1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     M->setDataLayout(Str);
331     return false;
332   }
333 }
334 
335 /// toplevelentity
336 ///   ::= 'source_filename' '=' STRINGCONSTANT
337 bool LLParser::ParseSourceFileName() {
338   assert(Lex.getKind() == lltok::kw_source_filename);
339   std::string Str;
340   Lex.Lex();
341   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
342       ParseStringConstant(Str))
343     return true;
344   M->setSourceFileName(Str);
345   return false;
346 }
347 
348 /// toplevelentity
349 ///   ::= 'deplibs' '=' '[' ']'
350 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
351 /// FIXME: Remove in 4.0. Currently parse, but ignore.
352 bool LLParser::ParseDepLibs() {
353   assert(Lex.getKind() == lltok::kw_deplibs);
354   Lex.Lex();
355   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
356       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
357     return true;
358 
359   if (EatIfPresent(lltok::rsquare))
360     return false;
361 
362   do {
363     std::string Str;
364     if (ParseStringConstant(Str)) return true;
365   } while (EatIfPresent(lltok::comma));
366 
367   return ParseToken(lltok::rsquare, "expected ']' at end of list");
368 }
369 
370 /// ParseUnnamedType:
371 ///   ::= LocalVarID '=' 'type' type
372 bool LLParser::ParseUnnamedType() {
373   LocTy TypeLoc = Lex.getLoc();
374   unsigned TypeID = Lex.getUIntVal();
375   Lex.Lex(); // eat LocalVarID;
376 
377   if (ParseToken(lltok::equal, "expected '=' after name") ||
378       ParseToken(lltok::kw_type, "expected 'type' after '='"))
379     return true;
380 
381   Type *Result = nullptr;
382   if (ParseStructDefinition(TypeLoc, "",
383                             NumberedTypes[TypeID], Result)) return true;
384 
385   if (!isa<StructType>(Result)) {
386     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
387     if (Entry.first)
388       return Error(TypeLoc, "non-struct types may not be recursive");
389     Entry.first = Result;
390     Entry.second = SMLoc();
391   }
392 
393   return false;
394 }
395 
396 /// toplevelentity
397 ///   ::= LocalVar '=' 'type' type
398 bool LLParser::ParseNamedType() {
399   std::string Name = Lex.getStrVal();
400   LocTy NameLoc = Lex.getLoc();
401   Lex.Lex();  // eat LocalVar.
402 
403   if (ParseToken(lltok::equal, "expected '=' after name") ||
404       ParseToken(lltok::kw_type, "expected 'type' after name"))
405     return true;
406 
407   Type *Result = nullptr;
408   if (ParseStructDefinition(NameLoc, Name,
409                             NamedTypes[Name], Result)) return true;
410 
411   if (!isa<StructType>(Result)) {
412     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
413     if (Entry.first)
414       return Error(NameLoc, "non-struct types may not be recursive");
415     Entry.first = Result;
416     Entry.second = SMLoc();
417   }
418 
419   return false;
420 }
421 
422 /// toplevelentity
423 ///   ::= 'declare' FunctionHeader
424 bool LLParser::ParseDeclare() {
425   assert(Lex.getKind() == lltok::kw_declare);
426   Lex.Lex();
427 
428   std::vector<std::pair<unsigned, MDNode *>> MDs;
429   while (Lex.getKind() == lltok::MetadataVar) {
430     unsigned MDK;
431     MDNode *N;
432     if (ParseMetadataAttachment(MDK, N))
433       return true;
434     MDs.push_back({MDK, N});
435   }
436 
437   Function *F;
438   if (ParseFunctionHeader(F, false))
439     return true;
440   for (auto &MD : MDs)
441     F->addMetadata(MD.first, *MD.second);
442   return false;
443 }
444 
445 /// toplevelentity
446 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
447 bool LLParser::ParseDefine() {
448   assert(Lex.getKind() == lltok::kw_define);
449   Lex.Lex();
450 
451   Function *F;
452   return ParseFunctionHeader(F, true) ||
453          ParseOptionalFunctionMetadata(*F) ||
454          ParseFunctionBody(*F);
455 }
456 
457 /// ParseGlobalType
458 ///   ::= 'constant'
459 ///   ::= 'global'
460 bool LLParser::ParseGlobalType(bool &IsConstant) {
461   if (Lex.getKind() == lltok::kw_constant)
462     IsConstant = true;
463   else if (Lex.getKind() == lltok::kw_global)
464     IsConstant = false;
465   else {
466     IsConstant = false;
467     return TokError("expected 'global' or 'constant'");
468   }
469   Lex.Lex();
470   return false;
471 }
472 
473 bool LLParser::ParseOptionalUnnamedAddr(
474     GlobalVariable::UnnamedAddr &UnnamedAddr) {
475   if (EatIfPresent(lltok::kw_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
477   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
478     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
479   else
480     UnnamedAddr = GlobalValue::UnnamedAddr::None;
481   return false;
482 }
483 
484 /// ParseUnnamedGlobal:
485 ///   OptionalVisibility (ALIAS | IFUNC) ...
486 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
487 ///   OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
490 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
491 ///                OptionalDLLStorageClass
492 ///                                                     ...   -> global variable
493 bool LLParser::ParseUnnamedGlobal() {
494   unsigned VarID = NumberedVals.size();
495   std::string Name;
496   LocTy NameLoc = Lex.getLoc();
497 
498   // Handle the GlobalID form.
499   if (Lex.getKind() == lltok::GlobalID) {
500     if (Lex.getUIntVal() != VarID)
501       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
502                    Twine(VarID) + "'");
503     Lex.Lex(); // eat GlobalID;
504 
505     if (ParseToken(lltok::equal, "expected '=' after name"))
506       return true;
507   }
508 
509   bool HasLinkage;
510   unsigned Linkage, Visibility, DLLStorageClass;
511   bool DSOLocal;
512   GlobalVariable::ThreadLocalMode TLM;
513   GlobalVariable::UnnamedAddr UnnamedAddr;
514   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
515                            DSOLocal) ||
516       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
517     return true;
518 
519   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
520     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
521                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
522 
523   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
524                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
525 }
526 
527 /// ParseNamedGlobal:
528 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
529 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
530 ///                 OptionalVisibility OptionalDLLStorageClass
531 ///                                                     ...   -> global variable
532 bool LLParser::ParseNamedGlobal() {
533   assert(Lex.getKind() == lltok::GlobalVar);
534   LocTy NameLoc = Lex.getLoc();
535   std::string Name = Lex.getStrVal();
536   Lex.Lex();
537 
538   bool HasLinkage;
539   unsigned Linkage, Visibility, DLLStorageClass;
540   bool DSOLocal;
541   GlobalVariable::ThreadLocalMode TLM;
542   GlobalVariable::UnnamedAddr UnnamedAddr;
543   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
544       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
545                            DSOLocal) ||
546       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
547     return true;
548 
549   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
550     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
551                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
552 
553   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
554                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
555 }
556 
557 bool LLParser::parseComdat() {
558   assert(Lex.getKind() == lltok::ComdatVar);
559   std::string Name = Lex.getStrVal();
560   LocTy NameLoc = Lex.getLoc();
561   Lex.Lex();
562 
563   if (ParseToken(lltok::equal, "expected '=' here"))
564     return true;
565 
566   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
567     return TokError("expected comdat type");
568 
569   Comdat::SelectionKind SK;
570   switch (Lex.getKind()) {
571   default:
572     return TokError("unknown selection kind");
573   case lltok::kw_any:
574     SK = Comdat::Any;
575     break;
576   case lltok::kw_exactmatch:
577     SK = Comdat::ExactMatch;
578     break;
579   case lltok::kw_largest:
580     SK = Comdat::Largest;
581     break;
582   case lltok::kw_noduplicates:
583     SK = Comdat::NoDuplicates;
584     break;
585   case lltok::kw_samesize:
586     SK = Comdat::SameSize;
587     break;
588   }
589   Lex.Lex();
590 
591   // See if the comdat was forward referenced, if so, use the comdat.
592   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
593   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
594   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
595     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
596 
597   Comdat *C;
598   if (I != ComdatSymTab.end())
599     C = &I->second;
600   else
601     C = M->getOrInsertComdat(Name);
602   C->setSelectionKind(SK);
603 
604   return false;
605 }
606 
607 // MDString:
608 //   ::= '!' STRINGCONSTANT
609 bool LLParser::ParseMDString(MDString *&Result) {
610   std::string Str;
611   if (ParseStringConstant(Str)) return true;
612   Result = MDString::get(Context, Str);
613   return false;
614 }
615 
616 // MDNode:
617 //   ::= '!' MDNodeNumber
618 bool LLParser::ParseMDNodeID(MDNode *&Result) {
619   // !{ ..., !42, ... }
620   LocTy IDLoc = Lex.getLoc();
621   unsigned MID = 0;
622   if (ParseUInt32(MID))
623     return true;
624 
625   // If not a forward reference, just return it now.
626   if (NumberedMetadata.count(MID)) {
627     Result = NumberedMetadata[MID];
628     return false;
629   }
630 
631   // Otherwise, create MDNode forward reference.
632   auto &FwdRef = ForwardRefMDNodes[MID];
633   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
634 
635   Result = FwdRef.first.get();
636   NumberedMetadata[MID].reset(Result);
637   return false;
638 }
639 
640 /// ParseNamedMetadata:
641 ///   !foo = !{ !1, !2 }
642 bool LLParser::ParseNamedMetadata() {
643   assert(Lex.getKind() == lltok::MetadataVar);
644   std::string Name = Lex.getStrVal();
645   Lex.Lex();
646 
647   if (ParseToken(lltok::equal, "expected '=' here") ||
648       ParseToken(lltok::exclaim, "Expected '!' here") ||
649       ParseToken(lltok::lbrace, "Expected '{' here"))
650     return true;
651 
652   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
653   if (Lex.getKind() != lltok::rbrace)
654     do {
655       MDNode *N = nullptr;
656       // Parse DIExpressions inline as a special case. They are still MDNodes,
657       // so they can still appear in named metadata. Remove this logic if they
658       // become plain Metadata.
659       if (Lex.getKind() == lltok::MetadataVar &&
660           Lex.getStrVal() == "DIExpression") {
661         if (ParseDIExpression(N, /*IsDistinct=*/false))
662           return true;
663       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
664                  ParseMDNodeID(N)) {
665         return true;
666       }
667       NMD->addOperand(N);
668     } while (EatIfPresent(lltok::comma));
669 
670   return ParseToken(lltok::rbrace, "expected end of metadata node");
671 }
672 
673 /// ParseStandaloneMetadata:
674 ///   !42 = !{...}
675 bool LLParser::ParseStandaloneMetadata() {
676   assert(Lex.getKind() == lltok::exclaim);
677   Lex.Lex();
678   unsigned MetadataID = 0;
679 
680   MDNode *Init;
681   if (ParseUInt32(MetadataID) ||
682       ParseToken(lltok::equal, "expected '=' here"))
683     return true;
684 
685   // Detect common error, from old metadata syntax.
686   if (Lex.getKind() == lltok::Type)
687     return TokError("unexpected type in metadata definition");
688 
689   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
690   if (Lex.getKind() == lltok::MetadataVar) {
691     if (ParseSpecializedMDNode(Init, IsDistinct))
692       return true;
693   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
694              ParseMDTuple(Init, IsDistinct))
695     return true;
696 
697   // See if this was forward referenced, if so, handle it.
698   auto FI = ForwardRefMDNodes.find(MetadataID);
699   if (FI != ForwardRefMDNodes.end()) {
700     FI->second.first->replaceAllUsesWith(Init);
701     ForwardRefMDNodes.erase(FI);
702 
703     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
704   } else {
705     if (NumberedMetadata.count(MetadataID))
706       return TokError("Metadata id is already used");
707     NumberedMetadata[MetadataID].reset(Init);
708   }
709 
710   return false;
711 }
712 
713 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
714   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
715          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
716 }
717 
718 // If there was an explicit dso_local, update GV. In the absence of an explicit
719 // dso_local we keep the default value.
720 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
721   if (DSOLocal)
722     GV.setDSOLocal(true);
723 }
724 
725 /// parseIndirectSymbol:
726 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
727 ///                     OptionalVisibility OptionalDLLStorageClass
728 ///                     OptionalThreadLocal OptionalUnnamedAddr
729 //                      'alias|ifunc' IndirectSymbol
730 ///
731 /// IndirectSymbol
732 ///   ::= TypeAndValue
733 ///
734 /// Everything through OptionalUnnamedAddr has already been parsed.
735 ///
736 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
737                                    unsigned L, unsigned Visibility,
738                                    unsigned DLLStorageClass, bool DSOLocal,
739                                    GlobalVariable::ThreadLocalMode TLM,
740                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
741   bool IsAlias;
742   if (Lex.getKind() == lltok::kw_alias)
743     IsAlias = true;
744   else if (Lex.getKind() == lltok::kw_ifunc)
745     IsAlias = false;
746   else
747     llvm_unreachable("Not an alias or ifunc!");
748   Lex.Lex();
749 
750   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
751 
752   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
753     return Error(NameLoc, "invalid linkage type for alias");
754 
755   if (!isValidVisibilityForLinkage(Visibility, L))
756     return Error(NameLoc,
757                  "symbol with local linkage must have default visibility");
758 
759   Type *Ty;
760   LocTy ExplicitTypeLoc = Lex.getLoc();
761   if (ParseType(Ty) ||
762       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
763     return true;
764 
765   Constant *Aliasee;
766   LocTy AliaseeLoc = Lex.getLoc();
767   if (Lex.getKind() != lltok::kw_bitcast &&
768       Lex.getKind() != lltok::kw_getelementptr &&
769       Lex.getKind() != lltok::kw_addrspacecast &&
770       Lex.getKind() != lltok::kw_inttoptr) {
771     if (ParseGlobalTypeAndValue(Aliasee))
772       return true;
773   } else {
774     // The bitcast dest type is not present, it is implied by the dest type.
775     ValID ID;
776     if (ParseValID(ID))
777       return true;
778     if (ID.Kind != ValID::t_Constant)
779       return Error(AliaseeLoc, "invalid aliasee");
780     Aliasee = ID.ConstantVal;
781   }
782 
783   Type *AliaseeType = Aliasee->getType();
784   auto *PTy = dyn_cast<PointerType>(AliaseeType);
785   if (!PTy)
786     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
787   unsigned AddrSpace = PTy->getAddressSpace();
788 
789   if (IsAlias && Ty != PTy->getElementType())
790     return Error(
791         ExplicitTypeLoc,
792         "explicit pointee type doesn't match operand's pointee type");
793 
794   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
795     return Error(
796         ExplicitTypeLoc,
797         "explicit pointee type should be a function type");
798 
799   GlobalValue *GVal = nullptr;
800 
801   // See if the alias was forward referenced, if so, prepare to replace the
802   // forward reference.
803   if (!Name.empty()) {
804     GVal = M->getNamedValue(Name);
805     if (GVal) {
806       if (!ForwardRefVals.erase(Name))
807         return Error(NameLoc, "redefinition of global '@" + Name + "'");
808     }
809   } else {
810     auto I = ForwardRefValIDs.find(NumberedVals.size());
811     if (I != ForwardRefValIDs.end()) {
812       GVal = I->second.first;
813       ForwardRefValIDs.erase(I);
814     }
815   }
816 
817   // Okay, create the alias but do not insert it into the module yet.
818   std::unique_ptr<GlobalIndirectSymbol> GA;
819   if (IsAlias)
820     GA.reset(GlobalAlias::create(Ty, AddrSpace,
821                                  (GlobalValue::LinkageTypes)Linkage, Name,
822                                  Aliasee, /*Parent*/ nullptr));
823   else
824     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
825                                  (GlobalValue::LinkageTypes)Linkage, Name,
826                                  Aliasee, /*Parent*/ nullptr));
827   GA->setThreadLocalMode(TLM);
828   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
829   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
830   GA->setUnnamedAddr(UnnamedAddr);
831   maybeSetDSOLocal(DSOLocal, *GA);
832 
833   if (Name.empty())
834     NumberedVals.push_back(GA.get());
835 
836   if (GVal) {
837     // Verify that types agree.
838     if (GVal->getType() != GA->getType())
839       return Error(
840           ExplicitTypeLoc,
841           "forward reference and definition of alias have different types");
842 
843     // If they agree, just RAUW the old value with the alias and remove the
844     // forward ref info.
845     GVal->replaceAllUsesWith(GA.get());
846     GVal->eraseFromParent();
847   }
848 
849   // Insert into the module, we know its name won't collide now.
850   if (IsAlias)
851     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
852   else
853     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
854   assert(GA->getName() == Name && "Should not be a name conflict!");
855 
856   // The module owns this now
857   GA.release();
858 
859   return false;
860 }
861 
862 /// ParseGlobal
863 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
864 ///       OptionalVisibility OptionalDLLStorageClass
865 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
866 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
867 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
868 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
869 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
870 ///       Const OptionalAttrs
871 ///
872 /// Everything up to and including OptionalUnnamedAddr has been parsed
873 /// already.
874 ///
875 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
876                            unsigned Linkage, bool HasLinkage,
877                            unsigned Visibility, unsigned DLLStorageClass,
878                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
879                            GlobalVariable::UnnamedAddr UnnamedAddr) {
880   if (!isValidVisibilityForLinkage(Visibility, Linkage))
881     return Error(NameLoc,
882                  "symbol with local linkage must have default visibility");
883 
884   unsigned AddrSpace;
885   bool IsConstant, IsExternallyInitialized;
886   LocTy IsExternallyInitializedLoc;
887   LocTy TyLoc;
888 
889   Type *Ty = nullptr;
890   if (ParseOptionalAddrSpace(AddrSpace) ||
891       ParseOptionalToken(lltok::kw_externally_initialized,
892                          IsExternallyInitialized,
893                          &IsExternallyInitializedLoc) ||
894       ParseGlobalType(IsConstant) ||
895       ParseType(Ty, TyLoc))
896     return true;
897 
898   // If the linkage is specified and is external, then no initializer is
899   // present.
900   Constant *Init = nullptr;
901   if (!HasLinkage ||
902       !GlobalValue::isValidDeclarationLinkage(
903           (GlobalValue::LinkageTypes)Linkage)) {
904     if (ParseGlobalValue(Ty, Init))
905       return true;
906   }
907 
908   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
909     return Error(TyLoc, "invalid type for global variable");
910 
911   GlobalValue *GVal = nullptr;
912 
913   // See if the global was forward referenced, if so, use the global.
914   if (!Name.empty()) {
915     GVal = M->getNamedValue(Name);
916     if (GVal) {
917       if (!ForwardRefVals.erase(Name))
918         return Error(NameLoc, "redefinition of global '@" + Name + "'");
919     }
920   } else {
921     auto I = ForwardRefValIDs.find(NumberedVals.size());
922     if (I != ForwardRefValIDs.end()) {
923       GVal = I->second.first;
924       ForwardRefValIDs.erase(I);
925     }
926   }
927 
928   GlobalVariable *GV;
929   if (!GVal) {
930     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
931                             Name, nullptr, GlobalVariable::NotThreadLocal,
932                             AddrSpace);
933   } else {
934     if (GVal->getValueType() != Ty)
935       return Error(TyLoc,
936             "forward reference and definition of global have different types");
937 
938     GV = cast<GlobalVariable>(GVal);
939 
940     // Move the forward-reference to the correct spot in the module.
941     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
942   }
943 
944   if (Name.empty())
945     NumberedVals.push_back(GV);
946 
947   // Set the parsed properties on the global.
948   if (Init)
949     GV->setInitializer(Init);
950   GV->setConstant(IsConstant);
951   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
952   maybeSetDSOLocal(DSOLocal, *GV);
953   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
954   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
955   GV->setExternallyInitialized(IsExternallyInitialized);
956   GV->setThreadLocalMode(TLM);
957   GV->setUnnamedAddr(UnnamedAddr);
958 
959   // Parse attributes on the global.
960   while (Lex.getKind() == lltok::comma) {
961     Lex.Lex();
962 
963     if (Lex.getKind() == lltok::kw_section) {
964       Lex.Lex();
965       GV->setSection(Lex.getStrVal());
966       if (ParseToken(lltok::StringConstant, "expected global section string"))
967         return true;
968     } else if (Lex.getKind() == lltok::kw_align) {
969       unsigned Alignment;
970       if (ParseOptionalAlignment(Alignment)) return true;
971       GV->setAlignment(Alignment);
972     } else if (Lex.getKind() == lltok::MetadataVar) {
973       if (ParseGlobalObjectMetadataAttachment(*GV))
974         return true;
975     } else {
976       Comdat *C;
977       if (parseOptionalComdat(Name, C))
978         return true;
979       if (C)
980         GV->setComdat(C);
981       else
982         return TokError("unknown global variable property!");
983     }
984   }
985 
986   AttrBuilder Attrs;
987   LocTy BuiltinLoc;
988   std::vector<unsigned> FwdRefAttrGrps;
989   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
990     return true;
991   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
992     GV->setAttributes(AttributeSet::get(Context, Attrs));
993     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
994   }
995 
996   return false;
997 }
998 
999 /// ParseUnnamedAttrGrp
1000 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1001 bool LLParser::ParseUnnamedAttrGrp() {
1002   assert(Lex.getKind() == lltok::kw_attributes);
1003   LocTy AttrGrpLoc = Lex.getLoc();
1004   Lex.Lex();
1005 
1006   if (Lex.getKind() != lltok::AttrGrpID)
1007     return TokError("expected attribute group id");
1008 
1009   unsigned VarID = Lex.getUIntVal();
1010   std::vector<unsigned> unused;
1011   LocTy BuiltinLoc;
1012   Lex.Lex();
1013 
1014   if (ParseToken(lltok::equal, "expected '=' here") ||
1015       ParseToken(lltok::lbrace, "expected '{' here") ||
1016       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1017                                  BuiltinLoc) ||
1018       ParseToken(lltok::rbrace, "expected end of attribute group"))
1019     return true;
1020 
1021   if (!NumberedAttrBuilders[VarID].hasAttributes())
1022     return Error(AttrGrpLoc, "attribute group has no attributes");
1023 
1024   return false;
1025 }
1026 
1027 /// ParseFnAttributeValuePairs
1028 ///   ::= <attr> | <attr> '=' <value>
1029 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1030                                           std::vector<unsigned> &FwdRefAttrGrps,
1031                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1032   bool HaveError = false;
1033 
1034   B.clear();
1035 
1036   while (true) {
1037     lltok::Kind Token = Lex.getKind();
1038     if (Token == lltok::kw_builtin)
1039       BuiltinLoc = Lex.getLoc();
1040     switch (Token) {
1041     default:
1042       if (!inAttrGrp) return HaveError;
1043       return Error(Lex.getLoc(), "unterminated attribute group");
1044     case lltok::rbrace:
1045       // Finished.
1046       return false;
1047 
1048     case lltok::AttrGrpID: {
1049       // Allow a function to reference an attribute group:
1050       //
1051       //   define void @foo() #1 { ... }
1052       if (inAttrGrp)
1053         HaveError |=
1054           Error(Lex.getLoc(),
1055               "cannot have an attribute group reference in an attribute group");
1056 
1057       unsigned AttrGrpNum = Lex.getUIntVal();
1058       if (inAttrGrp) break;
1059 
1060       // Save the reference to the attribute group. We'll fill it in later.
1061       FwdRefAttrGrps.push_back(AttrGrpNum);
1062       break;
1063     }
1064     // Target-dependent attributes:
1065     case lltok::StringConstant: {
1066       if (ParseStringAttribute(B))
1067         return true;
1068       continue;
1069     }
1070 
1071     // Target-independent attributes:
1072     case lltok::kw_align: {
1073       // As a hack, we allow function alignment to be initially parsed as an
1074       // attribute on a function declaration/definition or added to an attribute
1075       // group and later moved to the alignment field.
1076       unsigned Alignment;
1077       if (inAttrGrp) {
1078         Lex.Lex();
1079         if (ParseToken(lltok::equal, "expected '=' here") ||
1080             ParseUInt32(Alignment))
1081           return true;
1082       } else {
1083         if (ParseOptionalAlignment(Alignment))
1084           return true;
1085       }
1086       B.addAlignmentAttr(Alignment);
1087       continue;
1088     }
1089     case lltok::kw_alignstack: {
1090       unsigned Alignment;
1091       if (inAttrGrp) {
1092         Lex.Lex();
1093         if (ParseToken(lltok::equal, "expected '=' here") ||
1094             ParseUInt32(Alignment))
1095           return true;
1096       } else {
1097         if (ParseOptionalStackAlignment(Alignment))
1098           return true;
1099       }
1100       B.addStackAlignmentAttr(Alignment);
1101       continue;
1102     }
1103     case lltok::kw_allocsize: {
1104       unsigned ElemSizeArg;
1105       Optional<unsigned> NumElemsArg;
1106       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1107       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1108         return true;
1109       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1110       continue;
1111     }
1112     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1113     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1114     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1115     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1116     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1117     case lltok::kw_inaccessiblememonly:
1118       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1119     case lltok::kw_inaccessiblemem_or_argmemonly:
1120       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1121     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1122     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1123     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1124     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1125     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1126     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1127     case lltok::kw_noimplicitfloat:
1128       B.addAttribute(Attribute::NoImplicitFloat); break;
1129     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1130     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1131     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1132     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1133     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1134     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1135     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1136     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1137     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1138     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1139     case lltok::kw_returns_twice:
1140       B.addAttribute(Attribute::ReturnsTwice); break;
1141     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1142     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1143     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1144     case lltok::kw_sspstrong:
1145       B.addAttribute(Attribute::StackProtectStrong); break;
1146     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1147     case lltok::kw_sanitize_address:
1148       B.addAttribute(Attribute::SanitizeAddress); break;
1149     case lltok::kw_sanitize_hwaddress:
1150       B.addAttribute(Attribute::SanitizeHWAddress); break;
1151     case lltok::kw_sanitize_thread:
1152       B.addAttribute(Attribute::SanitizeThread); break;
1153     case lltok::kw_sanitize_memory:
1154       B.addAttribute(Attribute::SanitizeMemory); break;
1155     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1156     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1157     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1158 
1159     // Error handling.
