1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   switch (Lex.getKind()) {
825   case lltok::kw_gv:
826     return ParseGVEntry(SummaryID);
827   case lltok::kw_module:
828     return ParseModuleEntry(SummaryID);
829   case lltok::kw_typeid:
830     return ParseTypeIdEntry(SummaryID);
831     break;
832   default:
833     return Error(Lex.getLoc(), "unexpected summary kind");
834   }
835   Lex.setIgnoreColonInIdentifiers(false);
836   return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847   if (DSOLocal)
848     GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 ///                     OptionalVisibility OptionalDLLStorageClass
854 ///                     OptionalThreadLocal OptionalUnnamedAddr
855 //                      'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 ///   ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863                                    unsigned L, unsigned Visibility,
864                                    unsigned DLLStorageClass, bool DSOLocal,
865                                    GlobalVariable::ThreadLocalMode TLM,
866                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
867   bool IsAlias;
868   if (Lex.getKind() == lltok::kw_alias)
869     IsAlias = true;
870   else if (Lex.getKind() == lltok::kw_ifunc)
871     IsAlias = false;
872   else
873     llvm_unreachable("Not an alias or ifunc!");
874   Lex.Lex();
875 
876   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
877 
878   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879     return Error(NameLoc, "invalid linkage type for alias");
880 
881   if (!isValidVisibilityForLinkage(Visibility, L))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   Type *Ty;
886   LocTy ExplicitTypeLoc = Lex.getLoc();
887   if (ParseType(Ty) ||
888       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889     return true;
890 
891   Constant *Aliasee;
892   LocTy AliaseeLoc = Lex.getLoc();
893   if (Lex.getKind() != lltok::kw_bitcast &&
894       Lex.getKind() != lltok::kw_getelementptr &&
895       Lex.getKind() != lltok::kw_addrspacecast &&
896       Lex.getKind() != lltok::kw_inttoptr) {
897     if (ParseGlobalTypeAndValue(Aliasee))
898       return true;
899   } else {
900     // The bitcast dest type is not present, it is implied by the dest type.
901     ValID ID;
902     if (ParseValID(ID))
903       return true;
904     if (ID.Kind != ValID::t_Constant)
905       return Error(AliaseeLoc, "invalid aliasee");
906     Aliasee = ID.ConstantVal;
907   }
908 
909   Type *AliaseeType = Aliasee->getType();
910   auto *PTy = dyn_cast<PointerType>(AliaseeType);
911   if (!PTy)
912     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913   unsigned AddrSpace = PTy->getAddressSpace();
914 
915   if (IsAlias && Ty != PTy->getElementType())
916     return Error(
917         ExplicitTypeLoc,
918         "explicit pointee type doesn't match operand's pointee type");
919 
920   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921     return Error(
922         ExplicitTypeLoc,
923         "explicit pointee type should be a function type");
924 
925   GlobalValue *GVal = nullptr;
926 
927   // See if the alias was forward referenced, if so, prepare to replace the
928   // forward reference.
929   if (!Name.empty()) {
930     GVal = M->getNamedValue(Name);
931     if (GVal) {
932       if (!ForwardRefVals.erase(Name))
933         return Error(NameLoc, "redefinition of global '@" + Name + "'");
934     }
935   } else {
936     auto I = ForwardRefValIDs.find(NumberedVals.size());
937     if (I != ForwardRefValIDs.end()) {
938       GVal = I->second.first;
939       ForwardRefValIDs.erase(I);
940     }
941   }
942 
943   // Okay, create the alias but do not insert it into the module yet.
944   std::unique_ptr<GlobalIndirectSymbol> GA;
945   if (IsAlias)
946     GA.reset(GlobalAlias::create(Ty, AddrSpace,
947                                  (GlobalValue::LinkageTypes)Linkage, Name,
948                                  Aliasee, /*Parent*/ nullptr));
949   else
950     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   GA->setThreadLocalMode(TLM);
954   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GA->setUnnamedAddr(UnnamedAddr);
957   maybeSetDSOLocal(DSOLocal, *GA);
958 
959   if (Name.empty())
960     NumberedVals.push_back(GA.get());
961 
962   if (GVal) {
963     // Verify that types agree.
964     if (GVal->getType() != GA->getType())
965       return Error(
966           ExplicitTypeLoc,
967           "forward reference and definition of alias have different types");
968 
969     // If they agree, just RAUW the old value with the alias and remove the
970     // forward ref info.
971     GVal->replaceAllUsesWith(GA.get());
972     GVal->eraseFromParent();
973   }
974 
975   // Insert into the module, we know its name won't collide now.
976   if (IsAlias)
977     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978   else
979     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980   assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982   // The module owns this now
983   GA.release();
984 
985   return false;
986 }
987 
988 /// ParseGlobal
989 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 ///       OptionalVisibility OptionalDLLStorageClass
991 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 ///       Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002                            unsigned Linkage, bool HasLinkage,
1003                            unsigned Visibility, unsigned DLLStorageClass,
1004                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1006   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007     return Error(NameLoc,
1008                  "symbol with local linkage must have default visibility");
1009 
1010   unsigned AddrSpace;
1011   bool IsConstant, IsExternallyInitialized;
1012   LocTy IsExternallyInitializedLoc;
1013   LocTy TyLoc;
1014 
1015   Type *Ty = nullptr;
1016   if (ParseOptionalAddrSpace(AddrSpace) ||
1017       ParseOptionalToken(lltok::kw_externally_initialized,
1018                          IsExternallyInitialized,
1019                          &IsExternallyInitializedLoc) ||
1020       ParseGlobalType(IsConstant) ||
1021       ParseType(Ty, TyLoc))
1022     return true;
1023 
1024   // If the linkage is specified and is external, then no initializer is
1025   // present.
1026   Constant *Init = nullptr;
1027   if (!HasLinkage ||
1028       !GlobalValue::isValidDeclarationLinkage(
1029           (GlobalValue::LinkageTypes)Linkage)) {
1030     if (ParseGlobalValue(Ty, Init))
1031       return true;
1032   }
1033 
1034   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035     return Error(TyLoc, "invalid type for global variable");
1036 
1037   GlobalValue *GVal = nullptr;
1038 
1039   // See if the global was forward referenced, if so, use the global.
1040   if (!Name.empty()) {
1041     GVal = M->getNamedValue(Name);
1042     if (GVal) {
1043       if (!ForwardRefVals.erase(Name))
1044         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045     }
1046   } else {
1047     auto I = ForwardRefValIDs.find(NumberedVals.size());
1048     if (I != ForwardRefValIDs.end()) {
1049       GVal = I->second.first;
1050       ForwardRefValIDs.erase(I);
1051     }
1052   }
1053 
1054   GlobalVariable *GV;
1055   if (!GVal) {
1056     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057                             Name, nullptr, GlobalVariable::NotThreadLocal,
1058                             AddrSpace);
1059   } else {
1060     if (GVal->getValueType() != Ty)
1061       return Error(TyLoc,
1062             "forward reference and definition of global have different types");
1063 
1064     GV = cast<GlobalVariable>(GVal);
1065 
1066     // Move the forward-reference to the correct spot in the module.
1067     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068   }
1069 
1070   if (Name.empty())
1071     NumberedVals.push_back(GV);
1072 
1073   // Set the parsed properties on the global.
1074   if (Init)
1075     GV->setInitializer(Init);
1076   GV->setConstant(IsConstant);
1077   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078   maybeSetDSOLocal(DSOLocal, *GV);
1079   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081   GV->setExternallyInitialized(IsExternallyInitialized);
1082   GV->setThreadLocalMode(TLM);
1083   GV->setUnnamedAddr(UnnamedAddr);
1084 
1085   // Parse attributes on the global.
1086   while (Lex.getKind() == lltok::comma) {
1087     Lex.Lex();
1088 
1089     if (Lex.getKind() == lltok::kw_section) {
1090       Lex.Lex();
1091       GV->setSection(Lex.getStrVal());
1092       if (ParseToken(lltok::StringConstant, "expected global section string"))
1093         return true;
1094     } else if (Lex.getKind() == lltok::kw_align) {
1095       unsigned Alignment;
1096       if (ParseOptionalAlignment(Alignment)) return true;
1097       GV->setAlignment(Alignment);
1098     } else if (Lex.getKind() == lltok::MetadataVar) {
1099       if (ParseGlobalObjectMetadataAttachment(*GV))
1100         return true;
1101     } else {
1102       Comdat *C;
1103       if (parseOptionalComdat(Name, C))
1104         return true;
1105       if (C)
1106         GV->setComdat(C);
1107       else
1108         return TokError("unknown global variable property!");
1109     }
1110   }
1111 
1112   AttrBuilder Attrs;
1113   LocTy BuiltinLoc;
1114   std::vector<unsigned> FwdRefAttrGrps;
1115   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116     return true;
1117   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118     GV->setAttributes(AttributeSet::get(Context, Attrs));
1119     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120   }
1121 
1122   return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128   assert(Lex.getKind() == lltok::kw_attributes);
1129   LocTy AttrGrpLoc = Lex.getLoc();
1130   Lex.Lex();
1131 
1132   if (Lex.getKind() != lltok::AttrGrpID)
1133     return TokError("expected attribute group id");
1134 
1135   unsigned VarID = Lex.getUIntVal();
1136   std::vector<unsigned> unused;
1137   LocTy BuiltinLoc;
1138   Lex.Lex();
1139 
1140   if (ParseToken(lltok::equal, "expected '=' here") ||
1141       ParseToken(lltok::lbrace, "expected '{' here") ||
1142       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143                                  BuiltinLoc) ||
1144       ParseToken(lltok::rbrace, "expected end of attribute group"))
1145     return true;
1146 
1147   if (!NumberedAttrBuilders[VarID].hasAttributes())
1148     return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150   return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 ///   ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156                                           std::vector<unsigned> &FwdRefAttrGrps,
1157                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1158   bool HaveError = false;
1159 
1160   B.clear();
1161 
1162   while (true) {
1163     lltok::Kind Token = Lex.getKind();
1164     if (Token == lltok::kw_builtin)
1165       BuiltinLoc = Lex.getLoc();
1166     switch (Token) {
1167     default:
1168       if (!inAttrGrp) return HaveError;
1169       return Error(Lex.getLoc(), "unterminated attribute group");
1170     case lltok::rbrace:
1171       // Finished.
1172       return false;
1173 
1174     case lltok::AttrGrpID: {
1175       // Allow a function to reference an attribute group:
1176       //
1177       //   define void @foo() #1 { ... }
1178       if (inAttrGrp)
1179         HaveError |=
1180           Error(Lex.getLoc(),
1181               "cannot have an attribute group reference in an attribute group");
1182 
1183       unsigned AttrGrpNum = Lex.getUIntVal();
1184       if (inAttrGrp) break;
1185 
1186       // Save the reference to the attribute group. We'll fill it in later.
1187       FwdRefAttrGrps.push_back(AttrGrpNum);
1188       break;
1189     }
1190     // Target-dependent attributes:
1191     case lltok::StringConstant: {
1192       if (ParseStringAttribute(B))
1193         return true;
1194       continue;
1195     }
1196 
1197     // Target-independent attributes:
1198     case lltok::kw_align: {
1199       // As a hack, we allow function alignment to be initially parsed as an
1200       // attribute on a function declaration/definition or added to an attribute
1201       // group and later moved to the alignment field.
1202       unsigned Alignment;
1203       if (inAttrGrp) {
1204         Lex.Lex();
1205         if (ParseToken(lltok::equal, "expected '=' here") ||
1206             ParseUInt32(Alignment))
1207           return true;
1208       } else {
1209         if (ParseOptionalAlignment(Alignment))
1210           return true;
1211       }
1212       B.addAlignmentAttr(Alignment);
1213       continue;
1214     }
1215     case lltok::kw_alignstack: {
1216       unsigned Alignment;
1217       if (inAttrGrp) {
1218         Lex.Lex();
1219         if (ParseToken(lltok::equal, "expected '=' here") ||
1220             ParseUInt32(Alignment))
1221           return true;
1222       } else {
1223         if (ParseOptionalStackAlignment(Alignment))
1224           return true;
1225       }
1226       B.addStackAlignmentAttr(Alignment);
1227       continue;
1228     }
1229     case lltok::kw_allocsize: {
1230       unsigned ElemSizeArg;
1231       Optional<unsigned> NumElemsArg;
1232       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234         return true;
1235       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236       continue;
1237     }
1238     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243     case lltok::kw_inaccessiblememonly:
1244       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245     case lltok::kw_inaccessiblemem_or_argmemonly:
1246       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253     case lltok::kw_noimplicitfloat:
1254       B.addAttribute(Attribute::NoImplicitFloat); break;
1255     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262     case lltok::kw_optforfuzzing:
1263       B.addAttribute(Attribute::OptForFuzzing); break;
1264     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268     case lltok::kw_returns_twice:
1269       B.addAttribute(Attribute::ReturnsTwice); break;
1270     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273     case lltok::kw_sspstrong:
1274       B.addAttribute(Attribute::StackProtectStrong); break;
1275     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276     case lltok::kw_shadowcallstack:
1277       B.addAttribute(Attribute::ShadowCallStack); break;
1278     case lltok::kw_sanitize_address:
1279       B.addAttribute(Attribute::SanitizeAddress); break;
1280     case lltok::kw_sanitize_hwaddress:
1281       B.addAttribute(Attribute::SanitizeHWAddress); break;
1282     case lltok::kw_sanitize_thread:
1283       B.addAttribute(Attribute::SanitizeThread); break;
1284     case lltok::kw_sanitize_memory:
1285       B.addAttribute(Attribute::SanitizeMemory); break;
1286     case lltok::kw_speculative_load_hardening:
1287       B.addAttribute(Attribute::SpeculativeLoadHardening);
1288       break;
1289     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293     // Error handling.
1294     case lltok::kw_inreg:
1295     case lltok::kw_signext:
1296     case lltok::kw_zeroext:
1297       HaveError |=
1298         Error(Lex.getLoc(),
1299               "invalid use of attribute on a function");
1300       break;
1301     case lltok::kw_byval:
1302     case lltok::kw_dereferenceable:
1303     case lltok::kw_dereferenceable_or_null:
1304     case lltok::kw_inalloca:
1305     case lltok::kw_nest:
1306     case lltok::kw_noalias:
1307     case lltok::kw_nocapture:
1308     case lltok::kw_nonnull:
1309     case lltok::kw_returned:
1310     case lltok::kw_sret:
1311     case lltok::kw_swifterror:
1312     case lltok::kw_swiftself:
1313     case lltok::kw_immarg:
1314       HaveError |=
1315         Error(Lex.getLoc(),
1316               "invalid use of parameter-only attribute on a function");
1317       break;
1318     }
1319 
1320     Lex.Lex();
1321   }
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1327 
1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1329                                               const std::string &Name) {
1330   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1331     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1332                             PTy->getAddressSpace(), Name, M);
1333   else
1334     return new GlobalVariable(*M, PTy->getElementType(), false,
1335                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1336                               nullptr, GlobalVariable::NotThreadLocal,
1337                               PTy->getAddressSpace());
1338 }
1339 
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341                                         Value *Val, bool IsCall) {
1342   if (Val->getType() == Ty)
1343     return Val;
1344   // For calls we also accept variables in the program address space.
1345   Type *SuggestedTy = Ty;
1346   if (IsCall && isa<PointerType>(Ty)) {
1347     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1348         M->getDataLayout().getProgramAddressSpace());
1349     SuggestedTy = TyInProgAS;
1350     if (Val->getType() == TyInProgAS)
1351       return Val;
1352   }
1353   if (Ty->isLabelTy())
1354     Error(Loc, "'" + Name + "' is not a basic block");
1355   else
1356     Error(Loc, "'" + Name + "' defined with type '" +
1357                    getTypeString(Val->getType()) + "' but expected '" +
1358                    getTypeString(SuggestedTy) + "'");
1359   return nullptr;
1360 }
1361 
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed.  This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366                                     LocTy Loc, bool IsCall) {
1367   PointerType *PTy = dyn_cast<PointerType>(Ty);
1368   if (!PTy) {
1369     Error(Loc, "global variable reference must have pointer type");
1370     return nullptr;
1371   }
1372 
1373   // Look this name up in the normal function symbol table.
1374   GlobalValue *Val =
1375     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1376 
1377   // If this is a forward reference for the value, see if we already created a
1378   // forward ref record.
1379   if (!Val) {
1380     auto I = ForwardRefVals.find(Name);
1381     if (I != ForwardRefVals.end())
1382       Val = I->second.first;
1383   }
1384 
1385   // If we have the value in the symbol table or fwd-ref table, return it.
1386   if (Val)
1387     return cast_or_null<GlobalValue>(
1388         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1389 
1390   // Otherwise, create a new forward reference for this value and remember it.
1391   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393   return FwdVal;
1394 }
1395 
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397                                     bool IsCall) {
1398   PointerType *PTy = dyn_cast<PointerType>(Ty);
1399   if (!PTy) {
1400     Error(Loc, "global variable reference must have pointer type");
1401     return nullptr;
1402   }
1403 
1404   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1405 
1406   // If this is a forward reference for the value, see if we already created a
1407   // forward ref record.
1408   if (!Val) {
1409     auto I = ForwardRefValIDs.find(ID);
1410     if (I != ForwardRefValIDs.end())
1411       Val = I->second.first;
1412   }
1413 
1414   // If we have the value in the symbol table or fwd-ref table, return it.
1415   if (Val)
1416     return cast_or_null<GlobalValue>(
1417         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1418 
1419   // Otherwise, create a new forward reference for this value and remember it.
1420   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422   return FwdVal;
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1428 
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430   // Look this name up in the comdat symbol table.
1431   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433   if (I != ComdatSymTab.end())
1434     return &I->second;
1435 
1436   // Otherwise, create a new forward reference for this value and remember it.
1437   Comdat *C = M->getOrInsertComdat(Name);
1438   ForwardRefComdats[Name] = Loc;
1439   return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success.  Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449   if (Lex.getKind() != T)
1450     return TokError(ErrMsg);
1451   Lex.Lex();
1452   return false;
1453 }
1454 
1455 /// ParseStringConstant
1456 ///   ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458   if (Lex.getKind() != lltok::StringConstant)
1459     return TokError("expected string constant");
1460   Result = Lex.getStrVal();
1461   Lex.Lex();
1462   return false;
1463 }
1464 
1465 /// ParseUInt32
1466 ///   ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469     return TokError("expected integer");
1470   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471   if (Val64 != unsigned(Val64))
1472     return TokError("expected 32-bit integer (too large)");
1473   Val = Val64;
1474   Lex.Lex();
1475   return false;
1476 }
1477 
1478 /// ParseUInt64
1479 ///   ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482     return TokError("expected integer");
1483   Val = Lex.getAPSIntVal().getLimitedValue();
1484   Lex.Lex();
1485   return false;
1486 }
1487 
1488 /// ParseTLSModel
1489 ///   := 'localdynamic'
1490 ///   := 'initialexec'
1491 ///   := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493   switch (Lex.getKind()) {
1494     default:
1495       return TokError("expected localdynamic, initialexec or localexec");
1496     case lltok::kw_localdynamic:
1497       TLM = GlobalVariable::LocalDynamicTLSModel;
1498       break;
1499     case lltok::kw_initialexec:
1500       TLM = GlobalVariable::InitialExecTLSModel;
1501       break;
1502     case lltok::kw_localexec:
1503       TLM = GlobalVariable::LocalExecTLSModel;
1504       break;
1505   }
1506 
1507   Lex.Lex();
1508   return false;
1509 }
1510 
1511 /// ParseOptionalThreadLocal
1512 ///   := /*empty*/
1513 ///   := 'thread_local'
1514 ///   := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1516   TLM = GlobalVariable::NotThreadLocal;
1517   if (!EatIfPresent(lltok::kw_thread_local))
1518     return false;
1519 
1520   TLM = GlobalVariable::GeneralDynamicTLSModel;
1521   if (Lex.getKind() == lltok::lparen) {
1522     Lex.Lex();
1523     return ParseTLSModel(TLM) ||
1524       ParseToken(lltok::rparen, "expected ')' after thread local model");
1525   }
1526   return false;
1527 }
1528 
1529 /// ParseOptionalAddrSpace
1530 ///   := /*empty*/
1531 ///   := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533   AddrSpace = DefaultAS;
1534   if (!EatIfPresent(lltok::kw_addrspace))
1535     return false;
1536   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537          ParseUInt32(AddrSpace) ||
1538          ParseToken(lltok::rparen, "expected ')' in address space");
1539 }
1540 
1541 /// ParseStringAttribute
1542 ///   := StringConstant
1543 ///   := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545   std::string Attr = Lex.getStrVal();
1546   Lex.Lex();
1547   std::string Val;
1548   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549     return true;
1550   B.addAttribute(Attr, Val);
1551   return false;
1552 }
1553 
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556   bool HaveError = false;
1557 
1558   B.clear();
1559 
1560   while (true) {
1561     lltok::Kind Token = Lex.getKind();
1562     switch (Token) {
1563     default:  // End of attributes.
1564       return HaveError;
1565     case lltok::StringConstant: {
1566       if (ParseStringAttribute(B))
1567         return true;
1568       continue;
1569     }
1570     case lltok::kw_align: {
1571       unsigned Alignment;
1572       if (ParseOptionalAlignment(Alignment))
1573         return true;
1574       B.addAlignmentAttr(Alignment);
1575       continue;
1576     }
1577     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1578     case lltok::kw_dereferenceable: {
1579       uint64_t Bytes;
1580       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581         return true;
1582       B.addDereferenceableAttr(Bytes);
1583       continue;
1584     }
1585     case lltok::kw_dereferenceable_or_null: {
1586       uint64_t Bytes;
1587       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588         return true;
1589       B.addDereferenceableOrNullAttr(Bytes);
1590       continue;
1591     }
1592     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1593     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1594     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1595     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1596     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1597     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1598     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1599     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1600     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1601     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1602     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1603     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1604     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1605     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1606     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1607     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1608 
1609     case lltok::kw_alignstack:
1610     case lltok::kw_alwaysinline:
1611     case lltok::kw_argmemonly:
1612     case lltok::kw_builtin:
1613     case lltok::kw_inlinehint:
1614     case lltok::kw_jumptable:
1615     case lltok::kw_minsize:
1616     case lltok::kw_naked:
1617     case lltok::kw_nobuiltin:
1618     case lltok::kw_noduplicate:
1619     case lltok::kw_noimplicitfloat:
1620     case lltok::kw_noinline:
1621     case lltok::kw_nonlazybind:
1622     case lltok::kw_noredzone:
1623     case lltok::kw_noreturn:
1624     case lltok::kw_nocf_check:
1625     case lltok::kw_nounwind:
1626     case lltok::kw_optforfuzzing:
1627     case lltok::kw_optnone:
1628     case lltok::kw_optsize:
1629     case lltok::kw_returns_twice:
1630     case lltok::kw_sanitize_address:
1631     case lltok::kw_sanitize_hwaddress:
1632     case lltok::kw_sanitize_memory:
1633     case lltok::kw_sanitize_thread:
1634     case lltok::kw_speculative_load_hardening:
1635     case lltok::kw_ssp:
1636     case lltok::kw_sspreq:
1637     case lltok::kw_sspstrong:
1638     case lltok::kw_safestack:
1639     case lltok::kw_shadowcallstack:
1640     case lltok::kw_strictfp:
1641     case lltok::kw_uwtable:
1642       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643       break;
1644     }
1645 
1646     Lex.Lex();
1647   }
1648 }
1649 
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652   bool HaveError = false;
1653 
1654   B.clear();
1655 
1656   while (true) {
1657     lltok::Kind Token = Lex.getKind();
1658     switch (Token) {
1659     default:  // End of attributes.
1660       return HaveError;
1661     case lltok::StringConstant: {
1662       if (ParseStringAttribute(B))
1663         return true;
1664       continue;
1665     }
1666     case lltok::kw_dereferenceable: {
1667       uint64_t Bytes;
1668       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669         return true;
1670       B.addDereferenceableAttr(Bytes);
1671       continue;
1672     }
1673     case lltok::kw_dereferenceable_or_null: {
1674       uint64_t Bytes;
1675       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676         return true;
1677       B.addDereferenceableOrNullAttr(Bytes);
1678       continue;
1679     }
1680     case lltok::kw_align: {
1681       unsigned Alignment;
1682       if (ParseOptionalAlignment(Alignment))
1683         return true;
1684       B.addAlignmentAttr(Alignment);
1685       continue;
1686     }
1687     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1688     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1689     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1690     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1691     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1692 
1693     // Error handling.
