1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) {
63   while (true) {
64     lltok::Kind K = L.Lex();
65     // LLLexer will set the opaque pointers option in LLVMContext if it sees an
66     // explicit "ptr".
67     if (K == lltok::star || K == lltok::Error || K == lltok::Eof ||
68         isa_and_nonnull<PointerType>(L.getTyVal())) {
69       if (K == lltok::star)
70         C.setOpaquePointers(false);
71       return;
72     }
73   }
74 }
75 
76 /// Run: module ::= toplevelentity*
77 bool LLParser::Run(bool UpgradeDebugInfo,
78                    DataLayoutCallbackTy DataLayoutCallback) {
79   // If we haven't decided on whether or not we're using opaque pointers, do a
80   // quick lex over the tokens to see if we explicitly construct any typed or
81   // opaque pointer types.
82   // Don't bail out on an error so we do the same work in the parsing below
83   // regardless of if --opaque-pointers is set.
84   if (!Context.hasSetOpaquePointersValue())
85     setContextOpaquePointers(OPLex, Context);
86 
87   // Prime the lexer.
88   Lex.Lex();
89 
90   if (Context.shouldDiscardValueNames())
91     return error(
92         Lex.getLoc(),
93         "Can't read textual IR with a Context that discards named Values");
94 
95   if (M) {
96     if (parseTargetDefinitions())
97       return true;
98 
99     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
100       M->setDataLayout(*LayoutOverride);
101   }
102 
103   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
104          validateEndOfIndex();
105 }
106 
107 bool LLParser::parseStandaloneConstantValue(Constant *&C,
108                                             const SlotMapping *Slots) {
109   restoreParsingState(Slots);
110   Lex.Lex();
111 
112   Type *Ty = nullptr;
113   if (parseType(Ty) || parseConstantValue(Ty, C))
114     return true;
115   if (Lex.getKind() != lltok::Eof)
116     return error(Lex.getLoc(), "expected end of string");
117   return false;
118 }
119 
120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
121                                     const SlotMapping *Slots) {
122   restoreParsingState(Slots);
123   Lex.Lex();
124 
125   Read = 0;
126   SMLoc Start = Lex.getLoc();
127   Ty = nullptr;
128   if (parseType(Ty))
129     return true;
130   SMLoc End = Lex.getLoc();
131   Read = End.getPointer() - Start.getPointer();
132 
133   return false;
134 }
135 
136 void LLParser::restoreParsingState(const SlotMapping *Slots) {
137   if (!Slots)
138     return;
139   NumberedVals = Slots->GlobalValues;
140   NumberedMetadata = Slots->MetadataNodes;
141   for (const auto &I : Slots->NamedTypes)
142     NamedTypes.insert(
143         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
144   for (const auto &I : Slots->Types)
145     NumberedTypes.insert(
146         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
147 }
148 
149 /// validateEndOfModule - Do final validity and basic correctness checks at the
150 /// end of the module.
151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
152   if (!M)
153     return false;
154   // Handle any function attribute group forward references.
155   for (const auto &RAG : ForwardRefAttrGroups) {
156     Value *V = RAG.first;
157     const std::vector<unsigned> &Attrs = RAG.second;
158     AttrBuilder B(Context);
159 
160     for (const auto &Attr : Attrs) {
161       auto R = NumberedAttrBuilders.find(Attr);
162       if (R != NumberedAttrBuilders.end())
163         B.merge(R->second);
164     }
165 
166     if (Function *Fn = dyn_cast<Function>(V)) {
167       AttributeList AS = Fn->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170 
171       FnAttrs.merge(B);
172 
173       // If the alignment was parsed as an attribute, move to the alignment
174       // field.
175       if (FnAttrs.hasAlignmentAttr()) {
176         Fn->setAlignment(FnAttrs.getAlignment());
177         FnAttrs.removeAttribute(Attribute::Alignment);
178       }
179 
180       AS = AS.addFnAttributes(Context, FnAttrs);
181       Fn->setAttributes(AS);
182     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
183       AttributeList AS = CI->getAttributes();
184       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
185       AS = AS.removeFnAttributes(Context);
186       FnAttrs.merge(B);
187       AS = AS.addFnAttributes(Context, FnAttrs);
188       CI->setAttributes(AS);
189     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
190       AttributeList AS = II->getAttributes();
191       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
192       AS = AS.removeFnAttributes(Context);
193       FnAttrs.merge(B);
194       AS = AS.addFnAttributes(Context, FnAttrs);
195       II->setAttributes(AS);
196     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
197       AttributeList AS = CBI->getAttributes();
198       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
199       AS = AS.removeFnAttributes(Context);
200       FnAttrs.merge(B);
201       AS = AS.addFnAttributes(Context, FnAttrs);
202       CBI->setAttributes(AS);
203     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
204       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
205       Attrs.merge(B);
206       GV->setAttributes(AttributeSet::get(Context,Attrs));
207     } else {
208       llvm_unreachable("invalid object with forward attribute group reference");
209     }
210   }
211 
212   // If there are entries in ForwardRefBlockAddresses at this point, the
213   // function was never defined.
214   if (!ForwardRefBlockAddresses.empty())
215     return error(ForwardRefBlockAddresses.begin()->first.Loc,
216                  "expected function name in blockaddress");
217 
218   for (const auto &NT : NumberedTypes)
219     if (NT.second.second.isValid())
220       return error(NT.second.second,
221                    "use of undefined type '%" + Twine(NT.first) + "'");
222 
223   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
224        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
225     if (I->second.second.isValid())
226       return error(I->second.second,
227                    "use of undefined type named '" + I->getKey() + "'");
228 
229   if (!ForwardRefComdats.empty())
230     return error(ForwardRefComdats.begin()->second,
231                  "use of undefined comdat '$" +
232                      ForwardRefComdats.begin()->first + "'");
233 
234   if (!ForwardRefVals.empty())
235     return error(ForwardRefVals.begin()->second.second,
236                  "use of undefined value '@" + ForwardRefVals.begin()->first +
237                      "'");
238 
239   if (!ForwardRefValIDs.empty())
240     return error(ForwardRefValIDs.begin()->second.second,
241                  "use of undefined value '@" +
242                      Twine(ForwardRefValIDs.begin()->first) + "'");
243 
244   if (!ForwardRefMDNodes.empty())
245     return error(ForwardRefMDNodes.begin()->second.second,
246                  "use of undefined metadata '!" +
247                      Twine(ForwardRefMDNodes.begin()->first) + "'");
248 
249   // Resolve metadata cycles.
250   for (auto &N : NumberedMetadata) {
251     if (N.second && !N.second->isResolved())
252       N.second->resolveCycles();
253   }
254 
255   for (auto *Inst : InstsWithTBAATag) {
256     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
257     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
258     auto *UpgradedMD = UpgradeTBAANode(*MD);
259     if (MD != UpgradedMD)
260       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
261   }
262 
263   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
264   // make_early_inc_range here because we may remove some functions.
265   for (Function &F : llvm::make_early_inc_range(*M))
266     UpgradeCallsToIntrinsic(&F);
267 
268   // Some types could be renamed during loading if several modules are
269   // loaded in the same LLVMContext (LTO scenario). In this case we should
270   // remangle intrinsics names as well.
271   for (Function &F : llvm::make_early_inc_range(*M)) {
272     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
273       F.replaceAllUsesWith(Remangled.getValue());
274       F.eraseFromParent();
275     }
276   }
277 
278   if (UpgradeDebugInfo)
279     llvm::UpgradeDebugInfo(*M);
280 
281   UpgradeModuleFlags(*M);
282   UpgradeSectionAttributes(*M);
283 
284   if (!Slots)
285     return false;
286   // Initialize the slot mapping.
287   // Because by this point we've parsed and validated everything, we can "steal"
288   // the mapping from LLParser as it doesn't need it anymore.
289   Slots->GlobalValues = std::move(NumberedVals);
290   Slots->MetadataNodes = std::move(NumberedMetadata);
291   for (const auto &I : NamedTypes)
292     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
293   for (const auto &I : NumberedTypes)
294     Slots->Types.insert(std::make_pair(I.first, I.second.first));
295 
296   return false;
297 }
298 
299 /// Do final validity and basic correctness checks at the end of the index.
300 bool LLParser::validateEndOfIndex() {
301   if (!Index)
302     return false;
303 
304   if (!ForwardRefValueInfos.empty())
305     return error(ForwardRefValueInfos.begin()->second.front().second,
306                  "use of undefined summary '^" +
307                      Twine(ForwardRefValueInfos.begin()->first) + "'");
308 
309   if (!ForwardRefAliasees.empty())
310     return error(ForwardRefAliasees.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefAliasees.begin()->first) + "'");
313 
314   if (!ForwardRefTypeIds.empty())
315     return error(ForwardRefTypeIds.begin()->second.front().second,
316                  "use of undefined type id summary '^" +
317                      Twine(ForwardRefTypeIds.begin()->first) + "'");
318 
319   return false;
320 }
321 
322 //===----------------------------------------------------------------------===//
323 // Top-Level Entities
324 //===----------------------------------------------------------------------===//
325 
326 bool LLParser::parseTargetDefinitions() {
327   while (true) {
328     switch (Lex.getKind()) {
329     case lltok::kw_target:
330       if (parseTargetDefinition())
331         return true;
332       break;
333     case lltok::kw_source_filename:
334       if (parseSourceFileName())
335         return true;
336       break;
337     default:
338       return false;
339     }
340   }
341 }
342 
343 bool LLParser::parseTopLevelEntities() {
344   // If there is no Module, then parse just the summary index entries.
345   if (!M) {
346     while (true) {
347       switch (Lex.getKind()) {
348       case lltok::Eof:
349         return false;
350       case lltok::SummaryID:
351         if (parseSummaryEntry())
352           return true;
353         break;
354       case lltok::kw_source_filename:
355         if (parseSourceFileName())
356           return true;
357         break;
358       default:
359         // Skip everything else
360         Lex.Lex();
361       }
362     }
363   }
364   while (true) {
365     switch (Lex.getKind()) {
366     default:
367       return tokError("expected top-level entity");
368     case lltok::Eof: return false;
369     case lltok::kw_declare:
370       if (parseDeclare())
371         return true;
372       break;
373     case lltok::kw_define:
374       if (parseDefine())
375         return true;
376       break;
377     case lltok::kw_module:
378       if (parseModuleAsm())
379         return true;
380       break;
381     case lltok::LocalVarID:
382       if (parseUnnamedType())
383         return true;
384       break;
385     case lltok::LocalVar:
386       if (parseNamedType())
387         return true;
388       break;
389     case lltok::GlobalID:
390       if (parseUnnamedGlobal())
391         return true;
392       break;
393     case lltok::GlobalVar:
394       if (parseNamedGlobal())
395         return true;
396       break;
397     case lltok::ComdatVar:  if (parseComdat()) return true; break;
398     case lltok::exclaim:
399       if (parseStandaloneMetadata())
400         return true;
401       break;
402     case lltok::SummaryID:
403       if (parseSummaryEntry())
404         return true;
405       break;
406     case lltok::MetadataVar:
407       if (parseNamedMetadata())
408         return true;
409       break;
410     case lltok::kw_attributes:
411       if (parseUnnamedAttrGrp())
412         return true;
413       break;
414     case lltok::kw_uselistorder:
415       if (parseUseListOrder())
416         return true;
417       break;
418     case lltok::kw_uselistorder_bb:
419       if (parseUseListOrderBB())
420         return true;
421       break;
422     }
423   }
424 }
425 
426 /// toplevelentity
427 ///   ::= 'module' 'asm' STRINGCONSTANT
428 bool LLParser::parseModuleAsm() {
429   assert(Lex.getKind() == lltok::kw_module);
430   Lex.Lex();
431 
432   std::string AsmStr;
433   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
434       parseStringConstant(AsmStr))
435     return true;
436 
437   M->appendModuleInlineAsm(AsmStr);
438   return false;
439 }
440 
441 /// toplevelentity
442 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
443 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
444 bool LLParser::parseTargetDefinition() {
445   assert(Lex.getKind() == lltok::kw_target);
446   std::string Str;
447   switch (Lex.Lex()) {
448   default:
449     return tokError("unknown target property");
450   case lltok::kw_triple:
451     Lex.Lex();
452     if (parseToken(lltok::equal, "expected '=' after target triple") ||
453         parseStringConstant(Str))
454       return true;
455     M->setTargetTriple(Str);
456     return false;
457   case lltok::kw_datalayout:
458     Lex.Lex();
459     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
460         parseStringConstant(Str))
461       return true;
462     M->setDataLayout(Str);
463     return false;
464   }
465 }
466 
467 /// toplevelentity
468 ///   ::= 'source_filename' '=' STRINGCONSTANT
469 bool LLParser::parseSourceFileName() {
470   assert(Lex.getKind() == lltok::kw_source_filename);
471   Lex.Lex();
472   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
473       parseStringConstant(SourceFileName))
474     return true;
475   if (M)
476     M->setSourceFileName(SourceFileName);
477   return false;
478 }
479 
480 /// parseUnnamedType:
481 ///   ::= LocalVarID '=' 'type' type
482 bool LLParser::parseUnnamedType() {
483   LocTy TypeLoc = Lex.getLoc();
484   unsigned TypeID = Lex.getUIntVal();
485   Lex.Lex(); // eat LocalVarID;
486 
487   if (parseToken(lltok::equal, "expected '=' after name") ||
488       parseToken(lltok::kw_type, "expected 'type' after '='"))
489     return true;
490 
491   Type *Result = nullptr;
492   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
493     return true;
494 
495   if (!isa<StructType>(Result)) {
496     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
497     if (Entry.first)
498       return error(TypeLoc, "non-struct types may not be recursive");
499     Entry.first = Result;
500     Entry.second = SMLoc();
501   }
502 
503   return false;
504 }
505 
506 /// toplevelentity
507 ///   ::= LocalVar '=' 'type' type
508 bool LLParser::parseNamedType() {
509   std::string Name = Lex.getStrVal();
510   LocTy NameLoc = Lex.getLoc();
511   Lex.Lex();  // eat LocalVar.
512 
513   if (parseToken(lltok::equal, "expected '=' after name") ||
514       parseToken(lltok::kw_type, "expected 'type' after name"))
515     return true;
516 
517   Type *Result = nullptr;
518   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
519     return true;
520 
521   if (!isa<StructType>(Result)) {
522     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
523     if (Entry.first)
524       return error(NameLoc, "non-struct types may not be recursive");
525     Entry.first = Result;
526     Entry.second = SMLoc();
527   }
528 
529   return false;
530 }
531 
532 /// toplevelentity
533 ///   ::= 'declare' FunctionHeader
534 bool LLParser::parseDeclare() {
535   assert(Lex.getKind() == lltok::kw_declare);
536   Lex.Lex();
537 
538   std::vector<std::pair<unsigned, MDNode *>> MDs;
539   while (Lex.getKind() == lltok::MetadataVar) {
540     unsigned MDK;
541     MDNode *N;
542     if (parseMetadataAttachment(MDK, N))
543       return true;
544     MDs.push_back({MDK, N});
545   }
546 
547   Function *F;
548   if (parseFunctionHeader(F, false))
549     return true;
550   for (auto &MD : MDs)
551     F->addMetadata(MD.first, *MD.second);
552   return false;
553 }
554 
555 /// toplevelentity
556 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
557 bool LLParser::parseDefine() {
558   assert(Lex.getKind() == lltok::kw_define);
559   Lex.Lex();
560 
561   Function *F;
562   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
563          parseFunctionBody(*F);
564 }
565 
566 /// parseGlobalType
567 ///   ::= 'constant'
568 ///   ::= 'global'
569 bool LLParser::parseGlobalType(bool &IsConstant) {
570   if (Lex.getKind() == lltok::kw_constant)
571     IsConstant = true;
572   else if (Lex.getKind() == lltok::kw_global)
573     IsConstant = false;
574   else {
575     IsConstant = false;
576     return tokError("expected 'global' or 'constant'");
577   }
578   Lex.Lex();
579   return false;
580 }
581 
582 bool LLParser::parseOptionalUnnamedAddr(
583     GlobalVariable::UnnamedAddr &UnnamedAddr) {
584   if (EatIfPresent(lltok::kw_unnamed_addr))
585     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
586   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
587     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
588   else
589     UnnamedAddr = GlobalValue::UnnamedAddr::None;
590   return false;
591 }
592 
593 /// parseUnnamedGlobal:
594 ///   OptionalVisibility (ALIAS | IFUNC) ...
595 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
596 ///   OptionalDLLStorageClass
597 ///                                                     ...   -> global variable
598 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
599 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
600 ///   OptionalVisibility
601 ///                OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 bool LLParser::parseUnnamedGlobal() {
604   unsigned VarID = NumberedVals.size();
605   std::string Name;
606   LocTy NameLoc = Lex.getLoc();
607 
608   // Handle the GlobalID form.
609   if (Lex.getKind() == lltok::GlobalID) {
610     if (Lex.getUIntVal() != VarID)
611       return error(Lex.getLoc(),
612                    "variable expected to be numbered '%" + Twine(VarID) + "'");
613     Lex.Lex(); // eat GlobalID;
614 
615     if (parseToken(lltok::equal, "expected '=' after name"))
616       return true;
617   }
618 
619   bool HasLinkage;
620   unsigned Linkage, Visibility, DLLStorageClass;
621   bool DSOLocal;
622   GlobalVariable::ThreadLocalMode TLM;
623   GlobalVariable::UnnamedAddr UnnamedAddr;
624   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
625                            DSOLocal) ||
626       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
627     return true;
628 
629   switch (Lex.getKind()) {
630   default:
631     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
632                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
633   case lltok::kw_alias:
634   case lltok::kw_ifunc:
635     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
636                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637   }
638 }
639 
640 /// parseNamedGlobal:
641 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
642 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
643 ///                 OptionalVisibility OptionalDLLStorageClass
644 ///                                                     ...   -> global variable
645 bool LLParser::parseNamedGlobal() {
646   assert(Lex.getKind() == lltok::GlobalVar);
647   LocTy NameLoc = Lex.getLoc();
648   std::string Name = Lex.getStrVal();
649   Lex.Lex();
650 
651   bool HasLinkage;
652   unsigned Linkage, Visibility, DLLStorageClass;
653   bool DSOLocal;
654   GlobalVariable::ThreadLocalMode TLM;
655   GlobalVariable::UnnamedAddr UnnamedAddr;
656   if (parseToken(lltok::equal, "expected '=' in global variable") ||
657       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
658                            DSOLocal) ||
659       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
660     return true;
661 
662   switch (Lex.getKind()) {
663   default:
664     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
665                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
666   case lltok::kw_alias:
667   case lltok::kw_ifunc:
668     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670   }
671 }
672 
673 bool LLParser::parseComdat() {
674   assert(Lex.getKind() == lltok::ComdatVar);
675   std::string Name = Lex.getStrVal();
676   LocTy NameLoc = Lex.getLoc();
677   Lex.Lex();
678 
679   if (parseToken(lltok::equal, "expected '=' here"))
680     return true;
681 
682   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
683     return tokError("expected comdat type");
684 
685   Comdat::SelectionKind SK;
686   switch (Lex.getKind()) {
687   default:
688     return tokError("unknown selection kind");
689   case lltok::kw_any:
690     SK = Comdat::Any;
691     break;
692   case lltok::kw_exactmatch:
693     SK = Comdat::ExactMatch;
694     break;
695   case lltok::kw_largest:
696     SK = Comdat::Largest;
697     break;
698   case lltok::kw_nodeduplicate:
699     SK = Comdat::NoDeduplicate;
700     break;
701   case lltok::kw_samesize:
702     SK = Comdat::SameSize;
703     break;
704   }
705   Lex.Lex();
706 
707   // See if the comdat was forward referenced, if so, use the comdat.
708   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
709   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
710   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
711     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
712 
713   Comdat *C;
714   if (I != ComdatSymTab.end())
715     C = &I->second;
716   else
717     C = M->getOrInsertComdat(Name);
718   C->setSelectionKind(SK);
719 
720   return false;
721 }
722 
723 // MDString:
724 //   ::= '!' STRINGCONSTANT
725 bool LLParser::parseMDString(MDString *&Result) {
726   std::string Str;
727   if (parseStringConstant(Str))
728     return true;
729   Result = MDString::get(Context, Str);
730   return false;
731 }
732 
733 // MDNode:
734 //   ::= '!' MDNodeNumber
735 bool LLParser::parseMDNodeID(MDNode *&Result) {
736   // !{ ..., !42, ... }
737   LocTy IDLoc = Lex.getLoc();
738   unsigned MID = 0;
739   if (parseUInt32(MID))
740     return true;
741 
742   // If not a forward reference, just return it now.
743   if (NumberedMetadata.count(MID)) {
744     Result = NumberedMetadata[MID];
745     return false;
746   }
747 
748   // Otherwise, create MDNode forward reference.
749   auto &FwdRef = ForwardRefMDNodes[MID];
750   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
751 
752   Result = FwdRef.first.get();
753   NumberedMetadata[MID].reset(Result);
754   return false;
755 }
756 
757 /// parseNamedMetadata:
758 ///   !foo = !{ !1, !2 }
759 bool LLParser::parseNamedMetadata() {
760   assert(Lex.getKind() == lltok::MetadataVar);
761   std::string Name = Lex.getStrVal();
762   Lex.Lex();
763 
764   if (parseToken(lltok::equal, "expected '=' here") ||
765       parseToken(lltok::exclaim, "Expected '!' here") ||
766       parseToken(lltok::lbrace, "Expected '{' here"))
767     return true;
768 
769   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
770   if (Lex.getKind() != lltok::rbrace)
771     do {
772       MDNode *N = nullptr;
773       // parse DIExpressions inline as a special case. They are still MDNodes,
774       // so they can still appear in named metadata. Remove this logic if they
775       // become plain Metadata.
776       if (Lex.getKind() == lltok::MetadataVar &&
777           Lex.getStrVal() == "DIExpression") {
778         if (parseDIExpression(N, /*IsDistinct=*/false))
779           return true;
780         // DIArgLists should only appear inline in a function, as they may
781         // contain LocalAsMetadata arguments which require a function context.
782       } else if (Lex.getKind() == lltok::MetadataVar &&
783                  Lex.getStrVal() == "DIArgList") {
784         return tokError("found DIArgList outside of function");
785       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
786                  parseMDNodeID(N)) {
787         return true;
788       }
789       NMD->addOperand(N);
790     } while (EatIfPresent(lltok::comma));
791 
792   return parseToken(lltok::rbrace, "expected end of metadata node");
793 }
794 
795 /// parseStandaloneMetadata:
796 ///   !42 = !{...}
797 bool LLParser::parseStandaloneMetadata() {
798   assert(Lex.getKind() == lltok::exclaim);
799   Lex.Lex();
800   unsigned MetadataID = 0;
801 
802   MDNode *Init;
803   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
804     return true;
805 
806   // Detect common error, from old metadata syntax.
807   if (Lex.getKind() == lltok::Type)
808     return tokError("unexpected type in metadata definition");
809 
810   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
811   if (Lex.getKind() == lltok::MetadataVar) {
812     if (parseSpecializedMDNode(Init, IsDistinct))
813       return true;
814   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
815              parseMDTuple(Init, IsDistinct))
816     return true;
817 
818   // See if this was forward referenced, if so, handle it.
819   auto FI = ForwardRefMDNodes.find(MetadataID);
820   if (FI != ForwardRefMDNodes.end()) {
821     FI->second.first->replaceAllUsesWith(Init);
822     ForwardRefMDNodes.erase(FI);
823 
824     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
825   } else {
826     if (NumberedMetadata.count(MetadataID))
827       return tokError("Metadata id is already used");
828     NumberedMetadata[MetadataID].reset(Init);
829   }
830 
831   return false;
832 }
833 
834 // Skips a single module summary entry.
835 bool LLParser::skipModuleSummaryEntry() {
836   // Each module summary entry consists of a tag for the entry
837   // type, followed by a colon, then the fields which may be surrounded by
838   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
839   // support is in place we will look for the tokens corresponding to the
840   // expected tags.
841   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
842       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
843       Lex.getKind() != lltok::kw_blockcount)
844     return tokError(
845         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
846         "start of summary entry");
847   if (Lex.getKind() == lltok::kw_flags)
848     return parseSummaryIndexFlags();
849   if (Lex.getKind() == lltok::kw_blockcount)
850     return parseBlockCount();
851   Lex.Lex();
852   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
853       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
854     return true;
855   // Now walk through the parenthesized entry, until the number of open
856   // parentheses goes back down to 0 (the first '(' was parsed above).
857   unsigned NumOpenParen = 1;
858   do {
859     switch (Lex.getKind()) {
860     case lltok::lparen:
861       NumOpenParen++;
862       break;
863     case lltok::rparen:
864       NumOpenParen--;
865       break;
866     case lltok::Eof:
867       return tokError("found end of file while parsing summary entry");
868     default:
869       // Skip everything in between parentheses.
870       break;
871     }
872     Lex.Lex();
873   } while (NumOpenParen > 0);
874   return false;
875 }
876 
877 /// SummaryEntry
878 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
879 bool LLParser::parseSummaryEntry() {
880   assert(Lex.getKind() == lltok::SummaryID);
881   unsigned SummaryID = Lex.getUIntVal();
882 
883   // For summary entries, colons should be treated as distinct tokens,
884   // not an indication of the end of a label token.
885   Lex.setIgnoreColonInIdentifiers(true);
886 
887   Lex.Lex();
888   if (parseToken(lltok::equal, "expected '=' here"))
889     return true;
890 
891   // If we don't have an index object, skip the summary entry.
892   if (!Index)
893     return skipModuleSummaryEntry();
894 
895   bool result = false;
896   switch (Lex.getKind()) {
897   case lltok::kw_gv:
898     result = parseGVEntry(SummaryID);
899     break;
900   case lltok::kw_module:
901     result = parseModuleEntry(SummaryID);
902     break;
903   case lltok::kw_typeid:
904     result = parseTypeIdEntry(SummaryID);
905     break;
906   case lltok::kw_typeidCompatibleVTable:
907     result = parseTypeIdCompatibleVtableEntry(SummaryID);
908     break;
909   case lltok::kw_flags:
910     result = parseSummaryIndexFlags();
911     break;
912   case lltok::kw_blockcount:
913     result = parseBlockCount();
914     break;
915   default:
916     result = error(Lex.getLoc(), "unexpected summary kind");
917     break;
918   }
919   Lex.setIgnoreColonInIdentifiers(false);
920   return result;
921 }
922 
923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
924   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
925          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
926 }
927 
928 // If there was an explicit dso_local, update GV. In the absence of an explicit
929 // dso_local we keep the default value.
930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
931   if (DSOLocal)
932     GV.setDSOLocal(true);
933 }
934 
935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
936                                               Type *Ty2) {
937   std::string ErrString;
938   raw_string_ostream ErrOS(ErrString);
939   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
940   return ErrOS.str();
941 }
942 
943 /// parseAliasOrIFunc:
944 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
945 ///                     OptionalVisibility OptionalDLLStorageClass
946 ///                     OptionalThreadLocal OptionalUnnamedAddr
947 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
948 ///
949 /// AliaseeOrResolver
950 ///   ::= TypeAndValue
951 ///
952 /// SymbolAttrs
953 ///   ::= ',' 'partition' StringConstant
954 ///
955 /// Everything through OptionalUnnamedAddr has already been parsed.
956 ///
957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
958                                  unsigned L, unsigned Visibility,
959                                  unsigned DLLStorageClass, bool DSOLocal,
960                                  GlobalVariable::ThreadLocalMode TLM,
961                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
962   bool IsAlias;
963   if (Lex.getKind() == lltok::kw_alias)
964     IsAlias = true;
965   else if (Lex.getKind() == lltok::kw_ifunc)
966     IsAlias = false;
967   else
968     llvm_unreachable("Not an alias or ifunc!");
969   Lex.Lex();
970 
971   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
972 
973   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
974     return error(NameLoc, "invalid linkage type for alias");
975 
976   if (!isValidVisibilityForLinkage(Visibility, L))
977     return error(NameLoc,
978                  "symbol with local linkage must have default visibility");
979 
980   Type *Ty;
981   LocTy ExplicitTypeLoc = Lex.getLoc();
982   if (parseType(Ty) ||
983       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
984     return true;
985 
986   Constant *Aliasee;
987   LocTy AliaseeLoc = Lex.getLoc();
988   if (Lex.getKind() != lltok::kw_bitcast &&
989       Lex.getKind() != lltok::kw_getelementptr &&
990       Lex.getKind() != lltok::kw_addrspacecast &&
991       Lex.getKind() != lltok::kw_inttoptr) {
992     if (parseGlobalTypeAndValue(Aliasee))
993       return true;
994   } else {
995     // The bitcast dest type is not present, it is implied by the dest type.
996     ValID ID;
997     if (parseValID(ID, /*PFS=*/nullptr))
998       return true;
999     if (ID.Kind != ValID::t_Constant)
1000       return error(AliaseeLoc, "invalid aliasee");
1001     Aliasee = ID.ConstantVal;
1002   }
1003 
1004   Type *AliaseeType = Aliasee->getType();
1005   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1006   if (!PTy)
1007     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1008   unsigned AddrSpace = PTy->getAddressSpace();
1009 
1010   if (IsAlias) {
1011     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1012       return error(
1013           ExplicitTypeLoc,
1014           typeComparisonErrorMessage(
1015               "explicit pointee type doesn't match operand's pointee type", Ty,
1016               PTy->getNonOpaquePointerElementType()));
1017   } else {
1018     if (!PTy->isOpaque() &&
1019         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1020       return error(ExplicitTypeLoc,
1021                    "explicit pointee type should be a function type");
1022   }
1023 
1024   GlobalValue *GVal = nullptr;
1025 
1026   // See if the alias was forward referenced, if so, prepare to replace the
1027   // forward reference.
1028   if (!Name.empty()) {
1029     auto I = ForwardRefVals.find(Name);
1030     if (I != ForwardRefVals.end()) {
1031       GVal = I->second.first;
1032       ForwardRefVals.erase(Name);
1033     } else if (M->getNamedValue(Name)) {
1034       return error(NameLoc, "redefinition of global '@" + Name + "'");
1035     }
1036   } else {
1037     auto I = ForwardRefValIDs.find(NumberedVals.size());
1038     if (I != ForwardRefValIDs.end()) {
1039       GVal = I->second.first;
1040       ForwardRefValIDs.erase(I);
1041     }
1042   }
1043 
1044   // Okay, create the alias/ifunc but do not insert it into the module yet.
1045   std::unique_ptr<GlobalAlias> GA;
1046   std::unique_ptr<GlobalIFunc> GI;
1047   GlobalValue *GV;
1048   if (IsAlias) {
1049     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1050                                  (GlobalValue::LinkageTypes)Linkage, Name,
1051                                  Aliasee, /*Parent*/ nullptr));
1052     GV = GA.get();
1053   } else {
1054     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1055                                  (GlobalValue::LinkageTypes)Linkage, Name,
1056                                  Aliasee, /*Parent*/ nullptr));
1057     GV = GI.get();
1058   }
1059   GV->setThreadLocalMode(TLM);
1060   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1061   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1062   GV->setUnnamedAddr(UnnamedAddr);
1063   maybeSetDSOLocal(DSOLocal, *GV);
1064 
1065   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1066   // Now parse them if there are any.
1067   while (Lex.getKind() == lltok::comma) {
1068     Lex.Lex();
1069 
1070     if (Lex.getKind() == lltok::kw_partition) {
1071       Lex.Lex();
1072       GV->setPartition(Lex.getStrVal());
1073       if (parseToken(lltok::StringConstant, "expected partition string"))
1074         return true;
1075     } else {
1076       return tokError("unknown alias or ifunc property!");
1077     }
1078   }
1079 
1080   if (Name.empty())
1081     NumberedVals.push_back(GV);
1082 
1083   if (GVal) {
1084     // Verify that types agree.
1085     if (GVal->getType() != GV->getType())
1086       return error(
1087           ExplicitTypeLoc,
1088           "forward reference and definition of alias have different types");
1089 
1090     // If they agree, just RAUW the old value with the alias and remove the
1091     // forward ref info.
1092     GVal->replaceAllUsesWith(GV);
1093     GVal->eraseFromParent();
1094   }
1095 
1096   // Insert into the module, we know its name won't collide now.
1097   if (IsAlias)
1098     M->getAliasList().push_back(GA.release());
1099   else
1100     M->getIFuncList().push_back(GI.release());
1101   assert(GV->getName() == Name && "Should not be a name conflict!");
1102 
1103   return false;
1104 }
1105 
1106 /// parseGlobal
1107 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1108 ///       OptionalVisibility OptionalDLLStorageClass
1109 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1110 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1111 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1112 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1113 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1114 ///       Const OptionalAttrs
1115 ///
1116 /// Everything up to and including OptionalUnnamedAddr has been parsed
1117 /// already.
1118 ///
1119 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1120                            unsigned Linkage, bool HasLinkage,
1121                            unsigned Visibility, unsigned DLLStorageClass,
1122                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1123                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1124   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1125     return error(NameLoc,
1126                  "symbol with local linkage must have default visibility");
1127 
1128   unsigned AddrSpace;
1129   bool IsConstant, IsExternallyInitialized;
1130   LocTy IsExternallyInitializedLoc;
1131   LocTy TyLoc;
1132 
1133   Type *Ty = nullptr;
1134   if (parseOptionalAddrSpace(AddrSpace) ||
1135       parseOptionalToken(lltok::kw_externally_initialized,
1136                          IsExternallyInitialized,
1137                          &IsExternallyInitializedLoc) ||
1138       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1139     return true;
1140 
1141   // If the linkage is specified and is external, then no initializer is
1142   // present.
1143   Constant *Init = nullptr;
1144   if (!HasLinkage ||
1145       !GlobalValue::isValidDeclarationLinkage(
1146           (GlobalValue::LinkageTypes)Linkage)) {
1147     if (parseGlobalValue(Ty, Init))
1148       return true;
1149   }
1150 
1151   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1152     return error(TyLoc, "invalid type for global variable");
1153 
1154   GlobalValue *GVal = nullptr;
1155 
1156   // See if the global was forward referenced, if so, use the global.
1157   if (!Name.empty()) {
1158     auto I = ForwardRefVals.find(Name);
1159     if (I != ForwardRefVals.end()) {
1160       GVal = I->second.first;
1161       ForwardRefVals.erase(I);
1162     } else if (M->getNamedValue(Name)) {
1163       return error(NameLoc, "redefinition of global '@" + Name + "'");
1164     }
1165   } else {
1166     auto I = ForwardRefValIDs.find(NumberedVals.size());
1167     if (I != ForwardRefValIDs.end()) {
1168       GVal = I->second.first;
1169       ForwardRefValIDs.erase(I);
1170     }
1171   }
1172 
1173   GlobalVariable *GV = new GlobalVariable(
1174       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1175       GlobalVariable::NotThreadLocal, AddrSpace);
1176 
1177   if (Name.empty())
1178     NumberedVals.push_back(GV);
1179 
1180   // Set the parsed properties on the global.
1181   if (Init)
1182     GV->setInitializer(Init);
1183   GV->setConstant(IsConstant);
1184   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1185   maybeSetDSOLocal(DSOLocal, *GV);
1186   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1187   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1188   GV->setExternallyInitialized(IsExternallyInitialized);
1189   GV->setThreadLocalMode(TLM);
1190   GV->setUnnamedAddr(UnnamedAddr);
1191 
1192   if (GVal) {
1193     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1194       return error(
1195           TyLoc,
1196           "forward reference and definition of global have different types");
1197 
1198     GVal->replaceAllUsesWith(GV);
1199     GVal->eraseFromParent();
1200   }
1201 
1202   // parse attributes on the global.
