1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/AutoUpgrade.h" 17 #include "llvm/CallingConv.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/ValueSymbolTable.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 194 case lltok::kw_appending: // OptionalLinkage 195 case lltok::kw_dllexport: // OptionalLinkage 196 case lltok::kw_common: // OptionalLinkage 197 case lltok::kw_dllimport: // OptionalLinkage 198 case lltok::kw_extern_weak: // OptionalLinkage 199 case lltok::kw_external: { // OptionalLinkage 200 unsigned Linkage, Visibility; 201 if (ParseOptionalLinkage(Linkage) || 202 ParseOptionalVisibility(Visibility) || 203 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 204 return true; 205 break; 206 } 207 case lltok::kw_default: // OptionalVisibility 208 case lltok::kw_hidden: // OptionalVisibility 209 case lltok::kw_protected: { // OptionalVisibility 210 unsigned Visibility; 211 if (ParseOptionalVisibility(Visibility) || 212 ParseGlobal("", SMLoc(), 0, false, Visibility)) 213 return true; 214 break; 215 } 216 217 case lltok::kw_thread_local: // OptionalThreadLocal 218 case lltok::kw_addrspace: // OptionalAddrSpace 219 case lltok::kw_constant: // GlobalType 220 case lltok::kw_global: // GlobalType 221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 222 break; 223 } 224 } 225 } 226 227 228 /// toplevelentity 229 /// ::= 'module' 'asm' STRINGCONSTANT 230 bool LLParser::ParseModuleAsm() { 231 assert(Lex.getKind() == lltok::kw_module); 232 Lex.Lex(); 233 234 std::string AsmStr; 235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 236 ParseStringConstant(AsmStr)) return true; 237 238 M->appendModuleInlineAsm(AsmStr); 239 return false; 240 } 241 242 /// toplevelentity 243 /// ::= 'target' 'triple' '=' STRINGCONSTANT 244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 245 bool LLParser::ParseTargetDefinition() { 246 assert(Lex.getKind() == lltok::kw_target); 247 std::string Str; 248 switch (Lex.Lex()) { 249 default: return TokError("unknown target property"); 250 case lltok::kw_triple: 251 Lex.Lex(); 252 if (ParseToken(lltok::equal, "expected '=' after target triple") || 253 ParseStringConstant(Str)) 254 return true; 255 M->setTargetTriple(Str); 256 return false; 257 case lltok::kw_datalayout: 258 Lex.Lex(); 259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 260 ParseStringConstant(Str)) 261 return true; 262 M->setDataLayout(Str); 263 return false; 264 } 265 } 266 267 /// toplevelentity 268 /// ::= 'deplibs' '=' '[' ']' 269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 270 /// FIXME: Remove in 4.0. Currently parse, but ignore. 271 bool LLParser::ParseDepLibs() { 272 assert(Lex.getKind() == lltok::kw_deplibs); 273 Lex.Lex(); 274 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 275 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 276 return true; 277 278 if (EatIfPresent(lltok::rsquare)) 279 return false; 280 281 do { 282 std::string Str; 283 if (ParseStringConstant(Str)) return true; 284 } while (EatIfPresent(lltok::comma)); 285 286 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 287 } 288 289 /// ParseUnnamedType: 290 /// ::= LocalVarID '=' 'type' type 291 bool LLParser::ParseUnnamedType() { 292 LocTy TypeLoc = Lex.getLoc(); 293 unsigned TypeID = Lex.getUIntVal(); 294 Lex.Lex(); // eat LocalVarID; 295 296 if (ParseToken(lltok::equal, "expected '=' after name") || 297 ParseToken(lltok::kw_type, "expected 'type' after '='")) 298 return true; 299 300 if (TypeID >= NumberedTypes.size()) 301 NumberedTypes.resize(TypeID+1); 302 303 Type *Result = 0; 304 if (ParseStructDefinition(TypeLoc, "", 305 NumberedTypes[TypeID], Result)) return true; 306 307 if (!isa<StructType>(Result)) { 308 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 309 if (Entry.first) 310 return Error(TypeLoc, "non-struct types may not be recursive"); 311 Entry.first = Result; 312 Entry.second = SMLoc(); 313 } 314 315 return false; 316 } 317 318 319 /// toplevelentity 320 /// ::= LocalVar '=' 'type' type 321 bool LLParser::ParseNamedType() { 322 std::string Name = Lex.getStrVal(); 323 LocTy NameLoc = Lex.getLoc(); 324 Lex.Lex(); // eat LocalVar. 325 326 if (ParseToken(lltok::equal, "expected '=' after name") || 327 ParseToken(lltok::kw_type, "expected 'type' after name")) 328 return true; 329 330 Type *Result = 0; 331 if (ParseStructDefinition(NameLoc, Name, 332 NamedTypes[Name], Result)) return true; 333 334 if (!isa<StructType>(Result)) { 335 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 336 if (Entry.first) 337 return Error(NameLoc, "non-struct types may not be recursive"); 338 Entry.first = Result; 339 Entry.second = SMLoc(); 340 } 341 342 return false; 343 } 344 345 346 /// toplevelentity 347 /// ::= 'declare' FunctionHeader 348 bool LLParser::ParseDeclare() { 349 assert(Lex.getKind() == lltok::kw_declare); 350 Lex.Lex(); 351 352 Function *F; 353 return ParseFunctionHeader(F, false); 354 } 355 356 /// toplevelentity 357 /// ::= 'define' FunctionHeader '{' ... 358 bool LLParser::ParseDefine() { 359 assert(Lex.getKind() == lltok::kw_define); 360 Lex.Lex(); 361 362 Function *F; 363 return ParseFunctionHeader(F, true) || 364 ParseFunctionBody(*F); 365 } 366 367 /// ParseGlobalType 368 /// ::= 'constant' 369 /// ::= 'global' 370 bool LLParser::ParseGlobalType(bool &IsConstant) { 371 if (Lex.getKind() == lltok::kw_constant) 372 IsConstant = true; 373 else if (Lex.getKind() == lltok::kw_global) 374 IsConstant = false; 375 else { 376 IsConstant = false; 377 return TokError("expected 'global' or 'constant'"); 378 } 379 Lex.Lex(); 380 return false; 381 } 382 383 /// ParseUnnamedGlobal: 384 /// OptionalVisibility ALIAS ... 385 /// OptionalLinkage OptionalVisibility ... -> global variable 386 /// GlobalID '=' OptionalVisibility ALIAS ... 387 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 388 bool LLParser::ParseUnnamedGlobal() { 389 unsigned VarID = NumberedVals.size(); 390 std::string Name; 391 LocTy NameLoc = Lex.getLoc(); 392 393 // Handle the GlobalID form. 394 if (Lex.getKind() == lltok::GlobalID) { 395 if (Lex.getUIntVal() != VarID) 396 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 397 Twine(VarID) + "'"); 398 Lex.Lex(); // eat GlobalID; 399 400 if (ParseToken(lltok::equal, "expected '=' after name")) 401 return true; 402 } 403 404 bool HasLinkage; 405 unsigned Linkage, Visibility; 406 if (ParseOptionalLinkage(Linkage, HasLinkage) || 407 ParseOptionalVisibility(Visibility)) 408 return true; 409 410 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 411 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 412 return ParseAlias(Name, NameLoc, Visibility); 413 } 414 415 /// ParseNamedGlobal: 416 /// GlobalVar '=' OptionalVisibility ALIAS ... 417 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 418 bool LLParser::ParseNamedGlobal() { 419 assert(Lex.getKind() == lltok::GlobalVar); 420 LocTy NameLoc = Lex.getLoc(); 421 std::string Name = Lex.getStrVal(); 422 Lex.Lex(); 423 424 bool HasLinkage; 425 unsigned Linkage, Visibility; 426 if (ParseToken(lltok::equal, "expected '=' in global variable") || 427 ParseOptionalLinkage(Linkage, HasLinkage) || 428 ParseOptionalVisibility(Visibility)) 429 return true; 430 431 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 432 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 433 return ParseAlias(Name, NameLoc, Visibility); 434 } 435 436 // MDString: 437 // ::= '!' STRINGCONSTANT 438 bool LLParser::ParseMDString(MDString *&Result) { 439 std::string Str; 440 if (ParseStringConstant(Str)) return true; 441 Result = MDString::get(Context, Str); 442 return false; 443 } 444 445 // MDNode: 446 // ::= '!' MDNodeNumber 447 // 448 /// This version of ParseMDNodeID returns the slot number and null in the case 449 /// of a forward reference. 450 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 451 // !{ ..., !42, ... } 452 if (ParseUInt32(SlotNo)) return true; 453 454 // Check existing MDNode. 455 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 456 Result = NumberedMetadata[SlotNo]; 457 else 458 Result = 0; 459 return false; 460 } 461 462 bool LLParser::ParseMDNodeID(MDNode *&Result) { 463 // !{ ..., !42, ... } 464 unsigned MID = 0; 465 if (ParseMDNodeID(Result, MID)) return true; 466 467 // If not a forward reference, just return it now. 468 if (Result) return false; 469 470 // Otherwise, create MDNode forward reference. 471 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 472 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 473 474 if (NumberedMetadata.size() <= MID) 475 NumberedMetadata.resize(MID+1); 476 NumberedMetadata[MID] = FwdNode; 477 Result = FwdNode; 478 return false; 479 } 480 481 /// ParseNamedMetadata: 482 /// !foo = !{ !1, !2 } 483 bool LLParser::ParseNamedMetadata() { 484 assert(Lex.getKind() == lltok::MetadataVar); 485 std::string Name = Lex.getStrVal(); 486 Lex.Lex(); 487 488 if (ParseToken(lltok::equal, "expected '=' here") || 489 ParseToken(lltok::exclaim, "Expected '!' here") || 490 ParseToken(lltok::lbrace, "Expected '{' here")) 491 return true; 492 493 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 494 if (Lex.getKind() != lltok::rbrace) 495 do { 496 if (ParseToken(lltok::exclaim, "Expected '!' here")) 497 return true; 498 499 MDNode *N = 0; 500 if (ParseMDNodeID(N)) return true; 501 NMD->addOperand(N); 502 } while (EatIfPresent(lltok::comma)); 503 504 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 505 return true; 506 507 return false; 508 } 509 510 /// ParseStandaloneMetadata: 511 /// !42 = !{...} 512 bool LLParser::ParseStandaloneMetadata() { 513 assert(Lex.getKind() == lltok::exclaim); 514 Lex.Lex(); 515 unsigned MetadataID = 0; 516 517 LocTy TyLoc; 518 Type *Ty = 0; 519 SmallVector<Value *, 16> Elts; 520 if (ParseUInt32(MetadataID) || 521 ParseToken(lltok::equal, "expected '=' here") || 522 ParseType(Ty, TyLoc) || 523 ParseToken(lltok::exclaim, "Expected '!' here") || 524 ParseToken(lltok::lbrace, "Expected '{' here") || 525 ParseMDNodeVector(Elts, NULL) || 526 ParseToken(lltok::rbrace, "expected end of metadata node")) 527 return true; 528 529 MDNode *Init = MDNode::get(Context, Elts); 530 531 // See if this was forward referenced, if so, handle it. 532 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 533 FI = ForwardRefMDNodes.find(MetadataID); 534 if (FI != ForwardRefMDNodes.end()) { 535 MDNode *Temp = FI->second.first; 536 Temp->replaceAllUsesWith(Init); 537 MDNode::deleteTemporary(Temp); 538 ForwardRefMDNodes.erase(FI); 539 540 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 541 } else { 542 if (MetadataID >= NumberedMetadata.size()) 543 NumberedMetadata.resize(MetadataID+1); 544 545 if (NumberedMetadata[MetadataID] != 0) 546 return TokError("Metadata id is already used"); 547 NumberedMetadata[MetadataID] = Init; 548 } 549 550 return false; 551 } 552 553 /// ParseAlias: 554 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 555 /// Aliasee 556 /// ::= TypeAndValue 557 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 558 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 559 /// 560 /// Everything through visibility has already been parsed. 561 /// 562 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 563 unsigned Visibility) { 564 assert(Lex.getKind() == lltok::kw_alias); 565 Lex.Lex(); 566 unsigned Linkage; 567 LocTy LinkageLoc = Lex.getLoc(); 568 if (ParseOptionalLinkage(Linkage)) 569 return true; 570 571 if (Linkage != GlobalValue::ExternalLinkage && 572 Linkage != GlobalValue::WeakAnyLinkage && 573 Linkage != GlobalValue::WeakODRLinkage && 574 Linkage != GlobalValue::InternalLinkage && 575 Linkage != GlobalValue::PrivateLinkage && 576 Linkage != GlobalValue::LinkerPrivateLinkage && 577 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 578 return Error(LinkageLoc, "invalid linkage type for alias"); 579 580 Constant *Aliasee; 581 LocTy AliaseeLoc = Lex.getLoc(); 582 if (Lex.getKind() != lltok::kw_bitcast && 583 Lex.getKind() != lltok::kw_getelementptr) { 584 if (ParseGlobalTypeAndValue(Aliasee)) return true; 585 } else { 586 // The bitcast dest type is not present, it is implied by the dest type. 587 ValID ID; 588 if (ParseValID(ID)) return true; 589 if (ID.Kind != ValID::t_Constant) 590 return Error(AliaseeLoc, "invalid aliasee"); 591 Aliasee = ID.ConstantVal; 592 } 593 594 if (!Aliasee->getType()->isPointerTy()) 595 return Error(AliaseeLoc, "alias must have pointer type"); 596 597 // Okay, create the alias but do not insert it into the module yet. 598 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 599 (GlobalValue::LinkageTypes)Linkage, Name, 600 Aliasee); 601 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 602 603 // See if this value already exists in the symbol table. If so, it is either 604 // a redefinition or a definition of a forward reference. 605 if (GlobalValue *Val = M->getNamedValue(Name)) { 606 // See if this was a redefinition. If so, there is no entry in 607 // ForwardRefVals. 608 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 609 I = ForwardRefVals.find(Name); 610 if (I == ForwardRefVals.end()) 611 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 612 613 // Otherwise, this was a definition of forward ref. Verify that types 614 // agree. 615 if (Val->getType() != GA->getType()) 616 return Error(NameLoc, 617 "forward reference and definition of alias have different types"); 618 619 // If they agree, just RAUW the old value with the alias and remove the 620 // forward ref info. 621 Val->replaceAllUsesWith(GA); 622 Val->eraseFromParent(); 623 ForwardRefVals.erase(I); 624 } 625 626 // Insert into the module, we know its name won't collide now. 627 M->getAliasList().push_back(GA); 628 assert(GA->getName() == Name && "Should not be a name conflict!"); 629 630 return false; 631 } 632 633 /// ParseGlobal 634 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 635 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 636 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 637 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 638 /// 639 /// Everything through visibility has been parsed already. 640 /// 641 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 642 unsigned Linkage, bool HasLinkage, 643 unsigned Visibility) { 644 unsigned AddrSpace; 645 bool IsConstant, UnnamedAddr; 646 GlobalVariable::ThreadLocalMode TLM; 647 LocTy UnnamedAddrLoc; 648 LocTy TyLoc; 649 650 Type *Ty = 0; 651 if (ParseOptionalThreadLocal(TLM) || 652 ParseOptionalAddrSpace(AddrSpace) || 653 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 654 &UnnamedAddrLoc) || 655 ParseGlobalType(IsConstant) || 656 ParseType(Ty, TyLoc)) 657 return true; 658 659 // If the linkage is specified and is external, then no initializer is 660 // present. 661 Constant *Init = 0; 662 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 663 Linkage != GlobalValue::ExternalWeakLinkage && 664 Linkage != GlobalValue::ExternalLinkage)) { 665 if (ParseGlobalValue(Ty, Init)) 666 return true; 667 } 668 669 if (Ty->isFunctionTy() || Ty->isLabelTy()) 670 return Error(TyLoc, "invalid type for global variable"); 671 672 GlobalVariable *GV = 0; 673 674 // See if the global was forward referenced, if so, use the global. 675 if (!Name.empty()) { 676 if (GlobalValue *GVal = M->getNamedValue(Name)) { 677 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 678 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 679 GV = cast<GlobalVariable>(GVal); 680 } 681 } else { 682 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 683 I = ForwardRefValIDs.find(NumberedVals.size()); 684 if (I != ForwardRefValIDs.end()) { 685 GV = cast<GlobalVariable>(I->second.first); 686 ForwardRefValIDs.erase(I); 687 } 688 } 689 690 if (GV == 0) { 691 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 692 Name, 0, GlobalVariable::NotThreadLocal, 693 AddrSpace); 694 } else { 695 if (GV->getType()->getElementType() != Ty) 696 return Error(TyLoc, 697 "forward reference and definition of global have different types"); 698 699 // Move the forward-reference to the correct spot in the module. 700 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 701 } 702 703 if (Name.empty()) 704 NumberedVals.push_back(GV); 705 706 // Set the parsed properties on the global. 707 if (Init) 708 GV->setInitializer(Init); 709 GV->setConstant(IsConstant); 710 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 711 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 712 GV->setThreadLocalMode(TLM); 713 GV->setUnnamedAddr(UnnamedAddr); 714 715 // Parse attributes on the global. 