1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_appending: // OptionalLinkage 194 case lltok::kw_dllexport: // OptionalLinkage 195 case lltok::kw_common: // OptionalLinkage 196 case lltok::kw_dllimport: // OptionalLinkage 197 case lltok::kw_extern_weak: // OptionalLinkage 198 case lltok::kw_external: { // OptionalLinkage 199 unsigned Linkage, Visibility; 200 if (ParseOptionalLinkage(Linkage) || 201 ParseOptionalVisibility(Visibility) || 202 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 203 return true; 204 break; 205 } 206 case lltok::kw_default: // OptionalVisibility 207 case lltok::kw_hidden: // OptionalVisibility 208 case lltok::kw_protected: { // OptionalVisibility 209 unsigned Visibility; 210 if (ParseOptionalVisibility(Visibility) || 211 ParseGlobal("", SMLoc(), 0, false, Visibility)) 212 return true; 213 break; 214 } 215 216 case lltok::kw_thread_local: // OptionalThreadLocal 217 case lltok::kw_addrspace: // OptionalAddrSpace 218 case lltok::kw_constant: // GlobalType 219 case lltok::kw_global: // GlobalType 220 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 221 break; 222 } 223 } 224 } 225 226 227 /// toplevelentity 228 /// ::= 'module' 'asm' STRINGCONSTANT 229 bool LLParser::ParseModuleAsm() { 230 assert(Lex.getKind() == lltok::kw_module); 231 Lex.Lex(); 232 233 std::string AsmStr; 234 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 235 ParseStringConstant(AsmStr)) return true; 236 237 M->appendModuleInlineAsm(AsmStr); 238 return false; 239 } 240 241 /// toplevelentity 242 /// ::= 'target' 'triple' '=' STRINGCONSTANT 243 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 244 bool LLParser::ParseTargetDefinition() { 245 assert(Lex.getKind() == lltok::kw_target); 246 std::string Str; 247 switch (Lex.Lex()) { 248 default: return TokError("unknown target property"); 249 case lltok::kw_triple: 250 Lex.Lex(); 251 if (ParseToken(lltok::equal, "expected '=' after target triple") || 252 ParseStringConstant(Str)) 253 return true; 254 M->setTargetTriple(Str); 255 return false; 256 case lltok::kw_datalayout: 257 Lex.Lex(); 258 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 259 ParseStringConstant(Str)) 260 return true; 261 M->setDataLayout(Str); 262 return false; 263 } 264 } 265 266 /// toplevelentity 267 /// ::= 'deplibs' '=' '[' ']' 268 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 269 bool LLParser::ParseDepLibs() { 270 assert(Lex.getKind() == lltok::kw_deplibs); 271 Lex.Lex(); 272 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 273 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 274 return true; 275 276 if (EatIfPresent(lltok::rsquare)) 277 return false; 278 279 std::string Str; 280 if (ParseStringConstant(Str)) return true; 281 M->addLibrary(Str); 282 283 while (EatIfPresent(lltok::comma)) { 284 if (ParseStringConstant(Str)) return true; 285 M->addLibrary(Str); 286 } 287 288 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 289 } 290 291 /// ParseUnnamedType: 292 /// ::= LocalVarID '=' 'type' type 293 bool LLParser::ParseUnnamedType() { 294 LocTy TypeLoc = Lex.getLoc(); 295 unsigned TypeID = Lex.getUIntVal(); 296 Lex.Lex(); // eat LocalVarID; 297 298 if (ParseToken(lltok::equal, "expected '=' after name") || 299 ParseToken(lltok::kw_type, "expected 'type' after '='")) 300 return true; 301 302 if (TypeID >= NumberedTypes.size()) 303 NumberedTypes.resize(TypeID+1); 304 305 Type *Result = 0; 306 if (ParseStructDefinition(TypeLoc, "", 307 NumberedTypes[TypeID], Result)) return true; 308 309 if (!isa<StructType>(Result)) { 310 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 311 if (Entry.first) 312 return Error(TypeLoc, "non-struct types may not be recursive"); 313 Entry.first = Result; 314 Entry.second = SMLoc(); 315 } 316 317 return false; 318 } 319 320 321 /// toplevelentity 322 /// ::= LocalVar '=' 'type' type 323 bool LLParser::ParseNamedType() { 324 std::string Name = Lex.getStrVal(); 325 LocTy NameLoc = Lex.getLoc(); 326 Lex.Lex(); // eat LocalVar. 327 328 if (ParseToken(lltok::equal, "expected '=' after name") || 329 ParseToken(lltok::kw_type, "expected 'type' after name")) 330 return true; 331 332 Type *Result = 0; 333 if (ParseStructDefinition(NameLoc, Name, 334 NamedTypes[Name], Result)) return true; 335 336 if (!isa<StructType>(Result)) { 337 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 338 if (Entry.first) 339 return Error(NameLoc, "non-struct types may not be recursive"); 340 Entry.first = Result; 341 Entry.second = SMLoc(); 342 } 343 344 return false; 345 } 346 347 348 /// toplevelentity 349 /// ::= 'declare' FunctionHeader 350 bool LLParser::ParseDeclare() { 351 assert(Lex.getKind() == lltok::kw_declare); 352 Lex.Lex(); 353 354 Function *F; 355 return ParseFunctionHeader(F, false); 356 } 357 358 /// toplevelentity 359 /// ::= 'define' FunctionHeader '{' ... 360 bool LLParser::ParseDefine() { 361 assert(Lex.getKind() == lltok::kw_define); 362 Lex.Lex(); 363 364 Function *F; 365 return ParseFunctionHeader(F, true) || 366 ParseFunctionBody(*F); 367 } 368 369 /// ParseGlobalType 370 /// ::= 'constant' 371 /// ::= 'global' 372 bool LLParser::ParseGlobalType(bool &IsConstant) { 373 if (Lex.getKind() == lltok::kw_constant) 374 IsConstant = true; 375 else if (Lex.getKind() == lltok::kw_global) 376 IsConstant = false; 377 else { 378 IsConstant = false; 379 return TokError("expected 'global' or 'constant'"); 380 } 381 Lex.Lex(); 382 return false; 383 } 384 385 /// ParseUnnamedGlobal: 386 /// OptionalVisibility ALIAS ... 387 /// OptionalLinkage OptionalVisibility ... -> global variable 388 /// GlobalID '=' OptionalVisibility ALIAS ... 389 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 390 bool LLParser::ParseUnnamedGlobal() { 391 unsigned VarID = NumberedVals.size(); 392 std::string Name; 393 LocTy NameLoc = Lex.getLoc(); 394 395 // Handle the GlobalID form. 396 if (Lex.getKind() == lltok::GlobalID) { 397 if (Lex.getUIntVal() != VarID) 398 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 399 Twine(VarID) + "'"); 400 Lex.Lex(); // eat GlobalID; 401 402 if (ParseToken(lltok::equal, "expected '=' after name")) 403 return true; 404 } 405 406 bool HasLinkage; 407 unsigned Linkage, Visibility; 408 if (ParseOptionalLinkage(Linkage, HasLinkage) || 409 ParseOptionalVisibility(Visibility)) 410 return true; 411 412 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 413 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 414 return ParseAlias(Name, NameLoc, Visibility); 415 } 416 417 /// ParseNamedGlobal: 418 /// GlobalVar '=' OptionalVisibility ALIAS ... 419 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 420 bool LLParser::ParseNamedGlobal() { 421 assert(Lex.getKind() == lltok::GlobalVar); 422 LocTy NameLoc = Lex.getLoc(); 423 std::string Name = Lex.getStrVal(); 424 Lex.Lex(); 425 426 bool HasLinkage; 427 unsigned Linkage, Visibility; 428 if (ParseToken(lltok::equal, "expected '=' in global variable") || 429 ParseOptionalLinkage(Linkage, HasLinkage) || 430 ParseOptionalVisibility(Visibility)) 431 return true; 432 433 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 434 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 435 return ParseAlias(Name, NameLoc, Visibility); 436 } 437 438 // MDString: 439 // ::= '!' STRINGCONSTANT 440 bool LLParser::ParseMDString(MDString *&Result) { 441 std::string Str; 442 if (ParseStringConstant(Str)) return true; 443 Result = MDString::get(Context, Str); 444 return false; 445 } 446 447 // MDNode: 448 // ::= '!' MDNodeNumber 449 // 450 /// This version of ParseMDNodeID returns the slot number and null in the case 451 /// of a forward reference. 452 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 453 // !{ ..., !42, ... } 454 if (ParseUInt32(SlotNo)) return true; 455 456 // Check existing MDNode. 457 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 458 Result = NumberedMetadata[SlotNo]; 459 else 460 Result = 0; 461 return false; 462 } 463 464 bool LLParser::ParseMDNodeID(MDNode *&Result) { 465 // !{ ..., !42, ... } 466 unsigned MID = 0; 467 if (ParseMDNodeID(Result, MID)) return true; 468 469 // If not a forward reference, just return it now. 470 if (Result) return false; 471 472 // Otherwise, create MDNode forward reference. 473 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 474 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 475 476 if (NumberedMetadata.size() <= MID) 477 NumberedMetadata.resize(MID+1); 478 NumberedMetadata[MID] = FwdNode; 479 Result = FwdNode; 480 return false; 481 } 482 483 /// ParseNamedMetadata: 484 /// !foo = !{ !1, !2 } 485 bool LLParser::ParseNamedMetadata() { 486 assert(Lex.getKind() == lltok::MetadataVar); 487 std::string Name = Lex.getStrVal(); 488 Lex.Lex(); 489 490 if (ParseToken(lltok::equal, "expected '=' here") || 491 ParseToken(lltok::exclaim, "Expected '!' here") || 492 ParseToken(lltok::lbrace, "Expected '{' here")) 493 return true; 494 495 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 496 if (Lex.getKind() != lltok::rbrace) 497 do { 498 if (ParseToken(lltok::exclaim, "Expected '!' here")) 499 return true; 500 501 MDNode *N = 0; 502 if (ParseMDNodeID(N)) return true; 503 NMD->addOperand(N); 504 } while (EatIfPresent(lltok::comma)); 505 506 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 507 return true; 508 509 return false; 510 } 511 512 /// ParseStandaloneMetadata: 513 /// !42 = !{...} 514 bool LLParser::ParseStandaloneMetadata() { 515 assert(Lex.getKind() == lltok::exclaim); 516 Lex.Lex(); 517 unsigned MetadataID = 0; 518 519 LocTy TyLoc; 520 Type *Ty = 0; 521 SmallVector<Value *, 16> Elts; 522 if (ParseUInt32(MetadataID) || 523 ParseToken(lltok::equal, "expected '=' here") || 524 ParseType(Ty, TyLoc) || 525 ParseToken(lltok::exclaim, "Expected '!' here") || 526 ParseToken(lltok::lbrace, "Expected '{' here") || 527 ParseMDNodeVector(Elts, NULL) || 528 ParseToken(lltok::rbrace, "expected end of metadata node")) 529 return true; 530 531 MDNode *Init = MDNode::get(Context, Elts); 532 533 // See if this was forward referenced, if so, handle it. 534 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 535 FI = ForwardRefMDNodes.find(MetadataID); 536 if (FI != ForwardRefMDNodes.end()) { 537 MDNode *Temp = FI->second.first; 538 Temp->replaceAllUsesWith(Init); 539 MDNode::deleteTemporary(Temp); 540 ForwardRefMDNodes.erase(FI); 541 542 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 543 } else { 544 if (MetadataID >= NumberedMetadata.size()) 545 NumberedMetadata.resize(MetadataID+1); 546 547 if (NumberedMetadata[MetadataID] != 0) 548 return TokError("Metadata id is already used"); 549 NumberedMetadata[MetadataID] = Init; 550 } 551 552 return false; 553 } 554 555 /// ParseAlias: 556 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 557 /// Aliasee 558 /// ::= TypeAndValue 559 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 560 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 561 /// 562 /// Everything through visibility has already been parsed. 563 /// 564 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 565 unsigned Visibility) { 566 assert(Lex.getKind() == lltok::kw_alias); 567 Lex.Lex(); 568 unsigned Linkage; 569 LocTy LinkageLoc = Lex.getLoc(); 570 if (ParseOptionalLinkage(Linkage)) 571 return true; 572 573 if (Linkage != GlobalValue::ExternalLinkage && 574 Linkage != GlobalValue::WeakAnyLinkage && 575 Linkage != GlobalValue::WeakODRLinkage && 576 Linkage != GlobalValue::InternalLinkage && 577 Linkage != GlobalValue::PrivateLinkage && 578 Linkage != GlobalValue::LinkerPrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateWeakLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool IsConstant, UnnamedAddr; 649 GlobalVariable::ThreadLocalMode TLM; 650 LocTy UnnamedAddrLoc; 651 LocTy TyLoc; 652 653 Type *Ty = 0; 654 if (ParseOptionalThreadLocal(TLM) || 655 ParseOptionalAddrSpace(AddrSpace) || 656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 657 &UnnamedAddrLoc) || 658 ParseGlobalType(IsConstant) || 659 ParseType(Ty, TyLoc)) 660 return true; 661 662 // If the linkage is specified and is external, then no initializer is 663 // present. 664 Constant *Init = 0; 665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 666 Linkage != GlobalValue::ExternalWeakLinkage && 667 Linkage != GlobalValue::ExternalLinkage)) { 668 if (ParseGlobalValue(Ty, Init)) 669 return true; 670 } 671 672 if (Ty->isFunctionTy() || Ty->isLabelTy()) 673 return Error(TyLoc, "invalid type for global variable"); 674 675 GlobalVariable *GV = 0; 676 677 // See if the global was forward referenced, if so, use the global. 678 if (!Name.empty()) { 679 if (GlobalValue *GVal = M->getNamedValue(Name)) { 680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 681 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 682 GV = cast<GlobalVariable>(GVal); 683 } 684 } else { 685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 686 I = ForwardRefValIDs.find(NumberedVals.size()); 687 if (I != ForwardRefValIDs.end()) { 688 GV = cast<GlobalVariable>(I->second.first); 689 ForwardRefValIDs.erase(I); 690 } 691 } 692 693 if (GV == 0) { 694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 695 Name, 0, GlobalVariable::NotThreadLocal, 696 AddrSpace); 697 } else { 698 if (GV->getType()->getElementType() != Ty) 699 return Error(TyLoc, 700 "forward reference and definition of global have different types"); 701 702 // Move the forward-reference to the correct spot in the module. 703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 704 } 705 706 if (Name.empty()) 707 NumberedVals.push_back(GV); 708 709 // Set the parsed properties on the global. 710 if (Init) 711 GV->setInitializer(Init); 712 GV->setConstant(IsConstant); 713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 715 GV->setThreadLocalMode(TLM); 716 GV->setUnnamedAddr(UnnamedAddr); 717 718 // Parse attributes on the global. 719 while (Lex.getKind() == lltok::comma) { 720 Lex.Lex(); 721 722 if (Lex.getKind() == lltok::kw_section) { 723 Lex.Lex(); 724 GV->setSection(Lex.getStrVal()); 725 if (ParseToken(lltok::StringConstant, "expected global section string")) 726 return true; 727 } else if (Lex.getKind() == lltok::kw_align) { 728 unsigned Alignment; 729 if (ParseOptionalAlignment(Alignment)) return true; 730 GV->setAlignment(Alignment); 731 } else { 732 TokError("unknown global variable property!"); 733 } 734 } 735 736 return false; 737 } 738 739 740 //===----------------------------------------------------------------------===// 741 // GlobalValue Reference/Resolution Routines. 742 //===----------------------------------------------------------------------===// 743 744 /// GetGlobalVal - Get a value with the specified name or ID, creating a 745 /// forward reference record if needed. This can return null if the value 746 /// exists but does not have the right type. 747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 748 LocTy Loc) { 749 PointerType *PTy = dyn_cast<PointerType>(Ty); 750 if (PTy == 0) { 751 Error(Loc, "global variable reference must have pointer type"); 752 return 0; 753 } 754 755 // Look this name up in the normal function symbol table. 756 GlobalValue *Val = 757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 758 759 // If this is a forward reference for the value, see if we already created a 760 // forward ref record. 761 if (Val == 0) { 762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 763 I = ForwardRefVals.find(Name); 764 if (I != ForwardRefVals.end()) 765 Val = I->second.first; 766 } 767 768 // If we have the value in the symbol table or fwd-ref table, return it. 769 if (Val) { 770 if (Val->getType() == Ty) return Val; 771 Error(Loc, "'@" + Name + "' defined with type '" + 772 getTypeString(Val->getType()) + "'"); 773 return 0; 774 } 775 776 // Otherwise, create a new forward reference for this value and remember it. 777 GlobalValue *FwdVal; 778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 780 else 781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 782 GlobalValue::ExternalWeakLinkage, 0, Name); 783 784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 785 return FwdVal; 786 } 787 788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 789 PointerType *PTy = dyn_cast<PointerType>(Ty); 790 if (PTy == 0) { 791 Error(Loc, "global variable reference must have pointer type"); 792 return 0; 793 } 794 795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 796 797 // If this is a forward reference for the value, see if we already created a 798 // forward ref record. 