1383 B.addAlignmentAttr(Alignment); 1384 continue; 1385 } 1386 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1387 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1388 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1389 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1390 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1391 1392 // Error handling. 1393 case lltok::kw_byval: 1394 case lltok::kw_inalloca: 1395 case lltok::kw_nest: 1396 case lltok::kw_nocapture: 1397 case lltok::kw_returned: 1398 case lltok::kw_sret: 1399 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1400 break; 1401 1402 case lltok::kw_alignstack: 1403 case lltok::kw_alwaysinline: 1404 case lltok::kw_argmemonly: 1405 case lltok::kw_builtin: 1406 case lltok::kw_cold: 1407 case lltok::kw_inlinehint: 1408 case lltok::kw_jumptable: 1409 case lltok::kw_minsize: 1410 case lltok::kw_naked: 1411 case lltok::kw_nobuiltin: 1412 case lltok::kw_noduplicate: 1413 case lltok::kw_noimplicitfloat: 1414 case lltok::kw_noinline: 1415 case lltok::kw_nonlazybind: 1416 case lltok::kw_noredzone: 1417 case lltok::kw_noreturn: 1418 case lltok::kw_nounwind: 1419 case lltok::kw_optnone: 1420 case lltok::kw_optsize: 1421 case lltok::kw_returns_twice: 1422 case lltok::kw_sanitize_address: 1423 case lltok::kw_sanitize_memory: 1424 case lltok::kw_sanitize_thread: 1425 case lltok::kw_ssp: 1426 case lltok::kw_sspreq: 1427 case lltok::kw_sspstrong: 1428 case lltok::kw_safestack: 1429 case lltok::kw_uwtable: 1430 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1431 break; 1432 1433 case lltok::kw_readnone: 1434 case lltok::kw_readonly: 1435 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1436 } 1437 1438 Lex.Lex(); 1439 } 1440 } 1441 1442 /// ParseOptionalLinkage 1443 /// ::= /*empty*/ 1444 /// ::= 'private' 1445 /// ::= 'internal' 1446 /// ::= 'weak' 1447 /// ::= 'weak_odr' 1448 /// ::= 'linkonce' 1449 /// ::= 'linkonce_odr' 1450 /// ::= 'available_externally' 1451 /// ::= 'appending' 1452 /// ::= 'common' 1453 /// ::= 'extern_weak' 1454 /// ::= 'external' 1455 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1456 HasLinkage = false; 1457 switch (Lex.getKind()) { 1458 default: Res=GlobalValue::ExternalLinkage; return false; 1459 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1460 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1461 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1462 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1463 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1464 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1465 case lltok::kw_available_externally: 1466 Res = GlobalValue::AvailableExternallyLinkage; 1467 break; 1468 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1469 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1470 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1471 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1472 } 1473 Lex.Lex(); 1474 HasLinkage = true; 1475 return false; 1476 } 1477 1478 /// ParseOptionalVisibility 1479 /// ::= /*empty*/ 1480 /// ::= 'default' 1481 /// ::= 'hidden' 1482 /// ::= 'protected' 1483 /// 1484 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1485 switch (Lex.getKind()) { 1486 default: Res = GlobalValue::DefaultVisibility; return false; 1487 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1488 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1489 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1490 } 1491 Lex.Lex(); 1492 return false; 1493 } 1494 1495 /// ParseOptionalDLLStorageClass 1496 /// ::= /*empty*/ 1497 /// ::= 'dllimport' 1498 /// ::= 'dllexport' 1499 /// 1500 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1501 switch (Lex.getKind()) { 1502 default: Res = GlobalValue::DefaultStorageClass; return false; 1503 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1504 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1505 } 1506 Lex.Lex(); 1507 return false; 1508 } 1509 1510 /// ParseOptionalCallingConv 1511 /// ::= /*empty*/ 1512 /// ::= 'ccc' 1513 /// ::= 'fastcc' 1514 /// ::= 'intel_ocl_bicc' 1515 /// ::= 'coldcc' 1516 /// ::= 'x86_stdcallcc' 1517 /// ::= 'x86_fastcallcc' 1518 /// ::= 'x86_thiscallcc' 1519 /// ::= 'x86_vectorcallcc' 1520 /// ::= 'arm_apcscc' 1521 /// ::= 'arm_aapcscc' 1522 /// ::= 'arm_aapcs_vfpcc' 1523 /// ::= 'msp430_intrcc' 1524 /// ::= 'ptx_kernel' 1525 /// ::= 'ptx_device' 1526 /// ::= 'spir_func' 1527 /// ::= 'spir_kernel' 1528 /// ::= 'x86_64_sysvcc' 1529 /// ::= 'x86_64_win64cc' 1530 /// ::= 'webkit_jscc' 1531 /// ::= 'anyregcc' 1532 /// ::= 'preserve_mostcc' 1533 /// ::= 'preserve_allcc' 1534 /// ::= 'ghccc' 1535 /// ::= 'hhvmcc' 1536 /// ::= 'hhvm_ccc' 1537 /// ::= 'cc' UINT 1538 /// 1539 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1540 switch (Lex.getKind()) { 1541 default: CC = CallingConv::C; return false; 1542 case lltok::kw_ccc: CC = CallingConv::C; break; 1543 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1544 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1545 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1546 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1547 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1548 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1549 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1550 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1551 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1552 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1553 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1554 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1555 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1556 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1557 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1558 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1559 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1560 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1561 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1562 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1563 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1564 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1565 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1566 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1567 case lltok::kw_cc: { 1568 Lex.Lex(); 1569 return ParseUInt32(CC); 1570 } 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// ParseMetadataAttachment 1578 /// ::= !dbg !42 1579 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1580 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1581 1582 std::string Name = Lex.getStrVal(); 1583 Kind = M->getMDKindID(Name); 1584 Lex.Lex(); 1585 1586 return ParseMDNode(MD); 1587 } 1588 1589 /// ParseInstructionMetadata 1590 /// ::= !dbg !42 (',' !dbg !57)* 1591 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1592 do { 1593 if (Lex.getKind() != lltok::MetadataVar) 1594 return TokError("expected metadata after comma"); 1595 1596 unsigned MDK; 1597 MDNode *N; 1598 if (ParseMetadataAttachment(MDK, N)) 1599 return true; 1600 1601 Inst.setMetadata(MDK, N); 1602 if (MDK == LLVMContext::MD_tbaa) 1603 InstsWithTBAATag.push_back(&Inst); 1604 1605 // If this is the end of the list, we're done. 1606 } while (EatIfPresent(lltok::comma)); 1607 return false; 1608 } 1609 1610 /// ParseOptionalFunctionMetadata 1611 /// ::= (!dbg !57)* 1612 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1613 while (Lex.getKind() == lltok::MetadataVar) { 1614 unsigned MDK; 1615 MDNode *N; 1616 if (ParseMetadataAttachment(MDK, N)) 1617 return true; 1618 1619 F.setMetadata(MDK, N); 1620 } 1621 return false; 1622 } 1623 1624 /// ParseOptionalAlignment 1625 /// ::= /* empty */ 1626 /// ::= 'align' 4 1627 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1628 Alignment = 0; 1629 if (!EatIfPresent(lltok::kw_align)) 1630 return false; 1631 LocTy AlignLoc = Lex.getLoc(); 1632 if (ParseUInt32(Alignment)) return true; 1633 if (!isPowerOf2_32(Alignment)) 1634 return Error(AlignLoc, "alignment is not a power of two"); 1635 if (Alignment > Value::MaximumAlignment) 1636 return Error(AlignLoc, "huge alignments are not supported yet"); 1637 return false; 1638 } 1639 1640 /// ParseOptionalDerefAttrBytes 1641 /// ::= /* empty */ 1642 /// ::= AttrKind '(' 4 ')' 1643 /// 1644 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1645 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1646 uint64_t &Bytes) { 1647 assert((AttrKind == lltok::kw_dereferenceable || 1648 AttrKind == lltok::kw_dereferenceable_or_null) && 1649 "contract!"); 1650 1651 Bytes = 0; 1652 if (!EatIfPresent(AttrKind)) 1653 return false; 1654 LocTy ParenLoc = Lex.getLoc(); 1655 if (!EatIfPresent(lltok::lparen)) 1656 return Error(ParenLoc, "expected '('"); 1657 LocTy DerefLoc = Lex.getLoc(); 1658 if (ParseUInt64(Bytes)) return true; 1659 ParenLoc = Lex.getLoc(); 1660 if (!EatIfPresent(lltok::rparen)) 1661 return Error(ParenLoc, "expected ')'"); 1662 if (!Bytes) 1663 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1664 return false; 1665 } 1666 1667 /// ParseOptionalCommaAlign 1668 /// ::= 1669 /// ::= ',' align 4 1670 /// 1671 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1672 /// end. 1673 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1674 bool &AteExtraComma) { 1675 AteExtraComma = false; 1676 while (EatIfPresent(lltok::comma)) { 1677 // Metadata at the end is an early exit. 1678 if (Lex.getKind() == lltok::MetadataVar) { 1679 AteExtraComma = true; 1680 return false; 1681 } 1682 1683 if (Lex.getKind() != lltok::kw_align) 1684 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1685 1686 if (ParseOptionalAlignment(Alignment)) return true; 1687 } 1688 1689 return false; 1690 } 1691 1692 /// ParseScopeAndOrdering 1693 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1694 /// else: ::= 1695 /// 1696 /// This sets Scope and Ordering to the parsed values. 1697 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1698 AtomicOrdering &Ordering) { 1699 if (!isAtomic) 1700 return false; 1701 1702 Scope = CrossThread; 1703 if (EatIfPresent(lltok::kw_singlethread)) 1704 Scope = SingleThread; 1705 1706 return ParseOrdering(Ordering); 1707 } 1708 1709 /// ParseOrdering 1710 /// ::= AtomicOrdering 1711 /// 1712 /// This sets Ordering to the parsed value. 1713 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1714 switch (Lex.getKind()) { 1715 default: return TokError("Expected ordering on atomic instruction"); 1716 case lltok::kw_unordered: Ordering = Unordered; break; 1717 case lltok::kw_monotonic: Ordering = Monotonic; break; 1718 case lltok::kw_acquire: Ordering = Acquire; break; 1719 case lltok::kw_release: Ordering = Release; break; 1720 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1721 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1722 } 1723 Lex.Lex(); 1724 return false; 1725 } 1726 1727 /// ParseOptionalStackAlignment 1728 /// ::= /* empty */ 1729 /// ::= 'alignstack' '(' 4 ')' 1730 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1731 Alignment = 0; 1732 if (!EatIfPresent(lltok::kw_alignstack)) 1733 return false; 1734 LocTy ParenLoc = Lex.getLoc(); 1735 if (!EatIfPresent(lltok::lparen)) 1736 return Error(ParenLoc, "expected '('"); 1737 LocTy AlignLoc = Lex.getLoc(); 1738 if (ParseUInt32(Alignment)) return true; 1739 ParenLoc = Lex.getLoc(); 1740 if (!EatIfPresent(lltok::rparen)) 1741 return Error(ParenLoc, "expected ')'"); 1742 if (!isPowerOf2_32(Alignment)) 1743 return Error(AlignLoc, "stack alignment is not a power of two"); 1744 return false; 1745 } 1746 1747 /// ParseIndexList - This parses the index list for an insert/extractvalue 1748 /// instruction. This sets AteExtraComma in the case where we eat an extra 1749 /// comma at the end of the line and find that it is followed by metadata. 1750 /// Clients that don't allow metadata can call the version of this function that 1751 /// only takes one argument. 1752 /// 1753 /// ParseIndexList 1754 /// ::= (',' uint32)+ 1755 /// 1756 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1757 bool &AteExtraComma) { 1758 AteExtraComma = false; 1759 1760 if (Lex.getKind() != lltok::comma) 1761 return TokError("expected ',' as start of index list"); 1762 1763 while (EatIfPresent(lltok::comma)) { 1764 if (Lex.getKind() == lltok::MetadataVar) { 1765 if (Indices.empty()) return TokError("expected index"); 1766 AteExtraComma = true; 1767 return false; 1768 } 1769 unsigned Idx = 0; 1770 if (ParseUInt32(Idx)) return true; 1771 Indices.push_back(Idx); 1772 } 1773 1774 return false; 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // Type Parsing. 1779 //===----------------------------------------------------------------------===// 1780 1781 /// ParseType - Parse a type. 1782 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1783 SMLoc TypeLoc = Lex.getLoc(); 1784 switch (Lex.getKind()) { 1785 default: 1786 return TokError(Msg); 1787 case lltok::Type: 1788 // Type ::= 'float' | 'void' (etc) 1789 Result = Lex.getTyVal(); 1790 Lex.Lex(); 1791 break; 1792 case lltok::lbrace: 1793 // Type ::= StructType 1794 if (ParseAnonStructType(Result, false)) 1795 return true; 1796 break; 1797 case lltok::lsquare: 1798 // Type ::= '[' ... ']' 1799 Lex.Lex(); // eat the lsquare. 1800 if (ParseArrayVectorType(Result, false)) 1801 return true; 1802 break; 1803 case lltok::less: // Either vector or packed struct. 1804 // Type ::= '<' ... '>' 1805 Lex.Lex(); 1806 if (Lex.getKind() == lltok::lbrace) { 1807 if (ParseAnonStructType(Result, true) || 1808 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1809 return true; 1810 } else if (ParseArrayVectorType(Result, true)) 1811 return true; 1812 break; 1813 case lltok::LocalVar: { 1814 // Type ::= %foo 1815 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1816 1817 // If the type hasn't been defined yet, create a forward definition and 1818 // remember where that forward def'n was seen (in case it never is defined). 1819 if (!Entry.first) { 1820 Entry.first = StructType::create(Context, Lex.getStrVal()); 1821 Entry.second = Lex.getLoc(); 1822 } 1823 Result = Entry.first; 1824 Lex.Lex(); 1825 break; 1826 } 1827 1828 case lltok::LocalVarID: { 1829 // Type ::= %4 1830 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1831 1832 // If the type hasn't been defined yet, create a forward definition and 1833 // remember where that forward def'n was seen (in case it never is defined). 1834 if (!Entry.first) { 1835 Entry.first = StructType::create(Context); 1836 Entry.second = Lex.getLoc(); 1837 } 1838 Result = Entry.first; 1839 Lex.Lex(); 1840 break; 1841 } 1842 } 1843 1844 // Parse the type suffixes. 1845 while (1) { 1846 switch (Lex.getKind()) { 1847 // End of type. 1848 default: 1849 if (!AllowVoid && Result->isVoidTy()) 1850 return Error(TypeLoc, "void type only allowed for function results"); 1851 return false; 1852 1853 // Type ::= Type '*' 1854 case lltok::star: 1855 if (Result->isLabelTy()) 1856 return TokError("basic block pointers are invalid"); 1857 if (Result->isVoidTy()) 1858 return TokError("pointers to void are invalid - use i8* instead"); 1859 if (!PointerType::isValidElementType(Result)) 1860 return TokError("pointer to this type is invalid"); 1861 Result = PointerType::getUnqual(Result); 1862 Lex.Lex(); 1863 break; 1864 1865 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1866 case lltok::kw_addrspace: { 1867 if (Result->isLabelTy()) 1868 return TokError("basic block pointers are invalid"); 1869 if (Result->isVoidTy()) 1870 return TokError("pointers to void are invalid; use i8* instead"); 1871 if (!PointerType::isValidElementType(Result)) 1872 return TokError("pointer to this type is invalid"); 1873 unsigned AddrSpace; 1874 if (ParseOptionalAddrSpace(AddrSpace) || 1875 ParseToken(lltok::star, "expected '*' in address space")) 1876 return true; 1877 1878 Result = PointerType::get(Result, AddrSpace); 1879 break; 1880 } 1881 1882 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1883 case lltok::lparen: 1884 if (ParseFunctionType(Result)) 1885 return true; 1886 break; 1887 } 1888 } 1889 } 1890 1891 /// ParseParameterList 1892 /// ::= '(' ')' 1893 /// ::= '(' Arg (',' Arg)* ')' 1894 /// Arg 1895 /// ::= Type OptionalAttributes Value OptionalAttributes 1896 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1897 PerFunctionState &PFS, bool IsMustTailCall, 1898 bool InVarArgsFunc) { 1899 if (ParseToken(lltok::lparen, "expected '(' in call")) 1900 return true; 1901 1902 unsigned AttrIndex = 1; 1903 while (Lex.getKind() != lltok::rparen) { 1904 // If this isn't the first argument, we need a comma. 1905 if (!ArgList.empty() && 1906 ParseToken(lltok::comma, "expected ',' in argument list")) 1907 return true; 1908 1909 // Parse an ellipsis if this is a musttail call in a variadic function. 1910 if (Lex.getKind() == lltok::dotdotdot) { 1911 const char *Msg = "unexpected ellipsis in argument list for "; 1912 if (!IsMustTailCall) 1913 return TokError(Twine(Msg) + "non-musttail call"); 1914 if (!InVarArgsFunc) 1915 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1916 Lex.Lex(); // Lex the '...', it is purely for readability. 1917 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1918 } 1919 1920 // Parse the argument. 1921 LocTy ArgLoc; 1922 Type *ArgTy = nullptr; 1923 AttrBuilder ArgAttrs; 1924 Value *V; 1925 if (ParseType(ArgTy, ArgLoc)) 1926 return true; 1927 1928 if (ArgTy->isMetadataTy()) { 1929 if (ParseMetadataAsValue(V, PFS)) 1930 return true; 1931 } else { 1932 // Otherwise, handle normal operands. 1933 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1934 return true; 1935 } 1936 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1937 AttrIndex++, 1938 ArgAttrs))); 1939 } 1940 1941 if (IsMustTailCall && InVarArgsFunc) 1942 return TokError("expected '...' at end of argument list for musttail call " 1943 "in varargs function"); 1944 1945 Lex.Lex(); // Lex the ')'. 1946 return false; 1947 } 1948 1949 /// ParseOptionalOperandBundles 1950 /// ::= /*empty*/ 1951 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1952 /// 1953 /// OperandBundle 1954 /// ::= bundle-tag '(' ')' 1955 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1956 /// 1957 /// bundle-tag ::= String Constant 1958 bool LLParser::ParseOptionalOperandBundles( 1959 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1960 LocTy BeginLoc = Lex.getLoc(); 1961 if (!EatIfPresent(lltok::lsquare)) 1962 return false; 1963 1964 while (Lex.getKind() != lltok::rsquare) { 1965 // If this isn't the first operand bundle, we need a comma. 1966 if (!BundleList.empty() && 1967 ParseToken(lltok::comma, "expected ',' in input list")) 1968 return true; 1969 1970 std::string Tag; 1971 if (ParseStringConstant(Tag)) 1972 return true; 1973 1974 BundleList.emplace_back(); 1975 auto &OBI = BundleList.back(); 1976 1977 OBI.Tag = std::move(Tag); 1978 1979 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 1980 return true; 1981 1982 while (Lex.getKind() != lltok::rparen) { 1983 // If this isn't the first input, we need a comma. 1984 if (!OBI.Inputs.empty() && 1985 ParseToken(lltok::comma, "expected ',' in input list")) 1986 return true; 1987 1988 Type *Ty = nullptr; 1989 Value *Input = nullptr; 1990 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 1991 return true; 1992 OBI.Inputs.push_back(Input); 1993 } 1994 1995 Lex.Lex(); // Lex the ')'. 1996 } 1997 1998 if (BundleList.empty()) 1999 return Error(BeginLoc, "operand bundle set must not be empty"); 2000 2001 Lex.Lex(); // Lex the ']'. 2002 return false; 2003 } 2004 2005 /// ParseArgumentList - Parse the argument list for a function type or function 2006 /// prototype. 2007 /// ::= '(' ArgTypeListI ')' 2008 /// ArgTypeListI 2009 /// ::= /*empty*/ 2010 /// ::= '...' 2011 /// ::= ArgTypeList ',' '...' 2012 /// ::= ArgType (',' ArgType)* 2013 /// 2014 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2015 bool &isVarArg){ 2016 isVarArg = false; 2017 assert(Lex.getKind() == lltok::lparen); 2018 Lex.Lex(); // eat the (. 