716 while (Lex.getKind() == lltok::comma) { 717 Lex.Lex(); 718 719 if (Lex.getKind() == lltok::kw_section) { 720 Lex.Lex(); 721 GV->setSection(Lex.getStrVal()); 722 if (ParseToken(lltok::StringConstant, "expected global section string")) 723 return true; 724 } else if (Lex.getKind() == lltok::kw_align) { 725 unsigned Alignment; 726 if (ParseOptionalAlignment(Alignment)) return true; 727 GV->setAlignment(Alignment); 728 } else { 729 TokError("unknown global variable property!"); 730 } 731 } 732 733 return false; 734 } 735 736 737 //===----------------------------------------------------------------------===// 738 // GlobalValue Reference/Resolution Routines. 739 //===----------------------------------------------------------------------===// 740 741 /// GetGlobalVal - Get a value with the specified name or ID, creating a 742 /// forward reference record if needed. This can return null if the value 743 /// exists but does not have the right type. 744 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 745 LocTy Loc) { 746 PointerType *PTy = dyn_cast<PointerType>(Ty); 747 if (PTy == 0) { 748 Error(Loc, "global variable reference must have pointer type"); 749 return 0; 750 } 751 752 // Look this name up in the normal function symbol table. 753 GlobalValue *Val = 754 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 755 756 // If this is a forward reference for the value, see if we already created a 757 // forward ref record. 758 if (Val == 0) { 759 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 760 I = ForwardRefVals.find(Name); 761 if (I != ForwardRefVals.end()) 762 Val = I->second.first; 763 } 764 765 // If we have the value in the symbol table or fwd-ref table, return it. 766 if (Val) { 767 if (Val->getType() == Ty) return Val; 768 Error(Loc, "'@" + Name + "' defined with type '" + 769 getTypeString(Val->getType()) + "'"); 770 return 0; 771 } 772 773 // Otherwise, create a new forward reference for this value and remember it. 774 GlobalValue *FwdVal; 775 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 776 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 777 else 778 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 779 GlobalValue::ExternalWeakLinkage, 0, Name, 780 0, GlobalVariable::NotThreadLocal, 781 PTy->getAddressSpace()); 782 783 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 784 return FwdVal; 785 } 786 787 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 788 PointerType *PTy = dyn_cast<PointerType>(Ty); 789 if (PTy == 0) { 790 Error(Loc, "global variable reference must have pointer type"); 791 return 0; 792 } 793 794 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 795 796 // If this is a forward reference for the value, see if we already created a 797 // forward ref record. 798 if (Val == 0) { 799 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 800 I = ForwardRefValIDs.find(ID); 801 if (I != ForwardRefValIDs.end()) 802 Val = I->second.first; 803 } 804 805 // If we have the value in the symbol table or fwd-ref table, return it. 806 if (Val) { 807 if (Val->getType() == Ty) return Val; 808 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 809 getTypeString(Val->getType()) + "'"); 810 return 0; 811 } 812 813 // Otherwise, create a new forward reference for this value and remember it. 814 GlobalValue *FwdVal; 815 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 816 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 817 else 818 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 819 GlobalValue::ExternalWeakLinkage, 0, ""); 820 821 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 822 return FwdVal; 823 } 824 825 826 //===----------------------------------------------------------------------===// 827 // Helper Routines. 828 //===----------------------------------------------------------------------===// 829 830 /// ParseToken - If the current token has the specified kind, eat it and return 831 /// success. Otherwise, emit the specified error and return failure. 832 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 833 if (Lex.getKind() != T) 834 return TokError(ErrMsg); 835 Lex.Lex(); 836 return false; 837 } 838 839 /// ParseStringConstant 840 /// ::= StringConstant 841 bool LLParser::ParseStringConstant(std::string &Result) { 842 if (Lex.getKind() != lltok::StringConstant) 843 return TokError("expected string constant"); 844 Result = Lex.getStrVal(); 845 Lex.Lex(); 846 return false; 847 } 848 849 /// ParseUInt32 850 /// ::= uint32 851 bool LLParser::ParseUInt32(unsigned &Val) { 852 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 853 return TokError("expected integer"); 854 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 855 if (Val64 != unsigned(Val64)) 856 return TokError("expected 32-bit integer (too large)"); 857 Val = Val64; 858 Lex.Lex(); 859 return false; 860 } 861 862 /// ParseTLSModel 863 /// := 'localdynamic' 864 /// := 'initialexec' 865 /// := 'localexec' 866 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 867 switch (Lex.getKind()) { 868 default: 869 return TokError("expected localdynamic, initialexec or localexec"); 870 case lltok::kw_localdynamic: 871 TLM = GlobalVariable::LocalDynamicTLSModel; 872 break; 873 case lltok::kw_initialexec: 874 TLM = GlobalVariable::InitialExecTLSModel; 875 break; 876 case lltok::kw_localexec: 877 TLM = GlobalVariable::LocalExecTLSModel; 878 break; 879 } 880 881 Lex.Lex(); 882 return false; 883 } 884 885 /// ParseOptionalThreadLocal 886 /// := /*empty*/ 887 /// := 'thread_local' 888 /// := 'thread_local' '(' tlsmodel ')' 889 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 890 TLM = GlobalVariable::NotThreadLocal; 891 if (!EatIfPresent(lltok::kw_thread_local)) 892 return false; 893 894 TLM = GlobalVariable::GeneralDynamicTLSModel; 895 if (Lex.getKind() == lltok::lparen) { 896 Lex.Lex(); 897 return ParseTLSModel(TLM) || 898 ParseToken(lltok::rparen, "expected ')' after thread local model"); 899 } 900 return false; 901 } 902 903 /// ParseOptionalAddrSpace 904 /// := /*empty*/ 905 /// := 'addrspace' '(' uint32 ')' 906 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 907 AddrSpace = 0; 908 if (!EatIfPresent(lltok::kw_addrspace)) 909 return false; 910 return ParseToken(lltok::lparen, "expected '(' in address space") || 911 ParseUInt32(AddrSpace) || 912 ParseToken(lltok::rparen, "expected ')' in address space"); 913 } 914 915 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 916 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 917 /// 2: function attr. 918 bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) { 919 LocTy AttrLoc = Lex.getLoc(); 920 bool HaveError = false; 921 922 B.clear(); 923 924 while (1) { 925 lltok::Kind Token = Lex.getKind(); 926 switch (Token) { 927 default: // End of attributes. 928 return HaveError; 929 case lltok::kw_zeroext: B.addAttribute(Attributes::ZExt); break; 930 case lltok::kw_signext: B.addAttribute(Attributes::SExt); break; 931 case lltok::kw_inreg: B.addAttribute(Attributes::InReg); break; 932 case lltok::kw_sret: B.addAttribute(Attributes::StructRet); break; 933 case lltok::kw_noalias: B.addAttribute(Attributes::NoAlias); break; 934 case lltok::kw_nocapture: B.addAttribute(Attributes::NoCapture); break; 935 case lltok::kw_byval: B.addAttribute(Attributes::ByVal); break; 936 case lltok::kw_nest: B.addAttribute(Attributes::Nest); break; 937 938 case lltok::kw_noreturn: B.addAttribute(Attributes::NoReturn); break; 939 case lltok::kw_nounwind: B.addAttribute(Attributes::NoUnwind); break; 940 case lltok::kw_uwtable: B.addAttribute(Attributes::UWTable); break; 941 case lltok::kw_returns_twice: B.addAttribute(Attributes::ReturnsTwice); break; 942 case lltok::kw_noinline: B.addAttribute(Attributes::NoInline); break; 943 case lltok::kw_readnone: B.addAttribute(Attributes::ReadNone); break; 944 case lltok::kw_readonly: B.addAttribute(Attributes::ReadOnly); break; 945 case lltok::kw_inlinehint: B.addAttribute(Attributes::InlineHint); break; 946 case lltok::kw_alwaysinline: B.addAttribute(Attributes::AlwaysInline); break; 947 case lltok::kw_optsize: B.addAttribute(Attributes::OptimizeForSize); break; 948 case lltok::kw_ssp: B.addAttribute(Attributes::StackProtect); break; 949 case lltok::kw_sspreq: B.addAttribute(Attributes::StackProtectReq); break; 950 case lltok::kw_noredzone: B.addAttribute(Attributes::NoRedZone); break; 951 case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break; 952 case lltok::kw_naked: B.addAttribute(Attributes::Naked); break; 953 case lltok::kw_nonlazybind: B.addAttribute(Attributes::NonLazyBind); break; 954 case lltok::kw_address_safety: B.addAttribute(Attributes::AddressSafety); break; 955 case lltok::kw_minsize: B.addAttribute(Attributes::MinSize); break; 956 957 case lltok::kw_alignstack: { 958 unsigned Alignment; 959 if (ParseOptionalStackAlignment(Alignment)) 960 return true; 961 B.addStackAlignmentAttr(Alignment); 962 continue; 963 } 964 965 case lltok::kw_align: { 966 unsigned Alignment; 967 if (ParseOptionalAlignment(Alignment)) 968 return true; 969 B.addAlignmentAttr(Alignment); 970 continue; 971 } 972 973 } 974 975 // Perform some error checking. 976 switch (Token) { 977 default: 978 if (AttrKind == 2) 979 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 980 break; 981 case lltok::kw_align: 982 // As a hack, we allow "align 2" on functions as a synonym for 983 // "alignstack 2". 984 break; 985 986 // Parameter Only: 987 case lltok::kw_sret: 988 case lltok::kw_nocapture: 989 case lltok::kw_byval: 990 case lltok::kw_nest: 991 if (AttrKind != 0) 992 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 993 break; 994 995 // Function Only: 996 case lltok::kw_noreturn: 997 case lltok::kw_nounwind: 998 case lltok::kw_readnone: 999 case lltok::kw_readonly: 1000 case lltok::kw_noinline: 1001 case lltok::kw_alwaysinline: 1002 case lltok::kw_optsize: 1003 case lltok::kw_ssp: 1004 case lltok::kw_sspreq: 1005 case lltok::kw_noredzone: 1006 case lltok::kw_noimplicitfloat: 1007 case lltok::kw_naked: 1008 case lltok::kw_inlinehint: 1009 case lltok::kw_alignstack: 1010 case lltok::kw_uwtable: 1011 case lltok::kw_nonlazybind: 1012 case lltok::kw_returns_twice: 1013 case lltok::kw_address_safety: 1014 case lltok::kw_minsize: 1015 if (AttrKind != 2) 1016 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 1017 break; 1018 } 1019 1020 Lex.Lex(); 1021 } 1022 } 1023 1024 /// ParseOptionalLinkage 1025 /// ::= /*empty*/ 1026 /// ::= 'private' 1027 /// ::= 'linker_private' 1028 /// ::= 'linker_private_weak' 1029 /// ::= 'internal' 1030 /// ::= 'weak' 1031 /// ::= 'weak_odr' 1032 /// ::= 'linkonce' 1033 /// ::= 'linkonce_odr' 1034 /// ::= 'linkonce_odr_auto_hide' 1035 /// ::= 'available_externally' 1036 /// ::= 'appending' 1037 /// ::= 'dllexport' 1038 /// ::= 'common' 1039 /// ::= 'dllimport' 1040 /// ::= 'extern_weak' 1041 /// ::= 'external' 1042 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1043 HasLinkage = false; 1044 switch (Lex.getKind()) { 1045 default: Res=GlobalValue::ExternalLinkage; return false; 1046 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1047 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1048 case lltok::kw_linker_private_weak: 1049 Res = GlobalValue::LinkerPrivateWeakLinkage; 1050 break; 1051 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1052 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1053 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1054 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1055 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1056 case lltok::kw_linkonce_odr_auto_hide: 1057 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1058 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1059 break; 1060 case lltok::kw_available_externally: 1061 Res = GlobalValue::AvailableExternallyLinkage; 1062 break; 1063 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1064 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1065 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1066 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1067 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1068 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1069 } 1070 Lex.Lex(); 1071 HasLinkage = true; 1072 return false; 1073 } 1074 1075 /// ParseOptionalVisibility 1076 /// ::= /*empty*/ 1077 /// ::= 'default' 1078 /// ::= 'hidden' 1079 /// ::= 'protected' 1080 /// 1081 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1082 switch (Lex.getKind()) { 1083 default: Res = GlobalValue::DefaultVisibility; return false; 1084 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1085 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1086 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1087 } 1088 Lex.Lex(); 1089 return false; 1090 } 1091 1092 /// ParseOptionalCallingConv 1093 /// ::= /*empty*/ 1094 /// ::= 'ccc' 1095 /// ::= 'fastcc' 1096 /// ::= 'kw_intel_ocl_bicc' 1097 /// ::= 'coldcc' 1098 /// ::= 'x86_stdcallcc' 1099 /// ::= 'x86_fastcallcc' 1100 /// ::= 'x86_thiscallcc' 1101 /// ::= 'arm_apcscc' 1102 /// ::= 'arm_aapcscc' 1103 /// ::= 'arm_aapcs_vfpcc' 1104 /// ::= 'msp430_intrcc' 1105 /// ::= 'ptx_kernel' 1106 /// ::= 'ptx_device' 1107 /// ::= 'spir_func' 1108 /// ::= 'spir_kernel' 1109 /// ::= 'cc' UINT 1110 /// 1111 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1112 switch (Lex.getKind()) { 1113 default: CC = CallingConv::C; return false; 1114 case lltok::kw_ccc: CC = CallingConv::C; break; 1115 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1116 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1117 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1118 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1119 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1120 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1121 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1122 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1123 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1124 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1125 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1126 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1127 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1128 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1129 case lltok::kw_cc: { 1130 unsigned ArbitraryCC; 1131 Lex.Lex(); 1132 if (ParseUInt32(ArbitraryCC)) 1133 return true; 1134 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1135 return false; 1136 } 1137 } 1138 1139 Lex.Lex(); 1140 return false; 1141 } 1142 1143 /// ParseInstructionMetadata 1144 /// ::= !dbg !42 (',' !dbg !57)* 1145 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1146 PerFunctionState *PFS) { 1147 do { 1148 if (Lex.getKind() != lltok::MetadataVar) 1149 return TokError("expected metadata after comma"); 1150 1151 std::string Name = Lex.getStrVal(); 1152 unsigned MDK = M->getMDKindID(Name); 1153 Lex.Lex(); 1154 1155 MDNode *Node; 1156 SMLoc Loc = Lex.getLoc(); 1157 1158 if (ParseToken(lltok::exclaim, "expected '!' here")) 1159 return true; 1160 1161 // This code is similar to that of ParseMetadataValue, however it needs to 1162 // have special-case code for a forward reference; see the comments on 1163 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1164 // at the top level here. 1165 if (Lex.getKind() == lltok::lbrace) { 1166 ValID ID; 1167 if (ParseMetadataListValue(ID, PFS)) 1168 return true; 1169 assert(ID.Kind == ValID::t_MDNode); 1170 Inst->setMetadata(MDK, ID.MDNodeVal); 1171 } else { 1172 unsigned NodeID = 0; 1173 if (ParseMDNodeID(Node, NodeID)) 1174 return true; 1175 if (Node) { 1176 // If we got the node, add it to the instruction. 1177 Inst->setMetadata(MDK, Node); 1178 } else { 1179 MDRef R = { Loc, MDK, NodeID }; 1180 // Otherwise, remember that this should be resolved later. 1181 ForwardRefInstMetadata[Inst].push_back(R); 1182 } 1183 } 1184 1185 // If this is the end of the list, we're done. 1186 } while (EatIfPresent(lltok::comma)); 1187 return false; 1188 } 1189 1190 /// ParseOptionalAlignment 1191 /// ::= /* empty */ 1192 /// ::= 'align' 4 1193 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1194 Alignment = 0; 1195 if (!EatIfPresent(lltok::kw_align)) 1196 return false; 1197 LocTy AlignLoc = Lex.getLoc(); 1198 if (ParseUInt32(Alignment)) return true; 1199 if (!isPowerOf2_32(Alignment)) 1200 return Error(AlignLoc, "alignment is not a power of two"); 1201 if (Alignment > Value::MaximumAlignment) 1202 return Error(AlignLoc, "huge alignments are not supported yet"); 1203 return false; 1204 } 1205 1206 /// ParseOptionalCommaAlign 1207 /// ::= 1208 /// ::= ',' align 4 1209 /// 1210 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1211 /// end. 1212 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1213 bool &AteExtraComma) { 1214 AteExtraComma = false; 1215 while (EatIfPresent(lltok::comma)) { 1216 // Metadata at the end is an early exit. 1217 if (Lex.getKind() == lltok::MetadataVar) { 1218 AteExtraComma = true; 1219 return false; 1220 } 1221 1222 if (Lex.getKind() != lltok::kw_align) 1223 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1224 1225 if (ParseOptionalAlignment(Alignment)) return true; 1226 } 1227 1228 return false; 1229 } 1230 1231 /// ParseScopeAndOrdering 1232 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1233 /// else: ::= 1234 /// 1235 /// This sets Scope and Ordering to the parsed values. 