1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 if (UpgradeDebugInfo) 241 llvm::UpgradeDebugInfo(*M); 242 243 UpgradeModuleFlags(*M); 244 UpgradeSectionAttributes(*M); 245 246 if (!Slots) 247 return false; 248 // Initialize the slot mapping. 249 // Because by this point we've parsed and validated everything, we can "steal" 250 // the mapping from LLParser as it doesn't need it anymore. 251 Slots->GlobalValues = std::move(NumberedVals); 252 Slots->MetadataNodes = std::move(NumberedMetadata); 253 for (const auto &I : NamedTypes) 254 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 255 for (const auto &I : NumberedTypes) 256 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 257 258 return false; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Top-Level Entities 263 //===----------------------------------------------------------------------===// 264 265 bool LLParser::ParseTopLevelEntities() { 266 while (true) { 267 switch (Lex.getKind()) { 268 default: return TokError("expected top-level entity"); 269 case lltok::Eof: return false; 270 case lltok::kw_declare: if (ParseDeclare()) return true; break; 271 case lltok::kw_define: if (ParseDefine()) return true; break; 272 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 273 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 274 case lltok::kw_source_filename: 275 if (ParseSourceFileName()) 276 return true; 277 break; 278 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 279 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 280 case lltok::LocalVar: if (ParseNamedType()) return true; break; 281 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 282 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 283 case lltok::ComdatVar: if (parseComdat()) return true; break; 284 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 285 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 288 case lltok::kw_uselistorder_bb: 289 if (ParseUseListOrderBB()) 290 return true; 291 break; 292 } 293 } 294 } 295 296 /// toplevelentity 297 /// ::= 'module' 'asm' STRINGCONSTANT 298 bool LLParser::ParseModuleAsm() { 299 assert(Lex.getKind() == lltok::kw_module); 300 Lex.Lex(); 301 302 std::string AsmStr; 303 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 304 ParseStringConstant(AsmStr)) return true; 305 306 M->appendModuleInlineAsm(AsmStr); 307 return false; 308 } 309 310 /// toplevelentity 311 /// ::= 'target' 'triple' '=' STRINGCONSTANT 312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 313 bool LLParser::ParseTargetDefinition() { 314 assert(Lex.getKind() == lltok::kw_target); 315 std::string Str; 316 switch (Lex.Lex()) { 317 default: return TokError("unknown target property"); 318 case lltok::kw_triple: 319 Lex.Lex(); 320 if (ParseToken(lltok::equal, "expected '=' after target triple") || 321 ParseStringConstant(Str)) 322 return true; 323 M->setTargetTriple(Str); 324 return false; 325 case lltok::kw_datalayout: 326 Lex.Lex(); 327 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 328 ParseStringConstant(Str)) 329 return true; 330 if (DataLayoutStr.empty()) 331 M->setDataLayout(Str); 332 return false; 333 } 334 } 335 336 /// toplevelentity 337 /// ::= 'source_filename' '=' STRINGCONSTANT 338 bool LLParser::ParseSourceFileName() { 339 assert(Lex.getKind() == lltok::kw_source_filename); 340 std::string Str; 341 Lex.Lex(); 342 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 343 ParseStringConstant(Str)) 344 return true; 345 M->setSourceFileName(Str); 346 return false; 347 } 348 349 /// toplevelentity 350 /// ::= 'deplibs' '=' '[' ']' 351 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 352 /// FIXME: Remove in 4.0. Currently parse, but ignore. 353 bool LLParser::ParseDepLibs() { 354 assert(Lex.getKind() == lltok::kw_deplibs); 355 Lex.Lex(); 356 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 357 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 358 return true; 359 360 if (EatIfPresent(lltok::rsquare)) 361 return false; 362 363 do { 364 std::string Str; 365 if (ParseStringConstant(Str)) return true; 366 } while (EatIfPresent(lltok::comma)); 367 368 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 369 } 370 371 /// ParseUnnamedType: 372 /// ::= LocalVarID '=' 'type' type 373 bool LLParser::ParseUnnamedType() { 374 LocTy TypeLoc = Lex.getLoc(); 375 unsigned TypeID = Lex.getUIntVal(); 376 Lex.Lex(); // eat LocalVarID; 377 378 if (ParseToken(lltok::equal, "expected '=' after name") || 379 ParseToken(lltok::kw_type, "expected 'type' after '='")) 380 return true; 381 382 Type *Result = nullptr; 383 if (ParseStructDefinition(TypeLoc, "", 384 NumberedTypes[TypeID], Result)) return true; 385 386 if (!isa<StructType>(Result)) { 387 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 388 if (Entry.first) 389 return Error(TypeLoc, "non-struct types may not be recursive"); 390 Entry.first = Result; 391 Entry.second = SMLoc(); 392 } 393 394 return false; 395 } 396 397 /// toplevelentity 398 /// ::= LocalVar '=' 'type' type 399 bool LLParser::ParseNamedType() { 400 std::string Name = Lex.getStrVal(); 401 LocTy NameLoc = Lex.getLoc(); 402 Lex.Lex(); // eat LocalVar. 403 404 if (ParseToken(lltok::equal, "expected '=' after name") || 405 ParseToken(lltok::kw_type, "expected 'type' after name")) 406 return true; 407 408 Type *Result = nullptr; 409 if (ParseStructDefinition(NameLoc, Name, 410 NamedTypes[Name], Result)) return true; 411 412 if (!isa<StructType>(Result)) { 413 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 414 if (Entry.first) 415 return Error(NameLoc, "non-struct types may not be recursive"); 416 Entry.first = Result; 417 Entry.second = SMLoc(); 418 } 419 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'declare' FunctionHeader 425 bool LLParser::ParseDeclare() { 426 assert(Lex.getKind() == lltok::kw_declare); 427 Lex.Lex(); 428 429 std::vector<std::pair<unsigned, MDNode *>> MDs; 430 while (Lex.getKind() == lltok::MetadataVar) { 431 unsigned MDK; 432 MDNode *N; 433 if (ParseMetadataAttachment(MDK, N)) 434 return true; 435 MDs.push_back({MDK, N}); 436 } 437 438 Function *F; 439 if (ParseFunctionHeader(F, false)) 440 return true; 441 for (auto &MD : MDs) 442 F->addMetadata(MD.first, *MD.second); 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 448 bool LLParser::ParseDefine() { 449 assert(Lex.getKind() == lltok::kw_define); 450 Lex.Lex(); 451 452 Function *F; 453 return ParseFunctionHeader(F, true) || 454 ParseOptionalFunctionMetadata(*F) || 455 ParseFunctionBody(*F); 456 } 457 458 /// ParseGlobalType 459 /// ::= 'constant' 460 /// ::= 'global' 461 bool LLParser::ParseGlobalType(bool &IsConstant) { 462 if (Lex.getKind() == lltok::kw_constant) 463 IsConstant = true; 464 else if (Lex.getKind() == lltok::kw_global) 465 IsConstant = false; 466 else { 467 IsConstant = false; 468 return TokError("expected 'global' or 'constant'"); 469 } 470 Lex.Lex(); 471 return false; 472 } 473 474 bool LLParser::ParseOptionalUnnamedAddr( 475 GlobalVariable::UnnamedAddr &UnnamedAddr) { 476 if (EatIfPresent(lltok::kw_unnamed_addr)) 477 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 478 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 479 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 480 else 481 UnnamedAddr = GlobalValue::UnnamedAddr::None; 482 return false; 483 } 484 485 /// ParseUnnamedGlobal: 486 /// OptionalVisibility (ALIAS | IFUNC) ... 487 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 488 /// OptionalDLLStorageClass 489 /// ... -> global variable 490 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 491 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 492 /// OptionalDLLStorageClass 493 /// ... -> global variable 494 bool LLParser::ParseUnnamedGlobal() { 495 unsigned VarID = NumberedVals.size(); 496 std::string Name; 497 LocTy NameLoc = Lex.getLoc(); 498 499 // Handle the GlobalID form. 500 if (Lex.getKind() == lltok::GlobalID) { 501 if (Lex.getUIntVal() != VarID) 502 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 503 Twine(VarID) + "'"); 504 Lex.Lex(); // eat GlobalID; 505 506 if (ParseToken(lltok::equal, "expected '=' after name")) 507 return true; 508 } 509 510 bool HasLinkage; 511 unsigned Linkage, Visibility, DLLStorageClass; 512 bool DSOLocal; 513 GlobalVariable::ThreadLocalMode TLM; 514 GlobalVariable::UnnamedAddr UnnamedAddr; 515 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 516 DSOLocal) || 517 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 518 return true; 519 520 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 521 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 522 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 523 524 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 525 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 526 } 527 528 /// ParseNamedGlobal: 529 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 530 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 531 /// OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 bool DSOLocal; 542 GlobalVariable::ThreadLocalMode TLM; 543 GlobalVariable::UnnamedAddr UnnamedAddr; 544 if (ParseToken(lltok::equal, "expected '=' in global variable") || 545 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 546 DSOLocal) || 547 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 548 return true; 549 550 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 551 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 552 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 553 554 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 555 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 556 } 557 558 bool LLParser::parseComdat() { 559 assert(Lex.getKind() == lltok::ComdatVar); 560 std::string Name = Lex.getStrVal(); 561 LocTy NameLoc = Lex.getLoc(); 562 Lex.Lex(); 563 564 if (ParseToken(lltok::equal, "expected '=' here")) 565 return true; 566 567 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 568 return TokError("expected comdat type"); 569 570 Comdat::SelectionKind SK; 571 switch (Lex.getKind()) { 572 default: 573 return TokError("unknown selection kind"); 574 case lltok::kw_any: 575 SK = Comdat::Any; 576 break; 577 case lltok::kw_exactmatch: 578 SK = Comdat::ExactMatch; 579 break; 580 case lltok::kw_largest: 581 SK = Comdat::Largest; 582 break; 583 case lltok::kw_noduplicates: 584 SK = Comdat::NoDuplicates; 585 break; 586 case lltok::kw_samesize: 587 SK = Comdat::SameSize; 588 break; 589 } 590 Lex.Lex(); 591 592 // See if the comdat was forward referenced, if so, use the comdat. 593 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 594 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 595 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 596 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 597 598 Comdat *C; 599 if (I != ComdatSymTab.end()) 600 C = &I->second; 601 else 602 C = M->getOrInsertComdat(Name); 603 C->setSelectionKind(SK); 604 605 return false; 606 } 607 608 // MDString: 609 // ::= '!' STRINGCONSTANT 610 bool LLParser::ParseMDString(MDString *&Result) { 611 std::string Str; 612 if (ParseStringConstant(Str)) return true; 613 Result = MDString::get(Context, Str); 614 return false; 615 } 616 617 // MDNode: 618 // ::= '!' MDNodeNumber 619 bool LLParser::ParseMDNodeID(MDNode *&Result) { 620 // !{ ..., !42, ... } 621 LocTy IDLoc = Lex.getLoc(); 622 unsigned MID = 0; 623 if (ParseUInt32(MID)) 624 return true; 625 626 // If not a forward reference, just return it now. 627 if (NumberedMetadata.count(MID)) { 628 Result = NumberedMetadata[MID]; 629 return false; 630 } 631 632 // Otherwise, create MDNode forward reference. 633 auto &FwdRef = ForwardRefMDNodes[MID]; 634 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 635 636 Result = FwdRef.first.get(); 637 NumberedMetadata[MID].reset(Result); 638 return false; 639 } 640 641 /// ParseNamedMetadata: 642 /// !foo = !{ !1, !2 } 643 bool LLParser::ParseNamedMetadata() { 644 assert(Lex.getKind() == lltok::MetadataVar); 645 std::string Name = Lex.getStrVal(); 646 Lex.Lex(); 647 648 if (ParseToken(lltok::equal, "expected '=' here") || 649 ParseToken(lltok::exclaim, "Expected '!' here") || 650 ParseToken(lltok::lbrace, "Expected '{' here")) 651 return true; 652 653 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 654 if (Lex.getKind() != lltok::rbrace) 655 do { 656 MDNode *N = nullptr; 657 // Parse DIExpressions inline as a special case. They are still MDNodes, 658 // so they can still appear in named metadata. Remove this logic if they 659 // become plain Metadata. 660 if (Lex.getKind() == lltok::MetadataVar && 661 Lex.getStrVal() == "DIExpression") { 662 if (ParseDIExpression(N, /*IsDistinct=*/false)) 663 return true; 664 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 665 ParseMDNodeID(N)) { 666 return true; 667 } 668 NMD->addOperand(N); 669 } while (EatIfPresent(lltok::comma)); 670 671 return ParseToken(lltok::rbrace, "expected end of metadata node"); 672 } 673 674 /// ParseStandaloneMetadata: 675 /// !42 = !{...} 676 bool LLParser::ParseStandaloneMetadata() { 677 assert(Lex.getKind() == lltok::exclaim); 678 Lex.Lex(); 679 unsigned MetadataID = 0; 680 681 MDNode *Init; 682 if (ParseUInt32(MetadataID) || 683 ParseToken(lltok::equal, "expected '=' here")) 684 return true; 685 686 // Detect common error, from old metadata syntax. 687 if (Lex.getKind() == lltok::Type) 688 return TokError("unexpected type in metadata definition"); 689 690 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 691 if (Lex.getKind() == lltok::MetadataVar) { 692 if (ParseSpecializedMDNode(Init, IsDistinct)) 693 return true; 694 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 695 ParseMDTuple(Init, IsDistinct)) 696 return true; 697 698 // See if this was forward referenced, if so, handle it. 699 auto FI = ForwardRefMDNodes.find(MetadataID); 700 if (FI != ForwardRefMDNodes.end()) { 701 FI->second.first->replaceAllUsesWith(Init); 702 ForwardRefMDNodes.erase(FI); 703 704 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 705 } else { 706 if (NumberedMetadata.count(MetadataID)) 707 return TokError("Metadata id is already used"); 708 NumberedMetadata[MetadataID].reset(Init); 709 } 710 711 return false; 712 } 713 714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 715 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 716 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 717 } 718 719 // If there was an explicit dso_local, update GV. In the absence of an explicit 720 // dso_local we keep the default value. 721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 722 if (DSOLocal) 723 GV.setDSOLocal(true); 724 } 725 726 /// parseIndirectSymbol: 727 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 728 /// OptionalVisibility OptionalDLLStorageClass 729 /// OptionalThreadLocal OptionalUnnamedAddr 730 // 'alias|ifunc' IndirectSymbol 731 /// 732 /// IndirectSymbol 733 /// ::= TypeAndValue 734 /// 735 /// Everything through OptionalUnnamedAddr has already been parsed. 736 /// 737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 738 unsigned L, unsigned Visibility, 739 unsigned DLLStorageClass, bool DSOLocal, 740 GlobalVariable::ThreadLocalMode TLM, 741 GlobalVariable::UnnamedAddr UnnamedAddr) { 742 bool IsAlias; 743 if (Lex.getKind() == lltok::kw_alias) 744 IsAlias = true; 745 else if (Lex.getKind() == lltok::kw_ifunc) 746 IsAlias = false; 747 else 748 llvm_unreachable("Not an alias or ifunc!"); 749 Lex.Lex(); 750 751 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 752 753 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 754 return Error(NameLoc, "invalid linkage type for alias"); 755 756 if (!isValidVisibilityForLinkage(Visibility, L)) 757 return Error(NameLoc, 758 "symbol with local linkage must have default visibility"); 759 760 Type *Ty; 761 LocTy ExplicitTypeLoc = Lex.getLoc(); 762 if (ParseType(Ty) || 763 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 764 return true; 765 766 Constant *Aliasee; 767 LocTy AliaseeLoc = Lex.getLoc(); 768 if (Lex.getKind() != lltok::kw_bitcast && 769 Lex.getKind() != lltok::kw_getelementptr && 770 Lex.getKind() != lltok::kw_addrspacecast && 771 Lex.getKind() != lltok::kw_inttoptr) { 772 if (ParseGlobalTypeAndValue(Aliasee)) 773 return true; 774 } else { 775 // The bitcast dest type is not present, it is implied by the dest type. 776 ValID ID; 777 if (ParseValID(ID)) 778 return true; 779 if (ID.Kind != ValID::t_Constant) 780 return Error(AliaseeLoc, "invalid aliasee"); 781 Aliasee = ID.ConstantVal; 782 } 783 784 Type *AliaseeType = Aliasee->getType(); 785 auto *PTy = dyn_cast<PointerType>(AliaseeType); 786 if (!PTy) 787 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 788 unsigned AddrSpace = PTy->getAddressSpace(); 789 790 if (IsAlias && Ty != PTy->getElementType()) 791 return Error( 792 ExplicitTypeLoc, 793 "explicit pointee type doesn't match operand's pointee type"); 794 795 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 796 return Error( 797 ExplicitTypeLoc, 798 "explicit pointee type should be a function type"); 799 800 GlobalValue *GVal = nullptr; 801 802 // See if the alias was forward referenced, if so, prepare to replace the 803 // forward reference. 804 if (!Name.empty()) { 805 GVal = M->getNamedValue(Name); 806 if (GVal) { 807 if (!ForwardRefVals.erase(Name)) 808 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 809 } 810 } else { 811 auto I = ForwardRefValIDs.find(NumberedVals.size()); 812 if (I != ForwardRefValIDs.end()) { 813 GVal = I->second.first; 814 ForwardRefValIDs.erase(I); 815 } 816 } 817 818 // Okay, create the alias but do not insert it into the module yet. 819 std::unique_ptr<GlobalIndirectSymbol> GA; 820 if (IsAlias) 821 GA.reset(GlobalAlias::create(Ty, AddrSpace, 822 (GlobalValue::LinkageTypes)Linkage, Name, 823 Aliasee, /*Parent*/ nullptr)); 824 else 825 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 826 (GlobalValue::LinkageTypes)Linkage, Name, 827 Aliasee, /*Parent*/ nullptr)); 828 GA->setThreadLocalMode(TLM); 829 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 830 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 831 GA->setUnnamedAddr(UnnamedAddr); 832 maybeSetDSOLocal(DSOLocal, *GA); 833 834 if (Name.empty()) 835 NumberedVals.push_back(GA.get()); 836 837 if (GVal) { 838 // Verify that types agree. 839 if (GVal->getType() != GA->getType()) 840 return Error( 841 ExplicitTypeLoc, 842 "forward reference and definition of alias have different types"); 843 844 // If they agree, just RAUW the old value with the alias and remove the 845 // forward ref info. 846 GVal->replaceAllUsesWith(GA.get()); 847 GVal->eraseFromParent(); 848 } 849 850 // Insert into the module, we know its name won't collide now. 851 if (IsAlias) 852 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 853 else 854 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 855 assert(GA->getName() == Name && "Should not be a name conflict!"); 856 857 // The module owns this now 858 GA.release(); 859 860 return false; 861 } 862 863 /// ParseGlobal 864 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 865 /// OptionalVisibility OptionalDLLStorageClass 866 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 867 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 868 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 869 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 870 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 871 /// Const OptionalAttrs 872 /// 873 /// Everything up to and including OptionalUnnamedAddr has been parsed 874 /// already. 875 /// 876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 877 unsigned Linkage, bool HasLinkage, 878 unsigned Visibility, unsigned DLLStorageClass, 879 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 880 GlobalVariable::UnnamedAddr UnnamedAddr) { 881 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 unsigned AddrSpace; 886 bool IsConstant, IsExternallyInitialized; 887 LocTy IsExternallyInitializedLoc; 888 LocTy TyLoc; 889 890 Type *Ty = nullptr; 891 if (ParseOptionalAddrSpace(AddrSpace) || 892 ParseOptionalToken(lltok::kw_externally_initialized, 893 IsExternallyInitialized, 894 &IsExternallyInitializedLoc) || 895 ParseGlobalType(IsConstant) || 896 ParseType(Ty, TyLoc)) 897 return true; 898 899 // If the linkage is specified and is external, then no initializer is 900 // present. 901 Constant *Init = nullptr; 902 if (!HasLinkage || 903 !GlobalValue::isValidDeclarationLinkage( 904 (GlobalValue::LinkageTypes)Linkage)) { 905 if (ParseGlobalValue(Ty, Init)) 906 return true; 907 } 908 909 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 910 return Error(TyLoc, "invalid type for global variable"); 911 912 GlobalValue *GVal = nullptr; 913 914 // See if the global was forward referenced, if so, use the global. 915 if (!Name.empty()) { 916 GVal = M->getNamedValue(Name); 917 if (GVal) { 918 if (!ForwardRefVals.erase(Name)) 919 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 920 } 921 } else { 922 auto I = ForwardRefValIDs.find(NumberedVals.size()); 923 if (I != ForwardRefValIDs.end()) { 924 GVal = I->second.first; 925 ForwardRefValIDs.erase(I); 926 } 927 } 928 929 GlobalVariable *GV; 930 if (!GVal) { 931 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 932 Name, nullptr, GlobalVariable::NotThreadLocal, 933 AddrSpace); 934 } else { 935 if (GVal->getValueType() != Ty) 936 return Error(TyLoc, 937 "forward reference and definition of global have different types"); 938 939 GV = cast<GlobalVariable>(GVal); 940 941 // Move the forward-reference to the correct spot in the module. 942 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 943 } 944 945 if (Name.empty()) 946 NumberedVals.push_back(GV); 947 948 // Set the parsed properties on the global. 949 if (Init) 950 GV->setInitializer(Init); 951 GV->setConstant(IsConstant); 952 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 953 maybeSetDSOLocal(DSOLocal, *GV); 954 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GV->setExternallyInitialized(IsExternallyInitialized); 957 GV->setThreadLocalMode(TLM); 958 GV->setUnnamedAddr(UnnamedAddr); 959 960 // Parse attributes on the global. 961 while (Lex.getKind() == lltok::comma) { 962 Lex.Lex(); 963 964 if (Lex.getKind() == lltok::kw_section) { 965 Lex.Lex(); 966 GV->setSection(Lex.getStrVal()); 967 if (ParseToken(lltok::StringConstant, "expected global section string")) 968 return true; 969 } else if (Lex.getKind() == lltok::kw_align) { 970 unsigned Alignment; 971 if (ParseOptionalAlignment(Alignment)) return true; 972 GV->setAlignment(Alignment); 973 } else if (Lex.getKind() == lltok::MetadataVar) { 974 if (ParseGlobalObjectMetadataAttachment(*GV)) 975 return true; 976 } else { 977 Comdat *C; 978 if (parseOptionalComdat(Name, C)) 979 return true; 980 if (C) 981 GV->setComdat(C); 982 else 983 return TokError("unknown global variable property!"); 984 } 985 } 986 987 AttrBuilder Attrs; 988 LocTy BuiltinLoc; 989 std::vector<unsigned> FwdRefAttrGrps; 990 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 991 return true; 992 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 993 GV->setAttributes(AttributeSet::get(Context, Attrs)); 994 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 995 } 996 997 return false; 998 } 999 1000 /// ParseUnnamedAttrGrp 1001 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1002 bool LLParser::ParseUnnamedAttrGrp() { 1003 assert(Lex.getKind() == lltok::kw_attributes); 1004 LocTy AttrGrpLoc = Lex.getLoc(); 1005 Lex.Lex(); 1006 1007 if (Lex.getKind() != lltok::AttrGrpID) 1008 return TokError("expected attribute group id"); 1009 1010 unsigned VarID = Lex.getUIntVal(); 1011 std::vector<unsigned> unused; 1012 LocTy BuiltinLoc; 1013 Lex.Lex(); 1014 1015 if (ParseToken(lltok::equal, "expected '=' here") || 1016 ParseToken(lltok::lbrace, "expected '{' here") || 1017 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1018 BuiltinLoc) || 1019 ParseToken(lltok::rbrace, "expected end of attribute group")) 1020 return true; 1021 1022 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1023 return Error(AttrGrpLoc, "attribute group has no attributes"); 1024 1025 return false; 1026 } 1027 1028 /// ParseFnAttributeValuePairs 1029 /// ::= <attr> | <attr> '=' <value> 1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1031 std::vector<unsigned> &FwdRefAttrGrps, 1032 bool inAttrGrp, LocTy &BuiltinLoc) { 1033 bool HaveError = false; 1034 1035 B.clear(); 1036 1037 while (true) { 1038 lltok::Kind Token = Lex.getKind(); 1039 if (Token == lltok::kw_builtin) 1040 BuiltinLoc = Lex.getLoc(); 1041 switch (Token) { 1042 default: 1043 if (!inAttrGrp) return HaveError; 1044 return Error(Lex.getLoc(), "unterminated attribute group"); 1045 case lltok::rbrace: 1046 // Finished. 1047 return false; 1048 1049 case lltok::AttrGrpID: { 1050 // Allow a function to reference an attribute group: 1051 // 1052 // define void @foo() #1 { ... } 1053 if (inAttrGrp) 1054 HaveError |= 1055 Error(Lex.getLoc(), 1056 "cannot have an attribute group reference in an attribute group"); 1057 1058 unsigned AttrGrpNum = Lex.getUIntVal(); 1059 if (inAttrGrp) break; 1060 1061 // Save the reference to the attribute group. We'll fill it in later. 1062 FwdRefAttrGrps.push_back(AttrGrpNum); 1063 break; 1064 } 1065 // Target-dependent attributes: 1066 case lltok::StringConstant: { 1067 if (ParseStringAttribute(B)) 1068 return true; 1069 continue; 1070 } 1071 1072 // Target-independent attributes: 1073 case lltok::kw_align: { 1074 // As a hack, we allow function alignment to be initially parsed as an 1075 // attribute on a function declaration/definition or added to an attribute 1076 // group and later moved to the alignment field. 