1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/AsmParser/SlotMapping.h"
18 #include "llvm/IR/AutoUpgrade.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Dwarf.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/SaveAndRestore.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 static std::string getTypeString(Type *T) {
38   std::string Result;
39   raw_string_ostream Tmp(Result);
40   Tmp << *T;
41   return Tmp.str();
42 }
43 
44 /// Run: module ::= toplevelentity*
45 bool LLParser::Run() {
46   // Prime the lexer.
47   Lex.Lex();
48 
49   if (Context.shouldDiscardValueNames())
50     return Error(
51         Lex.getLoc(),
52         "Can't read textual IR with a Context that discards named Values");
53 
54   return ParseTopLevelEntities() ||
55          ValidateEndOfModule();
56 }
57 
58 bool LLParser::parseStandaloneConstantValue(Constant *&C,
59                                             const SlotMapping *Slots) {
60   restoreParsingState(Slots);
61   Lex.Lex();
62 
63   Type *Ty = nullptr;
64   if (ParseType(Ty) || parseConstantValue(Ty, C))
65     return true;
66   if (Lex.getKind() != lltok::Eof)
67     return Error(Lex.getLoc(), "expected end of string");
68   return false;
69 }
70 
71 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
72                                     const SlotMapping *Slots) {
73   restoreParsingState(Slots);
74   Lex.Lex();
75 
76   Read = 0;
77   SMLoc Start = Lex.getLoc();
78   Ty = nullptr;
79   if (ParseType(Ty))
80     return true;
81   SMLoc End = Lex.getLoc();
82   Read = End.getPointer() - Start.getPointer();
83 
84   return false;
85 }
86 
87 void LLParser::restoreParsingState(const SlotMapping *Slots) {
88   if (!Slots)
89     return;
90   NumberedVals = Slots->GlobalValues;
91   NumberedMetadata = Slots->MetadataNodes;
92   for (const auto &I : Slots->NamedTypes)
93     NamedTypes.insert(
94         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
95   for (const auto &I : Slots->Types)
96     NumberedTypes.insert(
97         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
98 }
99 
100 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
101 /// module.
102 bool LLParser::ValidateEndOfModule() {
103   // Handle any function attribute group forward references.
104   for (std::map<Value*, std::vector<unsigned> >::iterator
105          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
106          I != E; ++I) {
107     Value *V = I->first;
108     std::vector<unsigned> &Vec = I->second;
109     AttrBuilder B;
110 
111     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
112          VI != VE; ++VI)
113       B.merge(NumberedAttrBuilders[*VI]);
114 
115     if (Function *Fn = dyn_cast<Function>(V)) {
116       AttributeSet AS = Fn->getAttributes();
117       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
118       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
119                                AS.getFnAttributes());
120 
121       FnAttrs.merge(B);
122 
123       // If the alignment was parsed as an attribute, move to the alignment
124       // field.
125       if (FnAttrs.hasAlignmentAttr()) {
126         Fn->setAlignment(FnAttrs.getAlignment());
127         FnAttrs.removeAttribute(Attribute::Alignment);
128       }
129 
130       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
131                             AttributeSet::get(Context,
132                                               AttributeSet::FunctionIndex,
133                                               FnAttrs));
134       Fn->setAttributes(AS);
135     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
136       AttributeSet AS = CI->getAttributes();
137       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
138       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
139                                AS.getFnAttributes());
140       FnAttrs.merge(B);
141       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
142                             AttributeSet::get(Context,
143                                               AttributeSet::FunctionIndex,
144                                               FnAttrs));
145       CI->setAttributes(AS);
146     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
147       AttributeSet AS = II->getAttributes();
148       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
149       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
150                                AS.getFnAttributes());
151       FnAttrs.merge(B);
152       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
153                             AttributeSet::get(Context,
154                                               AttributeSet::FunctionIndex,
155                                               FnAttrs));
156       II->setAttributes(AS);
157     } else {
158       llvm_unreachable("invalid object with forward attribute group reference");
159     }
160   }
161 
162   // If there are entries in ForwardRefBlockAddresses at this point, the
163   // function was never defined.
164   if (!ForwardRefBlockAddresses.empty())
165     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
166                  "expected function name in blockaddress");
167 
168   for (const auto &NT : NumberedTypes)
169     if (NT.second.second.isValid())
170       return Error(NT.second.second,
171                    "use of undefined type '%" + Twine(NT.first) + "'");
172 
173   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
174        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
175     if (I->second.second.isValid())
176       return Error(I->second.second,
177                    "use of undefined type named '" + I->getKey() + "'");
178 
179   if (!ForwardRefComdats.empty())
180     return Error(ForwardRefComdats.begin()->second,
181                  "use of undefined comdat '$" +
182                      ForwardRefComdats.begin()->first + "'");
183 
184   if (!ForwardRefVals.empty())
185     return Error(ForwardRefVals.begin()->second.second,
186                  "use of undefined value '@" + ForwardRefVals.begin()->first +
187                  "'");
188 
189   if (!ForwardRefValIDs.empty())
190     return Error(ForwardRefValIDs.begin()->second.second,
191                  "use of undefined value '@" +
192                  Twine(ForwardRefValIDs.begin()->first) + "'");
193 
194   if (!ForwardRefMDNodes.empty())
195     return Error(ForwardRefMDNodes.begin()->second.second,
196                  "use of undefined metadata '!" +
197                  Twine(ForwardRefMDNodes.begin()->first) + "'");
198 
199   // Resolve metadata cycles.
200   for (auto &N : NumberedMetadata) {
201     if (N.second && !N.second->isResolved())
202       N.second->resolveCycles();
203   }
204 
205   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
206     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
207 
208   // Look for intrinsic functions and CallInst that need to be upgraded
209   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
210     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
211 
212   UpgradeDebugInfo(*M);
213 
214   if (!Slots)
215     return false;
216   // Initialize the slot mapping.
217   // Because by this point we've parsed and validated everything, we can "steal"
218   // the mapping from LLParser as it doesn't need it anymore.
219   Slots->GlobalValues = std::move(NumberedVals);
220   Slots->MetadataNodes = std::move(NumberedMetadata);
221   for (const auto &I : NamedTypes)
222     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
223   for (const auto &I : NumberedTypes)
224     Slots->Types.insert(std::make_pair(I.first, I.second.first));
225 
226   return false;
227 }
228 
229 //===----------------------------------------------------------------------===//
230 // Top-Level Entities
231 //===----------------------------------------------------------------------===//
232 
233 bool LLParser::ParseTopLevelEntities() {
234   while (1) {
235     switch (Lex.getKind()) {
236     default:         return TokError("expected top-level entity");
237     case lltok::Eof: return false;
238     case lltok::kw_declare: if (ParseDeclare()) return true; break;
239     case lltok::kw_define:  if (ParseDefine()) return true; break;
240     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
241     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
242     case lltok::kw_source_filename:
243       if (ParseSourceFileName())
244         return true;
245       break;
246     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
247     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
248     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
249     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
250     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
251     case lltok::ComdatVar:  if (parseComdat()) return true; break;
252     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
253     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
254 
255     // The Global variable production with no name can have many different
256     // optional leading prefixes, the production is:
257     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
258     //               OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
259     //               ('constant'|'global') ...
260     case lltok::kw_private:             // OptionalLinkage
261     case lltok::kw_internal:            // OptionalLinkage
262     case lltok::kw_weak:                // OptionalLinkage
263     case lltok::kw_weak_odr:            // OptionalLinkage
264     case lltok::kw_linkonce:            // OptionalLinkage
265     case lltok::kw_linkonce_odr:        // OptionalLinkage
266     case lltok::kw_appending:           // OptionalLinkage
267     case lltok::kw_common:              // OptionalLinkage
268     case lltok::kw_extern_weak:         // OptionalLinkage
269     case lltok::kw_external:            // OptionalLinkage
270     case lltok::kw_default:             // OptionalVisibility
271     case lltok::kw_hidden:              // OptionalVisibility
272     case lltok::kw_protected:           // OptionalVisibility
273     case lltok::kw_dllimport:           // OptionalDLLStorageClass
274     case lltok::kw_dllexport:           // OptionalDLLStorageClass
275     case lltok::kw_thread_local:        // OptionalThreadLocal
276     case lltok::kw_addrspace:           // OptionalAddrSpace
277     case lltok::kw_constant:            // GlobalType
278     case lltok::kw_global: {            // GlobalType
279       unsigned Linkage, Visibility, DLLStorageClass;
280       bool UnnamedAddr;
281       GlobalVariable::ThreadLocalMode TLM;
282       bool HasLinkage;
283       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
284           ParseOptionalVisibility(Visibility) ||
285           ParseOptionalDLLStorageClass(DLLStorageClass) ||
286           ParseOptionalThreadLocal(TLM) ||
287           parseOptionalUnnamedAddr(UnnamedAddr) ||
288           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
289                       DLLStorageClass, TLM, UnnamedAddr))
290         return true;
291       break;
292     }
293 
294     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
295     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
296     case lltok::kw_uselistorder_bb:
297                                  if (ParseUseListOrderBB()) return true; break;
298     }
299   }
300 }
301 
302 
303 /// toplevelentity
304 ///   ::= 'module' 'asm' STRINGCONSTANT
305 bool LLParser::ParseModuleAsm() {
306   assert(Lex.getKind() == lltok::kw_module);
307   Lex.Lex();
308 
309   std::string AsmStr;
310   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
311       ParseStringConstant(AsmStr)) return true;
312 
313   M->appendModuleInlineAsm(AsmStr);
314   return false;
315 }
316 
317 /// toplevelentity
318 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
319 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
320 bool LLParser::ParseTargetDefinition() {
321   assert(Lex.getKind() == lltok::kw_target);
322   std::string Str;
323   switch (Lex.Lex()) {
324   default: return TokError("unknown target property");
325   case lltok::kw_triple:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
328         ParseStringConstant(Str))
329       return true;
330     M->setTargetTriple(Str);
331     return false;
332   case lltok::kw_datalayout:
333     Lex.Lex();
334     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
335         ParseStringConstant(Str))
336       return true;
337     M->setDataLayout(Str);
338     return false;
339   }
340 }
341 
342 /// toplevelentity
343 ///   ::= 'source_filename' '=' STRINGCONSTANT
344 bool LLParser::ParseSourceFileName() {
345   assert(Lex.getKind() == lltok::kw_source_filename);
346   std::string Str;
347   Lex.Lex();
348   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
349       ParseStringConstant(Str))
350     return true;
351   M->setSourceFileName(Str);
352   return false;
353 }
354 
355 /// toplevelentity
356 ///   ::= 'deplibs' '=' '[' ']'
357 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
358 /// FIXME: Remove in 4.0. Currently parse, but ignore.
359 bool LLParser::ParseDepLibs() {
360   assert(Lex.getKind() == lltok::kw_deplibs);
361   Lex.Lex();
362   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
363       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
364     return true;
365 
366   if (EatIfPresent(lltok::rsquare))
367     return false;
368 
369   do {
370     std::string Str;
371     if (ParseStringConstant(Str)) return true;
372   } while (EatIfPresent(lltok::comma));
373 
374   return ParseToken(lltok::rsquare, "expected ']' at end of list");
375 }
376 
377 /// ParseUnnamedType:
378 ///   ::= LocalVarID '=' 'type' type
379 bool LLParser::ParseUnnamedType() {
380   LocTy TypeLoc = Lex.getLoc();
381   unsigned TypeID = Lex.getUIntVal();
382   Lex.Lex(); // eat LocalVarID;
383 
384   if (ParseToken(lltok::equal, "expected '=' after name") ||
385       ParseToken(lltok::kw_type, "expected 'type' after '='"))
386     return true;
387 
388   Type *Result = nullptr;
389   if (ParseStructDefinition(TypeLoc, "",
390                             NumberedTypes[TypeID], Result)) return true;
391 
392   if (!isa<StructType>(Result)) {
393     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
394     if (Entry.first)
395       return Error(TypeLoc, "non-struct types may not be recursive");
396     Entry.first = Result;
397     Entry.second = SMLoc();
398   }
399 
400   return false;
401 }
402 
403 
404 /// toplevelentity
405 ///   ::= LocalVar '=' 'type' type
406 bool LLParser::ParseNamedType() {
407   std::string Name = Lex.getStrVal();
408   LocTy NameLoc = Lex.getLoc();
409   Lex.Lex();  // eat LocalVar.
410 
411   if (ParseToken(lltok::equal, "expected '=' after name") ||
412       ParseToken(lltok::kw_type, "expected 'type' after name"))
413     return true;
414 
415   Type *Result = nullptr;
416   if (ParseStructDefinition(NameLoc, Name,
417                             NamedTypes[Name], Result)) return true;
418 
419   if (!isa<StructType>(Result)) {
420     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
421     if (Entry.first)
422       return Error(NameLoc, "non-struct types may not be recursive");
423     Entry.first = Result;
424     Entry.second = SMLoc();
425   }
426 
427   return false;
428 }
429 
430 
431 /// toplevelentity
432 ///   ::= 'declare' FunctionHeader
433 bool LLParser::ParseDeclare() {
434   assert(Lex.getKind() == lltok::kw_declare);
435   Lex.Lex();
436 
437   Function *F;
438   return ParseFunctionHeader(F, false);
439 }
440 
441 /// toplevelentity
442 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
443 bool LLParser::ParseDefine() {
444   assert(Lex.getKind() == lltok::kw_define);
445   Lex.Lex();
446 
447   Function *F;
448   return ParseFunctionHeader(F, true) ||
449          ParseOptionalFunctionMetadata(*F) ||
450          ParseFunctionBody(*F);
451 }
452 
453 /// ParseGlobalType
454 ///   ::= 'constant'
455 ///   ::= 'global'
456 bool LLParser::ParseGlobalType(bool &IsConstant) {
457   if (Lex.getKind() == lltok::kw_constant)
458     IsConstant = true;
459   else if (Lex.getKind() == lltok::kw_global)
460     IsConstant = false;
461   else {
462     IsConstant = false;
463     return TokError("expected 'global' or 'constant'");
464   }
465   Lex.Lex();
466   return false;
467 }
468 
469 /// ParseUnnamedGlobal:
470 ///   OptionalVisibility (ALIAS | IFUNC) ...
471 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
472 ///                                                     ...   -> global variable
473 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
474 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
475 ///                                                     ...   -> global variable
476 bool LLParser::ParseUnnamedGlobal() {
477   unsigned VarID = NumberedVals.size();
478   std::string Name;
479   LocTy NameLoc = Lex.getLoc();
480 
481   // Handle the GlobalID form.
482   if (Lex.getKind() == lltok::GlobalID) {
483     if (Lex.getUIntVal() != VarID)
484       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
485                    Twine(VarID) + "'");
486     Lex.Lex(); // eat GlobalID;
487 
488     if (ParseToken(lltok::equal, "expected '=' after name"))
489       return true;
490   }
491 
492   bool HasLinkage;
493   unsigned Linkage, Visibility, DLLStorageClass;
494   GlobalVariable::ThreadLocalMode TLM;
495   bool UnnamedAddr;
496   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
497       ParseOptionalVisibility(Visibility) ||
498       ParseOptionalDLLStorageClass(DLLStorageClass) ||
499       ParseOptionalThreadLocal(TLM) ||
500       parseOptionalUnnamedAddr(UnnamedAddr))
501     return true;
502 
503   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
504     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
505                        DLLStorageClass, TLM, UnnamedAddr);
506 
507   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
508                              DLLStorageClass, TLM, UnnamedAddr);
509 }
510 
511 /// ParseNamedGlobal:
512 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
513 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
514 ///                                                     ...   -> global variable
515 bool LLParser::ParseNamedGlobal() {
516   assert(Lex.getKind() == lltok::GlobalVar);
517   LocTy NameLoc = Lex.getLoc();
518   std::string Name = Lex.getStrVal();
519   Lex.Lex();
520 
521   bool HasLinkage;
522   unsigned Linkage, Visibility, DLLStorageClass;
523   GlobalVariable::ThreadLocalMode TLM;
524   bool UnnamedAddr;
525   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
526       ParseOptionalLinkage(Linkage, HasLinkage) ||
527       ParseOptionalVisibility(Visibility) ||
528       ParseOptionalDLLStorageClass(DLLStorageClass) ||
529       ParseOptionalThreadLocal(TLM) ||
530       parseOptionalUnnamedAddr(UnnamedAddr))
531     return true;
532 
533   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
534     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
535                        DLLStorageClass, TLM, UnnamedAddr);
536 
537   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
538                              DLLStorageClass, TLM, UnnamedAddr);
539 }
540 
541 bool LLParser::parseComdat() {
542   assert(Lex.getKind() == lltok::ComdatVar);
543   std::string Name = Lex.getStrVal();
544   LocTy NameLoc = Lex.getLoc();
545   Lex.Lex();
546 
547   if (ParseToken(lltok::equal, "expected '=' here"))
548     return true;
549 
550   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
551     return TokError("expected comdat type");
552 
553   Comdat::SelectionKind SK;
554   switch (Lex.getKind()) {
555   default:
556     return TokError("unknown selection kind");
557   case lltok::kw_any:
558     SK = Comdat::Any;
559     break;
560   case lltok::kw_exactmatch:
561     SK = Comdat::ExactMatch;
562     break;
563   case lltok::kw_largest:
564     SK = Comdat::Largest;
565     break;
566   case lltok::kw_noduplicates:
567     SK = Comdat::NoDuplicates;
568     break;
569   case lltok::kw_samesize:
570     SK = Comdat::SameSize;
571     break;
572   }
573   Lex.Lex();
574 
575   // See if the comdat was forward referenced, if so, use the comdat.
576   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
577   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
578   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
579     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
580 
581   Comdat *C;
582   if (I != ComdatSymTab.end())
583     C = &I->second;
584   else
585     C = M->getOrInsertComdat(Name);
586   C->setSelectionKind(SK);
587 
588   return false;
589 }
590 
591 // MDString:
592 //   ::= '!' STRINGCONSTANT
593 bool LLParser::ParseMDString(MDString *&Result) {
594   std::string Str;
595   if (ParseStringConstant(Str)) return true;
596   Result = MDString::get(Context, Str);
597   return false;
598 }
599 
600 // MDNode:
601 //   ::= '!' MDNodeNumber
602 bool LLParser::ParseMDNodeID(MDNode *&Result) {
603   // !{ ..., !42, ... }
604   LocTy IDLoc = Lex.getLoc();
605   unsigned MID = 0;
606   if (ParseUInt32(MID))
607     return true;
608 
609   // If not a forward reference, just return it now.
610   if (NumberedMetadata.count(MID)) {
611     Result = NumberedMetadata[MID];
612     return false;
613   }
614 
615   // Otherwise, create MDNode forward reference.
616   auto &FwdRef = ForwardRefMDNodes[MID];
617   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
618 
619   Result = FwdRef.first.get();
620   NumberedMetadata[MID].reset(Result);
621   return false;
622 }
623 
624 /// ParseNamedMetadata:
625 ///   !foo = !{ !1, !2 }
626 bool LLParser::ParseNamedMetadata() {
627   assert(Lex.getKind() == lltok::MetadataVar);
628   std::string Name = Lex.getStrVal();
629   Lex.Lex();
630 
631   if (ParseToken(lltok::equal, "expected '=' here") ||
632       ParseToken(lltok::exclaim, "Expected '!' here") ||
633       ParseToken(lltok::lbrace, "Expected '{' here"))
634     return true;
635 
636   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
637   if (Lex.getKind() != lltok::rbrace)
638     do {
639       if (ParseToken(lltok::exclaim, "Expected '!' here"))
640         return true;
641 
642       MDNode *N = nullptr;
643       if (ParseMDNodeID(N)) return true;
644       NMD->addOperand(N);
645     } while (EatIfPresent(lltok::comma));
646 
647   return ParseToken(lltok::rbrace, "expected end of metadata node");
648 }
649 
650 /// ParseStandaloneMetadata:
651 ///   !42 = !{...}
652 bool LLParser::ParseStandaloneMetadata() {
653   assert(Lex.getKind() == lltok::exclaim);
654   Lex.Lex();
655   unsigned MetadataID = 0;
656 
657   MDNode *Init;
658   if (ParseUInt32(MetadataID) ||
659       ParseToken(lltok::equal, "expected '=' here"))
660     return true;
661 
662   // Detect common error, from old metadata syntax.
663   if (Lex.getKind() == lltok::Type)
664     return TokError("unexpected type in metadata definition");
665 
666   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
667   if (Lex.getKind() == lltok::MetadataVar) {
668     if (ParseSpecializedMDNode(Init, IsDistinct))
669       return true;
670   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
671              ParseMDTuple(Init, IsDistinct))
672     return true;
673 
674   // See if this was forward referenced, if so, handle it.
675   auto FI = ForwardRefMDNodes.find(MetadataID);
676   if (FI != ForwardRefMDNodes.end()) {
677     FI->second.first->replaceAllUsesWith(Init);
678     ForwardRefMDNodes.erase(FI);
679 
680     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
681   } else {
682     if (NumberedMetadata.count(MetadataID))
683       return TokError("Metadata id is already used");
684     NumberedMetadata[MetadataID].reset(Init);
685   }
686 
687   return false;
688 }
689 
690 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
691   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
692          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
693 }
694 
695 /// parseIndirectSymbol:
696 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
697 ///                     OptionalDLLStorageClass OptionalThreadLocal
698 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
699 ///
700 /// IndirectSymbol
701 ///   ::= TypeAndValue
702 ///
703 /// Everything through OptionalUnnamedAddr has already been parsed.
704 ///
705 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
706                                    unsigned L, unsigned Visibility,
707                                    unsigned DLLStorageClass,
708                                    GlobalVariable::ThreadLocalMode TLM,
709                                    bool UnnamedAddr) {
710   bool IsAlias;
711   if (Lex.getKind() == lltok::kw_alias)
712     IsAlias = true;
713   else if (Lex.getKind() == lltok::kw_ifunc)
714     IsAlias = false;
715   else
716     llvm_unreachable("Not an alias or ifunc!");
717   Lex.Lex();
718 
719   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
720 
721   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
722     return Error(NameLoc, "invalid linkage type for alias");
723 
724   if (!isValidVisibilityForLinkage(Visibility, L))
725     return Error(NameLoc,
726                  "symbol with local linkage must have default visibility");
727 
728   Type *Ty;
729   LocTy ExplicitTypeLoc = Lex.getLoc();
730   if (ParseType(Ty) ||
731       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
732     return true;
733 
734   Constant *Aliasee;
735   LocTy AliaseeLoc = Lex.getLoc();
736   if (Lex.getKind() != lltok::kw_bitcast &&
737       Lex.getKind() != lltok::kw_getelementptr &&
738       Lex.getKind() != lltok::kw_addrspacecast &&
739       Lex.getKind() != lltok::kw_inttoptr) {
740     if (ParseGlobalTypeAndValue(Aliasee))
741       return true;
742   } else {
743     // The bitcast dest type is not present, it is implied by the dest type.
744     ValID ID;
745     if (ParseValID(ID))
746       return true;
747     if (ID.Kind != ValID::t_Constant)
748       return Error(AliaseeLoc, "invalid aliasee");
749     Aliasee = ID.ConstantVal;
750   }
751 
752   Type *AliaseeType = Aliasee->getType();
753   auto *PTy = dyn_cast<PointerType>(AliaseeType);
754   if (!PTy)
755     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
756   unsigned AddrSpace = PTy->getAddressSpace();
757 
758   if (IsAlias && Ty != PTy->getElementType())
759     return Error(
760         ExplicitTypeLoc,
761         "explicit pointee type doesn't match operand's pointee type");
762 
763   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
764     return Error(
765         ExplicitTypeLoc,
766         "explicit pointee type should be a function type");
767 
768   GlobalValue *GVal = nullptr;
769 
770   // See if the alias was forward referenced, if so, prepare to replace the
771   // forward reference.
772   if (!Name.empty()) {
773     GVal = M->getNamedValue(Name);
774     if (GVal) {
775       if (!ForwardRefVals.erase(Name))
776         return Error(NameLoc, "redefinition of global '@" + Name + "'");
777     }
778   } else {
779     auto I = ForwardRefValIDs.find(NumberedVals.size());
780     if (I != ForwardRefValIDs.end()) {
781       GVal = I->second.first;
782       ForwardRefValIDs.erase(I);
783     }
784   }
785 
786   // Okay, create the alias but do not insert it into the module yet.
787   std::unique_ptr<GlobalIndirectSymbol> GA;
788   if (IsAlias)
789     GA.reset(GlobalAlias::create(Ty, AddrSpace,
790                                  (GlobalValue::LinkageTypes)Linkage, Name,
791                                  Aliasee, /*Parent*/ nullptr));
792   else
793     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
794                                  (GlobalValue::LinkageTypes)Linkage, Name,
795                                  Aliasee, /*Parent*/ nullptr));
796   GA->setThreadLocalMode(TLM);
797   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
798   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
799   GA->setUnnamedAddr(UnnamedAddr);
800 
801   if (Name.empty())
802     NumberedVals.push_back(GA.get());
803 
804   if (GVal) {
805     // Verify that types agree.
