1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 switch (Lex.getKind()) { 825 case lltok::kw_gv: 826 return ParseGVEntry(SummaryID); 827 case lltok::kw_module: 828 return ParseModuleEntry(SummaryID); 829 case lltok::kw_typeid: 830 return ParseTypeIdEntry(SummaryID); 831 break; 832 default: 833 return Error(Lex.getLoc(), "unexpected summary kind"); 834 } 835 Lex.setIgnoreColonInIdentifiers(false); 836 return false; 837 } 838 839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 840 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 841 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 842 } 843 844 // If there was an explicit dso_local, update GV. In the absence of an explicit 845 // dso_local we keep the default value. 846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 847 if (DSOLocal) 848 GV.setDSOLocal(true); 849 } 850 851 /// parseIndirectSymbol: 852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 853 /// OptionalVisibility OptionalDLLStorageClass 854 /// OptionalThreadLocal OptionalUnnamedAddr 855 // 'alias|ifunc' IndirectSymbol 856 /// 857 /// IndirectSymbol 858 /// ::= TypeAndValue 859 /// 860 /// Everything through OptionalUnnamedAddr has already been parsed. 861 /// 862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 863 unsigned L, unsigned Visibility, 864 unsigned DLLStorageClass, bool DSOLocal, 865 GlobalVariable::ThreadLocalMode TLM, 866 GlobalVariable::UnnamedAddr UnnamedAddr) { 867 bool IsAlias; 868 if (Lex.getKind() == lltok::kw_alias) 869 IsAlias = true; 870 else if (Lex.getKind() == lltok::kw_ifunc) 871 IsAlias = false; 872 else 873 llvm_unreachable("Not an alias or ifunc!"); 874 Lex.Lex(); 875 876 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 877 878 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 879 return Error(NameLoc, "invalid linkage type for alias"); 880 881 if (!isValidVisibilityForLinkage(Visibility, L)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 Type *Ty; 886 LocTy ExplicitTypeLoc = Lex.getLoc(); 887 if (ParseType(Ty) || 888 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 889 return true; 890 891 Constant *Aliasee; 892 LocTy AliaseeLoc = Lex.getLoc(); 893 if (Lex.getKind() != lltok::kw_bitcast && 894 Lex.getKind() != lltok::kw_getelementptr && 895 Lex.getKind() != lltok::kw_addrspacecast && 896 Lex.getKind() != lltok::kw_inttoptr) { 897 if (ParseGlobalTypeAndValue(Aliasee)) 898 return true; 899 } else { 900 // The bitcast dest type is not present, it is implied by the dest type. 901 ValID ID; 902 if (ParseValID(ID)) 903 return true; 904 if (ID.Kind != ValID::t_Constant) 905 return Error(AliaseeLoc, "invalid aliasee"); 906 Aliasee = ID.ConstantVal; 907 } 908 909 Type *AliaseeType = Aliasee->getType(); 910 auto *PTy = dyn_cast<PointerType>(AliaseeType); 911 if (!PTy) 912 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 913 unsigned AddrSpace = PTy->getAddressSpace(); 914 915 if (IsAlias && Ty != PTy->getElementType()) 916 return Error( 917 ExplicitTypeLoc, 918 "explicit pointee type doesn't match operand's pointee type"); 919 920 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 921 return Error( 922 ExplicitTypeLoc, 923 "explicit pointee type should be a function type"); 924 925 GlobalValue *GVal = nullptr; 926 927 // See if the alias was forward referenced, if so, prepare to replace the 928 // forward reference. 929 if (!Name.empty()) { 930 GVal = M->getNamedValue(Name); 931 if (GVal) { 932 if (!ForwardRefVals.erase(Name)) 933 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 934 } 935 } else { 936 auto I = ForwardRefValIDs.find(NumberedVals.size()); 937 if (I != ForwardRefValIDs.end()) { 938 GVal = I->second.first; 939 ForwardRefValIDs.erase(I); 940 } 941 } 942 943 // Okay, create the alias but do not insert it into the module yet. 944 std::unique_ptr<GlobalIndirectSymbol> GA; 945 if (IsAlias) 946 GA.reset(GlobalAlias::create(Ty, AddrSpace, 947 (GlobalValue::LinkageTypes)Linkage, Name, 948 Aliasee, /*Parent*/ nullptr)); 949 else 950 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 951 (GlobalValue::LinkageTypes)Linkage, Name, 952 Aliasee, /*Parent*/ nullptr)); 953 GA->setThreadLocalMode(TLM); 954 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GA->setUnnamedAddr(UnnamedAddr); 957 maybeSetDSOLocal(DSOLocal, *GA); 958 959 if (Name.empty()) 960 NumberedVals.push_back(GA.get()); 961 962 if (GVal) { 963 // Verify that types agree. 964 if (GVal->getType() != GA->getType()) 965 return Error( 966 ExplicitTypeLoc, 967 "forward reference and definition of alias have different types"); 968 969 // If they agree, just RAUW the old value with the alias and remove the 970 // forward ref info. 971 GVal->replaceAllUsesWith(GA.get()); 972 GVal->eraseFromParent(); 973 } 974 975 // Insert into the module, we know its name won't collide now. 976 if (IsAlias) 977 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 978 else 979 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 980 assert(GA->getName() == Name && "Should not be a name conflict!"); 981 982 // The module owns this now 983 GA.release(); 984 985 return false; 986 } 987 988 /// ParseGlobal 989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 990 /// OptionalVisibility OptionalDLLStorageClass 991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 996 /// Const OptionalAttrs 997 /// 998 /// Everything up to and including OptionalUnnamedAddr has been parsed 999 /// already. 1000 /// 1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1002 unsigned Linkage, bool HasLinkage, 1003 unsigned Visibility, unsigned DLLStorageClass, 1004 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1005 GlobalVariable::UnnamedAddr UnnamedAddr) { 1006 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1007 return Error(NameLoc, 1008 "symbol with local linkage must have default visibility"); 1009 1010 unsigned AddrSpace; 1011 bool IsConstant, IsExternallyInitialized; 1012 LocTy IsExternallyInitializedLoc; 1013 LocTy TyLoc; 1014 1015 Type *Ty = nullptr; 1016 if (ParseOptionalAddrSpace(AddrSpace) || 1017 ParseOptionalToken(lltok::kw_externally_initialized, 1018 IsExternallyInitialized, 1019 &IsExternallyInitializedLoc) || 1020 ParseGlobalType(IsConstant) || 1021 ParseType(Ty, TyLoc)) 1022 return true; 1023 1024 // If the linkage is specified and is external, then no initializer is 1025 // present. 1026 Constant *Init = nullptr; 1027 if (!HasLinkage || 1028 !GlobalValue::isValidDeclarationLinkage( 1029 (GlobalValue::LinkageTypes)Linkage)) { 1030 if (ParseGlobalValue(Ty, Init)) 1031 return true; 1032 } 1033 1034 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1035 return Error(TyLoc, "invalid type for global variable"); 1036 1037 GlobalValue *GVal = nullptr; 1038 1039 // See if the global was forward referenced, if so, use the global. 1040 if (!Name.empty()) { 1041 GVal = M->getNamedValue(Name); 1042 if (GVal) { 1043 if (!ForwardRefVals.erase(Name)) 1044 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1045 } 1046 } else { 1047 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1048 if (I != ForwardRefValIDs.end()) { 1049 GVal = I->second.first; 1050 ForwardRefValIDs.erase(I); 1051 } 1052 } 1053 1054 GlobalVariable *GV; 1055 if (!GVal) { 1056 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1057 Name, nullptr, GlobalVariable::NotThreadLocal, 1058 AddrSpace); 1059 } else { 1060 if (GVal->getValueType() != Ty) 1061 return Error(TyLoc, 1062 "forward reference and definition of global have different types"); 1063 1064 GV = cast<GlobalVariable>(GVal); 1065 1066 // Move the forward-reference to the correct spot in the module. 1067 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1068 } 1069 1070 if (Name.empty()) 1071 NumberedVals.push_back(GV); 1072 1073 // Set the parsed properties on the global. 1074 if (Init) 1075 GV->setInitializer(Init); 1076 GV->setConstant(IsConstant); 1077 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1078 maybeSetDSOLocal(DSOLocal, *GV); 1079 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1080 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1081 GV->setExternallyInitialized(IsExternallyInitialized); 1082 GV->setThreadLocalMode(TLM); 1083 GV->setUnnamedAddr(UnnamedAddr); 1084 1085 // Parse attributes on the global. 1086 while (Lex.getKind() == lltok::comma) { 1087 Lex.Lex(); 1088 1089 if (Lex.getKind() == lltok::kw_section) { 1090 Lex.Lex(); 1091 GV->setSection(Lex.getStrVal()); 1092 if (ParseToken(lltok::StringConstant, "expected global section string")) 1093 return true; 1094 } else if (Lex.getKind() == lltok::kw_align) { 1095 unsigned Alignment; 1096 if (ParseOptionalAlignment(Alignment)) return true; 1097 GV->setAlignment(Alignment); 1098 } else if (Lex.getKind() == lltok::MetadataVar) { 1099 if (ParseGlobalObjectMetadataAttachment(*GV)) 1100 return true; 1101 } else { 1102 Comdat *C; 1103 if (parseOptionalComdat(Name, C)) 1104 return true; 1105 if (C) 1106 GV->setComdat(C); 1107 else 1108 return TokError("unknown global variable property!"); 1109 } 1110 } 1111 1112 AttrBuilder Attrs; 1113 LocTy BuiltinLoc; 1114 std::vector<unsigned> FwdRefAttrGrps; 1115 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1116 return true; 1117 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1118 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1119 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1120 } 1121 1122 return false; 1123 } 1124 1125 /// ParseUnnamedAttrGrp 1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1127 bool LLParser::ParseUnnamedAttrGrp() { 1128 assert(Lex.getKind() == lltok::kw_attributes); 1129 LocTy AttrGrpLoc = Lex.getLoc(); 1130 Lex.Lex(); 1131 1132 if (Lex.getKind() != lltok::AttrGrpID) 1133 return TokError("expected attribute group id"); 1134 1135 unsigned VarID = Lex.getUIntVal(); 1136 std::vector<unsigned> unused; 1137 LocTy BuiltinLoc; 1138 Lex.Lex(); 1139 1140 if (ParseToken(lltok::equal, "expected '=' here") || 1141 ParseToken(lltok::lbrace, "expected '{' here") || 1142 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1143 BuiltinLoc) || 1144 ParseToken(lltok::rbrace, "expected end of attribute group")) 1145 return true; 1146 1147 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1148 return Error(AttrGrpLoc, "attribute group has no attributes"); 1149 1150 return false; 1151 } 1152 1153 /// ParseFnAttributeValuePairs 1154 /// ::= <attr> | <attr> '=' <value> 1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1156 std::vector<unsigned> &FwdRefAttrGrps, 1157 bool inAttrGrp, LocTy &BuiltinLoc) { 1158 bool HaveError = false; 1159 1160 B.clear(); 1161 1162 while (true) { 1163 lltok::Kind Token = Lex.getKind(); 1164 if (Token == lltok::kw_builtin) 1165 BuiltinLoc = Lex.getLoc(); 1166 switch (Token) { 1167 default: 1168 if (!inAttrGrp) return HaveError; 1169 return Error(Lex.getLoc(), "unterminated attribute group"); 1170 case lltok::rbrace: 1171 // Finished. 1172 return false; 1173 1174 case lltok::AttrGrpID: { 1175 // Allow a function to reference an attribute group: 1176 // 1177 // define void @foo() #1 { ... } 1178 if (inAttrGrp) 1179 HaveError |= 1180 Error(Lex.getLoc(), 1181 "cannot have an attribute group reference in an attribute group"); 1182 1183 unsigned AttrGrpNum = Lex.getUIntVal(); 1184 if (inAttrGrp) break; 1185 1186 // Save the reference to the attribute group. We'll fill it in later. 1187 FwdRefAttrGrps.push_back(AttrGrpNum); 1188 break; 1189 } 1190 // Target-dependent attributes: 1191 case lltok::StringConstant: { 1192 if (ParseStringAttribute(B)) 1193 return true; 1194 continue; 1195 } 1196 1197 // Target-independent attributes: 1198 case lltok::kw_align: { 1199 // As a hack, we allow function alignment to be initially parsed as an 1200 // attribute on a function declaration/definition or added to an attribute 1201 // group and later moved to the alignment field. 1202 unsigned Alignment; 1203 if (inAttrGrp) { 1204 Lex.Lex(); 1205 if (ParseToken(lltok::equal, "expected '=' here") || 1206 ParseUInt32(Alignment)) 1207 return true; 1208 } else { 1209 if (ParseOptionalAlignment(Alignment)) 1210 return true; 1211 } 1212 B.addAlignmentAttr(Alignment); 1213 continue; 1214 } 1215 case lltok::kw_alignstack: { 1216 unsigned Alignment; 1217 if (inAttrGrp) { 1218 Lex.Lex(); 1219 if (ParseToken(lltok::equal, "expected '=' here") || 1220 ParseUInt32(Alignment)) 1221 return true; 1222 } else { 1223 if (ParseOptionalStackAlignment(Alignment)) 1224 return true; 1225 } 1226 B.addStackAlignmentAttr(Alignment); 1227 continue; 1228 } 1229 case lltok::kw_allocsize: { 1230 unsigned ElemSizeArg; 1231 Optional<unsigned> NumElemsArg; 1232 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1233 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1234 return true; 1235 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1236 continue; 1237 } 1238 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1239 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1240 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1241 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1242 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1243 case lltok::kw_inaccessiblememonly: 1244 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1245 case lltok::kw_inaccessiblemem_or_argmemonly: 1246 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1247 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1248 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1249 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1250 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1251 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1252 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1253 case lltok::kw_noimplicitfloat: 1254 B.addAttribute(Attribute::NoImplicitFloat); break; 1255 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1256 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1257 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1258 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1259 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1260 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1261 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1262 case lltok::kw_optforfuzzing: 1263 B.addAttribute(Attribute::OptForFuzzing); break; 1264 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1265 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1266 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1267 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1268 case lltok::kw_returns_twice: 1269 B.addAttribute(Attribute::ReturnsTwice); break; 1270 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1271 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1272 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1273 case lltok::kw_sspstrong: 1274 B.addAttribute(Attribute::StackProtectStrong); break; 1275 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1276 case lltok::kw_shadowcallstack: 1277 B.addAttribute(Attribute::ShadowCallStack); break; 1278 case lltok::kw_sanitize_address: 1279 B.addAttribute(Attribute::SanitizeAddress); break; 1280 case lltok::kw_sanitize_hwaddress: 1281 B.addAttribute(Attribute::SanitizeHWAddress); break; 1282 case lltok::kw_sanitize_thread: 1283 B.addAttribute(Attribute::SanitizeThread); break; 1284 case lltok::kw_sanitize_memory: 1285 B.addAttribute(Attribute::SanitizeMemory); break; 1286 case lltok::kw_speculative_load_hardening: 1287 B.addAttribute(Attribute::SpeculativeLoadHardening); 1288 break; 1289 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1290 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1291 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1292 1293 // Error handling. 1294 case lltok::kw_inreg: 1295 case lltok::kw_signext: 1296 case lltok::kw_zeroext: 1297 HaveError |= 1298 Error(Lex.getLoc(), 1299 "invalid use of attribute on a function"); 1300 break; 1301 case lltok::kw_byval: 1302 case lltok::kw_dereferenceable: 1303 case lltok::kw_dereferenceable_or_null: 1304 case lltok::kw_inalloca: 1305 case lltok::kw_nest: 1306 case lltok::kw_noalias: 1307 case lltok::kw_nocapture: 1308 case lltok::kw_nonnull: 1309 case lltok::kw_returned: 1310 case lltok::kw_sret: 1311 case lltok::kw_swifterror: 1312 case lltok::kw_swiftself: 1313 case lltok::kw_immarg: 1314 HaveError |= 1315 Error(Lex.getLoc(), 1316 "invalid use of parameter-only attribute on a function"); 1317 break; 1318 } 1319 1320 Lex.Lex(); 1321 } 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // GlobalValue Reference/Resolution Routines. 1326 //===----------------------------------------------------------------------===// 1327 1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1329 const std::string &Name) { 1330 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1331 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1332 PTy->getAddressSpace(), Name, M); 1333 else 1334 return new GlobalVariable(*M, PTy->getElementType(), false, 1335 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1336 nullptr, GlobalVariable::NotThreadLocal, 1337 PTy->getAddressSpace()); 1338 } 1339 1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1341 Value *Val, bool IsCall) { 1342 if (Val->getType() == Ty) 1343 return Val; 1344 // For calls we also accept variables in the program address space. 1345 Type *SuggestedTy = Ty; 1346 if (IsCall && isa<PointerType>(Ty)) { 1347 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1348 M->getDataLayout().getProgramAddressSpace()); 1349 SuggestedTy = TyInProgAS; 1350 if (Val->getType() == TyInProgAS) 1351 return Val; 1352 } 1353 if (Ty->isLabelTy()) 1354 Error(Loc, "'" + Name + "' is not a basic block"); 1355 else 1356 Error(Loc, "'" + Name + "' defined with type '" + 1357 getTypeString(Val->getType()) + "' but expected '" + 1358 getTypeString(SuggestedTy) + "'"); 1359 return nullptr; 1360 } 1361 1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1363 /// forward reference record if needed. This can return null if the value 1364 /// exists but does not have the right type. 1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1366 LocTy Loc, bool IsCall) { 1367 PointerType *PTy = dyn_cast<PointerType>(Ty); 1368 if (!PTy) { 1369 Error(Loc, "global variable reference must have pointer type"); 1370 return nullptr; 1371 } 1372 1373 // Look this name up in the normal function symbol table. 1374 GlobalValue *Val = 1375 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1376 1377 // If this is a forward reference for the value, see if we already created a 1378 // forward ref record. 1379 if (!Val) { 1380 auto I = ForwardRefVals.find(Name); 1381 if (I != ForwardRefVals.end()) 1382 Val = I->second.first; 1383 } 1384 1385 // If we have the value in the symbol table or fwd-ref table, return it. 1386 if (Val) 1387 return cast_or_null<GlobalValue>( 1388 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1392 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1397 bool IsCall) { 1398 PointerType *PTy = dyn_cast<PointerType>(Ty); 1399 if (!PTy) { 1400 Error(Loc, "global variable reference must have pointer type"); 1401 return nullptr; 1402 } 1403 1404 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1405 1406 // If this is a forward reference for the value, see if we already created a 1407 // forward ref record. 1408 if (!Val) { 1409 auto I = ForwardRefValIDs.find(ID); 1410 if (I != ForwardRefValIDs.end()) 1411 Val = I->second.first; 1412 } 1413 1414 // If we have the value in the symbol table or fwd-ref table, return it. 1415 if (Val) 1416 return cast_or_null<GlobalValue>( 1417 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1418 1419 // Otherwise, create a new forward reference for this value and remember it. 1420 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1421 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1422 return FwdVal; 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // Comdat Reference/Resolution Routines. 1427 //===----------------------------------------------------------------------===// 1428 1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1430 // Look this name up in the comdat symbol table. 1431 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1432 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1433 if (I != ComdatSymTab.end()) 1434 return &I->second; 1435 1436 // Otherwise, create a new forward reference for this value and remember it. 1437 Comdat *C = M->getOrInsertComdat(Name); 1438 ForwardRefComdats[Name] = Loc; 1439 return C; 1440 } 1441 1442 //===----------------------------------------------------------------------===// 1443 // Helper Routines. 1444 //===----------------------------------------------------------------------===// 1445 1446 /// ParseToken - If the current token has the specified kind, eat it and return 1447 /// success. Otherwise, emit the specified error and return failure. 1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1449 if (Lex.getKind() != T) 1450 return TokError(ErrMsg); 1451 Lex.Lex(); 1452 return false; 1453 } 1454 1455 /// ParseStringConstant 1456 /// ::= StringConstant 1457 bool LLParser::ParseStringConstant(std::string &Result) { 1458 if (Lex.getKind() != lltok::StringConstant) 1459 return TokError("expected string constant"); 1460 Result = Lex.getStrVal(); 1461 Lex.Lex(); 1462 return false; 1463 } 1464 1465 /// ParseUInt32 1466 /// ::= uint32 1467 bool LLParser::ParseUInt32(uint32_t &Val) { 1468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1469 return TokError("expected integer"); 1470 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1471 if (Val64 != unsigned(Val64)) 1472 return TokError("expected 32-bit integer (too large)"); 1473 Val = Val64; 1474 Lex.Lex(); 1475 return false; 1476 } 1477 1478 /// ParseUInt64 1479 /// ::= uint64 1480 bool LLParser::ParseUInt64(uint64_t &Val) { 1481 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1482 return TokError("expected integer"); 1483 Val = Lex.getAPSIntVal().getLimitedValue(); 1484 Lex.Lex(); 1485 return false; 1486 } 1487 1488 /// ParseTLSModel 1489 /// := 'localdynamic' 1490 /// := 'initialexec' 1491 /// := 'localexec' 1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1493 switch (Lex.getKind()) { 1494 default: 1495 return TokError("expected localdynamic, initialexec or localexec"); 1496 case lltok::kw_localdynamic: 1497 TLM = GlobalVariable::LocalDynamicTLSModel; 1498 break; 1499 case lltok::kw_initialexec: 1500 TLM = GlobalVariable::InitialExecTLSModel; 1501 break; 1502 case lltok::kw_localexec: 1503 TLM = GlobalVariable::LocalExecTLSModel; 1504 break; 1505 } 1506 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalThreadLocal 1512 /// := /*empty*/ 1513 /// := 'thread_local' 1514 /// := 'thread_local' '(' tlsmodel ')' 1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1516 TLM = GlobalVariable::NotThreadLocal; 1517 if (!EatIfPresent(lltok::kw_thread_local)) 1518 return false; 1519 1520 TLM = GlobalVariable::GeneralDynamicTLSModel; 1521 if (Lex.getKind() == lltok::lparen) { 1522 Lex.Lex(); 1523 return ParseTLSModel(TLM) || 1524 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1525 } 1526 return false; 1527 } 1528 1529 /// ParseOptionalAddrSpace 1530 /// := /*empty*/ 1531 /// := 'addrspace' '(' uint32 ')' 1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1533 AddrSpace = DefaultAS; 1534 if (!EatIfPresent(lltok::kw_addrspace)) 1535 return false; 1536 return ParseToken(lltok::lparen, "expected '(' in address space") || 1537 ParseUInt32(AddrSpace) || 1538 ParseToken(lltok::rparen, "expected ')' in address space"); 1539 } 1540 1541 /// ParseStringAttribute 1542 /// := StringConstant 1543 /// := StringConstant '=' StringConstant 1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1545 std::string Attr = Lex.getStrVal(); 1546 Lex.Lex(); 1547 std::string Val; 1548 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1549 return true; 1550 B.addAttribute(Attr, Val); 1551 return false; 1552 } 1553 1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1556 bool HaveError = false; 1557 1558 B.clear(); 1559 1560 while (true) { 1561 lltok::Kind Token = Lex.getKind(); 1562 switch (Token) { 1563 default: // End of attributes. 1564 return HaveError; 1565 case lltok::StringConstant: { 1566 if (ParseStringAttribute(B)) 1567 return true; 1568 continue; 1569 } 1570 case lltok::kw_align: { 1571 unsigned Alignment; 1572 if (ParseOptionalAlignment(Alignment)) 1573 return true; 1574 B.addAlignmentAttr(Alignment); 1575 continue; 1576 } 1577 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1578 case lltok::kw_dereferenceable: { 1579 uint64_t Bytes; 1580 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1581 return true; 1582 B.addDereferenceableAttr(Bytes); 1583 continue; 1584 } 1585 case lltok::kw_dereferenceable_or_null: { 1586 uint64_t Bytes; 1587 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1588 return true; 1589 B.addDereferenceableOrNullAttr(Bytes); 1590 continue; 1591 } 1592 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1593 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1594 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1595 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1596 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1597 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1598 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1599 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1600 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1601 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1602 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1603 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1604 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1605 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1606 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1607 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1608 1609 case lltok::kw_alignstack: 1610 case lltok::kw_alwaysinline: 1611 case lltok::kw_argmemonly: 1612 case lltok::kw_builtin: 1613 case lltok::kw_inlinehint: 1614 case lltok::kw_jumptable: 1615 case lltok::kw_minsize: 1616 case lltok::kw_naked: 1617 case lltok::kw_nobuiltin: 1618 case lltok::kw_noduplicate: 1619 case lltok::kw_noimplicitfloat: 1620 case lltok::kw_noinline: 1621 case lltok::kw_nonlazybind: 1622 case lltok::kw_noredzone: 1623 case lltok::kw_noreturn: 1624 case lltok::kw_nocf_check: 1625 case lltok::kw_nounwind: 1626 case lltok::kw_optforfuzzing: 1627 case lltok::kw_optnone: 1628 case lltok::kw_optsize: 1629 case lltok::kw_returns_twice: 1630 case lltok::kw_sanitize_address: 1631 case lltok::kw_sanitize_hwaddress: 1632 case lltok::kw_sanitize_memory: 1633 case lltok::kw_sanitize_thread: 1634 case lltok::kw_speculative_load_hardening: 1635 case lltok::kw_ssp: 1636 case lltok::kw_sspreq: 1637 case lltok::kw_sspstrong: 1638 case lltok::kw_safestack: 1639 case lltok::kw_shadowcallstack: 1640 case lltok::kw_strictfp: 1641 case lltok::kw_uwtable: 1642 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1643 break; 1644 } 1645 1646 Lex.Lex(); 1647 } 1648 } 1649 1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1652 bool HaveError = false; 1653 1654 B.clear(); 1655 1656 while (true) { 1657 lltok::Kind Token = Lex.getKind(); 1658 switch (Token) { 1659 default: // End of attributes. 1660 return HaveError; 1661 case lltok::StringConstant: { 1662 if (ParseStringAttribute(B)) 1663 return true; 1664 continue; 1665 } 1666 case lltok::kw_dereferenceable: { 1667 uint64_t Bytes; 1668 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1669 return true; 1670 B.addDereferenceableAttr(Bytes); 1671 continue; 1672 } 1673 case lltok::kw_dereferenceable_or_null: { 1674 uint64_t Bytes; 1675 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1676 return true; 1677 B.addDereferenceableOrNullAttr(Bytes); 1678 continue; 1679 } 1680 case lltok::kw_align: { 1681 unsigned Alignment; 1682 if (ParseOptionalAlignment(Alignment)) 1683 return true; 1684 B.addAlignmentAttr(Alignment); 1685 continue; 1686 } 1687 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1688 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1689 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1690 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1691 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1692 1693 // Error handling. 