2019 2020 if (Lex.getKind() == lltok::rparen) { 2021 // empty 2022 } else if (Lex.getKind() == lltok::dotdotdot) { 2023 isVarArg = true; 2024 Lex.Lex(); 2025 } else { 2026 LocTy TypeLoc = Lex.getLoc(); 2027 Type *ArgTy = nullptr; 2028 AttrBuilder Attrs; 2029 std::string Name; 2030 2031 if (ParseType(ArgTy) || 2032 ParseOptionalParamAttrs(Attrs)) return true; 2033 2034 if (ArgTy->isVoidTy()) 2035 return Error(TypeLoc, "argument can not have void type"); 2036 2037 if (Lex.getKind() == lltok::LocalVar) { 2038 Name = Lex.getStrVal(); 2039 Lex.Lex(); 2040 } 2041 2042 if (!FunctionType::isValidArgumentType(ArgTy)) 2043 return Error(TypeLoc, "invalid type for function argument"); 2044 2045 unsigned AttrIndex = 1; 2046 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2047 AttrIndex++, Attrs), 2048 std::move(Name)); 2049 2050 while (EatIfPresent(lltok::comma)) { 2051 // Handle ... at end of arg list. 2052 if (EatIfPresent(lltok::dotdotdot)) { 2053 isVarArg = true; 2054 break; 2055 } 2056 2057 // Otherwise must be an argument type. 2058 TypeLoc = Lex.getLoc(); 2059 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2060 2061 if (ArgTy->isVoidTy()) 2062 return Error(TypeLoc, "argument can not have void type"); 2063 2064 if (Lex.getKind() == lltok::LocalVar) { 2065 Name = Lex.getStrVal(); 2066 Lex.Lex(); 2067 } else { 2068 Name = ""; 2069 } 2070 2071 if (!ArgTy->isFirstClassType()) 2072 return Error(TypeLoc, "invalid type for function argument"); 2073 2074 ArgList.emplace_back( 2075 TypeLoc, ArgTy, 2076 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2077 std::move(Name)); 2078 } 2079 } 2080 2081 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2082 } 2083 2084 /// ParseFunctionType 2085 /// ::= Type ArgumentList OptionalAttrs 2086 bool LLParser::ParseFunctionType(Type *&Result) { 2087 assert(Lex.getKind() == lltok::lparen); 2088 2089 if (!FunctionType::isValidReturnType(Result)) 2090 return TokError("invalid function return type"); 2091 2092 SmallVector<ArgInfo, 8> ArgList; 2093 bool isVarArg; 2094 if (ParseArgumentList(ArgList, isVarArg)) 2095 return true; 2096 2097 // Reject names on the arguments lists. 2098 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2099 if (!ArgList[i].Name.empty()) 2100 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2101 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2102 return Error(ArgList[i].Loc, 2103 "argument attributes invalid in function type"); 2104 } 2105 2106 SmallVector<Type*, 16> ArgListTy; 2107 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2108 ArgListTy.push_back(ArgList[i].Ty); 2109 2110 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2111 return false; 2112 } 2113 2114 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2115 /// other structs. 2116 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2117 SmallVector<Type*, 8> Elts; 2118 if (ParseStructBody(Elts)) return true; 2119 2120 Result = StructType::get(Context, Elts, Packed); 2121 return false; 2122 } 2123 2124 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2125 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2126 std::pair<Type*, LocTy> &Entry, 2127 Type *&ResultTy) { 2128 // If the type was already defined, diagnose the redefinition. 2129 if (Entry.first && !Entry.second.isValid()) 2130 return Error(TypeLoc, "redefinition of type"); 2131 2132 // If we have opaque, just return without filling in the definition for the 2133 // struct. This counts as a definition as far as the .ll file goes. 2134 if (EatIfPresent(lltok::kw_opaque)) { 2135 // This type is being defined, so clear the location to indicate this. 2136 Entry.second = SMLoc(); 2137 2138 // If this type number has never been uttered, create it. 2139 if (!Entry.first) 2140 Entry.first = StructType::create(Context, Name); 2141 ResultTy = Entry.first; 2142 return false; 2143 } 2144 2145 // If the type starts with '<', then it is either a packed struct or a vector. 2146 bool isPacked = EatIfPresent(lltok::less); 2147 2148 // If we don't have a struct, then we have a random type alias, which we 2149 // accept for compatibility with old files. These types are not allowed to be 2150 // forward referenced and not allowed to be recursive. 2151 if (Lex.getKind() != lltok::lbrace) { 2152 if (Entry.first) 2153 return Error(TypeLoc, "forward references to non-struct type"); 2154 2155 ResultTy = nullptr; 2156 if (isPacked) 2157 return ParseArrayVectorType(ResultTy, true); 2158 return ParseType(ResultTy); 2159 } 2160 2161 // This type is being defined, so clear the location to indicate this. 2162 Entry.second = SMLoc(); 2163 2164 // If this type number has never been uttered, create it. 2165 if (!Entry.first) 2166 Entry.first = StructType::create(Context, Name); 2167 2168 StructType *STy = cast<StructType>(Entry.first); 2169 2170 SmallVector<Type*, 8> Body; 2171 if (ParseStructBody(Body) || 2172 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2173 return true; 2174 2175 STy->setBody(Body, isPacked); 2176 ResultTy = STy; 2177 return false; 2178 } 2179 2180 2181 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2182 /// StructType 2183 /// ::= '{' '}' 2184 /// ::= '{' Type (',' Type)* '}' 2185 /// ::= '<' '{' '}' '>' 2186 /// ::= '<' '{' Type (',' Type)* '}' '>' 2187 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2188 assert(Lex.getKind() == lltok::lbrace); 2189 Lex.Lex(); // Consume the '{' 2190 2191 // Handle the empty struct. 2192 if (EatIfPresent(lltok::rbrace)) 2193 return false; 2194 2195 LocTy EltTyLoc = Lex.getLoc(); 2196 Type *Ty = nullptr; 2197 if (ParseType(Ty)) return true; 2198 Body.push_back(Ty); 2199 2200 if (!StructType::isValidElementType(Ty)) 2201 return Error(EltTyLoc, "invalid element type for struct"); 2202 2203 while (EatIfPresent(lltok::comma)) { 2204 EltTyLoc = Lex.getLoc(); 2205 if (ParseType(Ty)) return true; 2206 2207 if (!StructType::isValidElementType(Ty)) 2208 return Error(EltTyLoc, "invalid element type for struct"); 2209 2210 Body.push_back(Ty); 2211 } 2212 2213 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2214 } 2215 2216 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2217 /// token has already been consumed. 2218 /// Type 2219 /// ::= '[' APSINTVAL 'x' Types ']' 2220 /// ::= '<' APSINTVAL 'x' Types '>' 2221 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2222 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2223 Lex.getAPSIntVal().getBitWidth() > 64) 2224 return TokError("expected number in address space"); 2225 2226 LocTy SizeLoc = Lex.getLoc(); 2227 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2228 Lex.Lex(); 2229 2230 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2231 return true; 2232 2233 LocTy TypeLoc = Lex.getLoc(); 2234 Type *EltTy = nullptr; 2235 if (ParseType(EltTy)) return true; 2236 2237 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2238 "expected end of sequential type")) 2239 return true; 2240 2241 if (isVector) { 2242 if (Size == 0) 2243 return Error(SizeLoc, "zero element vector is illegal"); 2244 if ((unsigned)Size != Size) 2245 return Error(SizeLoc, "size too large for vector"); 2246 if (!VectorType::isValidElementType(EltTy)) 2247 return Error(TypeLoc, "invalid vector element type"); 2248 Result = VectorType::get(EltTy, unsigned(Size)); 2249 } else { 2250 if (!ArrayType::isValidElementType(EltTy)) 2251 return Error(TypeLoc, "invalid array element type"); 2252 Result = ArrayType::get(EltTy, Size); 2253 } 2254 return false; 2255 } 2256 2257 //===----------------------------------------------------------------------===// 2258 // Function Semantic Analysis. 2259 //===----------------------------------------------------------------------===// 2260 2261 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2262 int functionNumber) 2263 : P(p), F(f), FunctionNumber(functionNumber) { 2264 2265 // Insert unnamed arguments into the NumberedVals list. 2266 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 2267 AI != E; ++AI) 2268 if (!AI->hasName()) 2269 NumberedVals.push_back(AI); 2270 } 2271 2272 LLParser::PerFunctionState::~PerFunctionState() { 2273 // If there were any forward referenced non-basicblock values, delete them. 2274 2275 for (const auto &P : ForwardRefVals) { 2276 if (isa<BasicBlock>(P.second.first)) 2277 continue; 2278 P.second.first->replaceAllUsesWith( 2279 UndefValue::get(P.second.first->getType())); 2280 delete P.second.first; 2281 } 2282 2283 for (const auto &P : ForwardRefValIDs) { 2284 if (isa<BasicBlock>(P.second.first)) 2285 continue; 2286 P.second.first->replaceAllUsesWith( 2287 UndefValue::get(P.second.first->getType())); 2288 delete P.second.first; 2289 } 2290 } 2291 2292 bool LLParser::PerFunctionState::FinishFunction() { 2293 if (!ForwardRefVals.empty()) 2294 return P.Error(ForwardRefVals.begin()->second.second, 2295 "use of undefined value '%" + ForwardRefVals.begin()->first + 2296 "'"); 2297 if (!ForwardRefValIDs.empty()) 2298 return P.Error(ForwardRefValIDs.begin()->second.second, 2299 "use of undefined value '%" + 2300 Twine(ForwardRefValIDs.begin()->first) + "'"); 2301 return false; 2302 } 2303 2304 2305 /// GetVal - Get a value with the specified name or ID, creating a 2306 /// forward reference record if needed. This can return null if the value 2307 /// exists but does not have the right type. 2308 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2309 LocTy Loc, OperatorConstraint OC) { 2310 // Look this name up in the normal function symbol table. 2311 Value *Val = F.getValueSymbolTable().lookup(Name); 2312 2313 // If this is a forward reference for the value, see if we already created a 2314 // forward ref record. 2315 if (!Val) { 2316 auto I = ForwardRefVals.find(Name); 2317 if (I != ForwardRefVals.end()) 2318 Val = I->second.first; 2319 } 2320 2321 // If we have the value in the symbol table or fwd-ref table, return it. 2322 if (Val) { 2323 // Check operator constraints. 2324 switch (OC) { 2325 case OC_None: 2326 // no constraint 2327 break; 2328 case OC_CatchPad: 2329 if (!isa<CatchPadInst>(Val)) { 2330 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2331 return nullptr; 2332 } 2333 break; 2334 case OC_CleanupPad: 2335 if (!isa<CleanupPadInst>(Val)) { 2336 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2337 return nullptr; 2338 } 2339 break; 2340 } 2341 if (Val->getType() == Ty) return Val; 2342 if (Ty->isLabelTy()) 2343 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2344 else 2345 P.Error(Loc, "'%" + Name + "' defined with type '" + 2346 getTypeString(Val->getType()) + "'"); 2347 return nullptr; 2348 } 2349 2350 // Don't make placeholders with invalid type. 2351 if (!Ty->isFirstClassType()) { 2352 P.Error(Loc, "invalid use of a non-first-class type"); 2353 return nullptr; 2354 } 2355 2356 // Otherwise, create a new forward reference for this value and remember it. 2357 Value *FwdVal; 2358 if (Ty->isLabelTy()) { 2359 assert(!OC); 2360 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2361 } else if (!OC) { 2362 FwdVal = new Argument(Ty, Name); 2363 } else { 2364 switch (OC) { 2365 case OC_CatchPad: 2366 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2367 Name); 2368 break; 2369 case OC_CleanupPad: 2370 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2371 break; 2372 default: 2373 llvm_unreachable("unexpected constraint"); 2374 } 2375 } 2376 2377 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2378 return FwdVal; 2379 } 2380 2381 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2382 OperatorConstraint OC) { 2383 // Look this name up in the normal function symbol table. 2384 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2385 2386 // If this is a forward reference for the value, see if we already created a 2387 // forward ref record. 2388 if (!Val) { 2389 auto I = ForwardRefValIDs.find(ID); 2390 if (I != ForwardRefValIDs.end()) 2391 Val = I->second.first; 2392 } 2393 2394 // If we have the value in the symbol table or fwd-ref table, return it. 2395 if (Val) { 2396 // Check operator constraint. 2397 switch (OC) { 2398 case OC_None: 2399 // no constraint 2400 break; 2401 case OC_CatchPad: 2402 if (!isa<CatchPadInst>(Val)) { 2403 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2404 return nullptr; 2405 } 2406 break; 2407 case OC_CleanupPad: 2408 if (!isa<CleanupPadInst>(Val)) { 2409 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2410 return nullptr; 2411 } 2412 break; 2413 } 2414 if (Val->getType() == Ty) return Val; 2415 if (Ty->isLabelTy()) 2416 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2417 else 2418 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2419 getTypeString(Val->getType()) + "'"); 2420 return nullptr; 2421 } 2422 2423 if (!Ty->isFirstClassType()) { 2424 P.Error(Loc, "invalid use of a non-first-class type"); 2425 return nullptr; 2426 } 2427 2428 // Otherwise, create a new forward reference for this value and remember it. 2429 Value *FwdVal; 2430 if (Ty->isLabelTy()) { 2431 assert(!OC); 2432 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2433 } else if (!OC) { 2434 FwdVal = new Argument(Ty); 2435 } else { 2436 switch (OC) { 2437 case OC_CatchPad: 2438 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2439 break; 2440 case OC_CleanupPad: 2441 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2442 break; 2443 default: 2444 llvm_unreachable("unexpected constraint"); 2445 } 2446 } 2447 2448 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2449 return FwdVal; 2450 } 2451 2452 /// SetInstName - After an instruction is parsed and inserted into its 2453 /// basic block, this installs its name. 2454 bool LLParser::PerFunctionState::SetInstName(int NameID, 2455 const std::string &NameStr, 2456 LocTy NameLoc, Instruction *Inst) { 2457 // If this instruction has void type, it cannot have a name or ID specified. 2458 if (Inst->getType()->isVoidTy()) { 2459 if (NameID != -1 || !NameStr.empty()) 2460 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2461 return false; 2462 } 2463 2464 // If this was a numbered instruction, verify that the instruction is the 2465 // expected value and resolve any forward references. 2466 if (NameStr.empty()) { 2467 // If neither a name nor an ID was specified, just use the next ID. 2468 if (NameID == -1) 2469 NameID = NumberedVals.size(); 2470 2471 if (unsigned(NameID) != NumberedVals.size()) 2472 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2473 Twine(NumberedVals.size()) + "'"); 2474 2475 auto FI = ForwardRefValIDs.find(NameID); 2476 if (FI != ForwardRefValIDs.end()) { 2477 Value *Sentinel = FI->second.first; 2478 if (Sentinel->getType() != Inst->getType()) 2479 return P.Error(NameLoc, "instruction forward referenced with type '" + 2480 getTypeString(FI->second.first->getType()) + "'"); 2481 // Check operator constraints. We only put cleanuppads or catchpads in 2482 // the forward value map if the value is constrained to match. 2483 if (isa<CatchPadInst>(Sentinel)) { 2484 if (!isa<CatchPadInst>(Inst)) 2485 return P.Error(FI->second.second, 2486 "'%" + Twine(NameID) + "' is not a catchpad"); 2487 } else if (isa<CleanupPadInst>(Sentinel)) { 2488 if (!isa<CleanupPadInst>(Inst)) 2489 return P.Error(FI->second.second, 2490 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2491 } 2492 2493 Sentinel->replaceAllUsesWith(Inst); 2494 delete Sentinel; 2495 ForwardRefValIDs.erase(FI); 2496 } 2497 2498 NumberedVals.push_back(Inst); 2499 return false; 2500 } 2501 2502 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2503 auto FI = ForwardRefVals.find(NameStr); 2504 if (FI != ForwardRefVals.end()) { 2505 Value *Sentinel = FI->second.first; 2506 if (Sentinel->getType() != Inst->getType()) 2507 return P.Error(NameLoc, "instruction forward referenced with type '" + 2508 getTypeString(FI->second.first->getType()) + "'"); 2509 // Check operator constraints. We only put cleanuppads or catchpads in 2510 // the forward value map if the value is constrained to match. 2511 if (isa<CatchPadInst>(Sentinel)) { 2512 if (!isa<CatchPadInst>(Inst)) 2513 return P.Error(FI->second.second, 2514 "'%" + NameStr + "' is not a catchpad"); 2515 } else if (isa<CleanupPadInst>(Sentinel)) { 2516 if (!isa<CleanupPadInst>(Inst)) 2517 return P.Error(FI->second.second, 2518 "'%" + NameStr + "' is not a cleanuppad"); 2519 } 2520 2521 Sentinel->replaceAllUsesWith(Inst); 2522 delete Sentinel; 2523 ForwardRefVals.erase(FI); 2524 } 2525 2526 // Set the name on the instruction. 2527 Inst->setName(NameStr); 2528 2529 if (Inst->getName() != NameStr) 2530 return P.Error(NameLoc, "multiple definition of local value named '" + 2531 NameStr + "'"); 2532 return false; 2533 } 2534 2535 /// GetBB - Get a basic block with the specified name or ID, creating a 2536 /// forward reference record if needed. 2537 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2538 LocTy Loc) { 2539 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2540 Type::getLabelTy(F.getContext()), Loc)); 2541 } 2542 2543 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2544 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2545 Type::getLabelTy(F.getContext()), Loc)); 2546 } 2547 2548 /// DefineBB - Define the specified basic block, which is either named or 2549 /// unnamed. If there is an error, this returns null otherwise it returns 2550 /// the block being defined. 2551 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2552 LocTy Loc) { 2553 BasicBlock *BB; 2554 if (Name.empty()) 2555 BB = GetBB(NumberedVals.size(), Loc); 2556 else 2557 BB = GetBB(Name, Loc); 2558 if (!BB) return nullptr; // Already diagnosed error. 2559 2560 // Move the block to the end of the function. Forward ref'd blocks are 2561 // inserted wherever they happen to be referenced. 2562 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2563 2564 // Remove the block from forward ref sets. 2565 if (Name.empty()) { 2566 ForwardRefValIDs.erase(NumberedVals.size()); 2567 NumberedVals.push_back(BB); 2568 } else { 2569 // BB forward references are already in the function symbol table. 2570 ForwardRefVals.erase(Name); 2571 } 2572 2573 return BB; 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // Constants. 2578 //===----------------------------------------------------------------------===// 2579 2580 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2581 /// type implied. For example, if we parse "4" we don't know what integer type 2582 /// it has. The value will later be combined with its type and checked for 2583 /// sanity. PFS is used to convert function-local operands of metadata (since 2584 /// metadata operands are not just parsed here but also converted to values). 2585 /// PFS can be null when we are not parsing metadata values inside a function. 2586 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2587 ID.Loc = Lex.getLoc(); 2588 switch (Lex.getKind()) { 2589 default: return TokError("expected value token"); 2590 case lltok::GlobalID: // @42 2591 ID.UIntVal = Lex.getUIntVal(); 2592 ID.Kind = ValID::t_GlobalID; 2593 break; 2594 case lltok::GlobalVar: // @foo 2595 ID.StrVal = Lex.getStrVal(); 2596 ID.Kind = ValID::t_GlobalName; 2597 break; 2598 case lltok::LocalVarID: // %42 2599 ID.UIntVal = Lex.getUIntVal(); 2600 ID.Kind = ValID::t_LocalID; 2601 break; 2602 case lltok::LocalVar: // %foo 2603 ID.StrVal = Lex.getStrVal(); 2604 ID.Kind = ValID::t_LocalName; 2605 break; 2606 case lltok::APSInt: 2607 ID.APSIntVal = Lex.getAPSIntVal(); 2608 ID.Kind = ValID::t_APSInt; 2609 break; 2610 case lltok::APFloat: 2611 ID.APFloatVal = Lex.getAPFloatVal(); 2612 ID.Kind = ValID::t_APFloat; 2613 break; 2614 case lltok::kw_true: 2615 ID.ConstantVal = ConstantInt::getTrue(Context); 2616 ID.Kind = ValID::t_Constant; 2617 break; 2618 case lltok::kw_false: 2619 ID.ConstantVal = ConstantInt::getFalse(Context); 2620 ID.Kind = ValID::t_Constant; 2621 break; 2622 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2623 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2624 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2625 2626 case lltok::lbrace: { 2627 // ValID ::= '{' ConstVector '}' 2628 Lex.Lex(); 2629 SmallVector<Constant*, 16> Elts; 2630 if (ParseGlobalValueVector(Elts) || 2631 ParseToken(lltok::rbrace, "expected end of struct constant")) 2632 return true; 2633 2634 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2635 ID.UIntVal = Elts.size(); 2636 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2637 Elts.size() * sizeof(Elts[0])); 2638 ID.Kind = ValID::t_ConstantStruct; 2639 return false; 2640 } 2641 case lltok::less: { 2642 // ValID ::= '<' ConstVector '>' --> Vector. 