1077 unsigned Alignment; 1078 if (inAttrGrp) { 1079 Lex.Lex(); 1080 if (ParseToken(lltok::equal, "expected '=' here") || 1081 ParseUInt32(Alignment)) 1082 return true; 1083 } else { 1084 if (ParseOptionalAlignment(Alignment)) 1085 return true; 1086 } 1087 B.addAlignmentAttr(Alignment); 1088 continue; 1089 } 1090 case lltok::kw_alignstack: { 1091 unsigned Alignment; 1092 if (inAttrGrp) { 1093 Lex.Lex(); 1094 if (ParseToken(lltok::equal, "expected '=' here") || 1095 ParseUInt32(Alignment)) 1096 return true; 1097 } else { 1098 if (ParseOptionalStackAlignment(Alignment)) 1099 return true; 1100 } 1101 B.addStackAlignmentAttr(Alignment); 1102 continue; 1103 } 1104 case lltok::kw_allocsize: { 1105 unsigned ElemSizeArg; 1106 Optional<unsigned> NumElemsArg; 1107 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1108 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1109 return true; 1110 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1111 continue; 1112 } 1113 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1114 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1115 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1116 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1117 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1118 case lltok::kw_inaccessiblememonly: 1119 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1120 case lltok::kw_inaccessiblemem_or_argmemonly: 1121 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1122 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1123 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1124 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1125 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1126 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1127 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1128 case lltok::kw_noimplicitfloat: 1129 B.addAttribute(Attribute::NoImplicitFloat); break; 1130 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1131 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1132 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1133 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1134 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1135 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1136 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1137 case lltok::kw_optforfuzzing: 1138 B.addAttribute(Attribute::OptForFuzzing); break; 1139 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1140 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1141 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1142 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1143 case lltok::kw_returns_twice: 1144 B.addAttribute(Attribute::ReturnsTwice); break; 1145 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1146 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1147 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1148 case lltok::kw_sspstrong: 1149 B.addAttribute(Attribute::StackProtectStrong); break; 1150 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1151 case lltok::kw_shadowcallstack: 1152 B.addAttribute(Attribute::ShadowCallStack); break; 1153 case lltok::kw_sanitize_address: 1154 B.addAttribute(Attribute::SanitizeAddress); break; 1155 case lltok::kw_sanitize_hwaddress: 1156 B.addAttribute(Attribute::SanitizeHWAddress); break; 1157 case lltok::kw_sanitize_thread: 1158 B.addAttribute(Attribute::SanitizeThread); break; 1159 case lltok::kw_sanitize_memory: 1160 B.addAttribute(Attribute::SanitizeMemory); break; 1161 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1162 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1163 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1164 1165 // Error handling. 1166 case lltok::kw_inreg: 1167 case lltok::kw_signext: 1168 case lltok::kw_zeroext: 1169 HaveError |= 1170 Error(Lex.getLoc(), 1171 "invalid use of attribute on a function"); 1172 break; 1173 case lltok::kw_byval: 1174 case lltok::kw_dereferenceable: 1175 case lltok::kw_dereferenceable_or_null: 1176 case lltok::kw_inalloca: 1177 case lltok::kw_nest: 1178 case lltok::kw_noalias: 1179 case lltok::kw_nocapture: 1180 case lltok::kw_nonnull: 1181 case lltok::kw_returned: 1182 case lltok::kw_sret: 1183 case lltok::kw_swifterror: 1184 case lltok::kw_swiftself: 1185 HaveError |= 1186 Error(Lex.getLoc(), 1187 "invalid use of parameter-only attribute on a function"); 1188 break; 1189 } 1190 1191 Lex.Lex(); 1192 } 1193 } 1194 1195 //===----------------------------------------------------------------------===// 1196 // GlobalValue Reference/Resolution Routines. 1197 //===----------------------------------------------------------------------===// 1198 1199 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1200 const std::string &Name) { 1201 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1202 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1203 else 1204 return new GlobalVariable(*M, PTy->getElementType(), false, 1205 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1206 nullptr, GlobalVariable::NotThreadLocal, 1207 PTy->getAddressSpace()); 1208 } 1209 1210 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1211 /// forward reference record if needed. This can return null if the value 1212 /// exists but does not have the right type. 1213 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1214 LocTy Loc) { 1215 PointerType *PTy = dyn_cast<PointerType>(Ty); 1216 if (!PTy) { 1217 Error(Loc, "global variable reference must have pointer type"); 1218 return nullptr; 1219 } 1220 1221 // Look this name up in the normal function symbol table. 1222 GlobalValue *Val = 1223 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1224 1225 // If this is a forward reference for the value, see if we already created a 1226 // forward ref record. 1227 if (!Val) { 1228 auto I = ForwardRefVals.find(Name); 1229 if (I != ForwardRefVals.end()) 1230 Val = I->second.first; 1231 } 1232 1233 // If we have the value in the symbol table or fwd-ref table, return it. 1234 if (Val) { 1235 if (Val->getType() == Ty) return Val; 1236 Error(Loc, "'@" + Name + "' defined with type '" + 1237 getTypeString(Val->getType()) + "'"); 1238 return nullptr; 1239 } 1240 1241 // Otherwise, create a new forward reference for this value and remember it. 1242 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1243 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1244 return FwdVal; 1245 } 1246 1247 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1248 PointerType *PTy = dyn_cast<PointerType>(Ty); 1249 if (!PTy) { 1250 Error(Loc, "global variable reference must have pointer type"); 1251 return nullptr; 1252 } 1253 1254 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1255 1256 // If this is a forward reference for the value, see if we already created a 1257 // forward ref record. 1258 if (!Val) { 1259 auto I = ForwardRefValIDs.find(ID); 1260 if (I != ForwardRefValIDs.end()) 1261 Val = I->second.first; 1262 } 1263 1264 // If we have the value in the symbol table or fwd-ref table, return it. 1265 if (Val) { 1266 if (Val->getType() == Ty) return Val; 1267 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1268 getTypeString(Val->getType()) + "'"); 1269 return nullptr; 1270 } 1271 1272 // Otherwise, create a new forward reference for this value and remember it. 1273 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1274 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1275 return FwdVal; 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // Comdat Reference/Resolution Routines. 1280 //===----------------------------------------------------------------------===// 1281 1282 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1283 // Look this name up in the comdat symbol table. 1284 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1285 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1286 if (I != ComdatSymTab.end()) 1287 return &I->second; 1288 1289 // Otherwise, create a new forward reference for this value and remember it. 1290 Comdat *C = M->getOrInsertComdat(Name); 1291 ForwardRefComdats[Name] = Loc; 1292 return C; 1293 } 1294 1295 //===----------------------------------------------------------------------===// 1296 // Helper Routines. 1297 //===----------------------------------------------------------------------===// 1298 1299 /// ParseToken - If the current token has the specified kind, eat it and return 1300 /// success. Otherwise, emit the specified error and return failure. 1301 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1302 if (Lex.getKind() != T) 1303 return TokError(ErrMsg); 1304 Lex.Lex(); 1305 return false; 1306 } 1307 1308 /// ParseStringConstant 1309 /// ::= StringConstant 1310 bool LLParser::ParseStringConstant(std::string &Result) { 1311 if (Lex.getKind() != lltok::StringConstant) 1312 return TokError("expected string constant"); 1313 Result = Lex.getStrVal(); 1314 Lex.Lex(); 1315 return false; 1316 } 1317 1318 /// ParseUInt32 1319 /// ::= uint32 1320 bool LLParser::ParseUInt32(uint32_t &Val) { 1321 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1322 return TokError("expected integer"); 1323 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1324 if (Val64 != unsigned(Val64)) 1325 return TokError("expected 32-bit integer (too large)"); 1326 Val = Val64; 1327 Lex.Lex(); 1328 return false; 1329 } 1330 1331 /// ParseUInt64 1332 /// ::= uint64 1333 bool LLParser::ParseUInt64(uint64_t &Val) { 1334 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1335 return TokError("expected integer"); 1336 Val = Lex.getAPSIntVal().getLimitedValue(); 1337 Lex.Lex(); 1338 return false; 1339 } 1340 1341 /// ParseTLSModel 1342 /// := 'localdynamic' 1343 /// := 'initialexec' 1344 /// := 'localexec' 1345 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1346 switch (Lex.getKind()) { 1347 default: 1348 return TokError("expected localdynamic, initialexec or localexec"); 1349 case lltok::kw_localdynamic: 1350 TLM = GlobalVariable::LocalDynamicTLSModel; 1351 break; 1352 case lltok::kw_initialexec: 1353 TLM = GlobalVariable::InitialExecTLSModel; 1354 break; 1355 case lltok::kw_localexec: 1356 TLM = GlobalVariable::LocalExecTLSModel; 1357 break; 1358 } 1359 1360 Lex.Lex(); 1361 return false; 1362 } 1363 1364 /// ParseOptionalThreadLocal 1365 /// := /*empty*/ 1366 /// := 'thread_local' 1367 /// := 'thread_local' '(' tlsmodel ')' 1368 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1369 TLM = GlobalVariable::NotThreadLocal; 1370 if (!EatIfPresent(lltok::kw_thread_local)) 1371 return false; 1372 1373 TLM = GlobalVariable::GeneralDynamicTLSModel; 1374 if (Lex.getKind() == lltok::lparen) { 1375 Lex.Lex(); 1376 return ParseTLSModel(TLM) || 1377 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1378 } 1379 return false; 1380 } 1381 1382 /// ParseOptionalAddrSpace 1383 /// := /*empty*/ 1384 /// := 'addrspace' '(' uint32 ')' 1385 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1386 AddrSpace = 0; 1387 if (!EatIfPresent(lltok::kw_addrspace)) 1388 return false; 1389 return ParseToken(lltok::lparen, "expected '(' in address space") || 1390 ParseUInt32(AddrSpace) || 1391 ParseToken(lltok::rparen, "expected ')' in address space"); 1392 } 1393 1394 /// ParseStringAttribute 1395 /// := StringConstant 1396 /// := StringConstant '=' StringConstant 1397 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1398 std::string Attr = Lex.getStrVal(); 1399 Lex.Lex(); 1400 std::string Val; 1401 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1402 return true; 1403 B.addAttribute(Attr, Val); 1404 return false; 1405 } 1406 1407 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1408 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1409 bool HaveError = false; 1410 1411 B.clear(); 1412 1413 while (true) { 1414 lltok::Kind Token = Lex.getKind(); 1415 switch (Token) { 1416 default: // End of attributes. 1417 return HaveError; 1418 case lltok::StringConstant: { 1419 if (ParseStringAttribute(B)) 1420 return true; 1421 continue; 1422 } 1423 case lltok::kw_align: { 1424 unsigned Alignment; 1425 if (ParseOptionalAlignment(Alignment)) 1426 return true; 1427 B.addAlignmentAttr(Alignment); 1428 continue; 1429 } 1430 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1431 case lltok::kw_dereferenceable: { 1432 uint64_t Bytes; 1433 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1434 return true; 1435 B.addDereferenceableAttr(Bytes); 1436 continue; 1437 } 1438 case lltok::kw_dereferenceable_or_null: { 1439 uint64_t Bytes; 1440 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1441 return true; 1442 B.addDereferenceableOrNullAttr(Bytes); 1443 continue; 1444 } 1445 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1446 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1447 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1448 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1449 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1450 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1451 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1452 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1453 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1454 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1455 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1456 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1457 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1458 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1459 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1460 1461 case lltok::kw_alignstack: 1462 case lltok::kw_alwaysinline: 1463 case lltok::kw_argmemonly: 1464 case lltok::kw_builtin: 1465 case lltok::kw_inlinehint: 1466 case lltok::kw_jumptable: 1467 case lltok::kw_minsize: 1468 case lltok::kw_naked: 1469 case lltok::kw_nobuiltin: 1470 case lltok::kw_noduplicate: 1471 case lltok::kw_noimplicitfloat: 1472 case lltok::kw_noinline: 1473 case lltok::kw_nonlazybind: 1474 case lltok::kw_noredzone: 1475 case lltok::kw_noreturn: 1476 case lltok::kw_nocf_check: 1477 case lltok::kw_nounwind: 1478 case lltok::kw_optforfuzzing: 1479 case lltok::kw_optnone: 1480 case lltok::kw_optsize: 1481 case lltok::kw_returns_twice: 1482 case lltok::kw_sanitize_address: 1483 case lltok::kw_sanitize_hwaddress: 1484 case lltok::kw_sanitize_memory: 1485 case lltok::kw_sanitize_thread: 1486 case lltok::kw_ssp: 1487 case lltok::kw_sspreq: 1488 case lltok::kw_sspstrong: 1489 case lltok::kw_safestack: 1490 case lltok::kw_shadowcallstack: 1491 case lltok::kw_strictfp: 1492 case lltok::kw_uwtable: 1493 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1494 break; 1495 } 1496 1497 Lex.Lex(); 1498 } 1499 } 1500 1501 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1502 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1503 bool HaveError = false; 1504 1505 B.clear(); 1506 1507 while (true) { 1508 lltok::Kind Token = Lex.getKind(); 1509 switch (Token) { 1510 default: // End of attributes. 1511 return HaveError; 1512 case lltok::StringConstant: { 1513 if (ParseStringAttribute(B)) 1514 return true; 1515 continue; 1516 } 1517 case lltok::kw_dereferenceable: { 1518 uint64_t Bytes; 1519 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1520 return true; 1521 B.addDereferenceableAttr(Bytes); 1522 continue; 1523 } 1524 case lltok::kw_dereferenceable_or_null: { 1525 uint64_t Bytes; 1526 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1527 return true; 1528 B.addDereferenceableOrNullAttr(Bytes); 1529 continue; 1530 } 1531 case lltok::kw_align: { 1532 unsigned Alignment; 1533 if (ParseOptionalAlignment(Alignment)) 1534 return true; 1535 B.addAlignmentAttr(Alignment); 1536 continue; 1537 } 1538 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1539 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1540 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1541 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1542 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1543 1544 // Error handling. 1545 case lltok::kw_byval: 1546 case lltok::kw_inalloca: 1547 case lltok::kw_nest: 1548 case lltok::kw_nocapture: 1549 case lltok::kw_returned: 1550 case lltok::kw_sret: 1551 case lltok::kw_swifterror: 1552 case lltok::kw_swiftself: 1553 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1554 break; 1555 1556 case lltok::kw_alignstack: 1557 case lltok::kw_alwaysinline: 1558 case lltok::kw_argmemonly: 1559 case lltok::kw_builtin: 1560 case lltok::kw_cold: 1561 case lltok::kw_inlinehint: 1562 case lltok::kw_jumptable: 1563 case lltok::kw_minsize: 1564 case lltok::kw_naked: 1565 case lltok::kw_nobuiltin: 1566 case lltok::kw_noduplicate: 1567 case lltok::kw_noimplicitfloat: 1568 case lltok::kw_noinline: 1569 case lltok::kw_nonlazybind: 1570 case lltok::kw_noredzone: 1571 case lltok::kw_noreturn: 1572 case lltok::kw_nocf_check: 1573 case lltok::kw_nounwind: 1574 case lltok::kw_optforfuzzing: 1575 case lltok::kw_optnone: 1576 case lltok::kw_optsize: 1577 case lltok::kw_returns_twice: 1578 case lltok::kw_sanitize_address: 1579 case lltok::kw_sanitize_hwaddress: 1580 case lltok::kw_sanitize_memory: 1581 case lltok::kw_sanitize_thread: 1582 case lltok::kw_ssp: 1583 case lltok::kw_sspreq: 1584 case lltok::kw_sspstrong: 1585 case lltok::kw_safestack: 1586 case lltok::kw_shadowcallstack: 1587 case lltok::kw_strictfp: 1588 case lltok::kw_uwtable: 1589 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1590 break; 1591 1592 case lltok::kw_readnone: 1593 case lltok::kw_readonly: 1594 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1595 } 1596 1597 Lex.Lex(); 1598 } 1599 } 1600 1601 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1602 HasLinkage = true; 1603 switch (Kind) { 1604 default: 1605 HasLinkage = false; 1606 return GlobalValue::ExternalLinkage; 1607 case lltok::kw_private: 1608 return GlobalValue::PrivateLinkage; 1609 case lltok::kw_internal: 1610 return GlobalValue::InternalLinkage; 1611 case lltok::kw_weak: 1612 return GlobalValue::WeakAnyLinkage; 1613 case lltok::kw_weak_odr: 1614 return GlobalValue::WeakODRLinkage; 1615 case lltok::kw_linkonce: 1616 return GlobalValue::LinkOnceAnyLinkage; 1617 case lltok::kw_linkonce_odr: 1618 return GlobalValue::LinkOnceODRLinkage; 1619 case lltok::kw_available_externally: 1620 return GlobalValue::AvailableExternallyLinkage; 1621 case lltok::kw_appending: 1622 return GlobalValue::AppendingLinkage; 1623 case lltok::kw_common: 1624 return GlobalValue::CommonLinkage; 1625 case lltok::kw_extern_weak: 1626 return GlobalValue::ExternalWeakLinkage; 1627 case lltok::kw_external: 1628 return GlobalValue::ExternalLinkage; 1629 } 1630 } 1631 1632 /// ParseOptionalLinkage 1633 /// ::= /*empty*/ 1634 /// ::= 'private' 1635 /// ::= 'internal' 1636 /// ::= 'weak' 1637 /// ::= 'weak_odr' 1638 /// ::= 'linkonce' 1639 /// ::= 'linkonce_odr' 1640 /// ::= 'available_externally' 1641 /// ::= 'appending' 1642 /// ::= 'common' 1643 /// ::= 'extern_weak' 1644 /// ::= 'external' 1645 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1646 unsigned &Visibility, 1647 unsigned &DLLStorageClass, 1648 bool &DSOLocal) { 1649 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1650 if (HasLinkage) 1651 Lex.Lex(); 1652 ParseOptionalDSOLocal(DSOLocal); 1653 ParseOptionalVisibility(Visibility); 1654 ParseOptionalDLLStorageClass(DLLStorageClass); 1655 1656 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1657 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1658 } 1659 1660 return false; 1661 } 1662 1663 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1664 switch (Lex.getKind()) { 1665 default: 1666 DSOLocal = false; 1667 break; 1668 case lltok::kw_dso_local: 1669 DSOLocal = true; 1670 Lex.Lex(); 1671 break; 1672 case lltok::kw_dso_preemptable: 1673 DSOLocal = false; 1674 Lex.Lex(); 1675 break; 1676 } 1677 } 1678 1679 /// ParseOptionalVisibility 1680 /// ::= /*empty*/ 1681 /// ::= 'default' 1682 /// ::= 'hidden' 1683 /// ::= 'protected' 1684 /// 1685 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1686 switch (Lex.getKind()) { 1687 default: 1688 Res = GlobalValue::DefaultVisibility; 1689 return; 1690 case lltok::kw_default: 1691 Res = GlobalValue::DefaultVisibility; 1692 break; 1693 case lltok::kw_hidden: 1694 Res = GlobalValue::HiddenVisibility; 1695 break; 1696 case lltok::kw_protected: 1697 Res = GlobalValue::ProtectedVisibility; 1698 break; 1699 } 1700 Lex.Lex(); 1701 } 1702 1703 /// ParseOptionalDLLStorageClass 1704 /// ::= /*empty*/ 1705 /// ::= 'dllimport' 1706 /// ::= 'dllexport' 1707 /// 1708 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1709 switch (Lex.getKind()) { 1710 default: 1711 Res = GlobalValue::DefaultStorageClass; 1712 return; 1713 case lltok::kw_dllimport: 1714 Res = GlobalValue::DLLImportStorageClass; 1715 break; 1716 case lltok::kw_dllexport: 1717 Res = GlobalValue::DLLExportStorageClass; 1718 break; 1719 } 1720 Lex.Lex(); 1721 } 1722 1723 /// ParseOptionalCallingConv 1724 /// ::= /*empty*/ 1725 /// ::= 'ccc' 1726 /// ::= 'fastcc' 1727 /// ::= 'intel_ocl_bicc' 1728 /// ::= 'coldcc' 1729 /// ::= 'x86_stdcallcc' 1730 /// ::= 'x86_fastcallcc' 1731 /// ::= 'x86_thiscallcc' 1732 /// ::= 'x86_vectorcallcc' 1733 /// ::= 'arm_apcscc' 1734 /// ::= 'arm_aapcscc' 1735 /// ::= 'arm_aapcs_vfpcc' 1736 /// ::= 'msp430_intrcc' 1737 /// ::= 'avr_intrcc' 1738 /// ::= 'avr_signalcc' 1739 /// ::= 'ptx_kernel' 1740 /// ::= 'ptx_device' 1741 /// ::= 'spir_func' 1742 /// ::= 'spir_kernel' 1743 /// ::= 'x86_64_sysvcc' 1744 /// ::= 'win64cc' 1745 /// ::= 'webkit_jscc' 1746 /// ::= 'anyregcc' 1747 /// ::= 'preserve_mostcc' 1748 /// ::= 'preserve_allcc' 1749 /// ::= 'ghccc' 1750 /// ::= 'swiftcc' 1751 /// ::= 'x86_intrcc' 1752 /// ::= 'hhvmcc' 1753 /// ::= 'hhvm_ccc' 1754 /// ::= 'cxx_fast_tlscc' 1755 /// ::= 'amdgpu_vs' 1756 /// ::= 'amdgpu_ls' 1757 /// ::= 'amdgpu_hs' 1758 /// ::= 'amdgpu_es' 1759 /// ::= 'amdgpu_gs' 1760 /// ::= 'amdgpu_ps' 1761 /// ::= 'amdgpu_cs' 1762 /// ::= 'amdgpu_kernel' 1763 /// ::= 'cc' UINT 1764 /// 1765 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1766 switch (Lex.getKind()) { 1767 default: CC = CallingConv::C; return false; 1768 case lltok::kw_ccc: CC = CallingConv::C; break; 1769 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1770 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1771 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1772 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1773 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1774 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1775 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1776 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1777 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1778 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1779 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1780 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1781 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1782 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1783 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1784 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1785 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1786 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1787 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1788 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1789 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1790 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1791 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1792 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1793 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1794 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1795 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1796 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1797 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1798 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1799 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1800 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1801 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1802 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1803 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1804 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1805 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1806 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1807 case lltok::kw_cc: { 1808 Lex.Lex(); 1809 return ParseUInt32(CC); 1810 } 1811 } 1812 1813 Lex.Lex(); 1814 return false; 1815 } 1816 1817 /// ParseMetadataAttachment 1818 /// ::= !dbg !42 1819 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1820 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1821 1822 std::string Name = Lex.getStrVal(); 1823 Kind = M->getMDKindID(Name); 1824 Lex.Lex(); 1825 1826 return ParseMDNode(MD); 1827 } 1828 1829 /// ParseInstructionMetadata 1830 /// ::= !dbg !42 (',' !dbg !57)* 1831 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1832 do { 1833 if (Lex.getKind() != lltok::MetadataVar) 1834 return TokError("expected metadata after comma"); 1835 1836 unsigned MDK; 1837 MDNode *N; 1838 if (ParseMetadataAttachment(MDK, N)) 1839 return true; 1840 1841 Inst.setMetadata(MDK, N); 1842 if (MDK == LLVMContext::MD_tbaa) 1843 InstsWithTBAATag.push_back(&Inst); 1844 1845 // If this is the end of the list, we're done. 1846 } while (EatIfPresent(lltok::comma)); 1847 return false; 1848 } 1849 1850 /// ParseGlobalObjectMetadataAttachment 1851 /// ::= !dbg !57 1852 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1853 unsigned MDK; 1854 MDNode *N; 1855 if (ParseMetadataAttachment(MDK, N)) 1856 return true; 1857 1858 GO.addMetadata(MDK, *N); 1859 return false; 1860 } 1861 1862 /// ParseOptionalFunctionMetadata 1863 /// ::= (!dbg !57)* 1864 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1865 while (Lex.getKind() == lltok::MetadataVar) 1866 if (ParseGlobalObjectMetadataAttachment(F)) 1867 return true; 1868 return false; 1869 } 1870 1871 /// ParseOptionalAlignment 1872 /// ::= /* empty */ 1873 /// ::= 'align' 4 1874 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1875 Alignment = 0; 1876 if (!EatIfPresent(lltok::kw_align)) 1877 return false; 1878 LocTy AlignLoc = Lex.getLoc(); 1879 if (ParseUInt32(Alignment)) return true; 1880 if (!isPowerOf2_32(Alignment)) 1881 return Error(AlignLoc, "alignment is not a power of two"); 1882 if (Alignment > Value::MaximumAlignment) 1883 return Error(AlignLoc, "huge alignments are not supported yet"); 1884 return false; 1885 } 1886 1887 /// ParseOptionalDerefAttrBytes 1888 /// ::= /* empty */ 1889 /// ::= AttrKind '(' 4 ')' 1890 /// 1891 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1892 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1893 uint64_t &Bytes) { 1894 assert((AttrKind == lltok::kw_dereferenceable || 1895 AttrKind == lltok::kw_dereferenceable_or_null) && 1896 "contract!"); 1897 1898 Bytes = 0; 1899 if (!EatIfPresent(AttrKind)) 1900 return false; 1901 LocTy ParenLoc = Lex.getLoc(); 1902 if (!EatIfPresent(lltok::lparen)) 1903 return Error(ParenLoc, "expected '('"); 1904 LocTy DerefLoc = Lex.getLoc(); 1905 if (ParseUInt64(Bytes)) return true; 1906 ParenLoc = Lex.getLoc(); 1907 if (!EatIfPresent(lltok::rparen)) 1908 return Error(ParenLoc, "expected ')'"); 1909 if (!Bytes) 1910 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1911 return false; 1912 } 1913 1914 /// ParseOptionalCommaAlign 1915 /// ::= 1916 /// ::= ',' align 4 1917 /// 1918 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1919 /// end. 1920 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1921 bool &AteExtraComma) { 1922 AteExtraComma = false; 1923 while (EatIfPresent(lltok::comma)) { 1924 // Metadata at the end is an early exit. 1925 if (Lex.getKind() == lltok::MetadataVar) { 1926 AteExtraComma = true; 1927 return false; 1928 } 1929 1930 if (Lex.getKind() != lltok::kw_align) 1931 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1932 1933 if (ParseOptionalAlignment(Alignment)) return true; 1934 } 1935 1936 return false; 1937 } 1938 1939 /// ParseOptionalCommaAddrSpace 1940 /// ::= 1941 /// ::= ',' addrspace(1) 1942 /// 1943 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1944 /// end. 1945 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1946 LocTy &Loc, 1947 bool &AteExtraComma) { 1948 AteExtraComma = false; 1949 while (EatIfPresent(lltok::comma)) { 1950 // Metadata at the end is an early exit. 1951 if (Lex.getKind() == lltok::MetadataVar) { 1952 AteExtraComma = true; 1953 return false; 1954 } 1955 1956 Loc = Lex.getLoc(); 1957 if (Lex.getKind() != lltok::kw_addrspace) 1958 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1959 1960 if (ParseOptionalAddrSpace(AddrSpace)) 1961 return true; 1962 } 1963 1964 return false; 1965 } 1966 1967 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1968 Optional<unsigned> &HowManyArg) { 1969 Lex.Lex(); 1970 1971 auto StartParen = Lex.getLoc(); 1972 if (!EatIfPresent(lltok::lparen)) 1973 return Error(StartParen, "expected '('"); 1974 1975 if (ParseUInt32(BaseSizeArg)) 1976 return true; 1977 1978 if (EatIfPresent(lltok::comma)) { 1979 auto HowManyAt = Lex.getLoc(); 1980 unsigned HowMany; 1981 if (ParseUInt32(HowMany)) 1982 return true; 1983 if (HowMany == BaseSizeArg) 1984 return Error(HowManyAt, 1985 "'allocsize' indices can't refer to the same parameter"); 1986 HowManyArg = HowMany; 1987 } else 1988 HowManyArg = None; 1989 1990 auto EndParen = Lex.getLoc(); 1991 if (!EatIfPresent(lltok::rparen)) 1992 return Error(EndParen, "expected ')'"); 1993 return false; 1994 } 1995 1996 /// ParseScopeAndOrdering 1997 /// if isAtomic: ::= SyncScope? AtomicOrdering 1998 /// else: ::= 1999 /// 2000 /// This sets Scope and Ordering to the parsed values. 