1160     case lltok::kw_inreg:
1161     case lltok::kw_signext:
1162     case lltok::kw_zeroext:
1163       HaveError |=
1164         Error(Lex.getLoc(),
1165               "invalid use of attribute on a function");
1166       break;
1167     case lltok::kw_byval:
1168     case lltok::kw_dereferenceable:
1169     case lltok::kw_dereferenceable_or_null:
1170     case lltok::kw_inalloca:
1171     case lltok::kw_nest:
1172     case lltok::kw_noalias:
1173     case lltok::kw_nocapture:
1174     case lltok::kw_nonnull:
1175     case lltok::kw_returned:
1176     case lltok::kw_sret:
1177     case lltok::kw_swifterror:
1178     case lltok::kw_swiftself:
1179       HaveError |=
1180         Error(Lex.getLoc(),
1181               "invalid use of parameter-only attribute on a function");
1182       break;
1183     }
1184 
1185     Lex.Lex();
1186   }
1187 }
1188 
1189 //===----------------------------------------------------------------------===//
1190 // GlobalValue Reference/Resolution Routines.
1191 //===----------------------------------------------------------------------===//
1192 
1193 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1194                                               const std::string &Name) {
1195   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1196     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1197   else
1198     return new GlobalVariable(*M, PTy->getElementType(), false,
1199                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1200                               nullptr, GlobalVariable::NotThreadLocal,
1201                               PTy->getAddressSpace());
1202 }
1203 
1204 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1205 /// forward reference record if needed.  This can return null if the value
1206 /// exists but does not have the right type.
1207 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1208                                     LocTy Loc) {
1209   PointerType *PTy = dyn_cast<PointerType>(Ty);
1210   if (!PTy) {
1211     Error(Loc, "global variable reference must have pointer type");
1212     return nullptr;
1213   }
1214 
1215   // Look this name up in the normal function symbol table.
1216   GlobalValue *Val =
1217     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1218 
1219   // If this is a forward reference for the value, see if we already created a
1220   // forward ref record.
1221   if (!Val) {
1222     auto I = ForwardRefVals.find(Name);
1223     if (I != ForwardRefVals.end())
1224       Val = I->second.first;
1225   }
1226 
1227   // If we have the value in the symbol table or fwd-ref table, return it.
1228   if (Val) {
1229     if (Val->getType() == Ty) return Val;
1230     Error(Loc, "'@" + Name + "' defined with type '" +
1231           getTypeString(Val->getType()) + "'");
1232     return nullptr;
1233   }
1234 
1235   // Otherwise, create a new forward reference for this value and remember it.
1236   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1237   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1238   return FwdVal;
1239 }
1240 
1241 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1242   PointerType *PTy = dyn_cast<PointerType>(Ty);
1243   if (!PTy) {
1244     Error(Loc, "global variable reference must have pointer type");
1245     return nullptr;
1246   }
1247 
1248   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1249 
1250   // If this is a forward reference for the value, see if we already created a
1251   // forward ref record.
1252   if (!Val) {
1253     auto I = ForwardRefValIDs.find(ID);
1254     if (I != ForwardRefValIDs.end())
1255       Val = I->second.first;
1256   }
1257 
1258   // If we have the value in the symbol table or fwd-ref table, return it.
1259   if (Val) {
1260     if (Val->getType() == Ty) return Val;
1261     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1262           getTypeString(Val->getType()) + "'");
1263     return nullptr;
1264   }
1265 
1266   // Otherwise, create a new forward reference for this value and remember it.
1267   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1268   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1269   return FwdVal;
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // Comdat Reference/Resolution Routines.
1274 //===----------------------------------------------------------------------===//
1275 
1276 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1277   // Look this name up in the comdat symbol table.
1278   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1279   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1280   if (I != ComdatSymTab.end())
1281     return &I->second;
1282 
1283   // Otherwise, create a new forward reference for this value and remember it.
1284   Comdat *C = M->getOrInsertComdat(Name);
1285   ForwardRefComdats[Name] = Loc;
1286   return C;
1287 }
1288 
1289 //===----------------------------------------------------------------------===//
1290 // Helper Routines.
1291 //===----------------------------------------------------------------------===//
1292 
1293 /// ParseToken - If the current token has the specified kind, eat it and return
1294 /// success.  Otherwise, emit the specified error and return failure.
1295 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1296   if (Lex.getKind() != T)
1297     return TokError(ErrMsg);
1298   Lex.Lex();
1299   return false;
1300 }
1301 
1302 /// ParseStringConstant
1303 ///   ::= StringConstant
1304 bool LLParser::ParseStringConstant(std::string &Result) {
1305   if (Lex.getKind() != lltok::StringConstant)
1306     return TokError("expected string constant");
1307   Result = Lex.getStrVal();
1308   Lex.Lex();
1309   return false;
1310 }
1311 
1312 /// ParseUInt32
1313 ///   ::= uint32
1314 bool LLParser::ParseUInt32(uint32_t &Val) {
1315   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1316     return TokError("expected integer");
1317   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1318   if (Val64 != unsigned(Val64))
1319     return TokError("expected 32-bit integer (too large)");
1320   Val = Val64;
1321   Lex.Lex();
1322   return false;
1323 }
1324 
1325 /// ParseUInt64
1326 ///   ::= uint64
1327 bool LLParser::ParseUInt64(uint64_t &Val) {
1328   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1329     return TokError("expected integer");
1330   Val = Lex.getAPSIntVal().getLimitedValue();
1331   Lex.Lex();
1332   return false;
1333 }
1334 
1335 /// ParseTLSModel
1336 ///   := 'localdynamic'
1337 ///   := 'initialexec'
1338 ///   := 'localexec'
1339 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1340   switch (Lex.getKind()) {
1341     default:
1342       return TokError("expected localdynamic, initialexec or localexec");
1343     case lltok::kw_localdynamic:
1344       TLM = GlobalVariable::LocalDynamicTLSModel;
1345       break;
1346     case lltok::kw_initialexec:
1347       TLM = GlobalVariable::InitialExecTLSModel;
1348       break;
1349     case lltok::kw_localexec:
1350       TLM = GlobalVariable::LocalExecTLSModel;
1351       break;
1352   }
1353 
1354   Lex.Lex();
1355   return false;
1356 }
1357 
1358 /// ParseOptionalThreadLocal
1359 ///   := /*empty*/
1360 ///   := 'thread_local'
1361 ///   := 'thread_local' '(' tlsmodel ')'
1362 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1363   TLM = GlobalVariable::NotThreadLocal;
1364   if (!EatIfPresent(lltok::kw_thread_local))
1365     return false;
1366 
1367   TLM = GlobalVariable::GeneralDynamicTLSModel;
1368   if (Lex.getKind() == lltok::lparen) {
1369     Lex.Lex();
1370     return ParseTLSModel(TLM) ||
1371       ParseToken(lltok::rparen, "expected ')' after thread local model");
1372   }
1373   return false;
1374 }
1375 
1376 /// ParseOptionalAddrSpace
1377 ///   := /*empty*/
1378 ///   := 'addrspace' '(' uint32 ')'
1379 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1380   AddrSpace = 0;
1381   if (!EatIfPresent(lltok::kw_addrspace))
1382     return false;
1383   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1384          ParseUInt32(AddrSpace) ||
1385          ParseToken(lltok::rparen, "expected ')' in address space");
1386 }
1387 
1388 /// ParseStringAttribute
1389 ///   := StringConstant
1390 ///   := StringConstant '=' StringConstant
1391 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1392   std::string Attr = Lex.getStrVal();
1393   Lex.Lex();
1394   std::string Val;
1395   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1396     return true;
1397   B.addAttribute(Attr, Val);
1398   return false;
1399 }
1400 
1401 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1402 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1403   bool HaveError = false;
1404 
1405   B.clear();
1406 
1407   while (true) {
1408     lltok::Kind Token = Lex.getKind();
1409     switch (Token) {
1410     default:  // End of attributes.
1411       return HaveError;
1412     case lltok::StringConstant: {
1413       if (ParseStringAttribute(B))
1414         return true;
1415       continue;
1416     }
1417     case lltok::kw_align: {
1418       unsigned Alignment;
1419       if (ParseOptionalAlignment(Alignment))
1420         return true;
1421       B.addAlignmentAttr(Alignment);
1422       continue;
1423     }
1424     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1425     case lltok::kw_dereferenceable: {
1426       uint64_t Bytes;
1427       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1428         return true;
1429       B.addDereferenceableAttr(Bytes);
1430       continue;
1431     }
1432     case lltok::kw_dereferenceable_or_null: {
1433       uint64_t Bytes;
1434       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1435         return true;
1436       B.addDereferenceableOrNullAttr(Bytes);
1437       continue;
1438     }
1439     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1440     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1441     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1442     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1443     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1444     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1445     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1446     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1447     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1448     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1449     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1450     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1451     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1452     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1453     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1454 
1455     case lltok::kw_alignstack:
1456     case lltok::kw_alwaysinline:
1457     case lltok::kw_argmemonly:
1458     case lltok::kw_builtin:
1459     case lltok::kw_inlinehint:
1460     case lltok::kw_jumptable:
1461     case lltok::kw_minsize:
1462     case lltok::kw_naked:
1463     case lltok::kw_nobuiltin:
1464     case lltok::kw_noduplicate:
1465     case lltok::kw_noimplicitfloat:
1466     case lltok::kw_noinline:
1467     case lltok::kw_nonlazybind:
1468     case lltok::kw_noredzone:
1469     case lltok::kw_noreturn:
1470     case lltok::kw_nounwind:
1471     case lltok::kw_optnone:
1472     case lltok::kw_optsize:
1473     case lltok::kw_returns_twice:
1474     case lltok::kw_sanitize_address:
1475     case lltok::kw_sanitize_hwaddress:
1476     case lltok::kw_sanitize_memory:
1477     case lltok::kw_sanitize_thread:
1478     case lltok::kw_ssp:
1479     case lltok::kw_sspreq:
1480     case lltok::kw_sspstrong:
1481     case lltok::kw_safestack:
1482     case lltok::kw_strictfp:
1483     case lltok::kw_uwtable:
1484       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1485       break;
1486     }
1487 
1488     Lex.Lex();
1489   }
1490 }
1491 
1492 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1493 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1494   bool HaveError = false;
1495 
1496   B.clear();
1497 
1498   while (true) {
1499     lltok::Kind Token = Lex.getKind();
1500     switch (Token) {
1501     default:  // End of attributes.
1502       return HaveError;
1503     case lltok::StringConstant: {
1504       if (ParseStringAttribute(B))
1505         return true;
1506       continue;
1507     }
1508     case lltok::kw_dereferenceable: {
1509       uint64_t Bytes;
1510       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1511         return true;
1512       B.addDereferenceableAttr(Bytes);
1513       continue;
1514     }
1515     case lltok::kw_dereferenceable_or_null: {
1516       uint64_t Bytes;
1517       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1518         return true;
1519       B.addDereferenceableOrNullAttr(Bytes);
1520       continue;
1521     }
1522     case lltok::kw_align: {
1523       unsigned Alignment;
1524       if (ParseOptionalAlignment(Alignment))
1525         return true;
1526       B.addAlignmentAttr(Alignment);
1527       continue;
1528     }
1529     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1530     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1531     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1532     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1533     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1534 
1535     // Error handling.
1536     case lltok::kw_byval:
1537     case lltok::kw_inalloca:
1538     case lltok::kw_nest:
1539     case lltok::kw_nocapture:
1540     case lltok::kw_returned:
1541     case lltok::kw_sret:
1542     case lltok::kw_swifterror:
1543     case lltok::kw_swiftself:
1544       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1545       break;
1546 
1547     case lltok::kw_alignstack:
1548     case lltok::kw_alwaysinline:
1549     case lltok::kw_argmemonly:
1550     case lltok::kw_builtin:
1551     case lltok::kw_cold:
1552     case lltok::kw_inlinehint:
1553     case lltok::kw_jumptable:
1554     case lltok::kw_minsize:
1555     case lltok::kw_naked:
1556     case lltok::kw_nobuiltin:
1557     case lltok::kw_noduplicate:
1558     case lltok::kw_noimplicitfloat:
1559     case lltok::kw_noinline:
1560     case lltok::kw_nonlazybind:
1561     case lltok::kw_noredzone:
1562     case lltok::kw_noreturn:
1563     case lltok::kw_nounwind:
1564     case lltok::kw_optnone:
1565     case lltok::kw_optsize:
1566     case lltok::kw_returns_twice:
1567     case lltok::kw_sanitize_address:
1568     case lltok::kw_sanitize_hwaddress:
1569     case lltok::kw_sanitize_memory:
1570     case lltok::kw_sanitize_thread:
1571     case lltok::kw_ssp:
1572     case lltok::kw_sspreq:
1573     case lltok::kw_sspstrong:
1574     case lltok::kw_safestack:
1575     case lltok::kw_strictfp:
1576     case lltok::kw_uwtable:
1577       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1578       break;
1579 
1580     case lltok::kw_readnone:
1581     case lltok::kw_readonly:
1582       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1583     }
1584 
1585     Lex.Lex();
1586   }
1587 }
1588 
1589 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1590   HasLinkage = true;
1591   switch (Kind) {
1592   default:
1593     HasLinkage = false;
1594     return GlobalValue::ExternalLinkage;
1595   case lltok::kw_private:
1596     return GlobalValue::PrivateLinkage;
1597   case lltok::kw_internal:
1598     return GlobalValue::InternalLinkage;
1599   case lltok::kw_weak:
1600     return GlobalValue::WeakAnyLinkage;
1601   case lltok::kw_weak_odr:
1602     return GlobalValue::WeakODRLinkage;
1603   case lltok::kw_linkonce:
1604     return GlobalValue::LinkOnceAnyLinkage;
1605   case lltok::kw_linkonce_odr:
1606     return GlobalValue::LinkOnceODRLinkage;
1607   case lltok::kw_available_externally:
1608     return GlobalValue::AvailableExternallyLinkage;
1609   case lltok::kw_appending:
1610     return GlobalValue::AppendingLinkage;
1611   case lltok::kw_common:
1612     return GlobalValue::CommonLinkage;
1613   case lltok::kw_extern_weak:
1614     return GlobalValue::ExternalWeakLinkage;
1615   case lltok::kw_external:
1616     return GlobalValue::ExternalLinkage;
1617   }
1618 }
1619 
1620 /// ParseOptionalLinkage
1621 ///   ::= /*empty*/
1622 ///   ::= 'private'
1623 ///   ::= 'internal'
1624 ///   ::= 'weak'
1625 ///   ::= 'weak_odr'
1626 ///   ::= 'linkonce'
1627 ///   ::= 'linkonce_odr'
1628 ///   ::= 'available_externally'
1629 ///   ::= 'appending'
1630 ///   ::= 'common'
1631 ///   ::= 'extern_weak'
1632 ///   ::= 'external'
1633 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1634                                     unsigned &Visibility,
1635                                     unsigned &DLLStorageClass,
1636                                     bool &DSOLocal) {
1637   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1638   if (HasLinkage)
1639     Lex.Lex();
1640   ParseOptionalDSOLocal(DSOLocal);
1641   ParseOptionalVisibility(Visibility);
1642   ParseOptionalDLLStorageClass(DLLStorageClass);
1643 
1644   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1645     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1646   }
1647 
1648   return false;
1649 }
1650 
1651 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1652   switch (Lex.getKind()) {
1653   default:
1654     DSOLocal = false;
1655     break;
1656   case lltok::kw_dso_local:
1657     DSOLocal = true;
1658     Lex.Lex();
1659     break;
1660   case lltok::kw_dso_preemptable:
1661     DSOLocal = false;
1662     Lex.Lex();
1663     break;
1664   }
1665 }
1666 
1667 /// ParseOptionalVisibility
1668 ///   ::= /*empty*/
1669 ///   ::= 'default'
1670 ///   ::= 'hidden'
1671 ///   ::= 'protected'
1672 ///
1673 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1674   switch (Lex.getKind()) {
1675   default:
1676     Res = GlobalValue::DefaultVisibility;
1677     return;
1678   case lltok::kw_default:
1679     Res = GlobalValue::DefaultVisibility;
1680     break;
1681   case lltok::kw_hidden:
1682     Res = GlobalValue::HiddenVisibility;
1683     break;
1684   case lltok::kw_protected:
1685     Res = GlobalValue::ProtectedVisibility;
1686     break;
1687   }
1688   Lex.Lex();
1689 }
1690 
1691 /// ParseOptionalDLLStorageClass
1692 ///   ::= /*empty*/
1693 ///   ::= 'dllimport'
1694 ///   ::= 'dllexport'
1695 ///
1696 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1697   switch (Lex.getKind()) {
1698   default:
1699     Res = GlobalValue::DefaultStorageClass;
1700     return;
1701   case lltok::kw_dllimport:
1702     Res = GlobalValue::DLLImportStorageClass;
1703     break;
1704   case lltok::kw_dllexport:
1705     Res = GlobalValue::DLLExportStorageClass;
1706     break;
1707   }
1708   Lex.Lex();
1709 }
1710 
1711 /// ParseOptionalCallingConv
1712 ///   ::= /*empty*/
1713 ///   ::= 'ccc'
1714 ///   ::= 'fastcc'
1715 ///   ::= 'intel_ocl_bicc'
1716 ///   ::= 'coldcc'
1717 ///   ::= 'x86_stdcallcc'
1718 ///   ::= 'x86_fastcallcc'
1719 ///   ::= 'x86_thiscallcc'
1720 ///   ::= 'x86_vectorcallcc'
1721 ///   ::= 'arm_apcscc'
1722 ///   ::= 'arm_aapcscc'
1723 ///   ::= 'arm_aapcs_vfpcc'
1724 ///   ::= 'msp430_intrcc'
1725 ///   ::= 'avr_intrcc'
1726 ///   ::= 'avr_signalcc'
1727 ///   ::= 'ptx_kernel'
1728 ///   ::= 'ptx_device'
1729 ///   ::= 'spir_func'
1730 ///   ::= 'spir_kernel'
1731 ///   ::= 'x86_64_sysvcc'
1732 ///   ::= 'win64cc'
1733 ///   ::= 'webkit_jscc'
1734 ///   ::= 'anyregcc'
1735 ///   ::= 'preserve_mostcc'
1736 ///   ::= 'preserve_allcc'
1737 ///   ::= 'ghccc'
1738 ///   ::= 'swiftcc'
1739 ///   ::= 'x86_intrcc'
1740 ///   ::= 'hhvmcc'
1741 ///   ::= 'hhvm_ccc'
1742 ///   ::= 'cxx_fast_tlscc'
1743 ///   ::= 'amdgpu_vs'
1744 ///   ::= 'amdgpu_ls'
1745 ///   ::= 'amdgpu_hs'
1746 ///   ::= 'amdgpu_es'
1747 ///   ::= 'amdgpu_gs'
1748 ///   ::= 'amdgpu_ps'
1749 ///   ::= 'amdgpu_cs'
1750 ///   ::= 'amdgpu_kernel'
1751 ///   ::= 'cc' UINT
1752 ///
1753 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1754   switch (Lex.getKind()) {
1755   default:                       CC = CallingConv::C; return false;
1756   case lltok::kw_ccc:            CC = CallingConv::C; break;
1757   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1758   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1759   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1760   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1761   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1762   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1763   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1764   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1765   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1766   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1767   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1768   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1769   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1770   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1771   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1772   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1773   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1774   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1775   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1776   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1777   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1778   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1779   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1780   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1781   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1782   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1783   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1784   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1785   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1786   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1787   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1788   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1789   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1790   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1791   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1792   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1793   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1794   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1795   case lltok::kw_cc: {
1796       Lex.Lex();
1797       return ParseUInt32(CC);
1798     }
1799   }
1800 
1801   Lex.Lex();
1802   return false;
1803 }
1804 
1805 /// ParseMetadataAttachment
1806 ///   ::= !dbg !42
1807 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1808   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1809 
1810   std::string Name = Lex.getStrVal();
1811   Kind = M->getMDKindID(Name);
1812   Lex.Lex();
1813 
1814   return ParseMDNode(MD);
1815 }
1816 
1817 /// ParseInstructionMetadata
1818 ///   ::= !dbg !42 (',' !dbg !57)*
1819 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1820   do {
1821     if (Lex.getKind() != lltok::MetadataVar)
1822       return TokError("expected metadata after comma");
1823 
1824     unsigned MDK;
1825     MDNode *N;
1826     if (ParseMetadataAttachment(MDK, N))
1827       return true;
1828 
1829     Inst.setMetadata(MDK, N);
1830     if (MDK == LLVMContext::MD_tbaa)
1831       InstsWithTBAATag.push_back(&Inst);
1832 
1833     // If this is the end of the list, we're done.
1834   } while (EatIfPresent(lltok::comma));
1835   return false;
1836 }
1837 
1838 /// ParseGlobalObjectMetadataAttachment
1839 ///   ::= !dbg !57
1840 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1841   unsigned MDK;
1842   MDNode *N;
1843   if (ParseMetadataAttachment(MDK, N))
1844     return true;
1845 
1846   GO.addMetadata(MDK, *N);
1847   return false;
1848 }
1849 
1850 /// ParseOptionalFunctionMetadata
1851 ///   ::= (!dbg !57)*
1852 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1853   while (Lex.getKind() == lltok::MetadataVar)
1854     if (ParseGlobalObjectMetadataAttachment(F))
1855       return true;
1856   return false;
1857 }
1858 
1859 /// ParseOptionalAlignment
1860 ///   ::= /* empty */
1861 ///   ::= 'align' 4
1862 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1863   Alignment = 0;
1864   if (!EatIfPresent(lltok::kw_align))
1865     return false;
1866   LocTy AlignLoc = Lex.getLoc();
1867   if (ParseUInt32(Alignment)) return true;
1868   if (!isPowerOf2_32(Alignment))
1869     return Error(AlignLoc, "alignment is not a power of two");
1870   if (Alignment > Value::MaximumAlignment)
1871     return Error(AlignLoc, "huge alignments are not supported yet");
1872   return false;
1873 }
1874 
1875 /// ParseOptionalDerefAttrBytes
1876 ///   ::= /* empty */
1877 ///   ::= AttrKind '(' 4 ')'
1878 ///
1879 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1880 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1881                                            uint64_t &Bytes) {
1882   assert((AttrKind == lltok::kw_dereferenceable ||
1883           AttrKind == lltok::kw_dereferenceable_or_null) &&
1884          "contract!");
1885 
1886   Bytes = 0;
1887   if (!EatIfPresent(AttrKind))
1888     return false;
1889   LocTy ParenLoc = Lex.getLoc();
1890   if (!EatIfPresent(lltok::lparen))
1891     return Error(ParenLoc, "expected '('");
1892   LocTy DerefLoc = Lex.getLoc();
1893   if (ParseUInt64(Bytes)) return true;
1894   ParenLoc = Lex.getLoc();
1895   if (!EatIfPresent(lltok::rparen))
1896     return Error(ParenLoc, "expected ')'");
1897   if (!Bytes)
1898     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1899   return false;
1900 }
1901 
1902 /// ParseOptionalCommaAlign
1903 ///   ::=
1904 ///   ::= ',' align 4
1905 ///
1906 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1907 /// end.
1908 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1909                                        bool &AteExtraComma) {
1910   AteExtraComma = false;
1911   while (EatIfPresent(lltok::comma)) {
1912     // Metadata at the end is an early exit.
1913     if (Lex.getKind() == lltok::MetadataVar) {
1914       AteExtraComma = true;
1915       return false;
1916     }
1917 
1918     if (Lex.getKind() != lltok::kw_align)
1919       return Error(Lex.getLoc(), "expected metadata or 'align'");
1920 
1921     if (ParseOptionalAlignment(Alignment)) return true;
1922   }
1923 
1924   return false;
1925 }
1926 
1927 /// ParseOptionalCommaAddrSpace
1928 ///   ::=
1929 ///   ::= ',' addrspace(1)
1930 ///
1931 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1932 /// end.
1933 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1934                                            LocTy &Loc,
1935                                            bool &AteExtraComma) {
1936   AteExtraComma = false;
1937   while (EatIfPresent(lltok::comma)) {
1938     // Metadata at the end is an early exit.