2643 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2644 Lex.Lex(); 2645 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2646 2647 SmallVector<Constant*, 16> Elts; 2648 LocTy FirstEltLoc = Lex.getLoc(); 2649 if (ParseGlobalValueVector(Elts) || 2650 (isPackedStruct && 2651 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2652 ParseToken(lltok::greater, "expected end of constant")) 2653 return true; 2654 2655 if (isPackedStruct) { 2656 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2657 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2658 Elts.size() * sizeof(Elts[0])); 2659 ID.UIntVal = Elts.size(); 2660 ID.Kind = ValID::t_PackedConstantStruct; 2661 return false; 2662 } 2663 2664 if (Elts.empty()) 2665 return Error(ID.Loc, "constant vector must not be empty"); 2666 2667 if (!Elts[0]->getType()->isIntegerTy() && 2668 !Elts[0]->getType()->isFloatingPointTy() && 2669 !Elts[0]->getType()->isPointerTy()) 2670 return Error(FirstEltLoc, 2671 "vector elements must have integer, pointer or floating point type"); 2672 2673 // Verify that all the vector elements have the same type. 2674 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2675 if (Elts[i]->getType() != Elts[0]->getType()) 2676 return Error(FirstEltLoc, 2677 "vector element #" + Twine(i) + 2678 " is not of type '" + getTypeString(Elts[0]->getType())); 2679 2680 ID.ConstantVal = ConstantVector::get(Elts); 2681 ID.Kind = ValID::t_Constant; 2682 return false; 2683 } 2684 case lltok::lsquare: { // Array Constant 2685 Lex.Lex(); 2686 SmallVector<Constant*, 16> Elts; 2687 LocTy FirstEltLoc = Lex.getLoc(); 2688 if (ParseGlobalValueVector(Elts) || 2689 ParseToken(lltok::rsquare, "expected end of array constant")) 2690 return true; 2691 2692 // Handle empty element. 2693 if (Elts.empty()) { 2694 // Use undef instead of an array because it's inconvenient to determine 2695 // the element type at this point, there being no elements to examine. 2696 ID.Kind = ValID::t_EmptyArray; 2697 return false; 2698 } 2699 2700 if (!Elts[0]->getType()->isFirstClassType()) 2701 return Error(FirstEltLoc, "invalid array element type: " + 2702 getTypeString(Elts[0]->getType())); 2703 2704 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2705 2706 // Verify all elements are correct type! 2707 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2708 if (Elts[i]->getType() != Elts[0]->getType()) 2709 return Error(FirstEltLoc, 2710 "array element #" + Twine(i) + 2711 " is not of type '" + getTypeString(Elts[0]->getType())); 2712 } 2713 2714 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2715 ID.Kind = ValID::t_Constant; 2716 return false; 2717 } 2718 case lltok::kw_c: // c "foo" 2719 Lex.Lex(); 2720 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2721 false); 2722 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2723 ID.Kind = ValID::t_Constant; 2724 return false; 2725 2726 case lltok::kw_asm: { 2727 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2728 // STRINGCONSTANT 2729 bool HasSideEffect, AlignStack, AsmDialect; 2730 Lex.Lex(); 2731 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2732 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2733 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2734 ParseStringConstant(ID.StrVal) || 2735 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2736 ParseToken(lltok::StringConstant, "expected constraint string")) 2737 return true; 2738 ID.StrVal2 = Lex.getStrVal(); 2739 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2740 (unsigned(AsmDialect)<<2); 2741 ID.Kind = ValID::t_InlineAsm; 2742 return false; 2743 } 2744 2745 case lltok::kw_blockaddress: { 2746 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2747 Lex.Lex(); 2748 2749 ValID Fn, Label; 2750 2751 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2752 ParseValID(Fn) || 2753 ParseToken(lltok::comma, "expected comma in block address expression")|| 2754 ParseValID(Label) || 2755 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2756 return true; 2757 2758 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2759 return Error(Fn.Loc, "expected function name in blockaddress"); 2760 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2761 return Error(Label.Loc, "expected basic block name in blockaddress"); 2762 2763 // Try to find the function (but skip it if it's forward-referenced). 2764 GlobalValue *GV = nullptr; 2765 if (Fn.Kind == ValID::t_GlobalID) { 2766 if (Fn.UIntVal < NumberedVals.size()) 2767 GV = NumberedVals[Fn.UIntVal]; 2768 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2769 GV = M->getNamedValue(Fn.StrVal); 2770 } 2771 Function *F = nullptr; 2772 if (GV) { 2773 // Confirm that it's actually a function with a definition. 2774 if (!isa<Function>(GV)) 2775 return Error(Fn.Loc, "expected function name in blockaddress"); 2776 F = cast<Function>(GV); 2777 if (F->isDeclaration()) 2778 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2779 } 2780 2781 if (!F) { 2782 // Make a global variable as a placeholder for this reference. 2783 GlobalValue *&FwdRef = 2784 ForwardRefBlockAddresses.insert(std::make_pair( 2785 std::move(Fn), 2786 std::map<ValID, GlobalValue *>())) 2787 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2788 .first->second; 2789 if (!FwdRef) 2790 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2791 GlobalValue::InternalLinkage, nullptr, ""); 2792 ID.ConstantVal = FwdRef; 2793 ID.Kind = ValID::t_Constant; 2794 return false; 2795 } 2796 2797 // We found the function; now find the basic block. Don't use PFS, since we 2798 // might be inside a constant expression. 2799 BasicBlock *BB; 2800 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2801 if (Label.Kind == ValID::t_LocalID) 2802 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2803 else 2804 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2805 if (!BB) 2806 return Error(Label.Loc, "referenced value is not a basic block"); 2807 } else { 2808 if (Label.Kind == ValID::t_LocalID) 2809 return Error(Label.Loc, "cannot take address of numeric label after " 2810 "the function is defined"); 2811 BB = dyn_cast_or_null<BasicBlock>( 2812 F->getValueSymbolTable().lookup(Label.StrVal)); 2813 if (!BB) 2814 return Error(Label.Loc, "referenced value is not a basic block"); 2815 } 2816 2817 ID.ConstantVal = BlockAddress::get(F, BB); 2818 ID.Kind = ValID::t_Constant; 2819 return false; 2820 } 2821 2822 case lltok::kw_trunc: 2823 case lltok::kw_zext: 2824 case lltok::kw_sext: 2825 case lltok::kw_fptrunc: 2826 case lltok::kw_fpext: 2827 case lltok::kw_bitcast: 2828 case lltok::kw_addrspacecast: 2829 case lltok::kw_uitofp: 2830 case lltok::kw_sitofp: 2831 case lltok::kw_fptoui: 2832 case lltok::kw_fptosi: 2833 case lltok::kw_inttoptr: 2834 case lltok::kw_ptrtoint: { 2835 unsigned Opc = Lex.getUIntVal(); 2836 Type *DestTy = nullptr; 2837 Constant *SrcVal; 2838 Lex.Lex(); 2839 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2840 ParseGlobalTypeAndValue(SrcVal) || 2841 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2842 ParseType(DestTy) || 2843 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2844 return true; 2845 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2846 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2847 getTypeString(SrcVal->getType()) + "' to '" + 2848 getTypeString(DestTy) + "'"); 2849 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2850 SrcVal, DestTy); 2851 ID.Kind = ValID::t_Constant; 2852 return false; 2853 } 2854 case lltok::kw_extractvalue: { 2855 Lex.Lex(); 2856 Constant *Val; 2857 SmallVector<unsigned, 4> Indices; 2858 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2859 ParseGlobalTypeAndValue(Val) || 2860 ParseIndexList(Indices) || 2861 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2862 return true; 2863 2864 if (!Val->getType()->isAggregateType()) 2865 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2866 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2867 return Error(ID.Loc, "invalid indices for extractvalue"); 2868 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2869 ID.Kind = ValID::t_Constant; 2870 return false; 2871 } 2872 case lltok::kw_insertvalue: { 2873 Lex.Lex(); 2874 Constant *Val0, *Val1; 2875 SmallVector<unsigned, 4> Indices; 2876 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2877 ParseGlobalTypeAndValue(Val0) || 2878 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2879 ParseGlobalTypeAndValue(Val1) || 2880 ParseIndexList(Indices) || 2881 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2882 return true; 2883 if (!Val0->getType()->isAggregateType()) 2884 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2885 Type *IndexedType = 2886 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2887 if (!IndexedType) 2888 return Error(ID.Loc, "invalid indices for insertvalue"); 2889 if (IndexedType != Val1->getType()) 2890 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2891 getTypeString(Val1->getType()) + 2892 "' instead of '" + getTypeString(IndexedType) + 2893 "'"); 2894 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2895 ID.Kind = ValID::t_Constant; 2896 return false; 2897 } 2898 case lltok::kw_icmp: 2899 case lltok::kw_fcmp: { 2900 unsigned PredVal, Opc = Lex.getUIntVal(); 2901 Constant *Val0, *Val1; 2902 Lex.Lex(); 2903 if (ParseCmpPredicate(PredVal, Opc) || 2904 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2905 ParseGlobalTypeAndValue(Val0) || 2906 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2907 ParseGlobalTypeAndValue(Val1) || 2908 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2909 return true; 2910 2911 if (Val0->getType() != Val1->getType()) 2912 return Error(ID.Loc, "compare operands must have the same type"); 2913 2914 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2915 2916 if (Opc == Instruction::FCmp) { 2917 if (!Val0->getType()->isFPOrFPVectorTy()) 2918 return Error(ID.Loc, "fcmp requires floating point operands"); 2919 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2920 } else { 2921 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2922 if (!Val0->getType()->isIntOrIntVectorTy() && 2923 !Val0->getType()->getScalarType()->isPointerTy()) 2924 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2925 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2926 } 2927 ID.Kind = ValID::t_Constant; 2928 return false; 2929 } 2930 2931 // Binary Operators. 2932 case lltok::kw_add: 2933 case lltok::kw_fadd: 2934 case lltok::kw_sub: 2935 case lltok::kw_fsub: 2936 case lltok::kw_mul: 2937 case lltok::kw_fmul: 2938 case lltok::kw_udiv: 2939 case lltok::kw_sdiv: 2940 case lltok::kw_fdiv: 2941 case lltok::kw_urem: 2942 case lltok::kw_srem: 2943 case lltok::kw_frem: 2944 case lltok::kw_shl: 2945 case lltok::kw_lshr: 2946 case lltok::kw_ashr: { 2947 bool NUW = false; 2948 bool NSW = false; 2949 bool Exact = false; 2950 unsigned Opc = Lex.getUIntVal(); 2951 Constant *Val0, *Val1; 2952 Lex.Lex(); 2953 LocTy ModifierLoc = Lex.getLoc(); 2954 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2955 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2956 if (EatIfPresent(lltok::kw_nuw)) 2957 NUW = true; 2958 if (EatIfPresent(lltok::kw_nsw)) { 2959 NSW = true; 2960 if (EatIfPresent(lltok::kw_nuw)) 2961 NUW = true; 2962 } 2963 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2964 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2965 if (EatIfPresent(lltok::kw_exact)) 2966 Exact = true; 2967 } 2968 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2969 ParseGlobalTypeAndValue(Val0) || 2970 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2971 ParseGlobalTypeAndValue(Val1) || 2972 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2973 return true; 2974 if (Val0->getType() != Val1->getType()) 2975 return Error(ID.Loc, "operands of constexpr must have same type"); 2976 if (!Val0->getType()->isIntOrIntVectorTy()) { 2977 if (NUW) 2978 return Error(ModifierLoc, "nuw only applies to integer operations"); 2979 if (NSW) 2980 return Error(ModifierLoc, "nsw only applies to integer operations"); 2981 } 2982 // Check that the type is valid for the operator. 2983 switch (Opc) { 2984 case Instruction::Add: 2985 case Instruction::Sub: 2986 case Instruction::Mul: 2987 case Instruction::UDiv: 2988 case Instruction::SDiv: 2989 case Instruction::URem: 2990 case Instruction::SRem: 2991 case Instruction::Shl: 2992 case Instruction::AShr: 2993 case Instruction::LShr: 2994 if (!Val0->getType()->isIntOrIntVectorTy()) 2995 return Error(ID.Loc, "constexpr requires integer operands"); 2996 break; 2997 case Instruction::FAdd: 2998 case Instruction::FSub: 2999 case Instruction::FMul: 3000 case Instruction::FDiv: 3001 case Instruction::FRem: 3002 if (!Val0->getType()->isFPOrFPVectorTy()) 3003 return Error(ID.Loc, "constexpr requires fp operands"); 3004 break; 3005 default: llvm_unreachable("Unknown binary operator!"); 3006 } 3007 unsigned Flags = 0; 3008 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3009 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3010 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3011 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3012 ID.ConstantVal = C; 3013 ID.Kind = ValID::t_Constant; 3014 return false; 3015 } 3016 3017 // Logical Operations 3018 case lltok::kw_and: 3019 case lltok::kw_or: 3020 case lltok::kw_xor: { 3021 unsigned Opc = Lex.getUIntVal(); 3022 Constant *Val0, *Val1; 3023 Lex.Lex(); 3024 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3025 ParseGlobalTypeAndValue(Val0) || 3026 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3027 ParseGlobalTypeAndValue(Val1) || 3028 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3029 return true; 3030 if (Val0->getType() != Val1->getType()) 3031 return Error(ID.Loc, "operands of constexpr must have same type"); 3032 if (!Val0->getType()->isIntOrIntVectorTy()) 3033 return Error(ID.Loc, 3034 "constexpr requires integer or integer vector operands"); 3035 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3036 ID.Kind = ValID::t_Constant; 3037 return false; 3038 } 3039 3040 case lltok::kw_getelementptr: 3041 case lltok::kw_shufflevector: 3042 case lltok::kw_insertelement: 3043 case lltok::kw_extractelement: 3044 case lltok::kw_select: { 3045 unsigned Opc = Lex.getUIntVal(); 3046 SmallVector<Constant*, 16> Elts; 3047 bool InBounds = false; 3048 Type *Ty; 3049 Lex.Lex(); 3050 3051 if (Opc == Instruction::GetElementPtr) 3052 InBounds = EatIfPresent(lltok::kw_inbounds); 3053 3054 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3055 return true; 3056 3057 LocTy ExplicitTypeLoc = Lex.getLoc(); 3058 if (Opc == Instruction::GetElementPtr) { 3059 if (ParseType(Ty) || 3060 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3061 return true; 3062 } 3063 3064 if (ParseGlobalValueVector(Elts) || 3065 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3066 return true; 3067 3068 if (Opc == Instruction::GetElementPtr) { 3069 if (Elts.size() == 0 || 3070 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3071 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3072 3073 Type *BaseType = Elts[0]->getType(); 3074 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3075 if (Ty != BasePointerType->getElementType()) 3076 return Error( 3077 ExplicitTypeLoc, 3078 "explicit pointee type doesn't match operand's pointee type"); 3079 3080 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3081 for (Constant *Val : Indices) { 3082 Type *ValTy = Val->getType(); 3083 if (!ValTy->getScalarType()->isIntegerTy()) 3084 return Error(ID.Loc, "getelementptr index must be an integer"); 3085 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3086 return Error(ID.Loc, "getelementptr index type missmatch"); 3087 if (ValTy->isVectorTy()) { 3088 unsigned ValNumEl = ValTy->getVectorNumElements(); 3089 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3090 if (ValNumEl != PtrNumEl) 3091 return Error( 3092 ID.Loc, 3093 "getelementptr vector index has a wrong number of elements"); 3094 } 3095 } 3096 3097 SmallPtrSet<Type*, 4> Visited; 3098 if (!Indices.empty() && !Ty->isSized(&Visited)) 3099 return Error(ID.Loc, "base element of getelementptr must be sized"); 3100 3101 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3102 return Error(ID.Loc, "invalid getelementptr indices"); 3103 ID.ConstantVal = 3104 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3105 } else if (Opc == Instruction::Select) { 3106 if (Elts.size() != 3) 3107 return Error(ID.Loc, "expected three operands to select"); 3108 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3109 Elts[2])) 3110 return Error(ID.Loc, Reason); 3111 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3112 } else if (Opc == Instruction::ShuffleVector) { 3113 if (Elts.size() != 3) 3114 return Error(ID.Loc, "expected three operands to shufflevector"); 3115 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3116 return Error(ID.Loc, "invalid operands to shufflevector"); 3117 ID.ConstantVal = 3118 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3119 } else if (Opc == Instruction::ExtractElement) { 3120 if (Elts.size() != 2) 3121 return Error(ID.Loc, "expected two operands to extractelement"); 3122 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3123 return Error(ID.Loc, "invalid extractelement operands"); 3124 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3125 } else { 3126 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3127 if (Elts.size() != 3) 3128 return Error(ID.Loc, "expected three operands to insertelement"); 3129 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3130 return Error(ID.Loc, "invalid insertelement operands"); 3131 ID.ConstantVal = 3132 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3133 } 3134 3135 ID.Kind = ValID::t_Constant; 3136 return false; 3137 } 3138 } 3139 3140 Lex.Lex(); 3141 return false; 3142 } 3143 3144 /// ParseGlobalValue - Parse a global value with the specified type. 3145 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3146 C = nullptr; 3147 ValID ID; 3148 Value *V = nullptr; 3149 bool Parsed = ParseValID(ID) || 3150 ConvertValIDToValue(Ty, ID, V, nullptr); 3151 if (V && !(C = dyn_cast<Constant>(V))) 3152 return Error(ID.Loc, "global values must be constants"); 3153 return Parsed; 3154 } 3155 3156 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3157 Type *Ty = nullptr; 3158 return ParseType(Ty) || 3159 ParseGlobalValue(Ty, V); 3160 } 3161 3162 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3163 C = nullptr; 3164 3165 LocTy KwLoc = Lex.getLoc(); 3166 if (!EatIfPresent(lltok::kw_comdat)) 3167 return false; 3168 3169 if (EatIfPresent(lltok::lparen)) { 3170 if (Lex.getKind() != lltok::ComdatVar) 3171 return TokError("expected comdat variable"); 3172 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3173 Lex.Lex(); 3174 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3175 return true; 3176 } else { 3177 if (GlobalName.empty()) 3178 return TokError("comdat cannot be unnamed"); 3179 C = getComdat(GlobalName, KwLoc); 3180 } 3181 3182 return false; 3183 } 3184 3185 /// ParseGlobalValueVector 3186 /// ::= /*empty*/ 3187 /// ::= TypeAndValue (',' TypeAndValue)* 3188 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3189 // Empty list. 3190 if (Lex.getKind() == lltok::rbrace || 3191 Lex.getKind() == lltok::rsquare || 3192 Lex.getKind() == lltok::greater || 3193 Lex.getKind() == lltok::rparen) 3194 return false; 3195 3196 Constant *C; 3197 if (ParseGlobalTypeAndValue(C)) return true; 3198 Elts.push_back(C); 3199 3200 while (EatIfPresent(lltok::comma)) { 3201 if (ParseGlobalTypeAndValue(C)) return true; 3202 Elts.push_back(C); 3203 } 3204 3205 return false; 3206 } 3207 3208 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3209 SmallVector<Metadata *, 16> Elts; 3210 if (ParseMDNodeVector(Elts)) 3211 return true; 3212 3213 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3214 return false; 3215 } 3216 3217 /// MDNode: 3218 /// ::= !{ ... } 3219 /// ::= !7 3220 /// ::= !DILocation(...) 3221 bool LLParser::ParseMDNode(MDNode *&N) { 3222 if (Lex.getKind() == lltok::MetadataVar) 3223 return ParseSpecializedMDNode(N); 3224 3225 return ParseToken(lltok::exclaim, "expected '!' here") || 3226 ParseMDNodeTail(N); 3227 } 3228 3229 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3230 // !{ ... } 3231 if (Lex.getKind() == lltok::lbrace) 3232 return ParseMDTuple(N); 3233 3234 // !42 3235 return ParseMDNodeID(N); 3236 } 3237 3238 namespace { 3239 3240 /// Structure to represent an optional metadata field. 