799 if (Val == 0) { 800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 801 I = ForwardRefValIDs.find(ID); 802 if (I != ForwardRefValIDs.end()) 803 Val = I->second.first; 804 } 805 806 // If we have the value in the symbol table or fwd-ref table, return it. 807 if (Val) { 808 if (Val->getType() == Ty) return Val; 809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 810 getTypeString(Val->getType()) + "'"); 811 return 0; 812 } 813 814 // Otherwise, create a new forward reference for this value and remember it. 815 GlobalValue *FwdVal; 816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 818 else 819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 820 GlobalValue::ExternalWeakLinkage, 0, ""); 821 822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 823 return FwdVal; 824 } 825 826 827 //===----------------------------------------------------------------------===// 828 // Helper Routines. 829 //===----------------------------------------------------------------------===// 830 831 /// ParseToken - If the current token has the specified kind, eat it and return 832 /// success. Otherwise, emit the specified error and return failure. 833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 834 if (Lex.getKind() != T) 835 return TokError(ErrMsg); 836 Lex.Lex(); 837 return false; 838 } 839 840 /// ParseStringConstant 841 /// ::= StringConstant 842 bool LLParser::ParseStringConstant(std::string &Result) { 843 if (Lex.getKind() != lltok::StringConstant) 844 return TokError("expected string constant"); 845 Result = Lex.getStrVal(); 846 Lex.Lex(); 847 return false; 848 } 849 850 /// ParseUInt32 851 /// ::= uint32 852 bool LLParser::ParseUInt32(unsigned &Val) { 853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 854 return TokError("expected integer"); 855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 856 if (Val64 != unsigned(Val64)) 857 return TokError("expected 32-bit integer (too large)"); 858 Val = Val64; 859 Lex.Lex(); 860 return false; 861 } 862 863 /// ParseTLSModel 864 /// := 'localdynamic' 865 /// := 'initialexec' 866 /// := 'localexec' 867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 868 switch (Lex.getKind()) { 869 default: 870 return TokError("expected localdynamic, initialexec or localexec"); 871 case lltok::kw_localdynamic: 872 TLM = GlobalVariable::LocalDynamicTLSModel; 873 break; 874 case lltok::kw_initialexec: 875 TLM = GlobalVariable::InitialExecTLSModel; 876 break; 877 case lltok::kw_localexec: 878 TLM = GlobalVariable::LocalExecTLSModel; 879 break; 880 } 881 882 Lex.Lex(); 883 return false; 884 } 885 886 /// ParseOptionalThreadLocal 887 /// := /*empty*/ 888 /// := 'thread_local' 889 /// := 'thread_local' '(' tlsmodel ')' 890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 891 TLM = GlobalVariable::NotThreadLocal; 892 if (!EatIfPresent(lltok::kw_thread_local)) 893 return false; 894 895 TLM = GlobalVariable::GeneralDynamicTLSModel; 896 if (Lex.getKind() == lltok::lparen) { 897 Lex.Lex(); 898 return ParseTLSModel(TLM) || 899 ParseToken(lltok::rparen, "expected ')' after thread local model"); 900 } 901 return false; 902 } 903 904 /// ParseOptionalAddrSpace 905 /// := /*empty*/ 906 /// := 'addrspace' '(' uint32 ')' 907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 908 AddrSpace = 0; 909 if (!EatIfPresent(lltok::kw_addrspace)) 910 return false; 911 return ParseToken(lltok::lparen, "expected '(' in address space") || 912 ParseUInt32(AddrSpace) || 913 ParseToken(lltok::rparen, "expected ')' in address space"); 914 } 915 916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 917 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 918 /// 2: function attr. 919 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) { 920 Attrs = Attribute::None; 921 LocTy AttrLoc = Lex.getLoc(); 922 923 while (1) { 924 switch (Lex.getKind()) { 925 default: // End of attributes. 926 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) 927 return Error(AttrLoc, "invalid use of function-only attribute"); 928 929 // As a hack, we allow "align 2" on functions as a synonym for 930 // "alignstack 2". 931 if (AttrKind == 2 && 932 (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment))) 933 return Error(AttrLoc, "invalid use of attribute on a function"); 934 935 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly)) 936 return Error(AttrLoc, "invalid use of parameter-only attribute"); 937 938 return false; 939 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 940 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 941 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 942 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 943 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 944 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 945 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 946 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 947 948 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 949 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 950 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; 951 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; 952 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 953 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 954 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 955 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 956 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 957 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 958 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 959 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 960 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 961 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 962 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 963 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; 964 case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break; 965 966 case lltok::kw_alignstack: { 967 unsigned Alignment; 968 if (ParseOptionalStackAlignment(Alignment)) 969 return true; 970 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); 971 continue; 972 } 973 974 case lltok::kw_align: { 975 unsigned Alignment; 976 if (ParseOptionalAlignment(Alignment)) 977 return true; 978 Attrs |= Attribute::constructAlignmentFromInt(Alignment); 979 continue; 980 } 981 982 } 983 Lex.Lex(); 984 } 985 } 986 987 /// ParseOptionalLinkage 988 /// ::= /*empty*/ 989 /// ::= 'private' 990 /// ::= 'linker_private' 991 /// ::= 'linker_private_weak' 992 /// ::= 'linker_private_weak_def_auto' 993 /// ::= 'internal' 994 /// ::= 'weak' 995 /// ::= 'weak_odr' 996 /// ::= 'linkonce' 997 /// ::= 'linkonce_odr' 998 /// ::= 'available_externally' 999 /// ::= 'appending' 1000 /// ::= 'dllexport' 1001 /// ::= 'common' 1002 /// ::= 'dllimport' 1003 /// ::= 'extern_weak' 1004 /// ::= 'external' 1005 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1006 HasLinkage = false; 1007 switch (Lex.getKind()) { 1008 default: Res=GlobalValue::ExternalLinkage; return false; 1009 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1010 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1011 case lltok::kw_linker_private_weak: 1012 Res = GlobalValue::LinkerPrivateWeakLinkage; 1013 break; 1014 case lltok::kw_linker_private_weak_def_auto: 1015 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; 1016 break; 1017 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1018 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1019 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1020 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1021 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1022 case lltok::kw_available_externally: 1023 Res = GlobalValue::AvailableExternallyLinkage; 1024 break; 1025 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1026 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1027 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1028 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1029 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1030 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1031 } 1032 Lex.Lex(); 1033 HasLinkage = true; 1034 return false; 1035 } 1036 1037 /// ParseOptionalVisibility 1038 /// ::= /*empty*/ 1039 /// ::= 'default' 1040 /// ::= 'hidden' 1041 /// ::= 'protected' 1042 /// 1043 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1044 switch (Lex.getKind()) { 1045 default: Res = GlobalValue::DefaultVisibility; return false; 1046 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1047 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1048 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1049 } 1050 Lex.Lex(); 1051 return false; 1052 } 1053 1054 /// ParseOptionalCallingConv 1055 /// ::= /*empty*/ 1056 /// ::= 'ccc' 1057 /// ::= 'fastcc' 1058 /// ::= 'coldcc' 1059 /// ::= 'x86_stdcallcc' 1060 /// ::= 'x86_fastcallcc' 1061 /// ::= 'x86_thiscallcc' 1062 /// ::= 'arm_apcscc' 1063 /// ::= 'arm_aapcscc' 1064 /// ::= 'arm_aapcs_vfpcc' 1065 /// ::= 'msp430_intrcc' 1066 /// ::= 'ptx_kernel' 1067 /// ::= 'ptx_device' 1068 /// ::= 'cc' UINT 1069 /// 1070 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1071 switch (Lex.getKind()) { 1072 default: CC = CallingConv::C; return false; 1073 case lltok::kw_ccc: CC = CallingConv::C; break; 1074 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1075 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1076 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1077 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1078 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1079 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1080 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1081 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1082 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1083 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1084 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1085 case lltok::kw_cc: { 1086 unsigned ArbitraryCC; 1087 Lex.Lex(); 1088 if (ParseUInt32(ArbitraryCC)) 1089 return true; 1090 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1091 return false; 1092 } 1093 } 1094 1095 Lex.Lex(); 1096 return false; 1097 } 1098 1099 /// ParseInstructionMetadata 1100 /// ::= !dbg !42 (',' !dbg !57)* 1101 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1102 PerFunctionState *PFS) { 1103 do { 1104 if (Lex.getKind() != lltok::MetadataVar) 1105 return TokError("expected metadata after comma"); 1106 1107 std::string Name = Lex.getStrVal(); 1108 unsigned MDK = M->getMDKindID(Name); 1109 Lex.Lex(); 1110 1111 MDNode *Node; 1112 SMLoc Loc = Lex.getLoc(); 1113 1114 if (ParseToken(lltok::exclaim, "expected '!' here")) 1115 return true; 1116 1117 // This code is similar to that of ParseMetadataValue, however it needs to 1118 // have special-case code for a forward reference; see the comments on 1119 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1120 // at the top level here. 1121 if (Lex.getKind() == lltok::lbrace) { 1122 ValID ID; 1123 if (ParseMetadataListValue(ID, PFS)) 1124 return true; 1125 assert(ID.Kind == ValID::t_MDNode); 1126 Inst->setMetadata(MDK, ID.MDNodeVal); 1127 } else { 1128 unsigned NodeID = 0; 1129 if (ParseMDNodeID(Node, NodeID)) 1130 return true; 1131 if (Node) { 1132 // If we got the node, add it to the instruction. 1133 Inst->setMetadata(MDK, Node); 1134 } else { 1135 MDRef R = { Loc, MDK, NodeID }; 1136 // Otherwise, remember that this should be resolved later. 1137 ForwardRefInstMetadata[Inst].push_back(R); 1138 } 1139 } 1140 1141 // If this is the end of the list, we're done. 1142 } while (EatIfPresent(lltok::comma)); 1143 return false; 1144 } 1145 1146 /// ParseOptionalAlignment 1147 /// ::= /* empty */ 1148 /// ::= 'align' 4 1149 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1150 Alignment = 0; 1151 if (!EatIfPresent(lltok::kw_align)) 1152 return false; 1153 LocTy AlignLoc = Lex.getLoc(); 1154 if (ParseUInt32(Alignment)) return true; 1155 if (!isPowerOf2_32(Alignment)) 1156 return Error(AlignLoc, "alignment is not a power of two"); 1157 if (Alignment > Value::MaximumAlignment) 1158 return Error(AlignLoc, "huge alignments are not supported yet"); 1159 return false; 1160 } 1161 1162 /// ParseOptionalCommaAlign 1163 /// ::= 1164 /// ::= ',' align 4 1165 /// 1166 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1167 /// end. 1168 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1169 bool &AteExtraComma) { 1170 AteExtraComma = false; 1171 while (EatIfPresent(lltok::comma)) { 1172 // Metadata at the end is an early exit. 1173 if (Lex.getKind() == lltok::MetadataVar) { 1174 AteExtraComma = true; 1175 return false; 1176 } 1177 1178 if (Lex.getKind() != lltok::kw_align) 1179 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1180 1181 if (ParseOptionalAlignment(Alignment)) return true; 1182 } 1183 1184 return false; 1185 } 1186 1187 /// ParseScopeAndOrdering 1188 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1189 /// else: ::= 1190 /// 1191 /// This sets Scope and Ordering to the parsed values. 1192 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1193 AtomicOrdering &Ordering) { 1194 if (!isAtomic) 1195 return false; 1196 1197 Scope = CrossThread; 1198 if (EatIfPresent(lltok::kw_singlethread)) 1199 Scope = SingleThread; 1200 switch (Lex.getKind()) { 1201 default: return TokError("Expected ordering on atomic instruction"); 1202 case lltok::kw_unordered: Ordering = Unordered; break; 1203 case lltok::kw_monotonic: Ordering = Monotonic; break; 1204 case lltok::kw_acquire: Ordering = Acquire; break; 1205 case lltok::kw_release: Ordering = Release; break; 1206 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1207 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1208 } 1209 Lex.Lex(); 1210 return false; 1211 } 1212 1213 /// ParseOptionalStackAlignment 1214 /// ::= /* empty */ 1215 /// ::= 'alignstack' '(' 4 ')' 1216 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1217 Alignment = 0; 1218 if (!EatIfPresent(lltok::kw_alignstack)) 1219 return false; 1220 LocTy ParenLoc = Lex.getLoc(); 1221 if (!EatIfPresent(lltok::lparen)) 1222 return Error(ParenLoc, "expected '('"); 1223 LocTy AlignLoc = Lex.getLoc(); 1224 if (ParseUInt32(Alignment)) return true; 1225 ParenLoc = Lex.getLoc(); 1226 if (!EatIfPresent(lltok::rparen)) 1227 return Error(ParenLoc, "expected ')'"); 1228 if (!isPowerOf2_32(Alignment)) 1229 return Error(AlignLoc, "stack alignment is not a power of two"); 1230 return false; 1231 } 1232 1233 /// ParseIndexList - This parses the index list for an insert/extractvalue 1234 /// instruction. This sets AteExtraComma in the case where we eat an extra 1235 /// comma at the end of the line and find that it is followed by metadata. 1236 /// Clients that don't allow metadata can call the version of this function that 1237 /// only takes one argument. 1238 /// 1239 /// ParseIndexList 1240 /// ::= (',' uint32)+ 1241 /// 1242 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1243 bool &AteExtraComma) { 1244 AteExtraComma = false; 1245 1246 if (Lex.getKind() != lltok::comma) 1247 return TokError("expected ',' as start of index list"); 1248 1249 while (EatIfPresent(lltok::comma)) { 1250 if (Lex.getKind() == lltok::MetadataVar) { 1251 AteExtraComma = true; 1252 return false; 1253 } 1254 unsigned Idx = 0; 1255 if (ParseUInt32(Idx)) return true; 1256 Indices.push_back(Idx); 1257 } 1258 1259 return false; 1260 } 1261 1262 //===----------------------------------------------------------------------===// 1263 // Type Parsing. 