2001 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2002 AtomicOrdering &Ordering) { 2003 if (!isAtomic) 2004 return false; 2005 2006 return ParseScope(SSID) || ParseOrdering(Ordering); 2007 } 2008 2009 /// ParseScope 2010 /// ::= syncscope("singlethread" | "<target scope>")? 2011 /// 2012 /// This sets synchronization scope ID to the ID of the parsed value. 2013 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2014 SSID = SyncScope::System; 2015 if (EatIfPresent(lltok::kw_syncscope)) { 2016 auto StartParenAt = Lex.getLoc(); 2017 if (!EatIfPresent(lltok::lparen)) 2018 return Error(StartParenAt, "Expected '(' in syncscope"); 2019 2020 std::string SSN; 2021 auto SSNAt = Lex.getLoc(); 2022 if (ParseStringConstant(SSN)) 2023 return Error(SSNAt, "Expected synchronization scope name"); 2024 2025 auto EndParenAt = Lex.getLoc(); 2026 if (!EatIfPresent(lltok::rparen)) 2027 return Error(EndParenAt, "Expected ')' in syncscope"); 2028 2029 SSID = Context.getOrInsertSyncScopeID(SSN); 2030 } 2031 2032 return false; 2033 } 2034 2035 /// ParseOrdering 2036 /// ::= AtomicOrdering 2037 /// 2038 /// This sets Ordering to the parsed value. 2039 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2040 switch (Lex.getKind()) { 2041 default: return TokError("Expected ordering on atomic instruction"); 2042 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2043 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2044 // Not specified yet: 2045 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2046 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2047 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2048 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2049 case lltok::kw_seq_cst: 2050 Ordering = AtomicOrdering::SequentiallyConsistent; 2051 break; 2052 } 2053 Lex.Lex(); 2054 return false; 2055 } 2056 2057 /// ParseOptionalStackAlignment 2058 /// ::= /* empty */ 2059 /// ::= 'alignstack' '(' 4 ')' 2060 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2061 Alignment = 0; 2062 if (!EatIfPresent(lltok::kw_alignstack)) 2063 return false; 2064 LocTy ParenLoc = Lex.getLoc(); 2065 if (!EatIfPresent(lltok::lparen)) 2066 return Error(ParenLoc, "expected '('"); 2067 LocTy AlignLoc = Lex.getLoc(); 2068 if (ParseUInt32(Alignment)) return true; 2069 ParenLoc = Lex.getLoc(); 2070 if (!EatIfPresent(lltok::rparen)) 2071 return Error(ParenLoc, "expected ')'"); 2072 if (!isPowerOf2_32(Alignment)) 2073 return Error(AlignLoc, "stack alignment is not a power of two"); 2074 return false; 2075 } 2076 2077 /// ParseIndexList - This parses the index list for an insert/extractvalue 2078 /// instruction. This sets AteExtraComma in the case where we eat an extra 2079 /// comma at the end of the line and find that it is followed by metadata. 2080 /// Clients that don't allow metadata can call the version of this function that 2081 /// only takes one argument. 2082 /// 2083 /// ParseIndexList 2084 /// ::= (',' uint32)+ 2085 /// 2086 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2087 bool &AteExtraComma) { 2088 AteExtraComma = false; 2089 2090 if (Lex.getKind() != lltok::comma) 2091 return TokError("expected ',' as start of index list"); 2092 2093 while (EatIfPresent(lltok::comma)) { 2094 if (Lex.getKind() == lltok::MetadataVar) { 2095 if (Indices.empty()) return TokError("expected index"); 2096 AteExtraComma = true; 2097 return false; 2098 } 2099 unsigned Idx = 0; 2100 if (ParseUInt32(Idx)) return true; 2101 Indices.push_back(Idx); 2102 } 2103 2104 return false; 2105 } 2106 2107 //===----------------------------------------------------------------------===// 2108 // Type Parsing. 2109 //===----------------------------------------------------------------------===// 2110 2111 /// ParseType - Parse a type. 2112 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2113 SMLoc TypeLoc = Lex.getLoc(); 2114 switch (Lex.getKind()) { 2115 default: 2116 return TokError(Msg); 2117 case lltok::Type: 2118 // Type ::= 'float' | 'void' (etc) 2119 Result = Lex.getTyVal(); 2120 Lex.Lex(); 2121 break; 2122 case lltok::lbrace: 2123 // Type ::= StructType 2124 if (ParseAnonStructType(Result, false)) 2125 return true; 2126 break; 2127 case lltok::lsquare: 2128 // Type ::= '[' ... ']' 2129 Lex.Lex(); // eat the lsquare. 2130 if (ParseArrayVectorType(Result, false)) 2131 return true; 2132 break; 2133 case lltok::less: // Either vector or packed struct. 2134 // Type ::= '<' ... '>' 2135 Lex.Lex(); 2136 if (Lex.getKind() == lltok::lbrace) { 2137 if (ParseAnonStructType(Result, true) || 2138 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2139 return true; 2140 } else if (ParseArrayVectorType(Result, true)) 2141 return true; 2142 break; 2143 case lltok::LocalVar: { 2144 // Type ::= %foo 2145 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2146 2147 // If the type hasn't been defined yet, create a forward definition and 2148 // remember where that forward def'n was seen (in case it never is defined). 2149 if (!Entry.first) { 2150 Entry.first = StructType::create(Context, Lex.getStrVal()); 2151 Entry.second = Lex.getLoc(); 2152 } 2153 Result = Entry.first; 2154 Lex.Lex(); 2155 break; 2156 } 2157 2158 case lltok::LocalVarID: { 2159 // Type ::= %4 2160 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2161 2162 // If the type hasn't been defined yet, create a forward definition and 2163 // remember where that forward def'n was seen (in case it never is defined). 2164 if (!Entry.first) { 2165 Entry.first = StructType::create(Context); 2166 Entry.second = Lex.getLoc(); 2167 } 2168 Result = Entry.first; 2169 Lex.Lex(); 2170 break; 2171 } 2172 } 2173 2174 // Parse the type suffixes. 2175 while (true) { 2176 switch (Lex.getKind()) { 2177 // End of type. 2178 default: 2179 if (!AllowVoid && Result->isVoidTy()) 2180 return Error(TypeLoc, "void type only allowed for function results"); 2181 return false; 2182 2183 // Type ::= Type '*' 2184 case lltok::star: 2185 if (Result->isLabelTy()) 2186 return TokError("basic block pointers are invalid"); 2187 if (Result->isVoidTy()) 2188 return TokError("pointers to void are invalid - use i8* instead"); 2189 if (!PointerType::isValidElementType(Result)) 2190 return TokError("pointer to this type is invalid"); 2191 Result = PointerType::getUnqual(Result); 2192 Lex.Lex(); 2193 break; 2194 2195 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2196 case lltok::kw_addrspace: { 2197 if (Result->isLabelTy()) 2198 return TokError("basic block pointers are invalid"); 2199 if (Result->isVoidTy()) 2200 return TokError("pointers to void are invalid; use i8* instead"); 2201 if (!PointerType::isValidElementType(Result)) 2202 return TokError("pointer to this type is invalid"); 2203 unsigned AddrSpace; 2204 if (ParseOptionalAddrSpace(AddrSpace) || 2205 ParseToken(lltok::star, "expected '*' in address space")) 2206 return true; 2207 2208 Result = PointerType::get(Result, AddrSpace); 2209 break; 2210 } 2211 2212 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2213 case lltok::lparen: 2214 if (ParseFunctionType(Result)) 2215 return true; 2216 break; 2217 } 2218 } 2219 } 2220 2221 /// ParseParameterList 2222 /// ::= '(' ')' 2223 /// ::= '(' Arg (',' Arg)* ')' 2224 /// Arg 2225 /// ::= Type OptionalAttributes Value OptionalAttributes 2226 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2227 PerFunctionState &PFS, bool IsMustTailCall, 2228 bool InVarArgsFunc) { 2229 if (ParseToken(lltok::lparen, "expected '(' in call")) 2230 return true; 2231 2232 while (Lex.getKind() != lltok::rparen) { 2233 // If this isn't the first argument, we need a comma. 2234 if (!ArgList.empty() && 2235 ParseToken(lltok::comma, "expected ',' in argument list")) 2236 return true; 2237 2238 // Parse an ellipsis if this is a musttail call in a variadic function. 2239 if (Lex.getKind() == lltok::dotdotdot) { 2240 const char *Msg = "unexpected ellipsis in argument list for "; 2241 if (!IsMustTailCall) 2242 return TokError(Twine(Msg) + "non-musttail call"); 2243 if (!InVarArgsFunc) 2244 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2245 Lex.Lex(); // Lex the '...', it is purely for readability. 2246 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2247 } 2248 2249 // Parse the argument. 2250 LocTy ArgLoc; 2251 Type *ArgTy = nullptr; 2252 AttrBuilder ArgAttrs; 2253 Value *V; 2254 if (ParseType(ArgTy, ArgLoc)) 2255 return true; 2256 2257 if (ArgTy->isMetadataTy()) { 2258 if (ParseMetadataAsValue(V, PFS)) 2259 return true; 2260 } else { 2261 // Otherwise, handle normal operands. 2262 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2263 return true; 2264 } 2265 ArgList.push_back(ParamInfo( 2266 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2267 } 2268 2269 if (IsMustTailCall && InVarArgsFunc) 2270 return TokError("expected '...' at end of argument list for musttail call " 2271 "in varargs function"); 2272 2273 Lex.Lex(); // Lex the ')'. 2274 return false; 2275 } 2276 2277 /// ParseOptionalOperandBundles 2278 /// ::= /*empty*/ 2279 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2280 /// 2281 /// OperandBundle 2282 /// ::= bundle-tag '(' ')' 2283 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2284 /// 2285 /// bundle-tag ::= String Constant 2286 bool LLParser::ParseOptionalOperandBundles( 2287 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2288 LocTy BeginLoc = Lex.getLoc(); 2289 if (!EatIfPresent(lltok::lsquare)) 2290 return false; 2291 2292 while (Lex.getKind() != lltok::rsquare) { 2293 // If this isn't the first operand bundle, we need a comma. 2294 if (!BundleList.empty() && 2295 ParseToken(lltok::comma, "expected ',' in input list")) 2296 return true; 2297 2298 std::string Tag; 2299 if (ParseStringConstant(Tag)) 2300 return true; 2301 2302 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2303 return true; 2304 2305 std::vector<Value *> Inputs; 2306 while (Lex.getKind() != lltok::rparen) { 2307 // If this isn't the first input, we need a comma. 2308 if (!Inputs.empty() && 2309 ParseToken(lltok::comma, "expected ',' in input list")) 2310 return true; 2311 2312 Type *Ty = nullptr; 2313 Value *Input = nullptr; 2314 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2315 return true; 2316 Inputs.push_back(Input); 2317 } 2318 2319 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2320 2321 Lex.Lex(); // Lex the ')'. 2322 } 2323 2324 if (BundleList.empty()) 2325 return Error(BeginLoc, "operand bundle set must not be empty"); 2326 2327 Lex.Lex(); // Lex the ']'. 2328 return false; 2329 } 2330 2331 /// ParseArgumentList - Parse the argument list for a function type or function 2332 /// prototype. 2333 /// ::= '(' ArgTypeListI ')' 2334 /// ArgTypeListI 2335 /// ::= /*empty*/ 2336 /// ::= '...' 2337 /// ::= ArgTypeList ',' '...' 2338 /// ::= ArgType (',' ArgType)* 2339 /// 2340 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2341 bool &isVarArg){ 2342 isVarArg = false; 2343 assert(Lex.getKind() == lltok::lparen); 2344 Lex.Lex(); // eat the (. 2345 2346 if (Lex.getKind() == lltok::rparen) { 2347 // empty 2348 } else if (Lex.getKind() == lltok::dotdotdot) { 2349 isVarArg = true; 2350 Lex.Lex(); 2351 } else { 2352 LocTy TypeLoc = Lex.getLoc(); 2353 Type *ArgTy = nullptr; 2354 AttrBuilder Attrs; 2355 std::string Name; 2356 2357 if (ParseType(ArgTy) || 2358 ParseOptionalParamAttrs(Attrs)) return true; 2359 2360 if (ArgTy->isVoidTy()) 2361 return Error(TypeLoc, "argument can not have void type"); 2362 2363 if (Lex.getKind() == lltok::LocalVar) { 2364 Name = Lex.getStrVal(); 2365 Lex.Lex(); 2366 } 2367 2368 if (!FunctionType::isValidArgumentType(ArgTy)) 2369 return Error(TypeLoc, "invalid type for function argument"); 2370 2371 ArgList.emplace_back(TypeLoc, ArgTy, 2372 AttributeSet::get(ArgTy->getContext(), Attrs), 2373 std::move(Name)); 2374 2375 while (EatIfPresent(lltok::comma)) { 2376 // Handle ... at end of arg list. 2377 if (EatIfPresent(lltok::dotdotdot)) { 2378 isVarArg = true; 2379 break; 2380 } 2381 2382 // Otherwise must be an argument type. 2383 TypeLoc = Lex.getLoc(); 2384 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2385 2386 if (ArgTy->isVoidTy()) 2387 return Error(TypeLoc, "argument can not have void type"); 2388 2389 if (Lex.getKind() == lltok::LocalVar) { 2390 Name = Lex.getStrVal(); 2391 Lex.Lex(); 2392 } else { 2393 Name = ""; 2394 } 2395 2396 if (!ArgTy->isFirstClassType()) 2397 return Error(TypeLoc, "invalid type for function argument"); 2398 2399 ArgList.emplace_back(TypeLoc, ArgTy, 2400 AttributeSet::get(ArgTy->getContext(), Attrs), 2401 std::move(Name)); 2402 } 2403 } 2404 2405 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2406 } 2407 2408 /// ParseFunctionType 2409 /// ::= Type ArgumentList OptionalAttrs 2410 bool LLParser::ParseFunctionType(Type *&Result) { 2411 assert(Lex.getKind() == lltok::lparen); 2412 2413 if (!FunctionType::isValidReturnType(Result)) 2414 return TokError("invalid function return type"); 2415 2416 SmallVector<ArgInfo, 8> ArgList; 2417 bool isVarArg; 2418 if (ParseArgumentList(ArgList, isVarArg)) 2419 return true; 2420 2421 // Reject names on the arguments lists. 2422 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2423 if (!ArgList[i].Name.empty()) 2424 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2425 if (ArgList[i].Attrs.hasAttributes()) 2426 return Error(ArgList[i].Loc, 2427 "argument attributes invalid in function type"); 2428 } 2429 2430 SmallVector<Type*, 16> ArgListTy; 2431 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2432 ArgListTy.push_back(ArgList[i].Ty); 2433 2434 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2435 return false; 2436 } 2437 2438 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2439 /// other structs. 2440 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2441 SmallVector<Type*, 8> Elts; 2442 if (ParseStructBody(Elts)) return true; 2443 2444 Result = StructType::get(Context, Elts, Packed); 2445 return false; 2446 } 2447 2448 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2449 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2450 std::pair<Type*, LocTy> &Entry, 2451 Type *&ResultTy) { 2452 // If the type was already defined, diagnose the redefinition. 2453 if (Entry.first && !Entry.second.isValid()) 2454 return Error(TypeLoc, "redefinition of type"); 2455 2456 // If we have opaque, just return without filling in the definition for the 2457 // struct. This counts as a definition as far as the .ll file goes. 2458 if (EatIfPresent(lltok::kw_opaque)) { 2459 // This type is being defined, so clear the location to indicate this. 2460 Entry.second = SMLoc(); 2461 2462 // If this type number has never been uttered, create it. 2463 if (!Entry.first) 2464 Entry.first = StructType::create(Context, Name); 2465 ResultTy = Entry.first; 2466 return false; 2467 } 2468 2469 // If the type starts with '<', then it is either a packed struct or a vector. 2470 bool isPacked = EatIfPresent(lltok::less); 2471 2472 // If we don't have a struct, then we have a random type alias, which we 2473 // accept for compatibility with old files. These types are not allowed to be 2474 // forward referenced and not allowed to be recursive. 2475 if (Lex.getKind() != lltok::lbrace) { 2476 if (Entry.first) 2477 return Error(TypeLoc, "forward references to non-struct type"); 2478 2479 ResultTy = nullptr; 2480 if (isPacked) 2481 return ParseArrayVectorType(ResultTy, true); 2482 return ParseType(ResultTy); 2483 } 2484 2485 // This type is being defined, so clear the location to indicate this. 2486 Entry.second = SMLoc(); 2487 2488 // If this type number has never been uttered, create it. 2489 if (!Entry.first) 2490 Entry.first = StructType::create(Context, Name); 2491 2492 StructType *STy = cast<StructType>(Entry.first); 2493 2494 SmallVector<Type*, 8> Body; 2495 if (ParseStructBody(Body) || 2496 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2497 return true; 2498 2499 STy->setBody(Body, isPacked); 2500 ResultTy = STy; 2501 return false; 2502 } 2503 2504 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2505 /// StructType 2506 /// ::= '{' '}' 2507 /// ::= '{' Type (',' Type)* '}' 2508 /// ::= '<' '{' '}' '>' 2509 /// ::= '<' '{' Type (',' Type)* '}' '>' 2510 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2511 assert(Lex.getKind() == lltok::lbrace); 2512 Lex.Lex(); // Consume the '{' 2513 2514 // Handle the empty struct. 2515 if (EatIfPresent(lltok::rbrace)) 2516 return false; 2517 2518 LocTy EltTyLoc = Lex.getLoc(); 2519 Type *Ty = nullptr; 2520 if (ParseType(Ty)) return true; 2521 Body.push_back(Ty); 2522 2523 if (!StructType::isValidElementType(Ty)) 2524 return Error(EltTyLoc, "invalid element type for struct"); 2525 2526 while (EatIfPresent(lltok::comma)) { 2527 EltTyLoc = Lex.getLoc(); 2528 if (ParseType(Ty)) return true; 2529 2530 if (!StructType::isValidElementType(Ty)) 2531 return Error(EltTyLoc, "invalid element type for struct"); 2532 2533 Body.push_back(Ty); 2534 } 2535 2536 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2537 } 2538 2539 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2540 /// token has already been consumed. 2541 /// Type 2542 /// ::= '[' APSINTVAL 'x' Types ']' 2543 /// ::= '<' APSINTVAL 'x' Types '>' 2544 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2545 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2546 Lex.getAPSIntVal().getBitWidth() > 64) 2547 return TokError("expected number in address space"); 2548 2549 LocTy SizeLoc = Lex.getLoc(); 2550 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2551 Lex.Lex(); 2552 2553 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2554 return true; 2555 2556 LocTy TypeLoc = Lex.getLoc(); 2557 Type *EltTy = nullptr; 2558 if (ParseType(EltTy)) return true; 2559 2560 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2561 "expected end of sequential type")) 2562 return true; 2563 2564 if (isVector) { 2565 if (Size == 0) 2566 return Error(SizeLoc, "zero element vector is illegal"); 2567 if ((unsigned)Size != Size) 2568 return Error(SizeLoc, "size too large for vector"); 2569 if (!VectorType::isValidElementType(EltTy)) 2570 return Error(TypeLoc, "invalid vector element type"); 2571 Result = VectorType::get(EltTy, unsigned(Size)); 2572 } else { 2573 if (!ArrayType::isValidElementType(EltTy)) 2574 return Error(TypeLoc, "invalid array element type"); 2575 Result = ArrayType::get(EltTy, Size); 2576 } 2577 return false; 2578 } 2579 2580 //===----------------------------------------------------------------------===// 2581 // Function Semantic Analysis. 2582 //===----------------------------------------------------------------------===// 2583 2584 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2585 int functionNumber) 2586 : P(p), F(f), FunctionNumber(functionNumber) { 2587 2588 // Insert unnamed arguments into the NumberedVals list. 2589 for (Argument &A : F.args()) 2590 if (!A.hasName()) 2591 NumberedVals.push_back(&A); 2592 } 2593 2594 LLParser::PerFunctionState::~PerFunctionState() { 2595 // If there were any forward referenced non-basicblock values, delete them. 2596 2597 for (const auto &P : ForwardRefVals) { 2598 if (isa<BasicBlock>(P.second.first)) 2599 continue; 2600 P.second.first->replaceAllUsesWith( 2601 UndefValue::get(P.second.first->getType())); 2602 P.second.first->deleteValue(); 2603 } 2604 2605 for (const auto &P : ForwardRefValIDs) { 2606 if (isa<BasicBlock>(P.second.first)) 2607 continue; 2608 P.second.first->replaceAllUsesWith( 2609 UndefValue::get(P.second.first->getType())); 2610 P.second.first->deleteValue(); 2611 } 2612 } 2613 2614 bool LLParser::PerFunctionState::FinishFunction() { 2615 if (!ForwardRefVals.empty()) 2616 return P.Error(ForwardRefVals.begin()->second.second, 2617 "use of undefined value '%" + ForwardRefVals.begin()->first + 2618 "'"); 2619 if (!ForwardRefValIDs.empty()) 2620 return P.Error(ForwardRefValIDs.begin()->second.second, 2621 "use of undefined value '%" + 2622 Twine(ForwardRefValIDs.begin()->first) + "'"); 2623 return false; 2624 } 2625 2626 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) { 2627 if (Val->getType() == Ty) 2628 return true; 2629 // For calls we also accept variables in the program address space 2630 if (IsCall && isa<PointerType>(Ty)) { 2631 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 2632 M->getDataLayout().getProgramAddressSpace()); 2633 if (Val->getType() == TyInProgAS) 2634 return true; 2635 } 2636 return false; 2637 } 2638 2639 /// GetVal - Get a value with the specified name or ID, creating a 2640 /// forward reference record if needed. This can return null if the value 2641 /// exists but does not have the right type. 2642 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2643 LocTy Loc, bool IsCall) { 2644 // Look this name up in the normal function symbol table. 2645 Value *Val = F.getValueSymbolTable()->lookup(Name); 2646 2647 // If this is a forward reference for the value, see if we already created a 2648 // forward ref record. 2649 if (!Val) { 2650 auto I = ForwardRefVals.find(Name); 2651 if (I != ForwardRefVals.end()) 2652 Val = I->second.first; 2653 } 2654 2655 // If we have the value in the symbol table or fwd-ref table, return it. 2656 if (Val) { 2657 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2658 return Val; 2659 if (Ty->isLabelTy()) 2660 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2661 else 2662 P.Error(Loc, "'%" + Name + "' defined with type '" + 2663 getTypeString(Val->getType()) + "'"); 2664 return nullptr; 2665 } 2666 2667 // Don't make placeholders with invalid type. 2668 if (!Ty->isFirstClassType()) { 2669 P.Error(Loc, "invalid use of a non-first-class type"); 2670 return nullptr; 2671 } 2672 2673 // Otherwise, create a new forward reference for this value and remember it. 2674 Value *FwdVal; 2675 if (Ty->isLabelTy()) { 2676 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2677 } else { 2678 FwdVal = new Argument(Ty, Name); 2679 } 2680 2681 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2682 return FwdVal; 2683 } 2684 2685 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2686 bool IsCall) { 2687 // Look this name up in the normal function symbol table. 2688 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2689 2690 // If this is a forward reference for the value, see if we already created a 2691 // forward ref record. 2692 if (!Val) { 2693 auto I = ForwardRefValIDs.find(ID); 2694 if (I != ForwardRefValIDs.end()) 2695 Val = I->second.first; 2696 } 2697 2698 // If we have the value in the symbol table or fwd-ref table, return it. 2699 if (Val) { 2700 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2701 return Val; 2702 if (Ty->isLabelTy()) 2703 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2704 else 2705 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2706 getTypeString(Val->getType()) + "'"); 2707 return nullptr; 2708 } 2709 2710 if (!Ty->isFirstClassType()) { 2711 P.Error(Loc, "invalid use of a non-first-class type"); 2712 return nullptr; 2713 } 2714 2715 // Otherwise, create a new forward reference for this value and remember it. 2716 Value *FwdVal; 2717 if (Ty->isLabelTy()) { 2718 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2719 } else { 2720 FwdVal = new Argument(Ty); 2721 } 2722 2723 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2724 return FwdVal; 2725 } 2726 2727 /// SetInstName - After an instruction is parsed and inserted into its 2728 /// basic block, this installs its name. 2729 bool LLParser::PerFunctionState::SetInstName(int NameID, 2730 const std::string &NameStr, 2731 LocTy NameLoc, Instruction *Inst) { 2732 // If this instruction has void type, it cannot have a name or ID specified. 2733 if (Inst->getType()->isVoidTy()) { 2734 if (NameID != -1 || !NameStr.empty()) 2735 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2736 return false; 2737 } 2738 2739 // If this was a numbered instruction, verify that the instruction is the 2740 // expected value and resolve any forward references. 2741 if (NameStr.empty()) { 2742 // If neither a name nor an ID was specified, just use the next ID. 2743 if (NameID == -1) 2744 NameID = NumberedVals.size(); 2745 2746 if (unsigned(NameID) != NumberedVals.size()) 2747 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2748 Twine(NumberedVals.size()) + "'"); 2749 2750 auto FI = ForwardRefValIDs.find(NameID); 2751 if (FI != ForwardRefValIDs.end()) { 2752 Value *Sentinel = FI->second.first; 2753 if (Sentinel->getType() != Inst->getType()) 2754 return P.Error(NameLoc, "instruction forward referenced with type '" + 2755 getTypeString(FI->second.first->getType()) + "'"); 2756 2757 Sentinel->replaceAllUsesWith(Inst); 2758 Sentinel->deleteValue(); 2759 ForwardRefValIDs.erase(FI); 2760 } 2761 2762 NumberedVals.push_back(Inst); 2763 return false; 2764 } 2765 2766 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2767 auto FI = ForwardRefVals.find(NameStr); 2768 if (FI != ForwardRefVals.end()) { 2769 Value *Sentinel = FI->second.first; 2770 if (Sentinel->getType() != Inst->getType()) 2771 return P.Error(NameLoc, "instruction forward referenced with type '" + 2772 getTypeString(FI->second.first->getType()) + "'"); 2773 2774 Sentinel->replaceAllUsesWith(Inst); 2775 Sentinel->deleteValue(); 2776 ForwardRefVals.erase(FI); 2777 } 2778 2779 // Set the name on the instruction. 2780 Inst->setName(NameStr); 2781 2782 if (Inst->getName() != NameStr) 2783 return P.Error(NameLoc, "multiple definition of local value named '" + 2784 NameStr + "'"); 2785 return false; 2786 } 2787 2788 /// GetBB - Get a basic block with the specified name or ID, creating a 2789 /// forward reference record if needed. 2790 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2791 LocTy Loc) { 2792 return dyn_cast_or_null<BasicBlock>( 2793 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2794 } 2795 2796 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2797 return dyn_cast_or_null<BasicBlock>( 2798 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2799 } 2800 2801 /// DefineBB - Define the specified basic block, which is either named or 2802 /// unnamed. If there is an error, this returns null otherwise it returns 2803 /// the block being defined. 2804 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2805 LocTy Loc) { 2806 BasicBlock *BB; 2807 if (Name.empty()) 2808 BB = GetBB(NumberedVals.size(), Loc); 2809 else 2810 BB = GetBB(Name, Loc); 2811 if (!BB) return nullptr; // Already diagnosed error. 2812 2813 // Move the block to the end of the function. Forward ref'd blocks are 2814 // inserted wherever they happen to be referenced. 2815 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2816 2817 // Remove the block from forward ref sets. 2818 if (Name.empty()) { 2819 ForwardRefValIDs.erase(NumberedVals.size()); 2820 NumberedVals.push_back(BB); 2821 } else { 2822 // BB forward references are already in the function symbol table. 