1203   while (Lex.getKind() == lltok::comma) {
1204     Lex.Lex();
1205 
1206     if (Lex.getKind() == lltok::kw_section) {
1207       Lex.Lex();
1208       GV->setSection(Lex.getStrVal());
1209       if (parseToken(lltok::StringConstant, "expected global section string"))
1210         return true;
1211     } else if (Lex.getKind() == lltok::kw_partition) {
1212       Lex.Lex();
1213       GV->setPartition(Lex.getStrVal());
1214       if (parseToken(lltok::StringConstant, "expected partition string"))
1215         return true;
1216     } else if (Lex.getKind() == lltok::kw_align) {
1217       MaybeAlign Alignment;
1218       if (parseOptionalAlignment(Alignment))
1219         return true;
1220       GV->setAlignment(Alignment);
1221     } else if (Lex.getKind() == lltok::MetadataVar) {
1222       if (parseGlobalObjectMetadataAttachment(*GV))
1223         return true;
1224     } else {
1225       Comdat *C;
1226       if (parseOptionalComdat(Name, C))
1227         return true;
1228       if (C)
1229         GV->setComdat(C);
1230       else
1231         return tokError("unknown global variable property!");
1232     }
1233   }
1234 
1235   AttrBuilder Attrs(M->getContext());
1236   LocTy BuiltinLoc;
1237   std::vector<unsigned> FwdRefAttrGrps;
1238   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1239     return true;
1240   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1241     GV->setAttributes(AttributeSet::get(Context, Attrs));
1242     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1243   }
1244 
1245   return false;
1246 }
1247 
1248 /// parseUnnamedAttrGrp
1249 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1250 bool LLParser::parseUnnamedAttrGrp() {
1251   assert(Lex.getKind() == lltok::kw_attributes);
1252   LocTy AttrGrpLoc = Lex.getLoc();
1253   Lex.Lex();
1254 
1255   if (Lex.getKind() != lltok::AttrGrpID)
1256     return tokError("expected attribute group id");
1257 
1258   unsigned VarID = Lex.getUIntVal();
1259   std::vector<unsigned> unused;
1260   LocTy BuiltinLoc;
1261   Lex.Lex();
1262 
1263   if (parseToken(lltok::equal, "expected '=' here") ||
1264       parseToken(lltok::lbrace, "expected '{' here"))
1265     return true;
1266 
1267   auto R = NumberedAttrBuilders.find(VarID);
1268   if (R == NumberedAttrBuilders.end())
1269     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1270 
1271   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1272       parseToken(lltok::rbrace, "expected end of attribute group"))
1273     return true;
1274 
1275   if (!R->second.hasAttributes())
1276     return error(AttrGrpLoc, "attribute group has no attributes");
1277 
1278   return false;
1279 }
1280 
1281 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1282   switch (Kind) {
1283 #define GET_ATTR_NAMES
1284 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1285   case lltok::kw_##DISPLAY_NAME: \
1286     return Attribute::ENUM_NAME;
1287 #include "llvm/IR/Attributes.inc"
1288   default:
1289     return Attribute::None;
1290   }
1291 }
1292 
1293 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1294                                   bool InAttrGroup) {
1295   if (Attribute::isTypeAttrKind(Attr))
1296     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1297 
1298   switch (Attr) {
1299   case Attribute::Alignment: {
1300     MaybeAlign Alignment;
1301     if (InAttrGroup) {
1302       uint32_t Value = 0;
1303       Lex.Lex();
1304       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1305         return true;
1306       Alignment = Align(Value);
1307     } else {
1308       if (parseOptionalAlignment(Alignment, true))
1309         return true;
1310     }
1311     B.addAlignmentAttr(Alignment);
1312     return false;
1313   }
1314   case Attribute::StackAlignment: {
1315     unsigned Alignment;
1316     if (InAttrGroup) {
1317       Lex.Lex();
1318       if (parseToken(lltok::equal, "expected '=' here") ||
1319           parseUInt32(Alignment))
1320         return true;
1321     } else {
1322       if (parseOptionalStackAlignment(Alignment))
1323         return true;
1324     }
1325     B.addStackAlignmentAttr(Alignment);
1326     return false;
1327   }
1328   case Attribute::AllocSize: {
1329     unsigned ElemSizeArg;
1330     Optional<unsigned> NumElemsArg;
1331     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1332       return true;
1333     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1334     return false;
1335   }
1336   case Attribute::VScaleRange: {
1337     unsigned MinValue, MaxValue;
1338     if (parseVScaleRangeArguments(MinValue, MaxValue))
1339       return true;
1340     B.addVScaleRangeAttr(MinValue,
1341                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1342     return false;
1343   }
1344   case Attribute::Dereferenceable: {
1345     uint64_t Bytes;
1346     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1347       return true;
1348     B.addDereferenceableAttr(Bytes);
1349     return false;
1350   }
1351   case Attribute::DereferenceableOrNull: {
1352     uint64_t Bytes;
1353     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1354       return true;
1355     B.addDereferenceableOrNullAttr(Bytes);
1356     return false;
1357   }
1358   case Attribute::UWTable: {
1359     UWTableKind Kind;
1360     if (parseOptionalUWTableKind(Kind))
1361       return true;
1362     B.addUWTableAttr(Kind);
1363     return false;
1364   }
1365   case Attribute::AllocKind: {
1366     AllocFnKind Kind = AllocFnKind::Unknown;
1367     if (parseAllocKind(Kind))
1368       return true;
1369     B.addAllocKindAttr(Kind);
1370     return false;
1371   }
1372   default:
1373     B.addAttribute(Attr);
1374     Lex.Lex();
1375     return false;
1376   }
1377 }
1378 
1379 /// parseFnAttributeValuePairs
1380 ///   ::= <attr> | <attr> '=' <value>
1381 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1382                                           std::vector<unsigned> &FwdRefAttrGrps,
1383                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1384   bool HaveError = false;
1385 
1386   B.clear();
1387 
1388   while (true) {
1389     lltok::Kind Token = Lex.getKind();
1390     if (Token == lltok::rbrace)
1391       return HaveError; // Finished.
1392 
1393     if (Token == lltok::StringConstant) {
1394       if (parseStringAttribute(B))
1395         return true;
1396       continue;
1397     }
1398 
1399     if (Token == lltok::AttrGrpID) {
1400       // Allow a function to reference an attribute group:
1401       //
1402       //   define void @foo() #1 { ... }
1403       if (InAttrGrp) {
1404         HaveError |= error(
1405             Lex.getLoc(),
1406             "cannot have an attribute group reference in an attribute group");
1407       } else {
1408         // Save the reference to the attribute group. We'll fill it in later.
1409         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1410       }
1411       Lex.Lex();
1412       continue;
1413     }
1414 
1415     SMLoc Loc = Lex.getLoc();
1416     if (Token == lltok::kw_builtin)
1417       BuiltinLoc = Loc;
1418 
1419     Attribute::AttrKind Attr = tokenToAttribute(Token);
1420     if (Attr == Attribute::None) {
1421       if (!InAttrGrp)
1422         return HaveError;
1423       return error(Lex.getLoc(), "unterminated attribute group");
1424     }
1425 
1426     if (parseEnumAttribute(Attr, B, InAttrGrp))
1427       return true;
1428 
1429     // As a hack, we allow function alignment to be initially parsed as an
1430     // attribute on a function declaration/definition or added to an attribute
1431     // group and later moved to the alignment field.
1432     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1433       HaveError |= error(Loc, "this attribute does not apply to functions");
1434   }
1435 }
1436 
1437 //===----------------------------------------------------------------------===//
1438 // GlobalValue Reference/Resolution Routines.
1439 //===----------------------------------------------------------------------===//
1440 
1441 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1442   // For opaque pointers, the used global type does not matter. We will later
1443   // RAUW it with a global/function of the correct type.
1444   if (PTy->isOpaque())
1445     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1446                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1447                               nullptr, GlobalVariable::NotThreadLocal,
1448                               PTy->getAddressSpace());
1449 
1450   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1451   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1452     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1453                             PTy->getAddressSpace(), "", M);
1454   else
1455     return new GlobalVariable(
1456         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1457         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1458 }
1459 
1460 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1461                                         Value *Val) {
1462   Type *ValTy = Val->getType();
1463   if (ValTy == Ty)
1464     return Val;
1465   if (Ty->isLabelTy())
1466     error(Loc, "'" + Name + "' is not a basic block");
1467   else
1468     error(Loc, "'" + Name + "' defined with type '" +
1469                    getTypeString(Val->getType()) + "' but expected '" +
1470                    getTypeString(Ty) + "'");
1471   return nullptr;
1472 }
1473 
1474 /// getGlobalVal - Get a value with the specified name or ID, creating a
1475 /// forward reference record if needed.  This can return null if the value
1476 /// exists but does not have the right type.
1477 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1478                                     LocTy Loc) {
1479   PointerType *PTy = dyn_cast<PointerType>(Ty);
1480   if (!PTy) {
1481     error(Loc, "global variable reference must have pointer type");
1482     return nullptr;
1483   }
1484 
1485   // Look this name up in the normal function symbol table.
1486   GlobalValue *Val =
1487     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1488 
1489   // If this is a forward reference for the value, see if we already created a
1490   // forward ref record.
1491   if (!Val) {
1492     auto I = ForwardRefVals.find(Name);
1493     if (I != ForwardRefVals.end())
1494       Val = I->second.first;
1495   }
1496 
1497   // If we have the value in the symbol table or fwd-ref table, return it.
1498   if (Val)
1499     return cast_or_null<GlobalValue>(
1500         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1501 
1502   // Otherwise, create a new forward reference for this value and remember it.
1503   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1504   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1505   return FwdVal;
1506 }
1507 
1508 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1509   PointerType *PTy = dyn_cast<PointerType>(Ty);
1510   if (!PTy) {
1511     error(Loc, "global variable reference must have pointer type");
1512     return nullptr;
1513   }
1514 
1515   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1516 
1517   // If this is a forward reference for the value, see if we already created a
1518   // forward ref record.
1519   if (!Val) {
1520     auto I = ForwardRefValIDs.find(ID);
1521     if (I != ForwardRefValIDs.end())
1522       Val = I->second.first;
1523   }
1524 
1525   // If we have the value in the symbol table or fwd-ref table, return it.
1526   if (Val)
1527     return cast_or_null<GlobalValue>(
1528         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1529 
1530   // Otherwise, create a new forward reference for this value and remember it.
1531   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1532   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1533   return FwdVal;
1534 }
1535 
1536 //===----------------------------------------------------------------------===//
1537 // Comdat Reference/Resolution Routines.
1538 //===----------------------------------------------------------------------===//
1539 
1540 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1541   // Look this name up in the comdat symbol table.
1542   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1543   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1544   if (I != ComdatSymTab.end())
1545     return &I->second;
1546 
1547   // Otherwise, create a new forward reference for this value and remember it.
1548   Comdat *C = M->getOrInsertComdat(Name);
1549   ForwardRefComdats[Name] = Loc;
1550   return C;
1551 }
1552 
1553 //===----------------------------------------------------------------------===//
1554 // Helper Routines.
1555 //===----------------------------------------------------------------------===//
1556 
1557 /// parseToken - If the current token has the specified kind, eat it and return
1558 /// success.  Otherwise, emit the specified error and return failure.
1559 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1560   if (Lex.getKind() != T)
1561     return tokError(ErrMsg);
1562   Lex.Lex();
1563   return false;
1564 }
1565 
1566 /// parseStringConstant
1567 ///   ::= StringConstant
1568 bool LLParser::parseStringConstant(std::string &Result) {
1569   if (Lex.getKind() != lltok::StringConstant)
1570     return tokError("expected string constant");
1571   Result = Lex.getStrVal();
1572   Lex.Lex();
1573   return false;
1574 }
1575 
1576 /// parseUInt32
1577 ///   ::= uint32
1578 bool LLParser::parseUInt32(uint32_t &Val) {
1579   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1580     return tokError("expected integer");
1581   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1582   if (Val64 != unsigned(Val64))
1583     return tokError("expected 32-bit integer (too large)");
1584   Val = Val64;
1585   Lex.Lex();
1586   return false;
1587 }
1588 
1589 /// parseUInt64
1590 ///   ::= uint64
1591 bool LLParser::parseUInt64(uint64_t &Val) {
1592   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1593     return tokError("expected integer");
1594   Val = Lex.getAPSIntVal().getLimitedValue();
1595   Lex.Lex();
1596   return false;
1597 }
1598 
1599 /// parseTLSModel
1600 ///   := 'localdynamic'
1601 ///   := 'initialexec'
1602 ///   := 'localexec'
1603 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1604   switch (Lex.getKind()) {
1605     default:
1606       return tokError("expected localdynamic, initialexec or localexec");
1607     case lltok::kw_localdynamic:
1608       TLM = GlobalVariable::LocalDynamicTLSModel;
1609       break;
1610     case lltok::kw_initialexec:
1611       TLM = GlobalVariable::InitialExecTLSModel;
1612       break;
1613     case lltok::kw_localexec:
1614       TLM = GlobalVariable::LocalExecTLSModel;
1615       break;
1616   }
1617 
1618   Lex.Lex();
1619   return false;
1620 }
1621 
1622 /// parseOptionalThreadLocal
1623 ///   := /*empty*/
1624 ///   := 'thread_local'
1625 ///   := 'thread_local' '(' tlsmodel ')'
1626 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1627   TLM = GlobalVariable::NotThreadLocal;
1628   if (!EatIfPresent(lltok::kw_thread_local))
1629     return false;
1630 
1631   TLM = GlobalVariable::GeneralDynamicTLSModel;
1632   if (Lex.getKind() == lltok::lparen) {
1633     Lex.Lex();
1634     return parseTLSModel(TLM) ||
1635            parseToken(lltok::rparen, "expected ')' after thread local model");
1636   }
1637   return false;
1638 }
1639 
1640 /// parseOptionalAddrSpace
1641 ///   := /*empty*/
1642 ///   := 'addrspace' '(' uint32 ')'
1643 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1644   AddrSpace = DefaultAS;
1645   if (!EatIfPresent(lltok::kw_addrspace))
1646     return false;
1647   return parseToken(lltok::lparen, "expected '(' in address space") ||
1648          parseUInt32(AddrSpace) ||
1649          parseToken(lltok::rparen, "expected ')' in address space");
1650 }
1651 
1652 /// parseStringAttribute
1653 ///   := StringConstant
1654 ///   := StringConstant '=' StringConstant
1655 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1656   std::string Attr = Lex.getStrVal();
1657   Lex.Lex();
1658   std::string Val;
1659   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1660     return true;
1661   B.addAttribute(Attr, Val);
1662   return false;
1663 }
1664 
1665 /// Parse a potentially empty list of parameter or return attributes.
1666 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1667   bool HaveError = false;
1668 
1669   B.clear();
1670 
1671   while (true) {
1672     lltok::Kind Token = Lex.getKind();
1673     if (Token == lltok::StringConstant) {
1674       if (parseStringAttribute(B))
1675         return true;
1676       continue;
1677     }
1678 
1679     SMLoc Loc = Lex.getLoc();
1680     Attribute::AttrKind Attr = tokenToAttribute(Token);
1681     if (Attr == Attribute::None)
1682       return HaveError;
1683 
1684     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1685       return true;
1686 
1687     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1688       HaveError |= error(Loc, "this attribute does not apply to parameters");
1689     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1690       HaveError |= error(Loc, "this attribute does not apply to return values");
1691   }
1692 }
1693 
1694 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1695   HasLinkage = true;
1696   switch (Kind) {
1697   default:
1698     HasLinkage = false;
1699     return GlobalValue::ExternalLinkage;
1700   case lltok::kw_private:
1701     return GlobalValue::PrivateLinkage;
1702   case lltok::kw_internal:
1703     return GlobalValue::InternalLinkage;
1704   case lltok::kw_weak:
1705     return GlobalValue::WeakAnyLinkage;
1706   case lltok::kw_weak_odr:
1707     return GlobalValue::WeakODRLinkage;
1708   case lltok::kw_linkonce:
1709     return GlobalValue::LinkOnceAnyLinkage;
1710   case lltok::kw_linkonce_odr:
1711     return GlobalValue::LinkOnceODRLinkage;
1712   case lltok::kw_available_externally:
1713     return GlobalValue::AvailableExternallyLinkage;
1714   case lltok::kw_appending:
1715     return GlobalValue::AppendingLinkage;
1716   case lltok::kw_common:
1717     return GlobalValue::CommonLinkage;
1718   case lltok::kw_extern_weak:
1719     return GlobalValue::ExternalWeakLinkage;
1720   case lltok::kw_external:
1721     return GlobalValue::ExternalLinkage;
1722   }
1723 }
1724 
1725 /// parseOptionalLinkage
1726 ///   ::= /*empty*/
1727 ///   ::= 'private'
1728 ///   ::= 'internal'
1729 ///   ::= 'weak'
1730 ///   ::= 'weak_odr'
1731 ///   ::= 'linkonce'
1732 ///   ::= 'linkonce_odr'
1733 ///   ::= 'available_externally'
1734 ///   ::= 'appending'
1735 ///   ::= 'common'
1736 ///   ::= 'extern_weak'
1737 ///   ::= 'external'
1738 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1739                                     unsigned &Visibility,
1740                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1741   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1742   if (HasLinkage)
1743     Lex.Lex();
1744   parseOptionalDSOLocal(DSOLocal);
1745   parseOptionalVisibility(Visibility);
1746   parseOptionalDLLStorageClass(DLLStorageClass);
1747 
1748   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1749     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1750   }
1751 
1752   return false;
1753 }
1754 
1755 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1756   switch (Lex.getKind()) {
1757   default:
1758     DSOLocal = false;
1759     break;
1760   case lltok::kw_dso_local:
1761     DSOLocal = true;
1762     Lex.Lex();
1763     break;
1764   case lltok::kw_dso_preemptable:
1765     DSOLocal = false;
1766     Lex.Lex();
1767     break;
1768   }
1769 }
1770 
1771 /// parseOptionalVisibility
1772 ///   ::= /*empty*/
1773 ///   ::= 'default'
1774 ///   ::= 'hidden'
1775 ///   ::= 'protected'
1776 ///
1777 void LLParser::parseOptionalVisibility(unsigned &Res) {
1778   switch (Lex.getKind()) {
1779   default:
1780     Res = GlobalValue::DefaultVisibility;
1781     return;
1782   case lltok::kw_default:
1783     Res = GlobalValue::DefaultVisibility;
1784     break;
1785   case lltok::kw_hidden:
1786     Res = GlobalValue::HiddenVisibility;
1787     break;
1788   case lltok::kw_protected:
1789     Res = GlobalValue::ProtectedVisibility;
1790     break;
1791   }
1792   Lex.Lex();
1793 }
1794 
1795 /// parseOptionalDLLStorageClass
1796 ///   ::= /*empty*/
1797 ///   ::= 'dllimport'
1798 ///   ::= 'dllexport'
1799 ///
1800 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1801   switch (Lex.getKind()) {
1802   default:
1803     Res = GlobalValue::DefaultStorageClass;
1804     return;
1805   case lltok::kw_dllimport:
1806     Res = GlobalValue::DLLImportStorageClass;
1807     break;
1808   case lltok::kw_dllexport:
1809     Res = GlobalValue::DLLExportStorageClass;
1810     break;
1811   }
1812   Lex.Lex();
1813 }
1814 
1815 /// parseOptionalCallingConv
1816 ///   ::= /*empty*/
1817 ///   ::= 'ccc'
1818 ///   ::= 'fastcc'
1819 ///   ::= 'intel_ocl_bicc'
1820 ///   ::= 'coldcc'
1821 ///   ::= 'cfguard_checkcc'
1822 ///   ::= 'x86_stdcallcc'
1823 ///   ::= 'x86_fastcallcc'
1824 ///   ::= 'x86_thiscallcc'
1825 ///   ::= 'x86_vectorcallcc'
1826 ///   ::= 'arm_apcscc'
1827 ///   ::= 'arm_aapcscc'
1828 ///   ::= 'arm_aapcs_vfpcc'
1829 ///   ::= 'aarch64_vector_pcs'
1830 ///   ::= 'aarch64_sve_vector_pcs'
1831 ///   ::= 'msp430_intrcc'
1832 ///   ::= 'avr_intrcc'
1833 ///   ::= 'avr_signalcc'
1834 ///   ::= 'ptx_kernel'
1835 ///   ::= 'ptx_device'
1836 ///   ::= 'spir_func'
1837 ///   ::= 'spir_kernel'
1838 ///   ::= 'x86_64_sysvcc'
1839 ///   ::= 'win64cc'
1840 ///   ::= 'webkit_jscc'
1841 ///   ::= 'anyregcc'
1842 ///   ::= 'preserve_mostcc'
1843 ///   ::= 'preserve_allcc'
1844 ///   ::= 'ghccc'
1845 ///   ::= 'swiftcc'
1846 ///   ::= 'swifttailcc'
1847 ///   ::= 'x86_intrcc'
1848 ///   ::= 'hhvmcc'
1849 ///   ::= 'hhvm_ccc'
1850 ///   ::= 'cxx_fast_tlscc'
1851 ///   ::= 'amdgpu_vs'
1852 ///   ::= 'amdgpu_ls'
1853 ///   ::= 'amdgpu_hs'
1854 ///   ::= 'amdgpu_es'
1855 ///   ::= 'amdgpu_gs'
1856 ///   ::= 'amdgpu_ps'
1857 ///   ::= 'amdgpu_cs'
1858 ///   ::= 'amdgpu_kernel'
1859 ///   ::= 'tailcc'
1860 ///   ::= 'cc' UINT
1861 ///
1862 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1863   switch (Lex.getKind()) {
1864   default:                       CC = CallingConv::C; return false;
1865   case lltok::kw_ccc:            CC = CallingConv::C; break;
1866   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1867   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1868   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1869   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1870   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1871   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1872   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1873   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1874   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1875   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1876   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1877   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1878   case lltok::kw_aarch64_sve_vector_pcs:
1879     CC = CallingConv::AArch64_SVE_VectorCall;
1880     break;
1881   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1882   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1883   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1884   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1885   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1886   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1887   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1888   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1889   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1890   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1891   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1892   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1893   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1894   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1895   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1896   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1897   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1898   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1899   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1900   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1901   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1902   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1903   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1904   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1905   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1906   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1907   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1908   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1909   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1910   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1911   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1912   case lltok::kw_cc: {
1913       Lex.Lex();
1914       return parseUInt32(CC);
1915     }
1916   }
1917 
1918   Lex.Lex();
1919   return false;
1920 }
1921 
1922 /// parseMetadataAttachment
1923 ///   ::= !dbg !42
1924 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1925   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1926 
1927   std::string Name = Lex.getStrVal();
1928   Kind = M->getMDKindID(Name);
1929   Lex.Lex();
1930 
1931   return parseMDNode(MD);
1932 }
1933 
1934 /// parseInstructionMetadata
1935 ///   ::= !dbg !42 (',' !dbg !57)*
1936 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1937   do {
1938     if (Lex.getKind() != lltok::MetadataVar)
1939       return tokError("expected metadata after comma");
1940 
1941     unsigned MDK;
1942     MDNode *N;
1943     if (parseMetadataAttachment(MDK, N))
1944       return true;
1945 
1946     Inst.setMetadata(MDK, N);
1947     if (MDK == LLVMContext::MD_tbaa)
1948       InstsWithTBAATag.push_back(&Inst);
1949 
1950     // If this is the end of the list, we're done.
1951   } while (EatIfPresent(lltok::comma));
1952   return false;
1953 }
1954 
1955 /// parseGlobalObjectMetadataAttachment
1956 ///   ::= !dbg !57
1957 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1958   unsigned MDK;
1959   MDNode *N;
1960   if (parseMetadataAttachment(MDK, N))
1961     return true;
1962 
1963   GO.addMetadata(MDK, *N);
1964   return false;
1965 }
1966 
1967 /// parseOptionalFunctionMetadata
1968 ///   ::= (!dbg !57)*
1969 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1970   while (Lex.getKind() == lltok::MetadataVar)
1971     if (parseGlobalObjectMetadataAttachment(F))
1972       return true;
1973   return false;
1974 }
1975 
1976 /// parseOptionalAlignment
1977 ///   ::= /* empty */
1978 ///   ::= 'align' 4
1979 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1980   Alignment = None;
1981   if (!EatIfPresent(lltok::kw_align))
1982     return false;
1983   LocTy AlignLoc = Lex.getLoc();
1984   uint64_t Value = 0;
1985 
1986   LocTy ParenLoc = Lex.getLoc();
1987   bool HaveParens = false;
1988   if (AllowParens) {
1989     if (EatIfPresent(lltok::lparen))
1990       HaveParens = true;
1991   }
1992 
1993   if (parseUInt64(Value))
1994     return true;
1995 
1996   if (HaveParens && !EatIfPresent(lltok::rparen))
1997     return error(ParenLoc, "expected ')'");
1998 
1999   if (!isPowerOf2_64(Value))
2000     return error(AlignLoc, "alignment is not a power of two");
2001   if (Value > Value::MaximumAlignment)
2002     return error(AlignLoc, "huge alignments are not supported yet");
2003   Alignment = Align(Value);
2004   return false;
2005 }
2006 
2007 /// parseOptionalDerefAttrBytes
2008 ///   ::= /* empty */
2009 ///   ::= AttrKind '(' 4 ')'
2010 ///
2011 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2012 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2013                                            uint64_t &Bytes) {
2014   assert((AttrKind == lltok::kw_dereferenceable ||
2015           AttrKind == lltok::kw_dereferenceable_or_null) &&
2016          "contract!");
2017 
2018   Bytes = 0;
2019   if (!EatIfPresent(AttrKind))
2020     return false;
2021   LocTy ParenLoc = Lex.getLoc();
2022   if (!EatIfPresent(lltok::lparen))
2023     return error(ParenLoc, "expected '('");
2024   LocTy DerefLoc = Lex.getLoc();
2025   if (parseUInt64(Bytes))
2026     return true;
2027   ParenLoc = Lex.getLoc();
2028   if (!EatIfPresent(lltok::rparen))
2029     return error(ParenLoc, "expected ')'");
2030   if (!Bytes)
2031     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2032   return false;
2033 }
2034 
2035 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2036   Lex.Lex();
2037   Kind = UWTableKind::Default;
2038   if (!EatIfPresent(lltok::lparen))
2039     return false;
2040   LocTy KindLoc = Lex.getLoc();
2041   if (Lex.getKind() == lltok::kw_sync)
2042     Kind = UWTableKind::Sync;
2043   else if (Lex.getKind() == lltok::kw_async)
2044     Kind = UWTableKind::Async;
2045   else
2046     return error(KindLoc, "expected unwind table kind");
2047   Lex.Lex();
2048   return parseToken(lltok::rparen, "expected ')'");
2049 }
2050 
2051 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2052   Lex.Lex();
2053   LocTy ParenLoc = Lex.getLoc();
2054   if (!EatIfPresent(lltok::lparen))
2055     return error(ParenLoc, "expected '('");
2056   LocTy KindLoc = Lex.getLoc();
2057   std::string Arg;
2058   if (parseStringConstant(Arg))
2059     return error(KindLoc, "expected allockind value");
2060   for (StringRef A : llvm::split(Arg, ",")) {
2061     if (A == "alloc") {
2062       Kind |= AllocFnKind::Alloc;
2063     } else if (A == "realloc") {
2064       Kind |= AllocFnKind::Realloc;
2065     } else if (A == "free") {
2066       Kind |= AllocFnKind::Free;
2067     } else if (A == "uninitialized") {
2068       Kind |= AllocFnKind::Uninitialized;
2069     } else if (A == "zeroed") {
2070       Kind |= AllocFnKind::Zeroed;
2071     } else if (A == "aligned") {
2072       Kind |= AllocFnKind::Aligned;
2073     } else {
2074       return error(KindLoc, Twine("unknown allockind ") + A);
2075     }
2076   }
2077   ParenLoc = Lex.getLoc();
2078   if (!EatIfPresent(lltok::rparen))
2079     return error(ParenLoc, "expected ')'");
2080   if (Kind == AllocFnKind::Unknown)
2081     return error(KindLoc, "expected allockind value");
2082   return false;
2083 }
2084 
2085 /// parseOptionalCommaAlign
2086 ///   ::=
2087 ///   ::= ',' align 4
2088 ///
2089 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2090 /// end.
2091 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2092                                        bool &AteExtraComma) {
2093   AteExtraComma = false;
2094   while (EatIfPresent(lltok::comma)) {
2095     // Metadata at the end is an early exit.
2096     if (Lex.getKind() == lltok::MetadataVar) {
2097       AteExtraComma = true;
2098       return false;
2099     }
2100 
2101     if (Lex.getKind() != lltok::kw_align)
2102       return error(Lex.getLoc(), "expected metadata or 'align'");
2103 
2104     if (parseOptionalAlignment(Alignment))
2105       return true;
2106   }
2107 
2108   return false;
2109 }
2110 
2111 /// parseOptionalCommaAddrSpace
2112 ///   ::=
2113 ///   ::= ',' addrspace(1)
2114 ///
2115 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2116 /// end.
2117 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2118                                            bool &AteExtraComma) {
2119   AteExtraComma = false;
2120   while (EatIfPresent(lltok::comma)) {
2121     // Metadata at the end is an early exit.
2122     if (Lex.getKind() == lltok::MetadataVar) {
2123       AteExtraComma = true;
2124       return false;
2125     }
2126 
2127     Loc = Lex.getLoc();
2128     if (Lex.getKind() != lltok::kw_addrspace)
2129       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2130 
2131     if (parseOptionalAddrSpace(AddrSpace))
2132       return true;
2133   }
2134 
2135   return false;
2136 }
2137 
2138 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2139                                        Optional<unsigned> &HowManyArg) {
2140   Lex.Lex();
2141 
2142   auto StartParen = Lex.getLoc();
2143   if (!EatIfPresent(lltok::lparen))
2144     return error(StartParen, "expected '('");
2145 
2146   if (parseUInt32(BaseSizeArg))
2147     return true;
2148 
2149   if (EatIfPresent(lltok::comma)) {
2150     auto HowManyAt = Lex.getLoc();
2151     unsigned HowMany;
2152     if (parseUInt32(HowMany))
2153       return true;
2154     if (HowMany == BaseSizeArg)
2155       return error(HowManyAt,
2156                    "'allocsize' indices can't refer to the same parameter");
2157     HowManyArg = HowMany;
2158   } else
2159     HowManyArg = None;
2160 
2161   auto EndParen = Lex.getLoc();
2162   if (!EatIfPresent(lltok::rparen))
2163     return error(EndParen, "expected ')'");
2164   return false;
2165 }
2166 
2167 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2168                                          unsigned &MaxValue) {
2169   Lex.Lex();
2170 
2171   auto StartParen = Lex.getLoc();
2172   if (!EatIfPresent(lltok::lparen))
2173     return error(StartParen, "expected '('");
2174 
2175   if (parseUInt32(MinValue))
2176     return true;
2177 
2178   if (EatIfPresent(lltok::comma)) {
2179     if (parseUInt32(MaxValue))
2180       return true;
2181   } else
2182     MaxValue = MinValue;
2183 
2184   auto EndParen = Lex.getLoc();
2185   if (!EatIfPresent(lltok::rparen))
2186     return error(EndParen, "expected ')'");
2187   return false;
2188 }
2189 
2190 /// parseScopeAndOrdering
2191 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2192 ///   else: ::=
2193 ///
2194 /// This sets Scope and Ordering to the parsed values.
2195 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2196                                      AtomicOrdering &Ordering) {
2197   if (!IsAtomic)
2198     return false;
2199 
2200   return parseScope(SSID) || parseOrdering(Ordering);
2201 }
2202 
2203 /// parseScope
2204 ///   ::= syncscope("singlethread" | "<target scope>")?
2205 ///
2206 /// This sets synchronization scope ID to the ID of the parsed value.
2207 bool LLParser::parseScope(SyncScope::ID &SSID) {
2208   SSID = SyncScope::System;
2209   if (EatIfPresent(lltok::kw_syncscope)) {
2210     auto StartParenAt = Lex.getLoc();
2211     if (!EatIfPresent(lltok::lparen))
2212       return error(StartParenAt, "Expected '(' in syncscope");
2213 
2214     std::string SSN;
2215     auto SSNAt = Lex.getLoc();
2216     if (parseStringConstant(SSN))
2217       return error(SSNAt, "Expected synchronization scope name");
2218 
2219     auto EndParenAt = Lex.getLoc();
2220     if (!EatIfPresent(lltok::rparen))
2221       return error(EndParenAt, "Expected ')' in syncscope");
2222 
2223     SSID = Context.getOrInsertSyncScopeID(SSN);
2224   }
2225 
2226   return false;
2227 }
2228 
2229 /// parseOrdering
2230 ///   ::= AtomicOrdering
2231 ///
2232 /// This sets Ordering to the parsed value.
2233 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2234   switch (Lex.getKind()) {
2235   default:
2236     return tokError("Expected ordering on atomic instruction");
2237   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2238   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2239   // Not specified yet:
2240   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2241   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2242   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2243   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2244   case lltok::kw_seq_cst:
2245     Ordering = AtomicOrdering::SequentiallyConsistent;
2246     break;
2247   }
2248   Lex.Lex();
2249   return false;
2250 }
2251 
2252 /// parseOptionalStackAlignment
2253 ///   ::= /* empty */
2254 ///   ::= 'alignstack' '(' 4 ')'
2255 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2256   Alignment = 0;
2257   if (!EatIfPresent(lltok::kw_alignstack))
2258     return false;
2259   LocTy ParenLoc = Lex.getLoc();
2260   if (!EatIfPresent(lltok::lparen))
2261     return error(ParenLoc, "expected '('");
2262   LocTy AlignLoc = Lex.getLoc();
2263   if (parseUInt32(Alignment))
2264     return true;
2265   ParenLoc = Lex.getLoc();
2266   if (!EatIfPresent(lltok::rparen))
2267     return error(ParenLoc, "expected ')'");
2268   if (!isPowerOf2_32(Alignment))
2269     return error(AlignLoc, "stack alignment is not a power of two");
2270   return false;
2271 }
2272 
2273 /// parseIndexList - This parses the index list for an insert/extractvalue
2274 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2275 /// comma at the end of the line and find that it is followed by metadata.
2276 /// Clients that don't allow metadata can call the version of this function that
2277 /// only takes one argument.
2278 ///
2279 /// parseIndexList
2280 ///    ::=  (',' uint32)+
2281 ///
2282 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2283                               bool &AteExtraComma) {
2284   AteExtraComma = false;
2285 
2286   if (Lex.getKind() != lltok::comma)
2287     return tokError("expected ',' as start of index list");
2288 
2289   while (EatIfPresent(lltok::comma)) {
2290     if (Lex.getKind() == lltok::MetadataVar) {
2291       if (Indices.empty())
2292         return tokError("expected index");
2293       AteExtraComma = true;
2294       return false;
2295     }
2296     unsigned Idx = 0;
2297     if (parseUInt32(Idx))
2298       return true;
2299     Indices.push_back(Idx);
2300   }
2301 
2302   return false;
2303 }
2304 
2305 //===----------------------------------------------------------------------===//
2306 // Type Parsing.
2307 //===----------------------------------------------------------------------===//
2308 
2309 /// parseType - parse a type.
2310 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2311   SMLoc TypeLoc = Lex.getLoc();
2312   switch (Lex.getKind()) {
2313   default:
2314     return tokError(Msg);
2315   case lltok::Type:
2316     // Type ::= 'float' | 'void' (etc)
2317     Result = Lex.getTyVal();
2318     Lex.Lex();
2319 
2320     // Handle "ptr" opaque pointer type.
2321     //
2322     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2323     if (Result->isOpaquePointerTy()) {
2324       unsigned AddrSpace;
2325       if (parseOptionalAddrSpace(AddrSpace))
2326         return true;
2327       Result = PointerType::get(getContext(), AddrSpace);
2328 
2329       // Give a nice error for 'ptr*'.
2330       if (Lex.getKind() == lltok::star)
2331         return tokError("ptr* is invalid - use ptr instead");
2332 
2333       // Fall through to parsing the type suffixes only if this 'ptr' is a
2334       // function return. Otherwise, return success, implicitly rejecting other
2335       // suffixes.
2336       if (Lex.getKind() != lltok::lparen)
2337         return false;
2338     }
2339     break;
2340   case lltok::lbrace:
2341     // Type ::= StructType
2342     if (parseAnonStructType(Result, false))
2343       return true;
2344     break;
2345   case lltok::lsquare:
2346     // Type ::= '[' ... ']'
2347     Lex.Lex(); // eat the lsquare.
2348     if (parseArrayVectorType(Result, false))
2349       return true;
2350     break;
2351   case lltok::less: // Either vector or packed struct.
2352     // Type ::= '<' ... '>'
2353     Lex.Lex();
2354     if (Lex.getKind() == lltok::lbrace) {
2355       if (parseAnonStructType(Result, true) ||
2356           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2357         return true;
2358     } else if (parseArrayVectorType(Result, true))
2359       return true;
2360     break;
2361   case lltok::LocalVar: {
2362     // Type ::= %foo
2363     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2364 
2365     // If the type hasn't been defined yet, create a forward definition and
2366     // remember where that forward def'n was seen (in case it never is defined).
2367     if (!Entry.first) {
2368       Entry.first = StructType::create(Context, Lex.getStrVal());
2369       Entry.second = Lex.getLoc();
2370     }
2371     Result = Entry.first;
2372     Lex.Lex();
2373     break;
2374   }
2375 
2376   case lltok::LocalVarID: {
2377     // Type ::= %4
2378     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2379 
2380     // If the type hasn't been defined yet, create a forward definition and
2381     // remember where that forward def'n was seen (in case it never is defined).
2382     if (!Entry.first) {
2383       Entry.first = StructType::create(Context);
2384       Entry.second = Lex.getLoc();
2385     }
2386     Result = Entry.first;
2387     Lex.Lex();
2388     break;
2389   }
2390   }
2391 
2392   // parse the type suffixes.
2393   while (true) {
2394     switch (Lex.getKind()) {
2395     // End of type.