1694     case lltok::kw_byval:
1695     case lltok::kw_inalloca:
1696     case lltok::kw_nest:
1697     case lltok::kw_nocapture:
1698     case lltok::kw_returned:
1699     case lltok::kw_sret:
1700     case lltok::kw_swifterror:
1701     case lltok::kw_swiftself:
1702     case lltok::kw_immarg:
1703       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704       break;
1705 
1706     case lltok::kw_alignstack:
1707     case lltok::kw_alwaysinline:
1708     case lltok::kw_argmemonly:
1709     case lltok::kw_builtin:
1710     case lltok::kw_cold:
1711     case lltok::kw_inlinehint:
1712     case lltok::kw_jumptable:
1713     case lltok::kw_minsize:
1714     case lltok::kw_naked:
1715     case lltok::kw_nobuiltin:
1716     case lltok::kw_noduplicate:
1717     case lltok::kw_noimplicitfloat:
1718     case lltok::kw_noinline:
1719     case lltok::kw_nonlazybind:
1720     case lltok::kw_noredzone:
1721     case lltok::kw_noreturn:
1722     case lltok::kw_nocf_check:
1723     case lltok::kw_nounwind:
1724     case lltok::kw_optforfuzzing:
1725     case lltok::kw_optnone:
1726     case lltok::kw_optsize:
1727     case lltok::kw_returns_twice:
1728     case lltok::kw_sanitize_address:
1729     case lltok::kw_sanitize_hwaddress:
1730     case lltok::kw_sanitize_memory:
1731     case lltok::kw_sanitize_thread:
1732     case lltok::kw_speculative_load_hardening:
1733     case lltok::kw_ssp:
1734     case lltok::kw_sspreq:
1735     case lltok::kw_sspstrong:
1736     case lltok::kw_safestack:
1737     case lltok::kw_shadowcallstack:
1738     case lltok::kw_strictfp:
1739     case lltok::kw_uwtable:
1740       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741       break;
1742 
1743     case lltok::kw_readnone:
1744     case lltok::kw_readonly:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1746     }
1747 
1748     Lex.Lex();
1749   }
1750 }
1751 
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753   HasLinkage = true;
1754   switch (Kind) {
1755   default:
1756     HasLinkage = false;
1757     return GlobalValue::ExternalLinkage;
1758   case lltok::kw_private:
1759     return GlobalValue::PrivateLinkage;
1760   case lltok::kw_internal:
1761     return GlobalValue::InternalLinkage;
1762   case lltok::kw_weak:
1763     return GlobalValue::WeakAnyLinkage;
1764   case lltok::kw_weak_odr:
1765     return GlobalValue::WeakODRLinkage;
1766   case lltok::kw_linkonce:
1767     return GlobalValue::LinkOnceAnyLinkage;
1768   case lltok::kw_linkonce_odr:
1769     return GlobalValue::LinkOnceODRLinkage;
1770   case lltok::kw_available_externally:
1771     return GlobalValue::AvailableExternallyLinkage;
1772   case lltok::kw_appending:
1773     return GlobalValue::AppendingLinkage;
1774   case lltok::kw_common:
1775     return GlobalValue::CommonLinkage;
1776   case lltok::kw_extern_weak:
1777     return GlobalValue::ExternalWeakLinkage;
1778   case lltok::kw_external:
1779     return GlobalValue::ExternalLinkage;
1780   }
1781 }
1782 
1783 /// ParseOptionalLinkage
1784 ///   ::= /*empty*/
1785 ///   ::= 'private'
1786 ///   ::= 'internal'
1787 ///   ::= 'weak'
1788 ///   ::= 'weak_odr'
1789 ///   ::= 'linkonce'
1790 ///   ::= 'linkonce_odr'
1791 ///   ::= 'available_externally'
1792 ///   ::= 'appending'
1793 ///   ::= 'common'
1794 ///   ::= 'extern_weak'
1795 ///   ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797                                     unsigned &Visibility,
1798                                     unsigned &DLLStorageClass,
1799                                     bool &DSOLocal) {
1800   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801   if (HasLinkage)
1802     Lex.Lex();
1803   ParseOptionalDSOLocal(DSOLocal);
1804   ParseOptionalVisibility(Visibility);
1805   ParseOptionalDLLStorageClass(DLLStorageClass);
1806 
1807   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1809   }
1810 
1811   return false;
1812 }
1813 
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815   switch (Lex.getKind()) {
1816   default:
1817     DSOLocal = false;
1818     break;
1819   case lltok::kw_dso_local:
1820     DSOLocal = true;
1821     Lex.Lex();
1822     break;
1823   case lltok::kw_dso_preemptable:
1824     DSOLocal = false;
1825     Lex.Lex();
1826     break;
1827   }
1828 }
1829 
1830 /// ParseOptionalVisibility
1831 ///   ::= /*empty*/
1832 ///   ::= 'default'
1833 ///   ::= 'hidden'
1834 ///   ::= 'protected'
1835 ///
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837   switch (Lex.getKind()) {
1838   default:
1839     Res = GlobalValue::DefaultVisibility;
1840     return;
1841   case lltok::kw_default:
1842     Res = GlobalValue::DefaultVisibility;
1843     break;
1844   case lltok::kw_hidden:
1845     Res = GlobalValue::HiddenVisibility;
1846     break;
1847   case lltok::kw_protected:
1848     Res = GlobalValue::ProtectedVisibility;
1849     break;
1850   }
1851   Lex.Lex();
1852 }
1853 
1854 /// ParseOptionalDLLStorageClass
1855 ///   ::= /*empty*/
1856 ///   ::= 'dllimport'
1857 ///   ::= 'dllexport'
1858 ///
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860   switch (Lex.getKind()) {
1861   default:
1862     Res = GlobalValue::DefaultStorageClass;
1863     return;
1864   case lltok::kw_dllimport:
1865     Res = GlobalValue::DLLImportStorageClass;
1866     break;
1867   case lltok::kw_dllexport:
1868     Res = GlobalValue::DLLExportStorageClass;
1869     break;
1870   }
1871   Lex.Lex();
1872 }
1873 
1874 /// ParseOptionalCallingConv
1875 ///   ::= /*empty*/
1876 ///   ::= 'ccc'
1877 ///   ::= 'fastcc'
1878 ///   ::= 'intel_ocl_bicc'
1879 ///   ::= 'coldcc'
1880 ///   ::= 'x86_stdcallcc'
1881 ///   ::= 'x86_fastcallcc'
1882 ///   ::= 'x86_thiscallcc'
1883 ///   ::= 'x86_vectorcallcc'
1884 ///   ::= 'arm_apcscc'
1885 ///   ::= 'arm_aapcscc'
1886 ///   ::= 'arm_aapcs_vfpcc'
1887 ///   ::= 'aarch64_vector_pcs'
1888 ///   ::= 'msp430_intrcc'
1889 ///   ::= 'avr_intrcc'
1890 ///   ::= 'avr_signalcc'
1891 ///   ::= 'ptx_kernel'
1892 ///   ::= 'ptx_device'
1893 ///   ::= 'spir_func'
1894 ///   ::= 'spir_kernel'
1895 ///   ::= 'x86_64_sysvcc'
1896 ///   ::= 'win64cc'
1897 ///   ::= 'webkit_jscc'
1898 ///   ::= 'anyregcc'
1899 ///   ::= 'preserve_mostcc'
1900 ///   ::= 'preserve_allcc'
1901 ///   ::= 'ghccc'
1902 ///   ::= 'swiftcc'
1903 ///   ::= 'x86_intrcc'
1904 ///   ::= 'hhvmcc'
1905 ///   ::= 'hhvm_ccc'
1906 ///   ::= 'cxx_fast_tlscc'
1907 ///   ::= 'amdgpu_vs'
1908 ///   ::= 'amdgpu_ls'
1909 ///   ::= 'amdgpu_hs'
1910 ///   ::= 'amdgpu_es'
1911 ///   ::= 'amdgpu_gs'
1912 ///   ::= 'amdgpu_ps'
1913 ///   ::= 'amdgpu_cs'
1914 ///   ::= 'amdgpu_kernel'
1915 ///   ::= 'cc' UINT
1916 ///
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918   switch (Lex.getKind()) {
1919   default:                       CC = CallingConv::C; return false;
1920   case lltok::kw_ccc:            CC = CallingConv::C; break;
1921   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1922   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1923   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1924   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1925   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1926   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1927   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1928   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1929   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1930   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1931   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1932   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1933   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1934   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1935   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1936   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1937   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1938   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1939   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1940   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1941   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1942   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1943   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1944   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1945   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1946   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1947   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1948   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1949   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1950   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1951   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1952   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1953   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1954   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1955   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1956   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1957   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1958   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1959   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1960   case lltok::kw_cc: {
1961       Lex.Lex();
1962       return ParseUInt32(CC);
1963     }
1964   }
1965 
1966   Lex.Lex();
1967   return false;
1968 }
1969 
1970 /// ParseMetadataAttachment
1971 ///   ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1974 
1975   std::string Name = Lex.getStrVal();
1976   Kind = M->getMDKindID(Name);
1977   Lex.Lex();
1978 
1979   return ParseMDNode(MD);
1980 }
1981 
1982 /// ParseInstructionMetadata
1983 ///   ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985   do {
1986     if (Lex.getKind() != lltok::MetadataVar)
1987       return TokError("expected metadata after comma");
1988 
1989     unsigned MDK;
1990     MDNode *N;
1991     if (ParseMetadataAttachment(MDK, N))
1992       return true;
1993 
1994     Inst.setMetadata(MDK, N);
1995     if (MDK == LLVMContext::MD_tbaa)
1996       InstsWithTBAATag.push_back(&Inst);
1997 
1998     // If this is the end of the list, we're done.
1999   } while (EatIfPresent(lltok::comma));
2000   return false;
2001 }
2002 
2003 /// ParseGlobalObjectMetadataAttachment
2004 ///   ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006   unsigned MDK;
2007   MDNode *N;
2008   if (ParseMetadataAttachment(MDK, N))
2009     return true;
2010 
2011   GO.addMetadata(MDK, *N);
2012   return false;
2013 }
2014 
2015 /// ParseOptionalFunctionMetadata
2016 ///   ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018   while (Lex.getKind() == lltok::MetadataVar)
2019     if (ParseGlobalObjectMetadataAttachment(F))
2020       return true;
2021   return false;
2022 }
2023 
2024 /// ParseOptionalAlignment
2025 ///   ::= /* empty */
2026 ///   ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028   Alignment = 0;
2029   if (!EatIfPresent(lltok::kw_align))
2030     return false;
2031   LocTy AlignLoc = Lex.getLoc();
2032   if (ParseUInt32(Alignment)) return true;
2033   if (!isPowerOf2_32(Alignment))
2034     return Error(AlignLoc, "alignment is not a power of two");
2035   if (Alignment > Value::MaximumAlignment)
2036     return Error(AlignLoc, "huge alignments are not supported yet");
2037   return false;
2038 }
2039 
2040 /// ParseOptionalDerefAttrBytes
2041 ///   ::= /* empty */
2042 ///   ::= AttrKind '(' 4 ')'
2043 ///
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046                                            uint64_t &Bytes) {
2047   assert((AttrKind == lltok::kw_dereferenceable ||
2048           AttrKind == lltok::kw_dereferenceable_or_null) &&
2049          "contract!");
2050 
2051   Bytes = 0;
2052   if (!EatIfPresent(AttrKind))
2053     return false;
2054   LocTy ParenLoc = Lex.getLoc();
2055   if (!EatIfPresent(lltok::lparen))
2056     return Error(ParenLoc, "expected '('");
2057   LocTy DerefLoc = Lex.getLoc();
2058   if (ParseUInt64(Bytes)) return true;
2059   ParenLoc = Lex.getLoc();
2060   if (!EatIfPresent(lltok::rparen))
2061     return Error(ParenLoc, "expected ')'");
2062   if (!Bytes)
2063     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064   return false;
2065 }
2066 
2067 /// ParseOptionalCommaAlign
2068 ///   ::=
2069 ///   ::= ',' align 4
2070 ///
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074                                        bool &AteExtraComma) {
2075   AteExtraComma = false;
2076   while (EatIfPresent(lltok::comma)) {
2077     // Metadata at the end is an early exit.
2078     if (Lex.getKind() == lltok::MetadataVar) {
2079       AteExtraComma = true;
2080       return false;
2081     }
2082 
2083     if (Lex.getKind() != lltok::kw_align)
2084       return Error(Lex.getLoc(), "expected metadata or 'align'");
2085 
2086     if (ParseOptionalAlignment(Alignment)) return true;
2087   }
2088 
2089   return false;
2090 }
2091 
2092 /// ParseOptionalCommaAddrSpace
2093 ///   ::=
2094 ///   ::= ',' addrspace(1)
2095 ///
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099                                            LocTy &Loc,
2100                                            bool &AteExtraComma) {
2101   AteExtraComma = false;
2102   while (EatIfPresent(lltok::comma)) {
2103     // Metadata at the end is an early exit.
2104     if (Lex.getKind() == lltok::MetadataVar) {
2105       AteExtraComma = true;
2106       return false;
2107     }
2108 
2109     Loc = Lex.getLoc();
2110     if (Lex.getKind() != lltok::kw_addrspace)
2111       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2112 
2113     if (ParseOptionalAddrSpace(AddrSpace))
2114       return true;
2115   }
2116 
2117   return false;
2118 }
2119 
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121                                        Optional<unsigned> &HowManyArg) {
2122   Lex.Lex();
2123 
2124   auto StartParen = Lex.getLoc();
2125   if (!EatIfPresent(lltok::lparen))
2126     return Error(StartParen, "expected '('");
2127 
2128   if (ParseUInt32(BaseSizeArg))
2129     return true;
2130 
2131   if (EatIfPresent(lltok::comma)) {
2132     auto HowManyAt = Lex.getLoc();
2133     unsigned HowMany;
2134     if (ParseUInt32(HowMany))
2135       return true;
2136     if (HowMany == BaseSizeArg)
2137       return Error(HowManyAt,
2138                    "'allocsize' indices can't refer to the same parameter");
2139     HowManyArg = HowMany;
2140   } else
2141     HowManyArg = None;
2142 
2143   auto EndParen = Lex.getLoc();
2144   if (!EatIfPresent(lltok::rparen))
2145     return Error(EndParen, "expected ')'");
2146   return false;
2147 }
2148 
2149 /// ParseScopeAndOrdering
2150 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2151 ///   else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155                                      AtomicOrdering &Ordering) {
2156   if (!isAtomic)
2157     return false;
2158 
2159   return ParseScope(SSID) || ParseOrdering(Ordering);
2160 }
2161 
2162 /// ParseScope
2163 ///   ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167   SSID = SyncScope::System;
2168   if (EatIfPresent(lltok::kw_syncscope)) {
2169     auto StartParenAt = Lex.getLoc();
2170     if (!EatIfPresent(lltok::lparen))
2171       return Error(StartParenAt, "Expected '(' in syncscope");
2172 
2173     std::string SSN;
2174     auto SSNAt = Lex.getLoc();
2175     if (ParseStringConstant(SSN))
2176       return Error(SSNAt, "Expected synchronization scope name");
2177 
2178     auto EndParenAt = Lex.getLoc();
2179     if (!EatIfPresent(lltok::rparen))
2180       return Error(EndParenAt, "Expected ')' in syncscope");
2181 
2182     SSID = Context.getOrInsertSyncScopeID(SSN);
2183   }
2184 
2185   return false;
2186 }
2187 
2188 /// ParseOrdering
2189 ///   ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193   switch (Lex.getKind()) {
2194   default: return TokError("Expected ordering on atomic instruction");
2195   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197   // Not specified yet:
2198   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202   case lltok::kw_seq_cst:
2203     Ordering = AtomicOrdering::SequentiallyConsistent;
2204     break;
2205   }
2206   Lex.Lex();
2207   return false;
2208 }
2209 
2210 /// ParseOptionalStackAlignment
2211 ///   ::= /* empty */
2212 ///   ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214   Alignment = 0;
2215   if (!EatIfPresent(lltok::kw_alignstack))
2216     return false;
2217   LocTy ParenLoc = Lex.getLoc();
2218   if (!EatIfPresent(lltok::lparen))
2219     return Error(ParenLoc, "expected '('");
2220   LocTy AlignLoc = Lex.getLoc();
2221   if (ParseUInt32(Alignment)) return true;
2222   ParenLoc = Lex.getLoc();
2223   if (!EatIfPresent(lltok::rparen))
2224     return Error(ParenLoc, "expected ')'");
2225   if (!isPowerOf2_32(Alignment))
2226     return Error(AlignLoc, "stack alignment is not a power of two");
2227   return false;
2228 }
2229 
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// ParseIndexList
2237 ///    ::=  (',' uint32)+
2238 ///
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240                               bool &AteExtraComma) {
2241   AteExtraComma = false;
2242 
2243   if (Lex.getKind() != lltok::comma)
2244     return TokError("expected ',' as start of index list");
2245 
2246   while (EatIfPresent(lltok::comma)) {
2247     if (Lex.getKind() == lltok::MetadataVar) {
2248       if (Indices.empty()) return TokError("expected index");
2249       AteExtraComma = true;
2250       return false;
2251     }
2252     unsigned Idx = 0;
2253     if (ParseUInt32(Idx)) return true;
2254     Indices.push_back(Idx);
2255   }
2256 
2257   return false;
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266   SMLoc TypeLoc = Lex.getLoc();
2267   switch (Lex.getKind()) {
2268   default:
2269     return TokError(Msg);
2270   case lltok::Type:
2271     // Type ::= 'float' | 'void' (etc)
2272     Result = Lex.getTyVal();
2273     Lex.Lex();
2274     break;
2275   case lltok::lbrace:
2276     // Type ::= StructType
2277     if (ParseAnonStructType(Result, false))
2278       return true;
2279     break;
2280   case lltok::lsquare:
2281     // Type ::= '[' ... ']'
2282     Lex.Lex(); // eat the lsquare.
2283     if (ParseArrayVectorType(Result, false))
2284       return true;
2285     break;
2286   case lltok::less: // Either vector or packed struct.
2287     // Type ::= '<' ... '>'
2288     Lex.Lex();
2289     if (Lex.getKind() == lltok::lbrace) {
2290       if (ParseAnonStructType(Result, true) ||
2291           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292         return true;
2293     } else if (ParseArrayVectorType(Result, true))
2294       return true;
2295     break;
2296   case lltok::LocalVar: {
2297     // Type ::= %foo
2298     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2299 
2300     // If the type hasn't been defined yet, create a forward definition and
2301     // remember where that forward def'n was seen (in case it never is defined).
2302     if (!Entry.first) {
2303       Entry.first = StructType::create(Context, Lex.getStrVal());
2304       Entry.second = Lex.getLoc();
2305     }
2306     Result = Entry.first;
2307     Lex.Lex();
2308     break;
2309   }
2310 
2311   case lltok::LocalVarID: {
2312     // Type ::= %4
2313     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2314 
2315     // If the type hasn't been defined yet, create a forward definition and
2316     // remember where that forward def'n was seen (in case it never is defined).
2317     if (!Entry.first) {
2318       Entry.first = StructType::create(Context);
2319       Entry.second = Lex.getLoc();
2320     }
2321     Result = Entry.first;
2322     Lex.Lex();
2323     break;
2324   }
2325   }
2326 
2327   // Parse the type suffixes.
2328   while (true) {
2329     switch (Lex.getKind()) {
2330     // End of type.
2331     default:
2332       if (!AllowVoid && Result->isVoidTy())
2333         return Error(TypeLoc, "void type only allowed for function results");
2334       return false;
2335 
2336     // Type ::= Type '*'
2337     case lltok::star:
2338       if (Result->isLabelTy())
2339         return TokError("basic block pointers are invalid");
2340       if (Result->isVoidTy())
2341         return TokError("pointers to void are invalid - use i8* instead");
2342       if (!PointerType::isValidElementType(Result))
2343         return TokError("pointer to this type is invalid");
2344       Result = PointerType::getUnqual(Result);
2345       Lex.Lex();
2346       break;
2347 
2348     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349     case lltok::kw_addrspace: {
2350       if (Result->isLabelTy())
2351         return TokError("basic block pointers are invalid");
2352       if (Result->isVoidTy())
2353         return TokError("pointers to void are invalid; use i8* instead");
2354       if (!PointerType::isValidElementType(Result))
2355         return TokError("pointer to this type is invalid");
2356       unsigned AddrSpace;
2357       if (ParseOptionalAddrSpace(AddrSpace) ||
2358           ParseToken(lltok::star, "expected '*' in address space"))
2359         return true;
2360 
2361       Result = PointerType::get(Result, AddrSpace);
2362       break;
2363     }
2364 
2365     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366     case lltok::lparen:
2367       if (ParseFunctionType(Result))
2368         return true;
2369       break;
2370     }
2371   }
2372 }
2373 
2374 /// ParseParameterList
2375 ///    ::= '(' ')'
2376 ///    ::= '(' Arg (',' Arg)* ')'
2377 ///  Arg
2378 ///    ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380                                   PerFunctionState &PFS, bool IsMustTailCall,
2381                                   bool InVarArgsFunc) {
2382   if (ParseToken(lltok::lparen, "expected '(' in call"))
2383     return true;
2384 
2385   while (Lex.getKind() != lltok::rparen) {
2386     // If this isn't the first argument, we need a comma.
2387     if (!ArgList.empty() &&
2388         ParseToken(lltok::comma, "expected ',' in argument list"))
2389       return true;
2390 
2391     // Parse an ellipsis if this is a musttail call in a variadic function.
2392     if (Lex.getKind() == lltok::dotdotdot) {
2393       const char *Msg = "unexpected ellipsis in argument list for ";
2394       if (!IsMustTailCall)
2395         return TokError(Twine(Msg) + "non-musttail call");
2396       if (!InVarArgsFunc)
2397         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398       Lex.Lex();  // Lex the '...', it is purely for readability.
2399       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2400     }
2401 
2402     // Parse the argument.
2403     LocTy ArgLoc;
2404     Type *ArgTy = nullptr;
2405     AttrBuilder ArgAttrs;
2406     Value *V;
2407     if (ParseType(ArgTy, ArgLoc))
2408       return true;
2409 
2410     if (ArgTy->isMetadataTy()) {
2411       if (ParseMetadataAsValue(V, PFS))
2412         return true;
2413     } else {
2414       // Otherwise, handle normal operands.
2415       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416         return true;
2417     }
2418     ArgList.push_back(ParamInfo(
2419         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2420   }
2421 
2422   if (IsMustTailCall && InVarArgsFunc)
2423     return TokError("expected '...' at end of argument list for musttail call "
2424                     "in varargs function");
2425 
2426   Lex.Lex();  // Lex the ')'.
2427   return false;
2428 }
2429 
2430 /// ParseOptionalOperandBundles
2431 ///    ::= /*empty*/
2432 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2433 ///
2434 /// OperandBundle
2435 ///    ::= bundle-tag '(' ')'
2436 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2437 ///
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441   LocTy BeginLoc = Lex.getLoc();
2442   if (!EatIfPresent(lltok::lsquare))
2443     return false;
2444 
2445   while (Lex.getKind() != lltok::rsquare) {
2446     // If this isn't the first operand bundle, we need a comma.
2447     if (!BundleList.empty() &&
2448         ParseToken(lltok::comma, "expected ',' in input list"))
2449       return true;
2450 
2451     std::string Tag;
2452     if (ParseStringConstant(Tag))
2453       return true;
2454 
2455     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456       return true;
2457 
2458     std::vector<Value *> Inputs;
2459     while (Lex.getKind() != lltok::rparen) {
2460       // If this isn't the first input, we need a comma.
2461       if (!Inputs.empty() &&
2462           ParseToken(lltok::comma, "expected ',' in input list"))
2463         return true;
2464 
2465       Type *Ty = nullptr;
2466       Value *Input = nullptr;
2467       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468         return true;
2469       Inputs.push_back(Input);
2470     }
2471 
2472     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2473 
2474     Lex.Lex(); // Lex the ')'.
2475   }
2476 
2477   if (BundleList.empty())
2478     return Error(BeginLoc, "operand bundle set must not be empty");
2479 
2480   Lex.Lex(); // Lex the ']'.
2481   return false;
2482 }
2483 
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 ///   ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 ///   ::= /*empty*/
2489 ///   ::= '...'
2490 ///   ::= ArgTypeList ',' '...'
2491 ///   ::= ArgType (',' ArgType)*
2492 ///
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494                                  bool &isVarArg){
2495   isVarArg = false;
2496   assert(Lex.getKind() == lltok::lparen);
2497   Lex.Lex(); // eat the (.
2498 
2499   if (Lex.getKind() == lltok::rparen) {
2500     // empty
2501   } else if (Lex.getKind() == lltok::dotdotdot) {
2502     isVarArg = true;
2503     Lex.Lex();
2504   } else {
2505     LocTy TypeLoc = Lex.getLoc();
2506     Type *ArgTy = nullptr;
2507     AttrBuilder Attrs;
2508     std::string Name;
2509 
2510     if (ParseType(ArgTy) ||
2511         ParseOptionalParamAttrs(Attrs)) return true;
2512 
2513     if (ArgTy->isVoidTy())
2514       return Error(TypeLoc, "argument can not have void type");
2515 
2516     if (Lex.getKind() == lltok::LocalVar) {
2517       Name = Lex.getStrVal();
2518       Lex.Lex();
2519     }
2520 
2521     if (!FunctionType::isValidArgumentType(ArgTy))
2522       return Error(TypeLoc, "invalid type for function argument");
2523 
2524     ArgList.emplace_back(TypeLoc, ArgTy,
2525                          AttributeSet::get(ArgTy->getContext(), Attrs),
2526                          std::move(Name));
2527 
2528     while (EatIfPresent(lltok::comma)) {
2529       // Handle ... at end of arg list.
2530       if (EatIfPresent(lltok::dotdotdot)) {
2531         isVarArg = true;
2532         break;
2533       }
2534 
2535       // Otherwise must be an argument type.
2536       TypeLoc = Lex.getLoc();
2537       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2538 
2539       if (ArgTy->isVoidTy())
2540         return Error(TypeLoc, "argument can not have void type");
2541 
2542       if (Lex.getKind() == lltok::LocalVar) {
2543         Name = Lex.getStrVal();
2544         Lex.Lex();
2545       } else {
2546         Name = "";
2547       }
2548 
2549       if (!ArgTy->isFirstClassType())
2550         return Error(TypeLoc, "invalid type for function argument");
2551 
2552       ArgList.emplace_back(TypeLoc, ArgTy,
2553                            AttributeSet::get(ArgTy->getContext(), Attrs),
2554                            std::move(Name));
2555     }
2556   }
2557 
2558   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2559 }
2560 
2561 /// ParseFunctionType
2562 ///  ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564   assert(Lex.getKind() == lltok::lparen);
2565 
2566   if (!FunctionType::isValidReturnType(Result))
2567     return TokError("invalid function return type");
2568 
2569   SmallVector<ArgInfo, 8> ArgList;
2570   bool isVarArg;
2571   if (ParseArgumentList(ArgList, isVarArg))
2572     return true;
2573 
2574   // Reject names on the arguments lists.
2575   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576     if (!ArgList[i].Name.empty())
2577       return Error(ArgList[i].Loc, "argument name invalid in function type");
2578     if (ArgList[i].Attrs.hasAttributes())
2579       return Error(ArgList[i].Loc,
2580                    "argument attributes invalid in function type");
2581   }
2582 
2583   SmallVector<Type*, 16> ArgListTy;
2584   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585     ArgListTy.push_back(ArgList[i].Ty);
2586 
2587   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588   return false;
2589 }
2590 
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594   SmallVector<Type*, 8> Elts;
2595   if (ParseStructBody(Elts)) return true;
2596 
2597   Result = StructType::get(Context, Elts, Packed);
2598   return false;
2599 }
2600 
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603                                      std::pair<Type*, LocTy> &Entry,
2604                                      Type *&ResultTy) {
2605   // If the type was already defined, diagnose the redefinition.
2606   if (Entry.first && !Entry.second.isValid())
2607     return Error(TypeLoc, "redefinition of type");
2608 
2609   // If we have opaque, just return without filling in the definition for the
2610   // struct.  This counts as a definition as far as the .ll file goes.
2611   if (EatIfPresent(lltok::kw_opaque)) {
2612     // This type is being defined, so clear the location to indicate this.
2613     Entry.second = SMLoc();
2614 
2615     // If this type number has never been uttered, create it.
2616     if (!Entry.first)
2617       Entry.first = StructType::create(Context, Name);
2618     ResultTy = Entry.first;
2619     return false;
2620   }
2621 
2622   // If the type starts with '<', then it is either a packed struct or a vector.
2623   bool isPacked = EatIfPresent(lltok::less);
2624 
2625   // If we don't have a struct, then we have a random type alias, which we
2626   // accept for compatibility with old files.  These types are not allowed to be
2627   // forward referenced and not allowed to be recursive.
2628   if (Lex.getKind() != lltok::lbrace) {
2629     if (Entry.first)
2630       return Error(TypeLoc, "forward references to non-struct type");
2631 
2632     ResultTy = nullptr;
2633     if (isPacked)
2634       return ParseArrayVectorType(ResultTy, true);
2635     return ParseType(ResultTy);
2636   }
2637 
2638   // This type is being defined, so clear the location to indicate this.
2639   Entry.second = SMLoc();
2640 
2641   // If this type number has never been uttered, create it.
2642   if (!Entry.first)
2643     Entry.first = StructType::create(Context, Name);
2644 
2645   StructType *STy = cast<StructType>(Entry.first);
2646 
2647   SmallVector<Type*, 8> Body;
2648   if (ParseStructBody(Body) ||
2649       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650     return true;
2651 
2652   STy->setBody(Body, isPacked);
2653   ResultTy = STy;
2654   return false;
2655 }
2656 
2657 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2658 ///   StructType
2659 ///     ::= '{' '}'
2660 ///     ::= '{' Type (',' Type)* '}'
2661 ///     ::= '<' '{' '}' '>'
2662 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664   assert(Lex.getKind() == lltok::lbrace);
2665   Lex.Lex(); // Consume the '{'
2666 
2667   // Handle the empty struct.
2668   if (EatIfPresent(lltok::rbrace))
2669     return false;
2670 
2671   LocTy EltTyLoc = Lex.getLoc();
2672   Type *Ty = nullptr;
2673   if (ParseType(Ty)) return true;
2674   Body.push_back(Ty);
2675 
2676   if (!StructType::isValidElementType(Ty))
2677     return Error(EltTyLoc, "invalid element type for struct");
2678 
2679   while (EatIfPresent(lltok::comma)) {
2680     EltTyLoc = Lex.getLoc();
2681     if (ParseType(Ty)) return true;
2682 
2683     if (!StructType::isValidElementType(Ty))
2684       return Error(EltTyLoc, "invalid element type for struct");
2685 
2686     Body.push_back(Ty);
2687   }
2688 
2689   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2690 }
2691 
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 ///   Type
2695 ///     ::= '[' APSINTVAL 'x' Types ']'
2696 ///     ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699       Lex.getAPSIntVal().getBitWidth() > 64)
2700     return TokError("expected number in address space");
2701 
2702   LocTy SizeLoc = Lex.getLoc();
2703   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704   Lex.Lex();
2705 
2706   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707       return true;
2708 
2709   LocTy TypeLoc = Lex.getLoc();
2710   Type *EltTy = nullptr;
2711   if (ParseType(EltTy)) return true;
2712 
2713   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714                  "expected end of sequential type"))
2715     return true;
2716 
2717   if (isVector) {
2718     if (Size == 0)
2719       return Error(SizeLoc, "zero element vector is illegal");
2720     if ((unsigned)Size != Size)
2721       return Error(SizeLoc, "size too large for vector");
2722     if (!VectorType::isValidElementType(EltTy))
2723       return Error(TypeLoc, "invalid vector element type");
2724     Result = VectorType::get(EltTy, unsigned(Size));
2725   } else {
2726     if (!ArrayType::isValidElementType(EltTy))
2727       return Error(TypeLoc, "invalid array element type");
2728     Result = ArrayType::get(EltTy, Size);
2729   }
2730   return false;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2736 
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738                                              int functionNumber)
2739   : P(p), F(f), FunctionNumber(functionNumber) {
2740 
2741   // Insert unnamed arguments into the NumberedVals list.
2742   for (Argument &A : F.args())
2743     if (!A.hasName())
2744       NumberedVals.push_back(&A);
2745 }
2746 
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748   // If there were any forward referenced non-basicblock values, delete them.
2749 
2750   for (const auto &P : ForwardRefVals) {
2751     if (isa<BasicBlock>(P.second.first))
2752       continue;
2753     P.second.first->replaceAllUsesWith(
2754         UndefValue::get(P.second.first->getType()));
2755     P.second.first->deleteValue();
2756   }
2757 
2758   for (const auto &P : ForwardRefValIDs) {
2759     if (isa<BasicBlock>(P.second.first))
2760       continue;
2761     P.second.first->replaceAllUsesWith(
2762         UndefValue::get(P.second.first->getType()));
2763     P.second.first->deleteValue();
2764   }
2765 }
2766 
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768   if (!ForwardRefVals.empty())
2769     return P.Error(ForwardRefVals.begin()->second.second,
2770                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2771                    "'");
2772   if (!ForwardRefValIDs.empty())
2773     return P.Error(ForwardRefValIDs.begin()->second.second,
2774                    "use of undefined value '%" +
2775                    Twine(ForwardRefValIDs.begin()->first) + "'");
2776   return false;
2777 }
2778 
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed.  This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783                                           LocTy Loc, bool IsCall) {
2784   // Look this name up in the normal function symbol table.
2785   Value *Val = F.getValueSymbolTable()->lookup(Name);
2786 
2787   // If this is a forward reference for the value, see if we already created a
2788   // forward ref record.
2789   if (!Val) {
2790     auto I = ForwardRefVals.find(Name);
2791     if (I != ForwardRefVals.end())
2792       Val = I->second.first;
2793   }
2794 
2795   // If we have the value in the symbol table or fwd-ref table, return it.