2823 ForwardRefVals.erase(Name); 2824 } 2825 2826 return BB; 2827 } 2828 2829 //===----------------------------------------------------------------------===// 2830 // Constants. 2831 //===----------------------------------------------------------------------===// 2832 2833 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2834 /// type implied. For example, if we parse "4" we don't know what integer type 2835 /// it has. The value will later be combined with its type and checked for 2836 /// sanity. PFS is used to convert function-local operands of metadata (since 2837 /// metadata operands are not just parsed here but also converted to values). 2838 /// PFS can be null when we are not parsing metadata values inside a function. 2839 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2840 ID.Loc = Lex.getLoc(); 2841 switch (Lex.getKind()) { 2842 default: return TokError("expected value token"); 2843 case lltok::GlobalID: // @42 2844 ID.UIntVal = Lex.getUIntVal(); 2845 ID.Kind = ValID::t_GlobalID; 2846 break; 2847 case lltok::GlobalVar: // @foo 2848 ID.StrVal = Lex.getStrVal(); 2849 ID.Kind = ValID::t_GlobalName; 2850 break; 2851 case lltok::LocalVarID: // %42 2852 ID.UIntVal = Lex.getUIntVal(); 2853 ID.Kind = ValID::t_LocalID; 2854 break; 2855 case lltok::LocalVar: // %foo 2856 ID.StrVal = Lex.getStrVal(); 2857 ID.Kind = ValID::t_LocalName; 2858 break; 2859 case lltok::APSInt: 2860 ID.APSIntVal = Lex.getAPSIntVal(); 2861 ID.Kind = ValID::t_APSInt; 2862 break; 2863 case lltok::APFloat: 2864 ID.APFloatVal = Lex.getAPFloatVal(); 2865 ID.Kind = ValID::t_APFloat; 2866 break; 2867 case lltok::kw_true: 2868 ID.ConstantVal = ConstantInt::getTrue(Context); 2869 ID.Kind = ValID::t_Constant; 2870 break; 2871 case lltok::kw_false: 2872 ID.ConstantVal = ConstantInt::getFalse(Context); 2873 ID.Kind = ValID::t_Constant; 2874 break; 2875 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2876 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2877 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2878 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2879 2880 case lltok::lbrace: { 2881 // ValID ::= '{' ConstVector '}' 2882 Lex.Lex(); 2883 SmallVector<Constant*, 16> Elts; 2884 if (ParseGlobalValueVector(Elts) || 2885 ParseToken(lltok::rbrace, "expected end of struct constant")) 2886 return true; 2887 2888 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2889 ID.UIntVal = Elts.size(); 2890 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2891 Elts.size() * sizeof(Elts[0])); 2892 ID.Kind = ValID::t_ConstantStruct; 2893 return false; 2894 } 2895 case lltok::less: { 2896 // ValID ::= '<' ConstVector '>' --> Vector. 2897 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2898 Lex.Lex(); 2899 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2900 2901 SmallVector<Constant*, 16> Elts; 2902 LocTy FirstEltLoc = Lex.getLoc(); 2903 if (ParseGlobalValueVector(Elts) || 2904 (isPackedStruct && 2905 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2906 ParseToken(lltok::greater, "expected end of constant")) 2907 return true; 2908 2909 if (isPackedStruct) { 2910 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2911 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2912 Elts.size() * sizeof(Elts[0])); 2913 ID.UIntVal = Elts.size(); 2914 ID.Kind = ValID::t_PackedConstantStruct; 2915 return false; 2916 } 2917 2918 if (Elts.empty()) 2919 return Error(ID.Loc, "constant vector must not be empty"); 2920 2921 if (!Elts[0]->getType()->isIntegerTy() && 2922 !Elts[0]->getType()->isFloatingPointTy() && 2923 !Elts[0]->getType()->isPointerTy()) 2924 return Error(FirstEltLoc, 2925 "vector elements must have integer, pointer or floating point type"); 2926 2927 // Verify that all the vector elements have the same type. 2928 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2929 if (Elts[i]->getType() != Elts[0]->getType()) 2930 return Error(FirstEltLoc, 2931 "vector element #" + Twine(i) + 2932 " is not of type '" + getTypeString(Elts[0]->getType())); 2933 2934 ID.ConstantVal = ConstantVector::get(Elts); 2935 ID.Kind = ValID::t_Constant; 2936 return false; 2937 } 2938 case lltok::lsquare: { // Array Constant 2939 Lex.Lex(); 2940 SmallVector<Constant*, 16> Elts; 2941 LocTy FirstEltLoc = Lex.getLoc(); 2942 if (ParseGlobalValueVector(Elts) || 2943 ParseToken(lltok::rsquare, "expected end of array constant")) 2944 return true; 2945 2946 // Handle empty element. 2947 if (Elts.empty()) { 2948 // Use undef instead of an array because it's inconvenient to determine 2949 // the element type at this point, there being no elements to examine. 2950 ID.Kind = ValID::t_EmptyArray; 2951 return false; 2952 } 2953 2954 if (!Elts[0]->getType()->isFirstClassType()) 2955 return Error(FirstEltLoc, "invalid array element type: " + 2956 getTypeString(Elts[0]->getType())); 2957 2958 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2959 2960 // Verify all elements are correct type! 2961 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2962 if (Elts[i]->getType() != Elts[0]->getType()) 2963 return Error(FirstEltLoc, 2964 "array element #" + Twine(i) + 2965 " is not of type '" + getTypeString(Elts[0]->getType())); 2966 } 2967 2968 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2969 ID.Kind = ValID::t_Constant; 2970 return false; 2971 } 2972 case lltok::kw_c: // c "foo" 2973 Lex.Lex(); 2974 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2975 false); 2976 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2977 ID.Kind = ValID::t_Constant; 2978 return false; 2979 2980 case lltok::kw_asm: { 2981 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2982 // STRINGCONSTANT 2983 bool HasSideEffect, AlignStack, AsmDialect; 2984 Lex.Lex(); 2985 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2986 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2987 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2988 ParseStringConstant(ID.StrVal) || 2989 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2990 ParseToken(lltok::StringConstant, "expected constraint string")) 2991 return true; 2992 ID.StrVal2 = Lex.getStrVal(); 2993 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2994 (unsigned(AsmDialect)<<2); 2995 ID.Kind = ValID::t_InlineAsm; 2996 return false; 2997 } 2998 2999 case lltok::kw_blockaddress: { 3000 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3001 Lex.Lex(); 3002 3003 ValID Fn, Label; 3004 3005 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3006 ParseValID(Fn) || 3007 ParseToken(lltok::comma, "expected comma in block address expression")|| 3008 ParseValID(Label) || 3009 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3010 return true; 3011 3012 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3013 return Error(Fn.Loc, "expected function name in blockaddress"); 3014 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3015 return Error(Label.Loc, "expected basic block name in blockaddress"); 3016 3017 // Try to find the function (but skip it if it's forward-referenced). 3018 GlobalValue *GV = nullptr; 3019 if (Fn.Kind == ValID::t_GlobalID) { 3020 if (Fn.UIntVal < NumberedVals.size()) 3021 GV = NumberedVals[Fn.UIntVal]; 3022 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3023 GV = M->getNamedValue(Fn.StrVal); 3024 } 3025 Function *F = nullptr; 3026 if (GV) { 3027 // Confirm that it's actually a function with a definition. 3028 if (!isa<Function>(GV)) 3029 return Error(Fn.Loc, "expected function name in blockaddress"); 3030 F = cast<Function>(GV); 3031 if (F->isDeclaration()) 3032 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3033 } 3034 3035 if (!F) { 3036 // Make a global variable as a placeholder for this reference. 3037 GlobalValue *&FwdRef = 3038 ForwardRefBlockAddresses.insert(std::make_pair( 3039 std::move(Fn), 3040 std::map<ValID, GlobalValue *>())) 3041 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3042 .first->second; 3043 if (!FwdRef) 3044 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3045 GlobalValue::InternalLinkage, nullptr, ""); 3046 ID.ConstantVal = FwdRef; 3047 ID.Kind = ValID::t_Constant; 3048 return false; 3049 } 3050 3051 // We found the function; now find the basic block. Don't use PFS, since we 3052 // might be inside a constant expression. 3053 BasicBlock *BB; 3054 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3055 if (Label.Kind == ValID::t_LocalID) 3056 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3057 else 3058 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3059 if (!BB) 3060 return Error(Label.Loc, "referenced value is not a basic block"); 3061 } else { 3062 if (Label.Kind == ValID::t_LocalID) 3063 return Error(Label.Loc, "cannot take address of numeric label after " 3064 "the function is defined"); 3065 BB = dyn_cast_or_null<BasicBlock>( 3066 F->getValueSymbolTable()->lookup(Label.StrVal)); 3067 if (!BB) 3068 return Error(Label.Loc, "referenced value is not a basic block"); 3069 } 3070 3071 ID.ConstantVal = BlockAddress::get(F, BB); 3072 ID.Kind = ValID::t_Constant; 3073 return false; 3074 } 3075 3076 case lltok::kw_trunc: 3077 case lltok::kw_zext: 3078 case lltok::kw_sext: 3079 case lltok::kw_fptrunc: 3080 case lltok::kw_fpext: 3081 case lltok::kw_bitcast: 3082 case lltok::kw_addrspacecast: 3083 case lltok::kw_uitofp: 3084 case lltok::kw_sitofp: 3085 case lltok::kw_fptoui: 3086 case lltok::kw_fptosi: 3087 case lltok::kw_inttoptr: 3088 case lltok::kw_ptrtoint: { 3089 unsigned Opc = Lex.getUIntVal(); 3090 Type *DestTy = nullptr; 3091 Constant *SrcVal; 3092 Lex.Lex(); 3093 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3094 ParseGlobalTypeAndValue(SrcVal) || 3095 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3096 ParseType(DestTy) || 3097 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3098 return true; 3099 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3100 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3101 getTypeString(SrcVal->getType()) + "' to '" + 3102 getTypeString(DestTy) + "'"); 3103 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3104 SrcVal, DestTy); 3105 ID.Kind = ValID::t_Constant; 3106 return false; 3107 } 3108 case lltok::kw_extractvalue: { 3109 Lex.Lex(); 3110 Constant *Val; 3111 SmallVector<unsigned, 4> Indices; 3112 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3113 ParseGlobalTypeAndValue(Val) || 3114 ParseIndexList(Indices) || 3115 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3116 return true; 3117 3118 if (!Val->getType()->isAggregateType()) 3119 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3120 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3121 return Error(ID.Loc, "invalid indices for extractvalue"); 3122 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3123 ID.Kind = ValID::t_Constant; 3124 return false; 3125 } 3126 case lltok::kw_insertvalue: { 3127 Lex.Lex(); 3128 Constant *Val0, *Val1; 3129 SmallVector<unsigned, 4> Indices; 3130 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3131 ParseGlobalTypeAndValue(Val0) || 3132 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3133 ParseGlobalTypeAndValue(Val1) || 3134 ParseIndexList(Indices) || 3135 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3136 return true; 3137 if (!Val0->getType()->isAggregateType()) 3138 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3139 Type *IndexedType = 3140 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3141 if (!IndexedType) 3142 return Error(ID.Loc, "invalid indices for insertvalue"); 3143 if (IndexedType != Val1->getType()) 3144 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3145 getTypeString(Val1->getType()) + 3146 "' instead of '" + getTypeString(IndexedType) + 3147 "'"); 3148 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3149 ID.Kind = ValID::t_Constant; 3150 return false; 3151 } 3152 case lltok::kw_icmp: 3153 case lltok::kw_fcmp: { 3154 unsigned PredVal, Opc = Lex.getUIntVal(); 3155 Constant *Val0, *Val1; 3156 Lex.Lex(); 3157 if (ParseCmpPredicate(PredVal, Opc) || 3158 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3159 ParseGlobalTypeAndValue(Val0) || 3160 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3161 ParseGlobalTypeAndValue(Val1) || 3162 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3163 return true; 3164 3165 if (Val0->getType() != Val1->getType()) 3166 return Error(ID.Loc, "compare operands must have the same type"); 3167 3168 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3169 3170 if (Opc == Instruction::FCmp) { 3171 if (!Val0->getType()->isFPOrFPVectorTy()) 3172 return Error(ID.Loc, "fcmp requires floating point operands"); 3173 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3174 } else { 3175 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3176 if (!Val0->getType()->isIntOrIntVectorTy() && 3177 !Val0->getType()->isPtrOrPtrVectorTy()) 3178 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3179 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3180 } 3181 ID.Kind = ValID::t_Constant; 3182 return false; 3183 } 3184 3185 // Binary Operators. 3186 case lltok::kw_add: 3187 case lltok::kw_fadd: 3188 case lltok::kw_sub: 3189 case lltok::kw_fsub: 3190 case lltok::kw_mul: 3191 case lltok::kw_fmul: 3192 case lltok::kw_udiv: 3193 case lltok::kw_sdiv: 3194 case lltok::kw_fdiv: 3195 case lltok::kw_urem: 3196 case lltok::kw_srem: 3197 case lltok::kw_frem: 3198 case lltok::kw_shl: 3199 case lltok::kw_lshr: 3200 case lltok::kw_ashr: { 3201 bool NUW = false; 3202 bool NSW = false; 3203 bool Exact = false; 3204 unsigned Opc = Lex.getUIntVal(); 3205 Constant *Val0, *Val1; 3206 Lex.Lex(); 3207 LocTy ModifierLoc = Lex.getLoc(); 3208 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3209 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3210 if (EatIfPresent(lltok::kw_nuw)) 3211 NUW = true; 3212 if (EatIfPresent(lltok::kw_nsw)) { 3213 NSW = true; 3214 if (EatIfPresent(lltok::kw_nuw)) 3215 NUW = true; 3216 } 3217 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3218 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3219 if (EatIfPresent(lltok::kw_exact)) 3220 Exact = true; 3221 } 3222 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3223 ParseGlobalTypeAndValue(Val0) || 3224 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3225 ParseGlobalTypeAndValue(Val1) || 3226 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3227 return true; 3228 if (Val0->getType() != Val1->getType()) 3229 return Error(ID.Loc, "operands of constexpr must have same type"); 3230 if (!Val0->getType()->isIntOrIntVectorTy()) { 3231 if (NUW) 3232 return Error(ModifierLoc, "nuw only applies to integer operations"); 3233 if (NSW) 3234 return Error(ModifierLoc, "nsw only applies to integer operations"); 3235 } 3236 // Check that the type is valid for the operator. 3237 switch (Opc) { 3238 case Instruction::Add: 3239 case Instruction::Sub: 3240 case Instruction::Mul: 3241 case Instruction::UDiv: 3242 case Instruction::SDiv: 3243 case Instruction::URem: 3244 case Instruction::SRem: 3245 case Instruction::Shl: 3246 case Instruction::AShr: 3247 case Instruction::LShr: 3248 if (!Val0->getType()->isIntOrIntVectorTy()) 3249 return Error(ID.Loc, "constexpr requires integer operands"); 3250 break; 3251 case Instruction::FAdd: 3252 case Instruction::FSub: 3253 case Instruction::FMul: 3254 case Instruction::FDiv: 3255 case Instruction::FRem: 3256 if (!Val0->getType()->isFPOrFPVectorTy()) 3257 return Error(ID.Loc, "constexpr requires fp operands"); 3258 break; 3259 default: llvm_unreachable("Unknown binary operator!"); 3260 } 3261 unsigned Flags = 0; 3262 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3263 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3264 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3265 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3266 ID.ConstantVal = C; 3267 ID.Kind = ValID::t_Constant; 3268 return false; 3269 } 3270 3271 // Logical Operations 3272 case lltok::kw_and: 3273 case lltok::kw_or: 3274 case lltok::kw_xor: { 3275 unsigned Opc = Lex.getUIntVal(); 3276 Constant *Val0, *Val1; 3277 Lex.Lex(); 3278 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3279 ParseGlobalTypeAndValue(Val0) || 3280 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3281 ParseGlobalTypeAndValue(Val1) || 3282 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3283 return true; 3284 if (Val0->getType() != Val1->getType()) 3285 return Error(ID.Loc, "operands of constexpr must have same type"); 3286 if (!Val0->getType()->isIntOrIntVectorTy()) 3287 return Error(ID.Loc, 3288 "constexpr requires integer or integer vector operands"); 3289 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3290 ID.Kind = ValID::t_Constant; 3291 return false; 3292 } 3293 3294 case lltok::kw_getelementptr: 3295 case lltok::kw_shufflevector: 3296 case lltok::kw_insertelement: 3297 case lltok::kw_extractelement: 3298 case lltok::kw_select: { 3299 unsigned Opc = Lex.getUIntVal(); 3300 SmallVector<Constant*, 16> Elts; 3301 bool InBounds = false; 3302 Type *Ty; 3303 Lex.Lex(); 3304 3305 if (Opc == Instruction::GetElementPtr) 3306 InBounds = EatIfPresent(lltok::kw_inbounds); 3307 3308 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3309 return true; 3310 3311 LocTy ExplicitTypeLoc = Lex.getLoc(); 3312 if (Opc == Instruction::GetElementPtr) { 3313 if (ParseType(Ty) || 3314 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3315 return true; 3316 } 3317 3318 Optional<unsigned> InRangeOp; 3319 if (ParseGlobalValueVector( 3320 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3321 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3322 return true; 3323 3324 if (Opc == Instruction::GetElementPtr) { 3325 if (Elts.size() == 0 || 3326 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3327 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3328 3329 Type *BaseType = Elts[0]->getType(); 3330 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3331 if (Ty != BasePointerType->getElementType()) 3332 return Error( 3333 ExplicitTypeLoc, 3334 "explicit pointee type doesn't match operand's pointee type"); 3335 3336 unsigned GEPWidth = 3337 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3338 3339 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3340 for (Constant *Val : Indices) { 3341 Type *ValTy = Val->getType(); 3342 if (!ValTy->isIntOrIntVectorTy()) 3343 return Error(ID.Loc, "getelementptr index must be an integer"); 3344 if (ValTy->isVectorTy()) { 3345 unsigned ValNumEl = ValTy->getVectorNumElements(); 3346 if (GEPWidth && (ValNumEl != GEPWidth)) 3347 return Error( 3348 ID.Loc, 3349 "getelementptr vector index has a wrong number of elements"); 3350 // GEPWidth may have been unknown because the base is a scalar, 3351 // but it is known now. 3352 GEPWidth = ValNumEl; 3353 } 3354 } 3355 3356 SmallPtrSet<Type*, 4> Visited; 3357 if (!Indices.empty() && !Ty->isSized(&Visited)) 3358 return Error(ID.Loc, "base element of getelementptr must be sized"); 3359 3360 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3361 return Error(ID.Loc, "invalid getelementptr indices"); 3362 3363 if (InRangeOp) { 3364 if (*InRangeOp == 0) 3365 return Error(ID.Loc, 3366 "inrange keyword may not appear on pointer operand"); 3367 --*InRangeOp; 3368 } 3369 3370 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3371 InBounds, InRangeOp); 3372 } else if (Opc == Instruction::Select) { 3373 if (Elts.size() != 3) 3374 return Error(ID.Loc, "expected three operands to select"); 3375 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3376 Elts[2])) 3377 return Error(ID.Loc, Reason); 3378 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3379 } else if (Opc == Instruction::ShuffleVector) { 3380 if (Elts.size() != 3) 3381 return Error(ID.Loc, "expected three operands to shufflevector"); 3382 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3383 return Error(ID.Loc, "invalid operands to shufflevector"); 3384 ID.ConstantVal = 3385 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3386 } else if (Opc == Instruction::ExtractElement) { 3387 if (Elts.size() != 2) 3388 return Error(ID.Loc, "expected two operands to extractelement"); 3389 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3390 return Error(ID.Loc, "invalid extractelement operands"); 3391 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3392 } else { 3393 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3394 if (Elts.size() != 3) 3395 return Error(ID.Loc, "expected three operands to insertelement"); 3396 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3397 return Error(ID.Loc, "invalid insertelement operands"); 3398 ID.ConstantVal = 3399 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3400 } 3401 3402 ID.Kind = ValID::t_Constant; 3403 return false; 3404 } 3405 } 3406 3407 Lex.Lex(); 3408 return false; 3409 } 3410 3411 /// ParseGlobalValue - Parse a global value with the specified type. 3412 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3413 C = nullptr; 3414 ValID ID; 3415 Value *V = nullptr; 3416 bool Parsed = ParseValID(ID) || 3417 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3418 if (V && !(C = dyn_cast<Constant>(V))) 3419 return Error(ID.Loc, "global values must be constants"); 3420 return Parsed; 3421 } 3422 3423 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3424 Type *Ty = nullptr; 3425 return ParseType(Ty) || 3426 ParseGlobalValue(Ty, V); 3427 } 3428 3429 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3430 C = nullptr; 3431 3432 LocTy KwLoc = Lex.getLoc(); 3433 if (!EatIfPresent(lltok::kw_comdat)) 3434 return false; 3435 3436 if (EatIfPresent(lltok::lparen)) { 3437 if (Lex.getKind() != lltok::ComdatVar) 3438 return TokError("expected comdat variable"); 3439 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3440 Lex.Lex(); 3441 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3442 return true; 3443 } else { 3444 if (GlobalName.empty()) 3445 return TokError("comdat cannot be unnamed"); 3446 C = getComdat(GlobalName, KwLoc); 3447 } 3448 3449 return false; 3450 } 3451 3452 /// ParseGlobalValueVector 3453 /// ::= /*empty*/ 3454 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3455 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3456 Optional<unsigned> *InRangeOp) { 3457 // Empty list. 3458 if (Lex.getKind() == lltok::rbrace || 3459 Lex.getKind() == lltok::rsquare || 3460 Lex.getKind() == lltok::greater || 3461 Lex.getKind() == lltok::rparen) 3462 return false; 3463 3464 do { 3465 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3466 *InRangeOp = Elts.size(); 3467 3468 Constant *C; 3469 if (ParseGlobalTypeAndValue(C)) return true; 3470 Elts.push_back(C); 3471 } while (EatIfPresent(lltok::comma)); 3472 3473 return false; 3474 } 3475 3476 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3477 SmallVector<Metadata *, 16> Elts; 3478 if (ParseMDNodeVector(Elts)) 3479 return true; 3480 3481 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3482 return false; 3483 } 3484 3485 /// MDNode: 3486 /// ::= !{ ... } 3487 /// ::= !7 3488 /// ::= !DILocation(...) 3489 bool LLParser::ParseMDNode(MDNode *&N) { 3490 if (Lex.getKind() == lltok::MetadataVar) 3491 return ParseSpecializedMDNode(N); 3492 3493 return ParseToken(lltok::exclaim, "expected '!' here") || 3494 ParseMDNodeTail(N); 3495 } 3496 3497 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3498 // !{ ... } 3499 if (Lex.getKind() == lltok::lbrace) 3500 return ParseMDTuple(N); 3501 3502 // !42 3503 return ParseMDNodeID(N); 3504 } 3505 3506 namespace { 3507 3508 /// Structure to represent an optional metadata field. 3509 template <class FieldTy> struct MDFieldImpl { 3510 typedef MDFieldImpl ImplTy; 3511 FieldTy Val; 3512 bool Seen; 3513 3514 void assign(FieldTy Val) { 3515 Seen = true; 3516 this->Val = std::move(Val); 3517 } 3518 3519 explicit MDFieldImpl(FieldTy Default) 3520 : Val(std::move(Default)), Seen(false) {} 3521 }; 3522 3523 /// Structure to represent an optional metadata field that 3524 /// can be of either type (A or B) and encapsulates the 3525 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3526 /// to reimplement the specifics for representing each Field. 