806     if (GVal->getType() != GA->getType())
807       return Error(
808           ExplicitTypeLoc,
809           "forward reference and definition of alias have different types");
810 
811     // If they agree, just RAUW the old value with the alias and remove the
812     // forward ref info.
813     GVal->replaceAllUsesWith(GA.get());
814     GVal->eraseFromParent();
815   }
816 
817   // Insert into the module, we know its name won't collide now.
818   if (IsAlias)
819     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
820   else
821     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
822   assert(GA->getName() == Name && "Should not be a name conflict!");
823 
824   // The module owns this now
825   GA.release();
826 
827   return false;
828 }
829 
830 /// ParseGlobal
831 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
832 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
833 ///       OptionalExternallyInitialized GlobalType Type Const
834 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
835 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
836 ///       OptionalExternallyInitialized GlobalType Type Const
837 ///
838 /// Everything up to and including OptionalUnnamedAddr has been parsed
839 /// already.
840 ///
841 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
842                            unsigned Linkage, bool HasLinkage,
843                            unsigned Visibility, unsigned DLLStorageClass,
844                            GlobalVariable::ThreadLocalMode TLM,
845                            bool UnnamedAddr) {
846   if (!isValidVisibilityForLinkage(Visibility, Linkage))
847     return Error(NameLoc,
848                  "symbol with local linkage must have default visibility");
849 
850   unsigned AddrSpace;
851   bool IsConstant, IsExternallyInitialized;
852   LocTy IsExternallyInitializedLoc;
853   LocTy TyLoc;
854 
855   Type *Ty = nullptr;
856   if (ParseOptionalAddrSpace(AddrSpace) ||
857       ParseOptionalToken(lltok::kw_externally_initialized,
858                          IsExternallyInitialized,
859                          &IsExternallyInitializedLoc) ||
860       ParseGlobalType(IsConstant) ||
861       ParseType(Ty, TyLoc))
862     return true;
863 
864   // If the linkage is specified and is external, then no initializer is
865   // present.
866   Constant *Init = nullptr;
867   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
868                       Linkage != GlobalValue::ExternalLinkage)) {
869     if (ParseGlobalValue(Ty, Init))
870       return true;
871   }
872 
873   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
874     return Error(TyLoc, "invalid type for global variable");
875 
876   GlobalValue *GVal = nullptr;
877 
878   // See if the global was forward referenced, if so, use the global.
879   if (!Name.empty()) {
880     GVal = M->getNamedValue(Name);
881     if (GVal) {
882       if (!ForwardRefVals.erase(Name))
883         return Error(NameLoc, "redefinition of global '@" + Name + "'");
884     }
885   } else {
886     auto I = ForwardRefValIDs.find(NumberedVals.size());
887     if (I != ForwardRefValIDs.end()) {
888       GVal = I->second.first;
889       ForwardRefValIDs.erase(I);
890     }
891   }
892 
893   GlobalVariable *GV;
894   if (!GVal) {
895     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
896                             Name, nullptr, GlobalVariable::NotThreadLocal,
897                             AddrSpace);
898   } else {
899     if (GVal->getValueType() != Ty)
900       return Error(TyLoc,
901             "forward reference and definition of global have different types");
902 
903     GV = cast<GlobalVariable>(GVal);
904 
905     // Move the forward-reference to the correct spot in the module.
906     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
907   }
908 
909   if (Name.empty())
910     NumberedVals.push_back(GV);
911 
912   // Set the parsed properties on the global.
913   if (Init)
914     GV->setInitializer(Init);
915   GV->setConstant(IsConstant);
916   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
917   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
918   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
919   GV->setExternallyInitialized(IsExternallyInitialized);
920   GV->setThreadLocalMode(TLM);
921   GV->setUnnamedAddr(UnnamedAddr);
922 
923   // Parse attributes on the global.
924   while (Lex.getKind() == lltok::comma) {
925     Lex.Lex();
926 
927     if (Lex.getKind() == lltok::kw_section) {
928       Lex.Lex();
929       GV->setSection(Lex.getStrVal());
930       if (ParseToken(lltok::StringConstant, "expected global section string"))
931         return true;
932     } else if (Lex.getKind() == lltok::kw_align) {
933       unsigned Alignment;
934       if (ParseOptionalAlignment(Alignment)) return true;
935       GV->setAlignment(Alignment);
936     } else {
937       Comdat *C;
938       if (parseOptionalComdat(Name, C))
939         return true;
940       if (C)
941         GV->setComdat(C);
942       else
943         return TokError("unknown global variable property!");
944     }
945   }
946 
947   return false;
948 }
949 
950 /// ParseUnnamedAttrGrp
951 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
952 bool LLParser::ParseUnnamedAttrGrp() {
953   assert(Lex.getKind() == lltok::kw_attributes);
954   LocTy AttrGrpLoc = Lex.getLoc();
955   Lex.Lex();
956 
957   if (Lex.getKind() != lltok::AttrGrpID)
958     return TokError("expected attribute group id");
959 
960   unsigned VarID = Lex.getUIntVal();
961   std::vector<unsigned> unused;
962   LocTy BuiltinLoc;
963   Lex.Lex();
964 
965   if (ParseToken(lltok::equal, "expected '=' here") ||
966       ParseToken(lltok::lbrace, "expected '{' here") ||
967       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
968                                  BuiltinLoc) ||
969       ParseToken(lltok::rbrace, "expected end of attribute group"))
970     return true;
971 
972   if (!NumberedAttrBuilders[VarID].hasAttributes())
973     return Error(AttrGrpLoc, "attribute group has no attributes");
974 
975   return false;
976 }
977 
978 /// ParseFnAttributeValuePairs
979 ///   ::= <attr> | <attr> '=' <value>
980 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
981                                           std::vector<unsigned> &FwdRefAttrGrps,
982                                           bool inAttrGrp, LocTy &BuiltinLoc) {
983   bool HaveError = false;
984 
985   B.clear();
986 
987   while (true) {
988     lltok::Kind Token = Lex.getKind();
989     if (Token == lltok::kw_builtin)
990       BuiltinLoc = Lex.getLoc();
991     switch (Token) {
992     default:
993       if (!inAttrGrp) return HaveError;
994       return Error(Lex.getLoc(), "unterminated attribute group");
995     case lltok::rbrace:
996       // Finished.
997       return false;
998 
999     case lltok::AttrGrpID: {
1000       // Allow a function to reference an attribute group:
1001       //
1002       //   define void @foo() #1 { ... }
1003       if (inAttrGrp)
1004         HaveError |=
1005           Error(Lex.getLoc(),
1006               "cannot have an attribute group reference in an attribute group");
1007 
1008       unsigned AttrGrpNum = Lex.getUIntVal();
1009       if (inAttrGrp) break;
1010 
1011       // Save the reference to the attribute group. We'll fill it in later.
1012       FwdRefAttrGrps.push_back(AttrGrpNum);
1013       break;
1014     }
1015     // Target-dependent attributes:
1016     case lltok::StringConstant: {
1017       if (ParseStringAttribute(B))
1018         return true;
1019       continue;
1020     }
1021 
1022     // Target-independent attributes:
1023     case lltok::kw_align: {
1024       // As a hack, we allow function alignment to be initially parsed as an
1025       // attribute on a function declaration/definition or added to an attribute
1026       // group and later moved to the alignment field.
1027       unsigned Alignment;
1028       if (inAttrGrp) {
1029         Lex.Lex();
1030         if (ParseToken(lltok::equal, "expected '=' here") ||
1031             ParseUInt32(Alignment))
1032           return true;
1033       } else {
1034         if (ParseOptionalAlignment(Alignment))
1035           return true;
1036       }
1037       B.addAlignmentAttr(Alignment);
1038       continue;
1039     }
1040     case lltok::kw_alignstack: {
1041       unsigned Alignment;
1042       if (inAttrGrp) {
1043         Lex.Lex();
1044         if (ParseToken(lltok::equal, "expected '=' here") ||
1045             ParseUInt32(Alignment))
1046           return true;
1047       } else {
1048         if (ParseOptionalStackAlignment(Alignment))
1049           return true;
1050       }
1051       B.addStackAlignmentAttr(Alignment);
1052       continue;
1053     }
1054     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1055     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1056     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1057     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1058     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1059     case lltok::kw_inaccessiblememonly:
1060       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1061     case lltok::kw_inaccessiblemem_or_argmemonly:
1062       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1063     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1064     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1065     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1066     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1067     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1068     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1069     case lltok::kw_noimplicitfloat:
1070       B.addAttribute(Attribute::NoImplicitFloat); break;
1071     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1072     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1073     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1074     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1075     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1076     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1077     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1078     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1079     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1080     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1081     case lltok::kw_returns_twice:
1082       B.addAttribute(Attribute::ReturnsTwice); break;
1083     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1084     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1085     case lltok::kw_sspstrong:
1086       B.addAttribute(Attribute::StackProtectStrong); break;
1087     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1088     case lltok::kw_sanitize_address:
1089       B.addAttribute(Attribute::SanitizeAddress); break;
1090     case lltok::kw_sanitize_thread:
1091       B.addAttribute(Attribute::SanitizeThread); break;
1092     case lltok::kw_sanitize_memory:
1093       B.addAttribute(Attribute::SanitizeMemory); break;
1094     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1095 
1096     // Error handling.
1097     case lltok::kw_inreg:
1098     case lltok::kw_signext:
1099     case lltok::kw_zeroext:
1100       HaveError |=
1101         Error(Lex.getLoc(),
1102               "invalid use of attribute on a function");
1103       break;
1104     case lltok::kw_byval:
1105     case lltok::kw_dereferenceable:
1106     case lltok::kw_dereferenceable_or_null:
1107     case lltok::kw_inalloca:
1108     case lltok::kw_nest:
1109     case lltok::kw_noalias:
1110     case lltok::kw_nocapture:
1111     case lltok::kw_nonnull:
1112     case lltok::kw_returned:
1113     case lltok::kw_sret:
1114     case lltok::kw_swifterror:
1115     case lltok::kw_swiftself:
1116       HaveError |=
1117         Error(Lex.getLoc(),
1118               "invalid use of parameter-only attribute on a function");
1119       break;
1120     }
1121 
1122     Lex.Lex();
1123   }
1124 }
1125 
1126 //===----------------------------------------------------------------------===//
1127 // GlobalValue Reference/Resolution Routines.
1128 //===----------------------------------------------------------------------===//
1129 
1130 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1131                                               const std::string &Name) {
1132   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1133     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1134   else
1135     return new GlobalVariable(*M, PTy->getElementType(), false,
1136                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1137                               nullptr, GlobalVariable::NotThreadLocal,
1138                               PTy->getAddressSpace());
1139 }
1140 
1141 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1142 /// forward reference record if needed.  This can return null if the value
1143 /// exists but does not have the right type.
1144 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1145                                     LocTy Loc) {
1146   PointerType *PTy = dyn_cast<PointerType>(Ty);
1147   if (!PTy) {
1148     Error(Loc, "global variable reference must have pointer type");
1149     return nullptr;
1150   }
1151 
1152   // Look this name up in the normal function symbol table.
1153   GlobalValue *Val =
1154     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1155 
1156   // If this is a forward reference for the value, see if we already created a
1157   // forward ref record.
1158   if (!Val) {
1159     auto I = ForwardRefVals.find(Name);
1160     if (I != ForwardRefVals.end())
1161       Val = I->second.first;
1162   }
1163 
1164   // If we have the value in the symbol table or fwd-ref table, return it.
1165   if (Val) {
1166     if (Val->getType() == Ty) return Val;
1167     Error(Loc, "'@" + Name + "' defined with type '" +
1168           getTypeString(Val->getType()) + "'");
1169     return nullptr;
1170   }
1171 
1172   // Otherwise, create a new forward reference for this value and remember it.
1173   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1174   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1175   return FwdVal;
1176 }
1177 
1178 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1179   PointerType *PTy = dyn_cast<PointerType>(Ty);
1180   if (!PTy) {
1181     Error(Loc, "global variable reference must have pointer type");
1182     return nullptr;
1183   }
1184 
1185   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1186 
1187   // If this is a forward reference for the value, see if we already created a
1188   // forward ref record.
1189   if (!Val) {
1190     auto I = ForwardRefValIDs.find(ID);
1191     if (I != ForwardRefValIDs.end())
1192       Val = I->second.first;
1193   }
1194 
1195   // If we have the value in the symbol table or fwd-ref table, return it.
1196   if (Val) {
1197     if (Val->getType() == Ty) return Val;
1198     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1199           getTypeString(Val->getType()) + "'");
1200     return nullptr;
1201   }
1202 
1203   // Otherwise, create a new forward reference for this value and remember it.
1204   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1205   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1206   return FwdVal;
1207 }
1208 
1209 
1210 //===----------------------------------------------------------------------===//
1211 // Comdat Reference/Resolution Routines.
1212 //===----------------------------------------------------------------------===//
1213 
1214 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1215   // Look this name up in the comdat symbol table.
1216   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1217   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1218   if (I != ComdatSymTab.end())
1219     return &I->second;
1220 
1221   // Otherwise, create a new forward reference for this value and remember it.
1222   Comdat *C = M->getOrInsertComdat(Name);
1223   ForwardRefComdats[Name] = Loc;
1224   return C;
1225 }
1226 
1227 
1228 //===----------------------------------------------------------------------===//
1229 // Helper Routines.
1230 //===----------------------------------------------------------------------===//
1231 
1232 /// ParseToken - If the current token has the specified kind, eat it and return
1233 /// success.  Otherwise, emit the specified error and return failure.
1234 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1235   if (Lex.getKind() != T)
1236     return TokError(ErrMsg);
1237   Lex.Lex();
1238   return false;
1239 }
1240 
1241 /// ParseStringConstant
1242 ///   ::= StringConstant
1243 bool LLParser::ParseStringConstant(std::string &Result) {
1244   if (Lex.getKind() != lltok::StringConstant)
1245     return TokError("expected string constant");
1246   Result = Lex.getStrVal();
1247   Lex.Lex();
1248   return false;
1249 }
1250 
1251 /// ParseUInt32
1252 ///   ::= uint32
1253 bool LLParser::ParseUInt32(unsigned &Val) {
1254   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1255     return TokError("expected integer");
1256   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1257   if (Val64 != unsigned(Val64))
1258     return TokError("expected 32-bit integer (too large)");
1259   Val = Val64;
1260   Lex.Lex();
1261   return false;
1262 }
1263 
1264 /// ParseUInt64
1265 ///   ::= uint64
1266 bool LLParser::ParseUInt64(uint64_t &Val) {
1267   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1268     return TokError("expected integer");
1269   Val = Lex.getAPSIntVal().getLimitedValue();
1270   Lex.Lex();
1271   return false;
1272 }
1273 
1274 /// ParseTLSModel
1275 ///   := 'localdynamic'
1276 ///   := 'initialexec'
1277 ///   := 'localexec'
1278 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1279   switch (Lex.getKind()) {
1280     default:
1281       return TokError("expected localdynamic, initialexec or localexec");
1282     case lltok::kw_localdynamic:
1283       TLM = GlobalVariable::LocalDynamicTLSModel;
1284       break;
1285     case lltok::kw_initialexec:
1286       TLM = GlobalVariable::InitialExecTLSModel;
1287       break;
1288     case lltok::kw_localexec:
1289       TLM = GlobalVariable::LocalExecTLSModel;
1290       break;
1291   }
1292 
1293   Lex.Lex();
1294   return false;
1295 }
1296 
1297 /// ParseOptionalThreadLocal
1298 ///   := /*empty*/
1299 ///   := 'thread_local'
1300 ///   := 'thread_local' '(' tlsmodel ')'
1301 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1302   TLM = GlobalVariable::NotThreadLocal;
1303   if (!EatIfPresent(lltok::kw_thread_local))
1304     return false;
1305 
1306   TLM = GlobalVariable::GeneralDynamicTLSModel;
1307   if (Lex.getKind() == lltok::lparen) {
1308     Lex.Lex();
1309     return ParseTLSModel(TLM) ||
1310       ParseToken(lltok::rparen, "expected ')' after thread local model");
1311   }
1312   return false;
1313 }
1314 
1315 /// ParseOptionalAddrSpace
1316 ///   := /*empty*/
1317 ///   := 'addrspace' '(' uint32 ')'
1318 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1319   AddrSpace = 0;
1320   if (!EatIfPresent(lltok::kw_addrspace))
1321     return false;
1322   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1323          ParseUInt32(AddrSpace) ||
1324          ParseToken(lltok::rparen, "expected ')' in address space");
1325 }
1326 
1327 /// ParseStringAttribute
1328 ///   := StringConstant
1329 ///   := StringConstant '=' StringConstant
1330 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1331   std::string Attr = Lex.getStrVal();
1332   Lex.Lex();
1333   std::string Val;
1334   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1335     return true;
1336   B.addAttribute(Attr, Val);
1337   return false;
1338 }
1339 
1340 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1341 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1342   bool HaveError = false;
1343 
1344   B.clear();
1345 
1346   while (1) {
1347     lltok::Kind Token = Lex.getKind();
1348     switch (Token) {
1349     default:  // End of attributes.
1350       return HaveError;
1351     case lltok::StringConstant: {
1352       if (ParseStringAttribute(B))
1353         return true;
1354       continue;
1355     }
1356     case lltok::kw_align: {
1357       unsigned Alignment;
1358       if (ParseOptionalAlignment(Alignment))
1359         return true;
1360       B.addAlignmentAttr(Alignment);
1361       continue;
1362     }
1363     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1364     case lltok::kw_dereferenceable: {
1365       uint64_t Bytes;
1366       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1367         return true;
1368       B.addDereferenceableAttr(Bytes);
1369       continue;
1370     }
1371     case lltok::kw_dereferenceable_or_null: {
1372       uint64_t Bytes;
1373       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1374         return true;
1375       B.addDereferenceableOrNullAttr(Bytes);
1376       continue;
1377     }
1378     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1379     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1380     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1381     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1382     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1383     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1384     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1385     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1386     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1387     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1388     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1389     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1390     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1391     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1392 
1393     case lltok::kw_alignstack:
1394     case lltok::kw_alwaysinline:
1395     case lltok::kw_argmemonly:
1396     case lltok::kw_builtin:
1397     case lltok::kw_inlinehint:
1398     case lltok::kw_jumptable:
1399     case lltok::kw_minsize:
1400     case lltok::kw_naked:
1401     case lltok::kw_nobuiltin:
1402     case lltok::kw_noduplicate:
1403     case lltok::kw_noimplicitfloat:
1404     case lltok::kw_noinline:
1405     case lltok::kw_nonlazybind:
1406     case lltok::kw_noredzone:
1407     case lltok::kw_noreturn:
1408     case lltok::kw_nounwind:
1409     case lltok::kw_optnone:
1410     case lltok::kw_optsize:
1411     case lltok::kw_returns_twice:
1412     case lltok::kw_sanitize_address:
1413     case lltok::kw_sanitize_memory:
1414     case lltok::kw_sanitize_thread:
1415     case lltok::kw_ssp:
1416     case lltok::kw_sspreq:
1417     case lltok::kw_sspstrong:
1418     case lltok::kw_safestack:
1419     case lltok::kw_uwtable:
1420       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1421       break;
1422     }
1423 
1424     Lex.Lex();
1425   }
1426 }
1427 
1428 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1429 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1430   bool HaveError = false;
1431 
1432   B.clear();
1433 
1434   while (1) {
1435     lltok::Kind Token = Lex.getKind();
1436     switch (Token) {
1437     default:  // End of attributes.
1438       return HaveError;
1439     case lltok::StringConstant: {
1440       if (ParseStringAttribute(B))
1441         return true;
1442       continue;
1443     }
1444     case lltok::kw_dereferenceable: {
1445       uint64_t Bytes;
1446       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1447         return true;
1448       B.addDereferenceableAttr(Bytes);
1449       continue;
1450     }
1451     case lltok::kw_dereferenceable_or_null: {
1452       uint64_t Bytes;
1453       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1454         return true;
1455       B.addDereferenceableOrNullAttr(Bytes);
1456       continue;
1457     }
1458     case lltok::kw_align: {
1459       unsigned Alignment;
1460       if (ParseOptionalAlignment(Alignment))
1461         return true;
1462       B.addAlignmentAttr(Alignment);
1463       continue;
1464     }
1465     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1466     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1467     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1468     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1469     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1470 
1471     // Error handling.
1472     case lltok::kw_byval:
1473     case lltok::kw_inalloca:
1474     case lltok::kw_nest:
1475     case lltok::kw_nocapture:
1476     case lltok::kw_returned:
1477     case lltok::kw_sret:
1478     case lltok::kw_swifterror:
1479     case lltok::kw_swiftself:
1480       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1481       break;
1482 
1483     case lltok::kw_alignstack:
1484     case lltok::kw_alwaysinline:
1485     case lltok::kw_argmemonly:
1486     case lltok::kw_builtin:
1487     case lltok::kw_cold:
1488     case lltok::kw_inlinehint:
1489     case lltok::kw_jumptable:
1490     case lltok::kw_minsize:
1491     case lltok::kw_naked:
1492     case lltok::kw_nobuiltin:
1493     case lltok::kw_noduplicate:
1494     case lltok::kw_noimplicitfloat:
1495     case lltok::kw_noinline:
1496     case lltok::kw_nonlazybind:
1497     case lltok::kw_noredzone:
1498     case lltok::kw_noreturn:
1499     case lltok::kw_nounwind:
1500     case lltok::kw_optnone:
1501     case lltok::kw_optsize:
1502     case lltok::kw_returns_twice:
1503     case lltok::kw_sanitize_address:
1504     case lltok::kw_sanitize_memory:
1505     case lltok::kw_sanitize_thread:
1506     case lltok::kw_ssp:
1507     case lltok::kw_sspreq:
1508     case lltok::kw_sspstrong:
1509     case lltok::kw_safestack:
1510     case lltok::kw_uwtable:
1511       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1512       break;
1513 
1514     case lltok::kw_readnone:
1515     case lltok::kw_readonly:
1516       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1517     }
1518 
1519     Lex.Lex();
1520   }
1521 }
1522 
1523 /// ParseOptionalLinkage
1524 ///   ::= /*empty*/
1525 ///   ::= 'private'
1526 ///   ::= 'internal'
1527 ///   ::= 'weak'
1528 ///   ::= 'weak_odr'
1529 ///   ::= 'linkonce'
1530 ///   ::= 'linkonce_odr'
1531 ///   ::= 'available_externally'
1532 ///   ::= 'appending'
1533 ///   ::= 'common'
1534 ///   ::= 'extern_weak'
1535 ///   ::= 'external'
1536 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1537   HasLinkage = false;
1538   switch (Lex.getKind()) {
1539   default:                       Res=GlobalValue::ExternalLinkage; return false;
1540   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1541   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1542   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1543   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1544   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1545   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1546   case lltok::kw_available_externally:
1547     Res = GlobalValue::AvailableExternallyLinkage;
1548     break;
1549   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1550   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1551   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1552   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1553   }
1554   Lex.Lex();
1555   HasLinkage = true;
1556   return false;
1557 }
1558 
1559 /// ParseOptionalVisibility
1560 ///   ::= /*empty*/
1561 ///   ::= 'default'
1562 ///   ::= 'hidden'
1563 ///   ::= 'protected'
1564 ///
1565 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1566   switch (Lex.getKind()) {
1567   default:                  Res = GlobalValue::DefaultVisibility; return false;
1568   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1569   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1570   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1571   }
1572   Lex.Lex();
1573   return false;
1574 }
1575 
1576 /// ParseOptionalDLLStorageClass
1577 ///   ::= /*empty*/
1578 ///   ::= 'dllimport'
1579 ///   ::= 'dllexport'
1580 ///
1581 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1582   switch (Lex.getKind()) {
1583   default:                  Res = GlobalValue::DefaultStorageClass; return false;
1584   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1585   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1586   }
1587   Lex.Lex();
1588   return false;
1589 }
1590 
1591 /// ParseOptionalCallingConv
1592 ///   ::= /*empty*/
1593 ///   ::= 'ccc'
1594 ///   ::= 'fastcc'
1595 ///   ::= 'intel_ocl_bicc'
1596 ///   ::= 'coldcc'
1597 ///   ::= 'x86_stdcallcc'
1598 ///   ::= 'x86_fastcallcc'
1599 ///   ::= 'x86_thiscallcc'
1600 ///   ::= 'x86_vectorcallcc'
1601 ///   ::= 'arm_apcscc'
1602 ///   ::= 'arm_aapcscc'
1603 ///   ::= 'arm_aapcs_vfpcc'
1604 ///   ::= 'msp430_intrcc'
1605 ///   ::= 'avr_intrcc'
1606 ///   ::= 'avr_signalcc'
1607 ///   ::= 'ptx_kernel'
1608 ///   ::= 'ptx_device'
1609 ///   ::= 'spir_func'
1610 ///   ::= 'spir_kernel'
1611 ///   ::= 'x86_64_sysvcc'
1612 ///   ::= 'x86_64_win64cc'
1613 ///   ::= 'webkit_jscc'
1614 ///   ::= 'anyregcc'
1615 ///   ::= 'preserve_mostcc'
1616 ///   ::= 'preserve_allcc'
1617 ///   ::= 'ghccc'
1618 ///   ::= 'swiftcc'
1619 ///   ::= 'x86_intrcc'
1620 ///   ::= 'hhvmcc'
1621 ///   ::= 'hhvm_ccc'
1622 ///   ::= 'cxx_fast_tlscc'
1623 ///   ::= 'amdgpu_vs'
1624 ///   ::= 'amdgpu_tcs'
1625 ///   ::= 'amdgpu_tes'
1626 ///   ::= 'amdgpu_gs'
1627 ///   ::= 'amdgpu_ps'
1628 ///   ::= 'amdgpu_cs'
1629 ///   ::= 'cc' UINT
1630 ///
1631 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1632   switch (Lex.getKind()) {
1633   default:                       CC = CallingConv::C; return false;
1634   case lltok::kw_ccc:            CC = CallingConv::C; break;
1635   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1636   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1637   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1638   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1639   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1640   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1641   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1642   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1643   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1644   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1645   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1646   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1647   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1648   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1649   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1650   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1651   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1652   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1653   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1654   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1655   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1656   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1657   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1658   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1659   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1660   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1661   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1662   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1663   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1664   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1665   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1666   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1667   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1668   case lltok::kw_cc: {
1669       Lex.Lex();
1670       return ParseUInt32(CC);
1671     }
1672   }
1673 
1674   Lex.Lex();
1675   return false;
1676 }
1677 
1678 /// ParseMetadataAttachment
1679 ///   ::= !dbg !42
1680 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1681   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1682 
1683   std::string Name = Lex.getStrVal();
1684   Kind = M->getMDKindID(Name);
1685   Lex.Lex();
1686 
1687   return ParseMDNode(MD);
1688 }
1689 
1690 /// ParseInstructionMetadata
1691 ///   ::= !dbg !42 (',' !dbg !57)*
1692 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1693   do {
1694     if (Lex.getKind() != lltok::MetadataVar)
1695       return TokError("expected metadata after comma");
1696 
1697     unsigned MDK;
1698     MDNode *N;
1699     if (ParseMetadataAttachment(MDK, N))
1700       return true;
1701 
1702     Inst.setMetadata(MDK, N);
1703     if (MDK == LLVMContext::MD_tbaa)
1704       InstsWithTBAATag.push_back(&Inst);
1705 
1706     // If this is the end of the list, we're done.