1236 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1237 AtomicOrdering &Ordering) { 1238 if (!isAtomic) 1239 return false; 1240 1241 Scope = CrossThread; 1242 if (EatIfPresent(lltok::kw_singlethread)) 1243 Scope = SingleThread; 1244 switch (Lex.getKind()) { 1245 default: return TokError("Expected ordering on atomic instruction"); 1246 case lltok::kw_unordered: Ordering = Unordered; break; 1247 case lltok::kw_monotonic: Ordering = Monotonic; break; 1248 case lltok::kw_acquire: Ordering = Acquire; break; 1249 case lltok::kw_release: Ordering = Release; break; 1250 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1251 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1252 } 1253 Lex.Lex(); 1254 return false; 1255 } 1256 1257 /// ParseOptionalStackAlignment 1258 /// ::= /* empty */ 1259 /// ::= 'alignstack' '(' 4 ')' 1260 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1261 Alignment = 0; 1262 if (!EatIfPresent(lltok::kw_alignstack)) 1263 return false; 1264 LocTy ParenLoc = Lex.getLoc(); 1265 if (!EatIfPresent(lltok::lparen)) 1266 return Error(ParenLoc, "expected '('"); 1267 LocTy AlignLoc = Lex.getLoc(); 1268 if (ParseUInt32(Alignment)) return true; 1269 ParenLoc = Lex.getLoc(); 1270 if (!EatIfPresent(lltok::rparen)) 1271 return Error(ParenLoc, "expected ')'"); 1272 if (!isPowerOf2_32(Alignment)) 1273 return Error(AlignLoc, "stack alignment is not a power of two"); 1274 return false; 1275 } 1276 1277 /// ParseIndexList - This parses the index list for an insert/extractvalue 1278 /// instruction. This sets AteExtraComma in the case where we eat an extra 1279 /// comma at the end of the line and find that it is followed by metadata. 1280 /// Clients that don't allow metadata can call the version of this function that 1281 /// only takes one argument. 1282 /// 1283 /// ParseIndexList 1284 /// ::= (',' uint32)+ 1285 /// 1286 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1287 bool &AteExtraComma) { 1288 AteExtraComma = false; 1289 1290 if (Lex.getKind() != lltok::comma) 1291 return TokError("expected ',' as start of index list"); 1292 1293 while (EatIfPresent(lltok::comma)) { 1294 if (Lex.getKind() == lltok::MetadataVar) { 1295 AteExtraComma = true; 1296 return false; 1297 } 1298 unsigned Idx = 0; 1299 if (ParseUInt32(Idx)) return true; 1300 Indices.push_back(Idx); 1301 } 1302 1303 return false; 1304 } 1305 1306 //===----------------------------------------------------------------------===// 1307 // Type Parsing. 1308 //===----------------------------------------------------------------------===// 1309 1310 /// ParseType - Parse a type. 1311 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1312 SMLoc TypeLoc = Lex.getLoc(); 1313 switch (Lex.getKind()) { 1314 default: 1315 return TokError("expected type"); 1316 case lltok::Type: 1317 // Type ::= 'float' | 'void' (etc) 1318 Result = Lex.getTyVal(); 1319 Lex.Lex(); 1320 break; 1321 case lltok::lbrace: 1322 // Type ::= StructType 1323 if (ParseAnonStructType(Result, false)) 1324 return true; 1325 break; 1326 case lltok::lsquare: 1327 // Type ::= '[' ... ']' 1328 Lex.Lex(); // eat the lsquare. 1329 if (ParseArrayVectorType(Result, false)) 1330 return true; 1331 break; 1332 case lltok::less: // Either vector or packed struct. 1333 // Type ::= '<' ... '>' 1334 Lex.Lex(); 1335 if (Lex.getKind() == lltok::lbrace) { 1336 if (ParseAnonStructType(Result, true) || 1337 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1338 return true; 1339 } else if (ParseArrayVectorType(Result, true)) 1340 return true; 1341 break; 1342 case lltok::LocalVar: { 1343 // Type ::= %foo 1344 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1345 1346 // If the type hasn't been defined yet, create a forward definition and 1347 // remember where that forward def'n was seen (in case it never is defined). 1348 if (Entry.first == 0) { 1349 Entry.first = StructType::create(Context, Lex.getStrVal()); 1350 Entry.second = Lex.getLoc(); 1351 } 1352 Result = Entry.first; 1353 Lex.Lex(); 1354 break; 1355 } 1356 1357 case lltok::LocalVarID: { 1358 // Type ::= %4 1359 if (Lex.getUIntVal() >= NumberedTypes.size()) 1360 NumberedTypes.resize(Lex.getUIntVal()+1); 1361 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1362 1363 // If the type hasn't been defined yet, create a forward definition and 1364 // remember where that forward def'n was seen (in case it never is defined). 1365 if (Entry.first == 0) { 1366 Entry.first = StructType::create(Context); 1367 Entry.second = Lex.getLoc(); 1368 } 1369 Result = Entry.first; 1370 Lex.Lex(); 1371 break; 1372 } 1373 } 1374 1375 // Parse the type suffixes. 1376 while (1) { 1377 switch (Lex.getKind()) { 1378 // End of type. 1379 default: 1380 if (!AllowVoid && Result->isVoidTy()) 1381 return Error(TypeLoc, "void type only allowed for function results"); 1382 return false; 1383 1384 // Type ::= Type '*' 1385 case lltok::star: 1386 if (Result->isLabelTy()) 1387 return TokError("basic block pointers are invalid"); 1388 if (Result->isVoidTy()) 1389 return TokError("pointers to void are invalid - use i8* instead"); 1390 if (!PointerType::isValidElementType(Result)) 1391 return TokError("pointer to this type is invalid"); 1392 Result = PointerType::getUnqual(Result); 1393 Lex.Lex(); 1394 break; 1395 1396 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1397 case lltok::kw_addrspace: { 1398 if (Result->isLabelTy()) 1399 return TokError("basic block pointers are invalid"); 1400 if (Result->isVoidTy()) 1401 return TokError("pointers to void are invalid; use i8* instead"); 1402 if (!PointerType::isValidElementType(Result)) 1403 return TokError("pointer to this type is invalid"); 1404 unsigned AddrSpace; 1405 if (ParseOptionalAddrSpace(AddrSpace) || 1406 ParseToken(lltok::star, "expected '*' in address space")) 1407 return true; 1408 1409 Result = PointerType::get(Result, AddrSpace); 1410 break; 1411 } 1412 1413 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1414 case lltok::lparen: 1415 if (ParseFunctionType(Result)) 1416 return true; 1417 break; 1418 } 1419 } 1420 } 1421 1422 /// ParseParameterList 1423 /// ::= '(' ')' 1424 /// ::= '(' Arg (',' Arg)* ')' 1425 /// Arg 1426 /// ::= Type OptionalAttributes Value OptionalAttributes 1427 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1428 PerFunctionState &PFS) { 1429 if (ParseToken(lltok::lparen, "expected '(' in call")) 1430 return true; 1431 1432 while (Lex.getKind() != lltok::rparen) { 1433 // If this isn't the first argument, we need a comma. 1434 if (!ArgList.empty() && 1435 ParseToken(lltok::comma, "expected ',' in argument list")) 1436 return true; 1437 1438 // Parse the argument. 1439 LocTy ArgLoc; 1440 Type *ArgTy = 0; 1441 AttrBuilder ArgAttrs; 1442 Value *V; 1443 if (ParseType(ArgTy, ArgLoc)) 1444 return true; 1445 1446 // Otherwise, handle normal operands. 1447 if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS)) 1448 return true; 1449 ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(), 1450 ArgAttrs))); 1451 } 1452 1453 Lex.Lex(); // Lex the ')'. 1454 return false; 1455 } 1456 1457 1458 1459 /// ParseArgumentList - Parse the argument list for a function type or function 1460 /// prototype. 1461 /// ::= '(' ArgTypeListI ')' 1462 /// ArgTypeListI 1463 /// ::= /*empty*/ 1464 /// ::= '...' 1465 /// ::= ArgTypeList ',' '...' 1466 /// ::= ArgType (',' ArgType)* 1467 /// 1468 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1469 bool &isVarArg){ 1470 isVarArg = false; 1471 assert(Lex.getKind() == lltok::lparen); 1472 Lex.Lex(); // eat the (. 1473 1474 if (Lex.getKind() == lltok::rparen) { 1475 // empty 1476 } else if (Lex.getKind() == lltok::dotdotdot) { 1477 isVarArg = true; 1478 Lex.Lex(); 1479 } else { 1480 LocTy TypeLoc = Lex.getLoc(); 1481 Type *ArgTy = 0; 1482 AttrBuilder Attrs; 1483 std::string Name; 1484 1485 if (ParseType(ArgTy) || 1486 ParseOptionalAttrs(Attrs, 0)) return true; 1487 1488 if (ArgTy->isVoidTy()) 1489 return Error(TypeLoc, "argument can not have void type"); 1490 1491 if (Lex.getKind() == lltok::LocalVar) { 1492 Name = Lex.getStrVal(); 1493 Lex.Lex(); 1494 } 1495 1496 if (!FunctionType::isValidArgumentType(ArgTy)) 1497 return Error(TypeLoc, "invalid type for function argument"); 1498 1499 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1500 Attributes::get(ArgTy->getContext(), 1501 Attrs), Name)); 1502 1503 while (EatIfPresent(lltok::comma)) { 1504 // Handle ... at end of arg list. 1505 if (EatIfPresent(lltok::dotdotdot)) { 1506 isVarArg = true; 1507 break; 1508 } 1509 1510 // Otherwise must be an argument type. 1511 TypeLoc = Lex.getLoc(); 1512 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1513 1514 if (ArgTy->isVoidTy()) 1515 return Error(TypeLoc, "argument can not have void type"); 1516 1517 if (Lex.getKind() == lltok::LocalVar) { 1518 Name = Lex.getStrVal(); 1519 Lex.Lex(); 1520 } else { 1521 Name = ""; 1522 } 1523 1524 if (!ArgTy->isFirstClassType()) 1525 return Error(TypeLoc, "invalid type for function argument"); 1526 1527 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1528 Attributes::get(ArgTy->getContext(), Attrs), 1529 Name)); 1530 } 1531 } 1532 1533 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1534 } 1535 1536 /// ParseFunctionType 1537 /// ::= Type ArgumentList OptionalAttrs 1538 bool LLParser::ParseFunctionType(Type *&Result) { 1539 assert(Lex.getKind() == lltok::lparen); 1540 1541 if (!FunctionType::isValidReturnType(Result)) 1542 return TokError("invalid function return type"); 1543 1544 SmallVector<ArgInfo, 8> ArgList; 1545 bool isVarArg; 1546 if (ParseArgumentList(ArgList, isVarArg)) 1547 return true; 1548 1549 // Reject names on the arguments lists. 1550 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1551 if (!ArgList[i].Name.empty()) 1552 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1553 if (ArgList[i].Attrs.hasAttributes()) 1554 return Error(ArgList[i].Loc, 1555 "argument attributes invalid in function type"); 1556 } 1557 1558 SmallVector<Type*, 16> ArgListTy; 1559 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1560 ArgListTy.push_back(ArgList[i].Ty); 1561 1562 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1563 return false; 1564 } 1565 1566 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1567 /// other structs. 1568 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1569 SmallVector<Type*, 8> Elts; 1570 if (ParseStructBody(Elts)) return true; 1571 1572 Result = StructType::get(Context, Elts, Packed); 1573 return false; 1574 } 1575 1576 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1577 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1578 std::pair<Type*, LocTy> &Entry, 1579 Type *&ResultTy) { 1580 // If the type was already defined, diagnose the redefinition. 1581 if (Entry.first && !Entry.second.isValid()) 1582 return Error(TypeLoc, "redefinition of type"); 1583 1584 // If we have opaque, just return without filling in the definition for the 1585 // struct. This counts as a definition as far as the .ll file goes. 1586 if (EatIfPresent(lltok::kw_opaque)) { 1587 // This type is being defined, so clear the location to indicate this. 1588 Entry.second = SMLoc(); 1589 1590 // If this type number has never been uttered, create it. 1591 if (Entry.first == 0) 1592 Entry.first = StructType::create(Context, Name); 1593 ResultTy = Entry.first; 1594 return false; 1595 } 1596 1597 // If the type starts with '<', then it is either a packed struct or a vector. 1598 bool isPacked = EatIfPresent(lltok::less); 1599 1600 // If we don't have a struct, then we have a random type alias, which we 1601 // accept for compatibility with old files. These types are not allowed to be 1602 // forward referenced and not allowed to be recursive. 1603 if (Lex.getKind() != lltok::lbrace) { 1604 if (Entry.first) 1605 return Error(TypeLoc, "forward references to non-struct type"); 1606 1607 ResultTy = 0; 1608 if (isPacked) 1609 return ParseArrayVectorType(ResultTy, true); 1610 return ParseType(ResultTy); 1611 } 1612 1613 // This type is being defined, so clear the location to indicate this. 1614 Entry.second = SMLoc(); 1615 1616 // If this type number has never been uttered, create it. 1617 if (Entry.first == 0) 1618 Entry.first = StructType::create(Context, Name); 1619 1620 StructType *STy = cast<StructType>(Entry.first); 1621 1622 SmallVector<Type*, 8> Body; 1623 if (ParseStructBody(Body) || 1624 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1625 return true; 1626 1627 STy->setBody(Body, isPacked); 1628 ResultTy = STy; 1629 return false; 1630 } 1631 1632 1633 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1634 /// StructType 1635 /// ::= '{' '}' 1636 /// ::= '{' Type (',' Type)* '}' 1637 /// ::= '<' '{' '}' '>' 1638 /// ::= '<' '{' Type (',' Type)* '}' '>' 1639 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1640 assert(Lex.getKind() == lltok::lbrace); 1641 Lex.Lex(); // Consume the '{' 1642 1643 // Handle the empty struct. 1644 if (EatIfPresent(lltok::rbrace)) 1645 return false; 1646 1647 LocTy EltTyLoc = Lex.getLoc(); 1648 Type *Ty = 0; 1649 if (ParseType(Ty)) return true; 1650 Body.push_back(Ty); 1651 1652 if (!StructType::isValidElementType(Ty)) 1653 return Error(EltTyLoc, "invalid element type for struct"); 1654 1655 while (EatIfPresent(lltok::comma)) { 1656 EltTyLoc = Lex.getLoc(); 1657 if (ParseType(Ty)) return true; 1658 1659 if (!StructType::isValidElementType(Ty)) 1660 return Error(EltTyLoc, "invalid element type for struct"); 1661 1662 Body.push_back(Ty); 1663 } 1664 1665 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1666 } 1667 1668 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1669 /// token has already been consumed. 1670 /// Type 1671 /// ::= '[' APSINTVAL 'x' Types ']' 1672 /// ::= '<' APSINTVAL 'x' Types '>' 1673 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1674 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1675 Lex.getAPSIntVal().getBitWidth() > 64) 1676 return TokError("expected number in address space"); 1677 1678 LocTy SizeLoc = Lex.getLoc(); 1679 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1680 Lex.Lex(); 1681 1682 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1683 return true; 1684 1685 LocTy TypeLoc = Lex.getLoc(); 1686 Type *EltTy = 0; 1687 if (ParseType(EltTy)) return true; 1688 1689 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1690 "expected end of sequential type")) 1691 return true; 1692 1693 if (isVector) { 1694 if (Size == 0) 1695 return Error(SizeLoc, "zero element vector is illegal"); 1696 if ((unsigned)Size != Size) 1697 return Error(SizeLoc, "size too large for vector"); 1698 if (!VectorType::isValidElementType(EltTy)) 1699 return Error(TypeLoc, "invalid vector element type"); 1700 Result = VectorType::get(EltTy, unsigned(Size)); 1701 } else { 1702 if (!ArrayType::isValidElementType(EltTy)) 1703 return Error(TypeLoc, "invalid array element type"); 1704 Result = ArrayType::get(EltTy, Size); 1705 } 1706 return false; 1707 } 1708 1709 //===----------------------------------------------------------------------===// 1710 // Function Semantic Analysis. 1711 //===----------------------------------------------------------------------===// 1712 1713 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1714 int functionNumber) 1715 : P(p), F(f), FunctionNumber(functionNumber) { 1716 1717 // Insert unnamed arguments into the NumberedVals list. 1718 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1719 AI != E; ++AI) 1720 if (!AI->hasName()) 1721 NumberedVals.push_back(AI); 1722 } 1723 1724 LLParser::PerFunctionState::~PerFunctionState() { 1725 // If there were any forward referenced non-basicblock values, delete them. 1726 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1727 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1728 if (!isa<BasicBlock>(I->second.first)) { 1729 I->second.first->replaceAllUsesWith( 1730 UndefValue::get(I->second.first->getType())); 1731 delete I->second.first; 1732 I->second.first = 0; 1733 } 1734 1735 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1736 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1737 if (!isa<BasicBlock>(I->second.first)) { 1738 I->second.first->replaceAllUsesWith( 1739 UndefValue::get(I->second.first->getType())); 1740 delete I->second.first; 1741 I->second.first = 0; 1742 } 1743 } 1744 1745 bool LLParser::PerFunctionState::FinishFunction() { 1746 // Check to see if someone took the address of labels in this block. 