1939     if (Lex.getKind() == lltok::MetadataVar) {
1940       AteExtraComma = true;
1941       return false;
1942     }
1943 
1944     Loc = Lex.getLoc();
1945     if (Lex.getKind() != lltok::kw_addrspace)
1946       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1947 
1948     if (ParseOptionalAddrSpace(AddrSpace))
1949       return true;
1950   }
1951 
1952   return false;
1953 }
1954 
1955 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1956                                        Optional<unsigned> &HowManyArg) {
1957   Lex.Lex();
1958 
1959   auto StartParen = Lex.getLoc();
1960   if (!EatIfPresent(lltok::lparen))
1961     return Error(StartParen, "expected '('");
1962 
1963   if (ParseUInt32(BaseSizeArg))
1964     return true;
1965 
1966   if (EatIfPresent(lltok::comma)) {
1967     auto HowManyAt = Lex.getLoc();
1968     unsigned HowMany;
1969     if (ParseUInt32(HowMany))
1970       return true;
1971     if (HowMany == BaseSizeArg)
1972       return Error(HowManyAt,
1973                    "'allocsize' indices can't refer to the same parameter");
1974     HowManyArg = HowMany;
1975   } else
1976     HowManyArg = None;
1977 
1978   auto EndParen = Lex.getLoc();
1979   if (!EatIfPresent(lltok::rparen))
1980     return Error(EndParen, "expected ')'");
1981   return false;
1982 }
1983 
1984 /// ParseScopeAndOrdering
1985 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1986 ///   else: ::=
1987 ///
1988 /// This sets Scope and Ordering to the parsed values.
1989 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1990                                      AtomicOrdering &Ordering) {
1991   if (!isAtomic)
1992     return false;
1993 
1994   return ParseScope(SSID) || ParseOrdering(Ordering);
1995 }
1996 
1997 /// ParseScope
1998 ///   ::= syncscope("singlethread" | "<target scope>")?
1999 ///
2000 /// This sets synchronization scope ID to the ID of the parsed value.
2001 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2002   SSID = SyncScope::System;
2003   if (EatIfPresent(lltok::kw_syncscope)) {
2004     auto StartParenAt = Lex.getLoc();
2005     if (!EatIfPresent(lltok::lparen))
2006       return Error(StartParenAt, "Expected '(' in syncscope");
2007 
2008     std::string SSN;
2009     auto SSNAt = Lex.getLoc();
2010     if (ParseStringConstant(SSN))
2011       return Error(SSNAt, "Expected synchronization scope name");
2012 
2013     auto EndParenAt = Lex.getLoc();
2014     if (!EatIfPresent(lltok::rparen))
2015       return Error(EndParenAt, "Expected ')' in syncscope");
2016 
2017     SSID = Context.getOrInsertSyncScopeID(SSN);
2018   }
2019 
2020   return false;
2021 }
2022 
2023 /// ParseOrdering
2024 ///   ::= AtomicOrdering
2025 ///
2026 /// This sets Ordering to the parsed value.
2027 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2028   switch (Lex.getKind()) {
2029   default: return TokError("Expected ordering on atomic instruction");
2030   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2031   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2032   // Not specified yet:
2033   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2034   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2035   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2036   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2037   case lltok::kw_seq_cst:
2038     Ordering = AtomicOrdering::SequentiallyConsistent;
2039     break;
2040   }
2041   Lex.Lex();
2042   return false;
2043 }
2044 
2045 /// ParseOptionalStackAlignment
2046 ///   ::= /* empty */
2047 ///   ::= 'alignstack' '(' 4 ')'
2048 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2049   Alignment = 0;
2050   if (!EatIfPresent(lltok::kw_alignstack))
2051     return false;
2052   LocTy ParenLoc = Lex.getLoc();
2053   if (!EatIfPresent(lltok::lparen))
2054     return Error(ParenLoc, "expected '('");
2055   LocTy AlignLoc = Lex.getLoc();
2056   if (ParseUInt32(Alignment)) return true;
2057   ParenLoc = Lex.getLoc();
2058   if (!EatIfPresent(lltok::rparen))
2059     return Error(ParenLoc, "expected ')'");
2060   if (!isPowerOf2_32(Alignment))
2061     return Error(AlignLoc, "stack alignment is not a power of two");
2062   return false;
2063 }
2064 
2065 /// ParseIndexList - This parses the index list for an insert/extractvalue
2066 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2067 /// comma at the end of the line and find that it is followed by metadata.
2068 /// Clients that don't allow metadata can call the version of this function that
2069 /// only takes one argument.
2070 ///
2071 /// ParseIndexList
2072 ///    ::=  (',' uint32)+
2073 ///
2074 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2075                               bool &AteExtraComma) {
2076   AteExtraComma = false;
2077 
2078   if (Lex.getKind() != lltok::comma)
2079     return TokError("expected ',' as start of index list");
2080 
2081   while (EatIfPresent(lltok::comma)) {
2082     if (Lex.getKind() == lltok::MetadataVar) {
2083       if (Indices.empty()) return TokError("expected index");
2084       AteExtraComma = true;
2085       return false;
2086     }
2087     unsigned Idx = 0;
2088     if (ParseUInt32(Idx)) return true;
2089     Indices.push_back(Idx);
2090   }
2091 
2092   return false;
2093 }
2094 
2095 //===----------------------------------------------------------------------===//
2096 // Type Parsing.
2097 //===----------------------------------------------------------------------===//
2098 
2099 /// ParseType - Parse a type.
2100 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2101   SMLoc TypeLoc = Lex.getLoc();
2102   switch (Lex.getKind()) {
2103   default:
2104     return TokError(Msg);
2105   case lltok::Type:
2106     // Type ::= 'float' | 'void' (etc)
2107     Result = Lex.getTyVal();
2108     Lex.Lex();
2109     break;
2110   case lltok::lbrace:
2111     // Type ::= StructType
2112     if (ParseAnonStructType(Result, false))
2113       return true;
2114     break;
2115   case lltok::lsquare:
2116     // Type ::= '[' ... ']'
2117     Lex.Lex(); // eat the lsquare.
2118     if (ParseArrayVectorType(Result, false))
2119       return true;
2120     break;
2121   case lltok::less: // Either vector or packed struct.
2122     // Type ::= '<' ... '>'
2123     Lex.Lex();
2124     if (Lex.getKind() == lltok::lbrace) {
2125       if (ParseAnonStructType(Result, true) ||
2126           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2127         return true;
2128     } else if (ParseArrayVectorType(Result, true))
2129       return true;
2130     break;
2131   case lltok::LocalVar: {
2132     // Type ::= %foo
2133     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2134 
2135     // If the type hasn't been defined yet, create a forward definition and
2136     // remember where that forward def'n was seen (in case it never is defined).
2137     if (!Entry.first) {
2138       Entry.first = StructType::create(Context, Lex.getStrVal());
2139       Entry.second = Lex.getLoc();
2140     }
2141     Result = Entry.first;
2142     Lex.Lex();
2143     break;
2144   }
2145 
2146   case lltok::LocalVarID: {
2147     // Type ::= %4
2148     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2149 
2150     // If the type hasn't been defined yet, create a forward definition and
2151     // remember where that forward def'n was seen (in case it never is defined).
2152     if (!Entry.first) {
2153       Entry.first = StructType::create(Context);
2154       Entry.second = Lex.getLoc();
2155     }
2156     Result = Entry.first;
2157     Lex.Lex();
2158     break;
2159   }
2160   }
2161 
2162   // Parse the type suffixes.
2163   while (true) {
2164     switch (Lex.getKind()) {
2165     // End of type.
2166     default:
2167       if (!AllowVoid && Result->isVoidTy())
2168         return Error(TypeLoc, "void type only allowed for function results");
2169       return false;
2170 
2171     // Type ::= Type '*'
2172     case lltok::star:
2173       if (Result->isLabelTy())
2174         return TokError("basic block pointers are invalid");
2175       if (Result->isVoidTy())
2176         return TokError("pointers to void are invalid - use i8* instead");
2177       if (!PointerType::isValidElementType(Result))
2178         return TokError("pointer to this type is invalid");
2179       Result = PointerType::getUnqual(Result);
2180       Lex.Lex();
2181       break;
2182 
2183     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2184     case lltok::kw_addrspace: {
2185       if (Result->isLabelTy())
2186         return TokError("basic block pointers are invalid");
2187       if (Result->isVoidTy())
2188         return TokError("pointers to void are invalid; use i8* instead");
2189       if (!PointerType::isValidElementType(Result))
2190         return TokError("pointer to this type is invalid");
2191       unsigned AddrSpace;
2192       if (ParseOptionalAddrSpace(AddrSpace) ||
2193           ParseToken(lltok::star, "expected '*' in address space"))
2194         return true;
2195 
2196       Result = PointerType::get(Result, AddrSpace);
2197       break;
2198     }
2199 
2200     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2201     case lltok::lparen:
2202       if (ParseFunctionType(Result))
2203         return true;
2204       break;
2205     }
2206   }
2207 }
2208 
2209 /// ParseParameterList
2210 ///    ::= '(' ')'
2211 ///    ::= '(' Arg (',' Arg)* ')'
2212 ///  Arg
2213 ///    ::= Type OptionalAttributes Value OptionalAttributes
2214 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2215                                   PerFunctionState &PFS, bool IsMustTailCall,
2216                                   bool InVarArgsFunc) {
2217   if (ParseToken(lltok::lparen, "expected '(' in call"))
2218     return true;
2219 
2220   while (Lex.getKind() != lltok::rparen) {
2221     // If this isn't the first argument, we need a comma.
2222     if (!ArgList.empty() &&
2223         ParseToken(lltok::comma, "expected ',' in argument list"))
2224       return true;
2225 
2226     // Parse an ellipsis if this is a musttail call in a variadic function.
2227     if (Lex.getKind() == lltok::dotdotdot) {
2228       const char *Msg = "unexpected ellipsis in argument list for ";
2229       if (!IsMustTailCall)
2230         return TokError(Twine(Msg) + "non-musttail call");
2231       if (!InVarArgsFunc)
2232         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2233       Lex.Lex();  // Lex the '...', it is purely for readability.
2234       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2235     }
2236 
2237     // Parse the argument.
2238     LocTy ArgLoc;
2239     Type *ArgTy = nullptr;
2240     AttrBuilder ArgAttrs;
2241     Value *V;
2242     if (ParseType(ArgTy, ArgLoc))
2243       return true;
2244 
2245     if (ArgTy->isMetadataTy()) {
2246       if (ParseMetadataAsValue(V, PFS))
2247         return true;
2248     } else {
2249       // Otherwise, handle normal operands.
2250       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2251         return true;
2252     }
2253     ArgList.push_back(ParamInfo(
2254         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2255   }
2256 
2257   if (IsMustTailCall && InVarArgsFunc)
2258     return TokError("expected '...' at end of argument list for musttail call "
2259                     "in varargs function");
2260 
2261   Lex.Lex();  // Lex the ')'.
2262   return false;
2263 }
2264 
2265 /// ParseOptionalOperandBundles
2266 ///    ::= /*empty*/
2267 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2268 ///
2269 /// OperandBundle
2270 ///    ::= bundle-tag '(' ')'
2271 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2272 ///
2273 /// bundle-tag ::= String Constant
2274 bool LLParser::ParseOptionalOperandBundles(
2275     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2276   LocTy BeginLoc = Lex.getLoc();
2277   if (!EatIfPresent(lltok::lsquare))
2278     return false;
2279 
2280   while (Lex.getKind() != lltok::rsquare) {
2281     // If this isn't the first operand bundle, we need a comma.
2282     if (!BundleList.empty() &&
2283         ParseToken(lltok::comma, "expected ',' in input list"))
2284       return true;
2285 
2286     std::string Tag;
2287     if (ParseStringConstant(Tag))
2288       return true;
2289 
2290     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2291       return true;
2292 
2293     std::vector<Value *> Inputs;
2294     while (Lex.getKind() != lltok::rparen) {
2295       // If this isn't the first input, we need a comma.
2296       if (!Inputs.empty() &&
2297           ParseToken(lltok::comma, "expected ',' in input list"))
2298         return true;
2299 
2300       Type *Ty = nullptr;
2301       Value *Input = nullptr;
2302       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2303         return true;
2304       Inputs.push_back(Input);
2305     }
2306 
2307     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2308 
2309     Lex.Lex(); // Lex the ')'.
2310   }
2311 
2312   if (BundleList.empty())
2313     return Error(BeginLoc, "operand bundle set must not be empty");
2314 
2315   Lex.Lex(); // Lex the ']'.
2316   return false;
2317 }
2318 
2319 /// ParseArgumentList - Parse the argument list for a function type or function
2320 /// prototype.
2321 ///   ::= '(' ArgTypeListI ')'
2322 /// ArgTypeListI
2323 ///   ::= /*empty*/
2324 ///   ::= '...'
2325 ///   ::= ArgTypeList ',' '...'
2326 ///   ::= ArgType (',' ArgType)*
2327 ///
2328 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2329                                  bool &isVarArg){
2330   isVarArg = false;
2331   assert(Lex.getKind() == lltok::lparen);
2332   Lex.Lex(); // eat the (.
2333 
2334   if (Lex.getKind() == lltok::rparen) {
2335     // empty
2336   } else if (Lex.getKind() == lltok::dotdotdot) {
2337     isVarArg = true;
2338     Lex.Lex();
2339   } else {
2340     LocTy TypeLoc = Lex.getLoc();
2341     Type *ArgTy = nullptr;
2342     AttrBuilder Attrs;
2343     std::string Name;
2344 
2345     if (ParseType(ArgTy) ||
2346         ParseOptionalParamAttrs(Attrs)) return true;
2347 
2348     if (ArgTy->isVoidTy())
2349       return Error(TypeLoc, "argument can not have void type");
2350 
2351     if (Lex.getKind() == lltok::LocalVar) {
2352       Name = Lex.getStrVal();
2353       Lex.Lex();
2354     }
2355 
2356     if (!FunctionType::isValidArgumentType(ArgTy))
2357       return Error(TypeLoc, "invalid type for function argument");
2358 
2359     ArgList.emplace_back(TypeLoc, ArgTy,
2360                          AttributeSet::get(ArgTy->getContext(), Attrs),
2361                          std::move(Name));
2362 
2363     while (EatIfPresent(lltok::comma)) {
2364       // Handle ... at end of arg list.
2365       if (EatIfPresent(lltok::dotdotdot)) {
2366         isVarArg = true;
2367         break;
2368       }
2369 
2370       // Otherwise must be an argument type.
2371       TypeLoc = Lex.getLoc();
2372       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2373 
2374       if (ArgTy->isVoidTy())
2375         return Error(TypeLoc, "argument can not have void type");
2376 
2377       if (Lex.getKind() == lltok::LocalVar) {
2378         Name = Lex.getStrVal();
2379         Lex.Lex();
2380       } else {
2381         Name = "";
2382       }
2383 
2384       if (!ArgTy->isFirstClassType())
2385         return Error(TypeLoc, "invalid type for function argument");
2386 
2387       ArgList.emplace_back(TypeLoc, ArgTy,
2388                            AttributeSet::get(ArgTy->getContext(), Attrs),
2389                            std::move(Name));
2390     }
2391   }
2392 
2393   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2394 }
2395 
2396 /// ParseFunctionType
2397 ///  ::= Type ArgumentList OptionalAttrs
2398 bool LLParser::ParseFunctionType(Type *&Result) {
2399   assert(Lex.getKind() == lltok::lparen);
2400 
2401   if (!FunctionType::isValidReturnType(Result))
2402     return TokError("invalid function return type");
2403 
2404   SmallVector<ArgInfo, 8> ArgList;
2405   bool isVarArg;
2406   if (ParseArgumentList(ArgList, isVarArg))
2407     return true;
2408 
2409   // Reject names on the arguments lists.
2410   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2411     if (!ArgList[i].Name.empty())
2412       return Error(ArgList[i].Loc, "argument name invalid in function type");
2413     if (ArgList[i].Attrs.hasAttributes())
2414       return Error(ArgList[i].Loc,
2415                    "argument attributes invalid in function type");
2416   }
2417 
2418   SmallVector<Type*, 16> ArgListTy;
2419   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2420     ArgListTy.push_back(ArgList[i].Ty);
2421 
2422   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2423   return false;
2424 }
2425 
2426 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2427 /// other structs.
2428 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2429   SmallVector<Type*, 8> Elts;
2430   if (ParseStructBody(Elts)) return true;
2431 
2432   Result = StructType::get(Context, Elts, Packed);
2433   return false;
2434 }
2435 
2436 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2437 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2438                                      std::pair<Type*, LocTy> &Entry,
2439                                      Type *&ResultTy) {
2440   // If the type was already defined, diagnose the redefinition.
2441   if (Entry.first && !Entry.second.isValid())
2442     return Error(TypeLoc, "redefinition of type");
2443 
2444   // If we have opaque, just return without filling in the definition for the
2445   // struct.  This counts as a definition as far as the .ll file goes.
2446   if (EatIfPresent(lltok::kw_opaque)) {
2447     // This type is being defined, so clear the location to indicate this.
2448     Entry.second = SMLoc();
2449 
2450     // If this type number has never been uttered, create it.
2451     if (!Entry.first)
2452       Entry.first = StructType::create(Context, Name);
2453     ResultTy = Entry.first;
2454     return false;
2455   }
2456 
2457   // If the type starts with '<', then it is either a packed struct or a vector.
2458   bool isPacked = EatIfPresent(lltok::less);
2459 
2460   // If we don't have a struct, then we have a random type alias, which we
2461   // accept for compatibility with old files.  These types are not allowed to be
2462   // forward referenced and not allowed to be recursive.
2463   if (Lex.getKind() != lltok::lbrace) {
2464     if (Entry.first)
2465       return Error(TypeLoc, "forward references to non-struct type");
2466 
2467     ResultTy = nullptr;
2468     if (isPacked)
2469       return ParseArrayVectorType(ResultTy, true);
2470     return ParseType(ResultTy);
2471   }
2472 
2473   // This type is being defined, so clear the location to indicate this.
2474   Entry.second = SMLoc();
2475 
2476   // If this type number has never been uttered, create it.
2477   if (!Entry.first)
2478     Entry.first = StructType::create(Context, Name);
2479 
2480   StructType *STy = cast<StructType>(Entry.first);
2481 
2482   SmallVector<Type*, 8> Body;
2483   if (ParseStructBody(Body) ||
2484       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2485     return true;
2486 
2487   STy->setBody(Body, isPacked);
2488   ResultTy = STy;
2489   return false;
2490 }
2491 
2492 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2493 ///   StructType
2494 ///     ::= '{' '}'
2495 ///     ::= '{' Type (',' Type)* '}'
2496 ///     ::= '<' '{' '}' '>'
2497 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2498 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2499   assert(Lex.getKind() == lltok::lbrace);
2500   Lex.Lex(); // Consume the '{'
2501 
2502   // Handle the empty struct.
2503   if (EatIfPresent(lltok::rbrace))
2504     return false;
2505 
2506   LocTy EltTyLoc = Lex.getLoc();
2507   Type *Ty = nullptr;
2508   if (ParseType(Ty)) return true;
2509   Body.push_back(Ty);
2510 
2511   if (!StructType::isValidElementType(Ty))
2512     return Error(EltTyLoc, "invalid element type for struct");
2513 
2514   while (EatIfPresent(lltok::comma)) {
2515     EltTyLoc = Lex.getLoc();
2516     if (ParseType(Ty)) return true;
2517 
2518     if (!StructType::isValidElementType(Ty))
2519       return Error(EltTyLoc, "invalid element type for struct");
2520 
2521     Body.push_back(Ty);
2522   }
2523 
2524   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2525 }
2526 
2527 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2528 /// token has already been consumed.
2529 ///   Type
2530 ///     ::= '[' APSINTVAL 'x' Types ']'
2531 ///     ::= '<' APSINTVAL 'x' Types '>'
2532 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2533   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2534       Lex.getAPSIntVal().getBitWidth() > 64)
2535     return TokError("expected number in address space");
2536 
2537   LocTy SizeLoc = Lex.getLoc();
2538   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2539   Lex.Lex();
2540 
2541   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2542       return true;
2543 
2544   LocTy TypeLoc = Lex.getLoc();
2545   Type *EltTy = nullptr;
2546   if (ParseType(EltTy)) return true;
2547 
2548   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2549                  "expected end of sequential type"))
2550     return true;
2551 
2552   if (isVector) {
2553     if (Size == 0)
2554       return Error(SizeLoc, "zero element vector is illegal");
2555     if ((unsigned)Size != Size)
2556       return Error(SizeLoc, "size too large for vector");
2557     if (!VectorType::isValidElementType(EltTy))
2558       return Error(TypeLoc, "invalid vector element type");
2559     Result = VectorType::get(EltTy, unsigned(Size));
2560   } else {
2561     if (!ArrayType::isValidElementType(EltTy))
2562       return Error(TypeLoc, "invalid array element type");
2563     Result = ArrayType::get(EltTy, Size);
2564   }
2565   return false;
2566 }
2567 
2568 //===----------------------------------------------------------------------===//
2569 // Function Semantic Analysis.
2570 //===----------------------------------------------------------------------===//
2571 
2572 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2573                                              int functionNumber)
2574   : P(p), F(f), FunctionNumber(functionNumber) {
2575 
2576   // Insert unnamed arguments into the NumberedVals list.
2577   for (Argument &A : F.args())
2578     if (!A.hasName())
2579       NumberedVals.push_back(&A);
2580 }
2581 
2582 LLParser::PerFunctionState::~PerFunctionState() {
2583   // If there were any forward referenced non-basicblock values, delete them.
2584 
2585   for (const auto &P : ForwardRefVals) {
2586     if (isa<BasicBlock>(P.second.first))
2587       continue;
2588     P.second.first->replaceAllUsesWith(
2589         UndefValue::get(P.second.first->getType()));
2590     P.second.first->deleteValue();
2591   }
2592 
2593   for (const auto &P : ForwardRefValIDs) {
2594     if (isa<BasicBlock>(P.second.first))
2595       continue;
2596     P.second.first->replaceAllUsesWith(
2597         UndefValue::get(P.second.first->getType()));
2598     P.second.first->deleteValue();
2599   }
2600 }
2601 
2602 bool LLParser::PerFunctionState::FinishFunction() {
2603   if (!ForwardRefVals.empty())
2604     return P.Error(ForwardRefVals.begin()->second.second,
2605                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2606                    "'");
2607   if (!ForwardRefValIDs.empty())
2608     return P.Error(ForwardRefValIDs.begin()->second.second,
2609                    "use of undefined value '%" +
2610                    Twine(ForwardRefValIDs.begin()->first) + "'");
2611   return false;
2612 }
2613 
2614 /// GetVal - Get a value with the specified name or ID, creating a
2615 /// forward reference record if needed.  This can return null if the value
2616 /// exists but does not have the right type.
2617 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2618                                           LocTy Loc) {
2619   // Look this name up in the normal function symbol table.
2620   Value *Val = F.getValueSymbolTable()->lookup(Name);
2621 
2622   // If this is a forward reference for the value, see if we already created a
2623   // forward ref record.
2624   if (!Val) {
2625     auto I = ForwardRefVals.find(Name);
2626     if (I != ForwardRefVals.end())
2627       Val = I->second.first;
2628   }
2629 
2630   // If we have the value in the symbol table or fwd-ref table, return it.
2631   if (Val) {
2632     if (Val->getType() == Ty) return Val;
2633     if (Ty->isLabelTy())
2634       P.Error(Loc, "'%" + Name + "' is not a basic block");
2635     else
2636       P.Error(Loc, "'%" + Name + "' defined with type '" +
2637               getTypeString(Val->getType()) + "'");
2638     return nullptr;
2639   }
2640 
2641   // Don't make placeholders with invalid type.
2642   if (!Ty->isFirstClassType()) {
2643     P.Error(Loc, "invalid use of a non-first-class type");
2644     return nullptr;
2645   }
2646 
2647   // Otherwise, create a new forward reference for this value and remember it.
2648   Value *FwdVal;
2649   if (Ty->isLabelTy()) {
2650     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2651   } else {
2652     FwdVal = new Argument(Ty, Name);
2653   }
2654 
2655   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2656   return FwdVal;
2657 }
2658 
2659 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2660   // Look this name up in the normal function symbol table.
2661   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2662 
2663   // If this is a forward reference for the value, see if we already created a
2664   // forward ref record.
2665   if (!Val) {
2666     auto I = ForwardRefValIDs.find(ID);
2667     if (I != ForwardRefValIDs.end())
2668       Val = I->second.first;
2669   }
2670 
2671   // If we have the value in the symbol table or fwd-ref table, return it.
2672   if (Val) {
2673     if (Val->getType() == Ty) return Val;
2674     if (Ty->isLabelTy())
2675       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2676     else
2677       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2678               getTypeString(Val->getType()) + "'");
2679     return nullptr;
2680   }
2681 
2682   if (!Ty->isFirstClassType()) {
2683     P.Error(Loc, "invalid use of a non-first-class type");
2684     return nullptr;
2685   }
2686 
2687   // Otherwise, create a new forward reference for this value and remember it.