2796   if (Val)
2797     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2798 
2799   // Don't make placeholders with invalid type.
2800   if (!Ty->isFirstClassType()) {
2801     P.Error(Loc, "invalid use of a non-first-class type");
2802     return nullptr;
2803   }
2804 
2805   // Otherwise, create a new forward reference for this value and remember it.
2806   Value *FwdVal;
2807   if (Ty->isLabelTy()) {
2808     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809   } else {
2810     FwdVal = new Argument(Ty, Name);
2811   }
2812 
2813   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814   return FwdVal;
2815 }
2816 
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818                                           bool IsCall) {
2819   // Look this name up in the normal function symbol table.
2820   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2821 
2822   // If this is a forward reference for the value, see if we already created a
2823   // forward ref record.
2824   if (!Val) {
2825     auto I = ForwardRefValIDs.find(ID);
2826     if (I != ForwardRefValIDs.end())
2827       Val = I->second.first;
2828   }
2829 
2830   // If we have the value in the symbol table or fwd-ref table, return it.
2831   if (Val)
2832     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2833 
2834   if (!Ty->isFirstClassType()) {
2835     P.Error(Loc, "invalid use of a non-first-class type");
2836     return nullptr;
2837   }
2838 
2839   // Otherwise, create a new forward reference for this value and remember it.
2840   Value *FwdVal;
2841   if (Ty->isLabelTy()) {
2842     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843   } else {
2844     FwdVal = new Argument(Ty);
2845   }
2846 
2847   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848   return FwdVal;
2849 }
2850 
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854                                              const std::string &NameStr,
2855                                              LocTy NameLoc, Instruction *Inst) {
2856   // If this instruction has void type, it cannot have a name or ID specified.
2857   if (Inst->getType()->isVoidTy()) {
2858     if (NameID != -1 || !NameStr.empty())
2859       return P.Error(NameLoc, "instructions returning void cannot have a name");
2860     return false;
2861   }
2862 
2863   // If this was a numbered instruction, verify that the instruction is the
2864   // expected value and resolve any forward references.
2865   if (NameStr.empty()) {
2866     // If neither a name nor an ID was specified, just use the next ID.
2867     if (NameID == -1)
2868       NameID = NumberedVals.size();
2869 
2870     if (unsigned(NameID) != NumberedVals.size())
2871       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872                      Twine(NumberedVals.size()) + "'");
2873 
2874     auto FI = ForwardRefValIDs.find(NameID);
2875     if (FI != ForwardRefValIDs.end()) {
2876       Value *Sentinel = FI->second.first;
2877       if (Sentinel->getType() != Inst->getType())
2878         return P.Error(NameLoc, "instruction forward referenced with type '" +
2879                        getTypeString(FI->second.first->getType()) + "'");
2880 
2881       Sentinel->replaceAllUsesWith(Inst);
2882       Sentinel->deleteValue();
2883       ForwardRefValIDs.erase(FI);
2884     }
2885 
2886     NumberedVals.push_back(Inst);
2887     return false;
2888   }
2889 
2890   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2891   auto FI = ForwardRefVals.find(NameStr);
2892   if (FI != ForwardRefVals.end()) {
2893     Value *Sentinel = FI->second.first;
2894     if (Sentinel->getType() != Inst->getType())
2895       return P.Error(NameLoc, "instruction forward referenced with type '" +
2896                      getTypeString(FI->second.first->getType()) + "'");
2897 
2898     Sentinel->replaceAllUsesWith(Inst);
2899     Sentinel->deleteValue();
2900     ForwardRefVals.erase(FI);
2901   }
2902 
2903   // Set the name on the instruction.
2904   Inst->setName(NameStr);
2905 
2906   if (Inst->getName() != NameStr)
2907     return P.Error(NameLoc, "multiple definition of local value named '" +
2908                    NameStr + "'");
2909   return false;
2910 }
2911 
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915                                               LocTy Loc) {
2916   return dyn_cast_or_null<BasicBlock>(
2917       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2918 }
2919 
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921   return dyn_cast_or_null<BasicBlock>(
2922       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2923 }
2924 
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed.  If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929                                                  int NameID, LocTy Loc) {
2930   BasicBlock *BB;
2931   if (Name.empty()) {
2932     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2933       P.Error(Loc, "label expected to be numbered '" +
2934                        Twine(NumberedVals.size()) + "'");
2935       return nullptr;
2936     }
2937     BB = GetBB(NumberedVals.size(), Loc);
2938     if (!BB) {
2939       P.Error(Loc, "unable to create block numbered '" +
2940                        Twine(NumberedVals.size()) + "'");
2941       return nullptr;
2942     }
2943   } else {
2944     BB = GetBB(Name, Loc);
2945     if (!BB) {
2946       P.Error(Loc, "unable to create block named '" + Name + "'");
2947       return nullptr;
2948     }
2949   }
2950 
2951   // Move the block to the end of the function.  Forward ref'd blocks are
2952   // inserted wherever they happen to be referenced.
2953   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2954 
2955   // Remove the block from forward ref sets.
2956   if (Name.empty()) {
2957     ForwardRefValIDs.erase(NumberedVals.size());
2958     NumberedVals.push_back(BB);
2959   } else {
2960     // BB forward references are already in the function symbol table.
2961     ForwardRefVals.erase(Name);
2962   }
2963 
2964   return BB;
2965 }
2966 
2967 //===----------------------------------------------------------------------===//
2968 // Constants.
2969 //===----------------------------------------------------------------------===//
2970 
2971 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2972 /// type implied.  For example, if we parse "4" we don't know what integer type
2973 /// it has.  The value will later be combined with its type and checked for
2974 /// sanity.  PFS is used to convert function-local operands of metadata (since
2975 /// metadata operands are not just parsed here but also converted to values).
2976 /// PFS can be null when we are not parsing metadata values inside a function.
2977 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2978   ID.Loc = Lex.getLoc();
2979   switch (Lex.getKind()) {
2980   default: return TokError("expected value token");
2981   case lltok::GlobalID:  // @42
2982     ID.UIntVal = Lex.getUIntVal();
2983     ID.Kind = ValID::t_GlobalID;
2984     break;
2985   case lltok::GlobalVar:  // @foo
2986     ID.StrVal = Lex.getStrVal();
2987     ID.Kind = ValID::t_GlobalName;
2988     break;
2989   case lltok::LocalVarID:  // %42
2990     ID.UIntVal = Lex.getUIntVal();
2991     ID.Kind = ValID::t_LocalID;
2992     break;
2993   case lltok::LocalVar:  // %foo
2994     ID.StrVal = Lex.getStrVal();
2995     ID.Kind = ValID::t_LocalName;
2996     break;
2997   case lltok::APSInt:
2998     ID.APSIntVal = Lex.getAPSIntVal();
2999     ID.Kind = ValID::t_APSInt;
3000     break;
3001   case lltok::APFloat:
3002     ID.APFloatVal = Lex.getAPFloatVal();
3003     ID.Kind = ValID::t_APFloat;
3004     break;
3005   case lltok::kw_true:
3006     ID.ConstantVal = ConstantInt::getTrue(Context);
3007     ID.Kind = ValID::t_Constant;
3008     break;
3009   case lltok::kw_false:
3010     ID.ConstantVal = ConstantInt::getFalse(Context);
3011     ID.Kind = ValID::t_Constant;
3012     break;
3013   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3014   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3015   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3016   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3017 
3018   case lltok::lbrace: {
3019     // ValID ::= '{' ConstVector '}'
3020     Lex.Lex();
3021     SmallVector<Constant*, 16> Elts;
3022     if (ParseGlobalValueVector(Elts) ||
3023         ParseToken(lltok::rbrace, "expected end of struct constant"))
3024       return true;
3025 
3026     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3027     ID.UIntVal = Elts.size();
3028     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3029            Elts.size() * sizeof(Elts[0]));
3030     ID.Kind = ValID::t_ConstantStruct;
3031     return false;
3032   }
3033   case lltok::less: {
3034     // ValID ::= '<' ConstVector '>'         --> Vector.
3035     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3036     Lex.Lex();
3037     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3038 
3039     SmallVector<Constant*, 16> Elts;
3040     LocTy FirstEltLoc = Lex.getLoc();
3041     if (ParseGlobalValueVector(Elts) ||
3042         (isPackedStruct &&
3043          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3044         ParseToken(lltok::greater, "expected end of constant"))
3045       return true;
3046 
3047     if (isPackedStruct) {
3048       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3049       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3050              Elts.size() * sizeof(Elts[0]));
3051       ID.UIntVal = Elts.size();
3052       ID.Kind = ValID::t_PackedConstantStruct;
3053       return false;
3054     }
3055 
3056     if (Elts.empty())
3057       return Error(ID.Loc, "constant vector must not be empty");
3058 
3059     if (!Elts[0]->getType()->isIntegerTy() &&
3060         !Elts[0]->getType()->isFloatingPointTy() &&
3061         !Elts[0]->getType()->isPointerTy())
3062       return Error(FirstEltLoc,
3063             "vector elements must have integer, pointer or floating point type");
3064 
3065     // Verify that all the vector elements have the same type.
3066     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3067       if (Elts[i]->getType() != Elts[0]->getType())
3068         return Error(FirstEltLoc,
3069                      "vector element #" + Twine(i) +
3070                     " is not of type '" + getTypeString(Elts[0]->getType()));
3071 
3072     ID.ConstantVal = ConstantVector::get(Elts);
3073     ID.Kind = ValID::t_Constant;
3074     return false;
3075   }
3076   case lltok::lsquare: {   // Array Constant
3077     Lex.Lex();
3078     SmallVector<Constant*, 16> Elts;
3079     LocTy FirstEltLoc = Lex.getLoc();
3080     if (ParseGlobalValueVector(Elts) ||
3081         ParseToken(lltok::rsquare, "expected end of array constant"))
3082       return true;
3083 
3084     // Handle empty element.
3085     if (Elts.empty()) {
3086       // Use undef instead of an array because it's inconvenient to determine
3087       // the element type at this point, there being no elements to examine.
3088       ID.Kind = ValID::t_EmptyArray;
3089       return false;
3090     }
3091 
3092     if (!Elts[0]->getType()->isFirstClassType())
3093       return Error(FirstEltLoc, "invalid array element type: " +
3094                    getTypeString(Elts[0]->getType()));
3095 
3096     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3097 
3098     // Verify all elements are correct type!
3099     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3100       if (Elts[i]->getType() != Elts[0]->getType())
3101         return Error(FirstEltLoc,
3102                      "array element #" + Twine(i) +
3103                      " is not of type '" + getTypeString(Elts[0]->getType()));
3104     }
3105 
3106     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3107     ID.Kind = ValID::t_Constant;
3108     return false;
3109   }
3110   case lltok::kw_c:  // c "foo"
3111     Lex.Lex();
3112     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3113                                                   false);
3114     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3115     ID.Kind = ValID::t_Constant;
3116     return false;
3117 
3118   case lltok::kw_asm: {
3119     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3120     //             STRINGCONSTANT
3121     bool HasSideEffect, AlignStack, AsmDialect;
3122     Lex.Lex();
3123     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3124         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3125         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3126         ParseStringConstant(ID.StrVal) ||
3127         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3128         ParseToken(lltok::StringConstant, "expected constraint string"))
3129       return true;
3130     ID.StrVal2 = Lex.getStrVal();
3131     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3132       (unsigned(AsmDialect)<<2);
3133     ID.Kind = ValID::t_InlineAsm;
3134     return false;
3135   }
3136 
3137   case lltok::kw_blockaddress: {
3138     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3139     Lex.Lex();
3140 
3141     ValID Fn, Label;
3142 
3143     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3144         ParseValID(Fn) ||
3145         ParseToken(lltok::comma, "expected comma in block address expression")||
3146         ParseValID(Label) ||
3147         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3148       return true;
3149 
3150     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3151       return Error(Fn.Loc, "expected function name in blockaddress");
3152     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3153       return Error(Label.Loc, "expected basic block name in blockaddress");
3154 
3155     // Try to find the function (but skip it if it's forward-referenced).
3156     GlobalValue *GV = nullptr;
3157     if (Fn.Kind == ValID::t_GlobalID) {
3158       if (Fn.UIntVal < NumberedVals.size())
3159         GV = NumberedVals[Fn.UIntVal];
3160     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3161       GV = M->getNamedValue(Fn.StrVal);
3162     }
3163     Function *F = nullptr;
3164     if (GV) {
3165       // Confirm that it's actually a function with a definition.
3166       if (!isa<Function>(GV))
3167         return Error(Fn.Loc, "expected function name in blockaddress");
3168       F = cast<Function>(GV);
3169       if (F->isDeclaration())
3170         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3171     }
3172 
3173     if (!F) {
3174       // Make a global variable as a placeholder for this reference.
3175       GlobalValue *&FwdRef =
3176           ForwardRefBlockAddresses.insert(std::make_pair(
3177                                               std::move(Fn),
3178                                               std::map<ValID, GlobalValue *>()))
3179               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3180               .first->second;
3181       if (!FwdRef)
3182         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3183                                     GlobalValue::InternalLinkage, nullptr, "");
3184       ID.ConstantVal = FwdRef;
3185       ID.Kind = ValID::t_Constant;
3186       return false;
3187     }
3188 
3189     // We found the function; now find the basic block.  Don't use PFS, since we
3190     // might be inside a constant expression.
3191     BasicBlock *BB;
3192     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3193       if (Label.Kind == ValID::t_LocalID)
3194         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3195       else
3196         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3197       if (!BB)
3198         return Error(Label.Loc, "referenced value is not a basic block");
3199     } else {
3200       if (Label.Kind == ValID::t_LocalID)
3201         return Error(Label.Loc, "cannot take address of numeric label after "
3202                                 "the function is defined");
3203       BB = dyn_cast_or_null<BasicBlock>(
3204           F->getValueSymbolTable()->lookup(Label.StrVal));
3205       if (!BB)
3206         return Error(Label.Loc, "referenced value is not a basic block");
3207     }
3208 
3209     ID.ConstantVal = BlockAddress::get(F, BB);
3210     ID.Kind = ValID::t_Constant;
3211     return false;
3212   }
3213 
3214   case lltok::kw_trunc:
3215   case lltok::kw_zext:
3216   case lltok::kw_sext:
3217   case lltok::kw_fptrunc:
3218   case lltok::kw_fpext:
3219   case lltok::kw_bitcast:
3220   case lltok::kw_addrspacecast:
3221   case lltok::kw_uitofp:
3222   case lltok::kw_sitofp:
3223   case lltok::kw_fptoui:
3224   case lltok::kw_fptosi:
3225   case lltok::kw_inttoptr:
3226   case lltok::kw_ptrtoint: {
3227     unsigned Opc = Lex.getUIntVal();
3228     Type *DestTy = nullptr;
3229     Constant *SrcVal;
3230     Lex.Lex();
3231     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3232         ParseGlobalTypeAndValue(SrcVal) ||
3233         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3234         ParseType(DestTy) ||
3235         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3236       return true;
3237     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3238       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3239                    getTypeString(SrcVal->getType()) + "' to '" +
3240                    getTypeString(DestTy) + "'");
3241     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3242                                                  SrcVal, DestTy);
3243     ID.Kind = ValID::t_Constant;
3244     return false;
3245   }
3246   case lltok::kw_extractvalue: {
3247     Lex.Lex();
3248     Constant *Val;
3249     SmallVector<unsigned, 4> Indices;
3250     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3251         ParseGlobalTypeAndValue(Val) ||
3252         ParseIndexList(Indices) ||
3253         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3254       return true;
3255 
3256     if (!Val->getType()->isAggregateType())
3257       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3258     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3259       return Error(ID.Loc, "invalid indices for extractvalue");
3260     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3261     ID.Kind = ValID::t_Constant;
3262     return false;
3263   }
3264   case lltok::kw_insertvalue: {
3265     Lex.Lex();
3266     Constant *Val0, *Val1;
3267     SmallVector<unsigned, 4> Indices;
3268     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3269         ParseGlobalTypeAndValue(Val0) ||
3270         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3271         ParseGlobalTypeAndValue(Val1) ||
3272         ParseIndexList(Indices) ||
3273         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3274       return true;
3275     if (!Val0->getType()->isAggregateType())
3276       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3277     Type *IndexedType =
3278         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3279     if (!IndexedType)
3280       return Error(ID.Loc, "invalid indices for insertvalue");
3281     if (IndexedType != Val1->getType())
3282       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3283                                getTypeString(Val1->getType()) +
3284                                "' instead of '" + getTypeString(IndexedType) +
3285                                "'");
3286     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290   case lltok::kw_icmp:
3291   case lltok::kw_fcmp: {
3292     unsigned PredVal, Opc = Lex.getUIntVal();
3293     Constant *Val0, *Val1;
3294     Lex.Lex();
3295     if (ParseCmpPredicate(PredVal, Opc) ||
3296         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3297         ParseGlobalTypeAndValue(Val0) ||
3298         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3299         ParseGlobalTypeAndValue(Val1) ||
3300         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3301       return true;
3302 
3303     if (Val0->getType() != Val1->getType())
3304       return Error(ID.Loc, "compare operands must have the same type");
3305 
3306     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3307 
3308     if (Opc == Instruction::FCmp) {
3309       if (!Val0->getType()->isFPOrFPVectorTy())
3310         return Error(ID.Loc, "fcmp requires floating point operands");
3311       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3312     } else {
3313       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3314       if (!Val0->getType()->isIntOrIntVectorTy() &&
3315           !Val0->getType()->isPtrOrPtrVectorTy())
3316         return Error(ID.Loc, "icmp requires pointer or integer operands");
3317       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3318     }
3319     ID.Kind = ValID::t_Constant;
3320     return false;
3321   }
3322 
3323   // Unary Operators.
3324   case lltok::kw_fneg: {
3325     unsigned Opc = Lex.getUIntVal();
3326     Constant *Val;
3327     Lex.Lex();
3328     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3329         ParseGlobalTypeAndValue(Val) ||
3330         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3331       return true;
3332 
3333     // Check that the type is valid for the operator.
3334     switch (Opc) {
3335     case Instruction::FNeg:
3336       if (!Val->getType()->isFPOrFPVectorTy())
3337         return Error(ID.Loc, "constexpr requires fp operands");
3338       break;
3339     default: llvm_unreachable("Unknown unary operator!");
3340     }
3341     unsigned Flags = 0;
3342     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3343     ID.ConstantVal = C;
3344     ID.Kind = ValID::t_Constant;
3345     return false;
3346   }
3347   // Binary Operators.
3348   case lltok::kw_add:
3349   case lltok::kw_fadd:
3350   case lltok::kw_sub:
3351   case lltok::kw_fsub:
3352   case lltok::kw_mul:
3353   case lltok::kw_fmul:
3354   case lltok::kw_udiv:
3355   case lltok::kw_sdiv:
3356   case lltok::kw_fdiv:
3357   case lltok::kw_urem:
3358   case lltok::kw_srem:
3359   case lltok::kw_frem:
3360   case lltok::kw_shl:
3361   case lltok::kw_lshr:
3362   case lltok::kw_ashr: {
3363     bool NUW = false;
3364     bool NSW = false;
3365     bool Exact = false;
3366     unsigned Opc = Lex.getUIntVal();
3367     Constant *Val0, *Val1;
3368     Lex.Lex();
3369     LocTy ModifierLoc = Lex.getLoc();
3370     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3371         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3372       if (EatIfPresent(lltok::kw_nuw))
3373         NUW = true;
3374       if (EatIfPresent(lltok::kw_nsw)) {
3375         NSW = true;
3376         if (EatIfPresent(lltok::kw_nuw))
3377           NUW = true;
3378       }
3379     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3380                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3381       if (EatIfPresent(lltok::kw_exact))
3382         Exact = true;
3383     }
3384     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3385         ParseGlobalTypeAndValue(Val0) ||
3386         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3387         ParseGlobalTypeAndValue(Val1) ||
3388         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3389       return true;
3390     if (Val0->getType() != Val1->getType())
3391       return Error(ID.Loc, "operands of constexpr must have same type");
3392     if (!Val0->getType()->isIntOrIntVectorTy()) {
3393       if (NUW)
3394         return Error(ModifierLoc, "nuw only applies to integer operations");
3395       if (NSW)
3396         return Error(ModifierLoc, "nsw only applies to integer operations");
3397     }
3398     // Check that the type is valid for the operator.
3399     switch (Opc) {
3400     case Instruction::Add:
3401     case Instruction::Sub:
3402     case Instruction::Mul:
3403     case Instruction::UDiv:
3404     case Instruction::SDiv:
3405     case Instruction::URem:
3406     case Instruction::SRem:
3407     case Instruction::Shl:
3408     case Instruction::AShr:
3409     case Instruction::LShr:
3410       if (!Val0->getType()->isIntOrIntVectorTy())
3411         return Error(ID.Loc, "constexpr requires integer operands");
3412       break;
3413     case Instruction::FAdd:
3414     case Instruction::FSub:
3415     case Instruction::FMul:
3416     case Instruction::FDiv:
3417     case Instruction::FRem:
3418       if (!Val0->getType()->isFPOrFPVectorTy())
3419         return Error(ID.Loc, "constexpr requires fp operands");
3420       break;
3421     default: llvm_unreachable("Unknown binary operator!");
3422     }
3423     unsigned Flags = 0;
3424     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3425     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3426     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3427     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3428     ID.ConstantVal = C;
3429     ID.Kind = ValID::t_Constant;
3430     return false;
3431   }
3432 
3433   // Logical Operations
3434   case lltok::kw_and:
3435   case lltok::kw_or:
3436   case lltok::kw_xor: {
3437     unsigned Opc = Lex.getUIntVal();
3438     Constant *Val0, *Val1;
3439     Lex.Lex();
3440     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3441         ParseGlobalTypeAndValue(Val0) ||
3442         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3443         ParseGlobalTypeAndValue(Val1) ||
3444         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3445       return true;
3446     if (Val0->getType() != Val1->getType())
3447       return Error(ID.Loc, "operands of constexpr must have same type");
3448     if (!Val0->getType()->isIntOrIntVectorTy())
3449       return Error(ID.Loc,
3450                    "constexpr requires integer or integer vector operands");
3451     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3452     ID.Kind = ValID::t_Constant;
3453     return false;
3454   }
3455 
3456   case lltok::kw_getelementptr:
3457   case lltok::kw_shufflevector:
3458   case lltok::kw_insertelement:
3459   case lltok::kw_extractelement:
3460   case lltok::kw_select: {
3461     unsigned Opc = Lex.getUIntVal();
3462     SmallVector<Constant*, 16> Elts;
3463     bool InBounds = false;
3464     Type *Ty;
3465     Lex.Lex();
3466 
3467     if (Opc == Instruction::GetElementPtr)
3468       InBounds = EatIfPresent(lltok::kw_inbounds);
3469 
3470     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3471       return true;
3472 
3473     LocTy ExplicitTypeLoc = Lex.getLoc();
3474     if (Opc == Instruction::GetElementPtr) {
3475       if (ParseType(Ty) ||
3476           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3477         return true;
3478     }
3479 
3480     Optional<unsigned> InRangeOp;
3481     if (ParseGlobalValueVector(
3482             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3483         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3484       return true;
3485 
3486     if (Opc == Instruction::GetElementPtr) {
3487       if (Elts.size() == 0 ||
3488           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3489         return Error(ID.Loc, "base of getelementptr must be a pointer");
3490 
3491       Type *BaseType = Elts[0]->getType();
3492       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3493       if (Ty != BasePointerType->getElementType())
3494         return Error(
3495             ExplicitTypeLoc,
3496             "explicit pointee type doesn't match operand's pointee type");
3497 
3498       unsigned GEPWidth =
3499           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3500 
3501       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3502       for (Constant *Val : Indices) {
3503         Type *ValTy = Val->getType();
3504         if (!ValTy->isIntOrIntVectorTy())
3505           return Error(ID.Loc, "getelementptr index must be an integer");
3506         if (ValTy->isVectorTy()) {
3507           unsigned ValNumEl = ValTy->getVectorNumElements();
3508           if (GEPWidth && (ValNumEl != GEPWidth))
3509             return Error(
3510                 ID.Loc,
3511                 "getelementptr vector index has a wrong number of elements");
3512           // GEPWidth may have been unknown because the base is a scalar,
3513           // but it is known now.
3514           GEPWidth = ValNumEl;
3515         }
3516       }
3517 
3518       SmallPtrSet<Type*, 4> Visited;
3519       if (!Indices.empty() && !Ty->isSized(&Visited))
3520         return Error(ID.Loc, "base element of getelementptr must be sized");
3521 
3522       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3523         return Error(ID.Loc, "invalid getelementptr indices");
3524 
3525       if (InRangeOp) {
3526         if (*InRangeOp == 0)
3527           return Error(ID.Loc,
3528                        "inrange keyword may not appear on pointer operand");
3529         --*InRangeOp;
3530       }
3531 
3532       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3533                                                       InBounds, InRangeOp);
3534     } else if (Opc == Instruction::Select) {
3535       if (Elts.size() != 3)
3536         return Error(ID.Loc, "expected three operands to select");
3537       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3538                                                               Elts[2]))
3539         return Error(ID.Loc, Reason);
3540       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3541     } else if (Opc == Instruction::ShuffleVector) {
3542       if (Elts.size() != 3)
3543         return Error(ID.Loc, "expected three operands to shufflevector");
3544       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545         return Error(ID.Loc, "invalid operands to shufflevector");
3546       ID.ConstantVal =
3547                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3548     } else if (Opc == Instruction::ExtractElement) {
3549       if (Elts.size() != 2)
3550         return Error(ID.Loc, "expected two operands to extractelement");
3551       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3552         return Error(ID.Loc, "invalid extractelement operands");
3553       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3554     } else {
3555       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3556       if (Elts.size() != 3)
3557       return Error(ID.Loc, "expected three operands to insertelement");
3558       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3559         return Error(ID.Loc, "invalid insertelement operands");
3560       ID.ConstantVal =
3561                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3562     }
3563 
3564     ID.Kind = ValID::t_Constant;
3565     return false;
3566   }
3567   }
3568 
3569   Lex.Lex();
3570   return false;
3571 }
3572 
3573 /// ParseGlobalValue - Parse a global value with the specified type.
3574 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3575   C = nullptr;
3576   ValID ID;
3577   Value *V = nullptr;
3578   bool Parsed = ParseValID(ID) ||
3579                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3580   if (V && !(C = dyn_cast<Constant>(V)))
3581     return Error(ID.Loc, "global values must be constants");
3582   return Parsed;
3583 }
3584 
3585 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3586   Type *Ty = nullptr;
3587   return ParseType(Ty) ||
3588          ParseGlobalValue(Ty, V);
3589 }
3590 
3591 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3592   C = nullptr;
3593 
3594   LocTy KwLoc = Lex.getLoc();
3595   if (!EatIfPresent(lltok::kw_comdat))
3596     return false;
3597 
3598   if (EatIfPresent(lltok::lparen)) {
3599     if (Lex.getKind() != lltok::ComdatVar)
3600       return TokError("expected comdat variable");
3601     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3602     Lex.Lex();
3603     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3604       return true;
3605   } else {
3606     if (GlobalName.empty())
3607       return TokError("comdat cannot be unnamed");
3608     C = getComdat(GlobalName, KwLoc);
3609   }
3610 
3611   return false;
3612 }
3613 
3614 /// ParseGlobalValueVector
3615 ///   ::= /*empty*/
3616 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3617 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3618                                       Optional<unsigned> *InRangeOp) {
3619   // Empty list.
3620   if (Lex.getKind() == lltok::rbrace ||
3621       Lex.getKind() == lltok::rsquare ||
3622       Lex.getKind() == lltok::greater ||
3623       Lex.getKind() == lltok::rparen)
3624     return false;
3625 
3626   do {
3627     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3628       *InRangeOp = Elts.size();
3629 
3630     Constant *C;
3631     if (ParseGlobalTypeAndValue(C)) return true;
3632     Elts.push_back(C);
3633   } while (EatIfPresent(lltok::comma));
3634 
3635   return false;
3636 }
3637 
3638 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3639   SmallVector<Metadata *, 16> Elts;
3640   if (ParseMDNodeVector(Elts))
3641     return true;
3642 
3643   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3644   return false;
3645 }
3646 
3647 /// MDNode:
3648 ///  ::= !{ ... }
3649 ///  ::= !7
3650 ///  ::= !DILocation(...)
3651 bool LLParser::ParseMDNode(MDNode *&N) {
3652   if (Lex.getKind() == lltok::MetadataVar)
3653     return ParseSpecializedMDNode(N);
3654 
3655   return ParseToken(lltok::exclaim, "expected '!' here") ||
3656          ParseMDNodeTail(N);
3657 }
3658 
3659 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3660   // !{ ... }
3661   if (Lex.getKind() == lltok::lbrace)
3662     return ParseMDTuple(N);
3663 
3664   // !42
3665   return ParseMDNodeID(N);
3666 }
3667 
3668 namespace {
3669 
3670 /// Structure to represent an optional metadata field.