1707   } while (EatIfPresent(lltok::comma));
1708   return false;
1709 }
1710 
1711 /// ParseOptionalFunctionMetadata
1712 ///   ::= (!dbg !57)*
1713 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1714   while (Lex.getKind() == lltok::MetadataVar) {
1715     unsigned MDK;
1716     MDNode *N;
1717     if (ParseMetadataAttachment(MDK, N))
1718       return true;
1719 
1720     F.setMetadata(MDK, N);
1721   }
1722   return false;
1723 }
1724 
1725 /// ParseOptionalAlignment
1726 ///   ::= /* empty */
1727 ///   ::= 'align' 4
1728 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1729   Alignment = 0;
1730   if (!EatIfPresent(lltok::kw_align))
1731     return false;
1732   LocTy AlignLoc = Lex.getLoc();
1733   if (ParseUInt32(Alignment)) return true;
1734   if (!isPowerOf2_32(Alignment))
1735     return Error(AlignLoc, "alignment is not a power of two");
1736   if (Alignment > Value::MaximumAlignment)
1737     return Error(AlignLoc, "huge alignments are not supported yet");
1738   return false;
1739 }
1740 
1741 /// ParseOptionalDerefAttrBytes
1742 ///   ::= /* empty */
1743 ///   ::= AttrKind '(' 4 ')'
1744 ///
1745 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1746 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1747                                            uint64_t &Bytes) {
1748   assert((AttrKind == lltok::kw_dereferenceable ||
1749           AttrKind == lltok::kw_dereferenceable_or_null) &&
1750          "contract!");
1751 
1752   Bytes = 0;
1753   if (!EatIfPresent(AttrKind))
1754     return false;
1755   LocTy ParenLoc = Lex.getLoc();
1756   if (!EatIfPresent(lltok::lparen))
1757     return Error(ParenLoc, "expected '('");
1758   LocTy DerefLoc = Lex.getLoc();
1759   if (ParseUInt64(Bytes)) return true;
1760   ParenLoc = Lex.getLoc();
1761   if (!EatIfPresent(lltok::rparen))
1762     return Error(ParenLoc, "expected ')'");
1763   if (!Bytes)
1764     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1765   return false;
1766 }
1767 
1768 /// ParseOptionalCommaAlign
1769 ///   ::=
1770 ///   ::= ',' align 4
1771 ///
1772 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1773 /// end.
1774 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1775                                        bool &AteExtraComma) {
1776   AteExtraComma = false;
1777   while (EatIfPresent(lltok::comma)) {
1778     // Metadata at the end is an early exit.
1779     if (Lex.getKind() == lltok::MetadataVar) {
1780       AteExtraComma = true;
1781       return false;
1782     }
1783 
1784     if (Lex.getKind() != lltok::kw_align)
1785       return Error(Lex.getLoc(), "expected metadata or 'align'");
1786 
1787     if (ParseOptionalAlignment(Alignment)) return true;
1788   }
1789 
1790   return false;
1791 }
1792 
1793 /// ParseScopeAndOrdering
1794 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1795 ///   else: ::=
1796 ///
1797 /// This sets Scope and Ordering to the parsed values.
1798 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1799                                      AtomicOrdering &Ordering) {
1800   if (!isAtomic)
1801     return false;
1802 
1803   Scope = CrossThread;
1804   if (EatIfPresent(lltok::kw_singlethread))
1805     Scope = SingleThread;
1806 
1807   return ParseOrdering(Ordering);
1808 }
1809 
1810 /// ParseOrdering
1811 ///   ::= AtomicOrdering
1812 ///
1813 /// This sets Ordering to the parsed value.
1814 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1815   switch (Lex.getKind()) {
1816   default: return TokError("Expected ordering on atomic instruction");
1817   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1818   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1819   // Not specified yet:
1820   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1821   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1822   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1823   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1824   case lltok::kw_seq_cst:
1825     Ordering = AtomicOrdering::SequentiallyConsistent;
1826     break;
1827   }
1828   Lex.Lex();
1829   return false;
1830 }
1831 
1832 /// ParseOptionalStackAlignment
1833 ///   ::= /* empty */
1834 ///   ::= 'alignstack' '(' 4 ')'
1835 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1836   Alignment = 0;
1837   if (!EatIfPresent(lltok::kw_alignstack))
1838     return false;
1839   LocTy ParenLoc = Lex.getLoc();
1840   if (!EatIfPresent(lltok::lparen))
1841     return Error(ParenLoc, "expected '('");
1842   LocTy AlignLoc = Lex.getLoc();
1843   if (ParseUInt32(Alignment)) return true;
1844   ParenLoc = Lex.getLoc();
1845   if (!EatIfPresent(lltok::rparen))
1846     return Error(ParenLoc, "expected ')'");
1847   if (!isPowerOf2_32(Alignment))
1848     return Error(AlignLoc, "stack alignment is not a power of two");
1849   return false;
1850 }
1851 
1852 /// ParseIndexList - This parses the index list for an insert/extractvalue
1853 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1854 /// comma at the end of the line and find that it is followed by metadata.
1855 /// Clients that don't allow metadata can call the version of this function that
1856 /// only takes one argument.
1857 ///
1858 /// ParseIndexList
1859 ///    ::=  (',' uint32)+
1860 ///
1861 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1862                               bool &AteExtraComma) {
1863   AteExtraComma = false;
1864 
1865   if (Lex.getKind() != lltok::comma)
1866     return TokError("expected ',' as start of index list");
1867 
1868   while (EatIfPresent(lltok::comma)) {
1869     if (Lex.getKind() == lltok::MetadataVar) {
1870       if (Indices.empty()) return TokError("expected index");
1871       AteExtraComma = true;
1872       return false;
1873     }
1874     unsigned Idx = 0;
1875     if (ParseUInt32(Idx)) return true;
1876     Indices.push_back(Idx);
1877   }
1878 
1879   return false;
1880 }
1881 
1882 //===----------------------------------------------------------------------===//
1883 // Type Parsing.
1884 //===----------------------------------------------------------------------===//
1885 
1886 /// ParseType - Parse a type.
1887 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1888   SMLoc TypeLoc = Lex.getLoc();
1889   switch (Lex.getKind()) {
1890   default:
1891     return TokError(Msg);
1892   case lltok::Type:
1893     // Type ::= 'float' | 'void' (etc)
1894     Result = Lex.getTyVal();
1895     Lex.Lex();
1896     break;
1897   case lltok::lbrace:
1898     // Type ::= StructType
1899     if (ParseAnonStructType(Result, false))
1900       return true;
1901     break;
1902   case lltok::lsquare:
1903     // Type ::= '[' ... ']'
1904     Lex.Lex(); // eat the lsquare.
1905     if (ParseArrayVectorType(Result, false))
1906       return true;
1907     break;
1908   case lltok::less: // Either vector or packed struct.
1909     // Type ::= '<' ... '>'
1910     Lex.Lex();
1911     if (Lex.getKind() == lltok::lbrace) {
1912       if (ParseAnonStructType(Result, true) ||
1913           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1914         return true;
1915     } else if (ParseArrayVectorType(Result, true))
1916       return true;
1917     break;
1918   case lltok::LocalVar: {
1919     // Type ::= %foo
1920     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1921 
1922     // If the type hasn't been defined yet, create a forward definition and
1923     // remember where that forward def'n was seen (in case it never is defined).
1924     if (!Entry.first) {
1925       Entry.first = StructType::create(Context, Lex.getStrVal());
1926       Entry.second = Lex.getLoc();
1927     }
1928     Result = Entry.first;
1929     Lex.Lex();
1930     break;
1931   }
1932 
1933   case lltok::LocalVarID: {
1934     // Type ::= %4
1935     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1936 
1937     // If the type hasn't been defined yet, create a forward definition and
1938     // remember where that forward def'n was seen (in case it never is defined).
1939     if (!Entry.first) {
1940       Entry.first = StructType::create(Context);
1941       Entry.second = Lex.getLoc();
1942     }
1943     Result = Entry.first;
1944     Lex.Lex();
1945     break;
1946   }
1947   }
1948 
1949   // Parse the type suffixes.
1950   while (1) {
1951     switch (Lex.getKind()) {
1952     // End of type.
1953     default:
1954       if (!AllowVoid && Result->isVoidTy())
1955         return Error(TypeLoc, "void type only allowed for function results");
1956       return false;
1957 
1958     // Type ::= Type '*'
1959     case lltok::star:
1960       if (Result->isLabelTy())
1961         return TokError("basic block pointers are invalid");
1962       if (Result->isVoidTy())
1963         return TokError("pointers to void are invalid - use i8* instead");
1964       if (!PointerType::isValidElementType(Result))
1965         return TokError("pointer to this type is invalid");
1966       Result = PointerType::getUnqual(Result);
1967       Lex.Lex();
1968       break;
1969 
1970     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1971     case lltok::kw_addrspace: {
1972       if (Result->isLabelTy())
1973         return TokError("basic block pointers are invalid");
1974       if (Result->isVoidTy())
1975         return TokError("pointers to void are invalid; use i8* instead");
1976       if (!PointerType::isValidElementType(Result))
1977         return TokError("pointer to this type is invalid");
1978       unsigned AddrSpace;
1979       if (ParseOptionalAddrSpace(AddrSpace) ||
1980           ParseToken(lltok::star, "expected '*' in address space"))
1981         return true;
1982 
1983       Result = PointerType::get(Result, AddrSpace);
1984       break;
1985     }
1986 
1987     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1988     case lltok::lparen:
1989       if (ParseFunctionType(Result))
1990         return true;
1991       break;
1992     }
1993   }
1994 }
1995 
1996 /// ParseParameterList
1997 ///    ::= '(' ')'
1998 ///    ::= '(' Arg (',' Arg)* ')'
1999 ///  Arg
2000 ///    ::= Type OptionalAttributes Value OptionalAttributes
2001 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2002                                   PerFunctionState &PFS, bool IsMustTailCall,
2003                                   bool InVarArgsFunc) {
2004   if (ParseToken(lltok::lparen, "expected '(' in call"))
2005     return true;
2006 
2007   unsigned AttrIndex = 1;
2008   while (Lex.getKind() != lltok::rparen) {
2009     // If this isn't the first argument, we need a comma.
2010     if (!ArgList.empty() &&
2011         ParseToken(lltok::comma, "expected ',' in argument list"))
2012       return true;
2013 
2014     // Parse an ellipsis if this is a musttail call in a variadic function.
2015     if (Lex.getKind() == lltok::dotdotdot) {
2016       const char *Msg = "unexpected ellipsis in argument list for ";
2017       if (!IsMustTailCall)
2018         return TokError(Twine(Msg) + "non-musttail call");
2019       if (!InVarArgsFunc)
2020         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2021       Lex.Lex();  // Lex the '...', it is purely for readability.
2022       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2023     }
2024 
2025     // Parse the argument.
2026     LocTy ArgLoc;
2027     Type *ArgTy = nullptr;
2028     AttrBuilder ArgAttrs;
2029     Value *V;
2030     if (ParseType(ArgTy, ArgLoc))
2031       return true;
2032 
2033     if (ArgTy->isMetadataTy()) {
2034       if (ParseMetadataAsValue(V, PFS))
2035         return true;
2036     } else {
2037       // Otherwise, handle normal operands.
2038       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2039         return true;
2040     }
2041     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2042                                                              AttrIndex++,
2043                                                              ArgAttrs)));
2044   }
2045 
2046   if (IsMustTailCall && InVarArgsFunc)
2047     return TokError("expected '...' at end of argument list for musttail call "
2048                     "in varargs function");
2049 
2050   Lex.Lex();  // Lex the ')'.
2051   return false;
2052 }
2053 
2054 /// ParseOptionalOperandBundles
2055 ///    ::= /*empty*/
2056 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2057 ///
2058 /// OperandBundle
2059 ///    ::= bundle-tag '(' ')'
2060 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2061 ///
2062 /// bundle-tag ::= String Constant
2063 bool LLParser::ParseOptionalOperandBundles(
2064     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2065   LocTy BeginLoc = Lex.getLoc();
2066   if (!EatIfPresent(lltok::lsquare))
2067     return false;
2068 
2069   while (Lex.getKind() != lltok::rsquare) {
2070     // If this isn't the first operand bundle, we need a comma.
2071     if (!BundleList.empty() &&
2072         ParseToken(lltok::comma, "expected ',' in input list"))
2073       return true;
2074 
2075     std::string Tag;
2076     if (ParseStringConstant(Tag))
2077       return true;
2078 
2079     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2080       return true;
2081 
2082     std::vector<Value *> Inputs;
2083     while (Lex.getKind() != lltok::rparen) {
2084       // If this isn't the first input, we need a comma.
2085       if (!Inputs.empty() &&
2086           ParseToken(lltok::comma, "expected ',' in input list"))
2087         return true;
2088 
2089       Type *Ty = nullptr;
2090       Value *Input = nullptr;
2091       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2092         return true;
2093       Inputs.push_back(Input);
2094     }
2095 
2096     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2097 
2098     Lex.Lex(); // Lex the ')'.
2099   }
2100 
2101   if (BundleList.empty())
2102     return Error(BeginLoc, "operand bundle set must not be empty");
2103 
2104   Lex.Lex(); // Lex the ']'.
2105   return false;
2106 }
2107 
2108 /// ParseArgumentList - Parse the argument list for a function type or function
2109 /// prototype.
2110 ///   ::= '(' ArgTypeListI ')'
2111 /// ArgTypeListI
2112 ///   ::= /*empty*/
2113 ///   ::= '...'
2114 ///   ::= ArgTypeList ',' '...'
2115 ///   ::= ArgType (',' ArgType)*
2116 ///
2117 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2118                                  bool &isVarArg){
2119   isVarArg = false;
2120   assert(Lex.getKind() == lltok::lparen);
2121   Lex.Lex(); // eat the (.
2122 
2123   if (Lex.getKind() == lltok::rparen) {
2124     // empty
2125   } else if (Lex.getKind() == lltok::dotdotdot) {
2126     isVarArg = true;
2127     Lex.Lex();
2128   } else {
2129     LocTy TypeLoc = Lex.getLoc();
2130     Type *ArgTy = nullptr;
2131     AttrBuilder Attrs;
2132     std::string Name;
2133 
2134     if (ParseType(ArgTy) ||
2135         ParseOptionalParamAttrs(Attrs)) return true;
2136 
2137     if (ArgTy->isVoidTy())
2138       return Error(TypeLoc, "argument can not have void type");
2139 
2140     if (Lex.getKind() == lltok::LocalVar) {
2141       Name = Lex.getStrVal();
2142       Lex.Lex();
2143     }
2144 
2145     if (!FunctionType::isValidArgumentType(ArgTy))
2146       return Error(TypeLoc, "invalid type for function argument");
2147 
2148     unsigned AttrIndex = 1;
2149     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2150                                                            AttrIndex++, Attrs),
2151                          std::move(Name));
2152 
2153     while (EatIfPresent(lltok::comma)) {
2154       // Handle ... at end of arg list.
2155       if (EatIfPresent(lltok::dotdotdot)) {
2156         isVarArg = true;
2157         break;
2158       }
2159 
2160       // Otherwise must be an argument type.
2161       TypeLoc = Lex.getLoc();
2162       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2163 
2164       if (ArgTy->isVoidTy())
2165         return Error(TypeLoc, "argument can not have void type");
2166 
2167       if (Lex.getKind() == lltok::LocalVar) {
2168         Name = Lex.getStrVal();
2169         Lex.Lex();
2170       } else {
2171         Name = "";
2172       }
2173 
2174       if (!ArgTy->isFirstClassType())
2175         return Error(TypeLoc, "invalid type for function argument");
2176 
2177       ArgList.emplace_back(
2178           TypeLoc, ArgTy,
2179           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2180           std::move(Name));
2181     }
2182   }
2183 
2184   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2185 }
2186 
2187 /// ParseFunctionType
2188 ///  ::= Type ArgumentList OptionalAttrs
2189 bool LLParser::ParseFunctionType(Type *&Result) {
2190   assert(Lex.getKind() == lltok::lparen);
2191 
2192   if (!FunctionType::isValidReturnType(Result))
2193     return TokError("invalid function return type");
2194 
2195   SmallVector<ArgInfo, 8> ArgList;
2196   bool isVarArg;
2197   if (ParseArgumentList(ArgList, isVarArg))
2198     return true;
2199 
2200   // Reject names on the arguments lists.
2201   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2202     if (!ArgList[i].Name.empty())
2203       return Error(ArgList[i].Loc, "argument name invalid in function type");
2204     if (ArgList[i].Attrs.hasAttributes(i + 1))
2205       return Error(ArgList[i].Loc,
2206                    "argument attributes invalid in function type");
2207   }
2208 
2209   SmallVector<Type*, 16> ArgListTy;
2210   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2211     ArgListTy.push_back(ArgList[i].Ty);
2212 
2213   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2214   return false;
2215 }
2216 
2217 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2218 /// other structs.
2219 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2220   SmallVector<Type*, 8> Elts;
2221   if (ParseStructBody(Elts)) return true;
2222 
2223   Result = StructType::get(Context, Elts, Packed);
2224   return false;
2225 }
2226 
2227 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2228 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2229                                      std::pair<Type*, LocTy> &Entry,
2230                                      Type *&ResultTy) {
2231   // If the type was already defined, diagnose the redefinition.
2232   if (Entry.first && !Entry.second.isValid())
2233     return Error(TypeLoc, "redefinition of type");
2234 
2235   // If we have opaque, just return without filling in the definition for the
2236   // struct.  This counts as a definition as far as the .ll file goes.
2237   if (EatIfPresent(lltok::kw_opaque)) {
2238     // This type is being defined, so clear the location to indicate this.
2239     Entry.second = SMLoc();
2240 
2241     // If this type number has never been uttered, create it.
2242     if (!Entry.first)
2243       Entry.first = StructType::create(Context, Name);
2244     ResultTy = Entry.first;
2245     return false;
2246   }
2247 
2248   // If the type starts with '<', then it is either a packed struct or a vector.
2249   bool isPacked = EatIfPresent(lltok::less);
2250 
2251   // If we don't have a struct, then we have a random type alias, which we
2252   // accept for compatibility with old files.  These types are not allowed to be
2253   // forward referenced and not allowed to be recursive.
2254   if (Lex.getKind() != lltok::lbrace) {
2255     if (Entry.first)
2256       return Error(TypeLoc, "forward references to non-struct type");
2257 
2258     ResultTy = nullptr;
2259     if (isPacked)
2260       return ParseArrayVectorType(ResultTy, true);
2261     return ParseType(ResultTy);
2262   }
2263 
2264   // This type is being defined, so clear the location to indicate this.
2265   Entry.second = SMLoc();
2266 
2267   // If this type number has never been uttered, create it.
2268   if (!Entry.first)
2269     Entry.first = StructType::create(Context, Name);
2270 
2271   StructType *STy = cast<StructType>(Entry.first);
2272 
2273   SmallVector<Type*, 8> Body;
2274   if (ParseStructBody(Body) ||
2275       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2276     return true;
2277 
2278   STy->setBody(Body, isPacked);
2279   ResultTy = STy;
2280   return false;
2281 }
2282 
2283 
2284 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2285 ///   StructType
2286 ///     ::= '{' '}'
2287 ///     ::= '{' Type (',' Type)* '}'
2288 ///     ::= '<' '{' '}' '>'
2289 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2290 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2291   assert(Lex.getKind() == lltok::lbrace);
2292   Lex.Lex(); // Consume the '{'
2293 
2294   // Handle the empty struct.
2295   if (EatIfPresent(lltok::rbrace))
2296     return false;
2297 
2298   LocTy EltTyLoc = Lex.getLoc();
2299   Type *Ty = nullptr;
2300   if (ParseType(Ty)) return true;
2301   Body.push_back(Ty);
2302 
2303   if (!StructType::isValidElementType(Ty))
2304     return Error(EltTyLoc, "invalid element type for struct");
2305 
2306   while (EatIfPresent(lltok::comma)) {
2307     EltTyLoc = Lex.getLoc();
2308     if (ParseType(Ty)) return true;
2309 
2310     if (!StructType::isValidElementType(Ty))
2311       return Error(EltTyLoc, "invalid element type for struct");
2312 
2313     Body.push_back(Ty);
2314   }
2315 
2316   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2317 }
2318 
2319 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2320 /// token has already been consumed.
2321 ///   Type
2322 ///     ::= '[' APSINTVAL 'x' Types ']'
2323 ///     ::= '<' APSINTVAL 'x' Types '>'
2324 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2325   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2326       Lex.getAPSIntVal().getBitWidth() > 64)
2327     return TokError("expected number in address space");
2328 
2329   LocTy SizeLoc = Lex.getLoc();
2330   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2331   Lex.Lex();
2332 
2333   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2334       return true;
2335 
2336   LocTy TypeLoc = Lex.getLoc();
2337   Type *EltTy = nullptr;
2338   if (ParseType(EltTy)) return true;
2339 
2340   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2341                  "expected end of sequential type"))
2342     return true;
2343 
2344   if (isVector) {
2345     if (Size == 0)
2346       return Error(SizeLoc, "zero element vector is illegal");
2347     if ((unsigned)Size != Size)
2348       return Error(SizeLoc, "size too large for vector");
2349     if (!VectorType::isValidElementType(EltTy))
2350       return Error(TypeLoc, "invalid vector element type");
2351     Result = VectorType::get(EltTy, unsigned(Size));
2352   } else {
2353     if (!ArrayType::isValidElementType(EltTy))
2354       return Error(TypeLoc, "invalid array element type");
2355     Result = ArrayType::get(EltTy, Size);
2356   }
2357   return false;
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // Function Semantic Analysis.
2362 //===----------------------------------------------------------------------===//
2363 
2364 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2365                                              int functionNumber)
2366   : P(p), F(f), FunctionNumber(functionNumber) {
2367 
2368   // Insert unnamed arguments into the NumberedVals list.
2369   for (Argument &A : F.args())
2370     if (!A.hasName())
2371       NumberedVals.push_back(&A);
2372 }
2373 
2374 LLParser::PerFunctionState::~PerFunctionState() {
2375   // If there were any forward referenced non-basicblock values, delete them.