2688   Value *FwdVal;
2689   if (Ty->isLabelTy()) {
2690     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2691   } else {
2692     FwdVal = new Argument(Ty);
2693   }
2694 
2695   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2696   return FwdVal;
2697 }
2698 
2699 /// SetInstName - After an instruction is parsed and inserted into its
2700 /// basic block, this installs its name.
2701 bool LLParser::PerFunctionState::SetInstName(int NameID,
2702                                              const std::string &NameStr,
2703                                              LocTy NameLoc, Instruction *Inst) {
2704   // If this instruction has void type, it cannot have a name or ID specified.
2705   if (Inst->getType()->isVoidTy()) {
2706     if (NameID != -1 || !NameStr.empty())
2707       return P.Error(NameLoc, "instructions returning void cannot have a name");
2708     return false;
2709   }
2710 
2711   // If this was a numbered instruction, verify that the instruction is the
2712   // expected value and resolve any forward references.
2713   if (NameStr.empty()) {
2714     // If neither a name nor an ID was specified, just use the next ID.
2715     if (NameID == -1)
2716       NameID = NumberedVals.size();
2717 
2718     if (unsigned(NameID) != NumberedVals.size())
2719       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2720                      Twine(NumberedVals.size()) + "'");
2721 
2722     auto FI = ForwardRefValIDs.find(NameID);
2723     if (FI != ForwardRefValIDs.end()) {
2724       Value *Sentinel = FI->second.first;
2725       if (Sentinel->getType() != Inst->getType())
2726         return P.Error(NameLoc, "instruction forward referenced with type '" +
2727                        getTypeString(FI->second.first->getType()) + "'");
2728 
2729       Sentinel->replaceAllUsesWith(Inst);
2730       Sentinel->deleteValue();
2731       ForwardRefValIDs.erase(FI);
2732     }
2733 
2734     NumberedVals.push_back(Inst);
2735     return false;
2736   }
2737 
2738   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2739   auto FI = ForwardRefVals.find(NameStr);
2740   if (FI != ForwardRefVals.end()) {
2741     Value *Sentinel = FI->second.first;
2742     if (Sentinel->getType() != Inst->getType())
2743       return P.Error(NameLoc, "instruction forward referenced with type '" +
2744                      getTypeString(FI->second.first->getType()) + "'");
2745 
2746     Sentinel->replaceAllUsesWith(Inst);
2747     Sentinel->deleteValue();
2748     ForwardRefVals.erase(FI);
2749   }
2750 
2751   // Set the name on the instruction.
2752   Inst->setName(NameStr);
2753 
2754   if (Inst->getName() != NameStr)
2755     return P.Error(NameLoc, "multiple definition of local value named '" +
2756                    NameStr + "'");
2757   return false;
2758 }
2759 
2760 /// GetBB - Get a basic block with the specified name or ID, creating a
2761 /// forward reference record if needed.
2762 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2763                                               LocTy Loc) {
2764   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2765                                       Type::getLabelTy(F.getContext()), Loc));
2766 }
2767 
2768 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2769   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2770                                       Type::getLabelTy(F.getContext()), Loc));
2771 }
2772 
2773 /// DefineBB - Define the specified basic block, which is either named or
2774 /// unnamed.  If there is an error, this returns null otherwise it returns
2775 /// the block being defined.
2776 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2777                                                  LocTy Loc) {
2778   BasicBlock *BB;
2779   if (Name.empty())
2780     BB = GetBB(NumberedVals.size(), Loc);
2781   else
2782     BB = GetBB(Name, Loc);
2783   if (!BB) return nullptr; // Already diagnosed error.
2784 
2785   // Move the block to the end of the function.  Forward ref'd blocks are
2786   // inserted wherever they happen to be referenced.
2787   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2788 
2789   // Remove the block from forward ref sets.
2790   if (Name.empty()) {
2791     ForwardRefValIDs.erase(NumberedVals.size());
2792     NumberedVals.push_back(BB);
2793   } else {
2794     // BB forward references are already in the function symbol table.
2795     ForwardRefVals.erase(Name);
2796   }
2797 
2798   return BB;
2799 }
2800 
2801 //===----------------------------------------------------------------------===//
2802 // Constants.
2803 //===----------------------------------------------------------------------===//
2804 
2805 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2806 /// type implied.  For example, if we parse "4" we don't know what integer type
2807 /// it has.  The value will later be combined with its type and checked for
2808 /// sanity.  PFS is used to convert function-local operands of metadata (since
2809 /// metadata operands are not just parsed here but also converted to values).
2810 /// PFS can be null when we are not parsing metadata values inside a function.
2811 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2812   ID.Loc = Lex.getLoc();
2813   switch (Lex.getKind()) {
2814   default: return TokError("expected value token");
2815   case lltok::GlobalID:  // @42
2816     ID.UIntVal = Lex.getUIntVal();
2817     ID.Kind = ValID::t_GlobalID;
2818     break;
2819   case lltok::GlobalVar:  // @foo
2820     ID.StrVal = Lex.getStrVal();
2821     ID.Kind = ValID::t_GlobalName;
2822     break;
2823   case lltok::LocalVarID:  // %42
2824     ID.UIntVal = Lex.getUIntVal();
2825     ID.Kind = ValID::t_LocalID;
2826     break;
2827   case lltok::LocalVar:  // %foo
2828     ID.StrVal = Lex.getStrVal();
2829     ID.Kind = ValID::t_LocalName;
2830     break;
2831   case lltok::APSInt:
2832     ID.APSIntVal = Lex.getAPSIntVal();
2833     ID.Kind = ValID::t_APSInt;
2834     break;
2835   case lltok::APFloat:
2836     ID.APFloatVal = Lex.getAPFloatVal();
2837     ID.Kind = ValID::t_APFloat;
2838     break;
2839   case lltok::kw_true:
2840     ID.ConstantVal = ConstantInt::getTrue(Context);
2841     ID.Kind = ValID::t_Constant;
2842     break;
2843   case lltok::kw_false:
2844     ID.ConstantVal = ConstantInt::getFalse(Context);
2845     ID.Kind = ValID::t_Constant;
2846     break;
2847   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2848   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2849   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2850   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2851 
2852   case lltok::lbrace: {
2853     // ValID ::= '{' ConstVector '}'
2854     Lex.Lex();
2855     SmallVector<Constant*, 16> Elts;
2856     if (ParseGlobalValueVector(Elts) ||
2857         ParseToken(lltok::rbrace, "expected end of struct constant"))
2858       return true;
2859 
2860     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2861     ID.UIntVal = Elts.size();
2862     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2863            Elts.size() * sizeof(Elts[0]));
2864     ID.Kind = ValID::t_ConstantStruct;
2865     return false;
2866   }
2867   case lltok::less: {
2868     // ValID ::= '<' ConstVector '>'         --> Vector.
2869     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2870     Lex.Lex();
2871     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2872 
2873     SmallVector<Constant*, 16> Elts;
2874     LocTy FirstEltLoc = Lex.getLoc();
2875     if (ParseGlobalValueVector(Elts) ||
2876         (isPackedStruct &&
2877          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2878         ParseToken(lltok::greater, "expected end of constant"))
2879       return true;
2880 
2881     if (isPackedStruct) {
2882       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2883       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2884              Elts.size() * sizeof(Elts[0]));
2885       ID.UIntVal = Elts.size();
2886       ID.Kind = ValID::t_PackedConstantStruct;
2887       return false;
2888     }
2889 
2890     if (Elts.empty())
2891       return Error(ID.Loc, "constant vector must not be empty");
2892 
2893     if (!Elts[0]->getType()->isIntegerTy() &&
2894         !Elts[0]->getType()->isFloatingPointTy() &&
2895         !Elts[0]->getType()->isPointerTy())
2896       return Error(FirstEltLoc,
2897             "vector elements must have integer, pointer or floating point type");
2898 
2899     // Verify that all the vector elements have the same type.
2900     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2901       if (Elts[i]->getType() != Elts[0]->getType())
2902         return Error(FirstEltLoc,
2903                      "vector element #" + Twine(i) +
2904                     " is not of type '" + getTypeString(Elts[0]->getType()));
2905 
2906     ID.ConstantVal = ConstantVector::get(Elts);
2907     ID.Kind = ValID::t_Constant;
2908     return false;
2909   }
2910   case lltok::lsquare: {   // Array Constant
2911     Lex.Lex();
2912     SmallVector<Constant*, 16> Elts;
2913     LocTy FirstEltLoc = Lex.getLoc();
2914     if (ParseGlobalValueVector(Elts) ||
2915         ParseToken(lltok::rsquare, "expected end of array constant"))
2916       return true;
2917 
2918     // Handle empty element.
2919     if (Elts.empty()) {
2920       // Use undef instead of an array because it's inconvenient to determine
2921       // the element type at this point, there being no elements to examine.
2922       ID.Kind = ValID::t_EmptyArray;
2923       return false;
2924     }
2925 
2926     if (!Elts[0]->getType()->isFirstClassType())
2927       return Error(FirstEltLoc, "invalid array element type: " +
2928                    getTypeString(Elts[0]->getType()));
2929 
2930     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2931 
2932     // Verify all elements are correct type!
2933     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2934       if (Elts[i]->getType() != Elts[0]->getType())
2935         return Error(FirstEltLoc,
2936                      "array element #" + Twine(i) +
2937                      " is not of type '" + getTypeString(Elts[0]->getType()));
2938     }
2939 
2940     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2941     ID.Kind = ValID::t_Constant;
2942     return false;
2943   }
2944   case lltok::kw_c:  // c "foo"
2945     Lex.Lex();
2946     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2947                                                   false);
2948     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2949     ID.Kind = ValID::t_Constant;
2950     return false;
2951 
2952   case lltok::kw_asm: {
2953     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2954     //             STRINGCONSTANT
2955     bool HasSideEffect, AlignStack, AsmDialect;
2956     Lex.Lex();
2957     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2958         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2959         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2960         ParseStringConstant(ID.StrVal) ||
2961         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2962         ParseToken(lltok::StringConstant, "expected constraint string"))
2963       return true;
2964     ID.StrVal2 = Lex.getStrVal();
2965     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2966       (unsigned(AsmDialect)<<2);
2967     ID.Kind = ValID::t_InlineAsm;
2968     return false;
2969   }
2970 
2971   case lltok::kw_blockaddress: {
2972     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2973     Lex.Lex();
2974 
2975     ValID Fn, Label;
2976 
2977     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2978         ParseValID(Fn) ||
2979         ParseToken(lltok::comma, "expected comma in block address expression")||
2980         ParseValID(Label) ||
2981         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2982       return true;
2983 
2984     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2985       return Error(Fn.Loc, "expected function name in blockaddress");
2986     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2987       return Error(Label.Loc, "expected basic block name in blockaddress");
2988 
2989     // Try to find the function (but skip it if it's forward-referenced).
2990     GlobalValue *GV = nullptr;
2991     if (Fn.Kind == ValID::t_GlobalID) {
2992       if (Fn.UIntVal < NumberedVals.size())
2993         GV = NumberedVals[Fn.UIntVal];
2994     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2995       GV = M->getNamedValue(Fn.StrVal);
2996     }
2997     Function *F = nullptr;
2998     if (GV) {
2999       // Confirm that it's actually a function with a definition.
3000       if (!isa<Function>(GV))
3001         return Error(Fn.Loc, "expected function name in blockaddress");
3002       F = cast<Function>(GV);
3003       if (F->isDeclaration())
3004         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3005     }
3006 
3007     if (!F) {
3008       // Make a global variable as a placeholder for this reference.
3009       GlobalValue *&FwdRef =
3010           ForwardRefBlockAddresses.insert(std::make_pair(
3011                                               std::move(Fn),
3012                                               std::map<ValID, GlobalValue *>()))
3013               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3014               .first->second;
3015       if (!FwdRef)
3016         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3017                                     GlobalValue::InternalLinkage, nullptr, "");
3018       ID.ConstantVal = FwdRef;
3019       ID.Kind = ValID::t_Constant;
3020       return false;
3021     }
3022 
3023     // We found the function; now find the basic block.  Don't use PFS, since we
3024     // might be inside a constant expression.
3025     BasicBlock *BB;
3026     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3027       if (Label.Kind == ValID::t_LocalID)
3028         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3029       else
3030         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3031       if (!BB)
3032         return Error(Label.Loc, "referenced value is not a basic block");
3033     } else {
3034       if (Label.Kind == ValID::t_LocalID)
3035         return Error(Label.Loc, "cannot take address of numeric label after "
3036                                 "the function is defined");
3037       BB = dyn_cast_or_null<BasicBlock>(
3038           F->getValueSymbolTable()->lookup(Label.StrVal));
3039       if (!BB)
3040         return Error(Label.Loc, "referenced value is not a basic block");
3041     }
3042 
3043     ID.ConstantVal = BlockAddress::get(F, BB);
3044     ID.Kind = ValID::t_Constant;
3045     return false;
3046   }
3047 
3048   case lltok::kw_trunc:
3049   case lltok::kw_zext:
3050   case lltok::kw_sext:
3051   case lltok::kw_fptrunc:
3052   case lltok::kw_fpext:
3053   case lltok::kw_bitcast:
3054   case lltok::kw_addrspacecast:
3055   case lltok::kw_uitofp:
3056   case lltok::kw_sitofp:
3057   case lltok::kw_fptoui:
3058   case lltok::kw_fptosi:
3059   case lltok::kw_inttoptr:
3060   case lltok::kw_ptrtoint: {
3061     unsigned Opc = Lex.getUIntVal();
3062     Type *DestTy = nullptr;
3063     Constant *SrcVal;
3064     Lex.Lex();
3065     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3066         ParseGlobalTypeAndValue(SrcVal) ||
3067         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3068         ParseType(DestTy) ||
3069         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3070       return true;
3071     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3072       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3073                    getTypeString(SrcVal->getType()) + "' to '" +
3074                    getTypeString(DestTy) + "'");
3075     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3076                                                  SrcVal, DestTy);
3077     ID.Kind = ValID::t_Constant;
3078     return false;
3079   }
3080   case lltok::kw_extractvalue: {
3081     Lex.Lex();
3082     Constant *Val;
3083     SmallVector<unsigned, 4> Indices;
3084     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3085         ParseGlobalTypeAndValue(Val) ||
3086         ParseIndexList(Indices) ||
3087         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3088       return true;
3089 
3090     if (!Val->getType()->isAggregateType())
3091       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3092     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3093       return Error(ID.Loc, "invalid indices for extractvalue");
3094     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3095     ID.Kind = ValID::t_Constant;
3096     return false;
3097   }
3098   case lltok::kw_insertvalue: {
3099     Lex.Lex();
3100     Constant *Val0, *Val1;
3101     SmallVector<unsigned, 4> Indices;
3102     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3103         ParseGlobalTypeAndValue(Val0) ||
3104         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3105         ParseGlobalTypeAndValue(Val1) ||
3106         ParseIndexList(Indices) ||
3107         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3108       return true;
3109     if (!Val0->getType()->isAggregateType())
3110       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3111     Type *IndexedType =
3112         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3113     if (!IndexedType)
3114       return Error(ID.Loc, "invalid indices for insertvalue");
3115     if (IndexedType != Val1->getType())
3116       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3117                                getTypeString(Val1->getType()) +
3118                                "' instead of '" + getTypeString(IndexedType) +
3119                                "'");
3120     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3121     ID.Kind = ValID::t_Constant;
3122     return false;
3123   }
3124   case lltok::kw_icmp:
3125   case lltok::kw_fcmp: {
3126     unsigned PredVal, Opc = Lex.getUIntVal();
3127     Constant *Val0, *Val1;
3128     Lex.Lex();
3129     if (ParseCmpPredicate(PredVal, Opc) ||
3130         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3131         ParseGlobalTypeAndValue(Val0) ||
3132         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3133         ParseGlobalTypeAndValue(Val1) ||
3134         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3135       return true;
3136 
3137     if (Val0->getType() != Val1->getType())
3138       return Error(ID.Loc, "compare operands must have the same type");
3139 
3140     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3141 
3142     if (Opc == Instruction::FCmp) {
3143       if (!Val0->getType()->isFPOrFPVectorTy())
3144         return Error(ID.Loc, "fcmp requires floating point operands");
3145       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3146     } else {
3147       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3148       if (!Val0->getType()->isIntOrIntVectorTy() &&
3149           !Val0->getType()->isPtrOrPtrVectorTy())
3150         return Error(ID.Loc, "icmp requires pointer or integer operands");
3151       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3152     }
3153     ID.Kind = ValID::t_Constant;
3154     return false;
3155   }
3156 
3157   // Binary Operators.
3158   case lltok::kw_add:
3159   case lltok::kw_fadd:
3160   case lltok::kw_sub:
3161   case lltok::kw_fsub:
3162   case lltok::kw_mul:
3163   case lltok::kw_fmul:
3164   case lltok::kw_udiv:
3165   case lltok::kw_sdiv:
3166   case lltok::kw_fdiv:
3167   case lltok::kw_urem:
3168   case lltok::kw_srem:
3169   case lltok::kw_frem:
3170   case lltok::kw_shl:
3171   case lltok::kw_lshr:
3172   case lltok::kw_ashr: {
3173     bool NUW = false;
3174     bool NSW = false;
3175     bool Exact = false;
3176     unsigned Opc = Lex.getUIntVal();
3177     Constant *Val0, *Val1;
3178     Lex.Lex();
3179     LocTy ModifierLoc = Lex.getLoc();
3180     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3181         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3182       if (EatIfPresent(lltok::kw_nuw))
3183         NUW = true;
3184       if (EatIfPresent(lltok::kw_nsw)) {
3185         NSW = true;
3186         if (EatIfPresent(lltok::kw_nuw))
3187           NUW = true;
3188       }
3189     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3190                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3191       if (EatIfPresent(lltok::kw_exact))
3192         Exact = true;
3193     }
3194     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3195         ParseGlobalTypeAndValue(Val0) ||
3196         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3197         ParseGlobalTypeAndValue(Val1) ||
3198         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3199       return true;
3200     if (Val0->getType() != Val1->getType())
3201       return Error(ID.Loc, "operands of constexpr must have same type");
3202     if (!Val0->getType()->isIntOrIntVectorTy()) {
3203       if (NUW)
3204         return Error(ModifierLoc, "nuw only applies to integer operations");
3205       if (NSW)
3206         return Error(ModifierLoc, "nsw only applies to integer operations");
3207     }
3208     // Check that the type is valid for the operator.
3209     switch (Opc) {
3210     case Instruction::Add:
3211     case Instruction::Sub:
3212     case Instruction::Mul:
3213     case Instruction::UDiv:
3214     case Instruction::SDiv:
3215     case Instruction::URem:
3216     case Instruction::SRem:
3217     case Instruction::Shl:
3218     case Instruction::AShr:
3219     case Instruction::LShr:
3220       if (!Val0->getType()->isIntOrIntVectorTy())
3221         return Error(ID.Loc, "constexpr requires integer operands");
3222       break;
3223     case Instruction::FAdd:
3224     case Instruction::FSub:
3225     case Instruction::FMul:
3226     case Instruction::FDiv:
3227     case Instruction::FRem:
3228       if (!Val0->getType()->isFPOrFPVectorTy())
3229         return Error(ID.Loc, "constexpr requires fp operands");
3230       break;
3231     default: llvm_unreachable("Unknown binary operator!");
3232     }
3233     unsigned Flags = 0;
3234     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3235     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3236     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3237     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3238     ID.ConstantVal = C;
3239     ID.Kind = ValID::t_Constant;
3240     return false;
3241   }
3242 
3243   // Logical Operations
3244   case lltok::kw_and:
3245   case lltok::kw_or:
3246   case lltok::kw_xor: {
3247     unsigned Opc = Lex.getUIntVal();
3248     Constant *Val0, *Val1;
3249     Lex.Lex();
3250     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3251         ParseGlobalTypeAndValue(Val0) ||
3252         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3253         ParseGlobalTypeAndValue(Val1) ||
3254         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3255       return true;
3256     if (Val0->getType() != Val1->getType())
3257       return Error(ID.Loc, "operands of constexpr must have same type");
3258     if (!Val0->getType()->isIntOrIntVectorTy())
3259       return Error(ID.Loc,
3260                    "constexpr requires integer or integer vector operands");
3261     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3262     ID.Kind = ValID::t_Constant;
3263     return false;
3264   }
3265 
3266   case lltok::kw_getelementptr:
3267   case lltok::kw_shufflevector:
3268   case lltok::kw_insertelement:
3269   case lltok::kw_extractelement:
3270   case lltok::kw_select: {
3271     unsigned Opc = Lex.getUIntVal();
3272     SmallVector<Constant*, 16> Elts;
3273     bool InBounds = false;
3274     Type *Ty;
3275     Lex.Lex();
3276 
3277     if (Opc == Instruction::GetElementPtr)
3278       InBounds = EatIfPresent(lltok::kw_inbounds);
3279 
3280     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3281       return true;
3282 
3283     LocTy ExplicitTypeLoc = Lex.getLoc();
3284     if (Opc == Instruction::GetElementPtr) {
3285       if (ParseType(Ty) ||
3286           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3287         return true;
3288     }
3289 
3290     Optional<unsigned> InRangeOp;
3291     if (ParseGlobalValueVector(
3292             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3293         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3294       return true;
3295 
3296     if (Opc == Instruction::GetElementPtr) {
3297       if (Elts.size() == 0 ||
3298           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3299         return Error(ID.Loc, "base of getelementptr must be a pointer");
3300 
3301       Type *BaseType = Elts[0]->getType();
3302       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3303       if (Ty != BasePointerType->getElementType())
3304         return Error(
3305             ExplicitTypeLoc,
3306             "explicit pointee type doesn't match operand's pointee type");
3307 
3308       unsigned GEPWidth =
3309           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3310 
3311       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3312       for (Constant *Val : Indices) {
3313         Type *ValTy = Val->getType();
3314         if (!ValTy->isIntOrIntVectorTy())
3315           return Error(ID.Loc, "getelementptr index must be an integer");
3316         if (ValTy->isVectorTy()) {
3317           unsigned ValNumEl = ValTy->getVectorNumElements();
3318           if (GEPWidth && (ValNumEl != GEPWidth))
3319             return Error(
3320                 ID.Loc,
3321                 "getelementptr vector index has a wrong number of elements");
3322           // GEPWidth may have been unknown because the base is a scalar,
3323           // but it is known now.
3324           GEPWidth = ValNumEl;
3325         }
3326       }
3327 
3328       SmallPtrSet<Type*, 4> Visited;
3329       if (!Indices.empty() && !Ty->isSized(&Visited))
3330         return Error(ID.Loc, "base element of getelementptr must be sized");
3331 
3332       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3333         return Error(ID.Loc, "invalid getelementptr indices");
3334 
3335       if (InRangeOp) {
3336         if (*InRangeOp == 0)
3337           return Error(ID.Loc,
3338                        "inrange keyword may not appear on pointer operand");
3339         --*InRangeOp;
3340       }
3341 
3342       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3343                                                       InBounds, InRangeOp);
3344     } else if (Opc == Instruction::Select) {
3345       if (Elts.size() != 3)
3346         return Error(ID.Loc, "expected three operands to select");
3347       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3348                                                               Elts[2]))
3349         return Error(ID.Loc, Reason);
3350       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3351     } else if (Opc == Instruction::ShuffleVector) {
3352       if (Elts.size() != 3)
3353         return Error(ID.Loc, "expected three operands to shufflevector");
3354       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3355         return Error(ID.Loc, "invalid operands to shufflevector");
3356       ID.ConstantVal =
3357                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3358     } else if (Opc == Instruction::ExtractElement) {
3359       if (Elts.size() != 2)
3360         return Error(ID.Loc, "expected two operands to extractelement");
3361       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3362         return Error(ID.Loc, "invalid extractelement operands");
3363       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3364     } else {
3365       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3366       if (Elts.size() != 3)
3367       return Error(ID.Loc, "expected three operands to insertelement");
3368       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3369         return Error(ID.Loc, "invalid insertelement operands");
3370       ID.ConstantVal =
3371                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3372     }
3373 
3374     ID.Kind = ValID::t_Constant;
3375     return false;
3376   }
3377   }
3378 
3379   Lex.Lex();
3380   return false;
3381 }
3382 
3383 /// ParseGlobalValue - Parse a global value with the specified type.
3384 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3385   C = nullptr;
3386   ValID ID;
3387   Value *V = nullptr;
3388   bool Parsed = ParseValID(ID) ||
3389                 ConvertValIDToValue(Ty, ID, V, nullptr);
3390   if (V && !(C = dyn_cast<Constant>(V)))
3391     return Error(ID.Loc, "global values must be constants");
3392   return Parsed;
3393 }
3394 
3395 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3396   Type *Ty = nullptr;
3397   return ParseType(Ty) ||
3398          ParseGlobalValue(Ty, V);
3399 }
3400 
3401 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3402   C = nullptr;
3403 
3404   LocTy KwLoc = Lex.getLoc();
3405   if (!EatIfPresent(lltok::kw_comdat))
3406     return false;
3407 
3408   if (EatIfPresent(lltok::lparen)) {
3409     if (Lex.getKind() != lltok::ComdatVar)
3410       return TokError("expected comdat variable");
3411     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3412     Lex.Lex();
3413     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3414       return true;
3415   } else {
3416     if (GlobalName.empty())
3417       return TokError("comdat cannot be unnamed");
3418     C = getComdat(GlobalName, KwLoc);
3419   }
3420 
3421   return false;
3422 }
3423 
3424 /// ParseGlobalValueVector
3425 ///   ::= /*empty*/
3426 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3427 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3428                                       Optional<unsigned> *InRangeOp) {
3429   // Empty list.