1747 if (!P.ForwardRefBlockAddresses.empty()) { 1748 ValID FunctionID; 1749 if (!F.getName().empty()) { 1750 FunctionID.Kind = ValID::t_GlobalName; 1751 FunctionID.StrVal = F.getName(); 1752 } else { 1753 FunctionID.Kind = ValID::t_GlobalID; 1754 FunctionID.UIntVal = FunctionNumber; 1755 } 1756 1757 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1758 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1759 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1760 // Resolve all these references. 1761 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1762 return true; 1763 1764 P.ForwardRefBlockAddresses.erase(FRBAI); 1765 } 1766 } 1767 1768 if (!ForwardRefVals.empty()) 1769 return P.Error(ForwardRefVals.begin()->second.second, 1770 "use of undefined value '%" + ForwardRefVals.begin()->first + 1771 "'"); 1772 if (!ForwardRefValIDs.empty()) 1773 return P.Error(ForwardRefValIDs.begin()->second.second, 1774 "use of undefined value '%" + 1775 Twine(ForwardRefValIDs.begin()->first) + "'"); 1776 return false; 1777 } 1778 1779 1780 /// GetVal - Get a value with the specified name or ID, creating a 1781 /// forward reference record if needed. This can return null if the value 1782 /// exists but does not have the right type. 1783 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1784 Type *Ty, LocTy Loc) { 1785 // Look this name up in the normal function symbol table. 1786 Value *Val = F.getValueSymbolTable().lookup(Name); 1787 1788 // If this is a forward reference for the value, see if we already created a 1789 // forward ref record. 1790 if (Val == 0) { 1791 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1792 I = ForwardRefVals.find(Name); 1793 if (I != ForwardRefVals.end()) 1794 Val = I->second.first; 1795 } 1796 1797 // If we have the value in the symbol table or fwd-ref table, return it. 1798 if (Val) { 1799 if (Val->getType() == Ty) return Val; 1800 if (Ty->isLabelTy()) 1801 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1802 else 1803 P.Error(Loc, "'%" + Name + "' defined with type '" + 1804 getTypeString(Val->getType()) + "'"); 1805 return 0; 1806 } 1807 1808 // Don't make placeholders with invalid type. 1809 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1810 P.Error(Loc, "invalid use of a non-first-class type"); 1811 return 0; 1812 } 1813 1814 // Otherwise, create a new forward reference for this value and remember it. 1815 Value *FwdVal; 1816 if (Ty->isLabelTy()) 1817 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1818 else 1819 FwdVal = new Argument(Ty, Name); 1820 1821 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1822 return FwdVal; 1823 } 1824 1825 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1826 LocTy Loc) { 1827 // Look this name up in the normal function symbol table. 1828 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1829 1830 // If this is a forward reference for the value, see if we already created a 1831 // forward ref record. 1832 if (Val == 0) { 1833 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1834 I = ForwardRefValIDs.find(ID); 1835 if (I != ForwardRefValIDs.end()) 1836 Val = I->second.first; 1837 } 1838 1839 // If we have the value in the symbol table or fwd-ref table, return it. 1840 if (Val) { 1841 if (Val->getType() == Ty) return Val; 1842 if (Ty->isLabelTy()) 1843 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1844 else 1845 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1846 getTypeString(Val->getType()) + "'"); 1847 return 0; 1848 } 1849 1850 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1851 P.Error(Loc, "invalid use of a non-first-class type"); 1852 return 0; 1853 } 1854 1855 // Otherwise, create a new forward reference for this value and remember it. 1856 Value *FwdVal; 1857 if (Ty->isLabelTy()) 1858 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1859 else 1860 FwdVal = new Argument(Ty); 1861 1862 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1863 return FwdVal; 1864 } 1865 1866 /// SetInstName - After an instruction is parsed and inserted into its 1867 /// basic block, this installs its name. 1868 bool LLParser::PerFunctionState::SetInstName(int NameID, 1869 const std::string &NameStr, 1870 LocTy NameLoc, Instruction *Inst) { 1871 // If this instruction has void type, it cannot have a name or ID specified. 1872 if (Inst->getType()->isVoidTy()) { 1873 if (NameID != -1 || !NameStr.empty()) 1874 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1875 return false; 1876 } 1877 1878 // If this was a numbered instruction, verify that the instruction is the 1879 // expected value and resolve any forward references. 1880 if (NameStr.empty()) { 1881 // If neither a name nor an ID was specified, just use the next ID. 1882 if (NameID == -1) 1883 NameID = NumberedVals.size(); 1884 1885 if (unsigned(NameID) != NumberedVals.size()) 1886 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1887 Twine(NumberedVals.size()) + "'"); 1888 1889 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1890 ForwardRefValIDs.find(NameID); 1891 if (FI != ForwardRefValIDs.end()) { 1892 if (FI->second.first->getType() != Inst->getType()) 1893 return P.Error(NameLoc, "instruction forward referenced with type '" + 1894 getTypeString(FI->second.first->getType()) + "'"); 1895 FI->second.first->replaceAllUsesWith(Inst); 1896 delete FI->second.first; 1897 ForwardRefValIDs.erase(FI); 1898 } 1899 1900 NumberedVals.push_back(Inst); 1901 return false; 1902 } 1903 1904 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1905 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1906 FI = ForwardRefVals.find(NameStr); 1907 if (FI != ForwardRefVals.end()) { 1908 if (FI->second.first->getType() != Inst->getType()) 1909 return P.Error(NameLoc, "instruction forward referenced with type '" + 1910 getTypeString(FI->second.first->getType()) + "'"); 1911 FI->second.first->replaceAllUsesWith(Inst); 1912 delete FI->second.first; 1913 ForwardRefVals.erase(FI); 1914 } 1915 1916 // Set the name on the instruction. 1917 Inst->setName(NameStr); 1918 1919 if (Inst->getName() != NameStr) 1920 return P.Error(NameLoc, "multiple definition of local value named '" + 1921 NameStr + "'"); 1922 return false; 1923 } 1924 1925 /// GetBB - Get a basic block with the specified name or ID, creating a 1926 /// forward reference record if needed. 1927 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1928 LocTy Loc) { 1929 return cast_or_null<BasicBlock>(GetVal(Name, 1930 Type::getLabelTy(F.getContext()), Loc)); 1931 } 1932 1933 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1934 return cast_or_null<BasicBlock>(GetVal(ID, 1935 Type::getLabelTy(F.getContext()), Loc)); 1936 } 1937 1938 /// DefineBB - Define the specified basic block, which is either named or 1939 /// unnamed. If there is an error, this returns null otherwise it returns 1940 /// the block being defined. 1941 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1942 LocTy Loc) { 1943 BasicBlock *BB; 1944 if (Name.empty()) 1945 BB = GetBB(NumberedVals.size(), Loc); 1946 else 1947 BB = GetBB(Name, Loc); 1948 if (BB == 0) return 0; // Already diagnosed error. 1949 1950 // Move the block to the end of the function. Forward ref'd blocks are 1951 // inserted wherever they happen to be referenced. 1952 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1953 1954 // Remove the block from forward ref sets. 1955 if (Name.empty()) { 1956 ForwardRefValIDs.erase(NumberedVals.size()); 1957 NumberedVals.push_back(BB); 1958 } else { 1959 // BB forward references are already in the function symbol table. 1960 ForwardRefVals.erase(Name); 1961 } 1962 1963 return BB; 1964 } 1965 1966 //===----------------------------------------------------------------------===// 1967 // Constants. 1968 //===----------------------------------------------------------------------===// 1969 1970 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1971 /// type implied. For example, if we parse "4" we don't know what integer type 1972 /// it has. The value will later be combined with its type and checked for 1973 /// sanity. PFS is used to convert function-local operands of metadata (since 1974 /// metadata operands are not just parsed here but also converted to values). 1975 /// PFS can be null when we are not parsing metadata values inside a function. 1976 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1977 ID.Loc = Lex.getLoc(); 1978 switch (Lex.getKind()) { 1979 default: return TokError("expected value token"); 1980 case lltok::GlobalID: // @42 1981 ID.UIntVal = Lex.getUIntVal(); 1982 ID.Kind = ValID::t_GlobalID; 1983 break; 1984 case lltok::GlobalVar: // @foo 1985 ID.StrVal = Lex.getStrVal(); 1986 ID.Kind = ValID::t_GlobalName; 1987 break; 1988 case lltok::LocalVarID: // %42 1989 ID.UIntVal = Lex.getUIntVal(); 1990 ID.Kind = ValID::t_LocalID; 1991 break; 1992 case lltok::LocalVar: // %foo 1993 ID.StrVal = Lex.getStrVal(); 1994 ID.Kind = ValID::t_LocalName; 1995 break; 1996 case lltok::exclaim: // !42, !{...}, or !"foo" 1997 return ParseMetadataValue(ID, PFS); 1998 case lltok::APSInt: 1999 ID.APSIntVal = Lex.getAPSIntVal(); 2000 ID.Kind = ValID::t_APSInt; 2001 break; 2002 case lltok::APFloat: 2003 ID.APFloatVal = Lex.getAPFloatVal(); 2004 ID.Kind = ValID::t_APFloat; 2005 break; 2006 case lltok::kw_true: 2007 ID.ConstantVal = ConstantInt::getTrue(Context); 2008 ID.Kind = ValID::t_Constant; 2009 break; 2010 case lltok::kw_false: 2011 ID.ConstantVal = ConstantInt::getFalse(Context); 2012 ID.Kind = ValID::t_Constant; 2013 break; 2014 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2015 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2016 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2017 2018 case lltok::lbrace: { 2019 // ValID ::= '{' ConstVector '}' 2020 Lex.Lex(); 2021 SmallVector<Constant*, 16> Elts; 2022 if (ParseGlobalValueVector(Elts) || 2023 ParseToken(lltok::rbrace, "expected end of struct constant")) 2024 return true; 2025 2026 ID.ConstantStructElts = new Constant*[Elts.size()]; 2027 ID.UIntVal = Elts.size(); 2028 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2029 ID.Kind = ValID::t_ConstantStruct; 2030 return false; 2031 } 2032 case lltok::less: { 2033 // ValID ::= '<' ConstVector '>' --> Vector. 2034 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2035 Lex.Lex(); 2036 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2037 2038 SmallVector<Constant*, 16> Elts; 2039 LocTy FirstEltLoc = Lex.getLoc(); 2040 if (ParseGlobalValueVector(Elts) || 2041 (isPackedStruct && 2042 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2043 ParseToken(lltok::greater, "expected end of constant")) 2044 return true; 2045 2046 if (isPackedStruct) { 2047 ID.ConstantStructElts = new Constant*[Elts.size()]; 2048 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2049 ID.UIntVal = Elts.size(); 2050 ID.Kind = ValID::t_PackedConstantStruct; 2051 return false; 2052 } 2053 2054 if (Elts.empty()) 2055 return Error(ID.Loc, "constant vector must not be empty"); 2056 2057 if (!Elts[0]->getType()->isIntegerTy() && 2058 !Elts[0]->getType()->isFloatingPointTy() && 2059 !Elts[0]->getType()->isPointerTy()) 2060 return Error(FirstEltLoc, 2061 "vector elements must have integer, pointer or floating point type"); 2062 2063 // Verify that all the vector elements have the same type. 2064 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2065 if (Elts[i]->getType() != Elts[0]->getType()) 2066 return Error(FirstEltLoc, 2067 "vector element #" + Twine(i) + 2068 " is not of type '" + getTypeString(Elts[0]->getType())); 2069 2070 ID.ConstantVal = ConstantVector::get(Elts); 2071 ID.Kind = ValID::t_Constant; 2072 return false; 2073 } 2074 case lltok::lsquare: { // Array Constant 2075 Lex.Lex(); 2076 SmallVector<Constant*, 16> Elts; 2077 LocTy FirstEltLoc = Lex.getLoc(); 2078 if (ParseGlobalValueVector(Elts) || 2079 ParseToken(lltok::rsquare, "expected end of array constant")) 2080 return true; 2081 2082 // Handle empty element. 2083 if (Elts.empty()) { 2084 // Use undef instead of an array because it's inconvenient to determine 2085 // the element type at this point, there being no elements to examine. 2086 ID.Kind = ValID::t_EmptyArray; 2087 return false; 2088 } 2089 2090 if (!Elts[0]->getType()->isFirstClassType()) 2091 return Error(FirstEltLoc, "invalid array element type: " + 2092 getTypeString(Elts[0]->getType())); 2093 2094 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2095 2096 // Verify all elements are correct type! 2097 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2098 if (Elts[i]->getType() != Elts[0]->getType()) 2099 return Error(FirstEltLoc, 2100 "array element #" + Twine(i) + 2101 " is not of type '" + getTypeString(Elts[0]->getType())); 2102 } 2103 2104 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2105 ID.Kind = ValID::t_Constant; 2106 return false; 2107 } 2108 case lltok::kw_c: // c "foo" 2109 Lex.Lex(); 2110 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2111 false); 2112 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2113 ID.Kind = ValID::t_Constant; 2114 return false; 2115 2116 case lltok::kw_asm: { 2117 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2118 bool HasSideEffect, AlignStack, AsmDialect; 2119 Lex.Lex(); 2120 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2121 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2122 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2123 ParseStringConstant(ID.StrVal) || 2124 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2125 ParseToken(lltok::StringConstant, "expected constraint string")) 2126 return true; 2127 ID.StrVal2 = Lex.getStrVal(); 2128 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2129 (unsigned(AsmDialect)<<2); 2130 ID.Kind = ValID::t_InlineAsm; 2131 return false; 2132 } 2133 2134 case lltok::kw_blockaddress: { 2135 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2136 Lex.Lex(); 2137 2138 ValID Fn, Label; 2139 LocTy FnLoc, LabelLoc; 2140 2141 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2142 ParseValID(Fn) || 2143 ParseToken(lltok::comma, "expected comma in block address expression")|| 2144 ParseValID(Label) || 2145 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2146 return true; 2147 2148 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2149 return Error(Fn.Loc, "expected function name in blockaddress"); 2150 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2151 return Error(Label.Loc, "expected basic block name in blockaddress"); 2152 2153 // Make a global variable as a placeholder for this reference. 2154 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2155 false, GlobalValue::InternalLinkage, 2156 0, ""); 2157 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2158 ID.ConstantVal = FwdRef; 2159 ID.Kind = ValID::t_Constant; 2160 return false; 2161 } 2162 2163 case lltok::kw_trunc: 2164 case lltok::kw_zext: 2165 case lltok::kw_sext: 2166 case lltok::kw_fptrunc: 2167 case lltok::kw_fpext: 2168 case lltok::kw_bitcast: 2169 case lltok::kw_uitofp: 2170 case lltok::kw_sitofp: 2171 case lltok::kw_fptoui: 2172 case lltok::kw_fptosi: 2173 case lltok::kw_inttoptr: 2174 case lltok::kw_ptrtoint: { 2175 unsigned Opc = Lex.getUIntVal(); 2176 Type *DestTy = 0; 2177 Constant *SrcVal; 2178 Lex.Lex(); 2179 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2180 ParseGlobalTypeAndValue(SrcVal) || 2181 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2182 ParseType(DestTy) || 2183 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2184 return true; 2185 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2186 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2187 getTypeString(SrcVal->getType()) + "' to '" + 2188 getTypeString(DestTy) + "'"); 2189 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2190 SrcVal, DestTy); 2191 ID.Kind = ValID::t_Constant; 2192 return false; 2193 } 2194 case lltok::kw_extractvalue: { 2195 Lex.Lex(); 2196 Constant *Val; 2197 SmallVector<unsigned, 4> Indices; 2198 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2199 ParseGlobalTypeAndValue(Val) || 2200 ParseIndexList(Indices) || 2201 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2202 return true; 2203 2204 if (!Val->getType()->isAggregateType()) 2205 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2206 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2207 return Error(ID.Loc, "invalid indices for extractvalue"); 2208 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2209 ID.Kind = ValID::t_Constant; 2210 return false; 2211 } 2212 case lltok::kw_insertvalue: { 2213 Lex.Lex(); 2214 Constant *Val0, *Val1; 2215 SmallVector<unsigned, 4> Indices; 2216 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2217 ParseGlobalTypeAndValue(Val0) || 2218 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2219 ParseGlobalTypeAndValue(Val1) || 2220 ParseIndexList(Indices) || 2221 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2222 return true; 2223 if (!Val0->getType()->isAggregateType()) 2224 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2225 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2226 return Error(ID.Loc, "invalid indices for insertvalue"); 2227 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2228 ID.Kind = ValID::t_Constant; 2229 return false; 2230 } 2231 case lltok::kw_icmp: 2232 case lltok::kw_fcmp: { 2233 unsigned PredVal, Opc = Lex.getUIntVal(); 2234 Constant *Val0, *Val1; 2235 Lex.Lex(); 2236 if (ParseCmpPredicate(PredVal, Opc) || 2237 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2238 ParseGlobalTypeAndValue(Val0) || 2239 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2240 ParseGlobalTypeAndValue(Val1) || 2241 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2242 return true; 2243 2244 if (Val0->getType() != Val1->getType()) 2245 return Error(ID.Loc, "compare operands must have the same type"); 2246 2247 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2248 2249 if (Opc == Instruction::FCmp) { 2250 if (!Val0->getType()->isFPOrFPVectorTy()) 2251 return Error(ID.Loc, "fcmp requires floating point operands"); 2252 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2253 } else { 2254 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2255 if (!Val0->getType()->isIntOrIntVectorTy() && 2256 !Val0->getType()->getScalarType()->isPointerTy()) 2257 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2258 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2259 } 2260 ID.Kind = ValID::t_Constant; 2261 return false; 2262 } 2263 2264 // Binary Operators. 