3241 template <class FieldTy> struct MDFieldImpl { 3242 typedef MDFieldImpl ImplTy; 3243 FieldTy Val; 3244 bool Seen; 3245 3246 void assign(FieldTy Val) { 3247 Seen = true; 3248 this->Val = std::move(Val); 3249 } 3250 3251 explicit MDFieldImpl(FieldTy Default) 3252 : Val(std::move(Default)), Seen(false) {} 3253 }; 3254 3255 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3256 uint64_t Max; 3257 3258 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3259 : ImplTy(Default), Max(Max) {} 3260 }; 3261 struct LineField : public MDUnsignedField { 3262 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3263 }; 3264 struct ColumnField : public MDUnsignedField { 3265 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3266 }; 3267 struct DwarfTagField : public MDUnsignedField { 3268 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3269 DwarfTagField(dwarf::Tag DefaultTag) 3270 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3271 }; 3272 struct DwarfAttEncodingField : public MDUnsignedField { 3273 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3274 }; 3275 struct DwarfVirtualityField : public MDUnsignedField { 3276 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3277 }; 3278 struct DwarfLangField : public MDUnsignedField { 3279 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3280 }; 3281 3282 struct DIFlagField : public MDUnsignedField { 3283 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3284 }; 3285 3286 struct MDSignedField : public MDFieldImpl<int64_t> { 3287 int64_t Min; 3288 int64_t Max; 3289 3290 MDSignedField(int64_t Default = 0) 3291 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3292 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3293 : ImplTy(Default), Min(Min), Max(Max) {} 3294 }; 3295 3296 struct MDBoolField : public MDFieldImpl<bool> { 3297 MDBoolField(bool Default = false) : ImplTy(Default) {} 3298 }; 3299 struct MDField : public MDFieldImpl<Metadata *> { 3300 bool AllowNull; 3301 3302 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3303 }; 3304 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3305 MDConstant() : ImplTy(nullptr) {} 3306 }; 3307 struct MDStringField : public MDFieldImpl<MDString *> { 3308 bool AllowEmpty; 3309 MDStringField(bool AllowEmpty = true) 3310 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3311 }; 3312 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3313 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3314 }; 3315 3316 } // end namespace 3317 3318 namespace llvm { 3319 3320 template <> 3321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3322 MDUnsignedField &Result) { 3323 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3324 return TokError("expected unsigned integer"); 3325 3326 auto &U = Lex.getAPSIntVal(); 3327 if (U.ugt(Result.Max)) 3328 return TokError("value for '" + Name + "' too large, limit is " + 3329 Twine(Result.Max)); 3330 Result.assign(U.getZExtValue()); 3331 assert(Result.Val <= Result.Max && "Expected value in range"); 3332 Lex.Lex(); 3333 return false; 3334 } 3335 3336 template <> 3337 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3338 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3339 } 3340 template <> 3341 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3342 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3343 } 3344 3345 template <> 3346 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3347 if (Lex.getKind() == lltok::APSInt) 3348 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3349 3350 if (Lex.getKind() != lltok::DwarfTag) 3351 return TokError("expected DWARF tag"); 3352 3353 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3354 if (Tag == dwarf::DW_TAG_invalid) 3355 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3356 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3357 3358 Result.assign(Tag); 3359 Lex.Lex(); 3360 return false; 3361 } 3362 3363 template <> 3364 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3365 DwarfVirtualityField &Result) { 3366 if (Lex.getKind() == lltok::APSInt) 3367 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3368 3369 if (Lex.getKind() != lltok::DwarfVirtuality) 3370 return TokError("expected DWARF virtuality code"); 3371 3372 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3373 if (!Virtuality) 3374 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3375 Lex.getStrVal() + "'"); 3376 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3377 Result.assign(Virtuality); 3378 Lex.Lex(); 3379 return false; 3380 } 3381 3382 template <> 3383 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3384 if (Lex.getKind() == lltok::APSInt) 3385 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3386 3387 if (Lex.getKind() != lltok::DwarfLang) 3388 return TokError("expected DWARF language"); 3389 3390 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3391 if (!Lang) 3392 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3393 "'"); 3394 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3395 Result.assign(Lang); 3396 Lex.Lex(); 3397 return false; 3398 } 3399 3400 template <> 3401 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3402 DwarfAttEncodingField &Result) { 3403 if (Lex.getKind() == lltok::APSInt) 3404 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3405 3406 if (Lex.getKind() != lltok::DwarfAttEncoding) 3407 return TokError("expected DWARF type attribute encoding"); 3408 3409 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3410 if (!Encoding) 3411 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3412 Lex.getStrVal() + "'"); 3413 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3414 Result.assign(Encoding); 3415 Lex.Lex(); 3416 return false; 3417 } 3418 3419 /// DIFlagField 3420 /// ::= uint32 3421 /// ::= DIFlagVector 3422 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3423 template <> 3424 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3425 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3426 3427 // Parser for a single flag. 3428 auto parseFlag = [&](unsigned &Val) { 3429 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3430 return ParseUInt32(Val); 3431 3432 if (Lex.getKind() != lltok::DIFlag) 3433 return TokError("expected debug info flag"); 3434 3435 Val = DINode::getFlag(Lex.getStrVal()); 3436 if (!Val) 3437 return TokError(Twine("invalid debug info flag flag '") + 3438 Lex.getStrVal() + "'"); 3439 Lex.Lex(); 3440 return false; 3441 }; 3442 3443 // Parse the flags and combine them together. 3444 unsigned Combined = 0; 3445 do { 3446 unsigned Val; 3447 if (parseFlag(Val)) 3448 return true; 3449 Combined |= Val; 3450 } while (EatIfPresent(lltok::bar)); 3451 3452 Result.assign(Combined); 3453 return false; 3454 } 3455 3456 template <> 3457 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3458 MDSignedField &Result) { 3459 if (Lex.getKind() != lltok::APSInt) 3460 return TokError("expected signed integer"); 3461 3462 auto &S = Lex.getAPSIntVal(); 3463 if (S < Result.Min) 3464 return TokError("value for '" + Name + "' too small, limit is " + 3465 Twine(Result.Min)); 3466 if (S > Result.Max) 3467 return TokError("value for '" + Name + "' too large, limit is " + 3468 Twine(Result.Max)); 3469 Result.assign(S.getExtValue()); 3470 assert(Result.Val >= Result.Min && "Expected value in range"); 3471 assert(Result.Val <= Result.Max && "Expected value in range"); 3472 Lex.Lex(); 3473 return false; 3474 } 3475 3476 template <> 3477 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3478 switch (Lex.getKind()) { 3479 default: 3480 return TokError("expected 'true' or 'false'"); 3481 case lltok::kw_true: 3482 Result.assign(true); 3483 break; 3484 case lltok::kw_false: 3485 Result.assign(false); 3486 break; 3487 } 3488 Lex.Lex(); 3489 return false; 3490 } 3491 3492 template <> 3493 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3494 if (Lex.getKind() == lltok::kw_null) { 3495 if (!Result.AllowNull) 3496 return TokError("'" + Name + "' cannot be null"); 3497 Lex.Lex(); 3498 Result.assign(nullptr); 3499 return false; 3500 } 3501 3502 Metadata *MD; 3503 if (ParseMetadata(MD, nullptr)) 3504 return true; 3505 3506 Result.assign(MD); 3507 return false; 3508 } 3509 3510 template <> 3511 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3512 Metadata *MD; 3513 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3514 return true; 3515 3516 Result.assign(cast<ConstantAsMetadata>(MD)); 3517 return false; 3518 } 3519 3520 template <> 3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3522 LocTy ValueLoc = Lex.getLoc(); 3523 std::string S; 3524 if (ParseStringConstant(S)) 3525 return true; 3526 3527 if (!Result.AllowEmpty && S.empty()) 3528 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3529 3530 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3531 return false; 3532 } 3533 3534 template <> 3535 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3536 SmallVector<Metadata *, 4> MDs; 3537 if (ParseMDNodeVector(MDs)) 3538 return true; 3539 3540 Result.assign(std::move(MDs)); 3541 return false; 3542 } 3543 3544 } // end namespace llvm 3545 3546 template <class ParserTy> 3547 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3548 do { 3549 if (Lex.getKind() != lltok::LabelStr) 3550 return TokError("expected field label here"); 3551 3552 if (parseField()) 3553 return true; 3554 } while (EatIfPresent(lltok::comma)); 3555 3556 return false; 3557 } 3558 3559 template <class ParserTy> 3560 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3561 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3562 Lex.Lex(); 3563 3564 if (ParseToken(lltok::lparen, "expected '(' here")) 3565 return true; 3566 if (Lex.getKind() != lltok::rparen) 3567 if (ParseMDFieldsImplBody(parseField)) 3568 return true; 3569 3570 ClosingLoc = Lex.getLoc(); 3571 return ParseToken(lltok::rparen, "expected ')' here"); 3572 } 3573 3574 template <class FieldTy> 3575 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3576 if (Result.Seen) 3577 return TokError("field '" + Name + "' cannot be specified more than once"); 3578 3579 LocTy Loc = Lex.getLoc(); 3580 Lex.Lex(); 3581 return ParseMDField(Loc, Name, Result); 3582 } 3583 3584 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3585 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3586 3587 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3588 if (Lex.getStrVal() == #CLASS) \ 3589 return Parse##CLASS(N, IsDistinct); 3590 #include "llvm/IR/Metadata.def" 3591 3592 return TokError("expected metadata type"); 3593 } 3594 3595 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3596 #define NOP_FIELD(NAME, TYPE, INIT) 3597 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3598 if (!NAME.Seen) \ 3599 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3600 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3601 if (Lex.getStrVal() == #NAME) \ 3602 return ParseMDField(#NAME, NAME); 3603 #define PARSE_MD_FIELDS() \ 3604 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3605 do { \ 3606 LocTy ClosingLoc; \ 3607 if (ParseMDFieldsImpl([&]() -> bool { \ 3608 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3609 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3610 }, ClosingLoc)) \ 3611 return true; \ 3612 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3613 } while (false) 3614 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3615 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3616 3617 /// ParseDILocationFields: 3618 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3619 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3620 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3621 OPTIONAL(line, LineField, ); \ 3622 OPTIONAL(column, ColumnField, ); \ 3623 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3624 OPTIONAL(inlinedAt, MDField, ); 3625 PARSE_MD_FIELDS(); 3626 #undef VISIT_MD_FIELDS 3627 3628 Result = GET_OR_DISTINCT( 3629 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3630 return false; 3631 } 3632 3633 /// ParseGenericDINode: 3634 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3635 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3637 REQUIRED(tag, DwarfTagField, ); \ 3638 OPTIONAL(header, MDStringField, ); \ 3639 OPTIONAL(operands, MDFieldList, ); 3640 PARSE_MD_FIELDS(); 3641 #undef VISIT_MD_FIELDS 3642 3643 Result = GET_OR_DISTINCT(GenericDINode, 3644 (Context, tag.Val, header.Val, operands.Val)); 3645 return false; 3646 } 3647 3648 /// ParseDISubrange: 3649 /// ::= !DISubrange(count: 30, lowerBound: 2) 3650 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3652 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3653 OPTIONAL(lowerBound, MDSignedField, ); 3654 PARSE_MD_FIELDS(); 3655 #undef VISIT_MD_FIELDS 3656 3657 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3658 return false; 3659 } 3660 3661 /// ParseDIEnumerator: 3662 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3663 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3664 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3665 REQUIRED(name, MDStringField, ); \ 3666 REQUIRED(value, MDSignedField, ); 3667 PARSE_MD_FIELDS(); 3668 #undef VISIT_MD_FIELDS 3669 3670 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3671 return false; 3672 } 3673 3674 /// ParseDIBasicType: 3675 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3676 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3678 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3679 OPTIONAL(name, MDStringField, ); \ 3680 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3681 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3682 OPTIONAL(encoding, DwarfAttEncodingField, ); 3683 PARSE_MD_FIELDS(); 3684 #undef VISIT_MD_FIELDS 3685 3686 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3687 align.Val, encoding.Val)); 3688 return false; 3689 } 3690 3691 /// ParseDIDerivedType: 3692 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3693 /// line: 7, scope: !1, baseType: !2, size: 32, 3694 /// align: 32, offset: 0, flags: 0, extraData: !3) 3695 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3697 REQUIRED(tag, DwarfTagField, ); \ 3698 OPTIONAL(name, MDStringField, ); \ 3699 OPTIONAL(file, MDField, ); \ 3700 OPTIONAL(line, LineField, ); \ 3701 OPTIONAL(scope, MDField, ); \ 3702 REQUIRED(baseType, MDField, ); \ 3703 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3704 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3705 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3706 OPTIONAL(flags, DIFlagField, ); \ 3707 OPTIONAL(extraData, MDField, ); 3708 PARSE_MD_FIELDS(); 3709 #undef VISIT_MD_FIELDS 3710 3711 Result = GET_OR_DISTINCT(DIDerivedType, 3712 (Context, tag.Val, name.Val, file.Val, line.Val, 3713 scope.Val, baseType.Val, size.Val, align.Val, 3714 offset.Val, flags.Val, extraData.Val)); 3715 return false; 3716 } 3717 3718 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3720 REQUIRED(tag, DwarfTagField, ); \ 3721 OPTIONAL(name, MDStringField, ); \ 3722 OPTIONAL(file, MDField, ); \ 3723 OPTIONAL(line, LineField, ); \ 3724 OPTIONAL(scope, MDField, ); \ 3725 OPTIONAL(baseType, MDField, ); \ 3726 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3727 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3728 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3729 OPTIONAL(flags, DIFlagField, ); \ 3730 OPTIONAL(elements, MDField, ); \ 3731 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3732 OPTIONAL(vtableHolder, MDField, ); \ 3733 OPTIONAL(templateParams, MDField, ); \ 3734 OPTIONAL(identifier, MDStringField, ); 3735 PARSE_MD_FIELDS(); 3736 #undef VISIT_MD_FIELDS 3737 3738 Result = GET_OR_DISTINCT( 3739 DICompositeType, 3740 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3741 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3742 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3743 return false; 3744 } 3745 3746 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3748 OPTIONAL(flags, DIFlagField, ); \ 3749 REQUIRED(types, MDField, ); 3750 PARSE_MD_FIELDS(); 3751 #undef VISIT_MD_FIELDS 3752 3753 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3754 return false; 3755 } 3756 3757 /// ParseDIFileType: 3758 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3759 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3760 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3761 REQUIRED(filename, MDStringField, ); \ 3762 REQUIRED(directory, MDStringField, ); 3763 PARSE_MD_FIELDS(); 3764 #undef VISIT_MD_FIELDS 3765 3766 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3767 return false; 3768 } 3769 3770 /// ParseDICompileUnit: 3771 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3772 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3773 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3774 /// enums: !1, retainedTypes: !2, subprograms: !3, 3775 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3776 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3777 if (!IsDistinct) 3778 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3779 3780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3781 REQUIRED(language, DwarfLangField, ); \ 3782 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3783 OPTIONAL(producer, MDStringField, ); \ 3784 OPTIONAL(isOptimized, MDBoolField, ); \ 3785 OPTIONAL(flags, MDStringField, ); \ 3786 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3787 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3788 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3789 OPTIONAL(enums, MDField, ); \ 3790 OPTIONAL(retainedTypes, MDField, ); \ 3791 OPTIONAL(subprograms, MDField, ); \ 3792 OPTIONAL(globals, MDField, ); \ 3793 OPTIONAL(imports, MDField, ); \ 3794 OPTIONAL(dwoId, MDUnsignedField, ); 3795 PARSE_MD_FIELDS(); 3796 #undef VISIT_MD_FIELDS 3797 3798 Result = DICompileUnit::getDistinct( 3799 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3800 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3801 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3802 return false; 3803 } 3804 3805 /// ParseDISubprogram: 3806 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3807 /// file: !1, line: 7, type: !2, isLocal: false, 3808 /// isDefinition: true, scopeLine: 8, containingType: !3, 3809 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3810 /// virtualIndex: 10, flags: 11, 3811 /// isOptimized: false, function: void ()* @_Z3foov, 3812 /// templateParams: !4, declaration: !5, variables: !6) 3813 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3814 auto Loc = Lex.getLoc(); 3815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3816 OPTIONAL(scope, MDField, ); \ 3817 OPTIONAL(name, MDStringField, ); \ 3818 OPTIONAL(linkageName, MDStringField, ); \ 3819 OPTIONAL(file, MDField, ); \ 3820 OPTIONAL(line, LineField, ); \ 3821 OPTIONAL(type, MDField, ); \ 3822 OPTIONAL(isLocal, MDBoolField, ); \ 3823 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3824 OPTIONAL(scopeLine, LineField, ); \ 3825 OPTIONAL(containingType, MDField, ); \ 3826 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3827 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3828 OPTIONAL(flags, DIFlagField, ); \ 3829 OPTIONAL(isOptimized, MDBoolField, ); \ 3830 OPTIONAL(function, MDConstant, ); \ 3831 OPTIONAL(templateParams, MDField, ); \ 3832 OPTIONAL(declaration, MDField, ); \ 3833 OPTIONAL(variables, MDField, ); 3834 PARSE_MD_FIELDS(); 3835 #undef VISIT_MD_FIELDS 3836 3837 if (isDefinition.Val && !IsDistinct) 3838 return Lex.Error( 3839 Loc, 3840 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3841 3842 Result = GET_OR_DISTINCT( 3843 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 3844 line.Val, type.Val, isLocal.Val, isDefinition.Val, 3845 scopeLine.Val, containingType.Val, virtuality.Val, 3846 virtualIndex.Val, flags.Val, isOptimized.Val, function.Val, 3847 templateParams.Val, declaration.Val, variables.Val)); 3848 return false; 3849 } 3850 3851 /// ParseDILexicalBlock: 3852 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3853 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3855 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3856 OPTIONAL(file, MDField, ); \ 3857 OPTIONAL(line, LineField, ); \ 3858 OPTIONAL(column, ColumnField, ); 3859 PARSE_MD_FIELDS(); 3860 #undef VISIT_MD_FIELDS 3861 3862 Result = GET_OR_DISTINCT( 3863 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3864 return false; 3865 } 3866 3867 /// ParseDILexicalBlockFile: 3868 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3869 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3870 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3871 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3872 OPTIONAL(file, MDField, ); \ 3873 