3430   if (Lex.getKind() == lltok::rbrace ||
3431       Lex.getKind() == lltok::rsquare ||
3432       Lex.getKind() == lltok::greater ||
3433       Lex.getKind() == lltok::rparen)
3434     return false;
3435 
3436   do {
3437     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3438       *InRangeOp = Elts.size();
3439 
3440     Constant *C;
3441     if (ParseGlobalTypeAndValue(C)) return true;
3442     Elts.push_back(C);
3443   } while (EatIfPresent(lltok::comma));
3444 
3445   return false;
3446 }
3447 
3448 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3449   SmallVector<Metadata *, 16> Elts;
3450   if (ParseMDNodeVector(Elts))
3451     return true;
3452 
3453   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3454   return false;
3455 }
3456 
3457 /// MDNode:
3458 ///  ::= !{ ... }
3459 ///  ::= !7
3460 ///  ::= !DILocation(...)
3461 bool LLParser::ParseMDNode(MDNode *&N) {
3462   if (Lex.getKind() == lltok::MetadataVar)
3463     return ParseSpecializedMDNode(N);
3464 
3465   return ParseToken(lltok::exclaim, "expected '!' here") ||
3466          ParseMDNodeTail(N);
3467 }
3468 
3469 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3470   // !{ ... }
3471   if (Lex.getKind() == lltok::lbrace)
3472     return ParseMDTuple(N);
3473 
3474   // !42
3475   return ParseMDNodeID(N);
3476 }
3477 
3478 namespace {
3479 
3480 /// Structure to represent an optional metadata field.
3481 template <class FieldTy> struct MDFieldImpl {
3482   typedef MDFieldImpl ImplTy;
3483   FieldTy Val;
3484   bool Seen;
3485 
3486   void assign(FieldTy Val) {
3487     Seen = true;
3488     this->Val = std::move(Val);
3489   }
3490 
3491   explicit MDFieldImpl(FieldTy Default)
3492       : Val(std::move(Default)), Seen(false) {}
3493 };
3494 
3495 /// Structure to represent an optional metadata field that
3496 /// can be of either type (A or B) and encapsulates the
3497 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3498 /// to reimplement the specifics for representing each Field.
3499 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3500   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3501   FieldTypeA A;
3502   FieldTypeB B;
3503   bool Seen;
3504 
3505   enum {
3506     IsInvalid = 0,
3507     IsTypeA = 1,
3508     IsTypeB = 2
3509   } WhatIs;
3510 
3511   void assign(FieldTypeA A) {
3512     Seen = true;
3513     this->A = std::move(A);
3514     WhatIs = IsTypeA;
3515   }
3516 
3517   void assign(FieldTypeB B) {
3518     Seen = true;
3519     this->B = std::move(B);
3520     WhatIs = IsTypeB;
3521   }
3522 
3523   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3524       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3525         WhatIs(IsInvalid) {}
3526 };
3527 
3528 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3529   uint64_t Max;
3530 
3531   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3532       : ImplTy(Default), Max(Max) {}
3533 };
3534 
3535 struct LineField : public MDUnsignedField {
3536   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3537 };
3538 
3539 struct ColumnField : public MDUnsignedField {
3540   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3541 };
3542 
3543 struct DwarfTagField : public MDUnsignedField {
3544   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3545   DwarfTagField(dwarf::Tag DefaultTag)
3546       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3547 };
3548 
3549 struct DwarfMacinfoTypeField : public MDUnsignedField {
3550   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3551   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3552     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3553 };
3554 
3555 struct DwarfAttEncodingField : public MDUnsignedField {
3556   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3557 };
3558 
3559 struct DwarfVirtualityField : public MDUnsignedField {
3560   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3561 };
3562 
3563 struct DwarfLangField : public MDUnsignedField {
3564   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3565 };
3566 
3567 struct DwarfCCField : public MDUnsignedField {
3568   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3569 };
3570 
3571 struct EmissionKindField : public MDUnsignedField {
3572   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3573 };
3574 
3575 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3576   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3577 };
3578 
3579 struct MDSignedField : public MDFieldImpl<int64_t> {
3580   int64_t Min;
3581   int64_t Max;
3582 
3583   MDSignedField(int64_t Default = 0)
3584       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3585   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3586       : ImplTy(Default), Min(Min), Max(Max) {}
3587 };
3588 
3589 struct MDBoolField : public MDFieldImpl<bool> {
3590   MDBoolField(bool Default = false) : ImplTy(Default) {}
3591 };
3592 
3593 struct MDField : public MDFieldImpl<Metadata *> {
3594   bool AllowNull;
3595 
3596   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3597 };
3598 
3599 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3600   MDConstant() : ImplTy(nullptr) {}
3601 };
3602 
3603 struct MDStringField : public MDFieldImpl<MDString *> {
3604   bool AllowEmpty;
3605   MDStringField(bool AllowEmpty = true)
3606       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3607 };
3608 
3609 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3610   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3611 };
3612 
3613 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3614   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3615   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3616 };
3617 
3618 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3619   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3620       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3621 
3622   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3623                     bool AllowNull = true)
3624       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3625 
3626   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3627   bool isMDField() const { return WhatIs == IsTypeB; }
3628   int64_t getMDSignedValue() const {
3629     assert(isMDSignedField() && "Wrong field type");
3630     return A.Val;
3631   }
3632   Metadata *getMDFieldValue() const {
3633     assert(isMDField() && "Wrong field type");
3634     return B.Val;
3635   }
3636 };
3637 
3638 } // end anonymous namespace
3639 
3640 namespace llvm {
3641 
3642 template <>
3643 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3644                             MDUnsignedField &Result) {
3645   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3646     return TokError("expected unsigned integer");
3647 
3648   auto &U = Lex.getAPSIntVal();
3649   if (U.ugt(Result.Max))
3650     return TokError("value for '" + Name + "' too large, limit is " +
3651                     Twine(Result.Max));
3652   Result.assign(U.getZExtValue());
3653   assert(Result.Val <= Result.Max && "Expected value in range");
3654   Lex.Lex();
3655   return false;
3656 }
3657 
3658 template <>
3659 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3660   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3661 }
3662 template <>
3663 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3664   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3665 }
3666 
3667 template <>
3668 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3669   if (Lex.getKind() == lltok::APSInt)
3670     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3671 
3672   if (Lex.getKind() != lltok::DwarfTag)
3673     return TokError("expected DWARF tag");
3674 
3675   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3676   if (Tag == dwarf::DW_TAG_invalid)
3677     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3678   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3679 
3680   Result.assign(Tag);
3681   Lex.Lex();
3682   return false;
3683 }
3684 
3685 template <>
3686 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3687                             DwarfMacinfoTypeField &Result) {
3688   if (Lex.getKind() == lltok::APSInt)
3689     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3690 
3691   if (Lex.getKind() != lltok::DwarfMacinfo)
3692     return TokError("expected DWARF macinfo type");
3693 
3694   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3695   if (Macinfo == dwarf::DW_MACINFO_invalid)
3696     return TokError(
3697         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3698   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3699 
3700   Result.assign(Macinfo);
3701   Lex.Lex();
3702   return false;
3703 }
3704 
3705 template <>
3706 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3707                             DwarfVirtualityField &Result) {
3708   if (Lex.getKind() == lltok::APSInt)
3709     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3710 
3711   if (Lex.getKind() != lltok::DwarfVirtuality)
3712     return TokError("expected DWARF virtuality code");
3713 
3714   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3715   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3716     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3717                     Lex.getStrVal() + "'");
3718   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3719   Result.assign(Virtuality);
3720   Lex.Lex();
3721   return false;
3722 }
3723 
3724 template <>
3725 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3726   if (Lex.getKind() == lltok::APSInt)
3727     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3728 
3729   if (Lex.getKind() != lltok::DwarfLang)
3730     return TokError("expected DWARF language");
3731 
3732   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3733   if (!Lang)
3734     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3735                     "'");
3736   assert(Lang <= Result.Max && "Expected valid DWARF language");
3737   Result.assign(Lang);
3738   Lex.Lex();
3739   return false;
3740 }
3741 
3742 template <>
3743 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3744   if (Lex.getKind() == lltok::APSInt)
3745     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3746 
3747   if (Lex.getKind() != lltok::DwarfCC)
3748     return TokError("expected DWARF calling convention");
3749 
3750   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3751   if (!CC)
3752     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3753                     "'");
3754   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3755   Result.assign(CC);
3756   Lex.Lex();
3757   return false;
3758 }
3759 
3760 template <>
3761 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3762   if (Lex.getKind() == lltok::APSInt)
3763     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3764 
3765   if (Lex.getKind() != lltok::EmissionKind)
3766     return TokError("expected emission kind");
3767 
3768   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3769   if (!Kind)
3770     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3771                     "'");
3772   assert(*Kind <= Result.Max && "Expected valid emission kind");
3773   Result.assign(*Kind);
3774   Lex.Lex();
3775   return false;
3776 }
3777 
3778 template <>
3779 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3780                             DwarfAttEncodingField &Result) {
3781   if (Lex.getKind() == lltok::APSInt)
3782     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3783 
3784   if (Lex.getKind() != lltok::DwarfAttEncoding)
3785     return TokError("expected DWARF type attribute encoding");
3786 
3787   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3788   if (!Encoding)
3789     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3790                     Lex.getStrVal() + "'");
3791   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3792   Result.assign(Encoding);
3793   Lex.Lex();
3794   return false;
3795 }
3796 
3797 /// DIFlagField
3798 ///  ::= uint32
3799 ///  ::= DIFlagVector
3800 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3801 template <>
3802 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3803 
3804   // Parser for a single flag.
3805   auto parseFlag = [&](DINode::DIFlags &Val) {
3806     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3807       uint32_t TempVal = static_cast<uint32_t>(Val);
3808       bool Res = ParseUInt32(TempVal);
3809       Val = static_cast<DINode::DIFlags>(TempVal);
3810       return Res;
3811     }
3812 
3813     if (Lex.getKind() != lltok::DIFlag)
3814       return TokError("expected debug info flag");
3815 
3816     Val = DINode::getFlag(Lex.getStrVal());
3817     if (!Val)
3818       return TokError(Twine("invalid debug info flag flag '") +
3819                       Lex.getStrVal() + "'");
3820     Lex.Lex();
3821     return false;
3822   };
3823 
3824   // Parse the flags and combine them together.
3825   DINode::DIFlags Combined = DINode::FlagZero;
3826   do {
3827     DINode::DIFlags Val;
3828     if (parseFlag(Val))
3829       return true;
3830     Combined |= Val;
3831   } while (EatIfPresent(lltok::bar));
3832 
3833   Result.assign(Combined);
3834   return false;
3835 }
3836 
3837 template <>
3838 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3839                             MDSignedField &Result) {
3840   if (Lex.getKind() != lltok::APSInt)
3841     return TokError("expected signed integer");
3842 
3843   auto &S = Lex.getAPSIntVal();
3844   if (S < Result.Min)
3845     return TokError("value for '" + Name + "' too small, limit is " +
3846                     Twine(Result.Min));
3847   if (S > Result.Max)
3848     return TokError("value for '" + Name + "' too large, limit is " +
3849                     Twine(Result.Max));
3850   Result.assign(S.getExtValue());
3851   assert(Result.Val >= Result.Min && "Expected value in range");
3852   assert(Result.Val <= Result.Max && "Expected value in range");
3853   Lex.Lex();
3854   return false;
3855 }
3856 
3857 template <>
3858 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3859   switch (Lex.getKind()) {
3860   default:
3861     return TokError("expected 'true' or 'false'");
3862   case lltok::kw_true:
3863     Result.assign(true);
3864     break;
3865   case lltok::kw_false:
3866     Result.assign(false);
3867     break;
3868   }
3869   Lex.Lex();
3870   return false;
3871 }
3872 
3873 template <>
3874 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3875   if (Lex.getKind() == lltok::kw_null) {
3876     if (!Result.AllowNull)
3877       return TokError("'" + Name + "' cannot be null");
3878     Lex.Lex();
3879     Result.assign(nullptr);
3880     return false;
3881   }
3882 
3883   Metadata *MD;
3884   if (ParseMetadata(MD, nullptr))
3885     return true;
3886 
3887   Result.assign(MD);
3888   return false;
3889 }
3890 
3891 template <>
3892 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3893                             MDSignedOrMDField &Result) {
3894   // Try to parse a signed int.
3895   if (Lex.getKind() == lltok::APSInt) {
3896     MDSignedField Res = Result.A;
3897     if (!ParseMDField(Loc, Name, Res)) {
3898       Result.assign(Res);
3899       return false;
3900     }
3901     return true;
3902   }
3903 
3904   // Otherwise, try to parse as an MDField.
3905   MDField Res = Result.B;
3906   if (!ParseMDField(Loc, Name, Res)) {
3907     Result.assign(Res);
3908     return false;
3909   }
3910 
3911   return true;
3912 }
3913 
3914 template <>
3915 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3916   LocTy ValueLoc = Lex.getLoc();
3917   std::string S;
3918   if (ParseStringConstant(S))
3919     return true;
3920 
3921   if (!Result.AllowEmpty && S.empty())
3922     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3923 
3924   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3925   return false;
3926 }
3927 
3928 template <>
3929 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3930   SmallVector<Metadata *, 4> MDs;
3931   if (ParseMDNodeVector(MDs))
3932     return true;
3933 
3934   Result.assign(std::move(MDs));
3935   return false;
3936 }
3937 
3938 template <>
3939 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3940                             ChecksumKindField &Result) {
3941   if (Lex.getKind() != lltok::ChecksumKind)
3942     return TokError(
3943         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3944 
3945   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3946 
3947   Result.assign(CSKind);
3948   Lex.Lex();
3949   return false;
3950 }
3951 
3952 } // end namespace llvm
3953 
3954 template <class ParserTy>
3955 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3956   do {
3957     if (Lex.getKind() != lltok::LabelStr)
3958       return TokError("expected field label here");
3959 
3960     if (parseField())
3961       return true;
3962   } while (EatIfPresent(lltok::comma));
3963 
3964   return false;
3965 }
3966 
3967 template <class ParserTy>
3968 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3969   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3970   Lex.Lex();
3971 
3972   if (ParseToken(lltok::lparen, "expected '(' here"))
3973     return true;
3974   if (Lex.getKind() != lltok::rparen)
3975     if (ParseMDFieldsImplBody(parseField))
3976       return true;
3977 
3978   ClosingLoc = Lex.getLoc();
3979   return ParseToken(lltok::rparen, "expected ')' here");
3980 }
3981 
3982 template <class FieldTy>
3983 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3984   if (Result.Seen)
3985     return TokError("field '" + Name + "' cannot be specified more than once");
3986 
3987   LocTy Loc = Lex.getLoc();
3988   Lex.Lex();
3989   return ParseMDField(Loc, Name, Result);
3990 }
3991 
3992 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3993   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3994 
3995 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3996   if (Lex.getStrVal() == #CLASS)                                               \
3997     return Parse##CLASS(N, IsDistinct);
3998 #include "llvm/IR/Metadata.def"
3999 
4000   return TokError("expected metadata type");
4001 }
4002 
4003 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4004 #define NOP_FIELD(NAME, TYPE, INIT)
4005 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4006   if (!NAME.Seen)                                                              \
4007     return Error(ClosingLoc, "missing required field '" #NAME "'");
4008 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4009   if (Lex.getStrVal() == #NAME)                                                \
4010     return ParseMDField(#NAME, NAME);
4011 #define PARSE_MD_FIELDS()                                                      \
4012   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4013   do {                                                                         \
4014     LocTy ClosingLoc;                                                          \
4015     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4016       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4017       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4018     }, ClosingLoc))                                                            \
4019       return true;                                                             \
4020     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4021   } while (false)
4022 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4023   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4024 
4025 /// ParseDILocationFields:
4026 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4027 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4028 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4029   OPTIONAL(line, LineField, );                                                 \
4030   OPTIONAL(column, ColumnField, );                                             \
4031   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4032   OPTIONAL(inlinedAt, MDField, );
4033   PARSE_MD_FIELDS();
4034 #undef VISIT_MD_FIELDS
4035 
4036   Result = GET_OR_DISTINCT(
4037       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4038   return false;
4039 }
4040 
4041 /// ParseGenericDINode:
4042 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4043 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4044 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4045   REQUIRED(tag, DwarfTagField, );                                              \
4046   OPTIONAL(header, MDStringField, );                                           \
4047   OPTIONAL(operands, MDFieldList, );
4048   PARSE_MD_FIELDS();
4049 #undef VISIT_MD_FIELDS
4050 
4051   Result = GET_OR_DISTINCT(GenericDINode,
4052                            (Context, tag.Val, header.Val, operands.Val));
4053   return false;
4054 }
4055 
4056 /// ParseDISubrange:
4057 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4058 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4059 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4061   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4062   OPTIONAL(lowerBound, MDSignedField, );
4063   PARSE_MD_FIELDS();
4064 #undef VISIT_MD_FIELDS
4065 
4066   if (count.isMDSignedField())
4067     Result = GET_OR_DISTINCT(
4068         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4069   else if (count.isMDField())
4070     Result = GET_OR_DISTINCT(
4071         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4072   else
4073     return true;
4074 
4075   return false;
4076 }
4077 
4078 /// ParseDIEnumerator:
4079 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
4080 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4082   REQUIRED(name, MDStringField, );                                             \
4083   REQUIRED(value, MDSignedField, );
4084   PARSE_MD_FIELDS();
4085 #undef VISIT_MD_FIELDS
4086 
4087   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
4088   return false;
4089 }
4090 
4091 /// ParseDIBasicType:
4092 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4093 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4094 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4095   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4096   OPTIONAL(name, MDStringField, );                                             \
4097   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4098   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4099   OPTIONAL(encoding, DwarfAttEncodingField, );
4100   PARSE_MD_FIELDS();
4101 #undef VISIT_MD_FIELDS
4102 
4103   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4104                                          align.Val, encoding.Val));
4105   return false;
4106 }
4107 
4108 /// ParseDIDerivedType:
4109 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4110 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4111 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4112 ///                      dwarfAddressSpace: 3)
4113 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4114 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4115   REQUIRED(tag, DwarfTagField, );                                              \
4116   OPTIONAL(name, MDStringField, );                                             \
4117   OPTIONAL(file, MDField, );                                                   \
4118   OPTIONAL(line, LineField, );                                                 \
4119   OPTIONAL(scope, MDField, );                                                  \
4120   REQUIRED(baseType, MDField, );                                               \
4121   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4122   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4123   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4124   OPTIONAL(flags, DIFlagField, );                                              \
4125   OPTIONAL(extraData, MDField, );                                              \
4126   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4127   PARSE_MD_FIELDS();
4128 #undef VISIT_MD_FIELDS
4129 
4130   Optional<unsigned> DWARFAddressSpace;
4131   if (dwarfAddressSpace.Val != UINT32_MAX)
4132     DWARFAddressSpace = dwarfAddressSpace.Val;
4133 
4134   Result = GET_OR_DISTINCT(DIDerivedType,
4135                            (Context, tag.Val, name.Val, file.Val, line.Val,
4136                             scope.Val, baseType.Val, size.Val, align.Val,
4137                             offset.Val, DWARFAddressSpace, flags.Val,
4138                             extraData.Val));
4139   return false;
4140 }
4141 
4142 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4144   REQUIRED(tag, DwarfTagField, );                                              \
4145   OPTIONAL(name, MDStringField, );                                             \
4146   OPTIONAL(file, MDField, );                                                   \
4147   OPTIONAL(line, LineField, );                                                 \
4148   OPTIONAL(scope, MDField, );                                                  \
4149   OPTIONAL(baseType, MDField, );                                               \
4150   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4151   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4152   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4153   OPTIONAL(flags, DIFlagField, );                                              \
4154   OPTIONAL(elements, MDField, );                                               \
4155   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4156   OPTIONAL(vtableHolder, MDField, );                                           \
4157   OPTIONAL(templateParams, MDField, );                                         \
4158   OPTIONAL(identifier, MDStringField, );
4159   PARSE_MD_FIELDS();
4160 #undef VISIT_MD_FIELDS
4161 
4162   // If this has an identifier try to build an ODR type.
4163   if (identifier.Val)
4164     if (auto *CT = DICompositeType::buildODRType(
4165             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4166             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4167             elements.Val, runtimeLang.Val, vtableHolder.Val,
4168             templateParams.Val)) {
4169       Result = CT;
4170       return false;
4171     }
4172 
4173   // Create a new node, and save it in the context if it belongs in the type
4174   // map.