3671 template <class FieldTy> struct MDFieldImpl {
3672   typedef MDFieldImpl ImplTy;
3673   FieldTy Val;
3674   bool Seen;
3675 
3676   void assign(FieldTy Val) {
3677     Seen = true;
3678     this->Val = std::move(Val);
3679   }
3680 
3681   explicit MDFieldImpl(FieldTy Default)
3682       : Val(std::move(Default)), Seen(false) {}
3683 };
3684 
3685 /// Structure to represent an optional metadata field that
3686 /// can be of either type (A or B) and encapsulates the
3687 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3688 /// to reimplement the specifics for representing each Field.
3689 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3690   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3691   FieldTypeA A;
3692   FieldTypeB B;
3693   bool Seen;
3694 
3695   enum {
3696     IsInvalid = 0,
3697     IsTypeA = 1,
3698     IsTypeB = 2
3699   } WhatIs;
3700 
3701   void assign(FieldTypeA A) {
3702     Seen = true;
3703     this->A = std::move(A);
3704     WhatIs = IsTypeA;
3705   }
3706 
3707   void assign(FieldTypeB B) {
3708     Seen = true;
3709     this->B = std::move(B);
3710     WhatIs = IsTypeB;
3711   }
3712 
3713   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3714       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3715         WhatIs(IsInvalid) {}
3716 };
3717 
3718 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3719   uint64_t Max;
3720 
3721   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3722       : ImplTy(Default), Max(Max) {}
3723 };
3724 
3725 struct LineField : public MDUnsignedField {
3726   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3727 };
3728 
3729 struct ColumnField : public MDUnsignedField {
3730   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3731 };
3732 
3733 struct DwarfTagField : public MDUnsignedField {
3734   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3735   DwarfTagField(dwarf::Tag DefaultTag)
3736       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3737 };
3738 
3739 struct DwarfMacinfoTypeField : public MDUnsignedField {
3740   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3741   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3742     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3743 };
3744 
3745 struct DwarfAttEncodingField : public MDUnsignedField {
3746   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3747 };
3748 
3749 struct DwarfVirtualityField : public MDUnsignedField {
3750   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3751 };
3752 
3753 struct DwarfLangField : public MDUnsignedField {
3754   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3755 };
3756 
3757 struct DwarfCCField : public MDUnsignedField {
3758   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3759 };
3760 
3761 struct EmissionKindField : public MDUnsignedField {
3762   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3763 };
3764 
3765 struct NameTableKindField : public MDUnsignedField {
3766   NameTableKindField()
3767       : MDUnsignedField(
3768             0, (unsigned)
3769                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3770 };
3771 
3772 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3773   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3774 };
3775 
3776 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3777   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3778 };
3779 
3780 struct MDSignedField : public MDFieldImpl<int64_t> {
3781   int64_t Min;
3782   int64_t Max;
3783 
3784   MDSignedField(int64_t Default = 0)
3785       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3786   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3787       : ImplTy(Default), Min(Min), Max(Max) {}
3788 };
3789 
3790 struct MDBoolField : public MDFieldImpl<bool> {
3791   MDBoolField(bool Default = false) : ImplTy(Default) {}
3792 };
3793 
3794 struct MDField : public MDFieldImpl<Metadata *> {
3795   bool AllowNull;
3796 
3797   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3798 };
3799 
3800 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3801   MDConstant() : ImplTy(nullptr) {}
3802 };
3803 
3804 struct MDStringField : public MDFieldImpl<MDString *> {
3805   bool AllowEmpty;
3806   MDStringField(bool AllowEmpty = true)
3807       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3808 };
3809 
3810 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3811   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3812 };
3813 
3814 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3815   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3816 };
3817 
3818 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3819   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3820       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3821 
3822   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3823                     bool AllowNull = true)
3824       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3825 
3826   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3827   bool isMDField() const { return WhatIs == IsTypeB; }
3828   int64_t getMDSignedValue() const {
3829     assert(isMDSignedField() && "Wrong field type");
3830     return A.Val;
3831   }
3832   Metadata *getMDFieldValue() const {
3833     assert(isMDField() && "Wrong field type");
3834     return B.Val;
3835   }
3836 };
3837 
3838 struct MDSignedOrUnsignedField
3839     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3840   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3841 
3842   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3843   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3844   int64_t getMDSignedValue() const {
3845     assert(isMDSignedField() && "Wrong field type");
3846     return A.Val;
3847   }
3848   uint64_t getMDUnsignedValue() const {
3849     assert(isMDUnsignedField() && "Wrong field type");
3850     return B.Val;
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 namespace llvm {
3857 
3858 template <>
3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3860                             MDUnsignedField &Result) {
3861   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3862     return TokError("expected unsigned integer");
3863 
3864   auto &U = Lex.getAPSIntVal();
3865   if (U.ugt(Result.Max))
3866     return TokError("value for '" + Name + "' too large, limit is " +
3867                     Twine(Result.Max));
3868   Result.assign(U.getZExtValue());
3869   assert(Result.Val <= Result.Max && "Expected value in range");
3870   Lex.Lex();
3871   return false;
3872 }
3873 
3874 template <>
3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3876   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3877 }
3878 template <>
3879 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3880   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3881 }
3882 
3883 template <>
3884 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3885   if (Lex.getKind() == lltok::APSInt)
3886     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3887 
3888   if (Lex.getKind() != lltok::DwarfTag)
3889     return TokError("expected DWARF tag");
3890 
3891   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3892   if (Tag == dwarf::DW_TAG_invalid)
3893     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3894   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3895 
3896   Result.assign(Tag);
3897   Lex.Lex();
3898   return false;
3899 }
3900 
3901 template <>
3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3903                             DwarfMacinfoTypeField &Result) {
3904   if (Lex.getKind() == lltok::APSInt)
3905     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3906 
3907   if (Lex.getKind() != lltok::DwarfMacinfo)
3908     return TokError("expected DWARF macinfo type");
3909 
3910   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3911   if (Macinfo == dwarf::DW_MACINFO_invalid)
3912     return TokError(
3913         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3914   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3915 
3916   Result.assign(Macinfo);
3917   Lex.Lex();
3918   return false;
3919 }
3920 
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3923                             DwarfVirtualityField &Result) {
3924   if (Lex.getKind() == lltok::APSInt)
3925     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3926 
3927   if (Lex.getKind() != lltok::DwarfVirtuality)
3928     return TokError("expected DWARF virtuality code");
3929 
3930   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3931   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3932     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3933                     Lex.getStrVal() + "'");
3934   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3935   Result.assign(Virtuality);
3936   Lex.Lex();
3937   return false;
3938 }
3939 
3940 template <>
3941 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3942   if (Lex.getKind() == lltok::APSInt)
3943     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944 
3945   if (Lex.getKind() != lltok::DwarfLang)
3946     return TokError("expected DWARF language");
3947 
3948   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3949   if (!Lang)
3950     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3951                     "'");
3952   assert(Lang <= Result.Max && "Expected valid DWARF language");
3953   Result.assign(Lang);
3954   Lex.Lex();
3955   return false;
3956 }
3957 
3958 template <>
3959 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3960   if (Lex.getKind() == lltok::APSInt)
3961     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3962 
3963   if (Lex.getKind() != lltok::DwarfCC)
3964     return TokError("expected DWARF calling convention");
3965 
3966   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3967   if (!CC)
3968     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3969                     "'");
3970   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3971   Result.assign(CC);
3972   Lex.Lex();
3973   return false;
3974 }
3975 
3976 template <>
3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3978   if (Lex.getKind() == lltok::APSInt)
3979     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3980 
3981   if (Lex.getKind() != lltok::EmissionKind)
3982     return TokError("expected emission kind");
3983 
3984   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3985   if (!Kind)
3986     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3987                     "'");
3988   assert(*Kind <= Result.Max && "Expected valid emission kind");
3989   Result.assign(*Kind);
3990   Lex.Lex();
3991   return false;
3992 }
3993 
3994 template <>
3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3996                             NameTableKindField &Result) {
3997   if (Lex.getKind() == lltok::APSInt)
3998     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3999 
4000   if (Lex.getKind() != lltok::NameTableKind)
4001     return TokError("expected nameTable kind");
4002 
4003   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4004   if (!Kind)
4005     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4006                     "'");
4007   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4008   Result.assign((unsigned)*Kind);
4009   Lex.Lex();
4010   return false;
4011 }
4012 
4013 template <>
4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4015                             DwarfAttEncodingField &Result) {
4016   if (Lex.getKind() == lltok::APSInt)
4017     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4018 
4019   if (Lex.getKind() != lltok::DwarfAttEncoding)
4020     return TokError("expected DWARF type attribute encoding");
4021 
4022   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4023   if (!Encoding)
4024     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4025                     Lex.getStrVal() + "'");
4026   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4027   Result.assign(Encoding);
4028   Lex.Lex();
4029   return false;
4030 }
4031 
4032 /// DIFlagField
4033 ///  ::= uint32
4034 ///  ::= DIFlagVector
4035 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4036 template <>
4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4038 
4039   // Parser for a single flag.
4040   auto parseFlag = [&](DINode::DIFlags &Val) {
4041     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4042       uint32_t TempVal = static_cast<uint32_t>(Val);
4043       bool Res = ParseUInt32(TempVal);
4044       Val = static_cast<DINode::DIFlags>(TempVal);
4045       return Res;
4046     }
4047 
4048     if (Lex.getKind() != lltok::DIFlag)
4049       return TokError("expected debug info flag");
4050 
4051     Val = DINode::getFlag(Lex.getStrVal());
4052     if (!Val)
4053       return TokError(Twine("invalid debug info flag flag '") +
4054                       Lex.getStrVal() + "'");
4055     Lex.Lex();
4056     return false;
4057   };
4058 
4059   // Parse the flags and combine them together.
4060   DINode::DIFlags Combined = DINode::FlagZero;
4061   do {
4062     DINode::DIFlags Val;
4063     if (parseFlag(Val))
4064       return true;
4065     Combined |= Val;
4066   } while (EatIfPresent(lltok::bar));
4067 
4068   Result.assign(Combined);
4069   return false;
4070 }
4071 
4072 /// DISPFlagField
4073 ///  ::= uint32
4074 ///  ::= DISPFlagVector
4075 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4076 template <>
4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4078 
4079   // Parser for a single flag.
4080   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4081     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4082       uint32_t TempVal = static_cast<uint32_t>(Val);
4083       bool Res = ParseUInt32(TempVal);
4084       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4085       return Res;
4086     }
4087 
4088     if (Lex.getKind() != lltok::DISPFlag)
4089       return TokError("expected debug info flag");
4090 
4091     Val = DISubprogram::getFlag(Lex.getStrVal());
4092     if (!Val)
4093       return TokError(Twine("invalid subprogram debug info flag '") +
4094                       Lex.getStrVal() + "'");
4095     Lex.Lex();
4096     return false;
4097   };
4098 
4099   // Parse the flags and combine them together.
4100   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4101   do {
4102     DISubprogram::DISPFlags Val;
4103     if (parseFlag(Val))
4104       return true;
4105     Combined |= Val;
4106   } while (EatIfPresent(lltok::bar));
4107 
4108   Result.assign(Combined);
4109   return false;
4110 }
4111 
4112 template <>
4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4114                             MDSignedField &Result) {
4115   if (Lex.getKind() != lltok::APSInt)
4116     return TokError("expected signed integer");
4117 
4118   auto &S = Lex.getAPSIntVal();
4119   if (S < Result.Min)
4120     return TokError("value for '" + Name + "' too small, limit is " +
4121                     Twine(Result.Min));
4122   if (S > Result.Max)
4123     return TokError("value for '" + Name + "' too large, limit is " +
4124                     Twine(Result.Max));
4125   Result.assign(S.getExtValue());
4126   assert(Result.Val >= Result.Min && "Expected value in range");
4127   assert(Result.Val <= Result.Max && "Expected value in range");
4128   Lex.Lex();
4129   return false;
4130 }
4131 
4132 template <>
4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4134   switch (Lex.getKind()) {
4135   default:
4136     return TokError("expected 'true' or 'false'");
4137   case lltok::kw_true:
4138     Result.assign(true);
4139     break;
4140   case lltok::kw_false:
4141     Result.assign(false);
4142     break;
4143   }
4144   Lex.Lex();
4145   return false;
4146 }
4147 
4148 template <>
4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4150   if (Lex.getKind() == lltok::kw_null) {
4151     if (!Result.AllowNull)
4152       return TokError("'" + Name + "' cannot be null");
4153     Lex.Lex();
4154     Result.assign(nullptr);
4155     return false;
4156   }
4157 
4158   Metadata *MD;
4159   if (ParseMetadata(MD, nullptr))
4160     return true;
4161 
4162   Result.assign(MD);
4163   return false;
4164 }
4165 
4166 template <>
4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4168                             MDSignedOrMDField &Result) {
4169   // Try to parse a signed int.
4170   if (Lex.getKind() == lltok::APSInt) {
4171     MDSignedField Res = Result.A;
4172     if (!ParseMDField(Loc, Name, Res)) {
4173       Result.assign(Res);
4174       return false;
4175     }
4176     return true;
4177   }
4178 
4179   // Otherwise, try to parse as an MDField.
4180   MDField Res = Result.B;
4181   if (!ParseMDField(Loc, Name, Res)) {
4182     Result.assign(Res);
4183     return false;
4184   }
4185 
4186   return true;
4187 }
4188 
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4191                             MDSignedOrUnsignedField &Result) {
4192   if (Lex.getKind() != lltok::APSInt)
4193     return false;
4194 
4195   if (Lex.getAPSIntVal().isSigned()) {
4196     MDSignedField Res = Result.A;
4197     if (ParseMDField(Loc, Name, Res))
4198       return true;
4199     Result.assign(Res);
4200     return false;
4201   }
4202 
4203   MDUnsignedField Res = Result.B;
4204   if (ParseMDField(Loc, Name, Res))
4205     return true;
4206   Result.assign(Res);
4207   return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4212   LocTy ValueLoc = Lex.getLoc();
4213   std::string S;
4214   if (ParseStringConstant(S))
4215     return true;
4216 
4217   if (!Result.AllowEmpty && S.empty())
4218     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4219 
4220   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4221   return false;
4222 }
4223 
4224 template <>
4225 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4226   SmallVector<Metadata *, 4> MDs;
4227   if (ParseMDNodeVector(MDs))
4228     return true;
4229 
4230   Result.assign(std::move(MDs));
4231   return false;
4232 }
4233 
4234 template <>
4235 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4236                             ChecksumKindField &Result) {
4237   Optional<DIFile::ChecksumKind> CSKind =
4238       DIFile::getChecksumKind(Lex.getStrVal());
4239 
4240   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4241     return TokError(
4242         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4243 
4244   Result.assign(*CSKind);
4245   Lex.Lex();
4246   return false;
4247 }
4248 
4249 } // end namespace llvm
4250 
4251 template <class ParserTy>
4252 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4253   do {
4254     if (Lex.getKind() != lltok::LabelStr)
4255       return TokError("expected field label here");
4256 
4257     if (parseField())
4258       return true;
4259   } while (EatIfPresent(lltok::comma));
4260 
4261   return false;
4262 }
4263 
4264 template <class ParserTy>
4265 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4266   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4267   Lex.Lex();
4268 
4269   if (ParseToken(lltok::lparen, "expected '(' here"))
4270     return true;
4271   if (Lex.getKind() != lltok::rparen)
4272     if (ParseMDFieldsImplBody(parseField))
4273       return true;
4274 
4275   ClosingLoc = Lex.getLoc();
4276   return ParseToken(lltok::rparen, "expected ')' here");
4277 }
4278 
4279 template <class FieldTy>
4280 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4281   if (Result.Seen)
4282     return TokError("field '" + Name + "' cannot be specified more than once");
4283 
4284   LocTy Loc = Lex.getLoc();
4285   Lex.Lex();
4286   return ParseMDField(Loc, Name, Result);
4287 }
4288 
4289 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4290   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4291 
4292 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4293   if (Lex.getStrVal() == #CLASS)                                               \
4294     return Parse##CLASS(N, IsDistinct);
4295 #include "llvm/IR/Metadata.def"
4296 
4297   return TokError("expected metadata type");
4298 }
4299 
4300 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4301 #define NOP_FIELD(NAME, TYPE, INIT)
4302 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4303   if (!NAME.Seen)                                                              \
4304     return Error(ClosingLoc, "missing required field '" #NAME "'");
4305 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4306   if (Lex.getStrVal() == #NAME)                                                \
4307     return ParseMDField(#NAME, NAME);
4308 #define PARSE_MD_FIELDS()                                                      \
4309   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4310   do {                                                                         \
4311     LocTy ClosingLoc;                                                          \
4312     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4313       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4314       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4315     }, ClosingLoc))                                                            \
4316       return true;                                                             \
4317     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4318   } while (false)
4319 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4320   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4321 
4322 /// ParseDILocationFields:
4323 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4324 ///   isImplicitCode: true)
4325 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4327   OPTIONAL(line, LineField, );                                                 \
4328   OPTIONAL(column, ColumnField, );                                             \
4329   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4330   OPTIONAL(inlinedAt, MDField, );                                              \
4331   OPTIONAL(isImplicitCode, MDBoolField, (false));
4332   PARSE_MD_FIELDS();
4333 #undef VISIT_MD_FIELDS
4334 
4335   Result =
4336       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4337                                    inlinedAt.Val, isImplicitCode.Val));
4338   return false;
4339 }
4340 
4341 /// ParseGenericDINode:
4342 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4343 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4344 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4345   REQUIRED(tag, DwarfTagField, );                                              \
4346   OPTIONAL(header, MDStringField, );                                           \
4347   OPTIONAL(operands, MDFieldList, );
4348   PARSE_MD_FIELDS();
4349 #undef VISIT_MD_FIELDS
4350 
4351   Result = GET_OR_DISTINCT(GenericDINode,
4352                            (Context, tag.Val, header.Val, operands.Val));
4353   return false;
4354 }
4355 
4356 /// ParseDISubrange:
4357 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4358 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4359 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4361   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4362   OPTIONAL(lowerBound, MDSignedField, );
4363   PARSE_MD_FIELDS();
4364 #undef VISIT_MD_FIELDS
4365 
4366   if (count.isMDSignedField())
4367     Result = GET_OR_DISTINCT(
4368         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4369   else if (count.isMDField())
4370     Result = GET_OR_DISTINCT(
4371         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4372   else
4373     return true;
4374 
4375   return false;
4376 }
4377 
4378 /// ParseDIEnumerator:
4379 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4380 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4382   REQUIRED(name, MDStringField, );                                             \
4383   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4384   OPTIONAL(isUnsigned, MDBoolField, (false));
4385   PARSE_MD_FIELDS();
4386 #undef VISIT_MD_FIELDS
4387 
4388   if (isUnsigned.Val && value.isMDSignedField())
4389     return TokError("unsigned enumerator with negative value");
4390 
4391   int64_t Value = value.isMDSignedField()
4392                       ? value.getMDSignedValue()
4393                       : static_cast<int64_t>(value.getMDUnsignedValue());
4394   Result =
4395       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4396 
4397   return false;
4398 }
4399 
4400 /// ParseDIBasicType:
4401 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4402 ///                    encoding: DW_ATE_encoding, flags: 0)
4403 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4405   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4406   OPTIONAL(name, MDStringField, );                                             \
4407   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4408   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4409   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4410   OPTIONAL(flags, DIFlagField, );
4411   PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4413 
4414   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4415                                          align.Val, encoding.Val, flags.Val));
4416   return false;
4417 }
4418 
4419 /// ParseDIDerivedType:
4420 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4421 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4422 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4423 ///                      dwarfAddressSpace: 3)
4424 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4426   REQUIRED(tag, DwarfTagField, );                                              \
4427   OPTIONAL(name, MDStringField, );                                             \
4428   OPTIONAL(file, MDField, );                                                   \
4429   OPTIONAL(line, LineField, );                                                 \
4430   OPTIONAL(scope, MDField, );                                                  \
4431   REQUIRED(baseType, MDField, );                                               \
4432   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4433   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4434   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4435   OPTIONAL(flags, DIFlagField, );                                              \
4436   OPTIONAL(extraData, MDField, );                                              \
4437   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4438   PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4440 
4441   Optional<unsigned> DWARFAddressSpace;
4442   if (dwarfAddressSpace.Val != UINT32_MAX)
4443     DWARFAddressSpace = dwarfAddressSpace.Val;
4444 
4445   Result = GET_OR_DISTINCT(DIDerivedType,
4446                            (Context, tag.Val, name.Val, file.Val, line.Val,
4447                             scope.Val, baseType.Val, size.Val, align.Val,
4448                             offset.Val, DWARFAddressSpace, flags.Val,
4449                             extraData.Val));
4450   return false;
4451 }
4452 
4453 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4455   REQUIRED(tag, DwarfTagField, );                                              \
4456   OPTIONAL(name, MDStringField, );                                             \
4457   OPTIONAL(file, MDField, );                                                   \
4458   OPTIONAL(line, LineField, );                                                 \
4459   OPTIONAL(scope, MDField, );                                                  \
4460   OPTIONAL(baseType, MDField, );                                               \
4461   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4462   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4463   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4464   OPTIONAL(flags, DIFlagField, );                                              \
4465   OPTIONAL(elements, MDField, );                                               \
4466   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4467   OPTIONAL(vtableHolder, MDField, );                                           \
4468   OPTIONAL(templateParams, MDField, );                                         \
4469   OPTIONAL(identifier, MDStringField, );                                       \
4470   OPTIONAL(discriminator, MDField, );
4471   PARSE_MD_FIELDS();
4472 #undef VISIT_MD_FIELDS
4473 
4474   // If this has an identifier try to build an ODR type.
4475   if (identifier.Val)
4476     if (auto *CT = DICompositeType::buildODRType(
4477             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4478             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4479             elements.Val, runtimeLang.Val, vtableHolder.Val,
4480             templateParams.Val, discriminator.Val)) {
4481       Result = CT;
4482       return false;
4483     }
4484 
4485   // Create a new node, and save it in the context if it belongs in the type
4486   // map.
4487   Result = GET_OR_DISTINCT(
4488       DICompositeType,
4489       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4490        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4491        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4492        discriminator.Val));
4493   return false;
4494 }
4495 
4496 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4498   OPTIONAL(flags, DIFlagField, );                                              \
4499   OPTIONAL(cc, DwarfCCField, );                                                \
4500   REQUIRED(types, MDField, );
4501   PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504   Result = GET_OR_DISTINCT(DISubroutineType,
4505                            (Context, flags.Val, cc.Val, types.Val));
4506   return false;
4507 }
4508 
4509 /// ParseDIFileType:
4510 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4511 ///                   checksumkind: CSK_MD5,
4512 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4513 ///                   source: "source file contents")
4514 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4515   // The default constructed value for checksumkind is required, but will never
4516   // be used, as the parser checks if the field was actually Seen before using
4517   // the Val.
4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4519   REQUIRED(filename, MDStringField, );                                         \
4520   REQUIRED(directory, MDStringField, );                                        \
4521   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4522   OPTIONAL(checksum, MDStringField, );                                         \
4523   OPTIONAL(source, MDStringField, );
4524   PARSE_MD_FIELDS();
4525 #undef VISIT_MD_FIELDS
4526 
4527   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4528   if (checksumkind.Seen && checksum.Seen)
4529     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4530   else if (checksumkind.Seen || checksum.Seen)
4531     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4532 
4533   Optional<MDString *> OptSource;
4534   if (source.Seen)
4535     OptSource = source.Val;
4536   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4537                                     OptChecksum, OptSource));
4538   return false;
4539 }
4540 
4541 /// ParseDICompileUnit:
4542 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4543 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4544 ///                      splitDebugFilename: "abc.debug",
4545 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4546 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4547 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4548   if (!IsDistinct)
4549     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4550 
4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4552   REQUIRED(language, DwarfLangField, );                                        \
4553   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4554   OPTIONAL(producer, MDStringField, );                                         \
4555   OPTIONAL(isOptimized, MDBoolField, );                                        \
4556   OPTIONAL(flags, MDStringField, );                                            \
4557   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4558   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4559   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4560   OPTIONAL(enums, MDField, );                                                  \
4561   OPTIONAL(retainedTypes, MDField, );                                          \
4562   OPTIONAL(globals, MDField, );                                                \
4563   OPTIONAL(imports, MDField, );                                                \
4564   OPTIONAL(macros, MDField, );                                                 \
4565   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4566   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4567   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4568   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4569   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4570   PARSE_MD_FIELDS();
4571 #undef VISIT_MD_FIELDS
4572 
4573   Result = DICompileUnit::getDistinct(
4574       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4575       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4576       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4577       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4578       debugBaseAddress.Val);
4579   return false;
4580 }
4581 
4582 /// ParseDISubprogram:
4583 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4584 ///                     file: !1, line: 7, type: !2, isLocal: false,
4585 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4586 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4587 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4588 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4589 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4590 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4591   auto Loc = Lex.getLoc();
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   OPTIONAL(scope, MDField, );                                                  \
4594   OPTIONAL(name, MDStringField, );                                             \
4595   OPTIONAL(linkageName, MDStringField, );                                      \
4596   OPTIONAL(file, MDField, );                                                   \
4597   OPTIONAL(line, LineField, );                                                 \
4598   OPTIONAL(type, MDField, );                                                   \
4599   OPTIONAL(isLocal, MDBoolField, );                                            \
4600   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4601   OPTIONAL(scopeLine, LineField, );                                            \
4602   OPTIONAL(containingType, MDField, );                                         \
4603   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4604   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4605   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4606   OPTIONAL(flags, DIFlagField, );                                              \
4607   OPTIONAL(spFlags, DISPFlagField, );                                          \
4608   OPTIONAL(isOptimized, MDBoolField, );                                        \
4609   OPTIONAL(unit, MDField, );                                                   \
4610   OPTIONAL(templateParams, MDField, );                                         \
4611   OPTIONAL(declaration, MDField, );                                            \
4612   OPTIONAL(retainedNodes, MDField, );                                          \
4613   OPTIONAL(thrownTypes, MDField, );
4614   PARSE_MD_FIELDS();
4615 #undef VISIT_MD_FIELDS
4616 
4617   // An explicit spFlags field takes precedence over individual fields in
4618   // older IR versions.