1694 case lltok::kw_byval: 1695 case lltok::kw_inalloca: 1696 case lltok::kw_nest: 1697 case lltok::kw_nocapture: 1698 case lltok::kw_returned: 1699 case lltok::kw_sret: 1700 case lltok::kw_swifterror: 1701 case lltok::kw_swiftself: 1702 case lltok::kw_immarg: 1703 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1704 break; 1705 1706 case lltok::kw_alignstack: 1707 case lltok::kw_alwaysinline: 1708 case lltok::kw_argmemonly: 1709 case lltok::kw_builtin: 1710 case lltok::kw_cold: 1711 case lltok::kw_inlinehint: 1712 case lltok::kw_jumptable: 1713 case lltok::kw_minsize: 1714 case lltok::kw_naked: 1715 case lltok::kw_nobuiltin: 1716 case lltok::kw_noduplicate: 1717 case lltok::kw_noimplicitfloat: 1718 case lltok::kw_noinline: 1719 case lltok::kw_nonlazybind: 1720 case lltok::kw_noredzone: 1721 case lltok::kw_noreturn: 1722 case lltok::kw_nocf_check: 1723 case lltok::kw_nounwind: 1724 case lltok::kw_optforfuzzing: 1725 case lltok::kw_optnone: 1726 case lltok::kw_optsize: 1727 case lltok::kw_returns_twice: 1728 case lltok::kw_sanitize_address: 1729 case lltok::kw_sanitize_hwaddress: 1730 case lltok::kw_sanitize_memory: 1731 case lltok::kw_sanitize_thread: 1732 case lltok::kw_speculative_load_hardening: 1733 case lltok::kw_ssp: 1734 case lltok::kw_sspreq: 1735 case lltok::kw_sspstrong: 1736 case lltok::kw_safestack: 1737 case lltok::kw_shadowcallstack: 1738 case lltok::kw_strictfp: 1739 case lltok::kw_uwtable: 1740 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1741 break; 1742 1743 case lltok::kw_readnone: 1744 case lltok::kw_readonly: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1746 } 1747 1748 Lex.Lex(); 1749 } 1750 } 1751 1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1753 HasLinkage = true; 1754 switch (Kind) { 1755 default: 1756 HasLinkage = false; 1757 return GlobalValue::ExternalLinkage; 1758 case lltok::kw_private: 1759 return GlobalValue::PrivateLinkage; 1760 case lltok::kw_internal: 1761 return GlobalValue::InternalLinkage; 1762 case lltok::kw_weak: 1763 return GlobalValue::WeakAnyLinkage; 1764 case lltok::kw_weak_odr: 1765 return GlobalValue::WeakODRLinkage; 1766 case lltok::kw_linkonce: 1767 return GlobalValue::LinkOnceAnyLinkage; 1768 case lltok::kw_linkonce_odr: 1769 return GlobalValue::LinkOnceODRLinkage; 1770 case lltok::kw_available_externally: 1771 return GlobalValue::AvailableExternallyLinkage; 1772 case lltok::kw_appending: 1773 return GlobalValue::AppendingLinkage; 1774 case lltok::kw_common: 1775 return GlobalValue::CommonLinkage; 1776 case lltok::kw_extern_weak: 1777 return GlobalValue::ExternalWeakLinkage; 1778 case lltok::kw_external: 1779 return GlobalValue::ExternalLinkage; 1780 } 1781 } 1782 1783 /// ParseOptionalLinkage 1784 /// ::= /*empty*/ 1785 /// ::= 'private' 1786 /// ::= 'internal' 1787 /// ::= 'weak' 1788 /// ::= 'weak_odr' 1789 /// ::= 'linkonce' 1790 /// ::= 'linkonce_odr' 1791 /// ::= 'available_externally' 1792 /// ::= 'appending' 1793 /// ::= 'common' 1794 /// ::= 'extern_weak' 1795 /// ::= 'external' 1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1797 unsigned &Visibility, 1798 unsigned &DLLStorageClass, 1799 bool &DSOLocal) { 1800 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1801 if (HasLinkage) 1802 Lex.Lex(); 1803 ParseOptionalDSOLocal(DSOLocal); 1804 ParseOptionalVisibility(Visibility); 1805 ParseOptionalDLLStorageClass(DLLStorageClass); 1806 1807 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1808 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1809 } 1810 1811 return false; 1812 } 1813 1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1815 switch (Lex.getKind()) { 1816 default: 1817 DSOLocal = false; 1818 break; 1819 case lltok::kw_dso_local: 1820 DSOLocal = true; 1821 Lex.Lex(); 1822 break; 1823 case lltok::kw_dso_preemptable: 1824 DSOLocal = false; 1825 Lex.Lex(); 1826 break; 1827 } 1828 } 1829 1830 /// ParseOptionalVisibility 1831 /// ::= /*empty*/ 1832 /// ::= 'default' 1833 /// ::= 'hidden' 1834 /// ::= 'protected' 1835 /// 1836 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1837 switch (Lex.getKind()) { 1838 default: 1839 Res = GlobalValue::DefaultVisibility; 1840 return; 1841 case lltok::kw_default: 1842 Res = GlobalValue::DefaultVisibility; 1843 break; 1844 case lltok::kw_hidden: 1845 Res = GlobalValue::HiddenVisibility; 1846 break; 1847 case lltok::kw_protected: 1848 Res = GlobalValue::ProtectedVisibility; 1849 break; 1850 } 1851 Lex.Lex(); 1852 } 1853 1854 /// ParseOptionalDLLStorageClass 1855 /// ::= /*empty*/ 1856 /// ::= 'dllimport' 1857 /// ::= 'dllexport' 1858 /// 1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1860 switch (Lex.getKind()) { 1861 default: 1862 Res = GlobalValue::DefaultStorageClass; 1863 return; 1864 case lltok::kw_dllimport: 1865 Res = GlobalValue::DLLImportStorageClass; 1866 break; 1867 case lltok::kw_dllexport: 1868 Res = GlobalValue::DLLExportStorageClass; 1869 break; 1870 } 1871 Lex.Lex(); 1872 } 1873 1874 /// ParseOptionalCallingConv 1875 /// ::= /*empty*/ 1876 /// ::= 'ccc' 1877 /// ::= 'fastcc' 1878 /// ::= 'intel_ocl_bicc' 1879 /// ::= 'coldcc' 1880 /// ::= 'x86_stdcallcc' 1881 /// ::= 'x86_fastcallcc' 1882 /// ::= 'x86_thiscallcc' 1883 /// ::= 'x86_vectorcallcc' 1884 /// ::= 'arm_apcscc' 1885 /// ::= 'arm_aapcscc' 1886 /// ::= 'arm_aapcs_vfpcc' 1887 /// ::= 'aarch64_vector_pcs' 1888 /// ::= 'msp430_intrcc' 1889 /// ::= 'avr_intrcc' 1890 /// ::= 'avr_signalcc' 1891 /// ::= 'ptx_kernel' 1892 /// ::= 'ptx_device' 1893 /// ::= 'spir_func' 1894 /// ::= 'spir_kernel' 1895 /// ::= 'x86_64_sysvcc' 1896 /// ::= 'win64cc' 1897 /// ::= 'webkit_jscc' 1898 /// ::= 'anyregcc' 1899 /// ::= 'preserve_mostcc' 1900 /// ::= 'preserve_allcc' 1901 /// ::= 'ghccc' 1902 /// ::= 'swiftcc' 1903 /// ::= 'x86_intrcc' 1904 /// ::= 'hhvmcc' 1905 /// ::= 'hhvm_ccc' 1906 /// ::= 'cxx_fast_tlscc' 1907 /// ::= 'amdgpu_vs' 1908 /// ::= 'amdgpu_ls' 1909 /// ::= 'amdgpu_hs' 1910 /// ::= 'amdgpu_es' 1911 /// ::= 'amdgpu_gs' 1912 /// ::= 'amdgpu_ps' 1913 /// ::= 'amdgpu_cs' 1914 /// ::= 'amdgpu_kernel' 1915 /// ::= 'cc' UINT 1916 /// 1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1918 switch (Lex.getKind()) { 1919 default: CC = CallingConv::C; return false; 1920 case lltok::kw_ccc: CC = CallingConv::C; break; 1921 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1922 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1923 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1924 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1925 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1926 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1927 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1928 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1929 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1930 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1931 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1932 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1933 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1934 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1935 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1936 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1937 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1938 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1939 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1940 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1941 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1942 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1943 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1944 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1945 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1946 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1947 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1948 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1949 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1950 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1951 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1952 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1953 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1954 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1955 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1956 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1957 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1958 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1959 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1960 case lltok::kw_cc: { 1961 Lex.Lex(); 1962 return ParseUInt32(CC); 1963 } 1964 } 1965 1966 Lex.Lex(); 1967 return false; 1968 } 1969 1970 /// ParseMetadataAttachment 1971 /// ::= !dbg !42 1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1973 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1974 1975 std::string Name = Lex.getStrVal(); 1976 Kind = M->getMDKindID(Name); 1977 Lex.Lex(); 1978 1979 return ParseMDNode(MD); 1980 } 1981 1982 /// ParseInstructionMetadata 1983 /// ::= !dbg !42 (',' !dbg !57)* 1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1985 do { 1986 if (Lex.getKind() != lltok::MetadataVar) 1987 return TokError("expected metadata after comma"); 1988 1989 unsigned MDK; 1990 MDNode *N; 1991 if (ParseMetadataAttachment(MDK, N)) 1992 return true; 1993 1994 Inst.setMetadata(MDK, N); 1995 if (MDK == LLVMContext::MD_tbaa) 1996 InstsWithTBAATag.push_back(&Inst); 1997 1998 // If this is the end of the list, we're done. 1999 } while (EatIfPresent(lltok::comma)); 2000 return false; 2001 } 2002 2003 /// ParseGlobalObjectMetadataAttachment 2004 /// ::= !dbg !57 2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2006 unsigned MDK; 2007 MDNode *N; 2008 if (ParseMetadataAttachment(MDK, N)) 2009 return true; 2010 2011 GO.addMetadata(MDK, *N); 2012 return false; 2013 } 2014 2015 /// ParseOptionalFunctionMetadata 2016 /// ::= (!dbg !57)* 2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2018 while (Lex.getKind() == lltok::MetadataVar) 2019 if (ParseGlobalObjectMetadataAttachment(F)) 2020 return true; 2021 return false; 2022 } 2023 2024 /// ParseOptionalAlignment 2025 /// ::= /* empty */ 2026 /// ::= 'align' 4 2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2028 Alignment = 0; 2029 if (!EatIfPresent(lltok::kw_align)) 2030 return false; 2031 LocTy AlignLoc = Lex.getLoc(); 2032 if (ParseUInt32(Alignment)) return true; 2033 if (!isPowerOf2_32(Alignment)) 2034 return Error(AlignLoc, "alignment is not a power of two"); 2035 if (Alignment > Value::MaximumAlignment) 2036 return Error(AlignLoc, "huge alignments are not supported yet"); 2037 return false; 2038 } 2039 2040 /// ParseOptionalDerefAttrBytes 2041 /// ::= /* empty */ 2042 /// ::= AttrKind '(' 4 ')' 2043 /// 2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2046 uint64_t &Bytes) { 2047 assert((AttrKind == lltok::kw_dereferenceable || 2048 AttrKind == lltok::kw_dereferenceable_or_null) && 2049 "contract!"); 2050 2051 Bytes = 0; 2052 if (!EatIfPresent(AttrKind)) 2053 return false; 2054 LocTy ParenLoc = Lex.getLoc(); 2055 if (!EatIfPresent(lltok::lparen)) 2056 return Error(ParenLoc, "expected '('"); 2057 LocTy DerefLoc = Lex.getLoc(); 2058 if (ParseUInt64(Bytes)) return true; 2059 ParenLoc = Lex.getLoc(); 2060 if (!EatIfPresent(lltok::rparen)) 2061 return Error(ParenLoc, "expected ')'"); 2062 if (!Bytes) 2063 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2064 return false; 2065 } 2066 2067 /// ParseOptionalCommaAlign 2068 /// ::= 2069 /// ::= ',' align 4 2070 /// 2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2072 /// end. 2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2074 bool &AteExtraComma) { 2075 AteExtraComma = false; 2076 while (EatIfPresent(lltok::comma)) { 2077 // Metadata at the end is an early exit. 2078 if (Lex.getKind() == lltok::MetadataVar) { 2079 AteExtraComma = true; 2080 return false; 2081 } 2082 2083 if (Lex.getKind() != lltok::kw_align) 2084 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2085 2086 if (ParseOptionalAlignment(Alignment)) return true; 2087 } 2088 2089 return false; 2090 } 2091 2092 /// ParseOptionalCommaAddrSpace 2093 /// ::= 2094 /// ::= ',' addrspace(1) 2095 /// 2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2097 /// end. 2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2099 LocTy &Loc, 2100 bool &AteExtraComma) { 2101 AteExtraComma = false; 2102 while (EatIfPresent(lltok::comma)) { 2103 // Metadata at the end is an early exit. 2104 if (Lex.getKind() == lltok::MetadataVar) { 2105 AteExtraComma = true; 2106 return false; 2107 } 2108 2109 Loc = Lex.getLoc(); 2110 if (Lex.getKind() != lltok::kw_addrspace) 2111 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2112 2113 if (ParseOptionalAddrSpace(AddrSpace)) 2114 return true; 2115 } 2116 2117 return false; 2118 } 2119 2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2121 Optional<unsigned> &HowManyArg) { 2122 Lex.Lex(); 2123 2124 auto StartParen = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::lparen)) 2126 return Error(StartParen, "expected '('"); 2127 2128 if (ParseUInt32(BaseSizeArg)) 2129 return true; 2130 2131 if (EatIfPresent(lltok::comma)) { 2132 auto HowManyAt = Lex.getLoc(); 2133 unsigned HowMany; 2134 if (ParseUInt32(HowMany)) 2135 return true; 2136 if (HowMany == BaseSizeArg) 2137 return Error(HowManyAt, 2138 "'allocsize' indices can't refer to the same parameter"); 2139 HowManyArg = HowMany; 2140 } else 2141 HowManyArg = None; 2142 2143 auto EndParen = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParen, "expected ')'"); 2146 return false; 2147 } 2148 2149 /// ParseScopeAndOrdering 2150 /// if isAtomic: ::= SyncScope? AtomicOrdering 2151 /// else: ::= 2152 /// 2153 /// This sets Scope and Ordering to the parsed values. 2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2155 AtomicOrdering &Ordering) { 2156 if (!isAtomic) 2157 return false; 2158 2159 return ParseScope(SSID) || ParseOrdering(Ordering); 2160 } 2161 2162 /// ParseScope 2163 /// ::= syncscope("singlethread" | "<target scope>")? 2164 /// 2165 /// This sets synchronization scope ID to the ID of the parsed value. 2166 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2167 SSID = SyncScope::System; 2168 if (EatIfPresent(lltok::kw_syncscope)) { 2169 auto StartParenAt = Lex.getLoc(); 2170 if (!EatIfPresent(lltok::lparen)) 2171 return Error(StartParenAt, "Expected '(' in syncscope"); 2172 2173 std::string SSN; 2174 auto SSNAt = Lex.getLoc(); 2175 if (ParseStringConstant(SSN)) 2176 return Error(SSNAt, "Expected synchronization scope name"); 2177 2178 auto EndParenAt = Lex.getLoc(); 2179 if (!EatIfPresent(lltok::rparen)) 2180 return Error(EndParenAt, "Expected ')' in syncscope"); 2181 2182 SSID = Context.getOrInsertSyncScopeID(SSN); 2183 } 2184 2185 return false; 2186 } 2187 2188 /// ParseOrdering 2189 /// ::= AtomicOrdering 2190 /// 2191 /// This sets Ordering to the parsed value. 2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2193 switch (Lex.getKind()) { 2194 default: return TokError("Expected ordering on atomic instruction"); 2195 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2196 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2197 // Not specified yet: 2198 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2199 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2200 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2201 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2202 case lltok::kw_seq_cst: 2203 Ordering = AtomicOrdering::SequentiallyConsistent; 2204 break; 2205 } 2206 Lex.Lex(); 2207 return false; 2208 } 2209 2210 /// ParseOptionalStackAlignment 2211 /// ::= /* empty */ 2212 /// ::= 'alignstack' '(' 4 ')' 2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2214 Alignment = 0; 2215 if (!EatIfPresent(lltok::kw_alignstack)) 2216 return false; 2217 LocTy ParenLoc = Lex.getLoc(); 2218 if (!EatIfPresent(lltok::lparen)) 2219 return Error(ParenLoc, "expected '('"); 2220 LocTy AlignLoc = Lex.getLoc(); 2221 if (ParseUInt32(Alignment)) return true; 2222 ParenLoc = Lex.getLoc(); 2223 if (!EatIfPresent(lltok::rparen)) 2224 return Error(ParenLoc, "expected ')'"); 2225 if (!isPowerOf2_32(Alignment)) 2226 return Error(AlignLoc, "stack alignment is not a power of two"); 2227 return false; 2228 } 2229 2230 /// ParseIndexList - This parses the index list for an insert/extractvalue 2231 /// instruction. This sets AteExtraComma in the case where we eat an extra 2232 /// comma at the end of the line and find that it is followed by metadata. 2233 /// Clients that don't allow metadata can call the version of this function that 2234 /// only takes one argument. 2235 /// 2236 /// ParseIndexList 2237 /// ::= (',' uint32)+ 2238 /// 2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2240 bool &AteExtraComma) { 2241 AteExtraComma = false; 2242 2243 if (Lex.getKind() != lltok::comma) 2244 return TokError("expected ',' as start of index list"); 2245 2246 while (EatIfPresent(lltok::comma)) { 2247 if (Lex.getKind() == lltok::MetadataVar) { 2248 if (Indices.empty()) return TokError("expected index"); 2249 AteExtraComma = true; 2250 return false; 2251 } 2252 unsigned Idx = 0; 2253 if (ParseUInt32(Idx)) return true; 2254 Indices.push_back(Idx); 2255 } 2256 2257 return false; 2258 } 2259 2260 //===----------------------------------------------------------------------===// 2261 // Type Parsing. 2262 //===----------------------------------------------------------------------===// 2263 2264 /// ParseType - Parse a type. 2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2266 SMLoc TypeLoc = Lex.getLoc(); 2267 switch (Lex.getKind()) { 2268 default: 2269 return TokError(Msg); 2270 case lltok::Type: 2271 // Type ::= 'float' | 'void' (etc) 2272 Result = Lex.getTyVal(); 2273 Lex.Lex(); 2274 break; 2275 case lltok::lbrace: 2276 // Type ::= StructType 2277 if (ParseAnonStructType(Result, false)) 2278 return true; 2279 break; 2280 case lltok::lsquare: 2281 // Type ::= '[' ... ']' 2282 Lex.Lex(); // eat the lsquare. 2283 if (ParseArrayVectorType(Result, false)) 2284 return true; 2285 break; 2286 case lltok::less: // Either vector or packed struct. 2287 // Type ::= '<' ... '>' 2288 Lex.Lex(); 2289 if (Lex.getKind() == lltok::lbrace) { 2290 if (ParseAnonStructType(Result, true) || 2291 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2292 return true; 2293 } else if (ParseArrayVectorType(Result, true)) 2294 return true; 2295 break; 2296 case lltok::LocalVar: { 2297 // Type ::= %foo 2298 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2299 2300 // If the type hasn't been defined yet, create a forward definition and 2301 // remember where that forward def'n was seen (in case it never is defined). 2302 if (!Entry.first) { 2303 Entry.first = StructType::create(Context, Lex.getStrVal()); 2304 Entry.second = Lex.getLoc(); 2305 } 2306 Result = Entry.first; 2307 Lex.Lex(); 2308 break; 2309 } 2310 2311 case lltok::LocalVarID: { 2312 // Type ::= %4 2313 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2314 2315 // If the type hasn't been defined yet, create a forward definition and 2316 // remember where that forward def'n was seen (in case it never is defined). 2317 if (!Entry.first) { 2318 Entry.first = StructType::create(Context); 2319 Entry.second = Lex.getLoc(); 2320 } 2321 Result = Entry.first; 2322 Lex.Lex(); 2323 break; 2324 } 2325 } 2326 2327 // Parse the type suffixes. 2328 while (true) { 2329 switch (Lex.getKind()) { 2330 // End of type. 2331 default: 2332 if (!AllowVoid && Result->isVoidTy()) 2333 return Error(TypeLoc, "void type only allowed for function results"); 2334 return false; 2335 2336 // Type ::= Type '*' 2337 case lltok::star: 2338 if (Result->isLabelTy()) 2339 return TokError("basic block pointers are invalid"); 2340 if (Result->isVoidTy()) 2341 return TokError("pointers to void are invalid - use i8* instead"); 2342 if (!PointerType::isValidElementType(Result)) 2343 return TokError("pointer to this type is invalid"); 2344 Result = PointerType::getUnqual(Result); 2345 Lex.Lex(); 2346 break; 2347 2348 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2349 case lltok::kw_addrspace: { 2350 if (Result->isLabelTy()) 2351 return TokError("basic block pointers are invalid"); 2352 if (Result->isVoidTy()) 2353 return TokError("pointers to void are invalid; use i8* instead"); 2354 if (!PointerType::isValidElementType(Result)) 2355 return TokError("pointer to this type is invalid"); 2356 unsigned AddrSpace; 2357 if (ParseOptionalAddrSpace(AddrSpace) || 2358 ParseToken(lltok::star, "expected '*' in address space")) 2359 return true; 2360 2361 Result = PointerType::get(Result, AddrSpace); 2362 break; 2363 } 2364 2365 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2366 case lltok::lparen: 2367 if (ParseFunctionType(Result)) 2368 return true; 2369 break; 2370 } 2371 } 2372 } 2373 2374 /// ParseParameterList 2375 /// ::= '(' ')' 2376 /// ::= '(' Arg (',' Arg)* ')' 2377 /// Arg 2378 /// ::= Type OptionalAttributes Value OptionalAttributes 2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2380 PerFunctionState &PFS, bool IsMustTailCall, 2381 bool InVarArgsFunc) { 2382 if (ParseToken(lltok::lparen, "expected '(' in call")) 2383 return true; 2384 2385 while (Lex.getKind() != lltok::rparen) { 2386 // If this isn't the first argument, we need a comma. 2387 if (!ArgList.empty() && 2388 ParseToken(lltok::comma, "expected ',' in argument list")) 2389 return true; 2390 2391 // Parse an ellipsis if this is a musttail call in a variadic function. 2392 if (Lex.getKind() == lltok::dotdotdot) { 2393 const char *Msg = "unexpected ellipsis in argument list for "; 2394 if (!IsMustTailCall) 2395 return TokError(Twine(Msg) + "non-musttail call"); 2396 if (!InVarArgsFunc) 2397 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2398 Lex.Lex(); // Lex the '...', it is purely for readability. 2399 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2400 } 2401 2402 // Parse the argument. 2403 LocTy ArgLoc; 2404 Type *ArgTy = nullptr; 2405 AttrBuilder ArgAttrs; 2406 Value *V; 2407 if (ParseType(ArgTy, ArgLoc)) 2408 return true; 2409 2410 if (ArgTy->isMetadataTy()) { 2411 if (ParseMetadataAsValue(V, PFS)) 2412 return true; 2413 } else { 2414 // Otherwise, handle normal operands. 2415 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2416 return true; 2417 } 2418 ArgList.push_back(ParamInfo( 2419 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2420 } 2421 2422 if (IsMustTailCall && InVarArgsFunc) 2423 return TokError("expected '...' at end of argument list for musttail call " 2424 "in varargs function"); 2425 2426 Lex.Lex(); // Lex the ')'. 2427 return false; 2428 } 2429 2430 /// ParseOptionalOperandBundles 2431 /// ::= /*empty*/ 2432 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2433 /// 2434 /// OperandBundle 2435 /// ::= bundle-tag '(' ')' 2436 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2437 /// 2438 /// bundle-tag ::= String Constant 2439 bool LLParser::ParseOptionalOperandBundles( 2440 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2441 LocTy BeginLoc = Lex.getLoc(); 2442 if (!EatIfPresent(lltok::lsquare)) 2443 return false; 2444 2445 while (Lex.getKind() != lltok::rsquare) { 2446 // If this isn't the first operand bundle, we need a comma. 2447 if (!BundleList.empty() && 2448 ParseToken(lltok::comma, "expected ',' in input list")) 2449 return true; 2450 2451 std::string Tag; 2452 if (ParseStringConstant(Tag)) 2453 return true; 2454 2455 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2456 return true; 2457 2458 std::vector<Value *> Inputs; 2459 while (Lex.getKind() != lltok::rparen) { 2460 // If this isn't the first input, we need a comma. 2461 if (!Inputs.empty() && 2462 ParseToken(lltok::comma, "expected ',' in input list")) 2463 return true; 2464 2465 Type *Ty = nullptr; 2466 Value *Input = nullptr; 2467 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2468 return true; 2469 Inputs.push_back(Input); 2470 } 2471 2472 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2473 2474 Lex.Lex(); // Lex the ')'. 2475 } 2476 2477 if (BundleList.empty()) 2478 return Error(BeginLoc, "operand bundle set must not be empty"); 2479 2480 Lex.Lex(); // Lex the ']'. 2481 return false; 2482 } 2483 2484 /// ParseArgumentList - Parse the argument list for a function type or function 2485 /// prototype. 2486 /// ::= '(' ArgTypeListI ')' 2487 /// ArgTypeListI 2488 /// ::= /*empty*/ 2489 /// ::= '...' 2490 /// ::= ArgTypeList ',' '...' 2491 /// ::= ArgType (',' ArgType)* 2492 /// 2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2494 bool &isVarArg){ 2495 isVarArg = false; 2496 assert(Lex.getKind() == lltok::lparen); 2497 Lex.Lex(); // eat the (. 2498 2499 if (Lex.getKind() == lltok::rparen) { 2500 // empty 2501 } else if (Lex.getKind() == lltok::dotdotdot) { 2502 isVarArg = true; 2503 Lex.Lex(); 2504 } else { 2505 LocTy TypeLoc = Lex.getLoc(); 2506 Type *ArgTy = nullptr; 2507 AttrBuilder Attrs; 2508 std::string Name; 2509 2510 if (ParseType(ArgTy) || 2511 ParseOptionalParamAttrs(Attrs)) return true; 2512 2513 if (ArgTy->isVoidTy()) 2514 return Error(TypeLoc, "argument can not have void type"); 2515 2516 if (Lex.getKind() == lltok::LocalVar) { 2517 Name = Lex.getStrVal(); 2518 Lex.Lex(); 2519 } 2520 2521 if (!FunctionType::isValidArgumentType(ArgTy)) 2522 return Error(TypeLoc, "invalid type for function argument"); 2523 2524 ArgList.emplace_back(TypeLoc, ArgTy, 2525 AttributeSet::get(ArgTy->getContext(), Attrs), 2526 std::move(Name)); 2527 2528 while (EatIfPresent(lltok::comma)) { 2529 // Handle ... at end of arg list. 2530 if (EatIfPresent(lltok::dotdotdot)) { 2531 isVarArg = true; 2532 break; 2533 } 2534 2535 // Otherwise must be an argument type. 2536 TypeLoc = Lex.getLoc(); 2537 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2538 2539 if (ArgTy->isVoidTy()) 2540 return Error(TypeLoc, "argument can not have void type"); 2541 2542 if (Lex.getKind() == lltok::LocalVar) { 2543 Name = Lex.getStrVal(); 2544 Lex.Lex(); 2545 } else { 2546 Name = ""; 2547 } 2548 2549 if (!ArgTy->isFirstClassType()) 2550 return Error(TypeLoc, "invalid type for function argument"); 2551 2552 ArgList.emplace_back(TypeLoc, ArgTy, 2553 AttributeSet::get(ArgTy->getContext(), Attrs), 2554 std::move(Name)); 2555 } 2556 } 2557 2558 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2559 } 2560 2561 /// ParseFunctionType 2562 /// ::= Type ArgumentList OptionalAttrs 2563 bool LLParser::ParseFunctionType(Type *&Result) { 2564 assert(Lex.getKind() == lltok::lparen); 2565 2566 if (!FunctionType::isValidReturnType(Result)) 2567 return TokError("invalid function return type"); 2568 2569 SmallVector<ArgInfo, 8> ArgList; 2570 bool isVarArg; 2571 if (ParseArgumentList(ArgList, isVarArg)) 2572 return true; 2573 2574 // Reject names on the arguments lists. 2575 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2576 if (!ArgList[i].Name.empty()) 2577 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2578 if (ArgList[i].Attrs.hasAttributes()) 2579 return Error(ArgList[i].Loc, 2580 "argument attributes invalid in function type"); 2581 } 2582 2583 SmallVector<Type*, 16> ArgListTy; 2584 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2585 ArgListTy.push_back(ArgList[i].Ty); 2586 2587 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2588 return false; 2589 } 2590 2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2592 /// other structs. 2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2594 SmallVector<Type*, 8> Elts; 2595 if (ParseStructBody(Elts)) return true; 2596 2597 Result = StructType::get(Context, Elts, Packed); 2598 return false; 2599 } 2600 2601 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2603 std::pair<Type*, LocTy> &Entry, 2604 Type *&ResultTy) { 2605 // If the type was already defined, diagnose the redefinition. 2606 if (Entry.first && !Entry.second.isValid()) 2607 return Error(TypeLoc, "redefinition of type"); 2608 2609 // If we have opaque, just return without filling in the definition for the 2610 // struct. This counts as a definition as far as the .ll file goes. 2611 if (EatIfPresent(lltok::kw_opaque)) { 2612 // This type is being defined, so clear the location to indicate this. 2613 Entry.second = SMLoc(); 2614 2615 // If this type number has never been uttered, create it. 2616 if (!Entry.first) 2617 Entry.first = StructType::create(Context, Name); 2618 ResultTy = Entry.first; 2619 return false; 2620 } 2621 2622 // If the type starts with '<', then it is either a packed struct or a vector. 2623 bool isPacked = EatIfPresent(lltok::less); 2624 2625 // If we don't have a struct, then we have a random type alias, which we 2626 // accept for compatibility with old files. These types are not allowed to be 2627 // forward referenced and not allowed to be recursive. 2628 if (Lex.getKind() != lltok::lbrace) { 2629 if (Entry.first) 2630 return Error(TypeLoc, "forward references to non-struct type"); 2631 2632 ResultTy = nullptr; 2633 if (isPacked) 2634 return ParseArrayVectorType(ResultTy, true); 2635 return ParseType(ResultTy); 2636 } 2637 2638 // This type is being defined, so clear the location to indicate this. 2639 Entry.second = SMLoc(); 2640 2641 // If this type number has never been uttered, create it. 2642 if (!Entry.first) 2643 Entry.first = StructType::create(Context, Name); 2644 2645 StructType *STy = cast<StructType>(Entry.first); 2646 2647 SmallVector<Type*, 8> Body; 2648 if (ParseStructBody(Body) || 2649 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2650 return true; 2651 2652 STy->setBody(Body, isPacked); 2653 ResultTy = STy; 2654 return false; 2655 } 2656 2657 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2658 /// StructType 2659 /// ::= '{' '}' 2660 /// ::= '{' Type (',' Type)* '}' 2661 /// ::= '<' '{' '}' '>' 2662 /// ::= '<' '{' Type (',' Type)* '}' '>' 2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2664 assert(Lex.getKind() == lltok::lbrace); 2665 Lex.Lex(); // Consume the '{' 2666 2667 // Handle the empty struct. 2668 if (EatIfPresent(lltok::rbrace)) 2669 return false; 2670 2671 LocTy EltTyLoc = Lex.getLoc(); 2672 Type *Ty = nullptr; 2673 if (ParseType(Ty)) return true; 2674 Body.push_back(Ty); 2675 2676 if (!StructType::isValidElementType(Ty)) 2677 return Error(EltTyLoc, "invalid element type for struct"); 2678 2679 while (EatIfPresent(lltok::comma)) { 2680 EltTyLoc = Lex.getLoc(); 2681 if (ParseType(Ty)) return true; 2682 2683 if (!StructType::isValidElementType(Ty)) 2684 return Error(EltTyLoc, "invalid element type for struct"); 2685 2686 Body.push_back(Ty); 2687 } 2688 2689 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2690 } 2691 2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2693 /// token has already been consumed. 2694 /// Type 2695 /// ::= '[' APSINTVAL 'x' Types ']' 2696 /// ::= '<' APSINTVAL 'x' Types '>' 2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2698 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2699 Lex.getAPSIntVal().getBitWidth() > 64) 2700 return TokError("expected number in address space"); 2701 2702 LocTy SizeLoc = Lex.getLoc(); 2703 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2704 Lex.Lex(); 2705 2706 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2707 return true; 2708 2709 LocTy TypeLoc = Lex.getLoc(); 2710 Type *EltTy = nullptr; 2711 if (ParseType(EltTy)) return true; 2712 2713 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2714 "expected end of sequential type")) 2715 return true; 2716 2717 if (isVector) { 2718 if (Size == 0) 2719 return Error(SizeLoc, "zero element vector is illegal"); 2720 if ((unsigned)Size != Size) 2721 return Error(SizeLoc, "size too large for vector"); 2722 if (!VectorType::isValidElementType(EltTy)) 2723 return Error(TypeLoc, "invalid vector element type"); 2724 Result = VectorType::get(EltTy, unsigned(Size)); 2725 } else { 2726 if (!ArrayType::isValidElementType(EltTy)) 2727 return Error(TypeLoc, "invalid array element type"); 2728 Result = ArrayType::get(EltTy, Size); 2729 } 2730 return false; 2731 } 2732 2733 //===----------------------------------------------------------------------===// 2734 // Function Semantic Analysis. 2735 //===----------------------------------------------------------------------===// 2736 2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2738 int functionNumber) 2739 : P(p), F(f), FunctionNumber(functionNumber) { 2740 2741 // Insert unnamed arguments into the NumberedVals list. 2742 for (Argument &A : F.args()) 2743 if (!A.hasName()) 2744 NumberedVals.push_back(&A); 2745 } 2746 2747 LLParser::PerFunctionState::~PerFunctionState() { 2748 // If there were any forward referenced non-basicblock values, delete them. 2749 2750 for (const auto &P : ForwardRefVals) { 2751 if (isa<BasicBlock>(P.second.first)) 2752 continue; 2753 P.second.first->replaceAllUsesWith( 2754 UndefValue::get(P.second.first->getType())); 2755 P.second.first->deleteValue(); 2756 } 2757 2758 for (const auto &P : ForwardRefValIDs) { 2759 if (isa<BasicBlock>(P.second.first)) 2760 continue; 2761 P.second.first->replaceAllUsesWith( 2762 UndefValue::get(P.second.first->getType())); 2763 P.second.first->deleteValue(); 2764 } 2765 } 2766 2767 bool LLParser::PerFunctionState::FinishFunction() { 2768 if (!ForwardRefVals.empty()) 2769 return P.Error(ForwardRefVals.begin()->second.second, 2770 "use of undefined value '%" + ForwardRefVals.begin()->first + 2771 "'"); 2772 if (!ForwardRefValIDs.empty()) 2773 return P.Error(ForwardRefValIDs.begin()->second.second, 2774 "use of undefined value '%" + 2775 Twine(ForwardRefValIDs.begin()->first) + "'"); 2776 return false; 2777 } 2778 2779 /// GetVal - Get a value with the specified name or ID, creating a 2780 /// forward reference record if needed. This can return null if the value 2781 /// exists but does not have the right type. 2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2783 LocTy Loc, bool IsCall) { 2784 // Look this name up in the normal function symbol table. 2785 Value *Val = F.getValueSymbolTable()->lookup(Name); 2786 2787 // If this is a forward reference for the value, see if we already created a 2788 // forward ref record. 2789 if (!Val) { 2790 auto I = ForwardRefVals.find(Name); 2791 if (I != ForwardRefVals.end()) 2792 Val = I->second.first; 2793 } 2794 2795 // If we have the value in the symbol table or fwd-ref table, return it. 2796 if (Val) 2797 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2798 2799 // Don't make placeholders with invalid type. 2800 if (!Ty->isFirstClassType()) { 2801 P.Error(Loc, "invalid use of a non-first-class type"); 2802 return nullptr; 2803 } 2804 2805 // Otherwise, create a new forward reference for this value and remember it. 2806 Value *FwdVal; 2807 if (Ty->isLabelTy()) { 2808 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2809 } else { 2810 FwdVal = new Argument(Ty, Name); 2811 } 2812 2813 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2814 return FwdVal; 2815 } 2816 2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2818 bool IsCall) { 2819 // Look this name up in the normal function symbol table. 2820 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2821 2822 // If this is a forward reference for the value, see if we already created a 2823 // forward ref record. 2824 if (!Val) { 2825 auto I = ForwardRefValIDs.find(ID); 2826 if (I != ForwardRefValIDs.end()) 2827 Val = I->second.first; 2828 } 2829 2830 // If we have the value in the symbol table or fwd-ref table, return it. 2831 if (Val) 2832 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2833 2834 if (!Ty->isFirstClassType()) { 2835 P.Error(Loc, "invalid use of a non-first-class type"); 2836 return nullptr; 2837 } 2838 2839 // Otherwise, create a new forward reference for this value and remember it. 2840 Value *FwdVal; 2841 if (Ty->isLabelTy()) { 2842 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2843 } else { 2844 FwdVal = new Argument(Ty); 2845 } 2846 2847 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2848 return FwdVal; 2849 } 2850 2851 /// SetInstName - After an instruction is parsed and inserted into its 2852 /// basic block, this installs its name. 2853 bool LLParser::PerFunctionState::SetInstName(int NameID, 2854 const std::string &NameStr, 2855 LocTy NameLoc, Instruction *Inst) { 2856 // If this instruction has void type, it cannot have a name or ID specified. 