4175   Result = GET_OR_DISTINCT(
4176       DICompositeType,
4177       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4178        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4179        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4180   return false;
4181 }
4182 
4183 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4184 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4185   OPTIONAL(flags, DIFlagField, );                                              \
4186   OPTIONAL(cc, DwarfCCField, );                                                \
4187   REQUIRED(types, MDField, );
4188   PARSE_MD_FIELDS();
4189 #undef VISIT_MD_FIELDS
4190 
4191   Result = GET_OR_DISTINCT(DISubroutineType,
4192                            (Context, flags.Val, cc.Val, types.Val));
4193   return false;
4194 }
4195 
4196 /// ParseDIFileType:
4197 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4198 ///                   checksumkind: CSK_MD5,
4199 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4200 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4201 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4202   REQUIRED(filename, MDStringField, );                                         \
4203   REQUIRED(directory, MDStringField, );                                        \
4204   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4205   OPTIONAL(checksum, MDStringField, );
4206   PARSE_MD_FIELDS();
4207 #undef VISIT_MD_FIELDS
4208 
4209   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4210                                     checksumkind.Val, checksum.Val));
4211   return false;
4212 }
4213 
4214 /// ParseDICompileUnit:
4215 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4216 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4217 ///                      splitDebugFilename: "abc.debug",
4218 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4219 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4220 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4221   if (!IsDistinct)
4222     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4223 
4224 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4225   REQUIRED(language, DwarfLangField, );                                        \
4226   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4227   OPTIONAL(producer, MDStringField, );                                         \
4228   OPTIONAL(isOptimized, MDBoolField, );                                        \
4229   OPTIONAL(flags, MDStringField, );                                            \
4230   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4231   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4232   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4233   OPTIONAL(enums, MDField, );                                                  \
4234   OPTIONAL(retainedTypes, MDField, );                                          \
4235   OPTIONAL(globals, MDField, );                                                \
4236   OPTIONAL(imports, MDField, );                                                \
4237   OPTIONAL(macros, MDField, );                                                 \
4238   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4239   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4240   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4241   OPTIONAL(gnuPubnames, MDBoolField, = false);
4242   PARSE_MD_FIELDS();
4243 #undef VISIT_MD_FIELDS
4244 
4245   Result = DICompileUnit::getDistinct(
4246       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4247       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4248       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4249       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4250   return false;
4251 }
4252 
4253 /// ParseDISubprogram:
4254 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4255 ///                     file: !1, line: 7, type: !2, isLocal: false,
4256 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4257 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4258 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4259 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4260 ///                     variables: !6, thrownTypes: !7)
4261 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4262   auto Loc = Lex.getLoc();
4263 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4264   OPTIONAL(scope, MDField, );                                                  \
4265   OPTIONAL(name, MDStringField, );                                             \
4266   OPTIONAL(linkageName, MDStringField, );                                      \
4267   OPTIONAL(file, MDField, );                                                   \
4268   OPTIONAL(line, LineField, );                                                 \
4269   OPTIONAL(type, MDField, );                                                   \
4270   OPTIONAL(isLocal, MDBoolField, );                                            \
4271   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4272   OPTIONAL(scopeLine, LineField, );                                            \
4273   OPTIONAL(containingType, MDField, );                                         \
4274   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4275   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4276   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4277   OPTIONAL(flags, DIFlagField, );                                              \
4278   OPTIONAL(isOptimized, MDBoolField, );                                        \
4279   OPTIONAL(unit, MDField, );                                                   \
4280   OPTIONAL(templateParams, MDField, );                                         \
4281   OPTIONAL(declaration, MDField, );                                            \
4282   OPTIONAL(variables, MDField, );                                              \
4283   OPTIONAL(thrownTypes, MDField, );
4284   PARSE_MD_FIELDS();
4285 #undef VISIT_MD_FIELDS
4286 
4287   if (isDefinition.Val && !IsDistinct)
4288     return Lex.Error(
4289         Loc,
4290         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4291 
4292   Result = GET_OR_DISTINCT(
4293       DISubprogram,
4294       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4295        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4296        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4297        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4298        declaration.Val, variables.Val, thrownTypes.Val));
4299   return false;
4300 }
4301 
4302 /// ParseDILexicalBlock:
4303 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4304 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4305 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4306   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4307   OPTIONAL(file, MDField, );                                                   \
4308   OPTIONAL(line, LineField, );                                                 \
4309   OPTIONAL(column, ColumnField, );
4310   PARSE_MD_FIELDS();
4311 #undef VISIT_MD_FIELDS
4312 
4313   Result = GET_OR_DISTINCT(
4314       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4315   return false;
4316 }
4317 
4318 /// ParseDILexicalBlockFile:
4319 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4320 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4321 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4322   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4323   OPTIONAL(file, MDField, );                                                   \
4324   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4325   PARSE_MD_FIELDS();
4326 #undef VISIT_MD_FIELDS
4327 
4328   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4329                            (Context, scope.Val, file.Val, discriminator.Val));
4330   return false;
4331 }
4332 
4333 /// ParseDINamespace:
4334 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4335 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4336 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4337   REQUIRED(scope, MDField, );                                                  \
4338   OPTIONAL(name, MDStringField, );                                             \
4339   OPTIONAL(exportSymbols, MDBoolField, );
4340   PARSE_MD_FIELDS();
4341 #undef VISIT_MD_FIELDS
4342 
4343   Result = GET_OR_DISTINCT(DINamespace,
4344                            (Context, scope.Val, name.Val, exportSymbols.Val));
4345   return false;
4346 }
4347 
4348 /// ParseDIMacro:
4349 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4350 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4351 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4352   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4353   OPTIONAL(line, LineField, );                                                 \
4354   REQUIRED(name, MDStringField, );                                             \
4355   OPTIONAL(value, MDStringField, );
4356   PARSE_MD_FIELDS();
4357 #undef VISIT_MD_FIELDS
4358 
4359   Result = GET_OR_DISTINCT(DIMacro,
4360                            (Context, type.Val, line.Val, name.Val, value.Val));
4361   return false;
4362 }
4363 
4364 /// ParseDIMacroFile:
4365 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4366 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4368   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4369   OPTIONAL(line, LineField, );                                                 \
4370   REQUIRED(file, MDField, );                                                   \
4371   OPTIONAL(nodes, MDField, );
4372   PARSE_MD_FIELDS();
4373 #undef VISIT_MD_FIELDS
4374 
4375   Result = GET_OR_DISTINCT(DIMacroFile,
4376                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4377   return false;
4378 }
4379 
4380 /// ParseDIModule:
4381 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4382 ///                 includePath: "/usr/include", isysroot: "/")
4383 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4384 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4385   REQUIRED(scope, MDField, );                                                  \
4386   REQUIRED(name, MDStringField, );                                             \
4387   OPTIONAL(configMacros, MDStringField, );                                     \
4388   OPTIONAL(includePath, MDStringField, );                                      \
4389   OPTIONAL(isysroot, MDStringField, );
4390   PARSE_MD_FIELDS();
4391 #undef VISIT_MD_FIELDS
4392 
4393   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4394                            configMacros.Val, includePath.Val, isysroot.Val));
4395   return false;
4396 }
4397 
4398 /// ParseDITemplateTypeParameter:
4399 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4400 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4402   OPTIONAL(name, MDStringField, );                                             \
4403   REQUIRED(type, MDField, );
4404   PARSE_MD_FIELDS();
4405 #undef VISIT_MD_FIELDS
4406 
4407   Result =
4408       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4409   return false;
4410 }
4411 
4412 /// ParseDITemplateValueParameter:
4413 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4414 ///                                 name: "V", type: !1, value: i32 7)
4415 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4417   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4418   OPTIONAL(name, MDStringField, );                                             \
4419   OPTIONAL(type, MDField, );                                                   \
4420   REQUIRED(value, MDField, );
4421   PARSE_MD_FIELDS();
4422 #undef VISIT_MD_FIELDS
4423 
4424   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4425                            (Context, tag.Val, name.Val, type.Val, value.Val));
4426   return false;
4427 }
4428 
4429 /// ParseDIGlobalVariable:
4430 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4431 ///                         file: !1, line: 7, type: !2, isLocal: false,
4432 ///                         isDefinition: true, declaration: !3, align: 8)
4433 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4434 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4435   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4436   OPTIONAL(scope, MDField, );                                                  \
4437   OPTIONAL(linkageName, MDStringField, );                                      \
4438   OPTIONAL(file, MDField, );                                                   \
4439   OPTIONAL(line, LineField, );                                                 \
4440   OPTIONAL(type, MDField, );                                                   \
4441   OPTIONAL(isLocal, MDBoolField, );                                            \
4442   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4443   OPTIONAL(declaration, MDField, );                                            \
4444   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4445   PARSE_MD_FIELDS();
4446 #undef VISIT_MD_FIELDS
4447 
4448   Result = GET_OR_DISTINCT(DIGlobalVariable,
4449                            (Context, scope.Val, name.Val, linkageName.Val,
4450                             file.Val, line.Val, type.Val, isLocal.Val,
4451                             isDefinition.Val, declaration.Val, align.Val));
4452   return false;
4453 }
4454 
4455 /// ParseDILocalVariable:
4456 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4457 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4458 ///                        align: 8)
4459 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4460 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4461 ///                        align: 8)
4462 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4463 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4464   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4465   OPTIONAL(name, MDStringField, );                                             \
4466   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4467   OPTIONAL(file, MDField, );                                                   \
4468   OPTIONAL(line, LineField, );                                                 \
4469   OPTIONAL(type, MDField, );                                                   \
4470   OPTIONAL(flags, DIFlagField, );                                              \
4471   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4472   PARSE_MD_FIELDS();
4473 #undef VISIT_MD_FIELDS
4474 
4475   Result = GET_OR_DISTINCT(DILocalVariable,
4476                            (Context, scope.Val, name.Val, file.Val, line.Val,
4477                             type.Val, arg.Val, flags.Val, align.Val));
4478   return false;
4479 }
4480 
4481 /// ParseDIExpression:
4482 ///   ::= !DIExpression(0, 7, -1)
4483 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4484   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4485   Lex.Lex();
4486 
4487   if (ParseToken(lltok::lparen, "expected '(' here"))
4488     return true;
4489 
4490   SmallVector<uint64_t, 8> Elements;
4491   if (Lex.getKind() != lltok::rparen)
4492     do {
4493       if (Lex.getKind() == lltok::DwarfOp) {
4494         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4495           Lex.Lex();
4496           Elements.push_back(Op);
4497           continue;
4498         }
4499         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4500       }
4501 
4502       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4503         return TokError("expected unsigned integer");
4504 
4505       auto &U = Lex.getAPSIntVal();
4506       if (U.ugt(UINT64_MAX))
4507         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4508       Elements.push_back(U.getZExtValue());
4509       Lex.Lex();
4510     } while (EatIfPresent(lltok::comma));
4511 
4512   if (ParseToken(lltok::rparen, "expected ')' here"))
4513     return true;
4514 
4515   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4516   return false;
4517 }
4518 
4519 /// ParseDIGlobalVariableExpression:
4520 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4521 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4522                                                bool IsDistinct) {
4523 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4524   REQUIRED(var, MDField, );                                                    \
4525   REQUIRED(expr, MDField, );
4526   PARSE_MD_FIELDS();
4527 #undef VISIT_MD_FIELDS
4528 
4529   Result =
4530       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4531   return false;
4532 }
4533 
4534 /// ParseDIObjCProperty:
4535 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4536 ///                       getter: "getFoo", attributes: 7, type: !2)
4537 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4538 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4539   OPTIONAL(name, MDStringField, );                                             \
4540   OPTIONAL(file, MDField, );                                                   \
4541   OPTIONAL(line, LineField, );                                                 \
4542   OPTIONAL(setter, MDStringField, );                                           \
4543   OPTIONAL(getter, MDStringField, );                                           \
4544   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4545   OPTIONAL(type, MDField, );
4546   PARSE_MD_FIELDS();
4547 #undef VISIT_MD_FIELDS
4548 
4549   Result = GET_OR_DISTINCT(DIObjCProperty,
4550                            (Context, name.Val, file.Val, line.Val, setter.Val,
4551                             getter.Val, attributes.Val, type.Val));
4552   return false;
4553 }
4554 
4555 /// ParseDIImportedEntity:
4556 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4557 ///                         line: 7, name: "foo")
4558 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4560   REQUIRED(tag, DwarfTagField, );                                              \
4561   REQUIRED(scope, MDField, );                                                  \
4562   OPTIONAL(entity, MDField, );                                                 \
4563   OPTIONAL(file, MDField, );                                                   \
4564   OPTIONAL(line, LineField, );                                                 \
4565   OPTIONAL(name, MDStringField, );
4566   PARSE_MD_FIELDS();
4567 #undef VISIT_MD_FIELDS
4568 
4569   Result = GET_OR_DISTINCT(
4570       DIImportedEntity,
4571       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4572   return false;
4573 }
4574 
4575 #undef PARSE_MD_FIELD
4576 #undef NOP_FIELD
4577 #undef REQUIRE_FIELD
4578 #undef DECLARE_FIELD
4579 
4580 /// ParseMetadataAsValue
4581 ///  ::= metadata i32 %local
4582 ///  ::= metadata i32 @global
4583 ///  ::= metadata i32 7
4584 ///  ::= metadata !0
4585 ///  ::= metadata !{...}
4586 ///  ::= metadata !"string"
4587 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4588   // Note: the type 'metadata' has already been parsed.
4589   Metadata *MD;
4590   if (ParseMetadata(MD, &PFS))
4591     return true;
4592 
4593   V = MetadataAsValue::get(Context, MD);
4594   return false;
4595 }
4596 
4597 /// ParseValueAsMetadata
4598 ///  ::= i32 %local
4599 ///  ::= i32 @global
4600 ///  ::= i32 7
4601 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4602                                     PerFunctionState *PFS) {
4603   Type *Ty;
4604   LocTy Loc;
4605   if (ParseType(Ty, TypeMsg, Loc))
4606     return true;
4607   if (Ty->isMetadataTy())
4608     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4609 
4610   Value *V;
4611   if (ParseValue(Ty, V, PFS))
4612     return true;
4613 
4614   MD = ValueAsMetadata::get(V);
4615   return false;
4616 }
4617 
4618 /// ParseMetadata
4619 ///  ::= i32 %local
4620 ///  ::= i32 @global
4621 ///  ::= i32 7
4622 ///  ::= !42
4623 ///  ::= !{...}
4624 ///  ::= !"string"
4625 ///  ::= !DILocation(...)
4626 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4627   if (Lex.getKind() == lltok::MetadataVar) {
4628     MDNode *N;
4629     if (ParseSpecializedMDNode(N))
4630       return true;
4631     MD = N;
4632     return false;
4633   }
4634 
4635   // ValueAsMetadata:
4636   // <type> <value>
4637   if (Lex.getKind() != lltok::exclaim)
4638     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4639 
4640   // '!'.
4641   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4642   Lex.Lex();
4643 
4644   // MDString:
4645   //   ::= '!' STRINGCONSTANT
4646   if (Lex.getKind() == lltok::StringConstant) {
4647     MDString *S;
4648     if (ParseMDString(S))
4649       return true;
4650     MD = S;
4651     return false;
4652   }
4653 
4654   // MDNode:
4655   // !{ ... }
4656   // !7
4657   MDNode *N;
4658   if (ParseMDNodeTail(N))
4659     return true;
4660   MD = N;
4661   return false;
4662 }
4663 
4664 //===----------------------------------------------------------------------===//
4665 // Function Parsing.
4666 //===----------------------------------------------------------------------===//
4667 
4668 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4669                                    PerFunctionState *PFS) {
4670   if (Ty->isFunctionTy())
4671     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4672 
4673   switch (ID.Kind) {
4674   case ValID::t_LocalID:
4675     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4676     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4677     return V == nullptr;
4678   case ValID::t_LocalName:
4679     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4680     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4681     return V == nullptr;
4682   case ValID::t_InlineAsm: {
4683     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4684       return Error(ID.Loc, "invalid type for inline asm constraint string");
4685     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4686                        (ID.UIntVal >> 1) & 1,
4687                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4688     return false;
4689   }
4690   case ValID::t_GlobalName:
4691     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4692     return V == nullptr;
4693   case ValID::t_GlobalID:
4694     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4695     return V == nullptr;
4696   case ValID::t_APSInt:
4697     if (!Ty->isIntegerTy())
4698       return Error(ID.Loc, "integer constant must have integer type");
4699     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4700     V = ConstantInt::get(Context, ID.APSIntVal);
4701     return false;
4702   case ValID::t_APFloat:
4703     if (!Ty->isFloatingPointTy() ||
4704         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4705       return Error(ID.Loc, "floating point constant invalid for type");
4706 
4707     // The lexer has no type info, so builds all half, float, and double FP
4708     // constants as double.  Fix this here.  Long double does not need this.
4709     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4710       bool Ignored;
4711       if (Ty->isHalfTy())
4712         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4713                               &Ignored);
4714       else if (Ty->isFloatTy())
4715         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4716                               &Ignored);
4717     }
4718     V = ConstantFP::get(Context, ID.APFloatVal);
4719 
4720     if (V->getType() != Ty)
4721       return Error(ID.Loc, "floating point constant does not have type '" +
4722                    getTypeString(Ty) + "'");
4723 
4724     return false;
4725   case ValID::t_Null:
4726     if (!Ty->isPointerTy())
4727       return Error(ID.Loc, "null must be a pointer type");
4728     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4729     return false;
4730   case ValID::t_Undef:
4731     // FIXME: LabelTy should not be a first-class type.
4732     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4733       return Error(ID.Loc, "invalid type for undef constant");
4734     V = UndefValue::get(Ty);
4735     return false;
4736   case ValID::t_EmptyArray:
4737     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4738       return Error(ID.Loc, "invalid empty array initializer");
4739     V = UndefValue::get(Ty);
4740     return false;
4741   case ValID::t_Zero:
4742     // FIXME: LabelTy should not be a first-class type.
4743     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4744       return Error(ID.Loc, "invalid type for null constant");
4745     V = Constant::getNullValue(Ty);
4746     return false;
4747   case ValID::t_None:
4748     if (!Ty->isTokenTy())
4749       return Error(ID.Loc, "invalid type for none constant");
4750     V = Constant::getNullValue(Ty);
4751     return false;
4752   case ValID::t_Constant:
4753     if (ID.ConstantVal->getType() != Ty)
4754       return Error(ID.Loc, "constant expression type mismatch");
4755 
4756     V = ID.ConstantVal;
4757     return false;
4758   case ValID::t_ConstantStruct:
4759   case ValID::t_PackedConstantStruct:
4760     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4761       if (ST->getNumElements() != ID.UIntVal)
4762         return Error(ID.Loc,
4763                      "initializer with struct type has wrong # elements");
4764       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4765         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4766 
4767       // Verify that the elements are compatible with the structtype.
4768       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4769         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4770           return Error(ID.Loc, "element " + Twine(i) +
4771                     " of struct initializer doesn't match struct element type");
4772 
4773       V = ConstantStruct::get(
4774           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4775     } else
4776       return Error(ID.Loc, "constant expression type mismatch");
4777     return false;
4778   }
4779   llvm_unreachable("Invalid ValID");
4780 }
4781 
4782 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4783   C = nullptr;
4784   ValID ID;
4785   auto Loc = Lex.getLoc();
4786   if (ParseValID(ID, /*PFS=*/nullptr))
4787     return true;
4788   switch (ID.Kind) {
4789   case ValID::t_APSInt:
4790   case ValID::t_APFloat:
4791   case ValID::t_Undef:
4792   case ValID::t_Constant:
4793   case ValID::t_ConstantStruct:
4794   case ValID::t_PackedConstantStruct: {
4795     Value *V;
4796     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4797       return true;
4798     assert(isa<Constant>(V) && "Expected a constant value");
4799     C = cast<Constant>(V);
4800     return false;
4801   }
4802   case ValID::t_Null:
4803     C = Constant::getNullValue(Ty);
4804     return false;
4805   default:
4806     return Error(Loc, "expected a constant value");
4807   }
4808 }
4809 
4810 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4811   V = nullptr;
4812   ValID ID;
4813   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4814 }
4815 
4816 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4817   Type *Ty = nullptr;
4818   return ParseType(Ty) ||
4819          ParseValue(Ty, V, PFS);
4820 }
4821 
4822 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4823                                       PerFunctionState &PFS) {
4824   Value *V;
4825   Loc = Lex.getLoc();
4826   if (ParseTypeAndValue(V, PFS)) return true;
4827   if (!isa<BasicBlock>(V))
4828     return Error(Loc, "expected a basic block");
4829   BB = cast<BasicBlock>(V);
4830   return false;
4831 }
4832 
4833 /// FunctionHeader
4834 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
4835 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
4836 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
4837 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
4838 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4839   // Parse the linkage.
4840   LocTy LinkageLoc = Lex.getLoc();
4841   unsigned Linkage;
4842   unsigned Visibility;
4843   unsigned DLLStorageClass;
4844   bool DSOLocal;
4845   AttrBuilder RetAttrs;
4846   unsigned CC;
4847   bool HasLinkage;
4848   Type *RetType = nullptr;
4849   LocTy RetTypeLoc = Lex.getLoc();
4850   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
4851                            DSOLocal) ||
4852       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4853       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4854     return true;
4855 
4856   // Verify that the linkage is ok.
4857   switch ((GlobalValue::LinkageTypes)Linkage) {
4858   case GlobalValue::ExternalLinkage:
4859     break; // always ok.
4860   case GlobalValue::ExternalWeakLinkage:
4861     if (isDefine)
4862       return Error(LinkageLoc, "invalid linkage for function definition");
4863     break;
4864   case GlobalValue::PrivateLinkage:
4865   case GlobalValue::InternalLinkage:
4866   case GlobalValue::AvailableExternallyLinkage:
4867   case GlobalValue::LinkOnceAnyLinkage:
4868   case GlobalValue::LinkOnceODRLinkage:
4869   case GlobalValue::WeakAnyLinkage:
4870   case GlobalValue::WeakODRLinkage:
4871     if (!isDefine)
4872       return Error(LinkageLoc, "invalid linkage for function declaration");
4873     break;
4874   case GlobalValue::AppendingLinkage:
4875   case GlobalValue::CommonLinkage:
4876     return Error(LinkageLoc, "invalid function linkage type");
4877   }
4878 
4879   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4880     return Error(LinkageLoc,
4881                  "symbol with local linkage must have default visibility");
4882 
4883   if (!FunctionType::isValidReturnType(RetType))
4884     return Error(RetTypeLoc, "invalid function return type");
4885 
4886   LocTy NameLoc = Lex.getLoc();
4887 
4888   std::string FunctionName;
4889   if (Lex.getKind() == lltok::GlobalVar) {
4890     FunctionName = Lex.getStrVal();
4891   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4892     unsigned NameID = Lex.getUIntVal();
4893 
4894     if (NameID != NumberedVals.size())
4895       return TokError("function expected to be numbered '%" +
4896                       Twine(NumberedVals.size()) + "'");
4897   } else {
4898     return TokError("expected function name");
4899   }
4900 
4901   Lex.Lex();
4902 
4903   if (Lex.getKind() != lltok::lparen)
4904     return TokError("expected '(' in function argument list");
4905 
4906   SmallVector<ArgInfo, 8> ArgList;
4907   bool isVarArg;
4908   AttrBuilder FuncAttrs;
4909   std::vector<unsigned> FwdRefAttrGrps;
4910   LocTy BuiltinLoc;
4911   std::string Section;
4912   unsigned Alignment;
4913   std::string GC;
4914   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4915   Constant *Prefix = nullptr;
4916   Constant *Prologue = nullptr;
4917   Constant *PersonalityFn = nullptr;
4918   Comdat *C;
4919 
4920   if (ParseArgumentList(ArgList, isVarArg) ||
4921       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4922       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4923                                  BuiltinLoc) ||
4924       (EatIfPresent(lltok::kw_section) &&
4925        ParseStringConstant(Section)) ||
4926       parseOptionalComdat(FunctionName, C) ||
4927       ParseOptionalAlignment(Alignment) ||
4928       (EatIfPresent(lltok::kw_gc) &&
4929        ParseStringConstant(GC)) ||
4930       (EatIfPresent(lltok::kw_prefix) &&
4931        ParseGlobalTypeAndValue(Prefix)) ||
4932       (EatIfPresent(lltok::kw_prologue) &&
4933        ParseGlobalTypeAndValue(Prologue)) ||
4934       (EatIfPresent(lltok::kw_personality) &&
4935        ParseGlobalTypeAndValue(PersonalityFn)))
4936     return true;
4937 
4938   if (FuncAttrs.contains(Attribute::Builtin))
4939     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4940 
4941   // If the alignment was parsed as an attribute, move to the alignment field.
4942   if (FuncAttrs.hasAlignmentAttr()) {
4943     Alignment = FuncAttrs.getAlignment();
4944     FuncAttrs.removeAttribute(Attribute::Alignment);
4945   }
4946 
4947   // Okay, if we got here, the function is syntactically valid.  Convert types
4948   // and do semantic checks.
4949   std::vector<Type*> ParamTypeList;
4950   SmallVector<AttributeSet, 8> Attrs;
4951 
4952   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4953     ParamTypeList.push_back(ArgList[i].Ty);
4954     Attrs.push_back(ArgList[i].Attrs);
4955   }
4956 
4957   AttributeList PAL =
4958       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4959                          AttributeSet::get(Context, RetAttrs), Attrs);
4960 
4961   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4962     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4963 
4964   FunctionType *FT =
4965     FunctionType::get(RetType, ParamTypeList, isVarArg);
4966   PointerType *PFT = PointerType::getUnqual(FT);
4967 
4968   Fn = nullptr;
4969   if (!FunctionName.empty()) {
4970     // If this was a definition of a forward reference, remove the definition
4971     // from the forward reference table and fill in the forward ref.
4972     auto FRVI = ForwardRefVals.find(FunctionName);
4973     if (FRVI != ForwardRefVals.end()) {
4974       Fn = M->getFunction(FunctionName);
4975       if (!Fn)
4976         return Error(FRVI->second.second, "invalid forward reference to "
4977                      "function as global value!");
4978       if (Fn->getType() != PFT)
4979         return Error(FRVI->second.second, "invalid forward reference to "
4980                      "function '" + FunctionName + "' with wrong type!");
4981 
4982       ForwardRefVals.erase(FRVI);
4983     } else if ((Fn = M->getFunction(FunctionName))) {
4984       // Reject redefinitions.
4985       return Error(NameLoc, "invalid redefinition of function '" +
4986                    FunctionName + "'");
4987     } else if (M->getNamedValue(FunctionName)) {
4988       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4989     }
4990 
4991   } else {
4992     // If this is a definition of a forward referenced function, make sure the
4993     // types agree.
4994     auto I = ForwardRefValIDs.find(NumberedVals.size());
4995     if (I != ForwardRefValIDs.end()) {
4996       Fn = cast<Function>(I->second.first);
4997       if (Fn->getType() != PFT)
4998         return Error(NameLoc, "type of definition and forward reference of '@" +
4999                      Twine(NumberedVals.size()) + "' disagree");
5000       ForwardRefValIDs.erase(I);
5001     }
5002   }
5003 
5004   if (!Fn)
5005     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5006   else // Move the forward-reference to the correct spot in the module.
5007     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5008 
5009   if (FunctionName.empty())
5010     NumberedVals.push_back(Fn);
5011 
5012   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5013   maybeSetDSOLocal(DSOLocal, *Fn);
5014   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5015   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5016   Fn->setCallingConv(CC);
5017   Fn->setAttributes(PAL);
5018   Fn->setUnnamedAddr(UnnamedAddr);
5019   Fn->setAlignment(Alignment);
5020   Fn->setSection(Section);
5021   Fn->setComdat(C);
5022   Fn->setPersonalityFn(PersonalityFn);
5023   if (!GC.empty()) Fn->setGC(GC);
5024   Fn->setPrefixData(Prefix);
5025   Fn->setPrologueData(Prologue);
5026   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5027 
5028   // Add all of the arguments we parsed to the function.
5029   Function::arg_iterator ArgIt = Fn->arg_begin();
5030   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5031     // If the argument has a name, insert it into the argument symbol table.
5032     if (ArgList[i].Name.empty()) continue;
5033 
5034     // Set the name, if it conflicted, it will be auto-renamed.
5035     ArgIt->setName(ArgList[i].Name);
5036 
5037     if (ArgIt->getName() != ArgList[i].Name)
5038       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5039                    ArgList[i].Name + "'");
5040   }
5041 
5042   if (isDefine)
5043     return false;
5044 
5045   // Check the declaration has no block address forward references.