2396     default:
2397       if (!AllowVoid && Result->isVoidTy())
2398         return error(TypeLoc, "void type only allowed for function results");
2399       return false;
2400 
2401     // Type ::= Type '*'
2402     case lltok::star:
2403       if (Result->isLabelTy())
2404         return tokError("basic block pointers are invalid");
2405       if (Result->isVoidTy())
2406         return tokError("pointers to void are invalid - use i8* instead");
2407       if (!PointerType::isValidElementType(Result))
2408         return tokError("pointer to this type is invalid");
2409       Result = PointerType::getUnqual(Result);
2410       Lex.Lex();
2411       break;
2412 
2413     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2414     case lltok::kw_addrspace: {
2415       if (Result->isLabelTy())
2416         return tokError("basic block pointers are invalid");
2417       if (Result->isVoidTy())
2418         return tokError("pointers to void are invalid; use i8* instead");
2419       if (!PointerType::isValidElementType(Result))
2420         return tokError("pointer to this type is invalid");
2421       unsigned AddrSpace;
2422       if (parseOptionalAddrSpace(AddrSpace) ||
2423           parseToken(lltok::star, "expected '*' in address space"))
2424         return true;
2425 
2426       Result = PointerType::get(Result, AddrSpace);
2427       break;
2428     }
2429 
2430     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2431     case lltok::lparen:
2432       if (parseFunctionType(Result))
2433         return true;
2434       break;
2435     }
2436   }
2437 }
2438 
2439 /// parseParameterList
2440 ///    ::= '(' ')'
2441 ///    ::= '(' Arg (',' Arg)* ')'
2442 ///  Arg
2443 ///    ::= Type OptionalAttributes Value OptionalAttributes
2444 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2445                                   PerFunctionState &PFS, bool IsMustTailCall,
2446                                   bool InVarArgsFunc) {
2447   if (parseToken(lltok::lparen, "expected '(' in call"))
2448     return true;
2449 
2450   while (Lex.getKind() != lltok::rparen) {
2451     // If this isn't the first argument, we need a comma.
2452     if (!ArgList.empty() &&
2453         parseToken(lltok::comma, "expected ',' in argument list"))
2454       return true;
2455 
2456     // parse an ellipsis if this is a musttail call in a variadic function.
2457     if (Lex.getKind() == lltok::dotdotdot) {
2458       const char *Msg = "unexpected ellipsis in argument list for ";
2459       if (!IsMustTailCall)
2460         return tokError(Twine(Msg) + "non-musttail call");
2461       if (!InVarArgsFunc)
2462         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2463       Lex.Lex();  // Lex the '...', it is purely for readability.
2464       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2465     }
2466 
2467     // parse the argument.
2468     LocTy ArgLoc;
2469     Type *ArgTy = nullptr;
2470     Value *V;
2471     if (parseType(ArgTy, ArgLoc))
2472       return true;
2473 
2474     AttrBuilder ArgAttrs(M->getContext());
2475 
2476     if (ArgTy->isMetadataTy()) {
2477       if (parseMetadataAsValue(V, PFS))
2478         return true;
2479     } else {
2480       // Otherwise, handle normal operands.
2481       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2482         return true;
2483     }
2484     ArgList.push_back(ParamInfo(
2485         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2486   }
2487 
2488   if (IsMustTailCall && InVarArgsFunc)
2489     return tokError("expected '...' at end of argument list for musttail call "
2490                     "in varargs function");
2491 
2492   Lex.Lex();  // Lex the ')'.
2493   return false;
2494 }
2495 
2496 /// parseRequiredTypeAttr
2497 ///   ::= attrname(<ty>)
2498 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2499                                      Attribute::AttrKind AttrKind) {
2500   Type *Ty = nullptr;
2501   if (!EatIfPresent(AttrToken))
2502     return true;
2503   if (!EatIfPresent(lltok::lparen))
2504     return error(Lex.getLoc(), "expected '('");
2505   if (parseType(Ty))
2506     return true;
2507   if (!EatIfPresent(lltok::rparen))
2508     return error(Lex.getLoc(), "expected ')'");
2509 
2510   B.addTypeAttr(AttrKind, Ty);
2511   return false;
2512 }
2513 
2514 /// parseOptionalOperandBundles
2515 ///    ::= /*empty*/
2516 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2517 ///
2518 /// OperandBundle
2519 ///    ::= bundle-tag '(' ')'
2520 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2521 ///
2522 /// bundle-tag ::= String Constant
2523 bool LLParser::parseOptionalOperandBundles(
2524     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2525   LocTy BeginLoc = Lex.getLoc();
2526   if (!EatIfPresent(lltok::lsquare))
2527     return false;
2528 
2529   while (Lex.getKind() != lltok::rsquare) {
2530     // If this isn't the first operand bundle, we need a comma.
2531     if (!BundleList.empty() &&
2532         parseToken(lltok::comma, "expected ',' in input list"))
2533       return true;
2534 
2535     std::string Tag;
2536     if (parseStringConstant(Tag))
2537       return true;
2538 
2539     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2540       return true;
2541 
2542     std::vector<Value *> Inputs;
2543     while (Lex.getKind() != lltok::rparen) {
2544       // If this isn't the first input, we need a comma.
2545       if (!Inputs.empty() &&
2546           parseToken(lltok::comma, "expected ',' in input list"))
2547         return true;
2548 
2549       Type *Ty = nullptr;
2550       Value *Input = nullptr;
2551       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2552         return true;
2553       Inputs.push_back(Input);
2554     }
2555 
2556     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2557 
2558     Lex.Lex(); // Lex the ')'.
2559   }
2560 
2561   if (BundleList.empty())
2562     return error(BeginLoc, "operand bundle set must not be empty");
2563 
2564   Lex.Lex(); // Lex the ']'.
2565   return false;
2566 }
2567 
2568 /// parseArgumentList - parse the argument list for a function type or function
2569 /// prototype.
2570 ///   ::= '(' ArgTypeListI ')'
2571 /// ArgTypeListI
2572 ///   ::= /*empty*/
2573 ///   ::= '...'
2574 ///   ::= ArgTypeList ',' '...'
2575 ///   ::= ArgType (',' ArgType)*
2576 ///
2577 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2578                                  bool &IsVarArg) {
2579   unsigned CurValID = 0;
2580   IsVarArg = false;
2581   assert(Lex.getKind() == lltok::lparen);
2582   Lex.Lex(); // eat the (.
2583 
2584   if (Lex.getKind() == lltok::rparen) {
2585     // empty
2586   } else if (Lex.getKind() == lltok::dotdotdot) {
2587     IsVarArg = true;
2588     Lex.Lex();
2589   } else {
2590     LocTy TypeLoc = Lex.getLoc();
2591     Type *ArgTy = nullptr;
2592     AttrBuilder Attrs(M->getContext());
2593     std::string Name;
2594 
2595     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2596       return true;
2597 
2598     if (ArgTy->isVoidTy())
2599       return error(TypeLoc, "argument can not have void type");
2600 
2601     if (Lex.getKind() == lltok::LocalVar) {
2602       Name = Lex.getStrVal();
2603       Lex.Lex();
2604     } else if (Lex.getKind() == lltok::LocalVarID) {
2605       if (Lex.getUIntVal() != CurValID)
2606         return error(TypeLoc, "argument expected to be numbered '%" +
2607                                   Twine(CurValID) + "'");
2608       ++CurValID;
2609       Lex.Lex();
2610     }
2611 
2612     if (!FunctionType::isValidArgumentType(ArgTy))
2613       return error(TypeLoc, "invalid type for function argument");
2614 
2615     ArgList.emplace_back(TypeLoc, ArgTy,
2616                          AttributeSet::get(ArgTy->getContext(), Attrs),
2617                          std::move(Name));
2618 
2619     while (EatIfPresent(lltok::comma)) {
2620       // Handle ... at end of arg list.
2621       if (EatIfPresent(lltok::dotdotdot)) {
2622         IsVarArg = true;
2623         break;
2624       }
2625 
2626       // Otherwise must be an argument type.
2627       TypeLoc = Lex.getLoc();
2628       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2629         return true;
2630 
2631       if (ArgTy->isVoidTy())
2632         return error(TypeLoc, "argument can not have void type");
2633 
2634       if (Lex.getKind() == lltok::LocalVar) {
2635         Name = Lex.getStrVal();
2636         Lex.Lex();
2637       } else {
2638         if (Lex.getKind() == lltok::LocalVarID) {
2639           if (Lex.getUIntVal() != CurValID)
2640             return error(TypeLoc, "argument expected to be numbered '%" +
2641                                       Twine(CurValID) + "'");
2642           Lex.Lex();
2643         }
2644         ++CurValID;
2645         Name = "";
2646       }
2647 
2648       if (!ArgTy->isFirstClassType())
2649         return error(TypeLoc, "invalid type for function argument");
2650 
2651       ArgList.emplace_back(TypeLoc, ArgTy,
2652                            AttributeSet::get(ArgTy->getContext(), Attrs),
2653                            std::move(Name));
2654     }
2655   }
2656 
2657   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2658 }
2659 
2660 /// parseFunctionType
2661 ///  ::= Type ArgumentList OptionalAttrs
2662 bool LLParser::parseFunctionType(Type *&Result) {
2663   assert(Lex.getKind() == lltok::lparen);
2664 
2665   if (!FunctionType::isValidReturnType(Result))
2666     return tokError("invalid function return type");
2667 
2668   SmallVector<ArgInfo, 8> ArgList;
2669   bool IsVarArg;
2670   if (parseArgumentList(ArgList, IsVarArg))
2671     return true;
2672 
2673   // Reject names on the arguments lists.
2674   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2675     if (!ArgList[i].Name.empty())
2676       return error(ArgList[i].Loc, "argument name invalid in function type");
2677     if (ArgList[i].Attrs.hasAttributes())
2678       return error(ArgList[i].Loc,
2679                    "argument attributes invalid in function type");
2680   }
2681 
2682   SmallVector<Type*, 16> ArgListTy;
2683   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2684     ArgListTy.push_back(ArgList[i].Ty);
2685 
2686   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2687   return false;
2688 }
2689 
2690 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2691 /// other structs.
2692 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2693   SmallVector<Type*, 8> Elts;
2694   if (parseStructBody(Elts))
2695     return true;
2696 
2697   Result = StructType::get(Context, Elts, Packed);
2698   return false;
2699 }
2700 
2701 /// parseStructDefinition - parse a struct in a 'type' definition.
2702 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2703                                      std::pair<Type *, LocTy> &Entry,
2704                                      Type *&ResultTy) {
2705   // If the type was already defined, diagnose the redefinition.
2706   if (Entry.first && !Entry.second.isValid())
2707     return error(TypeLoc, "redefinition of type");
2708 
2709   // If we have opaque, just return without filling in the definition for the
2710   // struct.  This counts as a definition as far as the .ll file goes.
2711   if (EatIfPresent(lltok::kw_opaque)) {
2712     // This type is being defined, so clear the location to indicate this.
2713     Entry.second = SMLoc();
2714 
2715     // If this type number has never been uttered, create it.
2716     if (!Entry.first)
2717       Entry.first = StructType::create(Context, Name);
2718     ResultTy = Entry.first;
2719     return false;
2720   }
2721 
2722   // If the type starts with '<', then it is either a packed struct or a vector.
2723   bool isPacked = EatIfPresent(lltok::less);
2724 
2725   // If we don't have a struct, then we have a random type alias, which we
2726   // accept for compatibility with old files.  These types are not allowed to be
2727   // forward referenced and not allowed to be recursive.
2728   if (Lex.getKind() != lltok::lbrace) {
2729     if (Entry.first)
2730       return error(TypeLoc, "forward references to non-struct type");
2731 
2732     ResultTy = nullptr;
2733     if (isPacked)
2734       return parseArrayVectorType(ResultTy, true);
2735     return parseType(ResultTy);
2736   }
2737 
2738   // This type is being defined, so clear the location to indicate this.
2739   Entry.second = SMLoc();
2740 
2741   // If this type number has never been uttered, create it.
2742   if (!Entry.first)
2743     Entry.first = StructType::create(Context, Name);
2744 
2745   StructType *STy = cast<StructType>(Entry.first);
2746 
2747   SmallVector<Type*, 8> Body;
2748   if (parseStructBody(Body) ||
2749       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2750     return true;
2751 
2752   STy->setBody(Body, isPacked);
2753   ResultTy = STy;
2754   return false;
2755 }
2756 
2757 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2758 ///   StructType
2759 ///     ::= '{' '}'
2760 ///     ::= '{' Type (',' Type)* '}'
2761 ///     ::= '<' '{' '}' '>'
2762 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2763 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2764   assert(Lex.getKind() == lltok::lbrace);
2765   Lex.Lex(); // Consume the '{'
2766 
2767   // Handle the empty struct.
2768   if (EatIfPresent(lltok::rbrace))
2769     return false;
2770 
2771   LocTy EltTyLoc = Lex.getLoc();
2772   Type *Ty = nullptr;
2773   if (parseType(Ty))
2774     return true;
2775   Body.push_back(Ty);
2776 
2777   if (!StructType::isValidElementType(Ty))
2778     return error(EltTyLoc, "invalid element type for struct");
2779 
2780   while (EatIfPresent(lltok::comma)) {
2781     EltTyLoc = Lex.getLoc();
2782     if (parseType(Ty))
2783       return true;
2784 
2785     if (!StructType::isValidElementType(Ty))
2786       return error(EltTyLoc, "invalid element type for struct");
2787 
2788     Body.push_back(Ty);
2789   }
2790 
2791   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2792 }
2793 
2794 /// parseArrayVectorType - parse an array or vector type, assuming the first
2795 /// token has already been consumed.
2796 ///   Type
2797 ///     ::= '[' APSINTVAL 'x' Types ']'
2798 ///     ::= '<' APSINTVAL 'x' Types '>'
2799 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2800 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2801   bool Scalable = false;
2802 
2803   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2804     Lex.Lex(); // consume the 'vscale'
2805     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2806       return true;
2807 
2808     Scalable = true;
2809   }
2810 
2811   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2812       Lex.getAPSIntVal().getBitWidth() > 64)
2813     return tokError("expected number in address space");
2814 
2815   LocTy SizeLoc = Lex.getLoc();
2816   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2817   Lex.Lex();
2818 
2819   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2820     return true;
2821 
2822   LocTy TypeLoc = Lex.getLoc();
2823   Type *EltTy = nullptr;
2824   if (parseType(EltTy))
2825     return true;
2826 
2827   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2828                  "expected end of sequential type"))
2829     return true;
2830 
2831   if (IsVector) {
2832     if (Size == 0)
2833       return error(SizeLoc, "zero element vector is illegal");
2834     if ((unsigned)Size != Size)
2835       return error(SizeLoc, "size too large for vector");
2836     if (!VectorType::isValidElementType(EltTy))
2837       return error(TypeLoc, "invalid vector element type");
2838     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2839   } else {
2840     if (!ArrayType::isValidElementType(EltTy))
2841       return error(TypeLoc, "invalid array element type");
2842     Result = ArrayType::get(EltTy, Size);
2843   }
2844   return false;
2845 }
2846 
2847 //===----------------------------------------------------------------------===//
2848 // Function Semantic Analysis.
2849 //===----------------------------------------------------------------------===//
2850 
2851 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2852                                              int functionNumber)
2853   : P(p), F(f), FunctionNumber(functionNumber) {
2854 
2855   // Insert unnamed arguments into the NumberedVals list.
2856   for (Argument &A : F.args())
2857     if (!A.hasName())
2858       NumberedVals.push_back(&A);
2859 }
2860 
2861 LLParser::PerFunctionState::~PerFunctionState() {
2862   // If there were any forward referenced non-basicblock values, delete them.
2863 
2864   for (const auto &P : ForwardRefVals) {
2865     if (isa<BasicBlock>(P.second.first))
2866       continue;
2867     P.second.first->replaceAllUsesWith(
2868         UndefValue::get(P.second.first->getType()));
2869     P.second.first->deleteValue();
2870   }
2871 
2872   for (const auto &P : ForwardRefValIDs) {
2873     if (isa<BasicBlock>(P.second.first))
2874       continue;
2875     P.second.first->replaceAllUsesWith(
2876         UndefValue::get(P.second.first->getType()));
2877     P.second.first->deleteValue();
2878   }
2879 }
2880 
2881 bool LLParser::PerFunctionState::finishFunction() {
2882   if (!ForwardRefVals.empty())
2883     return P.error(ForwardRefVals.begin()->second.second,
2884                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2885                        "'");
2886   if (!ForwardRefValIDs.empty())
2887     return P.error(ForwardRefValIDs.begin()->second.second,
2888                    "use of undefined value '%" +
2889                        Twine(ForwardRefValIDs.begin()->first) + "'");
2890   return false;
2891 }
2892 
2893 /// getVal - Get a value with the specified name or ID, creating a
2894 /// forward reference record if needed.  This can return null if the value
2895 /// exists but does not have the right type.
2896 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2897                                           LocTy Loc) {
2898   // Look this name up in the normal function symbol table.
2899   Value *Val = F.getValueSymbolTable()->lookup(Name);
2900 
2901   // If this is a forward reference for the value, see if we already created a
2902   // forward ref record.
2903   if (!Val) {
2904     auto I = ForwardRefVals.find(Name);
2905     if (I != ForwardRefVals.end())
2906       Val = I->second.first;
2907   }
2908 
2909   // If we have the value in the symbol table or fwd-ref table, return it.
2910   if (Val)
2911     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2912 
2913   // Don't make placeholders with invalid type.
2914   if (!Ty->isFirstClassType()) {
2915     P.error(Loc, "invalid use of a non-first-class type");
2916     return nullptr;
2917   }
2918 
2919   // Otherwise, create a new forward reference for this value and remember it.
2920   Value *FwdVal;
2921   if (Ty->isLabelTy()) {
2922     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2923   } else {
2924     FwdVal = new Argument(Ty, Name);
2925   }
2926 
2927   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2928   return FwdVal;
2929 }
2930 
2931 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2932   // Look this name up in the normal function symbol table.
2933   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2934 
2935   // If this is a forward reference for the value, see if we already created a
2936   // forward ref record.
2937   if (!Val) {
2938     auto I = ForwardRefValIDs.find(ID);
2939     if (I != ForwardRefValIDs.end())
2940       Val = I->second.first;
2941   }
2942 
2943   // If we have the value in the symbol table or fwd-ref table, return it.
2944   if (Val)
2945     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2946 
2947   if (!Ty->isFirstClassType()) {
2948     P.error(Loc, "invalid use of a non-first-class type");
2949     return nullptr;
2950   }
2951 
2952   // Otherwise, create a new forward reference for this value and remember it.
2953   Value *FwdVal;
2954   if (Ty->isLabelTy()) {
2955     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2956   } else {
2957     FwdVal = new Argument(Ty);
2958   }
2959 
2960   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2961   return FwdVal;
2962 }
2963 
2964 /// setInstName - After an instruction is parsed and inserted into its
2965 /// basic block, this installs its name.
2966 bool LLParser::PerFunctionState::setInstName(int NameID,
2967                                              const std::string &NameStr,
2968                                              LocTy NameLoc, Instruction *Inst) {
2969   // If this instruction has void type, it cannot have a name or ID specified.
2970   if (Inst->getType()->isVoidTy()) {
2971     if (NameID != -1 || !NameStr.empty())
2972       return P.error(NameLoc, "instructions returning void cannot have a name");
2973     return false;
2974   }
2975 
2976   // If this was a numbered instruction, verify that the instruction is the
2977   // expected value and resolve any forward references.
2978   if (NameStr.empty()) {
2979     // If neither a name nor an ID was specified, just use the next ID.
2980     if (NameID == -1)
2981       NameID = NumberedVals.size();
2982 
2983     if (unsigned(NameID) != NumberedVals.size())
2984       return P.error(NameLoc, "instruction expected to be numbered '%" +
2985                                   Twine(NumberedVals.size()) + "'");
2986 
2987     auto FI = ForwardRefValIDs.find(NameID);
2988     if (FI != ForwardRefValIDs.end()) {
2989       Value *Sentinel = FI->second.first;
2990       if (Sentinel->getType() != Inst->getType())
2991         return P.error(NameLoc, "instruction forward referenced with type '" +
2992                                     getTypeString(FI->second.first->getType()) +
2993                                     "'");
2994 
2995       Sentinel->replaceAllUsesWith(Inst);
2996       Sentinel->deleteValue();
2997       ForwardRefValIDs.erase(FI);
2998     }
2999 
3000     NumberedVals.push_back(Inst);
3001     return false;
3002   }
3003 
3004   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3005   auto FI = ForwardRefVals.find(NameStr);
3006   if (FI != ForwardRefVals.end()) {
3007     Value *Sentinel = FI->second.first;
3008     if (Sentinel->getType() != Inst->getType())
3009       return P.error(NameLoc, "instruction forward referenced with type '" +
3010                                   getTypeString(FI->second.first->getType()) +
3011                                   "'");
3012 
3013     Sentinel->replaceAllUsesWith(Inst);
3014     Sentinel->deleteValue();
3015     ForwardRefVals.erase(FI);
3016   }
3017 
3018   // Set the name on the instruction.
3019   Inst->setName(NameStr);
3020 
3021   if (Inst->getName() != NameStr)
3022     return P.error(NameLoc, "multiple definition of local value named '" +
3023                                 NameStr + "'");
3024   return false;
3025 }
3026 
3027 /// getBB - Get a basic block with the specified name or ID, creating a
3028 /// forward reference record if needed.
3029 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3030                                               LocTy Loc) {
3031   return dyn_cast_or_null<BasicBlock>(
3032       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3033 }
3034 
3035 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3036   return dyn_cast_or_null<BasicBlock>(
3037       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3038 }
3039 
3040 /// defineBB - Define the specified basic block, which is either named or
3041 /// unnamed.  If there is an error, this returns null otherwise it returns
3042 /// the block being defined.
3043 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3044                                                  int NameID, LocTy Loc) {
3045   BasicBlock *BB;
3046   if (Name.empty()) {
3047     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3048       P.error(Loc, "label expected to be numbered '" +
3049                        Twine(NumberedVals.size()) + "'");
3050       return nullptr;
3051     }
3052     BB = getBB(NumberedVals.size(), Loc);
3053     if (!BB) {
3054       P.error(Loc, "unable to create block numbered '" +
3055                        Twine(NumberedVals.size()) + "'");
3056       return nullptr;
3057     }
3058   } else {
3059     BB = getBB(Name, Loc);
3060     if (!BB) {
3061       P.error(Loc, "unable to create block named '" + Name + "'");
3062       return nullptr;
3063     }
3064   }
3065 
3066   // Move the block to the end of the function.  Forward ref'd blocks are
3067   // inserted wherever they happen to be referenced.
3068   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3069 
3070   // Remove the block from forward ref sets.
3071   if (Name.empty()) {
3072     ForwardRefValIDs.erase(NumberedVals.size());
3073     NumberedVals.push_back(BB);
3074   } else {
3075     // BB forward references are already in the function symbol table.
3076     ForwardRefVals.erase(Name);
3077   }
3078 
3079   return BB;
3080 }
3081 
3082 //===----------------------------------------------------------------------===//
3083 // Constants.
3084 //===----------------------------------------------------------------------===//
3085 
3086 /// parseValID - parse an abstract value that doesn't necessarily have a
3087 /// type implied.  For example, if we parse "4" we don't know what integer type
3088 /// it has.  The value will later be combined with its type and checked for
3089 /// basic correctness.  PFS is used to convert function-local operands of
3090 /// metadata (since metadata operands are not just parsed here but also
3091 /// converted to values). PFS can be null when we are not parsing metadata
3092 /// values inside a function.
3093 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3094   ID.Loc = Lex.getLoc();
3095   switch (Lex.getKind()) {
3096   default:
3097     return tokError("expected value token");
3098   case lltok::GlobalID:  // @42
3099     ID.UIntVal = Lex.getUIntVal();
3100     ID.Kind = ValID::t_GlobalID;
3101     break;
3102   case lltok::GlobalVar:  // @foo
3103     ID.StrVal = Lex.getStrVal();
3104     ID.Kind = ValID::t_GlobalName;
3105     break;
3106   case lltok::LocalVarID:  // %42
3107     ID.UIntVal = Lex.getUIntVal();
3108     ID.Kind = ValID::t_LocalID;
3109     break;
3110   case lltok::LocalVar:  // %foo
3111     ID.StrVal = Lex.getStrVal();
3112     ID.Kind = ValID::t_LocalName;
3113     break;
3114   case lltok::APSInt:
3115     ID.APSIntVal = Lex.getAPSIntVal();
3116     ID.Kind = ValID::t_APSInt;
3117     break;
3118   case lltok::APFloat:
3119     ID.APFloatVal = Lex.getAPFloatVal();
3120     ID.Kind = ValID::t_APFloat;
3121     break;
3122   case lltok::kw_true:
3123     ID.ConstantVal = ConstantInt::getTrue(Context);
3124     ID.Kind = ValID::t_Constant;
3125     break;
3126   case lltok::kw_false:
3127     ID.ConstantVal = ConstantInt::getFalse(Context);
3128     ID.Kind = ValID::t_Constant;
3129     break;
3130   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3131   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3132   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3133   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3134   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3135 
3136   case lltok::lbrace: {
3137     // ValID ::= '{' ConstVector '}'
3138     Lex.Lex();
3139     SmallVector<Constant*, 16> Elts;
3140     if (parseGlobalValueVector(Elts) ||
3141         parseToken(lltok::rbrace, "expected end of struct constant"))
3142       return true;
3143 
3144     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3145     ID.UIntVal = Elts.size();
3146     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3147            Elts.size() * sizeof(Elts[0]));
3148     ID.Kind = ValID::t_ConstantStruct;
3149     return false;
3150   }
3151   case lltok::less: {
3152     // ValID ::= '<' ConstVector '>'         --> Vector.
3153     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3154     Lex.Lex();
3155     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3156 
3157     SmallVector<Constant*, 16> Elts;
3158     LocTy FirstEltLoc = Lex.getLoc();
3159     if (parseGlobalValueVector(Elts) ||
3160         (isPackedStruct &&
3161          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3162         parseToken(lltok::greater, "expected end of constant"))
3163       return true;
3164 
3165     if (isPackedStruct) {
3166       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3167       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3168              Elts.size() * sizeof(Elts[0]));
3169       ID.UIntVal = Elts.size();
3170       ID.Kind = ValID::t_PackedConstantStruct;
3171       return false;
3172     }
3173 
3174     if (Elts.empty())
3175       return error(ID.Loc, "constant vector must not be empty");
3176 
3177     if (!Elts[0]->getType()->isIntegerTy() &&
3178         !Elts[0]->getType()->isFloatingPointTy() &&
3179         !Elts[0]->getType()->isPointerTy())
3180       return error(
3181           FirstEltLoc,
3182           "vector elements must have integer, pointer or floating point type");
3183 
3184     // Verify that all the vector elements have the same type.
3185     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3186       if (Elts[i]->getType() != Elts[0]->getType())
3187         return error(FirstEltLoc, "vector element #" + Twine(i) +
3188                                       " is not of type '" +
3189                                       getTypeString(Elts[0]->getType()));
3190 
3191     ID.ConstantVal = ConstantVector::get(Elts);
3192     ID.Kind = ValID::t_Constant;
3193     return false;
3194   }
3195   case lltok::lsquare: {   // Array Constant
3196     Lex.Lex();
3197     SmallVector<Constant*, 16> Elts;
3198     LocTy FirstEltLoc = Lex.getLoc();
3199     if (parseGlobalValueVector(Elts) ||
3200         parseToken(lltok::rsquare, "expected end of array constant"))
3201       return true;
3202 
3203     // Handle empty element.
3204     if (Elts.empty()) {
3205       // Use undef instead of an array because it's inconvenient to determine
3206       // the element type at this point, there being no elements to examine.
3207       ID.Kind = ValID::t_EmptyArray;
3208       return false;
3209     }
3210 
3211     if (!Elts[0]->getType()->isFirstClassType())
3212       return error(FirstEltLoc, "invalid array element type: " +
3213                                     getTypeString(Elts[0]->getType()));
3214 
3215     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3216 
3217     // Verify all elements are correct type!
3218     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3219       if (Elts[i]->getType() != Elts[0]->getType())
3220         return error(FirstEltLoc, "array element #" + Twine(i) +
3221                                       " is not of type '" +
3222                                       getTypeString(Elts[0]->getType()));
3223     }
3224 
3225     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3226     ID.Kind = ValID::t_Constant;
3227     return false;
3228   }
3229   case lltok::kw_c:  // c "foo"
3230     Lex.Lex();
3231     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3232                                                   false);
3233     if (parseToken(lltok::StringConstant, "expected string"))
3234       return true;
3235     ID.Kind = ValID::t_Constant;
3236     return false;
3237 
3238   case lltok::kw_asm: {
3239     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3240     //             STRINGCONSTANT
3241     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3242     Lex.Lex();
3243     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3244         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3245         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3246         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3247         parseStringConstant(ID.StrVal) ||
3248         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3249         parseToken(lltok::StringConstant, "expected constraint string"))
3250       return true;
3251     ID.StrVal2 = Lex.getStrVal();
3252     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3253                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3254     ID.Kind = ValID::t_InlineAsm;
3255     return false;
3256   }
3257 
3258   case lltok::kw_blockaddress: {
3259     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3260     Lex.Lex();
3261 
3262     ValID Fn, Label;
3263 
3264     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3265         parseValID(Fn, PFS) ||
3266         parseToken(lltok::comma,
3267                    "expected comma in block address expression") ||
3268         parseValID(Label, PFS) ||
3269         parseToken(lltok::rparen, "expected ')' in block address expression"))
3270       return true;
3271 
3272     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3273       return error(Fn.Loc, "expected function name in blockaddress");
3274     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3275       return error(Label.Loc, "expected basic block name in blockaddress");
3276 
3277     // Try to find the function (but skip it if it's forward-referenced).
3278     GlobalValue *GV = nullptr;
3279     if (Fn.Kind == ValID::t_GlobalID) {
3280       if (Fn.UIntVal < NumberedVals.size())
3281         GV = NumberedVals[Fn.UIntVal];
3282     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3283       GV = M->getNamedValue(Fn.StrVal);
3284     }
3285     Function *F = nullptr;
3286     if (GV) {
3287       // Confirm that it's actually a function with a definition.
3288       if (!isa<Function>(GV))
3289         return error(Fn.Loc, "expected function name in blockaddress");
3290       F = cast<Function>(GV);
3291       if (F->isDeclaration())
3292         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3293     }
3294 
3295     if (!F) {
3296       // Make a global variable as a placeholder for this reference.
3297       GlobalValue *&FwdRef =
3298           ForwardRefBlockAddresses.insert(std::make_pair(
3299                                               std::move(Fn),
3300                                               std::map<ValID, GlobalValue *>()))
3301               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3302               .first->second;
3303       if (!FwdRef) {
3304         unsigned FwdDeclAS;
3305         if (ExpectedTy) {
3306           // If we know the type that the blockaddress is being assigned to,
3307           // we can use the address space of that type.
3308           if (!ExpectedTy->isPointerTy())
3309             return error(ID.Loc,
3310                          "type of blockaddress must be a pointer and not '" +
3311                              getTypeString(ExpectedTy) + "'");
3312           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3313         } else if (PFS) {
3314           // Otherwise, we default the address space of the current function.
3315           FwdDeclAS = PFS->getFunction().getAddressSpace();
3316         } else {
3317           llvm_unreachable("Unknown address space for blockaddress");
3318         }
3319         FwdRef = new GlobalVariable(
3320             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3321             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3322       }
3323 
3324       ID.ConstantVal = FwdRef;
3325       ID.Kind = ValID::t_Constant;
3326       return false;
3327     }
3328 
3329     // We found the function; now find the basic block.  Don't use PFS, since we
3330     // might be inside a constant expression.
3331     BasicBlock *BB;
3332     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3333       if (Label.Kind == ValID::t_LocalID)
3334         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3335       else
3336         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3337       if (!BB)
3338         return error(Label.Loc, "referenced value is not a basic block");
3339     } else {
3340       if (Label.Kind == ValID::t_LocalID)
3341         return error(Label.Loc, "cannot take address of numeric label after "
3342                                 "the function is defined");
3343       BB = dyn_cast_or_null<BasicBlock>(
3344           F->getValueSymbolTable()->lookup(Label.StrVal));
3345       if (!BB)
3346         return error(Label.Loc, "referenced value is not a basic block");
3347     }
3348 
3349     ID.ConstantVal = BlockAddress::get(F, BB);
3350     ID.Kind = ValID::t_Constant;
3351     return false;
3352   }
3353 
3354   case lltok::kw_dso_local_equivalent: {
3355     // ValID ::= 'dso_local_equivalent' @foo
3356     Lex.Lex();
3357 
3358     ValID Fn;
3359 
3360     if (parseValID(Fn, PFS))
3361       return true;
3362 
3363     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3364       return error(Fn.Loc,
3365                    "expected global value name in dso_local_equivalent");
3366 
3367     // Try to find the function (but skip it if it's forward-referenced).
3368     GlobalValue *GV = nullptr;
3369     if (Fn.Kind == ValID::t_GlobalID) {
3370       if (Fn.UIntVal < NumberedVals.size())
3371         GV = NumberedVals[Fn.UIntVal];
3372     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3373       GV = M->getNamedValue(Fn.StrVal);
3374     }
3375 
3376     assert(GV && "Could not find a corresponding global variable");
3377 
3378     if (!GV->getValueType()->isFunctionTy())
3379       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3380                            "in dso_local_equivalent");
3381 
3382     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3383     ID.Kind = ValID::t_Constant;
3384     return false;
3385   }
3386 
3387   case lltok::kw_no_cfi: {
3388     // ValID ::= 'no_cfi' @foo
3389     Lex.Lex();
3390 
3391     if (parseValID(ID, PFS))
3392       return true;
3393 
3394     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3395       return error(ID.Loc, "expected global value name in no_cfi");
3396 
3397     ID.NoCFI = true;
3398     return false;
3399   }
3400 
3401   case lltok::kw_trunc:
3402   case lltok::kw_zext:
3403   case lltok::kw_sext:
3404   case lltok::kw_fptrunc:
3405   case lltok::kw_fpext:
3406   case lltok::kw_bitcast:
3407   case lltok::kw_addrspacecast:
3408   case lltok::kw_uitofp:
3409   case lltok::kw_sitofp:
3410   case lltok::kw_fptoui:
3411   case lltok::kw_fptosi:
3412   case lltok::kw_inttoptr:
3413   case lltok::kw_ptrtoint: {
3414     unsigned Opc = Lex.getUIntVal();
3415     Type *DestTy = nullptr;
3416     Constant *SrcVal;
3417     Lex.Lex();
3418     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3419         parseGlobalTypeAndValue(SrcVal) ||
3420         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3421         parseType(DestTy) ||
3422         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3423       return true;
3424     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3425       return error(ID.Loc, "invalid cast opcode for cast from '" +
3426                                getTypeString(SrcVal->getType()) + "' to '" +
3427                                getTypeString(DestTy) + "'");
3428     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3429                                                  SrcVal, DestTy);
3430     ID.Kind = ValID::t_Constant;
3431     return false;
3432   }
3433   case lltok::kw_extractvalue: {
3434     Lex.Lex();
3435     Constant *Val;
3436     SmallVector<unsigned, 4> Indices;
3437     if (parseToken(lltok::lparen,
3438                    "expected '(' in extractvalue constantexpr") ||
3439         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3440         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3441       return true;
3442 
3443     if (!Val->getType()->isAggregateType())
3444       return error(ID.Loc, "extractvalue operand must be aggregate type");
3445     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3446       return error(ID.Loc, "invalid indices for extractvalue");
3447     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3448     ID.Kind = ValID::t_Constant;
3449     return false;
3450   }
3451   case lltok::kw_insertvalue: {
3452     Lex.Lex();
3453     Constant *Val0, *Val1;
3454     SmallVector<unsigned, 4> Indices;
3455     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3456         parseGlobalTypeAndValue(Val0) ||
3457         parseToken(lltok::comma,
3458                    "expected comma in insertvalue constantexpr") ||
3459         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3460         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3461       return true;
3462     if (!Val0->getType()->isAggregateType())
3463       return error(ID.Loc, "insertvalue operand must be aggregate type");
3464     Type *IndexedType =
3465         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3466     if (!IndexedType)
3467       return error(ID.Loc, "invalid indices for insertvalue");
3468     if (IndexedType != Val1->getType())
3469       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3470                                getTypeString(Val1->getType()) +
3471                                "' instead of '" + getTypeString(IndexedType) +
3472                                "'");
3473     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3474     ID.Kind = ValID::t_Constant;
3475     return false;
3476   }
3477   case lltok::kw_icmp:
3478   case lltok::kw_fcmp: {
3479     unsigned PredVal, Opc = Lex.getUIntVal();
3480     Constant *Val0, *Val1;
3481     Lex.Lex();
3482     if (parseCmpPredicate(PredVal, Opc) ||
3483         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3484         parseGlobalTypeAndValue(Val0) ||
3485         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3486         parseGlobalTypeAndValue(Val1) ||
3487         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3488       return true;
3489 
3490     if (Val0->getType() != Val1->getType())
3491       return error(ID.Loc, "compare operands must have the same type");
3492 
3493     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3494 
3495     if (Opc == Instruction::FCmp) {
3496       if (!Val0->getType()->isFPOrFPVectorTy())
3497         return error(ID.Loc, "fcmp requires floating point operands");
3498       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3499     } else {
3500       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3501       if (!Val0->getType()->isIntOrIntVectorTy() &&
3502           !Val0->getType()->isPtrOrPtrVectorTy())
3503         return error(ID.Loc, "icmp requires pointer or integer operands");
3504       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3505     }
3506     ID.Kind = ValID::t_Constant;
3507     return false;
3508   }
3509 
3510   // Unary Operators.