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3874 PARSE_MD_FIELDS(); 3875 #undef VISIT_MD_FIELDS 3876 3877 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3878 (Context, scope.Val, file.Val, discriminator.Val)); 3879 return false; 3880 } 3881 3882 /// ParseDINamespace: 3883 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3884 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3886 REQUIRED(scope, MDField, ); \ 3887 OPTIONAL(file, MDField, ); \ 3888 OPTIONAL(name, MDStringField, ); \ 3889 OPTIONAL(line, LineField, ); 3890 PARSE_MD_FIELDS(); 3891 #undef VISIT_MD_FIELDS 3892 3893 Result = GET_OR_DISTINCT(DINamespace, 3894 (Context, scope.Val, file.Val, name.Val, line.Val)); 3895 return false; 3896 } 3897 3898 /// ParseDIModule: 3899 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3900 /// includePath: "/usr/include", isysroot: "/") 3901 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3902 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3903 REQUIRED(scope, MDField, ); \ 3904 REQUIRED(name, MDStringField, ); \ 3905 OPTIONAL(configMacros, MDStringField, ); \ 3906 OPTIONAL(includePath, MDStringField, ); \ 3907 OPTIONAL(isysroot, MDStringField, ); 3908 PARSE_MD_FIELDS(); 3909 #undef VISIT_MD_FIELDS 3910 3911 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3912 configMacros.Val, includePath.Val, isysroot.Val)); 3913 return false; 3914 } 3915 3916 /// ParseDITemplateTypeParameter: 3917 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3918 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3920 OPTIONAL(name, MDStringField, ); \ 3921 REQUIRED(type, MDField, ); 3922 PARSE_MD_FIELDS(); 3923 #undef VISIT_MD_FIELDS 3924 3925 Result = 3926 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3927 return false; 3928 } 3929 3930 /// ParseDITemplateValueParameter: 3931 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3932 /// name: "V", type: !1, value: i32 7) 3933 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3935 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3936 OPTIONAL(name, MDStringField, ); \ 3937 OPTIONAL(type, MDField, ); \ 3938 REQUIRED(value, MDField, ); 3939 PARSE_MD_FIELDS(); 3940 #undef VISIT_MD_FIELDS 3941 3942 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3943 (Context, tag.Val, name.Val, type.Val, value.Val)); 3944 return false; 3945 } 3946 3947 /// ParseDIGlobalVariable: 3948 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3949 /// file: !1, line: 7, type: !2, isLocal: false, 3950 /// isDefinition: true, variable: i32* @foo, 3951 /// declaration: !3) 3952 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3953 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3954 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3955 OPTIONAL(scope, MDField, ); \ 3956 OPTIONAL(linkageName, MDStringField, ); \ 3957 OPTIONAL(file, MDField, ); \ 3958 OPTIONAL(line, LineField, ); \ 3959 OPTIONAL(type, MDField, ); \ 3960 OPTIONAL(isLocal, MDBoolField, ); \ 3961 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3962 OPTIONAL(variable, MDConstant, ); \ 3963 OPTIONAL(declaration, MDField, ); 3964 PARSE_MD_FIELDS(); 3965 #undef VISIT_MD_FIELDS 3966 3967 Result = GET_OR_DISTINCT(DIGlobalVariable, 3968 (Context, scope.Val, name.Val, linkageName.Val, 3969 file.Val, line.Val, type.Val, isLocal.Val, 3970 isDefinition.Val, variable.Val, declaration.Val)); 3971 return false; 3972 } 3973 3974 /// ParseDILocalVariable: 3975 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3976 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3977 /// ::= !DILocalVariable(scope: !0, name: "foo", 3978 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3979 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3981 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3982 OPTIONAL(name, MDStringField, ); \ 3983 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3984 OPTIONAL(file, MDField, ); \ 3985 OPTIONAL(line, LineField, ); \ 3986 OPTIONAL(type, MDField, ); \ 3987 OPTIONAL(flags, DIFlagField, ); 3988 PARSE_MD_FIELDS(); 3989 #undef VISIT_MD_FIELDS 3990 3991 Result = GET_OR_DISTINCT(DILocalVariable, 3992 (Context, scope.Val, name.Val, file.Val, line.Val, 3993 type.Val, arg.Val, flags.Val)); 3994 return false; 3995 } 3996 3997 /// ParseDIExpression: 3998 /// ::= !DIExpression(0, 7, -1) 3999 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4000 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4001 Lex.Lex(); 4002 4003 if (ParseToken(lltok::lparen, "expected '(' here")) 4004 return true; 4005 4006 SmallVector<uint64_t, 8> Elements; 4007 if (Lex.getKind() != lltok::rparen) 4008 do { 4009 if (Lex.getKind() == lltok::DwarfOp) { 4010 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4011 Lex.Lex(); 4012 Elements.push_back(Op); 4013 continue; 4014 } 4015 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4016 } 4017 4018 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4019 return TokError("expected unsigned integer"); 4020 4021 auto &U = Lex.getAPSIntVal(); 4022 if (U.ugt(UINT64_MAX)) 4023 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4024 Elements.push_back(U.getZExtValue()); 4025 Lex.Lex(); 4026 } while (EatIfPresent(lltok::comma)); 4027 4028 if (ParseToken(lltok::rparen, "expected ')' here")) 4029 return true; 4030 4031 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4032 return false; 4033 } 4034 4035 /// ParseDIObjCProperty: 4036 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4037 /// getter: "getFoo", attributes: 7, type: !2) 4038 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4039 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4040 OPTIONAL(name, MDStringField, ); \ 4041 OPTIONAL(file, MDField, ); \ 4042 OPTIONAL(line, LineField, ); \ 4043 OPTIONAL(setter, MDStringField, ); \ 4044 OPTIONAL(getter, MDStringField, ); \ 4045 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4046 OPTIONAL(type, MDField, ); 4047 PARSE_MD_FIELDS(); 4048 #undef VISIT_MD_FIELDS 4049 4050 Result = GET_OR_DISTINCT(DIObjCProperty, 4051 (Context, name.Val, file.Val, line.Val, setter.Val, 4052 getter.Val, attributes.Val, type.Val)); 4053 return false; 4054 } 4055 4056 /// ParseDIImportedEntity: 4057 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4058 /// line: 7, name: "foo") 4059 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4061 REQUIRED(tag, DwarfTagField, ); \ 4062 REQUIRED(scope, MDField, ); \ 4063 OPTIONAL(entity, MDField, ); \ 4064 OPTIONAL(line, LineField, ); \ 4065 OPTIONAL(name, MDStringField, ); 4066 PARSE_MD_FIELDS(); 4067 #undef VISIT_MD_FIELDS 4068 4069 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4070 entity.Val, line.Val, name.Val)); 4071 return false; 4072 } 4073 4074 #undef PARSE_MD_FIELD 4075 #undef NOP_FIELD 4076 #undef REQUIRE_FIELD 4077 #undef DECLARE_FIELD 4078 4079 /// ParseMetadataAsValue 4080 /// ::= metadata i32 %local 4081 /// ::= metadata i32 @global 4082 /// ::= metadata i32 7 4083 /// ::= metadata !0 4084 /// ::= metadata !{...} 4085 /// ::= metadata !"string" 4086 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4087 // Note: the type 'metadata' has already been parsed. 4088 Metadata *MD; 4089 if (ParseMetadata(MD, &PFS)) 4090 return true; 4091 4092 V = MetadataAsValue::get(Context, MD); 4093 return false; 4094 } 4095 4096 /// ParseValueAsMetadata 4097 /// ::= i32 %local 4098 /// ::= i32 @global 4099 /// ::= i32 7 4100 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4101 PerFunctionState *PFS) { 4102 Type *Ty; 4103 LocTy Loc; 4104 if (ParseType(Ty, TypeMsg, Loc)) 4105 return true; 4106 if (Ty->isMetadataTy()) 4107 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4108 4109 Value *V; 4110 if (ParseValue(Ty, V, PFS)) 4111 return true; 4112 4113 MD = ValueAsMetadata::get(V); 4114 return false; 4115 } 4116 4117 /// ParseMetadata 4118 /// ::= i32 %local 4119 /// ::= i32 @global 4120 /// ::= i32 7 4121 /// ::= !42 4122 /// ::= !{...} 4123 /// ::= !"string" 4124 /// ::= !DILocation(...) 4125 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4126 if (Lex.getKind() == lltok::MetadataVar) { 4127 MDNode *N; 4128 if (ParseSpecializedMDNode(N)) 4129 return true; 4130 MD = N; 4131 return false; 4132 } 4133 4134 // ValueAsMetadata: 4135 // <type> <value> 4136 if (Lex.getKind() != lltok::exclaim) 4137 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4138 4139 // '!'. 4140 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4141 Lex.Lex(); 4142 4143 // MDString: 4144 // ::= '!' STRINGCONSTANT 4145 if (Lex.getKind() == lltok::StringConstant) { 4146 MDString *S; 4147 if (ParseMDString(S)) 4148 return true; 4149 MD = S; 4150 return false; 4151 } 4152 4153 // MDNode: 4154 // !{ ... } 4155 // !7 4156 MDNode *N; 4157 if (ParseMDNodeTail(N)) 4158 return true; 4159 MD = N; 4160 return false; 4161 } 4162 4163 4164 //===----------------------------------------------------------------------===// 4165 // Function Parsing. 4166 //===----------------------------------------------------------------------===// 4167 4168 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4169 PerFunctionState *PFS, 4170 OperatorConstraint OC) { 4171 if (Ty->isFunctionTy()) 4172 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4173 4174 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4175 switch (OC) { 4176 case OC_CatchPad: 4177 return Error(ID.Loc, "Catchpad value required in this position"); 4178 case OC_CleanupPad: 4179 return Error(ID.Loc, "Cleanuppad value required in this position"); 4180 default: 4181 llvm_unreachable("Unexpected constraint kind"); 4182 } 4183 } 4184 4185 switch (ID.Kind) { 4186 case ValID::t_LocalID: 4187 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4188 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4189 return V == nullptr; 4190 case ValID::t_LocalName: 4191 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4192 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4193 return V == nullptr; 4194 case ValID::t_InlineAsm: { 4195 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4196 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4197 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4198 (ID.UIntVal >> 1) & 1, 4199 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4200 return false; 4201 } 4202 case ValID::t_GlobalName: 4203 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4204 return V == nullptr; 4205 case ValID::t_GlobalID: 4206 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4207 return V == nullptr; 4208 case ValID::t_APSInt: 4209 if (!Ty->isIntegerTy()) 4210 return Error(ID.Loc, "integer constant must have integer type"); 4211 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4212 V = ConstantInt::get(Context, ID.APSIntVal); 4213 return false; 4214 case ValID::t_APFloat: 4215 if (!Ty->isFloatingPointTy() || 4216 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4217 return Error(ID.Loc, "floating point constant invalid for type"); 4218 4219 // The lexer has no type info, so builds all half, float, and double FP 4220 // constants as double. Fix this here. Long double does not need this. 4221 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4222 bool Ignored; 4223 if (Ty->isHalfTy()) 4224 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4225 &Ignored); 4226 else if (Ty->isFloatTy()) 4227 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4228 &Ignored); 4229 } 4230 V = ConstantFP::get(Context, ID.APFloatVal); 4231 4232 if (V->getType() != Ty) 4233 return Error(ID.Loc, "floating point constant does not have type '" + 4234 getTypeString(Ty) + "'"); 4235 4236 return false; 4237 case ValID::t_Null: 4238 if (!Ty->isPointerTy()) 4239 return Error(ID.Loc, "null must be a pointer type"); 4240 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4241 return false; 4242 case ValID::t_Undef: 4243 // FIXME: LabelTy should not be a first-class type. 4244 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4245 return Error(ID.Loc, "invalid type for undef constant"); 4246 V = UndefValue::get(Ty); 4247 return false; 4248 case ValID::t_EmptyArray: 4249 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4250 return Error(ID.Loc, "invalid empty array initializer"); 4251 V = UndefValue::get(Ty); 4252 return false; 4253 case ValID::t_Zero: 4254 // FIXME: LabelTy should not be a first-class type. 4255 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4256 return Error(ID.Loc, "invalid type for null constant"); 4257 V = Constant::getNullValue(Ty); 4258 return false; 4259 case ValID::t_Constant: 4260 if (ID.ConstantVal->getType() != Ty) 4261 return Error(ID.Loc, "constant expression type mismatch"); 4262 4263 V = ID.ConstantVal; 4264 return false; 4265 case ValID::t_ConstantStruct: 4266 case ValID::t_PackedConstantStruct: 4267 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4268 if (ST->getNumElements() != ID.UIntVal) 4269 return Error(ID.Loc, 4270 "initializer with struct type has wrong # elements"); 4271 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4272 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4273 4274 // Verify that the elements are compatible with the structtype. 4275 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4276 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4277 return Error(ID.Loc, "element " + Twine(i) + 4278 " of struct initializer doesn't match struct element type"); 4279 4280 V = ConstantStruct::get( 4281 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4282 } else 4283 return Error(ID.Loc, "constant expression type mismatch"); 4284 return false; 4285 } 4286 llvm_unreachable("Invalid ValID"); 4287 } 4288 4289 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4290 C = nullptr; 4291 ValID ID; 4292 auto Loc = Lex.getLoc(); 4293 if (ParseValID(ID, /*PFS=*/nullptr)) 4294 return true; 4295 switch (ID.Kind) { 4296 case ValID::t_APSInt: 4297 case ValID::t_APFloat: 4298 case ValID::t_Undef: 4299 case ValID::t_Constant: 4300 case ValID::t_ConstantStruct: 4301 case ValID::t_PackedConstantStruct: { 4302 Value *V; 4303 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4304 return true; 4305 assert(isa<Constant>(V) && "Expected a constant value"); 4306 C = cast<Constant>(V); 4307 return false; 4308 } 4309 default: 4310 return Error(Loc, "expected a constant value"); 4311 } 4312 } 4313 4314 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4315 OperatorConstraint OC) { 4316 V = nullptr; 4317 ValID ID; 4318 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4319 } 4320 4321 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4322 Type *Ty = nullptr; 4323 return ParseType(Ty) || 4324 ParseValue(Ty, V, PFS); 4325 } 4326 4327 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4328 PerFunctionState &PFS) { 4329 Value *V; 4330 Loc = Lex.getLoc(); 4331 if (ParseTypeAndValue(V, PFS)) return true; 4332 if (!isa<BasicBlock>(V)) 4333 return Error(Loc, "expected a basic block"); 4334 BB = cast<BasicBlock>(V); 4335 return false; 4336 } 4337 4338 4339 /// FunctionHeader 4340 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4341 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4342 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4343 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4344 // Parse the linkage. 4345 LocTy LinkageLoc = Lex.getLoc(); 4346 unsigned Linkage; 4347 4348 unsigned Visibility; 4349 unsigned DLLStorageClass; 4350 AttrBuilder RetAttrs; 4351 unsigned CC; 4352 Type *RetType = nullptr; 4353 LocTy RetTypeLoc = Lex.getLoc(); 4354 if (ParseOptionalLinkage(Linkage) || 4355 ParseOptionalVisibility(Visibility) || 4356 ParseOptionalDLLStorageClass(DLLStorageClass) || 4357 ParseOptionalCallingConv(CC) || 4358 ParseOptionalReturnAttrs(RetAttrs) || 4359 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4360 return true; 4361 4362 // Verify that the linkage is ok. 4363 switch ((GlobalValue::LinkageTypes)Linkage) { 4364 case GlobalValue::ExternalLinkage: 4365 break; // always ok. 4366 case GlobalValue::ExternalWeakLinkage: 4367 if (isDefine) 4368 return Error(LinkageLoc, "invalid linkage for function definition"); 4369 break; 4370 case GlobalValue::PrivateLinkage: 4371 case GlobalValue::InternalLinkage: 4372 case GlobalValue::AvailableExternallyLinkage: 4373 case GlobalValue::LinkOnceAnyLinkage: 4374 case GlobalValue::LinkOnceODRLinkage: 4375 case GlobalValue::WeakAnyLinkage: 4376 case GlobalValue::WeakODRLinkage: 4377 if (!isDefine) 4378 return Error(LinkageLoc, "invalid linkage for function declaration"); 4379 break; 4380 case GlobalValue::AppendingLinkage: 4381 case GlobalValue::CommonLinkage: 4382 return Error(LinkageLoc, "invalid function linkage type"); 4383 } 4384 4385 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4386 return Error(LinkageLoc, 4387 "symbol with local linkage must have default visibility"); 4388 4389 if (!FunctionType::isValidReturnType(RetType)) 4390 return Error(RetTypeLoc, "invalid function return type"); 4391 4392 LocTy NameLoc = Lex.getLoc(); 4393 4394 std::string FunctionName; 4395 if (Lex.getKind() == lltok::GlobalVar) { 4396 FunctionName = Lex.getStrVal(); 4397 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4398 unsigned NameID = Lex.getUIntVal(); 4399 4400 if (NameID != NumberedVals.size()) 4401 return TokError("function expected to be numbered '%" + 4402 Twine(NumberedVals.size()) + "'"); 4403 } else { 4404 return TokError("expected function name"); 4405 } 4406 4407 Lex.Lex(); 4408 4409 if (Lex.getKind() != lltok::lparen) 4410 return TokError("expected '(' in function argument list"); 4411 4412 SmallVector<ArgInfo, 8> ArgList; 4413 bool isVarArg; 4414 AttrBuilder FuncAttrs; 4415 std::vector<unsigned> FwdRefAttrGrps; 4416 LocTy BuiltinLoc; 4417 std::string Section; 4418 unsigned Alignment; 4419 std::string GC; 4420 bool UnnamedAddr; 4421 LocTy UnnamedAddrLoc; 4422 Constant *Prefix = nullptr; 4423 Constant *Prologue = nullptr; 4424 Constant *PersonalityFn = nullptr; 4425 Comdat *C; 4426 4427 if (ParseArgumentList(ArgList, isVarArg) || 4428 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4429 &UnnamedAddrLoc) || 4430 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4431 BuiltinLoc) || 4432 (EatIfPresent(lltok::kw_section) && 4433 ParseStringConstant(Section)) || 4434 parseOptionalComdat(FunctionName, C) || 4435 ParseOptionalAlignment(Alignment) || 4436 (EatIfPresent(lltok::kw_gc) && 4437 ParseStringConstant(GC)) || 4438 (EatIfPresent(lltok::kw_prefix) && 4439 ParseGlobalTypeAndValue(Prefix)) || 4440 (EatIfPresent(lltok::kw_prologue) && 4441 ParseGlobalTypeAndValue(Prologue)) || 4442 (EatIfPresent(lltok::kw_personality) && 4443 ParseGlobalTypeAndValue(PersonalityFn))) 4444 return true; 4445 4446 if (FuncAttrs.contains(Attribute::Builtin)) 4447 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4448 4449 // If the alignment was parsed as an attribute, move to the alignment field. 4450 if (FuncAttrs.hasAlignmentAttr()) { 4451 Alignment = FuncAttrs.getAlignment(); 4452 FuncAttrs.removeAttribute(Attribute::Alignment); 4453 } 4454 4455 // Okay, if we got here, the function is syntactically valid. Convert types 4456 // and do semantic checks. 4457 std::vector<Type*> ParamTypeList; 4458 SmallVector<AttributeSet, 8> Attrs; 4459 4460 if (RetAttrs.hasAttributes()) 4461 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4462 AttributeSet::ReturnIndex, 4463 RetAttrs)); 4464 4465 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4466 ParamTypeList.push_back(ArgList[i].Ty); 4467 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4468 AttrBuilder B(ArgList[i].Attrs, i + 1); 4469 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4470 } 4471 } 4472 4473 if (FuncAttrs.hasAttributes()) 4474 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4475 AttributeSet::FunctionIndex, 4476 FuncAttrs)); 4477 4478 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4479 4480 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4481 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4482 4483 FunctionType *FT = 4484 FunctionType::get(RetType, ParamTypeList, isVarArg); 4485 PointerType *PFT = PointerType::getUnqual(FT); 4486 4487 Fn = nullptr; 4488 if (!FunctionName.empty()) { 4489 // If this was a definition of a forward reference, remove the definition 4490 // from the forward reference table and fill in the forward ref. 4491 auto FRVI = ForwardRefVals.find(FunctionName); 4492 if (FRVI != ForwardRefVals.end()) { 4493 Fn = M->getFunction(FunctionName); 4494 if (!Fn) 4495 return Error(FRVI->second.second, "invalid forward reference to " 4496 "function as global value!"); 4497 if (Fn->getType() != PFT) 4498 return Error(FRVI->second.second, "invalid forward reference to " 4499 "function '" + FunctionName + "' with wrong type!"); 4500 4501 ForwardRefVals.erase(FRVI); 4502 } else if ((Fn = M->getFunction(FunctionName))) { 4503 // Reject redefinitions. 