1264 //===----------------------------------------------------------------------===// 1265 1266 /// ParseType - Parse a type. 1267 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1268 SMLoc TypeLoc = Lex.getLoc(); 1269 switch (Lex.getKind()) { 1270 default: 1271 return TokError("expected type"); 1272 case lltok::Type: 1273 // Type ::= 'float' | 'void' (etc) 1274 Result = Lex.getTyVal(); 1275 Lex.Lex(); 1276 break; 1277 case lltok::lbrace: 1278 // Type ::= StructType 1279 if (ParseAnonStructType(Result, false)) 1280 return true; 1281 break; 1282 case lltok::lsquare: 1283 // Type ::= '[' ... ']' 1284 Lex.Lex(); // eat the lsquare. 1285 if (ParseArrayVectorType(Result, false)) 1286 return true; 1287 break; 1288 case lltok::less: // Either vector or packed struct. 1289 // Type ::= '<' ... '>' 1290 Lex.Lex(); 1291 if (Lex.getKind() == lltok::lbrace) { 1292 if (ParseAnonStructType(Result, true) || 1293 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1294 return true; 1295 } else if (ParseArrayVectorType(Result, true)) 1296 return true; 1297 break; 1298 case lltok::LocalVar: { 1299 // Type ::= %foo 1300 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1301 1302 // If the type hasn't been defined yet, create a forward definition and 1303 // remember where that forward def'n was seen (in case it never is defined). 1304 if (Entry.first == 0) { 1305 Entry.first = StructType::create(Context, Lex.getStrVal()); 1306 Entry.second = Lex.getLoc(); 1307 } 1308 Result = Entry.first; 1309 Lex.Lex(); 1310 break; 1311 } 1312 1313 case lltok::LocalVarID: { 1314 // Type ::= %4 1315 if (Lex.getUIntVal() >= NumberedTypes.size()) 1316 NumberedTypes.resize(Lex.getUIntVal()+1); 1317 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1318 1319 // If the type hasn't been defined yet, create a forward definition and 1320 // remember where that forward def'n was seen (in case it never is defined). 1321 if (Entry.first == 0) { 1322 Entry.first = StructType::create(Context); 1323 Entry.second = Lex.getLoc(); 1324 } 1325 Result = Entry.first; 1326 Lex.Lex(); 1327 break; 1328 } 1329 } 1330 1331 // Parse the type suffixes. 1332 while (1) { 1333 switch (Lex.getKind()) { 1334 // End of type. 1335 default: 1336 if (!AllowVoid && Result->isVoidTy()) 1337 return Error(TypeLoc, "void type only allowed for function results"); 1338 return false; 1339 1340 // Type ::= Type '*' 1341 case lltok::star: 1342 if (Result->isLabelTy()) 1343 return TokError("basic block pointers are invalid"); 1344 if (Result->isVoidTy()) 1345 return TokError("pointers to void are invalid - use i8* instead"); 1346 if (!PointerType::isValidElementType(Result)) 1347 return TokError("pointer to this type is invalid"); 1348 Result = PointerType::getUnqual(Result); 1349 Lex.Lex(); 1350 break; 1351 1352 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1353 case lltok::kw_addrspace: { 1354 if (Result->isLabelTy()) 1355 return TokError("basic block pointers are invalid"); 1356 if (Result->isVoidTy()) 1357 return TokError("pointers to void are invalid; use i8* instead"); 1358 if (!PointerType::isValidElementType(Result)) 1359 return TokError("pointer to this type is invalid"); 1360 unsigned AddrSpace; 1361 if (ParseOptionalAddrSpace(AddrSpace) || 1362 ParseToken(lltok::star, "expected '*' in address space")) 1363 return true; 1364 1365 Result = PointerType::get(Result, AddrSpace); 1366 break; 1367 } 1368 1369 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1370 case lltok::lparen: 1371 if (ParseFunctionType(Result)) 1372 return true; 1373 break; 1374 } 1375 } 1376 } 1377 1378 /// ParseParameterList 1379 /// ::= '(' ')' 1380 /// ::= '(' Arg (',' Arg)* ')' 1381 /// Arg 1382 /// ::= Type OptionalAttributes Value OptionalAttributes 1383 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1384 PerFunctionState &PFS) { 1385 if (ParseToken(lltok::lparen, "expected '(' in call")) 1386 return true; 1387 1388 while (Lex.getKind() != lltok::rparen) { 1389 // If this isn't the first argument, we need a comma. 1390 if (!ArgList.empty() && 1391 ParseToken(lltok::comma, "expected ',' in argument list")) 1392 return true; 1393 1394 // Parse the argument. 1395 LocTy ArgLoc; 1396 Type *ArgTy = 0; 1397 Attributes ArgAttrs1; 1398 Attributes ArgAttrs2; 1399 Value *V; 1400 if (ParseType(ArgTy, ArgLoc)) 1401 return true; 1402 1403 // Otherwise, handle normal operands. 1404 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) 1405 return true; 1406 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1407 } 1408 1409 Lex.Lex(); // Lex the ')'. 1410 return false; 1411 } 1412 1413 1414 1415 /// ParseArgumentList - Parse the argument list for a function type or function 1416 /// prototype. 1417 /// ::= '(' ArgTypeListI ')' 1418 /// ArgTypeListI 1419 /// ::= /*empty*/ 1420 /// ::= '...' 1421 /// ::= ArgTypeList ',' '...' 1422 /// ::= ArgType (',' ArgType)* 1423 /// 1424 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1425 bool &isVarArg){ 1426 isVarArg = false; 1427 assert(Lex.getKind() == lltok::lparen); 1428 Lex.Lex(); // eat the (. 1429 1430 if (Lex.getKind() == lltok::rparen) { 1431 // empty 1432 } else if (Lex.getKind() == lltok::dotdotdot) { 1433 isVarArg = true; 1434 Lex.Lex(); 1435 } else { 1436 LocTy TypeLoc = Lex.getLoc(); 1437 Type *ArgTy = 0; 1438 Attributes Attrs; 1439 std::string Name; 1440 1441 if (ParseType(ArgTy) || 1442 ParseOptionalAttrs(Attrs, 0)) return true; 1443 1444 if (ArgTy->isVoidTy()) 1445 return Error(TypeLoc, "argument can not have void type"); 1446 1447 if (Lex.getKind() == lltok::LocalVar) { 1448 Name = Lex.getStrVal(); 1449 Lex.Lex(); 1450 } 1451 1452 if (!FunctionType::isValidArgumentType(ArgTy)) 1453 return Error(TypeLoc, "invalid type for function argument"); 1454 1455 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1456 1457 while (EatIfPresent(lltok::comma)) { 1458 // Handle ... at end of arg list. 1459 if (EatIfPresent(lltok::dotdotdot)) { 1460 isVarArg = true; 1461 break; 1462 } 1463 1464 // Otherwise must be an argument type. 1465 TypeLoc = Lex.getLoc(); 1466 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1467 1468 if (ArgTy->isVoidTy()) 1469 return Error(TypeLoc, "argument can not have void type"); 1470 1471 if (Lex.getKind() == lltok::LocalVar) { 1472 Name = Lex.getStrVal(); 1473 Lex.Lex(); 1474 } else { 1475 Name = ""; 1476 } 1477 1478 if (!ArgTy->isFirstClassType()) 1479 return Error(TypeLoc, "invalid type for function argument"); 1480 1481 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1482 } 1483 } 1484 1485 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1486 } 1487 1488 /// ParseFunctionType 1489 /// ::= Type ArgumentList OptionalAttrs 1490 bool LLParser::ParseFunctionType(Type *&Result) { 1491 assert(Lex.getKind() == lltok::lparen); 1492 1493 if (!FunctionType::isValidReturnType(Result)) 1494 return TokError("invalid function return type"); 1495 1496 SmallVector<ArgInfo, 8> ArgList; 1497 bool isVarArg; 1498 if (ParseArgumentList(ArgList, isVarArg)) 1499 return true; 1500 1501 // Reject names on the arguments lists. 1502 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1503 if (!ArgList[i].Name.empty()) 1504 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1505 if (ArgList[i].Attrs) 1506 return Error(ArgList[i].Loc, 1507 "argument attributes invalid in function type"); 1508 } 1509 1510 SmallVector<Type*, 16> ArgListTy; 1511 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1512 ArgListTy.push_back(ArgList[i].Ty); 1513 1514 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1515 return false; 1516 } 1517 1518 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1519 /// other structs. 1520 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1521 SmallVector<Type*, 8> Elts; 1522 if (ParseStructBody(Elts)) return true; 1523 1524 Result = StructType::get(Context, Elts, Packed); 1525 return false; 1526 } 1527 1528 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1529 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1530 std::pair<Type*, LocTy> &Entry, 1531 Type *&ResultTy) { 1532 // If the type was already defined, diagnose the redefinition. 1533 if (Entry.first && !Entry.second.isValid()) 1534 return Error(TypeLoc, "redefinition of type"); 1535 1536 // If we have opaque, just return without filling in the definition for the 1537 // struct. This counts as a definition as far as the .ll file goes. 1538 if (EatIfPresent(lltok::kw_opaque)) { 1539 // This type is being defined, so clear the location to indicate this. 1540 Entry.second = SMLoc(); 1541 1542 // If this type number has never been uttered, create it. 1543 if (Entry.first == 0) 1544 Entry.first = StructType::create(Context, Name); 1545 ResultTy = Entry.first; 1546 return false; 1547 } 1548 1549 // If the type starts with '<', then it is either a packed struct or a vector. 1550 bool isPacked = EatIfPresent(lltok::less); 1551 1552 // If we don't have a struct, then we have a random type alias, which we 1553 // accept for compatibility with old files. These types are not allowed to be 1554 // forward referenced and not allowed to be recursive. 1555 if (Lex.getKind() != lltok::lbrace) { 1556 if (Entry.first) 1557 return Error(TypeLoc, "forward references to non-struct type"); 1558 1559 ResultTy = 0; 1560 if (isPacked) 1561 return ParseArrayVectorType(ResultTy, true); 1562 return ParseType(ResultTy); 1563 } 1564 1565 // This type is being defined, so clear the location to indicate this. 1566 Entry.second = SMLoc(); 1567 1568 // If this type number has never been uttered, create it. 1569 if (Entry.first == 0) 1570 Entry.first = StructType::create(Context, Name); 1571 1572 StructType *STy = cast<StructType>(Entry.first); 1573 1574 SmallVector<Type*, 8> Body; 1575 if (ParseStructBody(Body) || 1576 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1577 return true; 1578 1579 STy->setBody(Body, isPacked); 1580 ResultTy = STy; 1581 return false; 1582 } 1583 1584 1585 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1586 /// StructType 1587 /// ::= '{' '}' 1588 /// ::= '{' Type (',' Type)* '}' 1589 /// ::= '<' '{' '}' '>' 1590 /// ::= '<' '{' Type (',' Type)* '}' '>' 1591 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1592 assert(Lex.getKind() == lltok::lbrace); 1593 Lex.Lex(); // Consume the '{' 1594 1595 // Handle the empty struct. 1596 if (EatIfPresent(lltok::rbrace)) 1597 return false; 1598 1599 LocTy EltTyLoc = Lex.getLoc(); 1600 Type *Ty = 0; 1601 if (ParseType(Ty)) return true; 1602 Body.push_back(Ty); 1603 1604 if (!StructType::isValidElementType(Ty)) 1605 return Error(EltTyLoc, "invalid element type for struct"); 1606 1607 while (EatIfPresent(lltok::comma)) { 1608 EltTyLoc = Lex.getLoc(); 1609 if (ParseType(Ty)) return true; 1610 1611 if (!StructType::isValidElementType(Ty)) 1612 return Error(EltTyLoc, "invalid element type for struct"); 1613 1614 Body.push_back(Ty); 1615 } 1616 1617 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1618 } 1619 1620 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1621 /// token has already been consumed. 1622 /// Type 1623 /// ::= '[' APSINTVAL 'x' Types ']' 1624 /// ::= '<' APSINTVAL 'x' Types '>' 1625 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1626 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1627 Lex.getAPSIntVal().getBitWidth() > 64) 1628 return TokError("expected number in address space"); 1629 1630 LocTy SizeLoc = Lex.getLoc(); 1631 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1632 Lex.Lex(); 1633 1634 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1635 return true; 1636 1637 LocTy TypeLoc = Lex.getLoc(); 1638 Type *EltTy = 0; 1639 if (ParseType(EltTy)) return true; 1640 1641 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1642 "expected end of sequential type")) 1643 return true; 1644 1645 if (isVector) { 1646 if (Size == 0) 1647 return Error(SizeLoc, "zero element vector is illegal"); 1648 if ((unsigned)Size != Size) 1649 return Error(SizeLoc, "size too large for vector"); 1650 if (!VectorType::isValidElementType(EltTy)) 1651 return Error(TypeLoc, 1652 "vector element type must be fp, integer or a pointer to these types"); 1653 Result = VectorType::get(EltTy, unsigned(Size)); 1654 } else { 1655 if (!ArrayType::isValidElementType(EltTy)) 1656 return Error(TypeLoc, "invalid array element type"); 1657 Result = ArrayType::get(EltTy, Size); 1658 } 1659 return false; 1660 } 1661 1662 //===----------------------------------------------------------------------===// 1663 // Function Semantic Analysis. 1664 //===----------------------------------------------------------------------===// 1665 1666 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1667 int functionNumber) 1668 : P(p), F(f), FunctionNumber(functionNumber) { 1669 1670 // Insert unnamed arguments into the NumberedVals list. 1671 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1672 AI != E; ++AI) 1673 if (!AI->hasName()) 1674 NumberedVals.push_back(AI); 1675 } 1676 1677 LLParser::PerFunctionState::~PerFunctionState() { 1678 // If there were any forward referenced non-basicblock values, delete them. 1679 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1680 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1681 if (!isa<BasicBlock>(I->second.first)) { 1682 I->second.first->replaceAllUsesWith( 1683 UndefValue::get(I->second.first->getType())); 1684 delete I->second.first; 1685 I->second.first = 0; 1686 } 1687 1688 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1689 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1690 if (!isa<BasicBlock>(I->second.first)) { 1691 I->second.first->replaceAllUsesWith( 1692 UndefValue::get(I->second.first->getType())); 1693 delete I->second.first; 1694 I->second.first = 0; 1695 } 1696 } 1697 1698 bool LLParser::PerFunctionState::FinishFunction() { 1699 // Check to see if someone took the address of labels in this block. 1700 if (!P.ForwardRefBlockAddresses.empty()) { 1701 ValID FunctionID; 1702 if (!F.getName().empty()) { 1703 FunctionID.Kind = ValID::t_GlobalName; 1704 FunctionID.StrVal = F.getName(); 1705 } else { 1706 FunctionID.Kind = ValID::t_GlobalID; 1707 FunctionID.UIntVal = FunctionNumber; 1708 } 1709 1710 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1711 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1712 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1713 // Resolve all these references. 1714 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1715 return true; 1716 1717 P.ForwardRefBlockAddresses.erase(FRBAI); 1718 } 1719 } 1720 1721 if (!ForwardRefVals.empty()) 1722 return P.Error(ForwardRefVals.begin()->second.second, 1723 "use of undefined value '%" + ForwardRefVals.begin()->first + 1724 "'"); 1725 if (!ForwardRefValIDs.empty()) 1726 return P.Error(ForwardRefValIDs.begin()->second.second, 1727 "use of undefined value '%" + 1728 Twine(ForwardRefValIDs.begin()->first) + "'"); 1729 return false; 1730 } 1731 1732 1733 /// GetVal - Get a value with the specified name or ID, creating a 1734 /// forward reference record if needed. This can return null if the value 1735 /// exists but does not have the right type. 1736 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1737 Type *Ty, LocTy Loc) { 1738 // Look this name up in the normal function symbol table. 1739 Value *Val = F.getValueSymbolTable().lookup(Name); 1740 1741 // If this is a forward reference for the value, see if we already created a 1742 // forward ref record. 1743 if (Val == 0) { 1744 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1745 I = ForwardRefVals.find(Name); 1746 if (I != ForwardRefVals.end()) 1747 Val = I->second.first; 1748 } 1749 1750 // If we have the value in the symbol table or fwd-ref table, return it. 1751 if (Val) { 1752 if (Val->getType() == Ty) return Val; 1753 if (Ty->isLabelTy()) 1754 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1755 else 1756 P.Error(Loc, "'%" + Name + "' defined with type '" + 1757 getTypeString(Val->getType()) + "'"); 1758 return 0; 1759 } 1760 1761 // Don't make placeholders with invalid type. 1762 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1763 P.Error(Loc, "invalid use of a non-first-class type"); 1764 return 0; 1765 } 1766 1767 // Otherwise, create a new forward reference for this value and remember it. 1768 Value *FwdVal; 1769 if (Ty->isLabelTy()) 1770 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1771 else 1772 FwdVal = new Argument(Ty, Name); 1773 1774 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1775 return FwdVal; 1776 } 1777 1778 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1779 LocTy Loc) { 1780 // Look this name up in the normal function symbol table. 