2376 
2377   for (const auto &P : ForwardRefVals) {
2378     if (isa<BasicBlock>(P.second.first))
2379       continue;
2380     P.second.first->replaceAllUsesWith(
2381         UndefValue::get(P.second.first->getType()));
2382     delete P.second.first;
2383   }
2384 
2385   for (const auto &P : ForwardRefValIDs) {
2386     if (isa<BasicBlock>(P.second.first))
2387       continue;
2388     P.second.first->replaceAllUsesWith(
2389         UndefValue::get(P.second.first->getType()));
2390     delete P.second.first;
2391   }
2392 }
2393 
2394 bool LLParser::PerFunctionState::FinishFunction() {
2395   if (!ForwardRefVals.empty())
2396     return P.Error(ForwardRefVals.begin()->second.second,
2397                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2398                    "'");
2399   if (!ForwardRefValIDs.empty())
2400     return P.Error(ForwardRefValIDs.begin()->second.second,
2401                    "use of undefined value '%" +
2402                    Twine(ForwardRefValIDs.begin()->first) + "'");
2403   return false;
2404 }
2405 
2406 
2407 /// GetVal - Get a value with the specified name or ID, creating a
2408 /// forward reference record if needed.  This can return null if the value
2409 /// exists but does not have the right type.
2410 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2411                                           LocTy Loc) {
2412   // Look this name up in the normal function symbol table.
2413   Value *Val = F.getValueSymbolTable().lookup(Name);
2414 
2415   // If this is a forward reference for the value, see if we already created a
2416   // forward ref record.
2417   if (!Val) {
2418     auto I = ForwardRefVals.find(Name);
2419     if (I != ForwardRefVals.end())
2420       Val = I->second.first;
2421   }
2422 
2423   // If we have the value in the symbol table or fwd-ref table, return it.
2424   if (Val) {
2425     if (Val->getType() == Ty) return Val;
2426     if (Ty->isLabelTy())
2427       P.Error(Loc, "'%" + Name + "' is not a basic block");
2428     else
2429       P.Error(Loc, "'%" + Name + "' defined with type '" +
2430               getTypeString(Val->getType()) + "'");
2431     return nullptr;
2432   }
2433 
2434   // Don't make placeholders with invalid type.
2435   if (!Ty->isFirstClassType()) {
2436     P.Error(Loc, "invalid use of a non-first-class type");
2437     return nullptr;
2438   }
2439 
2440   // Otherwise, create a new forward reference for this value and remember it.
2441   Value *FwdVal;
2442   if (Ty->isLabelTy()) {
2443     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2444   } else {
2445     FwdVal = new Argument(Ty, Name);
2446   }
2447 
2448   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2449   return FwdVal;
2450 }
2451 
2452 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2453   // Look this name up in the normal function symbol table.
2454   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2455 
2456   // If this is a forward reference for the value, see if we already created a
2457   // forward ref record.
2458   if (!Val) {
2459     auto I = ForwardRefValIDs.find(ID);
2460     if (I != ForwardRefValIDs.end())
2461       Val = I->second.first;
2462   }
2463 
2464   // If we have the value in the symbol table or fwd-ref table, return it.
2465   if (Val) {
2466     if (Val->getType() == Ty) return Val;
2467     if (Ty->isLabelTy())
2468       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2469     else
2470       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2471               getTypeString(Val->getType()) + "'");
2472     return nullptr;
2473   }
2474 
2475   if (!Ty->isFirstClassType()) {
2476     P.Error(Loc, "invalid use of a non-first-class type");
2477     return nullptr;
2478   }
2479 
2480   // Otherwise, create a new forward reference for this value and remember it.
2481   Value *FwdVal;
2482   if (Ty->isLabelTy()) {
2483     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2484   } else {
2485     FwdVal = new Argument(Ty);
2486   }
2487 
2488   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2489   return FwdVal;
2490 }
2491 
2492 /// SetInstName - After an instruction is parsed and inserted into its
2493 /// basic block, this installs its name.
2494 bool LLParser::PerFunctionState::SetInstName(int NameID,
2495                                              const std::string &NameStr,
2496                                              LocTy NameLoc, Instruction *Inst) {
2497   // If this instruction has void type, it cannot have a name or ID specified.
2498   if (Inst->getType()->isVoidTy()) {
2499     if (NameID != -1 || !NameStr.empty())
2500       return P.Error(NameLoc, "instructions returning void cannot have a name");
2501     return false;
2502   }
2503 
2504   // If this was a numbered instruction, verify that the instruction is the
2505   // expected value and resolve any forward references.
2506   if (NameStr.empty()) {
2507     // If neither a name nor an ID was specified, just use the next ID.
2508     if (NameID == -1)
2509       NameID = NumberedVals.size();
2510 
2511     if (unsigned(NameID) != NumberedVals.size())
2512       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2513                      Twine(NumberedVals.size()) + "'");
2514 
2515     auto FI = ForwardRefValIDs.find(NameID);
2516     if (FI != ForwardRefValIDs.end()) {
2517       Value *Sentinel = FI->second.first;
2518       if (Sentinel->getType() != Inst->getType())
2519         return P.Error(NameLoc, "instruction forward referenced with type '" +
2520                        getTypeString(FI->second.first->getType()) + "'");
2521 
2522       Sentinel->replaceAllUsesWith(Inst);
2523       delete Sentinel;
2524       ForwardRefValIDs.erase(FI);
2525     }
2526 
2527     NumberedVals.push_back(Inst);
2528     return false;
2529   }
2530 
2531   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2532   auto FI = ForwardRefVals.find(NameStr);
2533   if (FI != ForwardRefVals.end()) {
2534     Value *Sentinel = FI->second.first;
2535     if (Sentinel->getType() != Inst->getType())
2536       return P.Error(NameLoc, "instruction forward referenced with type '" +
2537                      getTypeString(FI->second.first->getType()) + "'");
2538 
2539     Sentinel->replaceAllUsesWith(Inst);
2540     delete Sentinel;
2541     ForwardRefVals.erase(FI);
2542   }
2543 
2544   // Set the name on the instruction.
2545   Inst->setName(NameStr);
2546 
2547   if (Inst->getName() != NameStr)
2548     return P.Error(NameLoc, "multiple definition of local value named '" +
2549                    NameStr + "'");
2550   return false;
2551 }
2552 
2553 /// GetBB - Get a basic block with the specified name or ID, creating a
2554 /// forward reference record if needed.
2555 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2556                                               LocTy Loc) {
2557   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2558                                       Type::getLabelTy(F.getContext()), Loc));
2559 }
2560 
2561 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2562   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2563                                       Type::getLabelTy(F.getContext()), Loc));
2564 }
2565 
2566 /// DefineBB - Define the specified basic block, which is either named or
2567 /// unnamed.  If there is an error, this returns null otherwise it returns
2568 /// the block being defined.
2569 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2570                                                  LocTy Loc) {
2571   BasicBlock *BB;
2572   if (Name.empty())
2573     BB = GetBB(NumberedVals.size(), Loc);
2574   else
2575     BB = GetBB(Name, Loc);
2576   if (!BB) return nullptr; // Already diagnosed error.
2577 
2578   // Move the block to the end of the function.  Forward ref'd blocks are
2579   // inserted wherever they happen to be referenced.
2580   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2581 
2582   // Remove the block from forward ref sets.
2583   if (Name.empty()) {
2584     ForwardRefValIDs.erase(NumberedVals.size());
2585     NumberedVals.push_back(BB);
2586   } else {
2587     // BB forward references are already in the function symbol table.
2588     ForwardRefVals.erase(Name);
2589   }
2590 
2591   return BB;
2592 }
2593 
2594 //===----------------------------------------------------------------------===//
2595 // Constants.
2596 //===----------------------------------------------------------------------===//
2597 
2598 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2599 /// type implied.  For example, if we parse "4" we don't know what integer type
2600 /// it has.  The value will later be combined with its type and checked for
2601 /// sanity.  PFS is used to convert function-local operands of metadata (since
2602 /// metadata operands are not just parsed here but also converted to values).
2603 /// PFS can be null when we are not parsing metadata values inside a function.
2604 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2605   ID.Loc = Lex.getLoc();
2606   switch (Lex.getKind()) {
2607   default: return TokError("expected value token");
2608   case lltok::GlobalID:  // @42
2609     ID.UIntVal = Lex.getUIntVal();
2610     ID.Kind = ValID::t_GlobalID;
2611     break;
2612   case lltok::GlobalVar:  // @foo
2613     ID.StrVal = Lex.getStrVal();
2614     ID.Kind = ValID::t_GlobalName;
2615     break;
2616   case lltok::LocalVarID:  // %42
2617     ID.UIntVal = Lex.getUIntVal();
2618     ID.Kind = ValID::t_LocalID;
2619     break;
2620   case lltok::LocalVar:  // %foo
2621     ID.StrVal = Lex.getStrVal();
2622     ID.Kind = ValID::t_LocalName;
2623     break;
2624   case lltok::APSInt:
2625     ID.APSIntVal = Lex.getAPSIntVal();
2626     ID.Kind = ValID::t_APSInt;
2627     break;
2628   case lltok::APFloat:
2629     ID.APFloatVal = Lex.getAPFloatVal();
2630     ID.Kind = ValID::t_APFloat;
2631     break;
2632   case lltok::kw_true:
2633     ID.ConstantVal = ConstantInt::getTrue(Context);
2634     ID.Kind = ValID::t_Constant;
2635     break;
2636   case lltok::kw_false:
2637     ID.ConstantVal = ConstantInt::getFalse(Context);
2638     ID.Kind = ValID::t_Constant;
2639     break;
2640   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2641   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2642   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2643   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2644 
2645   case lltok::lbrace: {
2646     // ValID ::= '{' ConstVector '}'
2647     Lex.Lex();
2648     SmallVector<Constant*, 16> Elts;
2649     if (ParseGlobalValueVector(Elts) ||
2650         ParseToken(lltok::rbrace, "expected end of struct constant"))
2651       return true;
2652 
2653     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2654     ID.UIntVal = Elts.size();
2655     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2656            Elts.size() * sizeof(Elts[0]));
2657     ID.Kind = ValID::t_ConstantStruct;
2658     return false;
2659   }
2660   case lltok::less: {
2661     // ValID ::= '<' ConstVector '>'         --> Vector.
2662     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2663     Lex.Lex();
2664     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2665 
2666     SmallVector<Constant*, 16> Elts;
2667     LocTy FirstEltLoc = Lex.getLoc();
2668     if (ParseGlobalValueVector(Elts) ||
2669         (isPackedStruct &&
2670          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2671         ParseToken(lltok::greater, "expected end of constant"))
2672       return true;
2673 
2674     if (isPackedStruct) {
2675       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2676       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2677              Elts.size() * sizeof(Elts[0]));
2678       ID.UIntVal = Elts.size();
2679       ID.Kind = ValID::t_PackedConstantStruct;
2680       return false;
2681     }
2682 
2683     if (Elts.empty())
2684       return Error(ID.Loc, "constant vector must not be empty");
2685 
2686     if (!Elts[0]->getType()->isIntegerTy() &&
2687         !Elts[0]->getType()->isFloatingPointTy() &&
2688         !Elts[0]->getType()->isPointerTy())
2689       return Error(FirstEltLoc,
2690             "vector elements must have integer, pointer or floating point type");
2691 
2692     // Verify that all the vector elements have the same type.
2693     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2694       if (Elts[i]->getType() != Elts[0]->getType())
2695         return Error(FirstEltLoc,
2696                      "vector element #" + Twine(i) +
2697                     " is not of type '" + getTypeString(Elts[0]->getType()));
2698 
2699     ID.ConstantVal = ConstantVector::get(Elts);
2700     ID.Kind = ValID::t_Constant;
2701     return false;
2702   }
2703   case lltok::lsquare: {   // Array Constant
2704     Lex.Lex();
2705     SmallVector<Constant*, 16> Elts;
2706     LocTy FirstEltLoc = Lex.getLoc();
2707     if (ParseGlobalValueVector(Elts) ||
2708         ParseToken(lltok::rsquare, "expected end of array constant"))
2709       return true;
2710 
2711     // Handle empty element.
2712     if (Elts.empty()) {
2713       // Use undef instead of an array because it's inconvenient to determine
2714       // the element type at this point, there being no elements to examine.
2715       ID.Kind = ValID::t_EmptyArray;
2716       return false;
2717     }
2718 
2719     if (!Elts[0]->getType()->isFirstClassType())
2720       return Error(FirstEltLoc, "invalid array element type: " +
2721                    getTypeString(Elts[0]->getType()));
2722 
2723     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2724 
2725     // Verify all elements are correct type!
2726     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2727       if (Elts[i]->getType() != Elts[0]->getType())
2728         return Error(FirstEltLoc,
2729                      "array element #" + Twine(i) +
2730                      " is not of type '" + getTypeString(Elts[0]->getType()));
2731     }
2732 
2733     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2734     ID.Kind = ValID::t_Constant;
2735     return false;
2736   }
2737   case lltok::kw_c:  // c "foo"
2738     Lex.Lex();
2739     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2740                                                   false);
2741     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2742     ID.Kind = ValID::t_Constant;
2743     return false;
2744 
2745   case lltok::kw_asm: {
2746     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2747     //             STRINGCONSTANT
2748     bool HasSideEffect, AlignStack, AsmDialect;
2749     Lex.Lex();
2750     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2751         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2752         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2753         ParseStringConstant(ID.StrVal) ||
2754         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2755         ParseToken(lltok::StringConstant, "expected constraint string"))
2756       return true;
2757     ID.StrVal2 = Lex.getStrVal();
2758     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2759       (unsigned(AsmDialect)<<2);
2760     ID.Kind = ValID::t_InlineAsm;
2761     return false;
2762   }
2763 
2764   case lltok::kw_blockaddress: {
2765     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2766     Lex.Lex();
2767 
2768     ValID Fn, Label;
2769 
2770     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2771         ParseValID(Fn) ||
2772         ParseToken(lltok::comma, "expected comma in block address expression")||
2773         ParseValID(Label) ||
2774         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2775       return true;
2776 
2777     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2778       return Error(Fn.Loc, "expected function name in blockaddress");
2779     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2780       return Error(Label.Loc, "expected basic block name in blockaddress");
2781 
2782     // Try to find the function (but skip it if it's forward-referenced).
2783     GlobalValue *GV = nullptr;
2784     if (Fn.Kind == ValID::t_GlobalID) {
2785       if (Fn.UIntVal < NumberedVals.size())
2786         GV = NumberedVals[Fn.UIntVal];
2787     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2788       GV = M->getNamedValue(Fn.StrVal);
2789     }
2790     Function *F = nullptr;
2791     if (GV) {
2792       // Confirm that it's actually a function with a definition.
2793       if (!isa<Function>(GV))
2794         return Error(Fn.Loc, "expected function name in blockaddress");
2795       F = cast<Function>(GV);
2796       if (F->isDeclaration())
2797         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2798     }
2799 
2800     if (!F) {
2801       // Make a global variable as a placeholder for this reference.
2802       GlobalValue *&FwdRef =
2803           ForwardRefBlockAddresses.insert(std::make_pair(
2804                                               std::move(Fn),
2805                                               std::map<ValID, GlobalValue *>()))
2806               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2807               .first->second;
2808       if (!FwdRef)
2809         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2810                                     GlobalValue::InternalLinkage, nullptr, "");
2811       ID.ConstantVal = FwdRef;
2812       ID.Kind = ValID::t_Constant;
2813       return false;
2814     }
2815 
2816     // We found the function; now find the basic block.  Don't use PFS, since we
2817     // might be inside a constant expression.
2818     BasicBlock *BB;
2819     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2820       if (Label.Kind == ValID::t_LocalID)
2821         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2822       else
2823         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2824       if (!BB)
2825         return Error(Label.Loc, "referenced value is not a basic block");
2826     } else {
2827       if (Label.Kind == ValID::t_LocalID)
2828         return Error(Label.Loc, "cannot take address of numeric label after "
2829                                 "the function is defined");
2830       BB = dyn_cast_or_null<BasicBlock>(
2831           F->getValueSymbolTable().lookup(Label.StrVal));
2832       if (!BB)
2833         return Error(Label.Loc, "referenced value is not a basic block");
2834     }
2835 
2836     ID.ConstantVal = BlockAddress::get(F, BB);
2837     ID.Kind = ValID::t_Constant;
2838     return false;
2839   }
2840 
2841   case lltok::kw_trunc:
2842   case lltok::kw_zext:
2843   case lltok::kw_sext:
2844   case lltok::kw_fptrunc:
2845   case lltok::kw_fpext:
2846   case lltok::kw_bitcast:
2847   case lltok::kw_addrspacecast:
2848   case lltok::kw_uitofp:
2849   case lltok::kw_sitofp:
2850   case lltok::kw_fptoui:
2851   case lltok::kw_fptosi:
2852   case lltok::kw_inttoptr:
2853   case lltok::kw_ptrtoint: {
2854     unsigned Opc = Lex.getUIntVal();
2855     Type *DestTy = nullptr;
2856     Constant *SrcVal;
2857     Lex.Lex();
2858     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2859         ParseGlobalTypeAndValue(SrcVal) ||
2860         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2861         ParseType(DestTy) ||
2862         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2863       return true;
2864     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2865       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2866                    getTypeString(SrcVal->getType()) + "' to '" +
2867                    getTypeString(DestTy) + "'");
2868     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2869                                                  SrcVal, DestTy);
2870     ID.Kind = ValID::t_Constant;
2871     return false;
2872   }
2873   case lltok::kw_extractvalue: {
2874     Lex.Lex();
2875     Constant *Val;
2876     SmallVector<unsigned, 4> Indices;
2877     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2878         ParseGlobalTypeAndValue(Val) ||
2879         ParseIndexList(Indices) ||
2880         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2881       return true;
2882 
2883     if (!Val->getType()->isAggregateType())
2884       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2885     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2886       return Error(ID.Loc, "invalid indices for extractvalue");
2887     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2888     ID.Kind = ValID::t_Constant;
2889     return false;
2890   }
2891   case lltok::kw_insertvalue: {
2892     Lex.Lex();
2893     Constant *Val0, *Val1;
2894     SmallVector<unsigned, 4> Indices;
2895     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2896         ParseGlobalTypeAndValue(Val0) ||
2897         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2898         ParseGlobalTypeAndValue(Val1) ||
2899         ParseIndexList(Indices) ||
2900         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2901       return true;
2902     if (!Val0->getType()->isAggregateType())
2903       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2904     Type *IndexedType =
2905         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2906     if (!IndexedType)
2907       return Error(ID.Loc, "invalid indices for insertvalue");
2908     if (IndexedType != Val1->getType())
2909       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2910                                getTypeString(Val1->getType()) +
2911                                "' instead of '" + getTypeString(IndexedType) +
2912                                "'");
2913     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2914     ID.Kind = ValID::t_Constant;
2915     return false;
2916   }
2917   case lltok::kw_icmp:
2918   case lltok::kw_fcmp: {
2919     unsigned PredVal, Opc = Lex.getUIntVal();
2920     Constant *Val0, *Val1;
2921     Lex.Lex();
2922     if (ParseCmpPredicate(PredVal, Opc) ||
2923         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2924         ParseGlobalTypeAndValue(Val0) ||
2925         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2926         ParseGlobalTypeAndValue(Val1) ||
2927         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2928       return true;
2929 
2930     if (Val0->getType() != Val1->getType())
2931       return Error(ID.Loc, "compare operands must have the same type");
2932 
2933     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2934 
2935     if (Opc == Instruction::FCmp) {
2936       if (!Val0->getType()->isFPOrFPVectorTy())
2937         return Error(ID.Loc, "fcmp requires floating point operands");
2938       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2939     } else {
2940       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2941       if (!Val0->getType()->isIntOrIntVectorTy() &&
2942           !Val0->getType()->getScalarType()->isPointerTy())
2943         return Error(ID.Loc, "icmp requires pointer or integer operands");
2944       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2945     }
2946     ID.Kind = ValID::t_Constant;
2947     return false;
2948   }
2949 
2950   // Binary Operators.
2951   case lltok::kw_add:
2952   case lltok::kw_fadd:
2953   case lltok::kw_sub:
2954   case lltok::kw_fsub:
2955   case lltok::kw_mul:
2956   case lltok::kw_fmul:
2957   case lltok::kw_udiv:
2958   case lltok::kw_sdiv:
2959   case lltok::kw_fdiv:
2960   case lltok::kw_urem:
2961   case lltok::kw_srem:
2962   case lltok::kw_frem:
2963   case lltok::kw_shl:
2964   case lltok::kw_lshr:
2965   case lltok::kw_ashr: {
2966     bool NUW = false;
2967     bool NSW = false;
2968     bool Exact = false;
2969     unsigned Opc = Lex.getUIntVal();
2970     Constant *Val0, *Val1;
2971     Lex.Lex();
2972     LocTy ModifierLoc = Lex.getLoc();
2973     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2974         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2975       if (EatIfPresent(lltok::kw_nuw))
2976         NUW = true;
2977       if (EatIfPresent(lltok::kw_nsw)) {
2978         NSW = true;
2979         if (EatIfPresent(lltok::kw_nuw))
2980           NUW = true;
2981       }
2982     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2983                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2984       if (EatIfPresent(lltok::kw_exact))
2985         Exact = true;
2986     }
2987     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2988         ParseGlobalTypeAndValue(Val0) ||
2989         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2990         ParseGlobalTypeAndValue(Val1) ||
2991         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2992       return true;
2993     if (Val0->getType() != Val1->getType())
2994       return Error(ID.Loc, "operands of constexpr must have same type");
2995     if (!Val0->getType()->isIntOrIntVectorTy()) {
2996       if (NUW)
2997         return Error(ModifierLoc, "nuw only applies to integer operations");
2998       if (NSW)
2999         return Error(ModifierLoc, "nsw only applies to integer operations");
3000     }
3001     // Check that the type is valid for the operator.
3002     switch (Opc) {
3003     case Instruction::Add:
3004     case Instruction::Sub:
3005     case Instruction::Mul:
3006     case Instruction::UDiv:
3007     case Instruction::SDiv:
3008     case Instruction::URem:
3009     case Instruction::SRem:
3010     case Instruction::Shl:
3011     case Instruction::AShr:
3012     case Instruction::LShr:
3013       if (!Val0->getType()->isIntOrIntVectorTy())
3014         return Error(ID.Loc, "constexpr requires integer operands");
3015       break;
3016     case Instruction::FAdd:
3017     case Instruction::FSub:
3018     case Instruction::FMul:
3019     case Instruction::FDiv:
3020     case Instruction::FRem:
3021       if (!Val0->getType()->isFPOrFPVectorTy())
3022         return Error(ID.Loc, "constexpr requires fp operands");
3023       break;
3024     default: llvm_unreachable("Unknown binary operator!");
3025     }
3026     unsigned Flags = 0;
3027     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3028     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3029     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3030     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3031     ID.ConstantVal = C;
3032     ID.Kind = ValID::t_Constant;
3033     return false;
3034   }
3035 
3036   // Logical Operations
3037   case lltok::kw_and:
3038   case lltok::kw_or:
3039   case lltok::kw_xor: {
3040     unsigned Opc = Lex.getUIntVal();
3041     Constant *Val0, *Val1;
3042     Lex.Lex();
3043     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3044         ParseGlobalTypeAndValue(Val0) ||
3045         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3046         ParseGlobalTypeAndValue(Val1) ||
3047         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3048       return true;
3049     if (Val0->getType() != Val1->getType())
3050       return Error(ID.Loc, "operands of constexpr must have same type");
3051     if (!Val0->getType()->isIntOrIntVectorTy())
3052       return Error(ID.Loc,
3053                    "constexpr requires integer or integer vector operands");
3054     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3055     ID.Kind = ValID::t_Constant;
3056     return false;
3057   }
3058 
3059   case lltok::kw_getelementptr:
3060   case lltok::kw_shufflevector:
3061   case lltok::kw_insertelement:
3062   case lltok::kw_extractelement:
3063   case lltok::kw_select: {
3064     unsigned Opc = Lex.getUIntVal();
3065     SmallVector<Constant*, 16> Elts;
3066     bool InBounds = false;
3067     Type *Ty;
3068     Lex.Lex();
3069 
3070     if (Opc == Instruction::GetElementPtr)
3071       InBounds = EatIfPresent(lltok::kw_inbounds);
3072 
3073     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3074       return true;
3075 
3076     LocTy ExplicitTypeLoc = Lex.getLoc();
3077     if (Opc == Instruction::GetElementPtr) {
3078       if (ParseType(Ty) ||
3079           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3080         return true;
3081     }
3082 
3083     if (ParseGlobalValueVector(Elts) ||
3084         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3085       return true;
3086 
3087     if (Opc == Instruction::GetElementPtr) {
3088       if (Elts.size() == 0 ||
3089           !Elts[0]->getType()->getScalarType()->isPointerTy())
3090         return Error(ID.Loc, "base of getelementptr must be a pointer");
3091 
3092       Type *BaseType = Elts[0]->getType();
3093       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3094       if (Ty != BasePointerType->getElementType())
3095         return Error(
3096             ExplicitTypeLoc,
3097             "explicit pointee type doesn't match operand's pointee type");
3098 
3099       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3100       for (Constant *Val : Indices) {
3101         Type *ValTy = Val->getType();
3102         if (!ValTy->getScalarType()->isIntegerTy())
3103           return Error(ID.Loc, "getelementptr index must be an integer");
3104         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3105           return Error(ID.Loc, "getelementptr index type missmatch");
3106         if (ValTy->isVectorTy()) {
3107           unsigned ValNumEl = ValTy->getVectorNumElements();
3108           unsigned PtrNumEl = BaseType->getVectorNumElements();
3109           if (ValNumEl != PtrNumEl)
3110             return Error(
3111                 ID.Loc,
3112                 "getelementptr vector index has a wrong number of elements");
3113         }
3114       }
3115 
3116       SmallPtrSet<Type*, 4> Visited;
3117       if (!Indices.empty() && !Ty->isSized(&Visited))
3118         return Error(ID.Loc, "base element of getelementptr must be sized");
3119 
3120       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3121         return Error(ID.Loc, "invalid getelementptr indices");
3122       ID.ConstantVal =
3123           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3124     } else if (Opc == Instruction::Select) {
3125       if (Elts.size() != 3)
3126         return Error(ID.Loc, "expected three operands to select");
3127       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3128                                                               Elts[2]))
3129         return Error(ID.Loc, Reason);
3130       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3131     } else if (Opc == Instruction::ShuffleVector) {
3132       if (Elts.size() != 3)
3133         return Error(ID.Loc, "expected three operands to shufflevector");
3134       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3135         return Error(ID.Loc, "invalid operands to shufflevector");
3136       ID.ConstantVal =
3137                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3138     } else if (Opc == Instruction::ExtractElement) {
3139       if (Elts.size() != 2)
3140         return Error(ID.Loc, "expected two operands to extractelement");
3141       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3142         return Error(ID.Loc, "invalid extractelement operands");
3143       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3144     } else {
3145       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3146       if (Elts.size() != 3)
3147       return Error(ID.Loc, "expected three operands to insertelement");
3148       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3149         return Error(ID.Loc, "invalid insertelement operands");
3150       ID.ConstantVal =
3151                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3152     }
3153 
3154     ID.Kind = ValID::t_Constant;
3155     return false;
3156   }
3157   }
3158 
3159   Lex.Lex();
3160   return false;
3161 }
3162 
3163 /// ParseGlobalValue - Parse a global value with the specified type.