4504 return Error(NameLoc, "invalid redefinition of function '" + 4505 FunctionName + "'"); 4506 } else if (M->getNamedValue(FunctionName)) { 4507 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4508 } 4509 4510 } else { 4511 // If this is a definition of a forward referenced function, make sure the 4512 // types agree. 4513 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4514 if (I != ForwardRefValIDs.end()) { 4515 Fn = cast<Function>(I->second.first); 4516 if (Fn->getType() != PFT) 4517 return Error(NameLoc, "type of definition and forward reference of '@" + 4518 Twine(NumberedVals.size()) + "' disagree"); 4519 ForwardRefValIDs.erase(I); 4520 } 4521 } 4522 4523 if (!Fn) 4524 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4525 else // Move the forward-reference to the correct spot in the module. 4526 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4527 4528 if (FunctionName.empty()) 4529 NumberedVals.push_back(Fn); 4530 4531 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4532 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4533 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4534 Fn->setCallingConv(CC); 4535 Fn->setAttributes(PAL); 4536 Fn->setUnnamedAddr(UnnamedAddr); 4537 Fn->setAlignment(Alignment); 4538 Fn->setSection(Section); 4539 Fn->setComdat(C); 4540 Fn->setPersonalityFn(PersonalityFn); 4541 if (!GC.empty()) Fn->setGC(GC.c_str()); 4542 Fn->setPrefixData(Prefix); 4543 Fn->setPrologueData(Prologue); 4544 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4545 4546 // Add all of the arguments we parsed to the function. 4547 Function::arg_iterator ArgIt = Fn->arg_begin(); 4548 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4549 // If the argument has a name, insert it into the argument symbol table. 4550 if (ArgList[i].Name.empty()) continue; 4551 4552 // Set the name, if it conflicted, it will be auto-renamed. 4553 ArgIt->setName(ArgList[i].Name); 4554 4555 if (ArgIt->getName() != ArgList[i].Name) 4556 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4557 ArgList[i].Name + "'"); 4558 } 4559 4560 if (isDefine) 4561 return false; 4562 4563 // Check the declaration has no block address forward references. 4564 ValID ID; 4565 if (FunctionName.empty()) { 4566 ID.Kind = ValID::t_GlobalID; 4567 ID.UIntVal = NumberedVals.size() - 1; 4568 } else { 4569 ID.Kind = ValID::t_GlobalName; 4570 ID.StrVal = FunctionName; 4571 } 4572 auto Blocks = ForwardRefBlockAddresses.find(ID); 4573 if (Blocks != ForwardRefBlockAddresses.end()) 4574 return Error(Blocks->first.Loc, 4575 "cannot take blockaddress inside a declaration"); 4576 return false; 4577 } 4578 4579 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4580 ValID ID; 4581 if (FunctionNumber == -1) { 4582 ID.Kind = ValID::t_GlobalName; 4583 ID.StrVal = F.getName(); 4584 } else { 4585 ID.Kind = ValID::t_GlobalID; 4586 ID.UIntVal = FunctionNumber; 4587 } 4588 4589 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4590 if (Blocks == P.ForwardRefBlockAddresses.end()) 4591 return false; 4592 4593 for (const auto &I : Blocks->second) { 4594 const ValID &BBID = I.first; 4595 GlobalValue *GV = I.second; 4596 4597 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4598 "Expected local id or name"); 4599 BasicBlock *BB; 4600 if (BBID.Kind == ValID::t_LocalName) 4601 BB = GetBB(BBID.StrVal, BBID.Loc); 4602 else 4603 BB = GetBB(BBID.UIntVal, BBID.Loc); 4604 if (!BB) 4605 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4606 4607 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4608 GV->eraseFromParent(); 4609 } 4610 4611 P.ForwardRefBlockAddresses.erase(Blocks); 4612 return false; 4613 } 4614 4615 /// ParseFunctionBody 4616 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4617 bool LLParser::ParseFunctionBody(Function &Fn) { 4618 if (Lex.getKind() != lltok::lbrace) 4619 return TokError("expected '{' in function body"); 4620 Lex.Lex(); // eat the {. 4621 4622 int FunctionNumber = -1; 4623 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4624 4625 PerFunctionState PFS(*this, Fn, FunctionNumber); 4626 4627 // Resolve block addresses and allow basic blocks to be forward-declared 4628 // within this function. 4629 if (PFS.resolveForwardRefBlockAddresses()) 4630 return true; 4631 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4632 4633 // We need at least one basic block. 4634 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4635 return TokError("function body requires at least one basic block"); 4636 4637 while (Lex.getKind() != lltok::rbrace && 4638 Lex.getKind() != lltok::kw_uselistorder) 4639 if (ParseBasicBlock(PFS)) return true; 4640 4641 while (Lex.getKind() != lltok::rbrace) 4642 if (ParseUseListOrder(&PFS)) 4643 return true; 4644 4645 // Eat the }. 4646 Lex.Lex(); 4647 4648 // Verify function is ok. 4649 return PFS.FinishFunction(); 4650 } 4651 4652 /// ParseBasicBlock 4653 /// ::= LabelStr? Instruction* 4654 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4655 // If this basic block starts out with a name, remember it. 4656 std::string Name; 4657 LocTy NameLoc = Lex.getLoc(); 4658 if (Lex.getKind() == lltok::LabelStr) { 4659 Name = Lex.getStrVal(); 4660 Lex.Lex(); 4661 } 4662 4663 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4664 if (!BB) 4665 return Error(NameLoc, 4666 "unable to create block named '" + Name + "'"); 4667 4668 std::string NameStr; 4669 4670 // Parse the instructions in this block until we get a terminator. 4671 Instruction *Inst; 4672 do { 4673 // This instruction may have three possibilities for a name: a) none 4674 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4675 LocTy NameLoc = Lex.getLoc(); 4676 int NameID = -1; 4677 NameStr = ""; 4678 4679 if (Lex.getKind() == lltok::LocalVarID) { 4680 NameID = Lex.getUIntVal(); 4681 Lex.Lex(); 4682 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4683 return true; 4684 } else if (Lex.getKind() == lltok::LocalVar) { 4685 NameStr = Lex.getStrVal(); 4686 Lex.Lex(); 4687 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4688 return true; 4689 } 4690 4691 switch (ParseInstruction(Inst, BB, PFS)) { 4692 default: llvm_unreachable("Unknown ParseInstruction result!"); 4693 case InstError: return true; 4694 case InstNormal: 4695 BB->getInstList().push_back(Inst); 4696 4697 // With a normal result, we check to see if the instruction is followed by 4698 // a comma and metadata. 4699 if (EatIfPresent(lltok::comma)) 4700 if (ParseInstructionMetadata(*Inst)) 4701 return true; 4702 break; 4703 case InstExtraComma: 4704 BB->getInstList().push_back(Inst); 4705 4706 // If the instruction parser ate an extra comma at the end of it, it 4707 // *must* be followed by metadata. 4708 if (ParseInstructionMetadata(*Inst)) 4709 return true; 4710 break; 4711 } 4712 4713 // Set the name on the instruction. 4714 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4715 } while (!isa<TerminatorInst>(Inst)); 4716 4717 return false; 4718 } 4719 4720 //===----------------------------------------------------------------------===// 4721 // Instruction Parsing. 4722 //===----------------------------------------------------------------------===// 4723 4724 /// ParseInstruction - Parse one of the many different instructions. 4725 /// 4726 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4727 PerFunctionState &PFS) { 4728 lltok::Kind Token = Lex.getKind(); 4729 if (Token == lltok::Eof) 4730 return TokError("found end of file when expecting more instructions"); 4731 LocTy Loc = Lex.getLoc(); 4732 unsigned KeywordVal = Lex.getUIntVal(); 4733 Lex.Lex(); // Eat the keyword. 4734 4735 switch (Token) { 4736 default: return Error(Loc, "expected instruction opcode"); 4737 // Terminator Instructions. 4738 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4739 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4740 case lltok::kw_br: return ParseBr(Inst, PFS); 4741 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4742 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4743 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4744 case lltok::kw_resume: return ParseResume(Inst, PFS); 4745 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4746 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4747 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4748 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4749 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4750 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4751 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4752 // Binary Operators. 4753 case lltok::kw_add: 4754 case lltok::kw_sub: 4755 case lltok::kw_mul: 4756 case lltok::kw_shl: { 4757 bool NUW = EatIfPresent(lltok::kw_nuw); 4758 bool NSW = EatIfPresent(lltok::kw_nsw); 4759 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4760 4761 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4762 4763 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4764 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4765 return false; 4766 } 4767 case lltok::kw_fadd: 4768 case lltok::kw_fsub: 4769 case lltok::kw_fmul: 4770 case lltok::kw_fdiv: 4771 case lltok::kw_frem: { 4772 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4773 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4774 if (Res != 0) 4775 return Res; 4776 if (FMF.any()) 4777 Inst->setFastMathFlags(FMF); 4778 return 0; 4779 } 4780 4781 case lltok::kw_sdiv: 4782 case lltok::kw_udiv: 4783 case lltok::kw_lshr: 4784 case lltok::kw_ashr: { 4785 bool Exact = EatIfPresent(lltok::kw_exact); 4786 4787 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4788 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4789 return false; 4790 } 4791 4792 case lltok::kw_urem: 4793 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4794 case lltok::kw_and: 4795 case lltok::kw_or: 4796 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4797 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4798 case lltok::kw_fcmp: { 4799 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4800 int Res = ParseCompare(Inst, PFS, KeywordVal); 4801 if (Res != 0) 4802 return Res; 4803 if (FMF.any()) 4804 Inst->setFastMathFlags(FMF); 4805 return 0; 4806 } 4807 4808 // Casts. 4809 case lltok::kw_trunc: 4810 case lltok::kw_zext: 4811 case lltok::kw_sext: 4812 case lltok::kw_fptrunc: 4813 case lltok::kw_fpext: 4814 case lltok::kw_bitcast: 4815 case lltok::kw_addrspacecast: 4816 case lltok::kw_uitofp: 4817 case lltok::kw_sitofp: 4818 case lltok::kw_fptoui: 4819 case lltok::kw_fptosi: 4820 case lltok::kw_inttoptr: 4821 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4822 // Other. 4823 case lltok::kw_select: return ParseSelect(Inst, PFS); 4824 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4825 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4826 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4827 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4828 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4829 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4830 // Call. 4831 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4832 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4833 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4834 // Memory. 4835 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4836 case lltok::kw_load: return ParseLoad(Inst, PFS); 4837 case lltok::kw_store: return ParseStore(Inst, PFS); 4838 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4839 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4840 case lltok::kw_fence: return ParseFence(Inst, PFS); 4841 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4842 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4843 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4844 } 4845 } 4846 4847 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4848 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4849 if (Opc == Instruction::FCmp) { 4850 switch (Lex.getKind()) { 4851 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4852 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4853 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4854 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4855 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4856 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4857 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4858 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4859 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4860 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4861 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4862 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4863 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4864 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4865 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4866 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4867 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4868 } 4869 } else { 4870 switch (Lex.getKind()) { 4871 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4872 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4873 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4874 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4875 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4876 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4877 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4878 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4879 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4880 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4881 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4882 } 4883 } 4884 Lex.Lex(); 4885 return false; 4886 } 4887 4888 //===----------------------------------------------------------------------===// 4889 // Terminator Instructions. 4890 //===----------------------------------------------------------------------===// 4891 4892 /// ParseRet - Parse a return instruction. 4893 /// ::= 'ret' void (',' !dbg, !1)* 4894 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4895 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4896 PerFunctionState &PFS) { 4897 SMLoc TypeLoc = Lex.getLoc(); 4898 Type *Ty = nullptr; 4899 if (ParseType(Ty, true /*void allowed*/)) return true; 4900 4901 Type *ResType = PFS.getFunction().getReturnType(); 4902 4903 if (Ty->isVoidTy()) { 4904 if (!ResType->isVoidTy()) 4905 return Error(TypeLoc, "value doesn't match function result type '" + 4906 getTypeString(ResType) + "'"); 4907 4908 Inst = ReturnInst::Create(Context); 4909 return false; 4910 } 4911 4912 Value *RV; 4913 if (ParseValue(Ty, RV, PFS)) return true; 4914 4915 if (ResType != RV->getType()) 4916 return Error(TypeLoc, "value doesn't match function result type '" + 4917 getTypeString(ResType) + "'"); 4918 4919 Inst = ReturnInst::Create(Context, RV); 4920 return false; 4921 } 4922 4923 4924 /// ParseBr 4925 /// ::= 'br' TypeAndValue 4926 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4927 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4928 LocTy Loc, Loc2; 4929 Value *Op0; 4930 BasicBlock *Op1, *Op2; 4931 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4932 4933 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4934 Inst = BranchInst::Create(BB); 4935 return false; 4936 } 4937 4938 if (Op0->getType() != Type::getInt1Ty(Context)) 4939 return Error(Loc, "branch condition must have 'i1' type"); 4940 4941 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4942 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4943 ParseToken(lltok::comma, "expected ',' after true destination") || 4944 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4945 return true; 4946 4947 Inst = BranchInst::Create(Op1, Op2, Op0); 4948 return false; 4949 } 4950 4951 /// ParseSwitch 4952 /// Instruction 4953 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4954 /// JumpTable 4955 /// ::= (TypeAndValue ',' TypeAndValue)* 4956 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4957 LocTy CondLoc, BBLoc; 4958 Value *Cond; 4959 BasicBlock *DefaultBB; 4960 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4961 ParseToken(lltok::comma, "expected ',' after switch condition") || 4962 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4963 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4964 return true; 4965 4966 if (!Cond->getType()->isIntegerTy()) 4967 return Error(CondLoc, "switch condition must have integer type"); 4968 4969 // Parse the jump table pairs. 4970 SmallPtrSet<Value*, 32> SeenCases; 4971 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4972 while (Lex.getKind() != lltok::rsquare) { 4973 Value *Constant; 4974 BasicBlock *DestBB; 4975 4976 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4977 ParseToken(lltok::comma, "expected ',' after case value") || 4978 ParseTypeAndBasicBlock(DestBB, PFS)) 4979 return true; 4980 4981 if (!SeenCases.insert(Constant).second) 4982 return Error(CondLoc, "duplicate case value in switch"); 4983 if (!isa<ConstantInt>(Constant)) 4984 return Error(CondLoc, "case value is not a constant integer"); 4985 4986 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4987 } 4988 4989 Lex.Lex(); // Eat the ']'. 4990 4991 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4992 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4993 SI->addCase(Table[i].first, Table[i].second); 4994 Inst = SI; 4995 return false; 4996 } 4997 4998 /// ParseIndirectBr 4999 /// Instruction 5000 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5001 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5002 LocTy AddrLoc; 5003 Value *Address; 5004 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5005 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5006 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5007 return true; 5008 5009 if (!Address->getType()->isPointerTy()) 5010 return Error(AddrLoc, "indirectbr address must have pointer type"); 5011 5012 // Parse the destination list. 5013 SmallVector<BasicBlock*, 16> DestList; 5014 5015 if (Lex.getKind() != lltok::rsquare) { 5016 BasicBlock *DestBB; 5017 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5018 return true; 5019 DestList.push_back(DestBB); 5020 5021 while (EatIfPresent(lltok::comma)) { 5022 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5023 return true; 5024 DestList.push_back(DestBB); 5025 } 5026 } 5027 5028 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5029 return true; 5030 5031 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5032 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5033 IBI->addDestination(DestList[i]); 5034 Inst = IBI; 5035 return false; 5036 } 5037 5038 5039 /// ParseInvoke 5040 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5041 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5042 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5043 LocTy CallLoc = Lex.getLoc(); 5044 AttrBuilder RetAttrs, FnAttrs; 5045 std::vector<unsigned> FwdRefAttrGrps; 5046 LocTy NoBuiltinLoc; 5047 unsigned CC; 5048 Type *RetType = nullptr; 5049 LocTy RetTypeLoc; 5050 ValID CalleeID; 5051 SmallVector<ParamInfo, 16> ArgList; 5052 SmallVector<OperandBundleDef, 2> BundleList; 5053 5054 BasicBlock *NormalBB, *UnwindBB; 5055 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5056 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5057 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5058 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5059 NoBuiltinLoc) || 5060 ParseOptionalOperandBundles(BundleList, PFS) || 5061 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5062 ParseTypeAndBasicBlock(NormalBB, PFS) || 5063 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5064 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5065 return true; 5066 5067 // If RetType is a non-function pointer type, then this is the short syntax 5068 // for the call, which means that RetType is just the return type. Infer the 5069 // rest of the function argument types from the arguments that are present. 5070 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5071 if (!Ty) { 5072 // Pull out the types of all of the arguments... 