1781 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1782 1783 // If this is a forward reference for the value, see if we already created a 1784 // forward ref record. 1785 if (Val == 0) { 1786 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1787 I = ForwardRefValIDs.find(ID); 1788 if (I != ForwardRefValIDs.end()) 1789 Val = I->second.first; 1790 } 1791 1792 // If we have the value in the symbol table or fwd-ref table, return it. 1793 if (Val) { 1794 if (Val->getType() == Ty) return Val; 1795 if (Ty->isLabelTy()) 1796 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1797 else 1798 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1799 getTypeString(Val->getType()) + "'"); 1800 return 0; 1801 } 1802 1803 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1804 P.Error(Loc, "invalid use of a non-first-class type"); 1805 return 0; 1806 } 1807 1808 // Otherwise, create a new forward reference for this value and remember it. 1809 Value *FwdVal; 1810 if (Ty->isLabelTy()) 1811 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1812 else 1813 FwdVal = new Argument(Ty); 1814 1815 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1816 return FwdVal; 1817 } 1818 1819 /// SetInstName - After an instruction is parsed and inserted into its 1820 /// basic block, this installs its name. 1821 bool LLParser::PerFunctionState::SetInstName(int NameID, 1822 const std::string &NameStr, 1823 LocTy NameLoc, Instruction *Inst) { 1824 // If this instruction has void type, it cannot have a name or ID specified. 1825 if (Inst->getType()->isVoidTy()) { 1826 if (NameID != -1 || !NameStr.empty()) 1827 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1828 return false; 1829 } 1830 1831 // If this was a numbered instruction, verify that the instruction is the 1832 // expected value and resolve any forward references. 1833 if (NameStr.empty()) { 1834 // If neither a name nor an ID was specified, just use the next ID. 1835 if (NameID == -1) 1836 NameID = NumberedVals.size(); 1837 1838 if (unsigned(NameID) != NumberedVals.size()) 1839 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1840 Twine(NumberedVals.size()) + "'"); 1841 1842 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1843 ForwardRefValIDs.find(NameID); 1844 if (FI != ForwardRefValIDs.end()) { 1845 if (FI->second.first->getType() != Inst->getType()) 1846 return P.Error(NameLoc, "instruction forward referenced with type '" + 1847 getTypeString(FI->second.first->getType()) + "'"); 1848 FI->second.first->replaceAllUsesWith(Inst); 1849 delete FI->second.first; 1850 ForwardRefValIDs.erase(FI); 1851 } 1852 1853 NumberedVals.push_back(Inst); 1854 return false; 1855 } 1856 1857 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1858 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1859 FI = ForwardRefVals.find(NameStr); 1860 if (FI != ForwardRefVals.end()) { 1861 if (FI->second.first->getType() != Inst->getType()) 1862 return P.Error(NameLoc, "instruction forward referenced with type '" + 1863 getTypeString(FI->second.first->getType()) + "'"); 1864 FI->second.first->replaceAllUsesWith(Inst); 1865 delete FI->second.first; 1866 ForwardRefVals.erase(FI); 1867 } 1868 1869 // Set the name on the instruction. 1870 Inst->setName(NameStr); 1871 1872 if (Inst->getName() != NameStr) 1873 return P.Error(NameLoc, "multiple definition of local value named '" + 1874 NameStr + "'"); 1875 return false; 1876 } 1877 1878 /// GetBB - Get a basic block with the specified name or ID, creating a 1879 /// forward reference record if needed. 1880 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1881 LocTy Loc) { 1882 return cast_or_null<BasicBlock>(GetVal(Name, 1883 Type::getLabelTy(F.getContext()), Loc)); 1884 } 1885 1886 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1887 return cast_or_null<BasicBlock>(GetVal(ID, 1888 Type::getLabelTy(F.getContext()), Loc)); 1889 } 1890 1891 /// DefineBB - Define the specified basic block, which is either named or 1892 /// unnamed. If there is an error, this returns null otherwise it returns 1893 /// the block being defined. 1894 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1895 LocTy Loc) { 1896 BasicBlock *BB; 1897 if (Name.empty()) 1898 BB = GetBB(NumberedVals.size(), Loc); 1899 else 1900 BB = GetBB(Name, Loc); 1901 if (BB == 0) return 0; // Already diagnosed error. 1902 1903 // Move the block to the end of the function. Forward ref'd blocks are 1904 // inserted wherever they happen to be referenced. 1905 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1906 1907 // Remove the block from forward ref sets. 1908 if (Name.empty()) { 1909 ForwardRefValIDs.erase(NumberedVals.size()); 1910 NumberedVals.push_back(BB); 1911 } else { 1912 // BB forward references are already in the function symbol table. 1913 ForwardRefVals.erase(Name); 1914 } 1915 1916 return BB; 1917 } 1918 1919 //===----------------------------------------------------------------------===// 1920 // Constants. 1921 //===----------------------------------------------------------------------===// 1922 1923 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1924 /// type implied. For example, if we parse "4" we don't know what integer type 1925 /// it has. The value will later be combined with its type and checked for 1926 /// sanity. PFS is used to convert function-local operands of metadata (since 1927 /// metadata operands are not just parsed here but also converted to values). 1928 /// PFS can be null when we are not parsing metadata values inside a function. 1929 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1930 ID.Loc = Lex.getLoc(); 1931 switch (Lex.getKind()) { 1932 default: return TokError("expected value token"); 1933 case lltok::GlobalID: // @42 1934 ID.UIntVal = Lex.getUIntVal(); 1935 ID.Kind = ValID::t_GlobalID; 1936 break; 1937 case lltok::GlobalVar: // @foo 1938 ID.StrVal = Lex.getStrVal(); 1939 ID.Kind = ValID::t_GlobalName; 1940 break; 1941 case lltok::LocalVarID: // %42 1942 ID.UIntVal = Lex.getUIntVal(); 1943 ID.Kind = ValID::t_LocalID; 1944 break; 1945 case lltok::LocalVar: // %foo 1946 ID.StrVal = Lex.getStrVal(); 1947 ID.Kind = ValID::t_LocalName; 1948 break; 1949 case lltok::exclaim: // !42, !{...}, or !"foo" 1950 return ParseMetadataValue(ID, PFS); 1951 case lltok::APSInt: 1952 ID.APSIntVal = Lex.getAPSIntVal(); 1953 ID.Kind = ValID::t_APSInt; 1954 break; 1955 case lltok::APFloat: 1956 ID.APFloatVal = Lex.getAPFloatVal(); 1957 ID.Kind = ValID::t_APFloat; 1958 break; 1959 case lltok::kw_true: 1960 ID.ConstantVal = ConstantInt::getTrue(Context); 1961 ID.Kind = ValID::t_Constant; 1962 break; 1963 case lltok::kw_false: 1964 ID.ConstantVal = ConstantInt::getFalse(Context); 1965 ID.Kind = ValID::t_Constant; 1966 break; 1967 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 1968 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 1969 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 1970 1971 case lltok::lbrace: { 1972 // ValID ::= '{' ConstVector '}' 1973 Lex.Lex(); 1974 SmallVector<Constant*, 16> Elts; 1975 if (ParseGlobalValueVector(Elts) || 1976 ParseToken(lltok::rbrace, "expected end of struct constant")) 1977 return true; 1978 1979 ID.ConstantStructElts = new Constant*[Elts.size()]; 1980 ID.UIntVal = Elts.size(); 1981 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 1982 ID.Kind = ValID::t_ConstantStruct; 1983 return false; 1984 } 1985 case lltok::less: { 1986 // ValID ::= '<' ConstVector '>' --> Vector. 1987 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 1988 Lex.Lex(); 1989 bool isPackedStruct = EatIfPresent(lltok::lbrace); 1990 1991 SmallVector<Constant*, 16> Elts; 1992 LocTy FirstEltLoc = Lex.getLoc(); 1993 if (ParseGlobalValueVector(Elts) || 1994 (isPackedStruct && 1995 ParseToken(lltok::rbrace, "expected end of packed struct")) || 1996 ParseToken(lltok::greater, "expected end of constant")) 1997 return true; 1998 1999 if (isPackedStruct) { 2000 ID.ConstantStructElts = new Constant*[Elts.size()]; 2001 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2002 ID.UIntVal = Elts.size(); 2003 ID.Kind = ValID::t_PackedConstantStruct; 2004 return false; 2005 } 2006 2007 if (Elts.empty()) 2008 return Error(ID.Loc, "constant vector must not be empty"); 2009 2010 if (!Elts[0]->getType()->isIntegerTy() && 2011 !Elts[0]->getType()->isFloatingPointTy() && 2012 !Elts[0]->getType()->isPointerTy()) 2013 return Error(FirstEltLoc, 2014 "vector elements must have integer, pointer or floating point type"); 2015 2016 // Verify that all the vector elements have the same type. 2017 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2018 if (Elts[i]->getType() != Elts[0]->getType()) 2019 return Error(FirstEltLoc, 2020 "vector element #" + Twine(i) + 2021 " is not of type '" + getTypeString(Elts[0]->getType())); 2022 2023 ID.ConstantVal = ConstantVector::get(Elts); 2024 ID.Kind = ValID::t_Constant; 2025 return false; 2026 } 2027 case lltok::lsquare: { // Array Constant 2028 Lex.Lex(); 2029 SmallVector<Constant*, 16> Elts; 2030 LocTy FirstEltLoc = Lex.getLoc(); 2031 if (ParseGlobalValueVector(Elts) || 2032 ParseToken(lltok::rsquare, "expected end of array constant")) 2033 return true; 2034 2035 // Handle empty element. 2036 if (Elts.empty()) { 2037 // Use undef instead of an array because it's inconvenient to determine 2038 // the element type at this point, there being no elements to examine. 2039 ID.Kind = ValID::t_EmptyArray; 2040 return false; 2041 } 2042 2043 if (!Elts[0]->getType()->isFirstClassType()) 2044 return Error(FirstEltLoc, "invalid array element type: " + 2045 getTypeString(Elts[0]->getType())); 2046 2047 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2048 2049 // Verify all elements are correct type! 2050 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2051 if (Elts[i]->getType() != Elts[0]->getType()) 2052 return Error(FirstEltLoc, 2053 "array element #" + Twine(i) + 2054 " is not of type '" + getTypeString(Elts[0]->getType())); 2055 } 2056 2057 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2058 ID.Kind = ValID::t_Constant; 2059 return false; 2060 } 2061 case lltok::kw_c: // c "foo" 2062 Lex.Lex(); 2063 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2064 false); 2065 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2066 ID.Kind = ValID::t_Constant; 2067 return false; 2068 2069 case lltok::kw_asm: { 2070 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2071 bool HasSideEffect, AlignStack; 2072 Lex.Lex(); 2073 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2074 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2075 ParseStringConstant(ID.StrVal) || 2076 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2077 ParseToken(lltok::StringConstant, "expected constraint string")) 2078 return true; 2079 ID.StrVal2 = Lex.getStrVal(); 2080 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); 2081 ID.Kind = ValID::t_InlineAsm; 2082 return false; 2083 } 2084 2085 case lltok::kw_blockaddress: { 2086 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2087 Lex.Lex(); 2088 2089 ValID Fn, Label; 2090 LocTy FnLoc, LabelLoc; 2091 2092 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2093 ParseValID(Fn) || 2094 ParseToken(lltok::comma, "expected comma in block address expression")|| 2095 ParseValID(Label) || 2096 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2097 return true; 2098 2099 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2100 return Error(Fn.Loc, "expected function name in blockaddress"); 2101 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2102 return Error(Label.Loc, "expected basic block name in blockaddress"); 2103 2104 // Make a global variable as a placeholder for this reference. 2105 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2106 false, GlobalValue::InternalLinkage, 2107 0, ""); 2108 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2109 ID.ConstantVal = FwdRef; 2110 ID.Kind = ValID::t_Constant; 2111 return false; 2112 } 2113 2114 case lltok::kw_trunc: 2115 case lltok::kw_zext: 2116 case lltok::kw_sext: 2117 case lltok::kw_fptrunc: 2118 case lltok::kw_fpext: 2119 case lltok::kw_bitcast: 2120 case lltok::kw_uitofp: 2121 case lltok::kw_sitofp: 2122 case lltok::kw_fptoui: 2123 case lltok::kw_fptosi: 2124 case lltok::kw_inttoptr: 2125 case lltok::kw_ptrtoint: { 2126 unsigned Opc = Lex.getUIntVal(); 2127 Type *DestTy = 0; 2128 Constant *SrcVal; 2129 Lex.Lex(); 2130 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2131 ParseGlobalTypeAndValue(SrcVal) || 2132 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2133 ParseType(DestTy) || 2134 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2135 return true; 2136 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2137 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2138 getTypeString(SrcVal->getType()) + "' to '" + 2139 getTypeString(DestTy) + "'"); 2140 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2141 SrcVal, DestTy); 2142 ID.Kind = ValID::t_Constant; 2143 return false; 2144 } 2145 case lltok::kw_extractvalue: { 2146 Lex.Lex(); 2147 Constant *Val; 2148 SmallVector<unsigned, 4> Indices; 2149 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2150 ParseGlobalTypeAndValue(Val) || 2151 ParseIndexList(Indices) || 2152 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2153 return true; 2154 2155 if (!Val->getType()->isAggregateType()) 2156 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2157 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2158 return Error(ID.Loc, "invalid indices for extractvalue"); 2159 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2160 ID.Kind = ValID::t_Constant; 2161 return false; 2162 } 2163 case lltok::kw_insertvalue: { 2164 Lex.Lex(); 2165 Constant *Val0, *Val1; 2166 SmallVector<unsigned, 4> Indices; 2167 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2168 ParseGlobalTypeAndValue(Val0) || 2169 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2170 ParseGlobalTypeAndValue(Val1) || 2171 ParseIndexList(Indices) || 2172 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2173 return true; 2174 if (!Val0->getType()->isAggregateType()) 2175 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2176 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2177 return Error(ID.Loc, "invalid indices for insertvalue"); 2178 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2179 ID.Kind = ValID::t_Constant; 2180 return false; 2181 } 2182 case lltok::kw_icmp: 2183 case lltok::kw_fcmp: { 2184 unsigned PredVal, Opc = Lex.getUIntVal(); 2185 Constant *Val0, *Val1; 2186 Lex.Lex(); 2187 if (ParseCmpPredicate(PredVal, Opc) || 2188 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2189 ParseGlobalTypeAndValue(Val0) || 2190 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2191 ParseGlobalTypeAndValue(Val1) || 2192 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2193 return true; 2194 2195 if (Val0->getType() != Val1->getType()) 2196 return Error(ID.Loc, "compare operands must have the same type"); 2197 2198 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2199 2200 if (Opc == Instruction::FCmp) { 2201 if (!Val0->getType()->isFPOrFPVectorTy()) 2202 return Error(ID.Loc, "fcmp requires floating point operands"); 2203 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2204 } else { 2205 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2206 if (!Val0->getType()->isIntOrIntVectorTy() && 2207 !Val0->getType()->getScalarType()->isPointerTy()) 2208 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2209 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2210 } 2211 ID.Kind = ValID::t_Constant; 2212 return false; 2213 } 2214 2215 // Binary Operators. 