2857 if (Inst->getType()->isVoidTy()) { 2858 if (NameID != -1 || !NameStr.empty()) 2859 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2860 return false; 2861 } 2862 2863 // If this was a numbered instruction, verify that the instruction is the 2864 // expected value and resolve any forward references. 2865 if (NameStr.empty()) { 2866 // If neither a name nor an ID was specified, just use the next ID. 2867 if (NameID == -1) 2868 NameID = NumberedVals.size(); 2869 2870 if (unsigned(NameID) != NumberedVals.size()) 2871 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2872 Twine(NumberedVals.size()) + "'"); 2873 2874 auto FI = ForwardRefValIDs.find(NameID); 2875 if (FI != ForwardRefValIDs.end()) { 2876 Value *Sentinel = FI->second.first; 2877 if (Sentinel->getType() != Inst->getType()) 2878 return P.Error(NameLoc, "instruction forward referenced with type '" + 2879 getTypeString(FI->second.first->getType()) + "'"); 2880 2881 Sentinel->replaceAllUsesWith(Inst); 2882 Sentinel->deleteValue(); 2883 ForwardRefValIDs.erase(FI); 2884 } 2885 2886 NumberedVals.push_back(Inst); 2887 return false; 2888 } 2889 2890 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2891 auto FI = ForwardRefVals.find(NameStr); 2892 if (FI != ForwardRefVals.end()) { 2893 Value *Sentinel = FI->second.first; 2894 if (Sentinel->getType() != Inst->getType()) 2895 return P.Error(NameLoc, "instruction forward referenced with type '" + 2896 getTypeString(FI->second.first->getType()) + "'"); 2897 2898 Sentinel->replaceAllUsesWith(Inst); 2899 Sentinel->deleteValue(); 2900 ForwardRefVals.erase(FI); 2901 } 2902 2903 // Set the name on the instruction. 2904 Inst->setName(NameStr); 2905 2906 if (Inst->getName() != NameStr) 2907 return P.Error(NameLoc, "multiple definition of local value named '" + 2908 NameStr + "'"); 2909 return false; 2910 } 2911 2912 /// GetBB - Get a basic block with the specified name or ID, creating a 2913 /// forward reference record if needed. 2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2915 LocTy Loc) { 2916 return dyn_cast_or_null<BasicBlock>( 2917 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2918 } 2919 2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2921 return dyn_cast_or_null<BasicBlock>( 2922 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2923 } 2924 2925 /// DefineBB - Define the specified basic block, which is either named or 2926 /// unnamed. If there is an error, this returns null otherwise it returns 2927 /// the block being defined. 2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2929 int NameID, LocTy Loc) { 2930 BasicBlock *BB; 2931 if (Name.empty()) { 2932 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2933 P.Error(Loc, "label expected to be numbered '" + 2934 Twine(NumberedVals.size()) + "'"); 2935 return nullptr; 2936 } 2937 BB = GetBB(NumberedVals.size(), Loc); 2938 if (!BB) { 2939 P.Error(Loc, "unable to create block numbered '" + 2940 Twine(NumberedVals.size()) + "'"); 2941 return nullptr; 2942 } 2943 } else { 2944 BB = GetBB(Name, Loc); 2945 if (!BB) { 2946 P.Error(Loc, "unable to create block named '" + Name + "'"); 2947 return nullptr; 2948 } 2949 } 2950 2951 // Move the block to the end of the function. Forward ref'd blocks are 2952 // inserted wherever they happen to be referenced. 2953 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2954 2955 // Remove the block from forward ref sets. 2956 if (Name.empty()) { 2957 ForwardRefValIDs.erase(NumberedVals.size()); 2958 NumberedVals.push_back(BB); 2959 } else { 2960 // BB forward references are already in the function symbol table. 2961 ForwardRefVals.erase(Name); 2962 } 2963 2964 return BB; 2965 } 2966 2967 //===----------------------------------------------------------------------===// 2968 // Constants. 2969 //===----------------------------------------------------------------------===// 2970 2971 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2972 /// type implied. For example, if we parse "4" we don't know what integer type 2973 /// it has. The value will later be combined with its type and checked for 2974 /// sanity. PFS is used to convert function-local operands of metadata (since 2975 /// metadata operands are not just parsed here but also converted to values). 2976 /// PFS can be null when we are not parsing metadata values inside a function. 2977 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2978 ID.Loc = Lex.getLoc(); 2979 switch (Lex.getKind()) { 2980 default: return TokError("expected value token"); 2981 case lltok::GlobalID: // @42 2982 ID.UIntVal = Lex.getUIntVal(); 2983 ID.Kind = ValID::t_GlobalID; 2984 break; 2985 case lltok::GlobalVar: // @foo 2986 ID.StrVal = Lex.getStrVal(); 2987 ID.Kind = ValID::t_GlobalName; 2988 break; 2989 case lltok::LocalVarID: // %42 2990 ID.UIntVal = Lex.getUIntVal(); 2991 ID.Kind = ValID::t_LocalID; 2992 break; 2993 case lltok::LocalVar: // %foo 2994 ID.StrVal = Lex.getStrVal(); 2995 ID.Kind = ValID::t_LocalName; 2996 break; 2997 case lltok::APSInt: 2998 ID.APSIntVal = Lex.getAPSIntVal(); 2999 ID.Kind = ValID::t_APSInt; 3000 break; 3001 case lltok::APFloat: 3002 ID.APFloatVal = Lex.getAPFloatVal(); 3003 ID.Kind = ValID::t_APFloat; 3004 break; 3005 case lltok::kw_true: 3006 ID.ConstantVal = ConstantInt::getTrue(Context); 3007 ID.Kind = ValID::t_Constant; 3008 break; 3009 case lltok::kw_false: 3010 ID.ConstantVal = ConstantInt::getFalse(Context); 3011 ID.Kind = ValID::t_Constant; 3012 break; 3013 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3014 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3015 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3016 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3017 3018 case lltok::lbrace: { 3019 // ValID ::= '{' ConstVector '}' 3020 Lex.Lex(); 3021 SmallVector<Constant*, 16> Elts; 3022 if (ParseGlobalValueVector(Elts) || 3023 ParseToken(lltok::rbrace, "expected end of struct constant")) 3024 return true; 3025 3026 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3027 ID.UIntVal = Elts.size(); 3028 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3029 Elts.size() * sizeof(Elts[0])); 3030 ID.Kind = ValID::t_ConstantStruct; 3031 return false; 3032 } 3033 case lltok::less: { 3034 // ValID ::= '<' ConstVector '>' --> Vector. 3035 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3036 Lex.Lex(); 3037 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3038 3039 SmallVector<Constant*, 16> Elts; 3040 LocTy FirstEltLoc = Lex.getLoc(); 3041 if (ParseGlobalValueVector(Elts) || 3042 (isPackedStruct && 3043 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3044 ParseToken(lltok::greater, "expected end of constant")) 3045 return true; 3046 3047 if (isPackedStruct) { 3048 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3049 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3050 Elts.size() * sizeof(Elts[0])); 3051 ID.UIntVal = Elts.size(); 3052 ID.Kind = ValID::t_PackedConstantStruct; 3053 return false; 3054 } 3055 3056 if (Elts.empty()) 3057 return Error(ID.Loc, "constant vector must not be empty"); 3058 3059 if (!Elts[0]->getType()->isIntegerTy() && 3060 !Elts[0]->getType()->isFloatingPointTy() && 3061 !Elts[0]->getType()->isPointerTy()) 3062 return Error(FirstEltLoc, 3063 "vector elements must have integer, pointer or floating point type"); 3064 3065 // Verify that all the vector elements have the same type. 3066 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3067 if (Elts[i]->getType() != Elts[0]->getType()) 3068 return Error(FirstEltLoc, 3069 "vector element #" + Twine(i) + 3070 " is not of type '" + getTypeString(Elts[0]->getType())); 3071 3072 ID.ConstantVal = ConstantVector::get(Elts); 3073 ID.Kind = ValID::t_Constant; 3074 return false; 3075 } 3076 case lltok::lsquare: { // Array Constant 3077 Lex.Lex(); 3078 SmallVector<Constant*, 16> Elts; 3079 LocTy FirstEltLoc = Lex.getLoc(); 3080 if (ParseGlobalValueVector(Elts) || 3081 ParseToken(lltok::rsquare, "expected end of array constant")) 3082 return true; 3083 3084 // Handle empty element. 3085 if (Elts.empty()) { 3086 // Use undef instead of an array because it's inconvenient to determine 3087 // the element type at this point, there being no elements to examine. 3088 ID.Kind = ValID::t_EmptyArray; 3089 return false; 3090 } 3091 3092 if (!Elts[0]->getType()->isFirstClassType()) 3093 return Error(FirstEltLoc, "invalid array element type: " + 3094 getTypeString(Elts[0]->getType())); 3095 3096 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3097 3098 // Verify all elements are correct type! 3099 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3100 if (Elts[i]->getType() != Elts[0]->getType()) 3101 return Error(FirstEltLoc, 3102 "array element #" + Twine(i) + 3103 " is not of type '" + getTypeString(Elts[0]->getType())); 3104 } 3105 3106 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3107 ID.Kind = ValID::t_Constant; 3108 return false; 3109 } 3110 case lltok::kw_c: // c "foo" 3111 Lex.Lex(); 3112 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3113 false); 3114 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3115 ID.Kind = ValID::t_Constant; 3116 return false; 3117 3118 case lltok::kw_asm: { 3119 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3120 // STRINGCONSTANT 3121 bool HasSideEffect, AlignStack, AsmDialect; 3122 Lex.Lex(); 3123 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3124 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3125 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3126 ParseStringConstant(ID.StrVal) || 3127 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3128 ParseToken(lltok::StringConstant, "expected constraint string")) 3129 return true; 3130 ID.StrVal2 = Lex.getStrVal(); 3131 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3132 (unsigned(AsmDialect)<<2); 3133 ID.Kind = ValID::t_InlineAsm; 3134 return false; 3135 } 3136 3137 case lltok::kw_blockaddress: { 3138 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3139 Lex.Lex(); 3140 3141 ValID Fn, Label; 3142 3143 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3144 ParseValID(Fn) || 3145 ParseToken(lltok::comma, "expected comma in block address expression")|| 3146 ParseValID(Label) || 3147 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3148 return true; 3149 3150 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3151 return Error(Fn.Loc, "expected function name in blockaddress"); 3152 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3153 return Error(Label.Loc, "expected basic block name in blockaddress"); 3154 3155 // Try to find the function (but skip it if it's forward-referenced). 3156 GlobalValue *GV = nullptr; 3157 if (Fn.Kind == ValID::t_GlobalID) { 3158 if (Fn.UIntVal < NumberedVals.size()) 3159 GV = NumberedVals[Fn.UIntVal]; 3160 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3161 GV = M->getNamedValue(Fn.StrVal); 3162 } 3163 Function *F = nullptr; 3164 if (GV) { 3165 // Confirm that it's actually a function with a definition. 3166 if (!isa<Function>(GV)) 3167 return Error(Fn.Loc, "expected function name in blockaddress"); 3168 F = cast<Function>(GV); 3169 if (F->isDeclaration()) 3170 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3171 } 3172 3173 if (!F) { 3174 // Make a global variable as a placeholder for this reference. 3175 GlobalValue *&FwdRef = 3176 ForwardRefBlockAddresses.insert(std::make_pair( 3177 std::move(Fn), 3178 std::map<ValID, GlobalValue *>())) 3179 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3180 .first->second; 3181 if (!FwdRef) 3182 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3183 GlobalValue::InternalLinkage, nullptr, ""); 3184 ID.ConstantVal = FwdRef; 3185 ID.Kind = ValID::t_Constant; 3186 return false; 3187 } 3188 3189 // We found the function; now find the basic block. Don't use PFS, since we 3190 // might be inside a constant expression. 3191 BasicBlock *BB; 3192 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3193 if (Label.Kind == ValID::t_LocalID) 3194 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3195 else 3196 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3197 if (!BB) 3198 return Error(Label.Loc, "referenced value is not a basic block"); 3199 } else { 3200 if (Label.Kind == ValID::t_LocalID) 3201 return Error(Label.Loc, "cannot take address of numeric label after " 3202 "the function is defined"); 3203 BB = dyn_cast_or_null<BasicBlock>( 3204 F->getValueSymbolTable()->lookup(Label.StrVal)); 3205 if (!BB) 3206 return Error(Label.Loc, "referenced value is not a basic block"); 3207 } 3208 3209 ID.ConstantVal = BlockAddress::get(F, BB); 3210 ID.Kind = ValID::t_Constant; 3211 return false; 3212 } 3213 3214 case lltok::kw_trunc: 3215 case lltok::kw_zext: 3216 case lltok::kw_sext: 3217 case lltok::kw_fptrunc: 3218 case lltok::kw_fpext: 3219 case lltok::kw_bitcast: 3220 case lltok::kw_addrspacecast: 3221 case lltok::kw_uitofp: 3222 case lltok::kw_sitofp: 3223 case lltok::kw_fptoui: 3224 case lltok::kw_fptosi: 3225 case lltok::kw_inttoptr: 3226 case lltok::kw_ptrtoint: { 3227 unsigned Opc = Lex.getUIntVal(); 3228 Type *DestTy = nullptr; 3229 Constant *SrcVal; 3230 Lex.Lex(); 3231 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3232 ParseGlobalTypeAndValue(SrcVal) || 3233 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3234 ParseType(DestTy) || 3235 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3236 return true; 3237 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3238 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3239 getTypeString(SrcVal->getType()) + "' to '" + 3240 getTypeString(DestTy) + "'"); 3241 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3242 SrcVal, DestTy); 3243 ID.Kind = ValID::t_Constant; 3244 return false; 3245 } 3246 case lltok::kw_extractvalue: { 3247 Lex.Lex(); 3248 Constant *Val; 3249 SmallVector<unsigned, 4> Indices; 3250 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3251 ParseGlobalTypeAndValue(Val) || 3252 ParseIndexList(Indices) || 3253 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3254 return true; 3255 3256 if (!Val->getType()->isAggregateType()) 3257 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3258 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3259 return Error(ID.Loc, "invalid indices for extractvalue"); 3260 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3261 ID.Kind = ValID::t_Constant; 3262 return false; 3263 } 3264 case lltok::kw_insertvalue: { 3265 Lex.Lex(); 3266 Constant *Val0, *Val1; 3267 SmallVector<unsigned, 4> Indices; 3268 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3269 ParseGlobalTypeAndValue(Val0) || 3270 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3271 ParseGlobalTypeAndValue(Val1) || 3272 ParseIndexList(Indices) || 3273 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3274 return true; 3275 if (!Val0->getType()->isAggregateType()) 3276 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3277 Type *IndexedType = 3278 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3279 if (!IndexedType) 3280 return Error(ID.Loc, "invalid indices for insertvalue"); 3281 if (IndexedType != Val1->getType()) 3282 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3283 getTypeString(Val1->getType()) + 3284 "' instead of '" + getTypeString(IndexedType) + 3285 "'"); 3286 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 case lltok::kw_icmp: 3291 case lltok::kw_fcmp: { 3292 unsigned PredVal, Opc = Lex.getUIntVal(); 3293 Constant *Val0, *Val1; 3294 Lex.Lex(); 3295 if (ParseCmpPredicate(PredVal, Opc) || 3296 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3297 ParseGlobalTypeAndValue(Val0) || 3298 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3299 ParseGlobalTypeAndValue(Val1) || 3300 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3301 return true; 3302 3303 if (Val0->getType() != Val1->getType()) 3304 return Error(ID.Loc, "compare operands must have the same type"); 3305 3306 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3307 3308 if (Opc == Instruction::FCmp) { 3309 if (!Val0->getType()->isFPOrFPVectorTy()) 3310 return Error(ID.Loc, "fcmp requires floating point operands"); 3311 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3312 } else { 3313 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3314 if (!Val0->getType()->isIntOrIntVectorTy() && 3315 !Val0->getType()->isPtrOrPtrVectorTy()) 3316 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3317 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3318 } 3319 ID.Kind = ValID::t_Constant; 3320 return false; 3321 } 3322 3323 // Unary Operators. 3324 case lltok::kw_fneg: { 3325 unsigned Opc = Lex.getUIntVal(); 3326 Constant *Val; 3327 Lex.Lex(); 3328 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3329 ParseGlobalTypeAndValue(Val) || 3330 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3331 return true; 3332 3333 // Check that the type is valid for the operator. 3334 switch (Opc) { 3335 case Instruction::FNeg: 3336 if (!Val->getType()->isFPOrFPVectorTy()) 3337 return Error(ID.Loc, "constexpr requires fp operands"); 3338 break; 3339 default: llvm_unreachable("Unknown unary operator!"); 3340 } 3341 unsigned Flags = 0; 3342 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3343 ID.ConstantVal = C; 3344 ID.Kind = ValID::t_Constant; 3345 return false; 3346 } 3347 // Binary Operators. 3348 case lltok::kw_add: 3349 case lltok::kw_fadd: 3350 case lltok::kw_sub: 3351 case lltok::kw_fsub: 3352 case lltok::kw_mul: 3353 case lltok::kw_fmul: 3354 case lltok::kw_udiv: 3355 case lltok::kw_sdiv: 3356 case lltok::kw_fdiv: 3357 case lltok::kw_urem: 3358 case lltok::kw_srem: 3359 case lltok::kw_frem: 3360 case lltok::kw_shl: 3361 case lltok::kw_lshr: 3362 case lltok::kw_ashr: { 3363 bool NUW = false; 3364 bool NSW = false; 3365 bool Exact = false; 3366 unsigned Opc = Lex.getUIntVal(); 3367 Constant *Val0, *Val1; 3368 Lex.Lex(); 3369 LocTy ModifierLoc = Lex.getLoc(); 3370 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3371 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3372 if (EatIfPresent(lltok::kw_nuw)) 3373 NUW = true; 3374 if (EatIfPresent(lltok::kw_nsw)) { 3375 NSW = true; 3376 if (EatIfPresent(lltok::kw_nuw)) 3377 NUW = true; 3378 } 3379 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3380 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3381 if (EatIfPresent(lltok::kw_exact)) 3382 Exact = true; 3383 } 3384 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3385 ParseGlobalTypeAndValue(Val0) || 3386 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3387 ParseGlobalTypeAndValue(Val1) || 3388 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3389 return true; 3390 if (Val0->getType() != Val1->getType()) 3391 return Error(ID.Loc, "operands of constexpr must have same type"); 3392 if (!Val0->getType()->isIntOrIntVectorTy()) { 3393 if (NUW) 3394 return Error(ModifierLoc, "nuw only applies to integer operations"); 3395 if (NSW) 3396 return Error(ModifierLoc, "nsw only applies to integer operations"); 3397 } 3398 // Check that the type is valid for the operator. 3399 switch (Opc) { 3400 case Instruction::Add: 3401 case Instruction::Sub: 3402 case Instruction::Mul: 3403 case Instruction::UDiv: 3404 case Instruction::SDiv: 3405 case Instruction::URem: 3406 case Instruction::SRem: 3407 case Instruction::Shl: 3408 case Instruction::AShr: 3409 case Instruction::LShr: 3410 if (!Val0->getType()->isIntOrIntVectorTy()) 3411 return Error(ID.Loc, "constexpr requires integer operands"); 3412 break; 3413 case Instruction::FAdd: 3414 case Instruction::FSub: 3415 case Instruction::FMul: 3416 case Instruction::FDiv: 3417 case Instruction::FRem: 3418 if (!Val0->getType()->isFPOrFPVectorTy()) 3419 return Error(ID.Loc, "constexpr requires fp operands"); 3420 break; 3421 default: llvm_unreachable("Unknown binary operator!"); 3422 } 3423 unsigned Flags = 0; 3424 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3425 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3426 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3427 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3428 ID.ConstantVal = C; 3429 ID.Kind = ValID::t_Constant; 3430 return false; 3431 } 3432 3433 // Logical Operations 3434 case lltok::kw_and: 3435 case lltok::kw_or: 3436 case lltok::kw_xor: { 3437 unsigned Opc = Lex.getUIntVal(); 3438 Constant *Val0, *Val1; 3439 Lex.Lex(); 3440 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3441 ParseGlobalTypeAndValue(Val0) || 3442 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3443 ParseGlobalTypeAndValue(Val1) || 3444 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3445 return true; 3446 if (Val0->getType() != Val1->getType()) 3447 return Error(ID.Loc, "operands of constexpr must have same type"); 3448 if (!Val0->getType()->isIntOrIntVectorTy()) 3449 return Error(ID.Loc, 3450 "constexpr requires integer or integer vector operands"); 3451 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3452 ID.Kind = ValID::t_Constant; 3453 return false; 3454 } 3455 3456 case lltok::kw_getelementptr: 3457 case lltok::kw_shufflevector: 3458 case lltok::kw_insertelement: 3459 case lltok::kw_extractelement: 3460 case lltok::kw_select: { 3461 unsigned Opc = Lex.getUIntVal(); 3462 SmallVector<Constant*, 16> Elts; 3463 bool InBounds = false; 3464 Type *Ty; 3465 Lex.Lex(); 3466 3467 if (Opc == Instruction::GetElementPtr) 3468 InBounds = EatIfPresent(lltok::kw_inbounds); 3469 3470 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3471 return true; 3472 3473 LocTy ExplicitTypeLoc = Lex.getLoc(); 3474 if (Opc == Instruction::GetElementPtr) { 3475 if (ParseType(Ty) || 3476 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3477 return true; 3478 } 3479 3480 Optional<unsigned> InRangeOp; 3481 if (ParseGlobalValueVector( 3482 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3483 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3484 return true; 3485 3486 if (Opc == Instruction::GetElementPtr) { 3487 if (Elts.size() == 0 || 3488 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3489 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3490 3491 Type *BaseType = Elts[0]->getType(); 3492 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3493 if (Ty != BasePointerType->getElementType()) 3494 return Error( 3495 ExplicitTypeLoc, 3496 "explicit pointee type doesn't match operand's pointee type"); 3497 3498 unsigned GEPWidth = 3499 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3500 3501 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3502 for (Constant *Val : Indices) { 3503 Type *ValTy = Val->getType(); 3504 if (!ValTy->isIntOrIntVectorTy()) 3505 return Error(ID.Loc, "getelementptr index must be an integer"); 3506 if (ValTy->isVectorTy()) { 3507 unsigned ValNumEl = ValTy->getVectorNumElements(); 3508 if (GEPWidth && (ValNumEl != GEPWidth)) 3509 return Error( 3510 ID.Loc, 3511 "getelementptr vector index has a wrong number of elements"); 3512 // GEPWidth may have been unknown because the base is a scalar, 3513 // but it is known now. 3514 GEPWidth = ValNumEl; 3515 } 3516 } 3517 3518 SmallPtrSet<Type*, 4> Visited; 3519 if (!Indices.empty() && !Ty->isSized(&Visited)) 3520 return Error(ID.Loc, "base element of getelementptr must be sized"); 3521 3522 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3523 return Error(ID.Loc, "invalid getelementptr indices"); 3524 3525 if (InRangeOp) { 3526 if (*InRangeOp == 0) 3527 return Error(ID.Loc, 3528 "inrange keyword may not appear on pointer operand"); 3529 --*InRangeOp; 3530 } 3531 3532 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3533 InBounds, InRangeOp); 3534 } else if (Opc == Instruction::Select) { 3535 if (Elts.size() != 3) 3536 return Error(ID.Loc, "expected three operands to select"); 3537 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3538 Elts[2])) 3539 return Error(ID.Loc, Reason); 3540 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3541 } else if (Opc == Instruction::ShuffleVector) { 3542 if (Elts.size() != 3) 3543 return Error(ID.Loc, "expected three operands to shufflevector"); 3544 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3545 return Error(ID.Loc, "invalid operands to shufflevector"); 3546 ID.ConstantVal = 3547 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3548 } else if (Opc == Instruction::ExtractElement) { 3549 if (Elts.size() != 2) 3550 return Error(ID.Loc, "expected two operands to extractelement"); 3551 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3552 return Error(ID.Loc, "invalid extractelement operands"); 3553 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3554 } else { 3555 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3556 if (Elts.size() != 3) 3557 return Error(ID.Loc, "expected three operands to insertelement"); 3558 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3559 return Error(ID.Loc, "invalid insertelement operands"); 3560 ID.ConstantVal = 3561 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3562 } 3563 3564 ID.Kind = ValID::t_Constant; 3565 return false; 3566 } 3567 } 3568 3569 Lex.Lex(); 3570 return false; 3571 } 3572 3573 /// ParseGlobalValue - Parse a global value with the specified type. 3574 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3575 C = nullptr; 3576 ValID ID; 3577 Value *V = nullptr; 3578 bool Parsed = ParseValID(ID) || 3579 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3580 if (V && !(C = dyn_cast<Constant>(V))) 3581 return Error(ID.Loc, "global values must be constants"); 3582 return Parsed; 3583 } 3584 3585 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3586 Type *Ty = nullptr; 3587 return ParseType(Ty) || 3588 ParseGlobalValue(Ty, V); 3589 } 3590 3591 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3592 C = nullptr; 3593 3594 LocTy KwLoc = Lex.getLoc(); 3595 if (!EatIfPresent(lltok::kw_comdat)) 3596 return false; 3597 3598 if (EatIfPresent(lltok::lparen)) { 3599 if (Lex.getKind() != lltok::ComdatVar) 3600 return TokError("expected comdat variable"); 3601 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3602 Lex.Lex(); 3603 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3604 return true; 3605 } else { 3606 if (GlobalName.empty()) 3607 return TokError("comdat cannot be unnamed"); 3608 C = getComdat(GlobalName, KwLoc); 3609 } 3610 3611 return false; 3612 } 3613 3614 /// ParseGlobalValueVector 3615 /// ::= /*empty*/ 3616 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3617 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3618 Optional<unsigned> *InRangeOp) { 3619 // Empty list. 3620 if (Lex.getKind() == lltok::rbrace || 3621 Lex.getKind() == lltok::rsquare || 3622 Lex.getKind() == lltok::greater || 3623 Lex.getKind() == lltok::rparen) 3624 return false; 3625 3626 do { 3627 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3628 *InRangeOp = Elts.size(); 3629 3630 Constant *C; 3631 if (ParseGlobalTypeAndValue(C)) return true; 3632 Elts.push_back(C); 3633 } while (EatIfPresent(lltok::comma)); 3634 3635 return false; 3636 } 3637 3638 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3639 SmallVector<Metadata *, 16> Elts; 3640 if (ParseMDNodeVector(Elts)) 3641 return true; 3642 3643 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3644 return false; 3645 } 3646 3647 /// MDNode: 3648 /// ::= !{ ... } 3649 /// ::= !7 3650 /// ::= !DILocation(...) 3651 bool LLParser::ParseMDNode(MDNode *&N) { 3652 if (Lex.getKind() == lltok::MetadataVar) 3653 return ParseSpecializedMDNode(N); 3654 3655 return ParseToken(lltok::exclaim, "expected '!' here") || 3656 ParseMDNodeTail(N); 3657 } 3658 3659 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3660 // !{ ... } 3661 if (Lex.getKind() == lltok::lbrace) 3662 return ParseMDTuple(N); 3663 3664 // !42 3665 return ParseMDNodeID(N); 3666 } 3667 3668 namespace { 3669 3670 /// Structure to represent an optional metadata field. 3671 template <class FieldTy> struct MDFieldImpl { 3672 typedef MDFieldImpl ImplTy; 3673 FieldTy Val; 3674 bool Seen; 3675 3676 void assign(FieldTy Val) { 3677 Seen = true; 3678 this->Val = std::move(Val); 3679 } 3680 3681 explicit MDFieldImpl(FieldTy Default) 3682 : Val(std::move(Default)), Seen(false) {} 3683 }; 3684 3685 /// Structure to represent an optional metadata field that 3686 /// can be of either type (A or B) and encapsulates the 3687 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3688 /// to reimplement the specifics for representing each Field. 