3511   case lltok::kw_fneg: {
3512     unsigned Opc = Lex.getUIntVal();
3513     Constant *Val;
3514     Lex.Lex();
3515     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3516         parseGlobalTypeAndValue(Val) ||
3517         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3518       return true;
3519 
3520     // Check that the type is valid for the operator.
3521     switch (Opc) {
3522     case Instruction::FNeg:
3523       if (!Val->getType()->isFPOrFPVectorTy())
3524         return error(ID.Loc, "constexpr requires fp operands");
3525       break;
3526     default: llvm_unreachable("Unknown unary operator!");
3527     }
3528     unsigned Flags = 0;
3529     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3530     ID.ConstantVal = C;
3531     ID.Kind = ValID::t_Constant;
3532     return false;
3533   }
3534   // Binary Operators.
3535   case lltok::kw_add:
3536   case lltok::kw_fadd:
3537   case lltok::kw_sub:
3538   case lltok::kw_fsub:
3539   case lltok::kw_mul:
3540   case lltok::kw_fmul:
3541   case lltok::kw_udiv:
3542   case lltok::kw_sdiv:
3543   case lltok::kw_fdiv:
3544   case lltok::kw_urem:
3545   case lltok::kw_srem:
3546   case lltok::kw_frem:
3547   case lltok::kw_shl:
3548   case lltok::kw_lshr:
3549   case lltok::kw_ashr: {
3550     bool NUW = false;
3551     bool NSW = false;
3552     bool Exact = false;
3553     unsigned Opc = Lex.getUIntVal();
3554     Constant *Val0, *Val1;
3555     Lex.Lex();
3556     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3557         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3558       if (EatIfPresent(lltok::kw_nuw))
3559         NUW = true;
3560       if (EatIfPresent(lltok::kw_nsw)) {
3561         NSW = true;
3562         if (EatIfPresent(lltok::kw_nuw))
3563           NUW = true;
3564       }
3565     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3566                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3567       if (EatIfPresent(lltok::kw_exact))
3568         Exact = true;
3569     }
3570     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3571         parseGlobalTypeAndValue(Val0) ||
3572         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3573         parseGlobalTypeAndValue(Val1) ||
3574         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3575       return true;
3576     if (Val0->getType() != Val1->getType())
3577       return error(ID.Loc, "operands of constexpr must have same type");
3578     // Check that the type is valid for the operator.
3579     switch (Opc) {
3580     case Instruction::Add:
3581     case Instruction::Sub:
3582     case Instruction::Mul:
3583     case Instruction::UDiv:
3584     case Instruction::SDiv:
3585     case Instruction::URem:
3586     case Instruction::SRem:
3587     case Instruction::Shl:
3588     case Instruction::AShr:
3589     case Instruction::LShr:
3590       if (!Val0->getType()->isIntOrIntVectorTy())
3591         return error(ID.Loc, "constexpr requires integer operands");
3592       break;
3593     case Instruction::FAdd:
3594     case Instruction::FSub:
3595     case Instruction::FMul:
3596     case Instruction::FDiv:
3597     case Instruction::FRem:
3598       if (!Val0->getType()->isFPOrFPVectorTy())
3599         return error(ID.Loc, "constexpr requires fp operands");
3600       break;
3601     default: llvm_unreachable("Unknown binary operator!");
3602     }
3603     unsigned Flags = 0;
3604     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3605     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3606     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3607     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3608     ID.ConstantVal = C;
3609     ID.Kind = ValID::t_Constant;
3610     return false;
3611   }
3612 
3613   // Logical Operations
3614   case lltok::kw_and:
3615   case lltok::kw_or:
3616   case lltok::kw_xor: {
3617     unsigned Opc = Lex.getUIntVal();
3618     Constant *Val0, *Val1;
3619     Lex.Lex();
3620     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3621         parseGlobalTypeAndValue(Val0) ||
3622         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3623         parseGlobalTypeAndValue(Val1) ||
3624         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3625       return true;
3626     if (Val0->getType() != Val1->getType())
3627       return error(ID.Loc, "operands of constexpr must have same type");
3628     if (!Val0->getType()->isIntOrIntVectorTy())
3629       return error(ID.Loc,
3630                    "constexpr requires integer or integer vector operands");
3631     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3632     ID.Kind = ValID::t_Constant;
3633     return false;
3634   }
3635 
3636   case lltok::kw_getelementptr:
3637   case lltok::kw_shufflevector:
3638   case lltok::kw_insertelement:
3639   case lltok::kw_extractelement:
3640   case lltok::kw_select: {
3641     unsigned Opc = Lex.getUIntVal();
3642     SmallVector<Constant*, 16> Elts;
3643     bool InBounds = false;
3644     Type *Ty;
3645     Lex.Lex();
3646 
3647     if (Opc == Instruction::GetElementPtr)
3648       InBounds = EatIfPresent(lltok::kw_inbounds);
3649 
3650     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3651       return true;
3652 
3653     LocTy ExplicitTypeLoc = Lex.getLoc();
3654     if (Opc == Instruction::GetElementPtr) {
3655       if (parseType(Ty) ||
3656           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3657         return true;
3658     }
3659 
3660     Optional<unsigned> InRangeOp;
3661     if (parseGlobalValueVector(
3662             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3663         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3664       return true;
3665 
3666     if (Opc == Instruction::GetElementPtr) {
3667       if (Elts.size() == 0 ||
3668           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3669         return error(ID.Loc, "base of getelementptr must be a pointer");
3670 
3671       Type *BaseType = Elts[0]->getType();
3672       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3673       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3674         return error(
3675             ExplicitTypeLoc,
3676             typeComparisonErrorMessage(
3677                 "explicit pointee type doesn't match operand's pointee type",
3678                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3679       }
3680 
3681       unsigned GEPWidth =
3682           BaseType->isVectorTy()
3683               ? cast<FixedVectorType>(BaseType)->getNumElements()
3684               : 0;
3685 
3686       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3687       for (Constant *Val : Indices) {
3688         Type *ValTy = Val->getType();
3689         if (!ValTy->isIntOrIntVectorTy())
3690           return error(ID.Loc, "getelementptr index must be an integer");
3691         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3692           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3693           if (GEPWidth && (ValNumEl != GEPWidth))
3694             return error(
3695                 ID.Loc,
3696                 "getelementptr vector index has a wrong number of elements");
3697           // GEPWidth may have been unknown because the base is a scalar,
3698           // but it is known now.
3699           GEPWidth = ValNumEl;
3700         }
3701       }
3702 
3703       SmallPtrSet<Type*, 4> Visited;
3704       if (!Indices.empty() && !Ty->isSized(&Visited))
3705         return error(ID.Loc, "base element of getelementptr must be sized");
3706 
3707       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3708         return error(ID.Loc, "invalid getelementptr indices");
3709 
3710       if (InRangeOp) {
3711         if (*InRangeOp == 0)
3712           return error(ID.Loc,
3713                        "inrange keyword may not appear on pointer operand");
3714         --*InRangeOp;
3715       }
3716 
3717       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3718                                                       InBounds, InRangeOp);
3719     } else if (Opc == Instruction::Select) {
3720       if (Elts.size() != 3)
3721         return error(ID.Loc, "expected three operands to select");
3722       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3723                                                               Elts[2]))
3724         return error(ID.Loc, Reason);
3725       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3726     } else if (Opc == Instruction::ShuffleVector) {
3727       if (Elts.size() != 3)
3728         return error(ID.Loc, "expected three operands to shufflevector");
3729       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3730         return error(ID.Loc, "invalid operands to shufflevector");
3731       SmallVector<int, 16> Mask;
3732       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3733       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3734     } else if (Opc == Instruction::ExtractElement) {
3735       if (Elts.size() != 2)
3736         return error(ID.Loc, "expected two operands to extractelement");
3737       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3738         return error(ID.Loc, "invalid extractelement operands");
3739       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3740     } else {
3741       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3742       if (Elts.size() != 3)
3743         return error(ID.Loc, "expected three operands to insertelement");
3744       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3745         return error(ID.Loc, "invalid insertelement operands");
3746       ID.ConstantVal =
3747                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3748     }
3749 
3750     ID.Kind = ValID::t_Constant;
3751     return false;
3752   }
3753   }
3754 
3755   Lex.Lex();
3756   return false;
3757 }
3758 
3759 /// parseGlobalValue - parse a global value with the specified type.
3760 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3761   C = nullptr;
3762   ValID ID;
3763   Value *V = nullptr;
3764   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3765                 convertValIDToValue(Ty, ID, V, nullptr);
3766   if (V && !(C = dyn_cast<Constant>(V)))
3767     return error(ID.Loc, "global values must be constants");
3768   return Parsed;
3769 }
3770 
3771 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3772   Type *Ty = nullptr;
3773   return parseType(Ty) || parseGlobalValue(Ty, V);
3774 }
3775 
3776 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3777   C = nullptr;
3778 
3779   LocTy KwLoc = Lex.getLoc();
3780   if (!EatIfPresent(lltok::kw_comdat))
3781     return false;
3782 
3783   if (EatIfPresent(lltok::lparen)) {
3784     if (Lex.getKind() != lltok::ComdatVar)
3785       return tokError("expected comdat variable");
3786     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3787     Lex.Lex();
3788     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3789       return true;
3790   } else {
3791     if (GlobalName.empty())
3792       return tokError("comdat cannot be unnamed");
3793     C = getComdat(std::string(GlobalName), KwLoc);
3794   }
3795 
3796   return false;
3797 }
3798 
3799 /// parseGlobalValueVector
3800 ///   ::= /*empty*/
3801 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3802 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3803                                       Optional<unsigned> *InRangeOp) {
3804   // Empty list.
3805   if (Lex.getKind() == lltok::rbrace ||
3806       Lex.getKind() == lltok::rsquare ||
3807       Lex.getKind() == lltok::greater ||
3808       Lex.getKind() == lltok::rparen)
3809     return false;
3810 
3811   do {
3812     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3813       *InRangeOp = Elts.size();
3814 
3815     Constant *C;
3816     if (parseGlobalTypeAndValue(C))
3817       return true;
3818     Elts.push_back(C);
3819   } while (EatIfPresent(lltok::comma));
3820 
3821   return false;
3822 }
3823 
3824 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3825   SmallVector<Metadata *, 16> Elts;
3826   if (parseMDNodeVector(Elts))
3827     return true;
3828 
3829   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3830   return false;
3831 }
3832 
3833 /// MDNode:
3834 ///  ::= !{ ... }
3835 ///  ::= !7
3836 ///  ::= !DILocation(...)
3837 bool LLParser::parseMDNode(MDNode *&N) {
3838   if (Lex.getKind() == lltok::MetadataVar)
3839     return parseSpecializedMDNode(N);
3840 
3841   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3842 }
3843 
3844 bool LLParser::parseMDNodeTail(MDNode *&N) {
3845   // !{ ... }
3846   if (Lex.getKind() == lltok::lbrace)
3847     return parseMDTuple(N);
3848 
3849   // !42
3850   return parseMDNodeID(N);
3851 }
3852 
3853 namespace {
3854 
3855 /// Structure to represent an optional metadata field.
3856 template <class FieldTy> struct MDFieldImpl {
3857   typedef MDFieldImpl ImplTy;
3858   FieldTy Val;
3859   bool Seen;
3860 
3861   void assign(FieldTy Val) {
3862     Seen = true;
3863     this->Val = std::move(Val);
3864   }
3865 
3866   explicit MDFieldImpl(FieldTy Default)
3867       : Val(std::move(Default)), Seen(false) {}
3868 };
3869 
3870 /// Structure to represent an optional metadata field that
3871 /// can be of either type (A or B) and encapsulates the
3872 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3873 /// to reimplement the specifics for representing each Field.
3874 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3875   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3876   FieldTypeA A;
3877   FieldTypeB B;
3878   bool Seen;
3879 
3880   enum {
3881     IsInvalid = 0,
3882     IsTypeA = 1,
3883     IsTypeB = 2
3884   } WhatIs;
3885 
3886   void assign(FieldTypeA A) {
3887     Seen = true;
3888     this->A = std::move(A);
3889     WhatIs = IsTypeA;
3890   }
3891 
3892   void assign(FieldTypeB B) {
3893     Seen = true;
3894     this->B = std::move(B);
3895     WhatIs = IsTypeB;
3896   }
3897 
3898   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3899       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3900         WhatIs(IsInvalid) {}
3901 };
3902 
3903 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3904   uint64_t Max;
3905 
3906   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3907       : ImplTy(Default), Max(Max) {}
3908 };
3909 
3910 struct LineField : public MDUnsignedField {
3911   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3912 };
3913 
3914 struct ColumnField : public MDUnsignedField {
3915   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3916 };
3917 
3918 struct DwarfTagField : public MDUnsignedField {
3919   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3920   DwarfTagField(dwarf::Tag DefaultTag)
3921       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3922 };
3923 
3924 struct DwarfMacinfoTypeField : public MDUnsignedField {
3925   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3926   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3927     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3928 };
3929 
3930 struct DwarfAttEncodingField : public MDUnsignedField {
3931   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3932 };
3933 
3934 struct DwarfVirtualityField : public MDUnsignedField {
3935   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3936 };
3937 
3938 struct DwarfLangField : public MDUnsignedField {
3939   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3940 };
3941 
3942 struct DwarfCCField : public MDUnsignedField {
3943   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3944 };
3945 
3946 struct EmissionKindField : public MDUnsignedField {
3947   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3948 };
3949 
3950 struct NameTableKindField : public MDUnsignedField {
3951   NameTableKindField()
3952       : MDUnsignedField(
3953             0, (unsigned)
3954                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3955 };
3956 
3957 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3958   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3959 };
3960 
3961 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3962   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3963 };
3964 
3965 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3966   MDAPSIntField() : ImplTy(APSInt()) {}
3967 };
3968 
3969 struct MDSignedField : public MDFieldImpl<int64_t> {
3970   int64_t Min;
3971   int64_t Max;
3972 
3973   MDSignedField(int64_t Default = 0)
3974       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3975   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3976       : ImplTy(Default), Min(Min), Max(Max) {}
3977 };
3978 
3979 struct MDBoolField : public MDFieldImpl<bool> {
3980   MDBoolField(bool Default = false) : ImplTy(Default) {}
3981 };
3982 
3983 struct MDField : public MDFieldImpl<Metadata *> {
3984   bool AllowNull;
3985 
3986   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3987 };
3988 
3989 struct MDStringField : public MDFieldImpl<MDString *> {
3990   bool AllowEmpty;
3991   MDStringField(bool AllowEmpty = true)
3992       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3993 };
3994 
3995 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3996   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3997 };
3998 
3999 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4000   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4001 };
4002 
4003 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4004   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4005       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4006 
4007   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4008                     bool AllowNull = true)
4009       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4010 
4011   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4012   bool isMDField() const { return WhatIs == IsTypeB; }
4013   int64_t getMDSignedValue() const {
4014     assert(isMDSignedField() && "Wrong field type");
4015     return A.Val;
4016   }
4017   Metadata *getMDFieldValue() const {
4018     assert(isMDField() && "Wrong field type");
4019     return B.Val;
4020   }
4021 };
4022 
4023 } // end anonymous namespace
4024 
4025 namespace llvm {
4026 
4027 template <>
4028 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4029   if (Lex.getKind() != lltok::APSInt)
4030     return tokError("expected integer");
4031 
4032   Result.assign(Lex.getAPSIntVal());
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4039                             MDUnsignedField &Result) {
4040   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4041     return tokError("expected unsigned integer");
4042 
4043   auto &U = Lex.getAPSIntVal();
4044   if (U.ugt(Result.Max))
4045     return tokError("value for '" + Name + "' too large, limit is " +
4046                     Twine(Result.Max));
4047   Result.assign(U.getZExtValue());
4048   assert(Result.Val <= Result.Max && "Expected value in range");
4049   Lex.Lex();
4050   return false;
4051 }
4052 
4053 template <>
4054 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4055   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4056 }
4057 template <>
4058 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4059   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4060 }
4061 
4062 template <>
4063 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4064   if (Lex.getKind() == lltok::APSInt)
4065     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4066 
4067   if (Lex.getKind() != lltok::DwarfTag)
4068     return tokError("expected DWARF tag");
4069 
4070   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4071   if (Tag == dwarf::DW_TAG_invalid)
4072     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4073   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4074 
4075   Result.assign(Tag);
4076   Lex.Lex();
4077   return false;
4078 }
4079 
4080 template <>
4081 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4082                             DwarfMacinfoTypeField &Result) {
4083   if (Lex.getKind() == lltok::APSInt)
4084     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4085 
4086   if (Lex.getKind() != lltok::DwarfMacinfo)
4087     return tokError("expected DWARF macinfo type");
4088 
4089   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4090   if (Macinfo == dwarf::DW_MACINFO_invalid)
4091     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4092                     Lex.getStrVal() + "'");
4093   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4094 
4095   Result.assign(Macinfo);
4096   Lex.Lex();
4097   return false;
4098 }
4099 
4100 template <>
4101 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4102                             DwarfVirtualityField &Result) {
4103   if (Lex.getKind() == lltok::APSInt)
4104     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4105 
4106   if (Lex.getKind() != lltok::DwarfVirtuality)
4107     return tokError("expected DWARF virtuality code");
4108 
4109   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4110   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4111     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4112                     Lex.getStrVal() + "'");
4113   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4114   Result.assign(Virtuality);
4115   Lex.Lex();
4116   return false;
4117 }
4118 
4119 template <>
4120 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4121   if (Lex.getKind() == lltok::APSInt)
4122     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4123 
4124   if (Lex.getKind() != lltok::DwarfLang)
4125     return tokError("expected DWARF language");
4126 
4127   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4128   if (!Lang)
4129     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4130                     "'");
4131   assert(Lang <= Result.Max && "Expected valid DWARF language");
4132   Result.assign(Lang);
4133   Lex.Lex();
4134   return false;
4135 }
4136 
4137 template <>
4138 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4139   if (Lex.getKind() == lltok::APSInt)
4140     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4141 
4142   if (Lex.getKind() != lltok::DwarfCC)
4143     return tokError("expected DWARF calling convention");
4144 
4145   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4146   if (!CC)
4147     return tokError("invalid DWARF calling convention" + Twine(" '") +
4148                     Lex.getStrVal() + "'");
4149   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4150   Result.assign(CC);
4151   Lex.Lex();
4152   return false;
4153 }
4154 
4155 template <>
4156 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4157                             EmissionKindField &Result) {
4158   if (Lex.getKind() == lltok::APSInt)
4159     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4160 
4161   if (Lex.getKind() != lltok::EmissionKind)
4162     return tokError("expected emission kind");
4163 
4164   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4165   if (!Kind)
4166     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4167                     "'");
4168   assert(*Kind <= Result.Max && "Expected valid emission kind");
4169   Result.assign(*Kind);
4170   Lex.Lex();
4171   return false;
4172 }
4173 
4174 template <>
4175 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4176                             NameTableKindField &Result) {
4177   if (Lex.getKind() == lltok::APSInt)
4178     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4179 
4180   if (Lex.getKind() != lltok::NameTableKind)
4181     return tokError("expected nameTable kind");
4182 
4183   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4184   if (!Kind)
4185     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4186                     "'");
4187   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4188   Result.assign((unsigned)*Kind);
4189   Lex.Lex();
4190   return false;
4191 }
4192 
4193 template <>
4194 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4195                             DwarfAttEncodingField &Result) {
4196   if (Lex.getKind() == lltok::APSInt)
4197     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4198 
4199   if (Lex.getKind() != lltok::DwarfAttEncoding)
4200     return tokError("expected DWARF type attribute encoding");
4201 
4202   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4203   if (!Encoding)
4204     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4205                     Lex.getStrVal() + "'");
4206   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4207   Result.assign(Encoding);
4208   Lex.Lex();
4209   return false;
4210 }
4211 
4212 /// DIFlagField
4213 ///  ::= uint32
4214 ///  ::= DIFlagVector
4215 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4216 template <>
4217 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4218 
4219   // parser for a single flag.
4220   auto parseFlag = [&](DINode::DIFlags &Val) {
4221     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4222       uint32_t TempVal = static_cast<uint32_t>(Val);
4223       bool Res = parseUInt32(TempVal);
4224       Val = static_cast<DINode::DIFlags>(TempVal);
4225       return Res;
4226     }
4227 
4228     if (Lex.getKind() != lltok::DIFlag)
4229       return tokError("expected debug info flag");
4230 
4231     Val = DINode::getFlag(Lex.getStrVal());
4232     if (!Val)
4233       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4234                       "'");
4235     Lex.Lex();
4236     return false;
4237   };
4238 
4239   // parse the flags and combine them together.
4240   DINode::DIFlags Combined = DINode::FlagZero;
4241   do {
4242     DINode::DIFlags Val;
4243     if (parseFlag(Val))
4244       return true;
4245     Combined |= Val;
4246   } while (EatIfPresent(lltok::bar));
4247 
4248   Result.assign(Combined);
4249   return false;
4250 }
4251 
4252 /// DISPFlagField
4253 ///  ::= uint32
4254 ///  ::= DISPFlagVector
4255 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4256 template <>
4257 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4258 
4259   // parser for a single flag.
4260   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4261     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4262       uint32_t TempVal = static_cast<uint32_t>(Val);
4263       bool Res = parseUInt32(TempVal);
4264       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4265       return Res;
4266     }
4267 
4268     if (Lex.getKind() != lltok::DISPFlag)
4269       return tokError("expected debug info flag");
4270 
4271     Val = DISubprogram::getFlag(Lex.getStrVal());
4272     if (!Val)
4273       return tokError(Twine("invalid subprogram debug info flag '") +
4274                       Lex.getStrVal() + "'");
4275     Lex.Lex();
4276     return false;
4277   };
4278 
4279   // parse the flags and combine them together.
4280   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4281   do {
4282     DISubprogram::DISPFlags Val;
4283     if (parseFlag(Val))
4284       return true;
4285     Combined |= Val;
4286   } while (EatIfPresent(lltok::bar));
4287 
4288   Result.assign(Combined);
4289   return false;
4290 }
4291 
4292 template <>
4293 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4294   if (Lex.getKind() != lltok::APSInt)
4295     return tokError("expected signed integer");
4296 
4297   auto &S = Lex.getAPSIntVal();
4298   if (S < Result.Min)
4299     return tokError("value for '" + Name + "' too small, limit is " +
4300                     Twine(Result.Min));
4301   if (S > Result.Max)
4302     return tokError("value for '" + Name + "' too large, limit is " +
4303                     Twine(Result.Max));
4304   Result.assign(S.getExtValue());
4305   assert(Result.Val >= Result.Min && "Expected value in range");
4306   assert(Result.Val <= Result.Max && "Expected value in range");
4307   Lex.Lex();
4308   return false;
4309 }
4310 
4311 template <>
4312 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4313   switch (Lex.getKind()) {
4314   default:
4315     return tokError("expected 'true' or 'false'");
4316   case lltok::kw_true:
4317     Result.assign(true);
4318     break;
4319   case lltok::kw_false:
4320     Result.assign(false);
4321     break;
4322   }
4323   Lex.Lex();
4324   return false;
4325 }
4326 
4327 template <>
4328 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4329   if (Lex.getKind() == lltok::kw_null) {
4330     if (!Result.AllowNull)
4331       return tokError("'" + Name + "' cannot be null");
4332     Lex.Lex();
4333     Result.assign(nullptr);
4334     return false;
4335   }
4336 
4337   Metadata *MD;
4338   if (parseMetadata(MD, nullptr))
4339     return true;
4340 
4341   Result.assign(MD);
4342   return false;
4343 }
4344 
4345 template <>
4346 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4347                             MDSignedOrMDField &Result) {
4348   // Try to parse a signed int.
4349   if (Lex.getKind() == lltok::APSInt) {
4350     MDSignedField Res = Result.A;
4351     if (!parseMDField(Loc, Name, Res)) {
4352       Result.assign(Res);
4353       return false;
4354     }
4355     return true;
4356   }
4357 
4358   // Otherwise, try to parse as an MDField.
4359   MDField Res = Result.B;
4360   if (!parseMDField(Loc, Name, Res)) {
4361     Result.assign(Res);
4362     return false;
4363   }
4364 
4365   return true;
4366 }
4367 
4368 template <>
4369 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4370   LocTy ValueLoc = Lex.getLoc();
4371   std::string S;
4372   if (parseStringConstant(S))
4373     return true;
4374 
4375   if (!Result.AllowEmpty && S.empty())
4376     return error(ValueLoc, "'" + Name + "' cannot be empty");
4377 
4378   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4379   return false;
4380 }
4381 
4382 template <>
4383 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4384   SmallVector<Metadata *, 4> MDs;
4385   if (parseMDNodeVector(MDs))
4386     return true;
4387 
4388   Result.assign(std::move(MDs));
4389   return false;
4390 }
4391 
4392 template <>
4393 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4394                             ChecksumKindField &Result) {
4395   Optional<DIFile::ChecksumKind> CSKind =
4396       DIFile::getChecksumKind(Lex.getStrVal());
4397 
4398   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4399     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4400                     "'");
4401 
4402   Result.assign(*CSKind);
4403   Lex.Lex();
4404   return false;
4405 }
4406 
4407 } // end namespace llvm
4408 
4409 template <class ParserTy>
4410 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4411   do {
4412     if (Lex.getKind() != lltok::LabelStr)
4413       return tokError("expected field label here");
4414 
4415     if (ParseField())
4416       return true;
4417   } while (EatIfPresent(lltok::comma));
4418 
4419   return false;
4420 }
4421 
4422 template <class ParserTy>
4423 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4424   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4425   Lex.Lex();
4426 
4427   if (parseToken(lltok::lparen, "expected '(' here"))
4428     return true;
4429   if (Lex.getKind() != lltok::rparen)
4430     if (parseMDFieldsImplBody(ParseField))
4431       return true;
4432 
4433   ClosingLoc = Lex.getLoc();
4434   return parseToken(lltok::rparen, "expected ')' here");
4435 }
4436 
4437 template <class FieldTy>
4438 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4439   if (Result.Seen)
4440     return tokError("field '" + Name + "' cannot be specified more than once");
4441 
4442   LocTy Loc = Lex.getLoc();
4443   Lex.Lex();
4444   return parseMDField(Loc, Name, Result);
4445 }
4446 
4447 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4448   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4449 
4450 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4451   if (Lex.getStrVal() == #CLASS)                                               \
4452     return parse##CLASS(N, IsDistinct);
4453 #include "llvm/IR/Metadata.def"
4454 
4455   return tokError("expected metadata type");
4456 }
4457 
4458 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4459 #define NOP_FIELD(NAME, TYPE, INIT)
4460 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4461   if (!NAME.Seen)                                                              \
4462     return error(ClosingLoc, "missing required field '" #NAME "'");
4463 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4464   if (Lex.getStrVal() == #NAME)                                                \
4465     return parseMDField(#NAME, NAME);
4466 #define PARSE_MD_FIELDS()                                                      \
4467   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4468   do {                                                                         \
4469     LocTy ClosingLoc;                                                          \
4470     if (parseMDFieldsImpl(                                                     \
4471             [&]() -> bool {                                                    \
4472               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4473               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4474                               "'");                                            \
4475             },                                                                 \
4476             ClosingLoc))                                                       \
4477       return true;                                                             \
4478     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4479   } while (false)
4480 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4481   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4482 
4483 /// parseDILocationFields:
4484 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4485 ///   isImplicitCode: true)
4486 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4487 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4488   OPTIONAL(line, LineField, );                                                 \
4489   OPTIONAL(column, ColumnField, );                                             \
4490   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4491   OPTIONAL(inlinedAt, MDField, );                                              \
4492   OPTIONAL(isImplicitCode, MDBoolField, (false));
4493   PARSE_MD_FIELDS();
4494 #undef VISIT_MD_FIELDS
4495 
4496   Result =
4497       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4498                                    inlinedAt.Val, isImplicitCode.Val));
4499   return false;
4500 }
4501 
4502 /// parseGenericDINode:
4503 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4504 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4505 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4506   REQUIRED(tag, DwarfTagField, );                                              \
4507   OPTIONAL(header, MDStringField, );                                           \
4508   OPTIONAL(operands, MDFieldList, );
4509   PARSE_MD_FIELDS();
4510 #undef VISIT_MD_FIELDS
4511 
4512   Result = GET_OR_DISTINCT(GenericDINode,
4513                            (Context, tag.Val, header.Val, operands.Val));
4514   return false;
4515 }
4516 
4517 /// parseDISubrange:
4518 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4519 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4520 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4521 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4522 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4523   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4524   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4525   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4526   OPTIONAL(stride, MDSignedOrMDField, );
4527   PARSE_MD_FIELDS();
4528 #undef VISIT_MD_FIELDS
4529 
4530   Metadata *Count = nullptr;
4531   Metadata *LowerBound = nullptr;
4532   Metadata *UpperBound = nullptr;
4533   Metadata *Stride = nullptr;
4534 
4535   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4536     if (Bound.isMDSignedField())
4537       return ConstantAsMetadata::get(ConstantInt::getSigned(
4538           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4539     if (Bound.isMDField())
4540       return Bound.getMDFieldValue();
4541     return nullptr;
4542   };
4543 
4544   Count = convToMetadata(count);
4545   LowerBound = convToMetadata(lowerBound);
4546   UpperBound = convToMetadata(upperBound);
4547   Stride = convToMetadata(stride);
4548 
4549   Result = GET_OR_DISTINCT(DISubrange,
4550                            (Context, Count, LowerBound, UpperBound, Stride));
4551 
4552   return false;
4553 }
4554 
4555 /// parseDIGenericSubrange:
4556 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4557 ///   !node3)
4558 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4560   OPTIONAL(count, MDSignedOrMDField, );                                        \
4561   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4562   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4563   OPTIONAL(stride, MDSignedOrMDField, );
4564   PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566 
4567   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4568     if (Bound.isMDSignedField())
4569       return DIExpression::get(
4570           Context, {dwarf::DW_OP_consts,
4571                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4572     if (Bound.isMDField())
4573       return Bound.getMDFieldValue();
4574     return nullptr;
4575   };
4576 
4577   Metadata *Count = ConvToMetadata(count);
4578   Metadata *LowerBound = ConvToMetadata(lowerBound);
4579   Metadata *UpperBound = ConvToMetadata(upperBound);
4580   Metadata *Stride = ConvToMetadata(stride);
4581 
4582   Result = GET_OR_DISTINCT(DIGenericSubrange,
4583                            (Context, Count, LowerBound, UpperBound, Stride));
4584 
4585   return false;
4586 }
4587 
4588 /// parseDIEnumerator:
4589 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4590 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4591 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4592   REQUIRED(name, MDStringField, );                                             \
4593   REQUIRED(value, MDAPSIntField, );                                            \
4594   OPTIONAL(isUnsigned, MDBoolField, (false));
4595   PARSE_MD_FIELDS();
4596 #undef VISIT_MD_FIELDS
4597 
4598   if (isUnsigned.Val && value.Val.isNegative())
4599     return tokError("unsigned enumerator with negative value");
4600 
4601   APSInt Value(value.Val);
4602   // Add a leading zero so that unsigned values with the msb set are not
4603   // mistaken for negative values when used for signed enumerators.
4604   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4605     Value = Value.zext(Value.getBitWidth() + 1);
4606 
4607   Result =
4608       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4609 
4610   return false;
4611 }
4612 
4613 /// parseDIBasicType:
4614 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4615 ///                    encoding: DW_ATE_encoding, flags: 0)
4616 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4618   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4619   OPTIONAL(name, MDStringField, );                                             \
4620   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4621   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4622   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4623   OPTIONAL(flags, DIFlagField, );
4624   PARSE_MD_FIELDS();
4625 #undef VISIT_MD_FIELDS
4626 
4627   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4628                                          align.Val, encoding.Val, flags.Val));
4629   return false;
4630 }
4631 
4632 /// parseDIStringType:
4633 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4634 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4635 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4636   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4637   OPTIONAL(name, MDStringField, );                                             \
4638   OPTIONAL(stringLength, MDField, );                                           \
4639   OPTIONAL(stringLengthExpression, MDField, );                                 \
4640   OPTIONAL(stringLocationExpression, MDField, );                               \
4641   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4642   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4643   OPTIONAL(encoding, DwarfAttEncodingField, );
4644   PARSE_MD_FIELDS();
4645 #undef VISIT_MD_FIELDS
4646 
4647   Result = GET_OR_DISTINCT(
4648       DIStringType,
4649       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4650        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4651   return false;
4652 }
4653 
4654 /// parseDIDerivedType:
4655 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4656 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4657 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4658 ///                      dwarfAddressSpace: 3)
4659 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4661   REQUIRED(tag, DwarfTagField, );                                              \
4662   OPTIONAL(name, MDStringField, );                                             \
4663   OPTIONAL(file, MDField, );                                                   \
4664   OPTIONAL(line, LineField, );                                                 \
4665   OPTIONAL(scope, MDField, );                                                  \
4666   REQUIRED(baseType, MDField, );                                               \
4667   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4668   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4669   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4670   OPTIONAL(flags, DIFlagField, );                                              \
4671   OPTIONAL(extraData, MDField, );                                              \
4672   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4673   OPTIONAL(annotations, MDField, );
4674   PARSE_MD_FIELDS();
4675 #undef VISIT_MD_FIELDS
4676 
4677   Optional<unsigned> DWARFAddressSpace;
4678   if (dwarfAddressSpace.Val != UINT32_MAX)
4679     DWARFAddressSpace = dwarfAddressSpace.Val;
4680 
4681   Result = GET_OR_DISTINCT(DIDerivedType,
4682                            (Context, tag.Val, name.Val, file.Val, line.Val,
4683                             scope.Val, baseType.Val, size.Val, align.Val,
4684                             offset.Val, DWARFAddressSpace, flags.Val,
4685                             extraData.Val, annotations.Val));
4686   return false;
4687 }
4688 
4689 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4690 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4691   REQUIRED(tag, DwarfTagField, );                                              \
4692   OPTIONAL(name, MDStringField, );                                             \
4693   OPTIONAL(file, MDField, );                                                   \
4694   OPTIONAL(line, LineField, );                                                 \
4695   OPTIONAL(scope, MDField, );                                                  \
4696   OPTIONAL(baseType, MDField, );                                               \
4697   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4698   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4699   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4700   OPTIONAL(flags, DIFlagField, );                                              \
4701   OPTIONAL(elements, MDField, );                                               \
4702   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4703   OPTIONAL(vtableHolder, MDField, );                                           \
4704   OPTIONAL(templateParams, MDField, );                                         \
4705   OPTIONAL(identifier, MDStringField, );                                       \
4706   OPTIONAL(discriminator, MDField, );                                          \
4707   OPTIONAL(dataLocation, MDField, );                                           \
4708   OPTIONAL(associated, MDField, );                                             \
4709   OPTIONAL(allocated, MDField, );                                              \
4710   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4711   OPTIONAL(annotations, MDField, );
4712   PARSE_MD_FIELDS();
4713 #undef VISIT_MD_FIELDS
4714 
4715   Metadata *Rank = nullptr;
4716   if (rank.isMDSignedField())
4717     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4718         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4719   else if (rank.isMDField())
4720     Rank = rank.getMDFieldValue();
4721 
4722   // If this has an identifier try to build an ODR type.
4723   if (identifier.Val)
4724     if (auto *CT = DICompositeType::buildODRType(
4725             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4726             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4727             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4728             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4729             Rank, annotations.Val)) {
4730       Result = CT;
4731       return false;
4732     }
4733 
4734   // Create a new node, and save it in the context if it belongs in the type
4735   // map.
4736   Result = GET_OR_DISTINCT(
4737       DICompositeType,
4738       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4739        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4740        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4741        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4742        annotations.Val));
4743   return false;
4744 }
4745 
4746 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4748   OPTIONAL(flags, DIFlagField, );                                              \
4749   OPTIONAL(cc, DwarfCCField, );                                                \
4750   REQUIRED(types, MDField, );
4751   PARSE_MD_FIELDS();
4752 #undef VISIT_MD_FIELDS
4753 
4754   Result = GET_OR_DISTINCT(DISubroutineType,
4755                            (Context, flags.Val, cc.Val, types.Val));
4756   return false;
4757 }
4758 
4759 /// parseDIFileType:
4760 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4761 ///                   checksumkind: CSK_MD5,
4762 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4763 ///                   source: "source file contents")
4764 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4765   // The default constructed value for checksumkind is required, but will never
4766   // be used, as the parser checks if the field was actually Seen before using
4767   // the Val.