4619   DISubprogram::DISPFlags SPFlags =
4620       spFlags.Seen ? spFlags.Val
4621                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4622                                              isOptimized.Val, virtuality.Val);
4623   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4624     return Lex.Error(
4625         Loc,
4626         "missing 'distinct', required for !DISubprogram that is a Definition");
4627   Result = GET_OR_DISTINCT(
4628       DISubprogram,
4629       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4630        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4631        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4632        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4633   return false;
4634 }
4635 
4636 /// ParseDILexicalBlock:
4637 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4638 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4639 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4640   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4641   OPTIONAL(file, MDField, );                                                   \
4642   OPTIONAL(line, LineField, );                                                 \
4643   OPTIONAL(column, ColumnField, );
4644   PARSE_MD_FIELDS();
4645 #undef VISIT_MD_FIELDS
4646 
4647   Result = GET_OR_DISTINCT(
4648       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4649   return false;
4650 }
4651 
4652 /// ParseDILexicalBlockFile:
4653 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4654 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4656   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4657   OPTIONAL(file, MDField, );                                                   \
4658   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4659   PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4661 
4662   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4663                            (Context, scope.Val, file.Val, discriminator.Val));
4664   return false;
4665 }
4666 
4667 /// ParseDINamespace:
4668 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4669 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4671   REQUIRED(scope, MDField, );                                                  \
4672   OPTIONAL(name, MDStringField, );                                             \
4673   OPTIONAL(exportSymbols, MDBoolField, );
4674   PARSE_MD_FIELDS();
4675 #undef VISIT_MD_FIELDS
4676 
4677   Result = GET_OR_DISTINCT(DINamespace,
4678                            (Context, scope.Val, name.Val, exportSymbols.Val));
4679   return false;
4680 }
4681 
4682 /// ParseDIMacro:
4683 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4684 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4686   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4687   OPTIONAL(line, LineField, );                                                 \
4688   REQUIRED(name, MDStringField, );                                             \
4689   OPTIONAL(value, MDStringField, );
4690   PARSE_MD_FIELDS();
4691 #undef VISIT_MD_FIELDS
4692 
4693   Result = GET_OR_DISTINCT(DIMacro,
4694                            (Context, type.Val, line.Val, name.Val, value.Val));
4695   return false;
4696 }
4697 
4698 /// ParseDIMacroFile:
4699 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4700 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4702   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4703   OPTIONAL(line, LineField, );                                                 \
4704   REQUIRED(file, MDField, );                                                   \
4705   OPTIONAL(nodes, MDField, );
4706   PARSE_MD_FIELDS();
4707 #undef VISIT_MD_FIELDS
4708 
4709   Result = GET_OR_DISTINCT(DIMacroFile,
4710                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4711   return false;
4712 }
4713 
4714 /// ParseDIModule:
4715 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4716 ///                 includePath: "/usr/include", isysroot: "/")
4717 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4719   REQUIRED(scope, MDField, );                                                  \
4720   REQUIRED(name, MDStringField, );                                             \
4721   OPTIONAL(configMacros, MDStringField, );                                     \
4722   OPTIONAL(includePath, MDStringField, );                                      \
4723   OPTIONAL(isysroot, MDStringField, );
4724   PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4728                            configMacros.Val, includePath.Val, isysroot.Val));
4729   return false;
4730 }
4731 
4732 /// ParseDITemplateTypeParameter:
4733 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4734 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4736   OPTIONAL(name, MDStringField, );                                             \
4737   REQUIRED(type, MDField, );
4738   PARSE_MD_FIELDS();
4739 #undef VISIT_MD_FIELDS
4740 
4741   Result =
4742       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4743   return false;
4744 }
4745 
4746 /// ParseDITemplateValueParameter:
4747 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4748 ///                                 name: "V", type: !1, value: i32 7)
4749 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4751   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4752   OPTIONAL(name, MDStringField, );                                             \
4753   OPTIONAL(type, MDField, );                                                   \
4754   REQUIRED(value, MDField, );
4755   PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4757 
4758   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4759                            (Context, tag.Val, name.Val, type.Val, value.Val));
4760   return false;
4761 }
4762 
4763 /// ParseDIGlobalVariable:
4764 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4765 ///                         file: !1, line: 7, type: !2, isLocal: false,
4766 ///                         isDefinition: true, templateParams: !3,
4767 ///                         declaration: !4, align: 8)
4768 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4769 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4770   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4771   OPTIONAL(scope, MDField, );                                                  \
4772   OPTIONAL(linkageName, MDStringField, );                                      \
4773   OPTIONAL(file, MDField, );                                                   \
4774   OPTIONAL(line, LineField, );                                                 \
4775   OPTIONAL(type, MDField, );                                                   \
4776   OPTIONAL(isLocal, MDBoolField, );                                            \
4777   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4778   OPTIONAL(templateParams, MDField, );                                         \
4779   OPTIONAL(declaration, MDField, );                                            \
4780   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4781   PARSE_MD_FIELDS();
4782 #undef VISIT_MD_FIELDS
4783 
4784   Result =
4785       GET_OR_DISTINCT(DIGlobalVariable,
4786                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4787                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4788                        declaration.Val, templateParams.Val, align.Val));
4789   return false;
4790 }
4791 
4792 /// ParseDILocalVariable:
4793 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4794 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4795 ///                        align: 8)
4796 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4797 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4798 ///                        align: 8)
4799 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4801   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4802   OPTIONAL(name, MDStringField, );                                             \
4803   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4804   OPTIONAL(file, MDField, );                                                   \
4805   OPTIONAL(line, LineField, );                                                 \
4806   OPTIONAL(type, MDField, );                                                   \
4807   OPTIONAL(flags, DIFlagField, );                                              \
4808   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4809   PARSE_MD_FIELDS();
4810 #undef VISIT_MD_FIELDS
4811 
4812   Result = GET_OR_DISTINCT(DILocalVariable,
4813                            (Context, scope.Val, name.Val, file.Val, line.Val,
4814                             type.Val, arg.Val, flags.Val, align.Val));
4815   return false;
4816 }
4817 
4818 /// ParseDILabel:
4819 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4820 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4822   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4823   REQUIRED(name, MDStringField, );                                             \
4824   REQUIRED(file, MDField, );                                                   \
4825   REQUIRED(line, LineField, );
4826   PARSE_MD_FIELDS();
4827 #undef VISIT_MD_FIELDS
4828 
4829   Result = GET_OR_DISTINCT(DILabel,
4830                            (Context, scope.Val, name.Val, file.Val, line.Val));
4831   return false;
4832 }
4833 
4834 /// ParseDIExpression:
4835 ///   ::= !DIExpression(0, 7, -1)
4836 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4837   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4838   Lex.Lex();
4839 
4840   if (ParseToken(lltok::lparen, "expected '(' here"))
4841     return true;
4842 
4843   SmallVector<uint64_t, 8> Elements;
4844   if (Lex.getKind() != lltok::rparen)
4845     do {
4846       if (Lex.getKind() == lltok::DwarfOp) {
4847         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4848           Lex.Lex();
4849           Elements.push_back(Op);
4850           continue;
4851         }
4852         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4853       }
4854 
4855       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4856         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4857           Lex.Lex();
4858           Elements.push_back(Op);
4859           continue;
4860         }
4861         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4862       }
4863 
4864       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4865         return TokError("expected unsigned integer");
4866 
4867       auto &U = Lex.getAPSIntVal();
4868       if (U.ugt(UINT64_MAX))
4869         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4870       Elements.push_back(U.getZExtValue());
4871       Lex.Lex();
4872     } while (EatIfPresent(lltok::comma));
4873 
4874   if (ParseToken(lltok::rparen, "expected ')' here"))
4875     return true;
4876 
4877   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4878   return false;
4879 }
4880 
4881 /// ParseDIGlobalVariableExpression:
4882 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4883 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4884                                                bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4886   REQUIRED(var, MDField, );                                                    \
4887   REQUIRED(expr, MDField, );
4888   PARSE_MD_FIELDS();
4889 #undef VISIT_MD_FIELDS
4890 
4891   Result =
4892       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4893   return false;
4894 }
4895 
4896 /// ParseDIObjCProperty:
4897 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4898 ///                       getter: "getFoo", attributes: 7, type: !2)
4899 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4901   OPTIONAL(name, MDStringField, );                                             \
4902   OPTIONAL(file, MDField, );                                                   \
4903   OPTIONAL(line, LineField, );                                                 \
4904   OPTIONAL(setter, MDStringField, );                                           \
4905   OPTIONAL(getter, MDStringField, );                                           \
4906   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4907   OPTIONAL(type, MDField, );
4908   PARSE_MD_FIELDS();
4909 #undef VISIT_MD_FIELDS
4910 
4911   Result = GET_OR_DISTINCT(DIObjCProperty,
4912                            (Context, name.Val, file.Val, line.Val, setter.Val,
4913                             getter.Val, attributes.Val, type.Val));
4914   return false;
4915 }
4916 
4917 /// ParseDIImportedEntity:
4918 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4919 ///                         line: 7, name: "foo")
4920 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4922   REQUIRED(tag, DwarfTagField, );                                              \
4923   REQUIRED(scope, MDField, );                                                  \
4924   OPTIONAL(entity, MDField, );                                                 \
4925   OPTIONAL(file, MDField, );                                                   \
4926   OPTIONAL(line, LineField, );                                                 \
4927   OPTIONAL(name, MDStringField, );
4928   PARSE_MD_FIELDS();
4929 #undef VISIT_MD_FIELDS
4930 
4931   Result = GET_OR_DISTINCT(
4932       DIImportedEntity,
4933       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4934   return false;
4935 }
4936 
4937 #undef PARSE_MD_FIELD
4938 #undef NOP_FIELD
4939 #undef REQUIRE_FIELD
4940 #undef DECLARE_FIELD
4941 
4942 /// ParseMetadataAsValue
4943 ///  ::= metadata i32 %local
4944 ///  ::= metadata i32 @global
4945 ///  ::= metadata i32 7
4946 ///  ::= metadata !0
4947 ///  ::= metadata !{...}
4948 ///  ::= metadata !"string"
4949 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4950   // Note: the type 'metadata' has already been parsed.
4951   Metadata *MD;
4952   if (ParseMetadata(MD, &PFS))
4953     return true;
4954 
4955   V = MetadataAsValue::get(Context, MD);
4956   return false;
4957 }
4958 
4959 /// ParseValueAsMetadata
4960 ///  ::= i32 %local
4961 ///  ::= i32 @global
4962 ///  ::= i32 7
4963 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4964                                     PerFunctionState *PFS) {
4965   Type *Ty;
4966   LocTy Loc;
4967   if (ParseType(Ty, TypeMsg, Loc))
4968     return true;
4969   if (Ty->isMetadataTy())
4970     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4971 
4972   Value *V;
4973   if (ParseValue(Ty, V, PFS))
4974     return true;
4975 
4976   MD = ValueAsMetadata::get(V);
4977   return false;
4978 }
4979 
4980 /// ParseMetadata
4981 ///  ::= i32 %local
4982 ///  ::= i32 @global
4983 ///  ::= i32 7
4984 ///  ::= !42
4985 ///  ::= !{...}
4986 ///  ::= !"string"
4987 ///  ::= !DILocation(...)
4988 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4989   if (Lex.getKind() == lltok::MetadataVar) {
4990     MDNode *N;
4991     if (ParseSpecializedMDNode(N))
4992       return true;
4993     MD = N;
4994     return false;
4995   }
4996 
4997   // ValueAsMetadata:
4998   // <type> <value>
4999   if (Lex.getKind() != lltok::exclaim)
5000     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5001 
5002   // '!'.
5003   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5004   Lex.Lex();
5005 
5006   // MDString:
5007   //   ::= '!' STRINGCONSTANT
5008   if (Lex.getKind() == lltok::StringConstant) {
5009     MDString *S;
5010     if (ParseMDString(S))
5011       return true;
5012     MD = S;
5013     return false;
5014   }
5015 
5016   // MDNode:
5017   // !{ ... }
5018   // !7
5019   MDNode *N;
5020   if (ParseMDNodeTail(N))
5021     return true;
5022   MD = N;
5023   return false;
5024 }
5025 
5026 //===----------------------------------------------------------------------===//
5027 // Function Parsing.
5028 //===----------------------------------------------------------------------===//
5029 
5030 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5031                                    PerFunctionState *PFS, bool IsCall) {
5032   if (Ty->isFunctionTy())
5033     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5034 
5035   switch (ID.Kind) {
5036   case ValID::t_LocalID:
5037     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5038     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5039     return V == nullptr;
5040   case ValID::t_LocalName:
5041     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5042     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5043     return V == nullptr;
5044   case ValID::t_InlineAsm: {
5045     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5046       return Error(ID.Loc, "invalid type for inline asm constraint string");
5047     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5048                        (ID.UIntVal >> 1) & 1,
5049                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5050     return false;
5051   }
5052   case ValID::t_GlobalName:
5053     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5054     return V == nullptr;
5055   case ValID::t_GlobalID:
5056     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5057     return V == nullptr;
5058   case ValID::t_APSInt:
5059     if (!Ty->isIntegerTy())
5060       return Error(ID.Loc, "integer constant must have integer type");
5061     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5062     V = ConstantInt::get(Context, ID.APSIntVal);
5063     return false;
5064   case ValID::t_APFloat:
5065     if (!Ty->isFloatingPointTy() ||
5066         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5067       return Error(ID.Loc, "floating point constant invalid for type");
5068 
5069     // The lexer has no type info, so builds all half, float, and double FP
5070     // constants as double.  Fix this here.  Long double does not need this.
5071     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5072       bool Ignored;
5073       if (Ty->isHalfTy())
5074         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5075                               &Ignored);
5076       else if (Ty->isFloatTy())
5077         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5078                               &Ignored);
5079     }
5080     V = ConstantFP::get(Context, ID.APFloatVal);
5081 
5082     if (V->getType() != Ty)
5083       return Error(ID.Loc, "floating point constant does not have type '" +
5084                    getTypeString(Ty) + "'");
5085 
5086     return false;
5087   case ValID::t_Null:
5088     if (!Ty->isPointerTy())
5089       return Error(ID.Loc, "null must be a pointer type");
5090     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5091     return false;
5092   case ValID::t_Undef:
5093     // FIXME: LabelTy should not be a first-class type.
5094     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5095       return Error(ID.Loc, "invalid type for undef constant");
5096     V = UndefValue::get(Ty);
5097     return false;
5098   case ValID::t_EmptyArray:
5099     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5100       return Error(ID.Loc, "invalid empty array initializer");
5101     V = UndefValue::get(Ty);
5102     return false;
5103   case ValID::t_Zero:
5104     // FIXME: LabelTy should not be a first-class type.
5105     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5106       return Error(ID.Loc, "invalid type for null constant");
5107     V = Constant::getNullValue(Ty);
5108     return false;
5109   case ValID::t_None:
5110     if (!Ty->isTokenTy())
5111       return Error(ID.Loc, "invalid type for none constant");
5112     V = Constant::getNullValue(Ty);
5113     return false;
5114   case ValID::t_Constant:
5115     if (ID.ConstantVal->getType() != Ty)
5116       return Error(ID.Loc, "constant expression type mismatch");
5117 
5118     V = ID.ConstantVal;
5119     return false;
5120   case ValID::t_ConstantStruct:
5121   case ValID::t_PackedConstantStruct:
5122     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5123       if (ST->getNumElements() != ID.UIntVal)
5124         return Error(ID.Loc,
5125                      "initializer with struct type has wrong # elements");
5126       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5127         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5128 
5129       // Verify that the elements are compatible with the structtype.
5130       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5131         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5132           return Error(ID.Loc, "element " + Twine(i) +
5133                     " of struct initializer doesn't match struct element type");
5134 
5135       V = ConstantStruct::get(
5136           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5137     } else
5138       return Error(ID.Loc, "constant expression type mismatch");
5139     return false;
5140   }
5141   llvm_unreachable("Invalid ValID");
5142 }
5143 
5144 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5145   C = nullptr;
5146   ValID ID;
5147   auto Loc = Lex.getLoc();
5148   if (ParseValID(ID, /*PFS=*/nullptr))
5149     return true;
5150   switch (ID.Kind) {
5151   case ValID::t_APSInt:
5152   case ValID::t_APFloat:
5153   case ValID::t_Undef:
5154   case ValID::t_Constant:
5155   case ValID::t_ConstantStruct:
5156   case ValID::t_PackedConstantStruct: {
5157     Value *V;
5158     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5159       return true;
5160     assert(isa<Constant>(V) && "Expected a constant value");
5161     C = cast<Constant>(V);
5162     return false;
5163   }
5164   case ValID::t_Null:
5165     C = Constant::getNullValue(Ty);
5166     return false;
5167   default:
5168     return Error(Loc, "expected a constant value");
5169   }
5170 }
5171 
5172 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5173   V = nullptr;
5174   ValID ID;
5175   return ParseValID(ID, PFS) ||
5176          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5177 }
5178 
5179 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5180   Type *Ty = nullptr;
5181   return ParseType(Ty) ||
5182          ParseValue(Ty, V, PFS);
5183 }
5184 
5185 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5186                                       PerFunctionState &PFS) {
5187   Value *V;
5188   Loc = Lex.getLoc();
5189   if (ParseTypeAndValue(V, PFS)) return true;
5190   if (!isa<BasicBlock>(V))
5191     return Error(Loc, "expected a basic block");
5192   BB = cast<BasicBlock>(V);
5193   return false;
5194 }
5195 
5196 /// FunctionHeader
5197 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5198 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5199 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5200 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5201 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5202   // Parse the linkage.
5203   LocTy LinkageLoc = Lex.getLoc();
5204   unsigned Linkage;
5205   unsigned Visibility;
5206   unsigned DLLStorageClass;
5207   bool DSOLocal;
5208   AttrBuilder RetAttrs;
5209   unsigned CC;
5210   bool HasLinkage;
5211   Type *RetType = nullptr;
5212   LocTy RetTypeLoc = Lex.getLoc();
5213   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5214                            DSOLocal) ||
5215       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5216       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5217     return true;
5218 
5219   // Verify that the linkage is ok.
5220   switch ((GlobalValue::LinkageTypes)Linkage) {
5221   case GlobalValue::ExternalLinkage:
5222     break; // always ok.
5223   case GlobalValue::ExternalWeakLinkage:
5224     if (isDefine)
5225       return Error(LinkageLoc, "invalid linkage for function definition");
5226     break;
5227   case GlobalValue::PrivateLinkage:
5228   case GlobalValue::InternalLinkage:
5229   case GlobalValue::AvailableExternallyLinkage:
5230   case GlobalValue::LinkOnceAnyLinkage:
5231   case GlobalValue::LinkOnceODRLinkage:
5232   case GlobalValue::WeakAnyLinkage:
5233   case GlobalValue::WeakODRLinkage:
5234     if (!isDefine)
5235       return Error(LinkageLoc, "invalid linkage for function declaration");
5236     break;
5237   case GlobalValue::AppendingLinkage:
5238   case GlobalValue::CommonLinkage:
5239     return Error(LinkageLoc, "invalid function linkage type");
5240   }
5241 
5242   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5243     return Error(LinkageLoc,
5244                  "symbol with local linkage must have default visibility");
5245 
5246   if (!FunctionType::isValidReturnType(RetType))
5247     return Error(RetTypeLoc, "invalid function return type");
5248 
5249   LocTy NameLoc = Lex.getLoc();
5250 
5251   std::string FunctionName;
5252   if (Lex.getKind() == lltok::GlobalVar) {
5253     FunctionName = Lex.getStrVal();
5254   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5255     unsigned NameID = Lex.getUIntVal();
5256 
5257     if (NameID != NumberedVals.size())
5258       return TokError("function expected to be numbered '%" +
5259                       Twine(NumberedVals.size()) + "'");
5260   } else {
5261     return TokError("expected function name");
5262   }
5263 
5264   Lex.Lex();
5265 
5266   if (Lex.getKind() != lltok::lparen)
5267     return TokError("expected '(' in function argument list");
5268 
5269   SmallVector<ArgInfo, 8> ArgList;
5270   bool isVarArg;
5271   AttrBuilder FuncAttrs;
5272   std::vector<unsigned> FwdRefAttrGrps;
5273   LocTy BuiltinLoc;
5274   std::string Section;
5275   unsigned Alignment;
5276   std::string GC;
5277   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5278   unsigned AddrSpace = 0;
5279   Constant *Prefix = nullptr;
5280   Constant *Prologue = nullptr;
5281   Constant *PersonalityFn = nullptr;
5282   Comdat *C;
5283 
5284   if (ParseArgumentList(ArgList, isVarArg) ||
5285       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5286       ParseOptionalProgramAddrSpace(AddrSpace) ||
5287       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5288                                  BuiltinLoc) ||
5289       (EatIfPresent(lltok::kw_section) &&
5290        ParseStringConstant(Section)) ||
5291       parseOptionalComdat(FunctionName, C) ||
5292       ParseOptionalAlignment(Alignment) ||
5293       (EatIfPresent(lltok::kw_gc) &&
5294        ParseStringConstant(GC)) ||
5295       (EatIfPresent(lltok::kw_prefix) &&
5296        ParseGlobalTypeAndValue(Prefix)) ||
5297       (EatIfPresent(lltok::kw_prologue) &&
5298        ParseGlobalTypeAndValue(Prologue)) ||
5299       (EatIfPresent(lltok::kw_personality) &&
5300        ParseGlobalTypeAndValue(PersonalityFn)))
5301     return true;
5302 
5303   if (FuncAttrs.contains(Attribute::Builtin))
5304     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5305 
5306   // If the alignment was parsed as an attribute, move to the alignment field.
5307   if (FuncAttrs.hasAlignmentAttr()) {
5308     Alignment = FuncAttrs.getAlignment();
5309     FuncAttrs.removeAttribute(Attribute::Alignment);
5310   }
5311 
5312   // Okay, if we got here, the function is syntactically valid.  Convert types
5313   // and do semantic checks.
5314   std::vector<Type*> ParamTypeList;
5315   SmallVector<AttributeSet, 8> Attrs;
5316 
5317   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5318     ParamTypeList.push_back(ArgList[i].Ty);
5319     Attrs.push_back(ArgList[i].Attrs);
5320   }
5321 
5322   AttributeList PAL =
5323       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5324                          AttributeSet::get(Context, RetAttrs), Attrs);
5325 
5326   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5327     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5328 
5329   FunctionType *FT =
5330     FunctionType::get(RetType, ParamTypeList, isVarArg);
5331   PointerType *PFT = PointerType::get(FT, AddrSpace);
5332 
5333   Fn = nullptr;
5334   if (!FunctionName.empty()) {
5335     // If this was a definition of a forward reference, remove the definition
5336     // from the forward reference table and fill in the forward ref.
5337     auto FRVI = ForwardRefVals.find(FunctionName);
5338     if (FRVI != ForwardRefVals.end()) {
5339       Fn = M->getFunction(FunctionName);
5340       if (!Fn)
5341         return Error(FRVI->second.second, "invalid forward reference to "
5342                      "function as global value!");
5343       if (Fn->getType() != PFT)
5344         return Error(FRVI->second.second, "invalid forward reference to "
5345                      "function '" + FunctionName + "' with wrong type: "
5346                      "expected '" + getTypeString(PFT) + "' but was '" +
5347                      getTypeString(Fn->getType()) + "'");
5348       ForwardRefVals.erase(FRVI);
5349     } else if ((Fn = M->getFunction(FunctionName))) {
5350       // Reject redefinitions.
5351       return Error(NameLoc, "invalid redefinition of function '" +
5352                    FunctionName + "'");
5353     } else if (M->getNamedValue(FunctionName)) {
5354       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5355     }
5356 
5357   } else {
5358     // If this is a definition of a forward referenced function, make sure the
5359     // types agree.
5360     auto I = ForwardRefValIDs.find(NumberedVals.size());
5361     if (I != ForwardRefValIDs.end()) {
5362       Fn = cast<Function>(I->second.first);
5363       if (Fn->getType() != PFT)
5364         return Error(NameLoc, "type of definition and forward reference of '@" +
5365                      Twine(NumberedVals.size()) + "' disagree: "
5366                      "expected '" + getTypeString(PFT) + "' but was '" +
5367                      getTypeString(Fn->getType()) + "'");
5368       ForwardRefValIDs.erase(I);
5369     }
5370   }
5371 
5372   if (!Fn)
5373     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5374                           FunctionName, M);
5375   else // Move the forward-reference to the correct spot in the module.
5376     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5377 
5378   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5379 
5380   if (FunctionName.empty())
5381     NumberedVals.push_back(Fn);
5382 
5383   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5384   maybeSetDSOLocal(DSOLocal, *Fn);
5385   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5386   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5387   Fn->setCallingConv(CC);
5388   Fn->setAttributes(PAL);
5389   Fn->setUnnamedAddr(UnnamedAddr);
5390   Fn->setAlignment(Alignment);
5391   Fn->setSection(Section);
5392   Fn->setComdat(C);
5393   Fn->setPersonalityFn(PersonalityFn);
5394   if (!GC.empty()) Fn->setGC(GC);
5395   Fn->setPrefixData(Prefix);
5396   Fn->setPrologueData(Prologue);
5397   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5398 
5399   // Add all of the arguments we parsed to the function.
5400   Function::arg_iterator ArgIt = Fn->arg_begin();
5401   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5402     // If the argument has a name, insert it into the argument symbol table.
5403     if (ArgList[i].Name.empty()) continue;
5404 
5405     // Set the name, if it conflicted, it will be auto-renamed.
5406     ArgIt->setName(ArgList[i].Name);
5407 
5408     if (ArgIt->getName() != ArgList[i].Name)
5409       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5410                    ArgList[i].Name + "'");
5411   }
5412 
5413   if (isDefine)
5414     return false;
5415 
5416   // Check the declaration has no block address forward references.
5417   ValID ID;
5418   if (FunctionName.empty()) {
5419     ID.Kind = ValID::t_GlobalID;
5420     ID.UIntVal = NumberedVals.size() - 1;
5421   } else {
5422     ID.Kind = ValID::t_GlobalName;
5423     ID.StrVal = FunctionName;
5424   }
5425   auto Blocks = ForwardRefBlockAddresses.find(ID);
5426   if (Blocks != ForwardRefBlockAddresses.end())
5427     return Error(Blocks->first.Loc,
5428                  "cannot take blockaddress inside a declaration");
5429   return false;
5430 }
5431 
5432 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5433   ValID ID;
5434   if (FunctionNumber == -1) {
5435     ID.Kind = ValID::t_GlobalName;
5436     ID.StrVal = F.getName();
5437   } else {
5438     ID.Kind = ValID::t_GlobalID;
5439     ID.UIntVal = FunctionNumber;
5440   }
5441 
5442   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5443   if (Blocks == P.ForwardRefBlockAddresses.end())
5444     return false;
5445 
5446   for (const auto &I : Blocks->second) {
5447     const ValID &BBID = I.first;
5448     GlobalValue *GV = I.second;
5449 
5450     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5451            "Expected local id or name");
5452     BasicBlock *BB;
5453     if (BBID.Kind == ValID::t_LocalName)
5454       BB = GetBB(BBID.StrVal, BBID.Loc);
5455     else
5456       BB = GetBB(BBID.UIntVal, BBID.Loc);
5457     if (!BB)
5458       return P.Error(BBID.Loc, "referenced value is not a basic block");
5459 
5460     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5461     GV->eraseFromParent();
5462   }
5463 
5464   P.ForwardRefBlockAddresses.erase(Blocks);
5465   return false;
5466 }
5467 
5468 /// ParseFunctionBody
5469 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5470 bool LLParser::ParseFunctionBody(Function &Fn) {
5471   if (Lex.getKind() != lltok::lbrace)
5472     return TokError("expected '{' in function body");
5473   Lex.Lex();  // eat the {.
5474 
5475   int FunctionNumber = -1;
5476   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5477 
5478   PerFunctionState PFS(*this, Fn, FunctionNumber);
5479 
5480   // Resolve block addresses and allow basic blocks to be forward-declared
5481   // within this function.
5482   if (PFS.resolveForwardRefBlockAddresses())
5483     return true;
5484   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5485 
5486   // We need at least one basic block.
5487   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5488     return TokError("function body requires at least one basic block");
5489 
5490   while (Lex.getKind() != lltok::rbrace &&
5491          Lex.getKind() != lltok::kw_uselistorder)
5492     if (ParseBasicBlock(PFS)) return true;
5493 
5494   while (Lex.getKind() != lltok::rbrace)
5495     if (ParseUseListOrder(&PFS))
5496       return true;
5497 
5498   // Eat the }.
5499   Lex.Lex();
5500 
5501   // Verify function is ok.
5502   return PFS.FinishFunction();
5503 }
5504 
5505 /// ParseBasicBlock
5506 ///   ::= (LabelStr|LabelID)? Instruction*
5507 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5508   // If this basic block starts out with a name, remember it.
5509   std::string Name;
5510   int NameID = -1;
5511   LocTy NameLoc = Lex.getLoc();
5512   if (Lex.getKind() == lltok::LabelStr) {
5513     Name = Lex.getStrVal();
5514     Lex.Lex();
5515   } else if (Lex.getKind() == lltok::LabelID) {
5516     NameID = Lex.getUIntVal();
5517     Lex.Lex();
5518   }
5519 
5520   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5521   if (!BB)
5522     return true;
5523 
5524   std::string NameStr;
5525 
5526   // Parse the instructions in this block until we get a terminator.
5527   Instruction *Inst;
5528   do {
5529     // This instruction may have three possibilities for a name: a) none
5530     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5531     LocTy NameLoc = Lex.getLoc();
5532     int NameID = -1;
5533     NameStr = "";
5534 
5535     if (Lex.getKind() == lltok::LocalVarID) {
5536       NameID = Lex.getUIntVal();
5537       Lex.Lex();
5538       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5539         return true;
5540     } else if (Lex.getKind() == lltok::LocalVar) {
5541       NameStr = Lex.getStrVal();
5542       Lex.Lex();
5543       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5544         return true;
5545     }
5546 
5547     switch (ParseInstruction(Inst, BB, PFS)) {
5548     default: llvm_unreachable("Unknown ParseInstruction result!");
5549     case InstError: return true;
5550     case InstNormal:
5551       BB->getInstList().push_back(Inst);
5552 
5553       // With a normal result, we check to see if the instruction is followed by
5554       // a comma and metadata.
5555       if (EatIfPresent(lltok::comma))
5556         if (ParseInstructionMetadata(*Inst))
5557           return true;
5558       break;
5559     case InstExtraComma:
5560       BB->getInstList().push_back(Inst);
5561 
5562       // If the instruction parser ate an extra comma at the end of it, it
5563       // *must* be followed by metadata.
5564       if (ParseInstructionMetadata(*Inst))
5565         return true;
5566       break;
5567     }
5568 
5569     // Set the name on the instruction.
5570     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5571   } while (!Inst->isTerminator());
5572 
5573   return false;
5574 }
5575 
5576 //===----------------------------------------------------------------------===//
5577 // Instruction Parsing.
5578 //===----------------------------------------------------------------------===//
5579 
5580 /// ParseInstruction - Parse one of the many different instructions.
5581 ///
5582 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5583                                PerFunctionState &PFS) {
5584   lltok::Kind Token = Lex.getKind();
5585   if (Token == lltok::Eof)
5586     return TokError("found end of file when expecting more instructions");
5587   LocTy Loc = Lex.getLoc();
5588   unsigned KeywordVal = Lex.getUIntVal();
5589   Lex.Lex();  // Eat the keyword.
5590 
5591   switch (Token) {
5592   default:                    return Error(Loc, "expected instruction opcode");
5593   // Terminator Instructions.
5594   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5595   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5596   case lltok::kw_br:          return ParseBr(Inst, PFS);
5597   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5598   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5599   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5600   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5601   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5602   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5603   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5604   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5605   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5606   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5607   // Unary Operators.
5608   case lltok::kw_fneg: {
5609     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5610     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5611     if (Res != 0)
5612       return Res;
5613     if (FMF.any())
5614       Inst->setFastMathFlags(FMF);
5615     return false;
5616   }
5617   // Binary Operators.