2265 case lltok::kw_add: 2266 case lltok::kw_fadd: 2267 case lltok::kw_sub: 2268 case lltok::kw_fsub: 2269 case lltok::kw_mul: 2270 case lltok::kw_fmul: 2271 case lltok::kw_udiv: 2272 case lltok::kw_sdiv: 2273 case lltok::kw_fdiv: 2274 case lltok::kw_urem: 2275 case lltok::kw_srem: 2276 case lltok::kw_frem: 2277 case lltok::kw_shl: 2278 case lltok::kw_lshr: 2279 case lltok::kw_ashr: { 2280 bool NUW = false; 2281 bool NSW = false; 2282 bool Exact = false; 2283 unsigned Opc = Lex.getUIntVal(); 2284 Constant *Val0, *Val1; 2285 Lex.Lex(); 2286 LocTy ModifierLoc = Lex.getLoc(); 2287 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2288 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2289 if (EatIfPresent(lltok::kw_nuw)) 2290 NUW = true; 2291 if (EatIfPresent(lltok::kw_nsw)) { 2292 NSW = true; 2293 if (EatIfPresent(lltok::kw_nuw)) 2294 NUW = true; 2295 } 2296 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2297 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2298 if (EatIfPresent(lltok::kw_exact)) 2299 Exact = true; 2300 } 2301 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2302 ParseGlobalTypeAndValue(Val0) || 2303 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2304 ParseGlobalTypeAndValue(Val1) || 2305 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2306 return true; 2307 if (Val0->getType() != Val1->getType()) 2308 return Error(ID.Loc, "operands of constexpr must have same type"); 2309 if (!Val0->getType()->isIntOrIntVectorTy()) { 2310 if (NUW) 2311 return Error(ModifierLoc, "nuw only applies to integer operations"); 2312 if (NSW) 2313 return Error(ModifierLoc, "nsw only applies to integer operations"); 2314 } 2315 // Check that the type is valid for the operator. 2316 switch (Opc) { 2317 case Instruction::Add: 2318 case Instruction::Sub: 2319 case Instruction::Mul: 2320 case Instruction::UDiv: 2321 case Instruction::SDiv: 2322 case Instruction::URem: 2323 case Instruction::SRem: 2324 case Instruction::Shl: 2325 case Instruction::AShr: 2326 case Instruction::LShr: 2327 if (!Val0->getType()->isIntOrIntVectorTy()) 2328 return Error(ID.Loc, "constexpr requires integer operands"); 2329 break; 2330 case Instruction::FAdd: 2331 case Instruction::FSub: 2332 case Instruction::FMul: 2333 case Instruction::FDiv: 2334 case Instruction::FRem: 2335 if (!Val0->getType()->isFPOrFPVectorTy()) 2336 return Error(ID.Loc, "constexpr requires fp operands"); 2337 break; 2338 default: llvm_unreachable("Unknown binary operator!"); 2339 } 2340 unsigned Flags = 0; 2341 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2342 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2343 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2344 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2345 ID.ConstantVal = C; 2346 ID.Kind = ValID::t_Constant; 2347 return false; 2348 } 2349 2350 // Logical Operations 2351 case lltok::kw_and: 2352 case lltok::kw_or: 2353 case lltok::kw_xor: { 2354 unsigned Opc = Lex.getUIntVal(); 2355 Constant *Val0, *Val1; 2356 Lex.Lex(); 2357 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2358 ParseGlobalTypeAndValue(Val0) || 2359 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2360 ParseGlobalTypeAndValue(Val1) || 2361 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2362 return true; 2363 if (Val0->getType() != Val1->getType()) 2364 return Error(ID.Loc, "operands of constexpr must have same type"); 2365 if (!Val0->getType()->isIntOrIntVectorTy()) 2366 return Error(ID.Loc, 2367 "constexpr requires integer or integer vector operands"); 2368 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2369 ID.Kind = ValID::t_Constant; 2370 return false; 2371 } 2372 2373 case lltok::kw_getelementptr: 2374 case lltok::kw_shufflevector: 2375 case lltok::kw_insertelement: 2376 case lltok::kw_extractelement: 2377 case lltok::kw_select: { 2378 unsigned Opc = Lex.getUIntVal(); 2379 SmallVector<Constant*, 16> Elts; 2380 bool InBounds = false; 2381 Lex.Lex(); 2382 if (Opc == Instruction::GetElementPtr) 2383 InBounds = EatIfPresent(lltok::kw_inbounds); 2384 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2385 ParseGlobalValueVector(Elts) || 2386 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2387 return true; 2388 2389 if (Opc == Instruction::GetElementPtr) { 2390 if (Elts.size() == 0 || 2391 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2392 return Error(ID.Loc, "getelementptr requires pointer operand"); 2393 2394 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2395 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2396 return Error(ID.Loc, "invalid indices for getelementptr"); 2397 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2398 InBounds); 2399 } else if (Opc == Instruction::Select) { 2400 if (Elts.size() != 3) 2401 return Error(ID.Loc, "expected three operands to select"); 2402 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2403 Elts[2])) 2404 return Error(ID.Loc, Reason); 2405 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2406 } else if (Opc == Instruction::ShuffleVector) { 2407 if (Elts.size() != 3) 2408 return Error(ID.Loc, "expected three operands to shufflevector"); 2409 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2410 return Error(ID.Loc, "invalid operands to shufflevector"); 2411 ID.ConstantVal = 2412 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2413 } else if (Opc == Instruction::ExtractElement) { 2414 if (Elts.size() != 2) 2415 return Error(ID.Loc, "expected two operands to extractelement"); 2416 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2417 return Error(ID.Loc, "invalid extractelement operands"); 2418 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2419 } else { 2420 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2421 if (Elts.size() != 3) 2422 return Error(ID.Loc, "expected three operands to insertelement"); 2423 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2424 return Error(ID.Loc, "invalid insertelement operands"); 2425 ID.ConstantVal = 2426 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2427 } 2428 2429 ID.Kind = ValID::t_Constant; 2430 return false; 2431 } 2432 } 2433 2434 Lex.Lex(); 2435 return false; 2436 } 2437 2438 /// ParseGlobalValue - Parse a global value with the specified type. 2439 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2440 C = 0; 2441 ValID ID; 2442 Value *V = NULL; 2443 bool Parsed = ParseValID(ID) || 2444 ConvertValIDToValue(Ty, ID, V, NULL); 2445 if (V && !(C = dyn_cast<Constant>(V))) 2446 return Error(ID.Loc, "global values must be constants"); 2447 return Parsed; 2448 } 2449 2450 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2451 Type *Ty = 0; 2452 return ParseType(Ty) || 2453 ParseGlobalValue(Ty, V); 2454 } 2455 2456 /// ParseGlobalValueVector 2457 /// ::= /*empty*/ 2458 /// ::= TypeAndValue (',' TypeAndValue)* 2459 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2460 // Empty list. 2461 if (Lex.getKind() == lltok::rbrace || 2462 Lex.getKind() == lltok::rsquare || 2463 Lex.getKind() == lltok::greater || 2464 Lex.getKind() == lltok::rparen) 2465 return false; 2466 2467 Constant *C; 2468 if (ParseGlobalTypeAndValue(C)) return true; 2469 Elts.push_back(C); 2470 2471 while (EatIfPresent(lltok::comma)) { 2472 if (ParseGlobalTypeAndValue(C)) return true; 2473 Elts.push_back(C); 2474 } 2475 2476 return false; 2477 } 2478 2479 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2480 assert(Lex.getKind() == lltok::lbrace); 2481 Lex.Lex(); 2482 2483 SmallVector<Value*, 16> Elts; 2484 if (ParseMDNodeVector(Elts, PFS) || 2485 ParseToken(lltok::rbrace, "expected end of metadata node")) 2486 return true; 2487 2488 ID.MDNodeVal = MDNode::get(Context, Elts); 2489 ID.Kind = ValID::t_MDNode; 2490 return false; 2491 } 2492 2493 /// ParseMetadataValue 2494 /// ::= !42 2495 /// ::= !{...} 2496 /// ::= !"string" 2497 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2498 assert(Lex.getKind() == lltok::exclaim); 2499 Lex.Lex(); 2500 2501 // MDNode: 2502 // !{ ... } 2503 if (Lex.getKind() == lltok::lbrace) 2504 return ParseMetadataListValue(ID, PFS); 2505 2506 // Standalone metadata reference 2507 // !42 2508 if (Lex.getKind() == lltok::APSInt) { 2509 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2510 ID.Kind = ValID::t_MDNode; 2511 return false; 2512 } 2513 2514 // MDString: 2515 // ::= '!' STRINGCONSTANT 2516 if (ParseMDString(ID.MDStringVal)) return true; 2517 ID.Kind = ValID::t_MDString; 2518 return false; 2519 } 2520 2521 2522 //===----------------------------------------------------------------------===// 2523 // Function Parsing. 2524 //===----------------------------------------------------------------------===// 2525 2526 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2527 PerFunctionState *PFS) { 2528 if (Ty->isFunctionTy()) 2529 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2530 2531 switch (ID.Kind) { 2532 case ValID::t_LocalID: 2533 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2534 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2535 return (V == 0); 2536 case ValID::t_LocalName: 2537 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2538 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2539 return (V == 0); 2540 case ValID::t_InlineAsm: { 2541 PointerType *PTy = dyn_cast<PointerType>(Ty); 2542 FunctionType *FTy = 2543 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2544 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2545 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2546 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2547 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2548 return false; 2549 } 2550 case ValID::t_MDNode: 2551 if (!Ty->isMetadataTy()) 2552 return Error(ID.Loc, "metadata value must have metadata type"); 2553 V = ID.MDNodeVal; 2554 return false; 2555 case ValID::t_MDString: 2556 if (!Ty->isMetadataTy()) 2557 return Error(ID.Loc, "metadata value must have metadata type"); 2558 V = ID.MDStringVal; 2559 return false; 2560 case ValID::t_GlobalName: 2561 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2562 return V == 0; 2563 case ValID::t_GlobalID: 2564 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2565 return V == 0; 2566 case ValID::t_APSInt: 2567 if (!Ty->isIntegerTy()) 2568 return Error(ID.Loc, "integer constant must have integer type"); 2569 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2570 V = ConstantInt::get(Context, ID.APSIntVal); 2571 return false; 2572 case ValID::t_APFloat: 2573 if (!Ty->isFloatingPointTy() || 2574 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2575 return Error(ID.Loc, "floating point constant invalid for type"); 2576 2577 // The lexer has no type info, so builds all half, float, and double FP 2578 // constants as double. Fix this here. Long double does not need this. 2579 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2580 bool Ignored; 2581 if (Ty->isHalfTy()) 2582 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2583 &Ignored); 2584 else if (Ty->isFloatTy()) 2585 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2586 &Ignored); 2587 } 2588 V = ConstantFP::get(Context, ID.APFloatVal); 2589 2590 if (V->getType() != Ty) 2591 return Error(ID.Loc, "floating point constant does not have type '" + 2592 getTypeString(Ty) + "'"); 2593 2594 return false; 2595 case ValID::t_Null: 2596 if (!Ty->isPointerTy()) 2597 return Error(ID.Loc, "null must be a pointer type"); 2598 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2599 return false; 2600 case ValID::t_Undef: 2601 // FIXME: LabelTy should not be a first-class type. 2602 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2603 return Error(ID.Loc, "invalid type for undef constant"); 2604 V = UndefValue::get(Ty); 2605 return false; 2606 case ValID::t_EmptyArray: 2607 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2608 return Error(ID.Loc, "invalid empty array initializer"); 2609 V = UndefValue::get(Ty); 2610 return false; 2611 case ValID::t_Zero: 2612 // FIXME: LabelTy should not be a first-class type. 2613 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2614 return Error(ID.Loc, "invalid type for null constant"); 2615 V = Constant::getNullValue(Ty); 2616 return false; 2617 case ValID::t_Constant: 2618 if (ID.ConstantVal->getType() != Ty) 2619 return Error(ID.Loc, "constant expression type mismatch"); 2620 2621 V = ID.ConstantVal; 2622 return false; 2623 case ValID::t_ConstantStruct: 2624 case ValID::t_PackedConstantStruct: 2625 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2626 if (ST->getNumElements() != ID.UIntVal) 2627 return Error(ID.Loc, 2628 "initializer with struct type has wrong # elements"); 2629 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2630 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2631 2632 // Verify that the elements are compatible with the structtype. 2633 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2634 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2635 return Error(ID.Loc, "element " + Twine(i) + 2636 " of struct initializer doesn't match struct element type"); 2637 2638 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2639 ID.UIntVal)); 2640 } else 2641 return Error(ID.Loc, "constant expression type mismatch"); 2642 return false; 2643 } 2644 llvm_unreachable("Invalid ValID"); 2645 } 2646 2647 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2648 V = 0; 2649 ValID ID; 2650 return ParseValID(ID, PFS) || 2651 ConvertValIDToValue(Ty, ID, V, PFS); 2652 } 2653 2654 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2655 Type *Ty = 0; 2656 return ParseType(Ty) || 2657 ParseValue(Ty, V, PFS); 2658 } 2659 2660 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2661 PerFunctionState &PFS) { 2662 Value *V; 2663 Loc = Lex.getLoc(); 2664 if (ParseTypeAndValue(V, PFS)) return true; 2665 if (!isa<BasicBlock>(V)) 2666 return Error(Loc, "expected a basic block"); 2667 BB = cast<BasicBlock>(V); 2668 return false; 2669 } 2670 2671 2672 /// FunctionHeader 2673 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2674 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2675 /// OptionalAlign OptGC 2676 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2677 // Parse the linkage. 