3527 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3528 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3529 FieldTypeA A; 3530 FieldTypeB B; 3531 bool Seen; 3532 3533 enum { 3534 IsInvalid = 0, 3535 IsTypeA = 1, 3536 IsTypeB = 2 3537 } WhatIs; 3538 3539 void assign(FieldTypeA A) { 3540 Seen = true; 3541 this->A = std::move(A); 3542 WhatIs = IsTypeA; 3543 } 3544 3545 void assign(FieldTypeB B) { 3546 Seen = true; 3547 this->B = std::move(B); 3548 WhatIs = IsTypeB; 3549 } 3550 3551 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3552 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3553 WhatIs(IsInvalid) {} 3554 }; 3555 3556 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3557 uint64_t Max; 3558 3559 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3560 : ImplTy(Default), Max(Max) {} 3561 }; 3562 3563 struct LineField : public MDUnsignedField { 3564 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3565 }; 3566 3567 struct ColumnField : public MDUnsignedField { 3568 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3569 }; 3570 3571 struct DwarfTagField : public MDUnsignedField { 3572 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3573 DwarfTagField(dwarf::Tag DefaultTag) 3574 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3575 }; 3576 3577 struct DwarfMacinfoTypeField : public MDUnsignedField { 3578 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3579 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3580 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3581 }; 3582 3583 struct DwarfAttEncodingField : public MDUnsignedField { 3584 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3585 }; 3586 3587 struct DwarfVirtualityField : public MDUnsignedField { 3588 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3589 }; 3590 3591 struct DwarfLangField : public MDUnsignedField { 3592 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3593 }; 3594 3595 struct DwarfCCField : public MDUnsignedField { 3596 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3597 }; 3598 3599 struct EmissionKindField : public MDUnsignedField { 3600 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3601 }; 3602 3603 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3604 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3605 }; 3606 3607 struct MDSignedField : public MDFieldImpl<int64_t> { 3608 int64_t Min; 3609 int64_t Max; 3610 3611 MDSignedField(int64_t Default = 0) 3612 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3613 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3614 : ImplTy(Default), Min(Min), Max(Max) {} 3615 }; 3616 3617 struct MDBoolField : public MDFieldImpl<bool> { 3618 MDBoolField(bool Default = false) : ImplTy(Default) {} 3619 }; 3620 3621 struct MDField : public MDFieldImpl<Metadata *> { 3622 bool AllowNull; 3623 3624 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3625 }; 3626 3627 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3628 MDConstant() : ImplTy(nullptr) {} 3629 }; 3630 3631 struct MDStringField : public MDFieldImpl<MDString *> { 3632 bool AllowEmpty; 3633 MDStringField(bool AllowEmpty = true) 3634 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3635 }; 3636 3637 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3638 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3639 }; 3640 3641 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3642 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3643 }; 3644 3645 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3646 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3647 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3648 3649 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3650 bool AllowNull = true) 3651 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3652 3653 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3654 bool isMDField() const { return WhatIs == IsTypeB; } 3655 int64_t getMDSignedValue() const { 3656 assert(isMDSignedField() && "Wrong field type"); 3657 return A.Val; 3658 } 3659 Metadata *getMDFieldValue() const { 3660 assert(isMDField() && "Wrong field type"); 3661 return B.Val; 3662 } 3663 }; 3664 3665 struct MDSignedOrUnsignedField 3666 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3667 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3668 3669 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3670 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3671 int64_t getMDSignedValue() const { 3672 assert(isMDSignedField() && "Wrong field type"); 3673 return A.Val; 3674 } 3675 uint64_t getMDUnsignedValue() const { 3676 assert(isMDUnsignedField() && "Wrong field type"); 3677 return B.Val; 3678 } 3679 }; 3680 3681 } // end anonymous namespace 3682 3683 namespace llvm { 3684 3685 template <> 3686 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3687 MDUnsignedField &Result) { 3688 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3689 return TokError("expected unsigned integer"); 3690 3691 auto &U = Lex.getAPSIntVal(); 3692 if (U.ugt(Result.Max)) 3693 return TokError("value for '" + Name + "' too large, limit is " + 3694 Twine(Result.Max)); 3695 Result.assign(U.getZExtValue()); 3696 assert(Result.Val <= Result.Max && "Expected value in range"); 3697 Lex.Lex(); 3698 return false; 3699 } 3700 3701 template <> 3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3703 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3704 } 3705 template <> 3706 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3707 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3708 } 3709 3710 template <> 3711 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3712 if (Lex.getKind() == lltok::APSInt) 3713 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3714 3715 if (Lex.getKind() != lltok::DwarfTag) 3716 return TokError("expected DWARF tag"); 3717 3718 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3719 if (Tag == dwarf::DW_TAG_invalid) 3720 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3721 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3722 3723 Result.assign(Tag); 3724 Lex.Lex(); 3725 return false; 3726 } 3727 3728 template <> 3729 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3730 DwarfMacinfoTypeField &Result) { 3731 if (Lex.getKind() == lltok::APSInt) 3732 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3733 3734 if (Lex.getKind() != lltok::DwarfMacinfo) 3735 return TokError("expected DWARF macinfo type"); 3736 3737 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3738 if (Macinfo == dwarf::DW_MACINFO_invalid) 3739 return TokError( 3740 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3741 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3742 3743 Result.assign(Macinfo); 3744 Lex.Lex(); 3745 return false; 3746 } 3747 3748 template <> 3749 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3750 DwarfVirtualityField &Result) { 3751 if (Lex.getKind() == lltok::APSInt) 3752 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3753 3754 if (Lex.getKind() != lltok::DwarfVirtuality) 3755 return TokError("expected DWARF virtuality code"); 3756 3757 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3758 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3759 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3760 Lex.getStrVal() + "'"); 3761 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3762 Result.assign(Virtuality); 3763 Lex.Lex(); 3764 return false; 3765 } 3766 3767 template <> 3768 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3769 if (Lex.getKind() == lltok::APSInt) 3770 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3771 3772 if (Lex.getKind() != lltok::DwarfLang) 3773 return TokError("expected DWARF language"); 3774 3775 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3776 if (!Lang) 3777 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3778 "'"); 3779 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3780 Result.assign(Lang); 3781 Lex.Lex(); 3782 return false; 3783 } 3784 3785 template <> 3786 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3787 if (Lex.getKind() == lltok::APSInt) 3788 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3789 3790 if (Lex.getKind() != lltok::DwarfCC) 3791 return TokError("expected DWARF calling convention"); 3792 3793 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3794 if (!CC) 3795 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3796 "'"); 3797 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3798 Result.assign(CC); 3799 Lex.Lex(); 3800 return false; 3801 } 3802 3803 template <> 3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3805 if (Lex.getKind() == lltok::APSInt) 3806 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3807 3808 if (Lex.getKind() != lltok::EmissionKind) 3809 return TokError("expected emission kind"); 3810 3811 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3812 if (!Kind) 3813 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3814 "'"); 3815 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3816 Result.assign(*Kind); 3817 Lex.Lex(); 3818 return false; 3819 } 3820 3821 template <> 3822 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3823 DwarfAttEncodingField &Result) { 3824 if (Lex.getKind() == lltok::APSInt) 3825 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3826 3827 if (Lex.getKind() != lltok::DwarfAttEncoding) 3828 return TokError("expected DWARF type attribute encoding"); 3829 3830 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3831 if (!Encoding) 3832 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3833 Lex.getStrVal() + "'"); 3834 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3835 Result.assign(Encoding); 3836 Lex.Lex(); 3837 return false; 3838 } 3839 3840 /// DIFlagField 3841 /// ::= uint32 3842 /// ::= DIFlagVector 3843 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3844 template <> 3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3846 3847 // Parser for a single flag. 3848 auto parseFlag = [&](DINode::DIFlags &Val) { 3849 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3850 uint32_t TempVal = static_cast<uint32_t>(Val); 3851 bool Res = ParseUInt32(TempVal); 3852 Val = static_cast<DINode::DIFlags>(TempVal); 3853 return Res; 3854 } 3855 3856 if (Lex.getKind() != lltok::DIFlag) 3857 return TokError("expected debug info flag"); 3858 3859 Val = DINode::getFlag(Lex.getStrVal()); 3860 if (!Val) 3861 return TokError(Twine("invalid debug info flag flag '") + 3862 Lex.getStrVal() + "'"); 3863 Lex.Lex(); 3864 return false; 3865 }; 3866 3867 // Parse the flags and combine them together. 3868 DINode::DIFlags Combined = DINode::FlagZero; 3869 do { 3870 DINode::DIFlags Val; 3871 if (parseFlag(Val)) 3872 return true; 3873 Combined |= Val; 3874 } while (EatIfPresent(lltok::bar)); 3875 3876 Result.assign(Combined); 3877 return false; 3878 } 3879 3880 template <> 3881 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3882 MDSignedField &Result) { 3883 if (Lex.getKind() != lltok::APSInt) 3884 return TokError("expected signed integer"); 3885 3886 auto &S = Lex.getAPSIntVal(); 3887 if (S < Result.Min) 3888 return TokError("value for '" + Name + "' too small, limit is " + 3889 Twine(Result.Min)); 3890 if (S > Result.Max) 3891 return TokError("value for '" + Name + "' too large, limit is " + 3892 Twine(Result.Max)); 3893 Result.assign(S.getExtValue()); 3894 assert(Result.Val >= Result.Min && "Expected value in range"); 3895 assert(Result.Val <= Result.Max && "Expected value in range"); 3896 Lex.Lex(); 3897 return false; 3898 } 3899 3900 template <> 3901 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3902 switch (Lex.getKind()) { 3903 default: 3904 return TokError("expected 'true' or 'false'"); 3905 case lltok::kw_true: 3906 Result.assign(true); 3907 break; 3908 case lltok::kw_false: 3909 Result.assign(false); 3910 break; 3911 } 3912 Lex.Lex(); 3913 return false; 3914 } 3915 3916 template <> 3917 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3918 if (Lex.getKind() == lltok::kw_null) { 3919 if (!Result.AllowNull) 3920 return TokError("'" + Name + "' cannot be null"); 3921 Lex.Lex(); 3922 Result.assign(nullptr); 3923 return false; 3924 } 3925 3926 Metadata *MD; 3927 if (ParseMetadata(MD, nullptr)) 3928 return true; 3929 3930 Result.assign(MD); 3931 return false; 3932 } 3933 3934 template <> 3935 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3936 MDSignedOrMDField &Result) { 3937 // Try to parse a signed int. 3938 if (Lex.getKind() == lltok::APSInt) { 3939 MDSignedField Res = Result.A; 3940 if (!ParseMDField(Loc, Name, Res)) { 3941 Result.assign(Res); 3942 return false; 3943 } 3944 return true; 3945 } 3946 3947 // Otherwise, try to parse as an MDField. 3948 MDField Res = Result.B; 3949 if (!ParseMDField(Loc, Name, Res)) { 3950 Result.assign(Res); 3951 return false; 3952 } 3953 3954 return true; 3955 } 3956 3957 template <> 3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3959 MDSignedOrUnsignedField &Result) { 3960 if (Lex.getKind() != lltok::APSInt) 3961 return false; 3962 3963 if (Lex.getAPSIntVal().isSigned()) { 3964 MDSignedField Res = Result.A; 3965 if (ParseMDField(Loc, Name, Res)) 3966 return true; 3967 Result.assign(Res); 3968 return false; 3969 } 3970 3971 MDUnsignedField Res = Result.B; 3972 if (ParseMDField(Loc, Name, Res)) 3973 return true; 3974 Result.assign(Res); 3975 return false; 3976 } 3977 3978 template <> 3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3980 LocTy ValueLoc = Lex.getLoc(); 3981 std::string S; 3982 if (ParseStringConstant(S)) 3983 return true; 3984 3985 if (!Result.AllowEmpty && S.empty()) 3986 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3987 3988 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3989 return false; 3990 } 3991 3992 template <> 3993 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3994 SmallVector<Metadata *, 4> MDs; 3995 if (ParseMDNodeVector(MDs)) 3996 return true; 3997 3998 Result.assign(std::move(MDs)); 3999 return false; 4000 } 4001 4002 template <> 4003 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4004 ChecksumKindField &Result) { 4005 Optional<DIFile::ChecksumKind> CSKind = 4006 DIFile::getChecksumKind(Lex.getStrVal()); 4007 4008 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4009 return TokError( 4010 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4011 4012 Result.assign(*CSKind); 4013 Lex.Lex(); 4014 return false; 4015 } 4016 4017 } // end namespace llvm 4018 4019 template <class ParserTy> 4020 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4021 do { 4022 if (Lex.getKind() != lltok::LabelStr) 4023 return TokError("expected field label here"); 4024 4025 if (parseField()) 4026 return true; 4027 } while (EatIfPresent(lltok::comma)); 4028 4029 return false; 4030 } 4031 4032 template <class ParserTy> 4033 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4034 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4035 Lex.Lex(); 4036 4037 if (ParseToken(lltok::lparen, "expected '(' here")) 4038 return true; 4039 if (Lex.getKind() != lltok::rparen) 4040 if (ParseMDFieldsImplBody(parseField)) 4041 return true; 4042 4043 ClosingLoc = Lex.getLoc(); 4044 return ParseToken(lltok::rparen, "expected ')' here"); 4045 } 4046 4047 template <class FieldTy> 4048 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4049 if (Result.Seen) 4050 return TokError("field '" + Name + "' cannot be specified more than once"); 4051 4052 LocTy Loc = Lex.getLoc(); 4053 Lex.Lex(); 4054 return ParseMDField(Loc, Name, Result); 4055 } 4056 4057 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4058 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4059 4060 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4061 if (Lex.getStrVal() == #CLASS) \ 4062 return Parse##CLASS(N, IsDistinct); 4063 #include "llvm/IR/Metadata.def" 4064 4065 return TokError("expected metadata type"); 4066 } 4067 4068 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4069 #define NOP_FIELD(NAME, TYPE, INIT) 4070 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4071 if (!NAME.Seen) \ 4072 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4073 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4074 if (Lex.getStrVal() == #NAME) \ 4075 return ParseMDField(#NAME, NAME); 4076 #define PARSE_MD_FIELDS() \ 4077 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4078 do { \ 4079 LocTy ClosingLoc; \ 4080 if (ParseMDFieldsImpl([&]() -> bool { \ 4081 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4082 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4083 }, ClosingLoc)) \ 4084 return true; \ 4085 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4086 } while (false) 4087 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4088 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4089 4090 /// ParseDILocationFields: 4091 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4092 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4094 OPTIONAL(line, LineField, ); \ 4095 OPTIONAL(column, ColumnField, ); \ 4096 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4097 OPTIONAL(inlinedAt, MDField, ); 4098 PARSE_MD_FIELDS(); 4099 #undef VISIT_MD_FIELDS 4100 4101 Result = GET_OR_DISTINCT( 4102 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4103 return false; 4104 } 4105 4106 /// ParseGenericDINode: 4107 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4108 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4110 REQUIRED(tag, DwarfTagField, ); \ 4111 OPTIONAL(header, MDStringField, ); \ 4112 OPTIONAL(operands, MDFieldList, ); 4113 PARSE_MD_FIELDS(); 4114 #undef VISIT_MD_FIELDS 4115 4116 Result = GET_OR_DISTINCT(GenericDINode, 4117 (Context, tag.Val, header.Val, operands.Val)); 4118 return false; 4119 } 4120 4121 /// ParseDISubrange: 4122 /// ::= !DISubrange(count: 30, lowerBound: 2) 4123 /// ::= !DISubrange(count: !node, lowerBound: 2) 4124 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4125 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4126 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4127 OPTIONAL(lowerBound, MDSignedField, ); 4128 PARSE_MD_FIELDS(); 4129 #undef VISIT_MD_FIELDS 4130 4131 if (count.isMDSignedField()) 4132 Result = GET_OR_DISTINCT( 4133 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4134 else if (count.isMDField()) 4135 Result = GET_OR_DISTINCT( 4136 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4137 else 4138 return true; 4139 4140 return false; 4141 } 4142 4143 /// ParseDIEnumerator: 4144 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4145 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4146 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4147 REQUIRED(name, MDStringField, ); \ 4148 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4149 OPTIONAL(isUnsigned, MDBoolField, (false)); 4150 PARSE_MD_FIELDS(); 4151 #undef VISIT_MD_FIELDS 4152 4153 if (isUnsigned.Val && value.isMDSignedField()) 4154 return TokError("unsigned enumerator with negative value"); 4155 4156 int64_t Value = value.isMDSignedField() 4157 ? value.getMDSignedValue() 4158 : static_cast<int64_t>(value.getMDUnsignedValue()); 4159 Result = 4160 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4161 4162 return false; 4163 } 4164 4165 /// ParseDIBasicType: 4166 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4167 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4168 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4169 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4170 OPTIONAL(name, MDStringField, ); \ 4171 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4172 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4173 OPTIONAL(encoding, DwarfAttEncodingField, ); 4174 PARSE_MD_FIELDS(); 4175 #undef VISIT_MD_FIELDS 4176 4177 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4178 align.Val, encoding.Val)); 4179 return false; 4180 } 4181 4182 /// ParseDIDerivedType: 4183 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4184 /// line: 7, scope: !1, baseType: !2, size: 32, 4185 /// align: 32, offset: 0, flags: 0, extraData: !3, 4186 /// dwarfAddressSpace: 3) 4187 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4188 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4189 REQUIRED(tag, DwarfTagField, ); \ 4190 OPTIONAL(name, MDStringField, ); \ 4191 OPTIONAL(file, MDField, ); \ 4192 OPTIONAL(line, LineField, ); \ 4193 OPTIONAL(scope, MDField, ); \ 4194 REQUIRED(baseType, MDField, ); \ 4195 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4196 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4197 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4198 OPTIONAL(flags, DIFlagField, ); \ 4199 OPTIONAL(extraData, MDField, ); \ 4200 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4201 PARSE_MD_FIELDS(); 4202 #undef VISIT_MD_FIELDS 4203 4204 Optional<unsigned> DWARFAddressSpace; 4205 if (dwarfAddressSpace.Val != UINT32_MAX) 4206 DWARFAddressSpace = dwarfAddressSpace.Val; 4207 4208 Result = GET_OR_DISTINCT(DIDerivedType, 4209 (Context, tag.Val, name.Val, file.Val, line.Val, 4210 scope.Val, baseType.Val, size.Val, align.Val, 4211 offset.Val, DWARFAddressSpace, flags.Val, 4212 extraData.Val)); 4213 return false; 4214 } 4215 4216 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4218 REQUIRED(tag, DwarfTagField, ); \ 4219 OPTIONAL(name, MDStringField, ); \ 4220 OPTIONAL(file, MDField, ); \ 4221 OPTIONAL(line, LineField, ); \ 4222 OPTIONAL(scope, MDField, ); \ 4223 OPTIONAL(baseType, MDField, ); \ 4224 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4225 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4226 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4227 OPTIONAL(flags, DIFlagField, ); \ 4228 OPTIONAL(elements, MDField, ); \ 4229 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4230 OPTIONAL(vtableHolder, MDField, ); \ 4231 OPTIONAL(templateParams, MDField, ); \ 4232 OPTIONAL(identifier, MDStringField, ); \ 4233 OPTIONAL(discriminator, MDField, ); 4234 PARSE_MD_FIELDS(); 4235 #undef VISIT_MD_FIELDS 4236 4237 // If this has an identifier try to build an ODR type. 4238 if (identifier.Val) 4239 if (auto *CT = DICompositeType::buildODRType( 4240 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4241 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4242 elements.Val, runtimeLang.Val, vtableHolder.Val, 4243 templateParams.Val, discriminator.Val)) { 4244 Result = CT; 4245 return false; 4246 } 4247 4248 // Create a new node, and save it in the context if it belongs in the type 4249 // map. 4250 Result = GET_OR_DISTINCT( 4251 DICompositeType, 4252 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4253 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4254 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4255 discriminator.Val)); 4256 return false; 4257 } 4258 4259 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4260 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4261 OPTIONAL(flags, DIFlagField, ); \ 4262 OPTIONAL(cc, DwarfCCField, ); \ 4263 REQUIRED(types, MDField, ); 4264 PARSE_MD_FIELDS(); 4265 #undef VISIT_MD_FIELDS 4266 4267 Result = GET_OR_DISTINCT(DISubroutineType, 4268 (Context, flags.Val, cc.Val, types.Val)); 4269 return false; 4270 } 4271 4272 /// ParseDIFileType: 4273 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4274 /// checksumkind: CSK_MD5, 4275 /// checksum: "000102030405060708090a0b0c0d0e0f", 4276 /// source: "source file contents") 4277 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4278 // The default constructed value for checksumkind is required, but will never 4279 // be used, as the parser checks if the field was actually Seen before using 4280 // the Val. 4281 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4282 REQUIRED(filename, MDStringField, ); \ 4283 REQUIRED(directory, MDStringField, ); \ 4284 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4285 OPTIONAL(checksum, MDStringField, ); \ 4286 OPTIONAL(source, MDStringField, ); 4287 PARSE_MD_FIELDS(); 4288 #undef VISIT_MD_FIELDS 4289 4290 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4291 if (checksumkind.Seen && checksum.Seen) 4292 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4293 else if (checksumkind.Seen || checksum.Seen) 4294 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4295 4296 Optional<MDString *> OptSource; 4297 if (source.Seen) 4298 OptSource = source.Val; 4299 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4300 OptChecksum, OptSource)); 4301 return false; 4302 } 4303 4304 /// ParseDICompileUnit: 4305 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4306 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4307 /// splitDebugFilename: "abc.debug", 4308 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4309 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4310 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4311 if (!IsDistinct) 4312 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4313 4314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4315 REQUIRED(language, DwarfLangField, ); \ 4316 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4317 OPTIONAL(producer, MDStringField, ); \ 4318 OPTIONAL(isOptimized, MDBoolField, ); \ 4319 OPTIONAL(flags, MDStringField, ); \ 4320 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4321 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4322 OPTIONAL(emissionKind, EmissionKindField, ); \ 4323 OPTIONAL(enums, MDField, ); \ 4324 OPTIONAL(retainedTypes, MDField, ); \ 4325 OPTIONAL(globals, MDField, ); \ 4326 OPTIONAL(imports, MDField, ); \ 4327 OPTIONAL(macros, MDField, ); \ 4328 OPTIONAL(dwoId, MDUnsignedField, ); \ 4329 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4330 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4331 OPTIONAL(gnuPubnames, MDBoolField, = false); 4332 PARSE_MD_FIELDS(); 4333 #undef VISIT_MD_FIELDS 4334 4335 Result = DICompileUnit::getDistinct( 4336 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4337 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4338 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4339 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4340 return false; 4341 } 4342 4343 /// ParseDISubprogram: 4344 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4345 /// file: !1, line: 7, type: !2, isLocal: false, 4346 /// isDefinition: true, scopeLine: 8, containingType: !3, 4347 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4348 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4349 /// isOptimized: false, templateParams: !4, declaration: !5, 4350 /// variables: !6, thrownTypes: !7) 4351 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4352 auto Loc = Lex.getLoc(); 4353 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4354 OPTIONAL(scope, MDField, ); \ 4355 OPTIONAL(name, MDStringField, ); \ 4356 OPTIONAL(linkageName, MDStringField, ); \ 4357 OPTIONAL(file, MDField, ); \ 4358 OPTIONAL(line, LineField, ); \ 4359 OPTIONAL(type, MDField, ); \ 4360 OPTIONAL(isLocal, MDBoolField, ); \ 4361 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4362 OPTIONAL(scopeLine, LineField, ); \ 4363 OPTIONAL(containingType, MDField, ); \ 4364 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4365 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4366 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4367 OPTIONAL(flags, DIFlagField, ); \ 4368 OPTIONAL(isOptimized, MDBoolField, ); \ 4369 OPTIONAL(unit, MDField, ); \ 4370 OPTIONAL(templateParams, MDField, ); \ 4371 OPTIONAL(declaration, MDField, ); \ 4372 OPTIONAL(variables, MDField, ); \ 4373 OPTIONAL(thrownTypes, MDField, ); 4374 PARSE_MD_FIELDS(); 4375 #undef VISIT_MD_FIELDS 4376 4377 if (isDefinition.Val && !IsDistinct) 4378 return Lex.Error( 4379 Loc, 4380 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4381 4382 Result = GET_OR_DISTINCT( 4383 DISubprogram, 4384 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4385 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4386 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4387 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4388 declaration.Val, variables.Val, thrownTypes.Val)); 4389 return false; 4390 } 4391 4392 /// ParseDILexicalBlock: 4393 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4394 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4395 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4396 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4397 OPTIONAL(file, MDField, ); \ 4398 OPTIONAL(line, LineField, ); \ 4399 OPTIONAL(column, ColumnField, ); 4400 PARSE_MD_FIELDS(); 4401 #undef VISIT_MD_FIELDS 4402 4403 Result = GET_OR_DISTINCT( 4404 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4405 return false; 4406 } 4407 4408 /// ParseDILexicalBlockFile: 4409 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4410 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4412 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4413 OPTIONAL(file, MDField, ); \ 4414 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4415 PARSE_MD_FIELDS(); 4416 #undef VISIT_MD_FIELDS 4417 4418 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4419 (Context, scope.Val, file.Val, discriminator.Val)); 4420 return false; 4421 } 4422 4423 /// ParseDINamespace: 4424 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4425 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4427 REQUIRED(scope, MDField, ); \ 4428 OPTIONAL(name, MDStringField, ); \ 4429 OPTIONAL(exportSymbols, MDBoolField, ); 4430 PARSE_MD_FIELDS(); 4431 #undef VISIT_MD_FIELDS 4432 4433 Result = GET_OR_DISTINCT(DINamespace, 4434 (Context, scope.Val, name.Val, exportSymbols.Val)); 4435 return false; 4436 } 4437 4438 /// ParseDIMacro: 4439 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4440 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4442 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4443 OPTIONAL(line, LineField, ); \ 4444 REQUIRED(name, MDStringField, ); \ 4445 OPTIONAL(value, MDStringField, ); 4446 PARSE_MD_FIELDS(); 4447 #undef VISIT_MD_FIELDS 4448 4449 Result = GET_OR_DISTINCT(DIMacro, 4450 (Context, type.Val, line.Val, name.Val, value.Val)); 4451 return false; 4452 } 4453 4454 /// ParseDIMacroFile: 4455 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4456 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4457 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4458 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4459 OPTIONAL(line, LineField, ); \ 4460 REQUIRED(file, MDField, ); \ 4461 OPTIONAL(nodes, MDField, ); 4462 PARSE_MD_FIELDS(); 4463 #undef VISIT_MD_FIELDS 4464 4465 Result = GET_OR_DISTINCT(DIMacroFile, 4466 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4467 return false; 4468 } 4469 4470 /// ParseDIModule: 4471 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4472 /// includePath: "/usr/include", isysroot: "/") 4473 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4475 REQUIRED(scope, MDField, ); \ 4476 REQUIRED(name, MDStringField, ); \ 4477 OPTIONAL(configMacros, MDStringField, ); \ 4478 OPTIONAL(includePath, MDStringField, ); \ 4479 OPTIONAL(isysroot, MDStringField, ); 4480 PARSE_MD_FIELDS(); 4481 #undef VISIT_MD_FIELDS 4482 4483 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4484 configMacros.Val, includePath.Val, isysroot.Val)); 4485 return false; 4486 } 4487 4488 /// ParseDITemplateTypeParameter: 4489 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4490 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4491 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4492 OPTIONAL(name, MDStringField, ); \ 4493 REQUIRED(type, MDField, ); 4494 PARSE_MD_FIELDS(); 4495 #undef VISIT_MD_FIELDS 4496 4497 Result = 4498 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4499 return false; 4500 } 4501 4502 /// ParseDITemplateValueParameter: 4503 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4504 /// name: "V", type: !1, value: i32 7) 4505 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4506 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4507 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4508 OPTIONAL(name, MDStringField, ); \ 4509 OPTIONAL(type, MDField, ); \ 4510 REQUIRED(value, MDField, ); 4511 PARSE_MD_FIELDS(); 4512 #undef VISIT_MD_FIELDS 4513 4514 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4515 (Context, tag.Val, name.Val, type.Val, value.Val)); 4516 return false; 4517 } 4518 4519 /// ParseDIGlobalVariable: 4520 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4521 /// file: !1, line: 7, type: !2, isLocal: false, 4522 /// isDefinition: true, declaration: !3, align: 8) 4523 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4525 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4526 OPTIONAL(scope, MDField, ); \ 4527 OPTIONAL(linkageName, MDStringField, ); \ 4528 OPTIONAL(file, MDField, ); \ 4529 OPTIONAL(line, LineField, ); \ 4530 OPTIONAL(type, MDField, ); \ 4531 OPTIONAL(isLocal, MDBoolField, ); \ 4532 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4533 OPTIONAL(declaration, MDField, ); \ 4534 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4535 PARSE_MD_FIELDS(); 4536 #undef VISIT_MD_FIELDS 4537 4538 Result = GET_OR_DISTINCT(DIGlobalVariable, 4539 (Context, scope.Val, name.Val, linkageName.Val, 4540 file.Val, line.Val, type.Val, isLocal.Val, 4541 isDefinition.Val, declaration.Val, align.Val)); 4542 return false; 4543 } 4544 4545 /// ParseDILocalVariable: 4546 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4547 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4548 /// align: 8) 4549 /// ::= !DILocalVariable(scope: !0, name: "foo", 4550 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4551 /// align: 8) 4552 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4553 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4554 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4555 OPTIONAL(name, MDStringField, ); \ 4556 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4557 OPTIONAL(file, MDField, ); \ 4558 OPTIONAL(line, LineField, ); \ 4559 OPTIONAL(type, MDField, ); \ 4560 OPTIONAL(flags, DIFlagField, ); \ 4561 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4562 PARSE_MD_FIELDS(); 4563 #undef VISIT_MD_FIELDS 4564 4565 Result = GET_OR_DISTINCT(DILocalVariable, 4566 (Context, scope.Val, name.Val, file.Val, line.Val, 4567 type.Val, arg.Val, flags.Val, align.Val)); 4568 return false; 4569 } 4570 4571 /// ParseDIExpression: 4572 /// ::= !DIExpression(0, 7, -1) 4573 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4574 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4575 Lex.Lex(); 4576 4577 if (ParseToken(lltok::lparen, "expected '(' here")) 4578 return true; 4579 4580 SmallVector<uint64_t, 8> Elements; 4581 if (Lex.getKind() != lltok::rparen) 4582 do { 4583 if (Lex.getKind() == lltok::DwarfOp) { 4584 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4585 Lex.Lex(); 4586 Elements.push_back(Op); 4587 continue; 4588 } 4589 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4590 } 4591 4592 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4593 return TokError("expected unsigned integer"); 4594 4595 auto &U = Lex.getAPSIntVal(); 4596 if (U.ugt(UINT64_MAX)) 4597 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4598 Elements.push_back(U.getZExtValue()); 4599 Lex.Lex(); 4600 } while (EatIfPresent(lltok::comma)); 4601 4602 if (ParseToken(lltok::rparen, "expected ')' here")) 4603 return true; 4604 4605 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4606 return false; 4607 } 4608 4609 /// ParseDIGlobalVariableExpression: 4610 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4611 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4612 bool IsDistinct) { 4613 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4614 REQUIRED(var, MDField, ); \ 4615 REQUIRED(expr, MDField, ); 4616 PARSE_MD_FIELDS(); 4617 #undef VISIT_MD_FIELDS 4618 4619 Result = 4620 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4621 return false; 4622 } 4623 4624 /// ParseDIObjCProperty: 4625 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4626 /// getter: "getFoo", attributes: 7, type: !2) 4627 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4629 OPTIONAL(name, MDStringField, ); \ 4630 OPTIONAL(file, MDField, ); \ 4631 OPTIONAL(line, LineField, ); \ 4632 OPTIONAL(setter, MDStringField, ); \ 4633 OPTIONAL(getter, MDStringField, ); \ 4634 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4635 OPTIONAL(type, MDField, ); 4636 PARSE_MD_FIELDS(); 4637 #undef VISIT_MD_FIELDS 4638 4639 Result = GET_OR_DISTINCT(DIObjCProperty, 4640 (Context, name.Val, file.Val, line.Val, setter.Val, 4641 getter.Val, attributes.Val, type.Val)); 4642 return false; 4643 } 4644 4645 /// ParseDIImportedEntity: 4646 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4647 /// line: 7, name: "foo") 4648 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4650 REQUIRED(tag, DwarfTagField, ); \ 4651 REQUIRED(scope, MDField, ); \ 4652 OPTIONAL(entity, MDField, ); \ 4653 OPTIONAL(file, MDField, ); \ 4654 OPTIONAL(line, LineField, ); \ 4655 OPTIONAL(name, MDStringField, ); 4656 PARSE_MD_FIELDS(); 4657 #undef VISIT_MD_FIELDS 4658 4659 Result = GET_OR_DISTINCT( 4660 DIImportedEntity, 4661 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4662 return false; 4663 } 4664 4665 #undef PARSE_MD_FIELD 4666 #undef NOP_FIELD 4667 #undef REQUIRE_FIELD 4668 #undef DECLARE_FIELD 4669 4670 /// ParseMetadataAsValue 4671 /// ::= metadata i32 %local 4672 /// ::= metadata i32 @global 4673 /// ::= metadata i32 7 4674 /// ::= metadata !0 4675 /// ::= metadata !{...} 4676 /// ::= metadata !"string" 4677 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4678 // Note: the type 'metadata' has already been parsed. 4679 Metadata *MD; 4680 if (ParseMetadata(MD, &PFS)) 4681 return true; 4682 4683 V = MetadataAsValue::get(Context, MD); 4684 return false; 4685 } 4686 4687 /// ParseValueAsMetadata 4688 /// ::= i32 %local 4689 /// ::= i32 @global 4690 /// ::= i32 7 4691 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4692 PerFunctionState *PFS) { 4693 Type *Ty; 4694 LocTy Loc; 4695 if (ParseType(Ty, TypeMsg, Loc)) 4696 return true; 4697 if (Ty->isMetadataTy()) 4698 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4699 4700 Value *V; 4701 if (ParseValue(Ty, V, PFS)) 4702 return true; 4703 4704 MD = ValueAsMetadata::get(V); 4705 return false; 4706 } 4707 4708 /// ParseMetadata 4709 /// ::= i32 %local 4710 /// ::= i32 @global 4711 /// ::= i32 7 4712 /// ::= !42 4713 /// ::= !{...} 4714 /// ::= !"string" 4715 /// ::= !DILocation(...) 4716 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4717 if (Lex.getKind() == lltok::MetadataVar) { 4718 MDNode *N; 4719 if (ParseSpecializedMDNode(N)) 4720 return true; 4721 MD = N; 4722 return false; 4723 } 4724 4725 // ValueAsMetadata: 4726 // <type> <value> 4727 if (Lex.getKind() != lltok::exclaim) 4728 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4729 4730 // '!'. 4731 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4732 Lex.Lex(); 4733 4734 // MDString: 4735 // ::= '!' STRINGCONSTANT 4736 if (Lex.getKind() == lltok::StringConstant) { 4737 MDString *S; 4738 if (ParseMDString(S)) 4739 return true; 4740 MD = S; 4741 return false; 4742 } 4743 4744 // MDNode: 4745 // !{ ... } 4746 // !7 4747 MDNode *N; 4748 if (ParseMDNodeTail(N)) 4749 return true; 4750 MD = N; 4751 return false; 4752 } 4753 4754 //===----------------------------------------------------------------------===// 4755 // Function Parsing. 4756 //===----------------------------------------------------------------------===// 4757 4758 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4759 PerFunctionState *PFS, bool IsCall) { 4760 if (Ty->isFunctionTy()) 4761 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4762 4763 switch (ID.Kind) { 4764 case ValID::t_LocalID: 4765 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4766 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4767 return V == nullptr; 4768 case ValID::t_LocalName: 4769 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4770 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4771 return V == nullptr; 4772 case ValID::t_InlineAsm: { 4773 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4774 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4775 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4776 (ID.UIntVal >> 1) & 1, 4777 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4778 return false; 4779 } 4780 case ValID::t_GlobalName: 4781 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4782 return V == nullptr; 4783 case ValID::t_GlobalID: 4784 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4785 return V == nullptr; 4786 case ValID::t_APSInt: 4787 if (!Ty->isIntegerTy()) 4788 return Error(ID.Loc, "integer constant must have integer type"); 4789 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4790 V = ConstantInt::get(Context, ID.APSIntVal); 4791 return false; 4792 case ValID::t_APFloat: 4793 if (!Ty->isFloatingPointTy() || 4794 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4795 return Error(ID.Loc, "floating point constant invalid for type"); 4796 4797 // The lexer has no type info, so builds all half, float, and double FP 4798 // constants as double. Fix this here. Long double does not need this. 4799 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4800 bool Ignored; 4801 if (Ty->isHalfTy()) 4802 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4803 &Ignored); 4804 else if (Ty->isFloatTy()) 4805 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4806 &Ignored); 4807 } 4808 V = ConstantFP::get(Context, ID.APFloatVal); 4809 4810 if (V->getType() != Ty) 4811 return Error(ID.Loc, "floating point constant does not have type '" + 4812 getTypeString(Ty) + "'"); 4813 4814 return false; 4815 case ValID::t_Null: 4816 if (!Ty->isPointerTy()) 4817 return Error(ID.Loc, "null must be a pointer type"); 4818 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4819 return false; 4820 case ValID::t_Undef: 4821 // FIXME: LabelTy should not be a first-class type. 4822 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4823 return Error(ID.Loc, "invalid type for undef constant"); 4824 V = UndefValue::get(Ty); 4825 return false; 4826 case ValID::t_EmptyArray: 4827 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4828 return Error(ID.Loc, "invalid empty array initializer"); 4829 V = UndefValue::get(Ty); 4830 return false; 4831 case ValID::t_Zero: 4832 // FIXME: LabelTy should not be a first-class type. 4833 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4834 return Error(ID.Loc, "invalid type for null constant"); 4835 V = Constant::getNullValue(Ty); 4836 return false; 4837 case ValID::t_None: 4838 if (!Ty->isTokenTy()) 4839 return Error(ID.Loc, "invalid type for none constant"); 4840 V = Constant::getNullValue(Ty); 4841 return false; 4842 case ValID::t_Constant: 4843 if (ID.ConstantVal->getType() != Ty) 4844 return Error(ID.Loc, "constant expression type mismatch"); 4845 4846 V = ID.ConstantVal; 4847 return false; 4848 case ValID::t_ConstantStruct: 4849 case ValID::t_PackedConstantStruct: 4850 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4851 if (ST->getNumElements() != ID.UIntVal) 4852 return Error(ID.Loc, 4853 "initializer with struct type has wrong # elements"); 4854 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4855 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4856 4857 // Verify that the elements are compatible with the structtype. 4858 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4859 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4860 return Error(ID.Loc, "element " + Twine(i) + 4861 " of struct initializer doesn't match struct element type"); 4862 4863 V = ConstantStruct::get( 4864 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4865 } else 4866 return Error(ID.Loc, "constant expression type mismatch"); 4867 return false; 4868 } 4869 llvm_unreachable("Invalid ValID"); 4870 } 4871 4872 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4873 C = nullptr; 4874 ValID ID; 4875 auto Loc = Lex.getLoc(); 4876 if (ParseValID(ID, /*PFS=*/nullptr)) 4877 return true; 4878 switch (ID.Kind) { 4879 case ValID::t_APSInt: 4880 case ValID::t_APFloat: 4881 case ValID::t_Undef: 4882 case ValID::t_Constant: 4883 case ValID::t_ConstantStruct: 4884 case ValID::t_PackedConstantStruct: { 4885 Value *V; 4886 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 4887 return true; 4888 assert(isa<Constant>(V) && "Expected a constant value"); 4889 C = cast<Constant>(V); 4890 return false; 4891 } 4892 case ValID::t_Null: 4893 C = Constant::getNullValue(Ty); 4894 return false; 4895 default: 4896 return Error(Loc, "expected a constant value"); 4897 } 4898 } 4899 4900 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4901 V = nullptr; 4902 ValID ID; 4903 return ParseValID(ID, PFS) || 4904 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 4905 } 4906 4907 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4908 Type *Ty = nullptr; 4909 return ParseType(Ty) || 4910 ParseValue(Ty, V, PFS); 4911 } 4912 4913 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4914 PerFunctionState &PFS) { 4915 Value *V; 4916 Loc = Lex.getLoc(); 4917 if (ParseTypeAndValue(V, PFS)) return true; 4918 if (!isa<BasicBlock>(V)) 4919 return Error(Loc, "expected a basic block"); 4920 BB = cast<BasicBlock>(V); 4921 return false; 4922 } 4923 4924 /// FunctionHeader 4925 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 4926 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 4927 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 4928 /// OptionalPrefix OptionalPrologue OptPersonalityFn 4929 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4930 // Parse the linkage. 4931 LocTy LinkageLoc = Lex.getLoc(); 4932 unsigned Linkage; 4933 unsigned Visibility; 4934 unsigned DLLStorageClass; 4935 bool DSOLocal; 4936 AttrBuilder RetAttrs; 4937 unsigned CC; 4938 bool HasLinkage; 4939 Type *RetType = nullptr; 4940 LocTy RetTypeLoc = Lex.getLoc(); 4941 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 4942 DSOLocal) || 4943 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4944 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4945 return true; 4946 4947 // Verify that the linkage is ok. 4948 switch ((GlobalValue::LinkageTypes)Linkage) { 4949 case GlobalValue::ExternalLinkage: 4950 break; // always ok. 4951 case GlobalValue::ExternalWeakLinkage: 4952 if (isDefine) 4953 return Error(LinkageLoc, "invalid linkage for function definition"); 4954 break; 4955 case GlobalValue::PrivateLinkage: 4956 case GlobalValue::InternalLinkage: 4957 case GlobalValue::AvailableExternallyLinkage: 4958 case GlobalValue::LinkOnceAnyLinkage: 4959 case GlobalValue::LinkOnceODRLinkage: 4960 case GlobalValue::WeakAnyLinkage: 4961 case GlobalValue::WeakODRLinkage: 4962 if (!isDefine) 4963 return Error(LinkageLoc, "invalid linkage for function declaration"); 4964 break; 4965 case GlobalValue::AppendingLinkage: 4966 case GlobalValue::CommonLinkage: 4967 return Error(LinkageLoc, "invalid function linkage type"); 4968 } 4969 4970 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4971 return Error(LinkageLoc, 4972 "symbol with local linkage must have default visibility"); 4973 4974 if (!FunctionType::isValidReturnType(RetType)) 4975 return Error(RetTypeLoc, "invalid function return type"); 4976 4977 LocTy NameLoc = Lex.getLoc(); 4978 4979 std::string FunctionName; 4980 if (Lex.getKind() == lltok::GlobalVar) { 4981 FunctionName = Lex.getStrVal(); 4982 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4983 unsigned NameID = Lex.getUIntVal(); 4984 4985 if (NameID != NumberedVals.size()) 4986 return TokError("function expected to be numbered '%" + 4987 Twine(NumberedVals.size()) + "'"); 4988 } else { 4989 return TokError("expected function name"); 4990 } 4991 4992 Lex.Lex(); 4993 4994 if (Lex.getKind() != lltok::lparen) 4995 return TokError("expected '(' in function argument list"); 4996 4997 SmallVector<ArgInfo, 8> ArgList; 4998 bool isVarArg; 4999 AttrBuilder FuncAttrs; 5000 std::vector<unsigned> FwdRefAttrGrps; 5001 LocTy BuiltinLoc; 5002 std::string Section; 5003 unsigned Alignment; 5004 std::string GC; 5005 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5006 Constant *Prefix = nullptr; 5007 Constant *Prologue = nullptr; 5008 Constant *PersonalityFn = nullptr; 5009 Comdat *C; 5010 5011 if (ParseArgumentList(ArgList, isVarArg) || 5012 ParseOptionalUnnamedAddr(UnnamedAddr) || 5013 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5014 BuiltinLoc) || 5015 (EatIfPresent(lltok::kw_section) && 5016 ParseStringConstant(Section)) || 5017 parseOptionalComdat(FunctionName, C) || 5018 ParseOptionalAlignment(Alignment) || 5019 (EatIfPresent(lltok::kw_gc) && 5020 ParseStringConstant(GC)) || 5021 (EatIfPresent(lltok::kw_prefix) && 5022 ParseGlobalTypeAndValue(Prefix)) || 5023 (EatIfPresent(lltok::kw_prologue) && 5024 ParseGlobalTypeAndValue(Prologue)) || 5025 (EatIfPresent(lltok::kw_personality) && 5026 ParseGlobalTypeAndValue(PersonalityFn))) 5027 return true; 5028 5029 if (FuncAttrs.contains(Attribute::Builtin)) 5030 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5031 5032 // If the alignment was parsed as an attribute, move to the alignment field. 5033 if (FuncAttrs.hasAlignmentAttr()) { 5034 Alignment = FuncAttrs.getAlignment(); 5035 FuncAttrs.removeAttribute(Attribute::Alignment); 5036 } 5037 5038 // Okay, if we got here, the function is syntactically valid. Convert types 5039 // and do semantic checks. 5040 std::vector<Type*> ParamTypeList; 5041 SmallVector<AttributeSet, 8> Attrs; 5042 5043 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5044 ParamTypeList.push_back(ArgList[i].Ty); 5045 Attrs.push_back(ArgList[i].Attrs); 5046 } 5047 5048 AttributeList PAL = 5049 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5050 AttributeSet::get(Context, RetAttrs), Attrs); 5051 5052 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5053 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5054 5055 FunctionType *FT = 5056 FunctionType::get(RetType, ParamTypeList, isVarArg); 5057 PointerType *PFT = PointerType::getUnqual(FT); 5058 5059 Fn = nullptr; 5060 if (!FunctionName.empty()) { 5061 // If this was a definition of a forward reference, remove the definition 5062 // from the forward reference table and fill in the forward ref. 5063 auto FRVI = ForwardRefVals.find(FunctionName); 5064 if (FRVI != ForwardRefVals.end()) { 5065 Fn = M->getFunction(FunctionName); 5066 if (!Fn) 5067 return Error(FRVI->second.second, "invalid forward reference to " 5068 "function as global value!"); 5069 if (Fn->getType() != PFT) 5070 return Error(FRVI->second.second, "invalid forward reference to " 5071 "function '" + FunctionName + "' with wrong type!"); 5072 5073 ForwardRefVals.erase(FRVI); 5074 } else if ((Fn = M->getFunction(FunctionName))) { 5075 // Reject redefinitions. 5076 return Error(NameLoc, "invalid redefinition of function '" + 5077 FunctionName + "'"); 5078 } else if (M->getNamedValue(FunctionName)) { 5079 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5080 } 5081 5082 } else { 5083 // If this is a definition of a forward referenced function, make sure the 5084 // types agree. 5085 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5086 if (I != ForwardRefValIDs.end()) { 5087 Fn = cast<Function>(I->second.first); 5088 if (Fn->getType() != PFT) 5089 return Error(NameLoc, "type of definition and forward reference of '@" + 5090 Twine(NumberedVals.size()) + "' disagree"); 5091 ForwardRefValIDs.erase(I); 5092 } 5093 } 5094 5095 if (!Fn) 5096 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5097 else // Move the forward-reference to the correct spot in the module. 5098 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5099 5100 if (FunctionName.empty()) 5101 NumberedVals.push_back(Fn); 5102 5103 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5104 maybeSetDSOLocal(DSOLocal, *Fn); 5105 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5106 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5107 Fn->setCallingConv(CC); 5108 Fn->setAttributes(PAL); 5109 Fn->setUnnamedAddr(UnnamedAddr); 5110 Fn->setAlignment(Alignment); 5111 Fn->setSection(Section); 5112 Fn->setComdat(C); 5113 Fn->setPersonalityFn(PersonalityFn); 5114 if (!GC.empty()) Fn->setGC(GC); 5115 Fn->setPrefixData(Prefix); 5116 Fn->setPrologueData(Prologue); 5117 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5118 5119 // Add all of the arguments we parsed to the function. 5120 Function::arg_iterator ArgIt = Fn->arg_begin(); 5121 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5122 // If the argument has a name, insert it into the argument symbol table. 5123 if (ArgList[i].Name.empty()) continue; 5124 5125 // Set the name, if it conflicted, it will be auto-renamed. 5126 ArgIt->setName(ArgList[i].Name); 5127 5128 if (ArgIt->getName() != ArgList[i].Name) 5129 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5130 ArgList[i].Name + "'"); 5131 } 5132 5133 if (isDefine) 5134 return false; 5135 5136 // Check the declaration has no block address forward references. 5137 ValID ID; 5138 if (FunctionName.empty()) { 5139 ID.Kind = ValID::t_GlobalID; 5140 ID.UIntVal = NumberedVals.size() - 1; 5141 } else { 5142 ID.Kind = ValID::t_GlobalName; 5143 ID.StrVal = FunctionName; 5144 } 5145 auto Blocks = ForwardRefBlockAddresses.find(ID); 5146 if (Blocks != ForwardRefBlockAddresses.end()) 5147 return Error(Blocks->first.Loc, 5148 "cannot take blockaddress inside a declaration"); 5149 return false; 5150 } 5151 5152 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5153 ValID ID; 5154 if (FunctionNumber == -1) { 5155 ID.Kind = ValID::t_GlobalName; 5156 ID.StrVal = F.getName(); 5157 } else { 5158 ID.Kind = ValID::t_GlobalID; 5159 ID.UIntVal = FunctionNumber; 5160 } 5161 5162 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5163 if (Blocks == P.ForwardRefBlockAddresses.end()) 5164 return false; 5165 5166 for (const auto &I : Blocks->second) { 5167 const ValID &BBID = I.first; 5168 GlobalValue *GV = I.second; 5169 5170 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5171 "Expected local id or name"); 5172 BasicBlock *BB; 5173 if (BBID.Kind == ValID::t_LocalName) 5174 BB = GetBB(BBID.StrVal, BBID.Loc); 5175 else 5176 BB = GetBB(BBID.UIntVal, BBID.Loc); 5177 if (!BB) 5178 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5179 5180 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5181 GV->eraseFromParent(); 5182 } 5183 5184 P.ForwardRefBlockAddresses.erase(Blocks); 5185 return false; 5186 } 5187 5188 /// ParseFunctionBody 5189 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5190 bool LLParser::ParseFunctionBody(Function &Fn) { 5191 if (Lex.getKind() != lltok::lbrace) 5192 return TokError("expected '{' in function body"); 5193 Lex.Lex(); // eat the {. 5194 5195 int FunctionNumber = -1; 5196 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5197 5198 PerFunctionState PFS(*this, Fn, FunctionNumber); 5199 5200 // Resolve block addresses and allow basic blocks to be forward-declared 5201 // within this function. 5202 if (PFS.resolveForwardRefBlockAddresses()) 5203 return true; 5204 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5205 5206 // We need at least one basic block. 5207 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5208 return TokError("function body requires at least one basic block"); 5209 5210 while (Lex.getKind() != lltok::rbrace && 5211 Lex.getKind() != lltok::kw_uselistorder) 5212 if (ParseBasicBlock(PFS)) return true; 5213 5214 while (Lex.getKind() != lltok::rbrace) 5215 if (ParseUseListOrder(&PFS)) 5216 return true; 5217 5218 // Eat the }. 5219 Lex.Lex(); 5220 5221 // Verify function is ok. 5222 return PFS.FinishFunction(); 5223 } 5224 5225 /// ParseBasicBlock 5226 /// ::= LabelStr? Instruction* 5227 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5228 // If this basic block starts out with a name, remember it. 5229 std::string Name; 5230 LocTy NameLoc = Lex.getLoc(); 5231 if (Lex.getKind() == lltok::LabelStr) { 5232 Name = Lex.getStrVal(); 5233 Lex.Lex(); 5234 } 5235 5236 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5237 if (!BB) 5238 return Error(NameLoc, 5239 "unable to create block named '" + Name + "'"); 5240 5241 std::string NameStr; 5242 5243 // Parse the instructions in this block until we get a terminator. 5244 Instruction *Inst; 5245 do { 5246 // This instruction may have three possibilities for a name: a) none 5247 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5248 LocTy NameLoc = Lex.getLoc(); 5249 int NameID = -1; 5250 NameStr = ""; 5251 5252 if (Lex.getKind() == lltok::LocalVarID) { 5253 NameID = Lex.getUIntVal(); 5254 Lex.Lex(); 5255 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5256 return true; 5257 } else if (Lex.getKind() == lltok::LocalVar) { 5258 NameStr = Lex.getStrVal(); 5259 Lex.Lex(); 5260 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5261 return true; 5262 } 5263 5264 switch (ParseInstruction(Inst, BB, PFS)) { 5265 default: llvm_unreachable("Unknown ParseInstruction result!"); 5266 case InstError: return true; 5267 case InstNormal: 5268 BB->getInstList().push_back(Inst); 5269 5270 // With a normal result, we check to see if the instruction is followed by 5271 // a comma and metadata. 5272 if (EatIfPresent(lltok::comma)) 5273 if (ParseInstructionMetadata(*Inst)) 5274 return true; 5275 break; 5276 case InstExtraComma: 5277 BB->getInstList().push_back(Inst); 5278 5279 // If the instruction parser ate an extra comma at the end of it, it 5280 // *must* be followed by metadata. 5281 if (ParseInstructionMetadata(*Inst)) 5282 return true; 5283 break; 5284 } 5285 5286 // Set the name on the instruction. 5287 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5288 } while (!isa<TerminatorInst>(Inst)); 5289 5290 return false; 5291 } 5292 5293 //===----------------------------------------------------------------------===// 5294 // Instruction Parsing. 