5618   case lltok::kw_add:
5619   case lltok::kw_sub:
5620   case lltok::kw_mul:
5621   case lltok::kw_shl: {
5622     bool NUW = EatIfPresent(lltok::kw_nuw);
5623     bool NSW = EatIfPresent(lltok::kw_nsw);
5624     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5625 
5626     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5627 
5628     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5629     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5630     return false;
5631   }
5632   case lltok::kw_fadd:
5633   case lltok::kw_fsub:
5634   case lltok::kw_fmul:
5635   case lltok::kw_fdiv:
5636   case lltok::kw_frem: {
5637     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5638     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5639     if (Res != 0)
5640       return Res;
5641     if (FMF.any())
5642       Inst->setFastMathFlags(FMF);
5643     return 0;
5644   }
5645 
5646   case lltok::kw_sdiv:
5647   case lltok::kw_udiv:
5648   case lltok::kw_lshr:
5649   case lltok::kw_ashr: {
5650     bool Exact = EatIfPresent(lltok::kw_exact);
5651 
5652     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5653     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5654     return false;
5655   }
5656 
5657   case lltok::kw_urem:
5658   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5659   case lltok::kw_and:
5660   case lltok::kw_or:
5661   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5662   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5663   case lltok::kw_fcmp: {
5664     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5665     int Res = ParseCompare(Inst, PFS, KeywordVal);
5666     if (Res != 0)
5667       return Res;
5668     if (FMF.any())
5669       Inst->setFastMathFlags(FMF);
5670     return 0;
5671   }
5672 
5673   // Casts.
5674   case lltok::kw_trunc:
5675   case lltok::kw_zext:
5676   case lltok::kw_sext:
5677   case lltok::kw_fptrunc:
5678   case lltok::kw_fpext:
5679   case lltok::kw_bitcast:
5680   case lltok::kw_addrspacecast:
5681   case lltok::kw_uitofp:
5682   case lltok::kw_sitofp:
5683   case lltok::kw_fptoui:
5684   case lltok::kw_fptosi:
5685   case lltok::kw_inttoptr:
5686   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5687   // Other.
5688   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5689   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5690   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5691   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5692   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5693   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5694   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5695   // Call.
5696   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5697   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5698   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5699   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5700   // Memory.
5701   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5702   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5703   case lltok::kw_store:          return ParseStore(Inst, PFS);
5704   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5705   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5706   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5707   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5708   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5709   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5710   }
5711 }
5712 
5713 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5714 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5715   if (Opc == Instruction::FCmp) {
5716     switch (Lex.getKind()) {
5717     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5718     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5719     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5720     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5721     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5722     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5723     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5724     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5725     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5726     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5727     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5728     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5729     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5730     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5731     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5732     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5733     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5734     }
5735   } else {
5736     switch (Lex.getKind()) {
5737     default: return TokError("expected icmp predicate (e.g. 'eq')");
5738     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5739     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5740     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5741     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5742     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5743     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5744     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5745     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5746     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5747     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5748     }
5749   }
5750   Lex.Lex();
5751   return false;
5752 }
5753 
5754 //===----------------------------------------------------------------------===//
5755 // Terminator Instructions.
5756 //===----------------------------------------------------------------------===//
5757 
5758 /// ParseRet - Parse a return instruction.
5759 ///   ::= 'ret' void (',' !dbg, !1)*
5760 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5761 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5762                         PerFunctionState &PFS) {
5763   SMLoc TypeLoc = Lex.getLoc();
5764   Type *Ty = nullptr;
5765   if (ParseType(Ty, true /*void allowed*/)) return true;
5766 
5767   Type *ResType = PFS.getFunction().getReturnType();
5768 
5769   if (Ty->isVoidTy()) {
5770     if (!ResType->isVoidTy())
5771       return Error(TypeLoc, "value doesn't match function result type '" +
5772                    getTypeString(ResType) + "'");
5773 
5774     Inst = ReturnInst::Create(Context);
5775     return false;
5776   }
5777 
5778   Value *RV;
5779   if (ParseValue(Ty, RV, PFS)) return true;
5780 
5781   if (ResType != RV->getType())
5782     return Error(TypeLoc, "value doesn't match function result type '" +
5783                  getTypeString(ResType) + "'");
5784 
5785   Inst = ReturnInst::Create(Context, RV);
5786   return false;
5787 }
5788 
5789 /// ParseBr
5790 ///   ::= 'br' TypeAndValue
5791 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5792 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5793   LocTy Loc, Loc2;
5794   Value *Op0;
5795   BasicBlock *Op1, *Op2;
5796   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5797 
5798   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5799     Inst = BranchInst::Create(BB);
5800     return false;
5801   }
5802 
5803   if (Op0->getType() != Type::getInt1Ty(Context))
5804     return Error(Loc, "branch condition must have 'i1' type");
5805 
5806   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5807       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5808       ParseToken(lltok::comma, "expected ',' after true destination") ||
5809       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5810     return true;
5811 
5812   Inst = BranchInst::Create(Op1, Op2, Op0);
5813   return false;
5814 }
5815 
5816 /// ParseSwitch
5817 ///  Instruction
5818 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5819 ///  JumpTable
5820 ///    ::= (TypeAndValue ',' TypeAndValue)*
5821 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5822   LocTy CondLoc, BBLoc;
5823   Value *Cond;
5824   BasicBlock *DefaultBB;
5825   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5826       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5827       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5828       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5829     return true;
5830 
5831   if (!Cond->getType()->isIntegerTy())
5832     return Error(CondLoc, "switch condition must have integer type");
5833 
5834   // Parse the jump table pairs.
5835   SmallPtrSet<Value*, 32> SeenCases;
5836   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5837   while (Lex.getKind() != lltok::rsquare) {
5838     Value *Constant;
5839     BasicBlock *DestBB;
5840 
5841     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5842         ParseToken(lltok::comma, "expected ',' after case value") ||
5843         ParseTypeAndBasicBlock(DestBB, PFS))
5844       return true;
5845 
5846     if (!SeenCases.insert(Constant).second)
5847       return Error(CondLoc, "duplicate case value in switch");
5848     if (!isa<ConstantInt>(Constant))
5849       return Error(CondLoc, "case value is not a constant integer");
5850 
5851     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5852   }
5853 
5854   Lex.Lex();  // Eat the ']'.
5855 
5856   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5857   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5858     SI->addCase(Table[i].first, Table[i].second);
5859   Inst = SI;
5860   return false;
5861 }
5862 
5863 /// ParseIndirectBr
5864 ///  Instruction
5865 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5866 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5867   LocTy AddrLoc;
5868   Value *Address;
5869   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5870       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5871       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5872     return true;
5873 
5874   if (!Address->getType()->isPointerTy())
5875     return Error(AddrLoc, "indirectbr address must have pointer type");
5876 
5877   // Parse the destination list.
5878   SmallVector<BasicBlock*, 16> DestList;
5879 
5880   if (Lex.getKind() != lltok::rsquare) {
5881     BasicBlock *DestBB;
5882     if (ParseTypeAndBasicBlock(DestBB, PFS))
5883       return true;
5884     DestList.push_back(DestBB);
5885 
5886     while (EatIfPresent(lltok::comma)) {
5887       if (ParseTypeAndBasicBlock(DestBB, PFS))
5888         return true;
5889       DestList.push_back(DestBB);
5890     }
5891   }
5892 
5893   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5894     return true;
5895 
5896   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5897   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5898     IBI->addDestination(DestList[i]);
5899   Inst = IBI;
5900   return false;
5901 }
5902 
5903 /// ParseInvoke
5904 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5905 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5906 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5907   LocTy CallLoc = Lex.getLoc();
5908   AttrBuilder RetAttrs, FnAttrs;
5909   std::vector<unsigned> FwdRefAttrGrps;
5910   LocTy NoBuiltinLoc;
5911   unsigned CC;
5912   unsigned InvokeAddrSpace;
5913   Type *RetType = nullptr;
5914   LocTy RetTypeLoc;
5915   ValID CalleeID;
5916   SmallVector<ParamInfo, 16> ArgList;
5917   SmallVector<OperandBundleDef, 2> BundleList;
5918 
5919   BasicBlock *NormalBB, *UnwindBB;
5920   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5921       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5922       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5923       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5924       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5925                                  NoBuiltinLoc) ||
5926       ParseOptionalOperandBundles(BundleList, PFS) ||
5927       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5928       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5929       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5930       ParseTypeAndBasicBlock(UnwindBB, PFS))
5931     return true;
5932 
5933   // If RetType is a non-function pointer type, then this is the short syntax
5934   // for the call, which means that RetType is just the return type.  Infer the
5935   // rest of the function argument types from the arguments that are present.
5936   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5937   if (!Ty) {
5938     // Pull out the types of all of the arguments...
5939     std::vector<Type*> ParamTypes;
5940     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5941       ParamTypes.push_back(ArgList[i].V->getType());
5942 
5943     if (!FunctionType::isValidReturnType(RetType))
5944       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5945 
5946     Ty = FunctionType::get(RetType, ParamTypes, false);
5947   }
5948 
5949   CalleeID.FTy = Ty;
5950 
5951   // Look up the callee.
5952   Value *Callee;
5953   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5954                           Callee, &PFS, /*IsCall=*/true))
5955     return true;
5956 
5957   // Set up the Attribute for the function.
5958   SmallVector<Value *, 8> Args;
5959   SmallVector<AttributeSet, 8> ArgAttrs;
5960 
5961   // Loop through FunctionType's arguments and ensure they are specified
5962   // correctly.  Also, gather any parameter attributes.
5963   FunctionType::param_iterator I = Ty->param_begin();
5964   FunctionType::param_iterator E = Ty->param_end();
5965   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5966     Type *ExpectedTy = nullptr;
5967     if (I != E) {
5968       ExpectedTy = *I++;
5969     } else if (!Ty->isVarArg()) {
5970       return Error(ArgList[i].Loc, "too many arguments specified");
5971     }
5972 
5973     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5974       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5975                    getTypeString(ExpectedTy) + "'");
5976     Args.push_back(ArgList[i].V);
5977     ArgAttrs.push_back(ArgList[i].Attrs);
5978   }
5979 
5980   if (I != E)
5981     return Error(CallLoc, "not enough parameters specified for call");
5982 
5983   if (FnAttrs.hasAlignmentAttr())
5984     return Error(CallLoc, "invoke instructions may not have an alignment");
5985 
5986   // Finish off the Attribute and check them
5987   AttributeList PAL =
5988       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5989                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5990 
5991   InvokeInst *II =
5992       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5993   II->setCallingConv(CC);
5994   II->setAttributes(PAL);
5995   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5996   Inst = II;
5997   return false;
5998 }
5999 
6000 /// ParseResume
6001 ///   ::= 'resume' TypeAndValue
6002 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6003   Value *Exn; LocTy ExnLoc;
6004   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6005     return true;
6006 
6007   ResumeInst *RI = ResumeInst::Create(Exn);
6008   Inst = RI;
6009   return false;
6010 }
6011 
6012 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6013                                   PerFunctionState &PFS) {
6014   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6015     return true;
6016 
6017   while (Lex.getKind() != lltok::rsquare) {
6018     // If this isn't the first argument, we need a comma.
6019     if (!Args.empty() &&
6020         ParseToken(lltok::comma, "expected ',' in argument list"))
6021       return true;
6022 
6023     // Parse the argument.
6024     LocTy ArgLoc;
6025     Type *ArgTy = nullptr;
6026     if (ParseType(ArgTy, ArgLoc))
6027       return true;
6028 
6029     Value *V;
6030     if (ArgTy->isMetadataTy()) {
6031       if (ParseMetadataAsValue(V, PFS))
6032         return true;
6033     } else {
6034       if (ParseValue(ArgTy, V, PFS))
6035         return true;
6036     }
6037     Args.push_back(V);
6038   }
6039 
6040   Lex.Lex();  // Lex the ']'.
6041   return false;
6042 }
6043 
6044 /// ParseCleanupRet
6045 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6046 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6047   Value *CleanupPad = nullptr;
6048 
6049   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6050     return true;
6051 
6052   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6053     return true;
6054 
6055   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6056     return true;
6057 
6058   BasicBlock *UnwindBB = nullptr;
6059   if (Lex.getKind() == lltok::kw_to) {
6060     Lex.Lex();
6061     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6062       return true;
6063   } else {
6064     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6065       return true;
6066     }
6067   }
6068 
6069   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6070   return false;
6071 }
6072 
6073 /// ParseCatchRet
6074 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6075 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6076   Value *CatchPad = nullptr;
6077 
6078   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6079     return true;
6080 
6081   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6082     return true;
6083 
6084   BasicBlock *BB;
6085   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6086       ParseTypeAndBasicBlock(BB, PFS))
6087       return true;
6088 
6089   Inst = CatchReturnInst::Create(CatchPad, BB);
6090   return false;
6091 }
6092 
6093 /// ParseCatchSwitch
6094 ///   ::= 'catchswitch' within Parent
6095 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6096   Value *ParentPad;
6097 
6098   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6099     return true;
6100 
6101   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6102       Lex.getKind() != lltok::LocalVarID)
6103     return TokError("expected scope value for catchswitch");
6104 
6105   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6106     return true;
6107 
6108   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6109     return true;
6110 
6111   SmallVector<BasicBlock *, 32> Table;
6112   do {
6113     BasicBlock *DestBB;
6114     if (ParseTypeAndBasicBlock(DestBB, PFS))
6115       return true;
6116     Table.push_back(DestBB);
6117   } while (EatIfPresent(lltok::comma));
6118 
6119   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6120     return true;
6121 
6122   if (ParseToken(lltok::kw_unwind,
6123                  "expected 'unwind' after catchswitch scope"))
6124     return true;
6125 
6126   BasicBlock *UnwindBB = nullptr;
6127   if (EatIfPresent(lltok::kw_to)) {
6128     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6129       return true;
6130   } else {
6131     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6132       return true;
6133   }
6134 
6135   auto *CatchSwitch =
6136       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6137   for (BasicBlock *DestBB : Table)
6138     CatchSwitch->addHandler(DestBB);
6139   Inst = CatchSwitch;
6140   return false;
6141 }
6142 
6143 /// ParseCatchPad
6144 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6145 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6146   Value *CatchSwitch = nullptr;
6147 
6148   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6149     return true;
6150 
6151   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6152     return TokError("expected scope value for catchpad");
6153 
6154   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6155     return true;
6156 
6157   SmallVector<Value *, 8> Args;
6158   if (ParseExceptionArgs(Args, PFS))
6159     return true;
6160 
6161   Inst = CatchPadInst::Create(CatchSwitch, Args);
6162   return false;
6163 }
6164 
6165 /// ParseCleanupPad
6166 ///   ::= 'cleanuppad' within Parent ParamList
6167 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6168   Value *ParentPad = nullptr;
6169 
6170   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6171     return true;
6172 
6173   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6174       Lex.getKind() != lltok::LocalVarID)
6175     return TokError("expected scope value for cleanuppad");
6176 
6177   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6178     return true;
6179 
6180   SmallVector<Value *, 8> Args;
6181   if (ParseExceptionArgs(Args, PFS))
6182     return true;
6183 
6184   Inst = CleanupPadInst::Create(ParentPad, Args);
6185   return false;
6186 }
6187 
6188 //===----------------------------------------------------------------------===//
6189 // Unary Operators.
6190 //===----------------------------------------------------------------------===//
6191 
6192 /// ParseUnaryOp
6193 ///  ::= UnaryOp TypeAndValue ',' Value
6194 ///
6195 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6196 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6197 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6198                             unsigned Opc, unsigned OperandType) {
6199   LocTy Loc; Value *LHS;
6200   if (ParseTypeAndValue(LHS, Loc, PFS))
6201     return true;
6202 
6203   bool Valid;
6204   switch (OperandType) {
6205   default: llvm_unreachable("Unknown operand type!");
6206   case 0: // int or FP.
6207     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6208             LHS->getType()->isFPOrFPVectorTy();
6209     break;
6210   case 1:
6211     Valid = LHS->getType()->isIntOrIntVectorTy();
6212     break;
6213   case 2:
6214     Valid = LHS->getType()->isFPOrFPVectorTy();
6215     break;
6216   }
6217 
6218   if (!Valid)
6219     return Error(Loc, "invalid operand type for instruction");
6220 
6221   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6222   return false;
6223 }
6224 
6225 /// ParseCallBr
6226 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6227 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6228 ///       '[' LabelList ']'
6229 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6230   LocTy CallLoc = Lex.getLoc();
6231   AttrBuilder RetAttrs, FnAttrs;
6232   std::vector<unsigned> FwdRefAttrGrps;
6233   LocTy NoBuiltinLoc;
6234   unsigned CC;
6235   Type *RetType = nullptr;
6236   LocTy RetTypeLoc;
6237   ValID CalleeID;
6238   SmallVector<ParamInfo, 16> ArgList;
6239   SmallVector<OperandBundleDef, 2> BundleList;
6240 
6241   BasicBlock *DefaultDest;
6242   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6243       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6244       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6245       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6246                                  NoBuiltinLoc) ||
6247       ParseOptionalOperandBundles(BundleList, PFS) ||
6248       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6249       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6250       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6251     return true;
6252 
6253   // Parse the destination list.
6254   SmallVector<BasicBlock *, 16> IndirectDests;
6255 
6256   if (Lex.getKind() != lltok::rsquare) {
6257     BasicBlock *DestBB;
6258     if (ParseTypeAndBasicBlock(DestBB, PFS))
6259       return true;
6260     IndirectDests.push_back(DestBB);
6261 
6262     while (EatIfPresent(lltok::comma)) {
6263       if (ParseTypeAndBasicBlock(DestBB, PFS))
6264         return true;
6265       IndirectDests.push_back(DestBB);
6266     }
6267   }
6268 
6269   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6270     return true;
6271 
6272   // If RetType is a non-function pointer type, then this is the short syntax
6273   // for the call, which means that RetType is just the return type.  Infer the
6274   // rest of the function argument types from the arguments that are present.
6275   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6276   if (!Ty) {
6277     // Pull out the types of all of the arguments...
6278     std::vector<Type *> ParamTypes;
6279     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6280       ParamTypes.push_back(ArgList[i].V->getType());
6281 
6282     if (!FunctionType::isValidReturnType(RetType))
6283       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6284 
6285     Ty = FunctionType::get(RetType, ParamTypes, false);
6286   }
6287 
6288   CalleeID.FTy = Ty;
6289 
6290   // Look up the callee.
6291   Value *Callee;
6292   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6293                           /*IsCall=*/true))
6294     return true;
6295 
6296   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6297     return Error(RetTypeLoc, "asm-goto outputs not supported");
6298 
6299   // Set up the Attribute for the function.
6300   SmallVector<Value *, 8> Args;
6301   SmallVector<AttributeSet, 8> ArgAttrs;
6302 
6303   // Loop through FunctionType's arguments and ensure they are specified
6304   // correctly.  Also, gather any parameter attributes.
6305   FunctionType::param_iterator I = Ty->param_begin();
6306   FunctionType::param_iterator E = Ty->param_end();
6307   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6308     Type *ExpectedTy = nullptr;
6309     if (I != E) {
6310       ExpectedTy = *I++;
6311     } else if (!Ty->isVarArg()) {
6312       return Error(ArgList[i].Loc, "too many arguments specified");
6313     }
6314 
6315     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6316       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6317                                        getTypeString(ExpectedTy) + "'");
6318     Args.push_back(ArgList[i].V);
6319     ArgAttrs.push_back(ArgList[i].Attrs);
6320   }
6321 
6322   if (I != E)
6323     return Error(CallLoc, "not enough parameters specified for call");
6324 
6325   if (FnAttrs.hasAlignmentAttr())
6326     return Error(CallLoc, "callbr instructions may not have an alignment");
6327 
6328   // Finish off the Attribute and check them
6329   AttributeList PAL =
6330       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6331                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6332 
6333   CallBrInst *CBI =
6334       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6335                          BundleList);
6336   CBI->setCallingConv(CC);
6337   CBI->setAttributes(PAL);
6338   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6339   Inst = CBI;
6340   return false;
6341 }
6342 
6343 //===----------------------------------------------------------------------===//
6344 // Binary Operators.
6345 //===----------------------------------------------------------------------===//
6346 
6347 /// ParseArithmetic
6348 ///  ::= ArithmeticOps TypeAndValue ',' Value
6349 ///
6350 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6351 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6352 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6353                                unsigned Opc, unsigned OperandType) {
6354   LocTy Loc; Value *LHS, *RHS;
6355   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6356       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6357       ParseValue(LHS->getType(), RHS, PFS))
6358     return true;
6359 
6360   bool Valid;
6361   switch (OperandType) {
6362   default: llvm_unreachable("Unknown operand type!");
6363   case 0: // int or FP.
6364     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6365             LHS->getType()->isFPOrFPVectorTy();
6366     break;
6367   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6368   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6369   }
6370 
6371   if (!Valid)
6372     return Error(Loc, "invalid operand type for instruction");
6373 
6374   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6375   return false;
6376 }
6377 
6378 /// ParseLogical
6379 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6380 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6381                             unsigned Opc) {
6382   LocTy Loc; Value *LHS, *RHS;
6383   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6384       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6385       ParseValue(LHS->getType(), RHS, PFS))
6386     return true;
6387 
6388   if (!LHS->getType()->isIntOrIntVectorTy())
6389     return Error(Loc,"instruction requires integer or integer vector operands");
6390 
6391   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6392   return false;
6393 }
6394 
6395 /// ParseCompare
6396 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6397 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6398 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6399                             unsigned Opc) {
6400   // Parse the integer/fp comparison predicate.
6401   LocTy Loc;
6402   unsigned Pred;
6403   Value *LHS, *RHS;
6404   if (ParseCmpPredicate(Pred, Opc) ||
6405       ParseTypeAndValue(LHS, Loc, PFS) ||
6406       ParseToken(lltok::comma, "expected ',' after compare value") ||
6407       ParseValue(LHS->getType(), RHS, PFS))
6408     return true;
6409 
6410   if (Opc == Instruction::FCmp) {
6411     if (!LHS->getType()->isFPOrFPVectorTy())
6412       return Error(Loc, "fcmp requires floating point operands");
6413     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6414   } else {
6415     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6416     if (!LHS->getType()->isIntOrIntVectorTy() &&
6417         !LHS->getType()->isPtrOrPtrVectorTy())
6418       return Error(Loc, "icmp requires integer operands");
6419     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6420   }
6421   return false;
6422 }
6423 
6424 //===----------------------------------------------------------------------===//
6425 // Other Instructions.
6426 //===----------------------------------------------------------------------===//
6427 
6428 
6429 /// ParseCast
6430 ///   ::= CastOpc TypeAndValue 'to' Type
6431 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6432                          unsigned Opc) {
6433   LocTy Loc;
6434   Value *Op;
6435   Type *DestTy = nullptr;
6436   if (ParseTypeAndValue(Op, Loc, PFS) ||
6437       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6438       ParseType(DestTy))
6439     return true;
6440 
6441   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6442     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6443     return Error(Loc, "invalid cast opcode for cast from '" +
6444                  getTypeString(Op->getType()) + "' to '" +
6445                  getTypeString(DestTy) + "'");
6446   }
6447   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6448   return false;
6449 }
6450 
6451 /// ParseSelect
6452 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6453 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6454   LocTy Loc;
6455   Value *Op0, *Op1, *Op2;
6456   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6457       ParseToken(lltok::comma, "expected ',' after select condition") ||
6458       ParseTypeAndValue(Op1, PFS) ||
6459       ParseToken(lltok::comma, "expected ',' after select value") ||
6460       ParseTypeAndValue(Op2, PFS))
6461     return true;
6462 
6463   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6464     return Error(Loc, Reason);
6465 
6466   Inst = SelectInst::Create(Op0, Op1, Op2);
6467   return false;
6468 }
6469 
6470 /// ParseVA_Arg
6471 ///   ::= 'va_arg' TypeAndValue ',' Type
6472 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6473   Value *Op;
6474   Type *EltTy = nullptr;
6475   LocTy TypeLoc;
6476   if (ParseTypeAndValue(Op, PFS) ||
6477       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6478       ParseType(EltTy, TypeLoc))
6479     return true;
6480 
6481   if (!EltTy->isFirstClassType())
6482     return Error(TypeLoc, "va_arg requires operand with first class type");
6483 
6484   Inst = new VAArgInst(Op, EltTy);
6485   return false;
6486 }
6487 
6488 /// ParseExtractElement
6489 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6490 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6491   LocTy Loc;
6492   Value *Op0, *Op1;
6493   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6494       ParseToken(lltok::comma, "expected ',' after extract value") ||
6495       ParseTypeAndValue(Op1, PFS))
6496     return true;
6497 
6498   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6499     return Error(Loc, "invalid extractelement operands");
6500 
6501   Inst = ExtractElementInst::Create(Op0, Op1);
6502   return false;
6503 }
6504 
6505 /// ParseInsertElement
6506 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6507 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6508   LocTy Loc;
6509   Value *Op0, *Op1, *Op2;
6510   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6511       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6512       ParseTypeAndValue(Op1, PFS) ||
6513       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6514       ParseTypeAndValue(Op2, PFS))
6515     return true;
6516 
6517   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6518     return Error(Loc, "invalid insertelement operands");
6519 
6520   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6521   return false;
6522 }
6523 
6524 /// ParseShuffleVector
6525 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6526 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6527   LocTy Loc;
6528   Value *Op0, *Op1, *Op2;
6529   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6530       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6531       ParseTypeAndValue(Op1, PFS) ||
6532       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6533       ParseTypeAndValue(Op2, PFS))
6534     return true;
6535 
6536   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6537     return Error(Loc, "invalid shufflevector operands");
6538 
6539   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6540   return false;
6541 }
6542 
6543 /// ParsePHI
6544 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6545 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6546   Type *Ty = nullptr;  LocTy TypeLoc;
6547   Value *Op0, *Op1;
6548 
6549   if (ParseType(Ty, TypeLoc) ||
6550       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6551       ParseValue(Ty, Op0, PFS) ||
6552       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6553       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6554       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6555     return true;
6556 
6557   bool AteExtraComma = false;
6558   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6559 
6560   while (true) {
6561     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6562 
6563     if (!EatIfPresent(lltok::comma))
6564       break;
6565 
6566     if (Lex.getKind() == lltok::MetadataVar) {
6567       AteExtraComma = true;
6568       break;
6569     }
6570 
6571     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6572         ParseValue(Ty, Op0, PFS) ||
6573         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6574         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6575         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6576       return true;
6577   }
6578 
6579   if (!Ty->isFirstClassType())
6580     return Error(TypeLoc, "phi node must have first class type");
6581 
6582   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6583   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6584     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6585   Inst = PN;
6586   return AteExtraComma ? InstExtraComma : InstNormal;
6587 }
6588 
6589 /// ParseLandingPad
6590 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6591 /// Clause
6592 ///   ::= 'catch' TypeAndValue
6593 ///   ::= 'filter'
6594 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6595 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6596   Type *Ty = nullptr; LocTy TyLoc;
6597 
6598   if (ParseType(Ty, TyLoc))
6599     return true;
6600 
6601   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6602   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6603 
6604   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6605     LandingPadInst::ClauseType CT;
6606     if (EatIfPresent(lltok::kw_catch))
6607       CT = LandingPadInst::Catch;
6608     else if (EatIfPresent(lltok::kw_filter))
6609       CT = LandingPadInst::Filter;
6610     else
6611       return TokError("expected 'catch' or 'filter' clause type");
6612 
6613     Value *V;
6614     LocTy VLoc;
6615     if (ParseTypeAndValue(V, VLoc, PFS))
6616       return true;
6617 
6618     // A 'catch' type expects a non-array constant. A filter clause expects an
6619     // array constant.
6620     if (CT == LandingPadInst::Catch) {
6621       if (isa<ArrayType>(V->getType()))
6622         Error(VLoc, "'catch' clause has an invalid type");
6623     } else {
6624       if (!isa<ArrayType>(V->getType()))
6625         Error(VLoc, "'filter' clause has an invalid type");
6626     }
6627 
6628     Constant *CV = dyn_cast<Constant>(V);
6629     if (!CV)
6630       return Error(VLoc, "clause argument must be a constant");
6631     LP->addClause(CV);
6632   }
6633 
6634   Inst = LP.release();
6635   return false;
6636 }
6637 
6638 /// ParseCall
6639 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6640 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6641 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6642 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6643 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6644 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6645 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6646 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6648                          CallInst::TailCallKind TCK) {
6649   AttrBuilder RetAttrs, FnAttrs;
6650   std::vector<unsigned> FwdRefAttrGrps;
6651   LocTy BuiltinLoc;
6652   unsigned CallAddrSpace;
6653   unsigned CC;
6654   Type *RetType = nullptr;
6655   LocTy RetTypeLoc;
6656   ValID CalleeID;
6657   SmallVector<ParamInfo, 16> ArgList;
6658   SmallVector<OperandBundleDef, 2> BundleList;
6659   LocTy CallLoc = Lex.getLoc();
6660 
6661   if (TCK != CallInst::TCK_None &&
6662       ParseToken(lltok::kw_call,
6663                  "expected 'tail call', 'musttail call', or 'notail call'"))
6664     return true;
6665 
6666   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6667 
6668   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6669       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6670       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6671       ParseValID(CalleeID) ||
6672       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6673                          PFS.getFunction().isVarArg()) ||
6674       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6675       ParseOptionalOperandBundles(BundleList, PFS))
6676     return true;
6677 
6678   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6679     return Error(CallLoc, "fast-math-flags specified for call without "
6680                           "floating-point scalar or vector return type");
6681 
6682   // If RetType is a non-function pointer type, then this is the short syntax
6683   // for the call, which means that RetType is just the return type.  Infer the
6684   // rest of the function argument types from the arguments that are present.