4768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4769   REQUIRED(filename, MDStringField, );                                         \
4770   REQUIRED(directory, MDStringField, );                                        \
4771   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4772   OPTIONAL(checksum, MDStringField, );                                         \
4773   OPTIONAL(source, MDStringField, );
4774   PARSE_MD_FIELDS();
4775 #undef VISIT_MD_FIELDS
4776 
4777   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4778   if (checksumkind.Seen && checksum.Seen)
4779     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4780   else if (checksumkind.Seen || checksum.Seen)
4781     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4782 
4783   Optional<MDString *> OptSource;
4784   if (source.Seen)
4785     OptSource = source.Val;
4786   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4787                                     OptChecksum, OptSource));
4788   return false;
4789 }
4790 
4791 /// parseDICompileUnit:
4792 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4793 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4794 ///                      splitDebugFilename: "abc.debug",
4795 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4796 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4797 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4798 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4799   if (!IsDistinct)
4800     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4801 
4802 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4803   REQUIRED(language, DwarfLangField, );                                        \
4804   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4805   OPTIONAL(producer, MDStringField, );                                         \
4806   OPTIONAL(isOptimized, MDBoolField, );                                        \
4807   OPTIONAL(flags, MDStringField, );                                            \
4808   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4809   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4810   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4811   OPTIONAL(enums, MDField, );                                                  \
4812   OPTIONAL(retainedTypes, MDField, );                                          \
4813   OPTIONAL(globals, MDField, );                                                \
4814   OPTIONAL(imports, MDField, );                                                \
4815   OPTIONAL(macros, MDField, );                                                 \
4816   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4817   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4818   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4819   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4820   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4821   OPTIONAL(sysroot, MDStringField, );                                          \
4822   OPTIONAL(sdk, MDStringField, );
4823   PARSE_MD_FIELDS();
4824 #undef VISIT_MD_FIELDS
4825 
4826   Result = DICompileUnit::getDistinct(
4827       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4828       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4829       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4830       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4831       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4832   return false;
4833 }
4834 
4835 /// parseDISubprogram:
4836 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4837 ///                     file: !1, line: 7, type: !2, isLocal: false,
4838 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4839 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4840 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4841 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4842 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4843 ///                     annotations: !8)
4844 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4845   auto Loc = Lex.getLoc();
4846 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4847   OPTIONAL(scope, MDField, );                                                  \
4848   OPTIONAL(name, MDStringField, );                                             \
4849   OPTIONAL(linkageName, MDStringField, );                                      \
4850   OPTIONAL(file, MDField, );                                                   \
4851   OPTIONAL(line, LineField, );                                                 \
4852   OPTIONAL(type, MDField, );                                                   \
4853   OPTIONAL(isLocal, MDBoolField, );                                            \
4854   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4855   OPTIONAL(scopeLine, LineField, );                                            \
4856   OPTIONAL(containingType, MDField, );                                         \
4857   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4858   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4859   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4860   OPTIONAL(flags, DIFlagField, );                                              \
4861   OPTIONAL(spFlags, DISPFlagField, );                                          \
4862   OPTIONAL(isOptimized, MDBoolField, );                                        \
4863   OPTIONAL(unit, MDField, );                                                   \
4864   OPTIONAL(templateParams, MDField, );                                         \
4865   OPTIONAL(declaration, MDField, );                                            \
4866   OPTIONAL(retainedNodes, MDField, );                                          \
4867   OPTIONAL(thrownTypes, MDField, );                                            \
4868   OPTIONAL(annotations, MDField, );                                            \
4869   OPTIONAL(targetFuncName, MDStringField, );
4870   PARSE_MD_FIELDS();
4871 #undef VISIT_MD_FIELDS
4872 
4873   // An explicit spFlags field takes precedence over individual fields in
4874   // older IR versions.
4875   DISubprogram::DISPFlags SPFlags =
4876       spFlags.Seen ? spFlags.Val
4877                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4878                                              isOptimized.Val, virtuality.Val);
4879   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4880     return Lex.Error(
4881         Loc,
4882         "missing 'distinct', required for !DISubprogram that is a Definition");
4883   Result = GET_OR_DISTINCT(
4884       DISubprogram,
4885       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4886        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4887        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4888        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
4889        targetFuncName.Val));
4890   return false;
4891 }
4892 
4893 /// parseDILexicalBlock:
4894 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4895 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4897   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4898   OPTIONAL(file, MDField, );                                                   \
4899   OPTIONAL(line, LineField, );                                                 \
4900   OPTIONAL(column, ColumnField, );
4901   PARSE_MD_FIELDS();
4902 #undef VISIT_MD_FIELDS
4903 
4904   Result = GET_OR_DISTINCT(
4905       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4906   return false;
4907 }
4908 
4909 /// parseDILexicalBlockFile:
4910 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4911 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4913   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4914   OPTIONAL(file, MDField, );                                                   \
4915   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4916   PARSE_MD_FIELDS();
4917 #undef VISIT_MD_FIELDS
4918 
4919   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4920                            (Context, scope.Val, file.Val, discriminator.Val));
4921   return false;
4922 }
4923 
4924 /// parseDICommonBlock:
4925 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4926 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4927 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4928   REQUIRED(scope, MDField, );                                                  \
4929   OPTIONAL(declaration, MDField, );                                            \
4930   OPTIONAL(name, MDStringField, );                                             \
4931   OPTIONAL(file, MDField, );                                                   \
4932   OPTIONAL(line, LineField, );
4933   PARSE_MD_FIELDS();
4934 #undef VISIT_MD_FIELDS
4935 
4936   Result = GET_OR_DISTINCT(DICommonBlock,
4937                            (Context, scope.Val, declaration.Val, name.Val,
4938                             file.Val, line.Val));
4939   return false;
4940 }
4941 
4942 /// parseDINamespace:
4943 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4944 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4945 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4946   REQUIRED(scope, MDField, );                                                  \
4947   OPTIONAL(name, MDStringField, );                                             \
4948   OPTIONAL(exportSymbols, MDBoolField, );
4949   PARSE_MD_FIELDS();
4950 #undef VISIT_MD_FIELDS
4951 
4952   Result = GET_OR_DISTINCT(DINamespace,
4953                            (Context, scope.Val, name.Val, exportSymbols.Val));
4954   return false;
4955 }
4956 
4957 /// parseDIMacro:
4958 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4959 ///   "SomeValue")
4960 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4962   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4963   OPTIONAL(line, LineField, );                                                 \
4964   REQUIRED(name, MDStringField, );                                             \
4965   OPTIONAL(value, MDStringField, );
4966   PARSE_MD_FIELDS();
4967 #undef VISIT_MD_FIELDS
4968 
4969   Result = GET_OR_DISTINCT(DIMacro,
4970                            (Context, type.Val, line.Val, name.Val, value.Val));
4971   return false;
4972 }
4973 
4974 /// parseDIMacroFile:
4975 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4976 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4978   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4979   OPTIONAL(line, LineField, );                                                 \
4980   REQUIRED(file, MDField, );                                                   \
4981   OPTIONAL(nodes, MDField, );
4982   PARSE_MD_FIELDS();
4983 #undef VISIT_MD_FIELDS
4984 
4985   Result = GET_OR_DISTINCT(DIMacroFile,
4986                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4987   return false;
4988 }
4989 
4990 /// parseDIModule:
4991 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4992 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4993 ///   file: !1, line: 4, isDecl: false)
4994 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4995 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4996   REQUIRED(scope, MDField, );                                                  \
4997   REQUIRED(name, MDStringField, );                                             \
4998   OPTIONAL(configMacros, MDStringField, );                                     \
4999   OPTIONAL(includePath, MDStringField, );                                      \
5000   OPTIONAL(apinotes, MDStringField, );                                         \
5001   OPTIONAL(file, MDField, );                                                   \
5002   OPTIONAL(line, LineField, );                                                 \
5003   OPTIONAL(isDecl, MDBoolField, );
5004   PARSE_MD_FIELDS();
5005 #undef VISIT_MD_FIELDS
5006 
5007   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5008                                       configMacros.Val, includePath.Val,
5009                                       apinotes.Val, line.Val, isDecl.Val));
5010   return false;
5011 }
5012 
5013 /// parseDITemplateTypeParameter:
5014 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5015 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5016 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5017   OPTIONAL(name, MDStringField, );                                             \
5018   REQUIRED(type, MDField, );                                                   \
5019   OPTIONAL(defaulted, MDBoolField, );
5020   PARSE_MD_FIELDS();
5021 #undef VISIT_MD_FIELDS
5022 
5023   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5024                            (Context, name.Val, type.Val, defaulted.Val));
5025   return false;
5026 }
5027 
5028 /// parseDITemplateValueParameter:
5029 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5030 ///                                 name: "V", type: !1, defaulted: false,
5031 ///                                 value: i32 7)
5032 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5034   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5035   OPTIONAL(name, MDStringField, );                                             \
5036   OPTIONAL(type, MDField, );                                                   \
5037   OPTIONAL(defaulted, MDBoolField, );                                          \
5038   REQUIRED(value, MDField, );
5039 
5040   PARSE_MD_FIELDS();
5041 #undef VISIT_MD_FIELDS
5042 
5043   Result = GET_OR_DISTINCT(
5044       DITemplateValueParameter,
5045       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5046   return false;
5047 }
5048 
5049 /// parseDIGlobalVariable:
5050 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5051 ///                         file: !1, line: 7, type: !2, isLocal: false,
5052 ///                         isDefinition: true, templateParams: !3,
5053 ///                         declaration: !4, align: 8)
5054 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5055 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5056   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5057   OPTIONAL(scope, MDField, );                                                  \
5058   OPTIONAL(linkageName, MDStringField, );                                      \
5059   OPTIONAL(file, MDField, );                                                   \
5060   OPTIONAL(line, LineField, );                                                 \
5061   OPTIONAL(type, MDField, );                                                   \
5062   OPTIONAL(isLocal, MDBoolField, );                                            \
5063   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5064   OPTIONAL(templateParams, MDField, );                                         \
5065   OPTIONAL(declaration, MDField, );                                            \
5066   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5067   OPTIONAL(annotations, MDField, );
5068   PARSE_MD_FIELDS();
5069 #undef VISIT_MD_FIELDS
5070 
5071   Result =
5072       GET_OR_DISTINCT(DIGlobalVariable,
5073                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5074                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5075                        declaration.Val, templateParams.Val, align.Val,
5076                        annotations.Val));
5077   return false;
5078 }
5079 
5080 /// parseDILocalVariable:
5081 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5082 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5083 ///                        align: 8)
5084 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5085 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5086 ///                        align: 8)
5087 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5088 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5089   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5090   OPTIONAL(name, MDStringField, );                                             \
5091   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5092   OPTIONAL(file, MDField, );                                                   \
5093   OPTIONAL(line, LineField, );                                                 \
5094   OPTIONAL(type, MDField, );                                                   \
5095   OPTIONAL(flags, DIFlagField, );                                              \
5096   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5097   OPTIONAL(annotations, MDField, );
5098   PARSE_MD_FIELDS();
5099 #undef VISIT_MD_FIELDS
5100 
5101   Result = GET_OR_DISTINCT(DILocalVariable,
5102                            (Context, scope.Val, name.Val, file.Val, line.Val,
5103                             type.Val, arg.Val, flags.Val, align.Val,
5104                             annotations.Val));
5105   return false;
5106 }
5107 
5108 /// parseDILabel:
5109 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5110 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5111 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5112   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5113   REQUIRED(name, MDStringField, );                                             \
5114   REQUIRED(file, MDField, );                                                   \
5115   REQUIRED(line, LineField, );
5116   PARSE_MD_FIELDS();
5117 #undef VISIT_MD_FIELDS
5118 
5119   Result = GET_OR_DISTINCT(DILabel,
5120                            (Context, scope.Val, name.Val, file.Val, line.Val));
5121   return false;
5122 }
5123 
5124 /// parseDIExpression:
5125 ///   ::= !DIExpression(0, 7, -1)
5126 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5127   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5128   Lex.Lex();
5129 
5130   if (parseToken(lltok::lparen, "expected '(' here"))
5131     return true;
5132 
5133   SmallVector<uint64_t, 8> Elements;
5134   if (Lex.getKind() != lltok::rparen)
5135     do {
5136       if (Lex.getKind() == lltok::DwarfOp) {
5137         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5138           Lex.Lex();
5139           Elements.push_back(Op);
5140           continue;
5141         }
5142         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5143       }
5144 
5145       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5146         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5147           Lex.Lex();
5148           Elements.push_back(Op);
5149           continue;
5150         }
5151         return tokError(Twine("invalid DWARF attribute encoding '") +
5152                         Lex.getStrVal() + "'");
5153       }
5154 
5155       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5156         return tokError("expected unsigned integer");
5157 
5158       auto &U = Lex.getAPSIntVal();
5159       if (U.ugt(UINT64_MAX))
5160         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5161       Elements.push_back(U.getZExtValue());
5162       Lex.Lex();
5163     } while (EatIfPresent(lltok::comma));
5164 
5165   if (parseToken(lltok::rparen, "expected ')' here"))
5166     return true;
5167 
5168   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5169   return false;
5170 }
5171 
5172 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5173   return parseDIArgList(Result, IsDistinct, nullptr);
5174 }
5175 /// ParseDIArgList:
5176 ///   ::= !DIArgList(i32 7, i64 %0)
5177 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5178                               PerFunctionState *PFS) {
5179   assert(PFS && "Expected valid function state");
5180   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5181   Lex.Lex();
5182 
5183   if (parseToken(lltok::lparen, "expected '(' here"))
5184     return true;
5185 
5186   SmallVector<ValueAsMetadata *, 4> Args;
5187   if (Lex.getKind() != lltok::rparen)
5188     do {
5189       Metadata *MD;
5190       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5191         return true;
5192       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5193     } while (EatIfPresent(lltok::comma));
5194 
5195   if (parseToken(lltok::rparen, "expected ')' here"))
5196     return true;
5197 
5198   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5199   return false;
5200 }
5201 
5202 /// parseDIGlobalVariableExpression:
5203 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5204 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5205                                                bool IsDistinct) {
5206 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5207   REQUIRED(var, MDField, );                                                    \
5208   REQUIRED(expr, MDField, );
5209   PARSE_MD_FIELDS();
5210 #undef VISIT_MD_FIELDS
5211 
5212   Result =
5213       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5214   return false;
5215 }
5216 
5217 /// parseDIObjCProperty:
5218 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5219 ///                       getter: "getFoo", attributes: 7, type: !2)
5220 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5221 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5222   OPTIONAL(name, MDStringField, );                                             \
5223   OPTIONAL(file, MDField, );                                                   \
5224   OPTIONAL(line, LineField, );                                                 \
5225   OPTIONAL(setter, MDStringField, );                                           \
5226   OPTIONAL(getter, MDStringField, );                                           \
5227   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5228   OPTIONAL(type, MDField, );
5229   PARSE_MD_FIELDS();
5230 #undef VISIT_MD_FIELDS
5231 
5232   Result = GET_OR_DISTINCT(DIObjCProperty,
5233                            (Context, name.Val, file.Val, line.Val, setter.Val,
5234                             getter.Val, attributes.Val, type.Val));
5235   return false;
5236 }
5237 
5238 /// parseDIImportedEntity:
5239 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5240 ///                         line: 7, name: "foo", elements: !2)
5241 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5242 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5243   REQUIRED(tag, DwarfTagField, );                                              \
5244   REQUIRED(scope, MDField, );                                                  \
5245   OPTIONAL(entity, MDField, );                                                 \
5246   OPTIONAL(file, MDField, );                                                   \
5247   OPTIONAL(line, LineField, );                                                 \
5248   OPTIONAL(name, MDStringField, );                                             \
5249   OPTIONAL(elements, MDField, );
5250   PARSE_MD_FIELDS();
5251 #undef VISIT_MD_FIELDS
5252 
5253   Result = GET_OR_DISTINCT(DIImportedEntity,
5254                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5255                             line.Val, name.Val, elements.Val));
5256   return false;
5257 }
5258 
5259 #undef PARSE_MD_FIELD
5260 #undef NOP_FIELD
5261 #undef REQUIRE_FIELD
5262 #undef DECLARE_FIELD
5263 
5264 /// parseMetadataAsValue
5265 ///  ::= metadata i32 %local
5266 ///  ::= metadata i32 @global
5267 ///  ::= metadata i32 7
5268 ///  ::= metadata !0
5269 ///  ::= metadata !{...}
5270 ///  ::= metadata !"string"
5271 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5272   // Note: the type 'metadata' has already been parsed.
5273   Metadata *MD;
5274   if (parseMetadata(MD, &PFS))
5275     return true;
5276 
5277   V = MetadataAsValue::get(Context, MD);
5278   return false;
5279 }
5280 
5281 /// parseValueAsMetadata
5282 ///  ::= i32 %local
5283 ///  ::= i32 @global
5284 ///  ::= i32 7
5285 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5286                                     PerFunctionState *PFS) {
5287   Type *Ty;
5288   LocTy Loc;
5289   if (parseType(Ty, TypeMsg, Loc))
5290     return true;
5291   if (Ty->isMetadataTy())
5292     return error(Loc, "invalid metadata-value-metadata roundtrip");
5293 
5294   Value *V;
5295   if (parseValue(Ty, V, PFS))
5296     return true;
5297 
5298   MD = ValueAsMetadata::get(V);
5299   return false;
5300 }
5301 
5302 /// parseMetadata
5303 ///  ::= i32 %local
5304 ///  ::= i32 @global
5305 ///  ::= i32 7
5306 ///  ::= !42
5307 ///  ::= !{...}
5308 ///  ::= !"string"
5309 ///  ::= !DILocation(...)
5310 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5311   if (Lex.getKind() == lltok::MetadataVar) {
5312     MDNode *N;
5313     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5314     // so parsing this requires a Function State.
5315     if (Lex.getStrVal() == "DIArgList") {
5316       if (parseDIArgList(N, false, PFS))
5317         return true;
5318     } else if (parseSpecializedMDNode(N)) {
5319       return true;
5320     }
5321     MD = N;
5322     return false;
5323   }
5324 
5325   // ValueAsMetadata:
5326   // <type> <value>
5327   if (Lex.getKind() != lltok::exclaim)
5328     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5329 
5330   // '!'.
5331   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5332   Lex.Lex();
5333 
5334   // MDString:
5335   //   ::= '!' STRINGCONSTANT
5336   if (Lex.getKind() == lltok::StringConstant) {
5337     MDString *S;
5338     if (parseMDString(S))
5339       return true;
5340     MD = S;
5341     return false;
5342   }
5343 
5344   // MDNode:
5345   // !{ ... }
5346   // !7
5347   MDNode *N;
5348   if (parseMDNodeTail(N))
5349     return true;
5350   MD = N;
5351   return false;
5352 }
5353 
5354 //===----------------------------------------------------------------------===//
5355 // Function Parsing.
5356 //===----------------------------------------------------------------------===//
5357 
5358 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5359                                    PerFunctionState *PFS) {
5360   if (Ty->isFunctionTy())
5361     return error(ID.Loc, "functions are not values, refer to them as pointers");
5362 
5363   switch (ID.Kind) {
5364   case ValID::t_LocalID:
5365     if (!PFS)
5366       return error(ID.Loc, "invalid use of function-local name");
5367     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5368     return V == nullptr;
5369   case ValID::t_LocalName:
5370     if (!PFS)
5371       return error(ID.Loc, "invalid use of function-local name");
5372     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5373     return V == nullptr;
5374   case ValID::t_InlineAsm: {
5375     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5376       return error(ID.Loc, "invalid type for inline asm constraint string");
5377     V = InlineAsm::get(
5378         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5379         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5380     return false;
5381   }
5382   case ValID::t_GlobalName:
5383     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5384     if (V && ID.NoCFI)
5385       V = NoCFIValue::get(cast<GlobalValue>(V));
5386     return V == nullptr;
5387   case ValID::t_GlobalID:
5388     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5389     if (V && ID.NoCFI)
5390       V = NoCFIValue::get(cast<GlobalValue>(V));
5391     return V == nullptr;
5392   case ValID::t_APSInt:
5393     if (!Ty->isIntegerTy())
5394       return error(ID.Loc, "integer constant must have integer type");
5395     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5396     V = ConstantInt::get(Context, ID.APSIntVal);
5397     return false;
5398   case ValID::t_APFloat:
5399     if (!Ty->isFloatingPointTy() ||
5400         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5401       return error(ID.Loc, "floating point constant invalid for type");
5402 
5403     // The lexer has no type info, so builds all half, bfloat, float, and double
5404     // FP constants as double.  Fix this here.  Long double does not need this.
5405     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5406       // Check for signaling before potentially converting and losing that info.
5407       bool IsSNAN = ID.APFloatVal.isSignaling();
5408       bool Ignored;
5409       if (Ty->isHalfTy())
5410         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5411                               &Ignored);
5412       else if (Ty->isBFloatTy())
5413         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5414                               &Ignored);
5415       else if (Ty->isFloatTy())
5416         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5417                               &Ignored);
5418       if (IsSNAN) {
5419         // The convert call above may quiet an SNaN, so manufacture another
5420         // SNaN. The bitcast works because the payload (significand) parameter
5421         // is truncated to fit.
5422         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5423         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5424                                          ID.APFloatVal.isNegative(), &Payload);
5425       }
5426     }
5427     V = ConstantFP::get(Context, ID.APFloatVal);
5428 
5429     if (V->getType() != Ty)
5430       return error(ID.Loc, "floating point constant does not have type '" +
5431                                getTypeString(Ty) + "'");
5432 
5433     return false;
5434   case ValID::t_Null:
5435     if (!Ty->isPointerTy())
5436       return error(ID.Loc, "null must be a pointer type");
5437     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5438     return false;
5439   case ValID::t_Undef:
5440     // FIXME: LabelTy should not be a first-class type.
5441     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5442       return error(ID.Loc, "invalid type for undef constant");
5443     V = UndefValue::get(Ty);
5444     return false;
5445   case ValID::t_EmptyArray:
5446     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5447       return error(ID.Loc, "invalid empty array initializer");
5448     V = UndefValue::get(Ty);
5449     return false;
5450   case ValID::t_Zero:
5451     // FIXME: LabelTy should not be a first-class type.
5452     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5453       return error(ID.Loc, "invalid type for null constant");
5454     V = Constant::getNullValue(Ty);
5455     return false;
5456   case ValID::t_None:
5457     if (!Ty->isTokenTy())
5458       return error(ID.Loc, "invalid type for none constant");
5459     V = Constant::getNullValue(Ty);
5460     return false;
5461   case ValID::t_Poison:
5462     // FIXME: LabelTy should not be a first-class type.
5463     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5464       return error(ID.Loc, "invalid type for poison constant");
5465     V = PoisonValue::get(Ty);
5466     return false;
5467   case ValID::t_Constant:
5468     if (ID.ConstantVal->getType() != Ty)
5469       return error(ID.Loc, "constant expression type mismatch: got type '" +
5470                                getTypeString(ID.ConstantVal->getType()) +
5471                                "' but expected '" + getTypeString(Ty) + "'");
5472     V = ID.ConstantVal;
5473     return false;
5474   case ValID::t_ConstantStruct:
5475   case ValID::t_PackedConstantStruct:
5476     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5477       if (ST->getNumElements() != ID.UIntVal)
5478         return error(ID.Loc,
5479                      "initializer with struct type has wrong # elements");
5480       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5481         return error(ID.Loc, "packed'ness of initializer and type don't match");
5482 
5483       // Verify that the elements are compatible with the structtype.
5484       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5485         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5486           return error(
5487               ID.Loc,
5488               "element " + Twine(i) +
5489                   " of struct initializer doesn't match struct element type");
5490 
5491       V = ConstantStruct::get(
5492           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5493     } else
5494       return error(ID.Loc, "constant expression type mismatch");
5495     return false;
5496   }
5497   llvm_unreachable("Invalid ValID");
5498 }
5499 
5500 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5501   C = nullptr;
5502   ValID ID;
5503   auto Loc = Lex.getLoc();
5504   if (parseValID(ID, /*PFS=*/nullptr))
5505     return true;
5506   switch (ID.Kind) {
5507   case ValID::t_APSInt:
5508   case ValID::t_APFloat:
5509   case ValID::t_Undef:
5510   case ValID::t_Constant:
5511   case ValID::t_ConstantStruct:
5512   case ValID::t_PackedConstantStruct: {
5513     Value *V;
5514     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5515       return true;
5516     assert(isa<Constant>(V) && "Expected a constant value");
5517     C = cast<Constant>(V);
5518     return false;
5519   }
5520   case ValID::t_Null:
5521     C = Constant::getNullValue(Ty);
5522     return false;
5523   default:
5524     return error(Loc, "expected a constant value");
5525   }
5526 }
5527 
5528 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5529   V = nullptr;
5530   ValID ID;
5531   return parseValID(ID, PFS, Ty) ||
5532          convertValIDToValue(Ty, ID, V, PFS);
5533 }
5534 
5535 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5536   Type *Ty = nullptr;
5537   return parseType(Ty) || parseValue(Ty, V, PFS);
5538 }
5539 
5540 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5541                                       PerFunctionState &PFS) {
5542   Value *V;
5543   Loc = Lex.getLoc();
5544   if (parseTypeAndValue(V, PFS))
5545     return true;
5546   if (!isa<BasicBlock>(V))
5547     return error(Loc, "expected a basic block");
5548   BB = cast<BasicBlock>(V);
5549   return false;
5550 }
5551 
5552 /// FunctionHeader
5553 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5554 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5555 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5556 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5557 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5558   // parse the linkage.
5559   LocTy LinkageLoc = Lex.getLoc();
5560   unsigned Linkage;
5561   unsigned Visibility;
5562   unsigned DLLStorageClass;
5563   bool DSOLocal;
5564   AttrBuilder RetAttrs(M->getContext());
5565   unsigned CC;
5566   bool HasLinkage;
5567   Type *RetType = nullptr;
5568   LocTy RetTypeLoc = Lex.getLoc();
5569   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5570                            DSOLocal) ||
5571       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5572       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5573     return true;
5574 
5575   // Verify that the linkage is ok.
5576   switch ((GlobalValue::LinkageTypes)Linkage) {
5577   case GlobalValue::ExternalLinkage:
5578     break; // always ok.
5579   case GlobalValue::ExternalWeakLinkage:
5580     if (IsDefine)
5581       return error(LinkageLoc, "invalid linkage for function definition");
5582     break;
5583   case GlobalValue::PrivateLinkage:
5584   case GlobalValue::InternalLinkage:
5585   case GlobalValue::AvailableExternallyLinkage:
5586   case GlobalValue::LinkOnceAnyLinkage:
5587   case GlobalValue::LinkOnceODRLinkage:
5588   case GlobalValue::WeakAnyLinkage:
5589   case GlobalValue::WeakODRLinkage:
5590     if (!IsDefine)
5591       return error(LinkageLoc, "invalid linkage for function declaration");
5592     break;
5593   case GlobalValue::AppendingLinkage:
5594   case GlobalValue::CommonLinkage:
5595     return error(LinkageLoc, "invalid function linkage type");
5596   }
5597 
5598   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5599     return error(LinkageLoc,
5600                  "symbol with local linkage must have default visibility");
5601 
5602   if (!FunctionType::isValidReturnType(RetType))
5603     return error(RetTypeLoc, "invalid function return type");
5604 
5605   LocTy NameLoc = Lex.getLoc();
5606 
5607   std::string FunctionName;
5608   if (Lex.getKind() == lltok::GlobalVar) {
5609     FunctionName = Lex.getStrVal();
5610   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5611     unsigned NameID = Lex.getUIntVal();
5612 
5613     if (NameID != NumberedVals.size())
5614       return tokError("function expected to be numbered '%" +
5615                       Twine(NumberedVals.size()) + "'");
5616   } else {
5617     return tokError("expected function name");
5618   }
5619 
5620   Lex.Lex();
5621 
5622   if (Lex.getKind() != lltok::lparen)
5623     return tokError("expected '(' in function argument list");
5624 
5625   SmallVector<ArgInfo, 8> ArgList;
5626   bool IsVarArg;
5627   AttrBuilder FuncAttrs(M->getContext());
5628   std::vector<unsigned> FwdRefAttrGrps;
5629   LocTy BuiltinLoc;
5630   std::string Section;
5631   std::string Partition;
5632   MaybeAlign Alignment;
5633   std::string GC;
5634   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5635   unsigned AddrSpace = 0;
5636   Constant *Prefix = nullptr;
5637   Constant *Prologue = nullptr;
5638   Constant *PersonalityFn = nullptr;
5639   Comdat *C;
5640 
5641   if (parseArgumentList(ArgList, IsVarArg) ||
5642       parseOptionalUnnamedAddr(UnnamedAddr) ||
5643       parseOptionalProgramAddrSpace(AddrSpace) ||
5644       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5645                                  BuiltinLoc) ||
5646       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5647       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5648       parseOptionalComdat(FunctionName, C) ||
5649       parseOptionalAlignment(Alignment) ||
5650       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5651       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5652       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5653       (EatIfPresent(lltok::kw_personality) &&
5654        parseGlobalTypeAndValue(PersonalityFn)))
5655     return true;
5656 
5657   if (FuncAttrs.contains(Attribute::Builtin))
5658     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5659 
5660   // If the alignment was parsed as an attribute, move to the alignment field.
5661   if (FuncAttrs.hasAlignmentAttr()) {
5662     Alignment = FuncAttrs.getAlignment();
5663     FuncAttrs.removeAttribute(Attribute::Alignment);
5664   }
5665 
5666   // Okay, if we got here, the function is syntactically valid.  Convert types
5667   // and do semantic checks.
5668   std::vector<Type*> ParamTypeList;
5669   SmallVector<AttributeSet, 8> Attrs;
5670 
5671   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5672     ParamTypeList.push_back(ArgList[i].Ty);
5673     Attrs.push_back(ArgList[i].Attrs);
5674   }
5675 
5676   AttributeList PAL =
5677       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5678                          AttributeSet::get(Context, RetAttrs), Attrs);
5679 
5680   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5681     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5682 
5683   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5684   PointerType *PFT = PointerType::get(FT, AddrSpace);
5685 
5686   Fn = nullptr;
5687   GlobalValue *FwdFn = nullptr;
5688   if (!FunctionName.empty()) {
5689     // If this was a definition of a forward reference, remove the definition
5690     // from the forward reference table and fill in the forward ref.
5691     auto FRVI = ForwardRefVals.find(FunctionName);
5692     if (FRVI != ForwardRefVals.end()) {
5693       FwdFn = FRVI->second.first;
5694       if (!FwdFn->getType()->isOpaque() &&
5695           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5696         return error(FRVI->second.second, "invalid forward reference to "
5697                                           "function as global value!");
5698       if (FwdFn->getType() != PFT)
5699         return error(FRVI->second.second,
5700                      "invalid forward reference to "
5701                      "function '" +
5702                          FunctionName +
5703                          "' with wrong type: "
5704                          "expected '" +
5705                          getTypeString(PFT) + "' but was '" +
5706                          getTypeString(FwdFn->getType()) + "'");
5707       ForwardRefVals.erase(FRVI);
5708     } else if ((Fn = M->getFunction(FunctionName))) {
5709       // Reject redefinitions.
5710       return error(NameLoc,
5711                    "invalid redefinition of function '" + FunctionName + "'");
5712     } else if (M->getNamedValue(FunctionName)) {
5713       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5714     }
5715 
5716   } else {
5717     // If this is a definition of a forward referenced function, make sure the
5718     // types agree.
5719     auto I = ForwardRefValIDs.find(NumberedVals.size());
5720     if (I != ForwardRefValIDs.end()) {
5721       FwdFn = I->second.first;
5722       if (FwdFn->getType() != PFT)
5723         return error(NameLoc, "type of definition and forward reference of '@" +
5724                                   Twine(NumberedVals.size()) +
5725                                   "' disagree: "
5726                                   "expected '" +
5727                                   getTypeString(PFT) + "' but was '" +
5728                                   getTypeString(FwdFn->getType()) + "'");
5729       ForwardRefValIDs.erase(I);
5730     }
5731   }
5732 
5733   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5734                         FunctionName, M);
5735 
5736   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5737 
5738   if (FunctionName.empty())
5739     NumberedVals.push_back(Fn);
5740 
5741   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5742   maybeSetDSOLocal(DSOLocal, *Fn);
5743   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5744   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5745   Fn->setCallingConv(CC);
5746   Fn->setAttributes(PAL);
5747   Fn->setUnnamedAddr(UnnamedAddr);
5748   Fn->setAlignment(MaybeAlign(Alignment));
5749   Fn->setSection(Section);
5750   Fn->setPartition(Partition);
5751   Fn->setComdat(C);
5752   Fn->setPersonalityFn(PersonalityFn);
5753   if (!GC.empty()) Fn->setGC(GC);
5754   Fn->setPrefixData(Prefix);
5755   Fn->setPrologueData(Prologue);
5756   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5757 
5758   // Add all of the arguments we parsed to the function.
5759   Function::arg_iterator ArgIt = Fn->arg_begin();
5760   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5761     // If the argument has a name, insert it into the argument symbol table.
5762     if (ArgList[i].Name.empty()) continue;
5763 
5764     // Set the name, if it conflicted, it will be auto-renamed.
5765     ArgIt->setName(ArgList[i].Name);
5766 
5767     if (ArgIt->getName() != ArgList[i].Name)
5768       return error(ArgList[i].Loc,
5769                    "redefinition of argument '%" + ArgList[i].Name + "'");
5770   }
5771 
5772   if (FwdFn) {
5773     FwdFn->replaceAllUsesWith(Fn);
5774     FwdFn->eraseFromParent();
5775   }
5776 
5777   if (IsDefine)
5778     return false;
5779 
5780   // Check the declaration has no block address forward references.
5781   ValID ID;
5782   if (FunctionName.empty()) {
5783     ID.Kind = ValID::t_GlobalID;
5784     ID.UIntVal = NumberedVals.size() - 1;
5785   } else {
5786     ID.Kind = ValID::t_GlobalName;
5787     ID.StrVal = FunctionName;
5788   }
5789   auto Blocks = ForwardRefBlockAddresses.find(ID);
5790   if (Blocks != ForwardRefBlockAddresses.end())
5791     return error(Blocks->first.Loc,
5792                  "cannot take blockaddress inside a declaration");
5793   return false;
5794 }
5795 
5796 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5797   ValID ID;
5798   if (FunctionNumber == -1) {
5799     ID.Kind = ValID::t_GlobalName;
5800     ID.StrVal = std::string(F.getName());
5801   } else {
5802     ID.Kind = ValID::t_GlobalID;
5803     ID.UIntVal = FunctionNumber;
5804   }
5805 
5806   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5807   if (Blocks == P.ForwardRefBlockAddresses.end())
5808     return false;
5809 
5810   for (const auto &I : Blocks->second) {
5811     const ValID &BBID = I.first;
5812     GlobalValue *GV = I.second;
5813 
5814     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5815            "Expected local id or name");
5816     BasicBlock *BB;
5817     if (BBID.Kind == ValID::t_LocalName)
5818       BB = getBB(BBID.StrVal, BBID.Loc);
5819     else
5820       BB = getBB(BBID.UIntVal, BBID.Loc);
5821     if (!BB)
5822       return P.error(BBID.Loc, "referenced value is not a basic block");
5823 
5824     Value *ResolvedVal = BlockAddress::get(&F, BB);
5825     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5826                                            ResolvedVal);
5827     if (!ResolvedVal)
5828       return true;
5829     GV->replaceAllUsesWith(ResolvedVal);
5830     GV->eraseFromParent();
5831   }
5832 
5833   P.ForwardRefBlockAddresses.erase(Blocks);
5834   return false;
5835 }
5836 
5837 /// parseFunctionBody
5838 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5839 bool LLParser::parseFunctionBody(Function &Fn) {
5840   if (Lex.getKind() != lltok::lbrace)
5841     return tokError("expected '{' in function body");
5842   Lex.Lex();  // eat the {.
5843 
5844   int FunctionNumber = -1;
5845   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5846 
5847   PerFunctionState PFS(*this, Fn, FunctionNumber);
5848 
5849   // Resolve block addresses and allow basic blocks to be forward-declared
5850   // within this function.
5851   if (PFS.resolveForwardRefBlockAddresses())
5852     return true;
5853   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5854 
5855   // We need at least one basic block.
5856   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5857     return tokError("function body requires at least one basic block");
5858 
5859   while (Lex.getKind() != lltok::rbrace &&
5860          Lex.getKind() != lltok::kw_uselistorder)
5861     if (parseBasicBlock(PFS))
5862       return true;
5863 
5864   while (Lex.getKind() != lltok::rbrace)
5865     if (parseUseListOrder(&PFS))
5866       return true;
5867 
5868   // Eat the }.
5869   Lex.Lex();
5870 
5871   // Verify function is ok.
5872   return PFS.finishFunction();
5873 }
5874 
5875 /// parseBasicBlock
5876 ///   ::= (LabelStr|LabelID)? Instruction*
5877 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5878   // If this basic block starts out with a name, remember it.