5046   ValID ID;
5047   if (FunctionName.empty()) {
5048     ID.Kind = ValID::t_GlobalID;
5049     ID.UIntVal = NumberedVals.size() - 1;
5050   } else {
5051     ID.Kind = ValID::t_GlobalName;
5052     ID.StrVal = FunctionName;
5053   }
5054   auto Blocks = ForwardRefBlockAddresses.find(ID);
5055   if (Blocks != ForwardRefBlockAddresses.end())
5056     return Error(Blocks->first.Loc,
5057                  "cannot take blockaddress inside a declaration");
5058   return false;
5059 }
5060 
5061 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5062   ValID ID;
5063   if (FunctionNumber == -1) {
5064     ID.Kind = ValID::t_GlobalName;
5065     ID.StrVal = F.getName();
5066   } else {
5067     ID.Kind = ValID::t_GlobalID;
5068     ID.UIntVal = FunctionNumber;
5069   }
5070 
5071   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5072   if (Blocks == P.ForwardRefBlockAddresses.end())
5073     return false;
5074 
5075   for (const auto &I : Blocks->second) {
5076     const ValID &BBID = I.first;
5077     GlobalValue *GV = I.second;
5078 
5079     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5080            "Expected local id or name");
5081     BasicBlock *BB;
5082     if (BBID.Kind == ValID::t_LocalName)
5083       BB = GetBB(BBID.StrVal, BBID.Loc);
5084     else
5085       BB = GetBB(BBID.UIntVal, BBID.Loc);
5086     if (!BB)
5087       return P.Error(BBID.Loc, "referenced value is not a basic block");
5088 
5089     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5090     GV->eraseFromParent();
5091   }
5092 
5093   P.ForwardRefBlockAddresses.erase(Blocks);
5094   return false;
5095 }
5096 
5097 /// ParseFunctionBody
5098 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5099 bool LLParser::ParseFunctionBody(Function &Fn) {
5100   if (Lex.getKind() != lltok::lbrace)
5101     return TokError("expected '{' in function body");
5102   Lex.Lex();  // eat the {.
5103 
5104   int FunctionNumber = -1;
5105   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5106 
5107   PerFunctionState PFS(*this, Fn, FunctionNumber);
5108 
5109   // Resolve block addresses and allow basic blocks to be forward-declared
5110   // within this function.
5111   if (PFS.resolveForwardRefBlockAddresses())
5112     return true;
5113   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5114 
5115   // We need at least one basic block.
5116   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5117     return TokError("function body requires at least one basic block");
5118 
5119   while (Lex.getKind() != lltok::rbrace &&
5120          Lex.getKind() != lltok::kw_uselistorder)
5121     if (ParseBasicBlock(PFS)) return true;
5122 
5123   while (Lex.getKind() != lltok::rbrace)
5124     if (ParseUseListOrder(&PFS))
5125       return true;
5126 
5127   // Eat the }.
5128   Lex.Lex();
5129 
5130   // Verify function is ok.
5131   return PFS.FinishFunction();
5132 }
5133 
5134 /// ParseBasicBlock
5135 ///   ::= LabelStr? Instruction*
5136 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5137   // If this basic block starts out with a name, remember it.
5138   std::string Name;
5139   LocTy NameLoc = Lex.getLoc();
5140   if (Lex.getKind() == lltok::LabelStr) {
5141     Name = Lex.getStrVal();
5142     Lex.Lex();
5143   }
5144 
5145   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5146   if (!BB)
5147     return Error(NameLoc,
5148                  "unable to create block named '" + Name + "'");
5149 
5150   std::string NameStr;
5151 
5152   // Parse the instructions in this block until we get a terminator.
5153   Instruction *Inst;
5154   do {
5155     // This instruction may have three possibilities for a name: a) none
5156     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5157     LocTy NameLoc = Lex.getLoc();
5158     int NameID = -1;
5159     NameStr = "";
5160 
5161     if (Lex.getKind() == lltok::LocalVarID) {
5162       NameID = Lex.getUIntVal();
5163       Lex.Lex();
5164       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5165         return true;
5166     } else if (Lex.getKind() == lltok::LocalVar) {
5167       NameStr = Lex.getStrVal();
5168       Lex.Lex();
5169       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5170         return true;
5171     }
5172 
5173     switch (ParseInstruction(Inst, BB, PFS)) {
5174     default: llvm_unreachable("Unknown ParseInstruction result!");
5175     case InstError: return true;
5176     case InstNormal:
5177       BB->getInstList().push_back(Inst);
5178 
5179       // With a normal result, we check to see if the instruction is followed by
5180       // a comma and metadata.
5181       if (EatIfPresent(lltok::comma))
5182         if (ParseInstructionMetadata(*Inst))
5183           return true;
5184       break;
5185     case InstExtraComma:
5186       BB->getInstList().push_back(Inst);
5187 
5188       // If the instruction parser ate an extra comma at the end of it, it
5189       // *must* be followed by metadata.
5190       if (ParseInstructionMetadata(*Inst))
5191         return true;
5192       break;
5193     }
5194 
5195     // Set the name on the instruction.
5196     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5197   } while (!isa<TerminatorInst>(Inst));
5198 
5199   return false;
5200 }
5201 
5202 //===----------------------------------------------------------------------===//
5203 // Instruction Parsing.
5204 //===----------------------------------------------------------------------===//
5205 
5206 /// ParseInstruction - Parse one of the many different instructions.
5207 ///
5208 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5209                                PerFunctionState &PFS) {
5210   lltok::Kind Token = Lex.getKind();
5211   if (Token == lltok::Eof)
5212     return TokError("found end of file when expecting more instructions");
5213   LocTy Loc = Lex.getLoc();
5214   unsigned KeywordVal = Lex.getUIntVal();
5215   Lex.Lex();  // Eat the keyword.
5216 
5217   switch (Token) {
5218   default:                    return Error(Loc, "expected instruction opcode");
5219   // Terminator Instructions.
5220   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5221   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5222   case lltok::kw_br:          return ParseBr(Inst, PFS);
5223   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5224   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5225   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5226   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5227   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5228   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5229   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5230   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5231   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5232   // Binary Operators.
5233   case lltok::kw_add:
5234   case lltok::kw_sub:
5235   case lltok::kw_mul:
5236   case lltok::kw_shl: {
5237     bool NUW = EatIfPresent(lltok::kw_nuw);
5238     bool NSW = EatIfPresent(lltok::kw_nsw);
5239     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5240 
5241     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5242 
5243     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5244     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5245     return false;
5246   }
5247   case lltok::kw_fadd:
5248   case lltok::kw_fsub:
5249   case lltok::kw_fmul:
5250   case lltok::kw_fdiv:
5251   case lltok::kw_frem: {
5252     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5253     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5254     if (Res != 0)
5255       return Res;
5256     if (FMF.any())
5257       Inst->setFastMathFlags(FMF);
5258     return 0;
5259   }
5260 
5261   case lltok::kw_sdiv:
5262   case lltok::kw_udiv:
5263   case lltok::kw_lshr:
5264   case lltok::kw_ashr: {
5265     bool Exact = EatIfPresent(lltok::kw_exact);
5266 
5267     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5268     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5269     return false;
5270   }
5271 
5272   case lltok::kw_urem:
5273   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5274   case lltok::kw_and:
5275   case lltok::kw_or:
5276   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5277   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5278   case lltok::kw_fcmp: {
5279     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5280     int Res = ParseCompare(Inst, PFS, KeywordVal);
5281     if (Res != 0)
5282       return Res;
5283     if (FMF.any())
5284       Inst->setFastMathFlags(FMF);
5285     return 0;
5286   }
5287 
5288   // Casts.
5289   case lltok::kw_trunc:
5290   case lltok::kw_zext:
5291   case lltok::kw_sext:
5292   case lltok::kw_fptrunc:
5293   case lltok::kw_fpext:
5294   case lltok::kw_bitcast:
5295   case lltok::kw_addrspacecast:
5296   case lltok::kw_uitofp:
5297   case lltok::kw_sitofp:
5298   case lltok::kw_fptoui:
5299   case lltok::kw_fptosi:
5300   case lltok::kw_inttoptr:
5301   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5302   // Other.
5303   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5304   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5305   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5306   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5307   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5308   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5309   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5310   // Call.
5311   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5312   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5313   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5314   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5315   // Memory.
5316   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5317   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5318   case lltok::kw_store:          return ParseStore(Inst, PFS);
5319   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5320   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5321   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5322   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5323   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5324   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5325   }
5326 }
5327 
5328 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5329 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5330   if (Opc == Instruction::FCmp) {
5331     switch (Lex.getKind()) {
5332     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5333     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5334     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5335     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5336     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5337     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5338     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5339     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5340     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5341     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5342     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5343     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5344     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5345     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5346     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5347     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5348     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5349     }
5350   } else {
5351     switch (Lex.getKind()) {
5352     default: return TokError("expected icmp predicate (e.g. 'eq')");
5353     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5354     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5355     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5356     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5357     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5358     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5359     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5360     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5361     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5362     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5363     }
5364   }
5365   Lex.Lex();
5366   return false;
5367 }
5368 
5369 //===----------------------------------------------------------------------===//
5370 // Terminator Instructions.
5371 //===----------------------------------------------------------------------===//
5372 
5373 /// ParseRet - Parse a return instruction.
5374 ///   ::= 'ret' void (',' !dbg, !1)*
5375 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5376 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5377                         PerFunctionState &PFS) {
5378   SMLoc TypeLoc = Lex.getLoc();
5379   Type *Ty = nullptr;
5380   if (ParseType(Ty, true /*void allowed*/)) return true;
5381 
5382   Type *ResType = PFS.getFunction().getReturnType();
5383 
5384   if (Ty->isVoidTy()) {
5385     if (!ResType->isVoidTy())
5386       return Error(TypeLoc, "value doesn't match function result type '" +
5387                    getTypeString(ResType) + "'");
5388 
5389     Inst = ReturnInst::Create(Context);
5390     return false;
5391   }
5392 
5393   Value *RV;
5394   if (ParseValue(Ty, RV, PFS)) return true;
5395 
5396   if (ResType != RV->getType())
5397     return Error(TypeLoc, "value doesn't match function result type '" +
5398                  getTypeString(ResType) + "'");
5399 
5400   Inst = ReturnInst::Create(Context, RV);
5401   return false;
5402 }
5403 
5404 /// ParseBr
5405 ///   ::= 'br' TypeAndValue
5406 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5407 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5408   LocTy Loc, Loc2;
5409   Value *Op0;
5410   BasicBlock *Op1, *Op2;
5411   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5412 
5413   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5414     Inst = BranchInst::Create(BB);
5415     return false;
5416   }
5417 
5418   if (Op0->getType() != Type::getInt1Ty(Context))
5419     return Error(Loc, "branch condition must have 'i1' type");
5420 
5421   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5422       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5423       ParseToken(lltok::comma, "expected ',' after true destination") ||
5424       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5425     return true;
5426 
5427   Inst = BranchInst::Create(Op1, Op2, Op0);
5428   return false;
5429 }
5430 
5431 /// ParseSwitch
5432 ///  Instruction
5433 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5434 ///  JumpTable
5435 ///    ::= (TypeAndValue ',' TypeAndValue)*
5436 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5437   LocTy CondLoc, BBLoc;
5438   Value *Cond;
5439   BasicBlock *DefaultBB;
5440   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5441       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5442       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5443       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5444     return true;
5445 
5446   if (!Cond->getType()->isIntegerTy())
5447     return Error(CondLoc, "switch condition must have integer type");
5448 
5449   // Parse the jump table pairs.
5450   SmallPtrSet<Value*, 32> SeenCases;
5451   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5452   while (Lex.getKind() != lltok::rsquare) {
5453     Value *Constant;
5454     BasicBlock *DestBB;
5455 
5456     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5457         ParseToken(lltok::comma, "expected ',' after case value") ||
5458         ParseTypeAndBasicBlock(DestBB, PFS))
5459       return true;
5460 
5461     if (!SeenCases.insert(Constant).second)
5462       return Error(CondLoc, "duplicate case value in switch");
5463     if (!isa<ConstantInt>(Constant))
5464       return Error(CondLoc, "case value is not a constant integer");
5465 
5466     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5467   }
5468 
5469   Lex.Lex();  // Eat the ']'.
5470 
5471   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5472   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5473     SI->addCase(Table[i].first, Table[i].second);
5474   Inst = SI;
5475   return false;
5476 }
5477 
5478 /// ParseIndirectBr
5479 ///  Instruction
5480 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5481 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5482   LocTy AddrLoc;
5483   Value *Address;
5484   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5485       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5486       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5487     return true;
5488 
5489   if (!Address->getType()->isPointerTy())
5490     return Error(AddrLoc, "indirectbr address must have pointer type");
5491 
5492   // Parse the destination list.
5493   SmallVector<BasicBlock*, 16> DestList;
5494 
5495   if (Lex.getKind() != lltok::rsquare) {
5496     BasicBlock *DestBB;
5497     if (ParseTypeAndBasicBlock(DestBB, PFS))
5498       return true;
5499     DestList.push_back(DestBB);
5500 
5501     while (EatIfPresent(lltok::comma)) {
5502       if (ParseTypeAndBasicBlock(DestBB, PFS))
5503         return true;
5504       DestList.push_back(DestBB);
5505     }
5506   }
5507 
5508   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5509     return true;
5510 
5511   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5512   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5513     IBI->addDestination(DestList[i]);
5514   Inst = IBI;
5515   return false;
5516 }
5517 
5518 /// ParseInvoke
5519 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5520 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5521 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5522   LocTy CallLoc = Lex.getLoc();
5523   AttrBuilder RetAttrs, FnAttrs;
5524   std::vector<unsigned> FwdRefAttrGrps;
5525   LocTy NoBuiltinLoc;
5526   unsigned CC;
5527   Type *RetType = nullptr;
5528   LocTy RetTypeLoc;
5529   ValID CalleeID;
5530   SmallVector<ParamInfo, 16> ArgList;
5531   SmallVector<OperandBundleDef, 2> BundleList;
5532 
5533   BasicBlock *NormalBB, *UnwindBB;
5534   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5535       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5536       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5537       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5538                                  NoBuiltinLoc) ||
5539       ParseOptionalOperandBundles(BundleList, PFS) ||
5540       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5541       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5542       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5543       ParseTypeAndBasicBlock(UnwindBB, PFS))
5544     return true;
5545 
5546   // If RetType is a non-function pointer type, then this is the short syntax
5547   // for the call, which means that RetType is just the return type.  Infer the
5548   // rest of the function argument types from the arguments that are present.
5549   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5550   if (!Ty) {
5551     // Pull out the types of all of the arguments...
5552     std::vector<Type*> ParamTypes;
5553     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5554       ParamTypes.push_back(ArgList[i].V->getType());
5555 
5556     if (!FunctionType::isValidReturnType(RetType))
5557       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5558 
5559     Ty = FunctionType::get(RetType, ParamTypes, false);
5560   }
5561 
5562   CalleeID.FTy = Ty;
5563 
5564   // Look up the callee.
5565   Value *Callee;
5566   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5567     return true;
5568 
5569   // Set up the Attribute for the function.
5570   SmallVector<Value *, 8> Args;
5571   SmallVector<AttributeSet, 8> ArgAttrs;
5572 
5573   // Loop through FunctionType's arguments and ensure they are specified
5574   // correctly.  Also, gather any parameter attributes.
5575   FunctionType::param_iterator I = Ty->param_begin();
5576   FunctionType::param_iterator E = Ty->param_end();
5577   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5578     Type *ExpectedTy = nullptr;
5579     if (I != E) {
5580       ExpectedTy = *I++;
5581     } else if (!Ty->isVarArg()) {
5582       return Error(ArgList[i].Loc, "too many arguments specified");
5583     }
5584 
5585     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5586       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5587                    getTypeString(ExpectedTy) + "'");
5588     Args.push_back(ArgList[i].V);
5589     ArgAttrs.push_back(ArgList[i].Attrs);
5590   }
5591 
5592   if (I != E)
5593     return Error(CallLoc, "not enough parameters specified for call");
5594 
5595   if (FnAttrs.hasAlignmentAttr())
5596     return Error(CallLoc, "invoke instructions may not have an alignment");
5597 
5598   // Finish off the Attribute and check them
5599   AttributeList PAL =
5600       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5601                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5602 
5603   InvokeInst *II =
5604       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5605   II->setCallingConv(CC);
5606   II->setAttributes(PAL);
5607   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5608   Inst = II;
5609   return false;
5610 }
5611 
5612 /// ParseResume
5613 ///   ::= 'resume' TypeAndValue
5614 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5615   Value *Exn; LocTy ExnLoc;
5616   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5617     return true;
5618 
5619   ResumeInst *RI = ResumeInst::Create(Exn);
5620   Inst = RI;
5621   return false;
5622 }
5623 
5624 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5625                                   PerFunctionState &PFS) {
5626   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5627     return true;
5628 
5629   while (Lex.getKind() != lltok::rsquare) {
5630     // If this isn't the first argument, we need a comma.
5631     if (!Args.empty() &&
5632         ParseToken(lltok::comma, "expected ',' in argument list"))
5633       return true;
5634 
5635     // Parse the argument.
5636     LocTy ArgLoc;
5637     Type *ArgTy = nullptr;
5638     if (ParseType(ArgTy, ArgLoc))
5639       return true;
5640 
5641     Value *V;
5642     if (ArgTy->isMetadataTy()) {
5643       if (ParseMetadataAsValue(V, PFS))
5644         return true;
5645     } else {
5646       if (ParseValue(ArgTy, V, PFS))
5647         return true;
5648     }
5649     Args.push_back(V);
5650   }
5651 
5652   Lex.Lex();  // Lex the ']'.
5653   return false;
5654 }
5655 
5656 /// ParseCleanupRet
5657 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5658 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5659   Value *CleanupPad = nullptr;
5660 
5661   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5662     return true;
5663 
5664   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5665     return true;
5666 
5667   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5668     return true;
5669 
5670   BasicBlock *UnwindBB = nullptr;
5671   if (Lex.getKind() == lltok::kw_to) {
5672     Lex.Lex();
5673     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5674       return true;
5675   } else {
5676     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5677       return true;
5678     }
5679   }
5680 
5681   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5682   return false;
5683 }
5684 
5685 /// ParseCatchRet
5686 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5687 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5688   Value *CatchPad = nullptr;
5689 
5690   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5691     return true;
5692 
5693   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5694     return true;
5695 
5696   BasicBlock *BB;
5697   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5698       ParseTypeAndBasicBlock(BB, PFS))
5699       return true;
5700 
5701   Inst = CatchReturnInst::Create(CatchPad, BB);
5702   return false;
5703 }
5704 
5705 /// ParseCatchSwitch
5706 ///   ::= 'catchswitch' within Parent
5707 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5708   Value *ParentPad;
5709 
5710   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5711     return true;
5712 
5713   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5714       Lex.getKind() != lltok::LocalVarID)
5715     return TokError("expected scope value for catchswitch");
5716 
5717   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5718     return true;
5719 
5720   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5721     return true;
5722 
5723   SmallVector<BasicBlock *, 32> Table;
5724   do {
5725     BasicBlock *DestBB;
5726     if (ParseTypeAndBasicBlock(DestBB, PFS))
5727       return true;
5728     Table.push_back(DestBB);
5729   } while (EatIfPresent(lltok::comma));
5730 
5731   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5732     return true;
5733 
5734   if (ParseToken(lltok::kw_unwind,
5735                  "expected 'unwind' after catchswitch scope"))
5736     return true;
5737 
5738   BasicBlock *UnwindBB = nullptr;
5739   if (EatIfPresent(lltok::kw_to)) {
5740     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5741       return true;
5742   } else {
5743     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5744       return true;
5745   }
5746 
5747   auto *CatchSwitch =
5748       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5749   for (BasicBlock *DestBB : Table)
5750     CatchSwitch->addHandler(DestBB);
5751   Inst = CatchSwitch;
5752   return false;
5753 }
5754 
5755 /// ParseCatchPad
5756 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5757 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5758   Value *CatchSwitch = nullptr;
5759 
5760   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5761     return true;
5762 
5763   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5764     return TokError("expected scope value for catchpad");
5765 
5766   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5767     return true;
5768 
5769   SmallVector<Value *, 8> Args;
5770   if (ParseExceptionArgs(Args, PFS))
5771     return true;
5772 
5773   Inst = CatchPadInst::Create(CatchSwitch, Args);
5774   return false;
5775 }
5776 
5777 /// ParseCleanupPad
5778 ///   ::= 'cleanuppad' within Parent ParamList
5779 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5780   Value *ParentPad = nullptr;
5781 
5782   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5783     return true;
5784 
5785   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5786       Lex.getKind() != lltok::LocalVarID)
5787     return TokError("expected scope value for cleanuppad");
5788 
5789   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5790     return true;
5791 
5792   SmallVector<Value *, 8> Args;
5793   if (ParseExceptionArgs(Args, PFS))
5794     return true;
5795 
5796   Inst = CleanupPadInst::Create(ParentPad, Args);
5797   return false;
5798 }
5799 
5800 //===----------------------------------------------------------------------===//
5801 // Binary Operators.
5802 //===----------------------------------------------------------------------===//
5803 
5804 /// ParseArithmetic
5805 ///  ::= ArithmeticOps TypeAndValue ',' Value
5806 ///
5807 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5808 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5809 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5810                                unsigned Opc, unsigned OperandType) {
5811   LocTy Loc; Value *LHS, *RHS;
5812   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5813       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5814       ParseValue(LHS->getType(), RHS, PFS))
5815     return true;
5816 
5817   bool Valid;
5818   switch (OperandType) {
5819   default: llvm_unreachable("Unknown operand type!");
5820   case 0: // int or FP.
5821     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5822             LHS->getType()->isFPOrFPVectorTy();
5823     break;
5824   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5825   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5826   }
5827 
5828   if (!Valid)
5829     return Error(Loc, "invalid operand type for instruction");
5830 
5831   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5832   return false;
5833 }
5834 
5835 /// ParseLogical
5836 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5837 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5838                             unsigned Opc) {
5839   LocTy Loc; Value *LHS, *RHS;
5840   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5841       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5842       ParseValue(LHS->getType(), RHS, PFS))
5843     return true;
5844 
5845   if (!LHS->getType()->isIntOrIntVectorTy())
5846     return Error(Loc,"instruction requires integer or integer vector operands");
5847 
5848   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5849   return false;
5850 }
5851 
5852 /// ParseCompare
5853 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5854 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5855 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5856                             unsigned Opc) {
5857   // Parse the integer/fp comparison predicate.
5858   LocTy Loc;
5859   unsigned Pred;
5860   Value *LHS, *RHS;
5861   if (ParseCmpPredicate(Pred, Opc) ||
5862       ParseTypeAndValue(LHS, Loc, PFS) ||
5863       ParseToken(lltok::comma, "expected ',' after compare value") ||
5864       ParseValue(LHS->getType(), RHS, PFS))
5865     return true;
5866 
5867   if (Opc == Instruction::FCmp) {
5868     if (!LHS->getType()->isFPOrFPVectorTy())
5869       return Error(Loc, "fcmp requires floating point operands");
5870     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5871   } else {
5872     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5873     if (!LHS->getType()->isIntOrIntVectorTy() &&
5874         !LHS->getType()->isPtrOrPtrVectorTy())
5875       return Error(Loc, "icmp requires integer operands");
5876     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5877   }
5878   return false;
5879 }
5880 
5881 //===----------------------------------------------------------------------===//
5882 // Other Instructions.