2216 case lltok::kw_add: 2217 case lltok::kw_fadd: 2218 case lltok::kw_sub: 2219 case lltok::kw_fsub: 2220 case lltok::kw_mul: 2221 case lltok::kw_fmul: 2222 case lltok::kw_udiv: 2223 case lltok::kw_sdiv: 2224 case lltok::kw_fdiv: 2225 case lltok::kw_urem: 2226 case lltok::kw_srem: 2227 case lltok::kw_frem: 2228 case lltok::kw_shl: 2229 case lltok::kw_lshr: 2230 case lltok::kw_ashr: { 2231 bool NUW = false; 2232 bool NSW = false; 2233 bool Exact = false; 2234 unsigned Opc = Lex.getUIntVal(); 2235 Constant *Val0, *Val1; 2236 Lex.Lex(); 2237 LocTy ModifierLoc = Lex.getLoc(); 2238 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2239 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2240 if (EatIfPresent(lltok::kw_nuw)) 2241 NUW = true; 2242 if (EatIfPresent(lltok::kw_nsw)) { 2243 NSW = true; 2244 if (EatIfPresent(lltok::kw_nuw)) 2245 NUW = true; 2246 } 2247 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2248 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2249 if (EatIfPresent(lltok::kw_exact)) 2250 Exact = true; 2251 } 2252 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2253 ParseGlobalTypeAndValue(Val0) || 2254 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2255 ParseGlobalTypeAndValue(Val1) || 2256 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2257 return true; 2258 if (Val0->getType() != Val1->getType()) 2259 return Error(ID.Loc, "operands of constexpr must have same type"); 2260 if (!Val0->getType()->isIntOrIntVectorTy()) { 2261 if (NUW) 2262 return Error(ModifierLoc, "nuw only applies to integer operations"); 2263 if (NSW) 2264 return Error(ModifierLoc, "nsw only applies to integer operations"); 2265 } 2266 // Check that the type is valid for the operator. 2267 switch (Opc) { 2268 case Instruction::Add: 2269 case Instruction::Sub: 2270 case Instruction::Mul: 2271 case Instruction::UDiv: 2272 case Instruction::SDiv: 2273 case Instruction::URem: 2274 case Instruction::SRem: 2275 case Instruction::Shl: 2276 case Instruction::AShr: 2277 case Instruction::LShr: 2278 if (!Val0->getType()->isIntOrIntVectorTy()) 2279 return Error(ID.Loc, "constexpr requires integer operands"); 2280 break; 2281 case Instruction::FAdd: 2282 case Instruction::FSub: 2283 case Instruction::FMul: 2284 case Instruction::FDiv: 2285 case Instruction::FRem: 2286 if (!Val0->getType()->isFPOrFPVectorTy()) 2287 return Error(ID.Loc, "constexpr requires fp operands"); 2288 break; 2289 default: llvm_unreachable("Unknown binary operator!"); 2290 } 2291 unsigned Flags = 0; 2292 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2293 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2294 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2295 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2296 ID.ConstantVal = C; 2297 ID.Kind = ValID::t_Constant; 2298 return false; 2299 } 2300 2301 // Logical Operations 2302 case lltok::kw_and: 2303 case lltok::kw_or: 2304 case lltok::kw_xor: { 2305 unsigned Opc = Lex.getUIntVal(); 2306 Constant *Val0, *Val1; 2307 Lex.Lex(); 2308 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2309 ParseGlobalTypeAndValue(Val0) || 2310 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2311 ParseGlobalTypeAndValue(Val1) || 2312 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2313 return true; 2314 if (Val0->getType() != Val1->getType()) 2315 return Error(ID.Loc, "operands of constexpr must have same type"); 2316 if (!Val0->getType()->isIntOrIntVectorTy()) 2317 return Error(ID.Loc, 2318 "constexpr requires integer or integer vector operands"); 2319 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2320 ID.Kind = ValID::t_Constant; 2321 return false; 2322 } 2323 2324 case lltok::kw_getelementptr: 2325 case lltok::kw_shufflevector: 2326 case lltok::kw_insertelement: 2327 case lltok::kw_extractelement: 2328 case lltok::kw_select: { 2329 unsigned Opc = Lex.getUIntVal(); 2330 SmallVector<Constant*, 16> Elts; 2331 bool InBounds = false; 2332 Lex.Lex(); 2333 if (Opc == Instruction::GetElementPtr) 2334 InBounds = EatIfPresent(lltok::kw_inbounds); 2335 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2336 ParseGlobalValueVector(Elts) || 2337 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2338 return true; 2339 2340 if (Opc == Instruction::GetElementPtr) { 2341 if (Elts.size() == 0 || 2342 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2343 return Error(ID.Loc, "getelementptr requires pointer operand"); 2344 2345 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2346 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2347 return Error(ID.Loc, "invalid indices for getelementptr"); 2348 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2349 InBounds); 2350 } else if (Opc == Instruction::Select) { 2351 if (Elts.size() != 3) 2352 return Error(ID.Loc, "expected three operands to select"); 2353 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2354 Elts[2])) 2355 return Error(ID.Loc, Reason); 2356 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2357 } else if (Opc == Instruction::ShuffleVector) { 2358 if (Elts.size() != 3) 2359 return Error(ID.Loc, "expected three operands to shufflevector"); 2360 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2361 return Error(ID.Loc, "invalid operands to shufflevector"); 2362 ID.ConstantVal = 2363 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2364 } else if (Opc == Instruction::ExtractElement) { 2365 if (Elts.size() != 2) 2366 return Error(ID.Loc, "expected two operands to extractelement"); 2367 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2368 return Error(ID.Loc, "invalid extractelement operands"); 2369 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2370 } else { 2371 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2372 if (Elts.size() != 3) 2373 return Error(ID.Loc, "expected three operands to insertelement"); 2374 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2375 return Error(ID.Loc, "invalid insertelement operands"); 2376 ID.ConstantVal = 2377 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2378 } 2379 2380 ID.Kind = ValID::t_Constant; 2381 return false; 2382 } 2383 } 2384 2385 Lex.Lex(); 2386 return false; 2387 } 2388 2389 /// ParseGlobalValue - Parse a global value with the specified type. 2390 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2391 C = 0; 2392 ValID ID; 2393 Value *V = NULL; 2394 bool Parsed = ParseValID(ID) || 2395 ConvertValIDToValue(Ty, ID, V, NULL); 2396 if (V && !(C = dyn_cast<Constant>(V))) 2397 return Error(ID.Loc, "global values must be constants"); 2398 return Parsed; 2399 } 2400 2401 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2402 Type *Ty = 0; 2403 return ParseType(Ty) || 2404 ParseGlobalValue(Ty, V); 2405 } 2406 2407 /// ParseGlobalValueVector 2408 /// ::= /*empty*/ 2409 /// ::= TypeAndValue (',' TypeAndValue)* 2410 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2411 // Empty list. 2412 if (Lex.getKind() == lltok::rbrace || 2413 Lex.getKind() == lltok::rsquare || 2414 Lex.getKind() == lltok::greater || 2415 Lex.getKind() == lltok::rparen) 2416 return false; 2417 2418 Constant *C; 2419 if (ParseGlobalTypeAndValue(C)) return true; 2420 Elts.push_back(C); 2421 2422 while (EatIfPresent(lltok::comma)) { 2423 if (ParseGlobalTypeAndValue(C)) return true; 2424 Elts.push_back(C); 2425 } 2426 2427 return false; 2428 } 2429 2430 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2431 assert(Lex.getKind() == lltok::lbrace); 2432 Lex.Lex(); 2433 2434 SmallVector<Value*, 16> Elts; 2435 if (ParseMDNodeVector(Elts, PFS) || 2436 ParseToken(lltok::rbrace, "expected end of metadata node")) 2437 return true; 2438 2439 ID.MDNodeVal = MDNode::get(Context, Elts); 2440 ID.Kind = ValID::t_MDNode; 2441 return false; 2442 } 2443 2444 /// ParseMetadataValue 2445 /// ::= !42 2446 /// ::= !{...} 2447 /// ::= !"string" 2448 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2449 assert(Lex.getKind() == lltok::exclaim); 2450 Lex.Lex(); 2451 2452 // MDNode: 2453 // !{ ... } 2454 if (Lex.getKind() == lltok::lbrace) 2455 return ParseMetadataListValue(ID, PFS); 2456 2457 // Standalone metadata reference 2458 // !42 2459 if (Lex.getKind() == lltok::APSInt) { 2460 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2461 ID.Kind = ValID::t_MDNode; 2462 return false; 2463 } 2464 2465 // MDString: 2466 // ::= '!' STRINGCONSTANT 2467 if (ParseMDString(ID.MDStringVal)) return true; 2468 ID.Kind = ValID::t_MDString; 2469 return false; 2470 } 2471 2472 2473 //===----------------------------------------------------------------------===// 2474 // Function Parsing. 2475 //===----------------------------------------------------------------------===// 2476 2477 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2478 PerFunctionState *PFS) { 2479 if (Ty->isFunctionTy()) 2480 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2481 2482 switch (ID.Kind) { 2483 case ValID::t_LocalID: 2484 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2485 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2486 return (V == 0); 2487 case ValID::t_LocalName: 2488 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2489 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2490 return (V == 0); 2491 case ValID::t_InlineAsm: { 2492 PointerType *PTy = dyn_cast<PointerType>(Ty); 2493 FunctionType *FTy = 2494 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2495 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2496 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2497 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); 2498 return false; 2499 } 2500 case ValID::t_MDNode: 2501 if (!Ty->isMetadataTy()) 2502 return Error(ID.Loc, "metadata value must have metadata type"); 2503 V = ID.MDNodeVal; 2504 return false; 2505 case ValID::t_MDString: 2506 if (!Ty->isMetadataTy()) 2507 return Error(ID.Loc, "metadata value must have metadata type"); 2508 V = ID.MDStringVal; 2509 return false; 2510 case ValID::t_GlobalName: 2511 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2512 return V == 0; 2513 case ValID::t_GlobalID: 2514 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2515 return V == 0; 2516 case ValID::t_APSInt: 2517 if (!Ty->isIntegerTy()) 2518 return Error(ID.Loc, "integer constant must have integer type"); 2519 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2520 V = ConstantInt::get(Context, ID.APSIntVal); 2521 return false; 2522 case ValID::t_APFloat: 2523 if (!Ty->isFloatingPointTy() || 2524 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2525 return Error(ID.Loc, "floating point constant invalid for type"); 2526 2527 // The lexer has no type info, so builds all half, float, and double FP 2528 // constants as double. Fix this here. Long double does not need this. 2529 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2530 bool Ignored; 2531 if (Ty->isHalfTy()) 2532 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2533 &Ignored); 2534 else if (Ty->isFloatTy()) 2535 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2536 &Ignored); 2537 } 2538 V = ConstantFP::get(Context, ID.APFloatVal); 2539 2540 if (V->getType() != Ty) 2541 return Error(ID.Loc, "floating point constant does not have type '" + 2542 getTypeString(Ty) + "'"); 2543 2544 return false; 2545 case ValID::t_Null: 2546 if (!Ty->isPointerTy()) 2547 return Error(ID.Loc, "null must be a pointer type"); 2548 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2549 return false; 2550 case ValID::t_Undef: 2551 // FIXME: LabelTy should not be a first-class type. 2552 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2553 return Error(ID.Loc, "invalid type for undef constant"); 2554 V = UndefValue::get(Ty); 2555 return false; 2556 case ValID::t_EmptyArray: 2557 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2558 return Error(ID.Loc, "invalid empty array initializer"); 2559 V = UndefValue::get(Ty); 2560 return false; 2561 case ValID::t_Zero: 2562 // FIXME: LabelTy should not be a first-class type. 2563 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2564 return Error(ID.Loc, "invalid type for null constant"); 2565 V = Constant::getNullValue(Ty); 2566 return false; 2567 case ValID::t_Constant: 2568 if (ID.ConstantVal->getType() != Ty) 2569 return Error(ID.Loc, "constant expression type mismatch"); 2570 2571 V = ID.ConstantVal; 2572 return false; 2573 case ValID::t_ConstantStruct: 2574 case ValID::t_PackedConstantStruct: 2575 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2576 if (ST->getNumElements() != ID.UIntVal) 2577 return Error(ID.Loc, 2578 "initializer with struct type has wrong # elements"); 2579 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2580 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2581 2582 // Verify that the elements are compatible with the structtype. 2583 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2584 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2585 return Error(ID.Loc, "element " + Twine(i) + 2586 " of struct initializer doesn't match struct element type"); 2587 2588 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2589 ID.UIntVal)); 2590 } else 2591 return Error(ID.Loc, "constant expression type mismatch"); 2592 return false; 2593 } 2594 llvm_unreachable("Invalid ValID"); 2595 } 2596 2597 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2598 V = 0; 2599 ValID ID; 2600 return ParseValID(ID, PFS) || 2601 ConvertValIDToValue(Ty, ID, V, PFS); 2602 } 2603 2604 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2605 Type *Ty = 0; 2606 return ParseType(Ty) || 2607 ParseValue(Ty, V, PFS); 2608 } 2609 2610 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2611 PerFunctionState &PFS) { 2612 Value *V; 2613 Loc = Lex.getLoc(); 2614 if (ParseTypeAndValue(V, PFS)) return true; 2615 if (!isa<BasicBlock>(V)) 2616 return Error(Loc, "expected a basic block"); 2617 BB = cast<BasicBlock>(V); 2618 return false; 2619 } 2620 2621 2622 /// FunctionHeader 2623 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2624 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2625 /// OptionalAlign OptGC 2626 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2627 // Parse the linkage. 2628 LocTy LinkageLoc = Lex.getLoc(); 2629 unsigned Linkage; 2630 2631 unsigned Visibility; 2632 Attributes RetAttrs; 2633 CallingConv::ID CC; 2634 Type *RetType = 0; 2635 LocTy RetTypeLoc = Lex.getLoc(); 2636 if (ParseOptionalLinkage(Linkage) || 2637 ParseOptionalVisibility(Visibility) || 2638 ParseOptionalCallingConv(CC) || 2639 ParseOptionalAttrs(RetAttrs, 1) || 2640 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2641 return true; 2642 2643 // Verify that the linkage is ok. 2644 switch ((GlobalValue::LinkageTypes)Linkage) { 2645 case GlobalValue::ExternalLinkage: 2646 break; // always ok. 2647 case GlobalValue::DLLImportLinkage: 2648 case GlobalValue::ExternalWeakLinkage: 2649 if (isDefine) 2650 return Error(LinkageLoc, "invalid linkage for function definition"); 2651 break; 2652 case GlobalValue::PrivateLinkage: 2653 case GlobalValue::LinkerPrivateLinkage: 2654 case GlobalValue::LinkerPrivateWeakLinkage: 2655 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 2656 case GlobalValue::InternalLinkage: 2657 case GlobalValue::AvailableExternallyLinkage: 2658 case GlobalValue::LinkOnceAnyLinkage: 2659 case GlobalValue::LinkOnceODRLinkage: 2660 case GlobalValue::WeakAnyLinkage: 2661 case GlobalValue::WeakODRLinkage: 2662 case GlobalValue::DLLExportLinkage: 2663 if (!isDefine) 2664 return Error(LinkageLoc, "invalid linkage for function declaration"); 2665 break; 2666 case GlobalValue::AppendingLinkage: 2667 case GlobalValue::CommonLinkage: 2668 return Error(LinkageLoc, "invalid function linkage type"); 2669 } 2670 2671 if (!FunctionType::isValidReturnType(RetType)) 2672 return Error(RetTypeLoc, "invalid function return type"); 2673 2674 LocTy NameLoc = Lex.getLoc(); 2675 2676 std::string FunctionName; 2677 if (Lex.getKind() == lltok::GlobalVar) { 2678 FunctionName = Lex.getStrVal(); 2679 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2680 unsigned NameID = Lex.getUIntVal(); 2681 2682 if (NameID != NumberedVals.size()) 2683 return TokError("function expected to be numbered '%" + 2684 Twine(NumberedVals.size()) + "'"); 2685 } else { 2686 return TokError("expected function name"); 2687 } 2688 2689 Lex.Lex(); 2690 2691 if (Lex.getKind() != lltok::lparen) 2692 return TokError("expected '(' in function argument list"); 2693 2694 SmallVector<ArgInfo, 8> ArgList; 2695 bool isVarArg; 2696 Attributes FuncAttrs; 2697 std::string Section; 2698 unsigned Alignment; 2699 std::string GC; 2700 bool UnnamedAddr; 2701 LocTy UnnamedAddrLoc; 2702 2703 if (ParseArgumentList(ArgList, isVarArg) || 2704 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2705 &UnnamedAddrLoc) || 2706 ParseOptionalAttrs(FuncAttrs, 2) || 2707 (EatIfPresent(lltok::kw_section) && 2708 ParseStringConstant(Section)) || 2709 ParseOptionalAlignment(Alignment) || 2710 (EatIfPresent(lltok::kw_gc) && 2711 ParseStringConstant(GC))) 2712 return true; 2713 2714 // If the alignment was parsed as an attribute, move to the alignment field. 