3689 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3690 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3691 FieldTypeA A; 3692 FieldTypeB B; 3693 bool Seen; 3694 3695 enum { 3696 IsInvalid = 0, 3697 IsTypeA = 1, 3698 IsTypeB = 2 3699 } WhatIs; 3700 3701 void assign(FieldTypeA A) { 3702 Seen = true; 3703 this->A = std::move(A); 3704 WhatIs = IsTypeA; 3705 } 3706 3707 void assign(FieldTypeB B) { 3708 Seen = true; 3709 this->B = std::move(B); 3710 WhatIs = IsTypeB; 3711 } 3712 3713 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3714 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3715 WhatIs(IsInvalid) {} 3716 }; 3717 3718 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3719 uint64_t Max; 3720 3721 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3722 : ImplTy(Default), Max(Max) {} 3723 }; 3724 3725 struct LineField : public MDUnsignedField { 3726 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3727 }; 3728 3729 struct ColumnField : public MDUnsignedField { 3730 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3731 }; 3732 3733 struct DwarfTagField : public MDUnsignedField { 3734 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3735 DwarfTagField(dwarf::Tag DefaultTag) 3736 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3737 }; 3738 3739 struct DwarfMacinfoTypeField : public MDUnsignedField { 3740 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3741 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3742 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3743 }; 3744 3745 struct DwarfAttEncodingField : public MDUnsignedField { 3746 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3747 }; 3748 3749 struct DwarfVirtualityField : public MDUnsignedField { 3750 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3751 }; 3752 3753 struct DwarfLangField : public MDUnsignedField { 3754 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3755 }; 3756 3757 struct DwarfCCField : public MDUnsignedField { 3758 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3759 }; 3760 3761 struct EmissionKindField : public MDUnsignedField { 3762 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3763 }; 3764 3765 struct NameTableKindField : public MDUnsignedField { 3766 NameTableKindField() 3767 : MDUnsignedField( 3768 0, (unsigned) 3769 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3770 }; 3771 3772 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3773 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3774 }; 3775 3776 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3777 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3778 }; 3779 3780 struct MDSignedField : public MDFieldImpl<int64_t> { 3781 int64_t Min; 3782 int64_t Max; 3783 3784 MDSignedField(int64_t Default = 0) 3785 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3786 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3787 : ImplTy(Default), Min(Min), Max(Max) {} 3788 }; 3789 3790 struct MDBoolField : public MDFieldImpl<bool> { 3791 MDBoolField(bool Default = false) : ImplTy(Default) {} 3792 }; 3793 3794 struct MDField : public MDFieldImpl<Metadata *> { 3795 bool AllowNull; 3796 3797 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3798 }; 3799 3800 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3801 MDConstant() : ImplTy(nullptr) {} 3802 }; 3803 3804 struct MDStringField : public MDFieldImpl<MDString *> { 3805 bool AllowEmpty; 3806 MDStringField(bool AllowEmpty = true) 3807 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3808 }; 3809 3810 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3811 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3812 }; 3813 3814 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3815 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3816 }; 3817 3818 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3819 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3820 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3821 3822 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3823 bool AllowNull = true) 3824 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3825 3826 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3827 bool isMDField() const { return WhatIs == IsTypeB; } 3828 int64_t getMDSignedValue() const { 3829 assert(isMDSignedField() && "Wrong field type"); 3830 return A.Val; 3831 } 3832 Metadata *getMDFieldValue() const { 3833 assert(isMDField() && "Wrong field type"); 3834 return B.Val; 3835 } 3836 }; 3837 3838 struct MDSignedOrUnsignedField 3839 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3840 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3841 3842 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3843 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3844 int64_t getMDSignedValue() const { 3845 assert(isMDSignedField() && "Wrong field type"); 3846 return A.Val; 3847 } 3848 uint64_t getMDUnsignedValue() const { 3849 assert(isMDUnsignedField() && "Wrong field type"); 3850 return B.Val; 3851 } 3852 }; 3853 3854 } // end anonymous namespace 3855 3856 namespace llvm { 3857 3858 template <> 3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3860 MDUnsignedField &Result) { 3861 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3862 return TokError("expected unsigned integer"); 3863 3864 auto &U = Lex.getAPSIntVal(); 3865 if (U.ugt(Result.Max)) 3866 return TokError("value for '" + Name + "' too large, limit is " + 3867 Twine(Result.Max)); 3868 Result.assign(U.getZExtValue()); 3869 assert(Result.Val <= Result.Max && "Expected value in range"); 3870 Lex.Lex(); 3871 return false; 3872 } 3873 3874 template <> 3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3876 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3877 } 3878 template <> 3879 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3880 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3881 } 3882 3883 template <> 3884 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3885 if (Lex.getKind() == lltok::APSInt) 3886 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3887 3888 if (Lex.getKind() != lltok::DwarfTag) 3889 return TokError("expected DWARF tag"); 3890 3891 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3892 if (Tag == dwarf::DW_TAG_invalid) 3893 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3894 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3895 3896 Result.assign(Tag); 3897 Lex.Lex(); 3898 return false; 3899 } 3900 3901 template <> 3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3903 DwarfMacinfoTypeField &Result) { 3904 if (Lex.getKind() == lltok::APSInt) 3905 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3906 3907 if (Lex.getKind() != lltok::DwarfMacinfo) 3908 return TokError("expected DWARF macinfo type"); 3909 3910 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3911 if (Macinfo == dwarf::DW_MACINFO_invalid) 3912 return TokError( 3913 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3914 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3915 3916 Result.assign(Macinfo); 3917 Lex.Lex(); 3918 return false; 3919 } 3920 3921 template <> 3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3923 DwarfVirtualityField &Result) { 3924 if (Lex.getKind() == lltok::APSInt) 3925 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3926 3927 if (Lex.getKind() != lltok::DwarfVirtuality) 3928 return TokError("expected DWARF virtuality code"); 3929 3930 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3931 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3932 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3933 Lex.getStrVal() + "'"); 3934 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3935 Result.assign(Virtuality); 3936 Lex.Lex(); 3937 return false; 3938 } 3939 3940 template <> 3941 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3942 if (Lex.getKind() == lltok::APSInt) 3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 3945 if (Lex.getKind() != lltok::DwarfLang) 3946 return TokError("expected DWARF language"); 3947 3948 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3949 if (!Lang) 3950 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3951 "'"); 3952 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3953 Result.assign(Lang); 3954 Lex.Lex(); 3955 return false; 3956 } 3957 3958 template <> 3959 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3960 if (Lex.getKind() == lltok::APSInt) 3961 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3962 3963 if (Lex.getKind() != lltok::DwarfCC) 3964 return TokError("expected DWARF calling convention"); 3965 3966 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3967 if (!CC) 3968 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3969 "'"); 3970 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3971 Result.assign(CC); 3972 Lex.Lex(); 3973 return false; 3974 } 3975 3976 template <> 3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3978 if (Lex.getKind() == lltok::APSInt) 3979 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3980 3981 if (Lex.getKind() != lltok::EmissionKind) 3982 return TokError("expected emission kind"); 3983 3984 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3985 if (!Kind) 3986 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3987 "'"); 3988 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3989 Result.assign(*Kind); 3990 Lex.Lex(); 3991 return false; 3992 } 3993 3994 template <> 3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3996 NameTableKindField &Result) { 3997 if (Lex.getKind() == lltok::APSInt) 3998 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3999 4000 if (Lex.getKind() != lltok::NameTableKind) 4001 return TokError("expected nameTable kind"); 4002 4003 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4004 if (!Kind) 4005 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4006 "'"); 4007 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4008 Result.assign((unsigned)*Kind); 4009 Lex.Lex(); 4010 return false; 4011 } 4012 4013 template <> 4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4015 DwarfAttEncodingField &Result) { 4016 if (Lex.getKind() == lltok::APSInt) 4017 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4018 4019 if (Lex.getKind() != lltok::DwarfAttEncoding) 4020 return TokError("expected DWARF type attribute encoding"); 4021 4022 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4023 if (!Encoding) 4024 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4025 Lex.getStrVal() + "'"); 4026 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4027 Result.assign(Encoding); 4028 Lex.Lex(); 4029 return false; 4030 } 4031 4032 /// DIFlagField 4033 /// ::= uint32 4034 /// ::= DIFlagVector 4035 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4036 template <> 4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4038 4039 // Parser for a single flag. 4040 auto parseFlag = [&](DINode::DIFlags &Val) { 4041 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4042 uint32_t TempVal = static_cast<uint32_t>(Val); 4043 bool Res = ParseUInt32(TempVal); 4044 Val = static_cast<DINode::DIFlags>(TempVal); 4045 return Res; 4046 } 4047 4048 if (Lex.getKind() != lltok::DIFlag) 4049 return TokError("expected debug info flag"); 4050 4051 Val = DINode::getFlag(Lex.getStrVal()); 4052 if (!Val) 4053 return TokError(Twine("invalid debug info flag flag '") + 4054 Lex.getStrVal() + "'"); 4055 Lex.Lex(); 4056 return false; 4057 }; 4058 4059 // Parse the flags and combine them together. 4060 DINode::DIFlags Combined = DINode::FlagZero; 4061 do { 4062 DINode::DIFlags Val; 4063 if (parseFlag(Val)) 4064 return true; 4065 Combined |= Val; 4066 } while (EatIfPresent(lltok::bar)); 4067 4068 Result.assign(Combined); 4069 return false; 4070 } 4071 4072 /// DISPFlagField 4073 /// ::= uint32 4074 /// ::= DISPFlagVector 4075 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4076 template <> 4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4078 4079 // Parser for a single flag. 4080 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4081 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4082 uint32_t TempVal = static_cast<uint32_t>(Val); 4083 bool Res = ParseUInt32(TempVal); 4084 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4085 return Res; 4086 } 4087 4088 if (Lex.getKind() != lltok::DISPFlag) 4089 return TokError("expected debug info flag"); 4090 4091 Val = DISubprogram::getFlag(Lex.getStrVal()); 4092 if (!Val) 4093 return TokError(Twine("invalid subprogram debug info flag '") + 4094 Lex.getStrVal() + "'"); 4095 Lex.Lex(); 4096 return false; 4097 }; 4098 4099 // Parse the flags and combine them together. 4100 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4101 do { 4102 DISubprogram::DISPFlags Val; 4103 if (parseFlag(Val)) 4104 return true; 4105 Combined |= Val; 4106 } while (EatIfPresent(lltok::bar)); 4107 4108 Result.assign(Combined); 4109 return false; 4110 } 4111 4112 template <> 4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4114 MDSignedField &Result) { 4115 if (Lex.getKind() != lltok::APSInt) 4116 return TokError("expected signed integer"); 4117 4118 auto &S = Lex.getAPSIntVal(); 4119 if (S < Result.Min) 4120 return TokError("value for '" + Name + "' too small, limit is " + 4121 Twine(Result.Min)); 4122 if (S > Result.Max) 4123 return TokError("value for '" + Name + "' too large, limit is " + 4124 Twine(Result.Max)); 4125 Result.assign(S.getExtValue()); 4126 assert(Result.Val >= Result.Min && "Expected value in range"); 4127 assert(Result.Val <= Result.Max && "Expected value in range"); 4128 Lex.Lex(); 4129 return false; 4130 } 4131 4132 template <> 4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4134 switch (Lex.getKind()) { 4135 default: 4136 return TokError("expected 'true' or 'false'"); 4137 case lltok::kw_true: 4138 Result.assign(true); 4139 break; 4140 case lltok::kw_false: 4141 Result.assign(false); 4142 break; 4143 } 4144 Lex.Lex(); 4145 return false; 4146 } 4147 4148 template <> 4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4150 if (Lex.getKind() == lltok::kw_null) { 4151 if (!Result.AllowNull) 4152 return TokError("'" + Name + "' cannot be null"); 4153 Lex.Lex(); 4154 Result.assign(nullptr); 4155 return false; 4156 } 4157 4158 Metadata *MD; 4159 if (ParseMetadata(MD, nullptr)) 4160 return true; 4161 4162 Result.assign(MD); 4163 return false; 4164 } 4165 4166 template <> 4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4168 MDSignedOrMDField &Result) { 4169 // Try to parse a signed int. 4170 if (Lex.getKind() == lltok::APSInt) { 4171 MDSignedField Res = Result.A; 4172 if (!ParseMDField(Loc, Name, Res)) { 4173 Result.assign(Res); 4174 return false; 4175 } 4176 return true; 4177 } 4178 4179 // Otherwise, try to parse as an MDField. 4180 MDField Res = Result.B; 4181 if (!ParseMDField(Loc, Name, Res)) { 4182 Result.assign(Res); 4183 return false; 4184 } 4185 4186 return true; 4187 } 4188 4189 template <> 4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4191 MDSignedOrUnsignedField &Result) { 4192 if (Lex.getKind() != lltok::APSInt) 4193 return false; 4194 4195 if (Lex.getAPSIntVal().isSigned()) { 4196 MDSignedField Res = Result.A; 4197 if (ParseMDField(Loc, Name, Res)) 4198 return true; 4199 Result.assign(Res); 4200 return false; 4201 } 4202 4203 MDUnsignedField Res = Result.B; 4204 if (ParseMDField(Loc, Name, Res)) 4205 return true; 4206 Result.assign(Res); 4207 return false; 4208 } 4209 4210 template <> 4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4212 LocTy ValueLoc = Lex.getLoc(); 4213 std::string S; 4214 if (ParseStringConstant(S)) 4215 return true; 4216 4217 if (!Result.AllowEmpty && S.empty()) 4218 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4219 4220 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4221 return false; 4222 } 4223 4224 template <> 4225 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4226 SmallVector<Metadata *, 4> MDs; 4227 if (ParseMDNodeVector(MDs)) 4228 return true; 4229 4230 Result.assign(std::move(MDs)); 4231 return false; 4232 } 4233 4234 template <> 4235 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4236 ChecksumKindField &Result) { 4237 Optional<DIFile::ChecksumKind> CSKind = 4238 DIFile::getChecksumKind(Lex.getStrVal()); 4239 4240 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4241 return TokError( 4242 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4243 4244 Result.assign(*CSKind); 4245 Lex.Lex(); 4246 return false; 4247 } 4248 4249 } // end namespace llvm 4250 4251 template <class ParserTy> 4252 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4253 do { 4254 if (Lex.getKind() != lltok::LabelStr) 4255 return TokError("expected field label here"); 4256 4257 if (parseField()) 4258 return true; 4259 } while (EatIfPresent(lltok::comma)); 4260 4261 return false; 4262 } 4263 4264 template <class ParserTy> 4265 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4266 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4267 Lex.Lex(); 4268 4269 if (ParseToken(lltok::lparen, "expected '(' here")) 4270 return true; 4271 if (Lex.getKind() != lltok::rparen) 4272 if (ParseMDFieldsImplBody(parseField)) 4273 return true; 4274 4275 ClosingLoc = Lex.getLoc(); 4276 return ParseToken(lltok::rparen, "expected ')' here"); 4277 } 4278 4279 template <class FieldTy> 4280 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4281 if (Result.Seen) 4282 return TokError("field '" + Name + "' cannot be specified more than once"); 4283 4284 LocTy Loc = Lex.getLoc(); 4285 Lex.Lex(); 4286 return ParseMDField(Loc, Name, Result); 4287 } 4288 4289 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4290 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4291 4292 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4293 if (Lex.getStrVal() == #CLASS) \ 4294 return Parse##CLASS(N, IsDistinct); 4295 #include "llvm/IR/Metadata.def" 4296 4297 return TokError("expected metadata type"); 4298 } 4299 4300 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4301 #define NOP_FIELD(NAME, TYPE, INIT) 4302 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4303 if (!NAME.Seen) \ 4304 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4305 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4306 if (Lex.getStrVal() == #NAME) \ 4307 return ParseMDField(#NAME, NAME); 4308 #define PARSE_MD_FIELDS() \ 4309 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4310 do { \ 4311 LocTy ClosingLoc; \ 4312 if (ParseMDFieldsImpl([&]() -> bool { \ 4313 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4314 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4315 }, ClosingLoc)) \ 4316 return true; \ 4317 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4318 } while (false) 4319 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4320 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4321 4322 /// ParseDILocationFields: 4323 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4324 /// isImplicitCode: true) 4325 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4327 OPTIONAL(line, LineField, ); \ 4328 OPTIONAL(column, ColumnField, ); \ 4329 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4330 OPTIONAL(inlinedAt, MDField, ); \ 4331 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4332 PARSE_MD_FIELDS(); 4333 #undef VISIT_MD_FIELDS 4334 4335 Result = 4336 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4337 inlinedAt.Val, isImplicitCode.Val)); 4338 return false; 4339 } 4340 4341 /// ParseGenericDINode: 4342 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4343 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4344 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4345 REQUIRED(tag, DwarfTagField, ); \ 4346 OPTIONAL(header, MDStringField, ); \ 4347 OPTIONAL(operands, MDFieldList, ); 4348 PARSE_MD_FIELDS(); 4349 #undef VISIT_MD_FIELDS 4350 4351 Result = GET_OR_DISTINCT(GenericDINode, 4352 (Context, tag.Val, header.Val, operands.Val)); 4353 return false; 4354 } 4355 4356 /// ParseDISubrange: 4357 /// ::= !DISubrange(count: 30, lowerBound: 2) 4358 /// ::= !DISubrange(count: !node, lowerBound: 2) 4359 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4361 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4362 OPTIONAL(lowerBound, MDSignedField, ); 4363 PARSE_MD_FIELDS(); 4364 #undef VISIT_MD_FIELDS 4365 4366 if (count.isMDSignedField()) 4367 Result = GET_OR_DISTINCT( 4368 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4369 else if (count.isMDField()) 4370 Result = GET_OR_DISTINCT( 4371 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4372 else 4373 return true; 4374 4375 return false; 4376 } 4377 4378 /// ParseDIEnumerator: 4379 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4380 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4382 REQUIRED(name, MDStringField, ); \ 4383 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4384 OPTIONAL(isUnsigned, MDBoolField, (false)); 4385 PARSE_MD_FIELDS(); 4386 #undef VISIT_MD_FIELDS 4387 4388 if (isUnsigned.Val && value.isMDSignedField()) 4389 return TokError("unsigned enumerator with negative value"); 4390 4391 int64_t Value = value.isMDSignedField() 4392 ? value.getMDSignedValue() 4393 : static_cast<int64_t>(value.getMDUnsignedValue()); 4394 Result = 4395 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4396 4397 return false; 4398 } 4399 4400 /// ParseDIBasicType: 4401 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4402 /// encoding: DW_ATE_encoding, flags: 0) 4403 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4405 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4406 OPTIONAL(name, MDStringField, ); \ 4407 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4408 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4409 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4410 OPTIONAL(flags, DIFlagField, ); 4411 PARSE_MD_FIELDS(); 4412 #undef VISIT_MD_FIELDS 4413 4414 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4415 align.Val, encoding.Val, flags.Val)); 4416 return false; 4417 } 4418 4419 /// ParseDIDerivedType: 4420 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4421 /// line: 7, scope: !1, baseType: !2, size: 32, 4422 /// align: 32, offset: 0, flags: 0, extraData: !3, 4423 /// dwarfAddressSpace: 3) 4424 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4426 REQUIRED(tag, DwarfTagField, ); \ 4427 OPTIONAL(name, MDStringField, ); \ 4428 OPTIONAL(file, MDField, ); \ 4429 OPTIONAL(line, LineField, ); \ 4430 OPTIONAL(scope, MDField, ); \ 4431 REQUIRED(baseType, MDField, ); \ 4432 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4433 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4434 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4435 OPTIONAL(flags, DIFlagField, ); \ 4436 OPTIONAL(extraData, MDField, ); \ 4437 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4438 PARSE_MD_FIELDS(); 4439 #undef VISIT_MD_FIELDS 4440 4441 Optional<unsigned> DWARFAddressSpace; 4442 if (dwarfAddressSpace.Val != UINT32_MAX) 4443 DWARFAddressSpace = dwarfAddressSpace.Val; 4444 4445 Result = GET_OR_DISTINCT(DIDerivedType, 4446 (Context, tag.Val, name.Val, file.Val, line.Val, 4447 scope.Val, baseType.Val, size.Val, align.Val, 4448 offset.Val, DWARFAddressSpace, flags.Val, 4449 extraData.Val)); 4450 return false; 4451 } 4452 4453 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4455 REQUIRED(tag, DwarfTagField, ); \ 4456 OPTIONAL(name, MDStringField, ); \ 4457 OPTIONAL(file, MDField, ); \ 4458 OPTIONAL(line, LineField, ); \ 4459 OPTIONAL(scope, MDField, ); \ 4460 OPTIONAL(baseType, MDField, ); \ 4461 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4462 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4463 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4464 OPTIONAL(flags, DIFlagField, ); \ 4465 OPTIONAL(elements, MDField, ); \ 4466 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4467 OPTIONAL(vtableHolder, MDField, ); \ 4468 OPTIONAL(templateParams, MDField, ); \ 4469 OPTIONAL(identifier, MDStringField, ); \ 4470 OPTIONAL(discriminator, MDField, ); 4471 PARSE_MD_FIELDS(); 4472 #undef VISIT_MD_FIELDS 4473 4474 // If this has an identifier try to build an ODR type. 4475 if (identifier.Val) 4476 if (auto *CT = DICompositeType::buildODRType( 4477 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4478 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4479 elements.Val, runtimeLang.Val, vtableHolder.Val, 4480 templateParams.Val, discriminator.Val)) { 4481 Result = CT; 4482 return false; 4483 } 4484 4485 // Create a new node, and save it in the context if it belongs in the type 4486 // map. 4487 Result = GET_OR_DISTINCT( 4488 DICompositeType, 4489 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4490 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4491 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4492 discriminator.Val)); 4493 return false; 4494 } 4495 4496 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4498 OPTIONAL(flags, DIFlagField, ); \ 4499 OPTIONAL(cc, DwarfCCField, ); \ 4500 REQUIRED(types, MDField, ); 4501 PARSE_MD_FIELDS(); 4502 #undef VISIT_MD_FIELDS 4503 4504 Result = GET_OR_DISTINCT(DISubroutineType, 4505 (Context, flags.Val, cc.Val, types.Val)); 4506 return false; 4507 } 4508 4509 /// ParseDIFileType: 4510 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4511 /// checksumkind: CSK_MD5, 4512 /// checksum: "000102030405060708090a0b0c0d0e0f", 4513 /// source: "source file contents") 4514 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4515 // The default constructed value for checksumkind is required, but will never 4516 // be used, as the parser checks if the field was actually Seen before using 4517 // the Val. 4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4519 REQUIRED(filename, MDStringField, ); \ 4520 REQUIRED(directory, MDStringField, ); \ 4521 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4522 OPTIONAL(checksum, MDStringField, ); \ 4523 OPTIONAL(source, MDStringField, ); 4524 PARSE_MD_FIELDS(); 4525 #undef VISIT_MD_FIELDS 4526 4527 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4528 if (checksumkind.Seen && checksum.Seen) 4529 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4530 else if (checksumkind.Seen || checksum.Seen) 4531 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4532 4533 Optional<MDString *> OptSource; 4534 if (source.Seen) 4535 OptSource = source.Val; 4536 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4537 OptChecksum, OptSource)); 4538 return false; 4539 } 4540 4541 /// ParseDICompileUnit: 4542 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4543 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4544 /// splitDebugFilename: "abc.debug", 4545 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4546 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4547 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4548 if (!IsDistinct) 4549 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4550 4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4552 REQUIRED(language, DwarfLangField, ); \ 4553 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4554 OPTIONAL(producer, MDStringField, ); \ 4555 OPTIONAL(isOptimized, MDBoolField, ); \ 4556 OPTIONAL(flags, MDStringField, ); \ 4557 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4558 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4559 OPTIONAL(emissionKind, EmissionKindField, ); \ 4560 OPTIONAL(enums, MDField, ); \ 4561 OPTIONAL(retainedTypes, MDField, ); \ 4562 OPTIONAL(globals, MDField, ); \ 4563 OPTIONAL(imports, MDField, ); \ 4564 OPTIONAL(macros, MDField, ); \ 4565 OPTIONAL(dwoId, MDUnsignedField, ); \ 4566 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4567 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4568 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4569 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4570 PARSE_MD_FIELDS(); 4571 #undef VISIT_MD_FIELDS 4572 4573 Result = DICompileUnit::getDistinct( 4574 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4575 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4576 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4577 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4578 debugBaseAddress.Val); 4579 return false; 4580 } 4581 4582 /// ParseDISubprogram: 4583 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4584 /// file: !1, line: 7, type: !2, isLocal: false, 4585 /// isDefinition: true, scopeLine: 8, containingType: !3, 4586 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4587 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4588 /// spFlags: 10, isOptimized: false, templateParams: !4, 4589 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4590 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4591 auto Loc = Lex.getLoc(); 4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4593 OPTIONAL(scope, MDField, ); \ 4594 OPTIONAL(name, MDStringField, ); \ 4595 OPTIONAL(linkageName, MDStringField, ); \ 4596 OPTIONAL(file, MDField, ); \ 4597 OPTIONAL(line, LineField, ); \ 4598 OPTIONAL(type, MDField, ); \ 4599 OPTIONAL(isLocal, MDBoolField, ); \ 4600 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4601 OPTIONAL(scopeLine, LineField, ); \ 4602 OPTIONAL(containingType, MDField, ); \ 4603 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4604 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4605 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4606 OPTIONAL(flags, DIFlagField, ); \ 4607 OPTIONAL(spFlags, DISPFlagField, ); \ 4608 OPTIONAL(isOptimized, MDBoolField, ); \ 4609 OPTIONAL(unit, MDField, ); \ 4610 OPTIONAL(templateParams, MDField, ); \ 4611 OPTIONAL(declaration, MDField, ); \ 4612 OPTIONAL(retainedNodes, MDField, ); \ 4613 OPTIONAL(thrownTypes, MDField, ); 4614 PARSE_MD_FIELDS(); 4615 #undef VISIT_MD_FIELDS 4616 4617 // An explicit spFlags field takes precedence over individual fields in 4618 // older IR versions. 4619 DISubprogram::DISPFlags SPFlags = 4620 spFlags.Seen ? spFlags.Val 4621 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4622 isOptimized.Val, virtuality.Val); 4623 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4624 return Lex.Error( 4625 Loc, 4626 "missing 'distinct', required for !DISubprogram that is a Definition"); 4627 Result = GET_OR_DISTINCT( 4628 DISubprogram, 4629 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4630 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4631 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4632 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4633 return false; 4634 } 4635 4636 /// ParseDILexicalBlock: 4637 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4638 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4639 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4640 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4641 OPTIONAL(file, MDField, ); \ 4642 OPTIONAL(line, LineField, ); \ 4643 OPTIONAL(column, ColumnField, ); 4644 PARSE_MD_FIELDS(); 4645 #undef VISIT_MD_FIELDS 4646 4647 Result = GET_OR_DISTINCT( 4648 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4649 return false; 4650 } 4651 4652 /// ParseDILexicalBlockFile: 4653 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4654 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4656 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4657 OPTIONAL(file, MDField, ); \ 4658 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4659 PARSE_MD_FIELDS(); 4660 #undef VISIT_MD_FIELDS 4661 4662 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4663 (Context, scope.Val, file.Val, discriminator.Val)); 4664 return false; 4665 } 4666 4667 /// ParseDINamespace: 4668 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4669 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4671 REQUIRED(scope, MDField, ); \ 4672 OPTIONAL(name, MDStringField, ); \ 4673 OPTIONAL(exportSymbols, MDBoolField, ); 4674 PARSE_MD_FIELDS(); 4675 #undef VISIT_MD_FIELDS 4676 4677 Result = GET_OR_DISTINCT(DINamespace, 4678 (Context, scope.Val, name.Val, exportSymbols.Val)); 4679 return false; 4680 } 4681 4682 /// ParseDIMacro: 4683 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4684 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4686 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4687 OPTIONAL(line, LineField, ); \ 4688 REQUIRED(name, MDStringField, ); \ 4689 OPTIONAL(value, MDStringField, ); 4690 PARSE_MD_FIELDS(); 4691 #undef VISIT_MD_FIELDS 4692 4693 Result = GET_OR_DISTINCT(DIMacro, 4694 (Context, type.Val, line.Val, name.Val, value.Val)); 4695 return false; 4696 } 4697 4698 /// ParseDIMacroFile: 4699 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4700 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4702 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4703 OPTIONAL(line, LineField, ); \ 4704 REQUIRED(file, MDField, ); \ 4705 OPTIONAL(nodes, MDField, ); 4706 PARSE_MD_FIELDS(); 4707 #undef VISIT_MD_FIELDS 4708 4709 Result = GET_OR_DISTINCT(DIMacroFile, 4710 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4711 return false; 4712 } 4713 4714 /// ParseDIModule: 4715 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4716 /// includePath: "/usr/include", isysroot: "/") 4717 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4719 REQUIRED(scope, MDField, ); \ 4720 REQUIRED(name, MDStringField, ); \ 4721 OPTIONAL(configMacros, MDStringField, ); \ 4722 OPTIONAL(includePath, MDStringField, ); \ 4723 OPTIONAL(isysroot, MDStringField, ); 4724 PARSE_MD_FIELDS(); 4725 #undef VISIT_MD_FIELDS 4726 4727 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4728 configMacros.Val, includePath.Val, isysroot.Val)); 4729 return false; 4730 } 4731 4732 /// ParseDITemplateTypeParameter: 4733 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4734 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4736 OPTIONAL(name, MDStringField, ); \ 4737 REQUIRED(type, MDField, ); 4738 PARSE_MD_FIELDS(); 4739 #undef VISIT_MD_FIELDS 4740 4741 Result = 4742 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4743 return false; 4744 } 4745 4746 /// ParseDITemplateValueParameter: 4747 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4748 /// name: "V", type: !1, value: i32 7) 4749 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4751 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4752 OPTIONAL(name, MDStringField, ); \ 4753 OPTIONAL(type, MDField, ); \ 4754 REQUIRED(value, MDField, ); 4755 PARSE_MD_FIELDS(); 4756 #undef VISIT_MD_FIELDS 4757 4758 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4759 (Context, tag.Val, name.Val, type.Val, value.Val)); 4760 return false; 4761 } 4762 4763 /// ParseDIGlobalVariable: 4764 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4765 /// file: !1, line: 7, type: !2, isLocal: false, 4766 /// isDefinition: true, templateParams: !3, 4767 /// declaration: !4, align: 8) 4768 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4769 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4770 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4771 OPTIONAL(scope, MDField, ); \ 4772 OPTIONAL(linkageName, MDStringField, ); \ 4773 OPTIONAL(file, MDField, ); \ 4774 OPTIONAL(line, LineField, ); \ 