5883 //===----------------------------------------------------------------------===//
5884 
5885 
5886 /// ParseCast
5887 ///   ::= CastOpc TypeAndValue 'to' Type
5888 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5889                          unsigned Opc) {
5890   LocTy Loc;
5891   Value *Op;
5892   Type *DestTy = nullptr;
5893   if (ParseTypeAndValue(Op, Loc, PFS) ||
5894       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5895       ParseType(DestTy))
5896     return true;
5897 
5898   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5899     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5900     return Error(Loc, "invalid cast opcode for cast from '" +
5901                  getTypeString(Op->getType()) + "' to '" +
5902                  getTypeString(DestTy) + "'");
5903   }
5904   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5905   return false;
5906 }
5907 
5908 /// ParseSelect
5909 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5910 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5911   LocTy Loc;
5912   Value *Op0, *Op1, *Op2;
5913   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5914       ParseToken(lltok::comma, "expected ',' after select condition") ||
5915       ParseTypeAndValue(Op1, PFS) ||
5916       ParseToken(lltok::comma, "expected ',' after select value") ||
5917       ParseTypeAndValue(Op2, PFS))
5918     return true;
5919 
5920   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5921     return Error(Loc, Reason);
5922 
5923   Inst = SelectInst::Create(Op0, Op1, Op2);
5924   return false;
5925 }
5926 
5927 /// ParseVA_Arg
5928 ///   ::= 'va_arg' TypeAndValue ',' Type
5929 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5930   Value *Op;
5931   Type *EltTy = nullptr;
5932   LocTy TypeLoc;
5933   if (ParseTypeAndValue(Op, PFS) ||
5934       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5935       ParseType(EltTy, TypeLoc))
5936     return true;
5937 
5938   if (!EltTy->isFirstClassType())
5939     return Error(TypeLoc, "va_arg requires operand with first class type");
5940 
5941   Inst = new VAArgInst(Op, EltTy);
5942   return false;
5943 }
5944 
5945 /// ParseExtractElement
5946 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5947 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5948   LocTy Loc;
5949   Value *Op0, *Op1;
5950   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5951       ParseToken(lltok::comma, "expected ',' after extract value") ||
5952       ParseTypeAndValue(Op1, PFS))
5953     return true;
5954 
5955   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5956     return Error(Loc, "invalid extractelement operands");
5957 
5958   Inst = ExtractElementInst::Create(Op0, Op1);
5959   return false;
5960 }
5961 
5962 /// ParseInsertElement
5963 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5964 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5965   LocTy Loc;
5966   Value *Op0, *Op1, *Op2;
5967   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5968       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5969       ParseTypeAndValue(Op1, PFS) ||
5970       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5971       ParseTypeAndValue(Op2, PFS))
5972     return true;
5973 
5974   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5975     return Error(Loc, "invalid insertelement operands");
5976 
5977   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5978   return false;
5979 }
5980 
5981 /// ParseShuffleVector
5982 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5983 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5984   LocTy Loc;
5985   Value *Op0, *Op1, *Op2;
5986   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5987       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5988       ParseTypeAndValue(Op1, PFS) ||
5989       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5990       ParseTypeAndValue(Op2, PFS))
5991     return true;
5992 
5993   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5994     return Error(Loc, "invalid shufflevector operands");
5995 
5996   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5997   return false;
5998 }
5999 
6000 /// ParsePHI
6001 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6002 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6003   Type *Ty = nullptr;  LocTy TypeLoc;
6004   Value *Op0, *Op1;
6005 
6006   if (ParseType(Ty, TypeLoc) ||
6007       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6008       ParseValue(Ty, Op0, PFS) ||
6009       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6010       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6011       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6012     return true;
6013 
6014   bool AteExtraComma = false;
6015   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6016 
6017   while (true) {
6018     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6019 
6020     if (!EatIfPresent(lltok::comma))
6021       break;
6022 
6023     if (Lex.getKind() == lltok::MetadataVar) {
6024       AteExtraComma = true;
6025       break;
6026     }
6027 
6028     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6029         ParseValue(Ty, Op0, PFS) ||
6030         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6031         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6032         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6033       return true;
6034   }
6035 
6036   if (!Ty->isFirstClassType())
6037     return Error(TypeLoc, "phi node must have first class type");
6038 
6039   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6040   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6041     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6042   Inst = PN;
6043   return AteExtraComma ? InstExtraComma : InstNormal;
6044 }
6045 
6046 /// ParseLandingPad
6047 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6048 /// Clause
6049 ///   ::= 'catch' TypeAndValue
6050 ///   ::= 'filter'
6051 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6052 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6053   Type *Ty = nullptr; LocTy TyLoc;
6054 
6055   if (ParseType(Ty, TyLoc))
6056     return true;
6057 
6058   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6059   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6060 
6061   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6062     LandingPadInst::ClauseType CT;
6063     if (EatIfPresent(lltok::kw_catch))
6064       CT = LandingPadInst::Catch;
6065     else if (EatIfPresent(lltok::kw_filter))
6066       CT = LandingPadInst::Filter;
6067     else
6068       return TokError("expected 'catch' or 'filter' clause type");
6069 
6070     Value *V;
6071     LocTy VLoc;
6072     if (ParseTypeAndValue(V, VLoc, PFS))
6073       return true;
6074 
6075     // A 'catch' type expects a non-array constant. A filter clause expects an
6076     // array constant.
6077     if (CT == LandingPadInst::Catch) {
6078       if (isa<ArrayType>(V->getType()))
6079         Error(VLoc, "'catch' clause has an invalid type");
6080     } else {
6081       if (!isa<ArrayType>(V->getType()))
6082         Error(VLoc, "'filter' clause has an invalid type");
6083     }
6084 
6085     Constant *CV = dyn_cast<Constant>(V);
6086     if (!CV)
6087       return Error(VLoc, "clause argument must be a constant");
6088     LP->addClause(CV);
6089   }
6090 
6091   Inst = LP.release();
6092   return false;
6093 }
6094 
6095 /// ParseCall
6096 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6097 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6098 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6099 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6100 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6101 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6102 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6103 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6104 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6105                          CallInst::TailCallKind TCK) {
6106   AttrBuilder RetAttrs, FnAttrs;
6107   std::vector<unsigned> FwdRefAttrGrps;
6108   LocTy BuiltinLoc;
6109   unsigned CC;
6110   Type *RetType = nullptr;
6111   LocTy RetTypeLoc;
6112   ValID CalleeID;
6113   SmallVector<ParamInfo, 16> ArgList;
6114   SmallVector<OperandBundleDef, 2> BundleList;
6115   LocTy CallLoc = Lex.getLoc();
6116 
6117   if (TCK != CallInst::TCK_None &&
6118       ParseToken(lltok::kw_call,
6119                  "expected 'tail call', 'musttail call', or 'notail call'"))
6120     return true;
6121 
6122   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6123 
6124   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6125       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6126       ParseValID(CalleeID) ||
6127       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6128                          PFS.getFunction().isVarArg()) ||
6129       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6130       ParseOptionalOperandBundles(BundleList, PFS))
6131     return true;
6132 
6133   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6134     return Error(CallLoc, "fast-math-flags specified for call without "
6135                           "floating-point scalar or vector return type");
6136 
6137   // If RetType is a non-function pointer type, then this is the short syntax
6138   // for the call, which means that RetType is just the return type.  Infer the
6139   // rest of the function argument types from the arguments that are present.
6140   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6141   if (!Ty) {
6142     // Pull out the types of all of the arguments...
6143     std::vector<Type*> ParamTypes;
6144     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6145       ParamTypes.push_back(ArgList[i].V->getType());
6146 
6147     if (!FunctionType::isValidReturnType(RetType))
6148       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6149 
6150     Ty = FunctionType::get(RetType, ParamTypes, false);
6151   }
6152 
6153   CalleeID.FTy = Ty;
6154 
6155   // Look up the callee.
6156   Value *Callee;
6157   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6158     return true;
6159 
6160   // Set up the Attribute for the function.
6161   SmallVector<AttributeSet, 8> Attrs;
6162 
6163   SmallVector<Value*, 8> Args;
6164 
6165   // Loop through FunctionType's arguments and ensure they are specified
6166   // correctly.  Also, gather any parameter attributes.
6167   FunctionType::param_iterator I = Ty->param_begin();
6168   FunctionType::param_iterator E = Ty->param_end();
6169   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6170     Type *ExpectedTy = nullptr;
6171     if (I != E) {
6172       ExpectedTy = *I++;
6173     } else if (!Ty->isVarArg()) {
6174       return Error(ArgList[i].Loc, "too many arguments specified");
6175     }
6176 
6177     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6178       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6179                    getTypeString(ExpectedTy) + "'");
6180     Args.push_back(ArgList[i].V);
6181     Attrs.push_back(ArgList[i].Attrs);
6182   }
6183 
6184   if (I != E)
6185     return Error(CallLoc, "not enough parameters specified for call");
6186 
6187   if (FnAttrs.hasAlignmentAttr())
6188     return Error(CallLoc, "call instructions may not have an alignment");
6189 
6190   // Finish off the Attribute and check them
6191   AttributeList PAL =
6192       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6193                          AttributeSet::get(Context, RetAttrs), Attrs);
6194 
6195   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6196   CI->setTailCallKind(TCK);
6197   CI->setCallingConv(CC);
6198   if (FMF.any())
6199     CI->setFastMathFlags(FMF);
6200   CI->setAttributes(PAL);
6201   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6202   Inst = CI;
6203   return false;
6204 }
6205 
6206 //===----------------------------------------------------------------------===//
6207 // Memory Instructions.
6208 //===----------------------------------------------------------------------===//
6209 
6210 /// ParseAlloc
6211 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6212 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6213 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6214   Value *Size = nullptr;
6215   LocTy SizeLoc, TyLoc, ASLoc;
6216   unsigned Alignment = 0;
6217   unsigned AddrSpace = 0;
6218   Type *Ty = nullptr;
6219 
6220   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6221   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6222 
6223   if (ParseType(Ty, TyLoc)) return true;
6224 
6225   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6226     return Error(TyLoc, "invalid type for alloca");
6227 
6228   bool AteExtraComma = false;
6229   if (EatIfPresent(lltok::comma)) {
6230     if (Lex.getKind() == lltok::kw_align) {
6231       if (ParseOptionalAlignment(Alignment))
6232         return true;
6233       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6234         return true;
6235     } else if (Lex.getKind() == lltok::kw_addrspace) {
6236       ASLoc = Lex.getLoc();
6237       if (ParseOptionalAddrSpace(AddrSpace))
6238         return true;
6239     } else if (Lex.getKind() == lltok::MetadataVar) {
6240       AteExtraComma = true;
6241     } else {
6242       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6243         return true;
6244       if (EatIfPresent(lltok::comma)) {
6245         if (Lex.getKind() == lltok::kw_align) {
6246           if (ParseOptionalAlignment(Alignment))
6247             return true;
6248           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6249             return true;
6250         } else if (Lex.getKind() == lltok::kw_addrspace) {
6251           ASLoc = Lex.getLoc();
6252           if (ParseOptionalAddrSpace(AddrSpace))
6253             return true;
6254         } else if (Lex.getKind() == lltok::MetadataVar) {
6255           AteExtraComma = true;
6256         }
6257       }
6258     }
6259   }
6260 
6261   if (Size && !Size->getType()->isIntegerTy())
6262     return Error(SizeLoc, "element count must have integer type");
6263 
6264   const DataLayout &DL = M->getDataLayout();
6265   unsigned AS = DL.getAllocaAddrSpace();
6266   if (AS != AddrSpace) {
6267     // TODO: In the future it should be possible to specify addrspace per-alloca.
6268     return Error(ASLoc, "address space must match datalayout");
6269   }
6270 
6271   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6272   AI->setUsedWithInAlloca(IsInAlloca);
6273   AI->setSwiftError(IsSwiftError);
6274   Inst = AI;
6275   return AteExtraComma ? InstExtraComma : InstNormal;
6276 }
6277 
6278 /// ParseLoad
6279 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6280 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6281 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6282 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6283   Value *Val; LocTy Loc;
6284   unsigned Alignment = 0;
6285   bool AteExtraComma = false;
6286   bool isAtomic = false;
6287   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6288   SyncScope::ID SSID = SyncScope::System;
6289 
6290   if (Lex.getKind() == lltok::kw_atomic) {
6291     isAtomic = true;
6292     Lex.Lex();
6293   }
6294 
6295   bool isVolatile = false;
6296   if (Lex.getKind() == lltok::kw_volatile) {
6297     isVolatile = true;
6298     Lex.Lex();
6299   }
6300 
6301   Type *Ty;
6302   LocTy ExplicitTypeLoc = Lex.getLoc();
6303   if (ParseType(Ty) ||
6304       ParseToken(lltok::comma, "expected comma after load's type") ||
6305       ParseTypeAndValue(Val, Loc, PFS) ||
6306       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6307       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6308     return true;
6309 
6310   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6311     return Error(Loc, "load operand must be a pointer to a first class type");
6312   if (isAtomic && !Alignment)
6313     return Error(Loc, "atomic load must have explicit non-zero alignment");
6314   if (Ordering == AtomicOrdering::Release ||
6315       Ordering == AtomicOrdering::AcquireRelease)
6316     return Error(Loc, "atomic load cannot use Release ordering");
6317 
6318   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6319     return Error(ExplicitTypeLoc,
6320                  "explicit pointee type doesn't match operand's pointee type");
6321 
6322   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6323   return AteExtraComma ? InstExtraComma : InstNormal;
6324 }
6325 
6326 /// ParseStore
6327 
6328 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6329 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6330 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6331 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6332   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6333   unsigned Alignment = 0;
6334   bool AteExtraComma = false;
6335   bool isAtomic = false;
6336   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6337   SyncScope::ID SSID = SyncScope::System;
6338 
6339   if (Lex.getKind() == lltok::kw_atomic) {
6340     isAtomic = true;
6341     Lex.Lex();
6342   }
6343 
6344   bool isVolatile = false;
6345   if (Lex.getKind() == lltok::kw_volatile) {
6346     isVolatile = true;
6347     Lex.Lex();
6348   }
6349 
6350   if (ParseTypeAndValue(Val, Loc, PFS) ||
6351       ParseToken(lltok::comma, "expected ',' after store operand") ||
6352       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6353       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6354       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6355     return true;
6356 
6357   if (!Ptr->getType()->isPointerTy())
6358     return Error(PtrLoc, "store operand must be a pointer");
6359   if (!Val->getType()->isFirstClassType())
6360     return Error(Loc, "store operand must be a first class value");
6361   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6362     return Error(Loc, "stored value and pointer type do not match");
6363   if (isAtomic && !Alignment)
6364     return Error(Loc, "atomic store must have explicit non-zero alignment");
6365   if (Ordering == AtomicOrdering::Acquire ||
6366       Ordering == AtomicOrdering::AcquireRelease)
6367     return Error(Loc, "atomic store cannot use Acquire ordering");
6368 
6369   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6370   return AteExtraComma ? InstExtraComma : InstNormal;
6371 }
6372 
6373 /// ParseCmpXchg
6374 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6375 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6376 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6377   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6378   bool AteExtraComma = false;
6379   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6380   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6381   SyncScope::ID SSID = SyncScope::System;
6382   bool isVolatile = false;
6383   bool isWeak = false;
6384 
6385   if (EatIfPresent(lltok::kw_weak))
6386     isWeak = true;
6387 
6388   if (EatIfPresent(lltok::kw_volatile))
6389     isVolatile = true;
6390 
6391   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6392       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6393       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6394       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6395       ParseTypeAndValue(New, NewLoc, PFS) ||
6396       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6397       ParseOrdering(FailureOrdering))
6398     return true;
6399 
6400   if (SuccessOrdering == AtomicOrdering::Unordered ||
6401       FailureOrdering == AtomicOrdering::Unordered)
6402     return TokError("cmpxchg cannot be unordered");
6403   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6404     return TokError("cmpxchg failure argument shall be no stronger than the "
6405                     "success argument");
6406   if (FailureOrdering == AtomicOrdering::Release ||
6407       FailureOrdering == AtomicOrdering::AcquireRelease)
6408     return TokError(
6409         "cmpxchg failure ordering cannot include release semantics");
6410   if (!Ptr->getType()->isPointerTy())
6411     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6412   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6413     return Error(CmpLoc, "compare value and pointer type do not match");
6414   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6415     return Error(NewLoc, "new value and pointer type do not match");
6416   if (!New->getType()->isFirstClassType())
6417     return Error(NewLoc, "cmpxchg operand must be a first class value");
6418   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6419       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6420   CXI->setVolatile(isVolatile);
6421   CXI->setWeak(isWeak);
6422   Inst = CXI;
6423   return AteExtraComma ? InstExtraComma : InstNormal;
6424 }
6425 
6426 /// ParseAtomicRMW
6427 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6428 ///       'singlethread'? AtomicOrdering
6429 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6430   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6431   bool AteExtraComma = false;
6432   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6433   SyncScope::ID SSID = SyncScope::System;
6434   bool isVolatile = false;
6435   AtomicRMWInst::BinOp Operation;
6436 
6437   if (EatIfPresent(lltok::kw_volatile))
6438     isVolatile = true;
6439 
6440   switch (Lex.getKind()) {
6441   default: return TokError("expected binary operation in atomicrmw");
6442   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6443   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6444   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6445   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6446   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6447   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6448   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6449   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6450   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6451   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6452   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6453   }
6454   Lex.Lex();  // Eat the operation.
6455 
6456   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6457       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6458       ParseTypeAndValue(Val, ValLoc, PFS) ||
6459       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6460     return true;
6461 
6462   if (Ordering == AtomicOrdering::Unordered)
6463     return TokError("atomicrmw cannot be unordered");
6464   if (!Ptr->getType()->isPointerTy())
6465     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6466   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6467     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6468   if (!Val->getType()->isIntegerTy())
6469     return Error(ValLoc, "atomicrmw operand must be an integer");
6470   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6471   if (Size < 8 || (Size & (Size - 1)))
6472     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6473                          " integer");
6474 
6475   AtomicRMWInst *RMWI =
6476     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6477   RMWI->setVolatile(isVolatile);
6478   Inst = RMWI;
6479   return AteExtraComma ? InstExtraComma : InstNormal;
6480 }
6481 
6482 /// ParseFence
6483 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6484 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6485   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6486   SyncScope::ID SSID = SyncScope::System;
6487   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6488     return true;
6489 
6490   if (Ordering == AtomicOrdering::Unordered)
6491     return TokError("fence cannot be unordered");
6492   if (Ordering == AtomicOrdering::Monotonic)
6493     return TokError("fence cannot be monotonic");
6494 
6495   Inst = new FenceInst(Context, Ordering, SSID);
6496   return InstNormal;
6497 }
6498 
6499 /// ParseGetElementPtr
6500 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6501 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6502   Value *Ptr = nullptr;
6503   Value *Val = nullptr;
6504   LocTy Loc, EltLoc;
6505 
6506   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6507 
6508   Type *Ty = nullptr;
6509   LocTy ExplicitTypeLoc = Lex.getLoc();
6510   if (ParseType(Ty) ||
6511       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6512       ParseTypeAndValue(Ptr, Loc, PFS))
6513     return true;
6514 
6515   Type *BaseType = Ptr->getType();
6516   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6517   if (!BasePointerType)
6518     return Error(Loc, "base of getelementptr must be a pointer");
6519 
6520   if (Ty != BasePointerType->getElementType())
6521     return Error(ExplicitTypeLoc,
6522                  "explicit pointee type doesn't match operand's pointee type");
6523 
6524   SmallVector<Value*, 16> Indices;
6525   bool AteExtraComma = false;
6526   // GEP returns a vector of pointers if at least one of parameters is a vector.
6527   // All vector parameters should have the same vector width.
6528   unsigned GEPWidth = BaseType->isVectorTy() ?
6529     BaseType->getVectorNumElements() : 0;
6530 
6531   while (EatIfPresent(lltok::comma)) {
6532     if (Lex.getKind() == lltok::MetadataVar) {
6533       AteExtraComma = true;
6534       break;
6535     }
6536     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6537     if (!Val->getType()->isIntOrIntVectorTy())
6538       return Error(EltLoc, "getelementptr index must be an integer");
6539 
6540     if (Val->getType()->isVectorTy()) {
6541       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6542       if (GEPWidth && GEPWidth != ValNumEl)
6543         return Error(EltLoc,
6544           "getelementptr vector index has a wrong number of elements");
6545       GEPWidth = ValNumEl;
6546     }
6547     Indices.push_back(Val);
6548   }
6549 
6550   SmallPtrSet<Type*, 4> Visited;
6551   if (!Indices.empty() && !Ty->isSized(&Visited))
6552     return Error(Loc, "base element of getelementptr must be sized");
6553 
6554   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6555     return Error(Loc, "invalid getelementptr indices");
6556   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6557   if (InBounds)
6558     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6559   return AteExtraComma ? InstExtraComma : InstNormal;
6560 }
6561 
6562 /// ParseExtractValue
6563 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6564 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6565   Value *Val; LocTy Loc;
6566   SmallVector<unsigned, 4> Indices;
6567   bool AteExtraComma;
6568   if (ParseTypeAndValue(Val, Loc, PFS) ||
6569       ParseIndexList(Indices, AteExtraComma))
6570     return true;
6571 
6572   if (!Val->getType()->isAggregateType())
6573     return Error(Loc, "extractvalue operand must be aggregate type");
6574 
6575   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6576     return Error(Loc, "invalid indices for extractvalue");
6577   Inst = ExtractValueInst::Create(Val, Indices);
6578   return AteExtraComma ? InstExtraComma : InstNormal;
6579 }
6580 
6581 /// ParseInsertValue
6582 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6583 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6584   Value *Val0, *Val1; LocTy Loc0, Loc1;
6585   SmallVector<unsigned, 4> Indices;
6586   bool AteExtraComma;
6587   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6588       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6589       ParseTypeAndValue(Val1, Loc1, PFS) ||
6590       ParseIndexList(Indices, AteExtraComma))
6591     return true;
6592 
6593   if (!Val0->getType()->isAggregateType())
6594     return Error(Loc0, "insertvalue operand must be aggregate type");
6595 
6596   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6597   if (!IndexedType)
6598     return Error(Loc0, "invalid indices for insertvalue");
6599   if (IndexedType != Val1->getType())
6600     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6601                            getTypeString(Val1->getType()) + "' instead of '" +
6602                            getTypeString(IndexedType) + "'");
6603   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6604   return AteExtraComma ? InstExtraComma : InstNormal;
6605 }
6606 
6607 //===----------------------------------------------------------------------===//
6608 // Embedded metadata.
6609 //===----------------------------------------------------------------------===//
6610 
6611 /// ParseMDNodeVector
6612 ///   ::= { Element (',' Element)* }
6613 /// Element
6614 ///   ::= 'null' | TypeAndValue
6615 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6616   if (ParseToken(lltok::lbrace, "expected '{' here"))
6617     return true;
6618 
6619   // Check for an empty list.
6620   if (EatIfPresent(lltok::rbrace))
6621     return false;
6622 
6623   do {
6624     // Null is a special case since it is typeless.
6625     if (EatIfPresent(lltok::kw_null)) {
6626       Elts.push_back(nullptr);
6627       continue;
6628     }
6629 
6630     Metadata *MD;
6631     if (ParseMetadata(MD, nullptr))
6632       return true;
6633     Elts.push_back(MD);
6634   } while (EatIfPresent(lltok::comma));
6635 
6636   return ParseToken(lltok::rbrace, "expected end of metadata node");
6637 }
6638 
6639 //===----------------------------------------------------------------------===//
6640 // Use-list order directives.
6641 //===----------------------------------------------------------------------===//
6642 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6643                                 SMLoc Loc) {
6644   if (V->use_empty())
6645     return Error(Loc, "value has no uses");
6646 
6647   unsigned NumUses = 0;
6648   SmallDenseMap<const Use *, unsigned, 16> Order;
6649   for (const Use &U : V->uses()) {
6650     if (++NumUses > Indexes.size())
6651       break;
6652     Order[&U] = Indexes[NumUses - 1];
6653   }
6654   if (NumUses < 2)
6655     return Error(Loc, "value only has one use");
6656   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6657     return Error(Loc, "wrong number of indexes, expected " +
6658                           Twine(std::distance(V->use_begin(), V->use_end())));
6659 
6660   V->sortUseList([&](const Use &L, const Use &R) {
6661     return Order.lookup(&L) < Order.lookup(&R);
6662   });
6663   return false;
6664 }
6665 
6666 /// ParseUseListOrderIndexes
6667 ///   ::= '{' uint32 (',' uint32)+ '}'
6668 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6669   SMLoc Loc = Lex.getLoc();
6670   if (ParseToken(lltok::lbrace, "expected '{' here"))
6671     return true;
6672   if (Lex.getKind() == lltok::rbrace)
6673     return Lex.Error("expected non-empty list of uselistorder indexes");
6674 
6675   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6676   // indexes should be distinct numbers in the range [0, size-1], and should
6677   // not be in order.
6678   unsigned Offset = 0;
6679   unsigned Max = 0;
6680   bool IsOrdered = true;
6681   assert(Indexes.empty() && "Expected empty order vector");
6682   do {
6683     unsigned Index;
6684     if (ParseUInt32(Index))
6685       return true;
6686 
6687     // Update consistency checks.
6688     Offset += Index - Indexes.size();
6689     Max = std::max(Max, Index);
6690     IsOrdered &= Index == Indexes.size();
6691 
6692     Indexes.push_back(Index);
6693   } while (EatIfPresent(lltok::comma));
6694 
6695   if (ParseToken(lltok::rbrace, "expected '}' here"))
6696     return true;
6697 
6698   if (Indexes.size() < 2)
6699     return Error(Loc, "expected >= 2 uselistorder indexes");
6700   if (Offset != 0 || Max >= Indexes.size())
6701     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6702   if (IsOrdered)
6703     return Error(Loc, "expected uselistorder indexes to change the order");
6704 
6705   return false;
6706 }
6707 
6708 /// ParseUseListOrder
6709 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6710 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6711   SMLoc Loc = Lex.getLoc();
6712   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6713     return true;
6714 
6715   Value *V;
6716   SmallVector<unsigned, 16> Indexes;
6717   if (ParseTypeAndValue(V, PFS) ||
6718       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6719       ParseUseListOrderIndexes(Indexes))
6720     return true;
6721 
6722   return sortUseListOrder(V, Indexes, Loc);
6723 }
6724 
6725 /// ParseUseListOrderBB
6726 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6727 bool LLParser::ParseUseListOrderBB() {
6728   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6729   SMLoc Loc = Lex.getLoc();
6730   Lex.Lex();
6731 
6732   ValID Fn, Label;
6733   SmallVector<unsigned, 16> Indexes;
6734   if (ParseValID(Fn) ||
6735       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6736       ParseValID(Label) ||
6737       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6738       ParseUseListOrderIndexes(Indexes))
6739     return true;
6740 
6741   // Check the function.
6742   GlobalValue *GV;
6743   if (Fn.Kind == ValID::t_GlobalName)
6744     GV = M->getNamedValue(Fn.StrVal);
6745   else if (Fn.Kind == ValID::t_GlobalID)
6746     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6747   else
6748     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6749   if (!GV)
6750     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6751   auto *F = dyn_cast<Function>(GV);
6752   if (!F)
6753     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6754   if (F->isDeclaration())
6755     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6756 
6757   // Check the basic block.
6758   if (Label.Kind == ValID::t_LocalID)
6759     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6760   if (Label.Kind != ValID::t_LocalName)
6761     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6762   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6763   if (!V)
6764     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6765   if (!isa<BasicBlock>(V))
6766     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6767 
6768   return sortUseListOrder(V, Indexes, Loc);
6769 }
6770