3164 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3165   C = nullptr;
3166   ValID ID;
3167   Value *V = nullptr;
3168   bool Parsed = ParseValID(ID) ||
3169                 ConvertValIDToValue(Ty, ID, V, nullptr);
3170   if (V && !(C = dyn_cast<Constant>(V)))
3171     return Error(ID.Loc, "global values must be constants");
3172   return Parsed;
3173 }
3174 
3175 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3176   Type *Ty = nullptr;
3177   return ParseType(Ty) ||
3178          ParseGlobalValue(Ty, V);
3179 }
3180 
3181 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3182   C = nullptr;
3183 
3184   LocTy KwLoc = Lex.getLoc();
3185   if (!EatIfPresent(lltok::kw_comdat))
3186     return false;
3187 
3188   if (EatIfPresent(lltok::lparen)) {
3189     if (Lex.getKind() != lltok::ComdatVar)
3190       return TokError("expected comdat variable");
3191     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3192     Lex.Lex();
3193     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3194       return true;
3195   } else {
3196     if (GlobalName.empty())
3197       return TokError("comdat cannot be unnamed");
3198     C = getComdat(GlobalName, KwLoc);
3199   }
3200 
3201   return false;
3202 }
3203 
3204 /// ParseGlobalValueVector
3205 ///   ::= /*empty*/
3206 ///   ::= TypeAndValue (',' TypeAndValue)*
3207 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3208   // Empty list.
3209   if (Lex.getKind() == lltok::rbrace ||
3210       Lex.getKind() == lltok::rsquare ||
3211       Lex.getKind() == lltok::greater ||
3212       Lex.getKind() == lltok::rparen)
3213     return false;
3214 
3215   Constant *C;
3216   if (ParseGlobalTypeAndValue(C)) return true;
3217   Elts.push_back(C);
3218 
3219   while (EatIfPresent(lltok::comma)) {
3220     if (ParseGlobalTypeAndValue(C)) return true;
3221     Elts.push_back(C);
3222   }
3223 
3224   return false;
3225 }
3226 
3227 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3228   SmallVector<Metadata *, 16> Elts;
3229   if (ParseMDNodeVector(Elts))
3230     return true;
3231 
3232   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3233   return false;
3234 }
3235 
3236 /// MDNode:
3237 ///  ::= !{ ... }
3238 ///  ::= !7
3239 ///  ::= !DILocation(...)
3240 bool LLParser::ParseMDNode(MDNode *&N) {
3241   if (Lex.getKind() == lltok::MetadataVar)
3242     return ParseSpecializedMDNode(N);
3243 
3244   return ParseToken(lltok::exclaim, "expected '!' here") ||
3245          ParseMDNodeTail(N);
3246 }
3247 
3248 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3249   // !{ ... }
3250   if (Lex.getKind() == lltok::lbrace)
3251     return ParseMDTuple(N);
3252 
3253   // !42
3254   return ParseMDNodeID(N);
3255 }
3256 
3257 namespace {
3258 
3259 /// Structure to represent an optional metadata field.
3260 template <class FieldTy> struct MDFieldImpl {
3261   typedef MDFieldImpl ImplTy;
3262   FieldTy Val;
3263   bool Seen;
3264 
3265   void assign(FieldTy Val) {
3266     Seen = true;
3267     this->Val = std::move(Val);
3268   }
3269 
3270   explicit MDFieldImpl(FieldTy Default)
3271       : Val(std::move(Default)), Seen(false) {}
3272 };
3273 
3274 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3275   uint64_t Max;
3276 
3277   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3278       : ImplTy(Default), Max(Max) {}
3279 };
3280 struct LineField : public MDUnsignedField {
3281   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3282 };
3283 struct ColumnField : public MDUnsignedField {
3284   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3285 };
3286 struct DwarfTagField : public MDUnsignedField {
3287   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3288   DwarfTagField(dwarf::Tag DefaultTag)
3289       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3290 };
3291 struct DwarfMacinfoTypeField : public MDUnsignedField {
3292   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3293   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3294     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3295 };
3296 struct DwarfAttEncodingField : public MDUnsignedField {
3297   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3298 };
3299 struct DwarfVirtualityField : public MDUnsignedField {
3300   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3301 };
3302 struct DwarfLangField : public MDUnsignedField {
3303   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3304 };
3305 struct EmissionKindField : public MDUnsignedField {
3306   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3307 };
3308 
3309 struct DIFlagField : public MDUnsignedField {
3310   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3311 };
3312 
3313 struct MDSignedField : public MDFieldImpl<int64_t> {
3314   int64_t Min;
3315   int64_t Max;
3316 
3317   MDSignedField(int64_t Default = 0)
3318       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3319   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3320       : ImplTy(Default), Min(Min), Max(Max) {}
3321 };
3322 
3323 struct MDBoolField : public MDFieldImpl<bool> {
3324   MDBoolField(bool Default = false) : ImplTy(Default) {}
3325 };
3326 struct MDField : public MDFieldImpl<Metadata *> {
3327   bool AllowNull;
3328 
3329   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3330 };
3331 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3332   MDConstant() : ImplTy(nullptr) {}
3333 };
3334 struct MDStringField : public MDFieldImpl<MDString *> {
3335   bool AllowEmpty;
3336   MDStringField(bool AllowEmpty = true)
3337       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3338 };
3339 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3340   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3341 };
3342 
3343 } // end namespace
3344 
3345 namespace llvm {
3346 
3347 template <>
3348 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3349                             MDUnsignedField &Result) {
3350   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3351     return TokError("expected unsigned integer");
3352 
3353   auto &U = Lex.getAPSIntVal();
3354   if (U.ugt(Result.Max))
3355     return TokError("value for '" + Name + "' too large, limit is " +
3356                     Twine(Result.Max));
3357   Result.assign(U.getZExtValue());
3358   assert(Result.Val <= Result.Max && "Expected value in range");
3359   Lex.Lex();
3360   return false;
3361 }
3362 
3363 template <>
3364 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3365   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3366 }
3367 template <>
3368 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3369   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3370 }
3371 
3372 template <>
3373 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3374   if (Lex.getKind() == lltok::APSInt)
3375     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3376 
3377   if (Lex.getKind() != lltok::DwarfTag)
3378     return TokError("expected DWARF tag");
3379 
3380   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3381   if (Tag == dwarf::DW_TAG_invalid)
3382     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3383   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3384 
3385   Result.assign(Tag);
3386   Lex.Lex();
3387   return false;
3388 }
3389 
3390 template <>
3391 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3392                             DwarfMacinfoTypeField &Result) {
3393   if (Lex.getKind() == lltok::APSInt)
3394     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3395 
3396   if (Lex.getKind() != lltok::DwarfMacinfo)
3397     return TokError("expected DWARF macinfo type");
3398 
3399   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3400   if (Macinfo == dwarf::DW_MACINFO_invalid)
3401     return TokError(
3402         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3403   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3404 
3405   Result.assign(Macinfo);
3406   Lex.Lex();
3407   return false;
3408 }
3409 
3410 template <>
3411 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3412                             DwarfVirtualityField &Result) {
3413   if (Lex.getKind() == lltok::APSInt)
3414     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3415 
3416   if (Lex.getKind() != lltok::DwarfVirtuality)
3417     return TokError("expected DWARF virtuality code");
3418 
3419   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3420   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3421     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3422                     Lex.getStrVal() + "'");
3423   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3424   Result.assign(Virtuality);
3425   Lex.Lex();
3426   return false;
3427 }
3428 
3429 template <>
3430 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3431   if (Lex.getKind() == lltok::APSInt)
3432     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3433 
3434   if (Lex.getKind() != lltok::DwarfLang)
3435     return TokError("expected DWARF language");
3436 
3437   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3438   if (!Lang)
3439     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3440                     "'");
3441   assert(Lang <= Result.Max && "Expected valid DWARF language");
3442   Result.assign(Lang);
3443   Lex.Lex();
3444   return false;
3445 }
3446 
3447 template <>
3448 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3449   if (Lex.getKind() == lltok::APSInt)
3450     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3451 
3452   if (Lex.getKind() != lltok::EmissionKind)
3453     return TokError("expected emission kind");
3454 
3455   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3456   if (!Kind)
3457     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3458                     "'");
3459   assert(*Kind <= Result.Max && "Expected valid emission kind");
3460   Result.assign(*Kind);
3461   Lex.Lex();
3462   return false;
3463 }
3464 
3465 template <>
3466 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3467                             DwarfAttEncodingField &Result) {
3468   if (Lex.getKind() == lltok::APSInt)
3469     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3470 
3471   if (Lex.getKind() != lltok::DwarfAttEncoding)
3472     return TokError("expected DWARF type attribute encoding");
3473 
3474   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3475   if (!Encoding)
3476     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3477                     Lex.getStrVal() + "'");
3478   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3479   Result.assign(Encoding);
3480   Lex.Lex();
3481   return false;
3482 }
3483 
3484 /// DIFlagField
3485 ///  ::= uint32
3486 ///  ::= DIFlagVector
3487 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3488 template <>
3489 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3490   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3491 
3492   // Parser for a single flag.
3493   auto parseFlag = [&](unsigned &Val) {
3494     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3495       return ParseUInt32(Val);
3496 
3497     if (Lex.getKind() != lltok::DIFlag)
3498       return TokError("expected debug info flag");
3499 
3500     Val = DINode::getFlag(Lex.getStrVal());
3501     if (!Val)
3502       return TokError(Twine("invalid debug info flag flag '") +
3503                       Lex.getStrVal() + "'");
3504     Lex.Lex();
3505     return false;
3506   };
3507 
3508   // Parse the flags and combine them together.
3509   unsigned Combined = 0;
3510   do {
3511     unsigned Val;
3512     if (parseFlag(Val))
3513       return true;
3514     Combined |= Val;
3515   } while (EatIfPresent(lltok::bar));
3516 
3517   Result.assign(Combined);
3518   return false;
3519 }
3520 
3521 template <>
3522 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3523                             MDSignedField &Result) {
3524   if (Lex.getKind() != lltok::APSInt)
3525     return TokError("expected signed integer");
3526 
3527   auto &S = Lex.getAPSIntVal();
3528   if (S < Result.Min)
3529     return TokError("value for '" + Name + "' too small, limit is " +
3530                     Twine(Result.Min));
3531   if (S > Result.Max)
3532     return TokError("value for '" + Name + "' too large, limit is " +
3533                     Twine(Result.Max));
3534   Result.assign(S.getExtValue());
3535   assert(Result.Val >= Result.Min && "Expected value in range");
3536   assert(Result.Val <= Result.Max && "Expected value in range");
3537   Lex.Lex();
3538   return false;
3539 }
3540 
3541 template <>
3542 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3543   switch (Lex.getKind()) {
3544   default:
3545     return TokError("expected 'true' or 'false'");
3546   case lltok::kw_true:
3547     Result.assign(true);
3548     break;
3549   case lltok::kw_false:
3550     Result.assign(false);
3551     break;
3552   }
3553   Lex.Lex();
3554   return false;
3555 }
3556 
3557 template <>
3558 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3559   if (Lex.getKind() == lltok::kw_null) {
3560     if (!Result.AllowNull)
3561       return TokError("'" + Name + "' cannot be null");
3562     Lex.Lex();
3563     Result.assign(nullptr);
3564     return false;
3565   }
3566 
3567   Metadata *MD;
3568   if (ParseMetadata(MD, nullptr))
3569     return true;
3570 
3571   Result.assign(MD);
3572   return false;
3573 }
3574 
3575 template <>
3576 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3577   Metadata *MD;
3578   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3579     return true;
3580 
3581   Result.assign(cast<ConstantAsMetadata>(MD));
3582   return false;
3583 }
3584 
3585 template <>
3586 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3587   LocTy ValueLoc = Lex.getLoc();
3588   std::string S;
3589   if (ParseStringConstant(S))
3590     return true;
3591 
3592   if (!Result.AllowEmpty && S.empty())
3593     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3594 
3595   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3596   return false;
3597 }
3598 
3599 template <>
3600 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3601   SmallVector<Metadata *, 4> MDs;
3602   if (ParseMDNodeVector(MDs))
3603     return true;
3604 
3605   Result.assign(std::move(MDs));
3606   return false;
3607 }
3608 
3609 } // end namespace llvm
3610 
3611 template <class ParserTy>
3612 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3613   do {
3614     if (Lex.getKind() != lltok::LabelStr)
3615       return TokError("expected field label here");
3616 
3617     if (parseField())
3618       return true;
3619   } while (EatIfPresent(lltok::comma));
3620 
3621   return false;
3622 }
3623 
3624 template <class ParserTy>
3625 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3626   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3627   Lex.Lex();
3628 
3629   if (ParseToken(lltok::lparen, "expected '(' here"))
3630     return true;
3631   if (Lex.getKind() != lltok::rparen)
3632     if (ParseMDFieldsImplBody(parseField))
3633       return true;
3634 
3635   ClosingLoc = Lex.getLoc();
3636   return ParseToken(lltok::rparen, "expected ')' here");
3637 }
3638 
3639 template <class FieldTy>
3640 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3641   if (Result.Seen)
3642     return TokError("field '" + Name + "' cannot be specified more than once");
3643 
3644   LocTy Loc = Lex.getLoc();
3645   Lex.Lex();
3646   return ParseMDField(Loc, Name, Result);
3647 }
3648 
3649 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3650   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3651 
3652 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3653   if (Lex.getStrVal() == #CLASS)                                               \
3654     return Parse##CLASS(N, IsDistinct);
3655 #include "llvm/IR/Metadata.def"
3656 
3657   return TokError("expected metadata type");
3658 }
3659 
3660 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3661 #define NOP_FIELD(NAME, TYPE, INIT)
3662 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3663   if (!NAME.Seen)                                                              \
3664     return Error(ClosingLoc, "missing required field '" #NAME "'");
3665 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3666   if (Lex.getStrVal() == #NAME)                                                \
3667     return ParseMDField(#NAME, NAME);
3668 #define PARSE_MD_FIELDS()                                                      \
3669   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3670   do {                                                                         \
3671     LocTy ClosingLoc;                                                          \
3672     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3673       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3674       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3675     }, ClosingLoc))                                                            \
3676       return true;                                                             \
3677     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3678   } while (false)
3679 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3680   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3681 
3682 /// ParseDILocationFields:
3683 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3684 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3686   OPTIONAL(line, LineField, );                                                 \
3687   OPTIONAL(column, ColumnField, );                                             \
3688   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3689   OPTIONAL(inlinedAt, MDField, );
3690   PARSE_MD_FIELDS();
3691 #undef VISIT_MD_FIELDS
3692 
3693   Result = GET_OR_DISTINCT(
3694       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3695   return false;
3696 }
3697 
3698 /// ParseGenericDINode:
3699 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3700 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3702   REQUIRED(tag, DwarfTagField, );                                              \
3703   OPTIONAL(header, MDStringField, );                                           \
3704   OPTIONAL(operands, MDFieldList, );
3705   PARSE_MD_FIELDS();
3706 #undef VISIT_MD_FIELDS
3707 
3708   Result = GET_OR_DISTINCT(GenericDINode,
3709                            (Context, tag.Val, header.Val, operands.Val));
3710   return false;
3711 }
3712 
3713 /// ParseDISubrange:
3714 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3715 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3717   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3718   OPTIONAL(lowerBound, MDSignedField, );
3719   PARSE_MD_FIELDS();
3720 #undef VISIT_MD_FIELDS
3721 
3722   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3723   return false;
3724 }
3725 
3726 /// ParseDIEnumerator:
3727 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3728 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3730   REQUIRED(name, MDStringField, );                                             \
3731   REQUIRED(value, MDSignedField, );
3732   PARSE_MD_FIELDS();
3733 #undef VISIT_MD_FIELDS
3734 
3735   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3736   return false;
3737 }
3738 
3739 /// ParseDIBasicType:
3740 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3741 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3742 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3743   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3744   OPTIONAL(name, MDStringField, );                                             \
3745   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3746   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3747   OPTIONAL(encoding, DwarfAttEncodingField, );
3748   PARSE_MD_FIELDS();
3749 #undef VISIT_MD_FIELDS
3750 
3751   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3752                                          align.Val, encoding.Val));
3753   return false;
3754 }
3755 
3756 /// ParseDIDerivedType:
3757 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3758 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3759 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3760 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3761 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3762   REQUIRED(tag, DwarfTagField, );                                              \
3763   OPTIONAL(name, MDStringField, );                                             \
3764   OPTIONAL(file, MDField, );                                                   \
3765   OPTIONAL(line, LineField, );                                                 \
3766   OPTIONAL(scope, MDField, );                                                  \
3767   REQUIRED(baseType, MDField, );                                               \
3768   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3769   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3770   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3771   OPTIONAL(flags, DIFlagField, );                                              \
3772   OPTIONAL(extraData, MDField, );
3773   PARSE_MD_FIELDS();
3774 #undef VISIT_MD_FIELDS
3775 
3776   Result = GET_OR_DISTINCT(DIDerivedType,
3777                            (Context, tag.Val, name.Val, file.Val, line.Val,
3778                             scope.Val, baseType.Val, size.Val, align.Val,
3779                             offset.Val, flags.Val, extraData.Val));
3780   return false;
3781 }
3782 
3783 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3784 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3785   REQUIRED(tag, DwarfTagField, );                                              \
3786   OPTIONAL(name, MDStringField, );                                             \
3787   OPTIONAL(file, MDField, );                                                   \
3788   OPTIONAL(line, LineField, );                                                 \
3789   OPTIONAL(scope, MDField, );                                                  \
3790   OPTIONAL(baseType, MDField, );                                               \
3791   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3792   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3793   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3794   OPTIONAL(flags, DIFlagField, );                                              \
3795   OPTIONAL(elements, MDField, );                                               \
3796   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3797   OPTIONAL(vtableHolder, MDField, );                                           \
3798   OPTIONAL(templateParams, MDField, );                                         \
3799   OPTIONAL(identifier, MDStringField, );
3800   PARSE_MD_FIELDS();
3801 #undef VISIT_MD_FIELDS
3802 
3803   Result = GET_OR_DISTINCT(
3804       DICompositeType,
3805       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3806        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3807        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3808   return false;
3809 }
3810 
3811 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3813   OPTIONAL(flags, DIFlagField, );                                              \
3814   REQUIRED(types, MDField, );
3815   PARSE_MD_FIELDS();
3816 #undef VISIT_MD_FIELDS
3817 
3818   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3819   return false;
3820 }
3821 
3822 /// ParseDIFileType:
3823 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3824 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3826   REQUIRED(filename, MDStringField, );                                         \
3827   REQUIRED(directory, MDStringField, );
3828   PARSE_MD_FIELDS();
3829 #undef VISIT_MD_FIELDS
3830 
3831   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3832   return false;
3833 }
3834 
3835 /// ParseDICompileUnit:
3836 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3837 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3838 ///                      splitDebugFilename: "abc.debug",
3839 ///                      emissionKind: FullDebug,
3840 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
3841 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3842 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3843   if (!IsDistinct)
3844     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3845 
3846 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3847   REQUIRED(language, DwarfLangField, );                                        \
3848   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3849   OPTIONAL(producer, MDStringField, );                                         \
3850   OPTIONAL(isOptimized, MDBoolField, );                                        \
3851   OPTIONAL(flags, MDStringField, );                                            \
3852   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3853   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3854   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3855   OPTIONAL(enums, MDField, );                                                  \
3856   OPTIONAL(retainedTypes, MDField, );                                          \
3857   OPTIONAL(subprograms, MDField, );                                            \
3858   OPTIONAL(globals, MDField, );                                                \
3859   OPTIONAL(imports, MDField, );                                                \
3860   OPTIONAL(macros, MDField, );                                                 \
3861   OPTIONAL(dwoId, MDUnsignedField, );
3862   PARSE_MD_FIELDS();
3863 #undef VISIT_MD_FIELDS
3864 
3865   Result = DICompileUnit::getDistinct(
3866       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3867       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3868       retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
3869       dwoId.Val);
3870   return false;
3871 }
3872 
3873 /// ParseDISubprogram:
3874 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3875 ///                     file: !1, line: 7, type: !2, isLocal: false,
3876 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3877 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3878 ///                     virtualIndex: 10, flags: 11,
3879 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3880 ///                     variables: !6)
3881 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3882   auto Loc = Lex.getLoc();
3883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3884   OPTIONAL(scope, MDField, );                                                  \
3885   OPTIONAL(name, MDStringField, );                                             \
3886   OPTIONAL(linkageName, MDStringField, );                                      \
3887   OPTIONAL(file, MDField, );                                                   \
3888   OPTIONAL(line, LineField, );                                                 \
3889   OPTIONAL(type, MDField, );                                                   \
3890   OPTIONAL(isLocal, MDBoolField, );                                            \
3891   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3892   OPTIONAL(scopeLine, LineField, );                                            \
3893   OPTIONAL(containingType, MDField, );                                         \
3894   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3895   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3896   OPTIONAL(flags, DIFlagField, );                                              \
3897   OPTIONAL(isOptimized, MDBoolField, );                                        \
3898   OPTIONAL(templateParams, MDField, );                                         \
3899   OPTIONAL(declaration, MDField, );                                            \
3900   OPTIONAL(variables, MDField, );
3901   PARSE_MD_FIELDS();
3902 #undef VISIT_MD_FIELDS
3903 
3904   if (isDefinition.Val && !IsDistinct)
3905     return Lex.Error(
3906         Loc,
3907         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3908 
3909   Result = GET_OR_DISTINCT(
3910       DISubprogram,
3911       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
3912        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
3913        containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
3914        isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
3915   return false;
3916 }
3917 
3918 /// ParseDILexicalBlock:
3919 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3920 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3922   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3923   OPTIONAL(file, MDField, );                                                   \
3924   OPTIONAL(line, LineField, );                                                 \