4775 OPTIONAL(type, MDField, ); \ 4776 OPTIONAL(isLocal, MDBoolField, ); \ 4777 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4778 OPTIONAL(templateParams, MDField, ); \ 4779 OPTIONAL(declaration, MDField, ); \ 4780 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4781 PARSE_MD_FIELDS(); 4782 #undef VISIT_MD_FIELDS 4783 4784 Result = 4785 GET_OR_DISTINCT(DIGlobalVariable, 4786 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4787 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4788 declaration.Val, templateParams.Val, align.Val)); 4789 return false; 4790 } 4791 4792 /// ParseDILocalVariable: 4793 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4794 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4795 /// align: 8) 4796 /// ::= !DILocalVariable(scope: !0, name: "foo", 4797 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4798 /// align: 8) 4799 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4801 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4802 OPTIONAL(name, MDStringField, ); \ 4803 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4804 OPTIONAL(file, MDField, ); \ 4805 OPTIONAL(line, LineField, ); \ 4806 OPTIONAL(type, MDField, ); \ 4807 OPTIONAL(flags, DIFlagField, ); \ 4808 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4809 PARSE_MD_FIELDS(); 4810 #undef VISIT_MD_FIELDS 4811 4812 Result = GET_OR_DISTINCT(DILocalVariable, 4813 (Context, scope.Val, name.Val, file.Val, line.Val, 4814 type.Val, arg.Val, flags.Val, align.Val)); 4815 return false; 4816 } 4817 4818 /// ParseDILabel: 4819 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4820 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4822 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4823 REQUIRED(name, MDStringField, ); \ 4824 REQUIRED(file, MDField, ); \ 4825 REQUIRED(line, LineField, ); 4826 PARSE_MD_FIELDS(); 4827 #undef VISIT_MD_FIELDS 4828 4829 Result = GET_OR_DISTINCT(DILabel, 4830 (Context, scope.Val, name.Val, file.Val, line.Val)); 4831 return false; 4832 } 4833 4834 /// ParseDIExpression: 4835 /// ::= !DIExpression(0, 7, -1) 4836 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4837 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4838 Lex.Lex(); 4839 4840 if (ParseToken(lltok::lparen, "expected '(' here")) 4841 return true; 4842 4843 SmallVector<uint64_t, 8> Elements; 4844 if (Lex.getKind() != lltok::rparen) 4845 do { 4846 if (Lex.getKind() == lltok::DwarfOp) { 4847 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4848 Lex.Lex(); 4849 Elements.push_back(Op); 4850 continue; 4851 } 4852 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4853 } 4854 4855 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4856 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4857 Lex.Lex(); 4858 Elements.push_back(Op); 4859 continue; 4860 } 4861 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4862 } 4863 4864 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4865 return TokError("expected unsigned integer"); 4866 4867 auto &U = Lex.getAPSIntVal(); 4868 if (U.ugt(UINT64_MAX)) 4869 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4870 Elements.push_back(U.getZExtValue()); 4871 Lex.Lex(); 4872 } while (EatIfPresent(lltok::comma)); 4873 4874 if (ParseToken(lltok::rparen, "expected ')' here")) 4875 return true; 4876 4877 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4878 return false; 4879 } 4880 4881 /// ParseDIGlobalVariableExpression: 4882 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4883 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4884 bool IsDistinct) { 4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4886 REQUIRED(var, MDField, ); \ 4887 REQUIRED(expr, MDField, ); 4888 PARSE_MD_FIELDS(); 4889 #undef VISIT_MD_FIELDS 4890 4891 Result = 4892 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4893 return false; 4894 } 4895 4896 /// ParseDIObjCProperty: 4897 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4898 /// getter: "getFoo", attributes: 7, type: !2) 4899 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4901 OPTIONAL(name, MDStringField, ); \ 4902 OPTIONAL(file, MDField, ); \ 4903 OPTIONAL(line, LineField, ); \ 4904 OPTIONAL(setter, MDStringField, ); \ 4905 OPTIONAL(getter, MDStringField, ); \ 4906 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4907 OPTIONAL(type, MDField, ); 4908 PARSE_MD_FIELDS(); 4909 #undef VISIT_MD_FIELDS 4910 4911 Result = GET_OR_DISTINCT(DIObjCProperty, 4912 (Context, name.Val, file.Val, line.Val, setter.Val, 4913 getter.Val, attributes.Val, type.Val)); 4914 return false; 4915 } 4916 4917 /// ParseDIImportedEntity: 4918 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4919 /// line: 7, name: "foo") 4920 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4922 REQUIRED(tag, DwarfTagField, ); \ 4923 REQUIRED(scope, MDField, ); \ 4924 OPTIONAL(entity, MDField, ); \ 4925 OPTIONAL(file, MDField, ); \ 4926 OPTIONAL(line, LineField, ); \ 4927 OPTIONAL(name, MDStringField, ); 4928 PARSE_MD_FIELDS(); 4929 #undef VISIT_MD_FIELDS 4930 4931 Result = GET_OR_DISTINCT( 4932 DIImportedEntity, 4933 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4934 return false; 4935 } 4936 4937 #undef PARSE_MD_FIELD 4938 #undef NOP_FIELD 4939 #undef REQUIRE_FIELD 4940 #undef DECLARE_FIELD 4941 4942 /// ParseMetadataAsValue 4943 /// ::= metadata i32 %local 4944 /// ::= metadata i32 @global 4945 /// ::= metadata i32 7 4946 /// ::= metadata !0 4947 /// ::= metadata !{...} 4948 /// ::= metadata !"string" 4949 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4950 // Note: the type 'metadata' has already been parsed. 4951 Metadata *MD; 4952 if (ParseMetadata(MD, &PFS)) 4953 return true; 4954 4955 V = MetadataAsValue::get(Context, MD); 4956 return false; 4957 } 4958 4959 /// ParseValueAsMetadata 4960 /// ::= i32 %local 4961 /// ::= i32 @global 4962 /// ::= i32 7 4963 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4964 PerFunctionState *PFS) { 4965 Type *Ty; 4966 LocTy Loc; 4967 if (ParseType(Ty, TypeMsg, Loc)) 4968 return true; 4969 if (Ty->isMetadataTy()) 4970 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4971 4972 Value *V; 4973 if (ParseValue(Ty, V, PFS)) 4974 return true; 4975 4976 MD = ValueAsMetadata::get(V); 4977 return false; 4978 } 4979 4980 /// ParseMetadata 4981 /// ::= i32 %local 4982 /// ::= i32 @global 4983 /// ::= i32 7 4984 /// ::= !42 4985 /// ::= !{...} 4986 /// ::= !"string" 4987 /// ::= !DILocation(...) 4988 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4989 if (Lex.getKind() == lltok::MetadataVar) { 4990 MDNode *N; 4991 if (ParseSpecializedMDNode(N)) 4992 return true; 4993 MD = N; 4994 return false; 4995 } 4996 4997 // ValueAsMetadata: 4998 // <type> <value> 4999 if (Lex.getKind() != lltok::exclaim) 5000 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5001 5002 // '!'. 5003 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5004 Lex.Lex(); 5005 5006 // MDString: 5007 // ::= '!' STRINGCONSTANT 5008 if (Lex.getKind() == lltok::StringConstant) { 5009 MDString *S; 5010 if (ParseMDString(S)) 5011 return true; 5012 MD = S; 5013 return false; 5014 } 5015 5016 // MDNode: 5017 // !{ ... } 5018 // !7 5019 MDNode *N; 5020 if (ParseMDNodeTail(N)) 5021 return true; 5022 MD = N; 5023 return false; 5024 } 5025 5026 //===----------------------------------------------------------------------===// 5027 // Function Parsing. 5028 //===----------------------------------------------------------------------===// 5029 5030 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5031 PerFunctionState *PFS, bool IsCall) { 5032 if (Ty->isFunctionTy()) 5033 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5034 5035 switch (ID.Kind) { 5036 case ValID::t_LocalID: 5037 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5038 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5039 return V == nullptr; 5040 case ValID::t_LocalName: 5041 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5042 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5043 return V == nullptr; 5044 case ValID::t_InlineAsm: { 5045 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5046 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5047 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5048 (ID.UIntVal >> 1) & 1, 5049 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5050 return false; 5051 } 5052 case ValID::t_GlobalName: 5053 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5054 return V == nullptr; 5055 case ValID::t_GlobalID: 5056 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5057 return V == nullptr; 5058 case ValID::t_APSInt: 5059 if (!Ty->isIntegerTy()) 5060 return Error(ID.Loc, "integer constant must have integer type"); 5061 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5062 V = ConstantInt::get(Context, ID.APSIntVal); 5063 return false; 5064 case ValID::t_APFloat: 5065 if (!Ty->isFloatingPointTy() || 5066 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5067 return Error(ID.Loc, "floating point constant invalid for type"); 5068 5069 // The lexer has no type info, so builds all half, float, and double FP 5070 // constants as double. Fix this here. Long double does not need this. 5071 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5072 bool Ignored; 5073 if (Ty->isHalfTy()) 5074 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5075 &Ignored); 5076 else if (Ty->isFloatTy()) 5077 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5078 &Ignored); 5079 } 5080 V = ConstantFP::get(Context, ID.APFloatVal); 5081 5082 if (V->getType() != Ty) 5083 return Error(ID.Loc, "floating point constant does not have type '" + 5084 getTypeString(Ty) + "'"); 5085 5086 return false; 5087 case ValID::t_Null: 5088 if (!Ty->isPointerTy()) 5089 return Error(ID.Loc, "null must be a pointer type"); 5090 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5091 return false; 5092 case ValID::t_Undef: 5093 // FIXME: LabelTy should not be a first-class type. 5094 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5095 return Error(ID.Loc, "invalid type for undef constant"); 5096 V = UndefValue::get(Ty); 5097 return false; 5098 case ValID::t_EmptyArray: 5099 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5100 return Error(ID.Loc, "invalid empty array initializer"); 5101 V = UndefValue::get(Ty); 5102 return false; 5103 case ValID::t_Zero: 5104 // FIXME: LabelTy should not be a first-class type. 5105 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5106 return Error(ID.Loc, "invalid type for null constant"); 5107 V = Constant::getNullValue(Ty); 5108 return false; 5109 case ValID::t_None: 5110 if (!Ty->isTokenTy()) 5111 return Error(ID.Loc, "invalid type for none constant"); 5112 V = Constant::getNullValue(Ty); 5113 return false; 5114 case ValID::t_Constant: 5115 if (ID.ConstantVal->getType() != Ty) 5116 return Error(ID.Loc, "constant expression type mismatch"); 5117 5118 V = ID.ConstantVal; 5119 return false; 5120 case ValID::t_ConstantStruct: 5121 case ValID::t_PackedConstantStruct: 5122 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5123 if (ST->getNumElements() != ID.UIntVal) 5124 return Error(ID.Loc, 5125 "initializer with struct type has wrong # elements"); 5126 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5127 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5128 5129 // Verify that the elements are compatible with the structtype. 5130 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5131 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5132 return Error(ID.Loc, "element " + Twine(i) + 5133 " of struct initializer doesn't match struct element type"); 5134 5135 V = ConstantStruct::get( 5136 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5137 } else 5138 return Error(ID.Loc, "constant expression type mismatch"); 5139 return false; 5140 } 5141 llvm_unreachable("Invalid ValID"); 5142 } 5143 5144 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5145 C = nullptr; 5146 ValID ID; 5147 auto Loc = Lex.getLoc(); 5148 if (ParseValID(ID, /*PFS=*/nullptr)) 5149 return true; 5150 switch (ID.Kind) { 5151 case ValID::t_APSInt: 5152 case ValID::t_APFloat: 5153 case ValID::t_Undef: 5154 case ValID::t_Constant: 5155 case ValID::t_ConstantStruct: 5156 case ValID::t_PackedConstantStruct: { 5157 Value *V; 5158 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5159 return true; 5160 assert(isa<Constant>(V) && "Expected a constant value"); 5161 C = cast<Constant>(V); 5162 return false; 5163 } 5164 case ValID::t_Null: 5165 C = Constant::getNullValue(Ty); 5166 return false; 5167 default: 5168 return Error(Loc, "expected a constant value"); 5169 } 5170 } 5171 5172 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5173 V = nullptr; 5174 ValID ID; 5175 return ParseValID(ID, PFS) || 5176 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5177 } 5178 5179 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5180 Type *Ty = nullptr; 5181 return ParseType(Ty) || 5182 ParseValue(Ty, V, PFS); 5183 } 5184 5185 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5186 PerFunctionState &PFS) { 5187 Value *V; 5188 Loc = Lex.getLoc(); 5189 if (ParseTypeAndValue(V, PFS)) return true; 5190 if (!isa<BasicBlock>(V)) 5191 return Error(Loc, "expected a basic block"); 5192 BB = cast<BasicBlock>(V); 5193 return false; 5194 } 5195 5196 /// FunctionHeader 5197 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5198 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5199 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5200 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5201 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5202 // Parse the linkage. 5203 LocTy LinkageLoc = Lex.getLoc(); 5204 unsigned Linkage; 5205 unsigned Visibility; 5206 unsigned DLLStorageClass; 5207 bool DSOLocal; 5208 AttrBuilder RetAttrs; 5209 unsigned CC; 5210 bool HasLinkage; 5211 Type *RetType = nullptr; 5212 LocTy RetTypeLoc = Lex.getLoc(); 5213 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5214 DSOLocal) || 5215 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5216 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5217 return true; 5218 5219 // Verify that the linkage is ok. 5220 switch ((GlobalValue::LinkageTypes)Linkage) { 5221 case GlobalValue::ExternalLinkage: 5222 break; // always ok. 5223 case GlobalValue::ExternalWeakLinkage: 5224 if (isDefine) 5225 return Error(LinkageLoc, "invalid linkage for function definition"); 5226 break; 5227 case GlobalValue::PrivateLinkage: 5228 case GlobalValue::InternalLinkage: 5229 case GlobalValue::AvailableExternallyLinkage: 5230 case GlobalValue::LinkOnceAnyLinkage: 5231 case GlobalValue::LinkOnceODRLinkage: 5232 case GlobalValue::WeakAnyLinkage: 5233 case GlobalValue::WeakODRLinkage: 5234 if (!isDefine) 5235 return Error(LinkageLoc, "invalid linkage for function declaration"); 5236 break; 5237 case GlobalValue::AppendingLinkage: 5238 case GlobalValue::CommonLinkage: 5239 return Error(LinkageLoc, "invalid function linkage type"); 5240 } 5241 5242 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5243 return Error(LinkageLoc, 5244 "symbol with local linkage must have default visibility"); 5245 5246 if (!FunctionType::isValidReturnType(RetType)) 5247 return Error(RetTypeLoc, "invalid function return type"); 5248 5249 LocTy NameLoc = Lex.getLoc(); 5250 5251 std::string FunctionName; 5252 if (Lex.getKind() == lltok::GlobalVar) { 5253 FunctionName = Lex.getStrVal(); 5254 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5255 unsigned NameID = Lex.getUIntVal(); 5256 5257 if (NameID != NumberedVals.size()) 5258 return TokError("function expected to be numbered '%" + 5259 Twine(NumberedVals.size()) + "'"); 5260 } else { 5261 return TokError("expected function name"); 5262 } 5263 5264 Lex.Lex(); 5265 5266 if (Lex.getKind() != lltok::lparen) 5267 return TokError("expected '(' in function argument list"); 5268 5269 SmallVector<ArgInfo, 8> ArgList; 5270 bool isVarArg; 5271 AttrBuilder FuncAttrs; 5272 std::vector<unsigned> FwdRefAttrGrps; 5273 LocTy BuiltinLoc; 5274 std::string Section; 5275 unsigned Alignment; 5276 std::string GC; 5277 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5278 unsigned AddrSpace = 0; 5279 Constant *Prefix = nullptr; 5280 Constant *Prologue = nullptr; 5281 Constant *PersonalityFn = nullptr; 5282 Comdat *C; 5283 5284 if (ParseArgumentList(ArgList, isVarArg) || 5285 ParseOptionalUnnamedAddr(UnnamedAddr) || 5286 ParseOptionalProgramAddrSpace(AddrSpace) || 5287 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5288 BuiltinLoc) || 5289 (EatIfPresent(lltok::kw_section) && 5290 ParseStringConstant(Section)) || 5291 parseOptionalComdat(FunctionName, C) || 5292 ParseOptionalAlignment(Alignment) || 5293 (EatIfPresent(lltok::kw_gc) && 5294 ParseStringConstant(GC)) || 5295 (EatIfPresent(lltok::kw_prefix) && 5296 ParseGlobalTypeAndValue(Prefix)) || 5297 (EatIfPresent(lltok::kw_prologue) && 5298 ParseGlobalTypeAndValue(Prologue)) || 5299 (EatIfPresent(lltok::kw_personality) && 5300 ParseGlobalTypeAndValue(PersonalityFn))) 5301 return true; 5302 5303 if (FuncAttrs.contains(Attribute::Builtin)) 5304 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5305 5306 // If the alignment was parsed as an attribute, move to the alignment field. 5307 if (FuncAttrs.hasAlignmentAttr()) { 5308 Alignment = FuncAttrs.getAlignment(); 5309 FuncAttrs.removeAttribute(Attribute::Alignment); 5310 } 5311 5312 // Okay, if we got here, the function is syntactically valid. Convert types 5313 // and do semantic checks. 5314 std::vector<Type*> ParamTypeList; 5315 SmallVector<AttributeSet, 8> Attrs; 5316 5317 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5318 ParamTypeList.push_back(ArgList[i].Ty); 5319 Attrs.push_back(ArgList[i].Attrs); 5320 } 5321 5322 AttributeList PAL = 5323 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5324 AttributeSet::get(Context, RetAttrs), Attrs); 5325 5326 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5327 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5328 5329 FunctionType *FT = 5330 FunctionType::get(RetType, ParamTypeList, isVarArg); 5331 PointerType *PFT = PointerType::get(FT, AddrSpace); 5332 5333 Fn = nullptr; 5334 if (!FunctionName.empty()) { 5335 // If this was a definition of a forward reference, remove the definition 5336 // from the forward reference table and fill in the forward ref. 5337 auto FRVI = ForwardRefVals.find(FunctionName); 5338 if (FRVI != ForwardRefVals.end()) { 5339 Fn = M->getFunction(FunctionName); 5340 if (!Fn) 5341 return Error(FRVI->second.second, "invalid forward reference to " 5342 "function as global value!"); 5343 if (Fn->getType() != PFT) 5344 return Error(FRVI->second.second, "invalid forward reference to " 5345 "function '" + FunctionName + "' with wrong type: " 5346 "expected '" + getTypeString(PFT) + "' but was '" + 5347 getTypeString(Fn->getType()) + "'"); 5348 ForwardRefVals.erase(FRVI); 5349 } else if ((Fn = M->getFunction(FunctionName))) { 5350 // Reject redefinitions. 5351 return Error(NameLoc, "invalid redefinition of function '" + 5352 FunctionName + "'"); 5353 } else if (M->getNamedValue(FunctionName)) { 5354 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5355 } 5356 5357 } else { 5358 // If this is a definition of a forward referenced function, make sure the 5359 // types agree. 5360 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5361 if (I != ForwardRefValIDs.end()) { 5362 Fn = cast<Function>(I->second.first); 5363 if (Fn->getType() != PFT) 5364 return Error(NameLoc, "type of definition and forward reference of '@" + 5365 Twine(NumberedVals.size()) + "' disagree: " 5366 "expected '" + getTypeString(PFT) + "' but was '" + 5367 getTypeString(Fn->getType()) + "'"); 5368 ForwardRefValIDs.erase(I); 5369 } 5370 } 5371 5372 if (!Fn) 5373 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5374 FunctionName, M); 5375 else // Move the forward-reference to the correct spot in the module. 5376 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5377 5378 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5379 5380 if (FunctionName.empty()) 5381 NumberedVals.push_back(Fn); 5382 5383 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5384 maybeSetDSOLocal(DSOLocal, *Fn); 5385 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5386 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5387 Fn->setCallingConv(CC); 5388 Fn->setAttributes(PAL); 5389 Fn->setUnnamedAddr(UnnamedAddr); 5390 Fn->setAlignment(Alignment); 5391 Fn->setSection(Section); 5392 Fn->setComdat(C); 5393 Fn->setPersonalityFn(PersonalityFn); 5394 if (!GC.empty()) Fn->setGC(GC); 5395 Fn->setPrefixData(Prefix); 5396 Fn->setPrologueData(Prologue); 5397 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5398 5399 // Add all of the arguments we parsed to the function. 5400 Function::arg_iterator ArgIt = Fn->arg_begin(); 5401 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5402 // If the argument has a name, insert it into the argument symbol table. 5403 if (ArgList[i].Name.empty()) continue; 5404 5405 // Set the name, if it conflicted, it will be auto-renamed. 5406 ArgIt->setName(ArgList[i].Name); 5407 5408 if (ArgIt->getName() != ArgList[i].Name) 5409 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5410 ArgList[i].Name + "'"); 5411 } 5412 5413 if (isDefine) 5414 return false; 5415 5416 // Check the declaration has no block address forward references. 5417 ValID ID; 5418 if (FunctionName.empty()) { 5419 ID.Kind = ValID::t_GlobalID; 5420 ID.UIntVal = NumberedVals.size() - 1; 5421 } else { 5422 ID.Kind = ValID::t_GlobalName; 5423 ID.StrVal = FunctionName; 5424 } 5425 auto Blocks = ForwardRefBlockAddresses.find(ID); 5426 if (Blocks != ForwardRefBlockAddresses.end()) 5427 return Error(Blocks->first.Loc, 5428 "cannot take blockaddress inside a declaration"); 5429 return false; 5430 } 5431 5432 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5433 ValID ID; 5434 if (FunctionNumber == -1) { 5435 ID.Kind = ValID::t_GlobalName; 5436 ID.StrVal = F.getName(); 5437 } else { 5438 ID.Kind = ValID::t_GlobalID; 5439 ID.UIntVal = FunctionNumber; 5440 } 5441 5442 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5443 if (Blocks == P.ForwardRefBlockAddresses.end()) 5444 return false; 5445 5446 for (const auto &I : Blocks->second) { 5447 const ValID &BBID = I.first; 5448 GlobalValue *GV = I.second; 5449 5450 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5451 "Expected local id or name"); 5452 BasicBlock *BB; 5453 if (BBID.Kind == ValID::t_LocalName) 5454 BB = GetBB(BBID.StrVal, BBID.Loc); 5455 else 5456 BB = GetBB(BBID.UIntVal, BBID.Loc); 5457 if (!BB) 5458 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5459 5460 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5461 GV->eraseFromParent(); 5462 } 5463 5464 P.ForwardRefBlockAddresses.erase(Blocks); 5465 return false; 5466 } 5467 5468 /// ParseFunctionBody 5469 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5470 bool LLParser::ParseFunctionBody(Function &Fn) { 5471 if (Lex.getKind() != lltok::lbrace) 5472 return TokError("expected '{' in function body"); 5473 Lex.Lex(); // eat the {. 5474 5475 int FunctionNumber = -1; 5476 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5477 5478 PerFunctionState PFS(*this, Fn, FunctionNumber); 5479 5480 // Resolve block addresses and allow basic blocks to be forward-declared 5481 // within this function. 5482 if (PFS.resolveForwardRefBlockAddresses()) 5483 return true; 5484 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5485 5486 // We need at least one basic block. 5487 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5488 return TokError("function body requires at least one basic block"); 5489 5490 while (Lex.getKind() != lltok::rbrace && 5491 Lex.getKind() != lltok::kw_uselistorder) 5492 if (ParseBasicBlock(PFS)) return true; 5493 5494 while (Lex.getKind() != lltok::rbrace) 5495 if (ParseUseListOrder(&PFS)) 5496 return true; 5497 5498 // Eat the }. 5499 Lex.Lex(); 5500 5501 // Verify function is ok. 5502 return PFS.FinishFunction(); 5503 } 5504 5505 /// ParseBasicBlock 5506 /// ::= (LabelStr|LabelID)? Instruction* 5507 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5508 // If this basic block starts out with a name, remember it. 5509 std::string Name; 5510 int NameID = -1; 5511 LocTy NameLoc = Lex.getLoc(); 5512 if (Lex.getKind() == lltok::LabelStr) { 5513 Name = Lex.getStrVal(); 5514 Lex.Lex(); 5515 } else if (Lex.getKind() == lltok::LabelID) { 5516 NameID = Lex.getUIntVal(); 5517 Lex.Lex(); 5518 } 5519 5520 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5521 if (!BB) 5522 return true; 5523 5524 std::string NameStr; 5525 5526 // Parse the instructions in this block until we get a terminator. 5527 Instruction *Inst; 5528 do { 5529 // This instruction may have three possibilities for a name: a) none 5530 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5531 LocTy NameLoc = Lex.getLoc(); 5532 int NameID = -1; 5533 NameStr = ""; 5534 5535 if (Lex.getKind() == lltok::LocalVarID) { 5536 NameID = Lex.getUIntVal(); 5537 Lex.Lex(); 5538 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5539 return true; 5540 } else if (Lex.getKind() == lltok::LocalVar) { 5541 NameStr = Lex.getStrVal(); 5542 Lex.Lex(); 5543 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5544 return true; 5545 } 5546 5547 switch (ParseInstruction(Inst, BB, PFS)) { 5548 default: llvm_unreachable("Unknown ParseInstruction result!"); 5549 case InstError: return true; 5550 case InstNormal: 5551 BB->getInstList().push_back(Inst); 5552 5553 // With a normal result, we check to see if the instruction is followed by 5554 // a comma and metadata. 5555 if (EatIfPresent(lltok::comma)) 5556 if (ParseInstructionMetadata(*Inst)) 5557 return true; 5558 break; 5559 case InstExtraComma: 5560 BB->getInstList().push_back(Inst); 5561 5562 // If the instruction parser ate an extra comma at the end of it, it 5563 // *must* be followed by metadata. 5564 if (ParseInstructionMetadata(*Inst)) 5565 return true; 5566 break; 5567 } 5568 5569 // Set the name on the instruction. 5570 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5571 } while (!Inst->isTerminator()); 5572 5573 return false; 5574 } 5575 5576 //===----------------------------------------------------------------------===// 5577 // Instruction Parsing. 5578 //===----------------------------------------------------------------------===// 5579 5580 /// ParseInstruction - Parse one of the many different instructions. 5581 /// 5582 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5583 PerFunctionState &PFS) { 5584 lltok::Kind Token = Lex.getKind(); 5585 if (Token == lltok::Eof) 5586 return TokError("found end of file when expecting more instructions"); 5587 LocTy Loc = Lex.getLoc(); 5588 unsigned KeywordVal = Lex.getUIntVal(); 5589 Lex.Lex(); // Eat the keyword. 5590 5591 switch (Token) { 5592 default: return Error(Loc, "expected instruction opcode"); 5593 // Terminator Instructions. 5594 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5595 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5596 case lltok::kw_br: return ParseBr(Inst, PFS); 5597 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5598 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5599 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5600 case lltok::kw_resume: return ParseResume(Inst, PFS); 5601 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5602 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5603 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5604 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5605 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5606 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5607 // Unary Operators. 5608 case lltok::kw_fneg: { 5609 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5610 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5611 if (Res != 0) 5612 return Res; 5613 if (FMF.any()) 5614 Inst->setFastMathFlags(FMF); 5615 return false; 5616 } 5617 // Binary Operators. 5618 case lltok::kw_add: 5619 case lltok::kw_sub: 5620 case lltok::kw_mul: 5621 case lltok::kw_shl: { 5622 bool NUW = EatIfPresent(lltok::kw_nuw); 5623 bool NSW = EatIfPresent(lltok::kw_nsw); 5624 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5625 5626 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5627 5628 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5629 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5630 return false; 5631 } 5632 case lltok::kw_fadd: 5633 case lltok::kw_fsub: 5634 case lltok::kw_fmul: 5635 case lltok::kw_fdiv: 5636 case lltok::kw_frem: { 5637 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5638 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5639 if (Res != 0) 5640 return Res; 5641 if (FMF.any()) 5642 Inst->setFastMathFlags(FMF); 5643 return 0; 5644 } 5645 5646 case lltok::kw_sdiv: 5647 case lltok::kw_udiv: 5648 case lltok::kw_lshr: 5649 case lltok::kw_ashr: { 5650 bool Exact = EatIfPresent(lltok::kw_exact); 5651 5652 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5653 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5654 return false; 5655 } 5656 5657 case lltok::kw_urem: 5658 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5659 case lltok::kw_and: 5660 case lltok::kw_or: 5661 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5662 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5663 case lltok::kw_fcmp: { 5664 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5665 int Res = ParseCompare(Inst, PFS, KeywordVal); 5666 if (Res != 0) 5667 return Res; 5668 if (FMF.any()) 5669 Inst->setFastMathFlags(FMF); 5670 return 0; 5671 } 5672 5673 // Casts. 5674 case lltok::kw_trunc: 5675 case lltok::kw_zext: 5676 case lltok::kw_sext: 5677 case lltok::kw_fptrunc: 5678 case lltok::kw_fpext: 5679 case lltok::kw_bitcast: 5680 case lltok::kw_addrspacecast: 5681 case lltok::kw_uitofp: 5682 case lltok::kw_sitofp: 5683 case lltok::kw_fptoui: 5684 case lltok::kw_fptosi: 5685 case lltok::kw_inttoptr: 5686 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5687 // Other. 5688 case lltok::kw_select: return ParseSelect(Inst, PFS); 5689 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5690 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5691 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5692 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5693 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5694 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5695 // Call. 5696 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5697 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5698 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5699 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5700 // Memory. 5701 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5702 case lltok::kw_load: return ParseLoad(Inst, PFS); 5703 case lltok::kw_store: return ParseStore(Inst, PFS); 5704 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5705 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5706 case lltok::kw_fence: return ParseFence(Inst, PFS); 5707 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5708 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5709 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5710 } 5711 } 5712 5713 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5714 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5715 if (Opc == Instruction::FCmp) { 5716 switch (Lex.getKind()) { 5717 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5718 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5719 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5720 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5721 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5722 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5723 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5724 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5725 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5726 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5727 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5728 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5729 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5730 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5731 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5732 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5733 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5734 } 5735 } else { 5736 switch (Lex.getKind()) { 5737 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5738 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5739 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5740 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5741 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5742 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5743 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5744 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5745 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5746 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5747 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5748 } 5749 } 5750 Lex.Lex(); 5751 return false; 5752 } 5753 5754 //===----------------------------------------------------------------------===// 5755 // Terminator Instructions. 