5879   std::string Name;
5880   int NameID = -1;
5881   LocTy NameLoc = Lex.getLoc();
5882   if (Lex.getKind() == lltok::LabelStr) {
5883     Name = Lex.getStrVal();
5884     Lex.Lex();
5885   } else if (Lex.getKind() == lltok::LabelID) {
5886     NameID = Lex.getUIntVal();
5887     Lex.Lex();
5888   }
5889 
5890   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5891   if (!BB)
5892     return true;
5893 
5894   std::string NameStr;
5895 
5896   // parse the instructions in this block until we get a terminator.
5897   Instruction *Inst;
5898   do {
5899     // This instruction may have three possibilities for a name: a) none
5900     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5901     LocTy NameLoc = Lex.getLoc();
5902     int NameID = -1;
5903     NameStr = "";
5904 
5905     if (Lex.getKind() == lltok::LocalVarID) {
5906       NameID = Lex.getUIntVal();
5907       Lex.Lex();
5908       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5909         return true;
5910     } else if (Lex.getKind() == lltok::LocalVar) {
5911       NameStr = Lex.getStrVal();
5912       Lex.Lex();
5913       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5914         return true;
5915     }
5916 
5917     switch (parseInstruction(Inst, BB, PFS)) {
5918     default:
5919       llvm_unreachable("Unknown parseInstruction result!");
5920     case InstError: return true;
5921     case InstNormal:
5922       BB->getInstList().push_back(Inst);
5923 
5924       // With a normal result, we check to see if the instruction is followed by
5925       // a comma and metadata.
5926       if (EatIfPresent(lltok::comma))
5927         if (parseInstructionMetadata(*Inst))
5928           return true;
5929       break;
5930     case InstExtraComma:
5931       BB->getInstList().push_back(Inst);
5932 
5933       // If the instruction parser ate an extra comma at the end of it, it
5934       // *must* be followed by metadata.
5935       if (parseInstructionMetadata(*Inst))
5936         return true;
5937       break;
5938     }
5939 
5940     // Set the name on the instruction.
5941     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5942       return true;
5943   } while (!Inst->isTerminator());
5944 
5945   return false;
5946 }
5947 
5948 //===----------------------------------------------------------------------===//
5949 // Instruction Parsing.
5950 //===----------------------------------------------------------------------===//
5951 
5952 /// parseInstruction - parse one of the many different instructions.
5953 ///
5954 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5955                                PerFunctionState &PFS) {
5956   lltok::Kind Token = Lex.getKind();
5957   if (Token == lltok::Eof)
5958     return tokError("found end of file when expecting more instructions");
5959   LocTy Loc = Lex.getLoc();
5960   unsigned KeywordVal = Lex.getUIntVal();
5961   Lex.Lex();  // Eat the keyword.
5962 
5963   switch (Token) {
5964   default:
5965     return error(Loc, "expected instruction opcode");
5966   // Terminator Instructions.
5967   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5968   case lltok::kw_ret:
5969     return parseRet(Inst, BB, PFS);
5970   case lltok::kw_br:
5971     return parseBr(Inst, PFS);
5972   case lltok::kw_switch:
5973     return parseSwitch(Inst, PFS);
5974   case lltok::kw_indirectbr:
5975     return parseIndirectBr(Inst, PFS);
5976   case lltok::kw_invoke:
5977     return parseInvoke(Inst, PFS);
5978   case lltok::kw_resume:
5979     return parseResume(Inst, PFS);
5980   case lltok::kw_cleanupret:
5981     return parseCleanupRet(Inst, PFS);
5982   case lltok::kw_catchret:
5983     return parseCatchRet(Inst, PFS);
5984   case lltok::kw_catchswitch:
5985     return parseCatchSwitch(Inst, PFS);
5986   case lltok::kw_catchpad:
5987     return parseCatchPad(Inst, PFS);
5988   case lltok::kw_cleanuppad:
5989     return parseCleanupPad(Inst, PFS);
5990   case lltok::kw_callbr:
5991     return parseCallBr(Inst, PFS);
5992   // Unary Operators.
5993   case lltok::kw_fneg: {
5994     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5995     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5996     if (Res != 0)
5997       return Res;
5998     if (FMF.any())
5999       Inst->setFastMathFlags(FMF);
6000     return false;
6001   }
6002   // Binary Operators.
6003   case lltok::kw_add:
6004   case lltok::kw_sub:
6005   case lltok::kw_mul:
6006   case lltok::kw_shl: {
6007     bool NUW = EatIfPresent(lltok::kw_nuw);
6008     bool NSW = EatIfPresent(lltok::kw_nsw);
6009     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6010 
6011     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6012       return true;
6013 
6014     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6015     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6016     return false;
6017   }
6018   case lltok::kw_fadd:
6019   case lltok::kw_fsub:
6020   case lltok::kw_fmul:
6021   case lltok::kw_fdiv:
6022   case lltok::kw_frem: {
6023     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6024     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6025     if (Res != 0)
6026       return Res;
6027     if (FMF.any())
6028       Inst->setFastMathFlags(FMF);
6029     return 0;
6030   }
6031 
6032   case lltok::kw_sdiv:
6033   case lltok::kw_udiv:
6034   case lltok::kw_lshr:
6035   case lltok::kw_ashr: {
6036     bool Exact = EatIfPresent(lltok::kw_exact);
6037 
6038     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6039       return true;
6040     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6041     return false;
6042   }
6043 
6044   case lltok::kw_urem:
6045   case lltok::kw_srem:
6046     return parseArithmetic(Inst, PFS, KeywordVal,
6047                            /*IsFP*/ false);
6048   case lltok::kw_and:
6049   case lltok::kw_or:
6050   case lltok::kw_xor:
6051     return parseLogical(Inst, PFS, KeywordVal);
6052   case lltok::kw_icmp:
6053     return parseCompare(Inst, PFS, KeywordVal);
6054   case lltok::kw_fcmp: {
6055     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6056     int Res = parseCompare(Inst, PFS, KeywordVal);
6057     if (Res != 0)
6058       return Res;
6059     if (FMF.any())
6060       Inst->setFastMathFlags(FMF);
6061     return 0;
6062   }
6063 
6064   // Casts.
6065   case lltok::kw_trunc:
6066   case lltok::kw_zext:
6067   case lltok::kw_sext:
6068   case lltok::kw_fptrunc:
6069   case lltok::kw_fpext:
6070   case lltok::kw_bitcast:
6071   case lltok::kw_addrspacecast:
6072   case lltok::kw_uitofp:
6073   case lltok::kw_sitofp:
6074   case lltok::kw_fptoui:
6075   case lltok::kw_fptosi:
6076   case lltok::kw_inttoptr:
6077   case lltok::kw_ptrtoint:
6078     return parseCast(Inst, PFS, KeywordVal);
6079   // Other.
6080   case lltok::kw_select: {
6081     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6082     int Res = parseSelect(Inst, PFS);
6083     if (Res != 0)
6084       return Res;
6085     if (FMF.any()) {
6086       if (!isa<FPMathOperator>(Inst))
6087         return error(Loc, "fast-math-flags specified for select without "
6088                           "floating-point scalar or vector return type");
6089       Inst->setFastMathFlags(FMF);
6090     }
6091     return 0;
6092   }
6093   case lltok::kw_va_arg:
6094     return parseVAArg(Inst, PFS);
6095   case lltok::kw_extractelement:
6096     return parseExtractElement(Inst, PFS);
6097   case lltok::kw_insertelement:
6098     return parseInsertElement(Inst, PFS);
6099   case lltok::kw_shufflevector:
6100     return parseShuffleVector(Inst, PFS);
6101   case lltok::kw_phi: {
6102     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6103     int Res = parsePHI(Inst, PFS);
6104     if (Res != 0)
6105       return Res;
6106     if (FMF.any()) {
6107       if (!isa<FPMathOperator>(Inst))
6108         return error(Loc, "fast-math-flags specified for phi without "
6109                           "floating-point scalar or vector return type");
6110       Inst->setFastMathFlags(FMF);
6111     }
6112     return 0;
6113   }
6114   case lltok::kw_landingpad:
6115     return parseLandingPad(Inst, PFS);
6116   case lltok::kw_freeze:
6117     return parseFreeze(Inst, PFS);
6118   // Call.
6119   case lltok::kw_call:
6120     return parseCall(Inst, PFS, CallInst::TCK_None);
6121   case lltok::kw_tail:
6122     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6123   case lltok::kw_musttail:
6124     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6125   case lltok::kw_notail:
6126     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6127   // Memory.
6128   case lltok::kw_alloca:
6129     return parseAlloc(Inst, PFS);
6130   case lltok::kw_load:
6131     return parseLoad(Inst, PFS);
6132   case lltok::kw_store:
6133     return parseStore(Inst, PFS);
6134   case lltok::kw_cmpxchg:
6135     return parseCmpXchg(Inst, PFS);
6136   case lltok::kw_atomicrmw:
6137     return parseAtomicRMW(Inst, PFS);
6138   case lltok::kw_fence:
6139     return parseFence(Inst, PFS);
6140   case lltok::kw_getelementptr:
6141     return parseGetElementPtr(Inst, PFS);
6142   case lltok::kw_extractvalue:
6143     return parseExtractValue(Inst, PFS);
6144   case lltok::kw_insertvalue:
6145     return parseInsertValue(Inst, PFS);
6146   }
6147 }
6148 
6149 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6150 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6151   if (Opc == Instruction::FCmp) {
6152     switch (Lex.getKind()) {
6153     default:
6154       return tokError("expected fcmp predicate (e.g. 'oeq')");
6155     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6156     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6157     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6158     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6159     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6160     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6161     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6162     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6163     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6164     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6165     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6166     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6167     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6168     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6169     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6170     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6171     }
6172   } else {
6173     switch (Lex.getKind()) {
6174     default:
6175       return tokError("expected icmp predicate (e.g. 'eq')");
6176     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6177     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6178     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6179     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6180     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6181     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6182     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6183     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6184     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6185     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6186     }
6187   }
6188   Lex.Lex();
6189   return false;
6190 }
6191 
6192 //===----------------------------------------------------------------------===//
6193 // Terminator Instructions.
6194 //===----------------------------------------------------------------------===//
6195 
6196 /// parseRet - parse a return instruction.
6197 ///   ::= 'ret' void (',' !dbg, !1)*
6198 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6199 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6200                         PerFunctionState &PFS) {
6201   SMLoc TypeLoc = Lex.getLoc();
6202   Type *Ty = nullptr;
6203   if (parseType(Ty, true /*void allowed*/))
6204     return true;
6205 
6206   Type *ResType = PFS.getFunction().getReturnType();
6207 
6208   if (Ty->isVoidTy()) {
6209     if (!ResType->isVoidTy())
6210       return error(TypeLoc, "value doesn't match function result type '" +
6211                                 getTypeString(ResType) + "'");
6212 
6213     Inst = ReturnInst::Create(Context);
6214     return false;
6215   }
6216 
6217   Value *RV;
6218   if (parseValue(Ty, RV, PFS))
6219     return true;
6220 
6221   if (ResType != RV->getType())
6222     return error(TypeLoc, "value doesn't match function result type '" +
6223                               getTypeString(ResType) + "'");
6224 
6225   Inst = ReturnInst::Create(Context, RV);
6226   return false;
6227 }
6228 
6229 /// parseBr
6230 ///   ::= 'br' TypeAndValue
6231 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6232 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6233   LocTy Loc, Loc2;
6234   Value *Op0;
6235   BasicBlock *Op1, *Op2;
6236   if (parseTypeAndValue(Op0, Loc, PFS))
6237     return true;
6238 
6239   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6240     Inst = BranchInst::Create(BB);
6241     return false;
6242   }
6243 
6244   if (Op0->getType() != Type::getInt1Ty(Context))
6245     return error(Loc, "branch condition must have 'i1' type");
6246 
6247   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6248       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6249       parseToken(lltok::comma, "expected ',' after true destination") ||
6250       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6251     return true;
6252 
6253   Inst = BranchInst::Create(Op1, Op2, Op0);
6254   return false;
6255 }
6256 
6257 /// parseSwitch
6258 ///  Instruction
6259 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6260 ///  JumpTable
6261 ///    ::= (TypeAndValue ',' TypeAndValue)*
6262 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6263   LocTy CondLoc, BBLoc;
6264   Value *Cond;
6265   BasicBlock *DefaultBB;
6266   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6267       parseToken(lltok::comma, "expected ',' after switch condition") ||
6268       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6269       parseToken(lltok::lsquare, "expected '[' with switch table"))
6270     return true;
6271 
6272   if (!Cond->getType()->isIntegerTy())
6273     return error(CondLoc, "switch condition must have integer type");
6274 
6275   // parse the jump table pairs.
6276   SmallPtrSet<Value*, 32> SeenCases;
6277   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6278   while (Lex.getKind() != lltok::rsquare) {
6279     Value *Constant;
6280     BasicBlock *DestBB;
6281 
6282     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6283         parseToken(lltok::comma, "expected ',' after case value") ||
6284         parseTypeAndBasicBlock(DestBB, PFS))
6285       return true;
6286 
6287     if (!SeenCases.insert(Constant).second)
6288       return error(CondLoc, "duplicate case value in switch");
6289     if (!isa<ConstantInt>(Constant))
6290       return error(CondLoc, "case value is not a constant integer");
6291 
6292     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6293   }
6294 
6295   Lex.Lex();  // Eat the ']'.
6296 
6297   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6298   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6299     SI->addCase(Table[i].first, Table[i].second);
6300   Inst = SI;
6301   return false;
6302 }
6303 
6304 /// parseIndirectBr
6305 ///  Instruction
6306 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6307 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6308   LocTy AddrLoc;
6309   Value *Address;
6310   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6311       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6312       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6313     return true;
6314 
6315   if (!Address->getType()->isPointerTy())
6316     return error(AddrLoc, "indirectbr address must have pointer type");
6317 
6318   // parse the destination list.
6319   SmallVector<BasicBlock*, 16> DestList;
6320 
6321   if (Lex.getKind() != lltok::rsquare) {
6322     BasicBlock *DestBB;
6323     if (parseTypeAndBasicBlock(DestBB, PFS))
6324       return true;
6325     DestList.push_back(DestBB);
6326 
6327     while (EatIfPresent(lltok::comma)) {
6328       if (parseTypeAndBasicBlock(DestBB, PFS))
6329         return true;
6330       DestList.push_back(DestBB);
6331     }
6332   }
6333 
6334   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6335     return true;
6336 
6337   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6338   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6339     IBI->addDestination(DestList[i]);
6340   Inst = IBI;
6341   return false;
6342 }
6343 
6344 /// parseInvoke
6345 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6346 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6347 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6348   LocTy CallLoc = Lex.getLoc();
6349   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6350   std::vector<unsigned> FwdRefAttrGrps;
6351   LocTy NoBuiltinLoc;
6352   unsigned CC;
6353   unsigned InvokeAddrSpace;
6354   Type *RetType = nullptr;
6355   LocTy RetTypeLoc;
6356   ValID CalleeID;
6357   SmallVector<ParamInfo, 16> ArgList;
6358   SmallVector<OperandBundleDef, 2> BundleList;
6359 
6360   BasicBlock *NormalBB, *UnwindBB;
6361   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6362       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6363       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6364       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6365       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6366                                  NoBuiltinLoc) ||
6367       parseOptionalOperandBundles(BundleList, PFS) ||
6368       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6369       parseTypeAndBasicBlock(NormalBB, PFS) ||
6370       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6371       parseTypeAndBasicBlock(UnwindBB, PFS))
6372     return true;
6373 
6374   // If RetType is a non-function pointer type, then this is the short syntax
6375   // for the call, which means that RetType is just the return type.  Infer the
6376   // rest of the function argument types from the arguments that are present.
6377   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6378   if (!Ty) {
6379     // Pull out the types of all of the arguments...
6380     std::vector<Type*> ParamTypes;
6381     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6382       ParamTypes.push_back(ArgList[i].V->getType());
6383 
6384     if (!FunctionType::isValidReturnType(RetType))
6385       return error(RetTypeLoc, "Invalid result type for LLVM function");
6386 
6387     Ty = FunctionType::get(RetType, ParamTypes, false);
6388   }
6389 
6390   CalleeID.FTy = Ty;
6391 
6392   // Look up the callee.
6393   Value *Callee;
6394   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6395                           Callee, &PFS))
6396     return true;
6397 
6398   // Set up the Attribute for the function.
6399   SmallVector<Value *, 8> Args;
6400   SmallVector<AttributeSet, 8> ArgAttrs;
6401 
6402   // Loop through FunctionType's arguments and ensure they are specified
6403   // correctly.  Also, gather any parameter attributes.
6404   FunctionType::param_iterator I = Ty->param_begin();
6405   FunctionType::param_iterator E = Ty->param_end();
6406   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6407     Type *ExpectedTy = nullptr;
6408     if (I != E) {
6409       ExpectedTy = *I++;
6410     } else if (!Ty->isVarArg()) {
6411       return error(ArgList[i].Loc, "too many arguments specified");
6412     }
6413 
6414     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6415       return error(ArgList[i].Loc, "argument is not of expected type '" +
6416                                        getTypeString(ExpectedTy) + "'");
6417     Args.push_back(ArgList[i].V);
6418     ArgAttrs.push_back(ArgList[i].Attrs);
6419   }
6420 
6421   if (I != E)
6422     return error(CallLoc, "not enough parameters specified for call");
6423 
6424   if (FnAttrs.hasAlignmentAttr())
6425     return error(CallLoc, "invoke instructions may not have an alignment");
6426 
6427   // Finish off the Attribute and check them
6428   AttributeList PAL =
6429       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6430                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6431 
6432   InvokeInst *II =
6433       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6434   II->setCallingConv(CC);
6435   II->setAttributes(PAL);
6436   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6437   Inst = II;
6438   return false;
6439 }
6440 
6441 /// parseResume
6442 ///   ::= 'resume' TypeAndValue
6443 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6444   Value *Exn; LocTy ExnLoc;
6445   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6446     return true;
6447 
6448   ResumeInst *RI = ResumeInst::Create(Exn);
6449   Inst = RI;
6450   return false;
6451 }
6452 
6453 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6454                                   PerFunctionState &PFS) {
6455   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6456     return true;
6457 
6458   while (Lex.getKind() != lltok::rsquare) {
6459     // If this isn't the first argument, we need a comma.
6460     if (!Args.empty() &&
6461         parseToken(lltok::comma, "expected ',' in argument list"))
6462       return true;
6463 
6464     // parse the argument.
6465     LocTy ArgLoc;
6466     Type *ArgTy = nullptr;
6467     if (parseType(ArgTy, ArgLoc))
6468       return true;
6469 
6470     Value *V;
6471     if (ArgTy->isMetadataTy()) {
6472       if (parseMetadataAsValue(V, PFS))
6473         return true;
6474     } else {
6475       if (parseValue(ArgTy, V, PFS))
6476         return true;
6477     }
6478     Args.push_back(V);
6479   }
6480 
6481   Lex.Lex();  // Lex the ']'.
6482   return false;
6483 }
6484 
6485 /// parseCleanupRet
6486 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6487 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6488   Value *CleanupPad = nullptr;
6489 
6490   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6491     return true;
6492 
6493   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6494     return true;
6495 
6496   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6497     return true;
6498 
6499   BasicBlock *UnwindBB = nullptr;
6500   if (Lex.getKind() == lltok::kw_to) {
6501     Lex.Lex();
6502     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6503       return true;
6504   } else {
6505     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6506       return true;
6507     }
6508   }
6509 
6510   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6511   return false;
6512 }
6513 
6514 /// parseCatchRet
6515 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6516 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6517   Value *CatchPad = nullptr;
6518 
6519   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6520     return true;
6521 
6522   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6523     return true;
6524 
6525   BasicBlock *BB;
6526   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6527       parseTypeAndBasicBlock(BB, PFS))
6528     return true;
6529 
6530   Inst = CatchReturnInst::Create(CatchPad, BB);
6531   return false;
6532 }
6533 
6534 /// parseCatchSwitch
6535 ///   ::= 'catchswitch' within Parent
6536 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6537   Value *ParentPad;
6538 
6539   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6540     return true;
6541 
6542   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6543       Lex.getKind() != lltok::LocalVarID)
6544     return tokError("expected scope value for catchswitch");
6545 
6546   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6547     return true;
6548 
6549   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6550     return true;
6551 
6552   SmallVector<BasicBlock *, 32> Table;
6553   do {
6554     BasicBlock *DestBB;
6555     if (parseTypeAndBasicBlock(DestBB, PFS))
6556       return true;
6557     Table.push_back(DestBB);
6558   } while (EatIfPresent(lltok::comma));
6559 
6560   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6561     return true;
6562 
6563   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6564     return true;
6565 
6566   BasicBlock *UnwindBB = nullptr;
6567   if (EatIfPresent(lltok::kw_to)) {
6568     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6569       return true;
6570   } else {
6571     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6572       return true;
6573   }
6574 
6575   auto *CatchSwitch =
6576       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6577   for (BasicBlock *DestBB : Table)
6578     CatchSwitch->addHandler(DestBB);
6579   Inst = CatchSwitch;
6580   return false;
6581 }
6582 
6583 /// parseCatchPad
6584 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6585 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6586   Value *CatchSwitch = nullptr;
6587 
6588   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6589     return true;
6590 
6591   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6592     return tokError("expected scope value for catchpad");
6593 
6594   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6595     return true;
6596 
6597   SmallVector<Value *, 8> Args;
6598   if (parseExceptionArgs(Args, PFS))
6599     return true;
6600 
6601   Inst = CatchPadInst::Create(CatchSwitch, Args);
6602   return false;
6603 }
6604 
6605 /// parseCleanupPad
6606 ///   ::= 'cleanuppad' within Parent ParamList
6607 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6608   Value *ParentPad = nullptr;
6609 
6610   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6611     return true;
6612 
6613   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6614       Lex.getKind() != lltok::LocalVarID)
6615     return tokError("expected scope value for cleanuppad");
6616 
6617   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6618     return true;
6619 
6620   SmallVector<Value *, 8> Args;
6621   if (parseExceptionArgs(Args, PFS))
6622     return true;
6623 
6624   Inst = CleanupPadInst::Create(ParentPad, Args);
6625   return false;
6626 }
6627 
6628 //===----------------------------------------------------------------------===//
6629 // Unary Operators.
6630 //===----------------------------------------------------------------------===//
6631 
6632 /// parseUnaryOp
6633 ///  ::= UnaryOp TypeAndValue ',' Value
6634 ///
6635 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6636 /// operand is allowed.
6637 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6638                             unsigned Opc, bool IsFP) {
6639   LocTy Loc; Value *LHS;
6640   if (parseTypeAndValue(LHS, Loc, PFS))
6641     return true;
6642 
6643   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6644                     : LHS->getType()->isIntOrIntVectorTy();
6645 
6646   if (!Valid)
6647     return error(Loc, "invalid operand type for instruction");
6648 
6649   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6650   return false;
6651 }
6652 
6653 /// parseCallBr
6654 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6655 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6656 ///       '[' LabelList ']'
6657 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6658   LocTy CallLoc = Lex.getLoc();
6659   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6660   std::vector<unsigned> FwdRefAttrGrps;
6661   LocTy NoBuiltinLoc;
6662   unsigned CC;
6663   Type *RetType = nullptr;
6664   LocTy RetTypeLoc;
6665   ValID CalleeID;
6666   SmallVector<ParamInfo, 16> ArgList;
6667   SmallVector<OperandBundleDef, 2> BundleList;
6668 
6669   BasicBlock *DefaultDest;
6670   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6671       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6672       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6673       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6674                                  NoBuiltinLoc) ||
6675       parseOptionalOperandBundles(BundleList, PFS) ||
6676       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6677       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6678       parseToken(lltok::lsquare, "expected '[' in callbr"))
6679     return true;
6680 
6681   // parse the destination list.
6682   SmallVector<BasicBlock *, 16> IndirectDests;
6683 
6684   if (Lex.getKind() != lltok::rsquare) {
6685     BasicBlock *DestBB;
6686     if (parseTypeAndBasicBlock(DestBB, PFS))
6687       return true;
6688     IndirectDests.push_back(DestBB);
6689 
6690     while (EatIfPresent(lltok::comma)) {
6691       if (parseTypeAndBasicBlock(DestBB, PFS))
6692         return true;
6693       IndirectDests.push_back(DestBB);
6694     }
6695   }
6696 
6697   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6698     return true;
6699 
6700   // If RetType is a non-function pointer type, then this is the short syntax
6701   // for the call, which means that RetType is just the return type.  Infer the
6702   // rest of the function argument types from the arguments that are present.
6703   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6704   if (!Ty) {
6705     // Pull out the types of all of the arguments...
6706     std::vector<Type *> ParamTypes;
6707     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6708       ParamTypes.push_back(ArgList[i].V->getType());
6709 
6710     if (!FunctionType::isValidReturnType(RetType))
6711       return error(RetTypeLoc, "Invalid result type for LLVM function");
6712 
6713     Ty = FunctionType::get(RetType, ParamTypes, false);
6714   }
6715 
6716   CalleeID.FTy = Ty;
6717 
6718   // Look up the callee.
6719   Value *Callee;
6720   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6721     return true;
6722 
6723   // Set up the Attribute for the function.
6724   SmallVector<Value *, 8> Args;
6725   SmallVector<AttributeSet, 8> ArgAttrs;
6726 
6727   // Loop through FunctionType's arguments and ensure they are specified
6728   // correctly.  Also, gather any parameter attributes.
6729   FunctionType::param_iterator I = Ty->param_begin();
6730   FunctionType::param_iterator E = Ty->param_end();
6731   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6732     Type *ExpectedTy = nullptr;
6733     if (I != E) {
6734       ExpectedTy = *I++;
6735     } else if (!Ty->isVarArg()) {
6736       return error(ArgList[i].Loc, "too many arguments specified");
6737     }
6738 
6739     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6740       return error(ArgList[i].Loc, "argument is not of expected type '" +
6741                                        getTypeString(ExpectedTy) + "'");
6742     Args.push_back(ArgList[i].V);
6743     ArgAttrs.push_back(ArgList[i].Attrs);
6744   }
6745 
6746   if (I != E)
6747     return error(CallLoc, "not enough parameters specified for call");
6748 
6749   if (FnAttrs.hasAlignmentAttr())
6750     return error(CallLoc, "callbr instructions may not have an alignment");
6751 
6752   // Finish off the Attribute and check them
6753   AttributeList PAL =
6754       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6755                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6756 
6757   CallBrInst *CBI =
6758       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6759                          BundleList);
6760   CBI->setCallingConv(CC);
6761   CBI->setAttributes(PAL);
6762   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6763   Inst = CBI;
6764   return false;
6765 }
6766 
6767 //===----------------------------------------------------------------------===//
6768 // Binary Operators.
6769 //===----------------------------------------------------------------------===//
6770 
6771 /// parseArithmetic
6772 ///  ::= ArithmeticOps TypeAndValue ',' Value
6773 ///
6774 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6775 /// operand is allowed.
6776 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6777                                unsigned Opc, bool IsFP) {
6778   LocTy Loc; Value *LHS, *RHS;
6779   if (parseTypeAndValue(LHS, Loc, PFS) ||
6780       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6781       parseValue(LHS->getType(), RHS, PFS))
6782     return true;
6783 
6784   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6785                     : LHS->getType()->isIntOrIntVectorTy();
6786 
6787   if (!Valid)
6788     return error(Loc, "invalid operand type for instruction");
6789 
6790   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6791   return false;
6792 }
6793 
6794 /// parseLogical
6795 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6796 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6797                             unsigned Opc) {
6798   LocTy Loc; Value *LHS, *RHS;
6799   if (parseTypeAndValue(LHS, Loc, PFS) ||
6800       parseToken(lltok::comma, "expected ',' in logical operation") ||
6801       parseValue(LHS->getType(), RHS, PFS))
6802     return true;
6803 
6804   if (!LHS->getType()->isIntOrIntVectorTy())
6805     return error(Loc,
6806                  "instruction requires integer or integer vector operands");
6807 
6808   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6809   return false;
6810 }
6811 
6812 /// parseCompare
6813 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6814 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6815 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6816                             unsigned Opc) {
6817   // parse the integer/fp comparison predicate.
6818   LocTy Loc;
6819   unsigned Pred;
6820   Value *LHS, *RHS;
6821   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6822       parseToken(lltok::comma, "expected ',' after compare value") ||
6823       parseValue(LHS->getType(), RHS, PFS))
6824     return true;
6825 
6826   if (Opc == Instruction::FCmp) {
6827     if (!LHS->getType()->isFPOrFPVectorTy())
6828       return error(Loc, "fcmp requires floating point operands");
6829     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6830   } else {
6831     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6832     if (!LHS->getType()->isIntOrIntVectorTy() &&
6833         !LHS->getType()->isPtrOrPtrVectorTy())
6834       return error(Loc, "icmp requires integer operands");
6835     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6836   }
6837   return false;
6838 }
6839 
6840 //===----------------------------------------------------------------------===//
6841 // Other Instructions.
6842 //===----------------------------------------------------------------------===//
6843 
6844 /// parseCast
6845 ///   ::= CastOpc TypeAndValue 'to' Type
6846 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6847                          unsigned Opc) {
6848   LocTy Loc;
6849   Value *Op;
6850   Type *DestTy = nullptr;
6851   if (parseTypeAndValue(Op, Loc, PFS) ||
6852       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6853       parseType(DestTy))
6854     return true;
6855 
6856   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6857     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6858     return error(Loc, "invalid cast opcode for cast from '" +
6859                           getTypeString(Op->getType()) + "' to '" +
6860                           getTypeString(DestTy) + "'");
6861   }
6862   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6863   return false;
6864 }
6865 
6866 /// parseSelect
6867 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6868 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6869   LocTy Loc;
6870   Value *Op0, *Op1, *Op2;
6871   if (parseTypeAndValue(Op0, Loc, PFS) ||
6872       parseToken(lltok::comma, "expected ',' after select condition") ||
6873       parseTypeAndValue(Op1, PFS) ||
6874       parseToken(lltok::comma, "expected ',' after select value") ||
6875       parseTypeAndValue(Op2, PFS))
6876     return true;
6877 
6878   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6879     return error(Loc, Reason);
6880 
6881   Inst = SelectInst::Create(Op0, Op1, Op2);
6882   return false;
6883 }
6884 
6885 /// parseVAArg
6886 ///   ::= 'va_arg' TypeAndValue ',' Type
6887 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6888   Value *Op;
6889   Type *EltTy = nullptr;
6890   LocTy TypeLoc;
6891   if (parseTypeAndValue(Op, PFS) ||
6892       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6893       parseType(EltTy, TypeLoc))
6894     return true;
6895 
6896   if (!EltTy->isFirstClassType())
6897     return error(TypeLoc, "va_arg requires operand with first class type");
6898 
6899   Inst = new VAArgInst(Op, EltTy);
6900   return false;
6901 }
6902 
6903 /// parseExtractElement
6904 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6905 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6906   LocTy Loc;
6907   Value *Op0, *Op1;
6908   if (parseTypeAndValue(Op0, Loc, PFS) ||
6909       parseToken(lltok::comma, "expected ',' after extract value") ||
6910       parseTypeAndValue(Op1, PFS))
6911     return true;
6912 
6913   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6914     return error(Loc, "invalid extractelement operands");
6915 
6916   Inst = ExtractElementInst::Create(Op0, Op1);
6917   return false;
6918 }
6919 
6920 /// parseInsertElement
6921 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6922 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6923   LocTy Loc;
6924   Value *Op0, *Op1, *Op2;
6925   if (parseTypeAndValue(Op0, Loc, PFS) ||
6926       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6927       parseTypeAndValue(Op1, PFS) ||
6928       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6929       parseTypeAndValue(Op2, PFS))
6930     return true;
6931 
6932   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6933     return error(Loc, "invalid insertelement operands");
6934 
6935   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6936   return false;
6937 }
6938 
6939 /// parseShuffleVector
6940 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6941 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6942   LocTy Loc;
6943   Value *Op0, *Op1, *Op2;
6944   if (parseTypeAndValue(Op0, Loc, PFS) ||
6945       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6946       parseTypeAndValue(Op1, PFS) ||
6947       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6948       parseTypeAndValue(Op2, PFS))
6949     return true;
6950 
6951   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6952     return error(Loc, "invalid shufflevector operands");
6953 
6954   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6955   return false;
6956 }
6957 
6958 /// parsePHI
6959 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6960 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6961   Type *Ty = nullptr;  LocTy TypeLoc;
6962   Value *Op0, *Op1;
6963 
6964   if (parseType(Ty, TypeLoc) ||
6965       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6966       parseValue(Ty, Op0, PFS) ||
6967       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6968       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6969       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6970     return true;
6971 
6972   bool AteExtraComma = false;
6973   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6974 
6975   while (true) {
6976     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6977 
6978     if (!EatIfPresent(lltok::comma))
6979       break;
6980 
6981     if (Lex.getKind() == lltok::MetadataVar) {
6982       AteExtraComma = true;
6983       break;
6984     }
6985 
6986     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6987         parseValue(Ty, Op0, PFS) ||
6988         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6989         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6990         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6991       return true;
6992   }
6993 
6994   if (!Ty->isFirstClassType())
6995     return error(TypeLoc, "phi node must have first class type");
6996 
6997   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6998   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6999     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7000   Inst = PN;
7001   return AteExtraComma ? InstExtraComma : InstNormal;
7002 }
7003 
7004 /// parseLandingPad
7005 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7006 /// Clause
7007 ///   ::= 'catch' TypeAndValue
7008 ///   ::= 'filter'
7009 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7010 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7011   Type *Ty = nullptr; LocTy TyLoc;
7012 
7013   if (parseType(Ty, TyLoc))
7014     return true;
7015 
7016   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7017   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7018 
7019   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7020     LandingPadInst::ClauseType CT;
7021     if (EatIfPresent(lltok::kw_catch))
7022       CT = LandingPadInst::Catch;
7023     else if (EatIfPresent(lltok::kw_filter))
7024       CT = LandingPadInst::Filter;
7025     else
7026       return tokError("expected 'catch' or 'filter' clause type");
7027 
7028     Value *V;
7029     LocTy VLoc;
7030     if (parseTypeAndValue(V, VLoc, PFS))
7031       return true;
7032 
7033     // A 'catch' type expects a non-array constant. A filter clause expects an
7034     // array constant.
7035     if (CT == LandingPadInst::Catch) {
7036       if (isa<ArrayType>(V->getType()))
7037         error(VLoc, "'catch' clause has an invalid type");
7038     } else {
7039       if (!isa<ArrayType>(V->getType()))
7040         error(VLoc, "'filter' clause has an invalid type");
7041     }
7042 
7043     Constant *CV = dyn_cast<Constant>(V);
7044     if (!CV)
7045       return error(VLoc, "clause argument must be a constant");
7046     LP->addClause(CV);
7047   }
7048 
7049   Inst = LP.release();
7050   return false;
7051 }
7052 
7053 /// parseFreeze
7054 ///   ::= 'freeze' Type Value
7055 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7056   LocTy Loc;
7057   Value *Op;
7058   if (parseTypeAndValue(Op, Loc, PFS))
7059     return true;
7060 
7061   Inst = new FreezeInst(Op);
7062   return false;
7063 }
7064 
7065 /// parseCall
7066 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7067 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7068 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7069 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7070 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7071 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7072 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7073 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7074 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7075                          CallInst::TailCallKind TCK) {
7076   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7077   std::vector<unsigned> FwdRefAttrGrps;
7078   LocTy BuiltinLoc;
7079   unsigned CallAddrSpace;
7080   unsigned CC;
7081   Type *RetType = nullptr;
7082   LocTy RetTypeLoc;
7083   ValID CalleeID;
7084   SmallVector<ParamInfo, 16> ArgList;
7085   SmallVector<OperandBundleDef, 2> BundleList;
7086   LocTy CallLoc = Lex.getLoc();
7087 
7088   if (TCK != CallInst::TCK_None &&
7089       parseToken(lltok::kw_call,
7090                  "expected 'tail call', 'musttail call', or 'notail call'"))
7091     return true;
7092 
7093   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7094 
7095   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7096       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7097       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7098       parseValID(CalleeID, &PFS) ||
7099       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7100                          PFS.getFunction().isVarArg()) ||
7101       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7102       parseOptionalOperandBundles(BundleList, PFS))
7103     return true;
7104 
7105   // If RetType is a non-function pointer type, then this is the short syntax
7106   // for the call, which means that RetType is just the return type.  Infer the
7107   // rest of the function argument types from the arguments that are present.
7108   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7109   if (!Ty) {
7110     // Pull out the types of all of the arguments...
7111     std::vector<Type*> ParamTypes;
7112     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7113       ParamTypes.push_back(ArgList[i].V->getType());
7114 
7115     if (!FunctionType::isValidReturnType(RetType))
7116       return error(RetTypeLoc, "Invalid result type for LLVM function");
7117 
7118     Ty = FunctionType::get(RetType, ParamTypes, false);
7119   }
7120 
7121   CalleeID.FTy = Ty;
7122 
7123   // Look up the callee.
7124   Value *Callee;
7125   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7126                           &PFS))
7127     return true;
7128 
7129   // Set up the Attribute for the function.