3925   OPTIONAL(column, ColumnField, );
3926   PARSE_MD_FIELDS();
3927 #undef VISIT_MD_FIELDS
3928 
3929   Result = GET_OR_DISTINCT(
3930       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3931   return false;
3932 }
3933 
3934 /// ParseDILexicalBlockFile:
3935 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3936 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3937 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3938   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3939   OPTIONAL(file, MDField, );                                                   \
3940   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3941   PARSE_MD_FIELDS();
3942 #undef VISIT_MD_FIELDS
3943 
3944   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3945                            (Context, scope.Val, file.Val, discriminator.Val));
3946   return false;
3947 }
3948 
3949 /// ParseDINamespace:
3950 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3951 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3953   REQUIRED(scope, MDField, );                                                  \
3954   OPTIONAL(file, MDField, );                                                   \
3955   OPTIONAL(name, MDStringField, );                                             \
3956   OPTIONAL(line, LineField, );
3957   PARSE_MD_FIELDS();
3958 #undef VISIT_MD_FIELDS
3959 
3960   Result = GET_OR_DISTINCT(DINamespace,
3961                            (Context, scope.Val, file.Val, name.Val, line.Val));
3962   return false;
3963 }
3964 
3965 /// ParseDIMacro:
3966 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
3967 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
3968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3969   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
3970   REQUIRED(line, LineField, );                                                 \
3971   REQUIRED(name, MDStringField, );                                             \
3972   OPTIONAL(value, MDStringField, );
3973   PARSE_MD_FIELDS();
3974 #undef VISIT_MD_FIELDS
3975 
3976   Result = GET_OR_DISTINCT(DIMacro,
3977                            (Context, type.Val, line.Val, name.Val, value.Val));
3978   return false;
3979 }
3980 
3981 /// ParseDIMacroFile:
3982 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
3983 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
3984 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3985   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
3986   REQUIRED(line, LineField, );                                                 \
3987   REQUIRED(file, MDField, );                                                   \
3988   OPTIONAL(nodes, MDField, );
3989   PARSE_MD_FIELDS();
3990 #undef VISIT_MD_FIELDS
3991 
3992   Result = GET_OR_DISTINCT(DIMacroFile,
3993                            (Context, type.Val, line.Val, file.Val, nodes.Val));
3994   return false;
3995 }
3996 
3997 
3998 /// ParseDIModule:
3999 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4000 ///                 includePath: "/usr/include", isysroot: "/")
4001 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4003   REQUIRED(scope, MDField, );                                                  \
4004   REQUIRED(name, MDStringField, );                                             \
4005   OPTIONAL(configMacros, MDStringField, );                                     \
4006   OPTIONAL(includePath, MDStringField, );                                      \
4007   OPTIONAL(isysroot, MDStringField, );
4008   PARSE_MD_FIELDS();
4009 #undef VISIT_MD_FIELDS
4010 
4011   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4012                            configMacros.Val, includePath.Val, isysroot.Val));
4013   return false;
4014 }
4015 
4016 /// ParseDITemplateTypeParameter:
4017 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4018 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4020   OPTIONAL(name, MDStringField, );                                             \
4021   REQUIRED(type, MDField, );
4022   PARSE_MD_FIELDS();
4023 #undef VISIT_MD_FIELDS
4024 
4025   Result =
4026       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4027   return false;
4028 }
4029 
4030 /// ParseDITemplateValueParameter:
4031 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4032 ///                                 name: "V", type: !1, value: i32 7)
4033 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4035   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4036   OPTIONAL(name, MDStringField, );                                             \
4037   OPTIONAL(type, MDField, );                                                   \
4038   REQUIRED(value, MDField, );
4039   PARSE_MD_FIELDS();
4040 #undef VISIT_MD_FIELDS
4041 
4042   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4043                            (Context, tag.Val, name.Val, type.Val, value.Val));
4044   return false;
4045 }
4046 
4047 /// ParseDIGlobalVariable:
4048 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4049 ///                         file: !1, line: 7, type: !2, isLocal: false,
4050 ///                         isDefinition: true, variable: i32* @foo,
4051 ///                         declaration: !3)
4052 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4053 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4054   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4055   OPTIONAL(scope, MDField, );                                                  \
4056   OPTIONAL(linkageName, MDStringField, );                                      \
4057   OPTIONAL(file, MDField, );                                                   \
4058   OPTIONAL(line, LineField, );                                                 \
4059   OPTIONAL(type, MDField, );                                                   \
4060   OPTIONAL(isLocal, MDBoolField, );                                            \
4061   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4062   OPTIONAL(variable, MDConstant, );                                            \
4063   OPTIONAL(declaration, MDField, );
4064   PARSE_MD_FIELDS();
4065 #undef VISIT_MD_FIELDS
4066 
4067   Result = GET_OR_DISTINCT(DIGlobalVariable,
4068                            (Context, scope.Val, name.Val, linkageName.Val,
4069                             file.Val, line.Val, type.Val, isLocal.Val,
4070                             isDefinition.Val, variable.Val, declaration.Val));
4071   return false;
4072 }
4073 
4074 /// ParseDILocalVariable:
4075 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4076 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4077 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4078 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4079 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4080 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4081   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4082   OPTIONAL(name, MDStringField, );                                             \
4083   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4084   OPTIONAL(file, MDField, );                                                   \
4085   OPTIONAL(line, LineField, );                                                 \
4086   OPTIONAL(type, MDField, );                                                   \
4087   OPTIONAL(flags, DIFlagField, );
4088   PARSE_MD_FIELDS();
4089 #undef VISIT_MD_FIELDS
4090 
4091   Result = GET_OR_DISTINCT(DILocalVariable,
4092                            (Context, scope.Val, name.Val, file.Val, line.Val,
4093                             type.Val, arg.Val, flags.Val));
4094   return false;
4095 }
4096 
4097 /// ParseDIExpression:
4098 ///   ::= !DIExpression(0, 7, -1)
4099 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4100   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4101   Lex.Lex();
4102 
4103   if (ParseToken(lltok::lparen, "expected '(' here"))
4104     return true;
4105 
4106   SmallVector<uint64_t, 8> Elements;
4107   if (Lex.getKind() != lltok::rparen)
4108     do {
4109       if (Lex.getKind() == lltok::DwarfOp) {
4110         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4111           Lex.Lex();
4112           Elements.push_back(Op);
4113           continue;
4114         }
4115         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4116       }
4117 
4118       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4119         return TokError("expected unsigned integer");
4120 
4121       auto &U = Lex.getAPSIntVal();
4122       if (U.ugt(UINT64_MAX))
4123         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4124       Elements.push_back(U.getZExtValue());
4125       Lex.Lex();
4126     } while (EatIfPresent(lltok::comma));
4127 
4128   if (ParseToken(lltok::rparen, "expected ')' here"))
4129     return true;
4130 
4131   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4132   return false;
4133 }
4134 
4135 /// ParseDIObjCProperty:
4136 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4137 ///                       getter: "getFoo", attributes: 7, type: !2)
4138 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4140   OPTIONAL(name, MDStringField, );                                             \
4141   OPTIONAL(file, MDField, );                                                   \
4142   OPTIONAL(line, LineField, );                                                 \
4143   OPTIONAL(setter, MDStringField, );                                           \
4144   OPTIONAL(getter, MDStringField, );                                           \
4145   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4146   OPTIONAL(type, MDField, );
4147   PARSE_MD_FIELDS();
4148 #undef VISIT_MD_FIELDS
4149 
4150   Result = GET_OR_DISTINCT(DIObjCProperty,
4151                            (Context, name.Val, file.Val, line.Val, setter.Val,
4152                             getter.Val, attributes.Val, type.Val));
4153   return false;
4154 }
4155 
4156 /// ParseDIImportedEntity:
4157 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4158 ///                         line: 7, name: "foo")
4159 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4160 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4161   REQUIRED(tag, DwarfTagField, );                                              \
4162   REQUIRED(scope, MDField, );                                                  \
4163   OPTIONAL(entity, MDField, );                                                 \
4164   OPTIONAL(line, LineField, );                                                 \
4165   OPTIONAL(name, MDStringField, );
4166   PARSE_MD_FIELDS();
4167 #undef VISIT_MD_FIELDS
4168 
4169   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4170                                               entity.Val, line.Val, name.Val));
4171   return false;
4172 }
4173 
4174 #undef PARSE_MD_FIELD
4175 #undef NOP_FIELD
4176 #undef REQUIRE_FIELD
4177 #undef DECLARE_FIELD
4178 
4179 /// ParseMetadataAsValue
4180 ///  ::= metadata i32 %local
4181 ///  ::= metadata i32 @global
4182 ///  ::= metadata i32 7
4183 ///  ::= metadata !0
4184 ///  ::= metadata !{...}
4185 ///  ::= metadata !"string"
4186 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4187   // Note: the type 'metadata' has already been parsed.
4188   Metadata *MD;
4189   if (ParseMetadata(MD, &PFS))
4190     return true;
4191 
4192   V = MetadataAsValue::get(Context, MD);
4193   return false;
4194 }
4195 
4196 /// ParseValueAsMetadata
4197 ///  ::= i32 %local
4198 ///  ::= i32 @global
4199 ///  ::= i32 7
4200 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4201                                     PerFunctionState *PFS) {
4202   Type *Ty;
4203   LocTy Loc;
4204   if (ParseType(Ty, TypeMsg, Loc))
4205     return true;
4206   if (Ty->isMetadataTy())
4207     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4208 
4209   Value *V;
4210   if (ParseValue(Ty, V, PFS))
4211     return true;
4212 
4213   MD = ValueAsMetadata::get(V);
4214   return false;
4215 }
4216 
4217 /// ParseMetadata
4218 ///  ::= i32 %local
4219 ///  ::= i32 @global
4220 ///  ::= i32 7
4221 ///  ::= !42
4222 ///  ::= !{...}
4223 ///  ::= !"string"
4224 ///  ::= !DILocation(...)
4225 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4226   if (Lex.getKind() == lltok::MetadataVar) {
4227     MDNode *N;
4228     if (ParseSpecializedMDNode(N))
4229       return true;
4230     MD = N;
4231     return false;
4232   }
4233 
4234   // ValueAsMetadata:
4235   // <type> <value>
4236   if (Lex.getKind() != lltok::exclaim)
4237     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4238 
4239   // '!'.
4240   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4241   Lex.Lex();
4242 
4243   // MDString:
4244   //   ::= '!' STRINGCONSTANT
4245   if (Lex.getKind() == lltok::StringConstant) {
4246     MDString *S;
4247     if (ParseMDString(S))
4248       return true;
4249     MD = S;
4250     return false;
4251   }
4252 
4253   // MDNode:
4254   // !{ ... }
4255   // !7
4256   MDNode *N;
4257   if (ParseMDNodeTail(N))
4258     return true;
4259   MD = N;
4260   return false;
4261 }
4262 
4263 
4264 //===----------------------------------------------------------------------===//
4265 // Function Parsing.
4266 //===----------------------------------------------------------------------===//
4267 
4268 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4269                                    PerFunctionState *PFS) {
4270   if (Ty->isFunctionTy())
4271     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4272 
4273   switch (ID.Kind) {
4274   case ValID::t_LocalID:
4275     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4276     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4277     return V == nullptr;
4278   case ValID::t_LocalName:
4279     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4280     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4281     return V == nullptr;
4282   case ValID::t_InlineAsm: {
4283     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4284       return Error(ID.Loc, "invalid type for inline asm constraint string");
4285     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4286                        (ID.UIntVal >> 1) & 1,
4287                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4288     return false;
4289   }
4290   case ValID::t_GlobalName:
4291     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4292     return V == nullptr;
4293   case ValID::t_GlobalID:
4294     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4295     return V == nullptr;
4296   case ValID::t_APSInt:
4297     if (!Ty->isIntegerTy())
4298       return Error(ID.Loc, "integer constant must have integer type");
4299     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4300     V = ConstantInt::get(Context, ID.APSIntVal);
4301     return false;
4302   case ValID::t_APFloat:
4303     if (!Ty->isFloatingPointTy() ||
4304         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4305       return Error(ID.Loc, "floating point constant invalid for type");
4306 
4307     // The lexer has no type info, so builds all half, float, and double FP
4308     // constants as double.  Fix this here.  Long double does not need this.
4309     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4310       bool Ignored;
4311       if (Ty->isHalfTy())
4312         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4313                               &Ignored);
4314       else if (Ty->isFloatTy())
4315         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4316                               &Ignored);
4317     }
4318     V = ConstantFP::get(Context, ID.APFloatVal);
4319 
4320     if (V->getType() != Ty)
4321       return Error(ID.Loc, "floating point constant does not have type '" +
4322                    getTypeString(Ty) + "'");
4323 
4324     return false;
4325   case ValID::t_Null:
4326     if (!Ty->isPointerTy())
4327       return Error(ID.Loc, "null must be a pointer type");
4328     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4329     return false;
4330   case ValID::t_Undef:
4331     // FIXME: LabelTy should not be a first-class type.
4332     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4333       return Error(ID.Loc, "invalid type for undef constant");
4334     V = UndefValue::get(Ty);
4335     return false;
4336   case ValID::t_EmptyArray:
4337     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4338       return Error(ID.Loc, "invalid empty array initializer");
4339     V = UndefValue::get(Ty);
4340     return false;
4341   case ValID::t_Zero:
4342     // FIXME: LabelTy should not be a first-class type.
4343     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4344       return Error(ID.Loc, "invalid type for null constant");
4345     V = Constant::getNullValue(Ty);
4346     return false;
4347   case ValID::t_None:
4348     if (!Ty->isTokenTy())
4349       return Error(ID.Loc, "invalid type for none constant");
4350     V = Constant::getNullValue(Ty);
4351     return false;
4352   case ValID::t_Constant:
4353     if (ID.ConstantVal->getType() != Ty)
4354       return Error(ID.Loc, "constant expression type mismatch");
4355 
4356     V = ID.ConstantVal;
4357     return false;
4358   case ValID::t_ConstantStruct:
4359   case ValID::t_PackedConstantStruct:
4360     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4361       if (ST->getNumElements() != ID.UIntVal)
4362         return Error(ID.Loc,
4363                      "initializer with struct type has wrong # elements");
4364       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4365         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4366 
4367       // Verify that the elements are compatible with the structtype.
4368       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4369         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4370           return Error(ID.Loc, "element " + Twine(i) +
4371                     " of struct initializer doesn't match struct element type");
4372 
4373       V = ConstantStruct::get(
4374           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4375     } else
4376       return Error(ID.Loc, "constant expression type mismatch");
4377     return false;
4378   }
4379   llvm_unreachable("Invalid ValID");
4380 }
4381 
4382 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4383   C = nullptr;
4384   ValID ID;
4385   auto Loc = Lex.getLoc();
4386   if (ParseValID(ID, /*PFS=*/nullptr))
4387     return true;
4388   switch (ID.Kind) {
4389   case ValID::t_APSInt:
4390   case ValID::t_APFloat:
4391   case ValID::t_Undef:
4392   case ValID::t_Constant:
4393   case ValID::t_ConstantStruct:
4394   case ValID::t_PackedConstantStruct: {
4395     Value *V;
4396     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4397       return true;
4398     assert(isa<Constant>(V) && "Expected a constant value");
4399     C = cast<Constant>(V);
4400     return false;
4401   }
4402   default:
4403     return Error(Loc, "expected a constant value");
4404   }
4405 }
4406 
4407 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4408   V = nullptr;
4409   ValID ID;
4410   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4411 }
4412 
4413 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4414   Type *Ty = nullptr;
4415   return ParseType(Ty) ||
4416          ParseValue(Ty, V, PFS);
4417 }
4418 
4419 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4420                                       PerFunctionState &PFS) {
4421   Value *V;
4422   Loc = Lex.getLoc();
4423   if (ParseTypeAndValue(V, PFS)) return true;
4424   if (!isa<BasicBlock>(V))
4425     return Error(Loc, "expected a basic block");
4426   BB = cast<BasicBlock>(V);
4427   return false;
4428 }
4429 
4430 
4431 /// FunctionHeader
4432 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4433 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4434 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4435 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4436   // Parse the linkage.
4437   LocTy LinkageLoc = Lex.getLoc();
4438   unsigned Linkage;
4439 
4440   unsigned Visibility;
4441   unsigned DLLStorageClass;
4442   AttrBuilder RetAttrs;
4443   unsigned CC;
4444   Type *RetType = nullptr;
4445   LocTy RetTypeLoc = Lex.getLoc();
4446   if (ParseOptionalLinkage(Linkage) ||
4447       ParseOptionalVisibility(Visibility) ||
4448       ParseOptionalDLLStorageClass(DLLStorageClass) ||
4449       ParseOptionalCallingConv(CC) ||
4450       ParseOptionalReturnAttrs(RetAttrs) ||
4451       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4452     return true;
4453 
4454   // Verify that the linkage is ok.
4455   switch ((GlobalValue::LinkageTypes)Linkage) {
4456   case GlobalValue::ExternalLinkage:
4457     break; // always ok.
4458   case GlobalValue::ExternalWeakLinkage:
4459     if (isDefine)
4460       return Error(LinkageLoc, "invalid linkage for function definition");
4461     break;
4462   case GlobalValue::PrivateLinkage:
4463   case GlobalValue::InternalLinkage:
4464   case GlobalValue::AvailableExternallyLinkage:
4465   case GlobalValue::LinkOnceAnyLinkage:
4466   case GlobalValue::LinkOnceODRLinkage:
4467   case GlobalValue::WeakAnyLinkage:
4468   case GlobalValue::WeakODRLinkage:
4469     if (!isDefine)
4470       return Error(LinkageLoc, "invalid linkage for function declaration");
4471     break;
4472   case GlobalValue::AppendingLinkage:
4473   case GlobalValue::CommonLinkage:
4474     return Error(LinkageLoc, "invalid function linkage type");
4475   }
4476 
4477   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4478     return Error(LinkageLoc,
4479                  "symbol with local linkage must have default visibility");
4480 
4481   if (!FunctionType::isValidReturnType(RetType))
4482     return Error(RetTypeLoc, "invalid function return type");
4483 
4484   LocTy NameLoc = Lex.getLoc();
4485 
4486   std::string FunctionName;
4487   if (Lex.getKind() == lltok::GlobalVar) {
4488     FunctionName = Lex.getStrVal();
4489   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4490     unsigned NameID = Lex.getUIntVal();
4491 
4492     if (NameID != NumberedVals.size())
4493       return TokError("function expected to be numbered '%" +
4494                       Twine(NumberedVals.size()) + "'");
4495   } else {
4496     return TokError("expected function name");
4497   }
4498 
4499   Lex.Lex();
4500 
4501   if (Lex.getKind() != lltok::lparen)
4502     return TokError("expected '(' in function argument list");
4503 
4504   SmallVector<ArgInfo, 8> ArgList;
4505   bool isVarArg;
4506   AttrBuilder FuncAttrs;
4507   std::vector<unsigned> FwdRefAttrGrps;
4508   LocTy BuiltinLoc;
4509   std::string Section;
4510   unsigned Alignment;
4511   std::string GC;
4512   bool UnnamedAddr;
4513   LocTy UnnamedAddrLoc;
4514   Constant *Prefix = nullptr;
4515   Constant *Prologue = nullptr;
4516   Constant *PersonalityFn = nullptr;
4517   Comdat *C;
4518 
4519   if (ParseArgumentList(ArgList, isVarArg) ||
4520       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4521                          &UnnamedAddrLoc) ||
4522       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4523                                  BuiltinLoc) ||
4524       (EatIfPresent(lltok::kw_section) &&
4525        ParseStringConstant(Section)) ||
4526       parseOptionalComdat(FunctionName, C) ||
4527       ParseOptionalAlignment(Alignment) ||
4528       (EatIfPresent(lltok::kw_gc) &&
4529        ParseStringConstant(GC)) ||
4530       (EatIfPresent(lltok::kw_prefix) &&
4531        ParseGlobalTypeAndValue(Prefix)) ||
4532       (EatIfPresent(lltok::kw_prologue) &&
4533        ParseGlobalTypeAndValue(Prologue)) ||
4534       (EatIfPresent(lltok::kw_personality) &&
4535        ParseGlobalTypeAndValue(PersonalityFn)))
4536     return true;
4537 
4538   if (FuncAttrs.contains(Attribute::Builtin))
4539     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4540 
4541   // If the alignment was parsed as an attribute, move to the alignment field.
4542   if (FuncAttrs.hasAlignmentAttr()) {
4543     Alignment = FuncAttrs.getAlignment();
4544     FuncAttrs.removeAttribute(Attribute::Alignment);
4545   }
4546 
4547   // Okay, if we got here, the function is syntactically valid.  Convert types
4548   // and do semantic checks.
4549   std::vector<Type*> ParamTypeList;
4550   SmallVector<AttributeSet, 8> Attrs;
4551 
4552   if (RetAttrs.hasAttributes())
4553     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4554                                       AttributeSet::ReturnIndex,
4555                                       RetAttrs));
4556 
4557   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4558     ParamTypeList.push_back(ArgList[i].Ty);
4559     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4560       AttrBuilder B(ArgList[i].Attrs, i + 1);
4561       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4562     }
4563   }
4564 
4565   if (FuncAttrs.hasAttributes())
4566     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4567                                       AttributeSet::FunctionIndex,
4568                                       FuncAttrs));
4569 
4570   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4571 
4572   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4573     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4574 
4575   FunctionType *FT =
4576     FunctionType::get(RetType, ParamTypeList, isVarArg);
4577   PointerType *PFT = PointerType::getUnqual(FT);
4578 
4579   Fn = nullptr;
4580   if (!FunctionName.empty()) {
4581     // If this was a definition of a forward reference, remove the definition
4582     // from the forward reference table and fill in the forward ref.
4583     auto FRVI = ForwardRefVals.find(FunctionName);
4584     if (FRVI != ForwardRefVals.end()) {
4585       Fn = M->getFunction(FunctionName);
4586       if (!Fn)
4587         return Error(FRVI->second.second, "invalid forward reference to "
4588                      "function as global value!");
4589       if (Fn->getType() != PFT)
4590         return Error(FRVI->second.second, "invalid forward reference to "
4591                      "function '" + FunctionName + "' with wrong type!");
4592 
4593       ForwardRefVals.erase(FRVI);
4594     } else if ((Fn = M->getFunction(FunctionName))) {
4595       // Reject redefinitions.
4596       return Error(NameLoc, "invalid redefinition of function '" +
4597                    FunctionName + "'");
4598     } else if (M->getNamedValue(FunctionName)) {
4599       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4600     }
4601 
4602   } else {
4603     // If this is a definition of a forward referenced function, make sure the
4604     // types agree.
4605     auto I = ForwardRefValIDs.find(NumberedVals.size());
4606     if (I != ForwardRefValIDs.end()) {
4607       Fn = cast<Function>(I->second.first);
4608       if (Fn->getType() != PFT)
4609         return Error(NameLoc, "type of definition and forward reference of '@" +
4610                      Twine(NumberedVals.size()) + "' disagree");
4611       ForwardRefValIDs.erase(I);
4612     }
4613   }
4614 
4615   if (!Fn)
4616     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4617   else // Move the forward-reference to the correct spot in the module.
4618     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4619 
4620   if (FunctionName.empty())
4621     NumberedVals.push_back(Fn);
4622 
4623   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4624   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4625   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4626   Fn->setCallingConv(CC);
4627   Fn->setAttributes(PAL);
4628   Fn->setUnnamedAddr(UnnamedAddr);
4629   Fn->setAlignment(Alignment);
4630   Fn->setSection(Section);
4631   Fn->setComdat(C);
4632   Fn->setPersonalityFn(PersonalityFn);
4633   if (!GC.empty()) Fn->setGC(GC.c_str());
4634   Fn->setPrefixData(Prefix);
4635   Fn->setPrologueData(Prologue);
4636   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4637 
4638   // Add all of the arguments we parsed to the function.
4639   Function::arg_iterator ArgIt = Fn->arg_begin();
4640   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4641     // If the argument has a name, insert it into the argument symbol table.
4642     if (ArgList[i].Name.empty()) continue;
4643 
4644     // Set the name, if it conflicted, it will be auto-renamed.
4645     ArgIt->setName(ArgList[i].Name);
4646 
4647     if (ArgIt->getName() != ArgList[i].Name)
4648       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4649                    ArgList[i].Name + "'");
4650   }
4651 
4652   if (isDefine)
4653     return false;
4654 
4655   // Check the declaration has no block address forward references.