5756 //===----------------------------------------------------------------------===// 5757 5758 /// ParseRet - Parse a return instruction. 5759 /// ::= 'ret' void (',' !dbg, !1)* 5760 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5761 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5762 PerFunctionState &PFS) { 5763 SMLoc TypeLoc = Lex.getLoc(); 5764 Type *Ty = nullptr; 5765 if (ParseType(Ty, true /*void allowed*/)) return true; 5766 5767 Type *ResType = PFS.getFunction().getReturnType(); 5768 5769 if (Ty->isVoidTy()) { 5770 if (!ResType->isVoidTy()) 5771 return Error(TypeLoc, "value doesn't match function result type '" + 5772 getTypeString(ResType) + "'"); 5773 5774 Inst = ReturnInst::Create(Context); 5775 return false; 5776 } 5777 5778 Value *RV; 5779 if (ParseValue(Ty, RV, PFS)) return true; 5780 5781 if (ResType != RV->getType()) 5782 return Error(TypeLoc, "value doesn't match function result type '" + 5783 getTypeString(ResType) + "'"); 5784 5785 Inst = ReturnInst::Create(Context, RV); 5786 return false; 5787 } 5788 5789 /// ParseBr 5790 /// ::= 'br' TypeAndValue 5791 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5792 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5793 LocTy Loc, Loc2; 5794 Value *Op0; 5795 BasicBlock *Op1, *Op2; 5796 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5797 5798 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5799 Inst = BranchInst::Create(BB); 5800 return false; 5801 } 5802 5803 if (Op0->getType() != Type::getInt1Ty(Context)) 5804 return Error(Loc, "branch condition must have 'i1' type"); 5805 5806 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5807 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5808 ParseToken(lltok::comma, "expected ',' after true destination") || 5809 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5810 return true; 5811 5812 Inst = BranchInst::Create(Op1, Op2, Op0); 5813 return false; 5814 } 5815 5816 /// ParseSwitch 5817 /// Instruction 5818 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5819 /// JumpTable 5820 /// ::= (TypeAndValue ',' TypeAndValue)* 5821 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5822 LocTy CondLoc, BBLoc; 5823 Value *Cond; 5824 BasicBlock *DefaultBB; 5825 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5826 ParseToken(lltok::comma, "expected ',' after switch condition") || 5827 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5828 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5829 return true; 5830 5831 if (!Cond->getType()->isIntegerTy()) 5832 return Error(CondLoc, "switch condition must have integer type"); 5833 5834 // Parse the jump table pairs. 5835 SmallPtrSet<Value*, 32> SeenCases; 5836 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5837 while (Lex.getKind() != lltok::rsquare) { 5838 Value *Constant; 5839 BasicBlock *DestBB; 5840 5841 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5842 ParseToken(lltok::comma, "expected ',' after case value") || 5843 ParseTypeAndBasicBlock(DestBB, PFS)) 5844 return true; 5845 5846 if (!SeenCases.insert(Constant).second) 5847 return Error(CondLoc, "duplicate case value in switch"); 5848 if (!isa<ConstantInt>(Constant)) 5849 return Error(CondLoc, "case value is not a constant integer"); 5850 5851 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5852 } 5853 5854 Lex.Lex(); // Eat the ']'. 5855 5856 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5857 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5858 SI->addCase(Table[i].first, Table[i].second); 5859 Inst = SI; 5860 return false; 5861 } 5862 5863 /// ParseIndirectBr 5864 /// Instruction 5865 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5866 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5867 LocTy AddrLoc; 5868 Value *Address; 5869 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5870 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5871 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5872 return true; 5873 5874 if (!Address->getType()->isPointerTy()) 5875 return Error(AddrLoc, "indirectbr address must have pointer type"); 5876 5877 // Parse the destination list. 5878 SmallVector<BasicBlock*, 16> DestList; 5879 5880 if (Lex.getKind() != lltok::rsquare) { 5881 BasicBlock *DestBB; 5882 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5883 return true; 5884 DestList.push_back(DestBB); 5885 5886 while (EatIfPresent(lltok::comma)) { 5887 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5888 return true; 5889 DestList.push_back(DestBB); 5890 } 5891 } 5892 5893 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5894 return true; 5895 5896 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5897 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5898 IBI->addDestination(DestList[i]); 5899 Inst = IBI; 5900 return false; 5901 } 5902 5903 /// ParseInvoke 5904 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5905 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5906 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5907 LocTy CallLoc = Lex.getLoc(); 5908 AttrBuilder RetAttrs, FnAttrs; 5909 std::vector<unsigned> FwdRefAttrGrps; 5910 LocTy NoBuiltinLoc; 5911 unsigned CC; 5912 unsigned InvokeAddrSpace; 5913 Type *RetType = nullptr; 5914 LocTy RetTypeLoc; 5915 ValID CalleeID; 5916 SmallVector<ParamInfo, 16> ArgList; 5917 SmallVector<OperandBundleDef, 2> BundleList; 5918 5919 BasicBlock *NormalBB, *UnwindBB; 5920 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5921 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5922 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5923 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5924 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5925 NoBuiltinLoc) || 5926 ParseOptionalOperandBundles(BundleList, PFS) || 5927 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5928 ParseTypeAndBasicBlock(NormalBB, PFS) || 5929 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5930 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5931 return true; 5932 5933 // If RetType is a non-function pointer type, then this is the short syntax 5934 // for the call, which means that RetType is just the return type. Infer the 5935 // rest of the function argument types from the arguments that are present. 5936 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5937 if (!Ty) { 5938 // Pull out the types of all of the arguments... 5939 std::vector<Type*> ParamTypes; 5940 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5941 ParamTypes.push_back(ArgList[i].V->getType()); 5942 5943 if (!FunctionType::isValidReturnType(RetType)) 5944 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5945 5946 Ty = FunctionType::get(RetType, ParamTypes, false); 5947 } 5948 5949 CalleeID.FTy = Ty; 5950 5951 // Look up the callee. 5952 Value *Callee; 5953 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5954 Callee, &PFS, /*IsCall=*/true)) 5955 return true; 5956 5957 // Set up the Attribute for the function. 5958 SmallVector<Value *, 8> Args; 5959 SmallVector<AttributeSet, 8> ArgAttrs; 5960 5961 // Loop through FunctionType's arguments and ensure they are specified 5962 // correctly. Also, gather any parameter attributes. 5963 FunctionType::param_iterator I = Ty->param_begin(); 5964 FunctionType::param_iterator E = Ty->param_end(); 5965 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5966 Type *ExpectedTy = nullptr; 5967 if (I != E) { 5968 ExpectedTy = *I++; 5969 } else if (!Ty->isVarArg()) { 5970 return Error(ArgList[i].Loc, "too many arguments specified"); 5971 } 5972 5973 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5974 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5975 getTypeString(ExpectedTy) + "'"); 5976 Args.push_back(ArgList[i].V); 5977 ArgAttrs.push_back(ArgList[i].Attrs); 5978 } 5979 5980 if (I != E) 5981 return Error(CallLoc, "not enough parameters specified for call"); 5982 5983 if (FnAttrs.hasAlignmentAttr()) 5984 return Error(CallLoc, "invoke instructions may not have an alignment"); 5985 5986 // Finish off the Attribute and check them 5987 AttributeList PAL = 5988 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5989 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5990 5991 InvokeInst *II = 5992 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5993 II->setCallingConv(CC); 5994 II->setAttributes(PAL); 5995 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5996 Inst = II; 5997 return false; 5998 } 5999 6000 /// ParseResume 6001 /// ::= 'resume' TypeAndValue 6002 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6003 Value *Exn; LocTy ExnLoc; 6004 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6005 return true; 6006 6007 ResumeInst *RI = ResumeInst::Create(Exn); 6008 Inst = RI; 6009 return false; 6010 } 6011 6012 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6013 PerFunctionState &PFS) { 6014 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6015 return true; 6016 6017 while (Lex.getKind() != lltok::rsquare) { 6018 // If this isn't the first argument, we need a comma. 6019 if (!Args.empty() && 6020 ParseToken(lltok::comma, "expected ',' in argument list")) 6021 return true; 6022 6023 // Parse the argument. 6024 LocTy ArgLoc; 6025 Type *ArgTy = nullptr; 6026 if (ParseType(ArgTy, ArgLoc)) 6027 return true; 6028 6029 Value *V; 6030 if (ArgTy->isMetadataTy()) { 6031 if (ParseMetadataAsValue(V, PFS)) 6032 return true; 6033 } else { 6034 if (ParseValue(ArgTy, V, PFS)) 6035 return true; 6036 } 6037 Args.push_back(V); 6038 } 6039 6040 Lex.Lex(); // Lex the ']'. 6041 return false; 6042 } 6043 6044 /// ParseCleanupRet 6045 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6046 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6047 Value *CleanupPad = nullptr; 6048 6049 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6050 return true; 6051 6052 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6053 return true; 6054 6055 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6056 return true; 6057 6058 BasicBlock *UnwindBB = nullptr; 6059 if (Lex.getKind() == lltok::kw_to) { 6060 Lex.Lex(); 6061 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6062 return true; 6063 } else { 6064 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6065 return true; 6066 } 6067 } 6068 6069 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6070 return false; 6071 } 6072 6073 /// ParseCatchRet 6074 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6075 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6076 Value *CatchPad = nullptr; 6077 6078 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6079 return true; 6080 6081 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6082 return true; 6083 6084 BasicBlock *BB; 6085 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6086 ParseTypeAndBasicBlock(BB, PFS)) 6087 return true; 6088 6089 Inst = CatchReturnInst::Create(CatchPad, BB); 6090 return false; 6091 } 6092 6093 /// ParseCatchSwitch 6094 /// ::= 'catchswitch' within Parent 6095 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6096 Value *ParentPad; 6097 6098 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6099 return true; 6100 6101 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6102 Lex.getKind() != lltok::LocalVarID) 6103 return TokError("expected scope value for catchswitch"); 6104 6105 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6106 return true; 6107 6108 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6109 return true; 6110 6111 SmallVector<BasicBlock *, 32> Table; 6112 do { 6113 BasicBlock *DestBB; 6114 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6115 return true; 6116 Table.push_back(DestBB); 6117 } while (EatIfPresent(lltok::comma)); 6118 6119 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6120 return true; 6121 6122 if (ParseToken(lltok::kw_unwind, 6123 "expected 'unwind' after catchswitch scope")) 6124 return true; 6125 6126 BasicBlock *UnwindBB = nullptr; 6127 if (EatIfPresent(lltok::kw_to)) { 6128 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6129 return true; 6130 } else { 6131 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6132 return true; 6133 } 6134 6135 auto *CatchSwitch = 6136 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6137 for (BasicBlock *DestBB : Table) 6138 CatchSwitch->addHandler(DestBB); 6139 Inst = CatchSwitch; 6140 return false; 6141 } 6142 6143 /// ParseCatchPad 6144 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6145 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6146 Value *CatchSwitch = nullptr; 6147 6148 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6149 return true; 6150 6151 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6152 return TokError("expected scope value for catchpad"); 6153 6154 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6155 return true; 6156 6157 SmallVector<Value *, 8> Args; 6158 if (ParseExceptionArgs(Args, PFS)) 6159 return true; 6160 6161 Inst = CatchPadInst::Create(CatchSwitch, Args); 6162 return false; 6163 } 6164 6165 /// ParseCleanupPad 6166 /// ::= 'cleanuppad' within Parent ParamList 6167 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6168 Value *ParentPad = nullptr; 6169 6170 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6171 return true; 6172 6173 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6174 Lex.getKind() != lltok::LocalVarID) 6175 return TokError("expected scope value for cleanuppad"); 6176 6177 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6178 return true; 6179 6180 SmallVector<Value *, 8> Args; 6181 if (ParseExceptionArgs(Args, PFS)) 6182 return true; 6183 6184 Inst = CleanupPadInst::Create(ParentPad, Args); 6185 return false; 6186 } 6187 6188 //===----------------------------------------------------------------------===// 6189 // Unary Operators. 6190 //===----------------------------------------------------------------------===// 6191 6192 /// ParseUnaryOp 6193 /// ::= UnaryOp TypeAndValue ',' Value 6194 /// 6195 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6196 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6197 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6198 unsigned Opc, unsigned OperandType) { 6199 LocTy Loc; Value *LHS; 6200 if (ParseTypeAndValue(LHS, Loc, PFS)) 6201 return true; 6202 6203 bool Valid; 6204 switch (OperandType) { 6205 default: llvm_unreachable("Unknown operand type!"); 6206 case 0: // int or FP. 6207 Valid = LHS->getType()->isIntOrIntVectorTy() || 6208 LHS->getType()->isFPOrFPVectorTy(); 6209 break; 6210 case 1: 6211 Valid = LHS->getType()->isIntOrIntVectorTy(); 6212 break; 6213 case 2: 6214 Valid = LHS->getType()->isFPOrFPVectorTy(); 6215 break; 6216 } 6217 6218 if (!Valid) 6219 return Error(Loc, "invalid operand type for instruction"); 6220 6221 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6222 return false; 6223 } 6224 6225 /// ParseCallBr 6226 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6227 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6228 /// '[' LabelList ']' 6229 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6230 LocTy CallLoc = Lex.getLoc(); 6231 AttrBuilder RetAttrs, FnAttrs; 6232 std::vector<unsigned> FwdRefAttrGrps; 6233 LocTy NoBuiltinLoc; 6234 unsigned CC; 6235 Type *RetType = nullptr; 6236 LocTy RetTypeLoc; 6237 ValID CalleeID; 6238 SmallVector<ParamInfo, 16> ArgList; 6239 SmallVector<OperandBundleDef, 2> BundleList; 6240 6241 BasicBlock *DefaultDest; 6242 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6243 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6244 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6245 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6246 NoBuiltinLoc) || 6247 ParseOptionalOperandBundles(BundleList, PFS) || 6248 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6249 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6250 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6251 return true; 6252 6253 // Parse the destination list. 6254 SmallVector<BasicBlock *, 16> IndirectDests; 6255 6256 if (Lex.getKind() != lltok::rsquare) { 6257 BasicBlock *DestBB; 6258 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6259 return true; 6260 IndirectDests.push_back(DestBB); 6261 6262 while (EatIfPresent(lltok::comma)) { 6263 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6264 return true; 6265 IndirectDests.push_back(DestBB); 6266 } 6267 } 6268 6269 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6270 return true; 6271 6272 // If RetType is a non-function pointer type, then this is the short syntax 6273 // for the call, which means that RetType is just the return type. Infer the 6274 // rest of the function argument types from the arguments that are present. 6275 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6276 if (!Ty) { 6277 // Pull out the types of all of the arguments... 6278 std::vector<Type *> ParamTypes; 6279 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6280 ParamTypes.push_back(ArgList[i].V->getType()); 6281 6282 if (!FunctionType::isValidReturnType(RetType)) 6283 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6284 6285 Ty = FunctionType::get(RetType, ParamTypes, false); 6286 } 6287 6288 CalleeID.FTy = Ty; 6289 6290 // Look up the callee. 6291 Value *Callee; 6292 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6293 /*IsCall=*/true)) 6294 return true; 6295 6296 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6297 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6298 6299 // Set up the Attribute for the function. 6300 SmallVector<Value *, 8> Args; 6301 SmallVector<AttributeSet, 8> ArgAttrs; 6302 6303 // Loop through FunctionType's arguments and ensure they are specified 6304 // correctly. Also, gather any parameter attributes. 6305 FunctionType::param_iterator I = Ty->param_begin(); 6306 FunctionType::param_iterator E = Ty->param_end(); 6307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6308 Type *ExpectedTy = nullptr; 6309 if (I != E) { 6310 ExpectedTy = *I++; 6311 } else if (!Ty->isVarArg()) { 6312 return Error(ArgList[i].Loc, "too many arguments specified"); 6313 } 6314 6315 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6316 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6317 getTypeString(ExpectedTy) + "'"); 6318 Args.push_back(ArgList[i].V); 6319 ArgAttrs.push_back(ArgList[i].Attrs); 6320 } 6321 6322 if (I != E) 6323 return Error(CallLoc, "not enough parameters specified for call"); 6324 6325 if (FnAttrs.hasAlignmentAttr()) 6326 return Error(CallLoc, "callbr instructions may not have an alignment"); 6327 6328 // Finish off the Attribute and check them 6329 AttributeList PAL = 6330 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6331 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6332 6333 CallBrInst *CBI = 6334 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6335 BundleList); 6336 CBI->setCallingConv(CC); 6337 CBI->setAttributes(PAL); 6338 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6339 Inst = CBI; 6340 return false; 6341 } 6342 6343 //===----------------------------------------------------------------------===// 6344 // Binary Operators. 6345 //===----------------------------------------------------------------------===// 6346 6347 /// ParseArithmetic 6348 /// ::= ArithmeticOps TypeAndValue ',' Value 6349 /// 6350 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6351 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6352 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6353 unsigned Opc, unsigned OperandType) { 6354 LocTy Loc; Value *LHS, *RHS; 6355 if (ParseTypeAndValue(LHS, Loc, PFS) || 6356 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6357 ParseValue(LHS->getType(), RHS, PFS)) 6358 return true; 6359 6360 bool Valid; 6361 switch (OperandType) { 6362 default: llvm_unreachable("Unknown operand type!"); 6363 case 0: // int or FP. 6364 Valid = LHS->getType()->isIntOrIntVectorTy() || 6365 LHS->getType()->isFPOrFPVectorTy(); 6366 break; 6367 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6368 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6369 } 6370 6371 if (!Valid) 6372 return Error(Loc, "invalid operand type for instruction"); 6373 6374 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6375 return false; 6376 } 6377 6378 /// ParseLogical 6379 /// ::= ArithmeticOps TypeAndValue ',' Value { 6380 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6381 unsigned Opc) { 6382 LocTy Loc; Value *LHS, *RHS; 6383 if (ParseTypeAndValue(LHS, Loc, PFS) || 6384 ParseToken(lltok::comma, "expected ',' in logical operation") || 6385 ParseValue(LHS->getType(), RHS, PFS)) 6386 return true; 6387 6388 if (!LHS->getType()->isIntOrIntVectorTy()) 6389 return Error(Loc,"instruction requires integer or integer vector operands"); 6390 6391 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6392 return false; 6393 } 6394 6395 /// ParseCompare 6396 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6397 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6398 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6399 unsigned Opc) { 6400 // Parse the integer/fp comparison predicate. 6401 LocTy Loc; 6402 unsigned Pred; 6403 Value *LHS, *RHS; 6404 if (ParseCmpPredicate(Pred, Opc) || 6405 ParseTypeAndValue(LHS, Loc, PFS) || 6406 ParseToken(lltok::comma, "expected ',' after compare value") || 6407 ParseValue(LHS->getType(), RHS, PFS)) 6408 return true; 6409 6410 if (Opc == Instruction::FCmp) { 6411 if (!LHS->getType()->isFPOrFPVectorTy()) 6412 return Error(Loc, "fcmp requires floating point operands"); 6413 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6414 } else { 6415 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6416 if (!LHS->getType()->isIntOrIntVectorTy() && 6417 !LHS->getType()->isPtrOrPtrVectorTy()) 6418 return Error(Loc, "icmp requires integer operands"); 6419 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6420 } 6421 return false; 6422 } 6423 6424 //===----------------------------------------------------------------------===// 6425 // Other Instructions. 6426 //===----------------------------------------------------------------------===// 6427 6428 6429 /// ParseCast 6430 /// ::= CastOpc TypeAndValue 'to' Type 6431 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6432 unsigned Opc) { 6433 LocTy Loc; 6434 Value *Op; 6435 Type *DestTy = nullptr; 6436 if (ParseTypeAndValue(Op, Loc, PFS) || 6437 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6438 ParseType(DestTy)) 6439 return true; 6440 6441 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6442 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6443 return Error(Loc, "invalid cast opcode for cast from '" + 6444 getTypeString(Op->getType()) + "' to '" + 6445 getTypeString(DestTy) + "'"); 6446 } 6447 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6448 return false; 6449 } 6450 6451 /// ParseSelect 6452 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6453 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6454 LocTy Loc; 6455 Value *Op0, *Op1, *Op2; 6456 if (ParseTypeAndValue(Op0, Loc, PFS) || 6457 ParseToken(lltok::comma, "expected ',' after select condition") || 6458 ParseTypeAndValue(Op1, PFS) || 6459 ParseToken(lltok::comma, "expected ',' after select value") || 6460 ParseTypeAndValue(Op2, PFS)) 6461 return true; 6462 6463 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6464 return Error(Loc, Reason); 6465 6466 Inst = SelectInst::Create(Op0, Op1, Op2); 6467 return false; 6468 } 6469 6470 /// ParseVA_Arg 6471 /// ::= 'va_arg' TypeAndValue ',' Type 6472 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6473 Value *Op; 6474 Type *EltTy = nullptr; 6475 LocTy TypeLoc; 6476 if (ParseTypeAndValue(Op, PFS) || 6477 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6478 ParseType(EltTy, TypeLoc)) 6479 return true; 6480 6481 if (!EltTy->isFirstClassType()) 6482 return Error(TypeLoc, "va_arg requires operand with first class type"); 6483 6484 Inst = new VAArgInst(Op, EltTy); 6485 return false; 6486 } 6487 6488 /// ParseExtractElement 6489 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6490 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6491 LocTy Loc; 6492 Value *Op0, *Op1; 6493 if (ParseTypeAndValue(Op0, Loc, PFS) || 6494 ParseToken(lltok::comma, "expected ',' after extract value") || 6495 ParseTypeAndValue(Op1, PFS)) 6496 return true; 6497 6498 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6499 return Error(Loc, "invalid extractelement operands"); 6500 6501 Inst = ExtractElementInst::Create(Op0, Op1); 6502 return false; 6503 } 6504 6505 /// ParseInsertElement 6506 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6507 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6508 LocTy Loc; 6509 Value *Op0, *Op1, *Op2; 6510 if (ParseTypeAndValue(Op0, Loc, PFS) || 6511 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6512 ParseTypeAndValue(Op1, PFS) || 6513 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6514 ParseTypeAndValue(Op2, PFS)) 6515 return true; 6516 6517 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6518 return Error(Loc, "invalid insertelement operands"); 6519 6520 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6521 return false; 6522 } 6523 6524 /// ParseShuffleVector 6525 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6526 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6527 LocTy Loc; 6528 Value *Op0, *Op1, *Op2; 6529 if (ParseTypeAndValue(Op0, Loc, PFS) || 6530 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6531 ParseTypeAndValue(Op1, PFS) || 6532 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6533 ParseTypeAndValue(Op2, PFS)) 6534 return true; 6535 6536 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6537 return Error(Loc, "invalid shufflevector operands"); 6538 6539 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6540 return false; 6541 } 6542 6543 /// ParsePHI 6544 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6545 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6546 Type *Ty = nullptr; LocTy TypeLoc; 6547 Value *Op0, *Op1; 6548 6549 if (ParseType(Ty, TypeLoc) || 6550 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6551 ParseValue(Ty, Op0, PFS) || 6552 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6553 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6554 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6555 return true; 6556 6557 bool AteExtraComma = false; 6558 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6559 6560 while (true) { 6561 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6562 6563 if (!EatIfPresent(lltok::comma)) 6564 break; 6565 6566 if (Lex.getKind() == lltok::MetadataVar) { 6567 AteExtraComma = true; 6568 break; 6569 } 6570 6571 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6572 ParseValue(Ty, Op0, PFS) || 6573 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6574 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6575 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6576 return true; 6577 } 6578 6579 if (!Ty->isFirstClassType()) 6580 return Error(TypeLoc, "phi node must have first class type"); 6581 6582 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6583 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6584 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6585 Inst = PN; 6586 return AteExtraComma ? InstExtraComma : InstNormal; 6587 } 6588 6589 /// ParseLandingPad 6590 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6591 /// Clause 6592 /// ::= 'catch' TypeAndValue 6593 /// ::= 'filter' 6594 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6595 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6596 Type *Ty = nullptr; LocTy TyLoc; 6597 6598 if (ParseType(Ty, TyLoc)) 6599 return true; 6600 6601 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6602 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6603 6604 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6605 LandingPadInst::ClauseType CT; 6606 if (EatIfPresent(lltok::kw_catch)) 6607 CT = LandingPadInst::Catch; 6608 else if (EatIfPresent(lltok::kw_filter)) 6609 CT = LandingPadInst::Filter; 6610 else 6611 return TokError("expected 'catch' or 'filter' clause type"); 6612 6613 Value *V; 6614 LocTy VLoc; 6615 if (ParseTypeAndValue(V, VLoc, PFS)) 6616 return true; 6617 6618 // A 'catch' type expects a non-array constant. A filter clause expects an 6619 // array constant. 6620 if (CT == LandingPadInst::Catch) { 6621 if (isa<ArrayType>(V->getType())) 6622 Error(VLoc, "'catch' clause has an invalid type"); 6623 } else { 6624 if (!isa<ArrayType>(V->getType())) 6625 Error(VLoc, "'filter' clause has an invalid type"); 6626 } 6627 6628 Constant *CV = dyn_cast<Constant>(V); 6629 if (!CV) 6630 return Error(VLoc, "clause argument must be a constant"); 6631 LP->addClause(CV); 6632 } 6633 6634 Inst = LP.release(); 6635 return false; 6636 } 6637 6638 /// ParseCall 6639 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6640 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6641 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6642 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6643 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6644 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6645 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6646 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6648 CallInst::TailCallKind TCK) { 6649 AttrBuilder RetAttrs, FnAttrs; 6650 std::vector<unsigned> FwdRefAttrGrps; 6651 LocTy BuiltinLoc; 6652 unsigned CallAddrSpace; 6653 unsigned CC; 6654 Type *RetType = nullptr; 6655 LocTy RetTypeLoc; 6656 ValID CalleeID; 6657 SmallVector<ParamInfo, 16> ArgList; 6658 SmallVector<OperandBundleDef, 2> BundleList; 6659 LocTy CallLoc = Lex.getLoc(); 6660 6661 if (TCK != CallInst::TCK_None && 6662 ParseToken(lltok::kw_call, 6663 "expected 'tail call', 'musttail call', or 'notail call'")) 6664 return true; 6665 6666 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6667 6668 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6669 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6670 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6671 ParseValID(CalleeID) || 6672 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6673 PFS.getFunction().isVarArg()) || 6674 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6675 ParseOptionalOperandBundles(BundleList, PFS)) 6676 return true; 6677 6678 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6679 return Error(CallLoc, "fast-math-flags specified for call without " 6680 "floating-point scalar or vector return type"); 6681 6682 // If RetType is a non-function pointer type, then this is the short syntax 6683 // for the call, which means that RetType is just the return type. Infer the 6684 // rest of the function argument types from the arguments that are present. 