6685   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6686   if (!Ty) {
6687     // Pull out the types of all of the arguments...
6688     std::vector<Type*> ParamTypes;
6689     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6690       ParamTypes.push_back(ArgList[i].V->getType());
6691 
6692     if (!FunctionType::isValidReturnType(RetType))
6693       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6694 
6695     Ty = FunctionType::get(RetType, ParamTypes, false);
6696   }
6697 
6698   CalleeID.FTy = Ty;
6699 
6700   // Look up the callee.
6701   Value *Callee;
6702   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6703                           &PFS, /*IsCall=*/true))
6704     return true;
6705 
6706   // Set up the Attribute for the function.
6707   SmallVector<AttributeSet, 8> Attrs;
6708 
6709   SmallVector<Value*, 8> Args;
6710 
6711   // Loop through FunctionType's arguments and ensure they are specified
6712   // correctly.  Also, gather any parameter attributes.
6713   FunctionType::param_iterator I = Ty->param_begin();
6714   FunctionType::param_iterator E = Ty->param_end();
6715   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6716     Type *ExpectedTy = nullptr;
6717     if (I != E) {
6718       ExpectedTy = *I++;
6719     } else if (!Ty->isVarArg()) {
6720       return Error(ArgList[i].Loc, "too many arguments specified");
6721     }
6722 
6723     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6724       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6725                    getTypeString(ExpectedTy) + "'");
6726     Args.push_back(ArgList[i].V);
6727     Attrs.push_back(ArgList[i].Attrs);
6728   }
6729 
6730   if (I != E)
6731     return Error(CallLoc, "not enough parameters specified for call");
6732 
6733   if (FnAttrs.hasAlignmentAttr())
6734     return Error(CallLoc, "call instructions may not have an alignment");
6735 
6736   // Finish off the Attribute and check them
6737   AttributeList PAL =
6738       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6739                          AttributeSet::get(Context, RetAttrs), Attrs);
6740 
6741   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6742   CI->setTailCallKind(TCK);
6743   CI->setCallingConv(CC);
6744   if (FMF.any())
6745     CI->setFastMathFlags(FMF);
6746   CI->setAttributes(PAL);
6747   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6748   Inst = CI;
6749   return false;
6750 }
6751 
6752 //===----------------------------------------------------------------------===//
6753 // Memory Instructions.
6754 //===----------------------------------------------------------------------===//
6755 
6756 /// ParseAlloc
6757 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6758 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6759 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6760   Value *Size = nullptr;
6761   LocTy SizeLoc, TyLoc, ASLoc;
6762   unsigned Alignment = 0;
6763   unsigned AddrSpace = 0;
6764   Type *Ty = nullptr;
6765 
6766   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6767   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6768 
6769   if (ParseType(Ty, TyLoc)) return true;
6770 
6771   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6772     return Error(TyLoc, "invalid type for alloca");
6773 
6774   bool AteExtraComma = false;
6775   if (EatIfPresent(lltok::comma)) {
6776     if (Lex.getKind() == lltok::kw_align) {
6777       if (ParseOptionalAlignment(Alignment))
6778         return true;
6779       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6780         return true;
6781     } else if (Lex.getKind() == lltok::kw_addrspace) {
6782       ASLoc = Lex.getLoc();
6783       if (ParseOptionalAddrSpace(AddrSpace))
6784         return true;
6785     } else if (Lex.getKind() == lltok::MetadataVar) {
6786       AteExtraComma = true;
6787     } else {
6788       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6789         return true;
6790       if (EatIfPresent(lltok::comma)) {
6791         if (Lex.getKind() == lltok::kw_align) {
6792           if (ParseOptionalAlignment(Alignment))
6793             return true;
6794           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6795             return true;
6796         } else if (Lex.getKind() == lltok::kw_addrspace) {
6797           ASLoc = Lex.getLoc();
6798           if (ParseOptionalAddrSpace(AddrSpace))
6799             return true;
6800         } else if (Lex.getKind() == lltok::MetadataVar) {
6801           AteExtraComma = true;
6802         }
6803       }
6804     }
6805   }
6806 
6807   if (Size && !Size->getType()->isIntegerTy())
6808     return Error(SizeLoc, "element count must have integer type");
6809 
6810   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6811   AI->setUsedWithInAlloca(IsInAlloca);
6812   AI->setSwiftError(IsSwiftError);
6813   Inst = AI;
6814   return AteExtraComma ? InstExtraComma : InstNormal;
6815 }
6816 
6817 /// ParseLoad
6818 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6819 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6820 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6821 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6822   Value *Val; LocTy Loc;
6823   unsigned Alignment = 0;
6824   bool AteExtraComma = false;
6825   bool isAtomic = false;
6826   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6827   SyncScope::ID SSID = SyncScope::System;
6828 
6829   if (Lex.getKind() == lltok::kw_atomic) {
6830     isAtomic = true;
6831     Lex.Lex();
6832   }
6833 
6834   bool isVolatile = false;
6835   if (Lex.getKind() == lltok::kw_volatile) {
6836     isVolatile = true;
6837     Lex.Lex();
6838   }
6839 
6840   Type *Ty;
6841   LocTy ExplicitTypeLoc = Lex.getLoc();
6842   if (ParseType(Ty) ||
6843       ParseToken(lltok::comma, "expected comma after load's type") ||
6844       ParseTypeAndValue(Val, Loc, PFS) ||
6845       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6846       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6847     return true;
6848 
6849   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6850     return Error(Loc, "load operand must be a pointer to a first class type");
6851   if (isAtomic && !Alignment)
6852     return Error(Loc, "atomic load must have explicit non-zero alignment");
6853   if (Ordering == AtomicOrdering::Release ||
6854       Ordering == AtomicOrdering::AcquireRelease)
6855     return Error(Loc, "atomic load cannot use Release ordering");
6856 
6857   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6858     return Error(ExplicitTypeLoc,
6859                  "explicit pointee type doesn't match operand's pointee type");
6860 
6861   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6862   return AteExtraComma ? InstExtraComma : InstNormal;
6863 }
6864 
6865 /// ParseStore
6866 
6867 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6868 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6869 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6870 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6871   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6872   unsigned Alignment = 0;
6873   bool AteExtraComma = false;
6874   bool isAtomic = false;
6875   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6876   SyncScope::ID SSID = SyncScope::System;
6877 
6878   if (Lex.getKind() == lltok::kw_atomic) {
6879     isAtomic = true;
6880     Lex.Lex();
6881   }
6882 
6883   bool isVolatile = false;
6884   if (Lex.getKind() == lltok::kw_volatile) {
6885     isVolatile = true;
6886     Lex.Lex();
6887   }
6888 
6889   if (ParseTypeAndValue(Val, Loc, PFS) ||
6890       ParseToken(lltok::comma, "expected ',' after store operand") ||
6891       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6892       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6893       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6894     return true;
6895 
6896   if (!Ptr->getType()->isPointerTy())
6897     return Error(PtrLoc, "store operand must be a pointer");
6898   if (!Val->getType()->isFirstClassType())
6899     return Error(Loc, "store operand must be a first class value");
6900   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6901     return Error(Loc, "stored value and pointer type do not match");
6902   if (isAtomic && !Alignment)
6903     return Error(Loc, "atomic store must have explicit non-zero alignment");
6904   if (Ordering == AtomicOrdering::Acquire ||
6905       Ordering == AtomicOrdering::AcquireRelease)
6906     return Error(Loc, "atomic store cannot use Acquire ordering");
6907 
6908   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6909   return AteExtraComma ? InstExtraComma : InstNormal;
6910 }
6911 
6912 /// ParseCmpXchg
6913 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6914 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6915 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6916   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6917   bool AteExtraComma = false;
6918   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6919   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6920   SyncScope::ID SSID = SyncScope::System;
6921   bool isVolatile = false;
6922   bool isWeak = false;
6923 
6924   if (EatIfPresent(lltok::kw_weak))
6925     isWeak = true;
6926 
6927   if (EatIfPresent(lltok::kw_volatile))
6928     isVolatile = true;
6929 
6930   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6931       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6932       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6933       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6934       ParseTypeAndValue(New, NewLoc, PFS) ||
6935       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6936       ParseOrdering(FailureOrdering))
6937     return true;
6938 
6939   if (SuccessOrdering == AtomicOrdering::Unordered ||
6940       FailureOrdering == AtomicOrdering::Unordered)
6941     return TokError("cmpxchg cannot be unordered");
6942   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6943     return TokError("cmpxchg failure argument shall be no stronger than the "
6944                     "success argument");
6945   if (FailureOrdering == AtomicOrdering::Release ||
6946       FailureOrdering == AtomicOrdering::AcquireRelease)
6947     return TokError(
6948         "cmpxchg failure ordering cannot include release semantics");
6949   if (!Ptr->getType()->isPointerTy())
6950     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6951   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6952     return Error(CmpLoc, "compare value and pointer type do not match");
6953   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6954     return Error(NewLoc, "new value and pointer type do not match");
6955   if (!New->getType()->isFirstClassType())
6956     return Error(NewLoc, "cmpxchg operand must be a first class value");
6957   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6958       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6959   CXI->setVolatile(isVolatile);
6960   CXI->setWeak(isWeak);
6961   Inst = CXI;
6962   return AteExtraComma ? InstExtraComma : InstNormal;
6963 }
6964 
6965 /// ParseAtomicRMW
6966 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6967 ///       'singlethread'? AtomicOrdering
6968 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6969   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6970   bool AteExtraComma = false;
6971   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6972   SyncScope::ID SSID = SyncScope::System;
6973   bool isVolatile = false;
6974   bool IsFP = false;
6975   AtomicRMWInst::BinOp Operation;
6976 
6977   if (EatIfPresent(lltok::kw_volatile))
6978     isVolatile = true;
6979 
6980   switch (Lex.getKind()) {
6981   default: return TokError("expected binary operation in atomicrmw");
6982   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6983   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6984   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6985   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6986   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6987   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6988   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6989   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6990   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6991   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6992   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6993   case lltok::kw_fadd:
6994     Operation = AtomicRMWInst::FAdd;
6995     IsFP = true;
6996     break;
6997   case lltok::kw_fsub:
6998     Operation = AtomicRMWInst::FSub;
6999     IsFP = true;
7000     break;
7001   }
7002   Lex.Lex();  // Eat the operation.
7003 
7004   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7005       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7006       ParseTypeAndValue(Val, ValLoc, PFS) ||
7007       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7008     return true;
7009 
7010   if (Ordering == AtomicOrdering::Unordered)
7011     return TokError("atomicrmw cannot be unordered");
7012   if (!Ptr->getType()->isPointerTy())
7013     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7014   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7015     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7016 
7017   if (Operation == AtomicRMWInst::Xchg) {
7018     if (!Val->getType()->isIntegerTy() &&
7019         !Val->getType()->isFloatingPointTy()) {
7020       return Error(ValLoc, "atomicrmw " +
7021                    AtomicRMWInst::getOperationName(Operation) +
7022                    " operand must be an integer or floating point type");
7023     }
7024   } else if (IsFP) {
7025     if (!Val->getType()->isFloatingPointTy()) {
7026       return Error(ValLoc, "atomicrmw " +
7027                    AtomicRMWInst::getOperationName(Operation) +
7028                    " operand must be a floating point type");
7029     }
7030   } else {
7031     if (!Val->getType()->isIntegerTy()) {
7032       return Error(ValLoc, "atomicrmw " +
7033                    AtomicRMWInst::getOperationName(Operation) +
7034                    " operand must be an integer");
7035     }
7036   }
7037 
7038   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7039   if (Size < 8 || (Size & (Size - 1)))
7040     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7041                          " integer");
7042 
7043   AtomicRMWInst *RMWI =
7044     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7045   RMWI->setVolatile(isVolatile);
7046   Inst = RMWI;
7047   return AteExtraComma ? InstExtraComma : InstNormal;
7048 }
7049 
7050 /// ParseFence
7051 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7052 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7053   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7054   SyncScope::ID SSID = SyncScope::System;
7055   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7056     return true;
7057 
7058   if (Ordering == AtomicOrdering::Unordered)
7059     return TokError("fence cannot be unordered");
7060   if (Ordering == AtomicOrdering::Monotonic)
7061     return TokError("fence cannot be monotonic");
7062 
7063   Inst = new FenceInst(Context, Ordering, SSID);
7064   return InstNormal;
7065 }
7066 
7067 /// ParseGetElementPtr
7068 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7069 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7070   Value *Ptr = nullptr;
7071   Value *Val = nullptr;
7072   LocTy Loc, EltLoc;
7073 
7074   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7075 
7076   Type *Ty = nullptr;
7077   LocTy ExplicitTypeLoc = Lex.getLoc();
7078   if (ParseType(Ty) ||
7079       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7080       ParseTypeAndValue(Ptr, Loc, PFS))
7081     return true;
7082 
7083   Type *BaseType = Ptr->getType();
7084   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7085   if (!BasePointerType)
7086     return Error(Loc, "base of getelementptr must be a pointer");
7087 
7088   if (Ty != BasePointerType->getElementType())
7089     return Error(ExplicitTypeLoc,
7090                  "explicit pointee type doesn't match operand's pointee type");
7091 
7092   SmallVector<Value*, 16> Indices;
7093   bool AteExtraComma = false;
7094   // GEP returns a vector of pointers if at least one of parameters is a vector.
7095   // All vector parameters should have the same vector width.
7096   unsigned GEPWidth = BaseType->isVectorTy() ?
7097     BaseType->getVectorNumElements() : 0;
7098 
7099   while (EatIfPresent(lltok::comma)) {
7100     if (Lex.getKind() == lltok::MetadataVar) {
7101       AteExtraComma = true;
7102       break;
7103     }
7104     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7105     if (!Val->getType()->isIntOrIntVectorTy())
7106       return Error(EltLoc, "getelementptr index must be an integer");
7107 
7108     if (Val->getType()->isVectorTy()) {
7109       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7110       if (GEPWidth && GEPWidth != ValNumEl)
7111         return Error(EltLoc,
7112           "getelementptr vector index has a wrong number of elements");
7113       GEPWidth = ValNumEl;
7114     }
7115     Indices.push_back(Val);
7116   }
7117 
7118   SmallPtrSet<Type*, 4> Visited;
7119   if (!Indices.empty() && !Ty->isSized(&Visited))
7120     return Error(Loc, "base element of getelementptr must be sized");
7121 
7122   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7123     return Error(Loc, "invalid getelementptr indices");
7124   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7125   if (InBounds)
7126     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7127   return AteExtraComma ? InstExtraComma : InstNormal;
7128 }
7129 
7130 /// ParseExtractValue
7131 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7132 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7133   Value *Val; LocTy Loc;
7134   SmallVector<unsigned, 4> Indices;
7135   bool AteExtraComma;
7136   if (ParseTypeAndValue(Val, Loc, PFS) ||
7137       ParseIndexList(Indices, AteExtraComma))
7138     return true;
7139 
7140   if (!Val->getType()->isAggregateType())
7141     return Error(Loc, "extractvalue operand must be aggregate type");
7142 
7143   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7144     return Error(Loc, "invalid indices for extractvalue");
7145   Inst = ExtractValueInst::Create(Val, Indices);
7146   return AteExtraComma ? InstExtraComma : InstNormal;
7147 }
7148 
7149 /// ParseInsertValue
7150 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7151 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7152   Value *Val0, *Val1; LocTy Loc0, Loc1;
7153   SmallVector<unsigned, 4> Indices;
7154   bool AteExtraComma;
7155   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7156       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7157       ParseTypeAndValue(Val1, Loc1, PFS) ||
7158       ParseIndexList(Indices, AteExtraComma))
7159     return true;
7160 
7161   if (!Val0->getType()->isAggregateType())
7162     return Error(Loc0, "insertvalue operand must be aggregate type");
7163 
7164   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7165   if (!IndexedType)
7166     return Error(Loc0, "invalid indices for insertvalue");
7167   if (IndexedType != Val1->getType())
7168     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7169                            getTypeString(Val1->getType()) + "' instead of '" +
7170                            getTypeString(IndexedType) + "'");
7171   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7172   return AteExtraComma ? InstExtraComma : InstNormal;
7173 }
7174 
7175 //===----------------------------------------------------------------------===//
7176 // Embedded metadata.
7177 //===----------------------------------------------------------------------===//
7178 
7179 /// ParseMDNodeVector
7180 ///   ::= { Element (',' Element)* }
7181 /// Element
7182 ///   ::= 'null' | TypeAndValue
7183 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7184   if (ParseToken(lltok::lbrace, "expected '{' here"))
7185     return true;
7186 
7187   // Check for an empty list.
7188   if (EatIfPresent(lltok::rbrace))
7189     return false;
7190 
7191   do {
7192     // Null is a special case since it is typeless.
7193     if (EatIfPresent(lltok::kw_null)) {
7194       Elts.push_back(nullptr);
7195       continue;
7196     }
7197 
7198     Metadata *MD;
7199     if (ParseMetadata(MD, nullptr))
7200       return true;
7201     Elts.push_back(MD);
7202   } while (EatIfPresent(lltok::comma));
7203 
7204   return ParseToken(lltok::rbrace, "expected end of metadata node");
7205 }
7206 
7207 //===----------------------------------------------------------------------===//
7208 // Use-list order directives.
7209 //===----------------------------------------------------------------------===//
7210 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7211                                 SMLoc Loc) {
7212   if (V->use_empty())
7213     return Error(Loc, "value has no uses");
7214 
7215   unsigned NumUses = 0;
7216   SmallDenseMap<const Use *, unsigned, 16> Order;
7217   for (const Use &U : V->uses()) {
7218     if (++NumUses > Indexes.size())
7219       break;
7220     Order[&U] = Indexes[NumUses - 1];
7221   }
7222   if (NumUses < 2)
7223     return Error(Loc, "value only has one use");
7224   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7225     return Error(Loc,
7226                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7227 
7228   V->sortUseList([&](const Use &L, const Use &R) {
7229     return Order.lookup(&L) < Order.lookup(&R);
7230   });
7231   return false;
7232 }
7233 
7234 /// ParseUseListOrderIndexes
7235 ///   ::= '{' uint32 (',' uint32)+ '}'
7236 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7237   SMLoc Loc = Lex.getLoc();
7238   if (ParseToken(lltok::lbrace, "expected '{' here"))
7239     return true;
7240   if (Lex.getKind() == lltok::rbrace)
7241     return Lex.Error("expected non-empty list of uselistorder indexes");
7242 
7243   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7244   // indexes should be distinct numbers in the range [0, size-1], and should
7245   // not be in order.
7246   unsigned Offset = 0;
7247   unsigned Max = 0;
7248   bool IsOrdered = true;
7249   assert(Indexes.empty() && "Expected empty order vector");
7250   do {
7251     unsigned Index;
7252     if (ParseUInt32(Index))
7253       return true;
7254 
7255     // Update consistency checks.
7256     Offset += Index - Indexes.size();
7257     Max = std::max(Max, Index);
7258     IsOrdered &= Index == Indexes.size();
7259 
7260     Indexes.push_back(Index);
7261   } while (EatIfPresent(lltok::comma));
7262 
7263   if (ParseToken(lltok::rbrace, "expected '}' here"))
7264     return true;
7265 
7266   if (Indexes.size() < 2)
7267     return Error(Loc, "expected >= 2 uselistorder indexes");
7268   if (Offset != 0 || Max >= Indexes.size())
7269     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7270   if (IsOrdered)
7271     return Error(Loc, "expected uselistorder indexes to change the order");
7272 
7273   return false;
7274 }
7275 
7276 /// ParseUseListOrder
7277 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7278 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7279   SMLoc Loc = Lex.getLoc();
7280   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7281     return true;
7282 
7283   Value *V;
7284   SmallVector<unsigned, 16> Indexes;
7285   if (ParseTypeAndValue(V, PFS) ||
7286       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7287       ParseUseListOrderIndexes(Indexes))
7288     return true;
7289 
7290   return sortUseListOrder(V, Indexes, Loc);
7291 }
7292 
7293 /// ParseUseListOrderBB
7294 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7295 bool LLParser::ParseUseListOrderBB() {
7296   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7297   SMLoc Loc = Lex.getLoc();
7298   Lex.Lex();
7299 
7300   ValID Fn, Label;
7301   SmallVector<unsigned, 16> Indexes;
7302   if (ParseValID(Fn) ||
7303       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7304       ParseValID(Label) ||
7305       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7306       ParseUseListOrderIndexes(Indexes))
7307     return true;
7308 
7309   // Check the function.
7310   GlobalValue *GV;
7311   if (Fn.Kind == ValID::t_GlobalName)
7312     GV = M->getNamedValue(Fn.StrVal);
7313   else if (Fn.Kind == ValID::t_GlobalID)
7314     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7315   else
7316     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7317   if (!GV)
7318     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7319   auto *F = dyn_cast<Function>(GV);
7320   if (!F)
7321     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7322   if (F->isDeclaration())
7323     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7324 
7325   // Check the basic block.
7326   if (Label.Kind == ValID::t_LocalID)
7327     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7328   if (Label.Kind != ValID::t_LocalName)
7329     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7330   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7331   if (!V)
7332     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7333   if (!isa<BasicBlock>(V))
7334     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7335 
7336   return sortUseListOrder(V, Indexes, Loc);
7337 }
7338 
7339 /// ModuleEntry
7340 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7341 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7342 bool LLParser::ParseModuleEntry(unsigned ID) {
7343   assert(Lex.getKind() == lltok::kw_module);
7344   Lex.Lex();
7345 
7346   std::string Path;
7347   if (ParseToken(lltok::colon, "expected ':' here") ||
7348       ParseToken(lltok::lparen, "expected '(' here") ||
7349       ParseToken(lltok::kw_path, "expected 'path' here") ||
7350       ParseToken(lltok::colon, "expected ':' here") ||
7351       ParseStringConstant(Path) ||
7352       ParseToken(lltok::comma, "expected ',' here") ||
7353       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7354       ParseToken(lltok::colon, "expected ':' here") ||
7355       ParseToken(lltok::lparen, "expected '(' here"))
7356     return true;
7357 
7358   ModuleHash Hash;
7359   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7360       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7361       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7362       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7363       ParseUInt32(Hash[4]))
7364     return true;
7365 
7366   if (ParseToken(lltok::rparen, "expected ')' here") ||
7367       ParseToken(lltok::rparen, "expected ')' here"))
7368     return true;
7369 
7370   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7371   ModuleIdMap[ID] = ModuleEntry->first();
7372 
7373   return false;
7374 }
7375 
7376 /// TypeIdEntry
7377 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7378 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7379   assert(Lex.getKind() == lltok::kw_typeid);
7380   Lex.Lex();
7381 
7382   std::string Name;
7383   if (ParseToken(lltok::colon, "expected ':' here") ||
7384       ParseToken(lltok::lparen, "expected '(' here") ||
7385       ParseToken(lltok::kw_name, "expected 'name' here") ||
7386       ParseToken(lltok::colon, "expected ':' here") ||
7387       ParseStringConstant(Name))
7388     return true;
7389 
7390   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7391   if (ParseToken(lltok::comma, "expected ',' here") ||
7392       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7393     return true;
7394 
7395   // Check if this ID was forward referenced, and if so, update the
7396   // corresponding GUIDs.
7397   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7398   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7399     for (auto TIDRef : FwdRefTIDs->second) {
7400       assert(!*TIDRef.first &&
7401              "Forward referenced type id GUID expected to be 0");
7402       *TIDRef.first = GlobalValue::getGUID(Name);
7403     }
7404     ForwardRefTypeIds.erase(FwdRefTIDs);
7405   }
7406 
7407   return false;
7408 }
7409 
7410 /// TypeIdSummary
7411 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7412 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7413   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7414       ParseToken(lltok::colon, "expected ':' here") ||
7415       ParseToken(lltok::lparen, "expected '(' here") ||
7416       ParseTypeTestResolution(TIS.TTRes))
7417     return true;
7418 
7419   if (EatIfPresent(lltok::comma)) {
7420     // Expect optional wpdResolutions field
7421     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7422       return true;
7423   }
7424 
7425   if (ParseToken(lltok::rparen, "expected ')' here"))
7426     return true;
7427 
7428   return false;
7429 }
7430 
7431 /// TypeTestResolution
7432 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7433 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7434 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7435 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7436 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7437 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7438   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7439       ParseToken(lltok::colon, "expected ':' here") ||
7440       ParseToken(lltok::lparen, "expected '(' here") ||
7441       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7442       ParseToken(lltok::colon, "expected ':' here"))
7443     return true;
7444 
7445   switch (Lex.getKind()) {
7446   case lltok::kw_unsat:
7447     TTRes.TheKind = TypeTestResolution::Unsat;
7448     break;
7449   case lltok::kw_byteArray:
7450     TTRes.TheKind = TypeTestResolution::ByteArray;
7451     break;
7452   case lltok::kw_inline:
7453     TTRes.TheKind = TypeTestResolution::Inline;
7454     break;
7455   case lltok::kw_single:
7456     TTRes.TheKind = TypeTestResolution::Single;
7457     break;
7458   case lltok::kw_allOnes:
7459     TTRes.TheKind = TypeTestResolution::AllOnes;
7460     break;
7461   default:
7462     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7463   }
7464   Lex.Lex();
7465 
7466   if (ParseToken(lltok::comma, "expected ',' here") ||
7467       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7468       ParseToken(lltok::colon, "expected ':' here") ||
7469       ParseUInt32(TTRes.SizeM1BitWidth))
7470     return true;
7471 
7472   // Parse optional fields
7473   while (EatIfPresent(lltok::comma)) {
7474     switch (Lex.getKind()) {
7475     case lltok::kw_alignLog2:
7476       Lex.Lex();
7477       if (ParseToken(lltok::colon, "expected ':'") ||
7478           ParseUInt64(TTRes.AlignLog2))
7479         return true;
7480       break;
7481     case lltok::kw_sizeM1:
7482       Lex.Lex();
7483       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7484         return true;
7485       break;
7486     case lltok::kw_bitMask: {
7487       unsigned Val;
7488       Lex.Lex();
7489       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7490         return true;
7491       assert(Val <= 0xff);
7492       TTRes.BitMask = (uint8_t)Val;
7493       break;
7494     }
7495     case lltok::kw_inlineBits:
7496       Lex.Lex();
7497       if (ParseToken(lltok::colon, "expected ':'") ||
7498           ParseUInt64(TTRes.InlineBits))
7499         return true;
7500       break;
7501     default:
7502       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7503     }
7504   }
7505 
7506   if (ParseToken(lltok::rparen, "expected ')' here"))
7507     return true;
7508 
7509   return false;
7510 }
7511 
7512 /// OptionalWpdResolutions
7513 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7514 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7515 bool LLParser::ParseOptionalWpdResolutions(
7516     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7517   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7518       ParseToken(lltok::colon, "expected ':' here") ||
7519       ParseToken(lltok::lparen, "expected '(' here"))
7520     return true;
7521 
7522   do {
7523     uint64_t Offset;
7524     WholeProgramDevirtResolution WPDRes;
7525     if (ParseToken(lltok::lparen, "expected '(' here") ||
7526         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7527         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7528         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7529         ParseToken(lltok::rparen, "expected ')' here"))
7530       return true;
7531     WPDResMap[Offset] = WPDRes;
7532   } while (EatIfPresent(lltok::comma));
7533 
7534   if (ParseToken(lltok::rparen, "expected ')' here"))
7535     return true;
7536 
7537   return false;
7538 }
7539 
7540 /// WpdRes
7541 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7542 ///         [',' OptionalResByArg]? ')'
7543 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7544 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7545 ///         [',' OptionalResByArg]? ')'
7546 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7547 ///         [',' OptionalResByArg]? ')'
7548 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7549   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7550       ParseToken(lltok::colon, "expected ':' here") ||
7551       ParseToken(lltok::lparen, "expected '(' here") ||
7552       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7553       ParseToken(lltok::colon, "expected ':' here"))
7554     return true;
7555 
7556   switch (Lex.getKind()) {
7557   case lltok::kw_indir:
7558     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7559     break;
7560   case lltok::kw_singleImpl:
7561     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7562     break;
7563   case lltok::kw_branchFunnel:
7564     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7565     break;
7566   default:
7567     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7568   }
7569   Lex.Lex();
7570 
7571   // Parse optional fields
7572   while (EatIfPresent(lltok::comma)) {
7573     switch (Lex.getKind()) {
7574     case lltok::kw_singleImplName:
7575       Lex.Lex();
7576       if (ParseToken(lltok::colon, "expected ':' here") ||
7577           ParseStringConstant(WPDRes.SingleImplName))
7578         return true;
7579       break;
7580     case lltok::kw_resByArg:
7581       if (ParseOptionalResByArg(WPDRes.ResByArg))
7582         return true;
7583       break;
7584     default:
7585       return Error(Lex.getLoc(),
7586                    "expected optional WholeProgramDevirtResolution field");
7587     }
7588   }
7589 
7590   if (ParseToken(lltok::rparen, "expected ')' here"))
7591     return true;
7592 
7593   return false;
7594 }
7595 
7596 /// OptionalResByArg
7597 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7598 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7599 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7600 ///                  'virtualConstProp' )
7601 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7602 ///                [',' 'bit' ':' UInt32]? ')'
7603 bool LLParser::ParseOptionalResByArg(
7604     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7605         &ResByArg) {
7606   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7607       ParseToken(lltok::colon, "expected ':' here") ||
7608       ParseToken(lltok::lparen, "expected '(' here"))
7609     return true;
7610 
7611   do {
7612     std::vector<uint64_t> Args;
7613     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7614         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7615         ParseToken(lltok::colon, "expected ':' here") ||
7616         ParseToken(lltok::lparen, "expected '(' here") ||
7617         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7618         ParseToken(lltok::colon, "expected ':' here"))
7619       return true;
7620 
7621     WholeProgramDevirtResolution::ByArg ByArg;
7622     switch (Lex.getKind()) {
7623     case lltok::kw_indir:
7624       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7625       break;
7626     case lltok::kw_uniformRetVal:
7627       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7628       break;
7629     case lltok::kw_uniqueRetVal:
7630       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7631       break;
7632     case lltok::kw_virtualConstProp:
7633       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7634       break;
7635     default:
7636       return Error(Lex.getLoc(),
7637                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7638     }
7639     Lex.Lex();
7640 
7641     // Parse optional fields
7642     while (EatIfPresent(lltok::comma)) {
7643       switch (Lex.getKind()) {
7644       case lltok::kw_info:
7645         Lex.Lex();
7646         if (ParseToken(lltok::colon, "expected ':' here") ||
7647             ParseUInt64(ByArg.Info))
7648           return true;
7649         break;
7650       case lltok::kw_byte:
7651         Lex.Lex();
7652         if (ParseToken(lltok::colon, "expected ':' here") ||
7653             ParseUInt32(ByArg.Byte))
7654           return true;
7655         break;
7656       case lltok::kw_bit:
7657         Lex.Lex();
7658         if (ParseToken(lltok::colon, "expected ':' here") ||
7659             ParseUInt32(ByArg.Bit))
7660           return true;
7661         break;
7662       default:
7663         return Error(Lex.getLoc(),
7664                      "expected optional whole program devirt field");
7665       }
7666     }
7667 
7668     if (ParseToken(lltok::rparen, "expected ')' here"))
7669       return true;
7670 
7671     ResByArg[Args] = ByArg;
7672   } while (EatIfPresent(lltok::comma));
7673 
7674   if (ParseToken(lltok::rparen, "expected ')' here"))
7675     return true;
7676 
7677   return false;
7678 }
7679 
7680 /// OptionalResByArg
7681 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7682 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7683   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7684       ParseToken(lltok::colon, "expected ':' here") ||
7685       ParseToken(lltok::lparen, "expected '(' here"))
7686     return true;
7687 
7688   do {
7689     uint64_t Val;
7690     if (ParseUInt64(Val))
7691       return true;
7692     Args.push_back(Val);
7693   } while (EatIfPresent(lltok::comma));
7694 
7695   if (ParseToken(lltok::rparen, "expected ')' here"))
7696     return true;
7697 
7698   return false;
7699 }
7700 
7701 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7702 
7703 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7704   bool ReadOnly = Fwd->isReadOnly();
7705   *Fwd = Resolved;
7706   if (ReadOnly)
7707     Fwd->setReadOnly();
7708 }
7709 
7710 /// Stores the given Name/GUID and associated summary into the Index.