2715 if (FuncAttrs & Attribute::Alignment) { 2716 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); 2717 FuncAttrs &= ~Attribute::Alignment; 2718 } 2719 2720 // Okay, if we got here, the function is syntactically valid. Convert types 2721 // and do semantic checks. 2722 std::vector<Type*> ParamTypeList; 2723 SmallVector<AttributeWithIndex, 8> Attrs; 2724 2725 if (RetAttrs != Attribute::None) 2726 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2727 2728 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2729 ParamTypeList.push_back(ArgList[i].Ty); 2730 if (ArgList[i].Attrs != Attribute::None) 2731 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2732 } 2733 2734 if (FuncAttrs != Attribute::None) 2735 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2736 2737 AttrListPtr PAL = AttrListPtr::get(Attrs); 2738 2739 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2740 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2741 2742 FunctionType *FT = 2743 FunctionType::get(RetType, ParamTypeList, isVarArg); 2744 PointerType *PFT = PointerType::getUnqual(FT); 2745 2746 Fn = 0; 2747 if (!FunctionName.empty()) { 2748 // If this was a definition of a forward reference, remove the definition 2749 // from the forward reference table and fill in the forward ref. 2750 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2751 ForwardRefVals.find(FunctionName); 2752 if (FRVI != ForwardRefVals.end()) { 2753 Fn = M->getFunction(FunctionName); 2754 if (Fn->getType() != PFT) 2755 return Error(FRVI->second.second, "invalid forward reference to " 2756 "function '" + FunctionName + "' with wrong type!"); 2757 2758 ForwardRefVals.erase(FRVI); 2759 } else if ((Fn = M->getFunction(FunctionName))) { 2760 // Reject redefinitions. 2761 return Error(NameLoc, "invalid redefinition of function '" + 2762 FunctionName + "'"); 2763 } else if (M->getNamedValue(FunctionName)) { 2764 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2765 } 2766 2767 } else { 2768 // If this is a definition of a forward referenced function, make sure the 2769 // types agree. 2770 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2771 = ForwardRefValIDs.find(NumberedVals.size()); 2772 if (I != ForwardRefValIDs.end()) { 2773 Fn = cast<Function>(I->second.first); 2774 if (Fn->getType() != PFT) 2775 return Error(NameLoc, "type of definition and forward reference of '@" + 2776 Twine(NumberedVals.size()) + "' disagree"); 2777 ForwardRefValIDs.erase(I); 2778 } 2779 } 2780 2781 if (Fn == 0) 2782 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2783 else // Move the forward-reference to the correct spot in the module. 2784 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2785 2786 if (FunctionName.empty()) 2787 NumberedVals.push_back(Fn); 2788 2789 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2790 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2791 Fn->setCallingConv(CC); 2792 Fn->setAttributes(PAL); 2793 Fn->setUnnamedAddr(UnnamedAddr); 2794 Fn->setAlignment(Alignment); 2795 Fn->setSection(Section); 2796 if (!GC.empty()) Fn->setGC(GC.c_str()); 2797 2798 // Add all of the arguments we parsed to the function. 2799 Function::arg_iterator ArgIt = Fn->arg_begin(); 2800 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2801 // If the argument has a name, insert it into the argument symbol table. 2802 if (ArgList[i].Name.empty()) continue; 2803 2804 // Set the name, if it conflicted, it will be auto-renamed. 2805 ArgIt->setName(ArgList[i].Name); 2806 2807 if (ArgIt->getName() != ArgList[i].Name) 2808 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2809 ArgList[i].Name + "'"); 2810 } 2811 2812 return false; 2813 } 2814 2815 2816 /// ParseFunctionBody 2817 /// ::= '{' BasicBlock+ '}' 2818 /// 2819 bool LLParser::ParseFunctionBody(Function &Fn) { 2820 if (Lex.getKind() != lltok::lbrace) 2821 return TokError("expected '{' in function body"); 2822 Lex.Lex(); // eat the {. 2823 2824 int FunctionNumber = -1; 2825 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2826 2827 PerFunctionState PFS(*this, Fn, FunctionNumber); 2828 2829 // We need at least one basic block. 2830 if (Lex.getKind() == lltok::rbrace) 2831 return TokError("function body requires at least one basic block"); 2832 2833 while (Lex.getKind() != lltok::rbrace) 2834 if (ParseBasicBlock(PFS)) return true; 2835 2836 // Eat the }. 2837 Lex.Lex(); 2838 2839 // Verify function is ok. 2840 return PFS.FinishFunction(); 2841 } 2842 2843 /// ParseBasicBlock 2844 /// ::= LabelStr? Instruction* 2845 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2846 // If this basic block starts out with a name, remember it. 2847 std::string Name; 2848 LocTy NameLoc = Lex.getLoc(); 2849 if (Lex.getKind() == lltok::LabelStr) { 2850 Name = Lex.getStrVal(); 2851 Lex.Lex(); 2852 } 2853 2854 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2855 if (BB == 0) return true; 2856 2857 std::string NameStr; 2858 2859 // Parse the instructions in this block until we get a terminator. 2860 Instruction *Inst; 2861 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2862 do { 2863 // This instruction may have three possibilities for a name: a) none 2864 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2865 LocTy NameLoc = Lex.getLoc(); 2866 int NameID = -1; 2867 NameStr = ""; 2868 2869 if (Lex.getKind() == lltok::LocalVarID) { 2870 NameID = Lex.getUIntVal(); 2871 Lex.Lex(); 2872 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2873 return true; 2874 } else if (Lex.getKind() == lltok::LocalVar) { 2875 NameStr = Lex.getStrVal(); 2876 Lex.Lex(); 2877 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2878 return true; 2879 } 2880 2881 switch (ParseInstruction(Inst, BB, PFS)) { 2882 default: llvm_unreachable("Unknown ParseInstruction result!"); 2883 case InstError: return true; 2884 case InstNormal: 2885 BB->getInstList().push_back(Inst); 2886 2887 // With a normal result, we check to see if the instruction is followed by 2888 // a comma and metadata. 2889 if (EatIfPresent(lltok::comma)) 2890 if (ParseInstructionMetadata(Inst, &PFS)) 2891 return true; 2892 break; 2893 case InstExtraComma: 2894 BB->getInstList().push_back(Inst); 2895 2896 // If the instruction parser ate an extra comma at the end of it, it 2897 // *must* be followed by metadata. 2898 if (ParseInstructionMetadata(Inst, &PFS)) 2899 return true; 2900 break; 2901 } 2902 2903 // Set the name on the instruction. 2904 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2905 } while (!isa<TerminatorInst>(Inst)); 2906 2907 return false; 2908 } 2909 2910 //===----------------------------------------------------------------------===// 2911 // Instruction Parsing. 2912 //===----------------------------------------------------------------------===// 2913 2914 /// ParseInstruction - Parse one of the many different instructions. 2915 /// 2916 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2917 PerFunctionState &PFS) { 2918 lltok::Kind Token = Lex.getKind(); 2919 if (Token == lltok::Eof) 2920 return TokError("found end of file when expecting more instructions"); 2921 LocTy Loc = Lex.getLoc(); 2922 unsigned KeywordVal = Lex.getUIntVal(); 2923 Lex.Lex(); // Eat the keyword. 2924 2925 switch (Token) { 2926 default: return Error(Loc, "expected instruction opcode"); 2927 // Terminator Instructions. 2928 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2929 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2930 case lltok::kw_br: return ParseBr(Inst, PFS); 2931 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2932 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2933 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2934 case lltok::kw_resume: return ParseResume(Inst, PFS); 2935 // Binary Operators. 2936 case lltok::kw_add: 2937 case lltok::kw_sub: 2938 case lltok::kw_mul: 2939 case lltok::kw_shl: { 2940 bool NUW = EatIfPresent(lltok::kw_nuw); 2941 bool NSW = EatIfPresent(lltok::kw_nsw); 2942 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 2943 2944 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2945 2946 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 2947 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 2948 return false; 2949 } 2950 case lltok::kw_fadd: 2951 case lltok::kw_fsub: 2952 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2953 2954 case lltok::kw_sdiv: 2955 case lltok::kw_udiv: 2956 case lltok::kw_lshr: 2957 case lltok::kw_ashr: { 2958 bool Exact = EatIfPresent(lltok::kw_exact); 2959 2960 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2961 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 2962 return false; 2963 } 2964 2965 case lltok::kw_urem: 2966 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 2967 case lltok::kw_fdiv: 2968 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2969 case lltok::kw_and: 2970 case lltok::kw_or: 2971 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 2972 case lltok::kw_icmp: 2973 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 2974 // Casts. 2975 case lltok::kw_trunc: 2976 case lltok::kw_zext: 2977 case lltok::kw_sext: 2978 case lltok::kw_fptrunc: 2979 case lltok::kw_fpext: 2980 case lltok::kw_bitcast: 2981 case lltok::kw_uitofp: 2982 case lltok::kw_sitofp: 2983 case lltok::kw_fptoui: 2984 case lltok::kw_fptosi: 2985 case lltok::kw_inttoptr: 2986 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 2987 // Other. 2988 case lltok::kw_select: return ParseSelect(Inst, PFS); 2989 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 2990 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 2991 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 2992 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 2993 case lltok::kw_phi: return ParsePHI(Inst, PFS); 2994 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 2995 case lltok::kw_call: return ParseCall(Inst, PFS, false); 2996 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 2997 // Memory. 2998 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 2999 case lltok::kw_load: return ParseLoad(Inst, PFS); 3000 case lltok::kw_store: return ParseStore(Inst, PFS); 3001 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3002 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3003 case lltok::kw_fence: return ParseFence(Inst, PFS); 3004 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3005 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3006 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3007 } 3008 } 3009 3010 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3011 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3012 if (Opc == Instruction::FCmp) { 3013 switch (Lex.getKind()) { 3014 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3015 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3016 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3017 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3018 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3019 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3020 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3021 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3022 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3023 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3024 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3025 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3026 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3027 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3028 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3029 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3030 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3031 } 3032 } else { 3033 switch (Lex.getKind()) { 3034 default: TokError("expected icmp predicate (e.g. 'eq')"); 3035 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3036 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3037 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3038 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3039 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3040 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3041 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3042 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3043 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3044 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3045 } 3046 } 3047 Lex.Lex(); 3048 return false; 3049 } 3050 3051 //===----------------------------------------------------------------------===// 3052 // Terminator Instructions. 3053 //===----------------------------------------------------------------------===// 3054 3055 /// ParseRet - Parse a return instruction. 3056 /// ::= 'ret' void (',' !dbg, !1)* 3057 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3058 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3059 PerFunctionState &PFS) { 3060 SMLoc TypeLoc = Lex.getLoc(); 3061 Type *Ty = 0; 3062 if (ParseType(Ty, true /*void allowed*/)) return true; 3063 3064 Type *ResType = PFS.getFunction().getReturnType(); 3065 3066 if (Ty->isVoidTy()) { 3067 if (!ResType->isVoidTy()) 3068 return Error(TypeLoc, "value doesn't match function result type '" + 3069 getTypeString(ResType) + "'"); 3070 3071 Inst = ReturnInst::Create(Context); 3072 return false; 3073 } 3074 3075 Value *RV; 3076 if (ParseValue(Ty, RV, PFS)) return true; 3077 3078 if (ResType != RV->getType()) 3079 return Error(TypeLoc, "value doesn't match function result type '" + 3080 getTypeString(ResType) + "'"); 3081 3082 Inst = ReturnInst::Create(Context, RV); 3083 return false; 3084 } 3085 3086 3087 /// ParseBr 3088 /// ::= 'br' TypeAndValue 3089 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3090 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3091 LocTy Loc, Loc2; 3092 Value *Op0; 3093 BasicBlock *Op1, *Op2; 3094 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3095 3096 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3097 Inst = BranchInst::Create(BB); 3098 return false; 3099 } 3100 3101 if (Op0->getType() != Type::getInt1Ty(Context)) 3102 return Error(Loc, "branch condition must have 'i1' type"); 3103 3104 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3105 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3106 ParseToken(lltok::comma, "expected ',' after true destination") || 3107 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3108 return true; 3109 3110 Inst = BranchInst::Create(Op1, Op2, Op0); 3111 return false; 3112 } 3113 3114 /// ParseSwitch 3115 /// Instruction 3116 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3117 /// JumpTable 3118 /// ::= (TypeAndValue ',' TypeAndValue)* 3119 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3120 LocTy CondLoc, BBLoc; 3121 Value *Cond; 3122 BasicBlock *DefaultBB; 3123 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3124 ParseToken(lltok::comma, "expected ',' after switch condition") || 3125 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3126 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3127 return true; 3128 3129 if (!Cond->getType()->isIntegerTy()) 3130 return Error(CondLoc, "switch condition must have integer type"); 3131 3132 // Parse the jump table pairs. 