7130   SmallVector<AttributeSet, 8> Attrs;
7131 
7132   SmallVector<Value*, 8> Args;
7133 
7134   // Loop through FunctionType's arguments and ensure they are specified
7135   // correctly.  Also, gather any parameter attributes.
7136   FunctionType::param_iterator I = Ty->param_begin();
7137   FunctionType::param_iterator E = Ty->param_end();
7138   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7139     Type *ExpectedTy = nullptr;
7140     if (I != E) {
7141       ExpectedTy = *I++;
7142     } else if (!Ty->isVarArg()) {
7143       return error(ArgList[i].Loc, "too many arguments specified");
7144     }
7145 
7146     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7147       return error(ArgList[i].Loc, "argument is not of expected type '" +
7148                                        getTypeString(ExpectedTy) + "'");
7149     Args.push_back(ArgList[i].V);
7150     Attrs.push_back(ArgList[i].Attrs);
7151   }
7152 
7153   if (I != E)
7154     return error(CallLoc, "not enough parameters specified for call");
7155 
7156   if (FnAttrs.hasAlignmentAttr())
7157     return error(CallLoc, "call instructions may not have an alignment");
7158 
7159   // Finish off the Attribute and check them
7160   AttributeList PAL =
7161       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7162                          AttributeSet::get(Context, RetAttrs), Attrs);
7163 
7164   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7165   CI->setTailCallKind(TCK);
7166   CI->setCallingConv(CC);
7167   if (FMF.any()) {
7168     if (!isa<FPMathOperator>(CI)) {
7169       CI->deleteValue();
7170       return error(CallLoc, "fast-math-flags specified for call without "
7171                             "floating-point scalar or vector return type");
7172     }
7173     CI->setFastMathFlags(FMF);
7174   }
7175   CI->setAttributes(PAL);
7176   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7177   Inst = CI;
7178   return false;
7179 }
7180 
7181 //===----------------------------------------------------------------------===//
7182 // Memory Instructions.
7183 //===----------------------------------------------------------------------===//
7184 
7185 /// parseAlloc
7186 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7187 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7188 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7189   Value *Size = nullptr;
7190   LocTy SizeLoc, TyLoc, ASLoc;
7191   MaybeAlign Alignment;
7192   unsigned AddrSpace = 0;
7193   Type *Ty = nullptr;
7194 
7195   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7196   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7197 
7198   if (parseType(Ty, TyLoc))
7199     return true;
7200 
7201   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7202     return error(TyLoc, "invalid type for alloca");
7203 
7204   bool AteExtraComma = false;
7205   if (EatIfPresent(lltok::comma)) {
7206     if (Lex.getKind() == lltok::kw_align) {
7207       if (parseOptionalAlignment(Alignment))
7208         return true;
7209       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7210         return true;
7211     } else if (Lex.getKind() == lltok::kw_addrspace) {
7212       ASLoc = Lex.getLoc();
7213       if (parseOptionalAddrSpace(AddrSpace))
7214         return true;
7215     } else if (Lex.getKind() == lltok::MetadataVar) {
7216       AteExtraComma = true;
7217     } else {
7218       if (parseTypeAndValue(Size, SizeLoc, PFS))
7219         return true;
7220       if (EatIfPresent(lltok::comma)) {
7221         if (Lex.getKind() == lltok::kw_align) {
7222           if (parseOptionalAlignment(Alignment))
7223             return true;
7224           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7225             return true;
7226         } else if (Lex.getKind() == lltok::kw_addrspace) {
7227           ASLoc = Lex.getLoc();
7228           if (parseOptionalAddrSpace(AddrSpace))
7229             return true;
7230         } else if (Lex.getKind() == lltok::MetadataVar) {
7231           AteExtraComma = true;
7232         }
7233       }
7234     }
7235   }
7236 
7237   if (Size && !Size->getType()->isIntegerTy())
7238     return error(SizeLoc, "element count must have integer type");
7239 
7240   SmallPtrSet<Type *, 4> Visited;
7241   if (!Alignment && !Ty->isSized(&Visited))
7242     return error(TyLoc, "Cannot allocate unsized type");
7243   if (!Alignment)
7244     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7245   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7246   AI->setUsedWithInAlloca(IsInAlloca);
7247   AI->setSwiftError(IsSwiftError);
7248   Inst = AI;
7249   return AteExtraComma ? InstExtraComma : InstNormal;
7250 }
7251 
7252 /// parseLoad
7253 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7254 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7255 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7256 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7257   Value *Val; LocTy Loc;
7258   MaybeAlign Alignment;
7259   bool AteExtraComma = false;
7260   bool isAtomic = false;
7261   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7262   SyncScope::ID SSID = SyncScope::System;
7263 
7264   if (Lex.getKind() == lltok::kw_atomic) {
7265     isAtomic = true;
7266     Lex.Lex();
7267   }
7268 
7269   bool isVolatile = false;
7270   if (Lex.getKind() == lltok::kw_volatile) {
7271     isVolatile = true;
7272     Lex.Lex();
7273   }
7274 
7275   Type *Ty;
7276   LocTy ExplicitTypeLoc = Lex.getLoc();
7277   if (parseType(Ty) ||
7278       parseToken(lltok::comma, "expected comma after load's type") ||
7279       parseTypeAndValue(Val, Loc, PFS) ||
7280       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7281       parseOptionalCommaAlign(Alignment, AteExtraComma))
7282     return true;
7283 
7284   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7285     return error(Loc, "load operand must be a pointer to a first class type");
7286   if (isAtomic && !Alignment)
7287     return error(Loc, "atomic load must have explicit non-zero alignment");
7288   if (Ordering == AtomicOrdering::Release ||
7289       Ordering == AtomicOrdering::AcquireRelease)
7290     return error(Loc, "atomic load cannot use Release ordering");
7291 
7292   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7293     return error(
7294         ExplicitTypeLoc,
7295         typeComparisonErrorMessage(
7296             "explicit pointee type doesn't match operand's pointee type", Ty,
7297             Val->getType()->getNonOpaquePointerElementType()));
7298   }
7299   SmallPtrSet<Type *, 4> Visited;
7300   if (!Alignment && !Ty->isSized(&Visited))
7301     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7302   if (!Alignment)
7303     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7304   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7305   return AteExtraComma ? InstExtraComma : InstNormal;
7306 }
7307 
7308 /// parseStore
7309 
7310 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7311 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7312 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7313 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7314   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7315   MaybeAlign Alignment;
7316   bool AteExtraComma = false;
7317   bool isAtomic = false;
7318   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7319   SyncScope::ID SSID = SyncScope::System;
7320 
7321   if (Lex.getKind() == lltok::kw_atomic) {
7322     isAtomic = true;
7323     Lex.Lex();
7324   }
7325 
7326   bool isVolatile = false;
7327   if (Lex.getKind() == lltok::kw_volatile) {
7328     isVolatile = true;
7329     Lex.Lex();
7330   }
7331 
7332   if (parseTypeAndValue(Val, Loc, PFS) ||
7333       parseToken(lltok::comma, "expected ',' after store operand") ||
7334       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7335       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7336       parseOptionalCommaAlign(Alignment, AteExtraComma))
7337     return true;
7338 
7339   if (!Ptr->getType()->isPointerTy())
7340     return error(PtrLoc, "store operand must be a pointer");
7341   if (!Val->getType()->isFirstClassType())
7342     return error(Loc, "store operand must be a first class value");
7343   if (!cast<PointerType>(Ptr->getType())
7344            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7345     return error(Loc, "stored value and pointer type do not match");
7346   if (isAtomic && !Alignment)
7347     return error(Loc, "atomic store must have explicit non-zero alignment");
7348   if (Ordering == AtomicOrdering::Acquire ||
7349       Ordering == AtomicOrdering::AcquireRelease)
7350     return error(Loc, "atomic store cannot use Acquire ordering");
7351   SmallPtrSet<Type *, 4> Visited;
7352   if (!Alignment && !Val->getType()->isSized(&Visited))
7353     return error(Loc, "storing unsized types is not allowed");
7354   if (!Alignment)
7355     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7356 
7357   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7358   return AteExtraComma ? InstExtraComma : InstNormal;
7359 }
7360 
7361 /// parseCmpXchg
7362 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7363 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7364 ///       'Align'?
7365 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7366   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7367   bool AteExtraComma = false;
7368   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7369   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7370   SyncScope::ID SSID = SyncScope::System;
7371   bool isVolatile = false;
7372   bool isWeak = false;
7373   MaybeAlign Alignment;
7374 
7375   if (EatIfPresent(lltok::kw_weak))
7376     isWeak = true;
7377 
7378   if (EatIfPresent(lltok::kw_volatile))
7379     isVolatile = true;
7380 
7381   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7382       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7383       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7384       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7385       parseTypeAndValue(New, NewLoc, PFS) ||
7386       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7387       parseOrdering(FailureOrdering) ||
7388       parseOptionalCommaAlign(Alignment, AteExtraComma))
7389     return true;
7390 
7391   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7392     return tokError("invalid cmpxchg success ordering");
7393   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7394     return tokError("invalid cmpxchg failure ordering");
7395   if (!Ptr->getType()->isPointerTy())
7396     return error(PtrLoc, "cmpxchg operand must be a pointer");
7397   if (!cast<PointerType>(Ptr->getType())
7398            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7399     return error(CmpLoc, "compare value and pointer type do not match");
7400   if (!cast<PointerType>(Ptr->getType())
7401            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7402     return error(NewLoc, "new value and pointer type do not match");
7403   if (Cmp->getType() != New->getType())
7404     return error(NewLoc, "compare value and new value type do not match");
7405   if (!New->getType()->isFirstClassType())
7406     return error(NewLoc, "cmpxchg operand must be a first class value");
7407 
7408   const Align DefaultAlignment(
7409       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7410           Cmp->getType()));
7411 
7412   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7413       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7414       FailureOrdering, SSID);
7415   CXI->setVolatile(isVolatile);
7416   CXI->setWeak(isWeak);
7417 
7418   Inst = CXI;
7419   return AteExtraComma ? InstExtraComma : InstNormal;
7420 }
7421 
7422 /// parseAtomicRMW
7423 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7424 ///       'singlethread'? AtomicOrdering
7425 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7426   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7427   bool AteExtraComma = false;
7428   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7429   SyncScope::ID SSID = SyncScope::System;
7430   bool isVolatile = false;
7431   bool IsFP = false;
7432   AtomicRMWInst::BinOp Operation;
7433   MaybeAlign Alignment;
7434 
7435   if (EatIfPresent(lltok::kw_volatile))
7436     isVolatile = true;
7437 
7438   switch (Lex.getKind()) {
7439   default:
7440     return tokError("expected binary operation in atomicrmw");
7441   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7442   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7443   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7444   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7445   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7446   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7447   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7448   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7449   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7450   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7451   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7452   case lltok::kw_fadd:
7453     Operation = AtomicRMWInst::FAdd;
7454     IsFP = true;
7455     break;
7456   case lltok::kw_fsub:
7457     Operation = AtomicRMWInst::FSub;
7458     IsFP = true;
7459     break;
7460   }
7461   Lex.Lex();  // Eat the operation.
7462 
7463   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7464       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7465       parseTypeAndValue(Val, ValLoc, PFS) ||
7466       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7467       parseOptionalCommaAlign(Alignment, AteExtraComma))
7468     return true;
7469 
7470   if (Ordering == AtomicOrdering::Unordered)
7471     return tokError("atomicrmw cannot be unordered");
7472   if (!Ptr->getType()->isPointerTy())
7473     return error(PtrLoc, "atomicrmw operand must be a pointer");
7474   if (!cast<PointerType>(Ptr->getType())
7475            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7476     return error(ValLoc, "atomicrmw value and pointer type do not match");
7477 
7478   if (Operation == AtomicRMWInst::Xchg) {
7479     if (!Val->getType()->isIntegerTy() &&
7480         !Val->getType()->isFloatingPointTy() &&
7481         !Val->getType()->isPointerTy()) {
7482       return error(
7483           ValLoc,
7484           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7485               " operand must be an integer, floating point, or pointer type");
7486     }
7487   } else if (IsFP) {
7488     if (!Val->getType()->isFloatingPointTy()) {
7489       return error(ValLoc, "atomicrmw " +
7490                                AtomicRMWInst::getOperationName(Operation) +
7491                                " operand must be a floating point type");
7492     }
7493   } else {
7494     if (!Val->getType()->isIntegerTy()) {
7495       return error(ValLoc, "atomicrmw " +
7496                                AtomicRMWInst::getOperationName(Operation) +
7497                                " operand must be an integer");
7498     }
7499   }
7500 
7501   unsigned Size =
7502       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7503           Val->getType());
7504   if (Size < 8 || (Size & (Size - 1)))
7505     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7506                          " integer");
7507   const Align DefaultAlignment(
7508       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7509           Val->getType()));
7510   AtomicRMWInst *RMWI =
7511       new AtomicRMWInst(Operation, Ptr, Val,
7512                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7513   RMWI->setVolatile(isVolatile);
7514   Inst = RMWI;
7515   return AteExtraComma ? InstExtraComma : InstNormal;
7516 }
7517 
7518 /// parseFence
7519 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7520 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7521   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7522   SyncScope::ID SSID = SyncScope::System;
7523   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7524     return true;
7525 
7526   if (Ordering == AtomicOrdering::Unordered)
7527     return tokError("fence cannot be unordered");
7528   if (Ordering == AtomicOrdering::Monotonic)
7529     return tokError("fence cannot be monotonic");
7530 
7531   Inst = new FenceInst(Context, Ordering, SSID);
7532   return InstNormal;
7533 }
7534 
7535 /// parseGetElementPtr
7536 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7537 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7538   Value *Ptr = nullptr;
7539   Value *Val = nullptr;
7540   LocTy Loc, EltLoc;
7541 
7542   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7543 
7544   Type *Ty = nullptr;
7545   LocTy ExplicitTypeLoc = Lex.getLoc();
7546   if (parseType(Ty) ||
7547       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7548       parseTypeAndValue(Ptr, Loc, PFS))
7549     return true;
7550 
7551   Type *BaseType = Ptr->getType();
7552   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7553   if (!BasePointerType)
7554     return error(Loc, "base of getelementptr must be a pointer");
7555 
7556   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7557     return error(
7558         ExplicitTypeLoc,
7559         typeComparisonErrorMessage(
7560             "explicit pointee type doesn't match operand's pointee type", Ty,
7561             BasePointerType->getNonOpaquePointerElementType()));
7562   }
7563 
7564   SmallVector<Value*, 16> Indices;
7565   bool AteExtraComma = false;
7566   // GEP returns a vector of pointers if at least one of parameters is a vector.
7567   // All vector parameters should have the same vector width.
7568   ElementCount GEPWidth = BaseType->isVectorTy()
7569                               ? cast<VectorType>(BaseType)->getElementCount()
7570                               : ElementCount::getFixed(0);
7571 
7572   while (EatIfPresent(lltok::comma)) {
7573     if (Lex.getKind() == lltok::MetadataVar) {
7574       AteExtraComma = true;
7575       break;
7576     }
7577     if (parseTypeAndValue(Val, EltLoc, PFS))
7578       return true;
7579     if (!Val->getType()->isIntOrIntVectorTy())
7580       return error(EltLoc, "getelementptr index must be an integer");
7581 
7582     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7583       ElementCount ValNumEl = ValVTy->getElementCount();
7584       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7585         return error(
7586             EltLoc,
7587             "getelementptr vector index has a wrong number of elements");
7588       GEPWidth = ValNumEl;
7589     }
7590     Indices.push_back(Val);
7591   }
7592 
7593   SmallPtrSet<Type*, 4> Visited;
7594   if (!Indices.empty() && !Ty->isSized(&Visited))
7595     return error(Loc, "base element of getelementptr must be sized");
7596 
7597   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7598     return error(Loc, "invalid getelementptr indices");
7599   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7600   if (InBounds)
7601     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7602   return AteExtraComma ? InstExtraComma : InstNormal;
7603 }
7604 
7605 /// parseExtractValue
7606 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7607 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7608   Value *Val; LocTy Loc;
7609   SmallVector<unsigned, 4> Indices;
7610   bool AteExtraComma;
7611   if (parseTypeAndValue(Val, Loc, PFS) ||
7612       parseIndexList(Indices, AteExtraComma))
7613     return true;
7614 
7615   if (!Val->getType()->isAggregateType())
7616     return error(Loc, "extractvalue operand must be aggregate type");
7617 
7618   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7619     return error(Loc, "invalid indices for extractvalue");
7620   Inst = ExtractValueInst::Create(Val, Indices);
7621   return AteExtraComma ? InstExtraComma : InstNormal;
7622 }
7623 
7624 /// parseInsertValue
7625 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7626 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7627   Value *Val0, *Val1; LocTy Loc0, Loc1;
7628   SmallVector<unsigned, 4> Indices;
7629   bool AteExtraComma;
7630   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7631       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7632       parseTypeAndValue(Val1, Loc1, PFS) ||
7633       parseIndexList(Indices, AteExtraComma))
7634     return true;
7635 
7636   if (!Val0->getType()->isAggregateType())
7637     return error(Loc0, "insertvalue operand must be aggregate type");
7638 
7639   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7640   if (!IndexedType)
7641     return error(Loc0, "invalid indices for insertvalue");
7642   if (IndexedType != Val1->getType())
7643     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7644                            getTypeString(Val1->getType()) + "' instead of '" +
7645                            getTypeString(IndexedType) + "'");
7646   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7647   return AteExtraComma ? InstExtraComma : InstNormal;
7648 }
7649 
7650 //===----------------------------------------------------------------------===//
7651 // Embedded metadata.
7652 //===----------------------------------------------------------------------===//
7653 
7654 /// parseMDNodeVector
7655 ///   ::= { Element (',' Element)* }
7656 /// Element
7657 ///   ::= 'null' | TypeAndValue
7658 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7659   if (parseToken(lltok::lbrace, "expected '{' here"))
7660     return true;
7661 
7662   // Check for an empty list.
7663   if (EatIfPresent(lltok::rbrace))
7664     return false;
7665 
7666   do {
7667     // Null is a special case since it is typeless.
7668     if (EatIfPresent(lltok::kw_null)) {
7669       Elts.push_back(nullptr);
7670       continue;
7671     }
7672 
7673     Metadata *MD;
7674     if (parseMetadata(MD, nullptr))
7675       return true;
7676     Elts.push_back(MD);
7677   } while (EatIfPresent(lltok::comma));
7678 
7679   return parseToken(lltok::rbrace, "expected end of metadata node");
7680 }
7681 
7682 //===----------------------------------------------------------------------===//
7683 // Use-list order directives.
7684 //===----------------------------------------------------------------------===//
7685 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7686                                 SMLoc Loc) {
7687   if (V->use_empty())
7688     return error(Loc, "value has no uses");
7689 
7690   unsigned NumUses = 0;
7691   SmallDenseMap<const Use *, unsigned, 16> Order;
7692   for (const Use &U : V->uses()) {
7693     if (++NumUses > Indexes.size())
7694       break;
7695     Order[&U] = Indexes[NumUses - 1];
7696   }
7697   if (NumUses < 2)
7698     return error(Loc, "value only has one use");
7699   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7700     return error(Loc,
7701                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7702 
7703   V->sortUseList([&](const Use &L, const Use &R) {
7704     return Order.lookup(&L) < Order.lookup(&R);
7705   });
7706   return false;
7707 }
7708 
7709 /// parseUseListOrderIndexes
7710 ///   ::= '{' uint32 (',' uint32)+ '}'
7711 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7712   SMLoc Loc = Lex.getLoc();
7713   if (parseToken(lltok::lbrace, "expected '{' here"))
7714     return true;
7715   if (Lex.getKind() == lltok::rbrace)
7716     return Lex.Error("expected non-empty list of uselistorder indexes");
7717 
7718   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7719   // indexes should be distinct numbers in the range [0, size-1], and should
7720   // not be in order.
7721   unsigned Offset = 0;
7722   unsigned Max = 0;
7723   bool IsOrdered = true;
7724   assert(Indexes.empty() && "Expected empty order vector");
7725   do {
7726     unsigned Index;
7727     if (parseUInt32(Index))
7728       return true;
7729 
7730     // Update consistency checks.
7731     Offset += Index - Indexes.size();
7732     Max = std::max(Max, Index);
7733     IsOrdered &= Index == Indexes.size();
7734 
7735     Indexes.push_back(Index);
7736   } while (EatIfPresent(lltok::comma));
7737 
7738   if (parseToken(lltok::rbrace, "expected '}' here"))
7739     return true;
7740 
7741   if (Indexes.size() < 2)
7742     return error(Loc, "expected >= 2 uselistorder indexes");
7743   if (Offset != 0 || Max >= Indexes.size())
7744     return error(Loc,
7745                  "expected distinct uselistorder indexes in range [0, size)");
7746   if (IsOrdered)
7747     return error(Loc, "expected uselistorder indexes to change the order");
7748 
7749   return false;
7750 }
7751 
7752 /// parseUseListOrder
7753 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7754 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7755   SMLoc Loc = Lex.getLoc();
7756   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7757     return true;
7758 
7759   Value *V;
7760   SmallVector<unsigned, 16> Indexes;
7761   if (parseTypeAndValue(V, PFS) ||
7762       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7763       parseUseListOrderIndexes(Indexes))
7764     return true;
7765 
7766   return sortUseListOrder(V, Indexes, Loc);
7767 }
7768 
7769 /// parseUseListOrderBB
7770 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7771 bool LLParser::parseUseListOrderBB() {
7772   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7773   SMLoc Loc = Lex.getLoc();
7774   Lex.Lex();
7775 
7776   ValID Fn, Label;
7777   SmallVector<unsigned, 16> Indexes;
7778   if (parseValID(Fn, /*PFS=*/nullptr) ||
7779       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7780       parseValID(Label, /*PFS=*/nullptr) ||
7781       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7782       parseUseListOrderIndexes(Indexes))
7783     return true;
7784 
7785   // Check the function.
7786   GlobalValue *GV;
7787   if (Fn.Kind == ValID::t_GlobalName)
7788     GV = M->getNamedValue(Fn.StrVal);
7789   else if (Fn.Kind == ValID::t_GlobalID)
7790     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7791   else
7792     return error(Fn.Loc, "expected function name in uselistorder_bb");
7793   if (!GV)
7794     return error(Fn.Loc,
7795                  "invalid function forward reference in uselistorder_bb");
7796   auto *F = dyn_cast<Function>(GV);
7797   if (!F)
7798     return error(Fn.Loc, "expected function name in uselistorder_bb");
7799   if (F->isDeclaration())
7800     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7801 
7802   // Check the basic block.
7803   if (Label.Kind == ValID::t_LocalID)
7804     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7805   if (Label.Kind != ValID::t_LocalName)
7806     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7807   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7808   if (!V)
7809     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7810   if (!isa<BasicBlock>(V))
7811     return error(Label.Loc, "expected basic block in uselistorder_bb");
7812 
7813   return sortUseListOrder(V, Indexes, Loc);
7814 }
7815 
7816 /// ModuleEntry
7817 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7818 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7819 bool LLParser::parseModuleEntry(unsigned ID) {
7820   assert(Lex.getKind() == lltok::kw_module);
7821   Lex.Lex();
7822 
7823   std::string Path;
7824   if (parseToken(lltok::colon, "expected ':' here") ||
7825       parseToken(lltok::lparen, "expected '(' here") ||
7826       parseToken(lltok::kw_path, "expected 'path' here") ||
7827       parseToken(lltok::colon, "expected ':' here") ||
7828       parseStringConstant(Path) ||
7829       parseToken(lltok::comma, "expected ',' here") ||
7830       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7831       parseToken(lltok::colon, "expected ':' here") ||
7832       parseToken(lltok::lparen, "expected '(' here"))
7833     return true;
7834 
7835   ModuleHash Hash;
7836   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7837       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7838       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7839       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7840       parseUInt32(Hash[4]))
7841     return true;
7842 
7843   if (parseToken(lltok::rparen, "expected ')' here") ||
7844       parseToken(lltok::rparen, "expected ')' here"))
7845     return true;
7846 
7847   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7848   ModuleIdMap[ID] = ModuleEntry->first();
7849 
7850   return false;
7851 }
7852 
7853 /// TypeIdEntry
7854 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7855 bool LLParser::parseTypeIdEntry(unsigned ID) {
7856   assert(Lex.getKind() == lltok::kw_typeid);
7857   Lex.Lex();
7858 
7859   std::string Name;
7860   if (parseToken(lltok::colon, "expected ':' here") ||
7861       parseToken(lltok::lparen, "expected '(' here") ||
7862       parseToken(lltok::kw_name, "expected 'name' here") ||
7863       parseToken(lltok::colon, "expected ':' here") ||
7864       parseStringConstant(Name))
7865     return true;
7866 
7867   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7868   if (parseToken(lltok::comma, "expected ',' here") ||
7869       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7870     return true;
7871 
7872   // Check if this ID was forward referenced, and if so, update the
7873   // corresponding GUIDs.
7874   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7875   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7876     for (auto TIDRef : FwdRefTIDs->second) {
7877       assert(!*TIDRef.first &&
7878              "Forward referenced type id GUID expected to be 0");
7879       *TIDRef.first = GlobalValue::getGUID(Name);
7880     }
7881     ForwardRefTypeIds.erase(FwdRefTIDs);
7882   }
7883 
7884   return false;
7885 }
7886 
7887 /// TypeIdSummary
7888 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7889 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7890   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7891       parseToken(lltok::colon, "expected ':' here") ||
7892       parseToken(lltok::lparen, "expected '(' here") ||
7893       parseTypeTestResolution(TIS.TTRes))
7894     return true;
7895 
7896   if (EatIfPresent(lltok::comma)) {
7897     // Expect optional wpdResolutions field
7898     if (parseOptionalWpdResolutions(TIS.WPDRes))
7899       return true;
7900   }
7901 
7902   if (parseToken(lltok::rparen, "expected ')' here"))
7903     return true;
7904 
7905   return false;
7906 }
7907 
7908 static ValueInfo EmptyVI =
7909     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7910 
7911 /// TypeIdCompatibleVtableEntry
7912 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7913 ///   TypeIdCompatibleVtableInfo
7914 ///   ')'
7915 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7916   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7917   Lex.Lex();
7918 
7919   std::string Name;
7920   if (parseToken(lltok::colon, "expected ':' here") ||
7921       parseToken(lltok::lparen, "expected '(' here") ||
7922       parseToken(lltok::kw_name, "expected 'name' here") ||
7923       parseToken(lltok::colon, "expected ':' here") ||
7924       parseStringConstant(Name))
7925     return true;
7926 
7927   TypeIdCompatibleVtableInfo &TI =
7928       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7929   if (parseToken(lltok::comma, "expected ',' here") ||
7930       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7931       parseToken(lltok::colon, "expected ':' here") ||
7932       parseToken(lltok::lparen, "expected '(' here"))
7933     return true;
7934 
7935   IdToIndexMapType IdToIndexMap;
7936   // parse each call edge
7937   do {
7938     uint64_t Offset;
7939     if (parseToken(lltok::lparen, "expected '(' here") ||
7940         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7941         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7942         parseToken(lltok::comma, "expected ',' here"))
7943       return true;
7944 
7945     LocTy Loc = Lex.getLoc();
7946     unsigned GVId;
7947     ValueInfo VI;
7948     if (parseGVReference(VI, GVId))
7949       return true;
7950 
7951     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7952     // forward reference. We will save the location of the ValueInfo needing an
7953     // update, but can only do so once the std::vector is finalized.
7954     if (VI == EmptyVI)
7955       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7956     TI.push_back({Offset, VI});
7957 
7958     if (parseToken(lltok::rparen, "expected ')' in call"))
7959       return true;
7960   } while (EatIfPresent(lltok::comma));
7961 
7962   // Now that the TI vector is finalized, it is safe to save the locations
7963   // of any forward GV references that need updating later.
7964   for (auto I : IdToIndexMap) {
7965     auto &Infos = ForwardRefValueInfos[I.first];
7966     for (auto P : I.second) {
7967       assert(TI[P.first].VTableVI == EmptyVI &&
7968              "Forward referenced ValueInfo expected to be empty");
7969       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7970     }
7971   }
7972 
7973   if (parseToken(lltok::rparen, "expected ')' here") ||
7974       parseToken(lltok::rparen, "expected ')' here"))
7975     return true;
7976 
7977   // Check if this ID was forward referenced, and if so, update the
7978   // corresponding GUIDs.
7979   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7980   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7981     for (auto TIDRef : FwdRefTIDs->second) {
7982       assert(!*TIDRef.first &&
7983              "Forward referenced type id GUID expected to be 0");
7984       *TIDRef.first = GlobalValue::getGUID(Name);
7985     }
7986     ForwardRefTypeIds.erase(FwdRefTIDs);
7987   }
7988 
7989   return false;
7990 }
7991 
7992 /// TypeTestResolution
7993 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7994 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7995 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7996 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7997 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7998 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7999   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8000       parseToken(lltok::colon, "expected ':' here") ||
8001       parseToken(lltok::lparen, "expected '(' here") ||
8002       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8003       parseToken(lltok::colon, "expected ':' here"))
8004     return true;
8005 
8006   switch (Lex.getKind()) {
8007   case lltok::kw_unknown:
8008     TTRes.TheKind = TypeTestResolution::Unknown;
8009     break;
8010   case lltok::kw_unsat:
8011     TTRes.TheKind = TypeTestResolution::Unsat;
8012     break;
8013   case lltok::kw_byteArray:
8014     TTRes.TheKind = TypeTestResolution::ByteArray;
8015     break;
8016   case lltok::kw_inline:
8017     TTRes.TheKind = TypeTestResolution::Inline;
8018     break;
8019   case lltok::kw_single:
8020     TTRes.TheKind = TypeTestResolution::Single;
8021     break;
8022   case lltok::kw_allOnes:
8023     TTRes.TheKind = TypeTestResolution::AllOnes;
8024     break;
8025   default:
8026     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8027   }
8028   Lex.Lex();
8029 
8030   if (parseToken(lltok::comma, "expected ',' here") ||
8031       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8032       parseToken(lltok::colon, "expected ':' here") ||
8033       parseUInt32(TTRes.SizeM1BitWidth))
8034     return true;
8035 
8036   // parse optional fields
8037   while (EatIfPresent(lltok::comma)) {
8038     switch (Lex.getKind()) {
8039     case lltok::kw_alignLog2:
8040       Lex.Lex();
8041       if (parseToken(lltok::colon, "expected ':'") ||
8042           parseUInt64(TTRes.AlignLog2))
8043         return true;
8044       break;
8045     case lltok::kw_sizeM1:
8046       Lex.Lex();
8047       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8048         return true;
8049       break;
8050     case lltok::kw_bitMask: {
8051       unsigned Val;
8052       Lex.Lex();
8053       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8054         return true;
8055       assert(Val <= 0xff);
8056       TTRes.BitMask = (uint8_t)Val;
8057       break;
8058     }
8059     case lltok::kw_inlineBits:
8060       Lex.Lex();
8061       if (parseToken(lltok::colon, "expected ':'") ||
8062           parseUInt64(TTRes.InlineBits))
8063         return true;
8064       break;
8065     default:
8066       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8067     }
8068   }
8069 
8070   if (parseToken(lltok::rparen, "expected ')' here"))
8071     return true;
8072 
8073   return false;
8074 }
8075 
8076 /// OptionalWpdResolutions
8077 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8078 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8079 bool LLParser::parseOptionalWpdResolutions(
8080     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8081   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8082       parseToken(lltok::colon, "expected ':' here") ||
8083       parseToken(lltok::lparen, "expected '(' here"))
8084     return true;
8085 
8086   do {
8087     uint64_t Offset;
8088     WholeProgramDevirtResolution WPDRes;
8089     if (parseToken(lltok::lparen, "expected '(' here") ||
8090         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8091         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8092         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8093         parseToken(lltok::rparen, "expected ')' here"))
8094       return true;
8095     WPDResMap[Offset] = WPDRes;
8096   } while (EatIfPresent(lltok::comma));
8097 
8098   if (parseToken(lltok::rparen, "expected ')' here"))
8099     return true;
8100 
8101   return false;
8102 }
8103 
8104 /// WpdRes
8105 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8106 ///         [',' OptionalResByArg]? ')'
8107 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8108 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8109 ///         [',' OptionalResByArg]? ')'
8110 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8111 ///         [',' OptionalResByArg]? ')'
8112 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8113   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8114       parseToken(lltok::colon, "expected ':' here") ||
8115       parseToken(lltok::lparen, "expected '(' here") ||
8116       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8117       parseToken(lltok::colon, "expected ':' here"))
8118     return true;
8119 
8120   switch (Lex.getKind()) {
8121   case lltok::kw_indir:
8122     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8123     break;
8124   case lltok::kw_singleImpl:
8125     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8126     break;
8127   case lltok::kw_branchFunnel:
8128     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8129     break;
8130   default:
8131     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8132   }
8133   Lex.Lex();
8134 
8135   // parse optional fields
8136   while (EatIfPresent(lltok::comma)) {
8137     switch (Lex.getKind()) {
8138     case lltok::kw_singleImplName:
8139       Lex.Lex();
8140       if (parseToken(lltok::colon, "expected ':' here") ||
8141           parseStringConstant(WPDRes.SingleImplName))
8142         return true;
8143       break;
8144     case lltok::kw_resByArg:
8145       if (parseOptionalResByArg(WPDRes.ResByArg))
8146         return true;
8147       break;
8148     default:
8149       return error(Lex.getLoc(),
8150                    "expected optional WholeProgramDevirtResolution field");
8151     }
8152   }
8153 
8154   if (parseToken(lltok::rparen, "expected ')' here"))
8155     return true;
8156 
8157   return false;
8158 }
8159 
8160 /// OptionalResByArg
8161 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8162 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8163 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8164 ///                  'virtualConstProp' )
8165 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8166 ///                [',' 'bit' ':' UInt32]? ')'
8167 bool LLParser::parseOptionalResByArg(
8168     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8169         &ResByArg) {
8170   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8171       parseToken(lltok::colon, "expected ':' here") ||
8172       parseToken(lltok::lparen, "expected '(' here"))
8173     return true;
8174 
8175   do {
8176     std::vector<uint64_t> Args;
8177     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8178         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8179         parseToken(lltok::colon, "expected ':' here") ||
8180         parseToken(lltok::lparen, "expected '(' here") ||
8181         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8182         parseToken(lltok::colon, "expected ':' here"))
8183       return true;
8184 
8185     WholeProgramDevirtResolution::ByArg ByArg;
8186     switch (Lex.getKind()) {
8187     case lltok::kw_indir:
8188       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8189       break;
8190     case lltok::kw_uniformRetVal:
8191       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8192       break;
8193     case lltok::kw_uniqueRetVal:
8194       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8195       break;
8196     case lltok::kw_virtualConstProp:
8197       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8198       break;
8199     default:
8200       return error(Lex.getLoc(),
8201                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8202     }
8203     Lex.Lex();
8204 
8205     // parse optional fields
8206     while (EatIfPresent(lltok::comma)) {
8207       switch (Lex.getKind()) {
8208       case lltok::kw_info:
8209         Lex.Lex();
8210         if (parseToken(lltok::colon, "expected ':' here") ||
8211             parseUInt64(ByArg.Info))
8212           return true;
8213         break;
8214       case lltok::kw_byte:
8215         Lex.Lex();
8216         if (parseToken(lltok::colon, "expected ':' here") ||
8217             parseUInt32(ByArg.Byte))
8218           return true;
8219         break;
8220       case lltok::kw_bit:
8221         Lex.Lex();
8222         if (parseToken(lltok::colon, "expected ':' here") ||
8223             parseUInt32(ByArg.Bit))
8224           return true;
8225         break;
8226       default:
8227         return error(Lex.getLoc(),
8228                      "expected optional whole program devirt field");
8229       }
8230     }
8231 
8232     if (parseToken(lltok::rparen, "expected ')' here"))
8233       return true;
8234 
8235     ResByArg[Args] = ByArg;
8236   } while (EatIfPresent(lltok::comma));
8237 
8238   if (parseToken(lltok::rparen, "expected ')' here"))
8239     return true;
8240 
8241   return false;
8242 }
8243 
8244 /// OptionalResByArg
8245 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8246 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8247   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8248       parseToken(lltok::colon, "expected ':' here") ||
8249       parseToken(lltok::lparen, "expected '(' here"))
8250     return true;
8251 
8252   do {
8253     uint64_t Val;
8254     if (parseUInt64(Val))
8255       return true;
8256     Args.push_back(Val);
8257   } while (EatIfPresent(lltok::comma));
8258 
8259   if (parseToken(lltok::rparen, "expected ')' here"))
8260     return true;
8261 
8262   return false;
8263 }
8264 
8265 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8266 
8267 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8268   bool ReadOnly = Fwd->isReadOnly();
8269   bool WriteOnly = Fwd->isWriteOnly();
8270   assert(!(ReadOnly && WriteOnly));
8271   *Fwd = Resolved;
8272   if (ReadOnly)
8273     Fwd->setReadOnly();
8274   if (WriteOnly)
8275     Fwd->setWriteOnly();
8276 }
8277 
8278 /// Stores the given Name/GUID and associated summary into the Index.