5295 //===----------------------------------------------------------------------===// 5296 5297 /// ParseInstruction - Parse one of the many different instructions. 5298 /// 5299 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5300 PerFunctionState &PFS) { 5301 lltok::Kind Token = Lex.getKind(); 5302 if (Token == lltok::Eof) 5303 return TokError("found end of file when expecting more instructions"); 5304 LocTy Loc = Lex.getLoc(); 5305 unsigned KeywordVal = Lex.getUIntVal(); 5306 Lex.Lex(); // Eat the keyword. 5307 5308 switch (Token) { 5309 default: return Error(Loc, "expected instruction opcode"); 5310 // Terminator Instructions. 5311 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5312 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5313 case lltok::kw_br: return ParseBr(Inst, PFS); 5314 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5315 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5316 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5317 case lltok::kw_resume: return ParseResume(Inst, PFS); 5318 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5319 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5320 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5321 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5322 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5323 // Binary Operators. 5324 case lltok::kw_add: 5325 case lltok::kw_sub: 5326 case lltok::kw_mul: 5327 case lltok::kw_shl: { 5328 bool NUW = EatIfPresent(lltok::kw_nuw); 5329 bool NSW = EatIfPresent(lltok::kw_nsw); 5330 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5331 5332 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5333 5334 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5335 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5336 return false; 5337 } 5338 case lltok::kw_fadd: 5339 case lltok::kw_fsub: 5340 case lltok::kw_fmul: 5341 case lltok::kw_fdiv: 5342 case lltok::kw_frem: { 5343 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5344 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5345 if (Res != 0) 5346 return Res; 5347 if (FMF.any()) 5348 Inst->setFastMathFlags(FMF); 5349 return 0; 5350 } 5351 5352 case lltok::kw_sdiv: 5353 case lltok::kw_udiv: 5354 case lltok::kw_lshr: 5355 case lltok::kw_ashr: { 5356 bool Exact = EatIfPresent(lltok::kw_exact); 5357 5358 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5359 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5360 return false; 5361 } 5362 5363 case lltok::kw_urem: 5364 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5365 case lltok::kw_and: 5366 case lltok::kw_or: 5367 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5368 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5369 case lltok::kw_fcmp: { 5370 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5371 int Res = ParseCompare(Inst, PFS, KeywordVal); 5372 if (Res != 0) 5373 return Res; 5374 if (FMF.any()) 5375 Inst->setFastMathFlags(FMF); 5376 return 0; 5377 } 5378 5379 // Casts. 5380 case lltok::kw_trunc: 5381 case lltok::kw_zext: 5382 case lltok::kw_sext: 5383 case lltok::kw_fptrunc: 5384 case lltok::kw_fpext: 5385 case lltok::kw_bitcast: 5386 case lltok::kw_addrspacecast: 5387 case lltok::kw_uitofp: 5388 case lltok::kw_sitofp: 5389 case lltok::kw_fptoui: 5390 case lltok::kw_fptosi: 5391 case lltok::kw_inttoptr: 5392 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5393 // Other. 5394 case lltok::kw_select: return ParseSelect(Inst, PFS); 5395 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5396 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5397 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5398 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5399 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5400 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5401 // Call. 5402 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5403 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5404 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5405 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5406 // Memory. 5407 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5408 case lltok::kw_load: return ParseLoad(Inst, PFS); 5409 case lltok::kw_store: return ParseStore(Inst, PFS); 5410 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5411 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5412 case lltok::kw_fence: return ParseFence(Inst, PFS); 5413 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5414 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5415 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5416 } 5417 } 5418 5419 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5420 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5421 if (Opc == Instruction::FCmp) { 5422 switch (Lex.getKind()) { 5423 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5424 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5425 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5426 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5427 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5428 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5429 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5430 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5431 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5432 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5433 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5434 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5435 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5436 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5437 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5438 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5439 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5440 } 5441 } else { 5442 switch (Lex.getKind()) { 5443 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5444 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5445 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5446 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5447 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5448 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5449 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5450 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5451 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5452 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5453 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5454 } 5455 } 5456 Lex.Lex(); 5457 return false; 5458 } 5459 5460 //===----------------------------------------------------------------------===// 5461 // Terminator Instructions. 5462 //===----------------------------------------------------------------------===// 5463 5464 /// ParseRet - Parse a return instruction. 5465 /// ::= 'ret' void (',' !dbg, !1)* 5466 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5467 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5468 PerFunctionState &PFS) { 5469 SMLoc TypeLoc = Lex.getLoc(); 5470 Type *Ty = nullptr; 5471 if (ParseType(Ty, true /*void allowed*/)) return true; 5472 5473 Type *ResType = PFS.getFunction().getReturnType(); 5474 5475 if (Ty->isVoidTy()) { 5476 if (!ResType->isVoidTy()) 5477 return Error(TypeLoc, "value doesn't match function result type '" + 5478 getTypeString(ResType) + "'"); 5479 5480 Inst = ReturnInst::Create(Context); 5481 return false; 5482 } 5483 5484 Value *RV; 5485 if (ParseValue(Ty, RV, PFS)) return true; 5486 5487 if (ResType != RV->getType()) 5488 return Error(TypeLoc, "value doesn't match function result type '" + 5489 getTypeString(ResType) + "'"); 5490 5491 Inst = ReturnInst::Create(Context, RV); 5492 return false; 5493 } 5494 5495 /// ParseBr 5496 /// ::= 'br' TypeAndValue 5497 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5498 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5499 LocTy Loc, Loc2; 5500 Value *Op0; 5501 BasicBlock *Op1, *Op2; 5502 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5503 5504 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5505 Inst = BranchInst::Create(BB); 5506 return false; 5507 } 5508 5509 if (Op0->getType() != Type::getInt1Ty(Context)) 5510 return Error(Loc, "branch condition must have 'i1' type"); 5511 5512 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5513 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5514 ParseToken(lltok::comma, "expected ',' after true destination") || 5515 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5516 return true; 5517 5518 Inst = BranchInst::Create(Op1, Op2, Op0); 5519 return false; 5520 } 5521 5522 /// ParseSwitch 5523 /// Instruction 5524 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5525 /// JumpTable 5526 /// ::= (TypeAndValue ',' TypeAndValue)* 5527 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5528 LocTy CondLoc, BBLoc; 5529 Value *Cond; 5530 BasicBlock *DefaultBB; 5531 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5532 ParseToken(lltok::comma, "expected ',' after switch condition") || 5533 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5534 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5535 return true; 5536 5537 if (!Cond->getType()->isIntegerTy()) 5538 return Error(CondLoc, "switch condition must have integer type"); 5539 5540 // Parse the jump table pairs. 5541 SmallPtrSet<Value*, 32> SeenCases; 5542 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5543 while (Lex.getKind() != lltok::rsquare) { 5544 Value *Constant; 5545 BasicBlock *DestBB; 5546 5547 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5548 ParseToken(lltok::comma, "expected ',' after case value") || 5549 ParseTypeAndBasicBlock(DestBB, PFS)) 5550 return true; 5551 5552 if (!SeenCases.insert(Constant).second) 5553 return Error(CondLoc, "duplicate case value in switch"); 5554 if (!isa<ConstantInt>(Constant)) 5555 return Error(CondLoc, "case value is not a constant integer"); 5556 5557 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5558 } 5559 5560 Lex.Lex(); // Eat the ']'. 5561 5562 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5563 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5564 SI->addCase(Table[i].first, Table[i].second); 5565 Inst = SI; 5566 return false; 5567 } 5568 5569 /// ParseIndirectBr 5570 /// Instruction 5571 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5572 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5573 LocTy AddrLoc; 5574 Value *Address; 5575 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5576 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5577 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5578 return true; 5579 5580 if (!Address->getType()->isPointerTy()) 5581 return Error(AddrLoc, "indirectbr address must have pointer type"); 5582 5583 // Parse the destination list. 5584 SmallVector<BasicBlock*, 16> DestList; 5585 5586 if (Lex.getKind() != lltok::rsquare) { 5587 BasicBlock *DestBB; 5588 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5589 return true; 5590 DestList.push_back(DestBB); 5591 5592 while (EatIfPresent(lltok::comma)) { 5593 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5594 return true; 5595 DestList.push_back(DestBB); 5596 } 5597 } 5598 5599 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5600 return true; 5601 5602 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5603 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5604 IBI->addDestination(DestList[i]); 5605 Inst = IBI; 5606 return false; 5607 } 5608 5609 /// ParseInvoke 5610 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5611 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5612 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5613 LocTy CallLoc = Lex.getLoc(); 5614 AttrBuilder RetAttrs, FnAttrs; 5615 std::vector<unsigned> FwdRefAttrGrps; 5616 LocTy NoBuiltinLoc; 5617 unsigned CC; 5618 Type *RetType = nullptr; 5619 LocTy RetTypeLoc; 5620 ValID CalleeID; 5621 SmallVector<ParamInfo, 16> ArgList; 5622 SmallVector<OperandBundleDef, 2> BundleList; 5623 5624 BasicBlock *NormalBB, *UnwindBB; 5625 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5626 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5627 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5628 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5629 NoBuiltinLoc) || 5630 ParseOptionalOperandBundles(BundleList, PFS) || 5631 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5632 ParseTypeAndBasicBlock(NormalBB, PFS) || 5633 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5634 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5635 return true; 5636 5637 // If RetType is a non-function pointer type, then this is the short syntax 5638 // for the call, which means that RetType is just the return type. Infer the 5639 // rest of the function argument types from the arguments that are present. 5640 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5641 if (!Ty) { 5642 // Pull out the types of all of the arguments... 5643 std::vector<Type*> ParamTypes; 5644 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5645 ParamTypes.push_back(ArgList[i].V->getType()); 5646 5647 if (!FunctionType::isValidReturnType(RetType)) 5648 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5649 5650 Ty = FunctionType::get(RetType, ParamTypes, false); 5651 } 5652 5653 CalleeID.FTy = Ty; 5654 5655 // Look up the callee. 5656 Value *Callee; 5657 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 5658 /*IsCall=*/true)) 5659 return true; 5660 5661 // Set up the Attribute for the function. 5662 SmallVector<Value *, 8> Args; 5663 SmallVector<AttributeSet, 8> ArgAttrs; 5664 5665 // Loop through FunctionType's arguments and ensure they are specified 5666 // correctly. Also, gather any parameter attributes. 5667 FunctionType::param_iterator I = Ty->param_begin(); 5668 FunctionType::param_iterator E = Ty->param_end(); 5669 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5670 Type *ExpectedTy = nullptr; 5671 if (I != E) { 5672 ExpectedTy = *I++; 5673 } else if (!Ty->isVarArg()) { 5674 return Error(ArgList[i].Loc, "too many arguments specified"); 5675 } 5676 5677 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5678 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5679 getTypeString(ExpectedTy) + "'"); 5680 Args.push_back(ArgList[i].V); 5681 ArgAttrs.push_back(ArgList[i].Attrs); 5682 } 5683 5684 if (I != E) 5685 return Error(CallLoc, "not enough parameters specified for call"); 5686 5687 if (FnAttrs.hasAlignmentAttr()) 5688 return Error(CallLoc, "invoke instructions may not have an alignment"); 5689 5690 // Finish off the Attribute and check them 5691 AttributeList PAL = 5692 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5693 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5694 5695 InvokeInst *II = 5696 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5697 II->setCallingConv(CC); 5698 II->setAttributes(PAL); 5699 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5700 Inst = II; 5701 return false; 5702 } 5703 5704 /// ParseResume 5705 /// ::= 'resume' TypeAndValue 5706 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5707 Value *Exn; LocTy ExnLoc; 5708 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5709 return true; 5710 5711 ResumeInst *RI = ResumeInst::Create(Exn); 5712 Inst = RI; 5713 return false; 5714 } 5715 5716 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5717 PerFunctionState &PFS) { 5718 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5719 return true; 5720 5721 while (Lex.getKind() != lltok::rsquare) { 5722 // If this isn't the first argument, we need a comma. 5723 if (!Args.empty() && 5724 ParseToken(lltok::comma, "expected ',' in argument list")) 5725 return true; 5726 5727 // Parse the argument. 5728 LocTy ArgLoc; 5729 Type *ArgTy = nullptr; 5730 if (ParseType(ArgTy, ArgLoc)) 5731 return true; 5732 5733 Value *V; 5734 if (ArgTy->isMetadataTy()) { 5735 if (ParseMetadataAsValue(V, PFS)) 5736 return true; 5737 } else { 5738 if (ParseValue(ArgTy, V, PFS)) 5739 return true; 5740 } 5741 Args.push_back(V); 5742 } 5743 5744 Lex.Lex(); // Lex the ']'. 5745 return false; 5746 } 5747 5748 /// ParseCleanupRet 5749 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5750 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5751 Value *CleanupPad = nullptr; 5752 5753 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5754 return true; 5755 5756 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5757 return true; 5758 5759 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5760 return true; 5761 5762 BasicBlock *UnwindBB = nullptr; 5763 if (Lex.getKind() == lltok::kw_to) { 5764 Lex.Lex(); 5765 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5766 return true; 5767 } else { 5768 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5769 return true; 5770 } 5771 } 5772 5773 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5774 return false; 5775 } 5776 5777 /// ParseCatchRet 5778 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5779 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5780 Value *CatchPad = nullptr; 5781 5782 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5783 return true; 5784 5785 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5786 return true; 5787 5788 BasicBlock *BB; 5789 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5790 ParseTypeAndBasicBlock(BB, PFS)) 5791 return true; 5792 5793 Inst = CatchReturnInst::Create(CatchPad, BB); 5794 return false; 5795 } 5796 5797 /// ParseCatchSwitch 5798 /// ::= 'catchswitch' within Parent 5799 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5800 Value *ParentPad; 5801 5802 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5803 return true; 5804 5805 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5806 Lex.getKind() != lltok::LocalVarID) 5807 return TokError("expected scope value for catchswitch"); 5808 5809 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5810 return true; 5811 5812 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5813 return true; 5814 5815 SmallVector<BasicBlock *, 32> Table; 5816 do { 5817 BasicBlock *DestBB; 5818 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5819 return true; 5820 Table.push_back(DestBB); 5821 } while (EatIfPresent(lltok::comma)); 5822 5823 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5824 return true; 5825 5826 if (ParseToken(lltok::kw_unwind, 5827 "expected 'unwind' after catchswitch scope")) 5828 return true; 5829 5830 BasicBlock *UnwindBB = nullptr; 5831 if (EatIfPresent(lltok::kw_to)) { 5832 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5833 return true; 5834 } else { 5835 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5836 return true; 5837 } 5838 5839 auto *CatchSwitch = 5840 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5841 for (BasicBlock *DestBB : Table) 5842 CatchSwitch->addHandler(DestBB); 5843 Inst = CatchSwitch; 5844 return false; 5845 } 5846 5847 /// ParseCatchPad 5848 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5849 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5850 Value *CatchSwitch = nullptr; 5851 5852 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5853 return true; 5854 5855 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5856 return TokError("expected scope value for catchpad"); 5857 5858 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5859 return true; 5860 5861 SmallVector<Value *, 8> Args; 5862 if (ParseExceptionArgs(Args, PFS)) 5863 return true; 5864 5865 Inst = CatchPadInst::Create(CatchSwitch, Args); 5866 return false; 5867 } 5868 5869 /// ParseCleanupPad 5870 /// ::= 'cleanuppad' within Parent ParamList 5871 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5872 Value *ParentPad = nullptr; 5873 5874 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5875 return true; 5876 5877 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5878 Lex.getKind() != lltok::LocalVarID) 5879 return TokError("expected scope value for cleanuppad"); 5880 5881 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5882 return true; 5883 5884 SmallVector<Value *, 8> Args; 5885 if (ParseExceptionArgs(Args, PFS)) 5886 return true; 5887 5888 Inst = CleanupPadInst::Create(ParentPad, Args); 5889 return false; 5890 } 5891 5892 //===----------------------------------------------------------------------===// 5893 // Binary Operators. 5894 //===----------------------------------------------------------------------===// 5895 5896 /// ParseArithmetic 5897 /// ::= ArithmeticOps TypeAndValue ',' Value 5898 /// 5899 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5900 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5901 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5902 unsigned Opc, unsigned OperandType) { 5903 LocTy Loc; Value *LHS, *RHS; 5904 if (ParseTypeAndValue(LHS, Loc, PFS) || 5905 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5906 ParseValue(LHS->getType(), RHS, PFS)) 5907 return true; 5908 5909 bool Valid; 5910 switch (OperandType) { 5911 default: llvm_unreachable("Unknown operand type!"); 5912 case 0: // int or FP. 5913 Valid = LHS->getType()->isIntOrIntVectorTy() || 5914 LHS->getType()->isFPOrFPVectorTy(); 5915 break; 5916 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5917 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5918 } 5919 5920 if (!Valid) 5921 return Error(Loc, "invalid operand type for instruction"); 5922 5923 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5924 return false; 5925 } 5926 5927 /// ParseLogical 5928 /// ::= ArithmeticOps TypeAndValue ',' Value { 5929 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5930 unsigned Opc) { 5931 LocTy Loc; Value *LHS, *RHS; 5932 if (ParseTypeAndValue(LHS, Loc, PFS) || 5933 ParseToken(lltok::comma, "expected ',' in logical operation") || 5934 ParseValue(LHS->getType(), RHS, PFS)) 5935 return true; 5936 5937 if (!LHS->getType()->isIntOrIntVectorTy()) 5938 return Error(Loc,"instruction requires integer or integer vector operands"); 5939 5940 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5941 return false; 5942 } 5943 5944 /// ParseCompare 5945 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5946 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5947 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5948 unsigned Opc) { 5949 // Parse the integer/fp comparison predicate. 5950 LocTy Loc; 5951 unsigned Pred; 5952 Value *LHS, *RHS; 5953 if (ParseCmpPredicate(Pred, Opc) || 5954 ParseTypeAndValue(LHS, Loc, PFS) || 5955 ParseToken(lltok::comma, "expected ',' after compare value") || 5956 ParseValue(LHS->getType(), RHS, PFS)) 5957 return true; 5958 5959 if (Opc == Instruction::FCmp) { 5960 if (!LHS->getType()->isFPOrFPVectorTy()) 5961 return Error(Loc, "fcmp requires floating point operands"); 5962 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5963 } else { 5964 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5965 if (!LHS->getType()->isIntOrIntVectorTy() && 5966 !LHS->getType()->isPtrOrPtrVectorTy()) 5967 return Error(Loc, "icmp requires integer operands"); 5968 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5969 } 5970 return false; 5971 } 5972 5973 //===----------------------------------------------------------------------===// 5974 // Other Instructions. 5975 //===----------------------------------------------------------------------===// 5976 5977 5978 /// ParseCast 5979 /// ::= CastOpc TypeAndValue 'to' Type 5980 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5981 unsigned Opc) { 5982 LocTy Loc; 5983 Value *Op; 5984 Type *DestTy = nullptr; 5985 if (ParseTypeAndValue(Op, Loc, PFS) || 5986 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5987 ParseType(DestTy)) 5988 return true; 5989 5990 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5991 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5992 return Error(Loc, "invalid cast opcode for cast from '" + 5993 getTypeString(Op->getType()) + "' to '" + 5994 getTypeString(DestTy) + "'"); 5995 } 5996 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5997 return false; 5998 } 5999 6000 /// ParseSelect 6001 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6002 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6003 LocTy Loc; 6004 Value *Op0, *Op1, *Op2; 6005 if (ParseTypeAndValue(Op0, Loc, PFS) || 6006 ParseToken(lltok::comma, "expected ',' after select condition") || 6007 ParseTypeAndValue(Op1, PFS) || 6008 ParseToken(lltok::comma, "expected ',' after select value") || 6009 ParseTypeAndValue(Op2, PFS)) 6010 return true; 6011 6012 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6013 return Error(Loc, Reason); 6014 6015 Inst = SelectInst::Create(Op0, Op1, Op2); 6016 return false; 6017 } 6018 6019 /// ParseVA_Arg 6020 /// ::= 'va_arg' TypeAndValue ',' Type 6021 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6022 Value *Op; 6023 Type *EltTy = nullptr; 6024 LocTy TypeLoc; 6025 if (ParseTypeAndValue(Op, PFS) || 6026 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6027 ParseType(EltTy, TypeLoc)) 6028 return true; 6029 6030 if (!EltTy->isFirstClassType()) 6031 return Error(TypeLoc, "va_arg requires operand with first class type"); 6032 6033 Inst = new VAArgInst(Op, EltTy); 6034 return false; 6035 } 6036 6037 /// ParseExtractElement 6038 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6039 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6040 LocTy Loc; 6041 Value *Op0, *Op1; 6042 if (ParseTypeAndValue(Op0, Loc, PFS) || 6043 ParseToken(lltok::comma, "expected ',' after extract value") || 6044 ParseTypeAndValue(Op1, PFS)) 6045 return true; 6046 6047 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6048 return Error(Loc, "invalid extractelement operands"); 6049 6050 Inst = ExtractElementInst::Create(Op0, Op1); 6051 return false; 6052 } 6053 6054 /// ParseInsertElement 6055 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6056 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6057 LocTy Loc; 6058 Value *Op0, *Op1, *Op2; 6059 if (ParseTypeAndValue(Op0, Loc, PFS) || 6060 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6061 ParseTypeAndValue(Op1, PFS) || 6062 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6063 ParseTypeAndValue(Op2, PFS)) 6064 return true; 6065 6066 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6067 return Error(Loc, "invalid insertelement operands"); 6068 6069 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6070 return false; 6071 } 6072 6073 /// ParseShuffleVector 6074 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6075 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6076 LocTy Loc; 6077 Value *Op0, *Op1, *Op2; 6078 if (ParseTypeAndValue(Op0, Loc, PFS) || 6079 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6080 ParseTypeAndValue(Op1, PFS) || 6081 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6082 ParseTypeAndValue(Op2, PFS)) 6083 return true; 6084 6085 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6086 return Error(Loc, "invalid shufflevector operands"); 6087 6088 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6089 return false; 6090 } 6091 6092 /// ParsePHI 6093 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6094 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6095 Type *Ty = nullptr; LocTy TypeLoc; 6096 Value *Op0, *Op1; 6097 6098 if (ParseType(Ty, TypeLoc) || 6099 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6100 ParseValue(Ty, Op0, PFS) || 6101 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6102 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6103 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6104 return true; 6105 6106 bool AteExtraComma = false; 6107 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6108 6109 while (true) { 6110 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6111 6112 if (!EatIfPresent(lltok::comma)) 6113 break; 6114 6115 if (Lex.getKind() == lltok::MetadataVar) { 6116 AteExtraComma = true; 6117 break; 6118 } 6119 6120 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6121 ParseValue(Ty, Op0, PFS) || 6122 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6123 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6124 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6125 return true; 6126 } 6127 6128 if (!Ty->isFirstClassType()) 6129 return Error(TypeLoc, "phi node must have first class type"); 6130 6131 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6132 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6133 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6134 Inst = PN; 6135 return AteExtraComma ? InstExtraComma : InstNormal; 6136 } 6137 6138 /// ParseLandingPad 6139 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6140 /// Clause 6141 /// ::= 'catch' TypeAndValue 6142 /// ::= 'filter' 6143 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6144 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6145 Type *Ty = nullptr; LocTy TyLoc; 6146 6147 if (ParseType(Ty, TyLoc)) 6148 return true; 6149 6150 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6151 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6152 6153 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6154 LandingPadInst::ClauseType CT; 6155 if (EatIfPresent(lltok::kw_catch)) 6156 CT = LandingPadInst::Catch; 6157 else if (EatIfPresent(lltok::kw_filter)) 6158 CT = LandingPadInst::Filter; 6159 else 6160 return TokError("expected 'catch' or 'filter' clause type"); 6161 6162 Value *V; 6163 LocTy VLoc; 6164 if (ParseTypeAndValue(V, VLoc, PFS)) 6165 return true; 6166 6167 // A 'catch' type expects a non-array constant. A filter clause expects an 6168 // array constant. 