3133 SmallPtrSet<Value*, 32> SeenCases; 3134 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3135 while (Lex.getKind() != lltok::rsquare) { 3136 Value *Constant; 3137 BasicBlock *DestBB; 3138 3139 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3140 ParseToken(lltok::comma, "expected ',' after case value") || 3141 ParseTypeAndBasicBlock(DestBB, PFS)) 3142 return true; 3143 3144 if (!SeenCases.insert(Constant)) 3145 return Error(CondLoc, "duplicate case value in switch"); 3146 if (!isa<ConstantInt>(Constant)) 3147 return Error(CondLoc, "case value is not a constant integer"); 3148 3149 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3150 } 3151 3152 Lex.Lex(); // Eat the ']'. 3153 3154 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3155 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3156 SI->addCase(Table[i].first, Table[i].second); 3157 Inst = SI; 3158 return false; 3159 } 3160 3161 /// ParseIndirectBr 3162 /// Instruction 3163 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3164 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3165 LocTy AddrLoc; 3166 Value *Address; 3167 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3168 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3169 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3170 return true; 3171 3172 if (!Address->getType()->isPointerTy()) 3173 return Error(AddrLoc, "indirectbr address must have pointer type"); 3174 3175 // Parse the destination list. 3176 SmallVector<BasicBlock*, 16> DestList; 3177 3178 if (Lex.getKind() != lltok::rsquare) { 3179 BasicBlock *DestBB; 3180 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3181 return true; 3182 DestList.push_back(DestBB); 3183 3184 while (EatIfPresent(lltok::comma)) { 3185 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3186 return true; 3187 DestList.push_back(DestBB); 3188 } 3189 } 3190 3191 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3192 return true; 3193 3194 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3195 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3196 IBI->addDestination(DestList[i]); 3197 Inst = IBI; 3198 return false; 3199 } 3200 3201 3202 /// ParseInvoke 3203 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3204 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3205 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3206 LocTy CallLoc = Lex.getLoc(); 3207 Attributes RetAttrs, FnAttrs; 3208 CallingConv::ID CC; 3209 Type *RetType = 0; 3210 LocTy RetTypeLoc; 3211 ValID CalleeID; 3212 SmallVector<ParamInfo, 16> ArgList; 3213 3214 BasicBlock *NormalBB, *UnwindBB; 3215 if (ParseOptionalCallingConv(CC) || 3216 ParseOptionalAttrs(RetAttrs, 1) || 3217 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3218 ParseValID(CalleeID) || 3219 ParseParameterList(ArgList, PFS) || 3220 ParseOptionalAttrs(FnAttrs, 2) || 3221 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3222 ParseTypeAndBasicBlock(NormalBB, PFS) || 3223 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3224 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3225 return true; 3226 3227 // If RetType is a non-function pointer type, then this is the short syntax 3228 // for the call, which means that RetType is just the return type. Infer the 3229 // rest of the function argument types from the arguments that are present. 3230 PointerType *PFTy = 0; 3231 FunctionType *Ty = 0; 3232 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3233 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3234 // Pull out the types of all of the arguments... 3235 std::vector<Type*> ParamTypes; 3236 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3237 ParamTypes.push_back(ArgList[i].V->getType()); 3238 3239 if (!FunctionType::isValidReturnType(RetType)) 3240 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3241 3242 Ty = FunctionType::get(RetType, ParamTypes, false); 3243 PFTy = PointerType::getUnqual(Ty); 3244 } 3245 3246 // Look up the callee. 3247 Value *Callee; 3248 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3249 3250 // Set up the Attributes for the function. 3251 SmallVector<AttributeWithIndex, 8> Attrs; 3252 if (RetAttrs != Attribute::None) 3253 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3254 3255 SmallVector<Value*, 8> Args; 3256 3257 // Loop through FunctionType's arguments and ensure they are specified 3258 // correctly. Also, gather any parameter attributes. 3259 FunctionType::param_iterator I = Ty->param_begin(); 3260 FunctionType::param_iterator E = Ty->param_end(); 3261 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3262 Type *ExpectedTy = 0; 3263 if (I != E) { 3264 ExpectedTy = *I++; 3265 } else if (!Ty->isVarArg()) { 3266 return Error(ArgList[i].Loc, "too many arguments specified"); 3267 } 3268 3269 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3270 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3271 getTypeString(ExpectedTy) + "'"); 3272 Args.push_back(ArgList[i].V); 3273 if (ArgList[i].Attrs != Attribute::None) 3274 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3275 } 3276 3277 if (I != E) 3278 return Error(CallLoc, "not enough parameters specified for call"); 3279 3280 if (FnAttrs != Attribute::None) 3281 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3282 3283 // Finish off the Attributes and check them 3284 AttrListPtr PAL = AttrListPtr::get(Attrs); 3285 3286 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3287 II->setCallingConv(CC); 3288 II->setAttributes(PAL); 3289 Inst = II; 3290 return false; 3291 } 3292 3293 /// ParseResume 3294 /// ::= 'resume' TypeAndValue 3295 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3296 Value *Exn; LocTy ExnLoc; 3297 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3298 return true; 3299 3300 ResumeInst *RI = ResumeInst::Create(Exn); 3301 Inst = RI; 3302 return false; 3303 } 3304 3305 //===----------------------------------------------------------------------===// 3306 // Binary Operators. 3307 //===----------------------------------------------------------------------===// 3308 3309 /// ParseArithmetic 3310 /// ::= ArithmeticOps TypeAndValue ',' Value 3311 /// 3312 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3313 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3314 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3315 unsigned Opc, unsigned OperandType) { 3316 LocTy Loc; Value *LHS, *RHS; 3317 if (ParseTypeAndValue(LHS, Loc, PFS) || 3318 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3319 ParseValue(LHS->getType(), RHS, PFS)) 3320 return true; 3321 3322 bool Valid; 3323 switch (OperandType) { 3324 default: llvm_unreachable("Unknown operand type!"); 3325 case 0: // int or FP. 3326 Valid = LHS->getType()->isIntOrIntVectorTy() || 3327 LHS->getType()->isFPOrFPVectorTy(); 3328 break; 3329 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3330 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3331 } 3332 3333 if (!Valid) 3334 return Error(Loc, "invalid operand type for instruction"); 3335 3336 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3337 return false; 3338 } 3339 3340 /// ParseLogical 3341 /// ::= ArithmeticOps TypeAndValue ',' Value { 3342 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3343 unsigned Opc) { 3344 LocTy Loc; Value *LHS, *RHS; 3345 if (ParseTypeAndValue(LHS, Loc, PFS) || 3346 ParseToken(lltok::comma, "expected ',' in logical operation") || 3347 ParseValue(LHS->getType(), RHS, PFS)) 3348 return true; 3349 3350 if (!LHS->getType()->isIntOrIntVectorTy()) 3351 return Error(Loc,"instruction requires integer or integer vector operands"); 3352 3353 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3354 return false; 3355 } 3356 3357 3358 /// ParseCompare 3359 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3360 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3361 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3362 unsigned Opc) { 3363 // Parse the integer/fp comparison predicate. 3364 LocTy Loc; 3365 unsigned Pred; 3366 Value *LHS, *RHS; 3367 if (ParseCmpPredicate(Pred, Opc) || 3368 ParseTypeAndValue(LHS, Loc, PFS) || 3369 ParseToken(lltok::comma, "expected ',' after compare value") || 3370 ParseValue(LHS->getType(), RHS, PFS)) 3371 return true; 3372 3373 if (Opc == Instruction::FCmp) { 3374 if (!LHS->getType()->isFPOrFPVectorTy()) 3375 return Error(Loc, "fcmp requires floating point operands"); 3376 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3377 } else { 3378 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3379 if (!LHS->getType()->isIntOrIntVectorTy() && 3380 !LHS->getType()->getScalarType()->isPointerTy()) 3381 return Error(Loc, "icmp requires integer operands"); 3382 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3383 } 3384 return false; 3385 } 3386 3387 //===----------------------------------------------------------------------===// 3388 // Other Instructions. 3389 //===----------------------------------------------------------------------===// 3390 3391 3392 /// ParseCast 3393 /// ::= CastOpc TypeAndValue 'to' Type 3394 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3395 unsigned Opc) { 3396 LocTy Loc; 3397 Value *Op; 3398 Type *DestTy = 0; 3399 if (ParseTypeAndValue(Op, Loc, PFS) || 3400 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3401 ParseType(DestTy)) 3402 return true; 3403 3404 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3405 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3406 return Error(Loc, "invalid cast opcode for cast from '" + 3407 getTypeString(Op->getType()) + "' to '" + 3408 getTypeString(DestTy) + "'"); 3409 } 3410 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3411 return false; 3412 } 3413 3414 /// ParseSelect 3415 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3416 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3417 LocTy Loc; 3418 Value *Op0, *Op1, *Op2; 3419 if (ParseTypeAndValue(Op0, Loc, PFS) || 3420 ParseToken(lltok::comma, "expected ',' after select condition") || 3421 ParseTypeAndValue(Op1, PFS) || 3422 ParseToken(lltok::comma, "expected ',' after select value") || 3423 ParseTypeAndValue(Op2, PFS)) 3424 return true; 3425 3426 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3427 return Error(Loc, Reason); 3428 3429 Inst = SelectInst::Create(Op0, Op1, Op2); 3430 return false; 3431 } 3432 3433 /// ParseVA_Arg 3434 /// ::= 'va_arg' TypeAndValue ',' Type 3435 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3436 Value *Op; 3437 Type *EltTy = 0; 3438 LocTy TypeLoc; 3439 if (ParseTypeAndValue(Op, PFS) || 3440 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3441 ParseType(EltTy, TypeLoc)) 3442 return true; 3443 3444 if (!EltTy->isFirstClassType()) 3445 return Error(TypeLoc, "va_arg requires operand with first class type"); 3446 3447 Inst = new VAArgInst(Op, EltTy); 3448 return false; 3449 } 3450 3451 /// ParseExtractElement 3452 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3453 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3454 LocTy Loc; 3455 Value *Op0, *Op1; 3456 if (ParseTypeAndValue(Op0, Loc, PFS) || 3457 ParseToken(lltok::comma, "expected ',' after extract value") || 3458 ParseTypeAndValue(Op1, PFS)) 3459 return true; 3460 3461 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3462 return Error(Loc, "invalid extractelement operands"); 3463 3464 Inst = ExtractElementInst::Create(Op0, Op1); 3465 return false; 3466 } 3467 3468 /// ParseInsertElement 3469 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3470 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3471 LocTy Loc; 3472 Value *Op0, *Op1, *Op2; 3473 if (ParseTypeAndValue(Op0, Loc, PFS) || 3474 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3475 ParseTypeAndValue(Op1, PFS) || 3476 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3477 ParseTypeAndValue(Op2, PFS)) 3478 return true; 3479 3480 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3481 return Error(Loc, "invalid insertelement operands"); 3482 3483 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3484 return false; 3485 } 3486 3487 /// ParseShuffleVector 3488 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3489 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3490 LocTy Loc; 3491 Value *Op0, *Op1, *Op2; 3492 if (ParseTypeAndValue(Op0, Loc, PFS) || 3493 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3494 ParseTypeAndValue(Op1, PFS) || 3495 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3496 ParseTypeAndValue(Op2, PFS)) 3497 return true; 3498 3499 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3500 return Error(Loc, "invalid shufflevector operands"); 3501 3502 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3503 return false; 3504 } 3505 3506 /// ParsePHI 3507 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3508 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3509 Type *Ty = 0; LocTy TypeLoc; 3510 Value *Op0, *Op1; 3511 3512 if (ParseType(Ty, TypeLoc) || 3513 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3514 ParseValue(Ty, Op0, PFS) || 3515 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3516 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3517 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3518 return true; 3519 3520 bool AteExtraComma = false; 3521 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3522 while (1) { 3523 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3524 3525 if (!EatIfPresent(lltok::comma)) 3526 break; 3527 3528 if (Lex.getKind() == lltok::MetadataVar) { 3529 AteExtraComma = true; 3530 break; 3531 } 3532 3533 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3534 ParseValue(Ty, Op0, PFS) || 3535 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3536 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3537 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3538 return true; 3539 } 3540 3541 if (!Ty->isFirstClassType()) 3542 return Error(TypeLoc, "phi node must have first class type"); 3543 3544 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3545 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3546 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3547 Inst = PN; 3548 return AteExtraComma ? InstExtraComma : InstNormal; 3549 } 3550 3551 /// ParseLandingPad 3552 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3553 /// Clause 3554 /// ::= 'catch' TypeAndValue 3555 /// ::= 'filter' 3556 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3557 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3558 Type *Ty = 0; LocTy TyLoc; 3559 Value *PersFn; LocTy PersFnLoc; 3560 3561 if (ParseType(Ty, TyLoc) || 3562 ParseToken(lltok::kw_personality, "expected 'personality'") || 3563 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3564 return true; 3565 3566 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3567 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3568 3569 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3570 LandingPadInst::ClauseType CT; 3571 if (EatIfPresent(lltok::kw_catch)) 3572 CT = LandingPadInst::Catch; 3573 else if (EatIfPresent(lltok::kw_filter)) 3574 CT = LandingPadInst::Filter; 3575 else 3576 return TokError("expected 'catch' or 'filter' clause type"); 3577 3578 Value *V; LocTy VLoc; 3579 if (ParseTypeAndValue(V, VLoc, PFS)) { 3580 delete LP; 3581 return true; 3582 } 3583 3584 // A 'catch' type expects a non-array constant. A filter clause expects an 3585 // array constant. 