5073 std::vector<Type*> ParamTypes; 5074 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5075 ParamTypes.push_back(ArgList[i].V->getType()); 5076 5077 if (!FunctionType::isValidReturnType(RetType)) 5078 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5079 5080 Ty = FunctionType::get(RetType, ParamTypes, false); 5081 } 5082 5083 CalleeID.FTy = Ty; 5084 5085 // Look up the callee. 5086 Value *Callee; 5087 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5088 return true; 5089 5090 // Set up the Attribute for the function. 5091 SmallVector<AttributeSet, 8> Attrs; 5092 if (RetAttrs.hasAttributes()) 5093 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5094 AttributeSet::ReturnIndex, 5095 RetAttrs)); 5096 5097 SmallVector<Value*, 8> Args; 5098 5099 // Loop through FunctionType's arguments and ensure they are specified 5100 // correctly. Also, gather any parameter attributes. 5101 FunctionType::param_iterator I = Ty->param_begin(); 5102 FunctionType::param_iterator E = Ty->param_end(); 5103 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5104 Type *ExpectedTy = nullptr; 5105 if (I != E) { 5106 ExpectedTy = *I++; 5107 } else if (!Ty->isVarArg()) { 5108 return Error(ArgList[i].Loc, "too many arguments specified"); 5109 } 5110 5111 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5112 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5113 getTypeString(ExpectedTy) + "'"); 5114 Args.push_back(ArgList[i].V); 5115 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5116 AttrBuilder B(ArgList[i].Attrs, i + 1); 5117 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5118 } 5119 } 5120 5121 if (I != E) 5122 return Error(CallLoc, "not enough parameters specified for call"); 5123 5124 if (FnAttrs.hasAttributes()) { 5125 if (FnAttrs.hasAlignmentAttr()) 5126 return Error(CallLoc, "invoke instructions may not have an alignment"); 5127 5128 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5129 AttributeSet::FunctionIndex, 5130 FnAttrs)); 5131 } 5132 5133 // Finish off the Attribute and check them 5134 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5135 5136 InvokeInst *II = 5137 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5138 II->setCallingConv(CC); 5139 II->setAttributes(PAL); 5140 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5141 Inst = II; 5142 return false; 5143 } 5144 5145 /// ParseResume 5146 /// ::= 'resume' TypeAndValue 5147 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5148 Value *Exn; LocTy ExnLoc; 5149 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5150 return true; 5151 5152 ResumeInst *RI = ResumeInst::Create(Exn); 5153 Inst = RI; 5154 return false; 5155 } 5156 5157 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5158 PerFunctionState &PFS) { 5159 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5160 return true; 5161 5162 while (Lex.getKind() != lltok::rsquare) { 5163 // If this isn't the first argument, we need a comma. 5164 if (!Args.empty() && 5165 ParseToken(lltok::comma, "expected ',' in argument list")) 5166 return true; 5167 5168 // Parse the argument. 5169 LocTy ArgLoc; 5170 Type *ArgTy = nullptr; 5171 if (ParseType(ArgTy, ArgLoc)) 5172 return true; 5173 5174 Value *V; 5175 if (ArgTy->isMetadataTy()) { 5176 if (ParseMetadataAsValue(V, PFS)) 5177 return true; 5178 } else { 5179 if (ParseValue(ArgTy, V, PFS)) 5180 return true; 5181 } 5182 Args.push_back(V); 5183 } 5184 5185 Lex.Lex(); // Lex the ']'. 5186 return false; 5187 } 5188 5189 /// ParseCleanupRet 5190 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5191 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5192 Value *CleanupPad = nullptr; 5193 5194 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5195 return true; 5196 5197 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5198 return true; 5199 5200 BasicBlock *UnwindBB = nullptr; 5201 if (Lex.getKind() == lltok::kw_to) { 5202 Lex.Lex(); 5203 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5204 return true; 5205 } else { 5206 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5207 return true; 5208 } 5209 } 5210 5211 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5212 return false; 5213 } 5214 5215 /// ParseCatchRet 5216 /// ::= 'catchret' Value 'to' TypeAndValue 5217 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5218 Value *CatchPad = nullptr; 5219 5220 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5221 return true; 5222 5223 BasicBlock *BB; 5224 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5225 ParseTypeAndBasicBlock(BB, PFS)) 5226 return true; 5227 5228 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5229 return false; 5230 } 5231 5232 /// ParseCatchPad 5233 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5234 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5235 SmallVector<Value *, 8> Args; 5236 if (ParseExceptionArgs(Args, PFS)) 5237 return true; 5238 5239 BasicBlock *NormalBB, *UnwindBB; 5240 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5241 ParseTypeAndBasicBlock(NormalBB, PFS) || 5242 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5243 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5244 return true; 5245 5246 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5247 return false; 5248 } 5249 5250 /// ParseTerminatePad 5251 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5252 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5253 SmallVector<Value *, 8> Args; 5254 if (ParseExceptionArgs(Args, PFS)) 5255 return true; 5256 5257 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5258 return true; 5259 5260 BasicBlock *UnwindBB = nullptr; 5261 if (Lex.getKind() == lltok::kw_to) { 5262 Lex.Lex(); 5263 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5264 return true; 5265 } else { 5266 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5267 return true; 5268 } 5269 } 5270 5271 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5272 return false; 5273 } 5274 5275 /// ParseCleanupPad 5276 /// ::= 'cleanuppad' ParamList 5277 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5278 SmallVector<Value *, 8> Args; 5279 if (ParseExceptionArgs(Args, PFS)) 5280 return true; 5281 5282 Inst = CleanupPadInst::Create(Context, Args); 5283 return false; 5284 } 5285 5286 /// ParseCatchEndPad 5287 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5288 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5289 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5290 return true; 5291 5292 BasicBlock *UnwindBB = nullptr; 5293 if (Lex.getKind() == lltok::kw_to) { 5294 Lex.Lex(); 5295 if (Lex.getKind() == lltok::kw_caller) { 5296 Lex.Lex(); 5297 } else { 5298 return true; 5299 } 5300 } else { 5301 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5302 return true; 5303 } 5304 } 5305 5306 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5307 return false; 5308 } 5309 5310 /// ParseCatchEndPad 5311 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5312 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5313 Value *CleanupPad = nullptr; 5314 5315 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5316 return true; 5317 5318 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5319 return true; 5320 5321 BasicBlock *UnwindBB = nullptr; 5322 if (Lex.getKind() == lltok::kw_to) { 5323 Lex.Lex(); 5324 if (Lex.getKind() == lltok::kw_caller) { 5325 Lex.Lex(); 5326 } else { 5327 return true; 5328 } 5329 } else { 5330 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5331 return true; 5332 } 5333 } 5334 5335 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5336 return false; 5337 } 5338 5339 //===----------------------------------------------------------------------===// 5340 // Binary Operators. 5341 //===----------------------------------------------------------------------===// 5342 5343 /// ParseArithmetic 5344 /// ::= ArithmeticOps TypeAndValue ',' Value 5345 /// 5346 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5347 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5348 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5349 unsigned Opc, unsigned OperandType) { 5350 LocTy Loc; Value *LHS, *RHS; 5351 if (ParseTypeAndValue(LHS, Loc, PFS) || 5352 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5353 ParseValue(LHS->getType(), RHS, PFS)) 5354 return true; 5355 5356 bool Valid; 5357 switch (OperandType) { 5358 default: llvm_unreachable("Unknown operand type!"); 5359 case 0: // int or FP. 5360 Valid = LHS->getType()->isIntOrIntVectorTy() || 5361 LHS->getType()->isFPOrFPVectorTy(); 5362 break; 5363 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5364 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5365 } 5366 5367 if (!Valid) 5368 return Error(Loc, "invalid operand type for instruction"); 5369 5370 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5371 return false; 5372 } 5373 5374 /// ParseLogical 5375 /// ::= ArithmeticOps TypeAndValue ',' Value { 5376 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5377 unsigned Opc) { 5378 LocTy Loc; Value *LHS, *RHS; 5379 if (ParseTypeAndValue(LHS, Loc, PFS) || 5380 ParseToken(lltok::comma, "expected ',' in logical operation") || 5381 ParseValue(LHS->getType(), RHS, PFS)) 5382 return true; 5383 5384 if (!LHS->getType()->isIntOrIntVectorTy()) 5385 return Error(Loc,"instruction requires integer or integer vector operands"); 5386 5387 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5388 return false; 5389 } 5390 5391 5392 /// ParseCompare 5393 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5394 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5395 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5396 unsigned Opc) { 5397 // Parse the integer/fp comparison predicate. 5398 LocTy Loc; 5399 unsigned Pred; 5400 Value *LHS, *RHS; 5401 if (ParseCmpPredicate(Pred, Opc) || 5402 ParseTypeAndValue(LHS, Loc, PFS) || 5403 ParseToken(lltok::comma, "expected ',' after compare value") || 5404 ParseValue(LHS->getType(), RHS, PFS)) 5405 return true; 5406 5407 if (Opc == Instruction::FCmp) { 5408 if (!LHS->getType()->isFPOrFPVectorTy()) 5409 return Error(Loc, "fcmp requires floating point operands"); 5410 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5411 } else { 5412 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5413 if (!LHS->getType()->isIntOrIntVectorTy() && 5414 !LHS->getType()->getScalarType()->isPointerTy()) 5415 return Error(Loc, "icmp requires integer operands"); 5416 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5417 } 5418 return false; 5419 } 5420 5421 //===----------------------------------------------------------------------===// 5422 // Other Instructions. 5423 //===----------------------------------------------------------------------===// 5424 5425 5426 /// ParseCast 5427 /// ::= CastOpc TypeAndValue 'to' Type 5428 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5429 unsigned Opc) { 5430 LocTy Loc; 5431 Value *Op; 5432 Type *DestTy = nullptr; 5433 if (ParseTypeAndValue(Op, Loc, PFS) || 5434 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5435 ParseType(DestTy)) 5436 return true; 5437 5438 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5439 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5440 return Error(Loc, "invalid cast opcode for cast from '" + 5441 getTypeString(Op->getType()) + "' to '" + 5442 getTypeString(DestTy) + "'"); 5443 } 5444 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5445 return false; 5446 } 5447 5448 /// ParseSelect 5449 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5450 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5451 LocTy Loc; 5452 Value *Op0, *Op1, *Op2; 5453 if (ParseTypeAndValue(Op0, Loc, PFS) || 5454 ParseToken(lltok::comma, "expected ',' after select condition") || 5455 ParseTypeAndValue(Op1, PFS) || 5456 ParseToken(lltok::comma, "expected ',' after select value") || 5457 ParseTypeAndValue(Op2, PFS)) 5458 return true; 5459 5460 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5461 return Error(Loc, Reason); 5462 5463 Inst = SelectInst::Create(Op0, Op1, Op2); 5464 return false; 5465 } 5466 5467 /// ParseVA_Arg 5468 /// ::= 'va_arg' TypeAndValue ',' Type 5469 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5470 Value *Op; 5471 Type *EltTy = nullptr; 5472 LocTy TypeLoc; 5473 if (ParseTypeAndValue(Op, PFS) || 5474 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5475 ParseType(EltTy, TypeLoc)) 5476 return true; 5477 5478 if (!EltTy->isFirstClassType()) 5479 return Error(TypeLoc, "va_arg requires operand with first class type"); 5480 5481 Inst = new VAArgInst(Op, EltTy); 5482 return false; 5483 } 5484 5485 /// ParseExtractElement 5486 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5487 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5488 LocTy Loc; 5489 Value *Op0, *Op1; 5490 if (ParseTypeAndValue(Op0, Loc, PFS) || 5491 ParseToken(lltok::comma, "expected ',' after extract value") || 5492 ParseTypeAndValue(Op1, PFS)) 5493 return true; 5494 5495 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5496 return Error(Loc, "invalid extractelement operands"); 5497 5498 Inst = ExtractElementInst::Create(Op0, Op1); 5499 return false; 5500 } 5501 5502 /// ParseInsertElement 5503 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5504 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5505 LocTy Loc; 5506 Value *Op0, *Op1, *Op2; 5507 if (ParseTypeAndValue(Op0, Loc, PFS) || 5508 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5509 ParseTypeAndValue(Op1, PFS) || 5510 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5511 ParseTypeAndValue(Op2, PFS)) 5512 return true; 5513 5514 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5515 return Error(Loc, "invalid insertelement operands"); 5516 5517 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5518 return false; 5519 } 5520 5521 /// ParseShuffleVector 5522 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5523 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5524 LocTy Loc; 5525 Value *Op0, *Op1, *Op2; 5526 if (ParseTypeAndValue(Op0, Loc, PFS) || 5527 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5528 ParseTypeAndValue(Op1, PFS) || 5529 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5530 ParseTypeAndValue(Op2, PFS)) 5531 return true; 5532 5533 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5534 return Error(Loc, "invalid shufflevector operands"); 5535 5536 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5537 return false; 5538 } 5539 5540 /// ParsePHI 5541 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5542 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5543 Type *Ty = nullptr; LocTy TypeLoc; 5544 Value *Op0, *Op1; 5545 5546 if (ParseType(Ty, TypeLoc) || 5547 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5548 ParseValue(Ty, Op0, PFS) || 5549 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5550 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5551 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5552 return true; 5553 5554 bool AteExtraComma = false; 5555 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5556 while (1) { 5557 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5558 5559 if (!EatIfPresent(lltok::comma)) 5560 break; 5561 5562 if (Lex.getKind() == lltok::MetadataVar) { 5563 AteExtraComma = true; 5564 break; 5565 } 5566 5567 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5568 ParseValue(Ty, Op0, PFS) || 5569 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5570 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5571 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5572 return true; 5573 } 5574 5575 if (!Ty->isFirstClassType()) 5576 return Error(TypeLoc, "phi node must have first class type"); 5577 5578 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5579 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5580 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5581 Inst = PN; 5582 return AteExtraComma ? InstExtraComma : InstNormal; 5583 } 5584 5585 /// ParseLandingPad 5586 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5587 /// Clause 5588 /// ::= 'catch' TypeAndValue 5589 /// ::= 'filter' 5590 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5591 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5592 Type *Ty = nullptr; LocTy TyLoc; 5593 5594 if (ParseType(Ty, TyLoc)) 5595 return true; 5596 5597 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5598 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5599 5600 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5601 LandingPadInst::ClauseType CT; 5602 if (EatIfPresent(lltok::kw_catch)) 5603 CT = LandingPadInst::Catch; 5604 else if (EatIfPresent(lltok::kw_filter)) 5605 CT = LandingPadInst::Filter; 5606 else 5607 return TokError("expected 'catch' or 'filter' clause type"); 5608 5609 Value *V; 5610 LocTy VLoc; 5611 if (ParseTypeAndValue(V, VLoc, PFS)) 5612 return true; 5613 5614 // A 'catch' type expects a non-array constant. A filter clause expects an 5615 // array constant. 5616 if (CT == LandingPadInst::Catch) { 5617 if (isa<ArrayType>(V->getType())) 5618 Error(VLoc, "'catch' clause has an invalid type"); 5619 } else { 5620 if (!isa<ArrayType>(V->getType())) 5621 Error(VLoc, "'filter' clause has an invalid type"); 5622 } 5623 5624 Constant *CV = dyn_cast<Constant>(V); 5625 if (!CV) 5626 return Error(VLoc, "clause argument must be a constant"); 5627 LP->addClause(CV); 5628 } 5629 5630 Inst = LP.release(); 5631 return false; 5632 } 5633 5634 /// ParseCall 5635 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5636 /// ParameterList OptionalAttrs 5637 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5638 /// ParameterList OptionalAttrs 5639 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5640 /// ParameterList OptionalAttrs 5641 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5642 CallInst::TailCallKind TCK) { 5643 AttrBuilder RetAttrs, FnAttrs; 5644 std::vector<unsigned> FwdRefAttrGrps; 5645 LocTy BuiltinLoc; 5646 unsigned CC; 5647 Type *RetType = nullptr; 5648 LocTy RetTypeLoc; 5649 ValID CalleeID; 5650 SmallVector<ParamInfo, 16> ArgList; 5651 SmallVector<OperandBundleDef, 2> BundleList; 5652 LocTy CallLoc = Lex.getLoc(); 5653 5654 if ((TCK != CallInst::TCK_None && 5655 ParseToken(lltok::kw_call, "expected 'tail call'")) || 5656 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5657 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5658 ParseValID(CalleeID) || 5659 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5660 PFS.getFunction().isVarArg()) || 5661 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5662 ParseOptionalOperandBundles(BundleList, PFS)) 5663 return true; 5664 5665 // If RetType is a non-function pointer type, then this is the short syntax 5666 // for the call, which means that RetType is just the return type. Infer the 5667 // rest of the function argument types from the arguments that are present. 5668 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5669 if (!Ty) { 5670 // Pull out the types of all of the arguments... 5671 std::vector<Type*> ParamTypes; 5672 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5673 ParamTypes.push_back(ArgList[i].V->getType()); 5674 5675 if (!FunctionType::isValidReturnType(RetType)) 5676 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5677 5678 Ty = FunctionType::get(RetType, ParamTypes, false); 5679 } 5680 5681 CalleeID.FTy = Ty; 5682 5683 // Look up the callee. 5684 Value *Callee; 5685 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5686 return true; 5687 5688 // Set up the Attribute for the function. 5689 SmallVector<AttributeSet, 8> Attrs; 5690 if (RetAttrs.hasAttributes()) 5691 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5692 AttributeSet::ReturnIndex, 5693 RetAttrs)); 5694 5695 SmallVector<Value*, 8> Args; 5696 5697 // Loop through FunctionType's arguments and ensure they are specified 5698 // correctly. Also, gather any parameter attributes. 