8279 /// Also updates any forward references to the associated entry ID.
8280 void LLParser::addGlobalValueToIndex(
8281     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8282     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8283   // First create the ValueInfo utilizing the Name or GUID.
8284   ValueInfo VI;
8285   if (GUID != 0) {
8286     assert(Name.empty());
8287     VI = Index->getOrInsertValueInfo(GUID);
8288   } else {
8289     assert(!Name.empty());
8290     if (M) {
8291       auto *GV = M->getNamedValue(Name);
8292       assert(GV);
8293       VI = Index->getOrInsertValueInfo(GV);
8294     } else {
8295       assert(
8296           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8297           "Need a source_filename to compute GUID for local");
8298       GUID = GlobalValue::getGUID(
8299           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8300       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8301     }
8302   }
8303 
8304   // Resolve forward references from calls/refs
8305   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8306   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8307     for (auto VIRef : FwdRefVIs->second) {
8308       assert(VIRef.first->getRef() == FwdVIRef &&
8309              "Forward referenced ValueInfo expected to be empty");
8310       resolveFwdRef(VIRef.first, VI);
8311     }
8312     ForwardRefValueInfos.erase(FwdRefVIs);
8313   }
8314 
8315   // Resolve forward references from aliases
8316   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8317   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8318     for (auto AliaseeRef : FwdRefAliasees->second) {
8319       assert(!AliaseeRef.first->hasAliasee() &&
8320              "Forward referencing alias already has aliasee");
8321       assert(Summary && "Aliasee must be a definition");
8322       AliaseeRef.first->setAliasee(VI, Summary.get());
8323     }
8324     ForwardRefAliasees.erase(FwdRefAliasees);
8325   }
8326 
8327   // Add the summary if one was provided.
8328   if (Summary)
8329     Index->addGlobalValueSummary(VI, std::move(Summary));
8330 
8331   // Save the associated ValueInfo for use in later references by ID.
8332   if (ID == NumberedValueInfos.size())
8333     NumberedValueInfos.push_back(VI);
8334   else {
8335     // Handle non-continuous numbers (to make test simplification easier).
8336     if (ID > NumberedValueInfos.size())
8337       NumberedValueInfos.resize(ID + 1);
8338     NumberedValueInfos[ID] = VI;
8339   }
8340 }
8341 
8342 /// parseSummaryIndexFlags
8343 ///   ::= 'flags' ':' UInt64
8344 bool LLParser::parseSummaryIndexFlags() {
8345   assert(Lex.getKind() == lltok::kw_flags);
8346   Lex.Lex();
8347 
8348   if (parseToken(lltok::colon, "expected ':' here"))
8349     return true;
8350   uint64_t Flags;
8351   if (parseUInt64(Flags))
8352     return true;
8353   if (Index)
8354     Index->setFlags(Flags);
8355   return false;
8356 }
8357 
8358 /// parseBlockCount
8359 ///   ::= 'blockcount' ':' UInt64
8360 bool LLParser::parseBlockCount() {
8361   assert(Lex.getKind() == lltok::kw_blockcount);
8362   Lex.Lex();
8363 
8364   if (parseToken(lltok::colon, "expected ':' here"))
8365     return true;
8366   uint64_t BlockCount;
8367   if (parseUInt64(BlockCount))
8368     return true;
8369   if (Index)
8370     Index->setBlockCount(BlockCount);
8371   return false;
8372 }
8373 
8374 /// parseGVEntry
8375 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8376 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8377 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8378 bool LLParser::parseGVEntry(unsigned ID) {
8379   assert(Lex.getKind() == lltok::kw_gv);
8380   Lex.Lex();
8381 
8382   if (parseToken(lltok::colon, "expected ':' here") ||
8383       parseToken(lltok::lparen, "expected '(' here"))
8384     return true;
8385 
8386   std::string Name;
8387   GlobalValue::GUID GUID = 0;
8388   switch (Lex.getKind()) {
8389   case lltok::kw_name:
8390     Lex.Lex();
8391     if (parseToken(lltok::colon, "expected ':' here") ||
8392         parseStringConstant(Name))
8393       return true;
8394     // Can't create GUID/ValueInfo until we have the linkage.
8395     break;
8396   case lltok::kw_guid:
8397     Lex.Lex();
8398     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8399       return true;
8400     break;
8401   default:
8402     return error(Lex.getLoc(), "expected name or guid tag");
8403   }
8404 
8405   if (!EatIfPresent(lltok::comma)) {
8406     // No summaries. Wrap up.
8407     if (parseToken(lltok::rparen, "expected ')' here"))
8408       return true;
8409     // This was created for a call to an external or indirect target.
8410     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8411     // created for indirect calls with VP. A Name with no GUID came from
8412     // an external definition. We pass ExternalLinkage since that is only
8413     // used when the GUID must be computed from Name, and in that case
8414     // the symbol must have external linkage.
8415     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8416                           nullptr);
8417     return false;
8418   }
8419 
8420   // Have a list of summaries
8421   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8422       parseToken(lltok::colon, "expected ':' here") ||
8423       parseToken(lltok::lparen, "expected '(' here"))
8424     return true;
8425   do {
8426     switch (Lex.getKind()) {
8427     case lltok::kw_function:
8428       if (parseFunctionSummary(Name, GUID, ID))
8429         return true;
8430       break;
8431     case lltok::kw_variable:
8432       if (parseVariableSummary(Name, GUID, ID))
8433         return true;
8434       break;
8435     case lltok::kw_alias:
8436       if (parseAliasSummary(Name, GUID, ID))
8437         return true;
8438       break;
8439     default:
8440       return error(Lex.getLoc(), "expected summary type");
8441     }
8442   } while (EatIfPresent(lltok::comma));
8443 
8444   if (parseToken(lltok::rparen, "expected ')' here") ||
8445       parseToken(lltok::rparen, "expected ')' here"))
8446     return true;
8447 
8448   return false;
8449 }
8450 
8451 /// FunctionSummary
8452 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8453 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8454 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8455 ///         [',' OptionalRefs]? ')'
8456 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8457                                     unsigned ID) {
8458   assert(Lex.getKind() == lltok::kw_function);
8459   Lex.Lex();
8460 
8461   StringRef ModulePath;
8462   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8463       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8464       /*NotEligibleToImport=*/false,
8465       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8466   unsigned InstCount;
8467   std::vector<FunctionSummary::EdgeTy> Calls;
8468   FunctionSummary::TypeIdInfo TypeIdInfo;
8469   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8470   std::vector<ValueInfo> Refs;
8471   // Default is all-zeros (conservative values).
8472   FunctionSummary::FFlags FFlags = {};
8473   if (parseToken(lltok::colon, "expected ':' here") ||
8474       parseToken(lltok::lparen, "expected '(' here") ||
8475       parseModuleReference(ModulePath) ||
8476       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8477       parseToken(lltok::comma, "expected ',' here") ||
8478       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8479       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8480     return true;
8481 
8482   // parse optional fields
8483   while (EatIfPresent(lltok::comma)) {
8484     switch (Lex.getKind()) {
8485     case lltok::kw_funcFlags:
8486       if (parseOptionalFFlags(FFlags))
8487         return true;
8488       break;
8489     case lltok::kw_calls:
8490       if (parseOptionalCalls(Calls))
8491         return true;
8492       break;
8493     case lltok::kw_typeIdInfo:
8494       if (parseOptionalTypeIdInfo(TypeIdInfo))
8495         return true;
8496       break;
8497     case lltok::kw_refs:
8498       if (parseOptionalRefs(Refs))
8499         return true;
8500       break;
8501     case lltok::kw_params:
8502       if (parseOptionalParamAccesses(ParamAccesses))
8503         return true;
8504       break;
8505     default:
8506       return error(Lex.getLoc(), "expected optional function summary field");
8507     }
8508   }
8509 
8510   if (parseToken(lltok::rparen, "expected ')' here"))
8511     return true;
8512 
8513   auto FS = std::make_unique<FunctionSummary>(
8514       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8515       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8516       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8517       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8518       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8519       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8520       std::move(ParamAccesses));
8521 
8522   FS->setModulePath(ModulePath);
8523 
8524   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8525                         ID, std::move(FS));
8526 
8527   return false;
8528 }
8529 
8530 /// VariableSummary
8531 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8532 ///         [',' OptionalRefs]? ')'
8533 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8534                                     unsigned ID) {
8535   assert(Lex.getKind() == lltok::kw_variable);
8536   Lex.Lex();
8537 
8538   StringRef ModulePath;
8539   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8540       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8541       /*NotEligibleToImport=*/false,
8542       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8543   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8544                                         /* WriteOnly */ false,
8545                                         /* Constant */ false,
8546                                         GlobalObject::VCallVisibilityPublic);
8547   std::vector<ValueInfo> Refs;
8548   VTableFuncList VTableFuncs;
8549   if (parseToken(lltok::colon, "expected ':' here") ||
8550       parseToken(lltok::lparen, "expected '(' here") ||
8551       parseModuleReference(ModulePath) ||
8552       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8553       parseToken(lltok::comma, "expected ',' here") ||
8554       parseGVarFlags(GVarFlags))
8555     return true;
8556 
8557   // parse optional fields
8558   while (EatIfPresent(lltok::comma)) {
8559     switch (Lex.getKind()) {
8560     case lltok::kw_vTableFuncs:
8561       if (parseOptionalVTableFuncs(VTableFuncs))
8562         return true;
8563       break;
8564     case lltok::kw_refs:
8565       if (parseOptionalRefs(Refs))
8566         return true;
8567       break;
8568     default:
8569       return error(Lex.getLoc(), "expected optional variable summary field");
8570     }
8571   }
8572 
8573   if (parseToken(lltok::rparen, "expected ')' here"))
8574     return true;
8575 
8576   auto GS =
8577       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8578 
8579   GS->setModulePath(ModulePath);
8580   GS->setVTableFuncs(std::move(VTableFuncs));
8581 
8582   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8583                         ID, std::move(GS));
8584 
8585   return false;
8586 }
8587 
8588 /// AliasSummary
8589 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8590 ///         'aliasee' ':' GVReference ')'
8591 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8592                                  unsigned ID) {
8593   assert(Lex.getKind() == lltok::kw_alias);
8594   LocTy Loc = Lex.getLoc();
8595   Lex.Lex();
8596 
8597   StringRef ModulePath;
8598   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8599       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8600       /*NotEligibleToImport=*/false,
8601       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8602   if (parseToken(lltok::colon, "expected ':' here") ||
8603       parseToken(lltok::lparen, "expected '(' here") ||
8604       parseModuleReference(ModulePath) ||
8605       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8606       parseToken(lltok::comma, "expected ',' here") ||
8607       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8608       parseToken(lltok::colon, "expected ':' here"))
8609     return true;
8610 
8611   ValueInfo AliaseeVI;
8612   unsigned GVId;
8613   if (parseGVReference(AliaseeVI, GVId))
8614     return true;
8615 
8616   if (parseToken(lltok::rparen, "expected ')' here"))
8617     return true;
8618 
8619   auto AS = std::make_unique<AliasSummary>(GVFlags);
8620 
8621   AS->setModulePath(ModulePath);
8622 
8623   // Record forward reference if the aliasee is not parsed yet.
8624   if (AliaseeVI.getRef() == FwdVIRef) {
8625     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8626   } else {
8627     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8628     assert(Summary && "Aliasee must be a definition");
8629     AS->setAliasee(AliaseeVI, Summary);
8630   }
8631 
8632   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8633                         ID, std::move(AS));
8634 
8635   return false;
8636 }
8637 
8638 /// Flag
8639 ///   ::= [0|1]
8640 bool LLParser::parseFlag(unsigned &Val) {
8641   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8642     return tokError("expected integer");
8643   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8644   Lex.Lex();
8645   return false;
8646 }
8647 
8648 /// OptionalFFlags
8649 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8650 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8651 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8652 ///        [',' 'noInline' ':' Flag]? ')'
8653 ///        [',' 'alwaysInline' ':' Flag]? ')'
8654 ///        [',' 'noUnwind' ':' Flag]? ')'
8655 ///        [',' 'mayThrow' ':' Flag]? ')'
8656 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8657 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8658 
8659 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8660   assert(Lex.getKind() == lltok::kw_funcFlags);
8661   Lex.Lex();
8662 
8663   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8664       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8665     return true;
8666 
8667   do {
8668     unsigned Val = 0;
8669     switch (Lex.getKind()) {
8670     case lltok::kw_readNone:
8671       Lex.Lex();
8672       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8673         return true;
8674       FFlags.ReadNone = Val;
8675       break;
8676     case lltok::kw_readOnly:
8677       Lex.Lex();
8678       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8679         return true;
8680       FFlags.ReadOnly = Val;
8681       break;
8682     case lltok::kw_noRecurse:
8683       Lex.Lex();
8684       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8685         return true;
8686       FFlags.NoRecurse = Val;
8687       break;
8688     case lltok::kw_returnDoesNotAlias:
8689       Lex.Lex();
8690       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8691         return true;
8692       FFlags.ReturnDoesNotAlias = Val;
8693       break;
8694     case lltok::kw_noInline:
8695       Lex.Lex();
8696       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8697         return true;
8698       FFlags.NoInline = Val;
8699       break;
8700     case lltok::kw_alwaysInline:
8701       Lex.Lex();
8702       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8703         return true;
8704       FFlags.AlwaysInline = Val;
8705       break;
8706     case lltok::kw_noUnwind:
8707       Lex.Lex();
8708       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8709         return true;
8710       FFlags.NoUnwind = Val;
8711       break;
8712     case lltok::kw_mayThrow:
8713       Lex.Lex();
8714       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8715         return true;
8716       FFlags.MayThrow = Val;
8717       break;
8718     case lltok::kw_hasUnknownCall:
8719       Lex.Lex();
8720       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8721         return true;
8722       FFlags.HasUnknownCall = Val;
8723       break;
8724     case lltok::kw_mustBeUnreachable:
8725       Lex.Lex();
8726       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8727         return true;
8728       FFlags.MustBeUnreachable = Val;
8729       break;
8730     default:
8731       return error(Lex.getLoc(), "expected function flag type");
8732     }
8733   } while (EatIfPresent(lltok::comma));
8734 
8735   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8736     return true;
8737 
8738   return false;
8739 }
8740 
8741 /// OptionalCalls
8742 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8743 /// Call ::= '(' 'callee' ':' GVReference
8744 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8745 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8746   assert(Lex.getKind() == lltok::kw_calls);
8747   Lex.Lex();
8748 
8749   if (parseToken(lltok::colon, "expected ':' in calls") ||
8750       parseToken(lltok::lparen, "expected '(' in calls"))
8751     return true;
8752 
8753   IdToIndexMapType IdToIndexMap;
8754   // parse each call edge
8755   do {
8756     ValueInfo VI;
8757     if (parseToken(lltok::lparen, "expected '(' in call") ||
8758         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8759         parseToken(lltok::colon, "expected ':'"))
8760       return true;
8761 
8762     LocTy Loc = Lex.getLoc();
8763     unsigned GVId;
8764     if (parseGVReference(VI, GVId))
8765       return true;
8766 
8767     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8768     unsigned RelBF = 0;
8769     if (EatIfPresent(lltok::comma)) {
8770       // Expect either hotness or relbf
8771       if (EatIfPresent(lltok::kw_hotness)) {
8772         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8773           return true;
8774       } else {
8775         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8776             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8777           return true;
8778       }
8779     }
8780     // Keep track of the Call array index needing a forward reference.
8781     // We will save the location of the ValueInfo needing an update, but
8782     // can only do so once the std::vector is finalized.
8783     if (VI.getRef() == FwdVIRef)
8784       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8785     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8786 
8787     if (parseToken(lltok::rparen, "expected ')' in call"))
8788       return true;
8789   } while (EatIfPresent(lltok::comma));
8790 
8791   // Now that the Calls vector is finalized, it is safe to save the locations
8792   // of any forward GV references that need updating later.
8793   for (auto I : IdToIndexMap) {
8794     auto &Infos = ForwardRefValueInfos[I.first];
8795     for (auto P : I.second) {
8796       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8797              "Forward referenced ValueInfo expected to be empty");
8798       Infos.emplace_back(&Calls[P.first].first, P.second);
8799     }
8800   }
8801 
8802   if (parseToken(lltok::rparen, "expected ')' in calls"))
8803     return true;
8804 
8805   return false;
8806 }
8807 
8808 /// Hotness
8809 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8810 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8811   switch (Lex.getKind()) {
8812   case lltok::kw_unknown:
8813     Hotness = CalleeInfo::HotnessType::Unknown;
8814     break;
8815   case lltok::kw_cold:
8816     Hotness = CalleeInfo::HotnessType::Cold;
8817     break;
8818   case lltok::kw_none:
8819     Hotness = CalleeInfo::HotnessType::None;
8820     break;
8821   case lltok::kw_hot:
8822     Hotness = CalleeInfo::HotnessType::Hot;
8823     break;
8824   case lltok::kw_critical:
8825     Hotness = CalleeInfo::HotnessType::Critical;
8826     break;
8827   default:
8828     return error(Lex.getLoc(), "invalid call edge hotness");
8829   }
8830   Lex.Lex();
8831   return false;
8832 }
8833 
8834 /// OptionalVTableFuncs
8835 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8836 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8837 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8838   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8839   Lex.Lex();
8840 
8841   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8842       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8843     return true;
8844 
8845   IdToIndexMapType IdToIndexMap;
8846   // parse each virtual function pair
8847   do {
8848     ValueInfo VI;
8849     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8850         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8851         parseToken(lltok::colon, "expected ':'"))
8852       return true;
8853 
8854     LocTy Loc = Lex.getLoc();
8855     unsigned GVId;
8856     if (parseGVReference(VI, GVId))
8857       return true;
8858 
8859     uint64_t Offset;
8860     if (parseToken(lltok::comma, "expected comma") ||
8861         parseToken(lltok::kw_offset, "expected offset") ||
8862         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8863       return true;
8864 
8865     // Keep track of the VTableFuncs array index needing a forward reference.
8866     // We will save the location of the ValueInfo needing an update, but
8867     // can only do so once the std::vector is finalized.
8868     if (VI == EmptyVI)
8869       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8870     VTableFuncs.push_back({VI, Offset});
8871 
8872     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8873       return true;
8874   } while (EatIfPresent(lltok::comma));
8875 
8876   // Now that the VTableFuncs vector is finalized, it is safe to save the
8877   // locations of any forward GV references that need updating later.
8878   for (auto I : IdToIndexMap) {
8879     auto &Infos = ForwardRefValueInfos[I.first];
8880     for (auto P : I.second) {
8881       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8882              "Forward referenced ValueInfo expected to be empty");
8883       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8884     }
8885   }
8886 
8887   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8888     return true;
8889 
8890   return false;
8891 }
8892 
8893 /// ParamNo := 'param' ':' UInt64
8894 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8895   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8896       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8897     return true;
8898   return false;
8899 }
8900 
8901 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8902 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8903   APSInt Lower;
8904   APSInt Upper;
8905   auto ParseAPSInt = [&](APSInt &Val) {
8906     if (Lex.getKind() != lltok::APSInt)
8907       return tokError("expected integer");
8908     Val = Lex.getAPSIntVal();
8909     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8910     Val.setIsSigned(true);
8911     Lex.Lex();
8912     return false;
8913   };
8914   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8915       parseToken(lltok::colon, "expected ':' here") ||
8916       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8917       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8918       parseToken(lltok::rsquare, "expected ']' here"))
8919     return true;
8920 
8921   ++Upper;
8922   Range =
8923       (Lower == Upper && !Lower.isMaxValue())
8924           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8925           : ConstantRange(Lower, Upper);
8926 
8927   return false;
8928 }
8929 
8930 /// ParamAccessCall
8931 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8932 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8933                                     IdLocListType &IdLocList) {
8934   if (parseToken(lltok::lparen, "expected '(' here") ||
8935       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8936       parseToken(lltok::colon, "expected ':' here"))
8937     return true;
8938 
8939   unsigned GVId;
8940   ValueInfo VI;
8941   LocTy Loc = Lex.getLoc();
8942   if (parseGVReference(VI, GVId))
8943     return true;
8944 
8945   Call.Callee = VI;
8946   IdLocList.emplace_back(GVId, Loc);
8947 
8948   if (parseToken(lltok::comma, "expected ',' here") ||
8949       parseParamNo(Call.ParamNo) ||
8950       parseToken(lltok::comma, "expected ',' here") ||
8951       parseParamAccessOffset(Call.Offsets))
8952     return true;
8953 
8954   if (parseToken(lltok::rparen, "expected ')' here"))
8955     return true;
8956 
8957   return false;
8958 }
8959 
8960 /// ParamAccess
8961 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8962 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8963 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8964                                 IdLocListType &IdLocList) {
8965   if (parseToken(lltok::lparen, "expected '(' here") ||
8966       parseParamNo(Param.ParamNo) ||
8967       parseToken(lltok::comma, "expected ',' here") ||
8968       parseParamAccessOffset(Param.Use))
8969     return true;
8970 
8971   if (EatIfPresent(lltok::comma)) {
8972     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8973         parseToken(lltok::colon, "expected ':' here") ||
8974         parseToken(lltok::lparen, "expected '(' here"))
8975       return true;
8976     do {
8977       FunctionSummary::ParamAccess::Call Call;
8978       if (parseParamAccessCall(Call, IdLocList))
8979         return true;
8980       Param.Calls.push_back(Call);
8981     } while (EatIfPresent(lltok::comma));
8982 
8983     if (parseToken(lltok::rparen, "expected ')' here"))
8984       return true;
8985   }
8986 
8987   if (parseToken(lltok::rparen, "expected ')' here"))
8988     return true;
8989 
8990   return false;
8991 }
8992 
8993 /// OptionalParamAccesses
8994 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8995 bool LLParser::parseOptionalParamAccesses(
8996     std::vector<FunctionSummary::ParamAccess> &Params) {
8997   assert(Lex.getKind() == lltok::kw_params);
8998   Lex.Lex();
8999 
9000   if (parseToken(lltok::colon, "expected ':' here") ||
9001       parseToken(lltok::lparen, "expected '(' here"))
9002     return true;
9003 
9004   IdLocListType VContexts;
9005   size_t CallsNum = 0;
9006   do {
9007     FunctionSummary::ParamAccess ParamAccess;
9008     if (parseParamAccess(ParamAccess, VContexts))
9009       return true;
9010     CallsNum += ParamAccess.Calls.size();
9011     assert(VContexts.size() == CallsNum);
9012     (void)CallsNum;
9013     Params.emplace_back(std::move(ParamAccess));
9014   } while (EatIfPresent(lltok::comma));
9015 
9016   if (parseToken(lltok::rparen, "expected ')' here"))
9017     return true;
9018 
9019   // Now that the Params is finalized, it is safe to save the locations
9020   // of any forward GV references that need updating later.
9021   IdLocListType::const_iterator ItContext = VContexts.begin();
9022   for (auto &PA : Params) {
9023     for (auto &C : PA.Calls) {
9024       if (C.Callee.getRef() == FwdVIRef)
9025         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9026                                                             ItContext->second);
9027       ++ItContext;
9028     }
9029   }
9030   assert(ItContext == VContexts.end());
9031 
9032   return false;
9033 }
9034 
9035 /// OptionalRefs
9036 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9037 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9038   assert(Lex.getKind() == lltok::kw_refs);
9039   Lex.Lex();
9040 
9041   if (parseToken(lltok::colon, "expected ':' in refs") ||
9042       parseToken(lltok::lparen, "expected '(' in refs"))
9043     return true;
9044 
9045   struct ValueContext {
9046     ValueInfo VI;
9047     unsigned GVId;
9048     LocTy Loc;
9049   };
9050   std::vector<ValueContext> VContexts;
9051   // parse each ref edge
9052   do {
9053     ValueContext VC;
9054     VC.Loc = Lex.getLoc();
9055     if (parseGVReference(VC.VI, VC.GVId))
9056       return true;
9057     VContexts.push_back(VC);
9058   } while (EatIfPresent(lltok::comma));
9059 
9060   // Sort value contexts so that ones with writeonly
9061   // and readonly ValueInfo  are at the end of VContexts vector.
9062   // See FunctionSummary::specialRefCounts()
9063   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9064     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9065   });
9066 
9067   IdToIndexMapType IdToIndexMap;
9068   for (auto &VC : VContexts) {
9069     // Keep track of the Refs array index needing a forward reference.
9070     // We will save the location of the ValueInfo needing an update, but
9071     // can only do so once the std::vector is finalized.
9072     if (VC.VI.getRef() == FwdVIRef)
9073       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9074     Refs.push_back(VC.VI);
9075   }
9076 
9077   // Now that the Refs vector is finalized, it is safe to save the locations
9078   // of any forward GV references that need updating later.
9079   for (auto I : IdToIndexMap) {
9080     auto &Infos = ForwardRefValueInfos[I.first];
9081     for (auto P : I.second) {
9082       assert(Refs[P.first].getRef() == FwdVIRef &&
9083              "Forward referenced ValueInfo expected to be empty");
9084       Infos.emplace_back(&Refs[P.first], P.second);
9085     }
9086   }
9087 
9088   if (parseToken(lltok::rparen, "expected ')' in refs"))
9089     return true;
9090 
9091   return false;
9092 }
9093 
9094 /// OptionalTypeIdInfo
9095 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9096 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9097 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9098 bool LLParser::parseOptionalTypeIdInfo(
9099     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9100   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9101   Lex.Lex();
9102 
9103   if (parseToken(lltok::colon, "expected ':' here") ||
9104       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9105     return true;
9106 
9107   do {
9108     switch (Lex.getKind()) {
9109     case lltok::kw_typeTests:
9110       if (parseTypeTests(TypeIdInfo.TypeTests))
9111         return true;
9112       break;
9113     case lltok::kw_typeTestAssumeVCalls:
9114       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9115                            TypeIdInfo.TypeTestAssumeVCalls))
9116         return true;
9117       break;
9118     case lltok::kw_typeCheckedLoadVCalls:
9119       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9120                            TypeIdInfo.TypeCheckedLoadVCalls))
9121         return true;
9122       break;
9123     case lltok::kw_typeTestAssumeConstVCalls:
9124       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9125                               TypeIdInfo.TypeTestAssumeConstVCalls))
9126         return true;
9127       break;
9128     case lltok::kw_typeCheckedLoadConstVCalls:
9129       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9130                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9131         return true;
9132       break;
9133     default:
9134       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9135     }
9136   } while (EatIfPresent(lltok::comma));
9137 
9138   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9139     return true;
9140 
9141   return false;
9142 }
9143 
9144 /// TypeTests
9145 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9146 ///         [',' (SummaryID | UInt64)]* ')'
9147 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9148   assert(Lex.getKind() == lltok::kw_typeTests);
9149   Lex.Lex();
9150 
9151   if (parseToken(lltok::colon, "expected ':' here") ||
9152       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9153     return true;
9154 
9155   IdToIndexMapType IdToIndexMap;
9156   do {
9157     GlobalValue::GUID GUID = 0;
9158     if (Lex.getKind() == lltok::SummaryID) {
9159       unsigned ID = Lex.getUIntVal();
9160       LocTy Loc = Lex.getLoc();
9161       // Keep track of the TypeTests array index needing a forward reference.
9162       // We will save the location of the GUID needing an update, but
9163       // can only do so once the std::vector is finalized.
9164       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9165       Lex.Lex();
9166     } else if (parseUInt64(GUID))
9167       return true;
9168     TypeTests.push_back(GUID);
9169   } while (EatIfPresent(lltok::comma));
9170 
9171   // Now that the TypeTests vector is finalized, it is safe to save the
9172   // locations of any forward GV references that need updating later.
9173   for (auto I : IdToIndexMap) {
9174     auto &Ids = ForwardRefTypeIds[I.first];
9175     for (auto P : I.second) {
9176       assert(TypeTests[P.first] == 0 &&
9177              "Forward referenced type id GUID expected to be 0");
9178       Ids.emplace_back(&TypeTests[P.first], P.second);
9179     }
9180   }
9181 
9182   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9183     return true;
9184 
9185   return false;
9186 }
9187 
9188 /// VFuncIdList
9189 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9190 bool LLParser::parseVFuncIdList(
9191     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9192   assert(Lex.getKind() == Kind);
9193   Lex.Lex();
9194 
9195   if (parseToken(lltok::colon, "expected ':' here") ||
9196       parseToken(lltok::lparen, "expected '(' here"))
9197     return true;
9198 
9199   IdToIndexMapType IdToIndexMap;
9200   do {
9201     FunctionSummary::VFuncId VFuncId;
9202     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9203       return true;
9204     VFuncIdList.push_back(VFuncId);
9205   } while (EatIfPresent(lltok::comma));
9206 
9207   if (parseToken(lltok::rparen, "expected ')' here"))
9208     return true;
9209 
9210   // Now that the VFuncIdList vector is finalized, it is safe to save the
9211   // locations of any forward GV references that need updating later.
9212   for (auto I : IdToIndexMap) {
9213     auto &Ids = ForwardRefTypeIds[I.first];
9214     for (auto P : I.second) {
9215       assert(VFuncIdList[P.first].GUID == 0 &&
9216              "Forward referenced type id GUID expected to be 0");
9217       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9218     }
9219   }
9220 
9221   return false;
9222 }
9223 
9224 /// ConstVCallList
9225 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9226 bool LLParser::parseConstVCallList(
9227     lltok::Kind Kind,
9228     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9229   assert(Lex.getKind() == Kind);
9230   Lex.Lex();
9231 
9232   if (parseToken(lltok::colon, "expected ':' here") ||
9233       parseToken(lltok::lparen, "expected '(' here"))
9234     return true;
9235 
9236   IdToIndexMapType IdToIndexMap;
9237   do {
9238     FunctionSummary::ConstVCall ConstVCall;
9239     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9240       return true;
9241     ConstVCallList.push_back(ConstVCall);
9242   } while (EatIfPresent(lltok::comma));
9243 
9244   if (parseToken(lltok::rparen, "expected ')' here"))
9245     return true;
9246 
9247   // Now that the ConstVCallList vector is finalized, it is safe to save the
9248   // locations of any forward GV references that need updating later.
9249   for (auto I : IdToIndexMap) {
9250     auto &Ids = ForwardRefTypeIds[I.first];
9251     for (auto P : I.second) {
9252       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9253              "Forward referenced type id GUID expected to be 0");
9254       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9255     }
9256   }
9257 
9258   return false;
9259 }
9260 
9261 /// ConstVCall
9262 ///   ::= '(' VFuncId ',' Args ')'
9263 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9264                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9265   if (parseToken(lltok::lparen, "expected '(' here") ||
9266       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9267     return true;
9268 
9269   if (EatIfPresent(lltok::comma))
9270     if (parseArgs(ConstVCall.Args))
9271       return true;
9272 
9273   if (parseToken(lltok::rparen, "expected ')' here"))
9274     return true;
9275 
9276   return false;
9277 }
9278 
9279 /// VFuncId
9280 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9281 ///         'offset' ':' UInt64 ')'
9282 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9283                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9284   assert(Lex.getKind() == lltok::kw_vFuncId);
9285   Lex.Lex();
9286 
9287   if (parseToken(lltok::colon, "expected ':' here") ||
9288       parseToken(lltok::lparen, "expected '(' here"))
9289     return true;
9290 
9291   if (Lex.getKind() == lltok::SummaryID) {
9292     VFuncId.GUID = 0;
9293     unsigned ID = Lex.getUIntVal();
9294     LocTy Loc = Lex.getLoc();
9295     // Keep track of the array index needing a forward reference.
9296     // We will save the location of the GUID needing an update, but
9297     // can only do so once the caller's std::vector is finalized.
9298     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9299     Lex.Lex();
9300   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9301              parseToken(lltok::colon, "expected ':' here") ||
9302              parseUInt64(VFuncId.GUID))
9303     return true;
9304 
9305   if (parseToken(lltok::comma, "expected ',' here") ||
9306       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9307       parseToken(lltok::colon, "expected ':' here") ||
9308       parseUInt64(VFuncId.Offset) ||
9309       parseToken(lltok::rparen, "expected ')' here"))
9310     return true;
9311 
9312   return false;
9313 }
9314 
9315 /// GVFlags
9316 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9317 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9318 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9319 ///         'canAutoHide' ':' Flag ',' ')'
9320 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9321   assert(Lex.getKind() == lltok::kw_flags);
9322   Lex.Lex();
9323 
9324   if (parseToken(lltok::colon, "expected ':' here") ||
9325       parseToken(lltok::lparen, "expected '(' here"))
9326     return true;
9327 
9328   do {
9329     unsigned Flag = 0;
9330     switch (Lex.getKind()) {
9331     case lltok::kw_linkage:
9332       Lex.Lex();
9333       if (parseToken(lltok::colon, "expected ':'"))
9334         return true;
9335       bool HasLinkage;
9336       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9337       assert(HasLinkage && "Linkage not optional in summary entry");
9338       Lex.Lex();
9339       break;
9340     case lltok::kw_visibility:
9341       Lex.Lex();
9342       if (parseToken(lltok::colon, "expected ':'"))
9343         return true;
9344       parseOptionalVisibility(Flag);
9345       GVFlags.Visibility = Flag;
9346       break;
9347     case lltok::kw_notEligibleToImport:
9348       Lex.Lex();
9349       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9350         return true;
9351       GVFlags.NotEligibleToImport = Flag;
9352       break;
9353     case lltok::kw_live:
9354       Lex.Lex();
9355       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9356         return true;
9357       GVFlags.Live = Flag;
9358       break;
9359     case lltok::kw_dsoLocal:
9360       Lex.Lex();
9361       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9362         return true;
9363       GVFlags.DSOLocal = Flag;
9364       break;
9365     case lltok::kw_canAutoHide:
9366       Lex.Lex();
9367       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9368         return true;
9369       GVFlags.CanAutoHide = Flag;
9370       break;
9371     default:
9372       return error(Lex.getLoc(), "expected gv flag type");
9373     }
9374   } while (EatIfPresent(lltok::comma));
9375 
9376   if (parseToken(lltok::rparen, "expected ')' here"))
9377     return true;
9378 
9379   return false;
9380 }
9381 
9382 /// GVarFlags
9383 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9384 ///                      ',' 'writeonly' ':' Flag
9385 ///                      ',' 'constant' ':' Flag ')'
9386 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9387   assert(Lex.getKind() == lltok::kw_varFlags);
9388   Lex.Lex();
9389 
9390   if (parseToken(lltok::colon, "expected ':' here") ||
9391       parseToken(lltok::lparen, "expected '(' here"))
9392     return true;
9393 
9394   auto ParseRest = [this](unsigned int &Val) {
9395     Lex.Lex();
9396     if (parseToken(lltok::colon, "expected ':'"))
9397       return true;
9398     return parseFlag(Val);
9399   };
9400 
9401   do {
9402     unsigned Flag = 0;
9403     switch (Lex.getKind()) {
9404     case lltok::kw_readonly:
9405       if (ParseRest(Flag))
9406         return true;
9407       GVarFlags.MaybeReadOnly = Flag;
9408       break;
9409     case lltok::kw_writeonly:
9410       if (ParseRest(Flag))
9411         return true;
9412       GVarFlags.MaybeWriteOnly = Flag;
9413       break;
9414     case lltok::kw_constant:
9415       if (ParseRest(Flag))
9416         return true;
9417       GVarFlags.Constant = Flag;
9418       break;
9419     case lltok::kw_vcall_visibility:
9420       if (ParseRest(Flag))
9421         return true;
9422       GVarFlags.VCallVisibility = Flag;
9423       break;
9424     default:
9425       return error(Lex.getLoc(), "expected gvar flag type");
9426     }
9427   } while (EatIfPresent(lltok::comma));
9428   return parseToken(lltok::rparen, "expected ')' here");
9429 }
9430 
9431 /// ModuleReference
9432 ///   ::= 'module' ':' UInt
9433 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9434   // parse module id.
9435   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9436       parseToken(lltok::colon, "expected ':' here") ||
9437       parseToken(lltok::SummaryID, "expected module ID"))
9438     return true;
9439 
9440   unsigned ModuleID = Lex.getUIntVal();
9441   auto I = ModuleIdMap.find(ModuleID);
9442   // We should have already parsed all module IDs
9443   assert(I != ModuleIdMap.end());
9444   ModulePath = I->second;
9445   return false;
9446 }
9447 
9448 /// GVReference
9449 ///   ::= SummaryID
9450 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9451   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9452   if (!ReadOnly)
9453     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9454   if (parseToken(lltok::SummaryID, "expected GV ID"))
9455     return true;
9456 
9457   GVId = Lex.getUIntVal();
9458   // Check if we already have a VI for this GV
9459   if (GVId < NumberedValueInfos.size()) {
9460     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9461     VI = NumberedValueInfos[GVId];
9462   } else
9463     // We will create a forward reference to the stored location.
9464     VI = ValueInfo(false, FwdVIRef);
9465 
9466   if (ReadOnly)
9467     VI.setReadOnly();
9468   if (WriteOnly)
9469     VI.setWriteOnly();
9470   return false;
9471 }
9472