2678 LocTy LinkageLoc = Lex.getLoc(); 2679 unsigned Linkage; 2680 2681 unsigned Visibility; 2682 AttrBuilder RetAttrs; 2683 CallingConv::ID CC; 2684 Type *RetType = 0; 2685 LocTy RetTypeLoc = Lex.getLoc(); 2686 if (ParseOptionalLinkage(Linkage) || 2687 ParseOptionalVisibility(Visibility) || 2688 ParseOptionalCallingConv(CC) || 2689 ParseOptionalAttrs(RetAttrs, 1) || 2690 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2691 return true; 2692 2693 // Verify that the linkage is ok. 2694 switch ((GlobalValue::LinkageTypes)Linkage) { 2695 case GlobalValue::ExternalLinkage: 2696 break; // always ok. 2697 case GlobalValue::DLLImportLinkage: 2698 case GlobalValue::ExternalWeakLinkage: 2699 if (isDefine) 2700 return Error(LinkageLoc, "invalid linkage for function definition"); 2701 break; 2702 case GlobalValue::PrivateLinkage: 2703 case GlobalValue::LinkerPrivateLinkage: 2704 case GlobalValue::LinkerPrivateWeakLinkage: 2705 case GlobalValue::InternalLinkage: 2706 case GlobalValue::AvailableExternallyLinkage: 2707 case GlobalValue::LinkOnceAnyLinkage: 2708 case GlobalValue::LinkOnceODRLinkage: 2709 case GlobalValue::LinkOnceODRAutoHideLinkage: 2710 case GlobalValue::WeakAnyLinkage: 2711 case GlobalValue::WeakODRLinkage: 2712 case GlobalValue::DLLExportLinkage: 2713 if (!isDefine) 2714 return Error(LinkageLoc, "invalid linkage for function declaration"); 2715 break; 2716 case GlobalValue::AppendingLinkage: 2717 case GlobalValue::CommonLinkage: 2718 return Error(LinkageLoc, "invalid function linkage type"); 2719 } 2720 2721 if (!FunctionType::isValidReturnType(RetType)) 2722 return Error(RetTypeLoc, "invalid function return type"); 2723 2724 LocTy NameLoc = Lex.getLoc(); 2725 2726 std::string FunctionName; 2727 if (Lex.getKind() == lltok::GlobalVar) { 2728 FunctionName = Lex.getStrVal(); 2729 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2730 unsigned NameID = Lex.getUIntVal(); 2731 2732 if (NameID != NumberedVals.size()) 2733 return TokError("function expected to be numbered '%" + 2734 Twine(NumberedVals.size()) + "'"); 2735 } else { 2736 return TokError("expected function name"); 2737 } 2738 2739 Lex.Lex(); 2740 2741 if (Lex.getKind() != lltok::lparen) 2742 return TokError("expected '(' in function argument list"); 2743 2744 SmallVector<ArgInfo, 8> ArgList; 2745 bool isVarArg; 2746 AttrBuilder FuncAttrs; 2747 std::string Section; 2748 unsigned Alignment; 2749 std::string GC; 2750 bool UnnamedAddr; 2751 LocTy UnnamedAddrLoc; 2752 2753 if (ParseArgumentList(ArgList, isVarArg) || 2754 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2755 &UnnamedAddrLoc) || 2756 ParseOptionalAttrs(FuncAttrs, 2) || 2757 (EatIfPresent(lltok::kw_section) && 2758 ParseStringConstant(Section)) || 2759 ParseOptionalAlignment(Alignment) || 2760 (EatIfPresent(lltok::kw_gc) && 2761 ParseStringConstant(GC))) 2762 return true; 2763 2764 // If the alignment was parsed as an attribute, move to the alignment field. 2765 if (FuncAttrs.hasAlignmentAttr()) { 2766 Alignment = FuncAttrs.getAlignment(); 2767 FuncAttrs.removeAttribute(Attributes::Alignment); 2768 } 2769 2770 // Okay, if we got here, the function is syntactically valid. Convert types 2771 // and do semantic checks. 2772 std::vector<Type*> ParamTypeList; 2773 SmallVector<AttributeWithIndex, 8> Attrs; 2774 2775 if (RetAttrs.hasAttributes()) 2776 Attrs.push_back( 2777 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 2778 Attributes::get(RetType->getContext(), 2779 RetAttrs))); 2780 2781 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2782 ParamTypeList.push_back(ArgList[i].Ty); 2783 if (ArgList[i].Attrs.hasAttributes()) 2784 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2785 } 2786 2787 if (FuncAttrs.hasAttributes()) 2788 Attrs.push_back( 2789 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 2790 Attributes::get(RetType->getContext(), 2791 FuncAttrs))); 2792 2793 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 2794 2795 if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) && 2796 !RetType->isVoidTy()) 2797 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2798 2799 FunctionType *FT = 2800 FunctionType::get(RetType, ParamTypeList, isVarArg); 2801 PointerType *PFT = PointerType::getUnqual(FT); 2802 2803 Fn = 0; 2804 if (!FunctionName.empty()) { 2805 // If this was a definition of a forward reference, remove the definition 2806 // from the forward reference table and fill in the forward ref. 2807 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2808 ForwardRefVals.find(FunctionName); 2809 if (FRVI != ForwardRefVals.end()) { 2810 Fn = M->getFunction(FunctionName); 2811 if (!Fn) 2812 return Error(FRVI->second.second, "invalid forward reference to " 2813 "function as global value!"); 2814 if (Fn->getType() != PFT) 2815 return Error(FRVI->second.second, "invalid forward reference to " 2816 "function '" + FunctionName + "' with wrong type!"); 2817 2818 ForwardRefVals.erase(FRVI); 2819 } else if ((Fn = M->getFunction(FunctionName))) { 2820 // Reject redefinitions. 2821 return Error(NameLoc, "invalid redefinition of function '" + 2822 FunctionName + "'"); 2823 } else if (M->getNamedValue(FunctionName)) { 2824 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2825 } 2826 2827 } else { 2828 // If this is a definition of a forward referenced function, make sure the 2829 // types agree. 2830 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2831 = ForwardRefValIDs.find(NumberedVals.size()); 2832 if (I != ForwardRefValIDs.end()) { 2833 Fn = cast<Function>(I->second.first); 2834 if (Fn->getType() != PFT) 2835 return Error(NameLoc, "type of definition and forward reference of '@" + 2836 Twine(NumberedVals.size()) + "' disagree"); 2837 ForwardRefValIDs.erase(I); 2838 } 2839 } 2840 2841 if (Fn == 0) 2842 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2843 else // Move the forward-reference to the correct spot in the module. 2844 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2845 2846 if (FunctionName.empty()) 2847 NumberedVals.push_back(Fn); 2848 2849 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2850 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2851 Fn->setCallingConv(CC); 2852 Fn->setAttributes(PAL); 2853 Fn->setUnnamedAddr(UnnamedAddr); 2854 Fn->setAlignment(Alignment); 2855 Fn->setSection(Section); 2856 if (!GC.empty()) Fn->setGC(GC.c_str()); 2857 2858 // Add all of the arguments we parsed to the function. 2859 Function::arg_iterator ArgIt = Fn->arg_begin(); 2860 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2861 // If the argument has a name, insert it into the argument symbol table. 2862 if (ArgList[i].Name.empty()) continue; 2863 2864 // Set the name, if it conflicted, it will be auto-renamed. 2865 ArgIt->setName(ArgList[i].Name); 2866 2867 if (ArgIt->getName() != ArgList[i].Name) 2868 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2869 ArgList[i].Name + "'"); 2870 } 2871 2872 return false; 2873 } 2874 2875 2876 /// ParseFunctionBody 2877 /// ::= '{' BasicBlock+ '}' 2878 /// 2879 bool LLParser::ParseFunctionBody(Function &Fn) { 2880 if (Lex.getKind() != lltok::lbrace) 2881 return TokError("expected '{' in function body"); 2882 Lex.Lex(); // eat the {. 2883 2884 int FunctionNumber = -1; 2885 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2886 2887 PerFunctionState PFS(*this, Fn, FunctionNumber); 2888 2889 // We need at least one basic block. 2890 if (Lex.getKind() == lltok::rbrace) 2891 return TokError("function body requires at least one basic block"); 2892 2893 while (Lex.getKind() != lltok::rbrace) 2894 if (ParseBasicBlock(PFS)) return true; 2895 2896 // Eat the }. 2897 Lex.Lex(); 2898 2899 // Verify function is ok. 2900 return PFS.FinishFunction(); 2901 } 2902 2903 /// ParseBasicBlock 2904 /// ::= LabelStr? Instruction* 2905 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2906 // If this basic block starts out with a name, remember it. 2907 std::string Name; 2908 LocTy NameLoc = Lex.getLoc(); 2909 if (Lex.getKind() == lltok::LabelStr) { 2910 Name = Lex.getStrVal(); 2911 Lex.Lex(); 2912 } 2913 2914 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2915 if (BB == 0) return true; 2916 2917 std::string NameStr; 2918 2919 // Parse the instructions in this block until we get a terminator. 2920 Instruction *Inst; 2921 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2922 do { 2923 // This instruction may have three possibilities for a name: a) none 2924 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2925 LocTy NameLoc = Lex.getLoc(); 2926 int NameID = -1; 2927 NameStr = ""; 2928 2929 if (Lex.getKind() == lltok::LocalVarID) { 2930 NameID = Lex.getUIntVal(); 2931 Lex.Lex(); 2932 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2933 return true; 2934 } else if (Lex.getKind() == lltok::LocalVar) { 2935 NameStr = Lex.getStrVal(); 2936 Lex.Lex(); 2937 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2938 return true; 2939 } 2940 2941 switch (ParseInstruction(Inst, BB, PFS)) { 2942 default: llvm_unreachable("Unknown ParseInstruction result!"); 2943 case InstError: return true; 2944 case InstNormal: 2945 BB->getInstList().push_back(Inst); 2946 2947 // With a normal result, we check to see if the instruction is followed by 2948 // a comma and metadata. 2949 if (EatIfPresent(lltok::comma)) 2950 if (ParseInstructionMetadata(Inst, &PFS)) 2951 return true; 2952 break; 2953 case InstExtraComma: 2954 BB->getInstList().push_back(Inst); 2955 2956 // If the instruction parser ate an extra comma at the end of it, it 2957 // *must* be followed by metadata. 2958 if (ParseInstructionMetadata(Inst, &PFS)) 2959 return true; 2960 break; 2961 } 2962 2963 // Set the name on the instruction. 2964 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2965 } while (!isa<TerminatorInst>(Inst)); 2966 2967 return false; 2968 } 2969 2970 //===----------------------------------------------------------------------===// 2971 // Instruction Parsing. 2972 //===----------------------------------------------------------------------===// 2973 2974 /// ParseInstruction - Parse one of the many different instructions. 2975 /// 2976 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2977 PerFunctionState &PFS) { 2978 lltok::Kind Token = Lex.getKind(); 2979 if (Token == lltok::Eof) 2980 return TokError("found end of file when expecting more instructions"); 2981 LocTy Loc = Lex.getLoc(); 2982 unsigned KeywordVal = Lex.getUIntVal(); 2983 Lex.Lex(); // Eat the keyword. 2984 2985 switch (Token) { 2986 default: return Error(Loc, "expected instruction opcode"); 2987 // Terminator Instructions. 2988 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2989 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2990 case lltok::kw_br: return ParseBr(Inst, PFS); 2991 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2992 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2993 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2994 case lltok::kw_resume: return ParseResume(Inst, PFS); 2995 // Binary Operators. 2996 case lltok::kw_add: 2997 case lltok::kw_sub: 2998 case lltok::kw_mul: 2999 case lltok::kw_shl: { 3000 bool NUW = EatIfPresent(lltok::kw_nuw); 3001 bool NSW = EatIfPresent(lltok::kw_nsw); 3002 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 3003 3004 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3005 3006 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3007 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3008 return false; 3009 } 3010 case lltok::kw_fadd: 3011 case lltok::kw_fsub: 3012 case lltok::kw_fmul: 3013 case lltok::kw_fdiv: 3014 case lltok::kw_frem: { 3015 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 3016 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 3017 if (Res != 0) 3018 return Res; 3019 if (FMF.any()) 3020 Inst->setFastMathFlags(FMF); 3021 return 0; 3022 } 3023 3024 case lltok::kw_sdiv: 3025 case lltok::kw_udiv: 3026 case lltok::kw_lshr: 3027 case lltok::kw_ashr: { 3028 bool Exact = EatIfPresent(lltok::kw_exact); 3029 3030 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3031 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3032 return false; 3033 } 3034 3035 case lltok::kw_urem: 3036 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3037 case lltok::kw_and: 3038 case lltok::kw_or: 3039 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3040 case lltok::kw_icmp: 3041 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3042 // Casts. 3043 case lltok::kw_trunc: 3044 case lltok::kw_zext: 3045 case lltok::kw_sext: 3046 case lltok::kw_fptrunc: 3047 case lltok::kw_fpext: 3048 case lltok::kw_bitcast: 3049 case lltok::kw_uitofp: 3050 case lltok::kw_sitofp: 3051 case lltok::kw_fptoui: 3052 case lltok::kw_fptosi: 3053 case lltok::kw_inttoptr: 3054 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3055 // Other. 3056 case lltok::kw_select: return ParseSelect(Inst, PFS); 3057 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3058 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3059 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3060 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3061 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3062 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3063 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3064 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3065 // Memory. 3066 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3067 case lltok::kw_load: return ParseLoad(Inst, PFS); 3068 case lltok::kw_store: return ParseStore(Inst, PFS); 3069 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3070 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3071 case lltok::kw_fence: return ParseFence(Inst, PFS); 3072 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3073 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3074 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3075 } 3076 } 3077 3078 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3079 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3080 if (Opc == Instruction::FCmp) { 3081 switch (Lex.getKind()) { 3082 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3083 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3084 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3085 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3086 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3087 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3088 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3089 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3090 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3091 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3092 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3093 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3094 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3095 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3096 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3097 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3098 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3099 } 3100 } else { 3101 switch (Lex.getKind()) { 3102 default: TokError("expected icmp predicate (e.g. 'eq')"); 3103 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3104 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3105 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3106 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3107 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3108 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3109 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3110 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3111 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3112 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3113 } 3114 } 3115 Lex.Lex(); 3116 return false; 3117 } 3118 3119 //===----------------------------------------------------------------------===// 3120 // Terminator Instructions. 3121 //===----------------------------------------------------------------------===// 3122 3123 /// ParseRet - Parse a return instruction. 3124 /// ::= 'ret' void (',' !dbg, !1)* 3125 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3126 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3127 PerFunctionState &PFS) { 3128 SMLoc TypeLoc = Lex.getLoc(); 3129 Type *Ty = 0; 3130 if (ParseType(Ty, true /*void allowed*/)) return true; 3131 3132 Type *ResType = PFS.getFunction().getReturnType(); 3133 3134 if (Ty->isVoidTy()) { 3135 if (!ResType->isVoidTy()) 3136 return Error(TypeLoc, "value doesn't match function result type '" + 3137 getTypeString(ResType) + "'"); 3138 3139 Inst = ReturnInst::Create(Context); 3140 return false; 3141 } 3142 3143 Value *RV; 3144 if (ParseValue(Ty, RV, PFS)) return true; 3145 3146 if (ResType != RV->getType()) 3147 return Error(TypeLoc, "value doesn't match function result type '" + 3148 getTypeString(ResType) + "'"); 3149 3150 Inst = ReturnInst::Create(Context, RV); 3151 return false; 3152 } 3153 3154 3155 /// ParseBr 3156 /// ::= 'br' TypeAndValue 3157 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3158 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3159 LocTy Loc, Loc2; 3160 Value *Op0; 3161 BasicBlock *Op1, *Op2; 3162 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3163 3164 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3165 Inst = BranchInst::Create(BB); 3166 return false; 3167 } 3168 3169 if (Op0->getType() != Type::getInt1Ty(Context)) 3170 return Error(Loc, "branch condition must have 'i1' type"); 3171 3172 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3173 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3174 ParseToken(lltok::comma, "expected ',' after true destination") || 3175 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3176 return true; 3177 3178 Inst = BranchInst::Create(Op1, Op2, Op0); 3179 return false; 3180 } 3181 3182 /// ParseSwitch 3183 /// Instruction 3184 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3185 /// JumpTable 3186 /// ::= (TypeAndValue ',' TypeAndValue)* 3187 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3188 LocTy CondLoc, BBLoc; 3189 Value *Cond; 3190 BasicBlock *DefaultBB; 3191 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3192 ParseToken(lltok::comma, "expected ',' after switch condition") || 3193 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3194 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3195 return true; 3196 3197 if (!Cond->getType()->isIntegerTy()) 3198 return Error(CondLoc, "switch condition must have integer type"); 3199 3200 // Parse the jump table pairs. 