5699 FunctionType::param_iterator I = Ty->param_begin(); 5700 FunctionType::param_iterator E = Ty->param_end(); 5701 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5702 Type *ExpectedTy = nullptr; 5703 if (I != E) { 5704 ExpectedTy = *I++; 5705 } else if (!Ty->isVarArg()) { 5706 return Error(ArgList[i].Loc, "too many arguments specified"); 5707 } 5708 5709 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5710 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5711 getTypeString(ExpectedTy) + "'"); 5712 Args.push_back(ArgList[i].V); 5713 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5714 AttrBuilder B(ArgList[i].Attrs, i + 1); 5715 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5716 } 5717 } 5718 5719 if (I != E) 5720 return Error(CallLoc, "not enough parameters specified for call"); 5721 5722 if (FnAttrs.hasAttributes()) { 5723 if (FnAttrs.hasAlignmentAttr()) 5724 return Error(CallLoc, "call instructions may not have an alignment"); 5725 5726 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5727 AttributeSet::FunctionIndex, 5728 FnAttrs)); 5729 } 5730 5731 // Finish off the Attribute and check them 5732 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5733 5734 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5735 CI->setTailCallKind(TCK); 5736 CI->setCallingConv(CC); 5737 CI->setAttributes(PAL); 5738 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5739 Inst = CI; 5740 return false; 5741 } 5742 5743 //===----------------------------------------------------------------------===// 5744 // Memory Instructions. 5745 //===----------------------------------------------------------------------===// 5746 5747 /// ParseAlloc 5748 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5749 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5750 Value *Size = nullptr; 5751 LocTy SizeLoc, TyLoc; 5752 unsigned Alignment = 0; 5753 Type *Ty = nullptr; 5754 5755 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5756 5757 if (ParseType(Ty, TyLoc)) return true; 5758 5759 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5760 return Error(TyLoc, "invalid type for alloca"); 5761 5762 bool AteExtraComma = false; 5763 if (EatIfPresent(lltok::comma)) { 5764 if (Lex.getKind() == lltok::kw_align) { 5765 if (ParseOptionalAlignment(Alignment)) return true; 5766 } else if (Lex.getKind() == lltok::MetadataVar) { 5767 AteExtraComma = true; 5768 } else { 5769 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5770 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5771 return true; 5772 } 5773 } 5774 5775 if (Size && !Size->getType()->isIntegerTy()) 5776 return Error(SizeLoc, "element count must have integer type"); 5777 5778 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5779 AI->setUsedWithInAlloca(IsInAlloca); 5780 Inst = AI; 5781 return AteExtraComma ? InstExtraComma : InstNormal; 5782 } 5783 5784 /// ParseLoad 5785 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5786 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5787 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5788 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5789 Value *Val; LocTy Loc; 5790 unsigned Alignment = 0; 5791 bool AteExtraComma = false; 5792 bool isAtomic = false; 5793 AtomicOrdering Ordering = NotAtomic; 5794 SynchronizationScope Scope = CrossThread; 5795 5796 if (Lex.getKind() == lltok::kw_atomic) { 5797 isAtomic = true; 5798 Lex.Lex(); 5799 } 5800 5801 bool isVolatile = false; 5802 if (Lex.getKind() == lltok::kw_volatile) { 5803 isVolatile = true; 5804 Lex.Lex(); 5805 } 5806 5807 Type *Ty; 5808 LocTy ExplicitTypeLoc = Lex.getLoc(); 5809 if (ParseType(Ty) || 5810 ParseToken(lltok::comma, "expected comma after load's type") || 5811 ParseTypeAndValue(Val, Loc, PFS) || 5812 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5813 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5814 return true; 5815 5816 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5817 return Error(Loc, "load operand must be a pointer to a first class type"); 5818 if (isAtomic && !Alignment) 5819 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5820 if (Ordering == Release || Ordering == AcquireRelease) 5821 return Error(Loc, "atomic load cannot use Release ordering"); 5822 5823 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5824 return Error(ExplicitTypeLoc, 5825 "explicit pointee type doesn't match operand's pointee type"); 5826 5827 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5828 return AteExtraComma ? InstExtraComma : InstNormal; 5829 } 5830 5831 /// ParseStore 5832 5833 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5834 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5835 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5836 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5837 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5838 unsigned Alignment = 0; 5839 bool AteExtraComma = false; 5840 bool isAtomic = false; 5841 AtomicOrdering Ordering = NotAtomic; 5842 SynchronizationScope Scope = CrossThread; 5843 5844 if (Lex.getKind() == lltok::kw_atomic) { 5845 isAtomic = true; 5846 Lex.Lex(); 5847 } 5848 5849 bool isVolatile = false; 5850 if (Lex.getKind() == lltok::kw_volatile) { 5851 isVolatile = true; 5852 Lex.Lex(); 5853 } 5854 5855 if (ParseTypeAndValue(Val, Loc, PFS) || 5856 ParseToken(lltok::comma, "expected ',' after store operand") || 5857 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5858 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5859 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5860 return true; 5861 5862 if (!Ptr->getType()->isPointerTy()) 5863 return Error(PtrLoc, "store operand must be a pointer"); 5864 if (!Val->getType()->isFirstClassType()) 5865 return Error(Loc, "store operand must be a first class value"); 5866 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5867 return Error(Loc, "stored value and pointer type do not match"); 5868 if (isAtomic && !Alignment) 5869 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5870 if (Ordering == Acquire || Ordering == AcquireRelease) 5871 return Error(Loc, "atomic store cannot use Acquire ordering"); 5872 5873 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5874 return AteExtraComma ? InstExtraComma : InstNormal; 5875 } 5876 5877 /// ParseCmpXchg 5878 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5879 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5880 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5881 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5882 bool AteExtraComma = false; 5883 AtomicOrdering SuccessOrdering = NotAtomic; 5884 AtomicOrdering FailureOrdering = NotAtomic; 5885 SynchronizationScope Scope = CrossThread; 5886 bool isVolatile = false; 5887 bool isWeak = false; 5888 5889 if (EatIfPresent(lltok::kw_weak)) 5890 isWeak = true; 5891 5892 if (EatIfPresent(lltok::kw_volatile)) 5893 isVolatile = true; 5894 5895 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5896 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5897 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5898 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5899 ParseTypeAndValue(New, NewLoc, PFS) || 5900 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5901 ParseOrdering(FailureOrdering)) 5902 return true; 5903 5904 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5905 return TokError("cmpxchg cannot be unordered"); 5906 if (SuccessOrdering < FailureOrdering) 5907 return TokError("cmpxchg must be at least as ordered on success as failure"); 5908 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5909 return TokError("cmpxchg failure ordering cannot include release semantics"); 5910 if (!Ptr->getType()->isPointerTy()) 5911 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5912 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5913 return Error(CmpLoc, "compare value and pointer type do not match"); 5914 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5915 return Error(NewLoc, "new value and pointer type do not match"); 5916 if (!New->getType()->isIntegerTy()) 5917 return Error(NewLoc, "cmpxchg operand must be an integer"); 5918 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5919 if (Size < 8 || (Size & (Size - 1))) 5920 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5921 " integer"); 5922 5923 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5924 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5925 CXI->setVolatile(isVolatile); 5926 CXI->setWeak(isWeak); 5927 Inst = CXI; 5928 return AteExtraComma ? InstExtraComma : InstNormal; 5929 } 5930 5931 /// ParseAtomicRMW 5932 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5933 /// 'singlethread'? AtomicOrdering 5934 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5935 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5936 bool AteExtraComma = false; 5937 AtomicOrdering Ordering = NotAtomic; 5938 SynchronizationScope Scope = CrossThread; 5939 bool isVolatile = false; 5940 AtomicRMWInst::BinOp Operation; 5941 5942 if (EatIfPresent(lltok::kw_volatile)) 5943 isVolatile = true; 5944 5945 switch (Lex.getKind()) { 5946 default: return TokError("expected binary operation in atomicrmw"); 5947 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5948 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5949 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5950 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5951 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5952 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5953 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5954 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5955 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5956 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5957 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5958 } 5959 Lex.Lex(); // Eat the operation. 5960 5961 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5962 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5963 ParseTypeAndValue(Val, ValLoc, PFS) || 5964 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5965 return true; 5966 5967 if (Ordering == Unordered) 5968 return TokError("atomicrmw cannot be unordered"); 5969 if (!Ptr->getType()->isPointerTy()) 5970 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5971 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5972 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5973 if (!Val->getType()->isIntegerTy()) 5974 return Error(ValLoc, "atomicrmw operand must be an integer"); 5975 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5976 if (Size < 8 || (Size & (Size - 1))) 5977 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5978 " integer"); 5979 5980 AtomicRMWInst *RMWI = 5981 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5982 RMWI->setVolatile(isVolatile); 5983 Inst = RMWI; 5984 return AteExtraComma ? InstExtraComma : InstNormal; 5985 } 5986 5987 /// ParseFence 5988 /// ::= 'fence' 'singlethread'? AtomicOrdering 5989 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5990 AtomicOrdering Ordering = NotAtomic; 5991 SynchronizationScope Scope = CrossThread; 5992 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5993 return true; 5994 5995 if (Ordering == Unordered) 5996 return TokError("fence cannot be unordered"); 5997 if (Ordering == Monotonic) 5998 return TokError("fence cannot be monotonic"); 5999 6000 Inst = new FenceInst(Context, Ordering, Scope); 6001 return InstNormal; 6002 } 6003 6004 /// ParseGetElementPtr 6005 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6006 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6007 Value *Ptr = nullptr; 6008 Value *Val = nullptr; 6009 LocTy Loc, EltLoc; 6010 6011 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6012 6013 Type *Ty = nullptr; 6014 LocTy ExplicitTypeLoc = Lex.getLoc(); 6015 if (ParseType(Ty) || 6016 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6017 ParseTypeAndValue(Ptr, Loc, PFS)) 6018 return true; 6019 6020 Type *BaseType = Ptr->getType(); 6021 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6022 if (!BasePointerType) 6023 return Error(Loc, "base of getelementptr must be a pointer"); 6024 6025 if (Ty != BasePointerType->getElementType()) 6026 return Error(ExplicitTypeLoc, 6027 "explicit pointee type doesn't match operand's pointee type"); 6028 6029 SmallVector<Value*, 16> Indices; 6030 bool AteExtraComma = false; 6031 // GEP returns a vector of pointers if at least one of parameters is a vector. 6032 // All vector parameters should have the same vector width. 6033 unsigned GEPWidth = BaseType->isVectorTy() ? 6034 BaseType->getVectorNumElements() : 0; 6035 6036 while (EatIfPresent(lltok::comma)) { 6037 if (Lex.getKind() == lltok::MetadataVar) { 6038 AteExtraComma = true; 6039 break; 6040 } 6041 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6042 if (!Val->getType()->getScalarType()->isIntegerTy()) 6043 return Error(EltLoc, "getelementptr index must be an integer"); 6044 6045 if (Val->getType()->isVectorTy()) { 6046 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6047 if (GEPWidth && GEPWidth != ValNumEl) 6048 return Error(EltLoc, 6049 "getelementptr vector index has a wrong number of elements"); 6050 GEPWidth = ValNumEl; 6051 } 6052 Indices.push_back(Val); 6053 } 6054 6055 SmallPtrSet<Type*, 4> Visited; 6056 if (!Indices.empty() && !Ty->isSized(&Visited)) 6057 return Error(Loc, "base element of getelementptr must be sized"); 6058 6059 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6060 return Error(Loc, "invalid getelementptr indices"); 6061 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6062 if (InBounds) 6063 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6064 return AteExtraComma ? InstExtraComma : InstNormal; 6065 } 6066 6067 /// ParseExtractValue 6068 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6069 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6070 Value *Val; LocTy Loc; 6071 SmallVector<unsigned, 4> Indices; 6072 bool AteExtraComma; 6073 if (ParseTypeAndValue(Val, Loc, PFS) || 6074 ParseIndexList(Indices, AteExtraComma)) 6075 return true; 6076 6077 if (!Val->getType()->isAggregateType()) 6078 return Error(Loc, "extractvalue operand must be aggregate type"); 6079 6080 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6081 return Error(Loc, "invalid indices for extractvalue"); 6082 Inst = ExtractValueInst::Create(Val, Indices); 6083 return AteExtraComma ? InstExtraComma : InstNormal; 6084 } 6085 6086 /// ParseInsertValue 6087 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6088 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6089 Value *Val0, *Val1; LocTy Loc0, Loc1; 6090 SmallVector<unsigned, 4> Indices; 6091 bool AteExtraComma; 6092 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6093 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6094 ParseTypeAndValue(Val1, Loc1, PFS) || 6095 ParseIndexList(Indices, AteExtraComma)) 6096 return true; 6097 6098 if (!Val0->getType()->isAggregateType()) 6099 return Error(Loc0, "insertvalue operand must be aggregate type"); 6100 6101 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6102 if (!IndexedType) 6103 return Error(Loc0, "invalid indices for insertvalue"); 6104 if (IndexedType != Val1->getType()) 6105 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6106 getTypeString(Val1->getType()) + "' instead of '" + 6107 getTypeString(IndexedType) + "'"); 6108 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6109 return AteExtraComma ? InstExtraComma : InstNormal; 6110 } 6111 6112 //===----------------------------------------------------------------------===// 6113 // Embedded metadata. 6114 //===----------------------------------------------------------------------===// 6115 6116 /// ParseMDNodeVector 6117 /// ::= { Element (',' Element)* } 6118 /// Element 6119 /// ::= 'null' | TypeAndValue 6120 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6121 if (ParseToken(lltok::lbrace, "expected '{' here")) 6122 return true; 6123 6124 // Check for an empty list. 6125 if (EatIfPresent(lltok::rbrace)) 6126 return false; 6127 6128 do { 6129 // Null is a special case since it is typeless. 6130 if (EatIfPresent(lltok::kw_null)) { 6131 Elts.push_back(nullptr); 6132 continue; 6133 } 6134 6135 Metadata *MD; 6136 if (ParseMetadata(MD, nullptr)) 6137 return true; 6138 Elts.push_back(MD); 6139 } while (EatIfPresent(lltok::comma)); 6140 6141 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6142 } 6143 6144 //===----------------------------------------------------------------------===// 6145 // Use-list order directives. 6146 //===----------------------------------------------------------------------===// 6147 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6148 SMLoc Loc) { 6149 if (V->use_empty()) 6150 return Error(Loc, "value has no uses"); 6151 6152 unsigned NumUses = 0; 6153 SmallDenseMap<const Use *, unsigned, 16> Order; 6154 for (const Use &U : V->uses()) { 6155 if (++NumUses > Indexes.size()) 6156 break; 6157 Order[&U] = Indexes[NumUses - 1]; 6158 } 6159 if (NumUses < 2) 6160 return Error(Loc, "value only has one use"); 6161 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6162 return Error(Loc, "wrong number of indexes, expected " + 6163 Twine(std::distance(V->use_begin(), V->use_end()))); 6164 6165 V->sortUseList([&](const Use &L, const Use &R) { 6166 return Order.lookup(&L) < Order.lookup(&R); 6167 }); 6168 return false; 6169 } 6170 6171 /// ParseUseListOrderIndexes 6172 /// ::= '{' uint32 (',' uint32)+ '}' 6173 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6174 SMLoc Loc = Lex.getLoc(); 6175 if (ParseToken(lltok::lbrace, "expected '{' here")) 6176 return true; 6177 if (Lex.getKind() == lltok::rbrace) 6178 return Lex.Error("expected non-empty list of uselistorder indexes"); 6179 6180 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6181 // indexes should be distinct numbers in the range [0, size-1], and should 6182 // not be in order. 6183 unsigned Offset = 0; 6184 unsigned Max = 0; 6185 bool IsOrdered = true; 6186 assert(Indexes.empty() && "Expected empty order vector"); 6187 do { 6188 unsigned Index; 6189 if (ParseUInt32(Index)) 6190 return true; 6191 6192 // Update consistency checks. 6193 Offset += Index - Indexes.size(); 6194 Max = std::max(Max, Index); 6195 IsOrdered &= Index == Indexes.size(); 6196 6197 Indexes.push_back(Index); 6198 } while (EatIfPresent(lltok::comma)); 6199 6200 if (ParseToken(lltok::rbrace, "expected '}' here")) 6201 return true; 6202 6203 if (Indexes.size() < 2) 6204 return Error(Loc, "expected >= 2 uselistorder indexes"); 6205 if (Offset != 0 || Max >= Indexes.size()) 6206 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6207 if (IsOrdered) 6208 return Error(Loc, "expected uselistorder indexes to change the order"); 6209 6210 return false; 6211 } 6212 6213 /// ParseUseListOrder 6214 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6215 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6216 SMLoc Loc = Lex.getLoc(); 6217 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6218 return true; 6219 6220 Value *V; 6221 SmallVector<unsigned, 16> Indexes; 6222 if (ParseTypeAndValue(V, PFS) || 6223 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6224 ParseUseListOrderIndexes(Indexes)) 6225 return true; 6226 6227 return sortUseListOrder(V, Indexes, Loc); 6228 } 6229 6230 /// ParseUseListOrderBB 6231 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6232 bool LLParser::ParseUseListOrderBB() { 6233 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6234 SMLoc Loc = Lex.getLoc(); 6235 Lex.Lex(); 6236 6237 ValID Fn, Label; 6238 SmallVector<unsigned, 16> Indexes; 6239 if (ParseValID(Fn) || 6240 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6241 ParseValID(Label) || 6242 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6243 ParseUseListOrderIndexes(Indexes)) 6244 return true; 6245 6246 // Check the function. 6247 GlobalValue *GV; 6248 if (Fn.Kind == ValID::t_GlobalName) 6249 GV = M->getNamedValue(Fn.StrVal); 6250 else if (Fn.Kind == ValID::t_GlobalID) 6251 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6252 else 6253 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6254 if (!GV) 6255 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6256 auto *F = dyn_cast<Function>(GV); 6257 if (!F) 6258 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6259 if (F->isDeclaration()) 6260 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6261 6262 // Check the basic block. 6263 if (Label.Kind == ValID::t_LocalID) 6264 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6265 if (Label.Kind != ValID::t_LocalName) 6266 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6267 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6268 if (!V) 6269 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6270 if (!isa<BasicBlock>(V)) 6271 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6272 6273 return sortUseListOrder(V, Indexes, Loc); 6274 } 6275