3586 if (CT == LandingPadInst::Catch) { 3587 if (isa<ArrayType>(V->getType())) 3588 Error(VLoc, "'catch' clause has an invalid type"); 3589 } else { 3590 if (!isa<ArrayType>(V->getType())) 3591 Error(VLoc, "'filter' clause has an invalid type"); 3592 } 3593 3594 LP->addClause(V); 3595 } 3596 3597 Inst = LP; 3598 return false; 3599 } 3600 3601 /// ParseCall 3602 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3603 /// ParameterList OptionalAttrs 3604 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3605 bool isTail) { 3606 Attributes RetAttrs, FnAttrs; 3607 CallingConv::ID CC; 3608 Type *RetType = 0; 3609 LocTy RetTypeLoc; 3610 ValID CalleeID; 3611 SmallVector<ParamInfo, 16> ArgList; 3612 LocTy CallLoc = Lex.getLoc(); 3613 3614 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3615 ParseOptionalCallingConv(CC) || 3616 ParseOptionalAttrs(RetAttrs, 1) || 3617 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3618 ParseValID(CalleeID) || 3619 ParseParameterList(ArgList, PFS) || 3620 ParseOptionalAttrs(FnAttrs, 2)) 3621 return true; 3622 3623 // If RetType is a non-function pointer type, then this is the short syntax 3624 // for the call, which means that RetType is just the return type. Infer the 3625 // rest of the function argument types from the arguments that are present. 3626 PointerType *PFTy = 0; 3627 FunctionType *Ty = 0; 3628 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3629 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3630 // Pull out the types of all of the arguments... 3631 std::vector<Type*> ParamTypes; 3632 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3633 ParamTypes.push_back(ArgList[i].V->getType()); 3634 3635 if (!FunctionType::isValidReturnType(RetType)) 3636 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3637 3638 Ty = FunctionType::get(RetType, ParamTypes, false); 3639 PFTy = PointerType::getUnqual(Ty); 3640 } 3641 3642 // Look up the callee. 3643 Value *Callee; 3644 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3645 3646 // Set up the Attributes for the function. 3647 SmallVector<AttributeWithIndex, 8> Attrs; 3648 if (RetAttrs != Attribute::None) 3649 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3650 3651 SmallVector<Value*, 8> Args; 3652 3653 // Loop through FunctionType's arguments and ensure they are specified 3654 // correctly. Also, gather any parameter attributes. 3655 FunctionType::param_iterator I = Ty->param_begin(); 3656 FunctionType::param_iterator E = Ty->param_end(); 3657 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3658 Type *ExpectedTy = 0; 3659 if (I != E) { 3660 ExpectedTy = *I++; 3661 } else if (!Ty->isVarArg()) { 3662 return Error(ArgList[i].Loc, "too many arguments specified"); 3663 } 3664 3665 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3666 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3667 getTypeString(ExpectedTy) + "'"); 3668 Args.push_back(ArgList[i].V); 3669 if (ArgList[i].Attrs != Attribute::None) 3670 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3671 } 3672 3673 if (I != E) 3674 return Error(CallLoc, "not enough parameters specified for call"); 3675 3676 if (FnAttrs != Attribute::None) 3677 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3678 3679 // Finish off the Attributes and check them 3680 AttrListPtr PAL = AttrListPtr::get(Attrs); 3681 3682 CallInst *CI = CallInst::Create(Callee, Args); 3683 CI->setTailCall(isTail); 3684 CI->setCallingConv(CC); 3685 CI->setAttributes(PAL); 3686 Inst = CI; 3687 return false; 3688 } 3689 3690 //===----------------------------------------------------------------------===// 3691 // Memory Instructions. 3692 //===----------------------------------------------------------------------===// 3693 3694 /// ParseAlloc 3695 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3696 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3697 Value *Size = 0; 3698 LocTy SizeLoc; 3699 unsigned Alignment = 0; 3700 Type *Ty = 0; 3701 if (ParseType(Ty)) return true; 3702 3703 bool AteExtraComma = false; 3704 if (EatIfPresent(lltok::comma)) { 3705 if (Lex.getKind() == lltok::kw_align) { 3706 if (ParseOptionalAlignment(Alignment)) return true; 3707 } else if (Lex.getKind() == lltok::MetadataVar) { 3708 AteExtraComma = true; 3709 } else { 3710 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3711 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3712 return true; 3713 } 3714 } 3715 3716 if (Size && !Size->getType()->isIntegerTy()) 3717 return Error(SizeLoc, "element count must have integer type"); 3718 3719 Inst = new AllocaInst(Ty, Size, Alignment); 3720 return AteExtraComma ? InstExtraComma : InstNormal; 3721 } 3722 3723 /// ParseLoad 3724 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3725 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3726 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3727 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3728 Value *Val; LocTy Loc; 3729 unsigned Alignment = 0; 3730 bool AteExtraComma = false; 3731 bool isAtomic = false; 3732 AtomicOrdering Ordering = NotAtomic; 3733 SynchronizationScope Scope = CrossThread; 3734 3735 if (Lex.getKind() == lltok::kw_atomic) { 3736 isAtomic = true; 3737 Lex.Lex(); 3738 } 3739 3740 bool isVolatile = false; 3741 if (Lex.getKind() == lltok::kw_volatile) { 3742 isVolatile = true; 3743 Lex.Lex(); 3744 } 3745 3746 if (ParseTypeAndValue(Val, Loc, PFS) || 3747 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3748 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3749 return true; 3750 3751 if (!Val->getType()->isPointerTy() || 3752 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3753 return Error(Loc, "load operand must be a pointer to a first class type"); 3754 if (isAtomic && !Alignment) 3755 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3756 if (Ordering == Release || Ordering == AcquireRelease) 3757 return Error(Loc, "atomic load cannot use Release ordering"); 3758 3759 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3760 return AteExtraComma ? InstExtraComma : InstNormal; 3761 } 3762 3763 /// ParseStore 3764 3765 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3766 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3767 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3768 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3769 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3770 unsigned Alignment = 0; 3771 bool AteExtraComma = false; 3772 bool isAtomic = false; 3773 AtomicOrdering Ordering = NotAtomic; 3774 SynchronizationScope Scope = CrossThread; 3775 3776 if (Lex.getKind() == lltok::kw_atomic) { 3777 isAtomic = true; 3778 Lex.Lex(); 3779 } 3780 3781 bool isVolatile = false; 3782 if (Lex.getKind() == lltok::kw_volatile) { 3783 isVolatile = true; 3784 Lex.Lex(); 3785 } 3786 3787 if (ParseTypeAndValue(Val, Loc, PFS) || 3788 ParseToken(lltok::comma, "expected ',' after store operand") || 3789 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3790 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3791 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3792 return true; 3793 3794 if (!Ptr->getType()->isPointerTy()) 3795 return Error(PtrLoc, "store operand must be a pointer"); 3796 if (!Val->getType()->isFirstClassType()) 3797 return Error(Loc, "store operand must be a first class value"); 3798 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3799 return Error(Loc, "stored value and pointer type do not match"); 3800 if (isAtomic && !Alignment) 3801 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3802 if (Ordering == Acquire || Ordering == AcquireRelease) 3803 return Error(Loc, "atomic store cannot use Acquire ordering"); 3804 3805 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3806 return AteExtraComma ? InstExtraComma : InstNormal; 3807 } 3808 3809 /// ParseCmpXchg 3810 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3811 /// 'singlethread'? AtomicOrdering 3812 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3813 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3814 bool AteExtraComma = false; 3815 AtomicOrdering Ordering = NotAtomic; 3816 SynchronizationScope Scope = CrossThread; 3817 bool isVolatile = false; 3818 3819 if (EatIfPresent(lltok::kw_volatile)) 3820 isVolatile = true; 3821 3822 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3823 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3824 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3825 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3826 ParseTypeAndValue(New, NewLoc, PFS) || 3827 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3828 return true; 3829 3830 if (Ordering == Unordered) 3831 return TokError("cmpxchg cannot be unordered"); 3832 if (!Ptr->getType()->isPointerTy()) 3833 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3834 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3835 return Error(CmpLoc, "compare value and pointer type do not match"); 3836 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3837 return Error(NewLoc, "new value and pointer type do not match"); 3838 if (!New->getType()->isIntegerTy()) 3839 return Error(NewLoc, "cmpxchg operand must be an integer"); 3840 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3841 if (Size < 8 || (Size & (Size - 1))) 3842 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3843 " integer"); 3844 3845 AtomicCmpXchgInst *CXI = 3846 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3847 CXI->setVolatile(isVolatile); 3848 Inst = CXI; 3849 return AteExtraComma ? InstExtraComma : InstNormal; 3850 } 3851 3852 /// ParseAtomicRMW 3853 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3854 /// 'singlethread'? AtomicOrdering 3855 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3856 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3857 bool AteExtraComma = false; 3858 AtomicOrdering Ordering = NotAtomic; 3859 SynchronizationScope Scope = CrossThread; 3860 bool isVolatile = false; 3861 AtomicRMWInst::BinOp Operation; 3862 3863 if (EatIfPresent(lltok::kw_volatile)) 3864 isVolatile = true; 3865 3866 switch (Lex.getKind()) { 3867 default: return TokError("expected binary operation in atomicrmw"); 3868 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3869 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3870 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3871 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3872 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3873 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3874 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3875 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3876 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3877 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3878 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3879 } 3880 Lex.Lex(); // Eat the operation. 3881 3882 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3883 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3884 ParseTypeAndValue(Val, ValLoc, PFS) || 3885 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3886 return true; 3887 3888 if (Ordering == Unordered) 3889 return TokError("atomicrmw cannot be unordered"); 3890 if (!Ptr->getType()->isPointerTy()) 3891 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3892 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3893 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3894 if (!Val->getType()->isIntegerTy()) 3895 return Error(ValLoc, "atomicrmw operand must be an integer"); 3896 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3897 if (Size < 8 || (Size & (Size - 1))) 3898 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3899 " integer"); 3900 3901 AtomicRMWInst *RMWI = 3902 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3903 RMWI->setVolatile(isVolatile); 3904 Inst = RMWI; 3905 return AteExtraComma ? InstExtraComma : InstNormal; 3906 } 3907 3908 /// ParseFence 3909 /// ::= 'fence' 'singlethread'? AtomicOrdering 3910 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3911 AtomicOrdering Ordering = NotAtomic; 3912 SynchronizationScope Scope = CrossThread; 3913 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3914 return true; 3915 3916 if (Ordering == Unordered) 3917 return TokError("fence cannot be unordered"); 3918 if (Ordering == Monotonic) 3919 return TokError("fence cannot be monotonic"); 3920 3921 Inst = new FenceInst(Context, Ordering, Scope); 3922 return InstNormal; 3923 } 3924 3925 /// ParseGetElementPtr 3926 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3927 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3928 Value *Ptr = 0; 3929 Value *Val = 0; 3930 LocTy Loc, EltLoc; 3931 3932 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3933 3934 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3935 3936 if (!Ptr->getType()->getScalarType()->isPointerTy()) 3937 return Error(Loc, "base of getelementptr must be a pointer"); 3938 3939 SmallVector<Value*, 16> Indices; 3940 bool AteExtraComma = false; 3941 while (EatIfPresent(lltok::comma)) { 3942 if (Lex.getKind() == lltok::MetadataVar) { 3943 AteExtraComma = true; 3944 break; 3945 } 3946 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3947 if (!Val->getType()->getScalarType()->isIntegerTy()) 3948 return Error(EltLoc, "getelementptr index must be an integer"); 3949 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 3950 return Error(EltLoc, "getelementptr index type missmatch"); 3951 if (Val->getType()->isVectorTy()) { 3952 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 3953 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 3954 if (ValNumEl != PtrNumEl) 3955 return Error(EltLoc, 3956 "getelementptr vector index has a wrong number of elements"); 3957 } 3958 Indices.push_back(Val); 3959 } 3960 3961 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 3962 return Error(EltLoc, "vector getelementptrs must have a single index"); 3963 3964 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 3965 return Error(Loc, "invalid getelementptr indices"); 3966 Inst = GetElementPtrInst::Create(Ptr, Indices); 3967 if (InBounds) 3968 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 3969 return AteExtraComma ? InstExtraComma : InstNormal; 3970 } 3971 3972 /// ParseExtractValue 3973 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 3974 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 3975 Value *Val; LocTy Loc; 3976 SmallVector<unsigned, 4> Indices; 3977 bool AteExtraComma; 3978 if (ParseTypeAndValue(Val, Loc, PFS) || 3979 ParseIndexList(Indices, AteExtraComma)) 3980 return true; 3981 3982 if (!Val->getType()->isAggregateType()) 3983 return Error(Loc, "extractvalue operand must be aggregate type"); 3984 3985 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3986 return Error(Loc, "invalid indices for extractvalue"); 3987 Inst = ExtractValueInst::Create(Val, Indices); 3988 return AteExtraComma ? InstExtraComma : InstNormal; 3989 } 3990 3991 /// ParseInsertValue 3992 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 3993 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 3994 Value *Val0, *Val1; LocTy Loc0, Loc1; 3995 SmallVector<unsigned, 4> Indices; 3996 bool AteExtraComma; 3997 if (ParseTypeAndValue(Val0, Loc0, PFS) || 3998 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 3999 ParseTypeAndValue(Val1, Loc1, PFS) || 4000 ParseIndexList(Indices, AteExtraComma)) 4001 return true; 4002 4003 if (!Val0->getType()->isAggregateType()) 4004 return Error(Loc0, "insertvalue operand must be aggregate type"); 4005 4006 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4007 return Error(Loc0, "invalid indices for insertvalue"); 4008 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4009 return AteExtraComma ? InstExtraComma : InstNormal; 4010 } 4011 4012 //===----------------------------------------------------------------------===// 4013 // Embedded metadata. 4014 //===----------------------------------------------------------------------===// 4015 4016 /// ParseMDNodeVector 4017 /// ::= Element (',' Element)* 4018 /// Element 4019 /// ::= 'null' | TypeAndValue 4020 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4021 PerFunctionState *PFS) { 4022 // Check for an empty list. 4023 if (Lex.getKind() == lltok::rbrace) 4024 return false; 4025 4026 do { 4027 // Null is a special case since it is typeless. 4028 if (EatIfPresent(lltok::kw_null)) { 4029 Elts.push_back(0); 4030 continue; 4031 } 4032 4033 Value *V = 0; 4034 if (ParseTypeAndValue(V, PFS)) return true; 4035 Elts.push_back(V); 4036 } while (EatIfPresent(lltok::comma)); 4037 4038 return false; 4039 } 4040