3201 SmallPtrSet<Value*, 32> SeenCases; 3202 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3203 while (Lex.getKind() != lltok::rsquare) { 3204 Value *Constant; 3205 BasicBlock *DestBB; 3206 3207 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3208 ParseToken(lltok::comma, "expected ',' after case value") || 3209 ParseTypeAndBasicBlock(DestBB, PFS)) 3210 return true; 3211 3212 if (!SeenCases.insert(Constant)) 3213 return Error(CondLoc, "duplicate case value in switch"); 3214 if (!isa<ConstantInt>(Constant)) 3215 return Error(CondLoc, "case value is not a constant integer"); 3216 3217 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3218 } 3219 3220 Lex.Lex(); // Eat the ']'. 3221 3222 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3223 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3224 SI->addCase(Table[i].first, Table[i].second); 3225 Inst = SI; 3226 return false; 3227 } 3228 3229 /// ParseIndirectBr 3230 /// Instruction 3231 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3232 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3233 LocTy AddrLoc; 3234 Value *Address; 3235 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3236 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3237 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3238 return true; 3239 3240 if (!Address->getType()->isPointerTy()) 3241 return Error(AddrLoc, "indirectbr address must have pointer type"); 3242 3243 // Parse the destination list. 3244 SmallVector<BasicBlock*, 16> DestList; 3245 3246 if (Lex.getKind() != lltok::rsquare) { 3247 BasicBlock *DestBB; 3248 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3249 return true; 3250 DestList.push_back(DestBB); 3251 3252 while (EatIfPresent(lltok::comma)) { 3253 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3254 return true; 3255 DestList.push_back(DestBB); 3256 } 3257 } 3258 3259 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3260 return true; 3261 3262 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3263 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3264 IBI->addDestination(DestList[i]); 3265 Inst = IBI; 3266 return false; 3267 } 3268 3269 3270 /// ParseInvoke 3271 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3272 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3273 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3274 LocTy CallLoc = Lex.getLoc(); 3275 AttrBuilder RetAttrs, FnAttrs; 3276 CallingConv::ID CC; 3277 Type *RetType = 0; 3278 LocTy RetTypeLoc; 3279 ValID CalleeID; 3280 SmallVector<ParamInfo, 16> ArgList; 3281 3282 BasicBlock *NormalBB, *UnwindBB; 3283 if (ParseOptionalCallingConv(CC) || 3284 ParseOptionalAttrs(RetAttrs, 1) || 3285 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3286 ParseValID(CalleeID) || 3287 ParseParameterList(ArgList, PFS) || 3288 ParseOptionalAttrs(FnAttrs, 2) || 3289 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3290 ParseTypeAndBasicBlock(NormalBB, PFS) || 3291 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3292 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3293 return true; 3294 3295 // If RetType is a non-function pointer type, then this is the short syntax 3296 // for the call, which means that RetType is just the return type. Infer the 3297 // rest of the function argument types from the arguments that are present. 3298 PointerType *PFTy = 0; 3299 FunctionType *Ty = 0; 3300 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3301 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3302 // Pull out the types of all of the arguments... 3303 std::vector<Type*> ParamTypes; 3304 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3305 ParamTypes.push_back(ArgList[i].V->getType()); 3306 3307 if (!FunctionType::isValidReturnType(RetType)) 3308 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3309 3310 Ty = FunctionType::get(RetType, ParamTypes, false); 3311 PFTy = PointerType::getUnqual(Ty); 3312 } 3313 3314 // Look up the callee. 3315 Value *Callee; 3316 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3317 3318 // Set up the Attributes for the function. 3319 SmallVector<AttributeWithIndex, 8> Attrs; 3320 if (RetAttrs.hasAttributes()) 3321 Attrs.push_back( 3322 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3323 Attributes::get(Callee->getContext(), 3324 RetAttrs))); 3325 3326 SmallVector<Value*, 8> Args; 3327 3328 // Loop through FunctionType's arguments and ensure they are specified 3329 // correctly. Also, gather any parameter attributes. 3330 FunctionType::param_iterator I = Ty->param_begin(); 3331 FunctionType::param_iterator E = Ty->param_end(); 3332 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3333 Type *ExpectedTy = 0; 3334 if (I != E) { 3335 ExpectedTy = *I++; 3336 } else if (!Ty->isVarArg()) { 3337 return Error(ArgList[i].Loc, "too many arguments specified"); 3338 } 3339 3340 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3341 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3342 getTypeString(ExpectedTy) + "'"); 3343 Args.push_back(ArgList[i].V); 3344 if (ArgList[i].Attrs.hasAttributes()) 3345 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3346 } 3347 3348 if (I != E) 3349 return Error(CallLoc, "not enough parameters specified for call"); 3350 3351 if (FnAttrs.hasAttributes()) 3352 Attrs.push_back( 3353 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3354 Attributes::get(Callee->getContext(), 3355 FnAttrs))); 3356 3357 // Finish off the Attributes and check them 3358 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 3359 3360 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3361 II->setCallingConv(CC); 3362 II->setAttributes(PAL); 3363 Inst = II; 3364 return false; 3365 } 3366 3367 /// ParseResume 3368 /// ::= 'resume' TypeAndValue 3369 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3370 Value *Exn; LocTy ExnLoc; 3371 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3372 return true; 3373 3374 ResumeInst *RI = ResumeInst::Create(Exn); 3375 Inst = RI; 3376 return false; 3377 } 3378 3379 //===----------------------------------------------------------------------===// 3380 // Binary Operators. 3381 //===----------------------------------------------------------------------===// 3382 3383 /// ParseArithmetic 3384 /// ::= ArithmeticOps TypeAndValue ',' Value 3385 /// 3386 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3387 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3388 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3389 unsigned Opc, unsigned OperandType) { 3390 LocTy Loc; Value *LHS, *RHS; 3391 if (ParseTypeAndValue(LHS, Loc, PFS) || 3392 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3393 ParseValue(LHS->getType(), RHS, PFS)) 3394 return true; 3395 3396 bool Valid; 3397 switch (OperandType) { 3398 default: llvm_unreachable("Unknown operand type!"); 3399 case 0: // int or FP. 3400 Valid = LHS->getType()->isIntOrIntVectorTy() || 3401 LHS->getType()->isFPOrFPVectorTy(); 3402 break; 3403 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3404 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3405 } 3406 3407 if (!Valid) 3408 return Error(Loc, "invalid operand type for instruction"); 3409 3410 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3411 return false; 3412 } 3413 3414 /// ParseLogical 3415 /// ::= ArithmeticOps TypeAndValue ',' Value { 3416 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3417 unsigned Opc) { 3418 LocTy Loc; Value *LHS, *RHS; 3419 if (ParseTypeAndValue(LHS, Loc, PFS) || 3420 ParseToken(lltok::comma, "expected ',' in logical operation") || 3421 ParseValue(LHS->getType(), RHS, PFS)) 3422 return true; 3423 3424 if (!LHS->getType()->isIntOrIntVectorTy()) 3425 return Error(Loc,"instruction requires integer or integer vector operands"); 3426 3427 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3428 return false; 3429 } 3430 3431 3432 /// ParseCompare 3433 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3434 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3435 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3436 unsigned Opc) { 3437 // Parse the integer/fp comparison predicate. 3438 LocTy Loc; 3439 unsigned Pred; 3440 Value *LHS, *RHS; 3441 if (ParseCmpPredicate(Pred, Opc) || 3442 ParseTypeAndValue(LHS, Loc, PFS) || 3443 ParseToken(lltok::comma, "expected ',' after compare value") || 3444 ParseValue(LHS->getType(), RHS, PFS)) 3445 return true; 3446 3447 if (Opc == Instruction::FCmp) { 3448 if (!LHS->getType()->isFPOrFPVectorTy()) 3449 return Error(Loc, "fcmp requires floating point operands"); 3450 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3451 } else { 3452 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3453 if (!LHS->getType()->isIntOrIntVectorTy() && 3454 !LHS->getType()->getScalarType()->isPointerTy()) 3455 return Error(Loc, "icmp requires integer operands"); 3456 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3457 } 3458 return false; 3459 } 3460 3461 //===----------------------------------------------------------------------===// 3462 // Other Instructions. 3463 //===----------------------------------------------------------------------===// 3464 3465 3466 /// ParseCast 3467 /// ::= CastOpc TypeAndValue 'to' Type 3468 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3469 unsigned Opc) { 3470 LocTy Loc; 3471 Value *Op; 3472 Type *DestTy = 0; 3473 if (ParseTypeAndValue(Op, Loc, PFS) || 3474 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3475 ParseType(DestTy)) 3476 return true; 3477 3478 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3479 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3480 return Error(Loc, "invalid cast opcode for cast from '" + 3481 getTypeString(Op->getType()) + "' to '" + 3482 getTypeString(DestTy) + "'"); 3483 } 3484 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3485 return false; 3486 } 3487 3488 /// ParseSelect 3489 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3490 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3491 LocTy Loc; 3492 Value *Op0, *Op1, *Op2; 3493 if (ParseTypeAndValue(Op0, Loc, PFS) || 3494 ParseToken(lltok::comma, "expected ',' after select condition") || 3495 ParseTypeAndValue(Op1, PFS) || 3496 ParseToken(lltok::comma, "expected ',' after select value") || 3497 ParseTypeAndValue(Op2, PFS)) 3498 return true; 3499 3500 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3501 return Error(Loc, Reason); 3502 3503 Inst = SelectInst::Create(Op0, Op1, Op2); 3504 return false; 3505 } 3506 3507 /// ParseVA_Arg 3508 /// ::= 'va_arg' TypeAndValue ',' Type 3509 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3510 Value *Op; 3511 Type *EltTy = 0; 3512 LocTy TypeLoc; 3513 if (ParseTypeAndValue(Op, PFS) || 3514 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3515 ParseType(EltTy, TypeLoc)) 3516 return true; 3517 3518 if (!EltTy->isFirstClassType()) 3519 return Error(TypeLoc, "va_arg requires operand with first class type"); 3520 3521 Inst = new VAArgInst(Op, EltTy); 3522 return false; 3523 } 3524 3525 /// ParseExtractElement 3526 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3527 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3528 LocTy Loc; 3529 Value *Op0, *Op1; 3530 if (ParseTypeAndValue(Op0, Loc, PFS) || 3531 ParseToken(lltok::comma, "expected ',' after extract value") || 3532 ParseTypeAndValue(Op1, PFS)) 3533 return true; 3534 3535 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3536 return Error(Loc, "invalid extractelement operands"); 3537 3538 Inst = ExtractElementInst::Create(Op0, Op1); 3539 return false; 3540 } 3541 3542 /// ParseInsertElement 3543 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3544 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3545 LocTy Loc; 3546 Value *Op0, *Op1, *Op2; 3547 if (ParseTypeAndValue(Op0, Loc, PFS) || 3548 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3549 ParseTypeAndValue(Op1, PFS) || 3550 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3551 ParseTypeAndValue(Op2, PFS)) 3552 return true; 3553 3554 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3555 return Error(Loc, "invalid insertelement operands"); 3556 3557 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3558 return false; 3559 } 3560 3561 /// ParseShuffleVector 3562 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3563 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3564 LocTy Loc; 3565 Value *Op0, *Op1, *Op2; 3566 if (ParseTypeAndValue(Op0, Loc, PFS) || 3567 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3568 ParseTypeAndValue(Op1, PFS) || 3569 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3570 ParseTypeAndValue(Op2, PFS)) 3571 return true; 3572 3573 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3574 return Error(Loc, "invalid shufflevector operands"); 3575 3576 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3577 return false; 3578 } 3579 3580 /// ParsePHI 3581 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3582 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3583 Type *Ty = 0; LocTy TypeLoc; 3584 Value *Op0, *Op1; 3585 3586 if (ParseType(Ty, TypeLoc) || 3587 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3588 ParseValue(Ty, Op0, PFS) || 3589 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3590 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3591 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3592 return true; 3593 3594 bool AteExtraComma = false; 3595 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3596 while (1) { 3597 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3598 3599 if (!EatIfPresent(lltok::comma)) 3600 break; 3601 3602 if (Lex.getKind() == lltok::MetadataVar) { 3603 AteExtraComma = true; 3604 break; 3605 } 3606 3607 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3608 ParseValue(Ty, Op0, PFS) || 3609 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3610 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3611 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3612 return true; 3613 } 3614 3615 if (!Ty->isFirstClassType()) 3616 return Error(TypeLoc, "phi node must have first class type"); 3617 3618 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3619 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3620 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3621 Inst = PN; 3622 return AteExtraComma ? InstExtraComma : InstNormal; 3623 } 3624 3625 /// ParseLandingPad 3626 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3627 /// Clause 3628 /// ::= 'catch' TypeAndValue 3629 /// ::= 'filter' 3630 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3631 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3632 Type *Ty = 0; LocTy TyLoc; 3633 Value *PersFn; LocTy PersFnLoc; 3634 3635 if (ParseType(Ty, TyLoc) || 3636 ParseToken(lltok::kw_personality, "expected 'personality'") || 3637 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3638 return true; 3639 3640 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3641 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3642 3643 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3644 LandingPadInst::ClauseType CT; 3645 if (EatIfPresent(lltok::kw_catch)) 3646 CT = LandingPadInst::Catch; 3647 else if (EatIfPresent(lltok::kw_filter)) 3648 CT = LandingPadInst::Filter; 3649 else 3650 return TokError("expected 'catch' or 'filter' clause type"); 3651 3652 Value *V; LocTy VLoc; 3653 if (ParseTypeAndValue(V, VLoc, PFS)) { 3654 delete LP; 3655 return true; 3656 } 3657 3658 // A 'catch' type expects a non-array constant. A filter clause expects an 3659 // array constant. 