4656   ValID ID;
4657   if (FunctionName.empty()) {
4658     ID.Kind = ValID::t_GlobalID;
4659     ID.UIntVal = NumberedVals.size() - 1;
4660   } else {
4661     ID.Kind = ValID::t_GlobalName;
4662     ID.StrVal = FunctionName;
4663   }
4664   auto Blocks = ForwardRefBlockAddresses.find(ID);
4665   if (Blocks != ForwardRefBlockAddresses.end())
4666     return Error(Blocks->first.Loc,
4667                  "cannot take blockaddress inside a declaration");
4668   return false;
4669 }
4670 
4671 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4672   ValID ID;
4673   if (FunctionNumber == -1) {
4674     ID.Kind = ValID::t_GlobalName;
4675     ID.StrVal = F.getName();
4676   } else {
4677     ID.Kind = ValID::t_GlobalID;
4678     ID.UIntVal = FunctionNumber;
4679   }
4680 
4681   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4682   if (Blocks == P.ForwardRefBlockAddresses.end())
4683     return false;
4684 
4685   for (const auto &I : Blocks->second) {
4686     const ValID &BBID = I.first;
4687     GlobalValue *GV = I.second;
4688 
4689     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4690            "Expected local id or name");
4691     BasicBlock *BB;
4692     if (BBID.Kind == ValID::t_LocalName)
4693       BB = GetBB(BBID.StrVal, BBID.Loc);
4694     else
4695       BB = GetBB(BBID.UIntVal, BBID.Loc);
4696     if (!BB)
4697       return P.Error(BBID.Loc, "referenced value is not a basic block");
4698 
4699     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4700     GV->eraseFromParent();
4701   }
4702 
4703   P.ForwardRefBlockAddresses.erase(Blocks);
4704   return false;
4705 }
4706 
4707 /// ParseFunctionBody
4708 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4709 bool LLParser::ParseFunctionBody(Function &Fn) {
4710   if (Lex.getKind() != lltok::lbrace)
4711     return TokError("expected '{' in function body");
4712   Lex.Lex();  // eat the {.
4713 
4714   int FunctionNumber = -1;
4715   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4716 
4717   PerFunctionState PFS(*this, Fn, FunctionNumber);
4718 
4719   // Resolve block addresses and allow basic blocks to be forward-declared
4720   // within this function.
4721   if (PFS.resolveForwardRefBlockAddresses())
4722     return true;
4723   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4724 
4725   // We need at least one basic block.
4726   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4727     return TokError("function body requires at least one basic block");
4728 
4729   while (Lex.getKind() != lltok::rbrace &&
4730          Lex.getKind() != lltok::kw_uselistorder)
4731     if (ParseBasicBlock(PFS)) return true;
4732 
4733   while (Lex.getKind() != lltok::rbrace)
4734     if (ParseUseListOrder(&PFS))
4735       return true;
4736 
4737   // Eat the }.
4738   Lex.Lex();
4739 
4740   // Verify function is ok.
4741   return PFS.FinishFunction();
4742 }
4743 
4744 /// ParseBasicBlock
4745 ///   ::= LabelStr? Instruction*
4746 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4747   // If this basic block starts out with a name, remember it.
4748   std::string Name;
4749   LocTy NameLoc = Lex.getLoc();
4750   if (Lex.getKind() == lltok::LabelStr) {
4751     Name = Lex.getStrVal();
4752     Lex.Lex();
4753   }
4754 
4755   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4756   if (!BB)
4757     return Error(NameLoc,
4758                  "unable to create block named '" + Name + "'");
4759 
4760   std::string NameStr;
4761 
4762   // Parse the instructions in this block until we get a terminator.
4763   Instruction *Inst;
4764   do {
4765     // This instruction may have three possibilities for a name: a) none
4766     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4767     LocTy NameLoc = Lex.getLoc();
4768     int NameID = -1;
4769     NameStr = "";
4770 
4771     if (Lex.getKind() == lltok::LocalVarID) {
4772       NameID = Lex.getUIntVal();
4773       Lex.Lex();
4774       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4775         return true;
4776     } else if (Lex.getKind() == lltok::LocalVar) {
4777       NameStr = Lex.getStrVal();
4778       Lex.Lex();
4779       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4780         return true;
4781     }
4782 
4783     switch (ParseInstruction(Inst, BB, PFS)) {
4784     default: llvm_unreachable("Unknown ParseInstruction result!");
4785     case InstError: return true;
4786     case InstNormal:
4787       BB->getInstList().push_back(Inst);
4788 
4789       // With a normal result, we check to see if the instruction is followed by
4790       // a comma and metadata.
4791       if (EatIfPresent(lltok::comma))
4792         if (ParseInstructionMetadata(*Inst))
4793           return true;
4794       break;
4795     case InstExtraComma:
4796       BB->getInstList().push_back(Inst);
4797 
4798       // If the instruction parser ate an extra comma at the end of it, it
4799       // *must* be followed by metadata.
4800       if (ParseInstructionMetadata(*Inst))
4801         return true;
4802       break;
4803     }
4804 
4805     // Set the name on the instruction.
4806     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4807   } while (!isa<TerminatorInst>(Inst));
4808 
4809   return false;
4810 }
4811 
4812 //===----------------------------------------------------------------------===//
4813 // Instruction Parsing.
4814 //===----------------------------------------------------------------------===//
4815 
4816 /// ParseInstruction - Parse one of the many different instructions.
4817 ///
4818 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4819                                PerFunctionState &PFS) {
4820   lltok::Kind Token = Lex.getKind();
4821   if (Token == lltok::Eof)
4822     return TokError("found end of file when expecting more instructions");
4823   LocTy Loc = Lex.getLoc();
4824   unsigned KeywordVal = Lex.getUIntVal();
4825   Lex.Lex();  // Eat the keyword.
4826 
4827   switch (Token) {
4828   default:                    return Error(Loc, "expected instruction opcode");
4829   // Terminator Instructions.
4830   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4831   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4832   case lltok::kw_br:          return ParseBr(Inst, PFS);
4833   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4834   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4835   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4836   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4837   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4838   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4839   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4840   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4841   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4842   // Binary Operators.
4843   case lltok::kw_add:
4844   case lltok::kw_sub:
4845   case lltok::kw_mul:
4846   case lltok::kw_shl: {
4847     bool NUW = EatIfPresent(lltok::kw_nuw);
4848     bool NSW = EatIfPresent(lltok::kw_nsw);
4849     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4850 
4851     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4852 
4853     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4854     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4855     return false;
4856   }
4857   case lltok::kw_fadd:
4858   case lltok::kw_fsub:
4859   case lltok::kw_fmul:
4860   case lltok::kw_fdiv:
4861   case lltok::kw_frem: {
4862     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4863     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4864     if (Res != 0)
4865       return Res;
4866     if (FMF.any())
4867       Inst->setFastMathFlags(FMF);
4868     return 0;
4869   }
4870 
4871   case lltok::kw_sdiv:
4872   case lltok::kw_udiv:
4873   case lltok::kw_lshr:
4874   case lltok::kw_ashr: {
4875     bool Exact = EatIfPresent(lltok::kw_exact);
4876 
4877     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4878     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4879     return false;
4880   }
4881 
4882   case lltok::kw_urem:
4883   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4884   case lltok::kw_and:
4885   case lltok::kw_or:
4886   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4887   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4888   case lltok::kw_fcmp: {
4889     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4890     int Res = ParseCompare(Inst, PFS, KeywordVal);
4891     if (Res != 0)
4892       return Res;
4893     if (FMF.any())
4894       Inst->setFastMathFlags(FMF);
4895     return 0;
4896   }
4897 
4898   // Casts.
4899   case lltok::kw_trunc:
4900   case lltok::kw_zext:
4901   case lltok::kw_sext:
4902   case lltok::kw_fptrunc:
4903   case lltok::kw_fpext:
4904   case lltok::kw_bitcast:
4905   case lltok::kw_addrspacecast:
4906   case lltok::kw_uitofp:
4907   case lltok::kw_sitofp:
4908   case lltok::kw_fptoui:
4909   case lltok::kw_fptosi:
4910   case lltok::kw_inttoptr:
4911   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4912   // Other.
4913   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4914   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4915   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4916   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4917   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4918   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4919   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4920   // Call.
4921   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4922   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4923   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4924   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4925   // Memory.
4926   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4927   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4928   case lltok::kw_store:          return ParseStore(Inst, PFS);
4929   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4930   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4931   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4932   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4933   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4934   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4935   }
4936 }
4937 
4938 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4939 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4940   if (Opc == Instruction::FCmp) {
4941     switch (Lex.getKind()) {
4942     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4943     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4944     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4945     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4946     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4947     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4948     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4949     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4950     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4951     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4952     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4953     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4954     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4955     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4956     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4957     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4958     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4959     }
4960   } else {
4961     switch (Lex.getKind()) {
4962     default: return TokError("expected icmp predicate (e.g. 'eq')");
4963     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
4964     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
4965     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4966     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4967     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4968     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4969     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4970     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4971     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4972     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4973     }
4974   }
4975   Lex.Lex();
4976   return false;
4977 }
4978 
4979 //===----------------------------------------------------------------------===//
4980 // Terminator Instructions.
4981 //===----------------------------------------------------------------------===//
4982 
4983 /// ParseRet - Parse a return instruction.
4984 ///   ::= 'ret' void (',' !dbg, !1)*
4985 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
4986 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4987                         PerFunctionState &PFS) {
4988   SMLoc TypeLoc = Lex.getLoc();
4989   Type *Ty = nullptr;
4990   if (ParseType(Ty, true /*void allowed*/)) return true;
4991 
4992   Type *ResType = PFS.getFunction().getReturnType();
4993 
4994   if (Ty->isVoidTy()) {
4995     if (!ResType->isVoidTy())
4996       return Error(TypeLoc, "value doesn't match function result type '" +
4997                    getTypeString(ResType) + "'");
4998 
4999     Inst = ReturnInst::Create(Context);
5000     return false;
5001   }
5002 
5003   Value *RV;
5004   if (ParseValue(Ty, RV, PFS)) return true;
5005 
5006   if (ResType != RV->getType())
5007     return Error(TypeLoc, "value doesn't match function result type '" +
5008                  getTypeString(ResType) + "'");
5009 
5010   Inst = ReturnInst::Create(Context, RV);
5011   return false;
5012 }
5013 
5014 
5015 /// ParseBr
5016 ///   ::= 'br' TypeAndValue
5017 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5018 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5019   LocTy Loc, Loc2;
5020   Value *Op0;
5021   BasicBlock *Op1, *Op2;
5022   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5023 
5024   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5025     Inst = BranchInst::Create(BB);
5026     return false;
5027   }
5028 
5029   if (Op0->getType() != Type::getInt1Ty(Context))
5030     return Error(Loc, "branch condition must have 'i1' type");
5031 
5032   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5033       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5034       ParseToken(lltok::comma, "expected ',' after true destination") ||
5035       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5036     return true;
5037 
5038   Inst = BranchInst::Create(Op1, Op2, Op0);
5039   return false;
5040 }
5041 
5042 /// ParseSwitch
5043 ///  Instruction
5044 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5045 ///  JumpTable
5046 ///    ::= (TypeAndValue ',' TypeAndValue)*
5047 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5048   LocTy CondLoc, BBLoc;
5049   Value *Cond;
5050   BasicBlock *DefaultBB;
5051   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5052       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5053       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5054       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5055     return true;
5056 
5057   if (!Cond->getType()->isIntegerTy())
5058     return Error(CondLoc, "switch condition must have integer type");
5059 
5060   // Parse the jump table pairs.
5061   SmallPtrSet<Value*, 32> SeenCases;
5062   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5063   while (Lex.getKind() != lltok::rsquare) {
5064     Value *Constant;
5065     BasicBlock *DestBB;
5066 
5067     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5068         ParseToken(lltok::comma, "expected ',' after case value") ||
5069         ParseTypeAndBasicBlock(DestBB, PFS))
5070       return true;
5071 
5072     if (!SeenCases.insert(Constant).second)
5073       return Error(CondLoc, "duplicate case value in switch");
5074     if (!isa<ConstantInt>(Constant))
5075       return Error(CondLoc, "case value is not a constant integer");
5076 
5077     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5078   }
5079 
5080   Lex.Lex();  // Eat the ']'.
5081 
5082   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5083   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5084     SI->addCase(Table[i].first, Table[i].second);
5085   Inst = SI;
5086   return false;
5087 }
5088 
5089 /// ParseIndirectBr
5090 ///  Instruction
5091 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5092 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5093   LocTy AddrLoc;
5094   Value *Address;
5095   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5096       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5097       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5098     return true;
5099 
5100   if (!Address->getType()->isPointerTy())
5101     return Error(AddrLoc, "indirectbr address must have pointer type");
5102 
5103   // Parse the destination list.
5104   SmallVector<BasicBlock*, 16> DestList;
5105 
5106   if (Lex.getKind() != lltok::rsquare) {
5107     BasicBlock *DestBB;
5108     if (ParseTypeAndBasicBlock(DestBB, PFS))
5109       return true;
5110     DestList.push_back(DestBB);
5111 
5112     while (EatIfPresent(lltok::comma)) {
5113       if (ParseTypeAndBasicBlock(DestBB, PFS))
5114         return true;
5115       DestList.push_back(DestBB);
5116     }
5117   }
5118 
5119   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5120     return true;
5121 
5122   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5123   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5124     IBI->addDestination(DestList[i]);
5125   Inst = IBI;
5126   return false;
5127 }
5128 
5129 
5130 /// ParseInvoke
5131 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5132 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5133 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5134   LocTy CallLoc = Lex.getLoc();
5135   AttrBuilder RetAttrs, FnAttrs;
5136   std::vector<unsigned> FwdRefAttrGrps;
5137   LocTy NoBuiltinLoc;
5138   unsigned CC;
5139   Type *RetType = nullptr;
5140   LocTy RetTypeLoc;
5141   ValID CalleeID;
5142   SmallVector<ParamInfo, 16> ArgList;
5143   SmallVector<OperandBundleDef, 2> BundleList;
5144 
5145   BasicBlock *NormalBB, *UnwindBB;
5146   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5147       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5148       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5149       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5150                                  NoBuiltinLoc) ||
5151       ParseOptionalOperandBundles(BundleList, PFS) ||
5152       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5153       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5154       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5155       ParseTypeAndBasicBlock(UnwindBB, PFS))
5156     return true;
5157 
5158   // If RetType is a non-function pointer type, then this is the short syntax
5159   // for the call, which means that RetType is just the return type.  Infer the
5160   // rest of the function argument types from the arguments that are present.
5161   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5162   if (!Ty) {
5163     // Pull out the types of all of the arguments...
5164     std::vector<Type*> ParamTypes;
5165     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5166       ParamTypes.push_back(ArgList[i].V->getType());
5167 
5168     if (!FunctionType::isValidReturnType(RetType))
5169       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5170 
5171     Ty = FunctionType::get(RetType, ParamTypes, false);
5172   }
5173 
5174   CalleeID.FTy = Ty;
5175 
5176   // Look up the callee.
5177   Value *Callee;
5178   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5179     return true;
5180 
5181   // Set up the Attribute for the function.
5182   SmallVector<AttributeSet, 8> Attrs;
5183   if (RetAttrs.hasAttributes())
5184     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5185                                       AttributeSet::ReturnIndex,
5186                                       RetAttrs));
5187 
5188   SmallVector<Value*, 8> Args;
5189 
5190   // Loop through FunctionType's arguments and ensure they are specified
5191   // correctly.  Also, gather any parameter attributes.
5192   FunctionType::param_iterator I = Ty->param_begin();
5193   FunctionType::param_iterator E = Ty->param_end();
5194   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5195     Type *ExpectedTy = nullptr;
5196     if (I != E) {
5197       ExpectedTy = *I++;
5198     } else if (!Ty->isVarArg()) {
5199       return Error(ArgList[i].Loc, "too many arguments specified");
5200     }
5201 
5202     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5203       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5204                    getTypeString(ExpectedTy) + "'");
5205     Args.push_back(ArgList[i].V);
5206     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5207       AttrBuilder B(ArgList[i].Attrs, i + 1);
5208       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5209     }
5210   }
5211 
5212   if (I != E)
5213     return Error(CallLoc, "not enough parameters specified for call");
5214 
5215   if (FnAttrs.hasAttributes()) {
5216     if (FnAttrs.hasAlignmentAttr())
5217       return Error(CallLoc, "invoke instructions may not have an alignment");
5218 
5219     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5220                                       AttributeSet::FunctionIndex,
5221                                       FnAttrs));
5222   }
5223 
5224   // Finish off the Attribute and check them
5225   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5226 
5227   InvokeInst *II =
5228       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5229   II->setCallingConv(CC);
5230   II->setAttributes(PAL);
5231   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5232   Inst = II;
5233   return false;
5234 }
5235 
5236 /// ParseResume
5237 ///   ::= 'resume' TypeAndValue
5238 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5239   Value *Exn; LocTy ExnLoc;
5240   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5241     return true;
5242 
5243   ResumeInst *RI = ResumeInst::Create(Exn);
5244   Inst = RI;
5245   return false;
5246 }
5247 
5248 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5249                                   PerFunctionState &PFS) {
5250   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5251     return true;
5252 
5253   while (Lex.getKind() != lltok::rsquare) {
5254     // If this isn't the first argument, we need a comma.
5255     if (!Args.empty() &&
5256         ParseToken(lltok::comma, "expected ',' in argument list"))
5257       return true;
5258 
5259     // Parse the argument.
5260     LocTy ArgLoc;
5261     Type *ArgTy = nullptr;
5262     if (ParseType(ArgTy, ArgLoc))
5263       return true;
5264 
5265     Value *V;
5266     if (ArgTy->isMetadataTy()) {
5267       if (ParseMetadataAsValue(V, PFS))
5268         return true;
5269     } else {
5270       if (ParseValue(ArgTy, V, PFS))
5271         return true;
5272     }
5273     Args.push_back(V);
5274   }
5275 
5276   Lex.Lex();  // Lex the ']'.
5277   return false;
5278 }
5279 
5280 /// ParseCleanupRet
5281 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5282 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5283   Value *CleanupPad = nullptr;
5284 
5285   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5286     return true;
5287 
5288   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5289     return true;
5290 
5291   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5292     return true;
5293 
5294   BasicBlock *UnwindBB = nullptr;
5295   if (Lex.getKind() == lltok::kw_to) {
5296     Lex.Lex();
5297     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5298       return true;
5299   } else {
5300     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5301       return true;
5302     }
5303   }
5304 
5305   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5306   return false;
5307 }
5308 
5309 /// ParseCatchRet
5310 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5311 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5312   Value *CatchPad = nullptr;
5313 
5314   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5315     return true;
5316 
5317   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5318     return true;
5319 
5320   BasicBlock *BB;
5321   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5322       ParseTypeAndBasicBlock(BB, PFS))
5323       return true;
5324 
5325   Inst = CatchReturnInst::Create(CatchPad, BB);
5326   return false;
5327 }
5328 
5329 /// ParseCatchSwitch
5330 ///   ::= 'catchswitch' within Parent
5331 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5332   Value *ParentPad;
5333   LocTy BBLoc;
5334 
5335   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5336     return true;
5337 
5338   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5339       Lex.getKind() != lltok::LocalVarID)
5340     return TokError("expected scope value for catchswitch");
5341 
5342   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5343     return true;
5344 
5345   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5346     return true;
5347 
5348   SmallVector<BasicBlock *, 32> Table;
5349   do {
5350     BasicBlock *DestBB;
5351     if (ParseTypeAndBasicBlock(DestBB, PFS))
5352       return true;
5353     Table.push_back(DestBB);
5354   } while (EatIfPresent(lltok::comma));
5355 
5356   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5357     return true;
5358 
5359   if (ParseToken(lltok::kw_unwind,
5360                  "expected 'unwind' after catchswitch scope"))
5361     return true;
5362 
5363   BasicBlock *UnwindBB = nullptr;
5364   if (EatIfPresent(lltok::kw_to)) {
5365     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5366       return true;
5367   } else {
5368     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5369       return true;
5370   }
5371 
5372   auto *CatchSwitch =
5373       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5374   for (BasicBlock *DestBB : Table)
5375     CatchSwitch->addHandler(DestBB);
5376   Inst = CatchSwitch;
5377   return false;
5378 }
5379 
5380 /// ParseCatchPad
5381 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5382 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5383   Value *CatchSwitch = nullptr;
5384 
5385   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5386     return true;
5387 
5388   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5389     return TokError("expected scope value for catchpad");
5390 
5391   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5392     return true;
5393 
5394   SmallVector<Value *, 8> Args;
5395   if (ParseExceptionArgs(Args, PFS))
5396     return true;
5397 
5398   Inst = CatchPadInst::Create(CatchSwitch, Args);
5399   return false;
5400 }
5401 
5402 /// ParseCleanupPad
5403 ///   ::= 'cleanuppad' within Parent ParamList
5404 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5405   Value *ParentPad = nullptr;
5406 
5407   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5408     return true;
5409 
5410   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5411       Lex.getKind() != lltok::LocalVarID)
5412     return TokError("expected scope value for cleanuppad");
5413 
5414   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5415     return true;
5416 
5417   SmallVector<Value *, 8> Args;
5418   if (ParseExceptionArgs(Args, PFS))
5419     return true;
5420 
5421   Inst = CleanupPadInst::Create(ParentPad, Args);
5422   return false;
5423 }
5424 
5425 //===----------------------------------------------------------------------===//
5426 // Binary Operators.
5427 //===----------------------------------------------------------------------===//
5428 
5429 /// ParseArithmetic
5430 ///  ::= ArithmeticOps TypeAndValue ',' Value
5431 ///
5432 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5433 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5434 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5435                                unsigned Opc, unsigned OperandType) {
5436   LocTy Loc; Value *LHS, *RHS;
5437   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5438       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5439       ParseValue(LHS->getType(), RHS, PFS))
5440     return true;
5441 
5442   bool Valid;
5443   switch (OperandType) {
5444   default: llvm_unreachable("Unknown operand type!");
5445   case 0: // int or FP.
5446     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5447             LHS->getType()->isFPOrFPVectorTy();
5448     break;
5449   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5450   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5451   }
5452 
5453   if (!Valid)
5454     return Error(Loc, "invalid operand type for instruction");
5455 
5456   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5457   return false;
5458 }
5459 
5460 /// ParseLogical
5461 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5462 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5463                             unsigned Opc) {
5464   LocTy Loc; Value *LHS, *RHS;
5465   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5466       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5467       ParseValue(LHS->getType(), RHS, PFS))
5468     return true;
5469 
5470   if (!LHS->getType()->isIntOrIntVectorTy())
5471     return Error(Loc,"instruction requires integer or integer vector operands");
5472 
5473   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5474   return false;
5475 }
5476 
5477 
5478 /// ParseCompare
5479 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5480 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5481 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5482                             unsigned Opc) {
5483   // Parse the integer/fp comparison predicate.
5484   LocTy Loc;
5485   unsigned Pred;
5486   Value *LHS, *RHS;
5487   if (ParseCmpPredicate(Pred, Opc) ||
5488       ParseTypeAndValue(LHS, Loc, PFS) ||
5489       ParseToken(lltok::comma, "expected ',' after compare value") ||
5490       ParseValue(LHS->getType(), RHS, PFS))
5491     return true;
5492 
5493   if (Opc == Instruction::FCmp) {
5494     if (!LHS->getType()->isFPOrFPVectorTy())
5495       return Error(Loc, "fcmp requires floating point operands");
5496     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5497   } else {
5498     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5499     if (!LHS->getType()->isIntOrIntVectorTy() &&
5500         !LHS->getType()->getScalarType()->isPointerTy())
5501       return Error(Loc, "icmp requires integer operands");
5502     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5503   }
5504   return false;
5505 }
5506 
5507 //===----------------------------------------------------------------------===//
5508 // Other Instructions.