6685 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6686 if (!Ty) { 6687 // Pull out the types of all of the arguments... 6688 std::vector<Type*> ParamTypes; 6689 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6690 ParamTypes.push_back(ArgList[i].V->getType()); 6691 6692 if (!FunctionType::isValidReturnType(RetType)) 6693 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6694 6695 Ty = FunctionType::get(RetType, ParamTypes, false); 6696 } 6697 6698 CalleeID.FTy = Ty; 6699 6700 // Look up the callee. 6701 Value *Callee; 6702 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6703 &PFS, /*IsCall=*/true)) 6704 return true; 6705 6706 // Set up the Attribute for the function. 6707 SmallVector<AttributeSet, 8> Attrs; 6708 6709 SmallVector<Value*, 8> Args; 6710 6711 // Loop through FunctionType's arguments and ensure they are specified 6712 // correctly. Also, gather any parameter attributes. 6713 FunctionType::param_iterator I = Ty->param_begin(); 6714 FunctionType::param_iterator E = Ty->param_end(); 6715 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6716 Type *ExpectedTy = nullptr; 6717 if (I != E) { 6718 ExpectedTy = *I++; 6719 } else if (!Ty->isVarArg()) { 6720 return Error(ArgList[i].Loc, "too many arguments specified"); 6721 } 6722 6723 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6724 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6725 getTypeString(ExpectedTy) + "'"); 6726 Args.push_back(ArgList[i].V); 6727 Attrs.push_back(ArgList[i].Attrs); 6728 } 6729 6730 if (I != E) 6731 return Error(CallLoc, "not enough parameters specified for call"); 6732 6733 if (FnAttrs.hasAlignmentAttr()) 6734 return Error(CallLoc, "call instructions may not have an alignment"); 6735 6736 // Finish off the Attribute and check them 6737 AttributeList PAL = 6738 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6739 AttributeSet::get(Context, RetAttrs), Attrs); 6740 6741 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6742 CI->setTailCallKind(TCK); 6743 CI->setCallingConv(CC); 6744 if (FMF.any()) 6745 CI->setFastMathFlags(FMF); 6746 CI->setAttributes(PAL); 6747 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6748 Inst = CI; 6749 return false; 6750 } 6751 6752 //===----------------------------------------------------------------------===// 6753 // Memory Instructions. 6754 //===----------------------------------------------------------------------===// 6755 6756 /// ParseAlloc 6757 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6758 /// (',' 'align' i32)? (',', 'addrspace(n))? 6759 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6760 Value *Size = nullptr; 6761 LocTy SizeLoc, TyLoc, ASLoc; 6762 unsigned Alignment = 0; 6763 unsigned AddrSpace = 0; 6764 Type *Ty = nullptr; 6765 6766 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6767 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6768 6769 if (ParseType(Ty, TyLoc)) return true; 6770 6771 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6772 return Error(TyLoc, "invalid type for alloca"); 6773 6774 bool AteExtraComma = false; 6775 if (EatIfPresent(lltok::comma)) { 6776 if (Lex.getKind() == lltok::kw_align) { 6777 if (ParseOptionalAlignment(Alignment)) 6778 return true; 6779 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6780 return true; 6781 } else if (Lex.getKind() == lltok::kw_addrspace) { 6782 ASLoc = Lex.getLoc(); 6783 if (ParseOptionalAddrSpace(AddrSpace)) 6784 return true; 6785 } else if (Lex.getKind() == lltok::MetadataVar) { 6786 AteExtraComma = true; 6787 } else { 6788 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6789 return true; 6790 if (EatIfPresent(lltok::comma)) { 6791 if (Lex.getKind() == lltok::kw_align) { 6792 if (ParseOptionalAlignment(Alignment)) 6793 return true; 6794 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6795 return true; 6796 } else if (Lex.getKind() == lltok::kw_addrspace) { 6797 ASLoc = Lex.getLoc(); 6798 if (ParseOptionalAddrSpace(AddrSpace)) 6799 return true; 6800 } else if (Lex.getKind() == lltok::MetadataVar) { 6801 AteExtraComma = true; 6802 } 6803 } 6804 } 6805 } 6806 6807 if (Size && !Size->getType()->isIntegerTy()) 6808 return Error(SizeLoc, "element count must have integer type"); 6809 6810 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6811 AI->setUsedWithInAlloca(IsInAlloca); 6812 AI->setSwiftError(IsSwiftError); 6813 Inst = AI; 6814 return AteExtraComma ? InstExtraComma : InstNormal; 6815 } 6816 6817 /// ParseLoad 6818 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6819 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6820 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6821 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6822 Value *Val; LocTy Loc; 6823 unsigned Alignment = 0; 6824 bool AteExtraComma = false; 6825 bool isAtomic = false; 6826 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6827 SyncScope::ID SSID = SyncScope::System; 6828 6829 if (Lex.getKind() == lltok::kw_atomic) { 6830 isAtomic = true; 6831 Lex.Lex(); 6832 } 6833 6834 bool isVolatile = false; 6835 if (Lex.getKind() == lltok::kw_volatile) { 6836 isVolatile = true; 6837 Lex.Lex(); 6838 } 6839 6840 Type *Ty; 6841 LocTy ExplicitTypeLoc = Lex.getLoc(); 6842 if (ParseType(Ty) || 6843 ParseToken(lltok::comma, "expected comma after load's type") || 6844 ParseTypeAndValue(Val, Loc, PFS) || 6845 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6846 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6847 return true; 6848 6849 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6850 return Error(Loc, "load operand must be a pointer to a first class type"); 6851 if (isAtomic && !Alignment) 6852 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6853 if (Ordering == AtomicOrdering::Release || 6854 Ordering == AtomicOrdering::AcquireRelease) 6855 return Error(Loc, "atomic load cannot use Release ordering"); 6856 6857 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6858 return Error(ExplicitTypeLoc, 6859 "explicit pointee type doesn't match operand's pointee type"); 6860 6861 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6862 return AteExtraComma ? InstExtraComma : InstNormal; 6863 } 6864 6865 /// ParseStore 6866 6867 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6868 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6869 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6870 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6871 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6872 unsigned Alignment = 0; 6873 bool AteExtraComma = false; 6874 bool isAtomic = false; 6875 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6876 SyncScope::ID SSID = SyncScope::System; 6877 6878 if (Lex.getKind() == lltok::kw_atomic) { 6879 isAtomic = true; 6880 Lex.Lex(); 6881 } 6882 6883 bool isVolatile = false; 6884 if (Lex.getKind() == lltok::kw_volatile) { 6885 isVolatile = true; 6886 Lex.Lex(); 6887 } 6888 6889 if (ParseTypeAndValue(Val, Loc, PFS) || 6890 ParseToken(lltok::comma, "expected ',' after store operand") || 6891 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6892 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6893 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6894 return true; 6895 6896 if (!Ptr->getType()->isPointerTy()) 6897 return Error(PtrLoc, "store operand must be a pointer"); 6898 if (!Val->getType()->isFirstClassType()) 6899 return Error(Loc, "store operand must be a first class value"); 6900 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6901 return Error(Loc, "stored value and pointer type do not match"); 6902 if (isAtomic && !Alignment) 6903 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6904 if (Ordering == AtomicOrdering::Acquire || 6905 Ordering == AtomicOrdering::AcquireRelease) 6906 return Error(Loc, "atomic store cannot use Acquire ordering"); 6907 6908 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6909 return AteExtraComma ? InstExtraComma : InstNormal; 6910 } 6911 6912 /// ParseCmpXchg 6913 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6914 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6915 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6916 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6917 bool AteExtraComma = false; 6918 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6919 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6920 SyncScope::ID SSID = SyncScope::System; 6921 bool isVolatile = false; 6922 bool isWeak = false; 6923 6924 if (EatIfPresent(lltok::kw_weak)) 6925 isWeak = true; 6926 6927 if (EatIfPresent(lltok::kw_volatile)) 6928 isVolatile = true; 6929 6930 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6931 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6932 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6933 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6934 ParseTypeAndValue(New, NewLoc, PFS) || 6935 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6936 ParseOrdering(FailureOrdering)) 6937 return true; 6938 6939 if (SuccessOrdering == AtomicOrdering::Unordered || 6940 FailureOrdering == AtomicOrdering::Unordered) 6941 return TokError("cmpxchg cannot be unordered"); 6942 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6943 return TokError("cmpxchg failure argument shall be no stronger than the " 6944 "success argument"); 6945 if (FailureOrdering == AtomicOrdering::Release || 6946 FailureOrdering == AtomicOrdering::AcquireRelease) 6947 return TokError( 6948 "cmpxchg failure ordering cannot include release semantics"); 6949 if (!Ptr->getType()->isPointerTy()) 6950 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6951 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6952 return Error(CmpLoc, "compare value and pointer type do not match"); 6953 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6954 return Error(NewLoc, "new value and pointer type do not match"); 6955 if (!New->getType()->isFirstClassType()) 6956 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6957 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6958 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6959 CXI->setVolatile(isVolatile); 6960 CXI->setWeak(isWeak); 6961 Inst = CXI; 6962 return AteExtraComma ? InstExtraComma : InstNormal; 6963 } 6964 6965 /// ParseAtomicRMW 6966 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6967 /// 'singlethread'? AtomicOrdering 6968 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6969 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6970 bool AteExtraComma = false; 6971 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6972 SyncScope::ID SSID = SyncScope::System; 6973 bool isVolatile = false; 6974 bool IsFP = false; 6975 AtomicRMWInst::BinOp Operation; 6976 6977 if (EatIfPresent(lltok::kw_volatile)) 6978 isVolatile = true; 6979 6980 switch (Lex.getKind()) { 6981 default: return TokError("expected binary operation in atomicrmw"); 6982 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6983 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6984 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6985 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6986 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6987 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6988 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6989 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6990 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6991 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6992 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6993 case lltok::kw_fadd: 6994 Operation = AtomicRMWInst::FAdd; 6995 IsFP = true; 6996 break; 6997 case lltok::kw_fsub: 6998 Operation = AtomicRMWInst::FSub; 6999 IsFP = true; 7000 break; 7001 } 7002 Lex.Lex(); // Eat the operation. 7003 7004 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7005 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7006 ParseTypeAndValue(Val, ValLoc, PFS) || 7007 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7008 return true; 7009 7010 if (Ordering == AtomicOrdering::Unordered) 7011 return TokError("atomicrmw cannot be unordered"); 7012 if (!Ptr->getType()->isPointerTy()) 7013 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7014 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7015 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7016 7017 if (Operation == AtomicRMWInst::Xchg) { 7018 if (!Val->getType()->isIntegerTy() && 7019 !Val->getType()->isFloatingPointTy()) { 7020 return Error(ValLoc, "atomicrmw " + 7021 AtomicRMWInst::getOperationName(Operation) + 7022 " operand must be an integer or floating point type"); 7023 } 7024 } else if (IsFP) { 7025 if (!Val->getType()->isFloatingPointTy()) { 7026 return Error(ValLoc, "atomicrmw " + 7027 AtomicRMWInst::getOperationName(Operation) + 7028 " operand must be a floating point type"); 7029 } 7030 } else { 7031 if (!Val->getType()->isIntegerTy()) { 7032 return Error(ValLoc, "atomicrmw " + 7033 AtomicRMWInst::getOperationName(Operation) + 7034 " operand must be an integer"); 7035 } 7036 } 7037 7038 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7039 if (Size < 8 || (Size & (Size - 1))) 7040 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7041 " integer"); 7042 7043 AtomicRMWInst *RMWI = 7044 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7045 RMWI->setVolatile(isVolatile); 7046 Inst = RMWI; 7047 return AteExtraComma ? InstExtraComma : InstNormal; 7048 } 7049 7050 /// ParseFence 7051 /// ::= 'fence' 'singlethread'? AtomicOrdering 7052 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7053 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7054 SyncScope::ID SSID = SyncScope::System; 7055 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7056 return true; 7057 7058 if (Ordering == AtomicOrdering::Unordered) 7059 return TokError("fence cannot be unordered"); 7060 if (Ordering == AtomicOrdering::Monotonic) 7061 return TokError("fence cannot be monotonic"); 7062 7063 Inst = new FenceInst(Context, Ordering, SSID); 7064 return InstNormal; 7065 } 7066 7067 /// ParseGetElementPtr 7068 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7069 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7070 Value *Ptr = nullptr; 7071 Value *Val = nullptr; 7072 LocTy Loc, EltLoc; 7073 7074 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7075 7076 Type *Ty = nullptr; 7077 LocTy ExplicitTypeLoc = Lex.getLoc(); 7078 if (ParseType(Ty) || 7079 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7080 ParseTypeAndValue(Ptr, Loc, PFS)) 7081 return true; 7082 7083 Type *BaseType = Ptr->getType(); 7084 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7085 if (!BasePointerType) 7086 return Error(Loc, "base of getelementptr must be a pointer"); 7087 7088 if (Ty != BasePointerType->getElementType()) 7089 return Error(ExplicitTypeLoc, 7090 "explicit pointee type doesn't match operand's pointee type"); 7091 7092 SmallVector<Value*, 16> Indices; 7093 bool AteExtraComma = false; 7094 // GEP returns a vector of pointers if at least one of parameters is a vector. 7095 // All vector parameters should have the same vector width. 7096 unsigned GEPWidth = BaseType->isVectorTy() ? 7097 BaseType->getVectorNumElements() : 0; 7098 7099 while (EatIfPresent(lltok::comma)) { 7100 if (Lex.getKind() == lltok::MetadataVar) { 7101 AteExtraComma = true; 7102 break; 7103 } 7104 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7105 if (!Val->getType()->isIntOrIntVectorTy()) 7106 return Error(EltLoc, "getelementptr index must be an integer"); 7107 7108 if (Val->getType()->isVectorTy()) { 7109 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7110 if (GEPWidth && GEPWidth != ValNumEl) 7111 return Error(EltLoc, 7112 "getelementptr vector index has a wrong number of elements"); 7113 GEPWidth = ValNumEl; 7114 } 7115 Indices.push_back(Val); 7116 } 7117 7118 SmallPtrSet<Type*, 4> Visited; 7119 if (!Indices.empty() && !Ty->isSized(&Visited)) 7120 return Error(Loc, "base element of getelementptr must be sized"); 7121 7122 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7123 return Error(Loc, "invalid getelementptr indices"); 7124 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7125 if (InBounds) 7126 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7127 return AteExtraComma ? InstExtraComma : InstNormal; 7128 } 7129 7130 /// ParseExtractValue 7131 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7132 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7133 Value *Val; LocTy Loc; 7134 SmallVector<unsigned, 4> Indices; 7135 bool AteExtraComma; 7136 if (ParseTypeAndValue(Val, Loc, PFS) || 7137 ParseIndexList(Indices, AteExtraComma)) 7138 return true; 7139 7140 if (!Val->getType()->isAggregateType()) 7141 return Error(Loc, "extractvalue operand must be aggregate type"); 7142 7143 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7144 return Error(Loc, "invalid indices for extractvalue"); 7145 Inst = ExtractValueInst::Create(Val, Indices); 7146 return AteExtraComma ? InstExtraComma : InstNormal; 7147 } 7148 7149 /// ParseInsertValue 7150 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7151 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7152 Value *Val0, *Val1; LocTy Loc0, Loc1; 7153 SmallVector<unsigned, 4> Indices; 7154 bool AteExtraComma; 7155 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7156 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7157 ParseTypeAndValue(Val1, Loc1, PFS) || 7158 ParseIndexList(Indices, AteExtraComma)) 7159 return true; 7160 7161 if (!Val0->getType()->isAggregateType()) 7162 return Error(Loc0, "insertvalue operand must be aggregate type"); 7163 7164 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7165 if (!IndexedType) 7166 return Error(Loc0, "invalid indices for insertvalue"); 7167 if (IndexedType != Val1->getType()) 7168 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7169 getTypeString(Val1->getType()) + "' instead of '" + 7170 getTypeString(IndexedType) + "'"); 7171 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7172 return AteExtraComma ? InstExtraComma : InstNormal; 7173 } 7174 7175 //===----------------------------------------------------------------------===// 7176 // Embedded metadata. 7177 //===----------------------------------------------------------------------===// 7178 7179 /// ParseMDNodeVector 7180 /// ::= { Element (',' Element)* } 7181 /// Element 7182 /// ::= 'null' | TypeAndValue 7183 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7184 if (ParseToken(lltok::lbrace, "expected '{' here")) 7185 return true; 7186 7187 // Check for an empty list. 7188 if (EatIfPresent(lltok::rbrace)) 7189 return false; 7190 7191 do { 7192 // Null is a special case since it is typeless. 7193 if (EatIfPresent(lltok::kw_null)) { 7194 Elts.push_back(nullptr); 7195 continue; 7196 } 7197 7198 Metadata *MD; 7199 if (ParseMetadata(MD, nullptr)) 7200 return true; 7201 Elts.push_back(MD); 7202 } while (EatIfPresent(lltok::comma)); 7203 7204 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7205 } 7206 7207 //===----------------------------------------------------------------------===// 7208 // Use-list order directives. 7209 //===----------------------------------------------------------------------===// 7210 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7211 SMLoc Loc) { 7212 if (V->use_empty()) 7213 return Error(Loc, "value has no uses"); 7214 7215 unsigned NumUses = 0; 7216 SmallDenseMap<const Use *, unsigned, 16> Order; 7217 for (const Use &U : V->uses()) { 7218 if (++NumUses > Indexes.size()) 7219 break; 7220 Order[&U] = Indexes[NumUses - 1]; 7221 } 7222 if (NumUses < 2) 7223 return Error(Loc, "value only has one use"); 7224 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7225 return Error(Loc, 7226 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7227 7228 V->sortUseList([&](const Use &L, const Use &R) { 7229 return Order.lookup(&L) < Order.lookup(&R); 7230 }); 7231 return false; 7232 } 7233 7234 /// ParseUseListOrderIndexes 7235 /// ::= '{' uint32 (',' uint32)+ '}' 7236 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7237 SMLoc Loc = Lex.getLoc(); 7238 if (ParseToken(lltok::lbrace, "expected '{' here")) 7239 return true; 7240 if (Lex.getKind() == lltok::rbrace) 7241 return Lex.Error("expected non-empty list of uselistorder indexes"); 7242 7243 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7244 // indexes should be distinct numbers in the range [0, size-1], and should 7245 // not be in order. 7246 unsigned Offset = 0; 7247 unsigned Max = 0; 7248 bool IsOrdered = true; 7249 assert(Indexes.empty() && "Expected empty order vector"); 7250 do { 7251 unsigned Index; 7252 if (ParseUInt32(Index)) 7253 return true; 7254 7255 // Update consistency checks. 7256 Offset += Index - Indexes.size(); 7257 Max = std::max(Max, Index); 7258 IsOrdered &= Index == Indexes.size(); 7259 7260 Indexes.push_back(Index); 7261 } while (EatIfPresent(lltok::comma)); 7262 7263 if (ParseToken(lltok::rbrace, "expected '}' here")) 7264 return true; 7265 7266 if (Indexes.size() < 2) 7267 return Error(Loc, "expected >= 2 uselistorder indexes"); 7268 if (Offset != 0 || Max >= Indexes.size()) 7269 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7270 if (IsOrdered) 7271 return Error(Loc, "expected uselistorder indexes to change the order"); 7272 7273 return false; 7274 } 7275 7276 /// ParseUseListOrder 7277 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7278 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7279 SMLoc Loc = Lex.getLoc(); 7280 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7281 return true; 7282 7283 Value *V; 7284 SmallVector<unsigned, 16> Indexes; 7285 if (ParseTypeAndValue(V, PFS) || 7286 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7287 ParseUseListOrderIndexes(Indexes)) 7288 return true; 7289 7290 return sortUseListOrder(V, Indexes, Loc); 7291 } 7292 7293 /// ParseUseListOrderBB 7294 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7295 bool LLParser::ParseUseListOrderBB() { 7296 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7297 SMLoc Loc = Lex.getLoc(); 7298 Lex.Lex(); 7299 7300 ValID Fn, Label; 7301 SmallVector<unsigned, 16> Indexes; 7302 if (ParseValID(Fn) || 7303 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7304 ParseValID(Label) || 7305 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7306 ParseUseListOrderIndexes(Indexes)) 7307 return true; 7308 7309 // Check the function. 7310 GlobalValue *GV; 7311 if (Fn.Kind == ValID::t_GlobalName) 7312 GV = M->getNamedValue(Fn.StrVal); 7313 else if (Fn.Kind == ValID::t_GlobalID) 7314 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7315 else 7316 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7317 if (!GV) 7318 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7319 auto *F = dyn_cast<Function>(GV); 7320 if (!F) 7321 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7322 if (F->isDeclaration()) 7323 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7324 7325 // Check the basic block. 7326 if (Label.Kind == ValID::t_LocalID) 7327 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7328 if (Label.Kind != ValID::t_LocalName) 7329 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7330 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7331 if (!V) 7332 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7333 if (!isa<BasicBlock>(V)) 7334 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7335 7336 return sortUseListOrder(V, Indexes, Loc); 7337 } 7338 7339 /// ModuleEntry 7340 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7341 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7342 bool LLParser::ParseModuleEntry(unsigned ID) { 7343 assert(Lex.getKind() == lltok::kw_module); 7344 Lex.Lex(); 7345 7346 std::string Path; 7347 if (ParseToken(lltok::colon, "expected ':' here") || 7348 ParseToken(lltok::lparen, "expected '(' here") || 7349 ParseToken(lltok::kw_path, "expected 'path' here") || 7350 ParseToken(lltok::colon, "expected ':' here") || 7351 ParseStringConstant(Path) || 7352 ParseToken(lltok::comma, "expected ',' here") || 7353 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7354 ParseToken(lltok::colon, "expected ':' here") || 7355 ParseToken(lltok::lparen, "expected '(' here")) 7356 return true; 7357 7358 ModuleHash Hash; 7359 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7360 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7361 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7362 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7363 ParseUInt32(Hash[4])) 7364 return true; 7365 7366 if (ParseToken(lltok::rparen, "expected ')' here") || 7367 ParseToken(lltok::rparen, "expected ')' here")) 7368 return true; 7369 7370 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7371 ModuleIdMap[ID] = ModuleEntry->first(); 7372 7373 return false; 7374 } 7375 7376 /// TypeIdEntry 7377 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7378 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7379 assert(Lex.getKind() == lltok::kw_typeid); 7380 Lex.Lex(); 7381 7382 std::string Name; 7383 if (ParseToken(lltok::colon, "expected ':' here") || 7384 ParseToken(lltok::lparen, "expected '(' here") || 7385 ParseToken(lltok::kw_name, "expected 'name' here") || 7386 ParseToken(lltok::colon, "expected ':' here") || 7387 ParseStringConstant(Name)) 7388 return true; 7389 7390 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7391 if (ParseToken(lltok::comma, "expected ',' here") || 7392 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7393 return true; 7394 7395 // Check if this ID was forward referenced, and if so, update the 7396 // corresponding GUIDs. 7397 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7398 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7399 for (auto TIDRef : FwdRefTIDs->second) { 7400 assert(!*TIDRef.first && 7401 "Forward referenced type id GUID expected to be 0"); 7402 *TIDRef.first = GlobalValue::getGUID(Name); 7403 } 7404 ForwardRefTypeIds.erase(FwdRefTIDs); 7405 } 7406 7407 return false; 7408 } 7409 7410 /// TypeIdSummary 7411 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7412 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7413 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7414 ParseToken(lltok::colon, "expected ':' here") || 7415 ParseToken(lltok::lparen, "expected '(' here") || 7416 ParseTypeTestResolution(TIS.TTRes)) 7417 return true; 7418 7419 if (EatIfPresent(lltok::comma)) { 7420 // Expect optional wpdResolutions field 7421 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7422 return true; 7423 } 7424 7425 if (ParseToken(lltok::rparen, "expected ')' here")) 7426 return true; 7427 7428 return false; 7429 } 7430 7431 /// TypeTestResolution 7432 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7433 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7434 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7435 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7436 /// [',' 'inlinesBits' ':' UInt64]? ')' 7437 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7438 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7439 ParseToken(lltok::colon, "expected ':' here") || 7440 ParseToken(lltok::lparen, "expected '(' here") || 7441 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7442 ParseToken(lltok::colon, "expected ':' here")) 7443 return true; 7444 7445 switch (Lex.getKind()) { 7446 case lltok::kw_unsat: 7447 TTRes.TheKind = TypeTestResolution::Unsat; 7448 break; 7449 case lltok::kw_byteArray: 7450 TTRes.TheKind = TypeTestResolution::ByteArray; 7451 break; 7452 case lltok::kw_inline: 7453 TTRes.TheKind = TypeTestResolution::Inline; 7454 break; 7455 case lltok::kw_single: 7456 TTRes.TheKind = TypeTestResolution::Single; 7457 break; 7458 case lltok::kw_allOnes: 7459 TTRes.TheKind = TypeTestResolution::AllOnes; 7460 break; 7461 default: 7462 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7463 } 7464 Lex.Lex(); 7465 7466 if (ParseToken(lltok::comma, "expected ',' here") || 7467 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7468 ParseToken(lltok::colon, "expected ':' here") || 7469 ParseUInt32(TTRes.SizeM1BitWidth)) 7470 return true; 7471 7472 // Parse optional fields 7473 while (EatIfPresent(lltok::comma)) { 7474 switch (Lex.getKind()) { 7475 case lltok::kw_alignLog2: 7476 Lex.Lex(); 7477 if (ParseToken(lltok::colon, "expected ':'") || 7478 ParseUInt64(TTRes.AlignLog2)) 7479 return true; 7480 break; 7481 case lltok::kw_sizeM1: 7482 Lex.Lex(); 7483 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7484 return true; 7485 break; 7486 case lltok::kw_bitMask: { 7487 unsigned Val; 7488 Lex.Lex(); 7489 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7490 return true; 7491 assert(Val <= 0xff); 7492 TTRes.BitMask = (uint8_t)Val; 7493 break; 7494 } 7495 case lltok::kw_inlineBits: 7496 Lex.Lex(); 7497 if (ParseToken(lltok::colon, "expected ':'") || 7498 ParseUInt64(TTRes.InlineBits)) 7499 return true; 7500 break; 7501 default: 7502 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7503 } 7504 } 7505 7506 if (ParseToken(lltok::rparen, "expected ')' here")) 7507 return true; 7508 7509 return false; 7510 } 7511 7512 /// OptionalWpdResolutions 7513 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7514 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7515 bool LLParser::ParseOptionalWpdResolutions( 7516 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7517 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7518 ParseToken(lltok::colon, "expected ':' here") || 7519 ParseToken(lltok::lparen, "expected '(' here")) 7520 return true; 7521 7522 do { 7523 uint64_t Offset; 7524 WholeProgramDevirtResolution WPDRes; 7525 if (ParseToken(lltok::lparen, "expected '(' here") || 7526 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7527 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7528 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7529 ParseToken(lltok::rparen, "expected ')' here")) 7530 return true; 7531 WPDResMap[Offset] = WPDRes; 7532 } while (EatIfPresent(lltok::comma)); 7533 7534 if (ParseToken(lltok::rparen, "expected ')' here")) 7535 return true; 7536 7537 return false; 7538 } 7539 7540 /// WpdRes 7541 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7542 /// [',' OptionalResByArg]? ')' 7543 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7544 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7545 /// [',' OptionalResByArg]? ')' 7546 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7547 /// [',' OptionalResByArg]? ')' 7548 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7549 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7550 ParseToken(lltok::colon, "expected ':' here") || 7551 ParseToken(lltok::lparen, "expected '(' here") || 7552 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7553 ParseToken(lltok::colon, "expected ':' here")) 7554 return true; 7555 7556 switch (Lex.getKind()) { 7557 case lltok::kw_indir: 7558 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7559 break; 7560 case lltok::kw_singleImpl: 7561 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7562 break; 7563 case lltok::kw_branchFunnel: 7564 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7565 break; 7566 default: 7567 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7568 } 7569 Lex.Lex(); 7570 7571 // Parse optional fields 7572 while (EatIfPresent(lltok::comma)) { 7573 switch (Lex.getKind()) { 7574 case lltok::kw_singleImplName: 7575 Lex.Lex(); 7576 if (ParseToken(lltok::colon, "expected ':' here") || 7577 ParseStringConstant(WPDRes.SingleImplName)) 7578 return true; 7579 break; 7580 case lltok::kw_resByArg: 7581 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7582 return true; 7583 break; 7584 default: 7585 return Error(Lex.getLoc(), 7586 "expected optional WholeProgramDevirtResolution field"); 7587 } 7588 } 7589 7590 if (ParseToken(lltok::rparen, "expected ')' here")) 7591 return true; 7592 7593 return false; 7594 } 7595 7596 /// OptionalResByArg 7597 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7598 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7599 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7600 /// 'virtualConstProp' ) 7601 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7602 /// [',' 'bit' ':' UInt32]? ')' 7603 bool LLParser::ParseOptionalResByArg( 7604 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7605 &ResByArg) { 7606 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7607 ParseToken(lltok::colon, "expected ':' here") || 7608 ParseToken(lltok::lparen, "expected '(' here")) 7609 return true; 7610 7611 do { 7612 std::vector<uint64_t> Args; 7613 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7614 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7615 ParseToken(lltok::colon, "expected ':' here") || 7616 ParseToken(lltok::lparen, "expected '(' here") || 7617 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7618 ParseToken(lltok::colon, "expected ':' here")) 7619 return true; 7620 7621 WholeProgramDevirtResolution::ByArg ByArg; 7622 switch (Lex.getKind()) { 7623 case lltok::kw_indir: 7624 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7625 break; 7626 case lltok::kw_uniformRetVal: 7627 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7628 break; 7629 case lltok::kw_uniqueRetVal: 7630 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7631 break; 7632 case lltok::kw_virtualConstProp: 7633 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7634 break; 7635 default: 7636 return Error(Lex.getLoc(), 7637 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7638 } 7639 Lex.Lex(); 7640 7641 // Parse optional fields 7642 while (EatIfPresent(lltok::comma)) { 7643 switch (Lex.getKind()) { 7644 case lltok::kw_info: 7645 Lex.Lex(); 7646 if (ParseToken(lltok::colon, "expected ':' here") || 7647 ParseUInt64(ByArg.Info)) 7648 return true; 7649 break; 7650 case lltok::kw_byte: 7651 Lex.Lex(); 7652 if (ParseToken(lltok::colon, "expected ':' here") || 7653 ParseUInt32(ByArg.Byte)) 7654 return true; 7655 break; 7656 case lltok::kw_bit: 7657 Lex.Lex(); 7658 if (ParseToken(lltok::colon, "expected ':' here") || 7659 ParseUInt32(ByArg.Bit)) 7660 return true; 7661 break; 7662 default: 7663 return Error(Lex.getLoc(), 7664 "expected optional whole program devirt field"); 7665 } 7666 } 7667 7668 if (ParseToken(lltok::rparen, "expected ')' here")) 7669 return true; 7670 7671 ResByArg[Args] = ByArg; 7672 } while (EatIfPresent(lltok::comma)); 7673 7674 if (ParseToken(lltok::rparen, "expected ')' here")) 7675 return true; 7676 7677 return false; 7678 } 7679 7680 /// OptionalResByArg 7681 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7682 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7683 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7684 ParseToken(lltok::colon, "expected ':' here") || 7685 ParseToken(lltok::lparen, "expected '(' here")) 7686 return true; 7687 7688 do { 7689 uint64_t Val; 7690 if (ParseUInt64(Val)) 7691 return true; 7692 Args.push_back(Val); 7693 } while (EatIfPresent(lltok::comma)); 7694 7695 if (ParseToken(lltok::rparen, "expected ')' here")) 7696 return true; 7697 7698 return false; 7699 } 7700 7701 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7702 7703 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7704 bool ReadOnly = Fwd->isReadOnly(); 7705 *Fwd = Resolved; 7706 if (ReadOnly) 7707 Fwd->setReadOnly(); 7708 } 7709 7710 /// Stores the given Name/GUID and associated summary into the Index. 