3660 if (CT == LandingPadInst::Catch) { 3661 if (isa<ArrayType>(V->getType())) 3662 Error(VLoc, "'catch' clause has an invalid type"); 3663 } else { 3664 if (!isa<ArrayType>(V->getType())) 3665 Error(VLoc, "'filter' clause has an invalid type"); 3666 } 3667 3668 LP->addClause(V); 3669 } 3670 3671 Inst = LP; 3672 return false; 3673 } 3674 3675 /// ParseCall 3676 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3677 /// ParameterList OptionalAttrs 3678 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3679 bool isTail) { 3680 AttrBuilder RetAttrs, FnAttrs; 3681 CallingConv::ID CC; 3682 Type *RetType = 0; 3683 LocTy RetTypeLoc; 3684 ValID CalleeID; 3685 SmallVector<ParamInfo, 16> ArgList; 3686 LocTy CallLoc = Lex.getLoc(); 3687 3688 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3689 ParseOptionalCallingConv(CC) || 3690 ParseOptionalAttrs(RetAttrs, 1) || 3691 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3692 ParseValID(CalleeID) || 3693 ParseParameterList(ArgList, PFS) || 3694 ParseOptionalAttrs(FnAttrs, 2)) 3695 return true; 3696 3697 // If RetType is a non-function pointer type, then this is the short syntax 3698 // for the call, which means that RetType is just the return type. Infer the 3699 // rest of the function argument types from the arguments that are present. 3700 PointerType *PFTy = 0; 3701 FunctionType *Ty = 0; 3702 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3703 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3704 // Pull out the types of all of the arguments... 3705 std::vector<Type*> ParamTypes; 3706 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3707 ParamTypes.push_back(ArgList[i].V->getType()); 3708 3709 if (!FunctionType::isValidReturnType(RetType)) 3710 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3711 3712 Ty = FunctionType::get(RetType, ParamTypes, false); 3713 PFTy = PointerType::getUnqual(Ty); 3714 } 3715 3716 // Look up the callee. 3717 Value *Callee; 3718 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3719 3720 // Set up the Attributes for the function. 3721 SmallVector<AttributeWithIndex, 8> Attrs; 3722 if (RetAttrs.hasAttributes()) 3723 Attrs.push_back( 3724 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3725 Attributes::get(Callee->getContext(), 3726 RetAttrs))); 3727 3728 SmallVector<Value*, 8> Args; 3729 3730 // Loop through FunctionType's arguments and ensure they are specified 3731 // correctly. Also, gather any parameter attributes. 3732 FunctionType::param_iterator I = Ty->param_begin(); 3733 FunctionType::param_iterator E = Ty->param_end(); 3734 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3735 Type *ExpectedTy = 0; 3736 if (I != E) { 3737 ExpectedTy = *I++; 3738 } else if (!Ty->isVarArg()) { 3739 return Error(ArgList[i].Loc, "too many arguments specified"); 3740 } 3741 3742 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3743 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3744 getTypeString(ExpectedTy) + "'"); 3745 Args.push_back(ArgList[i].V); 3746 if (ArgList[i].Attrs.hasAttributes()) 3747 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3748 } 3749 3750 if (I != E) 3751 return Error(CallLoc, "not enough parameters specified for call"); 3752 3753 if (FnAttrs.hasAttributes()) 3754 Attrs.push_back( 3755 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3756 Attributes::get(Callee->getContext(), 3757 FnAttrs))); 3758 3759 // Finish off the Attributes and check them 3760 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 3761 3762 CallInst *CI = CallInst::Create(Callee, Args); 3763 CI->setTailCall(isTail); 3764 CI->setCallingConv(CC); 3765 CI->setAttributes(PAL); 3766 Inst = CI; 3767 return false; 3768 } 3769 3770 //===----------------------------------------------------------------------===// 3771 // Memory Instructions. 3772 //===----------------------------------------------------------------------===// 3773 3774 /// ParseAlloc 3775 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3776 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3777 Value *Size = 0; 3778 LocTy SizeLoc; 3779 unsigned Alignment = 0; 3780 Type *Ty = 0; 3781 if (ParseType(Ty)) return true; 3782 3783 bool AteExtraComma = false; 3784 if (EatIfPresent(lltok::comma)) { 3785 if (Lex.getKind() == lltok::kw_align) { 3786 if (ParseOptionalAlignment(Alignment)) return true; 3787 } else if (Lex.getKind() == lltok::MetadataVar) { 3788 AteExtraComma = true; 3789 } else { 3790 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3791 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3792 return true; 3793 } 3794 } 3795 3796 if (Size && !Size->getType()->isIntegerTy()) 3797 return Error(SizeLoc, "element count must have integer type"); 3798 3799 Inst = new AllocaInst(Ty, Size, Alignment); 3800 return AteExtraComma ? InstExtraComma : InstNormal; 3801 } 3802 3803 /// ParseLoad 3804 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3805 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3806 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3807 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3808 Value *Val; LocTy Loc; 3809 unsigned Alignment = 0; 3810 bool AteExtraComma = false; 3811 bool isAtomic = false; 3812 AtomicOrdering Ordering = NotAtomic; 3813 SynchronizationScope Scope = CrossThread; 3814 3815 if (Lex.getKind() == lltok::kw_atomic) { 3816 isAtomic = true; 3817 Lex.Lex(); 3818 } 3819 3820 bool isVolatile = false; 3821 if (Lex.getKind() == lltok::kw_volatile) { 3822 isVolatile = true; 3823 Lex.Lex(); 3824 } 3825 3826 if (ParseTypeAndValue(Val, Loc, PFS) || 3827 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3828 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3829 return true; 3830 3831 if (!Val->getType()->isPointerTy() || 3832 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3833 return Error(Loc, "load operand must be a pointer to a first class type"); 3834 if (isAtomic && !Alignment) 3835 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3836 if (Ordering == Release || Ordering == AcquireRelease) 3837 return Error(Loc, "atomic load cannot use Release ordering"); 3838 3839 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3840 return AteExtraComma ? InstExtraComma : InstNormal; 3841 } 3842 3843 /// ParseStore 3844 3845 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3846 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3847 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3848 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3849 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3850 unsigned Alignment = 0; 3851 bool AteExtraComma = false; 3852 bool isAtomic = false; 3853 AtomicOrdering Ordering = NotAtomic; 3854 SynchronizationScope Scope = CrossThread; 3855 3856 if (Lex.getKind() == lltok::kw_atomic) { 3857 isAtomic = true; 3858 Lex.Lex(); 3859 } 3860 3861 bool isVolatile = false; 3862 if (Lex.getKind() == lltok::kw_volatile) { 3863 isVolatile = true; 3864 Lex.Lex(); 3865 } 3866 3867 if (ParseTypeAndValue(Val, Loc, PFS) || 3868 ParseToken(lltok::comma, "expected ',' after store operand") || 3869 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3870 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3871 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3872 return true; 3873 3874 if (!Ptr->getType()->isPointerTy()) 3875 return Error(PtrLoc, "store operand must be a pointer"); 3876 if (!Val->getType()->isFirstClassType()) 3877 return Error(Loc, "store operand must be a first class value"); 3878 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3879 return Error(Loc, "stored value and pointer type do not match"); 3880 if (isAtomic && !Alignment) 3881 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3882 if (Ordering == Acquire || Ordering == AcquireRelease) 3883 return Error(Loc, "atomic store cannot use Acquire ordering"); 3884 3885 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3886 return AteExtraComma ? InstExtraComma : InstNormal; 3887 } 3888 3889 /// ParseCmpXchg 3890 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3891 /// 'singlethread'? AtomicOrdering 3892 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3893 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3894 bool AteExtraComma = false; 3895 AtomicOrdering Ordering = NotAtomic; 3896 SynchronizationScope Scope = CrossThread; 3897 bool isVolatile = false; 3898 3899 if (EatIfPresent(lltok::kw_volatile)) 3900 isVolatile = true; 3901 3902 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3903 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3904 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3905 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3906 ParseTypeAndValue(New, NewLoc, PFS) || 3907 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3908 return true; 3909 3910 if (Ordering == Unordered) 3911 return TokError("cmpxchg cannot be unordered"); 3912 if (!Ptr->getType()->isPointerTy()) 3913 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3914 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3915 return Error(CmpLoc, "compare value and pointer type do not match"); 3916 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3917 return Error(NewLoc, "new value and pointer type do not match"); 3918 if (!New->getType()->isIntegerTy()) 3919 return Error(NewLoc, "cmpxchg operand must be an integer"); 3920 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3921 if (Size < 8 || (Size & (Size - 1))) 3922 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3923 " integer"); 3924 3925 AtomicCmpXchgInst *CXI = 3926 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3927 CXI->setVolatile(isVolatile); 3928 Inst = CXI; 3929 return AteExtraComma ? InstExtraComma : InstNormal; 3930 } 3931 3932 /// ParseAtomicRMW 3933 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3934 /// 'singlethread'? AtomicOrdering 3935 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3936 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3937 bool AteExtraComma = false; 3938 AtomicOrdering Ordering = NotAtomic; 3939 SynchronizationScope Scope = CrossThread; 3940 bool isVolatile = false; 3941 AtomicRMWInst::BinOp Operation; 3942 3943 if (EatIfPresent(lltok::kw_volatile)) 3944 isVolatile = true; 3945 3946 switch (Lex.getKind()) { 3947 default: return TokError("expected binary operation in atomicrmw"); 3948 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3949 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3950 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3951 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3952 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3953 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3954 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3955 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3956 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3957 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3958 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3959 } 3960 Lex.Lex(); // Eat the operation. 3961 3962 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3963 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3964 ParseTypeAndValue(Val, ValLoc, PFS) || 3965 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3966 return true; 3967 3968 if (Ordering == Unordered) 3969 return TokError("atomicrmw cannot be unordered"); 3970 if (!Ptr->getType()->isPointerTy()) 3971 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3972 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3973 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3974 if (!Val->getType()->isIntegerTy()) 3975 return Error(ValLoc, "atomicrmw operand must be an integer"); 3976 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3977 if (Size < 8 || (Size & (Size - 1))) 3978 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3979 " integer"); 3980 3981 AtomicRMWInst *RMWI = 3982 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3983 RMWI->setVolatile(isVolatile); 3984 Inst = RMWI; 3985 return AteExtraComma ? InstExtraComma : InstNormal; 3986 } 3987 3988 /// ParseFence 3989 /// ::= 'fence' 'singlethread'? AtomicOrdering 3990 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3991 AtomicOrdering Ordering = NotAtomic; 3992 SynchronizationScope Scope = CrossThread; 3993 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3994 return true; 3995 3996 if (Ordering == Unordered) 3997 return TokError("fence cannot be unordered"); 3998 if (Ordering == Monotonic) 3999 return TokError("fence cannot be monotonic"); 4000 4001 Inst = new FenceInst(Context, Ordering, Scope); 4002 return InstNormal; 4003 } 4004 4005 /// ParseGetElementPtr 4006 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 4007 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 4008 Value *Ptr = 0; 4009 Value *Val = 0; 4010 LocTy Loc, EltLoc; 4011 4012 bool InBounds = EatIfPresent(lltok::kw_inbounds); 4013 4014 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 4015 4016 if (!Ptr->getType()->getScalarType()->isPointerTy()) 4017 return Error(Loc, "base of getelementptr must be a pointer"); 4018 4019 SmallVector<Value*, 16> Indices; 4020 bool AteExtraComma = false; 4021 while (EatIfPresent(lltok::comma)) { 4022 if (Lex.getKind() == lltok::MetadataVar) { 4023 AteExtraComma = true; 4024 break; 4025 } 4026 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4027 if (!Val->getType()->getScalarType()->isIntegerTy()) 4028 return Error(EltLoc, "getelementptr index must be an integer"); 4029 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4030 return Error(EltLoc, "getelementptr index type missmatch"); 4031 if (Val->getType()->isVectorTy()) { 4032 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4033 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4034 if (ValNumEl != PtrNumEl) 4035 return Error(EltLoc, 4036 "getelementptr vector index has a wrong number of elements"); 4037 } 4038 Indices.push_back(Val); 4039 } 4040 4041 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4042 return Error(Loc, "invalid getelementptr indices"); 4043 Inst = GetElementPtrInst::Create(Ptr, Indices); 4044 if (InBounds) 4045 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4046 return AteExtraComma ? InstExtraComma : InstNormal; 4047 } 4048 4049 /// ParseExtractValue 4050 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4051 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4052 Value *Val; LocTy Loc; 4053 SmallVector<unsigned, 4> Indices; 4054 bool AteExtraComma; 4055 if (ParseTypeAndValue(Val, Loc, PFS) || 4056 ParseIndexList(Indices, AteExtraComma)) 4057 return true; 4058 4059 if (!Val->getType()->isAggregateType()) 4060 return Error(Loc, "extractvalue operand must be aggregate type"); 4061 4062 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4063 return Error(Loc, "invalid indices for extractvalue"); 4064 Inst = ExtractValueInst::Create(Val, Indices); 4065 return AteExtraComma ? InstExtraComma : InstNormal; 4066 } 4067 4068 /// ParseInsertValue 4069 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4070 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4071 Value *Val0, *Val1; LocTy Loc0, Loc1; 4072 SmallVector<unsigned, 4> Indices; 4073 bool AteExtraComma; 4074 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4075 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4076 ParseTypeAndValue(Val1, Loc1, PFS) || 4077 ParseIndexList(Indices, AteExtraComma)) 4078 return true; 4079 4080 if (!Val0->getType()->isAggregateType()) 4081 return Error(Loc0, "insertvalue operand must be aggregate type"); 4082 4083 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4084 return Error(Loc0, "invalid indices for insertvalue"); 4085 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4086 return AteExtraComma ? InstExtraComma : InstNormal; 4087 } 4088 4089 //===----------------------------------------------------------------------===// 4090 // Embedded metadata. 4091 //===----------------------------------------------------------------------===// 4092 4093 /// ParseMDNodeVector 4094 /// ::= Element (',' Element)* 4095 /// Element 4096 /// ::= 'null' | TypeAndValue 4097 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4098 PerFunctionState *PFS) { 4099 // Check for an empty list. 4100 if (Lex.getKind() == lltok::rbrace) 4101 return false; 4102 4103 do { 4104 // Null is a special case since it is typeless. 4105 if (EatIfPresent(lltok::kw_null)) { 4106 Elts.push_back(0); 4107 continue; 4108 } 4109 4110 Value *V = 0; 4111 if (ParseTypeAndValue(V, PFS)) return true; 4112 Elts.push_back(V); 4113 } while (EatIfPresent(lltok::comma)); 4114 4115 return false; 4116 } 4117