7711 /// Also updates any forward references to the associated entry ID.
7712 void LLParser::AddGlobalValueToIndex(
7713     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7714     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7715   // First create the ValueInfo utilizing the Name or GUID.
7716   ValueInfo VI;
7717   if (GUID != 0) {
7718     assert(Name.empty());
7719     VI = Index->getOrInsertValueInfo(GUID);
7720   } else {
7721     assert(!Name.empty());
7722     if (M) {
7723       auto *GV = M->getNamedValue(Name);
7724       assert(GV);
7725       VI = Index->getOrInsertValueInfo(GV);
7726     } else {
7727       assert(
7728           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7729           "Need a source_filename to compute GUID for local");
7730       GUID = GlobalValue::getGUID(
7731           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7732       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7733     }
7734   }
7735 
7736   // Resolve forward references from calls/refs
7737   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7738   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7739     for (auto VIRef : FwdRefVIs->second) {
7740       assert(VIRef.first->getRef() == FwdVIRef &&
7741              "Forward referenced ValueInfo expected to be empty");
7742       resolveFwdRef(VIRef.first, VI);
7743     }
7744     ForwardRefValueInfos.erase(FwdRefVIs);
7745   }
7746 
7747   // Resolve forward references from aliases
7748   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7749   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7750     for (auto AliaseeRef : FwdRefAliasees->second) {
7751       assert(!AliaseeRef.first->hasAliasee() &&
7752              "Forward referencing alias already has aliasee");
7753       assert(Summary && "Aliasee must be a definition");
7754       AliaseeRef.first->setAliasee(VI, Summary.get());
7755     }
7756     ForwardRefAliasees.erase(FwdRefAliasees);
7757   }
7758 
7759   // Add the summary if one was provided.
7760   if (Summary)
7761     Index->addGlobalValueSummary(VI, std::move(Summary));
7762 
7763   // Save the associated ValueInfo for use in later references by ID.
7764   if (ID == NumberedValueInfos.size())
7765     NumberedValueInfos.push_back(VI);
7766   else {
7767     // Handle non-continuous numbers (to make test simplification easier).
7768     if (ID > NumberedValueInfos.size())
7769       NumberedValueInfos.resize(ID + 1);
7770     NumberedValueInfos[ID] = VI;
7771   }
7772 }
7773 
7774 /// ParseGVEntry
7775 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7776 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7777 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7778 bool LLParser::ParseGVEntry(unsigned ID) {
7779   assert(Lex.getKind() == lltok::kw_gv);
7780   Lex.Lex();
7781 
7782   if (ParseToken(lltok::colon, "expected ':' here") ||
7783       ParseToken(lltok::lparen, "expected '(' here"))
7784     return true;
7785 
7786   std::string Name;
7787   GlobalValue::GUID GUID = 0;
7788   switch (Lex.getKind()) {
7789   case lltok::kw_name:
7790     Lex.Lex();
7791     if (ParseToken(lltok::colon, "expected ':' here") ||
7792         ParseStringConstant(Name))
7793       return true;
7794     // Can't create GUID/ValueInfo until we have the linkage.
7795     break;
7796   case lltok::kw_guid:
7797     Lex.Lex();
7798     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7799       return true;
7800     break;
7801   default:
7802     return Error(Lex.getLoc(), "expected name or guid tag");
7803   }
7804 
7805   if (!EatIfPresent(lltok::comma)) {
7806     // No summaries. Wrap up.
7807     if (ParseToken(lltok::rparen, "expected ')' here"))
7808       return true;
7809     // This was created for a call to an external or indirect target.
7810     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7811     // created for indirect calls with VP. A Name with no GUID came from
7812     // an external definition. We pass ExternalLinkage since that is only
7813     // used when the GUID must be computed from Name, and in that case
7814     // the symbol must have external linkage.
7815     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7816                           nullptr);
7817     return false;
7818   }
7819 
7820   // Have a list of summaries
7821   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7822       ParseToken(lltok::colon, "expected ':' here"))
7823     return true;
7824 
7825   do {
7826     if (ParseToken(lltok::lparen, "expected '(' here"))
7827       return true;
7828     switch (Lex.getKind()) {
7829     case lltok::kw_function:
7830       if (ParseFunctionSummary(Name, GUID, ID))
7831         return true;
7832       break;
7833     case lltok::kw_variable:
7834       if (ParseVariableSummary(Name, GUID, ID))
7835         return true;
7836       break;
7837     case lltok::kw_alias:
7838       if (ParseAliasSummary(Name, GUID, ID))
7839         return true;
7840       break;
7841     default:
7842       return Error(Lex.getLoc(), "expected summary type");
7843     }
7844     if (ParseToken(lltok::rparen, "expected ')' here"))
7845       return true;
7846   } while (EatIfPresent(lltok::comma));
7847 
7848   if (ParseToken(lltok::rparen, "expected ')' here"))
7849     return true;
7850 
7851   return false;
7852 }
7853 
7854 /// FunctionSummary
7855 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7856 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7857 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7858 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7859                                     unsigned ID) {
7860   assert(Lex.getKind() == lltok::kw_function);
7861   Lex.Lex();
7862 
7863   StringRef ModulePath;
7864   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7865       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7866       /*Live=*/false, /*IsLocal=*/false);
7867   unsigned InstCount;
7868   std::vector<FunctionSummary::EdgeTy> Calls;
7869   FunctionSummary::TypeIdInfo TypeIdInfo;
7870   std::vector<ValueInfo> Refs;
7871   // Default is all-zeros (conservative values).
7872   FunctionSummary::FFlags FFlags = {};
7873   if (ParseToken(lltok::colon, "expected ':' here") ||
7874       ParseToken(lltok::lparen, "expected '(' here") ||
7875       ParseModuleReference(ModulePath) ||
7876       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7877       ParseToken(lltok::comma, "expected ',' here") ||
7878       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7879       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7880     return true;
7881 
7882   // Parse optional fields
7883   while (EatIfPresent(lltok::comma)) {
7884     switch (Lex.getKind()) {
7885     case lltok::kw_funcFlags:
7886       if (ParseOptionalFFlags(FFlags))
7887         return true;
7888       break;
7889     case lltok::kw_calls:
7890       if (ParseOptionalCalls(Calls))
7891         return true;
7892       break;
7893     case lltok::kw_typeIdInfo:
7894       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7895         return true;
7896       break;
7897     case lltok::kw_refs:
7898       if (ParseOptionalRefs(Refs))
7899         return true;
7900       break;
7901     default:
7902       return Error(Lex.getLoc(), "expected optional function summary field");
7903     }
7904   }
7905 
7906   if (ParseToken(lltok::rparen, "expected ')' here"))
7907     return true;
7908 
7909   auto FS = llvm::make_unique<FunctionSummary>(
7910       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7911       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7912       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7913       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7914       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7915       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7916 
7917   FS->setModulePath(ModulePath);
7918 
7919   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7920                         ID, std::move(FS));
7921 
7922   return false;
7923 }
7924 
7925 /// VariableSummary
7926 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7927 ///         [',' OptionalRefs]? ')'
7928 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7929                                     unsigned ID) {
7930   assert(Lex.getKind() == lltok::kw_variable);
7931   Lex.Lex();
7932 
7933   StringRef ModulePath;
7934   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7935       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7936       /*Live=*/false, /*IsLocal=*/false);
7937   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7938   std::vector<ValueInfo> Refs;
7939   if (ParseToken(lltok::colon, "expected ':' here") ||
7940       ParseToken(lltok::lparen, "expected '(' here") ||
7941       ParseModuleReference(ModulePath) ||
7942       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7943       ParseToken(lltok::comma, "expected ',' here") ||
7944       ParseGVarFlags(GVarFlags))
7945     return true;
7946 
7947   // Parse optional refs field
7948   if (EatIfPresent(lltok::comma)) {
7949     if (ParseOptionalRefs(Refs))
7950       return true;
7951   }
7952 
7953   if (ParseToken(lltok::rparen, "expected ')' here"))
7954     return true;
7955 
7956   auto GS =
7957       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7958 
7959   GS->setModulePath(ModulePath);
7960 
7961   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7962                         ID, std::move(GS));
7963 
7964   return false;
7965 }
7966 
7967 /// AliasSummary
7968 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7969 ///         'aliasee' ':' GVReference ')'
7970 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7971                                  unsigned ID) {
7972   assert(Lex.getKind() == lltok::kw_alias);
7973   LocTy Loc = Lex.getLoc();
7974   Lex.Lex();
7975 
7976   StringRef ModulePath;
7977   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7978       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7979       /*Live=*/false, /*IsLocal=*/false);
7980   if (ParseToken(lltok::colon, "expected ':' here") ||
7981       ParseToken(lltok::lparen, "expected '(' here") ||
7982       ParseModuleReference(ModulePath) ||
7983       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7984       ParseToken(lltok::comma, "expected ',' here") ||
7985       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7986       ParseToken(lltok::colon, "expected ':' here"))
7987     return true;
7988 
7989   ValueInfo AliaseeVI;
7990   unsigned GVId;
7991   if (ParseGVReference(AliaseeVI, GVId))
7992     return true;
7993 
7994   if (ParseToken(lltok::rparen, "expected ')' here"))
7995     return true;
7996 
7997   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7998 
7999   AS->setModulePath(ModulePath);
8000 
8001   // Record forward reference if the aliasee is not parsed yet.
8002   if (AliaseeVI.getRef() == FwdVIRef) {
8003     auto FwdRef = ForwardRefAliasees.insert(
8004         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8005     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8006   } else {
8007     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8008     assert(Summary && "Aliasee must be a definition");
8009     AS->setAliasee(AliaseeVI, Summary);
8010   }
8011 
8012   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8013                         ID, std::move(AS));
8014 
8015   return false;
8016 }
8017 
8018 /// Flag
8019 ///   ::= [0|1]
8020 bool LLParser::ParseFlag(unsigned &Val) {
8021   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8022     return TokError("expected integer");
8023   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8024   Lex.Lex();
8025   return false;
8026 }
8027 
8028 /// OptionalFFlags
8029 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8030 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8031 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8032 ///        [',' 'noInline' ':' Flag]? ')'
8033 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8034   assert(Lex.getKind() == lltok::kw_funcFlags);
8035   Lex.Lex();
8036 
8037   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8038       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8039     return true;
8040 
8041   do {
8042     unsigned Val;
8043     switch (Lex.getKind()) {
8044     case lltok::kw_readNone:
8045       Lex.Lex();
8046       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8047         return true;
8048       FFlags.ReadNone = Val;
8049       break;
8050     case lltok::kw_readOnly:
8051       Lex.Lex();
8052       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8053         return true;
8054       FFlags.ReadOnly = Val;
8055       break;
8056     case lltok::kw_noRecurse:
8057       Lex.Lex();
8058       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8059         return true;
8060       FFlags.NoRecurse = Val;
8061       break;
8062     case lltok::kw_returnDoesNotAlias:
8063       Lex.Lex();
8064       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8065         return true;
8066       FFlags.ReturnDoesNotAlias = Val;
8067       break;
8068     case lltok::kw_noInline:
8069       Lex.Lex();
8070       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8071         return true;
8072       FFlags.NoInline = Val;
8073       break;
8074     default:
8075       return Error(Lex.getLoc(), "expected function flag type");
8076     }
8077   } while (EatIfPresent(lltok::comma));
8078 
8079   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8080     return true;
8081 
8082   return false;
8083 }
8084 
8085 /// OptionalCalls
8086 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8087 /// Call ::= '(' 'callee' ':' GVReference
8088 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8089 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8090   assert(Lex.getKind() == lltok::kw_calls);
8091   Lex.Lex();
8092 
8093   if (ParseToken(lltok::colon, "expected ':' in calls") |
8094       ParseToken(lltok::lparen, "expected '(' in calls"))
8095     return true;
8096 
8097   IdToIndexMapType IdToIndexMap;
8098   // Parse each call edge
8099   do {
8100     ValueInfo VI;
8101     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8102         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8103         ParseToken(lltok::colon, "expected ':'"))
8104       return true;
8105 
8106     LocTy Loc = Lex.getLoc();
8107     unsigned GVId;
8108     if (ParseGVReference(VI, GVId))
8109       return true;
8110 
8111     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8112     unsigned RelBF = 0;
8113     if (EatIfPresent(lltok::comma)) {
8114       // Expect either hotness or relbf
8115       if (EatIfPresent(lltok::kw_hotness)) {
8116         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8117           return true;
8118       } else {
8119         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8120             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8121           return true;
8122       }
8123     }
8124     // Keep track of the Call array index needing a forward reference.
8125     // We will save the location of the ValueInfo needing an update, but
8126     // can only do so once the std::vector is finalized.
8127     if (VI.getRef() == FwdVIRef)
8128       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8129     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8130 
8131     if (ParseToken(lltok::rparen, "expected ')' in call"))
8132       return true;
8133   } while (EatIfPresent(lltok::comma));
8134 
8135   // Now that the Calls vector is finalized, it is safe to save the locations
8136   // of any forward GV references that need updating later.
8137   for (auto I : IdToIndexMap) {
8138     for (auto P : I.second) {
8139       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8140              "Forward referenced ValueInfo expected to be empty");
8141       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8142           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8143       FwdRef.first->second.push_back(
8144           std::make_pair(&Calls[P.first].first, P.second));
8145     }
8146   }
8147 
8148   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8149     return true;
8150 
8151   return false;
8152 }
8153 
8154 /// Hotness
8155 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8156 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8157   switch (Lex.getKind()) {
8158   case lltok::kw_unknown:
8159     Hotness = CalleeInfo::HotnessType::Unknown;
8160     break;
8161   case lltok::kw_cold:
8162     Hotness = CalleeInfo::HotnessType::Cold;
8163     break;
8164   case lltok::kw_none:
8165     Hotness = CalleeInfo::HotnessType::None;
8166     break;
8167   case lltok::kw_hot:
8168     Hotness = CalleeInfo::HotnessType::Hot;
8169     break;
8170   case lltok::kw_critical:
8171     Hotness = CalleeInfo::HotnessType::Critical;
8172     break;
8173   default:
8174     return Error(Lex.getLoc(), "invalid call edge hotness");
8175   }
8176   Lex.Lex();
8177   return false;
8178 }
8179 
8180 /// OptionalRefs
8181 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8182 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8183   assert(Lex.getKind() == lltok::kw_refs);
8184   Lex.Lex();
8185 
8186   if (ParseToken(lltok::colon, "expected ':' in refs") |
8187       ParseToken(lltok::lparen, "expected '(' in refs"))
8188     return true;
8189 
8190   struct ValueContext {
8191     ValueInfo VI;
8192     unsigned GVId;
8193     LocTy Loc;
8194   };
8195   std::vector<ValueContext> VContexts;
8196   // Parse each ref edge
8197   do {
8198     ValueContext VC;
8199     VC.Loc = Lex.getLoc();
8200     if (ParseGVReference(VC.VI, VC.GVId))
8201       return true;
8202     VContexts.push_back(VC);
8203   } while (EatIfPresent(lltok::comma));
8204 
8205   // Sort value contexts so that ones with readonly ValueInfo are at the end
8206   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8207   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8208     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8209   });
8210 
8211   IdToIndexMapType IdToIndexMap;
8212   for (auto &VC : VContexts) {
8213     // Keep track of the Refs array index needing a forward reference.
8214     // We will save the location of the ValueInfo needing an update, but
8215     // can only do so once the std::vector is finalized.
8216     if (VC.VI.getRef() == FwdVIRef)
8217       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8218     Refs.push_back(VC.VI);
8219   }
8220 
8221   // Now that the Refs vector is finalized, it is safe to save the locations
8222   // of any forward GV references that need updating later.
8223   for (auto I : IdToIndexMap) {
8224     for (auto P : I.second) {
8225       assert(Refs[P.first].getRef() == FwdVIRef &&
8226              "Forward referenced ValueInfo expected to be empty");
8227       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8228           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8229       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8230     }
8231   }
8232 
8233   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8234     return true;
8235 
8236   return false;
8237 }
8238 
8239 /// OptionalTypeIdInfo
8240 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8241 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8242 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8243 bool LLParser::ParseOptionalTypeIdInfo(
8244     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8245   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8246   Lex.Lex();
8247 
8248   if (ParseToken(lltok::colon, "expected ':' here") ||
8249       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8250     return true;
8251 
8252   do {
8253     switch (Lex.getKind()) {
8254     case lltok::kw_typeTests:
8255       if (ParseTypeTests(TypeIdInfo.TypeTests))
8256         return true;
8257       break;
8258     case lltok::kw_typeTestAssumeVCalls:
8259       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8260                            TypeIdInfo.TypeTestAssumeVCalls))
8261         return true;
8262       break;
8263     case lltok::kw_typeCheckedLoadVCalls:
8264       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8265                            TypeIdInfo.TypeCheckedLoadVCalls))
8266         return true;
8267       break;
8268     case lltok::kw_typeTestAssumeConstVCalls:
8269       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8270                               TypeIdInfo.TypeTestAssumeConstVCalls))
8271         return true;
8272       break;
8273     case lltok::kw_typeCheckedLoadConstVCalls:
8274       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8275                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8276         return true;
8277       break;
8278     default:
8279       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8280     }
8281   } while (EatIfPresent(lltok::comma));
8282 
8283   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8284     return true;
8285 
8286   return false;
8287 }
8288 
8289 /// TypeTests
8290 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8291 ///         [',' (SummaryID | UInt64)]* ')'
8292 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8293   assert(Lex.getKind() == lltok::kw_typeTests);
8294   Lex.Lex();
8295 
8296   if (ParseToken(lltok::colon, "expected ':' here") ||
8297       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8298     return true;
8299 
8300   IdToIndexMapType IdToIndexMap;
8301   do {
8302     GlobalValue::GUID GUID = 0;
8303     if (Lex.getKind() == lltok::SummaryID) {
8304       unsigned ID = Lex.getUIntVal();
8305       LocTy Loc = Lex.getLoc();
8306       // Keep track of the TypeTests array index needing a forward reference.
8307       // We will save the location of the GUID needing an update, but
8308       // can only do so once the std::vector is finalized.
8309       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8310       Lex.Lex();
8311     } else if (ParseUInt64(GUID))
8312       return true;
8313     TypeTests.push_back(GUID);
8314   } while (EatIfPresent(lltok::comma));
8315 
8316   // Now that the TypeTests vector is finalized, it is safe to save the
8317   // locations of any forward GV references that need updating later.
8318   for (auto I : IdToIndexMap) {
8319     for (auto P : I.second) {
8320       assert(TypeTests[P.first] == 0 &&
8321              "Forward referenced type id GUID expected to be 0");
8322       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8323           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8324       FwdRef.first->second.push_back(
8325           std::make_pair(&TypeTests[P.first], P.second));
8326     }
8327   }
8328 
8329   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8330     return true;
8331 
8332   return false;
8333 }
8334 
8335 /// VFuncIdList
8336 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8337 bool LLParser::ParseVFuncIdList(
8338     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8339   assert(Lex.getKind() == Kind);
8340   Lex.Lex();
8341 
8342   if (ParseToken(lltok::colon, "expected ':' here") ||
8343       ParseToken(lltok::lparen, "expected '(' here"))
8344     return true;
8345 
8346   IdToIndexMapType IdToIndexMap;
8347   do {
8348     FunctionSummary::VFuncId VFuncId;
8349     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8350       return true;
8351     VFuncIdList.push_back(VFuncId);
8352   } while (EatIfPresent(lltok::comma));
8353 
8354   if (ParseToken(lltok::rparen, "expected ')' here"))
8355     return true;
8356 
8357   // Now that the VFuncIdList vector is finalized, it is safe to save the
8358   // locations of any forward GV references that need updating later.
8359   for (auto I : IdToIndexMap) {
8360     for (auto P : I.second) {
8361       assert(VFuncIdList[P.first].GUID == 0 &&
8362              "Forward referenced type id GUID expected to be 0");
8363       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8364           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8365       FwdRef.first->second.push_back(
8366           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8367     }
8368   }
8369 
8370   return false;
8371 }
8372 
8373 /// ConstVCallList
8374 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8375 bool LLParser::ParseConstVCallList(
8376     lltok::Kind Kind,
8377     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8378   assert(Lex.getKind() == Kind);
8379   Lex.Lex();
8380 
8381   if (ParseToken(lltok::colon, "expected ':' here") ||
8382       ParseToken(lltok::lparen, "expected '(' here"))
8383     return true;
8384 
8385   IdToIndexMapType IdToIndexMap;
8386   do {
8387     FunctionSummary::ConstVCall ConstVCall;
8388     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8389       return true;
8390     ConstVCallList.push_back(ConstVCall);
8391   } while (EatIfPresent(lltok::comma));
8392 
8393   if (ParseToken(lltok::rparen, "expected ')' here"))
8394     return true;
8395 
8396   // Now that the ConstVCallList vector is finalized, it is safe to save the
8397   // locations of any forward GV references that need updating later.
8398   for (auto I : IdToIndexMap) {
8399     for (auto P : I.second) {
8400       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8401              "Forward referenced type id GUID expected to be 0");
8402       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8403           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8404       FwdRef.first->second.push_back(
8405           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8406     }
8407   }
8408 
8409   return false;
8410 }
8411 
8412 /// ConstVCall
8413 ///   ::= '(' VFuncId ',' Args ')'
8414 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8415                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8416   if (ParseToken(lltok::lparen, "expected '(' here") ||
8417       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8418     return true;
8419 
8420   if (EatIfPresent(lltok::comma))
8421     if (ParseArgs(ConstVCall.Args))
8422       return true;
8423 
8424   if (ParseToken(lltok::rparen, "expected ')' here"))
8425     return true;
8426 
8427   return false;
8428 }
8429 
8430 /// VFuncId
8431 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8432 ///         'offset' ':' UInt64 ')'
8433 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8434                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8435   assert(Lex.getKind() == lltok::kw_vFuncId);
8436   Lex.Lex();
8437 
8438   if (ParseToken(lltok::colon, "expected ':' here") ||
8439       ParseToken(lltok::lparen, "expected '(' here"))
8440     return true;
8441 
8442   if (Lex.getKind() == lltok::SummaryID) {
8443     VFuncId.GUID = 0;
8444     unsigned ID = Lex.getUIntVal();
8445     LocTy Loc = Lex.getLoc();
8446     // Keep track of the array index needing a forward reference.
8447     // We will save the location of the GUID needing an update, but
8448     // can only do so once the caller's std::vector is finalized.
8449     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8450     Lex.Lex();
8451   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8452              ParseToken(lltok::colon, "expected ':' here") ||
8453              ParseUInt64(VFuncId.GUID))
8454     return true;
8455 
8456   if (ParseToken(lltok::comma, "expected ',' here") ||
8457       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8458       ParseToken(lltok::colon, "expected ':' here") ||
8459       ParseUInt64(VFuncId.Offset) ||
8460       ParseToken(lltok::rparen, "expected ')' here"))
8461     return true;
8462 
8463   return false;
8464 }
8465 
8466 /// GVFlags
8467 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8468 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8469 ///         'dsoLocal' ':' Flag ')'
8470 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8471   assert(Lex.getKind() == lltok::kw_flags);
8472   Lex.Lex();
8473 
8474   bool HasLinkage;
8475   if (ParseToken(lltok::colon, "expected ':' here") ||
8476       ParseToken(lltok::lparen, "expected '(' here") ||
8477       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8478       ParseToken(lltok::colon, "expected ':' here"))
8479     return true;
8480 
8481   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8482   assert(HasLinkage && "Linkage not optional in summary entry");
8483   Lex.Lex();
8484 
8485   unsigned Flag;
8486   if (ParseToken(lltok::comma, "expected ',' here") ||
8487       ParseToken(lltok::kw_notEligibleToImport,
8488                  "expected 'notEligibleToImport' here") ||
8489       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8490     return true;
8491   GVFlags.NotEligibleToImport = Flag;
8492 
8493   if (ParseToken(lltok::comma, "expected ',' here") ||
8494       ParseToken(lltok::kw_live, "expected 'live' here") ||
8495       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8496     return true;
8497   GVFlags.Live = Flag;
8498 
8499   if (ParseToken(lltok::comma, "expected ',' here") ||
8500       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8501       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8502     return true;
8503   GVFlags.DSOLocal = Flag;
8504 
8505   if (ParseToken(lltok::rparen, "expected ')' here"))
8506     return true;
8507 
8508   return false;
8509 }
8510 
8511 /// GVarFlags
8512 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8513 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8514   assert(Lex.getKind() == lltok::kw_varFlags);
8515   Lex.Lex();
8516 
8517   unsigned Flag;
8518   if (ParseToken(lltok::colon, "expected ':' here") ||
8519       ParseToken(lltok::lparen, "expected '(' here") ||
8520       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8521       ParseToken(lltok::colon, "expected ':' here"))
8522     return true;
8523 
8524   ParseFlag(Flag);
8525   GVarFlags.ReadOnly = Flag;
8526 
8527   if (ParseToken(lltok::rparen, "expected ')' here"))
8528     return true;
8529   return false;
8530 }
8531 
8532 /// ModuleReference
8533 ///   ::= 'module' ':' UInt
8534 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8535   // Parse module id.
8536   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8537       ParseToken(lltok::colon, "expected ':' here") ||
8538       ParseToken(lltok::SummaryID, "expected module ID"))
8539     return true;
8540 
8541   unsigned ModuleID = Lex.getUIntVal();
8542   auto I = ModuleIdMap.find(ModuleID);
8543   // We should have already parsed all module IDs
8544   assert(I != ModuleIdMap.end());
8545   ModulePath = I->second;
8546   return false;
8547 }
8548 
8549 /// GVReference
8550 ///   ::= SummaryID
8551 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8552   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8553   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8554     return true;
8555 
8556   GVId = Lex.getUIntVal();
8557   // Check if we already have a VI for this GV
8558   if (GVId < NumberedValueInfos.size()) {
8559     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8560     VI = NumberedValueInfos[GVId];
8561   } else
8562     // We will create a forward reference to the stored location.
8563     VI = ValueInfo(false, FwdVIRef);
8564 
8565   if (ReadOnly)
8566     VI.setReadOnly();
8567   return false;
8568 }
8569