7711 /// Also updates any forward references to the associated entry ID. 7712 void LLParser::AddGlobalValueToIndex( 7713 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7714 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7715 // First create the ValueInfo utilizing the Name or GUID. 7716 ValueInfo VI; 7717 if (GUID != 0) { 7718 assert(Name.empty()); 7719 VI = Index->getOrInsertValueInfo(GUID); 7720 } else { 7721 assert(!Name.empty()); 7722 if (M) { 7723 auto *GV = M->getNamedValue(Name); 7724 assert(GV); 7725 VI = Index->getOrInsertValueInfo(GV); 7726 } else { 7727 assert( 7728 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7729 "Need a source_filename to compute GUID for local"); 7730 GUID = GlobalValue::getGUID( 7731 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7732 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7733 } 7734 } 7735 7736 // Resolve forward references from calls/refs 7737 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7738 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7739 for (auto VIRef : FwdRefVIs->second) { 7740 assert(VIRef.first->getRef() == FwdVIRef && 7741 "Forward referenced ValueInfo expected to be empty"); 7742 resolveFwdRef(VIRef.first, VI); 7743 } 7744 ForwardRefValueInfos.erase(FwdRefVIs); 7745 } 7746 7747 // Resolve forward references from aliases 7748 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7749 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7750 for (auto AliaseeRef : FwdRefAliasees->second) { 7751 assert(!AliaseeRef.first->hasAliasee() && 7752 "Forward referencing alias already has aliasee"); 7753 assert(Summary && "Aliasee must be a definition"); 7754 AliaseeRef.first->setAliasee(VI, Summary.get()); 7755 } 7756 ForwardRefAliasees.erase(FwdRefAliasees); 7757 } 7758 7759 // Add the summary if one was provided. 7760 if (Summary) 7761 Index->addGlobalValueSummary(VI, std::move(Summary)); 7762 7763 // Save the associated ValueInfo for use in later references by ID. 7764 if (ID == NumberedValueInfos.size()) 7765 NumberedValueInfos.push_back(VI); 7766 else { 7767 // Handle non-continuous numbers (to make test simplification easier). 7768 if (ID > NumberedValueInfos.size()) 7769 NumberedValueInfos.resize(ID + 1); 7770 NumberedValueInfos[ID] = VI; 7771 } 7772 } 7773 7774 /// ParseGVEntry 7775 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7776 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7777 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7778 bool LLParser::ParseGVEntry(unsigned ID) { 7779 assert(Lex.getKind() == lltok::kw_gv); 7780 Lex.Lex(); 7781 7782 if (ParseToken(lltok::colon, "expected ':' here") || 7783 ParseToken(lltok::lparen, "expected '(' here")) 7784 return true; 7785 7786 std::string Name; 7787 GlobalValue::GUID GUID = 0; 7788 switch (Lex.getKind()) { 7789 case lltok::kw_name: 7790 Lex.Lex(); 7791 if (ParseToken(lltok::colon, "expected ':' here") || 7792 ParseStringConstant(Name)) 7793 return true; 7794 // Can't create GUID/ValueInfo until we have the linkage. 7795 break; 7796 case lltok::kw_guid: 7797 Lex.Lex(); 7798 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7799 return true; 7800 break; 7801 default: 7802 return Error(Lex.getLoc(), "expected name or guid tag"); 7803 } 7804 7805 if (!EatIfPresent(lltok::comma)) { 7806 // No summaries. Wrap up. 7807 if (ParseToken(lltok::rparen, "expected ')' here")) 7808 return true; 7809 // This was created for a call to an external or indirect target. 7810 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7811 // created for indirect calls with VP. A Name with no GUID came from 7812 // an external definition. We pass ExternalLinkage since that is only 7813 // used when the GUID must be computed from Name, and in that case 7814 // the symbol must have external linkage. 7815 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7816 nullptr); 7817 return false; 7818 } 7819 7820 // Have a list of summaries 7821 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7822 ParseToken(lltok::colon, "expected ':' here")) 7823 return true; 7824 7825 do { 7826 if (ParseToken(lltok::lparen, "expected '(' here")) 7827 return true; 7828 switch (Lex.getKind()) { 7829 case lltok::kw_function: 7830 if (ParseFunctionSummary(Name, GUID, ID)) 7831 return true; 7832 break; 7833 case lltok::kw_variable: 7834 if (ParseVariableSummary(Name, GUID, ID)) 7835 return true; 7836 break; 7837 case lltok::kw_alias: 7838 if (ParseAliasSummary(Name, GUID, ID)) 7839 return true; 7840 break; 7841 default: 7842 return Error(Lex.getLoc(), "expected summary type"); 7843 } 7844 if (ParseToken(lltok::rparen, "expected ')' here")) 7845 return true; 7846 } while (EatIfPresent(lltok::comma)); 7847 7848 if (ParseToken(lltok::rparen, "expected ')' here")) 7849 return true; 7850 7851 return false; 7852 } 7853 7854 /// FunctionSummary 7855 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7856 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7857 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7858 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7859 unsigned ID) { 7860 assert(Lex.getKind() == lltok::kw_function); 7861 Lex.Lex(); 7862 7863 StringRef ModulePath; 7864 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7865 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7866 /*Live=*/false, /*IsLocal=*/false); 7867 unsigned InstCount; 7868 std::vector<FunctionSummary::EdgeTy> Calls; 7869 FunctionSummary::TypeIdInfo TypeIdInfo; 7870 std::vector<ValueInfo> Refs; 7871 // Default is all-zeros (conservative values). 7872 FunctionSummary::FFlags FFlags = {}; 7873 if (ParseToken(lltok::colon, "expected ':' here") || 7874 ParseToken(lltok::lparen, "expected '(' here") || 7875 ParseModuleReference(ModulePath) || 7876 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7877 ParseToken(lltok::comma, "expected ',' here") || 7878 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7879 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7880 return true; 7881 7882 // Parse optional fields 7883 while (EatIfPresent(lltok::comma)) { 7884 switch (Lex.getKind()) { 7885 case lltok::kw_funcFlags: 7886 if (ParseOptionalFFlags(FFlags)) 7887 return true; 7888 break; 7889 case lltok::kw_calls: 7890 if (ParseOptionalCalls(Calls)) 7891 return true; 7892 break; 7893 case lltok::kw_typeIdInfo: 7894 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7895 return true; 7896 break; 7897 case lltok::kw_refs: 7898 if (ParseOptionalRefs(Refs)) 7899 return true; 7900 break; 7901 default: 7902 return Error(Lex.getLoc(), "expected optional function summary field"); 7903 } 7904 } 7905 7906 if (ParseToken(lltok::rparen, "expected ')' here")) 7907 return true; 7908 7909 auto FS = llvm::make_unique<FunctionSummary>( 7910 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7911 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7912 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7913 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7914 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7915 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7916 7917 FS->setModulePath(ModulePath); 7918 7919 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7920 ID, std::move(FS)); 7921 7922 return false; 7923 } 7924 7925 /// VariableSummary 7926 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7927 /// [',' OptionalRefs]? ')' 7928 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7929 unsigned ID) { 7930 assert(Lex.getKind() == lltok::kw_variable); 7931 Lex.Lex(); 7932 7933 StringRef ModulePath; 7934 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7935 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7936 /*Live=*/false, /*IsLocal=*/false); 7937 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7938 std::vector<ValueInfo> Refs; 7939 if (ParseToken(lltok::colon, "expected ':' here") || 7940 ParseToken(lltok::lparen, "expected '(' here") || 7941 ParseModuleReference(ModulePath) || 7942 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7943 ParseToken(lltok::comma, "expected ',' here") || 7944 ParseGVarFlags(GVarFlags)) 7945 return true; 7946 7947 // Parse optional refs field 7948 if (EatIfPresent(lltok::comma)) { 7949 if (ParseOptionalRefs(Refs)) 7950 return true; 7951 } 7952 7953 if (ParseToken(lltok::rparen, "expected ')' here")) 7954 return true; 7955 7956 auto GS = 7957 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7958 7959 GS->setModulePath(ModulePath); 7960 7961 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7962 ID, std::move(GS)); 7963 7964 return false; 7965 } 7966 7967 /// AliasSummary 7968 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7969 /// 'aliasee' ':' GVReference ')' 7970 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7971 unsigned ID) { 7972 assert(Lex.getKind() == lltok::kw_alias); 7973 LocTy Loc = Lex.getLoc(); 7974 Lex.Lex(); 7975 7976 StringRef ModulePath; 7977 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7978 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7979 /*Live=*/false, /*IsLocal=*/false); 7980 if (ParseToken(lltok::colon, "expected ':' here") || 7981 ParseToken(lltok::lparen, "expected '(' here") || 7982 ParseModuleReference(ModulePath) || 7983 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7984 ParseToken(lltok::comma, "expected ',' here") || 7985 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7986 ParseToken(lltok::colon, "expected ':' here")) 7987 return true; 7988 7989 ValueInfo AliaseeVI; 7990 unsigned GVId; 7991 if (ParseGVReference(AliaseeVI, GVId)) 7992 return true; 7993 7994 if (ParseToken(lltok::rparen, "expected ')' here")) 7995 return true; 7996 7997 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7998 7999 AS->setModulePath(ModulePath); 8000 8001 // Record forward reference if the aliasee is not parsed yet. 8002 if (AliaseeVI.getRef() == FwdVIRef) { 8003 auto FwdRef = ForwardRefAliasees.insert( 8004 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8005 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8006 } else { 8007 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8008 assert(Summary && "Aliasee must be a definition"); 8009 AS->setAliasee(AliaseeVI, Summary); 8010 } 8011 8012 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8013 ID, std::move(AS)); 8014 8015 return false; 8016 } 8017 8018 /// Flag 8019 /// ::= [0|1] 8020 bool LLParser::ParseFlag(unsigned &Val) { 8021 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8022 return TokError("expected integer"); 8023 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8024 Lex.Lex(); 8025 return false; 8026 } 8027 8028 /// OptionalFFlags 8029 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8030 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8031 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8032 /// [',' 'noInline' ':' Flag]? ')' 8033 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8034 assert(Lex.getKind() == lltok::kw_funcFlags); 8035 Lex.Lex(); 8036 8037 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8038 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8039 return true; 8040 8041 do { 8042 unsigned Val; 8043 switch (Lex.getKind()) { 8044 case lltok::kw_readNone: 8045 Lex.Lex(); 8046 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8047 return true; 8048 FFlags.ReadNone = Val; 8049 break; 8050 case lltok::kw_readOnly: 8051 Lex.Lex(); 8052 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8053 return true; 8054 FFlags.ReadOnly = Val; 8055 break; 8056 case lltok::kw_noRecurse: 8057 Lex.Lex(); 8058 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8059 return true; 8060 FFlags.NoRecurse = Val; 8061 break; 8062 case lltok::kw_returnDoesNotAlias: 8063 Lex.Lex(); 8064 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8065 return true; 8066 FFlags.ReturnDoesNotAlias = Val; 8067 break; 8068 case lltok::kw_noInline: 8069 Lex.Lex(); 8070 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8071 return true; 8072 FFlags.NoInline = Val; 8073 break; 8074 default: 8075 return Error(Lex.getLoc(), "expected function flag type"); 8076 } 8077 } while (EatIfPresent(lltok::comma)); 8078 8079 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8080 return true; 8081 8082 return false; 8083 } 8084 8085 /// OptionalCalls 8086 /// := 'calls' ':' '(' Call [',' Call]* ')' 8087 /// Call ::= '(' 'callee' ':' GVReference 8088 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8089 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8090 assert(Lex.getKind() == lltok::kw_calls); 8091 Lex.Lex(); 8092 8093 if (ParseToken(lltok::colon, "expected ':' in calls") | 8094 ParseToken(lltok::lparen, "expected '(' in calls")) 8095 return true; 8096 8097 IdToIndexMapType IdToIndexMap; 8098 // Parse each call edge 8099 do { 8100 ValueInfo VI; 8101 if (ParseToken(lltok::lparen, "expected '(' in call") || 8102 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8103 ParseToken(lltok::colon, "expected ':'")) 8104 return true; 8105 8106 LocTy Loc = Lex.getLoc(); 8107 unsigned GVId; 8108 if (ParseGVReference(VI, GVId)) 8109 return true; 8110 8111 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8112 unsigned RelBF = 0; 8113 if (EatIfPresent(lltok::comma)) { 8114 // Expect either hotness or relbf 8115 if (EatIfPresent(lltok::kw_hotness)) { 8116 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8117 return true; 8118 } else { 8119 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8120 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8121 return true; 8122 } 8123 } 8124 // Keep track of the Call array index needing a forward reference. 8125 // We will save the location of the ValueInfo needing an update, but 8126 // can only do so once the std::vector is finalized. 8127 if (VI.getRef() == FwdVIRef) 8128 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8129 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8130 8131 if (ParseToken(lltok::rparen, "expected ')' in call")) 8132 return true; 8133 } while (EatIfPresent(lltok::comma)); 8134 8135 // Now that the Calls vector is finalized, it is safe to save the locations 8136 // of any forward GV references that need updating later. 8137 for (auto I : IdToIndexMap) { 8138 for (auto P : I.second) { 8139 assert(Calls[P.first].first.getRef() == FwdVIRef && 8140 "Forward referenced ValueInfo expected to be empty"); 8141 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8142 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8143 FwdRef.first->second.push_back( 8144 std::make_pair(&Calls[P.first].first, P.second)); 8145 } 8146 } 8147 8148 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8149 return true; 8150 8151 return false; 8152 } 8153 8154 /// Hotness 8155 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8156 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8157 switch (Lex.getKind()) { 8158 case lltok::kw_unknown: 8159 Hotness = CalleeInfo::HotnessType::Unknown; 8160 break; 8161 case lltok::kw_cold: 8162 Hotness = CalleeInfo::HotnessType::Cold; 8163 break; 8164 case lltok::kw_none: 8165 Hotness = CalleeInfo::HotnessType::None; 8166 break; 8167 case lltok::kw_hot: 8168 Hotness = CalleeInfo::HotnessType::Hot; 8169 break; 8170 case lltok::kw_critical: 8171 Hotness = CalleeInfo::HotnessType::Critical; 8172 break; 8173 default: 8174 return Error(Lex.getLoc(), "invalid call edge hotness"); 8175 } 8176 Lex.Lex(); 8177 return false; 8178 } 8179 8180 /// OptionalRefs 8181 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8182 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8183 assert(Lex.getKind() == lltok::kw_refs); 8184 Lex.Lex(); 8185 8186 if (ParseToken(lltok::colon, "expected ':' in refs") | 8187 ParseToken(lltok::lparen, "expected '(' in refs")) 8188 return true; 8189 8190 struct ValueContext { 8191 ValueInfo VI; 8192 unsigned GVId; 8193 LocTy Loc; 8194 }; 8195 std::vector<ValueContext> VContexts; 8196 // Parse each ref edge 8197 do { 8198 ValueContext VC; 8199 VC.Loc = Lex.getLoc(); 8200 if (ParseGVReference(VC.VI, VC.GVId)) 8201 return true; 8202 VContexts.push_back(VC); 8203 } while (EatIfPresent(lltok::comma)); 8204 8205 // Sort value contexts so that ones with readonly ValueInfo are at the end 8206 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8207 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8208 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8209 }); 8210 8211 IdToIndexMapType IdToIndexMap; 8212 for (auto &VC : VContexts) { 8213 // Keep track of the Refs array index needing a forward reference. 8214 // We will save the location of the ValueInfo needing an update, but 8215 // can only do so once the std::vector is finalized. 8216 if (VC.VI.getRef() == FwdVIRef) 8217 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8218 Refs.push_back(VC.VI); 8219 } 8220 8221 // Now that the Refs vector is finalized, it is safe to save the locations 8222 // of any forward GV references that need updating later. 8223 for (auto I : IdToIndexMap) { 8224 for (auto P : I.second) { 8225 assert(Refs[P.first].getRef() == FwdVIRef && 8226 "Forward referenced ValueInfo expected to be empty"); 8227 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8228 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8229 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8230 } 8231 } 8232 8233 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8234 return true; 8235 8236 return false; 8237 } 8238 8239 /// OptionalTypeIdInfo 8240 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8241 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8242 /// [',' TypeCheckedLoadConstVCalls]? ')' 8243 bool LLParser::ParseOptionalTypeIdInfo( 8244 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8245 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8246 Lex.Lex(); 8247 8248 if (ParseToken(lltok::colon, "expected ':' here") || 8249 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8250 return true; 8251 8252 do { 8253 switch (Lex.getKind()) { 8254 case lltok::kw_typeTests: 8255 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8256 return true; 8257 break; 8258 case lltok::kw_typeTestAssumeVCalls: 8259 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8260 TypeIdInfo.TypeTestAssumeVCalls)) 8261 return true; 8262 break; 8263 case lltok::kw_typeCheckedLoadVCalls: 8264 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8265 TypeIdInfo.TypeCheckedLoadVCalls)) 8266 return true; 8267 break; 8268 case lltok::kw_typeTestAssumeConstVCalls: 8269 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8270 TypeIdInfo.TypeTestAssumeConstVCalls)) 8271 return true; 8272 break; 8273 case lltok::kw_typeCheckedLoadConstVCalls: 8274 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8275 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8276 return true; 8277 break; 8278 default: 8279 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8280 } 8281 } while (EatIfPresent(lltok::comma)); 8282 8283 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8284 return true; 8285 8286 return false; 8287 } 8288 8289 /// TypeTests 8290 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8291 /// [',' (SummaryID | UInt64)]* ')' 8292 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8293 assert(Lex.getKind() == lltok::kw_typeTests); 8294 Lex.Lex(); 8295 8296 if (ParseToken(lltok::colon, "expected ':' here") || 8297 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8298 return true; 8299 8300 IdToIndexMapType IdToIndexMap; 8301 do { 8302 GlobalValue::GUID GUID = 0; 8303 if (Lex.getKind() == lltok::SummaryID) { 8304 unsigned ID = Lex.getUIntVal(); 8305 LocTy Loc = Lex.getLoc(); 8306 // Keep track of the TypeTests array index needing a forward reference. 8307 // We will save the location of the GUID needing an update, but 8308 // can only do so once the std::vector is finalized. 8309 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8310 Lex.Lex(); 8311 } else if (ParseUInt64(GUID)) 8312 return true; 8313 TypeTests.push_back(GUID); 8314 } while (EatIfPresent(lltok::comma)); 8315 8316 // Now that the TypeTests vector is finalized, it is safe to save the 8317 // locations of any forward GV references that need updating later. 8318 for (auto I : IdToIndexMap) { 8319 for (auto P : I.second) { 8320 assert(TypeTests[P.first] == 0 && 8321 "Forward referenced type id GUID expected to be 0"); 8322 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8323 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8324 FwdRef.first->second.push_back( 8325 std::make_pair(&TypeTests[P.first], P.second)); 8326 } 8327 } 8328 8329 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8330 return true; 8331 8332 return false; 8333 } 8334 8335 /// VFuncIdList 8336 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8337 bool LLParser::ParseVFuncIdList( 8338 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8339 assert(Lex.getKind() == Kind); 8340 Lex.Lex(); 8341 8342 if (ParseToken(lltok::colon, "expected ':' here") || 8343 ParseToken(lltok::lparen, "expected '(' here")) 8344 return true; 8345 8346 IdToIndexMapType IdToIndexMap; 8347 do { 8348 FunctionSummary::VFuncId VFuncId; 8349 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8350 return true; 8351 VFuncIdList.push_back(VFuncId); 8352 } while (EatIfPresent(lltok::comma)); 8353 8354 if (ParseToken(lltok::rparen, "expected ')' here")) 8355 return true; 8356 8357 // Now that the VFuncIdList vector is finalized, it is safe to save the 8358 // locations of any forward GV references that need updating later. 8359 for (auto I : IdToIndexMap) { 8360 for (auto P : I.second) { 8361 assert(VFuncIdList[P.first].GUID == 0 && 8362 "Forward referenced type id GUID expected to be 0"); 8363 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8364 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8365 FwdRef.first->second.push_back( 8366 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8367 } 8368 } 8369 8370 return false; 8371 } 8372 8373 /// ConstVCallList 8374 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8375 bool LLParser::ParseConstVCallList( 8376 lltok::Kind Kind, 8377 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8378 assert(Lex.getKind() == Kind); 8379 Lex.Lex(); 8380 8381 if (ParseToken(lltok::colon, "expected ':' here") || 8382 ParseToken(lltok::lparen, "expected '(' here")) 8383 return true; 8384 8385 IdToIndexMapType IdToIndexMap; 8386 do { 8387 FunctionSummary::ConstVCall ConstVCall; 8388 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8389 return true; 8390 ConstVCallList.push_back(ConstVCall); 8391 } while (EatIfPresent(lltok::comma)); 8392 8393 if (ParseToken(lltok::rparen, "expected ')' here")) 8394 return true; 8395 8396 // Now that the ConstVCallList vector is finalized, it is safe to save the 8397 // locations of any forward GV references that need updating later. 8398 for (auto I : IdToIndexMap) { 8399 for (auto P : I.second) { 8400 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8401 "Forward referenced type id GUID expected to be 0"); 8402 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8403 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8404 FwdRef.first->second.push_back( 8405 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8406 } 8407 } 8408 8409 return false; 8410 } 8411 8412 /// ConstVCall 8413 /// ::= '(' VFuncId ',' Args ')' 8414 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8415 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8416 if (ParseToken(lltok::lparen, "expected '(' here") || 8417 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8418 return true; 8419 8420 if (EatIfPresent(lltok::comma)) 8421 if (ParseArgs(ConstVCall.Args)) 8422 return true; 8423 8424 if (ParseToken(lltok::rparen, "expected ')' here")) 8425 return true; 8426 8427 return false; 8428 } 8429 8430 /// VFuncId 8431 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8432 /// 'offset' ':' UInt64 ')' 8433 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8434 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8435 assert(Lex.getKind() == lltok::kw_vFuncId); 8436 Lex.Lex(); 8437 8438 if (ParseToken(lltok::colon, "expected ':' here") || 8439 ParseToken(lltok::lparen, "expected '(' here")) 8440 return true; 8441 8442 if (Lex.getKind() == lltok::SummaryID) { 8443 VFuncId.GUID = 0; 8444 unsigned ID = Lex.getUIntVal(); 8445 LocTy Loc = Lex.getLoc(); 8446 // Keep track of the array index needing a forward reference. 8447 // We will save the location of the GUID needing an update, but 8448 // can only do so once the caller's std::vector is finalized. 8449 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8450 Lex.Lex(); 8451 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8452 ParseToken(lltok::colon, "expected ':' here") || 8453 ParseUInt64(VFuncId.GUID)) 8454 return true; 8455 8456 if (ParseToken(lltok::comma, "expected ',' here") || 8457 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8458 ParseToken(lltok::colon, "expected ':' here") || 8459 ParseUInt64(VFuncId.Offset) || 8460 ParseToken(lltok::rparen, "expected ')' here")) 8461 return true; 8462 8463 return false; 8464 } 8465 8466 /// GVFlags 8467 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8468 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8469 /// 'dsoLocal' ':' Flag ')' 8470 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8471 assert(Lex.getKind() == lltok::kw_flags); 8472 Lex.Lex(); 8473 8474 bool HasLinkage; 8475 if (ParseToken(lltok::colon, "expected ':' here") || 8476 ParseToken(lltok::lparen, "expected '(' here") || 8477 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8478 ParseToken(lltok::colon, "expected ':' here")) 8479 return true; 8480 8481 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8482 assert(HasLinkage && "Linkage not optional in summary entry"); 8483 Lex.Lex(); 8484 8485 unsigned Flag; 8486 if (ParseToken(lltok::comma, "expected ',' here") || 8487 ParseToken(lltok::kw_notEligibleToImport, 8488 "expected 'notEligibleToImport' here") || 8489 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8490 return true; 8491 GVFlags.NotEligibleToImport = Flag; 8492 8493 if (ParseToken(lltok::comma, "expected ',' here") || 8494 ParseToken(lltok::kw_live, "expected 'live' here") || 8495 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8496 return true; 8497 GVFlags.Live = Flag; 8498 8499 if (ParseToken(lltok::comma, "expected ',' here") || 8500 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8501 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8502 return true; 8503 GVFlags.DSOLocal = Flag; 8504 8505 if (ParseToken(lltok::rparen, "expected ')' here")) 8506 return true; 8507 8508 return false; 8509 } 8510 8511 /// GVarFlags 8512 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8513 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8514 assert(Lex.getKind() == lltok::kw_varFlags); 8515 Lex.Lex(); 8516 8517 unsigned Flag; 8518 if (ParseToken(lltok::colon, "expected ':' here") || 8519 ParseToken(lltok::lparen, "expected '(' here") || 8520 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8521 ParseToken(lltok::colon, "expected ':' here")) 8522 return true; 8523 8524 ParseFlag(Flag); 8525 GVarFlags.ReadOnly = Flag; 8526 8527 if (ParseToken(lltok::rparen, "expected ')' here")) 8528 return true; 8529 return false; 8530 } 8531 8532 /// ModuleReference 8533 /// ::= 'module' ':' UInt 8534 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8535 // Parse module id. 8536 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8537 ParseToken(lltok::colon, "expected ':' here") || 8538 ParseToken(lltok::SummaryID, "expected module ID")) 8539 return true; 8540 8541 unsigned ModuleID = Lex.getUIntVal(); 8542 auto I = ModuleIdMap.find(ModuleID); 8543 // We should have already parsed all module IDs 8544 assert(I != ModuleIdMap.end()); 8545 ModulePath = I->second; 8546 return false; 8547 } 8548 8549 /// GVReference 8550 /// ::= SummaryID 8551 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8552 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8553 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8554 return true; 8555 8556 GVId = Lex.getUIntVal(); 8557 // Check if we already have a VI for this GV 8558 if (GVId < NumberedValueInfos.size()) { 8559 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8560 VI = NumberedValueInfos[GVId]; 8561 } else 8562 // We will create a forward reference to the stored location. 8563 VI = ValueInfo(false, FwdVIRef); 8564 8565 if (ReadOnly) 8566 VI.setReadOnly(); 8567 return false; 8568 } 8569