6169 if (CT == LandingPadInst::Catch) { 6170 if (isa<ArrayType>(V->getType())) 6171 Error(VLoc, "'catch' clause has an invalid type"); 6172 } else { 6173 if (!isa<ArrayType>(V->getType())) 6174 Error(VLoc, "'filter' clause has an invalid type"); 6175 } 6176 6177 Constant *CV = dyn_cast<Constant>(V); 6178 if (!CV) 6179 return Error(VLoc, "clause argument must be a constant"); 6180 LP->addClause(CV); 6181 } 6182 6183 Inst = LP.release(); 6184 return false; 6185 } 6186 6187 /// ParseCall 6188 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6189 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6190 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6191 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6192 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6193 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6194 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6195 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6196 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6197 CallInst::TailCallKind TCK) { 6198 AttrBuilder RetAttrs, FnAttrs; 6199 std::vector<unsigned> FwdRefAttrGrps; 6200 LocTy BuiltinLoc; 6201 unsigned CC; 6202 Type *RetType = nullptr; 6203 LocTy RetTypeLoc; 6204 ValID CalleeID; 6205 SmallVector<ParamInfo, 16> ArgList; 6206 SmallVector<OperandBundleDef, 2> BundleList; 6207 LocTy CallLoc = Lex.getLoc(); 6208 6209 if (TCK != CallInst::TCK_None && 6210 ParseToken(lltok::kw_call, 6211 "expected 'tail call', 'musttail call', or 'notail call'")) 6212 return true; 6213 6214 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6215 6216 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6217 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6218 ParseValID(CalleeID) || 6219 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6220 PFS.getFunction().isVarArg()) || 6221 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6222 ParseOptionalOperandBundles(BundleList, PFS)) 6223 return true; 6224 6225 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6226 return Error(CallLoc, "fast-math-flags specified for call without " 6227 "floating-point scalar or vector return type"); 6228 6229 // If RetType is a non-function pointer type, then this is the short syntax 6230 // for the call, which means that RetType is just the return type. Infer the 6231 // rest of the function argument types from the arguments that are present. 6232 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6233 if (!Ty) { 6234 // Pull out the types of all of the arguments... 6235 std::vector<Type*> ParamTypes; 6236 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6237 ParamTypes.push_back(ArgList[i].V->getType()); 6238 6239 if (!FunctionType::isValidReturnType(RetType)) 6240 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6241 6242 Ty = FunctionType::get(RetType, ParamTypes, false); 6243 } 6244 6245 CalleeID.FTy = Ty; 6246 6247 // Look up the callee. 6248 Value *Callee; 6249 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6250 /*IsCall=*/true)) 6251 return true; 6252 6253 // Set up the Attribute for the function. 6254 SmallVector<AttributeSet, 8> Attrs; 6255 6256 SmallVector<Value*, 8> Args; 6257 6258 // Loop through FunctionType's arguments and ensure they are specified 6259 // correctly. Also, gather any parameter attributes. 6260 FunctionType::param_iterator I = Ty->param_begin(); 6261 FunctionType::param_iterator E = Ty->param_end(); 6262 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6263 Type *ExpectedTy = nullptr; 6264 if (I != E) { 6265 ExpectedTy = *I++; 6266 } else if (!Ty->isVarArg()) { 6267 return Error(ArgList[i].Loc, "too many arguments specified"); 6268 } 6269 6270 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6271 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6272 getTypeString(ExpectedTy) + "'"); 6273 Args.push_back(ArgList[i].V); 6274 Attrs.push_back(ArgList[i].Attrs); 6275 } 6276 6277 if (I != E) 6278 return Error(CallLoc, "not enough parameters specified for call"); 6279 6280 if (FnAttrs.hasAlignmentAttr()) 6281 return Error(CallLoc, "call instructions may not have an alignment"); 6282 6283 // Finish off the Attribute and check them 6284 AttributeList PAL = 6285 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6286 AttributeSet::get(Context, RetAttrs), Attrs); 6287 6288 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6289 CI->setTailCallKind(TCK); 6290 CI->setCallingConv(CC); 6291 if (FMF.any()) 6292 CI->setFastMathFlags(FMF); 6293 CI->setAttributes(PAL); 6294 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6295 Inst = CI; 6296 return false; 6297 } 6298 6299 //===----------------------------------------------------------------------===// 6300 // Memory Instructions. 6301 //===----------------------------------------------------------------------===// 6302 6303 /// ParseAlloc 6304 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6305 /// (',' 'align' i32)? (',', 'addrspace(n))? 6306 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6307 Value *Size = nullptr; 6308 LocTy SizeLoc, TyLoc, ASLoc; 6309 unsigned Alignment = 0; 6310 unsigned AddrSpace = 0; 6311 Type *Ty = nullptr; 6312 6313 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6314 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6315 6316 if (ParseType(Ty, TyLoc)) return true; 6317 6318 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6319 return Error(TyLoc, "invalid type for alloca"); 6320 6321 bool AteExtraComma = false; 6322 if (EatIfPresent(lltok::comma)) { 6323 if (Lex.getKind() == lltok::kw_align) { 6324 if (ParseOptionalAlignment(Alignment)) 6325 return true; 6326 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6327 return true; 6328 } else if (Lex.getKind() == lltok::kw_addrspace) { 6329 ASLoc = Lex.getLoc(); 6330 if (ParseOptionalAddrSpace(AddrSpace)) 6331 return true; 6332 } else if (Lex.getKind() == lltok::MetadataVar) { 6333 AteExtraComma = true; 6334 } else { 6335 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6336 return true; 6337 if (EatIfPresent(lltok::comma)) { 6338 if (Lex.getKind() == lltok::kw_align) { 6339 if (ParseOptionalAlignment(Alignment)) 6340 return true; 6341 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6342 return true; 6343 } else if (Lex.getKind() == lltok::kw_addrspace) { 6344 ASLoc = Lex.getLoc(); 6345 if (ParseOptionalAddrSpace(AddrSpace)) 6346 return true; 6347 } else if (Lex.getKind() == lltok::MetadataVar) { 6348 AteExtraComma = true; 6349 } 6350 } 6351 } 6352 } 6353 6354 if (Size && !Size->getType()->isIntegerTy()) 6355 return Error(SizeLoc, "element count must have integer type"); 6356 6357 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6358 AI->setUsedWithInAlloca(IsInAlloca); 6359 AI->setSwiftError(IsSwiftError); 6360 Inst = AI; 6361 return AteExtraComma ? InstExtraComma : InstNormal; 6362 } 6363 6364 /// ParseLoad 6365 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6366 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6367 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6368 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6369 Value *Val; LocTy Loc; 6370 unsigned Alignment = 0; 6371 bool AteExtraComma = false; 6372 bool isAtomic = false; 6373 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6374 SyncScope::ID SSID = SyncScope::System; 6375 6376 if (Lex.getKind() == lltok::kw_atomic) { 6377 isAtomic = true; 6378 Lex.Lex(); 6379 } 6380 6381 bool isVolatile = false; 6382 if (Lex.getKind() == lltok::kw_volatile) { 6383 isVolatile = true; 6384 Lex.Lex(); 6385 } 6386 6387 Type *Ty; 6388 LocTy ExplicitTypeLoc = Lex.getLoc(); 6389 if (ParseType(Ty) || 6390 ParseToken(lltok::comma, "expected comma after load's type") || 6391 ParseTypeAndValue(Val, Loc, PFS) || 6392 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6393 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6394 return true; 6395 6396 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6397 return Error(Loc, "load operand must be a pointer to a first class type"); 6398 if (isAtomic && !Alignment) 6399 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6400 if (Ordering == AtomicOrdering::Release || 6401 Ordering == AtomicOrdering::AcquireRelease) 6402 return Error(Loc, "atomic load cannot use Release ordering"); 6403 6404 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6405 return Error(ExplicitTypeLoc, 6406 "explicit pointee type doesn't match operand's pointee type"); 6407 6408 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6409 return AteExtraComma ? InstExtraComma : InstNormal; 6410 } 6411 6412 /// ParseStore 6413 6414 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6415 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6416 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6417 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6418 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6419 unsigned Alignment = 0; 6420 bool AteExtraComma = false; 6421 bool isAtomic = false; 6422 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6423 SyncScope::ID SSID = SyncScope::System; 6424 6425 if (Lex.getKind() == lltok::kw_atomic) { 6426 isAtomic = true; 6427 Lex.Lex(); 6428 } 6429 6430 bool isVolatile = false; 6431 if (Lex.getKind() == lltok::kw_volatile) { 6432 isVolatile = true; 6433 Lex.Lex(); 6434 } 6435 6436 if (ParseTypeAndValue(Val, Loc, PFS) || 6437 ParseToken(lltok::comma, "expected ',' after store operand") || 6438 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6439 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6440 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6441 return true; 6442 6443 if (!Ptr->getType()->isPointerTy()) 6444 return Error(PtrLoc, "store operand must be a pointer"); 6445 if (!Val->getType()->isFirstClassType()) 6446 return Error(Loc, "store operand must be a first class value"); 6447 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6448 return Error(Loc, "stored value and pointer type do not match"); 6449 if (isAtomic && !Alignment) 6450 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6451 if (Ordering == AtomicOrdering::Acquire || 6452 Ordering == AtomicOrdering::AcquireRelease) 6453 return Error(Loc, "atomic store cannot use Acquire ordering"); 6454 6455 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6456 return AteExtraComma ? InstExtraComma : InstNormal; 6457 } 6458 6459 /// ParseCmpXchg 6460 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6461 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6462 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6463 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6464 bool AteExtraComma = false; 6465 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6466 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6467 SyncScope::ID SSID = SyncScope::System; 6468 bool isVolatile = false; 6469 bool isWeak = false; 6470 6471 if (EatIfPresent(lltok::kw_weak)) 6472 isWeak = true; 6473 6474 if (EatIfPresent(lltok::kw_volatile)) 6475 isVolatile = true; 6476 6477 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6478 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6479 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6480 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6481 ParseTypeAndValue(New, NewLoc, PFS) || 6482 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6483 ParseOrdering(FailureOrdering)) 6484 return true; 6485 6486 if (SuccessOrdering == AtomicOrdering::Unordered || 6487 FailureOrdering == AtomicOrdering::Unordered) 6488 return TokError("cmpxchg cannot be unordered"); 6489 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6490 return TokError("cmpxchg failure argument shall be no stronger than the " 6491 "success argument"); 6492 if (FailureOrdering == AtomicOrdering::Release || 6493 FailureOrdering == AtomicOrdering::AcquireRelease) 6494 return TokError( 6495 "cmpxchg failure ordering cannot include release semantics"); 6496 if (!Ptr->getType()->isPointerTy()) 6497 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6498 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6499 return Error(CmpLoc, "compare value and pointer type do not match"); 6500 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6501 return Error(NewLoc, "new value and pointer type do not match"); 6502 if (!New->getType()->isFirstClassType()) 6503 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6504 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6505 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6506 CXI->setVolatile(isVolatile); 6507 CXI->setWeak(isWeak); 6508 Inst = CXI; 6509 return AteExtraComma ? InstExtraComma : InstNormal; 6510 } 6511 6512 /// ParseAtomicRMW 6513 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6514 /// 'singlethread'? AtomicOrdering 6515 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6516 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6517 bool AteExtraComma = false; 6518 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6519 SyncScope::ID SSID = SyncScope::System; 6520 bool isVolatile = false; 6521 AtomicRMWInst::BinOp Operation; 6522 6523 if (EatIfPresent(lltok::kw_volatile)) 6524 isVolatile = true; 6525 6526 switch (Lex.getKind()) { 6527 default: return TokError("expected binary operation in atomicrmw"); 6528 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6529 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6530 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6531 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6532 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6533 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6534 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6535 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6536 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6537 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6538 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6539 } 6540 Lex.Lex(); // Eat the operation. 6541 6542 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6543 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6544 ParseTypeAndValue(Val, ValLoc, PFS) || 6545 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6546 return true; 6547 6548 if (Ordering == AtomicOrdering::Unordered) 6549 return TokError("atomicrmw cannot be unordered"); 6550 if (!Ptr->getType()->isPointerTy()) 6551 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6552 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6553 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6554 if (!Val->getType()->isIntegerTy()) 6555 return Error(ValLoc, "atomicrmw operand must be an integer"); 6556 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6557 if (Size < 8 || (Size & (Size - 1))) 6558 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6559 " integer"); 6560 6561 AtomicRMWInst *RMWI = 6562 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6563 RMWI->setVolatile(isVolatile); 6564 Inst = RMWI; 6565 return AteExtraComma ? InstExtraComma : InstNormal; 6566 } 6567 6568 /// ParseFence 6569 /// ::= 'fence' 'singlethread'? AtomicOrdering 6570 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6571 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6572 SyncScope::ID SSID = SyncScope::System; 6573 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6574 return true; 6575 6576 if (Ordering == AtomicOrdering::Unordered) 6577 return TokError("fence cannot be unordered"); 6578 if (Ordering == AtomicOrdering::Monotonic) 6579 return TokError("fence cannot be monotonic"); 6580 6581 Inst = new FenceInst(Context, Ordering, SSID); 6582 return InstNormal; 6583 } 6584 6585 /// ParseGetElementPtr 6586 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6587 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6588 Value *Ptr = nullptr; 6589 Value *Val = nullptr; 6590 LocTy Loc, EltLoc; 6591 6592 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6593 6594 Type *Ty = nullptr; 6595 LocTy ExplicitTypeLoc = Lex.getLoc(); 6596 if (ParseType(Ty) || 6597 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6598 ParseTypeAndValue(Ptr, Loc, PFS)) 6599 return true; 6600 6601 Type *BaseType = Ptr->getType(); 6602 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6603 if (!BasePointerType) 6604 return Error(Loc, "base of getelementptr must be a pointer"); 6605 6606 if (Ty != BasePointerType->getElementType()) 6607 return Error(ExplicitTypeLoc, 6608 "explicit pointee type doesn't match operand's pointee type"); 6609 6610 SmallVector<Value*, 16> Indices; 6611 bool AteExtraComma = false; 6612 // GEP returns a vector of pointers if at least one of parameters is a vector. 6613 // All vector parameters should have the same vector width. 6614 unsigned GEPWidth = BaseType->isVectorTy() ? 6615 BaseType->getVectorNumElements() : 0; 6616 6617 while (EatIfPresent(lltok::comma)) { 6618 if (Lex.getKind() == lltok::MetadataVar) { 6619 AteExtraComma = true; 6620 break; 6621 } 6622 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6623 if (!Val->getType()->isIntOrIntVectorTy()) 6624 return Error(EltLoc, "getelementptr index must be an integer"); 6625 6626 if (Val->getType()->isVectorTy()) { 6627 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6628 if (GEPWidth && GEPWidth != ValNumEl) 6629 return Error(EltLoc, 6630 "getelementptr vector index has a wrong number of elements"); 6631 GEPWidth = ValNumEl; 6632 } 6633 Indices.push_back(Val); 6634 } 6635 6636 SmallPtrSet<Type*, 4> Visited; 6637 if (!Indices.empty() && !Ty->isSized(&Visited)) 6638 return Error(Loc, "base element of getelementptr must be sized"); 6639 6640 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6641 return Error(Loc, "invalid getelementptr indices"); 6642 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6643 if (InBounds) 6644 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6645 return AteExtraComma ? InstExtraComma : InstNormal; 6646 } 6647 6648 /// ParseExtractValue 6649 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6650 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6651 Value *Val; LocTy Loc; 6652 SmallVector<unsigned, 4> Indices; 6653 bool AteExtraComma; 6654 if (ParseTypeAndValue(Val, Loc, PFS) || 6655 ParseIndexList(Indices, AteExtraComma)) 6656 return true; 6657 6658 if (!Val->getType()->isAggregateType()) 6659 return Error(Loc, "extractvalue operand must be aggregate type"); 6660 6661 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6662 return Error(Loc, "invalid indices for extractvalue"); 6663 Inst = ExtractValueInst::Create(Val, Indices); 6664 return AteExtraComma ? InstExtraComma : InstNormal; 6665 } 6666 6667 /// ParseInsertValue 6668 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6669 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6670 Value *Val0, *Val1; LocTy Loc0, Loc1; 6671 SmallVector<unsigned, 4> Indices; 6672 bool AteExtraComma; 6673 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6674 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6675 ParseTypeAndValue(Val1, Loc1, PFS) || 6676 ParseIndexList(Indices, AteExtraComma)) 6677 return true; 6678 6679 if (!Val0->getType()->isAggregateType()) 6680 return Error(Loc0, "insertvalue operand must be aggregate type"); 6681 6682 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6683 if (!IndexedType) 6684 return Error(Loc0, "invalid indices for insertvalue"); 6685 if (IndexedType != Val1->getType()) 6686 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6687 getTypeString(Val1->getType()) + "' instead of '" + 6688 getTypeString(IndexedType) + "'"); 6689 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6690 return AteExtraComma ? InstExtraComma : InstNormal; 6691 } 6692 6693 //===----------------------------------------------------------------------===// 6694 // Embedded metadata. 6695 //===----------------------------------------------------------------------===// 6696 6697 /// ParseMDNodeVector 6698 /// ::= { Element (',' Element)* } 6699 /// Element 6700 /// ::= 'null' | TypeAndValue 6701 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6702 if (ParseToken(lltok::lbrace, "expected '{' here")) 6703 return true; 6704 6705 // Check for an empty list. 6706 if (EatIfPresent(lltok::rbrace)) 6707 return false; 6708 6709 do { 6710 // Null is a special case since it is typeless. 6711 if (EatIfPresent(lltok::kw_null)) { 6712 Elts.push_back(nullptr); 6713 continue; 6714 } 6715 6716 Metadata *MD; 6717 if (ParseMetadata(MD, nullptr)) 6718 return true; 6719 Elts.push_back(MD); 6720 } while (EatIfPresent(lltok::comma)); 6721 6722 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6723 } 6724 6725 //===----------------------------------------------------------------------===// 6726 // Use-list order directives. 6727 //===----------------------------------------------------------------------===// 6728 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6729 SMLoc Loc) { 6730 if (V->use_empty()) 6731 return Error(Loc, "value has no uses"); 6732 6733 unsigned NumUses = 0; 6734 SmallDenseMap<const Use *, unsigned, 16> Order; 6735 for (const Use &U : V->uses()) { 6736 if (++NumUses > Indexes.size()) 6737 break; 6738 Order[&U] = Indexes[NumUses - 1]; 6739 } 6740 if (NumUses < 2) 6741 return Error(Loc, "value only has one use"); 6742 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6743 return Error(Loc, "wrong number of indexes, expected " + 6744 Twine(std::distance(V->use_begin(), V->use_end()))); 6745 6746 V->sortUseList([&](const Use &L, const Use &R) { 6747 return Order.lookup(&L) < Order.lookup(&R); 6748 }); 6749 return false; 6750 } 6751 6752 /// ParseUseListOrderIndexes 6753 /// ::= '{' uint32 (',' uint32)+ '}' 6754 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6755 SMLoc Loc = Lex.getLoc(); 6756 if (ParseToken(lltok::lbrace, "expected '{' here")) 6757 return true; 6758 if (Lex.getKind() == lltok::rbrace) 6759 return Lex.Error("expected non-empty list of uselistorder indexes"); 6760 6761 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6762 // indexes should be distinct numbers in the range [0, size-1], and should 6763 // not be in order. 6764 unsigned Offset = 0; 6765 unsigned Max = 0; 6766 bool IsOrdered = true; 6767 assert(Indexes.empty() && "Expected empty order vector"); 6768 do { 6769 unsigned Index; 6770 if (ParseUInt32(Index)) 6771 return true; 6772 6773 // Update consistency checks. 6774 Offset += Index - Indexes.size(); 6775 Max = std::max(Max, Index); 6776 IsOrdered &= Index == Indexes.size(); 6777 6778 Indexes.push_back(Index); 6779 } while (EatIfPresent(lltok::comma)); 6780 6781 if (ParseToken(lltok::rbrace, "expected '}' here")) 6782 return true; 6783 6784 if (Indexes.size() < 2) 6785 return Error(Loc, "expected >= 2 uselistorder indexes"); 6786 if (Offset != 0 || Max >= Indexes.size()) 6787 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6788 if (IsOrdered) 6789 return Error(Loc, "expected uselistorder indexes to change the order"); 6790 6791 return false; 6792 } 6793 6794 /// ParseUseListOrder 6795 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6796 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6797 SMLoc Loc = Lex.getLoc(); 6798 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6799 return true; 6800 6801 Value *V; 6802 SmallVector<unsigned, 16> Indexes; 6803 if (ParseTypeAndValue(V, PFS) || 6804 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6805 ParseUseListOrderIndexes(Indexes)) 6806 return true; 6807 6808 return sortUseListOrder(V, Indexes, Loc); 6809 } 6810 6811 /// ParseUseListOrderBB 6812 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6813 bool LLParser::ParseUseListOrderBB() { 6814 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6815 SMLoc Loc = Lex.getLoc(); 6816 Lex.Lex(); 6817 6818 ValID Fn, Label; 6819 SmallVector<unsigned, 16> Indexes; 6820 if (ParseValID(Fn) || 6821 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6822 ParseValID(Label) || 6823 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6824 ParseUseListOrderIndexes(Indexes)) 6825 return true; 6826 6827 // Check the function. 6828 GlobalValue *GV; 6829 if (Fn.Kind == ValID::t_GlobalName) 6830 GV = M->getNamedValue(Fn.StrVal); 6831 else if (Fn.Kind == ValID::t_GlobalID) 6832 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6833 else 6834 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6835 if (!GV) 6836 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6837 auto *F = dyn_cast<Function>(GV); 6838 if (!F) 6839 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6840 if (F->isDeclaration()) 6841 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6842 6843 // Check the basic block. 6844 if (Label.Kind == ValID::t_LocalID) 6845 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6846 if (Label.Kind != ValID::t_LocalName) 6847 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6848 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6849 if (!V) 6850 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6851 if (!isa<BasicBlock>(V)) 6852 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6853 6854 return sortUseListOrder(V, Indexes, Loc); 6855 } 6856