5509 //===----------------------------------------------------------------------===//
5510 
5511 
5512 /// ParseCast
5513 ///   ::= CastOpc TypeAndValue 'to' Type
5514 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5515                          unsigned Opc) {
5516   LocTy Loc;
5517   Value *Op;
5518   Type *DestTy = nullptr;
5519   if (ParseTypeAndValue(Op, Loc, PFS) ||
5520       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5521       ParseType(DestTy))
5522     return true;
5523 
5524   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5525     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5526     return Error(Loc, "invalid cast opcode for cast from '" +
5527                  getTypeString(Op->getType()) + "' to '" +
5528                  getTypeString(DestTy) + "'");
5529   }
5530   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5531   return false;
5532 }
5533 
5534 /// ParseSelect
5535 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5536 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5537   LocTy Loc;
5538   Value *Op0, *Op1, *Op2;
5539   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5540       ParseToken(lltok::comma, "expected ',' after select condition") ||
5541       ParseTypeAndValue(Op1, PFS) ||
5542       ParseToken(lltok::comma, "expected ',' after select value") ||
5543       ParseTypeAndValue(Op2, PFS))
5544     return true;
5545 
5546   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5547     return Error(Loc, Reason);
5548 
5549   Inst = SelectInst::Create(Op0, Op1, Op2);
5550   return false;
5551 }
5552 
5553 /// ParseVA_Arg
5554 ///   ::= 'va_arg' TypeAndValue ',' Type
5555 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5556   Value *Op;
5557   Type *EltTy = nullptr;
5558   LocTy TypeLoc;
5559   if (ParseTypeAndValue(Op, PFS) ||
5560       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5561       ParseType(EltTy, TypeLoc))
5562     return true;
5563 
5564   if (!EltTy->isFirstClassType())
5565     return Error(TypeLoc, "va_arg requires operand with first class type");
5566 
5567   Inst = new VAArgInst(Op, EltTy);
5568   return false;
5569 }
5570 
5571 /// ParseExtractElement
5572 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5573 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5574   LocTy Loc;
5575   Value *Op0, *Op1;
5576   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5577       ParseToken(lltok::comma, "expected ',' after extract value") ||
5578       ParseTypeAndValue(Op1, PFS))
5579     return true;
5580 
5581   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5582     return Error(Loc, "invalid extractelement operands");
5583 
5584   Inst = ExtractElementInst::Create(Op0, Op1);
5585   return false;
5586 }
5587 
5588 /// ParseInsertElement
5589 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5590 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5591   LocTy Loc;
5592   Value *Op0, *Op1, *Op2;
5593   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5594       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5595       ParseTypeAndValue(Op1, PFS) ||
5596       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5597       ParseTypeAndValue(Op2, PFS))
5598     return true;
5599 
5600   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5601     return Error(Loc, "invalid insertelement operands");
5602 
5603   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5604   return false;
5605 }
5606 
5607 /// ParseShuffleVector
5608 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5609 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5610   LocTy Loc;
5611   Value *Op0, *Op1, *Op2;
5612   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5613       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5614       ParseTypeAndValue(Op1, PFS) ||
5615       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5616       ParseTypeAndValue(Op2, PFS))
5617     return true;
5618 
5619   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5620     return Error(Loc, "invalid shufflevector operands");
5621 
5622   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5623   return false;
5624 }
5625 
5626 /// ParsePHI
5627 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5628 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5629   Type *Ty = nullptr;  LocTy TypeLoc;
5630   Value *Op0, *Op1;
5631 
5632   if (ParseType(Ty, TypeLoc) ||
5633       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5634       ParseValue(Ty, Op0, PFS) ||
5635       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5636       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5637       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5638     return true;
5639 
5640   bool AteExtraComma = false;
5641   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5642   while (1) {
5643     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5644 
5645     if (!EatIfPresent(lltok::comma))
5646       break;
5647 
5648     if (Lex.getKind() == lltok::MetadataVar) {
5649       AteExtraComma = true;
5650       break;
5651     }
5652 
5653     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5654         ParseValue(Ty, Op0, PFS) ||
5655         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5656         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5657         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5658       return true;
5659   }
5660 
5661   if (!Ty->isFirstClassType())
5662     return Error(TypeLoc, "phi node must have first class type");
5663 
5664   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5665   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5666     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5667   Inst = PN;
5668   return AteExtraComma ? InstExtraComma : InstNormal;
5669 }
5670 
5671 /// ParseLandingPad
5672 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5673 /// Clause
5674 ///   ::= 'catch' TypeAndValue
5675 ///   ::= 'filter'
5676 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5677 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5678   Type *Ty = nullptr; LocTy TyLoc;
5679 
5680   if (ParseType(Ty, TyLoc))
5681     return true;
5682 
5683   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5684   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5685 
5686   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5687     LandingPadInst::ClauseType CT;
5688     if (EatIfPresent(lltok::kw_catch))
5689       CT = LandingPadInst::Catch;
5690     else if (EatIfPresent(lltok::kw_filter))
5691       CT = LandingPadInst::Filter;
5692     else
5693       return TokError("expected 'catch' or 'filter' clause type");
5694 
5695     Value *V;
5696     LocTy VLoc;
5697     if (ParseTypeAndValue(V, VLoc, PFS))
5698       return true;
5699 
5700     // A 'catch' type expects a non-array constant. A filter clause expects an
5701     // array constant.
5702     if (CT == LandingPadInst::Catch) {
5703       if (isa<ArrayType>(V->getType()))
5704         Error(VLoc, "'catch' clause has an invalid type");
5705     } else {
5706       if (!isa<ArrayType>(V->getType()))
5707         Error(VLoc, "'filter' clause has an invalid type");
5708     }
5709 
5710     Constant *CV = dyn_cast<Constant>(V);
5711     if (!CV)
5712       return Error(VLoc, "clause argument must be a constant");
5713     LP->addClause(CV);
5714   }
5715 
5716   Inst = LP.release();
5717   return false;
5718 }
5719 
5720 /// ParseCall
5721 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5722 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5723 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5724 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5725 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5726 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5727 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5728 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5729 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5730                          CallInst::TailCallKind TCK) {
5731   AttrBuilder RetAttrs, FnAttrs;
5732   std::vector<unsigned> FwdRefAttrGrps;
5733   LocTy BuiltinLoc;
5734   unsigned CC;
5735   Type *RetType = nullptr;
5736   LocTy RetTypeLoc;
5737   ValID CalleeID;
5738   SmallVector<ParamInfo, 16> ArgList;
5739   SmallVector<OperandBundleDef, 2> BundleList;
5740   LocTy CallLoc = Lex.getLoc();
5741 
5742   if (TCK != CallInst::TCK_None &&
5743       ParseToken(lltok::kw_call,
5744                  "expected 'tail call', 'musttail call', or 'notail call'"))
5745     return true;
5746 
5747   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5748 
5749   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5750       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5751       ParseValID(CalleeID) ||
5752       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5753                          PFS.getFunction().isVarArg()) ||
5754       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5755       ParseOptionalOperandBundles(BundleList, PFS))
5756     return true;
5757 
5758   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5759     return Error(CallLoc, "fast-math-flags specified for call without "
5760                           "floating-point scalar or vector return type");
5761 
5762   // If RetType is a non-function pointer type, then this is the short syntax
5763   // for the call, which means that RetType is just the return type.  Infer the
5764   // rest of the function argument types from the arguments that are present.
5765   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5766   if (!Ty) {
5767     // Pull out the types of all of the arguments...
5768     std::vector<Type*> ParamTypes;
5769     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5770       ParamTypes.push_back(ArgList[i].V->getType());
5771 
5772     if (!FunctionType::isValidReturnType(RetType))
5773       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5774 
5775     Ty = FunctionType::get(RetType, ParamTypes, false);
5776   }
5777 
5778   CalleeID.FTy = Ty;
5779 
5780   // Look up the callee.
5781   Value *Callee;
5782   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5783     return true;
5784 
5785   // Set up the Attribute for the function.
5786   SmallVector<AttributeSet, 8> Attrs;
5787   if (RetAttrs.hasAttributes())
5788     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5789                                       AttributeSet::ReturnIndex,
5790                                       RetAttrs));
5791 
5792   SmallVector<Value*, 8> Args;
5793 
5794   // Loop through FunctionType's arguments and ensure they are specified
5795   // correctly.  Also, gather any parameter attributes.
5796   FunctionType::param_iterator I = Ty->param_begin();
5797   FunctionType::param_iterator E = Ty->param_end();
5798   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5799     Type *ExpectedTy = nullptr;
5800     if (I != E) {
5801       ExpectedTy = *I++;
5802     } else if (!Ty->isVarArg()) {
5803       return Error(ArgList[i].Loc, "too many arguments specified");
5804     }
5805 
5806     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5807       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5808                    getTypeString(ExpectedTy) + "'");
5809     Args.push_back(ArgList[i].V);
5810     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5811       AttrBuilder B(ArgList[i].Attrs, i + 1);
5812       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5813     }
5814   }
5815 
5816   if (I != E)
5817     return Error(CallLoc, "not enough parameters specified for call");
5818 
5819   if (FnAttrs.hasAttributes()) {
5820     if (FnAttrs.hasAlignmentAttr())
5821       return Error(CallLoc, "call instructions may not have an alignment");
5822 
5823     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5824                                       AttributeSet::FunctionIndex,
5825                                       FnAttrs));
5826   }
5827 
5828   // Finish off the Attribute and check them
5829   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5830 
5831   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5832   CI->setTailCallKind(TCK);
5833   CI->setCallingConv(CC);
5834   if (FMF.any())
5835     CI->setFastMathFlags(FMF);
5836   CI->setAttributes(PAL);
5837   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5838   Inst = CI;
5839   return false;
5840 }
5841 
5842 //===----------------------------------------------------------------------===//
5843 // Memory Instructions.
5844 //===----------------------------------------------------------------------===//
5845 
5846 /// ParseAlloc
5847 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5848 ///       (',' 'align' i32)?
5849 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5850   Value *Size = nullptr;
5851   LocTy SizeLoc, TyLoc;
5852   unsigned Alignment = 0;
5853   Type *Ty = nullptr;
5854 
5855   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5856   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5857 
5858   if (ParseType(Ty, TyLoc)) return true;
5859 
5860   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5861     return Error(TyLoc, "invalid type for alloca");
5862 
5863   bool AteExtraComma = false;
5864   if (EatIfPresent(lltok::comma)) {
5865     if (Lex.getKind() == lltok::kw_align) {
5866       if (ParseOptionalAlignment(Alignment)) return true;
5867     } else if (Lex.getKind() == lltok::MetadataVar) {
5868       AteExtraComma = true;
5869     } else {
5870       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5871           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5872         return true;
5873     }
5874   }
5875 
5876   if (Size && !Size->getType()->isIntegerTy())
5877     return Error(SizeLoc, "element count must have integer type");
5878 
5879   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5880   AI->setUsedWithInAlloca(IsInAlloca);
5881   AI->setSwiftError(IsSwiftError);
5882   Inst = AI;
5883   return AteExtraComma ? InstExtraComma : InstNormal;
5884 }
5885 
5886 /// ParseLoad
5887 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5888 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5889 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5890 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5891   Value *Val; LocTy Loc;
5892   unsigned Alignment = 0;
5893   bool AteExtraComma = false;
5894   bool isAtomic = false;
5895   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5896   SynchronizationScope Scope = CrossThread;
5897 
5898   if (Lex.getKind() == lltok::kw_atomic) {
5899     isAtomic = true;
5900     Lex.Lex();
5901   }
5902 
5903   bool isVolatile = false;
5904   if (Lex.getKind() == lltok::kw_volatile) {
5905     isVolatile = true;
5906     Lex.Lex();
5907   }
5908 
5909   Type *Ty;
5910   LocTy ExplicitTypeLoc = Lex.getLoc();
5911   if (ParseType(Ty) ||
5912       ParseToken(lltok::comma, "expected comma after load's type") ||
5913       ParseTypeAndValue(Val, Loc, PFS) ||
5914       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5915       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5916     return true;
5917 
5918   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5919     return Error(Loc, "load operand must be a pointer to a first class type");
5920   if (isAtomic && !Alignment)
5921     return Error(Loc, "atomic load must have explicit non-zero alignment");
5922   if (Ordering == AtomicOrdering::Release ||
5923       Ordering == AtomicOrdering::AcquireRelease)
5924     return Error(Loc, "atomic load cannot use Release ordering");
5925 
5926   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5927     return Error(ExplicitTypeLoc,
5928                  "explicit pointee type doesn't match operand's pointee type");
5929 
5930   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5931   return AteExtraComma ? InstExtraComma : InstNormal;
5932 }
5933 
5934 /// ParseStore
5935 
5936 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5937 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5938 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5939 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5940   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5941   unsigned Alignment = 0;
5942   bool AteExtraComma = false;
5943   bool isAtomic = false;
5944   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5945   SynchronizationScope Scope = CrossThread;
5946 
5947   if (Lex.getKind() == lltok::kw_atomic) {
5948     isAtomic = true;
5949     Lex.Lex();
5950   }
5951 
5952   bool isVolatile = false;
5953   if (Lex.getKind() == lltok::kw_volatile) {
5954     isVolatile = true;
5955     Lex.Lex();
5956   }
5957 
5958   if (ParseTypeAndValue(Val, Loc, PFS) ||
5959       ParseToken(lltok::comma, "expected ',' after store operand") ||
5960       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5961       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5962       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5963     return true;
5964 
5965   if (!Ptr->getType()->isPointerTy())
5966     return Error(PtrLoc, "store operand must be a pointer");
5967   if (!Val->getType()->isFirstClassType())
5968     return Error(Loc, "store operand must be a first class value");
5969   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5970     return Error(Loc, "stored value and pointer type do not match");
5971   if (isAtomic && !Alignment)
5972     return Error(Loc, "atomic store must have explicit non-zero alignment");
5973   if (Ordering == AtomicOrdering::Acquire ||
5974       Ordering == AtomicOrdering::AcquireRelease)
5975     return Error(Loc, "atomic store cannot use Acquire ordering");
5976 
5977   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5978   return AteExtraComma ? InstExtraComma : InstNormal;
5979 }
5980 
5981 /// ParseCmpXchg
5982 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5983 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5984 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5985   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5986   bool AteExtraComma = false;
5987   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
5988   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
5989   SynchronizationScope Scope = CrossThread;
5990   bool isVolatile = false;
5991   bool isWeak = false;
5992 
5993   if (EatIfPresent(lltok::kw_weak))
5994     isWeak = true;
5995 
5996   if (EatIfPresent(lltok::kw_volatile))
5997     isVolatile = true;
5998 
5999   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6000       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6001       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6002       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6003       ParseTypeAndValue(New, NewLoc, PFS) ||
6004       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6005       ParseOrdering(FailureOrdering))
6006     return true;
6007 
6008   if (SuccessOrdering == AtomicOrdering::Unordered ||
6009       FailureOrdering == AtomicOrdering::Unordered)
6010     return TokError("cmpxchg cannot be unordered");
6011   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6012     return TokError("cmpxchg failure argument shall be no stronger than the "
6013                     "success argument");
6014   if (FailureOrdering == AtomicOrdering::Release ||
6015       FailureOrdering == AtomicOrdering::AcquireRelease)
6016     return TokError(
6017         "cmpxchg failure ordering cannot include release semantics");
6018   if (!Ptr->getType()->isPointerTy())
6019     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6020   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6021     return Error(CmpLoc, "compare value and pointer type do not match");
6022   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6023     return Error(NewLoc, "new value and pointer type do not match");
6024   if (!New->getType()->isFirstClassType())
6025     return Error(NewLoc, "cmpxchg operand must be a first class value");
6026   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6027       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6028   CXI->setVolatile(isVolatile);
6029   CXI->setWeak(isWeak);
6030   Inst = CXI;
6031   return AteExtraComma ? InstExtraComma : InstNormal;
6032 }
6033 
6034 /// ParseAtomicRMW
6035 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6036 ///       'singlethread'? AtomicOrdering
6037 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6038   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6039   bool AteExtraComma = false;
6040   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6041   SynchronizationScope Scope = CrossThread;
6042   bool isVolatile = false;
6043   AtomicRMWInst::BinOp Operation;
6044 
6045   if (EatIfPresent(lltok::kw_volatile))
6046     isVolatile = true;
6047 
6048   switch (Lex.getKind()) {
6049   default: return TokError("expected binary operation in atomicrmw");
6050   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6051   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6052   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6053   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6054   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6055   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6056   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6057   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6058   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6059   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6060   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6061   }
6062   Lex.Lex();  // Eat the operation.
6063 
6064   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6065       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6066       ParseTypeAndValue(Val, ValLoc, PFS) ||
6067       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6068     return true;
6069 
6070   if (Ordering == AtomicOrdering::Unordered)
6071     return TokError("atomicrmw cannot be unordered");
6072   if (!Ptr->getType()->isPointerTy())
6073     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6074   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6075     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6076   if (!Val->getType()->isIntegerTy())
6077     return Error(ValLoc, "atomicrmw operand must be an integer");
6078   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6079   if (Size < 8 || (Size & (Size - 1)))
6080     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6081                          " integer");
6082 
6083   AtomicRMWInst *RMWI =
6084     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6085   RMWI->setVolatile(isVolatile);
6086   Inst = RMWI;
6087   return AteExtraComma ? InstExtraComma : InstNormal;
6088 }
6089 
6090 /// ParseFence
6091 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6092 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6093   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6094   SynchronizationScope Scope = CrossThread;
6095   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6096     return true;
6097 
6098   if (Ordering == AtomicOrdering::Unordered)
6099     return TokError("fence cannot be unordered");
6100   if (Ordering == AtomicOrdering::Monotonic)
6101     return TokError("fence cannot be monotonic");
6102 
6103   Inst = new FenceInst(Context, Ordering, Scope);
6104   return InstNormal;
6105 }
6106 
6107 /// ParseGetElementPtr
6108 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6109 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6110   Value *Ptr = nullptr;
6111   Value *Val = nullptr;
6112   LocTy Loc, EltLoc;
6113 
6114   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6115 
6116   Type *Ty = nullptr;
6117   LocTy ExplicitTypeLoc = Lex.getLoc();
6118   if (ParseType(Ty) ||
6119       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6120       ParseTypeAndValue(Ptr, Loc, PFS))
6121     return true;
6122 
6123   Type *BaseType = Ptr->getType();
6124   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6125   if (!BasePointerType)
6126     return Error(Loc, "base of getelementptr must be a pointer");
6127 
6128   if (Ty != BasePointerType->getElementType())
6129     return Error(ExplicitTypeLoc,
6130                  "explicit pointee type doesn't match operand's pointee type");
6131 
6132   SmallVector<Value*, 16> Indices;
6133   bool AteExtraComma = false;
6134   // GEP returns a vector of pointers if at least one of parameters is a vector.
6135   // All vector parameters should have the same vector width.
6136   unsigned GEPWidth = BaseType->isVectorTy() ?
6137     BaseType->getVectorNumElements() : 0;
6138 
6139   while (EatIfPresent(lltok::comma)) {
6140     if (Lex.getKind() == lltok::MetadataVar) {
6141       AteExtraComma = true;
6142       break;
6143     }
6144     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6145     if (!Val->getType()->getScalarType()->isIntegerTy())
6146       return Error(EltLoc, "getelementptr index must be an integer");
6147 
6148     if (Val->getType()->isVectorTy()) {
6149       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6150       if (GEPWidth && GEPWidth != ValNumEl)
6151         return Error(EltLoc,
6152           "getelementptr vector index has a wrong number of elements");
6153       GEPWidth = ValNumEl;
6154     }
6155     Indices.push_back(Val);
6156   }
6157 
6158   SmallPtrSet<Type*, 4> Visited;
6159   if (!Indices.empty() && !Ty->isSized(&Visited))
6160     return Error(Loc, "base element of getelementptr must be sized");
6161 
6162   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6163     return Error(Loc, "invalid getelementptr indices");
6164   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6165   if (InBounds)
6166     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6167   return AteExtraComma ? InstExtraComma : InstNormal;
6168 }
6169 
6170 /// ParseExtractValue
6171 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6172 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6173   Value *Val; LocTy Loc;
6174   SmallVector<unsigned, 4> Indices;
6175   bool AteExtraComma;
6176   if (ParseTypeAndValue(Val, Loc, PFS) ||
6177       ParseIndexList(Indices, AteExtraComma))
6178     return true;
6179 
6180   if (!Val->getType()->isAggregateType())
6181     return Error(Loc, "extractvalue operand must be aggregate type");
6182 
6183   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6184     return Error(Loc, "invalid indices for extractvalue");
6185   Inst = ExtractValueInst::Create(Val, Indices);
6186   return AteExtraComma ? InstExtraComma : InstNormal;
6187 }
6188 
6189 /// ParseInsertValue
6190 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6191 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6192   Value *Val0, *Val1; LocTy Loc0, Loc1;
6193   SmallVector<unsigned, 4> Indices;
6194   bool AteExtraComma;
6195   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6196       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6197       ParseTypeAndValue(Val1, Loc1, PFS) ||
6198       ParseIndexList(Indices, AteExtraComma))
6199     return true;
6200 
6201   if (!Val0->getType()->isAggregateType())
6202     return Error(Loc0, "insertvalue operand must be aggregate type");
6203 
6204   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6205   if (!IndexedType)
6206     return Error(Loc0, "invalid indices for insertvalue");
6207   if (IndexedType != Val1->getType())
6208     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6209                            getTypeString(Val1->getType()) + "' instead of '" +
6210                            getTypeString(IndexedType) + "'");
6211   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6212   return AteExtraComma ? InstExtraComma : InstNormal;
6213 }
6214 
6215 //===----------------------------------------------------------------------===//
6216 // Embedded metadata.
6217 //===----------------------------------------------------------------------===//
6218 
6219 /// ParseMDNodeVector
6220 ///   ::= { Element (',' Element)* }
6221 /// Element
6222 ///   ::= 'null' | TypeAndValue
6223 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6224   if (ParseToken(lltok::lbrace, "expected '{' here"))
6225     return true;
6226 
6227   // Check for an empty list.
6228   if (EatIfPresent(lltok::rbrace))
6229     return false;
6230 
6231   do {
6232     // Null is a special case since it is typeless.
6233     if (EatIfPresent(lltok::kw_null)) {
6234       Elts.push_back(nullptr);
6235       continue;
6236     }
6237 
6238     Metadata *MD;
6239     if (ParseMetadata(MD, nullptr))
6240       return true;
6241     Elts.push_back(MD);
6242   } while (EatIfPresent(lltok::comma));
6243 
6244   return ParseToken(lltok::rbrace, "expected end of metadata node");
6245 }
6246 
6247 //===----------------------------------------------------------------------===//
6248 // Use-list order directives.
6249 //===----------------------------------------------------------------------===//
6250 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6251                                 SMLoc Loc) {
6252   if (V->use_empty())
6253     return Error(Loc, "value has no uses");
6254 
6255   unsigned NumUses = 0;
6256   SmallDenseMap<const Use *, unsigned, 16> Order;
6257   for (const Use &U : V->uses()) {
6258     if (++NumUses > Indexes.size())
6259       break;
6260     Order[&U] = Indexes[NumUses - 1];
6261   }
6262   if (NumUses < 2)
6263     return Error(Loc, "value only has one use");
6264   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6265     return Error(Loc, "wrong number of indexes, expected " +
6266                           Twine(std::distance(V->use_begin(), V->use_end())));
6267 
6268   V->sortUseList([&](const Use &L, const Use &R) {
6269     return Order.lookup(&L) < Order.lookup(&R);
6270   });
6271   return false;
6272 }
6273 
6274 /// ParseUseListOrderIndexes
6275 ///   ::= '{' uint32 (',' uint32)+ '}'
6276 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6277   SMLoc Loc = Lex.getLoc();
6278   if (ParseToken(lltok::lbrace, "expected '{' here"))
6279     return true;
6280   if (Lex.getKind() == lltok::rbrace)
6281     return Lex.Error("expected non-empty list of uselistorder indexes");
6282 
6283   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6284   // indexes should be distinct numbers in the range [0, size-1], and should
6285   // not be in order.
6286   unsigned Offset = 0;
6287   unsigned Max = 0;
6288   bool IsOrdered = true;
6289   assert(Indexes.empty() && "Expected empty order vector");
6290   do {
6291     unsigned Index;
6292     if (ParseUInt32(Index))
6293       return true;
6294 
6295     // Update consistency checks.
6296     Offset += Index - Indexes.size();
6297     Max = std::max(Max, Index);
6298     IsOrdered &= Index == Indexes.size();
6299 
6300     Indexes.push_back(Index);
6301   } while (EatIfPresent(lltok::comma));
6302 
6303   if (ParseToken(lltok::rbrace, "expected '}' here"))
6304     return true;
6305 
6306   if (Indexes.size() < 2)
6307     return Error(Loc, "expected >= 2 uselistorder indexes");
6308   if (Offset != 0 || Max >= Indexes.size())
6309     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6310   if (IsOrdered)
6311     return Error(Loc, "expected uselistorder indexes to change the order");
6312 
6313   return false;
6314 }
6315 
6316 /// ParseUseListOrder
6317 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6318 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6319   SMLoc Loc = Lex.getLoc();
6320   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6321     return true;
6322 
6323   Value *V;
6324   SmallVector<unsigned, 16> Indexes;
6325   if (ParseTypeAndValue(V, PFS) ||
6326       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6327       ParseUseListOrderIndexes(Indexes))
6328     return true;
6329 
6330   return sortUseListOrder(V, Indexes, Loc);
6331 }
6332 
6333 /// ParseUseListOrderBB
6334 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6335 bool LLParser::ParseUseListOrderBB() {
6336   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6337   SMLoc Loc = Lex.getLoc();
6338   Lex.Lex();
6339 
6340   ValID Fn, Label;
6341   SmallVector<unsigned, 16> Indexes;
6342   if (ParseValID(Fn) ||
6343       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6344       ParseValID(Label) ||
6345       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6346       ParseUseListOrderIndexes(Indexes))
6347     return true;
6348 
6349   // Check the function.
6350   GlobalValue *GV;
6351   if (Fn.Kind == ValID::t_GlobalName)
6352     GV = M->getNamedValue(Fn.StrVal);
6353   else if (Fn.Kind == ValID::t_GlobalID)
6354     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6355   else
6356     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6357   if (!GV)
6358     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6359   auto *F = dyn_cast<Function>(GV);
6360   if (!F)
6361     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6362   if (F->isDeclaration())
6363     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6364 
6365   // Check the basic block.
6366   if (Label.Kind == ValID::t_LocalID)
6367     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6368   if (Label.Kind != ValID::t_LocalName)
6369     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6370   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6371   if (!V)
6372     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6373   if (!isa<BasicBlock>(V))
6374     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6375 
6376   return sortUseListOrder(V, Indexes, Loc);
6377 }
6378